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Summary

Nowadays, the cooperative control of multiple Unmanned Aerial Vehicles (UAVs)

has emerged as an attractive research area, due to the rising demands from both

military and civilian applications. Although a cooperative team of UAVs provides a

more flexible and robust structure and reduces the overall costs, it poses significant

theoretical and practical challenges. One of the main concerns is how to integrate

coordination and supervision logical rules into the low level continuous control of team

members, and how to deal with this essential hybrid nature of the system. To address

this problem, traditional approaches treat the discrete and continuous dynamics of the

system in a decoupled way and organize a two-layer control structure in which the low

layer is responsible for generating continuous control signals based on the continuous

dynamics of the system while the higher layer is responsible for managing the system

to respect the desired logical rules. This control structure although simplifies the

design, but the ignorance of the coupling effect between the discrete and continuous

dynamics of the system is questionable whereas for the UAV systems it is crucial that

a very reliable control system be provided. This calls for a comprehensive analysis

of the system which can capture the interplay between the discrete supervisory logic

and the continuous dynamics of the system within a unified framework. A proper

solution for such a purpose is hybrid modelling and control framework.
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This thesis aims to develop a hybrid supervisory control framework for the for-

mation of unmanned helicopters. Building such a control structure can be divided

into two main steps. The first step is to provide a hybrid model and controller for a

single UAV to capture the interplay between the manoeuver switching logic and the

corresponding continuous dynamics under each control mode. Then, in the second

step, a hybrid framework can be provided for the formation of team of UAVs based

on their individual hybrid model.

Hence, starting with a single UAV helicopter, its hardware structure and dynamic

model are explained and a control system is provided for the helicopter which makes

the UAV able to follow the given references. Then, exploring the application of hybrid

modelling and control theory, a hierarchical hybrid structure for a single UAV heli-

copter is proposed which has three layers: the regulation layer, the coordination layer,

and the supervision layer. For each layer, a separate hybrid controller is developed.

Then, a composition operator is adopted to capture the interactions between these

layers. The resulting closed-loop system can flexibly command the UAV to perform

different tasks, autonomously. The designed controller is embedded in the avionic

system of the NUS UAV helicopter, and actual flight test results are presented to

demonstrate the effectiveness of the proposed control structure.

In the next step, a hybrid supervisory control framework is provided for the forma-

tion of unmanned helicopters. Formation is a typical cooperative task and generally

consists of three main parts: reaching the formation, keeping the formation, and col-

lision avoidance. Using the proposed approach, all of these subtasks are addressed

x



within a unified framework. First, a new method of abstraction based on polar par-

titioning of the space is introduced. Then, utilizing the properties of multi-affine

functions, the original continuous system with infinite states is bisimilarly converted

to a finite state machine. Using the well developed theory of discrete event systems

(DES) a discrete supervisor is designed for all of the subtasks of the formation in a

modular way. The bismulation relation between the abstracted model and the origi-

nal model is proven which guarantees that the discrete supervisor can be applied to

the original plant while the closed loop system exhibit behaviours similar to the case

that the discrete supervisor was applied to the abstracted model of the plant. In this

case, an interface layer is required to link the discrete supervisor to the continuous

plant. This interface layer, on the one hand is responsible to convert continuous sig-

nals of the plant to some discrete symbols understandable by the discrete supervisor,

and on the other hand, it should convert the discrete commands of the supervisor to

continuous signals applicable to the continuous plant. The results then are extended

to the 3-dimensional case using spherical abstraction instead of polar partitioning of

the space. Furthermore, implementation issues for the proposed algorithm are inves-

tigated and a smooth control mechanism is provided. Finally, several flight tests are

conducted to verify the proposed algorithm.

xi
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Chapter 1

Introduction

Over recent years, the control of Unmanned Aerial Vehicles (UAVs) has emerged as

a hot research area and have gained much attention in the academic and military

communities [3], [4]. This is due to the fact that UAVs are not subjected to the

limitations of ground robots like movement constraints and vision range limitations

and hence, they have been found as proper solutions for different missions such as

terrain and utilities inspection [5], search and coverage [6], search and rescue [7],

disaster monitoring [8], aerial mapping [9], traffic monitoring [10], reconnaissance

mission [11], and surveillance [12]. Among the UAVs, unmanned helicopters are

of particular interest due to their unique features and capabilities such as vertical

tacking off and landing, fixed-point hovering, flying at low level altitude, and great

maneuverability.

Along with the developments of aerial robots, one of the main challenges is to

improve the capabilities of UAVs to be able to autonomously involve in cooperative

scenarios. Indeed, a team of robots, taking a cooperative structure, is more robust

against the failures in team members or in communication links [13], [14]. Subjected

to a proper cooperative tasking [15], [16], the use of several simpler robots instead of

a complex one, results in a more powerful, flexible structure and improves the team
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efficiency.

Formation control is a typical cooperative task in which several agents move with

a relatively fixed distance [13], [17], [18]. Formation of Unmanned Aerial Vehicles

(UAVs) can leverage the capabilities of the team to have more effective performance in

missions such as cooperative SLAM, coverage and reconnaissance, security patrol, and

etc. They can also mutually support each other in a hostile or hazardous environment

[19], [20], [21].

1.1 Motivation and Background

In the literature there exist many works on the control of unmanned aerial vehicles.

Nevertheless, most of these works focus on the low level performance of UAVs rather

than satisfying high level specifications and incorporating the decision making unit

into their control loops. Hence, development of autonomous aerial robots attracted

worldwide academic and military communities. For example, in a recent road map

published by the Department of Defense of United Sates of America (DOD), improv-

ing the autonomy level of UAVs is considered as one of the main challenges that need

to be addressed for the next two decades [1]. To have a higher autonomy level and to

reduce human interactions, this report then calls for research works on challenges such

as robust decision making for individual UAVs and autonomous cooperative control

for team of UAVs (Fig. 1.1). Along with these practical and theoretical demands, this

thesis aims to develop a formal hierarchical hybrid control framework for unmanned

helicopters to make them able to perform different missions autonomously. A typical

2



mission is composed of several tasks, for which separate controllers are required to

be designed. Then, a decision making unit needs to be embedded to coordinate the

controllers based on assigned tasks. Hence, the control structure of a UAV has a

hybrid nature which includes both continuous and discrete dynamics that interac-

tively coexist in the system [22]. To simplify the design, the discrete and continuous

dynamics of the UAVs are usually treated in a decoupled way [23], [24]. However,

ignoring the coupling effect between discrete and continuous dynamics of the system

degrades the reliability of the overall system and may cause unexpected failures. As

a dramatic example, in [25], it has been explained that focusing on embedded com-

puter programs and negligence of the mutual relation between the discrete part and

continuous dynamics of the system ended with the crash of Ariane 5 on June 4, 1996.

Figure 1.1: Autonomy roadmap [1].

Turning to the cooperative control of team of UAVs, the problem becomes even

more complicated. The coordination of multiple UAVs involves a lot of issues such

as handling interactions between UAVs, locally controlling each UAV while satisfying

3



the global goals, applying high level supervisory logical rules. For instance, formation

of UAVs as a cooperative task, consists of several subtasks. Starting from an initial

state, the UAVs should achieve the desired formation within a finite time (reach-

ing the formation). Then, they should be able to maintain the achieved formation,

while the whole structure needs to track a certain trajectory (keeping the formation).

Meanwhile, in all of the previous steps, the collision between the agents should be

prevented (collision avoidance). To address this problem, similar to the single UAV

case, a usual practice is to separately design controllers for each of these subtasks, and

then, a decision making unit is needed to coordinate these subcontrollers to achieve

the team goal. Although with this method the design procedure has been simplified,

success in cooperative control of multiple UAVs require an in-depth understanding of

the interplay between the UAVs’ continuous dynamics and their supervisory logic.

Hence, we are motivated to propose a congenial control mechanism for unmanned

helicopters based on the hybrid modelling and control theory [26], [27], [28], [29].

Hybrid systems refer to a class of complex systems that involve interacting event-

triggered discrete logic and time-triggered continuous dynamics. Such kind of system

are usually resulted from the integration of logic-decision components with the con-

tinuous dynamics and constraints of the system. Within hybrid framework, there are

effective tools for mathematical representation and analysis of variety of applications

ranging from manufacturing and chemical process to robotics and aerospace control

[30], [31], [32], [33]. Next we will briefly review some of the existing results on the

hybrid modelling and control of the UAVs.
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1.2 Existing Works

1.2.1 Hybrid Modelling and Control of a Single UAV

Several research groups are involved in the modeling and control of UAVs [34], [5],

[35]. However, the efforts to use hybrid modelling and control theory approaches in

UAV studies are relatively sparse and just recent [36]. Therefore, although a UAV

can be naturally seen as a hybrid system, hybrid modelling and control of UAVs is

still in its infancy and poses many technical and theoretical challenges. So far, most

of the existing works either focus on the continuous evolution of the system [37], [38],

concern with the discrete nature of the decision making system [23], [24], [2], or model

both the discrete dynamics and continuous dynamics but in a decoupled way [39].

For instance, in [2], a UAV platform has been developed for a search mission in which

for the top level of the controller they have implemented a DES supervisor to control

the flight modes (Fig. 1.2). In this control structure, once the UAV has arrived at

the goal point, the UAV starts image processing services to attempt identification of

vehicles in the area. If a vehicle matching the initial signature is found, the UAV

starts a new FlyTo mission which uses a proportional navigation controller. Here,

the supervisor is purely discrete and it is designed to be independent of the UAV

dynamics.

To explore the applications of hybrid theory in the sophisticated structures of

UAVs, in [40], a hybrid controller is developed for the control of the altitude and

turning rate of a fixed wing UAV. The controller is composed of two separate and
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Figure 1.2: A supervisor to control a UAV for a search mission [2].
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decoupled parts for the altitude and lateral control of the UAV, and the developed

system is used for performing an aerial surveillance mission. For quadrotors, in [41],

a hybrid model for the backflit maneuvering is provided for which a forward reacha-

bility analysis guarantees the switching sequence for the correct execution of the task.

Similarly in [42], a robust reachability analysis is given for taking off and landing of

a ducted-fan aerial vehicle. When the vehicle is landing, upon contacting with the

ground, the control dynamics will be changed. So, the hybrid controller pushes the

switching sequence to safely land on the ground. In [43], a hybrid model for the fuel

consumption of a UAV is presented for which a safety specification is determined to

be achieved by the designed controller, and the result is verified using the reachability

analysis. Here, the safety property is naturally defined as reaching the objective area

while having enough amount of fuel. The fuel consumption depends on the UAV mis-

sion and could vary with the speed changes of the UAV. As a safety property in the

hybrid automaton of the fuel model, the ”NOFUEL” mode should always be avoided.

In [44], the path planning of a UAV helicopter is translated to a robust hybrid anal-

ysis problem and the results are verified through simulations. Using Mixed-Integer

Linear Programming (MILP), it is able to convert a hybrid controller design problem

into a smooth optimal control problem [45], [46]. In [45], an optimal hybrid control

problem of UAVs with logical constraints has been transferred to some inequality and

equality constraints involving only continuous variables. As another example, in [46],

a hybrid controller for the velocity control of a helicopter is provided where Mixed

Integer Linear Programming is used for the optimal reference generation.

Most of these works focus on a specific task, while still there is a need to develop

7



a hybrid model and controller for an autonomous UAV to be able to involve in dif-

ferent missions. Of course such a control system would be too complicated. Hence,

to reduce the complexity of the system and to facilitate the design procedure, this

thesis develops a hierarchical control structure in a systematic way to distribute the

control tasks among the layers (Fig. 1.3). The use of hierarchical control and its

application to coordination problems have been studied for a long time [47], [48], [49];

however, considering the concept of hierarchical control within hybrid framework and

its application to autonomous systems still is a challenging problem. Moving towards

this ambitious goal, this thesis proposes a formal hierarchical hybrid modelling and

control approach for UAV systems. The proposed control system has three layers:

the regulation layer which is responsible for the low level control; the coordination

layer which is responsible for generating a path to be followed by the regulation layer,

and the supervision layer which is the decision making unit and is responsible for

managing the switching scenario to perform a mission, autonomously. Each layer has

been modelled with an hybrid Input/Output automaton [50]. Then, a composition

operator is introduced to synchronize the layers and capture the interplay between

them.

1.2.2 Hybrid Control for the Formation of the UAVs

As it was mentioned, a formation mission has three main components: reaching the

formation, keeping the formation, and collision avoidance. To address each of these

tasks, many studies have been conducted in the literature. For reaching the forma-
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Figure 1.3: Hierarchical hybrid architecture of a UAV helicopter.

tion, there are several existing methods such as optimal control techniques, navigation

function, and potential field [51], [52], [53]. Keeping the formation can be seen as a

standard control problem in which the system’s actual position has slightly deviated

from the desired position for which many control approaches have been developed

such as feedback control, rigid graph, and virtual structure [54], [55], [56], [57]. Fi-

nally, in [58], [59], and [60], different mechanisms for collision avoidance have been

introduced using probabilistic methods, MILP programming, and behavioral control.

Nevertheless, there is still a lack of a unified solution to address the whole process

starting from reaching formation, maintaining formation while avoiding collision. To

integrate all of the components of a formation mission and to capture the interactions

between the subcontrollers, a proper solution is to take the advantages of the hybrid

modelling and control theory.
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Despite the great efforts being put in the study of hybrid supervisory control,

its application to cooperative control problems and in particular in formation control

problem has been hindered due to the challenges such as the existence of a finite

bismulation relation, decidability issues, and etc. Nevertheless, in the literature, there

are some results on the hybrid formation control which are developed for ground

robots. For instance, in [61], a hybrid controller has been provided for a group of

nonholonomic robots. The algorithm has two main modes for keeping the formation

and obstacle avoidance. A switching strategy is provided and the stability of the

overall system under the proposed switching scenario is investigated. In [62], a hybrid

controller has been designed for the formation control of ground robots. The control

structure has two layers by which the switching logic and the continuous low level

control are separated so that the lower layer is responsible for the path tracking

control of the robots and the top layer is a centralized supervisor which is responsible

for decision making to manage the formation.

For the hybrid formation control of aerial robots, the results are less due to

the complexity of their model and difficulties on the development of cooperative

testbeds of aerial vehicles. In [40], after developing a hybrid model of a single UAV,

a formation control has been implemented for two fixed wing UAVs. In [63], the

formation reconfiguration problem has been addressed for a group of UAVs. Several

formation manoeuvres are considered and then, for switching from each manoeuvre

to another one, an optimal path is generated and stored in the library of the system.

A discrete supervisor decides which formation manoeuvre should be activated. In

[64] and [65] firstly, using overlapping theorem [66], the authors have decomposed the
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graph of flight formation into some disjoint triangular subgraphs and have obtained a

control law for the formation control of each triangular subsystem. Then, they have

contracted these triangles to obtain the original graph. In fact, dealing with formation

of triangles as a basic unit of a flight formation is more rational than dealing with

the formation of the whole graph.

Most of the above mentioned methods focus on hybrid modeling of the system

rather than providing a hybrid analysis. Moreover, the discrete and continuous dy-

namics of the system are still treated in a decoupled way. To take the advantage of the

hybrid analysis and synthesis tools, this thesis proposes a hybrid supervisory control

framework for the formation control of unmanned helicopters (Fig. 1.4). First, a new

method of abstraction based on polar and spherical partitioning of the state space

will be introduced, by which the original continuous system with infinite states will

be abstracted to a finite state machine. Then, for the resulting abstracted system,

one can take the advantages of the well-developed theory of supervisory control of

Discrete Event Systems (DES) [67], and modularly design the discrete supervisors

for reaching the formation, keeping the formation, and avoiding collisions. If the ab-

stracted system is bisimilar to the original continuous system, the discrete supervisor

can be applied to the continuous plant while the closed-loop system exhibits behav-

iors similar to the case that the discrete supervisor was applied to the discrete model

of the plant. To apply the discrete supervisor to the plant, inspiring from [26], an

interface layer need to be constructed which on the one hand, it translates the con-

tinuous signals to discrete symbols understandable for the discrete supervisor, and

on the other hand, it converts the discrete commands of the supervisor to continuous
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signals applicable to the continuous plant.

Figure 1.4: Hybrid supervisory control scheme based on polar and spherical abstrac-

tion.

