

A WYSIWYG ADD-ON DEVELOPMENT ENVIRONMENT FOR

THIRD PARTY SOFTWARE APPLICATIONS

ZHANG ZHONGYUAN

(B.Eng.) Tsinghua University, China

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48657454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university pre-

viously.

ii

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor Dr. Sheng-

dong Zhao for his guidance and support to my study, as well as my life. He is not on-

ly an excellent HCI researcher, but also an excellent mentor. I was fortunate to be his

student.

Additionally, I want to thank all my collaborators in the past one year: Dr. James Ea-

gan, Dr. Ramanathan Subramanian, Melissa Wong, Kristal Chan, Niti Madhugiri and

Mengyao Zhao.

Furthermore, thank all members of the NUS-HCI lab. Everyone in the lab is always

willing to give me a hand as needed. Together, they make the lab a great place to

work.

Finally, I am deeply grateful to my family. They give me their most sincere love,

support, and encouragement all the time.

iii

Table of Contents

Declaration ... i

Acknowledgements ... ii

Table of Contents ... iii

Summary .. vi

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Structure of the Thesis .. 4

Chapter 2 Related Work.. 5

2.1 Overview of Add-on Architectures in Existing Software 5

2.1.1 Implementation Mechanisms ... 5

2.1.2 Development Environment .. 10

2.1.3 Summary .. 11

2.2 General Add-on Architectures for Third-Party Applications............................ 12

2.2.1 Surface-Level Modifications.. 12

2.2.2 Program Behavior-Level Modification .. 16

2.3 Summary ... 21

Chapter 3 Proposed Approach .. 23

3.1 Introduction ... 23

iv

3.2 System Architecture .. 25

3.3 Runtime Intervention through DLL injection ... 27

3.4 Modifying GUI properties .. 30

3.4.1 Retrieving GUI Information... 31

3.4.2 Modification and Addition ... 31

3.4.3 Deletion .. 31

3.4.4 Modifying program behaviors ... 32

3.5 Supports for the GUI Editor .. 32

3.5.1 Inter-Process Communication .. 33

3.5.2 Creation of Project in IDE ... 37

3.5.3 Code Conversion .. 40

Chapter 4 Utility Add-ons ... 45

4.1 Property Editor .. 45

4.2 Interaction Logger ... 46

4.3 Multi-stroke Marking Menu ... 46

4.4 Heat Map Generator .. 47

4.5 Summary ... 48

Chapter 5 User Study .. 49

5.1 Tools ... 49

5.2 Participants .. 51

5.3 Apparatus .. 51

5.4 Experimental protocol ... 51

v

5.5 Quantitative Measures .. 53

5.6 Qualitative Analysis .. 54

5.7 Summary ... 58

Chapter 6 Discussion .. 60

6.1 Extension to other frameworks and platforms .. 60

Chapter 7 Conclusion .. 64

7.1 Contribution .. 64

7.2 Limitations .. 65

7.2.1 Custom Widget Clone and Modification ... 65

7.2.2 Dynamic Widgets ... 66

7.3 Future Work .. 66

Bibliography ... 67

vi

Summary

Software rarely fulfills the demands of all users in its initial development stage. Indi-

vidual needs, which include both interactive preferences and functional requirements,

differ in users and often change over time. Mindful of the importance of making

software adaptable to individuals, developers typically could enhance their software

by allowing reconfiguring user interfaces and/or add-ons that can modify software

behaviors, leaving the original main program unchanged. However, many software

applications support limited or no add-on architecture, due to additional overhead in

software design, development, and maintenance.

This thesis presents the WADE IDE, which enables easy modification of GUI-based

software applications without access to their source code. WADE retrieves the host

application‘s GUI hierarchy by injecting a dynamically-linked library (DLL) into the

host program, and converting this information to a declarative language, thereby

enabling GUI modifications in a WYSIWYG fashion through a GUI editor. The GUI

editor also provides direct association of event handlers with GUI widgets, greatly

simplifying the job of modifying not only appearance but also software behavior. We

demonstrate the usefulness of WADE through (a) the implementation of add-ons that

require deep changes to existing software and are difficult to realize via other ap-

proaches and (b) a user-study.

vii

List of Tables

Table 2.1 Dot file command of Vim ... 7

Table 2.2 Comparison between previous approaches and WADE 22

Table 3.1Cache file solution ... 34

Table 3.2 Windows Forms project files .. 40

viii

List of Figures

Figure 2-1 Interface customization panel of Visual Studio 2010 6

Figure 2-2 Themes of WordPress ... 8

Figure 2-3 ".addin" file of SharpDevelop ... 11

Figure 2-4 Minimizing all windows in Sikuli ... 14

Figure 2-5 Bubble Cursor ... 15

Figure 2-6 Users‘ recent manipulation histories ... 16

Figure 2-7 Facades .. 17

Figure 2-8 Extending the window management using DiamondSpin 19

Figure 3-1 Steps of adding a Batch Image Conversion add-on to Paint.NET. 24

Figure 3-2 Architecture overview of WADE .. 26

Figure 3-3 Common Language Runtime in .NET framework 29

Figure 3-4 Creating CLR using C++ .. 29

Figure 3-5 SharpDevelop class hierarchy ... 39

Figure 3-6 SharpDevelop design view .. 39

Figure 3-7 Code conversion example one... 43

Figure 3-8 Code conversion example two .. 43

Figure 3-9 Code conversion example three .. 44

Figure 4-1 PropertyEditor add-on ... 45

Figure 4-2 EventRecorder add-on ... 46

Figure 4-3 MarkingMenu add-on .. 47

Figure 4-4 HeatMapGenerator add-on .. 48

Figure 5-1 Screenshot of Managed Spy .. 50

Figure 5-2 Work flow of WADE and Scotty-like approaches 57

1

Chapter 1 Introduction

1.1 Background

Software rarely fulfills the needs of all users all the time. Software systems are com-

plex, frequently having to satisfy conflicting requirements and constraints. As such,

designers optimize their software for a narrower class of users and a narrower subset

of the problem. Since individual users' preferences and interactive needs can change

over time, it is essential for software tools to be user-adaptable in order to effectively

cater to these ever-changing requirements (Mackay 1991, Robinson 1993).

Mindful of the need to make software adaptable to individual needs, developers typi-

cally allow for software customization by providing:

 Capabilities for reconfiguring existing features and functions to suit personal

taste such as via preferences panes or dot files; or

 A software architecture for incorporating add-ons –– additional functionali-

ties that enhance/modify the behaviors of the original application using add-

ons, plugins, scripts and/or extensions.

To illustrate the demands and necessity of add-ons, we present four usage scenarios

where end users will need the power of reconfiguring interfaces and add-ons:

 Reconfiguration: Albert's favorite photo editor includes buttons to share his

works to the Mybook, Facespace, Doodle+, and Failwhale social networks,

but he only uses Failwhale. He is overwhelmed by clutter of the extra features

and wants to remove unused icons from the toolbar and enlarge the Failwhale

icon to make it easier to acquire. Albert has little programming knowledge

2

and cannot hack into the code by himself. He searches the Internet and finds

no specific add-ons to make such changes, but he does find a general GUI

property editor add-on. By installing the add-on to the photo editor, he re-

moves extra buttons and enlarges the Failwhale icon.

 Language localization: Kevin can create incredible photo-realistic effects

with the image manipulation tools in Paint.NET, and he teaches some tricks

to his Russian friend, Ivanov. Ivanov finds some of the tools and effects very

cool, and wants to create some visual effects on his own. However, Ivanov is

not comfortable with English language commands, and would prefer a

Paint.NET GUI with Russian labels instead. Unfortunately, Russian is not

among the languages supported by Paint.NET, so he uses an English-Russian

translator to create an add-on to synthesize the Paint.NET GUI in Russian.

He modifies the text of the relevant toolbar labels sing the GUI editor and

shares the add-on on the Internet for the benefit of others.

 Customization for the elderly: John wants to modify the interface to his

word processor so that it can be easily used by his father, who is over 70

years old and has relatively poor eyesight. John's father uses only a specific

set of GUI functions, but would like those widgets to be clearly visible on

screen (e.g., at a much larger size). Upon installing a GUI property editor

add-on, John is able to easily hide functions unlikely to be used by his father,

as well as enlarge the size of the relevant widgets so that they are easily lo-

catable on screen.

 Creation of software variants for testing novel interaction techniques:

Mary is a user interface researcher. She has heard an unusual number of

complaints about the most recently released version of a popular software ap-

plication. After reviewing the application's design, she identifies three possi-

3

ble problems and comes up with several possible improvements. However, in

order to confirm her hypotheses, she needs to conduct user studies to com-

pare the original interface with her proposed enhancements. She uses an add-

on to make her changes to the original interface, and installs a generic inte-

raction logger add-on to collect data from the original and revised interfaces.

By performing a series of studies, Mary identifies the exact enhancements

that can help improve the software's usability.

1.2 Motivation

Since in many scenarios and cases, add-ons are required by end users, some applica-

tions provide their add-on architecture in different ways, e.g. configuration panel, dot

file, skin / theme, functional libraries, startup libraries. While all of these approaches

can provide users with a great deal of control, (i) there exists a trade-off between an

adaptation's expressiveness and user skill/effort required to realize it, and (ii) every

approach requires the developer to provide a certain degree of explicit support for

customization. Preferences and dot files require the developer to explicitly make mul-

tiple variants of some functionality and to provide a configuration interface. Plugins,

scripting interfaces and extensions require the developer to provide and maintain an

external API to their software, which may potentially require maintaining a separate

interface to internal functionality.

Owing to the above issues, many software developers do not provide support for add-

ons. Even when they do, such support is often limited. Much research has focused on

approaches that enable third-party developers to modify the interface or behavior of

existing applications without access to source code or an external API. These ap-

proaches typically work by either: 1) operating on the surface-level of the interface,

intercepting the pixels output to the screen and input events before they are delivered

4

to the application (Dixon and Fogarty 2010, Stuerzlinger, et al. 2006); or 2) integrat-

ing with the toolkit to gain access to internal program structures (Eagan, Beaudouin-

Lafon and Mackay 2011, Edwards, Hudson, et al. 1997). While these methods pro-

vide some way for a third-party developer to enhance / modify existing applications,

the third-party developer still requires a deep understanding of the relevant parts of

the system in order to realize the desired behavior. The deeper an approach peers into

the implementation of the host application, the deeper this understanding may need to

be. It is, therefore, worthwhile to explore alternative methods which will enable users

to modify applications with little understanding and effort.

1.3 Structure of the Thesis

The rest sections of this thesis are structured as follows:

 Chapter 2 briefly introduces add-on architectures of famous applications, and

reviews previous efforts of building general add-on architectures.

 Chapter 3 describes the approach proposed in this thesis, called WADE.

 Chapter 4 lists several add-ons which were developed under WADE‘s archi-

tecture, to show the capacities of WADE.

 Chapter 5 presents a user study to demonstrate the efficacy of WADE.

 Chapter 6 discusses how to extend WADE to other frameworks and plat-

forms.

 Chapter 7 concludes this thesis by summarizing its contributions, limitations,

and some possible future directions.

5

Chapter 2 Related Work

2.1 Overview of Add-on Architectures in Existing Software

Some existing applications were designed to allow built-in reconfiguring or add-on

architectures. These applications, which are called skins, themes, plugins, extensions,

or scripts, provide different degrees of freedom to the users, including changing font,

colors, and texts, or adding images, hiding items, relocating widgets, and replacing

widgets. Some applications also support add-ons to expand functionalities of soft-

ware. In this section, we review some famous applications, including web browsers,

office suites, text editors, graphics editors, Integrated Development Environment

(IDE), and web utilities, that have add-on architectures. Their implementation me-

chanisms and add-on development environments are summarized next.

