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Summary 

In signaling and mechano-related pathways, a type of protein domain is 

critical for transducing signals. Such protein domains are located in the termini 

or flanked by folded domains, compositional biased with prolines preventing 

folding into a single stable conformation. They are referred as proline-rich 

disordered protein regions. This thesis presents a couple of new methods using 

molecular simulation, bioinformatics and statistical analysis to study the 

structural ensemble and sequences of proline-rich disordered regions. A new 

approach, involving simulating the membrane or nearby molecular assembly 

in the cellular context as simple planes in the conformational space of 

disordered protein regions, is described in the sampling structural ensembles 

of proline-rich disordered LRP6 intracellular domain in the initiation of 

Wnt/β-catenin pathway. The new simulation approach shows that an elongated 

form dominates the conformational space of such proline-rich disordered 

regions when assembled with membranes or neighbor molecules that impose 

excluded volume constraints.  A new amino acid propensity index called PSR 

is derived from a set of folded domains and a set of proline/serine-rich 

disordered regions. This index is used to predict long proline-rich disordered 

regions containing multiple serines, which could serve as phosphoacceptors in 

signaling pathways. New statistical analysis was done to further study the 

kinase-substrate specificity for kinases ATM/ATR, CDK1 and CK2, by 

including the second-order interpositional sequence dependence in the 

substrate phosphorylation peptides. The findings show that sequence alone is 

not sufficient to improve the accuracy of phosphorylation sites prediction for 

the kinases studied; instead, other parameters, especially co-localization, 
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surface accessibility etc, are required to be considered. This study can be 

extended to other kinases. 
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Chapter 1  

Introduction 

Defining Protein Disorder 

More than a century ago, the discovery about the structural fitness between an 

enzyme and a substrate led to the formation of the famous “lock and key” 

hypothesis, in which, the substrate (key) must possess a specific conformation 

to dock into the catalytic site (key-hole) of an enzyme (lock) [1].  The 

associated sequence-structure-function paradigm of protein folding states that 

the sequence of a protein determines its native three-dimensional structure in 

an aqueous environment, and a protein folds into a defined, stable and rigid 

three-dimensional structure to fulfill its functional purpose [2, 3]. The folding 

hypothesis has been demonstrated by a tremendous number of identified X-ray 

crystal structures and nuclear magnetic resonance conformers deposited in the 

Protein Data Bank (PDB) [4-9]. While many early scientists were aware that 

some protein sequences may not fold into such definite structures, the protein 

folding paradigm dominated our understanding of structure-function 

relationships. Now we are more aware of the significant fraction of proteins 

with native biological functions but that lack folded structure, either in their 

entirety or in portions. The evidence arises from proteins that either do not 

crystallize under any conditions, or whose determined structures have missing 

electron densities in X-ray diffraction, or that do not have stable defined 

structure in solution in nuclear magnetic resonance (NMR) spectrometry [10-

27].  These flexible and disordered proteins or regions simply lack a unique 

folded conformation. They are frequently referred as flexible, mobile, partially 
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folded, natively denatured [28], natively unfolded [29, 30], intrinsically 

unstructured [31, 32], and recently a more common term, intrinsically 

disordered [33] (Figure 1.1). The definition of intrinsic disorder is clarified as 

regions in the protein structure where the equilibrium position of the backbone 

along with the dihedral angles, has no specific values and vary significantly 

over time [33, 34]. How can we describe such proteins? For the purpose of 

clarification, the conformational states that are available to proteins are 

defined here. First, the native state is a protein’s observable conformation 

related to its biological functions [35]. A native state is often a folded state, 

which is structured and ordered [36] typically with common elements of 

protein folds such as secondary structure and a hydrophobic core. Yet, the 

native state of a protein sequence is not necessarily folded [37]; sometimes, it 

is rather an unfolded state, which is unstructured or disordered, not restricted 

to be a random coil, but possibly also consisting of extended disorder (pre-

molten globule) and collapsed disorder (molten globule) [33, 38] components. 

If a protein’s unfolded state is obtained through chemical denaturation, for 

example in high concentrations of urea, or at high temperature, such a state is 

normally referred as the denatured state, which is itself a non-native state [35]. 

Denatured states have common unstructured properties with intrinsically 

disordered proteins (IDPs), but the details of the types of conformations 

observed may differ. For over five decades Intrinsically Disordered Proteins 

by any name, have been considered to be mysterious as their structural 

features have remained evasive. Recent improvements in both experimental 

techniques and computational approaches are starting to improve our 

understanding of all forms of protein disorder. 
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Figure 1.1: The protein sequence-structure-function paradigm. 

 

Experimental Characterization 

Most traditional experimental methods have limited abilities to characterize 

the 3-dimensional structure of intrinsically disordered proteins. NMR 

spectroscopy and circular dichroism (CD) spectropolarimetry [33] are the 

most useful of these. There are no examples of full-length disordered proteins 

that can be crystallized from solution thus their structures cannot be detected 

by X-ray crystallography, however small regions of disorder can be detected 

by the absence of data. For proteins having both ordered and disordered 

regions, they are able to crystallize on account of the ordered regions’ 

crystallization. Disordered regions give incoherent X-ray scattering resulting 

in missing electron density [17, 39-44]. 

NMR is able to characterize protein disordered regions, transient 

secondary and tertiary structures as well. It can also be used to study the 

structure in a dynamic way [45-55]. A set of biophysical terms can be 

measured from NMR experiments including chemical shifts [56-58], scalar 
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couplings [59], residual dipolar couplings (RDCs) [60-64], and paramagnetic 

relaxation enhancement (PRE) effects [65]. These biophysical terms can often 

be expressed in terms of bond angle or atom distance information, and then 

used as restraints for fitting coordinate models of disordered proteins.  

Molecular simulations are necessary to generate examples of the 

conformational space that may be explored by disordered proteins, after which 

the associated NMR restraints can be applied to refine the models that fit the 

experimental data. Chemical shifts are the atoms’ unique frequencies specified 

in the resonance spectrum. The deviation from random coil to helix and beta 

strand conformations can be determined by tables of  chemical shift, and these 

inform us of evidence of local secondary structures [66-69]. Scalar couplings 

can inform us of the observed backbone dihedral angels in a protein structure. 

RDCs report the information about the bond angles and vectors relative to the 

core structure. PRE effects can provide long-range distance restraints.  

CD identifies disordered proteins by measurement of low intensity 

near-UV backbone optical polarization information, which can be compared to 

standard protein folds. Deviation from folded backbone conformations can 

show a protein is intrinsically disordered [70, 71]. Other important techniques 

include small angle X-ray scattering (SAXS), hydrodynamic measurements 

such as size exclusion chromatography, infrared spectroscopy, fluorescence 

resonance energy transfer (FRET), conformational stability with effects of 

temperature and pH, mass spectrometry-based high resolution hydrogen-

deuterium exchange, protease sensitivity and optical rotary dispersion (ORD). 

Table 1.1 provides a list of current experimental techniques for intrinsic 

disorder characterization.  
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SAXS can be applied to evaluate the size of protein structure in 

solution, which is then compared to its globular form with features like the 

signal changes at higher scattering angles, radius of gyration (Rgyr) and 

maximum dimension [72-75]. FRET captures the structural state by measuring 

the distance distribution between the donor and acceptor chromophores [76-

79]. Taken together, these experimental measurements, especially from NMR 

[56-65] , SAXS [80-82] and FRET [83-85], can often be used as sources for 

constructing ensembles for disordered proteins as fill in structural information 

missing from disordered regions. However the structures that result from these 

are often represented as an ensemble of 3-dimensional disordered structures, 

with some number of static structures that demonstrate the range of 

conformational variants that may fit the experimental data. The ensemble is 

implied to represent “snapshots” of the protein as it may dynamically meander 

and explore its native disordered states. 

A combination of multiple experimental techniques will give more 

information about the identification and conformational states of intrinsic 

disorder over a single technique. Many experimentally identified disordered 

protein regions arising from conventional structures have been deposited into a 

database called DisProt [86]. However, difficulties exist in identifying 

sequence with intrinsic disorder, by a myriad of effects for example structural 

experimentation nuance of structure definition, protein expression, and 

reagents. A number of computational tools have been applied to the problem 

of identifying the specific regions that exhibit intrinsic disorder, which are 

becoming more helpful in working with intrinsic disordered proteins. 
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Table 1.1: Experimental methods for characterizing intrinsically disordered 

proteins 

Major Experimental Methods For Study of Intrinsic Disordered Proteins 

X-Ray Chrystallorgraphy 

Nuclear Magnetic Resonance (NMR) Spectroscopy 

Small Angle X-ray Diffraction (SAXS) 

Circular Dichroism (CD) Spectropolarimetry 

Infrared Spectroscopy 

Fluorescence Resonance Energy Transfer (FRET) 

Size Exclusion Chromatography 

Native Acrylamide Gel Electrophoresis 

Conformational Stability (through Temperature or PH) 

Mass Spectrometry-Based High Resolution 

Hydrogen-Deuterium Exchange 

Protease Sensitivity 

 

 

Computational Prediction 

R.J.P Williams proposed the first disorder predictor in 1979 based on the 

extremely high ratio between the number of charged residues and the number 

of hydrophobic resides [87, 88].  Secondary structure prediction algorithms 

starting with the GOR (Garnier, Osguthorpe, Robson) [89-92] indicated a 

fractional prediction of percent “coil” which may be interpreted as a lack of 

secondary structure and therefore a disordered region, however these tools 

were never widely used or tested with modern disordered datasets. The first 

well defined disorder predictors PONDRs using artificial neural network 

algorithms were developed by the research group of Dunker, Obradovic and 

Uversky [30, 42, 93-102]. To date more than 50 computational approaches 

have been designed to discover disordered regions along protein sequences. 

Many of these predictors have online servers. Table 1.2 provides a series of 

current disorder predictors in details. These methods are discussed thoroughly 

in many review articles [103-106]. Disorder prediction was included in the 
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biennial Critical Assessment of Structure Prediction (CASP) since 2004 [107-

111] which focuses on identification of structurally characterized small 

regions of disorder. This assessment brings further advancement in the 

development of disorder predictor design. At the same time, disorder 

predictors can give feedback to experimental protocols for accurate 

identification of intrinsic disorder. Among the published disorder predictors, 

such as , PONDRs [93, 96, 98, 101, 102, 112, 113], DISOPRED [114, 115], 

RONN [116] and POODLE [117-120], machine learning algorithms including 

neural networks (NN) and support vector machines (SVMs) are used as the 

basic methods. The input features used in training these algorithms are largely 

different from each other, including amino acid composition, net charge, 

predicted secondary structure, and hydropathy. Some predictors, such as 

GlobPlot [121] and IUPred [122, 123], use rather simple algorithms, yet they 

are able to effectively predict disordered regions. Some of the predictors have 

improved their efficiency through modifications. A number of metaprediction 

servers have also been developed, integrating different disorder predictors into 

a consensus prediction. Examples of metaprediction servers include 

DisPSSMP2 [124], PrDOS [125], MD [126], MFDp [127], GSmetaDisorder 

[128], which are generally able to produce better prediction results. 

Fundamentally, disorder predictors all rely on the properties of disordered 

regions that can be understood as amino acid compositional and contextual 

differences between ordered and disordered proteins.



 

 

 

8
 

Table 1.2: A list of current disorder predictors with available URL and brief description. Table adapted by author from [103-105]. 

Predictor Publication 

year 

Brief description 

SEG[129] 

http://mendel.imp.ac.at/METHODS/seg.server.html 

 

1994 SEG predicts low-complexity or compositional biased segments as well as non-

globular domains. For predicting long and short non-globular domains, different 

parameters must be used.  SEG is not trained as a disorder predictor, but as there is a 

correspondence between low-complexity sequence and disorder, often finds disordered 

regions.  

HCA (Hydrophobic Cluster Analysis)[130] 

http://smi.snv.jussieu.fr/hca/hcaseq.html 

 

1997 HCA predicts hydrophobic clusters, which tend to form secondary structure elements. 

This method is based on a helical visualization of amino acid sequence. The prediction 

output can display coiled coils, compositional biased regions and boundaries of 

disordered proteins.  

PONDR (XL1, VL1, XL-XT, VL2, VL3, VSL1, VSL2) [93, 

96, 98, 101, 112, 113] 

http://www.pondr.com  

 

1997-2006 PONDRs includes a series of predictors which can predict disordered regions. The 

types of disordered regions predicted by PONDR predictors include random coils, 

partially unstructured regions, and molten globules. It is trained with local amino acid 

composition, flexibility, hydropathy etc, using feed-forward neural network. These 

predictors perform well in disorder prediction as shown in many applications. 

Charge/hydropathy method[30] 

http://www.pondr.com 

 

2000 Charge/hydropathy method predicts fully unstructured domains (random coils) based 

on global sequence composition (hydrophobicity versus net charge). This method is 

expected to identify disordered regions that are not present in DisProt. Prior knowledge 

of modular organization of protein is required. It is only applicable to domains without 

disulfide bonds and without metal-binding regions. 

GlobPlot [121]  

http://globplot.embl.de  

 

2003 GlobPlot predicts regions with high propensity for globularity based on the 

Russell/Linding scale [121], which describes the relative propensity of an amino acid 

residue to be in an ordered (secondary structure) or disordered (random coil) state. The 

output provides an overview of modular organization of large proteins and shows 

changes of slope corresponding to domain boundaries. GlobPlot is user-friendly with 

built-in SMART, PFAM and low-complexity predictions. 

DisEMBL[131]  

http://dis.embl.de 

  

2003 DisEMBL is able to predict three kinds of disordered structure, including loops/coils 

(regions devoid of regular secondary structures), hot loops (highly mobile loops), and 

those that are missing from the PDB X-ray structures (REMARK465). The neural 

networks were trained with X-ray structure data. DisEMBL also displays the low-

complexity regions and propensity of aggregation. Prediction using loops/coils 

predictor is most trusted. 

http://mendel.imp.ac.at/METHODS/seg.server.html
http://smi.snv.jussieu.fr/hca/hcaseq.html
http://www.pondr.com/
http://www.pondr.com/
http://globplot.embl.de/
http://dis.embl.de/
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NORSp[132] 

http://cubic.bioc.columbia.edu/services/NORSp 

2003 NORSp predicts regions with No Ordered Regular Secondary (NORS) structure, most 

of which are highly flexible. It is based on secondary structure and solvent 

accessibility. NORSp generates and uses multiple sequence alignment. Some highly 

flexible regions are yet predicted to contain secondary structures. 

DISOPRED [114] 

DISOPRED2 [115] 

http://bioinf.cs.ucl.ac.uk/disopred 

  

2003 DISOPRED trains the whole sequence information using neural networks.  

2004 DISOPRED2 is trained with PSI-BLAST profiles using cascaded support vector 

machine (SVM) classifiers and generates and uses multiple sequence alignment. It 

predicts regions lack of ordered regular secondary structure. However, when there are 

few homologues, the prediction accuracy is lower. 

Weather’s method [133] 2004 Weather’s method uses SVM analysis of a linear combination of composition vectors. 

DRIPPRED [134]   

http://www.sbc.su.se/~maccallr/disorder/ 

2004 DRIPPRED is based on Kohonen’s self-organizing map and received a good evaluation 

at CASP6. 

FoldUnfold [135-137] 

 http://skuld.protres.ru/~mlobanov/ogu/ogu.cgi 

2004 FoldUnfold is based on the idea that the structure of proteins is governed by the 

balance between the interaction energy of residues and their conformational entropy. 

IUPred[122, 123]  

http://iupred.enzim.hu  

 

2005 IUPred predicts regions that lack a well-defined 3D structure under native conditions. It 

is based on the idea that the energy resulting from inter-residue interactions is 

responsible for determining whether a protein forms structure or not. This method is 

expected to identify disordered proteins that are not present in DisProt and only 

applicable to proteins without disulfide bonds and without metal-binding regions.  

RONN [116] 

http://www.strubi.ox.ac.uk/RONN 

 

2005 RONN predicts regions that are lack of a well-defined 3D structure under native 

conditions. It trains on disordered proteins using bio-basis function neural network. 

RONN is restricted to search for short regions of disorder. 

DISpro[138] 

http://scratch.proteomics.ics.uci.edu/ 

2005 DISpro is based on a one dimensional recursive neural network (1D-RNN) model, the 

flexibility of Bayesian model and a fast, convenient, parameterization of an artificial 

neural network (ANN). 

FoldIndex [139]  

http://bip.weizmann.ac.il/fldbin/findex 

 

2005 FoldIndex is used to analyze the ratio of net charge with hydropathy locally using a 

sliding window. It predicts regions that have a low hydrophobicity and high net charge 

(loops or unstructured regions). FoldIndex provides prediction on probable short loops 

but no prediction on N- and C-termini.  

PreLink[140] 

http://genomics.eu.org 

2005 PreLink predicts regions that are expected to be unstructured in all conditions, 

regardless of the presence of a binding partner. It is based on compositional bias and 

low hydrophobic cluster content.  

Spritz [141] 

http://distill.ucd.ie/spritz/ 

2006 Spritz consists of two specialized binary classifiers, one for short disordered regions 

and the other for long disordered fragments. 

IUP[142]  2006 IUP is based on a Recursive Maximum Contrast Tree (RMCT) to recognize 

intrinsically disordered regions. 

http://cubic.bioc.columbia.edu/services/NORSp
http://bioinf.cs.ucl.ac.uk/disopred
http://www.sbc.su.se/~maccallr/disorder/
http://skuld.protres.ru/~mlobanov/ogu/ogu.cgi
http://iupred.enzim.hu/
http://www.strubi.ox.ac.uk/RONN
http://scratch.proteomics.ics.uci.edu/
http://bip.weizmann.ac.il/fldbin/findex
http://genomics.eu.org/
http://distill.ucd.ie/spritz/
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DisPSSMP[143]  

DisPSSMP2[124]  

http://biominer.bime.ntu.edu.tw/ipda/ 

2006 DisPSSMP is based on Radial Basis Function Networks with inputs from position-

specific scoring matrices and other sequence properties. 

2007 DisPSSMP2 uses a two-level prediction scheme and a condensed position-specific 

scoring matrix. 

NORSnet [144]  

http://cubic.bioc.columbia.edu/services/NORSp 

2007 NORSnet uses feed-forward neural networks. 

POODLE-S[118]  

http://mbs.cbrc.jp/poodle/poodle-s.html 

2007 

 

POODEL-S is a group of seven SVM predictors with each responsible for a specific 

region of the whole sequence. 

POODLE-L [117]  

http://mbs.cbrc.jp/poodle/poodle-l.html  

POODLE-L is composed of ten two-level SVM predictors. 

POODLE-W [119] 

http://mbs.cbrc.jp/poodle/poodle-w.html  

POODLE-W predicts disordered structures by using a Spectral Graph Transducer 

(SGT) and by training with a huge amount of structure-unknown sequences. 

PrDOS[125] 

http://prdos.hgc.jp/cgi-bin/top.cgi  

2007 PrDOS consists of two predictors, one of which uses the alignment of homologs. 

metaPrDOS[145] 

http://prdos.hgc.jp/cgi-bin/meta/top.cgi 

2008 MetaPrDOS is composed of seven individual predictors which areas follow: PrDOS, 

DISOPRED2, DisEMBL, DISPROT, DISpro, IUPred, and POODLE-S. 

Bayes[146]  2008 Bayesian method computes the conditional probability of a sequence from a certain 

class and then infers the posterior probability of the class. 

OnD-CRFs[147]  

http://babel.ucmp.umu.se/ond-crf/  

2008 Conditional Random Fields (CRFs) method predicts the intrinsic disorder in proteins. 

CRF is a discriminatively supervised machine-learning method. 

DISOclust[148]  

http://www.reading.ac.uk/bioinf/DISOclust/DISOclust_form.html  

2008 

 

DISOclust applies the principle that ordered residues within a protein target should be 

conserved in three-dimensional space within multiple models, whereas the residues that 

vary or are consistently missing may be correlated with the disordered structure. 

MD [126]  

http://cubic.bioc.columbia.edu/newwebsite/services/md/index.php 

2009 

 

MD is a meta predictor composed of NORSnet, Ucon, PROFBval, DISOPRED2, 

IUPred, and FoldIndex. 

CDF-ALL[149]  2009 CDF-ALL is a protein-level disorder meta predictor composed of CDFs from VLXT, 

VSL2, VL3, TopIDP, IUPred, and FoldIndex. 

PreDisorder[150] 

http://casp.rnet.missouri.edu/predisorder.html 

2009 PreDisorder uses a 1D recursive neural network with the input of a profile generated 

from PSI-BLAST, the predicted secondary structure and solvent accessibility. 

POODLE-I[120] 

http://mbs.cbrc.jp/poodle/poodle-i.html 

2010 POODLE-I is a meta predictor integrating POODLE-S, POODLE-L and POODLE-W. 

PONDR-FIT[102] 

www.disprot.org 

2010 PONDR-FIT is a meta predictor that is trained using ANN with the results of 

PONDRVLXT, VL3, VSL2, IUPred, FoldIndex and TopIDP. 

MFDp[127] 

http://biomine-ws.ece.ualberta.ca/MFDp.html 

2010 MFDp is a meta predictor consisting of DISOPRED2, DISOclust, and IUPred. Other 

information, for example, PSSM, residue flexibility and back-bone dihedral torsion 

angles, etc are taken as input. 

http://biominer.bime.ntu.edu.tw/ipda/
http://cubic.bioc.columbia.edu/services/NORSp
http://mbs.cbrc.jp/poodle/poodle-s.html
http://mbs.cbrc.jp/poodle/poodle-l.html
http://mbs.cbrc.jp/poodle/poodle-w.html
http://prdos.hgc.jp/cgi-bin/top.cgi
http://prdos.hgc.jp/cgi-bin/meta/top.cgi
http://babel.ucmp.umu.se/ond-crf/
http://www.reading.ac.uk/bioinf/DISOclust/DISOclust_form.html
http://cubic.bioc.columbia.edu/newwebsite/services/md/index.php
http://casp.rnet.missouri.edu/predisorder.html
http://mbs.cbrc.jp/poodle/poodle-i.html
http://www.disprot.org/
http://biomine-ws.ece.ualberta.ca/MFDp.html
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IsUnstruct[151] 2011 IsUnstruct is developed using Ising model which involves an estimation of the energy 

of the border between ordered and disordered regions. 

DisCon[152] 

http://biomine.ece.ualberta.ca/DisCon/ 

2011 DisCon is based on a ridge regression model with the input of information on sequence, 

evolutionary profiles, and so forth. 

DICHOT[153, 154] 

http://spock.genes.nig.ac.jp/~genome/DICHOT 

2011 DICHOT system combines structural domain identification, DISOPRED2 disorder 

prediction and CLADIST classification program to predict structural domains and 

intrinsically disordered regions. 

GSmetaDisorder[128] 

http://iimcb.genesilico.pl/metadisorder/ 

2012 GSmetaDisorder is a meta predictor that combines 12 disorder predictors: DisEMbL, 

DISOPRED2, DISpro, GlobPlot, iPDA, IUPred, Pdisorder, POODLE-S, PrDOS, 

Spritz, DisPSSMP and RONN. 

CH-CDF plot[155] 2012 CH-CDF plot method is a combination of two methods: Charge/hydropathy and CDF-

ALL. It is able to predict proteins into four categories: structured, mixed, disordered 

and rare. 