Here, the key point is to develop an abstraction procedure so that at the end, the

discrete model of the system and the original continuous system have a bismulation

relation and exhibit the same behaviours. So far, the abstraction approaches based

on bisimulation relation are limited to a few simple classes of systems such as timed-

automata, multi rate automata, initialized rectangular automata and order minimal

hybrid systems [68], [69], [70], [71]. Recently, multi- affine vector fields, as a wider

and more practical classes of hybrid systems, have been used as decidable systems

under trangulization and rectangulization of the state space [72], [73]. In [73], a

class of nonlinear systems has been abstracted using rectangular partitioning. In

[74], it has been shown that an affine feedback over a simplex can be designed to

12



steer the system’s trajectory to exit facets, and in [75] the method is extended to a

reachability problem over a partitioned system whose elements are simplices. Despite

the existing theoretical developments, so far, the use of these methods for practical

robotic applications is still in its infancy, and in particular, these methods have not

been used in the UAV path planning and formation control applications. Furthermore,

formulating a formation problem within a rectangulized or traingulized space is not

optimal, in the sense that the direct path to reach the desired point is not applicable.

Instead, the proposed method of abstraction based on polar and spherical partitioning

of the motion space, can be appropriately applied to the formation problem as we

will discuss through the following chapters.

1.3 Organization of the Thesis

This thesis aims to develop a hybrid supervisory control framework for the formation

of the UAVs. To address this problem, first it is required to model a single UAV heli-

copter within a hybrid framework and provide a reliable control for each of the agents

involved in the formation mission. Then, a hybrid supervisory control mechanism

will be developed for a team of UAV helicopters that are involved in a leader follower

formation scenario. The organization of the dissertation is described as follows:

In chapter 2, the model of a UAV helicopter is discussed. Then a low-level con-

troller for a UAV helicopter is designed which consists of two layers; the lower level

that is responsible for maintaining the attitude of the UAV, and a higher level that is

used to drive the UAV into the desired three-dimensional generated path in near-hover

13



conditions. With this control strategy, an H∞ controller is used for the inner-loop

to provide a robust stable suboptimal desired attitude, and a proportional feedback

combined with a transformation block is used for the design of the outer-loop con-

troller to compensate the system’s nonlinearity and to drive the UAV to follow the

desired trajectory. The proposed control structure is implemented on the NUS UAV

test-bed and actual flight tests demonstrate the effectiveness of the design procedure.

Chapter 3 proposes a hybrid control structure for a single UAV helicopter. The

developed hybrid controller has a hierarchical structure which consists of three layers:

the regulation layer; the coordination layer; and the supervision layer. For each layer

a separate hybrid model has been developed. To capture interactions between these

layers and to synchronise them, a composition operator is introduced. Finally, the

control structure has been implemented and several flight tests are conducted to

evaluate the control performance of the proposed control structure.

In Chapter 4, a new approach of hybrid supervisory control of the UAVs is in-

troduced which can be used for a two-dimensional leader follower formation scenario.

The approach is able to comprehensively capture internal relations between the path

planner dynamics and the decision making unit of the UAVs. To design such a hy-

brid supervisory controller for the formation problem, a new method of abstraction

is introduced which uses the properties of multi-affine vector fields over a polar par-

titioned space. Within this framework, we design a modular decentralized supervisor

in the path planner level of the UAVs to achieve two major goals: first, reaching

the formation and second, keeping the formation. In addition, a collision avoidance
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mechanism has been considered in the controller structure. Moreover, the velocity

bounds are applied through the design procedure so that the generated velocity ref-

erences can be given to the lower level of the control hierarchy, as the references to be

followed. The result is extended to a three-dimensional hybrid supervisory control for

leader follower formation algorithm. To realize this controller, a spherical abstraction

of the motion space is proposed and similar to the 2-d case, utilizing the properties of

multi-affine functions over the partitioned space, a finite state Discrete Event System

(DES) model is achieved which is bisimalar to the original partitioned system. For

the obtained DES model of the plant, a supervisor has been developed to accomplish

the formation mission.

Chapter 5 discusses some implementation issues and presents actual flight test

results for the hybrid formation control of the UAVs, and finally Chapter 6 concludes

the thesis and summarizes the contributions, and discusses some future works.
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Chapter 2

Modelling and Control Design of a

Unmanned Helicopter

2.1 Introduction

This chapter aims to describe the NUS cooperative testbed and develop proper model

and controller for the individual members of this UAV team that are going to be used

in the next chapters. Here, the testbed is a set of two similar UAV helicopters, HeLion

and SheLion (Fig. 2.1) which are developed by our research group at the National

University of Singapore.

Several research groups are involved in the modeling and control of UAVs [34],

[5], [35]. The control methods such as the neural network approach [76], the differen-

tial geometry method [77], feedback control with decoupling approach [78], and the

model predictive approach [79] have been applied for the flight control of the UAV

helicopters. In this chapter, however, an analytical approach is used to design and

analyze the whole system including the inner-loop and the outer-loop controllers for

a small-scale UAV helicopter. Here, in the proposed multi-layer control structure,

the inner-loop is responsible for the internal stabilization of the UAV in the hovering

state and for the control of the linear velocities and heading angular velocity whereas
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Figure 2.1: NUS Cooperative UAV test-bed.

the outer-loop is used to drive the UAV, which is already stabilized by the inner-loop,

to follow a desired path while keeping the system close to the hovering state. This

control strategy is an intuitive way of controlling such a complex system. However,

there is another reason that compels us to employ such a control structure. Indeed,

the UAV model cannot be fully linearized, since, in practice, the heading angle of the

UAV could be in any direction and we cannot expect it to be restricted to a small

range of variation. This will impose some kinds of nonlinearity on the system, which

can be modeled by a simple transformation. To handle this semi-linearized model of

the UAV, the linear and nonlinear parts are separately controlled in the inner-loop

and the outer-loop.

In this control structure, for the inner-loop, an H∞ controller is used to both

stabilize the system and suboptimally achieve the desired performance of the UAV
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attitude control. Assuming that the inner-loop has already been stabilized by an H∞

controller, a proportional feedback controller combined with a transformation block

have been used in the outer-loop to bring the UAV into the desired position with

desired heading angle.

Although designing a proportional feedback controller for SISO systems is

straightforward, the situation for MIMO systems is different. This is due to the fact

that in MIMO systems, it is not easy to use the popular tools, such as the Nyquist

stability theorem or the root-locus approach, that are well-established for SISO sys-

tems. The current approaches employed for MIMO systems are rather complicated

and are mostly extensions of the existing results for SISO systems [80]. In this chap-

ter, a design method of a decentralized P-controller for MIMO systems is introduced

that although conservative, it can be effectively used in practical problems, particu-

larly for the case that the system is close to a decoupled system. The approach is an

extension of the Nyquist theorem to MIMO systems, and its application to the NUS

UAV system provides a successful flight controlled system.

The remaining parts of this chapter are organized as follows. First, in Section

2.2 the developed cooperative testbed is explained which consists of two similar he-

licopters Helion and Shelion. Then, in Section 2.3, the model and structure of these

helicopters are described. The model of these helicopter is composed of two decoupled

subsystems for which, in Section 2.4, a two-layer controller, including an inner-loop

and an outer-loop controller, is designed. Actual flight tests are presented in Section

2.5, and the chapter is concluded in Section 2.6.
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2.2 Testbed Infrastructure

The members of this cooperative team are two radio-controlled bare helicopter, Rap-

tor 90. The size of these helicopters is 1410 mm in length and 190 mm in width of the

fuselage. The maximum takingoff weight is 11 kg including 5 kg as the dry weight of

helicopter and 6 kg as the effective payload. Their main rotors and tail rotors have

the diameter of 1,605 mm and 260 mm, respectively.

A typical UAV helicopter consists of several parts: physical parts such as engine

and fuselage; ground station to monitor the flight situation and collect realtime flight

data, and the avionic system to implement the control strategy to have an autonomous

flight control.

Among these elements, the avionic system is in the center of our interest in this

chapter and we will focus on the control structure which is embedded in its airborne

computer system. Here, the avionic system consists of a a PC/104 ATHENA, as

an onboard airborne computer system which has four RS-232 serial ports, a 16-pin

digital to analog (D/A) port, two counters/ timers and runs at 600 MHz.

In addition, the avionic system has been equipped with some analog and digital

sensors to collect the information of the current state of the UAV. The most important

one is a compact fully integrated INS/GPS , NAV420, Crossbow, which is used for the

navigation of the UAV and can provide three axis velocities, acceleration and angular

rates in the body frame, as well as longitude, latitude, relative height and heading,

pitch and roll angles. Moreover, the avionic system has a fuel level sensor as well as

a magnetic RPM sensor to measure the speed of the rotor. Furthermore, it has four
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servo actuators that could manipulate the helicopter to move forward and backward,

up and down, to turn left and right, and to regulate the nose angle. All of these servos

are controlled by a servo board as a local controller. In addition, the servo board gives

the ability to put the servo system in either the manual mode or the automatic mode.

In the manual mode, a pilot can drive the helicopter by a radio controller which is

useful in the emergency situations; however, in the automatic mode the helicopter is

under the control of the computer system and all control signals are generated by the

avionic system and the computer board, autonomously.

For the reliable communication between the UAVs, and also between the UAVs

and the ground station, we have used serial wireless radio modems, IM-500X008,

FreeWave, with the working frequency of 2.4 GHz, which can cover a wide range up

to 32 km in an open field environment.

The onboard program is implemented using QNX Neutrino real time operating

system. The structure of this onboard program has utilized a multi-thread running

scheme which includes several threads for flight control; reading from data acquisition

board; driving the servo actuators; making dual-directional wireless communication

with other UAVs or with the ground station; and logging data into an onboard com-

pact flash card.

Furthermore, for these helicopters, a hardware-in-the-loop simulation software

has been developed by integrating the developed hardware and embedded software

together with the nonlinear dynamic model of the UAV helicopters. In this platform,

the nonlinear dynamics of the UAVs have been replaced with their nonlinear model,
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and all software and hardware components that are involved in a real flight test,

remain active during the simulation. Consequently, the simulation results of this

simulator is very close to the actual flight tests, and it can provide a safe and reliable

environment for the pre-evaluation of control algorithms.

2.3 Modeling and Structure of the UAV Heli-

copter

Using some basic physical principles, one can obtain a general nonlinear UAV model.

These principles will result in several equations that represent the effects of different

factors such as gravity, the main rotor, and tail rotor forces and moments. The model

equations will be obtained in two coordinate systems: the body frame and the ground

frame. The body frame is located at the center of gravity of the UAV, and the ground

frame is an NED (North - East - Down) coordinate system [81] with a fixed origin at

the starting point of the UAV flight. The moment and force equations in the UAV

model must be derived in the body frame, whereas to obtain the net displacement of

the UAV, we need to use the ground frame.

Neglecting the gyroscopic effect of the engine-driven train, the equations of the

helicopter motion in the body frame are obtained as follows:

~̇Vb = −~ωb × ~Vb +Bb~g +m−1 ~F (2.1)

~̇ωb = −J−1ωb × J~ωb + J−1 ~M (2.2)

where in these equations, × denotes the cross product of the vectors and concate-
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nation of two matrices or vectors stands for normal matrix multiplication; ~Vb =

(Vxb, Vyb, Vzb)
′ and ~ωb = (ωxb, ωyb, ωzb)

′ are the velocity and the angular velocity in

the body frame, respectively; ~g = [0, 0, g]′ is acceleration due to the earth gravity

and g is assumed to be a constant; m is the mass of the helicopter; J is the inertia

matrix of the aircraft, and ~F and ~M are the resultant force and moment in the body

frame, including those generated from the main rotor, tail rotor and the fuselage.

The Euler angles that show the orientation of the body frame relative to the

ground frame are as follows:
~̇φ

~̇θ

~̇ψ

 =


1 tan θ sinφ tan θ cosφ

0 cosφ −sinφ

0 sinφ
cos θ

cosφ
cos θ

 ~̇ω (2.3)

where (φ, θ, ψ)′ is a vector containing the Euler angles which describe the attitude

of the helicopter with respect to the NED frame.

The relation between the UAV position in the ground frame and the UAV velocity

in the body frame is:

~̇Pg = B′b
~Vb (2.4)

where ~Pg is the position of the UAV in the ground frame and Bb is the transformation

matrix from the ground frame to the body frame:

Bb =


cos θ cosψ cos θ sinψ −sin θ

−cosφ sinψ + sinφsin θ cosψ cosφ cosψ + sinφsin θ sinψ sinφ cosθ

sinφ sinψ + cosφsin θ cosψ −sinφ cosψ + cosφsin θ cosψ cosφ cosθ

 (2.5)

The details of this UAV model are described in [78]. This nonlinear model of

the UAV is identified using in-flight data which was collected by injecting perturbed
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input signals to the flying helicopter in the manual mode. Then, the achieved model

is linearized at the hovering state in which ~Vb = 0, ~ωb = 0, θ = 0, φ = 0 . The

linearized model of the UAV is as follows:

ẋin = Axin +Bu+ Ew (2.6)

where xin = [ Vxb(m/s) Vyb(m/s) ωxb(rad/s) ωyb(m/s) φ(rad) θ(rad) ã1(rad) b̃1(rad)

Vzb(m/s) ωzb(rad/s) wzf (rad/s) ]′ is the internal state of the system. Here, Vxb , Vyb ,

and Vzb are linear velocities; ωxb , ωyb , and ωzb are angular velocities; φ, θ, and ψ are

Euler angles; ã1 and b̃1 are flapping angles, and wzf is the state variable of the rate

gyro to describe the first order differential equation of δpedal [82]. Furthermore, the

control input u includes commands to the servos embedded for the control of the

helicopter blades as u = [ δpedal(rad) δroll(rad) δcol(rad) δpitch(rad) ]′ where δroll and

δpitch are cyclic commands, δpedal is the control input to the yaw channel servo, and

δcol is the pedal command. Finally, w = (uwind, vwind, wwind) is the wind gust distur-

bance where uwind, vwind, wwind affect the UAV velocities in the x, y and z directions,

respectively. The state and input matrices A and B of the corresponding linearized

model, and the disturbance matrix E are as follows:

A =

 A2 08×3

03×8 A1

, B =

 B2 08×2

03×2 B1

, E =

 E2 08×1

03×2 E1


where
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A1 =


−0.6821 −0.1070 0

−0.1446 −5.5561 −36.6740

0 2.7492 −11.1120

,

B1 =


15.6491 0

1.6349 −58.4053

0 0

,

E1 =


−0.5995

−1.3832

0

, B2 =



0 0

0 0

0 0

0 0

0 0

0 0

0.0496 2.6224

2.4928 0.1740



, E2 =



−0.1778 0

0 −0.3104

−0.3326 −0.2051

0.0802 −0.2940

0 0

0 0

0 0

0 0



,

A2 =



−0.1778 0 0 0 0 −9.7807 −9.7808 0

0 −0.3104 0 0 9.7807 0 0 9.7807

−0.3326 −0.5353 0 0 0 0 75.7640 343.86

−0.1903 −0.2940 0 0 0 0 172.620 −59.958

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 −1 0 0 −8.1222 4.6535

0 0 −1 0 0 0 −0.0921 −8.1222



.

Remark 1 In the linearized model described by (2.6), the saturation level for the

servos is |δ?max| = 0.5. We need to provide a control law such that the resulting
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control signals always remain within the linear unsaturated range.

Although (2.6) describes the relation between the control input and the state vari-

able xin, it still does not describe the whole dynamics of the system, and particularly,

the position, ~Pg = (x, y, z)′ and the heading angle ψ are not reflected in the model.

Thus, considering (2.4) and (2.5), a more complete model containing ~Pg and ψ is as

follows: 
ẋin = Axin +Bu+ Ew

ẋout = Ω′(Θ)Cxin

(2.7)

where xout = [ x(m) y(m) z(m) ψ(rad)]′. Here, x, y, and z describe the position

of the UAV in the ground frame, ψ is its heading angle, and Θ = [φ, θ, ψ]T is the

orientation vector. Matrix C and the block Ω(Θ) are as follows:

C =



1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0


, Ω(Θ) =

 Bb 0

0 1

,

Remark 2 Matrix Bb includes some time-dependent terms. Therefore, matrix Bb can

not be considered as a constant term and it is not simple to integrate both sides of the

second equation of (2.7) in order to obtain the position in the ground frame. This is

due to the fact that the body frame is a moving coordinate system. Hence, to obtain the

displacement, it is necessary to first obtain the velocities in a fixed coordinate system

such as the ground frame. Then, the displacement can be calculated by integrating the

velocity vector in the fixed coordinate system.
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To make the design control problem easier, we can further simplify the model.

Indeed, matrix Bb in (2.5), which introduces some nonlinear terms to the model, can

be linearized at the hovering state. In practice, the heading angle of the helicopter

can take any arbitrary value; however, the roll and pitch angles are usually kept close

to the hovering condition. Therefore, linearizing matrix Bb at the hovering state will

result in:

Bb =


cos ψ sinψ 0

−sinψ cos ψ 0

0 0 1

 =

 R 02×1

01×2 1

 (2.8)

The physical interpretation is that by keeping ~θ and ~φ close to zero, the Euler

rotation in a three-dimensional space will be converted into a simple rotation in a

two-dimensional space with respect to ψ. In this case, the rotation matrix is:

R =

 cos ψ sinψ

−sinψ cos ψ

 (2.9)

In the next section, the control structure for this model of the UAV will be

described.