2.1.1 Implementation Mechanisms

 Configuration Panel. The built-in configuration panel / dialog / menu is one

of the earliest approaches providing customization ability. Users can access

these predefined options in main menus or right click context menus. This

approach is mostly applied for setting visibility or layout of components. For

example, Microsoft Visual Studio 2010 provides a customization panel for

setting components of menu bar, toolbar, and context menu, as shown in Fig-

ure 2.1. Microsoft Office Suite 2007 allows customization of the items shown

in the Quick Access Toolbar through a configuration dialog. Additionally, in

many web browsers, the user can decide which toolbars will be shown at the

top using a context menu.

6

Figure 2-1 Interface customization panel of Visual Studio 2010

 Dot File. Dot file is favored by many applications that originated in Unix-like

systems, which are less user-friendly but more flexible than visual configura-

tion panels. Dot files are usually text files whose filenames start with dot

symbol, which means hidden files in Unix-like systems. Software can save

user settings and data, including UI or functions, in these dot files, which are

located in separate or central folders within the user‘s home folder (Russell,

Quinlan and Yeoh 2004). Although not all setting files start with dot in file-

names (e.g., many applications that originated in Windows system), they play

7

the same role. Table 2.1 shows an example of dot file “.vimrc”, the configu-

ration file for text editor Vim.

Text Meaning

set nu Show line number before each line

set tabstop=4 Set tab width to 4 space

set expandtab Expand all tab with equivalent whitespaces

set autoindent Auto indent new line according to its previous line

Table 2.1 Dot file command of Vim

 Skin / Theme. As a complementary solution to a configuration panel, skin /

theme templates focus on changing images or textures of existing visual wid-

gets or replacing drawing methods of interface widgets. Skin was initially

used in video games (e.g., Quake) to allow players change the appearance of

characters (Stuerzlinger, et al. 2006) and was later introduced to media play-

ers and some other software. Themes or skins may also be more flexible be-

cause they allow a user to change visual styles. For example, in WordPress,

an open source blogging tool, there are many themes for users to download

and install (Silver 2009), which provides a variety of visual styles (Figure

2.2).

8

Figure 2-2 Themes of WordPress

 Functional Library. All of the previous three approaches can only change

the appearance of interfaces. However, in many cases, new functions are ne-

cessary for applications. Publishing new versions could be a straightforward

solution, however, different functions may be needed by different users. Re-

quiring all users to upgrade to a new version that contains several new fea-

tures, when most users may only need one or two, is definitely not a smart so-

9

lution. Moreover, new features may be very trivial, which makes upgrading

the entire software not feasible. As a typical example, graphic editing soft-

ware may continuously encounter new increasingly popular image formats

that are supported by the initial version. To deal with this issue, many appli-

cations separate some functions into libraries, which could be individually

updated while leaving the majority of the software unchanged. These libraries

are called by the main program to provide services for the program through

explicitly maintained APIs. The libraries could be provided with original

software or developed by third party developers to extend the capability of

applications.

Returning to the previous example, graphic editing software may check all li-

braries in a file format folder to find a correct parsing function, when opening

an image file. The parsing function converts external image files to an inter-

nal image editing format for the program. When saving images, a similar

process occurs. As an instance, this approach is adopted by Paint.NET, a free

graphic editing software application that runs on the Microsoft .NET frame-

work. Paint.NET checks all libraries under its “FileTypes” folder when open-

ing and saving non-default image files. Moreover, Paint.NET also uses this

approach to support extensible effect editing functions. Under Paint.NET,

there is an “Effects” folder, where effect libraries are located. Each time us-

ers click on the ―Effects‖ menu item, Paint.NET checks all libraries in the

“Effects” folder and adds all legal effects to the menu list. If users then select

a specific effect, the current edited image is passed to corresponding library

function (Dietrich n.d.). This approach largely enhances the flexibility of

software.

10

 Startup Library. The most significant difference between a startup library

and a functional library is that the latter is loaded at the startup of applica-

tions. On the other hand, the former approach (e.g., Paint.NET) only calls li-

braries when users trigger some events, the disadvantage of which being that

add-ons cannot actively change interfaces or behaviors of the program. In-

stead, the startup library approach calls libraries‘ initialization functions dur-

ing the startup period of applications. These libraries can freely change exist-

ing components as long as access is permitted. For example, an open source

text editor Notepad++ adopted this approach (Wu 2010). “CommandMenuI-

nit” method is called at the startup of Notepad++ and has full access to pro-

gram resources.

2.1.2 Development Environment

To develop the aforementioned add-on architecture solutions, several approaches ex-

ist in current software:

 Built-in Panel. For the Configuration Panel and Dot File, all work is done

by application providers. Interfaces to configure widgets or functions to parse

dot file are all implemented in original applications. Third party developers

do not need to and cannot extend the extension ability. However, users or ap-

plication providers could share their dot files (templates).

 Declarative (Custom) Language / Format. For skin / theme templates and

library approach, applications often require developers to use certain declara-

tive languages to configure application UI. These languages could be stan-

dard ones, e.g. XML (Bray, et al. 1997), CSS (Lie and Bos 1997), or their

own custom format. For example, an open source IDE SharpDevelop uses an

“.addin” file to define interfaces. As shown in Figure 2.3, developers can set

11

the assembly (library) name, menu item text, and handler functions in the

“.addin” files. Handler functions should be compiled into a library and are

called when the menu item is clicked.(Holm, Kruger and Spuida 2004,

Georgescu and Milodin 2010)

Figure 2-3 ".addin" file of SharpDevelop

 Coding-based. Unlike declarative languages, in some add-on architectures,

developers directly use a programming language, usually the same language

used by the original software, to write modifications and functions of the

program. This is mostly seen in the startup library approach, where library in-

itialization function is called at program startup to perform modifications.

Program resources are usually packed in some singleton classes that add-ons

can access globally in the program. As an example, Notepad++ is adopting

this approach. To simplify the work of add-on developers, sometimes add-on

project templates are provided by application providers or third party. In the

templates, descriptions and examples were given to guide developers to be

used when creating specific effects.

2.1.3 Summary

As previously mentioned, different approaches to support add-on architecture have

been explored. Configuration Panel is the most user-friendly and can be used by end

users, but usually supports predefined and limited configurations. Dot File, which is

more flexible but less user-friendly, allows users to share their configurations easily.

12

Skin / Theme is convenient to install, however, users have less control. All three ap-

proaches can be implemented to directly serve end users, but they only allow settings

of UI. The Functional Library is a common way to add new functions. Unfortunately,

the three approaches for UI setting and using the Functional Library all require pre-

defined interfaces provided by application providers, which creates significant over-

head of software design and implementation. Moreover, these predefined interfaces

rarely fulfill the demands or future extension requirements of all users. The Startup

Library overcomes this disadvantage, since libraries have full access to program re-

sources, working like a normal initialization method. Meanwhile, the support for

Startup Library requires little efforts to implement. This approach also has the signif-

icant disadvantage that most startup libraries are pure coding-based programming,

which means, unlike developing standalone applications, programmers do not have

the help of GUI editors when they want to modify UI of applications.

2.2 General Add-on Architectures for Third-Party Applications

Various methods to support third-party application modifications have been pursued.

The next section examines representative approaches and divides them into two cate-

gories: surface-level modifications and program behavior-level modifications.

2.2.1 Surface-Level Modifications

Surface-level modifications do not rely on any particular support from application

providers. Instead, they operate on the interface that is presented to the user and the

input events that he or she provides. More specifically, they take pixels rendered on

screen and events from the keyboard and mouse as input of the system, while the out-

put usually involves re-rendering the screen.

Virtual Network Computing (VNC) proposed by Richardson et al (Richardson, et al.

1998) is an attempt to teleport pixels from a partial or entire screen from server to

13

clients. It requires a server, usually a home computer or a work place computer, to

run target applications. Users could remotely receive screen pixels from the server

and send mouse or keyboard events back to the server, using a thin client and network

with server. VNC server takes screen pixels as input so that it does not need any in-

formation or support from target applications. Transmission of pixels uses standard

network protocols like TCP/IP. And to render screen on clients is not harder than

playing a video. More efforts, however, should be made to optimize performance and

security. Thus, VNC can work with different interfaces and operating systems with-

out limitations of distance. However, VNC does not allow adjusting of existing inter-

faces or incorporating of new functions to applications.

Adopting similar techniques, D. S. Tan et al. proposed WinCuts (Tan, Meyers and

Czerwinski 2004) to allow users to replicate arbitrary regions of running windows to

new independent windows. The goal of WinCuts is to allow better usage of limited

screen space to display more interested information simultaneously. Microsoft Visual

C++ .NET and Win32 Graphics Device Interface (GDI) API were utilized to build the

system, running on a Windows XP system. For remote representing, PNG image

compressing and peer-to-peer socket communication were used. This technique,

which provides more flexibility and applicable scenarios than VNC, still stand within

the scope of representing existing interfaces without improving them.

Several techniques have been proposed to adaptively manage windows (Miah and

Alty 2000, Hutchings and Stasko 2002, Kandogan and Schneiderman 1997). Most

modern graphic-based operating systems provide their windowing systems with many

features to users. Users can open multiple windows to concurrently work on several

tasks. These windows can even connect to a remote machine. The core responsibility

of a windowing system is to manage these windows efficiently. If windows are not

managed well, the desktop may be cluttered with windows, making it difficult for

14

users to easily locate or open target windows. Users may begin to manually perform

windows management operations (e.g., minimizing, moving, resizing) when it reach-

es a stage called ―window thrashing‖. These techniques focus on defining the ―win-

dow thrashing‖ stage and automatically performing window management for users.

Unfortunately, these techniques treat a window as an atomic operational unity that

cannot efficiently utilize smaller chunks of information contained within windows.

Yeh et al proposed Sikuli (Yeh, Chang and Miller 2009), a scripting environment that

allows users to write scripts that reference screenshots of particular controls to refer

to existing application elements. To use Sikuli, users first take a screenshot of a wid-

get or an area on screen. These screenshots could afterwards be used as keywords for

defining tasks. Python is fully supported as the scripting language and an editor was

developed to help the writing of scripts. To perform operations, users can call some

functions provided by Sikuli (e.g., Click, Find, Inside), as well as Python‘s built-in

libraries to simulate / trigger user inputs (i.e. mouse and keyboard events). The main

applicable area of Sikuli is for normal end users to create custom automatic opera-

tions. For example, to minimize all active windows, the two lines of scripts work

(Figure 2.4). Note that Sikuli allows users to specify a similarity for image searching

and pattern matching, so it can achieve some flexibility.

Figure 2-4 Minimizing all windows in Sikuli

15

Going further in the direction of image pattern matching, Dixon and Fogarty's Prefab

(Dixon and Fogarty 2010) examines pixels as they are drawn on the screen to infer

which parts correspond to which widgets. It then allows the interception and replace-

ment of these pixels to change the output of a particular interface. Combined with

input redirection, it can present alternate software functionality. Prefab depends on

the fact is borders of widgets usually have similar patterns. Taking these patterns into

a database, Prefab provides awareness of widget positions for programmers. With this

information and input redirection techniques, programmers could develop some gene-

ralized add-ons in OS-level. For instance, a target-aware pointing technique like

Grossman and Balakrishnan‘s Bubble Cursor (Grossman and Balakrishnan 2005)

(Figure 2.5) and Baudisch et al.‘s Phosphor (Baudisch, et al. 2006) which shows us-

ers‘ recent manipulations (Figure 2.6), were implemented in Prefab‘s architecture.