SPINE-D[156] 

http://sparks.informatics.iupui.edu/ 

2012 SPINE-D is based on a single neural network to predict if the residues are ordered or 

disordered and if they are in short or long disordered regions. Its evaluation was among 

the top servers in CASP9. 

http://biomine.ece.ualberta.ca/DisCon/
http://spock.genes.nig.ac.jp/~genome/DICHOT
http://iimcb.genesilico.pl/metadisorder/
http://sparks.informatics.iupui.edu/
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Studies have been carried out to learn about the difference in the amino 

acid compositions between ordered and disordered proteins using the 

sequences in DisProt. According to variation compared to DisProt, disordered 

regions contain higher percentages of disorder-promoting amino acids (A, G, 

R, Q, K, S, E and P) and lower percentages of order-promoting amino acids 

(W, F, Y, I, L, V, N and C) compared to the ordered regions [33, 96, 157-159]. 

This peculiarity in amino acid composition explains that disorder regions have 

overall low hydrophobicity and high net charge [30]. The sequence 

composition and order influence other biophysical properties of disordered 

regions, for example, flexibility index, helix propensities and strand 

propensities [157]. These biophysical properties together with amino acid 

sequence are treated as input features in the development of various sequence-

based disorder predictors as discussed above and in Table 1.2. An amino acid 

scale was derived for better discrimination of order and disorder. The twenty 

residues are ranked according to their tendencies of promoting order to 

disorder as the following: W,F,Y,I,M,L,V,N,C,T,A,G,R,D,H,Q,K,S,E,P [160]. 

Note however that this ranking can be counter-intuitive.  For example, glycine 

has the largest conformational space variation and would be expected to be on 

the extreme end of disorder promotion. Proline has the smallest 

conformational space and would be expected to be order promoting on that 

basis. However there is no simple correspondence between individual amino 

acid properties and structure disorder, simply because it is dependent on the 

context of neighboring residues and whether the sequence evolved some 

folded structure. Depending on the properties of the R-group in each residue, 

the twenty standard amino acids can be classified into several groups: non-
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polar aliphatic (G, A, V, L, M and I), non-polar aromatic (F, Y and W), polar 

acidic (L, R and H), polar basic (D and E) and polar uncharged (S, T, C, P, N 

and Q). The aromatic residues (W, F and Y) as well as the bulky hydrophobic 

residues (I, L and V) are preferred in the hydrophobic core of folded globular 

domains. Thus, these residues are grouped into the order-promoting residues. 

Earlier studies show that low-complexity in amino acid composition infers the 

non-globular domains of proteins [161, 162]. A sequence is said to be of low-

complexity if it is biased in local composition to one or more amino acids 

beyond what is expected in a normal sequence distribution. While low-

complexity regions are often also intrinsically disordered, some are not, and 

some disordered regions fail to be detected by low-complexity locating 

software such as SEG [129]. It has been reported that amino acid composition 

alone cannot predict short-disordered regions (<=30 residues) effectively, but 

it is adequate to predict long-disordered regions (> 30 residues) accurately. 

Rauscher and Pomes [163] argued that for a protein polypeptide, when its 

sequence length increases, the amino acid composition is a sufficient criterion 

to predict long disorder regions, and at the same time, the sequence context 

become less important [163, 164]. 

 

Molecular Simulation 

In order to understand how the conformations of intrinsically disordered 

proteins behave, ensembles are created by various means computational 

simulation together with restraint fitting as previously mentioned. The tools 

for molecular simulation are largely biased by a focus on structured proteins, 
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so exploration into the ensembles of disordered protein regions is limited by 

methods that have been more broadly used for the topics of protein folding 

and unfolding.  Disordered proteins are anticipated to have a flat energy 

landscape (Illustration 1.1) and therefore adopt a large number of diverse 

conformational states at room temperature in solution. It is intriguing to 

compute the energy landscape of disordered proteins; however, the topic is 

beyond the scope of this thesis. In order to study the disordered protein 

conformations, an enormous conformational space needs to be sampled 

followed by some statistical analysis to understand the biophysical properties 

of the ensemble. To date, a few research groups have attempted to model 

disordered regions through an ensemble-based interpretation.  
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Illustration 1.1: An illustration of energy landscape models for globular/folded 

proteins and intrinsically disordered/unfolded proteins. This figure is designed 

based on the earlier energy funnel model proposed for globular/folded proteins 

and adapted by author from [9, 27, 165]. 
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Molecular dynamics (MD) and Monte Carlo (MC) algorithms are 

commonly applied to simulate the conformational space of disordered regions. 

While widely used for folded protein conformational studies and docking, MD 

has some shortcomings in addressing broad conformational sampling of IDP. 

MD employs Newton’s formula of motions   
  

  
 (F is the force, p is the 

momentum and t is the time.) in a small time frame when sampling 

conformers of disordered regions. MD is a helpful method to model 

conformers of disordered regions; nonetheless, it has constrained usage in 

modeling long disordered regions because the time frame required would be 

incredibly small, i.e. nanosenconds.  The basic algorithm calculates the energy 

associated with covalent bonds, dihedral angles, torsions, van der Waals 

interaction (Leonard-Jones potential) as well as an electrostatic potential 

(Coulomb potential). Every term requires parameterization which is mutually 

mentioned as the force field [166]. Force fields have been refined over the past 

two decades but were initially slow to accurately represent the observed 

distribution of backbone angles found in the PDB database. More recently, 

MD has been improved to do conformational sampling with replica exchange 

[167], accelerated [168] or quenched MD [57]. Lei and Duan gave more 

details in their review article on MD sampling approaches [169].  

MC sampling is a stochastic process that favors or disfavors a protein 

conformation by determining if the calculated values agree with the 

experimental measurements or not, and a free energy potential is calculated in 

the meanwhile. MD and MC are often coupled together or integrated into 

other techniques to sample a conformational pool and search for a subset 
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ensemble, of which structural properties most resemble those from 

experimental measurements.  A few methods are discussed below.  

The Hilser group developed a statistical thermodynamic model called 

COREX [170, 171], which is able to calculate free energy and entropy by 

partitioning the protein sequence into a number of folding units with a window 

length. Each folding unit is computationally rotated out from the folded 

structure and calculations are made to determine the energy and whether the 

structure should be folded or unfolded. Each partitioning will generate      

partially folded conformational states, where N is the number of folding units. 

The partitioning process is iterated through the entire sequence. Eventually, 

the total number of conformational states equals to the summation of the 

number of partially folded conformational states generated in each partitioning 

in addition to the fully folded state and fully unfolded state, ie.          

  where    is the number of folding units in each partition. This algorithm 

calculates the entropy and hence can report the Gibbs free energy of each 

conformational state. COREX requires a crystal structure of the studied 

protein as a template. It has therefore been demonstrated useful in 

investigating the cooperative [172-175] and allosteric behaviors [176] of 

protein conformations. However, this method cannot be applied to intrinsically 

disordered proteins with no starting structure. Without identification of any 

partially folded regions, this approach is of limited value for IDP analysis. 

TraDES (Trajectory Directed Ensemble Sampling) [177, 178] is an 

unbiased all-atom conformational sampling software which can generate both 

native and non-native conformational states. The software uses dictionaries of 

backbone conformations from a high quality nonredundant set of PDB 
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structures for selecting backbone angle conformations, and the backbone-

dependent rotamer library of Dunbrack [179] for placement of amino acid side 

chains. Originally designed for sampling conformational space to find folded 

proteins by brute force, it was the first such program to be adapted by NMR 

researchers for generating ensembles of unrestricted IDP structures prior to 

restraint fitting, As it is a validated O(NlogN) algorithm, it is much faster than 

other methods at sampling conformational space. Validated backbone atom 

and side chain placement accuracy have made it a system of great utility for 

IDP studies. 

The TRADES software is divided into two phases.  The first phase 

reads in a protein sequence, and provides a trajectory distribution file, which 

stores the chemical graph of the structure with any post-translationally 

modified amino acids, together with the distributions of Ramachandran 

dihedral angles for each residue. It is called a trajectory distribution because it 

contains the information for sampling the conformational space of the protein 

as modeled as an N-to-C terminal build up process. Each possible 3D protein 

structure is considered a single trajectory through the distribution.  Trajectory 

distributions can be created using combinations of Ramachandran space 

gathered from specific secondary structure, for example TraDES can create 

all-coil or all-beta structure samples, or it can use a 3-state secondary structure 

prediction such as the GOR method to bias the trajectory distribution of each 

residue to more frequently sample its most preferred secondary structure. 

The TraDES trajectory distribution file serves as an input to the ab 

initio conformer generator, which is the second phase of the TraDES system. 

This samples the space encoded by the trajectory distribution to rapidly make 
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a large sample of plausible unfolded protein conformers. It works by adding 

residues one by one from N-to C- terminus based on probabilistic geometry 

sampling. TraDES sampling does not apply any explicit potential functions, 

and creates structures with a combination of statistics and sterics. 

Philosophically, the TraDES structure sampling method avoids energy 

computations while building protein conformers, in order to avoid any bias 

arising from any particular force field. Thus, any energy scoring function can 

be estimated on the sampled conformers which are all-atom models. TraDES 

outputs potential terms including Zhang potential (an atom-based statistical 

potential showing the amount of favorable contacts) [180], Bryant-Lawrence 

potential (a residue-based threading potential) [181], and the VSCORE 

potential (an atom-contact based scoring function) [182]. TraDES is able to 

reconstruct folded proteins matching high quality PDB structures to very low 

RMSD (Root Mean Square Deviation) tolerances, which is a form of 

validation to demonstrate that native structures embedded within the trajectory 

distribution can indeed appear in the sample, if it is sufficiently large. TraDES 

is also used as the initial step for conformational sampling in other Monte 

Carlo methods, for example the NMR package ENSEMBLE [59, 183-186]. 

ENSEMBLE allocates weights to each conformer in a TraDES-generated 3D 

structure ensemble to optimize the mapping between the ensemble-averaged 

properties and experimental data. The experimental restraints used in 

ENSEMBLE are chemical shifts, NOEs, PREs, RDCs, hydrogen exchange 

protection factors, solvent-accessible surface area, and hydrodynamic radius. 

ENSEMBLE was originally applied to calculate the native and non-native 

states of drk SH3 domains [183, 184], but now it has become more widespread 
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in the NMR community. Sample and Select (SAS) [84, 187, 188] is another 

Monte Carlo approach that assign equal weight to each conformer in the 

ensembles and select a subset of conformations that minimize the difference 

between predicted and experimental data.  

Other NMR research groups have built systems similar to TraDES, but 

have implemented models that are more restrictive to predict the disorder 

conformational space by assuming the disordered regions most likely adopt 

random coil structures. Jha et al. made a statistical coil model which can 

produce an equilibrium ensemble of polypeptides from Monte Carlo 

simulations [189, 190]. Firstly, they constructed a coil library consisting of 

residues that lie outside of helices, sheets and turns from an X-ray structure 

dataset of 2020 peptide chains. Then, the conformational state is generated by 

assigning each residue specific φ, ψ angles of a type of Ramachandran basin 

(αR, β, PPII, αL and γ) according to the basin’s frequency in the coil library. 

Note that this set of basins is much coarser than the 400x400 divisions used in 

TraDES. A statistical potential is calculated as the simulation process carries 

on. The modeling results agree with the experimental RDC values of 

denatured proteins, whereas it does not explain if these conformations are 

native states.  

Another example of a TraDES inspired package is the Flexible-

Meccano (FM) packaged developed by the Blackledge group [60, 62-64, 191, 

192]. Like TraDES, their algorithm generates backbone structures with an N-

to-C terminal build up sampling from specific coil regions obtained from high-

quality nonredundant crystal structures. FM has demonstrated great utility in 

matching observed RDC data alone or together with a RDC-restrained 
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molecular dynamics refinement. For disordered proteins, the conformational 

state is formed by constructing consecutive peptide planes and tetrahedral 

junctions from the selected φ,ψ angles which are randomly retrieved from a 

loop library, which is similarly to the coil library built in the study by Jha et al., 

but with less X-ray structures, i.e. 500, and different resolution thresholds. FM 

was applied to study the disordered regions in the nucleocapsid-binding 

domain of Sendai virus phosphoprotein [62], and the ensembles were used to 

demonstrate that the experimental RDC and SAXS results are dominated by 

coil behavior. This approach is further integrated into an ensemble 

optimization method to quantitatively search the subset ensemble that matches 

SAXS data in a Monte Carlo way [63].   

In choosing between MC and MD techniques, it is useful to note that 

there is an ongoing debate as to whether disordered regions can be modeled 

simply with random coils or they actually contain a certain amount of local or 

long-range contacts [193]. However this debate may be missing the point of 

context, in that there may be instances of disordered proteins that have no 

local or long range contacts, while there may be others that do. From the 

standpoint of evolution, either outcome may have a specific fitness or 

capability. Given this, a genetic algorithm has been coupled to FM by the 

Blackledge group, which has produced the program ASTEROIDS [56, 60, 

192], stochastically searches for conformations whose predicted 

conformational variants are in an agreement with the experimental values. 

 MD approaches tend to produce limited samples of conformational 

space owing to the energy function’s propensity to drive towards local minima. 

The MC methods used by TraDES and similar approaches do not suffer this 
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limitation. Additional approaches, for instance, Rosetta [194], CNS [195] and 

Xplor-NIH [196], apply simulated annealing in their mechanisms. Rosetta 

creates ensembles of structures by swapping nine-residue long fragments, 

which takes upon possible local structures that are found in a known similar 

protein sequence [194]. This approach can be described as a simulated 

annealing process that considers Bayesian scoring functions, but it lacks an 

ability to broadly sample the conformational space of disordered proteins 

owing again to its tendency to optimize the energy of folded regions. The 

original CNS used simulated annealing to generate conformers by starting 

with an all-beta strand extended configuration with plausible geometry [195], 

however this method is inefficient at producing large samples of 

conformational space.  Xplor-NIH, an improved version of Xplor [197], and 

the updated CNS software can sample structural ensembles via NMR 

experimental restricted simulated annealing and energy minimization. Energy-

minima Mapping and Weighting (EMW) algorithm [57, 198] assigns a 

statistical weight from 0 to 1 to each conformer and optimize the 

conformational ensemble at the same time according to a simulated annealing 

protocol. 

The above methods and other molecular simulation techniques not 

covered in the discussion all attempt to search for an ensemble out of the 

conformational space that corresponds to the experimental data with or 

without some energy scoring function.   None of these methods, however, take 

spatial or steric boundaries such as membranes or close-packing into 

consideration, which disordered regions may actually encounter in a cellular 

context. In this thesis, spatial constraints comprising of membranes and nearby 
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molecules or assemblies, are examined to determine whether they may alter 

the conformational space available to the disordered region of a protein. The 

restriction of conformational space sampling caused by neighboring structures 

or membranes may alter the ensemble structure of the disordered region, 

thereby modifying its statistical structural properties, and alter its functional 

role.  

 

Prevalence, Function, and Disease Impact of Intrinsically 

Disorder 

Intrinsically disordered proteins are prevalent in the three kingdoms of life 

[115, 199]. Bioinformatics technique has predicted that 33% of eukaryotic 

proteins contain disordered regions. The content of protein disorder is 

predicted to be 4.2% and 2% in bacteria and archaea [115]. Researchers argue 

that the prevalent existence of protein disorder in higher organisms may stem 

from the much more complicated signaling and regulation systems, in which 

they play important roles. The functions of intrinsically disordered proteins are 

summarized as four categories: molecular recognition, in which they act as 

effectors and scavengers displaying sites for post-translational modifications; 

molecular assembly; protein modification; and entropic chain activities [158, 

200]. They are involved in a multitude of cellular processes, for example, 

transcription, translation, cell cycle control and signal transduction. Moreover, 

protein disorder is often associated with Alzheimer’s disease, Parkinson’s 

disease, and others which are collectively known as neurodegenerative 

conformational diseases [201] . It is reported that 57+4% of cardiovascular 
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disease associated proteins and 79+5% of cancer associated proteins are 

predicted to contain disorder regions with a length of more than 30 

consecutive residues [202, 203].    

 

Proline-Rich Disordered Regions 

In the regulation of signal and mechano-transduction, a collection of “hub” 

proteins, such as, α-synuclein, p53, 14-3-3, AXIN, are indispensible proteins 

which bind to a number of other proteins via protein-protein interactions [204-

207]. When they are removed via knock-out or knock-down experiments, the 

missing “hub” proteins will disrupt the necessary interactions with their 

partner proteins resulting in unsuccessful binding and signal transduction. 

Studies have been done to find that these “hub” proteins and their interacting 

partners interact with each other via the disordered regions within both [208-

214]. Many of which carry short binding motifs within proline-rich regions 

such as the yeast protein Las17 [215]. Another example is the tumor 

suppressor p53, which is the central hub protein in a complex signaling 

network. The N-terminal domain (NTD; residues 1-94) of p53 containing a 

proline-rich region (PRR; residues 61-93) is intrinsically disordered and 

interacts with Tfb1 (PDB:2GS0), Mdm2 (PDB:1YCR) and Rpa70 

(PDB:2B3G) [216, 217]. AXIN is a scaffold protein in Wnt [218], TGF-

β[219], c-Jun N terminal/stress-activated protein kinase (JNK) [220] and p53 

pathways. The highly disordered fragment of residues 383-480 in AXIN is 

compositionally biased with proline and is able to bind GSK3β (PDB:1O9U) 

and β-catenin(PDB:1QZ7) [221]. 
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Proline in Intrinsically Disordered Regions  

A great deal of study has been done on proline-rich regions, whose properties 

and behaviors originate from the special amino acid proline. Proline is ranked 

in the first place in the amino acid scale of promoting disorder [160]. This is 

due to the peculiar amino acid configuration of proline compared to the rest of 

its peers. The proline side chain is cyclized back onto the backbone amide 

position, a unique configuration that grants proline the following distinct 

properties.   

First of all, proline has a very restricted backbone conformation. The  

dihedral angles are limited to take a value around -65[222, 223]. The value of 

 dihedral angle is not as constrained and is free to be in the α-helical region 

(≈-40) or the β-sheet region (≈+150). Studies of prolines in crystal 

structures show that approximately 44% of prolines are in the α region and 56% 

are in the β region [224, 225]. The preceding residue of proline in Xaa-Pro 

dipeptide, greatly affects the conformation of proline. A hydrophobic 

proceeding residue or cis bound in Xaa-Pro creates a higher tendency for 

proline to be in β region. When the proceeding residue Xaa is a tyrosine 

residue, the fraction of Xaa-Pro cis conformation was observed to increase 

from 5-6% up to 19% [224, 226]. 

Second, for a given Xaa-Pro dipeptide, proline also affects the 

conformation of its preceding residue via the bulky N-CH2 group, disfavoring 

the α-helix conformation of the preceding residue [224, 225, 227].  The 

preceding residue Xaa tends to be in the β conformation when the Pro  angle 
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is constrained to be around -65. Hence, the Xaa-Pro dipeptide is likely to be 

fairly rigid and extended. 

Third, with the amide proton replaced by a CH2 group and its bulky 

side-chain, proline fails to act as a hydrogen bond donor and disrupts the 

structure of both helix and β-sheet. Within a helix, proline causes a ‘kink’ to 

form, bending the helix at the point where the hydrogen bonding network is 

disrupted.  In addition, proline substitution disrupts the normal pattern of β-

sheet hydrogen-bonding conformations [228] in both the parallel and 

antiparallel forms. This implies that proline-containing regions are incapable 

of binding to proteins that form strand-edge protein interactions, such as the 

crystallin family of chaperones. Proline is often found at the beginning of a 

helix. The reason is mainly because the  dihedral angle of proline is 

constrained to an angle normally found in a helix [229].  

 

Proline-Rich Motif, Proline-Rich Regions, and Polyproline II Helix 

Many short sequence segments with identified interaction and function contain 

at least one conserved and functionally required proline. These short 

sequences are referred as proline-rich motifs, which can be recognized by 

several modular domains and phosphopeptide-binding domains.  Table 1.3 

lists current known modular domains and phosphopeptide-binding domains 

and their binding specificities related to proline-rich motifs. Proline-rich 

motifs often appear in cluster in a much longer proline-rich region with up to 

hundreds of residues (See Table 1.4 for some examples). Some proteins whose 

proline-rich regions do not contain repeated proline-rich motifs are listed in 
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Table 1.5. More examples were discussed in an earlier review by Williamson 

[229]. These proline-rich disordered regions are involved in various biological 

processes, including endocytosis [230], cell protrusion and mobility [231], 

transcription, immune response, and signal transduction as listed in Table 1.4 

and Table 1.5. Table 1.3, Table 1.4 and Table 1.5 are compiled from a survey 

of literature. 
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Table 1.3: Modular domains, phosphopeptide-binding domains and their 

specificities. Table adapted by author [232]. 

Domain Example proteins  Specificity Reference 

Modular domains    

SH3     

Class I Src, Yes, Lyn, Abl, Grb2 A, 

PI3K, Fyn 

(R/K)PφPxφP [233-237] 

Class II Src, Cortactin, p53BP2, 

PLC, Crk A, Amphiphysin, 

Nck SH3-B, CAP SH3-C 

ψPPφPφ(R/K) [232, 238-243] 

WW     

Class I YAP65, Nedd-4, 

Dystrophin, BAG3 

(L/P)PP(Y/pY) [244-251] 

Class II FBP-11 PPLPP [252] 

Class III (a) FE65 (p/φ)P(p/g)PPpR [253] 

Class III (b) FBP21 (p/φ)PP(R/K)gpPp [254] 

Class IV Ess1/Pin1, Nedd-4 (pS/pT)P [255-257] 

Class V 

 

PRP40-2 (p/φ)PPPPP [258] 

EVH1     

Class I Ena/VASP, Mena, Evl (D/E)FPxφP [259, 260] 

Class II Homer/Vesl PPxx(F/Y) [261, 262] 

Class III WASP/N-WASP LPPPEP [263] 

Class IV 

 

SPRED Not Defined [264, 265] 

GYF  

 

CD2-binding protein 

2(CD2BP2) 

(R)xxPPgxR [266, 267] 

UEV  

 

Tsg101 P(T/S)AP [268, 269] 

Profilin Profilin (single-domain 

prtein) 

Poly-L-proline [270, 271] 

    

Phosphopeptide-

binding domains 

   

SH2 Src pYEEI [272] 

PTB SHC NPpY [273] 

14-3-3 14-3-3 ζ RSXpSXP or 

RXY/FXpSXP 

[274] 

WW Class IV Pin 1 (pS/pT)P [256] 

FHA Rad53 FHA 1 pTXXD [275] 

WD40 Β-TrCP DpSGXXpS [276] 

MH2 Smad2 SpSMpS-COOH [277] 

Polo-box Plk1 S(pS/pT)P [278] 

BRCT BRCA1 (pS/pT)XX(F/Y) [279] 

Note: The aliphatic, hydrophobic and any amino acid are represented by 

symbols ψ, φ and x respectively. Phosphoserine and phosphothreonine, 

phosphotyrosine are represented by pS, pT and pY. Residues that are favored 

but not highly conserved are represented by lowercase letters.  Among the 

multi copies of a modular domain in a protein, the one nearest to the N-

terminus is represented as domain A. 
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Table 1.4: Proline-rich regions with repeated proline-rich motifs.  

Name Organism Proline-rich motifs Function Position References 

Fc 

receptor 

Streptococcus 

agalaciae 

(T/S/A/I/L/VP)30 Binds 

peptidoglycan 

Membrane 

anchor 

[280] 

LRP6 Human PPP(S/T)PX(S/T) Activation of 

Wnt/β-

catenine 

pathway 

Intracellular 

domain 

[216] 

Acta 

(Actin 

assembly-

inducing 

protein) 

Listeria FPPPP Actin 

polymerization 

N-terminus [281] 
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Table 1.5: Proline-rich regions without repeated proline-rich motifs.  