2.4 Controller Design

We will construct a two-layer controller for this UAV (Fig. 2.2). In this framework,

the system is stabilized by the inner-loop, and then it is driven to track a desired

trajectory by the outer-loop.
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Figure 2.2: Schematic diagram of the flight control system

In this control architecture, the reference for the inner-loop controller is ui =

[Vxb , Vyb , Vzb , ωzb ]
′ where (Vxb , Vyb , and Vzb) are the linear velocity references, and

ωzb is the yaw rate reference, which all should be provided by the outer-loop. The

outer-loop, however, is responsible for the control of the position and heading angle

of the UAV and will guide the UAV to follow a desired trajectory. Therefore, the

references for the outer-loop are the position (Xr, Yr, Zr) and the yaw angle ψr. In

other words, the UAV will follow the desired path by controlling the position and

the yaw angle in the outer-loop, and the linear velocity and the angular rate in the

inner-loop.

Looking at matrices A, B, and E in (2.6), we can see that, the model is a decou-

pled system with two independent parts. Therefore, (2.6) can be rewritten into two

separate subsystems as follows:

ẋ1 = A1x1 +B1u1 + E1w1 (2.10)

ẋ2 = A2x2 +B2u2 + E2w2 (2.11)

where x1 = [ Vzb(m/s) ωzb(rad/s) wzf (rad/s) ]′, u1 = [ δcol δpedal ]′, x2 = [ Vxb(m/s)

Vyb(m/s) ωxb(rad/s) ωyb(rad/s) φ(rad) θ(rad) ãs(rad) b̃s(rad) ]′, and u2 = [ δroll(rad)
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δpitch(rad) ]′.

Considering (2.7), (2.8), (2.10), and (2.11), the control structures for these two

subsystems are shown in Fig. 2.3 and Fig. 2.4. In these figures, subscripts g, b, and r

stand for ground frame, body frame, and reference, respectively. Moreover, matrices

C1 and C2 are:

C1 =

 1 0 0

0 1 0

 , C2 =

 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

 (2.12)

Figure 2.3: Control schematic for Subsystem 1.

Figure 2.4: Control schematic for Subsystem 2.

Due to the special structure of the linearized form of Bb, Subsystem 1 is a fully

linearized model. However, in the outer-loop of Subsystem 2, the term R−1 appears

as a nonlinear element, and thus Subsystem 2 is more complicated than Subsystem

1. In the following parts, we will describe the control design for both subsystems.
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2.4.1 Designing the Controller for Subsystem 1

Subsystem 1 is a fully linearized model and hence, we can take the advantages of

linear design tools. We will use the H∞ control design technique for the inner-loop

and a P-controller for the outer-loop.

2.4.1.1 Inner-loop Controller

Using an H∞ controller for the inner-loop, both robust stability and proper perfor-

mance of the system can be achieved, simultaneously. To design a H∞ controller,

using notation analogous with [83], we define the measurement output simply as the

state feedback in the form of y1 = C11x1 with C11 = I. Also, we define the controlled

output h1 in the form of h1 = C12x+D12u, where

C12 =



02×3

3.1623 0 0

0 3.1623 0

0 0 1.7321


, D12 =


44.7214 0

0 28.2843

03×2

 (2.13)

The nonzero entries of C12 and D12 are used for tuning the controller. Here,

they are determined experimentally to achieve the desired performance. Meanwhile,

the H∞ design guarantees internal stability and robustness of the system. Indeed,

H∞ control design reduces the effect of the wind gust disturbance on the control

performance, by minimizing the H∞ norm of the closed-loop transfer matrix from

the disturbance w to the controlled output h1, denoted by T1. The H∞ norm of the
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transfer function T1 is defined as follows:

‖T1‖∞ = sup
0≤ω<∞

σmax[T1(jω)] (2.14)

where σmax[∗] denotes the maximum singular value of the matrix ∗.

Having the matrices C12 and D12, one can find γ∗∞ which is the optimal H∞

performance for the closed-loop system from the disturbance input w to the controlled

output h1 over all the possible controllers that internally stabilize the system. As

practically, γ∗∞ is not achievable, we will try to reach γ∞ which is slightly larger than

γ∗∞.

With this choice of the control parameters, D11 and D12 are full rank and the

quadruples (A1, B1, C12, D12) and (A1, E1, C11, D11) are left invertible and are free of

invariant zeros. Therefore, we have a so-called regular problem, for which we can use

the well-established H∞ control theory [83]. As it was mentioned, the resulting closed

loop system suboptimality minimizes the H∞ norm of the transfer function from the

disturbance w to the controlled output h1. To design this controller we consider the

control law in the following form:

u1 = F1x1 +G1r1 (2.15)

where r1 = (Vzr , ωzr)
′ is the reference signal generated by the outer-loop controller,

G1 = −(C1(A1 + B1F1)
−1B1)

−1 is the feedforward gain, and F1 is the H∞ control

gain that can be achieved as follows:

F1 = −(D′12D12)
−1(D′12C12 +B′1P1) (2.16)

where matrix P1 is the positive semi-definite solution of the following H∞ algebraic
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Riccati equation:

A′1P1 + P1A1 + C ′12C12 + P1E1E
′
1P1/γ

2 −

(P1B1 + C ′12D12)(D
′
12D12)

−1(D′12C12 +B′1P1) = 0 (2.17)

For this system and these control parameters values, the value of γ∗∞ is 1.4516.

Choosing γ∞ = 1.4616, matrices F1 and G1 are obtained as follows:

F1 =

 −0.0935 −0.0005 0.0027

0.0008 0.0364 −0.0481

 , G1 =

 0.1371 0.0066

−0.0020 −0.2748

 (2.18)

To evaluate the controller performance and its effect on the disturbance attenu-

ation, we simulated the closed loop system with an initial state of x1(0) = [1.5 0 0]′,

and also we injected wind gust disturbance for 20 sec (Fig. 2.5). The injected distur-

bance has a maximum amplitude of 3 m/s along the z axis (the other directions do

not affect the dynamics of Subsystem 1). The controlled system reaches the steady

hovering state after 3.5 sec, and the disturbance effect is reduced to less than 25%.

The control inputs are within the unsaturated region.

2.4.1.2 Outer-loop Controller

In the outer-loop of Subsystem 1, we use a P-controller KP1 (Fig. 2.6). We can redraw

this system as shown in Fig. 2.7, in which Gin1 = 1
S
C1(SI − (A1 + B1F1))

−1B1G1.

It can be shown that Gin1 is a 2×2 multi-variable system. In general, designing a

P-controller for a MIMO system is difficult. However, if we consider Kp1 in diagonal

form as Kp1 = kp1I2×2, we can apply the generalized Nyquist theorem [84] to design
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Figure 2.5: Simulation of the inner-loop of Subsystem 1.

kp1 to stabilizes the system.

Figure 2.6: Control structure of Subsystem 1.

2.4.1.3 Stability Analysis

The characteristic loci of Gin1 are shown in Fig. 2.8, where the dash-dot lines cor-

respond to the infinite values. In Subsystem 1, Fig. 2.7, the inner-loop has already

been stabilized, using an H∞ controller. Therefore, due to the presence of the integral
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Figure 2.7: Redrawing the control structure of Subsystem 1.

term, Gin1 has two poles at the origin and the remaining poles are in the LHP plane.

Hence, Gin1 has no pole in the Nyquist contour. It follows from the form of the

characteristic loci of Gin1 in Fig. 2.8, that kp1 ∈ (0 , ∞) will keep the entire system

stable. However, in practice, we are subjected to the selection of small values of kp1

to avoid saturation of the actuators. For this experiment we chose kp1 = 1.5.

Figure 2.8: Characteristic loci of Gin1 .
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2.4.1.4 Tuning the Controller

With the above outer-loop controller, the stability of the whole system has been

achieved; however, the controller in the form of Kp1 = kp1 × I2×2 with only one

control parameter is not an appropriate choice. We need to have more degrees of

freedom to tune the controller and achieve better performance. By considering the

proportional feedback gain in the form of Kp1 = diag{Kp11 , Kp12}, we have more

degrees of freedom and can control each of the output channels in a decentralized

manner, while keeping the system decoupled.

Uncertainty analysis usually is used to investigate the effect of the plant uncer-

tainty. Here, we borrow this idea to analyze the effect of deviation of the diagonal

entries of the matrix Kp1 = kp1I2×2 in the controller part. Alternatively, we can define

Kp1 as follows:

Kp1 =

 Kp11 0

0 KP12

 = kp1I2×2 +

 ∆Kp11
0

0 ∆KP12

 (2.19)

The objective is to design ∆ = diag
{

∆Kp11
, ∆Kp12

}
such that it does not affect

the stability of the system. In fact, 4 is the tuning range (Fig. 2.9).

Following from Fig. 2.9, one can extract the internal model of the system as:


y = Gin1kp1(I +Gin1kp1)

−1v + (I +Gin1kp1)
−1Gin1z

x = (I +Gin1kp1)
−1v − (I +Gin1kp1)

−1Gin1z

(2.20)
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Figure 2.9: Robust system diagram.

To simplify the notation, (2.20) can be rewritten as:
y = G11v +G12z

x = G21v +G22z

(2.21)

Figure 2.10: Redrawing the Subsystem 1 for robust analysis.

Therefore, Fig. 2.9 can be redrawn as it is shown in Fig. 2.10. In the new

diagram, since the nominal system with ∆ = 0 is stable, all Gij are stable. G11,

G12, and G21 are outside the uncertain loop and cannot be affected by block 4;
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however, the loop includes G22 and 4 may affect the internal stability of the system

due to perturbations of the elements of 4. Since G22 and 4 are stable, according to

the generalized Nyquist theorem, the characteristic loci of the loop transfer function

should not encircle the point (-1+j0). Equivalently, we should have |λi(−G22∆)| < 1.

To satisfy this condition, since |λi(G22∆)| ≤ σ̄(G22∆) ≤ sup
ω

(σ̄(G22∆)) = ‖G22∆‖∞,

it is sufficient that ‖G22∆‖∞ < 1. Using norm properties, we have:

‖G22∆‖∞ ≤ ‖G22‖∞ ‖∆‖∞ (2.22)

Therefore, the sufficient condition for the stability of the system is:

‖G22‖∞ ‖∆‖∞ < 1 (2.23)

For these values of the controller and plant parameters and for a frequency range of

(0, 10000), we obtained ‖G22‖∞ = 0.6986. Therefore, the perturbation of Kp1 should

be such that ‖∆‖∞ ≤ 1.4315. Recall that 4 has a diagonal structure, and hence,

all diagonal entries of Kp1 should have less than a 1.4315-unit deviation from their

nominal value. In fact, using this approach, we first obtained a nominal controller that

provides the stability of the system, and then, we attempted to tune the controller to

improve the performance, while keeping the system stable. After tuning the controller,

the value of Kp1 = diag{0.5, 0.7} was selected as an appropriate value that satisfies

the above mentioned condition and gives a satisfactory performance. The method

is conservative as ∆ is structured and real, but applying to the UAV plant it has

provided sufficient degree of freedom for tuning the controller and improving the

performance.
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To simulate the resulting system, let the outer-loop reference be (Zr, ψr) =

(−2, 0.5) and the current position and heading angle be (Zg, ψg) = (0, 0). The system

will reach its target after approximately 8 sec as shown in Fig. 2.11.
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Figure 2.11: Simulation of the outer-loop of Subsystem 1.

2.4.2 Designing the Controller for Subsystem 2

2.4.2.1 Inner-loop Controller

For Subsystem 2, described by (2.11), we use an H∞ controller for the inner-loop

controller design. Analogous with Subsystem 1, we define h2 as h2 = C22x2 +D22u2,

where
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C22 =



02×8

0.3162 0 0 0 0 0 0 0

0 0.3162 0 0 0 0 0 0

0 0 0.3162 0 0 0 0 0

0 0 0 0.3162 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



,

D22 =


5.4772 0

0 5.4772

08×2

.

With these parameters, we will obtain γ∗∞ = 0.0731. Choosing γ∞ = 0.0831, we

will have:

F2 =

 0.0017 −0.1683 −0.0486 0.0081 −1.9336 −0.1974 −0.3227 −2.1444

0.0815 −0.0461 −0.0087 −0.0535 −0.3908 −1.0690 −1.1712 −0.4659


.

Moreover, G2 = −(C2(A2 +B2F2)
−1B2)

−1, is the feedforward gain for Subsystem

2 and can be calculated as G2 =

 −0.0029 0.2335

−0.0978 0.0632

.

The simulation of the system is shown in Fig. 2.12. In this figure, the initial state

of the system is x2(0) = [1.5 0 0 0 0.17 0 0 0]′. The injected disturbance has a
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maximum amplitude of 10 m/s along the x and y axes (the z direction does not affect

the dynamics of Subsystem 2). The controlled system reaches the steady hovering

state after 3.5 sec, and the disturbance effect is reduced to less than 25%. In addition,

the control inputs are within the unsaturated region.
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Figure 2.12: Simulation of the inner-loop of Subsystem 2.

2.4.2.2 Outer-loop Controller

Although the outer-loop of Subsystem 2 is similar to the outer-loop of Subsystem

1, the main difference lies in the presence of the nonlinear term, R−1, in the outer-

loop of Subsystem 2, as shown in Fig. 2.4. In this structure, the error signal is

the difference between the actual position and the reference position, which both are

in the ground frame. Therefore, the resulting control signal, which is going to be
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passed to the inner-loop as the reference, is obtained in the ground frame; however,

the inner-loop dynamics is derived in the body frame. Hence, it is reasonable that

we transform the control signal to the body frame before delivering it to the inner-

loop.To implement this idea, we can use the transformation term, R, to obtain a

control signal in the body frame. The new structure is shown in Fig. 2.13, in which

Gin2 = C2(SI − (A2 + B2F2))
−1B2G2 is a 2 × 2 multi-variable system. In Fig. 2.14,

it is shown that the inner-loop block Gin2 is very close to a decoupled system with

equal diagonal elements. Indeed, Subsystem 2 corresponds to the dynamics of the

helicopter for the x− y plane movement and, we expect the dynamics of the UAV in

the x and y directions to be similar and decoupled.Using this concept, we can take

the block Gin2 out so that the two rotation matrices R and R−1 will cancel each other.

Figure 2.13: Control diagram of Subsystem 2.

The remaining job is simple, and we can repeat the procedure of designing the

outer-loop controller for Subsystem 1 and design a P-controller in the form of Kp2 =

diag{Kp21 , KP22} that stabilizes Subsystem 2 (Fig. 2.15). As an appropriate choice

of control parameters, we can select Kp2 = diag{0.3 , 0.3}. Rationally, Kp21 and KP22

should be the same, since we expect a similar behavior of the UAV system in the x
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Figure 2.14: Bode plot of entries of Gin2
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and y directions.

Figure 2.15: Redrawing the control diagram of Subsystem 2.

For an outer-loop reference at (xr, yr) = (2, 2) and the current UAV position at

(xg, yg) = (0, 0), the simulation results are shown in Fig. 2.16, in which the UAV

reaches to the desired position after approximately 10 sec, smoothly and without

overshooting.
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Figure 2.16: Simulation of the outer-loop of Subsystem 2.

42



2.5 Experimental Results

Before using the designed controller in an actual flight test, we first evaluate it through

a hardware-in-the-loop simulation platform [85]. In this platform, the nonlinear dy-

namics of the UAV has been replaced with its nonlinear model, and all software and

hardware components that are involved in a real flight test remain active during the

simulation. Using the hardware-in-the-loop simulation environment, the behavior of

the system is very close to the real experiments.

Then, we conducted actual flight tests to observe the in-flight behavior of the

helicopter. First, we used the UAV in the hovering state for 80 sec. Figure 2.17 shows

the state variables in the hovering experiment at (x, y, z, ψ) = (−16,−34, 10,−1.5).

To evaluate the hovering control performance, the position of the UAV is depicted in

a 2D x− y plane in Fig. 2.18. As it can be seen, the position of the UAV has at most

a 1-meter deviation from the desired hovering position, which is quite satisfactory.

The control inputs are also shown in Fig. 2.19. All of the control inputs are within

the unsaturated region.

Next, we used the UAV to follow a circle with a diameter of 20 meters as a

given trajectory. This trajectory determines the reference (x(t), y(t), z(t), ψ(t)) for

the system. With this trajectory, the UAV should complete the circle within 70 sec.