Figure 2-5 Bubble Cursor

16

Figure 2-6 Users‘ recent manipulation histories

Since surface-level modifications do not rely on APIs, they can be fairly widely ap-

plied to different applications, program frameworks, or even different operating sys-

tems, without much modification of source codes. On the other hand, using this ap-

proach, interpreting is usually difficult (e.g. Prefab tries to identify visual widgets,

which lay on top of complicated background), since it needs to be trained in particular

environments and is easy to be interfered by screen images. More importantly, users

are not able to access to data behind screen (e.g. the text in pages out of current view,

or widgets that are not in current tab pages). Meanwhile, output is limited to visual

elements not in program behavior level. Re-rendering and image analysis may be

slow in some cases.

2.2.2 Program Behavior-Level Modification

Unlike the previous approaches, Stuerzlinger et al.'s UI Facades (Stuerzlinger, et al.

2006) intercept individual widgets as they interact with the window server, allowing a

developer to replace them at the window server level with an alternate implementa-

tion, such as by changing a radio button to a pop-down menu. The Facades system

was built based on an X window system called Metisse (Chapuis and Roussel 2005).

Metisse, which was designed for both standard daily usage and for support for HCI

researches, separates rendering work and interaction processes clearly. Facades sys-

tem creates a transparent layer on top of window system for window replication and

17

input redirection. Facades retrieve widget information (e.g. size, position, text, im-

ages) through accessibility APIs of GUI toolkits. Using the retrieved boundary infor-

mation of widgets, Facades can determine the widgets of region of interest specified

by users, as well as some visual information of the widgets. An essential component

of Facades is FvwmCompositor, a standalone application that merges and composites

images to get output widgets or pixels. Metisse provides an off-screen buffer to im-

prove seamless duplication, as well as facilities, for input redirection. Widget re-

placement of the original application was enabled by APIs of GUI toolkit. Scenarios

of Facades include duplicated toolbox and widget replacement (Figure 2.7). Although

it uses the accessibility APIs to enable widgets duplication and merging, Facades

does not explore the possibility of changing program behaviors.

(a) Duplicated Toolbox

(b) Widget Replacement

Figure 2-7 Facades

18

Edwards et al.'s SubArctic toolkit (Edwards, Hudson, et al. 1997) extends Java's

AWT to provide explicit hooks that allow third-party developers to add new UI mod-

ifications. In AWT framework, platform-specific implementation of built-in graphic

objects provides similar appearance and behaviors on different platforms. AWT al-

lows the same application codes to run on different operating systems as long as they

support JAVA and have AWT installed. Applications use subclasses that derive from

basic AWT‘s graphics objects, of which the APIs provide drawing methods. Within

SubArctic‘s framework, these drawing methods are overridden in subclasses in order

to modify output appearance. These hooks provide specific support for extensibility,

allowing a third-party developer to add new functionality to existing applications

built with the SubArctic toolkit. Although it modifies applications in a program beha-

vior level and touches the codes behind application surfaces, SubArctic‘s approach

focuses on transforming how widgets are drawn; it does not provide explicit support

for changing behaviors of program, e.g., adding new functions.

Begole proposed Flexible Java Applets Made Multiuser (JAMM) (Begole 1998),

which enabled deeper manipulation of Java classes by swapping classes during Java‘s

serialization streaming for both collaboration-transparency and collaboration-aware

applications. It is based on object-oriented replication, where multi-user extensions

dynamically replace target user interface objects. Original application providers need

not be aware of this replacement. Partially or completely replacing behaviors of exist-

ing classes is enabled by this approach. However, this approach only supports seria-

lizable classes that do not have dynamic modification after serialization, and it is not

safe to replace classes that are already subclassed in original applications.

Besacier and Vernier (Besacier and Vernier 2009) used a similar approach to extend

windows management by inserting an immediate layer between applications and sys-

tem libraries. For example, CreateWindow function is called when a user interface

19

window is created, and DestroyWindow function is called when it is closed. In this

approach, applications‘ requests are redirected to a DiamondSpin method. This me-

thod then provides APIs for third party developers to hook their modifications or

functions. The architecture of this approach is shown in Figure 2.8. Besacier and

Vernier demonstrated this approach by adding rotation, peeling-back, stacking, zoom-

ing, and duplication capabilities to regular windows. This kind of approach – creating

standalone libraries that build a wrapper on top of existing GUI libraries – requires a

huge amount of effort to explicitly rewrite all functions to support needed custom

styles. As mentioned in this paper, some thirty win32 functions take about 5000 lines

of codes.

Figure 2-8 Extending the window management using DiamondSpin

Eagan et al.'s Scotty (Eagan, Beaudouin-Lafon and Mackay 2011) system uses injec-

tion to perform runtime toolkit overloading, in which an existing toolkit is altered

20

specifically to provide explicit support for third-party modifications. It provides a

meta toolkit for developers to modify third-party applications, as well as tools for

these developers to inspect existing applications. Eagan proposed runtime toolkit

overloading model as a general solution to develop add-ons for third party software.

This model contains six components:

 Window and Widget Hooks: Needed to interpret and modify widgets or win-

dows before they are rendered. This kind of operation, for example, includes

changing attributes and layout, adding and removing widgets, and minimiz-

ing a window. Hence, a hooking mechanism should be provided to access

applications.

 Event Funnels: Except for the appearance of windows, a metaclass is also

needed to intercept, process, and dispatch events (e.g. mouse, keyboard). De-

velopers could insert their callback functions in the metaclass, so that they

can manage all user events.

 Glass Sheets: Glass sheets are a transparent overlay on top of applications;

they allow developers to display contents without interfering with applica-

tions.

 Dynamic Code Support: The environment should be able to dynamically load

developers‘ modifications into applications and execute them; i.e., modifica-

tions are in the form of dynamic add-ons or scripts.

 Object Proxies: Object proxies allow developers to override, overload, or add

new methods to particular object instances. This provides the ability to

change a program‘s behaviors.

 Code Inspection: For deep medications that require thorough understanding

of original programs, some toolkits (e.g. a hierarchy browser of widget tree)

are helpful code inspection.

21

The prototype software Scotty was implemented in Python using Python/Objective-C

bridge, targeting applications that run on Cocoa GUI framework of Mac OS X. De-

spite the large modification ability enabled by Scotty and the formal identification of

the problem, reconfiguration or building of new interfaces within Scotty‘s architec-

ture (e.g., change colors, texts, and hide items) is completely coding-based. Modern

GUI editors have significantly simplified the process of design and developing GUI;

this approach is functional but very tedious since GUI editors are not available in

Scotty.

2.3 Summary

Much existing software does not support add-on architecture or only supports very

limited add-ons, due to additional significant overhead of software design and main-

tenance. Even for the software that supports fully functional add-ons, the develop-

ment of add-ons is usually not mature, since third party developers cannot use GUI

editors to help implement UI modifications.

Some previous research has focused on providing general add-on architectures for

third party software. Within all the research, Scotty‘s approach, which allows third

party developers to build add-ons, provides the most flexibility and power. However,

Scotty‘s approach does not support a WYSIWYG editor (Shneiderman 1993) for de-

veloping GUI widgets, meaning that developers have to write text codes to define and

set the properties of the GUI widgets that they want to create. Previous studies have

proved that interactive building techniques display ten times the effectiveness pro-

vided by coding (Myers and Buxton, Creating highly-interactive and graphical user

interfaces by demonstration 1986, Hutchins, Hollan and Norman 1985, Myers and

Rosson, Survey on user interface programming 1992).

22

This thesis proposes WADE, which can not only allow developing add-ons for third

party software, but also provide a WYSIWYG environment for GUI editing. Table

2.2 presents a comparison between some of previous approaches and WADE.

 Façade Prefab SubArctic Scotty WADE

Surface-level
changes

Access to widgets

Changing widgets
via I/O

redirection
via I/O

redirection

Changing host
program Partially

Modifications are
safe and robust

WYSIWYG

IDE Support

Target User
Novice &
Expert

Novice &
Expert

Expert Expert Novice &
Expert

Table 2.2 Comparison between previous approaches and WADE

23

Chapter 3 Proposed Approach

3.1 Introduction

We present WADE, a WSYWYG add-on development environment, and its utility

add-ons that significantly ease the task of modifying GUI-based functions in existing

software, while still enabling add-on developers to make significant changes to the

software behavior. WADE enables novice users to trivially reconfigure and integrate

existing add-ons to the host application, even when such functionality is not natively

supported. Furthermore, add-on development is greatly simplified through the use of

a GUI editor and the IDE.

The WADE prototype presented in this paper works on existing Windows Forms ap-

plications. A WADE dynamically-linked library (DLL), which is called Injected Add-

on Manager, is first injected into the host program, regardless of whether or not it

supports add-ons. This DLL retrieves the GUI hierarchy of the host program and

communicates it to the IDE Add-on Manager. The latter manager translates this in-

formation into declarative language that enables easy modifications through a GUI

editor. For straightforward property changes (e.g., changing the position or, appear-

ance of UI elements), a third-party developer can make these modifications directly in

a WYSIWYG editor. For more complex modifications (e.g., adding new functions),

the editor provides scaffolding to directly associate event handlers to existing wid-

gets. These changes are then written out to a new DLL, which can be injected back to

the host program during subsequent invocations.

24

Figure 3-1 Steps of adding a Batch Image Conversion add-on to Paint.NET.

Figure 3.1 illustrates how WADE is used to add a Batch Image Conversion add-on to

the Paint.NET image editing application. The Batch Image Conversion utility con-

verts a batch of image files to a pre-specified format, optionally allowing the user to

resize and rename the images during conversion. Steps (1), (2), (4), (8), and (9) are on

Paint.NET, while the remaining are on the WADE IDE. (1) The WADE DLL is in-

jected onto Paint.NET. (2) Paint.NET with the WADE menu item. (3) The IDE add-

on manager is invoked on the WADE IDE through the ―Start Listening‖ command.

(4) The IDE add-on manager communicates with the injected DLL to clone

Paint.NET when the ―Clone me‖ command is invoked on the application window. (5)

Once Paint.NET is cloned onto the WADE IDE, GUI widgets can be modified direct-

ly using the GUI editor, which also generates event handler templates (6). (7) The

Batch Image Conversion add-on code is compiled to generate the DLL (8), which is

linked with Paint.NET at runtime (9).

Note that this functionality is beyond the reach of surface-level methods such as Pre-

fab (Dixon and Fogarty 2010), as it requires access to the underlying program struc-

ture and requires learning at least part of the program's organization with Scotty

25

(Eagan, Beaudouin-Lafon and Mackay 2011). More generally, when the source code /

API is unavailable, manipulating a GUI framework for reconfiguring or integrating

add-ons is challenging. By gaining access to the host's GUI hierarchy and converting

it to an editable form, WADE enables (i) a user with little programming knowledge to

easily reconfigure GUI components, even if such capability is not originally sup-

ported by the host application; (ii) add-on developers to modify program behavior in

a WYSIWYG fashion; and (iii) HCI researchers to evaluate novel interaction tech-

niques on existing popular applications in real-world settings. In addition, WADE

also provides a number of utility add-ons, including a stand-alone property editor for

reconfiguring the host program without the use of the IDE, and a generic user-

interaction logger.