 

Name Organism Function Position Reference 

SH3-binding 

protein 1 

Mouse Binds SH3 domains  [282] 

Ig alpha-1 Human Immunoglobulin Linker [283] 

FAK (Focal 

adhesion kinase 1) 

Human Cell migration, adhesion 

and protrusion, etc. 

Near C-

terminus 

[284] 

BAG3 (BAG 

family molecular 

chaperone 

regulator 3) 

Human Anti-apoptotic  [285] 

Wasp/N-Wasp Human Actin polymerization  [286, 287] 

Ena/VASP Human Associated with actin  [288] 

p53 Human Tumor suppressor N-terminus [216] 

 

  A short sequence of two or more proline residues in a row in these 

proline-rich motifs frequently tend to adopt a left-handed poly-L-proline II 

helix (PPII) with =-78 and =+149 [289]. PPII helix is an extended 

structure with three residues per turn and all Xaa-Pro bonds in trans 

conformation. Another conformation called right-handed poly-L-proline I 

helix (PPI), is observed in solvents such as propanol and butanol [290]. 

Different from PPII, PPI has all Xaa-Pro bonds in cis conformation. 

The PP II helix is a special conformation, which has continuous 

prolines constructing a hydrophobic strip around the helix. At the same time, 

the carbonyls on the backbone present hydrogen bonding sites. As a result, 

PPII helix is able to provide both an accessible hydrophobic surface and a 

hydrogen bonding site. This much more rigid and extended structure described 

as ‘sticky arm’ has been observed near the N and C termini of proteins [229]. 

In addition, they are commonly observed in the exposed surface of globular 

proteins. A discontinuous stretch of prolines can also form a PPII helix. As a 

matter of fact, PPII type structure can form in solution in peptides without the 
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proline [291]. The PPII conformation has been observed to be the dominant 

conformation of disordered protein regions, including both proline-rich and 

proline-free disordered regions [292, 293]. Continuous PPII helices do not 

appear as stretches in disordered regions as observed in experimental and 

simulation studies [294-296], however the majority of the amino acid 

backbone conformations are in a PPII conformation. PPII helix tends to exist 

in long extended proline-rich regions. Such regions are highly flexible, 

resistant to interactions with chaperones, thermo tolerant, and are difficult to 

characterize in the experiments of X-ray crystallography or NMR 

spectrometry [232, 297]. Crystallographers have found that it is best to remove 

these sequence regions from proteins in order to obtain crystal structures of 

folded protein domains connected to proline-rich disordered regions. Thus, a 

comprehensive understanding about the structural role of these long proline-

rich disordered regions is needed.  

Several studies claim that proline-rich disordered region have auto-

inhibition effects in the entire protein structure. Kim et al. 2000 reported the 

inactivated structure of WASP (Wiskott - Aldrich syndrome protein), which is 

induced by the autoinhibitory contact between the GTPase-binding domain 

(GBD) and the proline-rich C-terminal region.  Cdc42 can bind to the GBD 

and disrupt the hydrophobic core, resulting in the release of the C terminus, 

which is able to interact with actins. ALIX (apoptosis-linked gene 2 (ALG-2)-

interacting protein X) is important in apoptosis, endocytosis and is also 

associated in ESCRT pathway [298]. The C-terminal of ALIX is a proline-rich 

region with a length of 150 residues and a percentage of 33% proline. ALIX 

proline-rich region can form a contact with another domain in ALIX called 
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Bro1 domain, leading to the autoinhibition of the binding activities of ALIX 

[299-301]. Interestingly, ALIX can also dimerize through its proline-rich 

region to mediate HIV-1 budding [302].  As a result, it seems that binding to 

other molecules depending on context (e.g. Cdc42 binds to GBD in WASP 

and ALIX dimerizaiton) could relieve the autoinhibition effect induced by 

proline-rich regions. 

Another structural role of high amount of proline locating in disordered 

regions may be to disrupt soluble oligomers [303], amorphous aggregates and 

amyloid fibrils which are harmful and associated in diseases, including 

Alzheimer’s disease (amyloid β-protein (Aβ)), Parkinson’s disease (α-

synuclein aggregation), type II diabetes (amylin) and Huntington’s disease 

(polyglutamine repeats) [201]. Almost all amyloid fibrils have some beta-

strand type protein-protein interaction, which is disrupted by the presence of 

proline.  

Unlike folded domains, the intrinsically disordered have stronger 

tendency to mis-fold, but they are protected by their natural sequence features 

comprising of high net charge, low hydrophobicity and the presence of proline 

[304]. Rauscher et al have shown that a high content of proline and glycine 

can help the elastomeric proteins escape the amyloid formation. Elastomeric 

proteins are a group of entropic chains with characteristics of intrinsic disorder, 

including elastin, spider silk, abductin, wheat gluten, and resilin [305].  

The extraordinary roles of these proline-rich disordered regions in 

signaling pathways is in part due to the fact that they often contain 

phosphorylation sites and phosphor-amino-acid recognition 

motifs.  Phosphorylation by kinases is of extreme importance in regulation and 
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signaling networks, as it changes the chemical nature of a short peptide motif 

to an altered state of structure and charge, facilitating binding to some 

recognition domain and forming a protein-phosphopeptide-motif interaction.  

Many aspects of cellular biology, including DNA damage response, 

cell cycle control, differentiation and apoptosis [306-308], are regulated by the 

complex interplay of protein kinases and their substrates. It is estimated that 

about one third in the eukaryotic proteome is phosphorylated [309].  A 

conclusion has been arrived that these phosphorylation sites are likely to occur 

in disordered regions, because a significant enrichment of disorder-promoting 

residues is observed surrounding the phosphorylation sites (Ser, Thr or Tyr) 

and in particular proline is highly populated [310]. For example, the N-

terminal region of p53 is proline-rich unfolded and two phosphorylation sites 

of ATM/ATR reside in this region [216, 217]; LRP6 intracellular domain is 

enriched in proline and serine (15-20%) containing five iterated 

phosphorylation motifs of kinase GSK3β and CK1, and this region has no 

structure identified mainly because it refuses to crystallize [311]. Until now, 

numerous methods have been developed to identify the 3-10 residue long 

phosphorylation motifs or recognition motifs, many of which are in fact 

proline-directed, specifically identified by a kinase or a signaling modular 

domain (for example, SH2, SH3, PDZ and 14-3-3, and so forth) [312-314].  

There are two major bioinformatic tools available online for searching 

phosphorylation sites or phosphopeptide recognition motifs. One is called 

NetPhos which is based on neural network algorithm [315].  The other one is 

Scansite which represents the motifs with the position-specific scoring matrix 

(PSSM) derived from oriented peptide library experiments [316, 317]. Such 
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scoring matrix is capable of indicating the preference for each amino acid 

residue occurring at that position relative to the phosphorylation site within the 

recognition motif.  PSSM assumes independence between positions in the 

motif, as it calculates scores at each position independently from the residue 

type at other positions. Because the kinome involves a large number of 

members and the experimental results still contain redundant phosphorylation 

or recognition sites, the prediction accuracy still remains to be improved [318]. 

An alternative research area to study is the evolutionary rates of substrate 

sequences for kinases and for phosphopeptide-binding domains. 

 

The Present Work  

This thesis focuses on the proline-rich disordered protein regions in signaling 

and mechano-related pathways. We propose a hypothesis that the structural 

ensembles of proline-rich disordered protein regions will adopt an altered form 

that dominates their conformational space with facing the spatial constraints 

imposed by membrane, nearby molecules or molecular complexes in real 

cellular context. A structural simulation approach was developed to examine 

the consequences of spatial constraints, which may explain the biological 

relevance of conformational change occurring in the proline-rich disordered 

regions in the initiation of signaling pathway. The abundance of protein-rich 

disordered regions is high in the signaling pathways. This may largely be due 

to the functional sites they have in their sequence. The proline-rich regions 

usually contain multiple phosphorylation sites, with higher frequencies of 

serines and threonines (less tyrosines), whose activation is pivotal in the signal 
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transduction. Therefore, it is vital to locate these proline/serine-rich disordered 

regions in the proteomes associating with signaling and mechano-related 

pathways. We developed an amino acid propensity index as a tool to search 

for such regions. Finally, we take a deeper look into the interpositional 

sequence dependencies around the phosphorylation sites which have a 

preference to appear in the disordered regions. A fast and easy evolutionary 

rate for the substrate motif is observed.  This agrees with the earlier report 

about the study of phosphorylation sites in the disordered regions which tend 

to have a fast evolutionary rate compared to the ordered folded domains [310]. 

The entire thesis involves various research fields, including structural 

simulation, biophysics, computer science, sequence analysis, mathematics and 

biostatistics.  

In Chapter 2 of the thesis, the molecular simulation on the intracellular 

domain of a protein called LRP6 is described, which is a single-pass type I 

transmembrane protein in the Wnt signaling pathway [319]. The intracellular 

domain of LRP6 is intrinsically disordered and enriched in proline and serine 

[311]. Mutation of this segment has been reported to lead to inactivate the Wnt 

pathway [320]. A molecular simulation on this proline-rich region was carried 

out by constructing an initial large scale sampling of conformational space 

with TraDES followed by filtration with two spatial constraints, which are 

modeled as the excluded volume effects imposed by the plasma membrane 

and nearby molecules or molecular assemblies. We find that an elongated 

conformation described by an increased ensemble-averaged radius of gyration, 

dominates the structural ensemble of LRP6 intracellular domain. In particular, 

this elongation happens on the near-membrane domain, described by an 
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increased ensemble averaged end-to-end distance. In the Wnt signaling 

context, such a conformational change could be the reason why the 

phosphorylation motif closest to the membrane gets activated first and 

propagate the reactions further down to the phosphorylation sites behind, as 

discovered in reported experiments [320-322]. 

In Chapter 3, an algorithm was developed to search for proline/serine-

rich disordered regions. A previous method designed to search for domain 

linkers was based on a domain-linker amino acid propensity index [323]. 

Originating from these simple log-odds and z-score approach, a new amino 

acid index called “PSR” was derived from the amino acid compositional bias 

between a set of Pro/Ser-rich disordered regions and a folded domain dataset. 

The amino acid index “PSR” is able to detect protein regions of interest with a 

high sensitivity and reasonably good specificity. The current disorder 

predictors only focus on finding the disordered regions without giving a clue 

about the particular compositional bias within their predictions. On the other 

hand, protein regions predicted by software (mainly SEG [129]) to contain 

composition bias or low sequence complexity, are not always disordered. 

Therefore, the “PSR” index provides an alternative insight into the sequence 

composition of disordered regions. This new method considers the previous 

finding that amino acid composition alone is sufficient to predict long 

disordered regions (>30aa) [163, 164].  The training dataset was constructed 

by manually collecting Pro/Ser-rich disordered regions with amino acid length 

of more than 40 residues.  The prediction method searches for Pro/Ser-rich 

regions with a length of 50 residues in the training dataset. A web server 

called Armadillo (2.0) was implemented for the PSR index. It provides a 



 

37 

 

platform for researchers who are interested to find out more about the proline-

rich disordered regions with multiple phosphorylation sites, most of which are 

indispensable in the signaling pathways. 

Finally, in Chapter 4, the sequence information of the substrate motifs 

of several kinases was studied to learn more about the kinases’ specificities 

towards their substrates, most of which have phosphoacceptors in proline-rich 

regions. The interpositional sequence dependencies surrounding the 

phosphorylation site were examined in large sets of sequences and found to be 

rare. Two models were designed using the first-order information and second-

order information to predict novel substrates for three types of kinases. The 

first-order is based on the assumption that every position is independent of 

each other. The second-order model incorporated the interpositional sequence 

dependencies discovered from the substrate dataset we collected from 

experimental results. The second-order model did not provide much 

improvement in prediction power than the first-order model. The results 

suggest the position-independent model does well enough to predict novel 

phosphorylation sites. In order to achieve higher kinase specificity toward 

their substrates, other biological and cellular contexts should be included 

rather than considering the sequence information only.  

The results also imply a fast evolutional rate in the substrate motifs, 

which coincides with the evidence that phosphorylation sites are more often  

located in disordered regions that also evolve at a faster rate [310]. The 

substrate motifs indicated that kinase activity is confined to a small and 

smooth fitness energy landscape. This is different from the rough evolutionary 

landscape of fitness between phosphopeptide-binding domains and their 
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substrates, within which interpositional sequence dependence does exist. This 

difference between kinases and phosphopeptide-binding domains indicates 

that the kinases recognize their phosphorylation sites with less specificity than 

do phosphopeptide-binding domains binding to their substrates. Evolutionarily 

speaking, phosphorylation is a more random process than phospho-amino-acid 

recognition. A cellular context, for example, the structural accessibility, could 

regulate the specificity of a kinase on its substrates. In the case of auto-

inhibition of a disordered segment, the inhibition may be caused by steric 

blockage of the phosphor-amino-acid, in one dominant ensemble 

configuration. Modification of the overall ensemble shape may relieve the 

auto-inhibition of the disordered regions by exposing the blocked or buried 

serines or threonines in the disordered ensemble for kinases to access easily.  

Proline dipeptides have a natural tendency to adopt an extended PPII 

form [324, 325]. Autoinhibition may be induced by evolutionary changes such 

that this naturally extended form becomes more compact, either by long or 

short-range inter-molecular interactions. By definition, autoinhibition 

precludes intra-molecular interactions as cause and are inhibiting effects 

demonstrated in the absence of other molecules. Quite often autoinhibition is 

relieved by removing larger portions of the disordered sequence and revealing 

only a smaller portion of peptide with the phosphorylation motif. It follows, 

logically, that autoinhibition in a disordered protein region is caused by either 

a stable single structure, or by bulk properties of the disordered ensemble. In 

this thesis the latter is the focus. As disordered regions will have generally 

weak long or short-range inter-molecular interactions, they may be sensitive to 

the conformational space they are free to sample. While this may be difficult 
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to imagine, any spatial constraint on conformational shape, through proximity 

to nearby membrane or complexes, may alter the freedom of the disordered 

ensemble to stop it from adopting structural trajectories that lead to the 

autoinhibiting conformations, thereby preventing the autoinhibiting 

conformations from dominating the ensemble.  

This concept of ensemble autoinhibition is novel. To better understand 

it, consider the analogy of a swordsman, defending himself from an attacker.  

A spatial constraint in this case would be like backing the swordsman into a 

corner. While the corner would not directly pin down the arms of the 

swordsman, it would restrict his dynamic freedom of movement and make him 

more vulnerable to a frontal attack. The historical example of the battle of 

Cannae offers another such analogy, where sword-bearing Roman soldiers 

were so tightly packed together that they could not lift or swing their swords to 

defend themselves, and were defeated by the smaller army of Hannibal.  

There are several explanations for the enrichment of proline in 

disordered regions, including resistance to amyloid formation, resistance to 

chaperone binding, resistance to proteolysis, thermo tolerance, and the natural 

tendency of proline to adopt an elongated PPII configuration. Elongated 

configurations may provide the most accessible opportunity for kinase binding 

and phosphorylation, a concept tested in this thesis by examining the 

conformational space preferences of docked phosphorylation motif binding 

regions.  The compositional bias towards proline may therefore be functional 

in the sense that the polymer properties of the disordered region need to be 

conserved within a certain compositional threshold to remain functional. In 

addition, this compositional bias limits the evolutional rate of phosphopeptide-
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binding substrates, many of which require a proline-directed position or even 

proline-rich relative to the phosphorylated residues. 

In this thesis, a variety of computational methods have been applied to 

obtain a better understanding of the disordered regions enriched in prolines, in 

terms of analyzing the structural ensembles, sequence compositional bias, as 

well as phosphorylation motifs. Our hypothesis that proline-rich disordered 

regions tend to adopt an elongated or extended conformation when they 

encounter spatial constraints in a cellular context is demonstrated by 

conformational sampling. The simulation results provide information that so 

far cannot be measured by structure experiments and may help interpret the 

phenomena that remain unexplained from experiments. With computational 

tools, we were able to design an amino acid index “PSR” with the 

implementation of Armadillo (2.0) web interface for searching proline-rich 

disordered regions with multiple phosphorylation sites. The research provides 

a systematic view of these particular protein regions. Finally, with sequence 

analysis algorithms, the sequence preferences of short phosphorylation motifs 

were investigated, a great number of which are found within disordered 

proline-rich regions. From the perspectives of evolution, we showed that the 

interpositional sequence dependencies around the phosphorylation sites motifs 

are actually rare, which agrees with other findings about the fast evolutionary 

rate of the disordered regions where the functional sites are likely to reside in. 

Collectively, the results present new knowledge to help explain some of the 

outstanding mysteries underlying the sequence, structure and function of 

phosphorylatable, proline-rich disordered regions.  
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Chapter 2   

The Effect of Spatial Constraints on An 

Ensemble of Proline-Rich Disordered Structures
1 

 

Abstract  

LRP6 is a membrane protein crucial in the initiation of canonical Wnt/β-

catenin signaling. Its function is dependent on its proline-serine rich 

intracellular domain. LRP6 has five PPP(S/T)P motifs that are phosphorylated 

during activation, starting with the site closest to the membrane. Like all long 

proline-rich regions, there is no stable 3D structure for this isolated, 

contiguous region. In our study, we use a computational simulation tool to 

sample the conformational space of the LRP6 intracellular domain, under the 

spatial constraints imposed by (a) the membrane and (b) the close approach of 

the neighboring intracellular molecular complex, which is assembled on 

Frizzled when Wnt binds to both LRP6 and Frizzled on the opposite side of 

the membrane. We observe that an elongated form dominates in the LRP6 

intracellular domain structure ensemble. By docking simulation we show that 

kinases prefer elongated substrates, and that this elongation could relieve 

conformational auto-inhibition of the PPP(S/T)PX(S/T) motif binding sites 

and allow GSK3 and CK1 to approach their phosphorylation sites, thereby 

activating LRP6 and the downstream pathway. We propose a model in which 

                                                 
1
 Portions of the work written in this chapter have been previously published as: 

Chengcheng Liu, Mingxi Yao and Christopher WV Hogue: Near-membrane ensemble 

elongation in the proline-rich LRP6 intracellular domain may explain the mysterious initiation 

of the Wnt signalling pathway. BMC Bioinformatics. 2011, 12(Suppl 13): S13 

 



 

42 

 

the conformation of the LRP6 intracellular domain is elongated before 

activation. This is based on the intrusion of the Frizzled complex into the 

ensemble space of the proline-rich region of LRP6, which alters the shape of 

its available conformational space.  To test whether this observed ensemble 

conformational change is sequence dependent, we did a control simulation 

with a hypothetical sequence with 50% proline and 50% serine in alternating 

residues.  We confirm that this ensemble neighborhood-based conformational 

change is independent of sequence and conclude that it is likely found in all 

proline-rich sequences.  These observations help us understand the nature of 

proline-rich regions which are both unstructured and which seem to evolve at 

a higher rate of mutation, while maintaining sequence composition. 

 

2.1 Background  

Wnt induced signaling pathways play essential roles in development and 

disease [326-328]. Currently, two initiation models of the canonical Wnt/β-

catenin signaling pathway have been proposed as illustrated in Figure 2.1 

[329-331]. One could be referred to as the sequential recruitment/amplification 

model, in which Wnt stimulation is proposed to recruit the scaffold protein 

AXIN to approach the membrane through the bridging interactions between 

frizzled (FZD) and dishevelled (DVL), as well as between DVL and AXIN. 

GSK3 (glycogen synthase kinase 3) in association with AXIN thereafter is 

able to phosphorylate the LRP5/6 PPP(S/T)P motif near the membrane. Initial 

phosphorylation creates a docking site for AXIN and thereby recruits 

additional AXIN-GSK3 to promote further LRP6 phosphorylation [332]. The 



 

43 

 

second model is the signalosome/aggregation model. Recent results showed 

that a signalosome is formed by aggregated LRP6 and AXIN when Wnt is 

present. Clustering of LRP6 leads to the phosphorylation of T1479 by CK1γ 

(casein kinase 1) and subsequent phosphorylation of the PPP(S/T)P motif by 

GSK3 [321]. Phosphorylated LRP6 recruits AXIN resulting in the disruption 

of the “β-catenin destruction complex”, which comprises of AXIN, APC (the 

tumor suppressor Adenomatous polyposis coli), GSK3 and CK1α [333, 334]. 

This results in the stabilization of a cytoplasmic pool of β-catenin. Free β-

catenin enters the nucleus and activates gene transcription by binding to the 

TCF/LEF (T cell factor/Lymphoid enhancer factor) family of transcription 

factors [335-337].  Thereafter, the activation of LRP5/6 is indispensable to 

initiate the downstream intracellular Wnt signaling cascade, in order to 

stabilize β-catenin.  
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LRP6/LRP5/Arrow belongs to a subfamily of LDL receptors (LDLR) 

[319]. Human LRP6 is a type I single-pass transmembrane protein. Its 

modular extracellular domain has three basic domains; the YWTD (tyrosine, 

tryptopan, threonine and aspartic acid)-type β-propeller domain, the EGF 

(epidermal growth factor)-like domain, and the LDLR type A (LA) domain.  

This region has crystal structures present in PDB database [338-340]. During 

signaling pathway initiation, Wnt binds the cysteine-rich domain of FZD 

proteins and exhibits a Wnt1-dependent association with LRP6 extracellular 

domains in vitro [341, 342]. However, the interaction between Wnt and LRP6 

Figure 2.1: Two proposed initiation models of canonical Wnt/β-catenin 

signalling pathways. In the sequential recruitment/amplification model (left), 

Wnt-induced FZD-LRP6 complex formation promotes initial LRP6 

phosphorylation via DVL recruitment of the AXIN-GSK3 complex. Initial 

LRP6 phosphorylation provides docking sites and thereby recruits additional 

AXIN-GSK3 complex to promote further LRP6 phosphorylation if LRP6 

multimerizes. In the signalosome/aggregation model (right), Wnt induces 

clustering of LRP6, leading to its phosphorylation by CK1 and subsequently 

by GSK3 and recruitment of AXIN. 
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is weaker compared to the interaction between Wnt and FZD [341]. It is 

therefore more likely that a Wnt-FZD complex binds to the LRP6 extracellular 

domain.  After deletion of its extracellular domain, the LRP6 protein is still 

capable activating the Wnt/β-catenin signaling pathway [343].  

The LRP6 intracellular domain is rich in proline (~15%) and serine 

(~20%). Sequence alignment shows that it includes a S/T cluster and 

downstream five reiterated PPP(S/T)PX(S/T) motifs, each of which contains a 

PPP(S/T)P motif phosphorylated by GSK3 and juxtaposed to a CK1 

phosphorylation site [311]. Such dual phosphorylation is essential to stabilize 

the pool of β-catenin in the cytoplasm [344]. The phosphorylation of the S/T 

cluster has also been characterized, particularly the phosphorylation of T1479 

by CK1 [321, 322].  It is believed that the phosphorylated S/T cluster 

promotes downward PPP(S/T)PX(S/T) phosphorylation [320].  He’s group 

previously showed that a LRP6 mutant lacking most of the intracellular 

domain is a loss-of-function [341].  In addition, a truncated LRP6 comprising 

its transmembrane and intracellular domain is constitutively active in Wnt 

signaling transduction [345-347]. A single PPP(S/T)P motif transferred to a 

LRP6 variant lacking the extracellular domain activates the Wnt/β-catenin 

signaling pathway. Phosphorylated PPP(S/T)PX(S/T) motifs provide docking 

sites for AXIN, which associates with GSK3 to promote proximity to LRP6 

[348].  