In Fig. 2.20, it is shown that the UAV is able to follow this trajectory successfully.

The UAV path tracking in the x− y plane is shown in Fig. 2.21. Moreover, to have a

better insight of the system behavior, the states variables of the UAV and the control

inputs are represented in Fig. 2.22 and Fig. 2.23, respectively. These results show
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that the UAV is able to track the desired trajectory in situations close to the hovering

state. The small deviations in the hovering mode or path tracking mode could be due

to environmental effects such as wind disturbances and the GPS signal inaccuracy.

Here, as measured by a handheld anemometer the wind disturbances is 2 to 3 m/s in

the horizontal plane, the steady-state accuracy of the heading angle is 2.5o, and the

position accuracy of the GPS signal is 3m(1σ). Videos of the hovering experiment

and circle path tracking are available at http://uav.ece.nus.edu.sg/video/hover.mpg

and http://uav.ece.nus.edu.sg/video/circle.mpg , respectively.

2.6 Conclusion

In this chapter, we presented a systematic approach for the flight control design of

a small-scale UAV helicopter. In the proposed two-layer control structure, the lower

level aims at the stabilization of the system, and the upper level focuses on the

reference tracking. For the disturbance attenuation and stabilization of the UAV,

we used an H∞ controller in the inner-loop of the system. Due to the presence

of some nonlinear terms in the outer-loop of the system, we first compensated for

the nonlinearity by an inverse rotation; then, we used a decentralized P-controller

to enable the UAV to follow a desired trajectory. We also proposed a new method

of designing a P-controller for MIMO systems that was successfully applied to the

UAV system. The simulations and actual flight tests show the efficacy of the control

structure.

In the next chapter, we will use this structure to accomplish more complex mis-
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Figure 2.17: State variables of the UAV for the hovering.

sions which consist of several tasks. Such missions will require an embedded decision-

making unit to support the tasks and to switch between the controllers.
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Figure 2.22: States of the UAV in the circle path tracking behavior.
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Figure 2.23: Control inputs in the circle path tracking behavior.
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Chapter 3

Hybrid Modeling and Control of an

Unmanned Helicopter

3.1 Introduction

In this chapter, our aim is to propose a framework for the hybrid control of a UAV

helicopter so that it can autonomously accomplish the assigned mission including

several tasks. To reduce the complexity of the system, we have developed a hierarchi-

cal control structure to distribute the control tasks among the layers. The proposed

control system has three layers: the regulation layer, the coordination layer, and the

supervision layer. Each layer has a hybrid structure and is responsible to do a specific

task. The layers have been modelled with a hybrid Input/Output automaton [50].

Then, a composition operator is introduced to synchronize the layers and capture the

interactions between them. Figure 3.1 shows the overall picture of this hierarchical

system and describes the nature and objectives of each layer. The philosophy behind

this hierarchy is that the lower levels are involved in more details such as reference

tracking and stability analysis, while the higher levels mostly manage and coordinate

the control scenarios. The advantage of this structure is that it simplifies the design

procedure so that each layer can be developed to accomplish a particular part of the
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control task.

Figure 3.1: Hierarchical hybrid control structure of an autonomous UAV Helicopter.

Furthermore, the designed controller is implemented on the NUS UAV helicopter,

and real flight tests are conducted to evaluate the proposed hybrid control structure.

The flight test results show that the designed control system can be effectively involved

in a complex mission composed of several tasks.

The remaining parts of this chapter are organized as follows. Section 3.2 de-

scribes the regulation layer which is responsible for the which is responsible for the

low level control of the system, Section 3.3 explains the coordination layer which is

responsible for generating a path to be followed by the regulation layer, and Section

3.4 describes the supervision layer which is responsible for managing the switching

scenario to perform a mission, autonomously. In Section 3.5, the composition oper-

ator is discussed. The experimental results are presented in Section 3.6, and finally,

the paper is concluded in Section 3.7.
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3.2 The Regulation Layer

The regulation layer is the heart of the control structure of the UAV, which is directly

connected to the UAV avionic system and can manipulate the actuators and gather

the sensors reading for the control process. It also receives task scheduling commands

from the coordination layer to activate proper control modes. The model of the

NUS UAV helicopter was given in Part 2.7. For different velocities and situations,

different controllers can be designed. For example, in [86], several controllers have

been designed for different modes of operation of the NUS UAV helicopter. Then, the

higher layers are responsible to manage the switching between these control modes. To

elaborate the idea of hierarchical control, without loss of generality, here we consider

two control modes for the regulation layer of the UAV: the velocity control mode and

the position control mode, and then will give hybrid model for this layer.

3.2.1 Velocity Control Mode

In the velocity control mode, vc, one can stabilize the attitude of the helicopter and

control the UAV to move with the desired velocity vector (vxr, vyr, vzr) and the desired

yaw rate, wzr. Considering the model of the UAV, described by (2.6), the control

law can be chosen in the form of u = Fxin + Gr. The control diagram is shown in

Fig. 3.2. Here, matrix F =

 F2 0

0 F1

 is obtained through the robust H∞ design

technique [83], [87], and G =

 G2 0

0 G1

 is the feedforward gain. The values of
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matrices F1, F2, G1, and G2 were calculated in Part 2.4. It was also shown that with

these control parameters, both stability and satisfactory robust performance of the

system are achieved.

Figure 3.2: The controller for the velocity-control of the UAV.

3.2.2 Position Control Mode

The control objective in the position control mode, pc, is to drive the UAV to follow

the generated path. In other words, the state variable xout should track the given

reference r. The control law for this operation mode is u = Fxin+GΩ(Θ)Kp(r−xout),

where Kp =

 Kp2 0

0 Kp1

. The values of Kp1 and Kp2 were calculated in Part 2.4.

It was also discussed that this controller consists of two layers: the inner-loop and

the outer-loop. The inner-loop controller stabilizes the attitude of the UAV, and its

parameters, F and G, are selected as the same as the velocity control mode. The

outer-loop controller, however, smoothly drives the UAV towards the desired position.

In the outer-loop, the block Ω is used to compensate for the effect of the trans-

formation matrix Ω′, and Kp is a P-controller.
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3.2.3 Hybrid Model of the Regulation Layer

Now, we can present the hybrid model of the regulation layer based on what was

explained for each control mode. Both control modes have the same plant dynamics

ẋin = Axin + Bu; however, the control law in the velocity control mode is u =

Fxin +Gr, and in the position control mode is u = Fxin +GΩ(Θ)Kp(r − xout).

Figure 3.3: The graph representation of the hybrid automaton HR for the regulation

layer.

The graph representation of the hybrid model of the regulation layer

is shown in Fig. 3.3. Formally, this hybrid model of the regula-

tion layer can be described by a hybrid automaton ( [50], [88]) HR =

(VR, XR, UR, YR, fR, InitR, InvR, ER, GuardR, ResetR, hR), where

• VR = {start, vc, pc} is the set of discrete states. Here, vc and pc stand for the
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velocity control mode and the position control mode, respectively. The start

mode is used for the initialization of the system to choose either of the modes.

These discrete states are considered as the vertices in the graph representation

of the regulation layer (Fig. 3.3).

• XR = [xin, xout]
′ is the continuous state of the system.

• UR = UDR × UCR is the input space, where UCR = r ⊆ R4 is the continuous

control input, and UDR = {cmdV , cmdP} is the set of discrete inputs. The

subscripts denote the corresponding ending discrete states in Fig. 3.3. For

instance, cmdP is the command that fires a transition to the position control

mode.

• YR = YDR × YCR is the system output, where here, YCR = xout and YDR = VR

feedback the current continuous output of the system to the coordination layer

to be able to generate appropriate reference signals.

• fR : VR ×XR ×UR → XR is the vector field description of the system which is

defined as follows:

ẋ = fR(v, x, u) = fR(v, x, ud, r) =

0 if ud = start (A+BF )xin +BGr

Ω′(Θ)Cxin

 if ud = vc

 (A+BF )xin −BGΩ(Θ)Kpxout +BGΩ(Θ)Kpr

Ω′(Θ)Cxin

 if ud = pc

• InitR = {(start, 0)} ⊆ VR ×XR is the set of initial states of the UAV.
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• InvR ⊆ VR × XR × UR is the invariant condition. Here, it is required that

for both discrete modes, z > 0, Vxb, Vyb, Vxb < 3.5m/s, ωz < 15deg/s and

a, b, θ, φ < π
6
.

• ER ⊆ VR×VR is the set of discrete transitions. Here, E = {(Start, vc), (start,

pc), (pc, vc), (vc, pc), (pc, pc), (vc, vc)} is the set of discrete transitions which

are shown by the edges in the graph representation of the regulation layer in

Fig. 3.3.

• GuardR : ER → 2XR×UR describes the guard conditions for the discrete transi-

tions. For each discrete transition from the vertex v to v′, the continuous state

of the system and the control input should belong to Guard(v, v′). In the graph

representation, the continuous part of the guard condition is shown near the

beginning of the corresponding edge while its discrete part is depicted at the

middle of the edge. For instance, in Fig. 3.3, when the system is in mode vc,

the control input cmdP can cause a transition to the mode pc. For the guard

map of this transition, no condition has been considered on the continuous

state of the system, and only the discrete control input is used for the guard

condition.

• ResetR : ER × XR × UR → 2XR describes the reset map. For instance, z′ ∈

Reset(v, v′, z, w) shows that for (v, v′) ∈ E, z ∈ X, and w ∈ U , there is a

transition for which the continuous state of the system will be reset to z′. In

the graph representation, the reset map is usually shown near the end of the

corresponding edge. In the hybrid model of the regulation layer, the reset map
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is an identity map as there is no jump on the continuous state of the system.

When the reset map is an identity map, it is not shown in the graph.

• hR : VR ×XR → YR is the output map. Here we have h(v, x) = xout.

3.3 Coordination Layer

Based on the feedbacked information received from the regulation layer, the coor-

dination layer can activate the corresponding control mode in the regulation layer

and can generate proper control references in the form of a feasible path for the

regulation layer. The path generation mechanism could be done in an off-line man-

ner or through a dynamic path planning mechanism. In Chapter 4, after propos-

ing the formation algorithm, an online path planning mechanism will be intro-

duced. But, in this chapter we will talk about the off-line path planning mech-

anism in which based on the problem requirements and constraints, a path can

be generated and stored in the library of the system. As an example, we ex-

plain a coordination layer that has been used in our flight tests using off-line path

generation mechanism. The hybrid automaton for this model of the coordina-

tion layer is HP1 = (VP1 , XP1 , UP1 , YP1 , fP1 , InitP1 , InvP1 , EP1 , GuardP1 , ResetP1 , hP1),

where XP1 = (rx, ry, rz, rψ) is the continuous state of the coordination layer and in-

deed, it is the generated reference that is going to be given to the regulation layer. The

discrete state is VP1 = {Startp, PathZp, PathCp, Ascendp, Hoverp, V elp, Descendp,

Emergencyp}, where Startp, PathZp, PathCp, Ascendp, Hoverp, V elp, Descendp,

and Emergencyp stand for starting the task, zigzag path tracking, circle path track-
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ing, ascending, hovering, generating velocity references, descending, and emergency

mode, respectively. Here, the control signal is UP1 = UCP1×UDP1 , where UCP1 = YCR is

the current continuous output that is feedbacked from the regulation layer, and UDP1

= {cmdPathZ , cmdPathC , cmdAscend, cmdHover, cmdV el, cmdDescend, cmdEmergency} is

the set of commands that can be received from the supervision layer. When the

coordination layer receives one of these commands, it switches to the corresponding

discrete mode. The layer output is YP1 = YDP1 × YCP1 , where YCP1 = XP1 is the

continuous part which informs the supervision layer about the current state of the

coordination layer and also, it will be given to the regulation layer as the generated

reference to be tracked. YDP1 = YDpr1 × YDps1 is the discrete output signal, where

YDps1 = VP1 is given to the supervisor to inform about the current discrete mode of

the coordination layer, and YDpr1 = {cmdp, cmdv} is the command that activates the

proper control mode in the regulation layer:

YDpr1 =


cmdp for VP1 = PathCp, PathZp, Ascendp, Descendp, HoverP

cmdv for VP1 = V elp, Emergencyp

The dynamics of the coordination layer is

ẊP1(v) = [ ẋr ẏr żr ψ̇r ]T =



(0, 0, fza(t), 0) v = Ascendp fz(t) > 0

(0, 0, fzd(t), 0) v = Descendp fz(t) < 0

(0, 0, 0, 0) v = Hoverp, Emergencyp

(fxpc(t), fypc(t), fzpc(t), fψpc(t)) v = PathCp

(fxpz(t), fypz(t), fzpz(t), fψpz(t)) v = PathZp

(fxv(t), fyv(t), fzv(t), fψv(t)) v = V elp
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Here, f∗ is the path generation mechanism. In the graph representation for the hybrid

model of the coordination layer, the system starts from the mode Startp, all discrete

states are connected, and the command cmd∗ can fire a transition to the state ∗.

There is no guard condition and jump for the discrete transitions. As this graph is

tedious, we have not shown it here.

3.4 Supervision Layer

This layer is responsible for the decision making and task scheduling for the mission

that should be performed by the UAV. The supervision layer can be presented by

a purely discrete automaton [67] or a timed automaton [89] which are subclasses of

hybrid systems.

As an example, a supervision layer has been designed for a typical mission shown

in Fig. 3.4. This mission starts with 8 meters ascending, followed by 15 sec hovering,

60 sec zigzag path tracking, 35 sec velocity control, 42 sec circle path tracking, 20

sec hovering, and 8 meters descending. The mission ends with hovering. For safety

issues, when the measured signals are out of range, the fuel level sensor alarms, or

other possible problems occur, a fault signal is generated which leads the system to the

emergency mode. The hybrid model for this supervisor can be described by a hybrid

automaton HS1 = (VS1 , XS1 , US1 , YS1 , fS1 , InitS1 , InvS1 , ES1 , GuardS1 , ResetS1 , hS1),

where XS1 = t to capture the time. The discrete states and corresponding discrete

outputs are shown in Fig. 3.4. These discrete outputs are commands that activate a

control mode in the coordination layer. The input space of this layer is in the form of
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US1 = UCS1×UDS1 , where UCS1 = YCps1 = XP1 is the current state of the path planner,

and UDS1 = UDse1 × UDsp1 . Here, UDsp1 = YDps1 = Vp1 is the information about the

current discrete mode of the coordination layer, and UDse1 = {CmdStartMission, Fault}

is the set of external events generated by the other sources such as the ground station.

The graph representation for this supervisor is shown in Fig. 3.4.

Figure 3.4: The graph representation of the automaton HS1 as the hybrid model for

supervision layer for a mission with successive tasks.

3.5 The Composed Hybrid System

So far the layers of the control structure are described. However, to establish such a

hierarchy, it is required to introduce a composition operator to synchronize the layers
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of the control hierarchy and to capture their relation. In [90], a definition of parallel

composition for fully connected hybrid systems is introduced. The resulting closed

loop system for such a system is an autonomous unit which cannot be extended to

a multi-agent scenario or a multi-layer structure. In [91] and [92], a more general

definition of composition of hybrid systems has been given in which the components

need not to be fully connected. However in this method, the elements are only

coexist in the combined system and there is no refinement on the transitions and

states of the closed loop system. In contrast, here, we give a new definition of the

composition operator for hybrid systems that can be used for hybrid-multi-agent

systems or a multi-layer hybrid system. Furthermore, it considers a treatment on

the discrete transitions and states of the composed system which leads to a more

simplified system. First, we need to define the composability condition:

Definition 1 Composability of hybrid automata

Hybrid automata H1, H2, . . . , Hn are composable if:

1. Yi
⋂
Yj = ∅, Vi

⋂
Vj = ∅, Xi

⋂
Xj = ∅ for all i 6= j and i, j = 1, ..., n.

2. Ui \ Yi = ∅ for all i = 1, ..., n.

The first condition avoids the conflict between the components and the second

condition guarantees the causality condition.

Definition 2 Composition of hybrid automata

Consider two composable hybrid automata H1 = (V1, X1, U1, Y1, f1, Init1, Inv1, E1,

Guard1, Reset1, h1) and H2 = (V2, X2, U2, Y2, f2, Init2, Inv2, E2, Guard2, Reset2, h2).
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Figure 3.5: Input and output channels for two composed systems.

The composition of H1 and H2, denoted by H1‖H2, is the automaton H = (V , X, U ,

Y , f , Init, Inv, E, Guard, Reset, h), where:

• V = V1 × V2 and X = X1 ×X2.

• U = (U1 \ Y2)× (U2 \ Y1) and Y = Y1 × Y2 (See Fig. 3.5).