3.2 System Architecture

Figure 3.2 presents an overview of the WADE architecture. WADE consists of an

Integrated Development Environment and a number of utility add-ons. In this section,

we focus on the WADE IDE. The WADE IDE has two components: the Injected

Add-on Manager and IDE Add-on Manager. The injected add-on manager is injected

into an application's add-on address space using DLL injection techniques (Berdajs

and Bosnic 2010, Richter 1994, Pietrek 1994, Kuster n.d., Pulley n.d., Working with

the AppInit_DLLs registry value n.d., Newcomer n.d., CrankHank n.d.). The func-

tions of the injected add-on manager are two-fold: (i) to retrieve properties of UI

widgets from target applications and send them to the IDE using socket-based com-

munication and a file cache on the disk, and (ii) to load any compiled add-on onto the

application's address space and invoke the add-on's initialization method.

26

Figure 3-2 Architecture overview of WADE

The IDE add-on manager also has two main functions, namely, (i) to receive UI

properties sent by the injected add-on manager and create a project with the applica-

tion's cloned interface, and (ii) to generate an add-on DLL from an add-on library

project. This add-on can then be loaded onto an existing application at runtime.

Integration of an add-on to a third-party application is accomplished in the following

manner:

 WADE first uses DLL injection to load the (injected) add-on manager into

the host application at runtime. Because the add-on manager runs in the host

application's address space, it has both read and write access to the UI com-

ponent hierarchy.

 WADE then retrieves the UI component hierarchy and serializes it to IDE

add-on manager.

 WADE creates a clone of the host application in the IDE, enabling third-party

developers to modify the cloned application interface using the IDE's GUI

editor.

27

 Once all changes are completed, WADE analyzes the changes made to the

cloned project and writes these changes into a DLL file that can then be

loaded back into the application by add-on loader.

The WADE IDE itself was developed as a plugin to the SharpDevelop IDE and im-

plemented for Windows Forms applications on the .NET Framework, running on the

Windows operating system. In this section, we introduce some fundamental concepts

necessary to modify applications in the .NET framework. In a later section, we com-

pare these approaches to those available in other environments.

3.3 Runtime Intervention through DLL injection

WADE facilitates the creation of add-ons, such as those that change their appearance

and behavior at runtime, to third party applications. This ability requires access to the

application's interface objects. There are two primary ways to gain such access: (i)

directly manipulating the binary executable of the host application, or (ii) creating

additional helper libraries to intervene in the host application's behavior within its

runtime processes. The former method is both difficult and risky, and thus carries

with it a high possibility of causing crashes. WADE instead adopts the second ap-

proach.

To intervene in the runtime processes, there are again two possible approaches: em-

ploying OS level system calls, or injecting code into the processes space. Since the

OS typically provides only a limited number of system calls (e.g., kill), it cannot ful-

fill the diverse requirements for add-on development. Thus, we choose code injection

to achieve our goals. Various code injection approaches are possible for different op-

erating systems. Some of these include monitoring the communication between the

app and window manager (e.g. Facades (Stuerzlinger, et al. 2006)), modifying the

toolkit to support new functionality (potentially requiring all apps to be re-linked, e.g.

28

Mercator (Edwards, Mynatt and Stockton, Providing access to graphical user

interfaces —— not graphical screens 1994)), replacing shared libraries (e.g. WINE

(Besacier and Vernier 2009)), using scripting/design hacks (e.g., Input Managers

(Eagan, Beaudouin-Lafon and Mackay 2011)), Scripting additions, using magic Regi-

stry keys (e.g. WADE)), or using kernel hacks (e.g. CreateRemoteThread). In

WADE, both registry key and kernel hacks techniques are implemented.

The Registry Key and CreateRemoteThread methods enable WADE to run some ex-

ternal codes (named BootStrap.dll in WADE) as a thread in the host application‘s

address space. However, the BootStrap.dll is written in C++. C++ is used for the pur-

pose to explicitly specify a function to be called automatically when the library is

loaded. In C++, we can easily use DllMain to achieve it (Heege 2007, Wallach 2000),

but in C#, the programming language used by target applications, there is no such

mechanism. Hence, we need a C++ based DLL for using global hooking and a C#

based DLL (named Injectee.dll) to do the remaining work.

The .NET framework has two main components: the Common Language Runtime

(CLR) and the .NET framework class library. The CLR is the foundation of the .NET

framework. The runtime can be regarded as an agent that manages code at execution

time, providing core services such as memory management, thread management, and

remoting, while also enforcing strict type safety and other forms of code accuracy

that promote security and robustness. In fact, the concept of code management is a

fundamental principle of the runtime. Code that targets the runtime is known as ma-

naged code, while code that does not target the runtime is known as unmanaged code.

Figure 3.3 shows the relationship of the common language runtime and the class li-

brary to applications and to the overall system. The .NET framework can be hosted

by unmanaged components that load the common language runtime into their

processes and initiate the execution of managed code, thereby creating a software en-

29

vironment that can exploit both managed and unmanaged features (Network n.d.).

Figure 3.4 shows how to load a CLR and call managed codes in the CLR using C++

(How To Inject a Managed .NET Assembly (DLL) Into Another Process n.d.).

Figure 3-3 Common Language Runtime in .NET framework

Figure 3-4 Creating CLR using C++

30

3.4 Modifying GUI properties

To modify elements in the GUI thread, an application typically uses call back func-

tions to allow worker threads to update results with UI threads. However, direct up-

date of the UI thread by worker threads is typically not allowed as different threads

may not be aware of each other. Trying to update the same UI component concurrent-

ly can cause unpredictable behavior. Therefore, a centralized managing mechanism,

such as an event queue, is typically employed to avoid this problem. In WADE, our

codes run in a separate thread created by the injected DLL. Therefore, it also needs to

use call back functions in order to modify elements in the GUI thread. In Windows,

this is achievable using asynchronous callback, a windows-specific event queue im-

plementation. The .NET framework provides the Invoke method to access the UI

thread under such scenarios:

Invoke(): This method allows dispatching of a method on the current UI thread and

provides the basic tools for runtime application modification.

In Object Oriented programming, widgets are described as classes; the properties of

the UI are stored as instance variables inside these classes, which can often be mod-

ified by calling the corresponding getter and setter methods. To modify GUI proper-

ties, a developer just needs to obtain read and write permission of these class in-

stances, which is automatically granted to the injected DLL within the host applica-

tion at runtime.

Once the basic principles of runtime GUI modification are understood, how individu-

al operations (such as modification, addition, and deletion of widgets) are imple-

mented in WADE can be addressed. There are three primary operations involved in

modifying an existing application's interface: adding a new widget, deleting an exist-

ing widget, and modifying the properties of an existing widget.

31

3.4.1 Retrieving GUI Information

GUI frameworks typically organize widgets into a forest of trees. Each tree in the for-

est represents the widgets that belong to a particular window. In order to gain access

to all of the widgets in an application's interface, it is sufficient to get access to the

root of each of these trees and to perform a tree walk to enumerate the structure and

properties of each of the widgets in the hierarchy.

The root of each tree is thus typically a Window widget. WADE uses the Sys-

tem.Windows.Forms.Control class in .NET, whose Controls property exposes a col-

lection of all of these child controls. Through this component, we can access the

structure and properties of an entire application's existing interface.

3.4.2 Modification and Addition

Modifications of widget properties and the addition of new GUI widgets are both

straightforward. Modification is simply achieved by using the getters and setters of

the widget instance object to modify its properties. Widgets can be added by creating

a new widget instance at runtime and attaching it to its parent widget.

3.4.3 Deletion

Deleting widgets is more complicated. While it is straightforward to use the Dispose

method provided by .NET to remove widgets objects at runtime, this method may

have unforeseen consequences due to unknown runtime dependencies to these wid-

gets. As such, deleting widgets can be risky, potentially resulting in an application

crash. Therefore, instead of deleting widgets, deletion is simulated by making them

invisible.

32

3.4.4 Modifying program behaviors

Except for re-configuration (modifying appearance of UI widgets), adding new func-

tions into existing applications often requires associating programming logic code

with GUI elements. This is often achieved using event handlers in modern GUI

frameworks. Event handlers need to be specified by developers, who describe the ac-

tions/behaviors that will happen after attaching the event. To change the functions of

existing applications, the developer can detach original event handlers, and attach his

own.

3.5 Supports for the GUI Editor

Through the injected DLL at runtime, third-party developers can modify the appear-

ance and behavior of the host application without accessing its source code. However,

GUI modification and add-on development via pure scripting can be tedious and inef-

ficient. For example, the simple task of adding a new Menu Item into an existing

Menu requires the developer to first identify the name and position of the menu item.

In the absence of visual aids, this can be a lengthy trial and error process even for ex-

perts.

The same modification task can be significantly simplified using a GUI editor, which

is often provided by many modern IDEs such as Microsoft Visual Studio, Eclipse,

NetBeans, etc. GUI editors provide a WYSIWYG style of GUI modification, and

support automatic creation of an event handler skeleton code to the GUI widgets,

making association of program logic with GUI components much easier to handle.

WADE, built on top of the SharpDevelop IDE, provides third-party add-on develop-

ers with such an environment.

Nevertheless, GUI editors in existing IDEs are designed to facilitate the creation of

new interfaces from scratch, rather than to modify existing interfaces. Furthermore,

33

the code associated with the GUI components of the original program is not available.

To solve this problem, the GUI hierarchy needs to be imported into an available GUI

editor for the third-party developer to modify, and, more importantly, to then apply

the modifications back to the host application authentically.

SharpDevelop, an open source IDE mainly for developing .NET and Mono (an open

source implementation of .NET) applications, was selected for the WADE prototype,

because of its well-designed architecture and abundance of open source add-ons,

which make implementation convenient. We implemented WADE based on Sharp-

Develop by writing an IDE add-on manager, which itself is an add-on of SharpDeve-

lop. To facilitate add-on development in SharpDevelop, the IDE add-on manager

should be responsible for inter-process communication, creating project in IDE, and

code conversion.

3.5.1 Inter-Process Communication

First, the Injected Add-on Manager walks through the widget forest, retrieves the

properties of each widget in the hierarchy, and sends this information back to the IDE

Add-on Manager. Since the Injected Add-on Manager and IDE Add-on Manager are

running in separate processes, inter-process communication techniques are needed to

transfer GUI information from Injected Add-on Manager to IDE Add-on Manager.

There are several common solutions for this (Interprocess Communications

(Windows) n.d.).

 Cache File. File is a block (it may or may not be physically continuous) of

binary information stored on hard disk. A file can contain texts, images,

sound, or other custom types of data. Intuitively, WADE can save GUI in-

formation in a cache file (or files) on hard disk to fulfill requirements. Most

operating systems natively provide both user commands and programming

34

interfaces for creation, reading, writing, deletion, setting file attributes and

other file operations. To access a file, enough permission is required. For ex-

ample, in our case, Injected Add-on Manager needs write permission in

create and write files in a directory, and IDE Add-on Manager only needs

read permission to the files. In most situations, applications are able to find

some directories provided by systems (e.g., current user‘s home folder) where

they have full access or can create a new folder, in which they have full

access under given directory. This is the first advantage of cache file solution:

it is easy to implement in a wide variety of platforms and operating systems.