So far, no stable structure has been obtained from this isolated and 

contiguous LRP6 intracellular domain in current structure databases. The 

LRP6 intracellular domain is expected to be natively unstructured (unfolded or 
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disordered) since its composition is enriched with proline whose conformation 

is limited [311, 329, 338, 349]. There has been little study on the 

conformational behavior of LRP5/6 before activation, when Wnt induces 

signal transduction. 

No matter which initiation model applies to the canonical Wnt/β-

catenin signaling pathway, the conformation of LRP6 has to face spatial 

constraints imposed by (i) the plasma membrane and (ii) a nearby molecule or 

molecular assemblies, which could be neighboring LRP6 molecules or a Wnt-

FZD-DVL-AXIN-GSK3 assembly. We hypothesize that these two spatial 

constraints would restrict LRP6 intracellular domain conformational space to 

cause its conformation to adopt a more extended or elongated form before it is 

activated and docked by AXIN.  

The TraDES software package was used [177] to sample the 

conformational space of the LRP6 intracellular domain with an initial 

ensemble of over 390,000 structures, then spatial constraints were applied to 

determine whether a change in ensemble structure may be observed as a result 

of neighboring molecular complexes moving closer due to Wnt/β-catenin 

signaling pathway initiation. The same system of constraints was also studied 

to determine whether it applies to observable structural change in an ensemble 

of unfolded states in a sequence independent manner by using a sequence of 

uniform composition of alternating proline/serine residues of the same length 

as the intracellular region of LRP6. 
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2.2 Results  

2.2.1 LRP6 intracellular domain is predicted to be unfolded. 

No stable structure has been documented for the LRP6 intracellular domain in 

current structure databases. This region is expected to be natively unstructured 

because it is enriched with proline and serine. Several protein disorder 

prediction tools predict that this region is disordered or unfolded. Figure 2.2 

gives the prediction results from disorder predictors; RONN [116], IUPred 

[122], Globplot [121], PONDR-FIT [102] and FoldIndex [139]. This unfolded 

intracellular protein region most probably tends to have random coiled 

conformations, which auto-inhibits the structure itself to avoid interactions 

with other molecules [350]. Like most other disordered protein regions, it 

exists as an ensemble of structures which can be generated by TraDES in this 

simulation study. 

2.2.2 Radius of gyration distribution 

Radius of gyration (Rgyr) measures the openness of the whole structure. A 

structure with a larger Rgyr has more sparse atoms within it. Figure 2.3 

displays the Rgyr distribution of the initial conformational ensemble (before 

filtration) in the LRP6 intracellular domain simulation experiment. The 

number of generated conformers and average Rgyr are provided in the second 

column in Table 2.1. Conformers with different values of Rgyr were checked. 

It was observed that conformers with smaller Rgyr have more compact 

structures; while, conformers with larger Rgyr tend to adopt more open or 

extended conformations. In this distribution, the conformation of the generated 
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conformers changes from compact, to more open, to more extended as their 

Rgyr increases. 
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Figure 2.2: Analysis of the human LRP6 protein [Swiss-Prot:O75581] using 

different predictors. The graphical output of each method and the 

corresponding interpretation is shown. The precise boundaries of ordered and 

disordered regions were derived from the corresponding text output (not 

shown). The intracellular domain is unfolded, whereas the extracellular 

domain is folded/ structured. 
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Figure 2.3: Rgyr distribution of the initial conformational ensemble before 

filtration. Conformers shown in the graph are some examples in the initial 

conformational ensemble of LRP6 intracellular domain. The number below 

each conformer is the value of its radius of gyration. A conformer with a 

smaller value of radius of gyration has a compact conformation (the structure 

on the left). A conformer with a larger value of radius of gyration has an 

extended conformation (the structure on the right). Two conformers with a 

mean value of radius of gyration are shown in the middle. 
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Simulation experiments were carried out both for the LRP6 

intracellular domain (ICD) and the control sequence. See results in Table 2.1 

and Table 2.2. A Unix script was written to obtain 10000 conformers that pass 

Constraint 1 and Constraint 2 ( = 20.0 Å) out of the initial structural 

ensemble.  These 10000 conformers were then filtered by Constraint 2 with 

parameter  set to 5.0 Å and 10.0 Å. This parameter represents the distance 

from the vertical plane to the plane defined by the transmembrane helix and 

origin point (0,0,0).  The average Rgyr of the structural ensemble gets larger 

after each constraint is applied, as shown in Table 2.1, Table 2.2 and Figure 

2.4, while the ensemble size decreases. In both the LRP6 intracellular domain 

and control sequence simulation experiments, after each filtration, conformers 

in the structural ensemble surviving from the spatial constraints tend to 

possess more open or extended conformations. This was also indicated by the 

observation that after each constraint more fractions of structural ensemble 

appear to have Rgyr larger than the average (i.e. the Rgyr distribution curves 

of structural ensembles after Constraint 1 and Constraint 2 shift to the right of 

the Rgyr distribution curve of the initial structural ensemble). In addition, 

when the distance  gets smaller, the average Rgyr in the structural ensemble 

that survived Constraint 2 gets bigger, while the number of structures that 

passes the constraint decreases.  
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Table 2.1: Rgyr simulation results for LRP6 intracellular domain 

LRP6 ICD 

 simulation 

 

Initial structural 

 ensemble 

 

Structural ensemble after 

Constraint 1 

Structural ensemble after 

Constraint 2 

δ=20.0 δ=10.0 δ=5.0 

No.  Structures 396339 36025 10000 4939 2192 

Average. Rgyr (Å) 42.57 46.43 47.43 48.36 48.73 

Minimum. Rgyr (Å) 20.73 23.12 23.12 26.18 26.18 

Maximum. Rgyr (Å) 98.60 95.02 95.02 95.02 95.02 

 

 

Control sequence 

simulation 

 

Initial structural 

ensemble 

 

Structural 

ensemble after 

Constraint 1 

 

Structural ensemble after 

Constraint 2 

 

δ=20.0 

 

δ=10.0 

 

δ=5.0 

No.  Structures 181833 33556 10000 5632 3276 

Average. Rgyr (Å) 44.15 47.94 48.73 49.63 59.78 

Minimum. Rgyr (Å) 20.43 22.20 23.89 24.74 27.15 

Maximum. Rgyr (Å) 101.04 101.04 93.77 93.77 92.39 

Table 2.2: Rgyr simulation results for control sequence. The control sequence 

has LRP6 transmembrane region and poly(Pro-Ser)50 polypeptide substituting 

LRP6 intracellular domain. The theoretical maximum Rgyr for a completely 

extended chain (a polypeptide containing 100 Gly residues, i.e. poly(Gly)100 

polypeptide) is calculated from TraDES to be around 90Å. The poly(Gly)100 

polypeptide is constrained to take a β-strand conformation in its trajectory 

distribution file (Phi = -119; Psi = 113; Peak Magnitude = 100). 
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Figure 2.4: Rgyr distributions of LRP6 ICD and control sequence. The 

distance δ is set to 20.0Å, 10.0Å, and 5.0Å. 
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2.2.3 End-to-end distance distribution 

To examine local effects in the ensemble, five different end-to-end distances 

with equal length were calculated in the LRP6 intracellular domain simulation 

experiment. Each distance contains at least one conserved PPP(S/T)PX(S/T) 

motif.   Table 2.3 lists the exact description of the distance endpoints. For each 

end-to-end distance, the difference between the average Rgyr of the initial 

structural ensemble and that of the structural ensemble after Constraint 1 is 

provided in the column titled as “∆mean (Constraint1)”. The difference 

between the average Rgyr of the initial structural ensemble and that of the 

structure ensemble after Constraint 2 under different values of distance  are 

shown in the columns under the title of “∆mean (Constraint2)”. For both the 

LRP6 intracellular domain and control sequence, out of the five end-to-end 

distances, the distribution of D1 displays largely increased mean values of the 

structural ensembles after each constraint. This was indicated by the positive 

differences in Table 2.3. It also shows that after each constraint is applied, the 

average value of D1 gets larger. In Figure 2.5, the D1 distribution curves of 

structural ensembles after Constraint 1 and after Constraint 2 move to the right 

of the D1 distribution curve of the initial structural ensemble. Meanwhile, 

more fractions of structural ensemble after each constraint are found at a larger 

value of D1 on the distribution curves. This indicates that the region 

corresponding to D1, within the LRP6 intracellular domain conformers in the 

surviving structural ensemble, occupies the constrained conformational space 

by adopting a preferred elongated or extended statistical conformation. This 

region starts right from the beginning of the LRP6 intracellular domain and 
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extends to the end of the first PPP(S/T)PX(S/T) motif. It is the closest 

membrane region inside the LRP6 intracellular domain. Additionally, as the 

distance  gets smaller, the mean of D1 of the structural ensemble after 

Constraint 2 also gets bigger. However, for both the LRP6 intracellular 

domain and the control sequence, the rest of the four end-to-end distances’ 

(D2-D5) distributions show no prominent changes compared to the change in 

D1 distribution after applying each constraint and furthermore they overlap 

with each other as seen in Figure 2.6. Thus the spatial constraint only changes 

the local ensemble statistical conformation at the near-membrane region 

spanned by D1. 

 

 

 

 
 

Length 

 

Motifs contained 

 

start-

end 

 

∆mean 

(Constraint1) 

(Å) 

 

∆mean (Constraint2) (Å) 

=20 =10 =5 

D1 103aa 
S/T cluster; 

Motif 1 
24-126 12.7220 17.5067 21.9135 24.2415 

D2 103aa Motif 1&2 64-166 0.8405 1.9484 2.4047 2.7648 

D3 103aa Motif 1,2&3 106-208 -1.3586 -2.7764 -2.8862 -3.0856 

D4 103aa Motif 2,3&4 124-226 -1.6533 -3.5066 -3.4477 -3.5721 

D5 103aa Motif 2,3,4 &5 141-243 -1.4545 -3.1360 -3.1388 -3.3186 

Table 2.3: End-to-end distance simulation results for LRP6 intracellular 

domain.  The table shows the length, motif contained, starting and ending 

positions in LRP6 simulation sequence, and the differences between the 

average Rgyr of structural ensembles after each constraint and the initial 

structural ensemble. 
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Figure 2.5: End-to-end distance distributions of D1 for LRP6 ICD and control 

sequence. The distance δ was set to 20.0Å, 10.0Å, and 5.0Å. 
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Figure 2.6: End-to-end distance distributions of D2, D3, D4 and D5 for LRP6 

ICD and control sequence. The distance δ was set to 20.0Å, 10.0Å, and 5.0Å 
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2.3 Discussion  

2.3.1 LRP6 intracellular domain structure ensemble favors an elongated 

form when the Wnt/β-catenin canonical pathway initiates. 

In the LRP6 intracellular domain simulation experiment, greater proportions 

of the structural ensemble are observed to have Rgyr of a larger value than the 

average after each spatial constraint is applied, in comparison with the initial 

structural ensemble (Figure 2.4). It shows that the two spatial constraints make 

the LRP6 intracellular domain likely to adopt a more open or elongated global 

conformation.  The plasma membrane and neighboring assemblies formed by 

Wnt-FZD-DVL-AXIN-GSK3 or neighboring LRP6 aggregation could limit 

the LRP6 intracellular domain to form fewer numbers of random coiled 

structures. Instead, the LRP6 intracellular domain tends to form more 

elongated conformations as the spatial constraints exclude its volume near the 

membrane in the cell.  

The implications of this novel observation are that in vivo, plasma 

membrane and nearby assemblies or molecules could result in a reduction in 

conformational space forcing an environment that forces the ensemble LRP6   

disordered states into a more elongated population when a Wnt signal triggers 

the pathway. Such elongation behavior might grant kinases CK1 and GSK3 

open access to the phosphorylation sites within the LRP6 intracellular domain, 

and subsequently LRP6 could be activated through these phosphorylation 

events. We propose that when the Wnt pathway initiates, the LRP6 

intracellular domain is elongated to reduce the auto-inhibition before it is 

activated. 
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A statistically observable conformational change occurs to the LRP6 

intracellular domain structural ensemble after applying spatial constraints. It is 

intriguing to investigate if the overall conformational change is localized 

within the LRP6 intracellular domain during Wnt canonical pathway initiation. 

The distributions of the five calculated end-to-end distances could reflect the 

openness of the subsequences in the LRP6 intracellular domain. The first end-

to-end distance D1, which measures the openness of the region that is closest 

to the membrane on the LRP6 intracellular domain.  The distribution curves 

for D1 show that this region gets longer in more conformers out of the 

structural ensemble after constraints are applied (Figure 2.5). This shows that 

the near-membrane region in the LRP6 intracellular domain elongates or 

extends when its conformational space is limited by the plasma membrane and 

nearby assemblies or molecules.  Such an extended conformation could allow 

CK1 to more easily reach the S/T cluster and initiate phosphorylation. This 

may also explain the experimental finding that S/T cluster phosphorylation by 

CK1 promotes the downward activation of the PPP(S/T)PX(S/T) motif [8, 23, 

24].  On the contrary, the end-to-end distances D2, D3, D4, and D5 hardly 

show any changes in their distribution curves between original and filtered 

structural ensembles (See Figure 2.6). The means of these distributions of 

structural ensemble after filtration are in fact smaller than that of the initial 

structural ensemble. This suggests the regions corresponding to these distances 

are on average less extended in the conformers surviving from filtration. The 

protein regions corresponding to the five end-to-end distances are gradually 

further away from the transmembrane helix, which determines the location of 

the plasma membrane. The region corresponding to D1 is the closest to the 
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plasma membrane followed by D2. The observations on the distribution 

curves of these distances suggest that the spatial constraints exclude to a great 

extent the volume of the LRP6 intracellular domain at the near-membrane 

location in the cell.  

Additionally, the same behaviors are observed in Rgyr distributions 

and end-to-end distributions in the simulation experiment as for the control 

sequence with simple alternating proline/serine composition. The structural 

changes can be demonstrated in a hypothetical sequence with as much as 50% 

proline and 50% serine. This indicates that the observed elongation property is 

not strictly a feature of the LRP6 sequence itself, but may be a general feature 

of proline-serine rich disordered regions. This may represent the biophysical 

basis by which such regions can tolerate high levels of mutation whilst 

conserving approximate composition without affecting the underlying function 

of the disordered region. Hence, it can be concluded that such an elongation 

process induced by membrane and neighboring assembly/aggregation is 

sequence independent but it is likely compositionally dependent. Further 

studies with more amino acid control sequences would be required to 

determine if this is a property restricted to proline/serine-rich disordered 

regions, or common to all disordered sequence compositional variants. 
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2.3.2 Effects of the two spatial constraints 

The observation of the near-membrane effect serves as the key finding in this 

simulation study. The membrane-anchor issue has been discussed in several 

published papers that claimed the LRP6 intracellular domain needs anchoring 

to the membrane to process signaling [338]. Arrow/LRP5/LRP6 mutants 

without the extracellular domain with which to anchor to the membrane 

constitutively activate the β-catenin pathway in mammalian cells. The LRP5 

intracellular domain is unable to activate the signaling pathway unless it is 

anchored to the membrane [345-347].  In the simulation, the horizontal plane 

mimics the constraint imposed by the membrane plane. The vertical plane 

mimics the constraint imposed by nearby assemblies or molecules. 

Experiments show that the components in the assembly, for example, DVL, 

AXIN and GSK3 accumulate near the membrane when Wnt interacts with 

FZD and initiates the pathway [332]. Furthermore, CK1 that is responsible for 

the S/T cluster phosphorylation events is a near-membrane kinase [322, 351].  

The second constraint also occurs near the membrane. If the second 

constraint is more stringent and the vertical plane gets closer to the conformer 

(i.e.  gets smaller), the spatial volume of the conformer is excluded more. 

Such an excluded volume effect forces the conformer of the LRP6 

intracellular domain to go through an elongation process. We propose this 

elongation might be necessary for the phosphorylation of the LRP6 

intracellular domain. 
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Liu and colleagues [347] demonstrated that a truncated LRP6 

comprising of its transmembrane and cytoplasmic domains is expressed as a 

constitutively active monomer whose signaling ability is inhibited by forced 

dimerization. Also, Wnt is shown to activate canonical signaling through 

LRP6 by inducing an intracellular conformational switch which relieves 

allosteric inhibition imposed on the intracellular domains. This paper 

published in 2003 is the only one until now on the conformational behavior of 

the LRP6 intracellular domain through experiments.  There is however no 

evidence to prove such a conformational switch in terms of indicating the 

changes in the LRP6 intracellular domain structural ensemble. In the paper 

published by Yasui et al. [352], the authors conclude that the LRP6 

extracellular domain does not form homodimers in solution and speculate that 

weak dimerization may occur only at the cell surface where the receptors are 

confined in the 2D plane. In our current simulation study, we focus on the 

conformational change of LRP6 intracellular domain under spatial constraints 

in the initiation of the canonical Wnt signaling pathway. Our results show that 

the spatial constraints cause the structural ensemble of the intracellular domain 

to adopt an extended or elongated form which relieves the allosteric inhibition. 

This provides another explanation for why wild-type LRP6 and LRP6 mutant 

without an extracellular domain behave differently with or without the 

presence of Wnt. The LRP6 mutant without an extracellular domain is free 

from the auto-inhibitory effect imposed by its extracellular domain. The LRP6 

intracellular domain anchored to the plasma membrane only faces the spatial 

constraint caused by the plasma membrane. It can adopt a more open or 

elongated conformation to relieve the auto-inhibition caused by this unfolded 
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region itself, to allow CK1 and GSK3 access. For wild-type LRP6, without the 

presence of Wnt, membrane constraint is not enough to relieve the auto-

inhibition caused by its extracellular and intracellular domains. It requires 

another constraint to relieve the auto-inhibitory effect caused by the 

extracellular domain. When Wnt is present, it forms a complex with FZD and 

interacts with the LRP6 extracellular domain. Though this interaction may be 

weak, the conformational space of the LRP6 intracellular domain is excluded.  

The domain is therefore forced to adopt a more open or extended structure for 

it to reduce the tension. Wnt-FZD hence imposes another spatial constraint to 

LRP6. In the initiation complex, Wnt is not the only component; FZD, DVL, 

AXIN and GSK3 also participate in the process. Hence, they together could 

form the second spatial constraint on LRP6 to amplify the effect of auto-

inhibition. Such amplification would be helpful to the activation of the LRP6 

intracellular domain and the stabilization of β-catenin. Our model and results 

can help explain the results obtained by Liang et al who recently discovered 

that the previously functional unknown protein TMEM198 is able to promote 

LRP6 phosphorylation in the Wnt signaling pathway. TMEM198 functions as 

a membrane scaffold protein, assembling kinases and substrates into a higher-

molecular-weight complex prior to phosphorylation, but it promotes LRP6 

phosphorylation through a mechanism independent of FZD and DVL [353]. 

Like FZD, TMEM198 could recruit CK1 as well as other molecules to form a 

nearby molecular assembly close to LRP6. Any nearby assembly, together 

with the membrane, can impose the spatial constraints to the conformational 

space of the LRP6 intracellular domain so that this region will be elongated 

for kinases CK1 and GSK3 to gain easy access for phosphorylation. Liang et 
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al. observe TMEM198 to associate with LRP6, however, unlike FZD, the 

interaction is likely mediated by the transmembrane domains between LRP6 

and TMEM198 which can bring the TMEM198-CK1 complex more close to 

LRP6. The findings in Liang et al. also demonstrate that near-membrane is the 

key point in the simulation model. The interaction between TMEM198 and 

LRP6 at transmembrane domains takes place at the membrane plane. It 

amplifies the vertical spatial constraint by recruiting CK1 which is near-

membrane localized. The spatial constraints can come from any nearby 

molecules or molecular assemblies. These include neighboring LRP6 

molecules in the signalosome/aggregation model, Wnt-FZD-DVL-AXIN-

GSK3 assembly in the sequential/amplification model or other discovered 

molecular assemblies such as the TMEM198-CK1 complex reported in the 

paper by Liang et al.  

2.3.3 Elongation makes the phosphorylation of unfolded protein regions 

easier. 

In this chapter, it is proposed that the elongation form may be required for the 

phosphorylation of the LRP6 intracellular domain.  This can be further 

examined by docking sampled ensemble conformations of the region around 

the phosphorylation motif to a Kinase structure to determine whether 

elongated forms are preferred. Since there is no structure for the LRP6 

intracellular domain present in the structural databases and it is very hard to 

get the kinase-substrate crystal structures experimentally, we used a 

homologous structure complex [PDB:1CMK] to demonstrate that in a general 

case, elongation is required for phosphorylation taking place in the 
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conformation of an unfolded protein region. [PDB:1CMK]  contains a cAMP 

dependent protein kinase catalytic subunit and its inhibitor, a 22aa long 

peptide binding to the kinase catalytic site. The sampling procedure can be 

referred in the method section of this chapter. A 100mer sequence was 

constructed that includes the binding peptide in the middle and a repeated 

proline-serine extending to both termini. We used TraDES to generate a 

structural ensemble with the constructed sequence. Out of the 347426 

conformers generated, 10000 passed the aligning, merging and crashe-

checking requirements. These stages systematically remove ensemble 

structures that have steric clashes with the kinase. These surviving conformers 

of the phosphorylation motif region are available for docking and are not 

sterically autoinhibited. It is noted that there is an order of magnitude 

reduction in the number of sampled conformers after removal of steric clashes. 

This indicates that Kinase binding is only sterically compatible with a reduced 

subset of the substrate protein conformational space, compared to that of the 

unbound substrate.  Figure 2.7 shows some examples of the sampled substrate 

conformers that are available and unavailable for docking. We calculated the 

Rgyr and end-to-end distances of Region 1-40, Region 31-70, Region 61-100 

along the sequence and compared the distribution curves between 10000 

conformers that are available for docking and 337426 conformers that are 

sterically unavailable for docking (Figure 2.8). We used a t-test to see whether 

there is a difference between the means of the datasets (Table 2.4). For Rgyr 

and end-to-end distance of the three regions, the p-values are significantly 

small (p<2.2e-16), indicating that the structures available for the kinase to 

access and bind have, on average significantly larger Rgyr and longer end-to-
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end distances. We can therefore say that the structural ensemble of a 

disordered proline-serine-rich sequence containing a kinase motif is required 

to transition to a more open and elongated form for binding to a generic 

kinases without steric autoinhibition. This proposition fits as elongation can 

reduce the auto-inhibition of the unfolded protein’s random coiled structure. 

As we employed a generic alternating proline/serine sequence in this computer 

experiment, we can generalize that kinase homologue structures require an 

elongated form of the phosphorylation site region in order to carry out binding 

and phosphorylation.   As we will see in Chapter 4 the substrate specificity of 

the kinase does not go very far beyond the phosphorylated residue, and there is 

little or no specific contact between a kinase and residues upstream or 

downstream of the substrate amino acid. Therefore it is unlikely that the 

kinase itself will induce a conformational change by specifically binding to the 

length of the substrate protein observed to span the elongated form. Instead it 

seems probable that kinase may have to wait until the elongated form presents 

itself.
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Figure 2.7: Simulation results from the study on structure [PDB:1CMK]. 

Examples of the generated conformers of the constructed 100mer peptide are 

shown. The conformers are aligned to the peptide in [PDB:1CMK] complex. 