• h : V ×X → Y, where h =

 h1 : V1 ×X1 → Y1

h2 : V2 ×X2 → Y2

.

• f : V × X × U → X, and f(v, x, u) =

 f1(v1, x1, u1)

f2(v2, x2, u2)

 =

 f1(v1, x1, (u1\y2, u1 ∩ y2))

f2(v2, x2, (u2\y1, u2 ∩ y1))

 =

 f1(v1, x1, (u11, h21(v2, x2))

f2(v2, x2, (u22, h12(v1, x1))

, where v =

(v1, v2), x = (x1, x2), u = (u1\y2, u2\y1) = (u11, u22), h12 : V1 × X1 →

Y1 ∩ U2, and h21 : V2 ×X2 → Y2 ∩ U1.

• Init = {((v1, v2), (x1, x2))|(v1, x1) ∈ Init1 ∧ (v2, x2) ∈ Init2}.

• Inv = {((v1, v2), (x1, x2), (u11, u22))| ∃ u1, u2 s.t. (v1, x1, u1) ∈

Inv1, (v2, x2, u2) ∈ Inv2, u1 = (u11, u12), u2 = (u22, u21), u11 = u1\y2, u22 =

u2\y1, u12 = u1 ∩ y2 = h21(v2, x2), u21 = u2 ∩ y1 = h12(v1, x1)}.
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• E = {e = ((v1, v2), (v
′
1, v
′
2)) ∈ V × V |(v1, v′1) ∈ E1, (v2, v

′
2) ∈

E2 and Guard(e) 6= ∅} ∪ {e = ((v1, v2), (v
′
1, v
′
2)) ∈ V × V |(v1, v′1) ∈ E1, v2 =

v′2 and Guard(e) 6= ∅} ∪ {e = ((v1, v2), (v
′
1, v
′
2)) ∈ V × V |v1 = v′1, (v2, v

′
2) ∈

E2 and Guard(e) 6= ∅} .

• Guard : E → 2X×U which can be described as Gaurd((v1, v2), (v
′
1, v
′
2)) =

{((x1, x2), (u11, u22)) ∈ X × U |(v1, v′1) ∈ E1, (v2, v
′
2) ∈ E2, ∃u1, u2 s.t.(x1, u1) ∈

Guard1(v1, v
′
1), (x2, u2) ∈ Guard2(v2, v′2)}∪{((x1, x2), (u11, u22)) ∈ X ×U |v1 =

v′1, (v2, v
′
2) ∈ E2, ∃u1, u2 s.t.(v1, x1, u1) ∈ Inv1, (x2, u2) ∈ Guard2(v2, v

′
2)} ∪

{((x1, x2), (u11, u22)) ∈ X × U |(v1, v′1) ∈ E1, v2 = v′2 ∃u1, u2 s.t.(x1, u1) ∈

Guard1(v1, v
′
1), (v2, x2, u2) ∈ Inv2}, where u1 = (u11, u12), u2 = (u22, u21), u11 =

u1 \ y2, u22 = u2 \ y1, u12 = u1 ∩ y2 = h21(v2, x2), u21 = u2 ∩ y1 = h12(v1, x1).

• Reset : E × X × U → 2X where for the composed system is de-

fined as Reset(((v1, v2), (v
′
1, v
′
2)), (x1, x2), (u11, u22)) = {(x′1, x′2) ∈ X|∃u1 =

(u11, u12), u2 = (u22, u21) s.t. ((x1, x2), (u11, u22)) ∈ Guard((v1, v2), (v
′
1, v
′
2)),

x′1 ∈ Reset1((v1, v′1), x1, u1), x′2 ∈ Reset2((v2, v′2), x2, u2)}∪{(x′1, x′2) ∈ X|∃u1 =

(u11, u12), u2 = (u22, u21) s.t. ((x1, x2), (u11, u22)) ∈ Guard((v1, v2), (v
′
1, v
′
2)),

v1 = v′1, x′1 = x1, x
′
2 ∈ Reset2((v2, v

′
2), x2, u2)} ∪ {(x′1, x′2) ∈ X|∃u1 =

(u11, u12), u2 = (u22, u21) s.t. ((x1, x2), (u11, u22)) ∈ Guard((v1, v2), (v
′
1, v
′
2)),

x′1 ∈ Reset1((v1, v
′
1), x1, u1), v2 = v′2, x

′
2 = x2}, where u11 = u1 \ y2, u22 =

u2 \ y1, u12 = u1 ∩ y2 = h21(v2, x2), u21 = u2 ∩ y1 = h12(v1, x1).

Using this hybrid composition operator, the layers of the control hierarchy can be

combined and their discrete transitions can be synchronized. For instance, the regu-
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lation layer HR with the coordination layer HP1 , and the supervision HS1 , together

form a control hierarchy for which the control layers and the data flow between the

layers are shown in Fig. 3.6. The discrete transitions of the layers are synchronized

using the composition operator, and the composed system is shown in Fig. 3.7. This

composed system helps to have more insight into the closed loop behavior by pro-

viding a detailed picture of the continuous evolution and discrete transitions of the

system. Also, since most of the hybrid tools are developed for a single layer hybrid

system, for this composed hybrid model of the system we can apply hybrid analysis

tools such as model checking [93] and verification [94].

Figure 3.6: The layers of the control hierarchy.

3.6 Implementation and Experimental Results

The proposed control structure is implemented in the avionic system of the NUS UAV,

and the supervision layer, HS1 , together with its corresponding coordination layer,
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Figure 3.7: The composed system.
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HP1 , have been used to conduct a flight test. The assigned mission in this experiment

is composed of several successive tasks. The mission starts with ascending, followed

by hovering, zigzag path tracking, velocity control, circle path tracking, hovering,

descending, and hovering. The state variables of the UAV are shown in Fig. 3.8.

The control signals recorded in the flight test are shown in Fig. 3.9. To have a

better sense of the system performance, the reference signals and actual flight test

data in Zigzag Path Tracking, Velocity Control, and Circle Path Tracking modes are

presented in Fig. 3.10. As it can be seen in this figure, the system is able to follow

the given trajectory. Small deviations from the reference path could be due to the

wind disturbances (around 2 to 3 m/s in the horizontal plane) and GPS signal errors

as the position accuracy of GPS is 3m CEP. The video of this flight test is available

at http://uav.ece.nus.edu.sg/video/hybridswitching2.avi.
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Figure 3.8: State variables of the UAV in a mission with successive tasks.
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3.7 Conclusion

In this chapter we developed a hierarchical hybrid control structure for a UAV heli-

copter. This hierarchy consists of three layers: the regulation layer which is respon-

sible for reference tracking; the coordination layer which is responsible for the path

planning, and the supervision layer which is responsible for the task scheduling and

decision making. Each layer was modelled by an hybrid Input/Output automaton

and the discrete transitions and continuous dynamics of the system were simultane-

ously captured within the hybrid framework. Then, a composed hybrid operation

was proposed to synchronize the layers of the control hierarchy and to obtain the

whole closed-loop system. An experiment was done to verify the proposed approach

in which the UAV was involved in a mission composed of several successive tasks. The

experiment was successfully implemented and the actual flight test results showed the
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effectiveness of the control structure.

With the provided hybrid model although we have very detailed information from

inside of the system, the closed loop system is too complicated to be used for further

analysis. Therefore, a more effective computational method should be associated with

this method to be able to be used for more complex tasks such as formation control.

Next chapter is devoted to develop a hybrid formation algorithm which uses some

techniques to abstract the motion space to simplify the system analysis.
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Chapter 4

Hybrid Formation Control of Unmanned

Helicopters

4.1 Introduction

In this chapter, a hybrid supervisory control mechanism is proposed for the UAV

helicopters, involved in a leader follower formation scenario. Hybrid modeling and

control [95], is a powerful framework that can capture both discrete and continuous

dynamics of the system, simultaneously and collectively and provides a comprehensive

analysis for interactions between the discrete part and the continuous evolution of

the system. To propose a formal method for the hybrid supervisory control for a

formation mission, we first introduce a new method of abstraction based on polar

partitioning of the motion space. Then, we utilize multi-affine function properties

over the partitioned space to construct a hybrid model that can be captured by a

finite discrete event system (DES) model. Employing this technique, we will reduce

the original hybrid system with infinite states into a finite state machine that can be

effectively handled by well-established theories of DES supervisory control. Within

the DES supervisory control framework, separate supervisors are designed for reaching

the formation, keeping the formation, and collision avoidance, modularly.
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After designing the DES supervisor, it is shown that due to the bisimulation

relation between the plant and the abstracted system, the designed DES supervisor

for the abstracted system can be applied to the original hybrid model of the plant so

that the closed loop behaviour does not change. The result is then extended to a 3-D

space using spherical partitioning of the motion space.

The rest of the chapter is organized as follows. First, the problem of formation

control is formulated in Section 4.2, and then, Section 4.3 describes the principles of

the polar partitioning of the motion space and utilizes the properties of multi-affine

functions over the partitioned motion space. Using this method, the partitioned

model can be abstracted into a finite state machine. In Section 4.4, the DES model

of the system has been developed and then, a discrete supervisor has been designed

modularly. The simulation results are presented in Section 4.5. In Section 4.6, the

algorithm is extended to the 3-D space. The chapter is concluded in Section 4.7.

4.2 Problem Formulation

In a leader follower scenario in which the leader tracks an arbitrary generated path,

the follower should reach the formation, starting from an initial position inside the

control horizon. After reaching the formation, it should be maintained, while the

whole formation, as a rigid body, needs to jointly follow the trajectory generated by

the leader [96].

As discussed in chapter 2, the control structure of a UAV helicopter is a two-layer

controller whose inner-loop stabilizes the system using H∞ control design techniques
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and its outer-loop is used to drive the system towards the desired position (Fig. 4.1).

Assuming that the inner-loop is fast enough to track the given references, the outer

loop dynamics can be approximately described as follows:

ẋ = u x ∈ R2, u ∈ U ⊆ R2 (4.1)

where x is the position of the UAV; u is the UAV velocity, and U is the constraint set.

Here, we assume that the UAVs are flying in the same altitude, the altitude control

works well, and the follower velocity is in the following form:

Vfollower = Vleader + Vrel (4.2)

where the follower should reach and keep the formation by tuning the relative velocity

Vrel. Alternatively, one can consider a relatively fixed frame (Fig. 4.2), in which the

follower moves with the velocity of Vrel. Here, the control horizon is a neighborhood

of the desired position with the radius of Rm. Now, the formation problem can be

expressed as follows:

Problem 1 Given the dynamics of the follower UAV as (4.1) and its velocity in the

form of (4.2), design the formation controller to generate the relative velocity of the

follower (Vrel), such that starting from any initial state inside the control horizon, it

eventually reaches the desired position, while avoiding the collision between the leader

and the follower. Moreover, after reaching the formation, the follower UAV should

remain at the desired position to keep the formation.

To tackle this problem, we will propose the polar partitioning mechanism in which,

as we will see, the direct path to the desired position is applicable. We also will utilize
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Figure 4.1: Control Structure of the UAV.

the properties of multi-affine functions over the polar partitioned space that will result

in a hybrid system. This partitioned system can be captured by a finite DES model

which is bisimilar to the original model of the plant. Then, we will design a DES

supervisor for the obtained DES model and will apply the resulting supervisor to the

original hybrid model of the plant, as the bisimulation relation guarantees equivalent

behaviors for the DES model and its original model [68].

Figure 4.2: Relative frame; the follower should reach the desired position starting

from any point inside the control horizon.
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4.3 Polar Abstraction of the Motion Space

4.3.1 Polar Partitioning

In the polar coordinate system with 0 ≤ θ < 2π, consider a circle CRm , with the radius

of Rm, which has been partitioned by the curves {r = ri | 0 ≤ ri ≤ Rm, for i < j :

ri < rj , i = 1, ..., nr , r1 = 0, rnr = Rm} and {θ = θj | 0 ≤ θj ≤ 2π, for j < k : θj <

θk , j = 1, ..., nθ, θ1 = 0, θnθ = 2π}. As an example, {ri = Rm
nr−1(i − 1), i = 1, ..., nr}

and {θj = 2π
nθ−1

(j − 1), j = 1, ..., nθ} are such curves that we will use through our

further derivations. Clearly, choosing large partitions reduces the maneuverability of

the UAVs in the partitioned space. Therefore, it is desired to have smaller partitions.

Theoretically we can choose very small partitions for the system with a mass point

model, but it increases the computation cost due to the increase in the number of

discrete states and also it may cause collision between two UAVs that are in adjacent

regions. Therefore, the size of partitions should be bigger than the size of helicopters.

Using this notation, we will have (nr − 1)(nθ − 1) partitioning elements. In this

partitioned space, the region R̄i,j = {p = (r, θ)| ri ≤ r ≤ ri+1, θj ≤ θ ≤ θj+1} is a

subset of the circle CRm surrounded by the above curves. We use the notation Ri,j

to denote the interior of the region R̄i,j. Fig. 4.3, illustrates an example of such

partitioned space with nr = 3 and nθ = 9.

The intersection between the element R̄i,j and the partitioning curves generates

the vertices and the edges (Fig. 4.4). We use V (∗) to denote the set of vertices that

belong to ∗ (∗ can be an edge, a region Ri,j, or the circle CRm), and E(v) for the set
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Figure 4.3: Partition labels.

of edges that vertex v belongs to them.

Figure 4.4: Vertices and Edges in the element Ri,j.

The vertices of the element Ri,j are arranged as shown in Fig. 4.5. To label the

vertices, consider vm with m = (mθ,mr)2, where mθ and mr are the binary indices

refer to the partitioning curves that have generated the vertex vm. For example, if

mr = 1, it shows that the vertex vm of the region Ri,j touches the curve ri+1, and if
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mr = 0, it touches the curve ri. Therefore, we will have v0, v1, v2, and v3 as follows:

v0 = v00 r = ri, θ = θj

v1 = v01 r = ri+1, θ = θj

v2 = v10 r = ri, θ = θj+1

v3 = v11 r = ri+1, θ = θj+1

(4.3)

Figure 4.5: Vertices of the element Ri,j.

The element Ri,j has four edges {E+
r ,E

−
r ,E

+
θ ,E

−
θ } and correspondingly, four outer

normal vectors {n+
r , n

−
r , n

+
θ , n

−
θ } (Fig. 4.6).

Remark 3 The element with ri = 0 (Fig. 4.7), is a special case of the element Ri,j.

In fact, in this element, v0 and v2 are coincident, since for both vertices we have

r = 0; however, their value of θ are different.

In the circle CRm , let’s define C̄ as the circle’s perimeter, and V as the set of

all vertices. Also, consider the detection element d([i, j], [i′, j′]) = R̄i,j ∩ R̄i′,j′ − V ,

which is defined for two regions Ri,j and Ri′,j′ that are adjacent in a common edge.
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Figure 4.6: Outer normals of the element Ri,j .

Figure 4.7: R1,j is a special case of the element Ri,j.
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Indeed, the detection elements are the edges in which the vertices are excluded. With

this procedure, the circle CRm has been partitioned into V ∪Ri,j ∪ d([i, j], [i′, j′])∪C,

where 1 ≤ i, i′ ≤ nr−1, 1 ≤ j, j′ ≤ nθ−1 and C = C̄−V . Correspondingly, consider

Ṽ , R̃i,j, d̃([i, j], [i′, j′]), and C̃ as the labels for these partitioning elements, where

=(r̃) = r relates the label r̃ to the set r. This partitioned space can be captured by

the equivalence relation Q = {(x1, x2)|∃r̃ ∈ {Ṽ , R̃i,j, d̃([i, j], [i′, j′]), C̃} s.t. x1, x2 ∈

=(r̃) and 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1}. Correspondingly, the projec-

tion map πQ(x) shows the partitioning element that x belongs to it: πQ(x) = r̃ ∈

{Ṽ , R̃i,j, d̃([i, j], [i′, j′, ]), C̃} s.t. x ∈ r and =(r̃) = r, where 1 ≤ i, i′ ≤ nr − 1, 1 ≤

j, j′ ≤ nθ − 1.

4.3.2 Properties of Multi-affine Functions over the Parti-

tioned Space

In this section we explain the properties of multi-affine vector fields over the polar

partitioned space. Multi-affine functions are defined as follows:

Definition 3 Multi-affine function [27]

A function g = (g1, g2, ..., gm) : Rn → Rm is said to be multi - affine, if for all

gi : Rn → R, i = 1, ...,m, and for every a1, a2 ≥ 0 satisfying a1 + a2 = 1, the

following equality holds:

gi(x1, ..., (a1xk1 + a2xk2), ..., xn) = a1gi(x1, ..., xk1 , ..., xn) + a2gi(x1, ..., xk2 , ..., xn).