As another advantage, although limited to many factors (e.g., type of file sys-

tem, hard disk‘s free space, users‘ personal free space), the available space

for applications typically exceeds hundreds of megabytes, which is more than

enough for WADE that only need tens of megabytes. On the other hand, the

most significant drawback of the cache file solution is that IDE Add-on Man-

ager does not know when cache files are ready to be read. One complementa-

ry means is to write the current state (e.g., ready for reading, ready for writ-

ing, locked) just inside the cache file as a header. Then WADE can work as

shown in Table 3.1. This solution requires an additional monitor for IDE

Add-on Manager to periodically detect the state of the cache file. Meanwhile,

creating numerous small files to transfer information is not efficient due to

the limitations from current mechanical performance of hard disks.

Cache File State

Action for

Injected Add-on Manager

Action for

IDE Add-on Manager

Ready for Reading Wait until reading done Read GUI information

Ready for Writing Write GUI information if any Wait until writing done

Locked Wait until unlocked

Table 3.1Cache file solution

35

 Shared Memory. Since mechanical performance is the performance bottle-

neck of a cache file solution, a memory based approach could possibly over-

come it. Shared memory is a block of memory that can be accessed by mul-

tiple programs. It is supported by many operating systems (e.g. Unix, Win-

dows), languages (e.g. C/C++, PHP), and libraries (e.g. Qt, Boost). Due to

faster access of RAM, shared memory solution could be more efficient for

data communication than cache files. However, compared with a cache file

solution, shared memory directly manipulates data in memory level, which is

unnatural for a high level object oriented programming language, as well as

more error-prone.

 Clipboard. As a special example of shared memory, clipboard is an OS-

scope central shared memory that can be accessed by applications. It is easier

to use because programmers do not need to explicitly apply for a block of

shared memory. Side effects include losing some flexibility and being ex-

posed to all other applications.

 Pipeline. Pipeline is a method widely used in many modern systems for data

communication, notably for command line applications in Unix-like systems.

Pipeline involves chaining a set of processes by redirecting their standard

streams, so that the (standard) output of a process becomes the (standard) in-

put of its next one. For GUI applications, some system calls enable pro-

grammatically using of pipelines. This convenient approach of inter process

data communication, however, does not fit WADE‘s requirement, because

using Pipeline to transfer GUI information may interfere with the normal in-

put / output of applications.

 Signal. Unlike Pipeline, which focuses on data communication, Signal

creates notifications between processes. A process can send to and receive

36

signals from operation system or other processes. If a signal handler is de-

fined, the receiver process of a signal executes the handler; otherwise, a de-

fault handler is executed. Signal is a very mature way to solve the problem of

requiring a background monitor which exists in Cache File solution, since the

OS will notify IDE Add-on Manager when necessary. However, this method

is not able to carry data and is limited to the pre-defined signals provided by

OS.

 Socket. Socket is another popular way in which inter-process data flow. It is

typically used based on the Internet Protocol for communication between dif-

ferent computers. A transport protocol (e.g., TCP (Stevens and Wright 1994),

UDP (Postel 1980)) controls data transmission. Socket is also applicable for

communication between local processes, or those with a specified local IP

address. A significant advantage of the Socket solution is that for a large

amount of small objects, socket communication is more efficient than cache

files on hard disk. Additionally, it is easy to separate Injected Add-on Man-

ager and IDE Add-on Manager in different computers, if necessary.

 Remote Procedure Call (RPC). In all of the previous solutions, except for

the Signal one, the periodical monitor is required to detect updates from In-

jected Add-on Manager. RPC is another way to achieve our goal without us-

ing a monitor. RPC allows a program to execute a procedure / subroutine in

another running application (address space) (Birrell and Nelson 1984). It can

also be achieved via a network. The implementation of RPC, however, is not

as standardized as the Socket approach. It might not be easy to implement

WADE in different frameworks and OSs if RPC is adopted. The Injected

Add-on Manager and IDE Add-on Manager may have to use the same pro-

gramming framework, which decreases the flexibility.

37

WADE adopts a combination of Cache File and Socket as a solution, based on the

fact that cache files are large enough and easy to use; meanwhile, sockets are efficient

at transferring small objects and performing cross-framework and cross-network.

When requested by users, IDE Add-on Manager creates a TCP listener for local TCP

streams and starts a new thread to periodically check for new messages. Injected

Add-on Manager correspondingly connects to the TCP server and builds a network

stream. As discussed in the section Retrieving GUI Information, the Injected Add-on

Manager then traverses the widget forest of the target application and retrieves neces-

sary GUI information. For most widgets, Injected Add-on Manager retrieves widget

name, size, location, text, etc. and directly sends them using sockets. For widgets that

have background images, the images are saved to cache files. Some container widgets

(e.g., Menu, ToolStripMenu) have relatively complicated structure, so they are also

saved to cache files in XML format.

3.5.2 Creation of Project in IDE

After receiving complete GUI information from Injected Add-on Manager, the IDE

Add-on Manager then builds a project with the same UI properties extracted from the

original program. With the extracted UI information, the IDE add-on manager clones

the existing interface into a new project in the IDE. This step is generally feasible in

many platforms and programming frameworks, since many modern IDEs (e.g.,

SharpDevelop, Visual Studio, and Eclipse) provide API for their add-ons to pro-

grammatically create projects and add new (UI) components. Meanwhile, creating UI

widgets in a project in IDEs usually involves modifying some parts of source codes.

The mapping from creation of UI widgets to the corresponding changes in source

codes is open to public; thus, to programmatically create or modify UI widgets of

projects, we can also directly modify source codes of projects.

38

WADE uses the former approach – calling APIs provided by SharpDevelop to create

and set properties of UI widgets. SharpDevelop adopts a singleton design pattern

(Jahnke and Zundorf 1997). It provides a static WorkbenchSingleton class, which

contains some static members, e.g., Workbench, MainWindow, and StatusBar. As

shown in Figure 3.5, WorkbenchSingleton.Workbench contains a member Active-

ViewContent. If the current project is a Windows Forms project, and the IDE is in a

GUI design view (as in Figure 3.6), the ActiveViewContent should be an instance of

FormsDesignerViewContent, which contains an instance of IDesignerHost. IDesig-

nerHost is an interface provided by .NET framework to allow developers to manage

designer transactions and components when building custom design-time behavior.

This is the essential part of the GUI editor of SharpDevelop. The IDE add-on manag-

er of WADE also uses the IDesignerHost to create and manage UI widgets. This in-

terface provides a CreateComponent(Type widget_type, String widget_name) method

to create a component of the specified type and name, and adds it to the design docu-

ment. This method returns the created widget of type IComponent, the fundamental

base interface of all Windows Forms widgets.

To modify the properties of newly created widgets, the IComponent instance is cast to

the type of target widget. Then new properties are directly set in the instance, or the

.NET reflection technique can be used to perform a generic setting. Using UI hie-

rarchy information sent from Injected Add-on Manager, the IDE Add-on Manager

creates a project that has replicated UI widgets. This step is called ―cloning‖ in this

thesis.

39

Figure 3-5 SharpDevelop class hierarchy

Figure 3-6 SharpDevelop design view

40

3.5.3 Code Conversion

After cloning, an add-on developer can directly modify the GUI elements via the GUI

editor. Once modified, it is necessary to apply these arbitrary modifications back to

the host application. However, the edited project cannot be directly compiled to ob-

tain the expected library due to some issues. These issues and corresponding solutions

for a Windows Forms library are discussed below.

Several modifications should be applied at the project level. Since SharpDevelop

does not support the use of GUI editor for a Windows Forms library project, in order

to enable the GUI editor, the type of the cloned project must be a standalone Win-

dows This means that the outcome of compilation is an executable Windows Forms

application, not the expected Windows Forms library. Thus, the first modification is

changing the output type of the project to library. Next, a Program.cs file in Windows

Forms project, as shown in Table 3.2, is used for launching the main window. This

file is neither useful nor legal for a library project, so it is excluded from the project.

The functions of References, AssemblyInfo.cs, and MainForm.resx are the same in

standalone Windows Forms applications as in libraries; thus they can remain un-

changed.

Component Name Function

References
I.e. libraries that provide services to projects, including
system built-in references and user references

AssemblyInfo.cs
Defines some information about output assembly, e.g.
company name, copyright, version no., etc.

Program.cs Contains Main function, which will open MainForm

MainForm.cs
Is a partial definition of MainForm. Usually developers'
manual coding is in this file

MainForm.Designer.cs
Another part of main form's definition. Usually codes
generated by GUI editor are in this file.

MainForm.resx Contains resources of the project, e.g. images

Table 3.2 Windows Forms project files

41

When developers finish modifications in an original project and click Generate Li-

brary Project menu item, WADE copies the current project, and creates a duplicated

one. WADE does not destroy the original project, thus, developers can revise the

original one using GUI editor. WADE performs these conversions in the newly

created duplicated project.

More conversion should be done in source code level – the MainForm.cs and Main-

Form.Designer.cs. Before discussion of the actual conversion, a good understanding

of the source code structure of Windows Forms is critical. In Windows Forms, the

definition of MainForm class is divided into two parts: MainForm.cs and Main-

Form.Designer.cs. Developers usually write codes in the MainForm.cs, which typi-

cally contains definitions of event handlers for UI widgets and non-visual elements

(e.g., data variables and definitions of custom classes). The latter file is auto generat-

ed by GUI editor, which is used for describing UI widgets. GUI editor translates

MainForm.Desinger.cs and then draws UI widgets in design space. It also anti-

translates developers‘ modification of UI widgets back to the file, which typically

contains four parts:

 A container variable used to keep track of non-visual components.

 A Dispose method that overrides the one derived from Form class.

 Declarations of all UI widgets added by GUI editor.

 An InitializeComponent method to manage all UI widgets. This method con-

tains initializations and property settings of UI widgets.

In the converted library project, only the declarations of UI widgets and the Initiali-

zeComponent method are needed. In the InitializeComponent method, like C++, Java,

and some other object-oriented programming language, C# uses the keyword new to

allocate memory and call class constructor to create an instance of an object. In this

42

step, existing widgets of original applications and newly added widgets of developers

need to be treated differently. To identify this point, after the cloning step, WADE

saves a backup copy of original cloned MainForm.cs and MainForm.Designer.cs. For

both original source codes and edited source codes, WADE builds a dictionary of all

the widget names. The comparison between the widgets from the host application and

those from the modified program enables detection of any deletion or addition of

widgets. Corresponding conversions are:

 Added Widgets. For widgets newly added by developers, no conversion is

needed, since they are declared, allocated, and modified consistently in Win-

dows Forms project or library project.

 Deleted Widgets. For the widgets to appear in a dictionary of original source

codes but not in edited codes, developers must delete them in GUI editor or

manually. As discussed in the section Deletion, WADE supports deletion op-

eration by making widgets invisible to decrease programming risks. The cor-

responding codes needed include adding and calling a HideAll method at the

beginning of Run method (the equivalent Main function in WADE approach),

which makes all widgets in the original program invisible at the first. Then

for all widgets remaining in edited codes, statements are added to make them

visible. This gives the expected result: hiding all deleted widgets.

 Edited Widgets. The widgets that appear in both original and edited codes are

the ones that developers want to use to change the properties of the original

program. For these widgets, we need to associate edited codes to pointing to

existing widgets. The Injected Add-on Manager sends a ComponentDictio-

nary to library add-on when invoking its Run method. The allocation step in

the InitializeComponent method should be replaced with an associating ac-

43

tion, so that edited widgets really refer to the instances in running applica-

tions (Figure 3.7).

Figure 3-7 Code conversion example one

The above approach, however, does not identify modifications made to existing wid-

gets: it only identifies structural modifications to the widget hierarchy. Therefore,

when an add-on is loaded, it updates all properties of the originally-cloned interface,

including those that were modified by the add-on developer and those that not.