(Upper): Conformers not available for docking by steric interference with 

the kinase. The regions near binding site appear to be more random coiled 

(Lower): Conformers available for docking that do not exhibit steric 

interference with the kinase. 
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Figure 2.8: Rgyr and end-to-end distance distributions of D1-40, D31-70 and 

D61-100 for the constructed 100mer alternating Pro/Ser peptide with substrate 

phosphorylation motif in the centre. 
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t test 

Alternative hypothesis: 

True difference in means is less than 0, i.e. the mean of undocking conformers’ Rgyr or end-to-end 

distance is less than that of docking conformers  

 Mean of undocking 

conformers (Ǻ) 

Mean of docking 

conformers (Ǻ) 

p-value 

Rgyr 28.4383 31.4704 <2.2e-16 

D1-40 40.0255 41.8216 <2.2e-16 

D31-70 43.6516 48.8396 <2.2e-16 

D61-100 40.2149 41.3728 1.032e-14 

Table 2.4: T-test results on the constructed 100mer peptide. The table shows t-

test results on the Rgyr distributions and end-to-end distance distributions of 

docking and undocking structural ensembles of the constructed 100mer 

peptide. The difference in distance is greatest over the span encompassing the 

kinase binding phosphorylation motif. 

 

2.4 Conclusions  

The Rgyr distributions of structure ensembles of the LRP6 intracellular 

domain were compared before and after applying spatial constraints. The 

whole structure was observed to require a more open or extended 

conformation to pass the spatial constraints and it was fond that the near-

membrane region is in fact elongated with the applied horizontal and vertical 

spatial constraints. During the initiation, the spatial constraints caused by the 

plasma membrane and nearby assemblies or molecules force an elongation 

form to dominate the conformational space of the LRP6 intracellular domain. 

We demonstrated that such an elongation process is required for unfolded 

protein structures because it can relieve the auto-inhibitory effect and grant 

kinases easy access. The near-membrane LRP6 intracellular domain extension 

could expose the S/T cluster phosphorylation site for CK1, which 

subsequently promotes downward PPP(S/T)PX(S/T) phosphorylation events. 
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This study elaborates details on the activation of LRP6 through its 

conformational change in the current Wnt/β-catenin pathway initiation models.  

TraDES provides a new way to investigate signal transduction 

mechanisms through computational structure sampling. More importantly, it 

demonstrates a way to study the conformational behavior of other proline-rich 

disordered protein regions including those in signaling pathways and 

mechanobiological systems. The Wnt/β-catenin signaling pathway plays 

important roles in cancer and diseases. The LRP5/6 mutation is responsible for 

bone density disorders, ocular disorders and disorders of cholesterol and 

glucose metabolism. The findings in this study could pave the way to the 

development of new therapeutics through structure based drug design with the 

consideration of spatial constraints imposed by cellular components.   

Experiments proposed to validate the LRP6 elongation model are 

single-molecule fluorescence resonance energy transfer (SM-FRET) and time-

resolved fluorescence resonance energy transfer (TR-FRET). TraDES was 

originally validated with successful comparison to TR-FRET distribution 

[177]. SM-FRET and TR-FRET have been applied to study the conformations 

of full-length p53, which has both folded and intrinsically disordered domains 

[85]. SM-FRET can measure the radius of gyration of the LRP6 intracellular 

domain. TR-FRET can measure the end-to-end distance distribution within the 

LRP6 intracellular domain. Collectively these experiments may provide 

significant validation of the findings presented in this study.  
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2.5 Methods 

2.5.1 Generation of conformers of LRP6 intracellular domain 

The conformers of the LRP6 intracellular domain were generated using 

programs VISTRAJ and FOLDTRAJ from TraDES package [177], by 

providing the corresponding segment sequence. The sequence used was the 

1613-residue LRP6 precursor retrieved from Uniprot database with definition 

line: 

>sp|O75581|LRP6_HUMAN Low-density lipoprotein receptor-related protein 

6 OS=Homo sapiens GN=LRP6 PE=1 SV=1 

The 19-residue signal peptide region was deleted from the N-terminal. 

As the extracellular domain from residue 20 to residue 1370 has its structure 

derived from X-ray diffraction in PDB database with accession ID “1N7D” 

[PDB:1N7D], this region was also deleted. The regions containing 

transmembrane and intracellular domain were taken as the segment sequence 

(residue 1371 to residue 1613) to generate conformers.  The segment sequence 

was used in VISTRAJ to generate a trajectory distribution file for LRP6 

intracellular domain, which contains the probabilistic distribution of φ / ψ 

angles in Ramachandran space for each residue in the segment sequence. This 

segment is predicted to be unfolded and has no apparent secondary structure. 

The “standard” method was used with no secondary structure predictions 

added. In this way the trajectory generated for each amino acid residue was 

based on its observed distribution of φ / ψ angles in a non-redundant subset of 

the PDB database. The trajectory distribution file was then manually edited to 

constrain the 23 residues from N-terminal side (T1371-I1393) to take an α-
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helix conformation by replacing their random trajectory distribution with a 

fixed helical backbone conformation (Phi = -57; Psi = -47; Peak Magnitude 

=100). This was used for the first plane constraint anchor point for each 

member of the structural ensemble.  The modified trajectory distribution file 

was next used by FOLDTRAJ to generate all-atom structure models of the 

LRP6 segment sequence. FOLDTRAJ generates off-lattice unbounded all-

atom protein structures by amino acid residue random walks. The φ / ψ angles 

of the residues are obtained by sampling the Ramachandran space based on the 

trajectory distribution, and side chain rotamers are sampled from backbone 

dependent rotamer frequencies.  Illustration 2.1 displays examples of 

generated conformers of LRP6 intracellular domain. 

 

2.5.2 Filtration of structural ensemble of LRP6 intracellular domain 

The conformers generated have no geometrical boundaries other than the 

steric hindrance of the sequence itself. However, in vivo, LRP6 is a 

transmembrane receptor and its intracellular domain would have its available 

conformational space limited by the cell membrane. If a structure generated 

has part of the peptide penetrating the plasma membrane, the conformation is 

not feasible in vivo, so we remove it from the structure ensemble through a 

defined horizontal plane mimicking the plasma membrane plane. During Wnt 

signaling pathway initiation, the assembly Wnt-FZD-DVL-AXIN-GSK3 or 

neighboring LRP6 molecule gets to the proximity of a LRP6 molecule. This 

will cause a second steric constraint to LRP6 intracellular domain. We defined 

a vertical plane perpendicular to the plasma membrane plane in order to 
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further filter the structure ensemble, and varied its distance to the membrane 

anchor point to represent possible close approach conditions. Illustration 2.1 

shows some conformers of LRP6 intracellular domain that pass only 

Constraint 1 (Illustration 2.1B) or both Constraint 1 and Constraint 2 

(Illustration 2.1C). 

2.5.2.1 Constraint 1: Horizontal plane 

In order to filter out the conformations that having part outside cell membrane, 

a program was developed to test whether a generated structure is in a 

conformation that can be bounded by a membrane. This check is done by 

constructing a virtual plane at the transmembrane site (Residue I1613), which 

is perpendicular to the inner membrane helix region. The rest of residues that 

should be inside the membrane are checked for whether they lie on the 

opposite site of the plane of the inner membrane helix. A Unix shell script was 

written to filter ensembles of structures that pass this constraint test in batches.  

2.5.2.2 Constraint 2: Vertical plane 

To further filter the structural ensemble and simulate the situation when an 

assembly or a neighboring molecule gets close to LRP6, a program was 

developed to test if a conformation is bounded by a plane that is between the 

intracellular domain of LRP6 and a neighboring object. We built another 

virtual plane at distances  of 5.0Å, 10.0Å and 20.0Å to the transmembrane 

helix. All the residues should reside on one side of this plane. Another Unix 

shell script was written to complete this constraint based filtering.  
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Illustration 2.1: Illustration of the spatial constraints. A. Ten aligned 

conformers of LRP6 intracellular domain which are not filtered by any spatial 

constraints. They are free to explore a spherical shaped conformational space. 

B. Constraint 1: Horizontal Plane Ten aligned conformers of LRP6 

intracellular domain which pass the horizontal spatial constraint, i.e. 

membrane plane. They can explore a hemispherical conformational space. 

Signal peptide and extracellular domain are deleted. The transmembrane 

region (23 residues) is constrained as an α-helix. C. Constraint 2: Vertical 

Plane Ten aligned conformers of LRP6 intracellular domain which pass both 

horizontal and vertical spatial constraints. They are free to explore a smaller 

transected hemispherical shaped conformational space. The vertical constraint 

is imposed by the Wnt-FZD-DVL-AXIN-GSK3 assembly. δ is the distance 

between the vertical plane and transmembrane helix.  
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2.5.3 Measurement 

Under each constraint, we measured the Radius of Gyration (Rgyr) to see the 

openness of the whole structure. In the meantime, the end-to-end distances 

with equal residues were measured to see the openness of LRP6 intracellular 

subsequences containing conserved PPP(S/T)PX(S/T) motifs. We can 

determine whether there is a conformational change by comparing the 

distributions of Rgyr and end-to-end distances of the structural ensembles 

under each constraint. 

2.5.3.1 Measurement of radius of gyration 

The generated structures by TraDES package are stored in NCBI ASN.1 

format. It contains the locations of all the atoms inside the structure including 

hydrogen. Thus the distances between atoms and the radius of gyration could 

be calculated directly from the locations of the atoms. Radius of gyration is a 

measure of the dimensions of the peptide chains in polymer physics.  It is 

defined as follows: 

  
  

 

 
             

           (2.1) 

Where    is the position of individual atoms of the structure and       is the 

mean position of the atoms (defined as the center of gravity of the structure). 

Radius of gyration is a root mean square distance of individual atom to the 

center of the structure. The higher the radius of gyration is, the sparser the 

atoms are in the structure. Therefore, this term can measure the openness of 

the whole structure.  
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2.5.3.2 Measurement of end-to-end distance 

The end-to-end distance is defined by the distance between the α-carbon of the 

residues with a number of residues in between. The exact distances are those 

between C24 and S126, G64 and V166, T106 and L208, E124 and S226, T141 

and S243. The averages of the end-to-end distances over large population 

indicate the openness of the subsequence within LRP6 intracellular domain. 

2.5.4 The Rgyr distribution and end-to-end distance distribution 

The Rgyr distributions (fraction of population in structural ensemble vs Rgyr) 

after Constraint 1 and Constraint 2 are plotted to compare the openness of 

structure ensemble.  If mean of Rgyr has a shift to a higher value, it would 

indicate that the structure prefers an open and extended conformation based on 

the application of physical constraint. 

The end-to-end distance distributions after Constraint 1 and Constraint 

2 are also plotted to compare the openness of the LRP6 intracellular domain 

subsequence. If average end-to-end distance turns larger, it indicates the 

subsequence within LRP6 intracellular domain favors an open and elongated 

form.  

2.5.5 Control experiment 

A control sequence with the same length of LRP6 segment containing a 

transmembrane and intracellular domain was constructed. The control 

sequence has LRP6 transmembrane region and repeated proline-serine 

peptides substituting LRP6 intracellular domain. Conformers were generated 

using TraDES constraining transmembrane portion to adopt an alpha helix. 
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This initial structural ensemble was then filtered by Constraint 1 and 

Constraint 2. Rgyr and end-to-end distances were calculated and plotted into 

distribution curves. The control sequence is the following. 

TNTVGSVIGVIVTIFVSGTVYFIPSPSPSPSPSPSPSPSPSPSPSPSSPSPSPS

PSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPS

PSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPS

PSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPS

PSPSPSPSPSPSPSPSPSPS 

 

2.5.6 Program development 

All the programs developed for Constraint 1 and Constraint 2 are based on 

NCBI C toolkit, MMDBAPI and libraries in TraDES package 

(http://trades.blueprint.org/). MMDBAPI implements data structures for 

describing biological sequence and 3D structure data and tools for easy access 

and manipulation of data, either in file system or in memory, based on ASN.1 

standard. The TraDES package contains powerful function to manipulate and 

analyze the 3D structure of proteins such as aligning proteins by SVD 

(Singular Value Decomposition) method and to calculate Rgyr of structures. 

Shell scripts are created for processing and analyzing the structure ensemble in 

batch. The file format for storing 3D structures is .val file that can be 

visualized by Cn3D program from NCBI, or converted into PDB format. The 

whole simulation process can be viewed in the flow chart (Figure 2.9). 
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Figure 2.9: Flow chart of the simulation process on LRP6 intracellular domain. 

 

2.5.7 Simulation procedure using structure [PDB:1CMK] 

Alignment (SALIGN) 

The structure [PDB:1CMK] chain I was aligned to the constructed 100mer 

peptide binding site by program SALIGN. SALIGN aligned two peptides (or 

part of the peptides) of the same length by superimposing them using a 

singular value decomposition (SVD) method. It takes in two structures and 

rotates and translates the second structure to align with the first one, then 

outputs the transferred structure to a new structure file.  The exact parts of the 

sequence of the two sequences to be aligned can be specified respectively. 

There are three alignment methods in SALIGN-all atom, backbone and α-

carbon. Each of the methods only takes their respective group of atoms into 

consideration. The backbone atoms were used for the 5 residues of the binding 
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site in the constructed 100mer peptide, which was superimposed by SVD onto 

the backbone atoms of chain E of 1CMK. As a result of each alignment, the 

whole structure record [PDB:1CMK] is transformed to the position and 

orientation where its chain E is superimposed with the binding site of the 

constructed 100mer peptide. The RMSD (Root Mean Square Deviation) of the 

alignment is calculated as a measure of quality of the alignment. A shell script 

was created to run this process in batch. The mean RMSD for conformers 

available for docking is 0.3463 and the best RMSD is 0.1660. 

Merging (VALMERGE) and Crashes-checking (CRASHCHK) 

After [PDB:1CMK] was aligned to the binding site of the constructed peptide, 

chain E of the [PDB:1CMK] structure was merged with the constructed 

100mer peptide structure to form a single *.val file containing the bound 

protein complex. Next, a check was done to determine whether the kinase 

catalytic subunit had significant steric clashes with the atoms of the sampled 

100mer peptide. If no crashes were detected, the binding site would be 

determined to be available for binding. Two programs VALMERGE and 

CRASHCHK were developed previously in our lab to do these tasks and 

modified slightly for creating protein complex files as described. 

VALMERGE merges the structure in multiple *.val files to form a complex 

after they are properly aligned by SALIGN.  Individual chains could be 

specified so that only these are copied and merged into the output structure. 

CRASHCHK is a program that iteratively scans through each chain of the 

structure and output the number and identity of all the pairs of atoms that are 

too close or superimposed on one another. The atom-atom distance is 
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compared to the Van der Waal distances of the two atoms as thresholds. The 

developed programs in this study are included in TraDES package, which are 

available in the TraDES 2.0 package at ftp://ftp.blueprint.org/pub/TraDES. 

TraDES 2.0 was released on 6 June 2012 in open-source under a BSD license 

and renames FOLDTRAJ to TRADES, and VALMERGE to STRMERGE. 

Refer to ftp://ftp.blueprint.org/pub/spatialConstraints/ for detailed account of 

the software, scripts and parameters used in this study. 
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Chapter 3  

Sequence Detection of Proline/Serine-Rich 

Disordered Regions
2
  

 

Abstract  

Most compositionally biased proline-rich regions are usually disordered and 

contain multiple serines or threonines as phosphoacceptors. We refer to these 

regions as Pro/Ser-rich disordered regions. They play important roles in 

signaling pathways, but sequence annotation of these regions is not complete 

in most protein databases. In addition, there is a lack of consensus on how to 

define these regions. In this study, we define Pro/Ser-rich disordered regions 

as those long disordered regions (>40aa) and enriched in prolines and serines. 

Many machine learning algorithms have been proposed to predict disordered 

regions. However, their predictions do not give a clue about the compositional 

bias within the sequence. They are fundamentally based on amino acid 

properties of protein sequence, which determines the structure and in turn the 

function. The amino acid composition of the protein should identify many 

protein structural properties. Previous study on predicting the linkers between 

domains used a simple amino acid composition propensity as a discriminating 

linker prediction index. Referring to this method, we generated an amino acid 

index called Pro/Ser-Rich (PSR) based on the compositional bias between a 

set of curated Pro/Ser-rich disordered regions and a set of folded domains. 

PSR index is a simple and effective approach to predict Pro/Ser-rich 

disordered regions. A web server called Armadillo (2.0) has been updated to 

                                                 
2
 Portions of the work written in this chapter are being prepared in a manuscript. 
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perform queries and prediction tasks. Armadillo (2.0) incorporates PSR index 

into its previous domain-linker propensity indices. It can predict linker regions 

as well as Pro/Ser-rich disordered regions within a protein sequence. 

 

3.1 Background  

Disordered protein regions exist as structural ensembles where the equilibrium 

position of the backbone atoms and their dihedral angles have no set positions 

or values and vary significantly over time [33, 34]. These regions are 

discovered and studied by different techniques. For example, X-ray 

crystallography defines missing electron density in many protein structures as 

disordered protein [43, 44, 354]; nuclear magnetic resonance (NMR) is able to 

assign resonances for the disordered protein fragments [52, 61, 193, 355-357]; 

circular dichroism (CD) can detect disordered regions by the near-UV CD 

spectrum with low intensity. Other spectroscopic techniques including far-UV 

CD [70, 358-363], Fourier transform infrared (FTIR) [30], electron 

paramagnetic resonance (EPR), and optical rotary dispersion (ORD) are also 

employed to identify disordered regions [364]. Additionally, fluorescence 

resonance energy transfer (FRET) can provide more information of the 

conformations of disordered protein regions [115, 365].  

The fraction of protein disorder in several genomes was predicted in 

high content in eukarya (33%) compared to 4.2% in bacteria and 2% in 

archaea [115]. This may result from the more complex regulation and 

signaling systems in higher organisms. The number of disorder predictors has 

increased rapidly. The algorithms that these predictors based upon include 
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simple sequence complexity, complicated machine learning methods such as 

neural network and support vector machine, and other novel proposed 

biophysical models. Many reviews have been published to discuss the details 

about these disorder predictors [104, 105, 366, 367]. Many research groups 

have participated in the biennial Critical Assessment of Techniques for Protein 

Structure Prediction (CASP) since 2004 to demonstrate the performance of 

their disorder predictors [368]. 

 Disordered and ordered regions have different amino acid 

compositions. Higher frequencies of R, K, E, P and S amino acids and lower 

frequencies of C, W, Y, I and V amino acids have been found in disordered 

regions compared to ordered regions [96]. By comparing amino acid 

composition and various biophysical attributes between ordered and 

disordered fragments, a novel amino acid scale was constructed to 

discriminate order and disorder. This provides a new ranking for the residues 

for their tendencies to promote disorder (from order promoting to disorder 

promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P [160].  

Disorder proteins have four main functions: (1) molecular recognition: 

effectors, scavengers and displaying sites for post-translational modifications, 

(2) molecular assembly, (3) protein modification, and (4) entropic chain 

activities [158, 200]. Many disordered proteins, for example, α-synuclein, p53, 

14-3-3, AXIN, breast cancer type 1 susceptibility protein (BRCA1), 

microtubule-associated protein 2 (MAP2), titin etc, serve as hubs in signaling 

pathways to interact with multiple partners [204-207, 369]. The D2 concept or 

“disorder in disorders” has been proposed to illustrate that disordered regions 
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are highly involved in neurodegenerative diseases/conformational diseases 

(for example, Alzheimer’s disease, Parkinson’s disease, Down’s syndrome, 

etc), cardiovascular diseases, and cancer [370]. 

Romero et al. demonstrated that low sequence complexity cannot 

determine the protein disorder since the prediction only involves direct 

sequence analysis without using any structural information [96]. However, a 

large number of disordered proteins have been identified by low sequence 

complexity, and many of these proteins contain compositional sequence biases. 

For example, glycine-rich sequences are disordered regions; regions enriched 

in proline, glutamic acid, serine, and threonine (PEST) are mostly disordered. 

Our study focuses on compositionally biased proline-rich regions, which have 

been associated with protein disorder and contain multiple serines as 

phosphorylation sites. Proline and serine are two amino acids that are highly 

ranked to promote disorder [160].  Proline has very limited conformational 

space as its unique side-chain is cyclised onto the backbone nitrogen atom 

[224]. Polyprolines are likely to adopt the PPII (Polyproline II) helix, which is 

an extended structure with three residues per turn. Such conformations tend to 

exist in extended disordered regions that are hard to characterize using X-ray 

cryptography or NMR [371]. Phosphoacceptor serines or threonines are often 

located immediately preceding proline in proline-rich regions. Like most 

disordered proteins, Pro/Ser-rich disordered proteins are biologically 

important. Many identified disordered regions are enriched in proline and 

serine. For example, casein, tau protein, etc [232].  There is no such sequence 

annotation as “Pro/Ser-rich Disordered” in protein databases. In UniProt 

database, a type of compositional bias feature is indicated as “Pro/Ser-rich”. 
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However, it does not give its structural information as order or disorder. In 

addition, there is no consensus on this term during curation. To determine 

whether a region is disordered and highly enriched in proline and serine 

requires a threshold frequency and other attribute, for example, protein region 

length.  

Current disorder predictors can predict disordered and ordered regions; 

however, their predictions do not indicate the compositional bias within the 

sequence. Earlier study developed a discriminating linker prediction index 

(DLI) to predict the linkers between domains by using a simple amino acid 

composition propensity [323]. Following this method, an amino acid 

propensity index called Pro/Ser-Rich (PSR) was computed based on the 

compositional bias between a set of curated Pro/Ser-rich disordered regions 

collected by the author, and a set of protein folded domains. The PSR index is 

a simple and effective approach to predict Pro/Ser-rich disordered regions. A 

web server called Armadillo (2.0) (http://web2.mbi.nus.edu.sg) has been 

updated to perform queries and prediction tasks. Armadillo (2.0) incorporates 

the PSR index into its previous domain-linker propensity indices. This tool 

gives more information about protein disorder by predicting linker regions as 

well as Pro/Ser-rich disordered regions within a protein sequence.  

3.2 Implementation  

3.2.1 Pro/Ser-rich disorder dataset  

For this study, 357 protein regions were collected from 388 published papers 

on PubMed identified with the query “proline serine rich region”. These 

protein regions were classified into four main categories: PRR (Pro-rich 

http://web2.mbi.nus.edu.sg/
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region), PSR (Pro/Ser-rich region), PST (Pro/Ser/Thr-rich region) and PEST 

(Pro/Glu/Ser/Thr-rich regions). These terms are used by the authors in the 

found publications. The same protein region may be mentioned differently 

using above terms according to the authors’ opinions in different papers. A 

manual filtering ensured that candidate proteins had the reported Pro/Ser-rich 

region that was greater than 40 residues in length, and had random coiled / 

disordered / unfolded structure or had no reported structure in the PDB 

database. This was done because amino acid composition has been reported to 

be sufficient for predicting long disordered regions [163, 164]. The filtering 

leaves a subset containing 125 Pro/Ser-rich disordered regions with start 

residue and end residue annotated as in the publication. The proteins in this 

dataset had a mean length of 148.7 (+149.8) residues and a median length of 

102 residues. The dataset can be downloaded from 

http://web2.mbi.nus.edu.sg/. 