In the following proposition, we will show a very useful property of multi-affine

functions over the circle CRm and its partitioning elements Ri,j. According to the
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following theorem, a multi-affine function over the element Ri,j can be uniquely ex-

pressed in terms of the values of the function at the vertices of Ri,j.

Theorem 1 For a multi-affine function g(x) : R2 → R2 over the region Ri,j, the

following property always holds true:

∀x = (r, θ) ∈ R̄i,j : g(x) =
3∑

m=0

λmg(vm) (4.4)

where vm ∈ V (Ri,j), m = 0, 1, 2, 3, are the vertices of the element Ri,j and λm,

m = 0, 1, 2, 3, are obtained as follows:

λm = λmrr (1− λr)1−mrλmθθ (1− λθ)1−mθ (4.5)

where mr and mθ are the corresponding binary digits of the index m, and

λr =
r − ri
ri+1 − ri

λθ =
θ − θj
θj+1 − θj

Proof: Let x = (r, θ) ∈ Ri,j. Then, from the partitioning procedure, we have: ri ≤

r ≤ ri+1 and θj ≤ θ ≤ θj+1. Hence, r and θ can be written affinely as follows:
r = (1− λr)ri + λrri+1 0 ≤ λr ≤ 1⇒ λr = r−ri

ri+1−ri

θ = (1− λθ)θj + λθθj+1 0 ≤ λθ ≤ 1⇒ λθ =
θ−θj

θj+1−θj

Now, consider a trajectory starting from the vertex v0 to the point x, only along the

polar directions. As an example, v0 = (ri, θj)
step1−→ x1 = (r, θj)

step2−→ x2 = x = (r, θ)

is such a trajectory. In fact, in each step of this trajectory, we change only one

parameter, and fix the other one to take the advantages of multi-affine functions.

When in the function g, the parameter θ is fixed and only r is varying, we use the
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notation gθ to highlight the fixedness of θ. The notation gθ|θk(r) is used to show that

in the function g, the parameter θ is fixed at θk and only r can change. Similarly, we

can define gr and gr|rk(θ) for the case that r is fixed and θ is varying. According to

the definition of multi-affine functions, since in Step 1, the parameter θ is fixed and

only r changes:

g(x1) = gθ|θj(r) = gθ|θj((1− λr)ri + λrri+1) = (1− λr)gθ|θj(ri) + λrgθ|θj(ri+1) =

(1− λr)g(ri, θj) + λrg(ri+1, θj) (4.6)

In Step 2, θ changes and r is fixed. Therefore:

g(x2) = gr|r(θ) = gr|r((1−λθ)θj +λθθj+1) = (1−λθ)gr|r(θj) +λθgr|r(θj+1) = (1−λθ)

g(r, θj) + λθg(r, θj+1) = (1− λθ)gθ|θj(r) + λθgθ|θj+1
(r) (4.7)

In (4.6), we have already obtained gθ|θj(r). The same procedure, can be followed

to obtain gθ|θj+1
(r). Substituting these two values in (4.7), we will obtain g(x2) as

follows:

g(x2) = (1 − λθ)[(1 − λr)g(ri, θj) + λrg(ri+1, θj)] + λθ[(1 − λr)g(ri, θj+1) +

λrg(ri+1, θj+1)] = (1−λθ)(1−λr)g(v0) + (1−λθ)λrg(v1) +λθ(1−λr)g(v2) +λθλrg(v3)

(4.8)

which is equivalent to (4.4).�

Remark 4 It can be verified that for all x = (r, θ) ∈ Ri,j, the resulting coefficients

λm, m = 0, ..., 3, have the property that λm ≥ 0 and
∑3

m=0 λm = 1.
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Corollary 1 For a multi-affine function defined over the element Ri,j and for all

edges Es
q of Ri,j, q ∈ {r, θ} and s ∈ {+,−}, the following property holds true:

∀x = (r, θ) ∈ Es
q : g(x) =

∑
vm∈V (Esq )

λmg(vm) , vm ∈ V (Es
q) (4.9)

where λm can be obtained as follows:

• For the edges E+
r and E−r : λm = λmθθ (1− λθ)mθ

• For the edges E+
θ and E−θ : λm = λmrr (1− λr)1−mr

Proof: This is a special case of Theorem 1 and for the proof, it just needs to follow

Step 1 of the proof of the previous Theorem.�

In the following proposition, we will show that the coefficients in Theorem 1 and

Corollary 1 are unique and there is one and only one multi-affine function over CRm

that have the fixed values of g(vm) at the vertices of Ri,j.

Proposition 1 Consider a map g : R2 → R2 over the region Ri,j. There exists one

and only one multi-affine function f : R2 → R2 satisfying f(vm) = g(vm), for all

m = 0, 1, 2, 3.

Proof: The existence has been already guaranteed by Theorem 1. The proof of

uniqueness is by contradiction. Assume that f is not unique, and there is an-

other multi-affine function f ′ such that f(vm) = f ′(vm) = g(vm), or equivalently,

f ′′(vm) = f(vm) − f ′(vm) = 0, for m = 0, 1, 2, 3. Since f and f ′ are multi-affine, it

follows from the definition that f ′′ = f − f ′ is also multi-affine. Hence, using Theo-

rem 1, ∀x ∈ Ri,j : f ′′(x) =
∑3

m=0 λmf
′′(vm) = 0. Therefore, ∀x ∈ Ri,j, f(x) = f ′(x),
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which contradicts with the assumption.�

4.3.3 Control over the Partitioned Space

Using the properties of the multi-affine functions, we are interested in the behavior of

the trajectories of the system over the elements Ri,j. In particular, we will investigate

that under what conditions the trajectories would remain inside an element Ri,j for

ever (Invariant region), or would deterministicly leave through a particular edge (Exit

edge).

4.3.3.1 Controller for an Invariant Region

In an invariant region, the trajectories of the system will remain inside the region,

regardless of the initial state of the system. The formal definition of the invariant

region is given as follows:

Definition 4 (Invariant region)

In the circle CRm and the vector field ẋ = g(x) , g : R2 → R2, the region Ri,j is said

to be invariant region (Fig. 4.8), if ∀x(0) ∈ int(Ri,j), x(t) ∈ Ri,j for t ≥ 0.

In the following theorem, we will find the conditions to have the region Ri,j as an

invariant region.

Theorem 2 (Sufficient condition for Ri,j to be an invariant region) For a

continuous multi-affine vector field ẋ = g(x), g : R2 → R2, the element Ri,j is an
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Figure 4.8: Invariant region.

invariant region if for each edge Es
q and its corresponding outer normal nsq, q ∈ {r, θ}

and s ∈ {+,−}, we have:

nsq(y)T . g(vm) < 0 ∀vm ∈ V (Es
q), and ∀y ∈ F s

q (4.10)

Proof: According to the Corollary 1, for each Es
q , we have the property that

∀y = (r, θ) ∈ Es
q : g(y) =

∑
λmg(vm), vm ∈ V (Es

q), where λm ≥ 0 and∑
λm = 1. Hence, knowing that nsq(y)T . g(vi) < 0 for all vm ∈ V (Es

q) will result

in nsq(y)T . g(y) < 0, for all y ∈ Es
q . Since g(x) is continuous, it will be concluded that

nsq(y)T . g(y) < 0, for the neighborhood of all y ∈ Es
q . Therefore, the trajectories of the

system cannot touch the edge Es
q . In other words, the trajectories of the system will

never leave Ri,j through the edge Es
q . Since this is true for all edges, the trajectories

of the system do not leave the region Ri,j.�

Corollary 2 (Controller for an invariant region) For a continuous multi-affine

vector field ẋ = h(x, u(x)) = g(x), g : R2 → R2, Ri,j is an invariant region if there
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exists a controller u : R2 → U ⊆ R2, such that for each vertex vm, m = 0, 1, 2, 3,

with incident edges Es
q ∈ E(vm), and corresponding outer normals nsq, q ∈ {r, θ} and

s ∈ {+,−}:

Um(Inv(Ri,j)) = U∩
{
u ∈ R2|nsq(y)T . g(vm) < 0, for all Es

q ∈ E(vm), and ∀y ∈ Es
q

}
6= ∅

(4.11)

where the convex set U represents the velocity bounds.�

Corollary 2 is the direct implication of Theorem 2. The difference is that: firstly, here,

the conditions are arranged in terms of the vertices rather than the edges. Secondly,

we have selected the controller such that the controlled system respects the velocity

bounds. If Um 6= ∅ for m = 0, 1, 2, 3, this controller is feasible. We will use the

notation C0 to label this controller.

Remark 5 In the case that all Um 6= ∅, it is sufficient to pick an arbitrary value

for u(vm) from the set Um. In this situation, g(x) = h(x, u(x)), as a multi-affine

function, satisfies the conditions of Theorem 2 and makes Ri,j an invariant region.

In addition, using Theorem 1, if we construct u as a multi-affine function, since U

is a convex set, the multi-affineness of u(x) will guarantee that u(x) ∈ U , for all

x ∈ Ri,j. In this case, the feedback controller u(x) at each point x ∈ Ri,j is uniquely

determined by the value of u at the vertices of the region Ri,j.

4.3.3.2 Controller for an Exit Edge

When all of the trajectories of the system leave the region from a specific edge, this

edge is called the exit edge and formally can be defined as follows:
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Definition 5 (Exit edge)

In the circle CRm and the vector field ẋ = g(x) , g : R2 → R2, the edge Es
q , q ∈ {r, θ}

and s ∈ {+,−}, is said to be an exit edge (Fig. 4.9), if ∀x(0) ∈ int(Ri,j), there exist

τ (finite) > 0 and τd > 0 satisfying:

1. x(t) ∈ int(Ri,j) for t ∈ [0, τ)

2. x(t) ∈ Es
q for t = τ

3. x(t) /∈ Ri,j for t ∈ (τ, τ + τd)

Figure 4.9: Exit edge.

In the following theorem, we will explain the conditions to have a particular edge

in Ri,j as an exit edge.

Theorem 3 (Sufficient condition for an exit edge) For a continuous multi-

affine vector field ẋ = g(x), g(x) : R2 → R2, the edge Es
q with the outer normal nsq,

is an exit edge if :

1. ns
′

q′(y)
T
. g(vi) < 0 ∀ Es′

q′ 6= Es
q , ∀ y ∈ Es′

q′ , and ∀vi ∈ V (Es′

q′ )

2. nsq(y)T . g(vm) > 0 ∀vm ∈ Ri,j , and ∀ y ∈ Es
q

where q, q′ ∈ {r, θ} and s, s′ ∈ {+,−}.
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Proof: The first requirement, guarantees that the trajectories of the system do not

leave Ri,j through the edges Es′

q′ 6= Es
q . This has been already proven in Theorem 2.

The second requirement is to derive the trajectories of the system out through the

edge Es
q . According to Theorem 1, for the multi-affine function g, there exist λm such

that ∀x ∈ R̄i,j : g(x) =
∑

m λmg(vm), m = 0, 1, 2, 3. Since λm ≥ 0 and
∑

m λm = 1,

then nsq(y)T .λmg(vm) > 0 for all vm. This will lead to have nsq(y)T .g(x) > 0 for all

x ∈ R̄i,j, which means that the trajectories of the system have a strictly positive

velocity in the direction of nsq, steering them to exit from Ri,j through the edge Es
q .�

Corollary 3 (Controller for an Exit edge) For a continuous multi-affine vector

field ẋ = h(x, u(x)) = g(x), g : R2 → R2, Es
q with the outer normal nsq, q ∈ {r, θ}

and s ∈ {+,−}, is an exit edge if there exists a controller u : R2 → U ⊆ R2, such

that for each vertex vm, m = 0, 1, 2, 3, the following property holds true:

Um(Ex(Es
q(Ri,j))) = U

⋂
{nsq(y)T . g(vm) > 0∀vm ∈ Ri,j, and ∀ y ∈ Es

q}
⋂

{ns′q′(y)
T
. g(vm) < 0∀ Es′

q′ 6= Es
q , ∀ y ∈ Es′

q′ , and ∀vm ∈ V (Es′

q′ )} 6= ∅ (4.12)

where the convex set U represents the velocity bounds.�

Corollary 3 is the direct implication of Theorem 3 for which we check the feasibility

of the feedback controller, applying the velocity constraints U . Clearly, if Um 6= ∅,

m = 1, ..., 3, the controller is feasible and we will use Cs
q to label it. Moreover, if we

construct u as a multi-affine function, since U is a convex set, the multi-affineness of

u(x) will guarantee that the resulting system respects the velocity bounds.

86



Here, we will present some results about the properties of the exit edge controller

that will be used through our further derivations.

Lemma 1 For a multi-affine vector field ẋ = g(x), g : CRm → R2, in region Ri,j

with the exit edge Es
q , constructed by Theorem 3, following properties are concluded:

1. The trajectories that leave the region do not return back any more.

2. The points on the exit edge are not reachable from other points on the edge.

3. The trajectory that has reached the exit edge, leaves it immediately.

proof : As observed in the proof of Theorem 3, respecting the second condition of

this theorem leads to have nsq(y)T .g(x) > 0 for any x ∈ R̄i,j and any y ∈ Es
q . In

particular this is true for the points on Edge Es
q : n

s
q(y)T .g(y) > 0, ∀y ∈ Es

q . This

strictly positive inequality guarantees that the trajectory reaches the exit edge, leaves

it upon reaching the edge so that it can neither move along the edge nor return back.�

Lemma 2 For a multi-affine vector field ẋ = g(x), g : CRm → R2, in region Ri,j

with the exit edge Es
q constructed by Theorem 3, the trajectories that leave the region

only can pass through the detection elements.

proof : Strictly negative inequalities in Condition 1 of Theorem 3 guarantees that

the trajectory of the system cannot pass through the non exit edges. Therefore, the

trajectory of the system cannot pass through the vertices common between the exit

edge and non exit edges. Hence, the only way is that the trajectory leaves the region

through the detection elements.�
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Proposition 2 For a multi-affine vector field ẋ = g(x), g : CRm → R2, in region

Ri,j with the exit edge Es
q constructed by Theorem 3, all y ∈ Es

q are reachable from a

point inside region Ri,j.

proof : As the system dynamics is continuous Lipschitz, and since any y ∈ Es
q is not

reachable form the adjacent region (Part 1, Lemma 1) or from another point on Es
q

(Part 2, Lemma 1), then there is a point inside region Ri,j on the neighborhood of y

from which y is reachable.�

4.3.4 Abstraction of the Motion Space

Now, consider the original system which is defined over the partitioned space. The

equivalence relation Q, defined in Section 4.3.1, describes this partitioned space. The

system over the partitioned space can be captured by a transition system TQ =

(XQ, XQ0 , UQ,→Q, YQ, HQ), where

• XQ = V ∪Ri,j∪d([i, j], [i′, j′])∪S is the set of system states, where 1 ≤ i, i′ ≤

nr − 1, 1 ≤ j, j′ ≤ nθ − 1.

• XQ0 is the set of initial states. Assuming that the system initially starts from

inside one of the regions Ri,j, XQ0 =
⋃
Ri,j, where 1 ≤ i, i′ ≤ nr − 1, 1 ≤

j, j′ ≤ nθ − 1.

• UQ = Ua ∪ Ud, where

– Ua = {C+
r , C

−
r , C

+
θ , C

−
θ , C0} is the set of labels corresponding to the

controllers that can make the region Ri,j an invariant region or can make
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one of its edges an exit edge. For these control labels, as discussed in

Section 4.3.3, the sets of control actions that can be activated in this region

are : r(Cs
q ) = {u(x)|u(x) =

∑
m λmu(vm), m = 0, 1, ..., 3, vm ∈ V (Ri,j),

u(vm) ∈ Um(Ex(Es
q))}, and r(C0) = {u(x)|u(x) =

∑
λmu(vm), vm ∈

V (Ri,j), u(vm) ∈ Um(Inv(Ri,j))}, where λm can be obtained by (4.5).

– Ud = Uc ∪ Ue is the set of the detection events, where Uc = {d̂([i, j],

[i′, j′])| 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1. Here, d̂([i, j], [i′, j′]) is an

event that shows the detection element d([i, j], [i′, j′]) has been crossed

and Ue is the set of external events such as entering an alarm zone of

collision.

• (x, x′, v) ∈→Q, denoted by x
v−→Q x′, if and only if one of the following condi-

tions holds true:

1. Actuation:

– Exit edge: v ∈ {Cs
q | q ∈ {r, θ} , s ∈ {+,−}}; πQ(x) 6= πQ(x′);

∃R̃i,j and d̃([i, j], [i′, j′]) such that πQ(x) = R̃i,j and πQ(x′) =

d̃([i, j], [i′, j′]); ∃τ(finite) and τd > 0 such that ψ(t) : [0, τ+τd]→ R2 is

the solution of ẋ = h(x, r(v)), ψ(0) = x; ψ(τ) = x′, πQ(ψ(t)) = πQ(x)

for t ∈ [0, τ), and πQ(ψ(t)) 6= πQ(x) for t ∈ [τ, τ + τd]. Here, r(v) is

the continuous controller corresponding to the control label v, which

can be constructed as discussed above.