Another main conversion is that in Windows Forms codes, all properties of Main-

Form are called using this keyword, because all codes are inside the definition of

MainForm. However, in library project, MainForm is a standalone widget just like

other widgets declared inside the class definition. Thus, the declaration of MainForm

should be added. Meanwhile, all changes of MainForm‘s property should be redi-

rected (Figure 3.8).

Figure 3-8 Code conversion example two

One more code level conversion involves redirecting the project resource. In Win-

dows Forms, resources are defined within MainForm.resx, and an instance of Com-

44

ponentResourceManager class is created (Figure 3.9). Because a uniform main class

name must be used for loading DLL add-on, the class name should also be changed.

Figure 3-9 Code conversion example three

Conversion for MainForm.cs is relatively simple and involves:

 Changing class name to predefined MainClass

 Adding declaration of variable ComponentDictionary

 Adding main function Run, which initializes ComponentDictionary using the

object passed from Injected Add-on Manager, class HideAll method, and In-

itializeComponent method

 Adding definition of method HideAll

Upon merging all the aforementioned conversions to code files in the generated

project, an add-on that can be loaded into the application must be built. When build-

ing the add-on, conversions are compiled into a new DLL and injected back into the

host application. Injected Add-on Manager calls its Run method to execute the proce-

dure.

45

Chapter 4 Utility Add-ons

Using the WADE IDE, we aim to simplify development of add-ons for third party

software. In this section, we introduce four add-ons we developed using WADE for

various purposes, either to enable powerful new functionality or to solve UI related

problems for existing applications.

4.1 Property Editor

Although the WADE IDE simplifies add-on development, it requires basic program-

ming skills to operate, and does not solve the problem of allowing end users without

programming knowledge to reconfigure their UI. To address this issue, we developed

a property editor add-on. The property editor is a generic add-on module that can be

installed on any Windows Form-based application (Figure 4.1). Once installed and

launched, it displays an editing window and allows users to change basic UI proper-

ties such as text label, color, font, size, location, etc. It can also hide widgets. Once a

change is made, it applies immediately to the host application. This add-on is imple-

mented simply by associating the property editing widget (provided by Windows

Forms) with a widget selected by the user in the host application.

Figure 4-1 PropertyEditor add-on

46

4.2 Interaction Logger

As previously seen in the usage scenarios, WADE can be used by user interface re-

searchers to perform evaluations involving existing applications. One essential task

for any user study is to log user interactions with the application. We therefore devel-

oped an interaction logger add-on that can capture all the mouse and keyboard events

with the host application, and can be played back at a later time (Figure 4.2). Using

this add-on, researchers can easily record, compare, and analyze user interactions and

calculate performance-related measures such as timing and accuracy. This add-on is

achieved by using a global mouse and keyboard hook, which can detect and log all

mouse and keyboard input events on the host application.

Figure 4-2 EventRecorder add-on

4.3 Multi-stroke Marking Menu

Marking menus are efficient, gesture-based menus (Zhao, Agrawala and Kinckley,

Zone and polygon menus: using relative position to increase the breadth of multi-

stroke marking menus 2006, Zhao and Balakrishnan, Simple vs. compound mark

hierarchical marking menus 2004). However, they are not supported by most applica-

tions. We implemented a generic multi-stroke marking menu add-on for Windows

Form applications. Once installed, users can construct customized marking menus by

selecting UI commands from the host application, which can significantly improve

their performance for invoking these commands. The marking menu add-on is im-

47

plemented by integrating an open source version of the code with the WADE archi-

tecture (Figure 4.3). The resulting add-on can be installed by Windows Form-based

applications.

Figure 4-3 MarkingMenu add-on

4.4 Heat Map Generator

One situation that often troubles users is that relevant functionalities for certain tasks

are located in different applications or services on the computer. For example, al-

though Paint.NET supports many image editing effects, it does not support drawing

heat maps (Wilkinson and Friendly 2009) based on input data. However, such fea-

tures can be supported by other services or applications (Wikipedia n.d.), but it could

be tedious to complete a series of tasks going back-and-forth between the two appli-

cations. Using WADE IDE, we merged an existing open source heat map generating

library (Media Interaction Lab n.d.) to create a simple add-on that will allow users

generate heat maps (Figure 4.4).

48

Figure 4-4 HeatMapGenerator add-on

4.5 Summary

Note that, without WADE, creating any of the above add-ons is both challenging and

tedious, and even if the add-ons can be synthesized, they are typically application

specific. It is much easier to develop generic add-ons using WADE that can be ap-

plied to most Windows Form based applications. The first three add-ons described

above are generic add-ons that can be directly applied to most Windows Form-based

applications. The external call add-on requires the information of the target object,

and therefore not directly applicable to other applications. However, it can be easily

modified to suit other application's requirement. All the above add-ons were devel-

oped by a single programmer within a month.

49

Chapter 5 User Study

We now present the results of a user-study to demonstrate the efficacy of WADE. As

previously illustrated, WADE can benefit three types of users: (i) the end-user with

no programming skills who wants to reconfigure existing software without access to

its source code, (ii) third-party developers who need to reconfigure or introduce add-

ons to third party software, and (iii) user interface researchers who would like to syn-

thesize GUI variants in order to perform a comparison study.

Among these three scenarios, we are unaware of any current tools that can support the

first scenario, making it difficult to perform a comparison study. The second and third

usage scenarios, however, can be achieved using runtime toolkit overloading ap-

proaches like Scotty (Eagan, Beaudouin-Lafon and Mackay 2011). While it is gener-

ally expected that WADE's GUI editor and IDE will significantly simplify software

modifications, a formal comparison will enable us to appreciate and quantify poten-

tial performance gains with WADE, as well as understand the characteristic differ-

ences between the two approaches. Therefore, we conducted an experiment to com-

pare WADE with a Scotty-like approach for third party add-on development.

5.1 Tools

In order to build a Scotty environment for tasks, we requested the author of Scotty for

its source codes and executable files. However, the author replied that current Scotty

is complicated to install since it has messy dependencies. Meanwhile, Scotty is de-

veloped for the Cocoa framework in Mac OS, while WADE runs on the .NET

framework in Windows. Cross-platform testing may introduce potential influences to

50

the experiments. As such, we created a Scotty-like development environment (or

Scotty simulator) to support the user-study tasks using the following tools:

 Runtime add-on manager: a tool that enables a compiled add-on to be in-

stalled onto an existing program at runtime.

 Managed Spy: a utility program provided by Microsoft to allow developers

to spy on an application's GUI at runtime. Figure 5.1 is a screen-shot of the

program. It allows the user to discover the name, types, and properties of GUI

components of the host application at runtime.

 SharpDevelop: an open source IDE for .NET programming.

Figure 5-1 Screenshot of Managed Spy

For WADE, we provided the runtime add-on manager, and the WADE IDE with the

GUI editor. Notice the difference between the two approaches mainly lies in the form

of supporting tools: Scotty simulator uses tools such as ManagedSpy to retrieve the

51

widgets and their properties, while WADE uses the IDE to clone and GUI editor to

directly edit the widgets.

5.2 Participants

Eight volunteers (indexed P1-P8; 7 males, 1 female) ranging from 21 to 32 years old

(µ = 25.5, б= 3.34) participated in this study. All participants were experienced com-

puter users and programmers. However, only 2 users had more than 3 years of GUI

programming experience.

5.3 Apparatus

The experiment was conducted using a DELL Optiplex 990 Desktop computer run-

ning MS Windows XP with 4 GB RAM and Intel Core i7-2600-3.40 GHz CPU. A

Dell E2211H monitor and a USB optical mouse and a standard keyboard were used

as the input/output devices. Our software was implemented in C# using Microsoft

Visual Studio.

5.4 Experimental protocol

Each participant was given a tutorial demonstration and three practice tasks similar to

the experimental tasks in order to familiarize him/herself using the Scotty simulator

and WADE before the actual experiment started. For each approach, we provided a

manual with the necessary information for the users to complete the tasks. The ma-

nual for the Scotty-like approach included step-by-step instructions for (i) accessing

the GUI window and child widgets,(ii) changing widget properties using the informa-

tion retrieved by ManagedSpy, (iii) hiding items, (iv) adding new widgets, and (v)

using the add-on manager to insert DLLs back to the host application. The WADE

manual included instructions on how to (i) trigger commands to inject the add-on

manager DLL, (ii) clone the host application, (iii) write GUI modifications to a DLL

and (iv) load this DLL back to the host program.

52

Note that the instruction we provided made code-based modifications (as with the

Scotty simulator) much easier, since in real world scenarios, the method to achieve

GUI modifications is not obvious and needs to be figured out in a trial and error fa-

shion. However, to facilitate novice GUI programmers to complete the tasks, we pro-

vided all the requisite information in the user manual.

A description of the tasks to be completed using (a) our Scotty simulator and (b)

WADE in the actual experiment were as follows:

 Personalized reconfiguration: In the first task, users were required to re-

name two menu items, hide three menu items, change the font size and style

of the main menu bar, and change the representational picture for a widget.

 Adding functionality via add-ons: For the second task, users were required

to add a new widget on the icon bar and associate the `Undo all' functionality

with the widget: once the ‗Undo all‘ widget is clicked, it will undo all user

modifications for a particular session.

A within-participants design was used. Participants were randomly assigned to two

groups of four participants each. Half the participants performed the two tasks with

the Scotty simulator first, while the other half performed the tasks with WADE first.

Each participant performed the entire experiment in one sitting, with optional breaks

between tasks, in approximately 1-2 hours. In summary, the design was as follows

(excluding practices):8 subjects * 2 programming approaches (Scotty-like vs.

WADE) * 2 tasks (GUI reconfiguration, add-on development) = 32 tasks in total.

Dependent variables were time spent on the tasks, whether the task is successful or

not, and participants' subjective preferences in their post-experiment questionnaire.

Time spent on the task is measured as the time duration between task instruction and

task completion/forfeiture. A task is considered as completed if task instructions are

53

executed successfully. The questions listed in the post-experiment questionnaire re-

quired users to provide Likert scale-based (a scale of 1-5 was used) ratings concern-

ing various aspects of the tasks (e.g., Approach A was more intuitive/easier to do than

Approach B) and open ended questions concerning user preferences, usability and

users‘ opinion on the relative strengths and weaknesses of both approaches.

5.5 Quantitative Measures

We compared the results in terms of (a) accuracy and (b) time spent on each task.

Accuracy: Seven participants finished all tasks, while one participant only finished

the first task using both approaches. Therefore, there is no difference between the two

approaches in terms of accuracy. However, the number of attempts was logged. On

an average, participants spent 1.14 attempts to complete a task using WADE while

they took 1.72 attempts with the Scotty-like approach. This indicated that it's easier to

make mistakes using the Scotty-like approach than WADE.

Time to task completion: We conducted a 2x2 repeated measures ANOVA (Girden

1991) on the task-completion times with the type of approach (Approach A/B) and

task type (reconfiguration/add-on integration) as the relevant factors. We found a sig-

nificant main effect of approach (F1,7 = 31.41, p<.01). Pairwise t-tests showed that the

time to task completion using WADE (264.4 s) is significantly (about 2.4 times) fast-

er than that of the Scotty-like approach (639 s), indicating the significant advantage

of using the WADE IDE. However, no significant effects of task type or interactions

between the task difficulty and approach type were observed.

Preferences: After the experiments, participants were asked to rate various aspects of

the two approaches on a 5-point Likert scale. In all, they answered four questions

concerning the usefulness, user productivity, learnability and overall satisfaction of

the two approaches. WADE received a minimum average score of 4.75 on all counts.