3.2.2 Third party datasets 

Two third party datasets were also used in this study. A number of 1069 

disordered protein segments were extracted from the dataset DisProt Release 

5.8 (http://www.disprot.org/data/version_5.8/disprot_fasta_v5.8.txt). The 

MMDB-I dataset from Dumontier et al, 2005 [323] consisted of 585 proteins 

with two to ten non-redundant VAST domains and at least one linker. We used 

the pre-computed amino acid composition of domains in MMDB-I to develop 

our PSR index as a reference state for the log-odds scoring function. Thus the 

scoring function will remain near zero for the majority of folded domains in 

protein sequences, which in the MMDB-I set are distinctly separated from any 

http://web2.mbi.nus.edu.sg/
http://www.disprot.org/data/version_5.8/disprot_fasta_v5.8.txt
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potentially linker regions. Thus the combination of PSR and DLI may offer 

discrimination between short linkers and Pro/Ser-rich disordered regions. 

3.2.3 The PSR index 

The frequencies of amino acid residues in the domains from MMDB-I dataset 

(d) and the Pro/Ser-rich disorder dataset (t) are shown in Table 3.1. Amino 

acid frequency as described in [323] is the ratio of number of an amino acid to 

that of all amino acids. The amino acid frequency       was determined for 

each amino acid aa from the ratio of the occurrence of each amino acid       

in a set s compared to its total occurrence        as shown in equation (3.1): 

      
     

        
                                   (3.1) 

The PSR index describes the Pro/Ser-rich disorder propensity in the form of a   

log-likelihood of any amino acid residue to be found in a Pro/Ser-rich 

disordered region. Amino acid propensity refers to the natural inclination or 

tendency for an amino acid to behave in a particular manner where all factors 

are not known [323]. The PSR index is calculated from the amino acid 

frequency       as the negative log ratio between the amino acid frequencies 

in Pro/Ser-rich disorder dataset t and in folded domains d, as shown in 

equation (3.2). The PSR is then normalized to a zero mean and unit standard 

deviation.  

          
     

     
                           (3.2) 
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Table 3.1: Calculated frequencies of amino acid residues in Pro/Ser-rich 

disorder dataset and MMDB-I domain dataset as well as the negative and 

normalized log ratios for PSR index. 

 

Amino 

Acid 

d  t 

 

Negative 

Log Ratio Normalized 

PSR index 
                              

A 19504 8.5 1547 8.3 0.010 -0.333 

C 2869 1.3 140 0.8 0.221 0.515 

D 13370 5.9 700 3.8 0.191 0.392 

E 15177 6.6 920 4.9 0.127 0.136 

F 9108 4.0 350 1.9 0.325 0.931 

G 17201 7.5 1244 6.7 0.051 -0.172 

H 5246 2.3 418 2.2 0.009 -0.341 

I 13089 5.7 427 2.3 0.396 1.217 

K 13290 5.8 781 4.2 0.141 0.190 

L 20855 9.1 1062 5.7 0.203 0.440 

M 4966 2.2 284 1.5 0.153 0.238 

N 9644 4.2 471 2.5 0.221 0.513 

P 10311 4.5 3658 19.7 -0.640 -2.945 

Q 8483 3.7 776 4.2 -0.051 -0.581 

R 11480 5.0 821 4.4 0.055 -0.152 

S 13021 5.7 2397 12.9 -0.355 -1.801 

T 12765 5.6 1318 7.1 -0.104 -0.793 

V 16454 7.2 836 4.5 0.204 0.444 

W 3256 1.4 103 0.6 0.410 1.271 

Y 8172 3.6 333 1.8 0.300 0.829 

Total 228261 100.0 18586 100.0   

Mean     0.093 0.000 

STD     0.249 1.000 
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3.2.4 Pro/Ser-rich disorder prediction 

After each residue of a protein sequence is assigned a value according to its 

normalized PSR index, a numeric profile can be generated. Next, a 15 residue 

moving window is used to smooth the numeric profile by giving an average 

value to the central residue. Then, a second smoothing is completed by an 

inverse discrete Fourier transform followed by a low-pass filter with a cutoff 

frequency of 1/25. The residue profile distribution is then transformed to a 

standard normalized distribution (zero mean, unit standard deviation). 

  
   

 
 

Z-scores less than or equal to -3.43 were predicted as Pro/Ser-rich disordered 

regions. This threshold was trained on the training dataset and empirically 

tested giving the best prediction sensitivity. It was determined from the density 

distributions of those belong to Pro/Ser-rich disordered regions and those do 

not in the training dataset.  

3.2.5 Prediction performance measures 

For the determination of the performance of PSR, the first quantity measured 

is prediction sensitivity, which is TP/(TP+FN), where TP is the number of 

residues that are in true positive Pro/Ser-rich disordered regions and FN is the 

number of false negative, i.e. residues that are in Pro/Ser-rich disordered 

regions and have not been predicted. The second quantity measured is 

specificity, which is TN/(TN+FP) where FP is the number of false positives, 

i.e. predicted residues that do not fall on a real Pro/Ser-rich disordered region. 
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3.2.6 Armadillo (2.0) 

The first Armadillo program has been updated to a new version which 

incorporates PSR index. Armadillo (2.0) can take inputs of FASTA sequences 

or NCBI GI numbers. The combined program generates predictions about 

linkers and Pro/Ser-rich disordered regions. A tab-delimited file including the 

normalized scores from each of the amino acid indices can be generated. A 

new web interface to Armadillo (2.0) (http://web2.mbi.nus.edu.sg) is available. 

It generates graphical output using Dojox Charting (http://dojotoolkit.org). 

The prediction program will be made available under a BSD style open source 

license. 

3.3 Results and Discussion 

3.3.1 Amino acid composition in the datasets 

To develop a propensity index for searching Pro/Ser-rich disordered regions, 

we compared the differences in the amino acid composition profiles of the 

four datasets: domains and linkers in MMDB-I, disordered protein segments in 

DisProt Release 5.8, and Pro/Ser-rich disorder dataset from PubMed. The 

comparison is shown in Table 3.2, Table 3.3, Table 3.4 and Figure 3.1. The 

discriminating difference existing within the domain and linker compositions 

was applied to generate the linker propensity index as described by Dumontier 

et.al. The domains appear to have more hydrophobic residues Leu, Val, Ile, 

Ala and to a lesser extent Arg, Met, and Tyr. Linker regions have higher 

percentages of Pro, Gly, and less content of Asn, Asp, Ser and Thr. In contrast, 

disordered regions are enriched in Ser, Glu, Pro, Lys and to a lesser extent Gln, 

http://web2.mbi.nus.edu.sg/
http://dojotoolkit.org/
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Asp and Thr; while, the Pro/Ser-rich disordered regions are highly enriched in 

Pro, Ser and to a lesser extent Thr and Gln.  These regions have a higher 

content of Thr comparing to disordered regions. This may be due to the fact 

that Pro-rich regions always contain multiple Ser and Thr, which fit exactly 

into our interest. These observations confirm that Pro/Ser-rich disordered 

regions are a subset of disordered regions with compositional bias.  
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Table 3.2: Amino acid composition difference in percentage between MMDB-

I domain dataset and disordered protein segments in DisProt (v5.8). 

Amino Acid % Domain % DisProt 

(v5.8) 

% Difference 

L 9.14 6.37 2.77 

I 5.73 3.11 2.62 

V 7.21 5.39 1.81 

F 3.99 2.34 1.65 

Y 3.58 2.02 1.56 

W 1.43 0.64 0.79 

N 4.22 3.61 0.61 

C 1.26 0.79 0.47 

A 8.54 8.09 0.46 

R 5.03 4.61 0.42 

M 2.18 1.80 0.38 

H 2.30 1.95 0.35 

G 7.54 7.42 0.11 

    

T 5.59 5.77 -0.18 

D 5.86 6.40 -0.55 

Q 3.72 5.32 -1.60 

K 5.82 8.13 -2.31 

P 4.52 7.44 -2.93 

E 6.65 9.81 -3.16 

S 5.70 8.98 -3.27 
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Table 3.3: Amino acid composition difference in percentage between MMDB-

I domain dataset and the curated Pro/Ser-rich disorder dataset from literature. 

Amino Acid % Domain %PSR in 

PubMed 

% Difference 

I 5.73 2.3 3.43 

L 9.14 5.71 3.43 

V 7.21 4.5 2.71 

F 3.99 1.88 2.11 

D 5.86 3.77 2.09 

Y 3.58 1.79 1.79 

E 6.65 4.95 1.7 

N 4.22 2.53 1.69 

K 5.82 4.2 1.62 

W 1.43 0.55 0.88 

G 7.54 6.69 0.85 

M 2.18 1.53 0.65 

R 5.03 4.42 0.61 

C 1.26 0.75 0.51 

A 8.54 8.32 0.22 

H 2.3 2.25 0.05 

    

Q 3.72 4.16 -0.44 

T 5.59 7.09 -1.5 

S 5.7 12.9 -7.2 

P 4.52 19.68 -15.16 
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Table 3.4: Amino acid composition difference in percentage between MMDB-

I linker dataset and disordered protein segments in DisProt (v5.8). 

Amino Acid % Linker %DisProt 

(v5.8) 

% Difference 

G 10.59 7.42 3.17 

P 10.07 7.44 2.62 

N 5.20 3.61 1.59 

F 3.89 2.34 1.55 

Y 2.88 2.02 0.86 

D 7.10 6.40 0.70 

H 2.48 1.95 0.52 

W 1.16 0.64 0.52 

C 1.27 0.79 0.48 

I 3.58 3.11 0.46 

T 6.18 5.77 0.41 

L 6.72 6.37 0.35 

M 1.46 1.80 -0.34 

R 4.15 4.61 -0.46 

V 4.83 5.39 -0.56 

A 6.45 8.09 -1.64 

    

Q 3.52 5.32 -1.80 

S 6.85 8.98 -2.13 

K 5.48 8.13 -2.65 

E 6.15 9.81 -3.66 
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Figure 3.1: Amino acid compositions of the datasets. The amino acids were 

put around the radar clockwise. The domain curve spirals in and goes around 

the clock in decreasing amino acid composition frequencies. 
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3.3.2 Evaluation of Pro/Ser-rich disorder predictions 

The smoothed numeric profile of the sequence generated from PSR index was 

used to make predictions (See Implementation). Cross-validation and dataset 

scoring were used to determine the prediction sensitivity and specificity. 

3.3.2.1 Cross-validation 

The first approach was a five-fold cross-validation procedure in which the 

training dataset was randomly divided into five groups. The members from 

four groups were used to train the PSR index and then used to predict the 

excluded fifth group. This process was repeated over 100 times to calculate 

the sensitivity and specificity of prediction. PSR index achieved 64 (+6)% in 

sensitivity and 66 (+5)% in specificity for predictions from the curated 

Pro/Ser-rich disordered regions. 

3.3.2.2 Dataset scoring 

The second approach was to use PSR index to predict the training dataset and 

get the training error. Prediction on the training dataset averaged 64% in 

sensitivity and 73% in specificity for PSR index. For comparison, we built 

three tandem pipeline approaches each of which adopted one of the three 

disorder predictors: DisEMBL [131], GlobPlot [121] and PrDOS [125]. These 

disorder predictors predict disordered regions without information about the 

compositional bias. Thus, we applied another software package “ps_scan” 

[372] as a secondary step to further predict proline-rich regions. The 

overlapping prediction between each disorder predictor and ps_scan will 

reflect the Pro/Ser-rich disordered regions that we are interested in (Table 3.5). 
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PSR predictions appear to be much more sensitive (64%) but less specific 

(73%) than the tandem pipeline approaches which contained a disorder 

predictor and the composition scanner ps_scan (see Table 3.5). The majority 

of residues in Pro/Ser-rich disordered regions are predicted correctly, and the 

greatest error appears to be the prediction of residues in domains and in 

disordered regions which are not Pro/Ser-rich. The sensitivity is also limited 

by the fact that the dataset has inherent multi-domain proteins with 

discontinuous segments. The high specificities of the three tandem approaches 

may be attributed to the Pro-rich predictions of ps_scan (79%), which could 

predict 62 Pro-rich regions (49.6%) that are in the curated Pro/Ser-rich 

disorder dataset. The software ps_scan is a PROSITE scanning program which 

uses a “profile library” to search for specified pattern. In the study, a “Proline-

rich region profile” was included in order to search for regions that are 

significantly enriched in proline. Moreover, PROSITE contains a profile 

library for sequence regions enriched in a particular amino acid; however, this 

only focuses on finding compositional biased regions with low-complexity 

that may not be disordered. Additionally, the software ps_scan prediction does 

not involve end-effect averaging [372]. PSR is a unique dual predictive 

program and there is no other existing software to directly compare with it. 

Here, we adopted a tandem pipeline approach using existing tools to do a 

“fabricated comparison”. 
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 Tandem pipeline  

(Disorder predictor combined with ps_scan) 

 PSR index DisEMBL 

& ps_scan 

GlobPlot 

& ps_scan 

PrDOS 

& ps_scan 

training dataset %s 

%p 

64 21 37 33 

73 99 98 98 

Table 3.5: Pro/Ser-rich disorder predictions. A summary of the results 

obtained for Pro/Ser-rich disorder prediction in the dataset of Pro/Ser-rich 

disordered regions from literature. Percentage sensitivity (%s) and specificity 

(%p) for PSR index, and three disorder predictors (DisEMBL, GlobPlot and 

PrDOS) combined with ps_scan. 
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3.3.3 Server prediction examples 

Armadillo (2.0) web server predictions for the LRP6, WASP and MAP tau 

proteins are shown in Figure 3.2. LRP6 is a member in the subfamily of LDL 

receptors (LDLR) [319]. It is a type I single-pass transmembrane protein, 

which contains an extracellular domain, a helical transmembrane domain and 

a cytoplasmic domain. The extracellular domain consists of three basic 

domains: the YWTD (tyrosine, tryptophan, threonines and aspartic acid)-type 

β-propeller domain, the EGF (epidermal growth factor)-like domain, and the 

LDLR type A (LA) domain [338]. The cytoplasmic domain of LRP6 (residue 

1317 to residue 1613) is enriched in prolines and serines including a S/T 

cluster and downstream five reiterated PPP(S/T)PX(S/T) motifs, whose 

phosphorylation is crucial in the activation of the Wnt/β-catenin signaling 

pathway [311]. Until now, no stable structure has been reported for LRP6 

cytoplasmic domain in current structure databases. This region is expected to 

be natively unfolded due to its Pro/Ser-rich compositional bias [311, 338]. 

Armadillo (2.0) predicts a Pro/Ser-rich disordered region from residue 1380 to 

residue 1613, which corresponds to the LRP6 cytoplasmic domain (Figure 

3.2(a)).  Figure 3.2(b) shows LRP6 conserved domains that are obtained by 

searching against the NCBI’s conserved domain database (CDD). The second 

example is the WASP protein, which regulates actin filament reorganization 

and polymerization. Human WASP has a Pro-rich region from residue 160 to 

residue 404, which also contains several phosphorylation sites [286]. The PSR 

index predicts four Pro/Ser-rich disordered regions (residue 138-residue 242, 

residue 292-residue 342, residue 374-residue 424 and residue 431-residue 483), 
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three of which cover its Pro-rich region (Figure 3.2(c)). The last example is 

the microtubule-associated protein tau, which promotes microtubule assembly 

and stability. Abnormally hyperphosphorylated tau is found in Alzheimer’s 

disease [373]. In the human MAP tau isoform 2 protein sequence, PSR 

predicts two Pro/Ser-rich disordered regions: residue 32-residue 82 and 

residue 158-residue 218 (Figure 3.2(e)), the latter of which covers the reported 

Pro-rich region (172-251). However, it also identifies the N terminus as 

Pro/Ser-rich region (Figure 3.2(f)). 
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Figure 3.2: Armadillo (2.0) Pro/Ser-rich disorder predictions for human 

proteins LRP6, WASP and MAP tau isoform 2. By default, the Armadillo 

2.0 web server shows all the linker predictions and Pro/Ser-rich disorder 

predictions. The graphs here show only Pro/Ser-rich disorder predictions 

for LRP6 (a), WASP (c) and MAP tau isoform 2 (e). Each graph displays 

the smoothed Z-score profile along the sequence (x-axis).The domain 

architectures are shown from querying the NCBI’s conserved domain 

database. 

 



 

102 

 

3.4 Conclusions  

In this study, we have developed a simple approach to predict disordered 

regions whose composition is biased with proline and serine. PSR index 

achieves 64% prediction sensitivity for its training dataset. This method may 

not give higher specificity than the tandem pipeline approach that was 

discussed; however it is a more sensitive tool for finding Pro/Ser-rich 

disordered proteins. The concept of this study is to explore a subset of 

disordered proteins in terms of their biased proline/serine-rich composition. As 

our comparison set was to a combined set of prediction methods including the 

ps_scan tool, the results show that there are distinct areas of possible 

improvement. For example, specificity may be increased by incorporating 

other amino acid attributes or scores, or by combining different prediction 

methods. In general, the log-odds score performed well as a simple tool to 

detect Pro/Ser-rich disordered regions that may be highly present in human 

genome. Meanwhile, the newly updated web server Armadillo (2.0) is 

available for usage. 
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Chengcheng Liu collected the data, developed the software, modified the 

interface, performed the statistical analysis and wrote the manuscript. 

Christopher W.V. Hogue participated in the design of the algorithm and the 
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Chapter 4  

Sequence Analysis of Interpositional Dependence 

in Phosphorylation Motifs
3 

 

Abstract  

A significant number of phosphorylation sites in substrate sequences are 

characterized in vitro from oriented peptide library screening. The specificity 

of kinase for the substrate sequence mostly comes from the sequence 

information at positions in the proximity to the site of phosphorylation, but 

this excludes the interpositional dependence among the positions. It is now 

plausible to obtain large quantities of in vivo substrates using high-throughput 

techniques like mass spectrometry. We used data from experiments on the 

kinases ATM/ATR and CDK1/Cyclin B as well as curated CK2 substrates, to 

examine the abundance of interpositional dependencies between positions 

within a substrate motif. Incorporrating these interpositional dependencies, we 

used probabilistic models to predict kinase phosphorylation sites. In the results, 

a scarcity of interpositional sequence dependencies is observed, and these 

dependencies in fact do little help to improve the prediction accuracy of the 

probabilistic models. Our results may imply that other components of 

biological and cellular context should be included to improve the ability of the 

models, rather than only considering the sequence alone. The results also 

                                                 
3
 Portions of the work written in this chapter have been previously published as: 

Brian A. Joughin, Chengcheng Liu, Douglas A. Lauffenburger, Christopher W.V. Hogue and 

Michael B. Yaffe. Protein kinases display minimal interpositional dependence on substrate 

sequence: potential implications for the evolution of signaling networks. Philos. Trans. R. Soc. 

B. 367: 2574-2583 
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suggest that the kinase substrate fitness exists in a smooth energetic landscape 

evolutionarily. Other research results suggest the interpositional dependences 

do lie in the substrate motifs of phosphopeptide-binding domains, like SH2 etc. 

Our data indicates that the evolution of fitness of phosphopeptide-binding 

domains may limit the new functional substrate molecules in the phospho-

signaling pathways. 

 

4.1 Background 

Phosphorylation is a post-translational modification that is crucial in various 

biological processes, including cell cycle control, signal transduction, cell 

motion, enzyme regulation and others [306-308].  The number of kinases that 

are responsible for the phosphorylation of serine, threonine and tyrosine on 

about one third of eukaryotic proteins, has been identified to be more than 500 

[374]. The traditional ways used to characterize phosphorylation sites are 

mutational analysis and Edman degradation chemistry, but more recently 

advanced mass spectrometry techniques has shown numerous phosphorylation 

sites on a large variety of proteins which have not yet been found to be 

involved in biological processes. Nevertheless, it is difficult to assign the 

discovered phosphorylation sites to the kinases that are responsible for the 

modification, which means the kinase-substrate specificity is mostly unknown. 

Bioinformatic tools have developed to solve the kinase-substrate specificity, 

commonly with describing a 3-10 residue long sequence motif with the 

phosphorylation site specifically for a kinase [375]. The sequence motifs only 

give a simple glimpse of the specificities of kinases, because they do not serve 
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as a sufficient nor a necessary condition when determine if a sequence is a 

substrate of a specific kinase.  

A list of current useful phosphorylation predictors are provided in 

Table 4.1. Some of these phosphorylation predictors like NetPhos and GPS2.0 

are based on PROSITE pattern searches [312-314], which in fact will give 

many false-positive examples. NetPhosK, NetPhorest, KinasePho, 

PredPhospho and PPSP etc. use machine-learning methods, including neural 

networks, hidden Markov models, support vector machines and Bayesian 

decision theory, which are not quite optimal prediction methods if the training 

dataset is small. Besides, these algorithms normally retrieve the learning set 

from databases Phospho.ELM [376, 377] and Swiss-Prot/TrEMBL [378], 

which collects phosphorylation sites from different experimental methods and 

hypothetical sites which are derived from sequence similarity to known 

substrates  instead of experimental results. This could cause high redundancy 

and large noise in the dataset. Scansite [317] applies a position-specific 

scoring matrix (PSSM), which is constructed from oriented peptide library 

screening in vitro. It only covers a short central motif (3-10 residues) to do the 

prediction task, which may increase the false positive rate if the evolved 

specificity covers a larger region of sequence. The scoring matrix PSSM 

calculates the prediction score based on the amino acid frequency at each 

position within the central motif assuming these positions are independent, 

which describes a first-order model of sequence specificity. As such, there is a 

lack of consideration about the interpositional dependencies within the 

phosphorylation motif, which could possibly exist around the phosphorylation 
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sites in vivo substrates and determine the kinase specificity. This describes a 

higher-order model of sequence specificity, i.e. the amino acids binding 

evolved co-dependencies in the neighboring positions relative to the 

phosphorylation site. If such higher-order information missing in PSSM does 

indeed exist, would it be useful to better describe the specificity of a kinase in 

vivo?   

To approach this problem of determining higher-order specificity, a 

large number of substrates for a kinase from a single experiment are required 

for the analysis of interpositional dependence. The current database 

Phospho.ELM only curates a lower percentage (12%) of phosphorylation sites 

specific to a particular kinase [376]. For most kinases, they do not have a 

known specificity sequence motif according to a computational study on linear 

motif atlas for phosphorylation-dependent signaling conducted by Huang et al 

[379]. Moreover, a large dataset of phosphorylation sites for most kinases does 

not come from a single experiment. Fortunately, a few single experiments 

generating a large dataset of phosphorylation sites for a specific kinase have 

been described in the literature. These give us resources to study the 

interpositional dependence surrounding the phosphorylation site and to test if 

higher-order model would give a better prediction result than a PSSM does.  
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Table 4.1: A list of current phosphorylation site predictors. 

Name URL Year Reference 

NetPhos http://www.cbs.dtu.dk/services/NetPhos 1999 [315] 

Scansite2.0 http://scansite.mit.edu 2003 [317] 

DIPHOS http://www.ist.temple.edu/DIPHOS 2004 [310] 

NetPhosK http://www.cbs.dtu.dk/services/ 

NetPhosK 

2004 [380] 

PredPhospho http://pred.ngri.re.kr/PredPhospho.htm 2004 [381] 

PPSP http://www.webcitation.org/query.php?url=http:

//bioinformatics.lcd-

ustc.org/PPSP&refdoi=10.1186/1471-2105-7-

163 

2006 [382] 

pKaPS http://mendel.imp.ac.at/sat/pkaPS 2007 [383] 

KinasePhos2.0 http://KinasePhos2.mbc.nctu.edu.tw 2007 [384, 385] 

NetPhosYeast http://www.cbs.dtu.dk/services/Net 

PhosYeast 

2007 [386] 

GPS2.0 http://bioinformatics.lcd-ustc.org/gps2/ 

down.php 

2008 [387] 

Predikin http://predikin.biosci.uq.edu.au 2008 [388] 

NetPhorest http://netphorest.info 2008 [389] 

Phospho.ELM http://phospho.elm.eu.org/ 2008 [376, 377] 

NetworKin http://networkin.info 2008 [390] 

PhosphoSitePlus http://www.phosphosite.org 2012 [391] 

 

In this study, we take a look at the second-order (pairwise positions) 

interpositional dependence in three large phosphorylation datasets of kinases 

ATM and ATR, CDK1 and CK2. ATM/ATR are the central components of 

DNA Damage Response (DDR) [392]. They are activated when the double 

stranded breaks (DSB) initiate which create deadly DNA lesions. ATM and 

ATR phosphorylate one or more key proteins in the DDR signaling network 

e.g. the activation of cell-cycle checkpoints proteins and they share common 

substrates. CDK1 (cyclin-dependent kinase 1) is activated indirectly by 

ATM/ATR. ATM/ATR phosphorylates CHK1/CHK2 (serine/threonine 

kinases) that inactivates CDC25C/CDC25A through phosphorylation. 