– Invariant region: v = C0; ∃R̃i,j such that πQ(x) = πQ(x′) =

R̃i,j; ψ(t) : R+ → R2 is the solution of ẋ = h(x, r(v)), ψ(0) =
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x, ψ(τ) = x′, and πQ(ψ(t)) = πQ(x) for all t ≥ 0.

2. Detection:

– Crossing a detection element: v ∈ Uc; πQ(x) 6= πQ(x′);

∃R̃i,j, R̃i′,j′ , d̃([i, j], [i′, j′]) such that πQ(x) = d̃([i, j], [i′, j′]) and

πQ(x′) = R̃i′,j′ ; ∃ε > 0, τd > 0 and ∃w ∈ {Cs
q |q ∈ {r, θ} , s ∈

{+,−}} such that ψ(t) : [0, τd + ε] → R2 is the solution of ẋ =

h(x, r(w)), ψ(ε) = x; ψ(τd + ε) = x′, πQ(ψ(t)) = R̃i,j for t ∈ (0, ε),

and πQ(ψ(t)) = R̃i′,j′ for t ∈ (ε, ε+ τd].

– External events: v ∈ Ue, and x = x′. In this case, x is the value of the

system state at the time instant that the event v appears. External

events do not affect the system dynamics.

• YQ = XQ is the output space.

• HQ : X → YQ is the output map. Here, we have chosen HQ(x) = πQ(x).

Although TQ contains only important transitions that either cross the boundaries

or remain inside the regions, still it has infinite number of states and the analysis of

such a system might be difficult. Abstraction [68], is the technique that can reduce

the complexity and can lead to a finite state machine for which the DES supervisory

control tools can be used for the system analysis and control synthesis. For this

purpose, each partitioning element, can be considered one state in the abstracted

model. Hence, the abstract model is a tuple Tξ = (Xξ, Xξ0 , Uξ,→ξ, Yξ, Hξ), where

• Xξ = {R̃i,j| 1 ≤ i ≤ nr − 1, 1 ≤ j ≤ nθ − 1}
⋃
{d̃([i, j], [i′, j′])| 1 ≤ i, i′ ≤

nr − 1, 1 ≤ j, j′ ≤ nθ − 1}, where R̃i,j and d̃([i, j], [i′, j′]) are the labels for
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the regions Ri,j and d([i, j], [i′, j′]), respectively. Note that since the system

starts from a point inside the regions Ri,j and never crosses the vertices (see

Lemma 2), the set V does not need to be considered in the abstracted system.

Moreover, as the circle CRm is the control horizon, its perimeter, C, should not

be crossed.

• Xξ0 = {R̃i,j| 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1}.

• Uξ = Ua ∪ Ud is like what we defined in TQ.

• (r, r′, v) ∈→ξ, denoted by r
v−→ξ r

′, if ∃v ∈ Uξ, x ∈ =(r), x′ ∈ =(r′) such that

x
v−→Q x

′.

• Yξ = Xξ.

• Hξ(r) = r is the output map, which is selected as an identity map.

In general, the abstract model contains all of the behaviors of the partitioned

system, however, the converse might not be always true. If the converse is also true,

we say that they are bisimilar. A bisimulation relation between two transition systems

can be formally defined as follows:

Definition 6 [68] Given Ti=(Qi, Q
0
i , Ui,→i, Yi, Hi), (i = 1, 2), R is a bisimulation

relation between T1 and T2, denoted by T1 ≈R T2, iff:

1. ∀q1 ∈ Q0
1 then ∃q2 ∈ Q0

2 that (q1, q2) ∈ R. Also, ∀q2 ∈ Q0
2 then ∃q1 ∈ Q0

1 that

(q1, q2) ∈ R.

2. ∀q1 →1 q
′
1, and (q1, q2) ∈ R then ∃q′2 ∈ Q2 such that q2 →2 q

′
2 and (q′1, q

′
2) ∈ R.

Also, ∀q2 →2 q′2, and (q1, q2) ∈ R then ∃q′1 ∈ Q1 such that q1 →1 q′1 and
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(q′1, q
′
2) ∈ R.

Theorem 4 The original partitioned system, TQ, and the abstract model, Tξ, are

bisimilar.

Proof : See the Appendix for the proof.�

This bisimulation relation ensures us that the abstract model, Tξ, and the original

system, TQ, behave exactly the same so that for the control synthesis, we can use the

abstract model with finite number of states instead of the original partitioned system

with infinite states, as we will do in the next sections.

4.4 Hybrid Supervisory Control of the Plant

4.4.1 DES Model of the Plant

The finite state machine Tξ can be formally presented by an automaton G =

(X,Σ, α,X0, Xm), where X = Xξ is the set of states; X0 = Xξ0 ⊆ X is the set

of initial states; Xm = {R̃1,j| 1 ≤ j ≤ nθ − 1} is the set of final (marked) states. Σ

is the finite set of events. The sequence of these events forms a string. We use ε

to denote an empty string, while Σ∗ is as the set of all possible strings over the set

Σ including ε. The language of the automaton G, denoted by L(G), is the set of

all strings that can be generated by G, starting from the initial states. The marked

language, Lm(G), is the set of strings that belong to L(G) and end with the marked

states. L(G(x0)) is the set of strings that belong to L(G) and start from the initial

state x0. L̄ is the set of all prefixes to the strings that belong to the language L.
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Here, the event set Σ consists of the actuation events Ua = {Cs
q | q ∈ {r, θ}, s ∈

{+,−}} ∪ {C0}, the crossing detection events Uc = {d̂([i, j], [i′, j′])|1 ≤ i, i′ ≤

nr − 1, 1 ≤ j, j′ ≤ nθ − 1}, and the external event set Ue. The set Ue = {C}

contains the external event C which alarms the UAV that has entered the alarm zone

and there is a danger of collision. The event set Σ consists of the controllable event set

Σc = Ua and uncontrollable event set Σuc = Ud = Uc ∪Ue. The uncontrollable events

are those that cannot be affected by the supervisor. In automaton G, α : X×Σ→ X

is the transition function, which is a partial function and determines the possible

transitions in the system caused by an event. This function is corresponding to →ξ

in Tξ, so that for any r
v−→ξ r

′ we have α(r, v) = r′. Based on the definition of Tξ and

the constructed controllers C0, C
+
r , C

−
r , C

+
θ , C

+
θ , we have:

α(R̃i,j, σ) =



R̃i,j σ = C0

R̃i,j σ ∈ Ue for i 6= 1

d̃([i, j], [i+ 1, j]) σ = C+
r for i 6= nr − 1

d̃([i, j], [i− 1, j]) σ = C−r for i 6= 1

d̃([i, j], [i, j + 1]) σ = C+
θ for j 6= nθ − 1

d̃([i, j], [i, 1]) σ = C+
θ for j = nθ − 1

d̃([i, j], [i, j − 1]) σ = C−θ for j 6= 1

d̃([i, j], [i, nθ − 1]) σ = C−θ for j = 1

α(d̃([i, j], [i′, j′]), σ) = R̃i′,j′ σ = d̂([i, j], [i′, j′])

Some parts of the graph representation of the system automaton are shown in Fig.
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4.10. In this automaton, the arrows starting from one state and ending to another

state represent the transitions, labeled by the events belong to Σ. The states with

an entering arrow stand for the initial states. As it is shown in Fig. 4.10, the system

could start from any of the states R̃i,j.

Figure 4.10: DES model of the plant.

In this model, when the system is in the state R̃1,j, the command C−r leads

the system to an unknown region and the system would become nondeterministic.

Hence, as it is reflected in the expression of α, the command C−r cannot be activated

in this region. Moreover, in the region R̃nr−1,j the command C+
r cannot be activated
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as it leads the system outwards the control horizon. These restrictions are already

considered in the definition of α.

4.4.2 Design of the Supervisor

The logical behavior of the system can be modified by a discrete supervisor to achieve

a desired order of events. Indeed, the supervisor, S, observes the executed events of

the plant G and disables the undesirable controllable strings. Here, we assume that

all of the events are observable. The language and marked language of the closed-loop

system, L(S/G) and Lm(S/G), can be constructed as follows:

(1) ε ∈ L(S/G)

(2) [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ L(S))]⇔ (sσ ∈ L(S/G))

(3) Lm (S/G) = L (S/G) ∩ Lm (G)

where s is the string that has been generated so far, and σ is an event which the

supervisor should decide whether keep it active or not.

Within this framework, we can use the parallel composition to facilitate the con-

trol synthesis. Parallel composition is a binary operation between two automata.

Here, the parallel composition is used to combine the plant discrete model and the

supervisor.

Definition 7 (Parallel Composition) [97] Given G = (XG, ΣG, αG, x0G , XmG)

and S = (XS, ΣS, αS, x0S , XmS), Gcl = G‖S = (Xcl, Σcl, αcl, x0cl , Xmcl) is said to

be the parallel composition of G and S with Xcl = XG ×XS, Σcl = ΣG ∪ ΣS, x0cl =

(x0G , x0S), Xmcl = XmG ×XmS , and ∀x = (x1, x2) ∈ Xcl, σ ∈ Σcl, then αcl(x, σ) =

95





•(αG(x1, σ), αS(x2, σ))

if αG(x1, σ)! and αS(x2, σ)! and σ ∈ ΣG ∩ ΣS

•(αG(x1, σ), x2) if αG(x1, σ)! and σ ∈ ΣG − ΣS

•(x1, αS(x2, σ)) if αS(x2, σ)! and σ ∈ ΣS − ΣG

•undefined otherwise

where α∗(x, σ)! shows the existence of a transition from the state x by the event σ in

system ∗. In this definition, the initial conditions of these automata were assumed to

be the states x0G and x0S . Extending this definition to the case that the automata G

and S have the initial state sets X0G and X0S , the initial state set of the composed

system will be X0cl = Υ(X0G , X0S) ⊆ X0G ×X0S , where the relation Υ describes the

initial states in G and S that are coupled to synchronously generate a string in the

composed system.

In fact, parallel composition synchronizes operand systems on their common

events; however, their private events can transit independently. Next lemma and

Corollary use the parallel composition of the plant and the supervisor to obtain the

closed-loop system.

Lemma 3 [97]

Let G = (X, Σ, α, x0, Xm), be the plant automaton with the initial state of x0

and K ⊆ Σ∗ be a desired language. There exists a nonblocking supervisor S such that

L(S/G) = L(S||G) = K if ∅ 6= K = K̄ ⊆ L(G) and K is controllable. In this case,

S could be any automaton with L(S) = Lm(S) = K.
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Using the above lemma and following the definition of the parallel composition,

the result can be extended to a plant with several initial states:

Corollary 4 Let G = (X, Σ, α, X0, Xm) be the plant with the initial state set X0 =

{x10, x20, ...} and K =
⋃
Ki ⊆ Σ∗ be a desired language where Ki is the desired language

that should be generated starting from xi0. If ∅ 6= Ki = K̄i ⊆ L(G(xi0)) and Ki is

controllable for all i = 1, 2, ..., |X0|, there exists a nonblocking supervisor S such that

L(S/G) = L(S||G) = K. In this case, S could be any automaton that has the initial

state set S0 = {s10, s10, ..., sm0 }, m ≤ |x0|, and for any xi0 there exists a sj0, (xi0, s
j
0) ∈ Υ,

which satisfies Lm(S(sj0)) = L(S(sj0)) = Ki where Υ is the coupling relation between

the supervisor S and the plant G.

Now, deploying the parallel composition and the above corollary, we will design

the supervisor for reaching the formation, keeping the formation, and collision avoid-

ance modularly.

4.4.2.1 Design of the Supervisor for Reaching and Keeping the Formation

For reaching the formation, it is sufficient to drive the UAV directly towards one of

regions R1,j, 1 ≤ j ≤ nθ − 1, located in the first circle. This specification, KF , is

realized in Fig. 4.11. Since, there is another module to handle the collision avoid-

ance, when the event C appears, the formation supervisor should not do any thing

to handle the collision avoidance and lets this alarm to be treated by the collision

avoidance supervisor. It can be seen that KF is controllable as it does not disable

any uncontrollable event.
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Figure 4.11: Realization of reaching and keeping the formation specification.

Based on Corollary 4, there exists a supervisor that can control the plant to

achieve this specification. The supervisor is the realization of the above specification

in which all states are marked. Marking all states of the supervisor, lets the closed

loop marked states to be solely determined by the plant marked states. The supervisor

for reaching the formation and keeping the formation is denoted by SF . The closed

loop system can be obtained using parallel composition: Gcl = SF/G = SF ||G. Here,

the coupling relation is Υ = {(Ri,j, SRRi,j)|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1}.

All of the events are common between the plant and the supervisor. Moreover, it can

be seen that L(SF ) ⊆ L(G) which results in

L(SF/G) = L(G||SF ) = L(G) ∩ L(SF ) = L(SF ) = KF (4.13)

4.4.2.2 Design of the Supervisor for Collision Avoidance Supervisor

When the follower UAV is going to reach the desired position, it might be happened

the case that the follower collide with the leader. More precisely, when the follower

UAV is in region Ri,j and the leader UAV is located in region Ri′,j, and i′ < i, then the
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collision alarm will be generated. If we look at this problem from the relative frame

point of view, the leader UAV has a fixed position in this frame. Therefore, when

the follower detects that the leader is located on its path towards the desired position

(center of circle), it suffices that the follower turns to change its azimuth angle, θ, and

then it can resume reaching the formation task. In other words, the supervisor should

lead the follower to region Ri,j+1 and then resume the mission. This specification,

KC is shown in Fig. 4.12. The supervisor for this task, SC , is the realization of the

collision avoidance specification in which all states are marked. Here, the coupling

relation is Υ = {(Ri,j, SCRi,j)|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1}. Also, all the

events are common between the plant and the supervisor. Hence, L(SC) ⊆ L(G)

which leads to:

L(SC/G) = L(G||SC) = L(G) ∩ L(SC) = L(SC) = KC (4.14)

4.4.2.3 The Closed Loop System

For prefix closed languages KF and KC , we can apply modular synthesis [97], by

the composition of the plant, the reaching and keeping the formation supervisor,

and the collision avoidance supervisor: Gcl = G||SF ||SC . Hence, the closed-loop

system’s language can be achieved as: L(G||SF ||SC) = L(G) ∩ L(SF ) ∩ L(SC) =

L(SF ) ∩ L(SC) = KF ∩KC . The closed-loop automaton, Gcl, is shown in Fig. 4.13.
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Figure 4.12: Realization of the specification for collision avoidance.

Figure 4.13: The closed loop system.
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4.5 Simulation Results

This control architecture has been applied to a leader- follower formation problem.

Let Rm < d. Assume that the follower dynamics is given by (4.1). The control

horizon is 20 meters, and we have selected nr = 5 and nθ = 13. Using Corollaries

2 and 3, the sets Um(Inv(Ri,j)) and Um(Ex(E−r (Ri,j))) for the control labels C0 and

C−r can be achieved. Then, it is sufficient to pick up appropriate values for u(vm) at

each vertex from the sets Um , while respecting the velocity bounds.

According to the above discussion, for the controller C0, the selected values of

u(vm) at the vertices of the region Ri,j are selected as follows:

u(v0) = 1∠(π
2

+ θj − 0.1(θj+1 − θj))

u(v1) = 1∠(π
2

+ θj+1 + 0.1(θj+1 − θj))

u(v2) = 1∠(3π
2

+ θj+1 + 0.1(θj+1 − θj))

u(v3) = 1∠(3π
2

+ θj − 0.1(θj+1 − θj))

where 1 ≤ i ≤ nr − 1 , 1 ≤ j ≤ nθ − 1.

The controller u(x), corresponding to the control label C0 for the region Ri,j, is

in the form of u(x) =
∑3

m=0 λmu(vm) where λm(x) can be obtained through Theorem

2. We can follow the same procedure to construct the controller for the control label

C−r .

Using the above mentioned multi-affine controllers and applying the DES super-

visor, for an initial state inside the region R4,1, the trajectory of the system and
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the generated velocities are shown in Fig. 4.14 and Fig. 4.15, respectively. These

generated velocities should be given to the lower level of control architecture as the

references to be tracked.
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Figure 4.14: Simulation of the system for an initial state inside the region R4,1.

0 10 20 30 40 50 60 70 80 90
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

V
el

o
ci

ty
 (

m
/s

)

 

 

V
x

V
y

Figure 4.15: Generated velocities Vx and Vy for an initial state inside the region R4,1.