54

On the other hand, the Scotty-like approach received a highest score of 3.25 for use-

fulness, and a lowest score of 2.25 on user productivity.

While the obtained results demonstrate WADE's significant advantages over Scotty-

like approaches for both types of tasks, the fact that the task type has no influence on

the time to task completion is surprising. One would expect that WADE will perform

better with the reconfiguration task than the add-on development task, since the for-

mer is more likely to benefit from a WYSIWYG editor- perhaps the effect of the task

type would have been more pronounced had more participants been included in the

user study.

5.6 Qualitative Analysis

In order to determine the reasons why participants preferred and performed better in

the WADE approach, procedures to observe how participants completed the tasks

were carefully followed. As summarized in Figure 5.2, all participants followed a

similar work flow:

 First, participants opened a provided project template, which was identical for

both approaches.

 Next, the WADE approach required an additional step of cloning the host

program into IDE. In this step, participants only needed to click ―Start listen-

ing‖ in IDE and click ―Clone Me‖ in the host program. The actual cloning

took less than five seconds. Therefore, the only additional step in the WADE

approach resulted in less than half a minute of overhead. In participants‘

feedback, no one mentioned this step was a difficulty.

 After reading descriptions of the next subtask, participants had to locate the

target widget. In the task descriptions, participants were shown screenshots of

target widgets and the names of these widgets. In the WADE approach, par-

55

ticipants could easily find the target widget and click the widget in IDE to

confirm it name. However, this step was much more time consuming in the

Scotty-like approach, since participants had to go through the widget tree in

Managed Spy to confirm the name. This difficulty of using Scotty-like was

pointed out by three participants. ―I had problems identifying objects and

their children.‖ (P5) ―I have to manually count the menu/toolstrip items to

access them in code.‖ (P6) ―B (Scotty-like) takes time to look for the item to

modify, and you'd better understand the component structure first; A (WADE)

is easier to find what you need and what to modify by looking in the list or

clicking.‖ (P8)

 To finish the task requirements, participants had to modify the widget proper-

ties or add a new function into the host program. This step was the essential

difference between WADE and Scotty-like. In WADE, participants could

simply click target widgets, and browse the property editor in IDE to modify

a property. However, in Scotty-like, all participants, including those with

more than six months‘ experience of WinForms programming, had to refer to

a programming manual to recall the implementation of modifying properties

for each subtask. Note that the programming manual provided implementa-

tions of all properties involved in the experiment. Participants just needed to

find the correct one, and replace sample widget name with the real target

widget name which they found within Managed Spy. However, the process of

replacing the widget name introduced considerable overhead, since partici-

pants often typed a wrong widget name. As mentioned in section 5.5, partici-

pants took 1.72 attempts in Scotty-like and 1.14 attempts in WADE. The ma-

jor reason for this was that in Scotty-like, if participants entered a wrong

widget name, Sharp Develop did not have the context of the whole cloned

56

project for code analysis, so it was not able to warn participants at compiling.

The typos could only be found during run time. One participant highlighted

this point, ―Can't check for routime / syntax errors.‖(P3)

 Except for the overhead caused by typos, modifying widget properties itself

was significantly simplified by the graphic UI editor of WADE. All partici-

pants strongly expressed this opinion in their own words, such as ―Approach

B (WADE) is direct manipulation, easy, faster, and intuitive‖ (P1); ―Coding

based approach (Scotty-like) is very tedious‖ (P1,2,3,7); ―B (WADE) is very

easy to use. As a novice, I would create plugin with my choice of features &

fonts in almost no time‖ (P5). One participant gave a very positive overall

comment, ―Very easy & fast! Very cool! No/very little coding involved‖ (P7).

A little surprisingly, even for the second task, which required participants to

write a new function ―Undo All‖, participants also completed it more than

two times faster in the WADE approach than in Scotty-like. The reason may

be that the function was not complicated to implement, so the time saved by

IDE‘s event handler template was an important factor.

57

Figure 5-2 Work flow of WADE and Scotty-like approaches

According to our observations, the main advantages that WADE provides over Scot-

ty-like are:

 Ability to directly locate target widgets

 Graphic UI editor which significantly decreases the time spent in modifying

UI properties

 Event handler templates that saves the time of writing new functions

 Fully functional code analysis that can reduce typo risks

58

On the other hand, P1 mentioned an advantage of the Scotty-like approach: when per-

forming the same modification to a batch of widgets, the coding bases approach can

use iteration to simplify the task. For example, if users want to realize a translation

for all menu items, they can use iteration to go through all menu items and call a

Google Translation API to return the translated label. This is one scenario whereby

people may prefer coding. Additionally, another participant felt that the graphic UI

editor in WADE presents all properties of a widget at the same time, which is a little

overwhelming. ―Too many options for change / to edit at the sidebar (PropertyEdi-

tor). It feels overwhelming at first.‖ (P3)

There were also some suggestions from the participants for further enhancing the user

experience of third party add-on development. P1 thought that merging two ap-

proaches would be a better solution since he could then use the WYSIWYG editor

and iterations of coding at the same. This idea is actually used in standalone software

development: developers enjoy combining the advantages of both WYSIWYG editors

and coding. Two participants wished that IDE could provide more advanced support

for handling events, in addition to the WYSIWYG editor. ―Hopefully there's a way to

eliminate / simplify coding in the handling of events.‖ (P3) ―It's even better if I don't

have to code the event handle method.‖ (P7) One participant appreciated WADE very

much and believed it was worthwhile to make WADE available for all add-ons. ―Ap-

proach A (WADE) should be implemented as default option for all available plugins,

so that they can be merged & compiled for better & wider use.‖ (P5)

5.7 Summary

The results of the user study clearly demonstrate the advantage of WADE over Scot-

ty-like approach for both reconfiguration and add-on development tasks. While the

conclusion of the study is not surprising, as it is expected that the direct WYSIWYG

59

GUI editing will be easier than hard core code hacking, we are surprised to see the

large difference (2.4 times performance difference) of the two approaches for expe-

rienced programmers with relatively simple modifications even if the participant has

already gathered all the necessary knowledge to complete the task. In real world sce-

narios, the type of knowledge we provided to the participant is often not given, thus

significant more time is needed to search and verify the possible feasible approaches,

making a simple GUI modification a relative challenging task that very few people

would like to attempt. Therefore, it shows that although a Scotty-like approach can

accomplish both the reconfiguration and add-on development tasks for third party

applications, the entry barrier for using Scotty-like approach is sufficiently high that

only a few hardcore hackers would dare to attempt. On the other hand, WADE made

it much easier to perform simple modifications and enhancements, significantly lower

the entry barrier to perform third-party add-on development.

However, if the particular add-on involves a lot of background processing and only

few modifications to GUI elements, then both approaches would require significant

amount of time to work on the backend programming logic. The amount of time

saved with easier GUI manipulation will become less significant.

In summary, to perform simple GUI reconfiguration tasks or add-on development,

WADE can save an average of 60% or more time as compared with Scotty-like ap-

proach, making it a preferred and recommended approach for such tasks.

60

Chapter 6 Discussion

6.1 Extension to other frameworks and platforms

Given the advantages of WADE, one may be interested in extending it to other

frameworks and platforms. We now discuss such feasibilities. The key components of

WADE involves: 1) runtime code observation and intervention, and 2) GUI clone and

modification analysis. We discuss how to realize these concepts on Windows before

considering other platforms:

The details of how to achieve runtime code observation and intervention on Mac OS‘

Cocoa framework has been discussed in detail by [5]. We will discuss how to achieve

this on windows for other frameworks. The key approach for runtime code observa-

tion and intervention on Windows is DLL injection, which can be achieved in a num-

ber of ways. Some of the methods (such as hijacking an existing thread to execute the

injected code at debugging time) are either inconvenient or infeasible for the purpose

of modifying third party applications, thus we only discuss the two practical methods

below.

1) Registry key-based injection by listing the DLL under a specific registry key to be

loaded to the application process. In Windows NT, 2000, and XP, this can be

achieved by list the DLL under the register key (Working with the AppInit_DLLs

registry value n.d.):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Windows\AppInit_DLLs

61

In Windows Vista and Windows 7, this feature is disabled by default, but can be

achieved through code signing.

2) System hook-based injection by using methods such as SetWindowsHookEx,

which can be used by all versions of Windows.

These two methods operate at different levels of the application and offer different

tradeoffs: the registry key-based approach injects the DLL at the process level, while

the System hook-based approach penetrates to the thread level. To understand the

tradeoffs between the two methods, we first need to explain the difference between

processes and threads.

Processes are independent execution units that contain their own state information,

use their own address spaces, and only interact with each other via interprocess com-

munication mechanisms (generally managed by the operating system). Processes are

an architectural construct. Most applications today typically only have one process. In

contrast, a thread is a coding construct that doesn't affect the architecture of an appli-

cation. A single process might contain multiple threads; all threads within a process

share the same state and same memory space and can communicate with each other

directly, because they share the same variables. However, as we have previously ex-

plained, modification of the UI thread can be risky and needs to be managed with

care. Therefore, some frameworks do not allow modification of elements in the UI

thread by other threads. Due to this reason, DLL injected to the process level may not

be able to modify the UI elements depending on the framework used.

On the other hand, in order to inject DLL to a thread, one first needs to know if its

hosting process is currently running or not. Without this information, it is impossible

to inject the DLL successfully. In order to obtain this information, the developer

needs to create an additional background monitoring process, which can be tedious

62

and consumes additional system resources. The registry key based approach relies on

the native windows' support to automatically injecting the DLL to the process, so no

additional efforts are needed

In summary, the trade-offs between the two approaches are: registry key based ap-

proach is simpler to implement, but can be restrictive in terms of accessing the UI

elements while the system hook based approach can directly access the UI thread, but

require additional efforts to manage. Using these two methods, theoretically speaking,

any frameworks on Windows can adopt the same approach as WADE to modify a

third party application's appearance or behavior at runtime. To implement the runtime

code observation and intervention support for other frameworks, one first needs to

find out whether or not that framework supports cross thread modification of UI ele-

ments and decide on which DLL injection method to implement.

Once that is possible, the second part of our approach involves creating an enhanced

IDE with GUI editor that can talk to the injected DLL and clone the GUI hierarchy of

the host application. This is a framework dependent process. Specific implementation

needs to be done to make it work for different frameworks. For example, if a devel-

oper wants to realize the WADE functionality for the QT framework, it needs to find

an IDE that supports GUI editing for the QT framework, write an add-on to so that it

can import the GUI hierarchy from the third library application, analyze its changes,

and compile into a QT specific DLL to be loaded back to the host application. This

step will become easier if the particular framework has working IDEs supports add-

on development and already has GUI editor support. However, if there are no such

IDEs available, it will be a tremendous effort to develop an IDE with such capabili-

ties from scratch.

63

For Unix and Mac systems:

 On Unix-like operating systems with the dynamic linker based on ld.so (on BSD)

and ld-linux.so (on Linux), arbitrary libraries can be linked to a new process by

giving the library's pathname in the LD PRELOAD environment variable, which

can be set globally or individually for a single process.

 For Cocoa applications running on Mac OS X, Input Managers enable applica-

tions to change the way that Cocoa handles user input. Through this mechanism,

another process can gain access to the underlying Objective-C runtime of the host

applications, such as (Eagan, Beaudouin-Lafon and Mackay 2011)

Once DLLs are successfully injected, the same approach described above can be used

to create the add-on architecture and IDE with GUI editor support, although the im-

plementation details will differ depending on the platform.