CDC25C/CDC25A in turn can activate CDK1/CDK2 by phosphorylation 

[392]. CDK1 drives G2 to M phase in cell-cycle control [393]. These two 

types of protein kinases are critical in DNA damage response signaling 
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network. CK2 is a ubiquitous, active serine/threonine kinase whose substrates 

include numerous signaling proteins [394, 395].    

4.2 Results 

4.2.1 Statistical significance of interpositional dependencies among kinase 

phosphorylation motifs 

First, the substrate dataset of ATM/ATR [392] was analyzed to see if there are 

any second-order interpositional sequence dependencies, which means the 

preference of amino acid pair co-occurring at a pair of positions. At the 

positions in the substrate motif relative to the phosphorylation site, the number 

of occurrence of each amino acid was counted. At each pair of positions, the 

number of co-occurrences of each pair of amino acids was counted as well. 

These numbers are applied in the hypergeometric distribution to calculate the 

degree of enrichment and reduction for a pair of amino acids at pairwise 

positions, comparing to the distribution of co-occurrences that would appear 

randomly given the individual actual occurrences of each amino acid and 

actual co-occurrences of each amino acid pair (See Methods). From the 

structural perspective, the kinase would evolve so that binding preferred or 

avoided particular biophysical feature presented by amino acid pairs at 

pairwise positions relatively close to the site of phosphorylation. The substrate 

sequence may also undergo evolutionary selection induced by the functional 

constraint of binding and recognition. If there are significant interpositional 

dependencies, a large set of enriched or reduced amino acid pairs with 

significant deviations would be expected. In unexpected contrast, only small 

deviations in the frequencies of individual amino acid pairs were observed 
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from what might be most expected by chance. When using a rigorous criterion 

to control the false positive rate, these deviations were not statistically 

significant (see Table 4.2). This means, the data indicates that motif-

neighboring sequence deviations arise randomly and not from the evolution of 

interpositional dependencies.  

Though the ATM/ATR substrate dataset is large containing 861 

peptide sequences, only a few statistically significant deviations from what 

would be expected by chance under a position-independent model were 

identified (Table 4.2). These observations consist of the site of 

phosphorylation (the phosphoserine or phosphothreonine). Phosphoserine co-

occurs more frequently with proine or glycine at position -1, with glycine at 

position +2, and with serine at position +3. In contrast, phosphothreonine co-

occurs less frequently with these amino acids at these positions. The 

contradicting results may originate from the oriented phosphorylated position, 

which creates a space of 40 amino acid pairs together with the substrate serine 

or threonine. A pair of arbitrary positions can create a space of 400 (20 by 20) 

amino acid pairs. The reduced dimensionality in the second position may 

enable the statistical boosting power for identifying lower degrees of 

interpositional dependence. 

The same methodology was applied to the substrate datasets of 

Cdk1/Cyclin B [393] and CK2 [389]. Surprisingly, the set of 71 proline-

directed phosphor peptides of Cdk1/Cyclin B has no pairs of individual amino 

acids observed with significant enrichment or reduction. In addition, the 432 

substrate dataset for CK2 only has one amino acid pair at one pair of positions 
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observed to deviate significantly from what might be expected by chance (see 

Table 4.2).  

In order to increase the statistical power, a decreased space of amino 

acid pairs at a pair of positions could be done by grouping the 20 amino acids 

into 6 functional groups: acidic, basic, hydrophobic, polar, aromatic, and a 

“structural” category including proline and glycine (see Methods). Thus, the 

space of amino acid pairs is reduced from 20 by 20 to 6 by 6. This way, 

however, only detects a small number of statistically significant deviations: 

one case for Cdk1/Cyclin B and four more cases for CK2 (see Table 4.2). 

The phosphorylated substrate dataset used in this study are 

characterized in vivo, and is sufficiently large to show a signal should it be 

present. The results indicate that they do not present a statistically significant 

indication of the interpositional dependencies within the motif relative to the 

site of phosphorylation. 
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Table 4.2: Substrate sequence position pairs demonstrating significant 

deviations from independence. 

Kinase Position 1 Position 2 Motif Type P-value
a
 

ATM/ATR 

0 2 pS-Q-G Enriched 4.93 x 10
-4

 

0 2 pT-Q-G Reduced 4.93 x 10
-4

 

0 3 pS-Q-X-S Enriched 1.16 x 10
-3

 

0 3 pT-Q-X-S Reduced 1.16 x 10
-3

 

-1 0 Struct.-pS-Q Enriched 9.23 x 10
-5

 

-1 0 Struct.-pT-Q Reduced 9.23 x 10
-5

 

Cdk1/ 

Cyclin B 
3 4 pS/pT-P-X-Basic-Polar Reduced 1.63 x 10

-3
 

CK2 

1 2 pS/pT-E-E Enriched 2.25 x 10
-5

 

2 4 pS/pT-X-Polar-X-Polar Enriched 1.39 x 10
-3

 

4 5 
pS/pT-X-X-X-Acidic-

Acidic 
Enriched 2.82 x 10

-4
 

2 4 pS/pT-X-Hyd-X-Struct. 
Enriched

b
 

3.14 x 10
-3

 

2 5 
pS/pT-X-Hyd.-X-X-

Hyd. 

Enriched
b
 

1.29 x 10
-3

 

a
Raw, uncorrected p-value is reported when significance is indicated by 

comparison to empirical multiple hypothesis testing control (see Methods). 

b
These amino acid pairs were indicated only by the method of Benjamini and 

Hochberg [396] and not by the empirical heuristic. 

Grouped amino acid definitions: Structural (G, P), Basic (K, R), Acidic (D, E), 

Aromatic (F,Y,W), Hydrophobic (A,I,L,M,V), Polar (C,H,N,Q,S,T). 
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4.2.2 Incorporation of interpositional dependencies in predicting novel 

kinase phosphorylation sites 

The number of instances of statistically significant deviations from a position-

independent description of substrate specificity for these kinases is few. But 

this does not rule out the possibility that the kinase recognizes the 

phosphorylation site dependent on the nearby positions. Other factors such as 

the transient nature of kinase binding, phosphorylation and release may 

suggest that kinase substrate recognition is different from phosphopeptide-

binding modules, which are not as transient in their binding.  But to identify a 

lower degree of interpositional dependence, a large set of substrate sequences 

for the kinase would be required. The observed small number of 

interpositional dependent instances may indicate that the kinases tend to 

recognize their substrate in a position-independent way, or that the cooperative 

or uncooperative effect of a pair of amino acid is too minute to be discovered 

provided the currently available sample size of substrate sequences. It may 

simply reflect evolutionary pressure of kinase binding and phosphorylation as 

a transient phenomenon, where an increased binding and recognition sequence 

dependence of the neighboring amino acids around the phosphorylation 

substrate amino acid may have made the binding less transient.  

Despite the very few number of discovered amino acid pairs that are 

enriched or reduced at pairs of positions, some sub-significant 

interdependencies might still exist in the sequence motif to facilitate kinase 

specificity towards its phosphorylation site. The interpositional dependencies 

can be incorporated into a probabilistic model to predict novel 
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phosphorylation sites. Here, second-order interpositional sequence information 

is utilized without considering higher order information. A first-order model is 

also set up and compared with the second-order model to examine if the 

interpositional dependent information improves the performance of models in 

detecting phosphorylation sites (see Methods). 

4.2.2.1 Prediction of true substrates from mock substrates made of 

shuffled controls 

For each kinase, the substrate dataset is randomly divided into a 90% training 

set and a 10% test set. The 90% training set is used to train a first-order and a 

second-order models, whose ability was tested to identify the withheld true 

test set from among a background of mock substrates (see Figure 4.1a and 

Figure 4.2a). The mock substrates are shuffled negative controls generated by 

shuffling amino acids among substrate sequences, while maintaining their 

positions relative to the phosphorylation site. In this manner, the individual 

amino acid frequencies at a single position are preserved, but the 

interdependencies at pairs of positions are broken. The procedure repeats 1000 

times leading to 1000 first-order and second-order models. From the results, it 

is observed that both first-order and second-order models do a particularly 

good job of identifying true substrates from among the mock substrates. The 

first-order models score potential substrates of the kinase based on a function 

of the probabilities of individual amino acids occurring at single positions 

among the training data, without considering all higher-order combinations. 

The second-order models score potential substrates accounting for both the 

individual probabilities at single positions and the probabilities of pairs of 
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amino acids at pairs of positions, without considering the triplet and higher-

order combinations (see Methods). These models are used to score a set of 870 

potential ATM/ATR substrates (87 true substrates, 783 shuffled negative 

control substrates).  The top 10% (87/870) of scores are taken as predicted 

substrates from the models.  First-order models captured a median value of 

10.3% (9/87) true positives among putative hits, while the second order 

models capture a median value of 12.6% (11/87) true positives (See Figure 

4.1a).  Similar results are seen for CK2 (first-order, 13.6% (6/44); second-

order, 18.2% (8/44)).  Random selection of sequences would produce 10% 

true positives.  

A different situation is observed in the results for CDK1/Cyclin B. 

There is less than 10% of the test data scored with a nonzero score of being a 

potential substrate under the second-order model. This means the top 10% of 

the test data is actually supplemented with the potential substrates with a 

probability score of 0, which are randomly selected from all the potential 

substrates with a probability score of 0 (see Figure 4.1a). To solve this 

problem, we set a rule to constrain the number of top-scoring predictions for 

each of 1000 random separations of training and test data to the least value of 

three numbers, including 10% of the dataset, or the number of predictions 

having positive scores under the first- or second-order model (see Figure 4.2a). 

Such approach leads to a mean of 1.32 sequences per test data set are assigned 

a non-zero score over 1000 tests. For both the first- and second-order models, 

the median fraction of true positive substrates among these predictions 

selected is 0%.  
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In either way, the second-order model does not show substantially 

better performance than the first-order model. The fact is that the qualities of 

both models are similar in detecting the substrate peptides from among the 

true and mock test data. Another similarity lies in the sequences of the true test 

data and shuffled negative control substrates, which still preserves the amino 

acid frequencies at individual positions. 

4.2.2.2 Prediction of true substrates from mock substrates made of 

proteomic peptides 

The shuffled negative control substrates can be a very stringent dataset for the 

probabilistic models to identify the true positive substrates from within. A less 

strict and more realistic test might be done by identifying true substrates from 

among a background of mock substrates, which are potential proteomic 

peptides conforming to the known consensus phosphorylation motif for the 

kinases (see Figure 4.1b and Figure 4.2b).  For ATM/ATR, the motif “S/T-Q” 

was used to select mock substrates. For CDK1/Cyclin B, the motif “S/T-P” 

was used. For CK2, the majority of the substrate dataset contain the motif 

“S/T-X-X-D/E”, and this subset was extracted for analysis too. The CK2 

phosphorylation motif was used to randomly select proteomic peptides, which 

were used to test CK2 probabilistic models built from either the full dataset or 

the subset that conform to the motif. Once again, the dataset was split into a 

training set (90% substrate dataset) which was used to train the first-and 

second-order models, and a test set which was combined with true positives 

(10% substrate dataset) and nine times as many proteomic peptides. The top 

10% of high-scoring peptides were taken as potential substrates (see Figure 
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4.1b). The procedure repeats for 1000 times, and the median fraction of true 

positives among the top 10% high-scoring peptides was recorded. Because 

less than 10% of test data was scored non-zero for CDK1/Cyclin B and CK2, 

the procedure was repeated by making the number of top-scoring predictions 

in each test equal to the 10% of the substrate data, or the smaller number of 

predictions having non-zero scores under the first- or second-order model, 

whichever is the least (see Figure 4.2b). 

With the proteomic mock substrates, all models present better 

predictive ability than that observed in the previous prediction of true 

substrates from shuffled negative controls. For ATM/ATR, the first-order 

models predicted a median of 36.8% (32/87) of the top 10% high-scoring 

sequences were true positives, versus 31.0% (32/87) predicted by second-

order models (see Figure 4.1b). For CDK1/Cyclin B, the first model predicted 

50.0% (4/8) of hits as true positives, though the second-order only obtained 

12.5% (1/8) true positives. For CK2, the prediction results are similar in 

predicting the true positives from mock substrates with the entire dataset (first-

order, 45.5% (20/44); second-order, 34.1% (15/44)) or the subset that 

conforms to the “S/T-X-X-D/E” motif (first-order, 54.663.6% (18/33); 

second-order, 33.3% (11/33)). The procedure was repeated limiting the 

number of top-scoring predictions in each test to 10% of the test data, or the 

fewer number of peptides with positive scores under the first- or second-order 

model (see Figure 4.2b). For CDK1/Cyclin B, this produced an average of 

1.04 among the 117 trials that receive non-zero scores, and the rest 883 trials 

had not a single non-zero score prediction. In the 117 trials, the median 
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fraction of true positives among the scoring peptides is 100% under the first-

order model and 0% for the second-order model. This is mostly due to the fact 

that most of these 117 trials have only one sequence with nonzero score. 

With the mock substrates coming from proteomic peptides, the models 

do better jobs in detecting the true substrates from the mock data. The second-

order model, however, is less accurate than the first-order model. This 

indicates that the frequencies of amino acid pairs among pairs of positions in 

the training data can not represent the frequencies of amino acid pairs in the 

test data. Therefore, the second-order models are prone to overfit to the 

training data. 
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Figure 4.1: Comparison of ability of first- and second- order models to identify 

kinase substrates. A field of true kinase substrates withheld from training was hidden 

among mock substrates for each kinase.  A field of 10% true and 90% mock 

substrates was scored using first- and second-order models, and the fraction of true 

substrates in the top 10% of highest-scoring sequences was counted.  The procedure 

was repeated 1000 times.  Plotted boxes span the 25
th

 to 75
th

 percentile of values, 

with the red line in the boxes marking the medians.  Whiskers extend 1.5 times the 

distance between the 25
th

 and 75
th

 percentiles, and any points more distant from the 

median are explicitly plotted. Blue and red dashed lines at the value 10% and 100% 

represent the maximum possible fraction of true substrates in the top 10% of scores 

and the fraction expected if true and mock substrates were scored randomly, 

respectively.  (A) Mock substrates generated by shuffling true substrates to maintain 

the probability of each amino acid at each position while breaking interpositional 

dependencies.  (B) Mock substrates chosen by randomly selecting sequences from 

the human proteome conforming to basic known elements of kinase specificity: 

“pS/pT-P” for ATM/ATR, “pS/pT-P” for CDK1/Cyclin B, and “pS/pT-X-X-D/E” for 

CK2.  Because CK2 phosphorylates a number of true substrates that do not have +3 

D/E, the CK2 models were trained and tested both with all substrate sequences and 

with only +3 D/E sequences included. 
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Figure 4.2: Comparison of ability of first- and second- order models to correctly 

identify true positives, correcting for occurrence of amino acid pairs not present 

among training data. As in Figure 4.1, but rather than examining the top 10% of 

scored test sequences, a number of sequences for each random splitting of test 

and training data was examined equal to the least of: 10% of the tested 

sequences, or the number of tested sequences given a nonzero score under the 

first- or second-order model.  (A) Mock substrates generated by positionwise 

shuffling of true substrates.  (B) Mock substrates chosen by randomly selecting 

sequences from the human proteome conforming to basic known elements of 

kinase specificity. 



 

120 

 

4.3 Discussion 

It is found that the interpositional dependencies among the positions relative to 

the site of phosphorylation in the ATM/ATR, CDK1/Cyclin B and CK2 

substrates sequences are strikingly rare, as studied here. Yet, still a relatively 

small number of pairs of amino acids that act cooperatively or uncooperatively 

were identified. For ATM/ATR, serine is favored with a statistical significance 

over threonine at the site of phosphorylation, which prefers proline or glycine 

at position -1, glycine at position +2, or serine at position +3. Threonine at the 

phosphorylation site coincidently dislikes these instances. This can be 

explained by the biophysical difference between serine and threonine. 

Threonine has an additional methyl group attached to the beta carbon, which 

may render steric clash with the residues at positions in tandem or make the 

substrate backbone configuration difficult for a kinase to access in the 

presence of other residue. Other amino acid pairs statistically significantly 

enriched or reduced at pairs of positions observed in this study are more 

difficult to explain without structural data.  

Notably the crystal structures of the kinases examined here in complex 

with their substrates do not exist, which is itself a reflection of the transient 

nature of kinase-substrate peptide binding. A crystal structure of kinase 

Cdk2/Cyclin A in complex with an optimized substrate peptide was identified 

[397]. Cdk2 has 66% sequence identity with Cdk1 and similar substrate 

specificity. In this structure complex, the amino acid side chains of the 

substrate peptide have no close contacts. This partially explains the scarcity of 

interpositional dependencies among CDK1/Cyclin B substrate peptide 
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sequences. Given the close structure similarity of the kinase core amongst all 

kinases, it may be a structural generalization that there are few close contacts 

in most kinases. 

The datasets used in this study may not be perfect for characterizing 

the accurate kinase specificity toward its phosphorylation sites. The dataset 

containing ATM/ATR substrates is determined from a single experimental 

study. While, these two kinases should be treated individually as they may 

differ in their specificities in their substrates, that is, they prefer different 

amino acids at an individual position or different amino acid pairs at pairwise 

positions [392]. The substrate dataset for CK2 involves the curation of results 

from earlier experiments which are subject to study biases [394]. For the 

substrate dataset of CDK1/Cyclin B, the number of identified phosphorylation 

sites was small, which is perhaps not sufficient enough to tell the subtle 

frequency of amino acid pairs at pairwise positions [312]. The three datasets 

studied here span a wide range of sizes and associate with several collection of 

methodologies. Across all three cases, the same consistent pattern of rare 

interpositional dependencies is discovered. 

It is surprising to find out that the enrichment or reduction of amino 

acid pairs at pairs of positions in the substrates is not statistically significant 

than what would be expected, given that each amino acid were independently 

recognized by a kinase. This could be subject to three possibilities. First, it 

could be true for a kinase to recognize amino acid of its substrate 

independently, but this seems not biophysically plausible. Second, it is 

possible that the second-order information does lie in the substrate sequences, 
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however, at a lower level requiring a much larger sample size of substrates 

necessary to detect, however this is unlikely given the large sample sizes used 

here. Third, when a large number of potential substrates are present in-vitro, 

the kinase will show its statistically significant preferences for certain amino 

acid combinations. The situation may be different in vivo, where the kinase 

specificity can be limited by the sequences encoded in the genome, the same 

subcellular localization, and structural accessibility.  

The lower level of interpositional dependence in the kinase substrates 

brings new implications for the evolution of phosphorylation sites and of 

phosphorylation signaling pathways. If each substrate sequence position 

contributes independently to the ability of a kinase to recognize its 

phosphorylation sites, the evolution fitness landscape of substrate as a function 

of the amino acid at each position will be smooth with a single minimum, as 

shown in Figure 4.3.  There are no non-global local minima as traps in kinase 

substrate fitness space. For any non-ideal substrate, one or more single 

mutations would improve the fitness of the substrate for the kinase, and other 

conjunct double or higher-multiple mutations are not necessary. Most research 

groups studying phosphopeptide-binding domains, e.g. 14-3-3, SH2, etc have 

reported that there is interpositional dependence within the phosphopeptide-

binding motifs. The substrates of phosphopeptide-binding protein 14-3-3 in 

the study of Yaffe et al., adhered to one of two mutually exclusive sequence 

modes [274]. Liu et al. demonstrated that SH2 domains recognize and bind to 

phosphotyrosine-containing peptides, in which amino acid at certain positions 

influences amino acid at other positions [398]. The SH2 domain of Crk binds 
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to phosphotyrosine-containing peptides at the presence of a leucine or a 

proline in the +3 position. Only a leucine at +3 position allows a proline at +2 

position, while a proline at +3 does not. Other signaling domains like SH3, 

PDZ and WW domains have been shown to have similar properties in their 

specificities on the substrate sequences [399]. Though these domains usually 

do not bind phosphopeptides, a subset of WW domains do bind to peptides 

with phosphoserine and phosphothreonine peptides with proline at position +1. 

The results show that the substrate sequence is recognized by the 

kinase in a position-independent way, but it is recognized by the 

phosphopeptide-binding domains and signal modular domains, for example, 

14-3-3, SH2, WW, SH3 and PDZ etc, in a position-dependent way involving 

second- or higher-order cooperation. This difference may infer that the 

evolution of kinase substrate sequences is a fast or easy process in the 

evolution of phosphorylation signaling pathways. Single mutations are 

adequate to improve an imperfect substrate sequence to be favored by the 

kinase without the necessity of higher-order conjunct mutations. This is not 

the case for the substrates of phosphopeptide-binding domains or other signal 

modular domains. These domains bind the phosphorylated left behind after 

kinase activation. Their substrate sequences may require higher-order 

mutations to evolve so that they become more suited for the phosphopeptide-

binding domains to bind (see Figure 4.3) in a non-transient manner. Such 

binding makes the phosphorylation site play a functional role in signaling 

pathways. The phenomenon is consistent with the earlier report that there is an 

enormous number of phosphorylation sits with no functional roles [389]. It is 
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also consistent with a simple evolutionary process of kinase substrate in the 

evolution of signaling pathways. 

 

Figure 4.3: Model evolutionary fitness landscapes for substrates of kinases and 

phosphopeptide-binding domains. (A) Data presented in this paper indicates 

that kinase substrate fitness may be positionwise independent in the substrate 

amino acid sequence.  (B) Data presented elsewhere [274, 399, 400] indicates 

that phosphopeptide-binding domains express significant interpositional 

dependencies. The smooth landscape is compatible with rapid evolution of 

neighboring sequence as is found in intrinsically disordered regions. 
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4.4 Conclusion 

This study has shown that the first-order model is likely to be sufficient to 

describe the specificity of kinase for the substrate motif relative to the site of 

phosphorylation. The addition of second-order information to the first-order 

model does not seem to improve the ability of the kinase studied here to 

predict true substrates from among a background of mock substrates. Hence, 

in order to predict novel substrates, other contextual information may be 

required, for instance known interactions, subcellular localization, protein 

structure and distal site recognition may be considered as well, other than 

considering the sequence alone [390]. 

The previous finding indicates that intrinsic protein disorder is 

enriched in the regions in the proximity to the site of phosphorylation [310]. 

The disordered regions have a fast evolutionary rate, which is consistent with 

the proposition that neighboring residues around phosphorylation motifs may 

exhibit evolutionary variation without affecting kinase substrate fitness. 

An assumption has been made that the first-order information 

embedded in the substrate motif reflects evolutionary freedom in the substrate 

sequences for the specificity of kinases. The energy landscape for substrate 

fitness is smooth without requiring the higher-order mutations to improve the 

fitness of any non-optimal potential substrate sequence. While this study has 

focused on three different kinases, it may not be a sufficient generalization 

without further examination of substrate fitness for other kinases. However the 

finding that kinases possess minimal motif information corresponds well to the 
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general structure and mechanisms known to be exhibited by kinases, namely 

the transient nature of substrate binding and release.   

4.5 Methods 

4.5.1 Data sources 

Three long lists of substrates from literature were chosen. The first dataset 

contains 894 phosphorylation sites with the canonical “pS/pT-Q” motif on 700 

human proteins identified as the target sites of ATM and ATR by the groups 

of Gygi and Elledge, who conduct the single experiment  using antibody 

capture, peptide immunoprecipitation (IP) and SILAC followed by liquid 

chromatography-tandem MS (LC-MS/MS) [392]. The second dataset contains 

77 phosphorylation sites for CDK1/Cyclin B identified by covalent capture in 

the report of Blethrow et al, 71 of which are with the canonical proline-

directed “pS/pT-P” motif [393]. In addition, a third dataset comes from an 

expert curating collection of 432 phosphorylation sites of CK2, which are 

identified specifically by specific amino acid and directly used here [397]. The 

detailed experimental procedures in each study are provided in Figure 4.4. 

4.5.2 Data preparation 

For the datasets of ATM/ATR, CDK1/Cyclin B and CK2, the phosphopeptides, 

the phosphorylation sites and the corresponding gene IDs are collected from 

the source publication. Each protein sequence is obtained by using the 

phosphopeptides (without the phosphate ‘p’) to BLAST against the Swiss-Prot 

database. After preparation, 861 peptide sequences with motif “S/T-Q” for 

ATM/ATR, 71 peptide sequences with motif “S/T-P” for CDK1/Cyclin B and 
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432 peptide sequences for CK2 were generated. Each peptide sequence has a 

window length of 13 residues including the site of phosphorylation, as well as 

the 6 residues upstream and 6 downstream of the phosphorylation site. Figure 

4.4 gives a summary of the steps of data sources and data preparation. 

 

 

 

Figure 4.4: Data source and data preparation. 
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4.5.3 Simplified amino acid alphabet 

We also conducted a simplified analysis using the datasets by grouping the 20 

amino acids into six groups as follows: Structural (P, G) ->P, Basic (K, R) -> 

L, Acidic (D, E) -> E, Aromatic (F, Y, W) -> W, Hydrophobic (A, L, I, M, V) 

-> L, and Polar (C, H, N, Q, S, T) -> Q. Significant results that are generated 

using the simplified alphabet are reported only when no pair of individual 

amino acids from the pair of classes is itself capable of representing the 

significant result. 

 

4.5.4 Statistical analysis of enriched and reduced amino acid pairs. 

Exact hypergeometric tests were performed to find whether the type of amino 

acid at one position within the consensus sequence motif influences the type of 

amino acid at another position either positively (enrichment) or negatively 

(reduction). This means to identify those pairs of amino acids at pairs of 

positions relative to the phosphor-residue, which co-occurred among substrate 

sequence with a frequency not adequately explained by their individual 

prevalence and chance. The positions considered were selected by inspection 

of a sequence log made from substrate sequences as a sequential set of 

positions that contain more information than the background. The motif logos 

[401] made from the three datasets for the kinases are shown below (see 

Figure 4.5). 
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A.      B. 

 

C.  

 

Figure 4.5: Motif logos for substrates analyzed.  Sequence position within 

substrates is along the x-axis.  Height of the stacks on the y-axis indicates 

information content, while the distribution of amino acids within the stack 

represents frequency.  Logos generated with WebLogo 3[401].  (A) 861 

substrates of ATM/ATR [392].  (B) 71 substrates of CDK1/Cyclin B [393].  

(C) 432 substrates of CK2 [395]. 
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Null hypothesis: amino acid A at position i and amino acid B at position j are 

independent 

Alternative hypothesis: they are dependent, i.e. amino acid A at position i 

influences amino acid B at position j, either positively (enrichment) or 

negatively (reduction). 

If we define N as the number of peptide sequences, n as the number of 

amino acid A at position i, m as the number of amino acid B at position j, k as 

the observed amino acid pair AB, and x as the number of selected AB, the 

probability for enrichment or reduction is equivalent to the probability of 

selecting ≥k or ≤k di-amino-acid pair AB (See Illustration 4.1). 

             
  

      
    

  
  

         
          (4.1) 

            
  

      
    

  
  

 
           (4.2) 

If             or            is less than 0.05, the null hypothesis might be 

rejected, i.e. AB pair is enriched or reduced at position pair i and j. 

 

Illustration 4.1: An illustration of statistical hypothesis testing as applied in 

this analysis. 
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4.5.5 Statistical significance cutoff determination 

At each pair of positions, for each kinase, up to 400 pairs of amino acids are 

tested for statistically significant enrichment or reduction. It is expected that 

by chance about 20 statistical significance values lower than 0.05 per 400 tests. 

In order to control the false positive discovery rate, two criteria were applied. 

The first is an empirical method. For each kinase, 1000 negative 

control datasets were generated which shuffled the amino acids at each 

position among all substrate peptide sequence. This maintains an identical 

amino acid composition at each position but breaking any interpositional 

dependencies, because the amino acid pairs at a pairwise positions were 

scrambled. For each control dataset, the significances of enrichment or 

reduction for all pairs of amino acids at all pairs of positions were calculated, 

as well as the lowest significance value at that position pair. For the true 

dataset, the significance results which had a more significant p-value than 95% 

of the randomized controls were noted. 

A more rigorous criteria described by Benjamini and Hochberg was 

used to control the false discovery rate [396].  A q* value of 0.05 was used, 

and the set of hypotheses tested were only those that could not be trivially 

accepted: for enrichment, only those pairs of amino acids that occur at least 

once independently, and for reduction only those pairs of amino acids that co-

occur once or more. 

Though the false discovery rate control procedure is only well-suited to 

series of significance tests that are statistically independent, and the 
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interdependence of statistical significance values calculated by studying the 

frequency of pairs of amino acids at each pair of positions is difficult to 

accurately characterize, results were in strong agreement with those generated 

using the empirical procedure. 

4.5.6 First and second-order model prediction 

To predict kinase specific phosphorylation sites, two probabilistic models are 

built abased on the Generalized Kirkwood Superposition Approximation 

(GKSA) as indicated by Killian et al [402]. The models approximates the 

probability across all amino acid positions considering only single positions, 

or single positions and pairs of positions. 

The first-order approximation of the probability of a protein sequence   

          with a length of m residues at positions 1 to m is the product of 

the independent probability. This model does not consider any cooperative 

effect of pairwise or higher-order combinations of amino acids.  

                     
 
          (4.3)

 

The second-order approximation of the same probability takes the 

individual and pairwise influences into account, but excludes any higher-order 

effects.  The product in the numerator is calculated from all the probabilities of 

pairs of amino acids at all pairs of positions. The product in the denominator is 

calculated from the probabilities of individual amino acids at single positions 

as in the first-order model. 
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       (4.4) 

 

4.5.7 Evaluation of first-and second-order models  

Each data set was split into 90% training and 10% test data. The training data 

were used to build the first-order and second-order models to predict substrate 

specific phosphorylation sties. The test data were supplemented with nine 

times as many mock substrates. The mock substrate peptide sequences are 

generated in a way by shuffling amino acids among the test sequences within 

each amino acid position. This way preserves exactly the frequencies of amino 

acids at each position and scrambles the amino acid pairs at pairwise positions. 

An alternative way to generate mock substrate sequences is by selecting 

appropriate sequences randomly from the human proteome (International 

Protein Index [403], v3.55).  These sequences were selected from among all 

sites containing the amino acid sequence “S/T-Q” for ATM/ATR, the 

sequence “S/T-P” for CDK1/Cyclin B, and the sequence “S/T-X-X-D/E” for 

CK2.  Because an acid at the +3 position relative to the site of phosphorylation 

is not necessarily required for CK2, additional models were trained and tested 

against proteomic mock  substrates for CK2 using only the subset of substrates 

conforming to the “S/T-X-X-D/E” motif.  The ability of each probabilistic 

model to identify true substrates among a background of mock substrates was 

measured by counting the number of true substrates among the best 10% of 

potential substrates scored.  This procedure was repeated using 1000 random 

divisions of the substrate data into test and training sets, and the mean and 
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standard deviation are reported.  In some cases, the best 10% of potential 

substrates under a second-order model included some substrates with a 

probability score of 0.  In these cases, the potential substrates with a score of 0 

included in the best 10% were selected randomly from all potential substrates 

with a score of 0.   

Because a 0% probability score is not deemed as prediction of 

phosphorylation site, a maximum the best 10% of potential substrates are 

taken with limitation to the positive probability scores. For each of the 1000 

repeated procedures, the same number of high-ranking sequence was 

examined for both the first- and second-order model including the least of 10% 

of the sequence, the number given a nonzero score by the first-order model, or 

the number given a nonzero score by the second-order model. If no sequences 

passed these criteria for one of the 1000 divisions, this division was not 

included in distributions to calculate median statistics. This procedure lead to 

see 87 of 870 sequences in all 1000 test sets for ATM/ATR, a mean of 2.01 of 

80 sequences in 654 of 1000 test sets for CDK1/Cyclin B, and 44 of 440 

sequences in all 1000 CK2 test sets, when comparing to positionwise-shuffled 

substrate sequences.  When comparing to proteomic mock substrate sequences, 

87 of 870 sequences in all 1000 ATM/ATR test sets, a mean of 1.04 of 80 

sequences in 117 of 1000 CDK1/Cyclin B test sets, and a mean of 25.2 or 15.4 

in all 1000 test sets for CK2 were used, when the training and test data did or 

did not include sequences not matching the “S/T-X-X-D/E” motif, 

respectively. See Figure 4.6 for the ROC curves for first- and second-order 

models. 
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Figure 4.6: ROC curves detail variation of true and false positive rates with 

probability score.  As probability score according to first-order (red lines), 

second-order (blue lines) and hybrid (green lines, taken as a linear 

combination of 5% of the second-order score plus 95% of the first-order score 

for a given sequence) models is varied, the fraction of test sequences (true 

positive rate) and mock sequences (false positive rate) with an equal or better 

probability score is plotted.  (A, B) ATM/ATR, (C, D) CDK1/CyclinB, (E, F) 

CK2. (A, C, E) Mock sequences generated by positionwise shuffling of test 

sequences.  (B, D, F) Mock sequences generated by selection of proteomic 

sequences fitting fundamental elements of substrate motif. Discontinuities 

represent the point at which all remaining probability scores are zero, at which 

point the true and false positive rates are both 1. 
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Chapter 5  

Conclusions and Future Directions 

 

 In this thesis project, new computational methods have been developed 

to study the structural ensemble and sequence information of disordered 

regions particularly enriched in prolines. Although these approaches are here 

only applied to a single case or a set of subjects, they can be extended and 

generalized to other disordered regions which are functional in signaling 

pathways. 

In Chapter 2, a structural ensemble sampling approach was described 

to show that a structural ensemble elongation is observed in a specific near-

membrane proline-rich disordered region of LRP6 intracellular domain, which 

has crucial roles in the activation of Wnt signaling pathways. This is achieved 

by applying simple planar spatial constraints to the LRP6 intracellular domain 

structural ensembles mimicking the excluded volume effects of the membrane 

and nearby molecule or molecular assembly. The statistical conformational 

change of the LRP6 intracellular domain ensemble is determined by 

comparing the distributions of radius of gyration before and after applying the 

spatial constraints, and the distributions of pairwise distances across 

phosphorylation motifs. With the spatial constraints imposed by the membrane 

and nearby molecules, we see a dramatic decrease in the available 

conformational space accessible to the disordered ensemble, and an increased 

fraction of structural ensemble on average has a larger value of radius of 

gyration. This indicates a new observation that intrinsic ensembles can be 

reorganized without binding by neighboring molecules, membranes or 
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structures. The pairwise distance distributions show a clear extension of the 

region of sequence in the near-membrane region of LRP6 intracellular domain, 

where the initial phosphorylation events are experimentally demonstrated to 

take place. We argue that the spatial constraints alone are responsible for the 

structural elongation in this region, and demonstrate further that a statistical 

elongation is seen in substrate peptides docked to a kinase protein. While this 

is not adequate proof of causation, the correspondence between the spatial 

constraints effect on the near-membrane region and its known experimental 

role in first site of activation leads us to a hypothesis that spatial constraints 

may play a role in activation.  This would proceed by the constraining system 

extending the proline-rich disordered region, reduces the random auto-

inhibition of the ensemble and making the phosphorylation sites more 

accessible.  In general the mechanism of LRP6 activation has gone without a 

molecular explanation, and it seems surprising that the first site of 

phosphorylation would be nearest the membrane. The results of the simulation 

provided here, while not conclusive, provide the first mechanistic plausible 

explanation as to how the extracellular binding of Wnt leads to the activation 

of LRP6 phosphorylation, and points squarely to a non-binding phenomenon 

of a major rearrangement of the conformational space accessible to the 

disordered LRP6 region. The extended conformation may be a common 

requirement for proteins docking to motif binding sites on disordered regions. 

If these normally tend to be randomly coiled, an extension to reveal their 

functions may be the simple result of spatial constraints once the protein is 

sufficiently near to its functional site. This may have profound implications on 

how the cell is organized and help explain why specific binding does not 
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proliferate at the point of protein synthesis.  If intrinsically disordered proteins 

of a certain length and composition can auto-inhibit their own motifs, they 

have a mechanism to deploy to their intended site. Such mechanisms are well 

known in the cases of folded protein, in particular the insulin gene has three 

forms, pre-proinsulin, pro-insulin and insulin, which represent stages in the 

extracellular deployment of the insulin gene.  Intrinsic disordered regions that 

are sensitive to spatial constraints may serve a similar purpose in inhibiting 

molecular function on the way to cellular localization and deployment, to 

prevent sensitive signaling networks from becoming active prior to the proper 

assembly. After assembling the molecular signaling network, the disordered 

protein ensemble configuration may be elongated by mechanical 

reorganization of spatial constraints, causing the localized extension of the 

protein backbone and optimizing access to embedded protein binding or 

phosphorylation motifs that were otherwise autoinhibited.   

The enrichment of proline can increase the potential of an extended 

backbone configuration due to the uniqueness of proline configuration, 

however many proline-rich regions are interrupted by other amino acids, so 

that it is difficult to deduce their properties from sequence alone.  The 

sampling of protein conformational space by tools like TraDES allows the 

determination of the normal unbound state of the protein backbone. Consistent 

with early and recent findings of proline-rich disordered regions, it seems that 

it is important for them to transition to an elongated conformation to fulfill 

their functions [404]. The protein paradigm: sequence determines structure, 

which determines function may be modified by our findings. The new 

knowledge from this initial may well mean that the context of the available 
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conformational space is also important in determining function, as it seems 

that the neighborhood of an intrinsically disordered protein and its surrounding 

spatial constraints may well modulate function in a specific and potentially 

predictable manner.   

The approach described in this Chapter 2 differs from the current 

molecular simulation approach of Molecular Dynamics, which, after a long 

period of development, has gained a well-regarded ability to match 

experimental results. The TraDES software adopted in our simulation 

approach has been demonstrated to be well suited for sampling conformational 

space of disordered proteins. The growing use of TraDES like structure 

sampling methods followed by fitting NMR restraints to find representative 

ensembles has helped validate the underlying sampling and constraint 

approach used here. There is a general lack of consideration of spatial 

constraints in simulation methods, however it is clear that close packing and 

assembly may present a protein molecule with many such constraints in 

different regions of the cell. The spatial constraints induced by subcellular 

localization and proximity of nearby molecules can greatly limit the 

conformational space of protein disordered regions and as shown in our results, 

the restriction of conformational space can force an ensemble into a 

predominant conformation such as an elongated state.    

This approach can be applied to study many other single-pass 

transmembrane proteins, whose intracellular domain has been reported to be 

mostly disordered [405]. Additionally, the modeled planes may be replaced by 

other objects or spatial systems representing chromatin or specific three 

dimensional structures like the ribosome, and systematically create a limited 
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space for examining the fit of a structural ensemble of any given disordered 

region. Hence, the modeling method is not exclusive to near-membrane 

location, but can be applied to constructing planes or objects that represent 

various spatial constraints originating from different factors in the cellular 

context. This approach generates information that of course can only be 

validated by experimental results, however straightforward experiments of this 

kind are difficult to design without some precise control of the 

nanoenvironment of experimental molecules. Transmembrane proteins, in 

particular, have been challenging for structural biology. Methods using 

fluorescence energy transfer between labeled amino acids can help generate 

distance distributions to directly compare to the TraDES results.    

As indicated in the introduction, proline/serine-rich intrinsically 

disordered regions are special cases of intrinsic disorder that warrant specific 

detection and separate annotation from non-proline disordered regions. In 

Chapter 3 we address the detection of proline-rich regions containing multiple 

serines or threonines as phosphoacceptors. The algorithm in the work involves 

developing a log-odd based amino acid propensity index calculated from the 

compositions of a set of Pro/Ser-rich disordered regions and a set of folded 

domains as a reference composition. From CASP, many disorder predictors 

have demonstrated their prediction accuracy, but they do not provide further 

compositional bias information in the sequence. Though the database UniProt 

also documents the compositional bias features of a protein, these are largely 

predicted using the PROSITE pattern predictors, which produce many false 

positives. A new dataset of Pro/Ser-rich sequences was curated for this study 

and used for the scoring function developed in Chapter 3. This effort helps 
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ensure that the PSR predictor is appropriately trained and can find proline-rich 

disordered regions with a range of different sizes. The evaluation result shows 

a modest improvement in accuracy produced from the algorithm but with 

slightly less specificity compared to a traditional pattern finder ps_scan, which 

can searches for proline-rich regions using a hidden Markov chain profile. 

Ps_scan can only provide low-complexity information without inferring the 

disorder capacity in a protein region. The specificity is slightly lower owing to 

the various lengths of disordered Pro/Ser-rich regions, and the challenge of 

determining the ends of the scoring function signal.  A version that is under 

development that uses TraDES conformational space information to help 

bound the termini of these regions shows promise, but was not fully 

implemented at the completion of this thesis. The study illustrates that for 

disordered predictors, the compositional bias should be incorporated into the 

prediction and annotation.  This should not just be limited to proline-rich but 

also extended to other amino-acid-rich disordered regions. For example, 

glutamine-rich disordered regions, which are identified as important study 

subjects in conformational diseases, and asparagines-rich regions which are 

likely to form amyloid plaques. 

Finally in Chapter 4, the focus of the study shifted to understand the 

specificity of the phosphorylation sites which are largely present in proline-

rich disordered regions. Our initial intention was to develop a probabilistic 

model with second- or higher-order interdependencies within the substrate 

positions in the proximity to the site of phosphorylation. However, we 

discover that the interpositional dependencies are strikingly rare and 

incorporating the information is actually not adding boosting power to predict 
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true phosphorylation sites from a background of mock substrates. Though the 

dataset we used in the work was not separated into ordered and disordered 

regions, the results we obtained, in terms of fast evolutionary rate of substrate 

sequences for a kinase, agreed with the earlier report that phosphorylation sites 

or other functional motifs are surrounded with amino acids that are disorder-

promoting. In order to improve the accuracy of prediction model for a specific 

kinase, other biological or cellular contexts must be considered too. The 

DISPHOS and other predictors have added in the properties of disordered 

protein residues, such as protein flexibility, but they still produce a big number 

of false positive rates. Hence, other elements, for example, subcellular 

localization and structural accessibility can affect the kinase specificity in the 

substrate for the phosphorylation sites.  

This coincides nicely with our molecular structural simulation study. 

Near-membrane effects can limit the conformational space of disordered 

region to adopt a predominant elongation configuration for the kinase to 

access. This could explain why GSK3 is able to phosphorylate several sites in 

motifs present in LRP6 that are not its recognition motif identified in vitro. 

Since spatially constrained disordered regions presents an easily assessable 

extended conformation near membrane where GSK3 accumulates, the 

phosphorylation event can naturally take place. The lack of interpositional 

dependencies may seem contradicting with other research groups’ reports 

about substrates of the phosphopeptide-binding domains or other signal 

modular domains, which do have a preference over certain amino acid pairs at 

certain positions, i.e. second- or higher-order interpositional dependencies. 

Thus, the residue positions in proximity to the phosphorylation site are readily 
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mutated, which is consistent with the fast evolutionary rate of disordered 

regions in which they are often found.  

For the substrates of those phosphopeptide-binding domains or 

signaling modular protein domains, the evolutionary energy landscape as a 

function of amino acid at positions is not smooth with non-global minima, i.e. 

the binding sites are limited by the mutation rates at certain positions. This can 

explain why many phosphorylated sites are not recognized by these domains 

and become functionless. That means the phosphorylation sites activated by 

kinase may be, in many cases, nonspecifically phosphorylated, but functional 

domain binding requires a phosphorylated residue with local interpositional 

dependencies. Interestingly, many positions relative to the phosphorylation 

site in the substrates of phosphopeptide-binding domains require the presence 

of proline or glycine, for example, SH2, SH3, and they are located in a 

proline-rich motif. These motifs have been reported to adopt an extended 

structure for binding, which contribute to the importance of enrichment of 

prolines in disordered regions. The statistical analysis can extend to other large 

quantities of substrates for other kinases and explore more hidden information 

about interpositional dependencies. 

There are additional considerations that arise from the juxtaposition of 

the three main themes of this thesis. Firstly, the general evolutionary transition 

to adapt a proline-rich disordered region into a signaling pathway becomes 

much clearer in light of these results. The results in Chapter 4 point to a 

nonspecific phosphorylation tendency of originating protein kinases, and that 

over evolutionary time this specificity is not greatly enhanced at the level of 

motif recognition. In the context of proline-rich regions, the tendency of 
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proline to form elongated regions free in solution offers a natural state that 

might be modified by mutations of amino acids or by domain insertions into 

disordered regions, or insertions of disordered regions into existing folded 

regions. Should mutations push the ensemble state into a more coiled or 

autoinhibited conformation that is sensitive to spatial constraints, this offers a 

simple evolutionary mechanism to allow the phosphorylation of a residue to 

act as a chemical marker of cellular position or neighboring state. This allows 

another small step in evolution to arise, that of a specific phosphoresidue-

binding protein that recognizes this chemical marker as distinct from other 

phosphorylations that are not sensitive to their spatial neighborhood. These 

small steps in protein evolution may lead to the evolution of specific signaling 

pathways as follows: (a) non-specific (or less-specific) phosphorylation of 

many residues (Chapter 4), (b) disordered domain autoinhibition possibly 

evolving from proline-rich compositionally biased sequence elongation 

(Chapter 3), (c) relief of that autoinhibition by evolution towards some 

specific spatial environment (Chapter 2), (d) specific phosphoresidue 

recognition by duplication and mutation of a phosphor-residue binding domain, 

and finally (e) integration of the signaling pathway from the bound 

phosphopeptide – disordered region complex by modular sequence insertion. 

Driven by an interest to understand the structural ensemble and 

sequence properties of disordered regions, particularly enriched in prolines, 

we have implemented a number of computational methods which may be 

applied to study other disordered regions. Our preliminary findings with these 

methods highlight that there is much still to be understood about the 

mechanism of these regions. The evolutionary and mechanistic implications of 
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this study are themselves predictive, self-consistent and generally applicable. 

It is anticipated that the effect of spatial constraints on disordered regions may 

have broad implications for understanding the evolution and mechanism of 

signal transduction.   
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