64

Chapter 7 Conclusion

7.1 Contribution

To summarize, the goals of this thesis were to:

 Provide a holistic solution (through a scaffolded approach to program mod-

ification using DLL-injection + WYSIWYG-style IDE-based editing) that

significantly lowers the knowledge and effort required to modify third-party

applications and therefore, considerably enhances usability of such tools as

confirmed by the user-study. The primary and unique contribution of WADE

is not its components or the techniques employed, but the fact that WADE

represents a holistic solution for runtime program modification that requires

(i) designing a suitable architecture (IDE), (ii) developing individual compo-

nents (DLL injection, Injected and IDE add-on managers, etc.), and (iii) inte-

grating them.

 Develop a variety of utility add-ons that can benefit users and developers, in-

cluding the Property Editor add-on that allows appearance modifications to

third-party UIs without the need to write a single line of code so that novice

users can also use runtime modification according to personal preferences.

 Demonstrate the effectiveness of the WADE IDE for modifying existing ap-

plications through a user-study.

 Represent the first solution for runtime modification on the Windows operat-

ing system.

65

7.2 Limitations

While the WADE GUI editor has shown a lot of promise in simplifying the reconfi-

guration and add-on development process, it nevertheless has a number of limitations.

7.2.1 Custom Widget Clone and Modification

First, the current WADE implementation only supports the cloning and modification

of standard widgets. If the third party software contains a custom widget, the cloning

may not always work. This is because custom widgets often have derived custom

properties and behaviors that are not recognized by the GUI editor; they therefore

cannot be properly displayed in the GUI editor, making direct editing difficult. How-

ever, not all custom widgets are unrecognizable. If the basic properties of the custom

widget are derived from a standard widget, the GUI editor can still display it and al-

low modification of those properties.

For example, if a custom widget MyGroupBox is derived from the standard widget

GroupBox, it inherits its parent‘s Size, Location, Label Text, and other properties, all

of which can be recognized by the GUI editor. However, MyGroupBox may choose

to have a custom paint method that gives it a different look. This feature is not recog-

nizable by the GUI editor and cannot be changed in a WYSIWYG fashion in our cur-

rent implementation.

Certain properties of custom widgets can be recognized by the GUI editor, but user

modification of these properties using the GUI editor cannot be easily applied back to

the host application. For example, the Paint.NET's ToolStrip widget is a custom wid-

get derived from the standard ToolStrip widget. It contains code to reset its location

property to the left most position in the window. If a developer changs its location in

the GUI editor, that change cannot be reflected in the host application.

66

7.2.2 Dynamic Widgets

Dynamic widgets are advanced features introduced in modern frameworks. Instead of

fixing their content and style at compile time, dynamic widgets determine them at

runtime based on an external data source. Dynamic widgets can save time and effort

if developers want to create several widgets in a similar style but with different con-

tent. However, since the content of widget is determined at runtime, modification of

the content in the GUI editor is applied back to the original application.

7.3 Future Work

The WADE IDE presented in this thesis is useful for realizing a variety of GUI-based

modifications in existing software, including GUI reconfiguration and synthesis of a

number of utility add-ons. Also, the presented user study confirms that while these

modifications can be achieved using alternative approaches, WADE significantly

lowers the requisite knowledge and effort barrier. Future work involves extending the

current implementation to other OS platforms and widening WADE support to handle

custom and dynamic widgets.

67

Bibliography

Baudisch, P., et al. "Phosphor: Explaining Transitions in the User Interface using

Afterglow Effects." UIST. 2006. 169-178.

Begole, J.M.A. "Flexible collaboration transparency: supporting worker

independence in replicated application-sharing systems." PhD thesis, Virginia

Polytechnic Institute and State University, 1998.

Berdajs, J., and Z. Bosnic. "Extending applications using an advanced approach to

DLL injection and API hooking." Software: Practice and Experience 40, no. 7

(2010): 567–584.

Besacier, G., and F. Vernier. "Toward user interface virtualization: legacy

applications and innovative interaction systems." EICS. 2009. 157–166.

Birrell, A.D., and B.J. Nelson. "Implementing Remote Procedure Calls." ACM

Transactions on Computer Systems 2, no. 1 (1984): 39-59.

Bray, T., J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. "Extensible

markup language (XML)." World Wide Web Journal 2, no. 4 (1997): 27-66.

Chapuis, O., and N. Roussel. "Metisse is not 3D desktop!" UIST. 2005. 13–22.

CrankHank. DLL Injection and function interception tutorial.

http://www.codeproject.com/Articles/5178/DLL-Injection-and-function-interception-

tutorial (accessed 11 10, 2012).

68

Dietrich, D.C. Writing effect plug-ins for Paint.NET 2.1 in C#.

http://www.codeproject.com/Articles/9200/Writing-effect-plug-ins-for-Paint-NET-2-

1-in-C (accessed 12 3, 2012).

Dixon, M., and J. Fogarty. "Prefab: implementing advanced behaviors using pixel-

based reverse engineering of interface structure." CHI. 2010. 1525–1534.

Eagan, J.R., M. Beaudouin-Lafon, and W.E. Mackay. "Cracking the cocoa nut: user

interface programming at runtime." UIST. 2011. 225–234.

Edwards, W.K., E.D. Mynatt, and K. Stockton. "Providing access to graphical user

interfaces —— not graphical screens." Assets. 1994. 47-54.

Edwards, W.K., S.E. Hudson, J. Marinacci, R. Rodenstein, T. Rodriguez, and I.

Smith. "Systematic output modification in a 2d user interface toolkit." UIST. 1997.

151–158.

Georgescu, M., and D. Milodin. "Techniques of Improving Open Source Software

Tools." Open Source Science Journal 2, no. 3 (2010): 34-48.

Girden, E.R. ANOVA: Repeated measures. Sage Publications, Incorporated, 1991.

Grossman, T., and R. Balakrishnan. "The Bubble Cursor: Enhancing Target

Acquisition by Dynamic Resizing of the Cursor's Activation Area." CHI. 2005. 281-

290.

Heege, M. "Assembly Startup and Runtime Initialization." In Expert C++/CLI, 279-

302. Springer, 2007.

Holm, C., M. Kruger, and B. Spuida. Dissecting a C# Application Inside

SharpDevelop. Apress L.P., 2004.

69

How To Inject a Managed .NET Assembly (DLL) Into Another Process.

http://www.codingthewheel.com/archives/how-to-inject-a-managed-assembly-dll

(accessed 11 10, 2012).

Hutchings, D.G., and J. Stasko. New operations for display space management and

window management. Georgia Institute of Technology Technical Report GIT-GVU-

02-18, 2002.

Hutchins, E.L., J.D. Hollan, and D.A. Norman. "Direct manipulation interfaces."

Human-computer interaction 1, no. 4 (1985): 311-338.

Interprocess Communications (Windows). http://msdn.microsoft.com/en-

us/library/windows/desktop/aa365574%28v=vs.85%29.aspx (accessed 11 10, 2012).

Jahnke, J., and A. Zundorf. Rewriting poor design patterns by good design patterns.

ESEC/FSE‘97 Workshop on Object-Oriented Reengineering, 1997.

Kandogan, E., and B. Schneiderman. "Elastic windows: Evaluation of multi-window

operations." CHI. 1997. 250-257.

Kuster, R. Three Ways to Inject Your Code into Another Process.

http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-

Another-Proces (accessed 11 10, 2012).

Lie, H.W., and B. Bos. Cascading style sheets. Addison-Wesley, 1997.

Mackay, W.E. "Triggers and barriers to customizing software." CHI. 1991. 153–160.

Media Interaction Lab, University of Applied Sciences Upper Austria. New Open

Source Eye Tracking Software by Media Interaction Lab .

http://www.eyetechds.com/new-eye-tracking-software-by-at-media-lab (accessed 12

3, 2012).

70

Miah, T., and J.L. Alty. "Vanishing Windows — a technique for adaptive."

Interacting with Computers 12 (2000): 337–355.

Myers, B.A., and M.B. Rosson. "Survey on user interface programming." SIGCHI

conference on Human factors in computing systems. 1992. 195-202.

Myers, B.A., and W. Buxton. "Creating highly-interactive and graphical user

interfaces by demonstration." ACM SIGGRAPH Computer Graphics 20, no. 4 (1986):

249-258.

Network, Microsoft Developer. .NET Framework Conceptual Overview .

http://msdn.microsoft.com/en-US/library/zw4w595w%28v=vs.80%29.aspx (accessed

11 10, 2012).

Newcomer, J.M. Hooks and DLLs.

http://www.codeproject.com/Articles/1037/Hooks-and-DLLs (accessed 11 10, 2012).

Pietrek, M. "Learn system-level Win32 coding techniques by writing an APIs py

program." Microsoft System Journal 9 (1994): 1-22.

Postel, J. User datagram protocol. Information Sciences Institute, 1980.

Pulley, R. Extending task manager with DLL injection.

http://www.codeproject.com/Articles/10437/Extending-Task-Manager-with-DLL-

Injection (accessed 11 10, 2012).

Richardson, T., Q. Stafford-Fraser, K.R. Wood, and A. Hopper. "Virtual network

computing." IEEE Internet Computing, Jan/Feb 1998: 33–38.

Richter, J. "Load your 32-bit DLL into another process‘s address space using

INJLIB." Microsoft Systems Journal 9, no. 5 (1994): 1-10.

71

Robinson, M. "Design for unanticipated use." ECSCW. 1993. 187–202.

Russell, R., D. Quinlan, and C. Yeoh. Filesystem Hierarchy Standard. Filesystem

Hierarchy Standard Group, 2004.

Shneiderman, B. "direct manipulation: a step beyond programming languages." In

Sparks of Innovation in Human-Computer Interaction. Ablex Publ., 1993.

Silver, A.H. WordPress 2. 7 Complete. Packt Publishing Ltd., 2009.

Stevens, W.R., and G.R. Wright. TCP/IP Illustrated: the protocols. Addison-Wesley

Professional, 1994.

Stuerzlinger, W., O. Chapuis, D. Phillips, and N. Roussel. "User Interface Facades:

Towards Fully Adaptable User Interfaces." UIST. 2006. 309–318.

Tan, D.S., B. Meyers, and M. Czerwinski. "Wincuts: manipulating arbitrary window

regions for more effective use of screen space." CHI. 2004. 1525–1528.

Wallach, R.S. "Gemini Lite: a non-intrusive debugger for Windows NT." 4th

USENIX Windows Systems Symposium. 2000.

Wikipedia. Heat map. http://en.wikipedia.org/wiki/Heat_map (accessed 12 3, 2012).

Wilkinson, L., and M. Friendly. "The history of the cluster heat map." The American

Statistician 63, no. 2 (2009): 179-184.

Working with the AppInit_DLLs registry value.

http://support.microsoft.com/kb/197571 (accessed 11 10, 2012).

Wu, L. "Implementation of Self-Defined JSP Plug-in Based on Notepad++."

Computer Programming Skills & Maintenance 6 (2010).

72

Yeh, T., T.-H. Chang, and R.C. Miller. "Sikuli: using gui screenshots for search and

automation." UIST. 2009. 183–192.

Zhao, S., and R. Balakrishnan. "Simple vs. compound mark hierarchical marking

menus." UIST. 2004. 33-42.

Zhao, S., M. Agrawala, and K. Kinckley. "Zone and polygon menus: using relative

position to increase the breadth of multi-stroke marking menus." CHI. 2006. 1077-

1086.