The relative distance between the UAV and the desired position is shown in Fig.

4.16. It has finally reached the first circle, i.e., one of the regions R1,j, and the global
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specification has been achieved;
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Figure 4.16: Absolute distance from the desired position.

As another example, to simulate the collision avoidance, when Rm > d, assuming

that the leader is located in R3,1, and the initial state of the follower is inside the

region R4,1, the generated path for the collision avoidance mechanism and reaching

the formation is depicted in Fig. 4.17. The control mechanism was explained in

Section 4.4.2.2. To avoid collision, the follower has first turned to the region R4,2 and

then, it has resumed the reaching the formation.
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Figure 4.17: Collision avoidance mechanism.
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4.6 Extension of the Algorithm to a 3-D Space

In previous parts, the controller was designed for a 2-D formation case under the as-

sumption that the UAV’s attitude remains unchanged and irrelevant, but in fact,

practical applications demand to address the formation problem in a 3-D space.

Therefore, in this section, the previous result is extended to a 3-D space and the

spherical partitioning of the state space is provided. Here, the control horizon is a

sphere, SRm , with the radius of Rm that is centered at the desired position, and the

model of the UAV is

ẋ = u x ∈ R3, u ∈ U ⊆ R3, (4.15)

where x is the position of the UAV; u is the UAV’s velocity reference generated by

the formation algorithm, and U is the velocity constraint set, which is a convex set.

The formation problem can be stated as follows:

Problem 2 Given the dynamics of the follower UAV as (4.15) and its velocity in

the form of Vfollower = Vleader + Vrel, design the formation controller to generate the

relative velocity of the follower, Vrel, such that starting from any initial state inside

the control horizon, it eventually reaches the desired position, while avoiding the inter-

collision between the leader and the follower. Moreover, after reaching the formation,

the follower UAV should remain at the desired position.
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4.6.1 Spherical Partitioning

Consider a plant with continuous dynamics of ẋ = g(x) = h(x, u(x)), defined over the

sphere SRm , with the radius of Rm, where u(x) is the control value computed based on

feedbacked position of the system. The sphere SRm can be partitioned in the spherical

coordinate system with r ≥ 0, 0 ≤ θ < 2π, and 0 ≤ φ ≤ π (Fig. 4.18(a)). The curves

{r = ri | 0 ≤ ri ≤ Rm, for i < j : ri < rj , i, j = 1, ..., nr , r1 = 0, rnr = Rm},

{θ = θi | 0 ≤ θi ≤ 2π, for i < j : θi < θj , i, j = 1, ..., nθ, θ1 = 0, θnθ = 2π}, and

{φ = φi | 0 ≤ φi ≤ π, for i < j : φi < φj , i, j = 1, ..., nφ, , φ1 = 0, φnφ = π },

with nr, nθ, nφ ≥ 2, partition the control horizon SRm . Equivalently partitioning,

we will use {ri = Rm
nr−1(i − 1), i = 1, ..., nr}, {θj = 2π

nθ−1
(j − 1), j = 1, ..., nθ}, and

{φk = π
nφ−1

(k − 1), k = 1, ..., nφ} as the partitioning curves.

In the partitioned space, the region R̄i,j,k = {x = (r, θ, φ)| ri ≤ r ≤ ri+1, θj ≤ θ ≤

θj+1, φk ≤ φ ≤ φk+1} is a subset of SRm surrounded by the above curves. We use the

term Ri,j,k to denote the interior of the region R̄i,j,k. The intersection between the

region R̄i,j,k and the partitioning curves is called a face and could be 0-dimensional, 1-

dimensional, or 2-dimensional, which are named as vertex, edge, and facet, respectively

(Fig.4.18(b)). Each region Ri,j,k has eight vertices, vm, m = (mφmθmr)2, where mφ,

mθ, and mr are the binary indices refer to the partitioning curves that have generated

the vertex. For example, if mr = 1, it shows that the vertex vm of the region Ri,j,k

touches the curve ri+1, and if mr = 0, it touches the curve ri. The set V (∗) stands

for the vertices that belong to ∗ (∗ can be a facet, a region Ri,j,k, or the sphere SRm),

and F (vm) is the set of facets that the vertex vm belongs to them. Furthermore, the
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(a) (b) (c)

Figure 4.18: (a) The partitioned sphere (b) Vertices, edges, and facets of the element

Ri,j,k, and (c) Outer normal vectors of the element Ri,j,k.

element Ri,j,k has six facets {F+
r ,F

−
r ,F

+
θ ,F

−
θ ,F

+
φ ,F

−
φ } and correspondingly, six outer

normal vectors {n+
r , n

−
r , n

+
θ , n

−
θ , n

+
φ , n

−
φ } as shown in Fig. 4.18(c). The exception is

when the region Ri,j,k touches the origin or the z axis. In this case, some of the

vertices are coincident.

In the sphere SRm , let’s define S̄ as the sphere surface, and E as the set of

all edges and vertices. Also, consider the detection element d([i, j, k], [i′, j′, k′]) =

R̄i,j,k∩R̄i′,j′,k′−E, which is defined for two regionsRi,j,k andRi′,j′,k′ that are adjacent in

a common facet. Indeed, the detection elements are the facets in which the edges and

the vertices are excluded. With this procedure, the sphere SRm has been partitioned

into E ∪Ri,j,k ∪ d([i, j, k], [i′, j′, k′])∪S, where 1 ≤ i, i′ ≤ nr−1, 1 ≤ j, j′ ≤ nθ−1, 1 ≤

k, k′ ≤ nφ−1 and S = S̄−E. Correspondingly, consider Ẽ, R̃i,j,k, d̃([i, j, k], [i′, j′, k′]),

and S̃ as the labels for these partitioning elements, where =(r̃) = r relates the label

r̃ to the set r.
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Using the properties of multi-affine functions we will have:

Theorem 5 For a multi - affine function g(x) : SRm → R3, the following property

holds:

∀x = (r, θ, φ) ∈ R̄i,j,k : g(x) =
∑
m

λmg(vm), m = 0, 1, 2, ..., 7, (4.16)

where vm ∈ V (Ri,j,k) are the vertices of the element Ri,j,k and λm can be obtained

uniquely as follows:

λm = λmrr (1− λr)1−mrλmθθ (1− λθ)1−mθλ
mφ
φ (1− λφ)1−mφ , (4.17)

where mr, mθ, mφ are the corresponding binary digits of the index m, and

λr =
r − ri
ri+1 − ri

λθ =
θ − θj
θj+1 − θj

λφ =
φ− φk

φk+1 − φk

Proof : The proof is similar to the proof of Theorem 1.�

4.6.2 Control over the Spherical Partitioned Space

Extending Theorem 2 and Theorem 3 to a spherical partitioned space, one can design

the control signals at the vertices so that a region Ri,j,k becomes an invariant region

or one of its facet becomes an exit facet:

Theorem 6 Sufficient condition for Ri,j,k to be an invariant region: For a

multi - affine vector field ẋ = g(x), g : SRm → R3, Ri,j,k is an invariant region if for

each facet F s
q and its corresponding outer normal nsq, q ∈ {r, θ, φ} and s ∈ {+,−} the

following inequality holds:

nsq(y)T .g(vm) < 0, ∀vm ∈ V (F s
q ), ∀y ∈ F s

q (4.18)
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Theorem 7 Sufficient condition for an Exit facet: For a multi - affine vector

field ẋ = g(x), g : SRm → R3, the facet F s
q with the outer normal nsq, q ∈ {r, θ, φ}

and s ∈ {+,−}, is an exit facet if :

1. ns
′

q′(y)T .g(vm) < 0 ∀vm ∈ V (F s′

q′ ), ∀y ∈ F s′

q′ , q
′ 6= q, or s′ 6= s

2. nsq(y)T .g(vm) > 0 ∀vm ∈ V (Ri,j,k), for all y ∈ F s
q

Therefore, to make the region Ri,j,k an invariant region, the value of the control

signal at the vertices, u(vm), should be chosen such that g(vm) = h(vm, u(vm)) falls in

the set Um(Inv(Ri,j,k)) = Invm(Ri,j,k) ∩ U , for m = 0, ..., 7, where Invm(Ri,j,k) is the

eligible set for the vertex vm so that g(vm) satisfies the conditions of Theorem 6, and U

is the velocity bound, which comes from the practical limitations. If Um(Inv(Ri,j,k)) 6=

∅, for all m = 0, ..., 7, then, making the region Ri,j,k an invariant region is feasible.

Based on Theorem 5, having the value of the control function u at the vertices of the

region, it is possible to construct the multi-affine controller u(x) for all x ∈ R̄i,j,k. We

will use the notation C0 to label this controller.

To make the facet F s
q an exit facet, similar to the invariant controller, it is suf-

ficient to choose the values of u(vm) such that g(vm) = h(vm, u(vm)) falls in the set

Um(Ex(F s
q (Ri,j,k))) = Exm(F s

q (Ri,j,k)) ∩ U , where Exm(F s
q (Ri,j,k)) is the eligible set

for the vertex vm that satisfies the exit facet condition for F s
q (Ri,j,k) as explained in

Theorem 7, and U is the velocity constraint. Therefore, for the region Ri,j,k, if all of

Um(Ex(F s
q (Ri,j,k))) 6= ∅, m = 0, ..., 7, then corresponding to each of its facets, F+

r ,

F−r , F+
θ , F−θ , F+

φ , F−φ , there are controllers that can make them exit facet. We label

these controllers as C+
r , C−r , C+

θ , C−θ , C+
φ , C−φ , respectively.
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Using this set of controllers over the partitioned space, the plant can be ab-

stracted into a finite state machine and can be presented by an automaton G =

(X,Σ, α,X0, Xm), where X = {R̃i,j,k| 1 ≤ i ≤ nr − 1, 1 ≤ j ≤ nθ − 1, 1 ≤

k ≤ nφ − 1}
⋃
{d̃([i, j, k], [i′, j′, k′])| 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤

k, k′ ≤ nφ − 1}, is the set of states where R̃i,j,k and d̃([i, j, k], [i′, j′, k′]) are the la-

bels for the regions Ri,j,k and d([i, j, k], [i′, j′, k′]), respectively. X0 = {R̃i,j,k| 1 ≤

i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′ ≤ nφ − 1} is the set of initial states;

Xm = {R̃1,j,k| 1 ≤ j ≤ nθ − 1, 1 ≤ k ≤ nφ − 1} is the set of final (marked)

states. Σ is the finite set of events. Here, the event set Σ consists of the actua-

tion events Ua = {Cs
q | q ∈ {r, θ, φ}, s ∈ {+,−}}∪ {C0}, the crossing detection events

Uc = {d̂([i, j, k], [i′, j′, k′])|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′ ≤ nφ − 1},

and the external event set Ue. The set Ue = {C} contains the event C which alarms

about the collision. The event set Σ consists of the controllable event set Σc = Ua

and uncontrollable event set Σuc = Ud = Uc ∪ Ue. In automaton G, α : X × Σ → X

is the transition function, which is a partial function and determines the possible

transitions in the system caused by an event which can be defined as follows
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α(R̃i,j,k, σ) =



R̃i,j,k σ = C0

R̃i,j,k σ ∈ Ue for i 6= 1

d̃([i, j, k], [i+ 1, j, k]) σ = C+
r for i 6= nr − 1

d̃([i, j, k], [i− 1, j, k]) σ = C−r for i 6= 1

d̃([i, j, k], [i, j + 1, k]) σ = C+
θ for j 6= nθ − 1

d̃([i, j, k], [i, 1, k]) σ = C+
θ for j = nθ − 1

d̃([i, j, k], [i, j − 1, k]) σ = C−θ for j 6= 1

d̃([i, j, k], [i, nθ − 1, k]) σ = C−θ for j = 1

d̃([i, j, k], [i, j, k + 1]) σ = C+
φ for k 6= nφ − 1

d̃([i, j, k], [i, j, k − 1]) σ = C−φ for k 6= 1

α(d̃([i, j, k], [i′, j′, k′]), σ) = R̃i′,j′,k′ σ = d̂([i, j, k], [i′, j′, k′])

Some parts of the graph representation of the system automaton are shown in

Fig. 4.19.

Next, we ill design the discrete supervisor for this discrete model.

4.6.3 Designing the Supervisor for a Formation Mission over

a the Spherically Partitioned Space.

For reaching the formation, it is sufficient to activate the event C−r to drive the

follower UAV towards one of the sectors in the first circle. After reaching one of the

regions R1,j,k, 1 ≤ j ≤ nθ − 1, 1 ≤ k ≤ nφ − 1, the UAV should remain there. This

specification, KF , is realized in Fig. 4.20. When the UAV is not in the first sphere,
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Figure 4.19: DES model of a spherically partitioned plant.
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the command C−r will be generated to push the UAV towards the origin. Entering a

new state, the event d([i, j, k], [i′, j′, k′]) will appear to show the current state of the

system. This will continue until the event d([i, j, k], [1, j′, k′]) being generated, which

shows that the formation is reached. In this case, the event C0 will be activated, which

keeps the system trajectory in the region. It can be seen that KF is controllable as

it does not disable any uncontrollable event.

Based on Lemma 4, there exists a supervisor that can control the plant to achieve

this specification. The supervisor is the realization of the above specification in which

all states are marked. Marking all states of the supervisor allows the closed-loop

marked states to be solely determined by the plant marked states. The supervisor

for reaching the formation and keeping the formation is denoted by SF . The closed-

loop system can be obtained using the parallel composition: Gcl = SF/G = SF ||G.

Here, the coupling relation is Υ = {(Ri,j,k, SRRi,j,k)|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤

nθ − 1, 1 ≤ k, k′ ≤ nφ − 1}. All of the events are common between the plant

and the supervisor. Moreover, it can be seen that L(SF ) ⊆ L(G) which leads to:

L(SF/G) = L(G||SF ) = L(G) ∩ L(SF ) = L(SF ) = KF .

4.6.3.1 Collision Avoidance Supervisor

When the follower UAV is going to reach the desired position, in some situations, the

follower may collide with the leader. If the leader is located in the way of the follower

towards the desired position and the follower enters the alarm zone, a collision alarm

will be generated. More precisely, assume that the follower is in region Ri,j,k, and
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Figure 4.20: The realization of reaching and keeping the formation specification.

Figure 4.21: The realization of collision avoidance specification, KC .
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the leader is in region Ri′,j,k and i′ < i, then the collision alarm will be generated. If

we look at this problem from the relative frame point of view, the leader UAV has a

fixed position in this frame, and therefore, for the collision avoidance, it suffices that

the follower turns to change its azimuth angle, θ, and then it can resume reaching the

formation task. In other words, by activating the command C+
θ , the supervisor should

lead the follower to region Ri,j+1,k and then resume the mission. For this purpose, the

collision avoidance supervisor only changes the generatable language after happening

the event C and lets the rest be treated by the formation supervisor. The collision

avoidance specification, KC , is shown in Fig. 4.21. Here, the coupling relation is

Υ = {(Ri,j,k, SCRi,j,k)|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1, 1 ≤ k, k′ ≤ nφ − 1}.

Again, all of the events are common between the plant and the supervisor, SC . Hence,

L(SC) ⊆ L(G) which leads to: L(SC/G) = L(G||SC) = L(G)∩L(SC) = L(SC) = KC ,

where KC is the collision avoidance specification.

4.6.3.2 The closed-loop system

Hence, the closed-loop system’s language can be achieved as: L(G||SF ||SC) = L(G)∩

L(SF ) ∩ L(SC) = L(SF ) ∩ L(SC) = KF ∩ KC . The closed-loop automaton, Gcl, is

shown in Fig. 4.22.

4.6.4 Simulation Results

To verify the proposed algorithm, we have used a hardware-in-the-loop simulation

platform [85] developed for NUS UAV helicopters [98]. In this platform, the nonlinear
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Figure 4.22: The closed loop system.

dynamics of the UAVs have been replaced with their nonlinear model, and all software

and hardware components that are involved in a real flight test remain active during

the simulation so that the simulation results achieved from this simulator are very

close to the actual flight tests. This multi-UAV simulator test bed is used to simulate

the algorithm for the following cases:

4.6.4.1 Simulation of Reaching the Formation and Collision Avoidance

First, to monitor the reaching the formation and the collision avoidance behaviour

of the UAVs, assume that the leader has a fixed position and the follower should

reach the desired position with respect to the leader. The controller, u(x), drives the

UAV inside the spherical partitioned space. This control signal is generated using

the control mechanism described in Section 4.6.2. The control horizon is a sphere of

diameter 50m. The partitioning parameters are selected as nr = 15, nθ = 20, and

nφ = 10. To construct the controllers C0, C
+
r , C−r , C+

θ , C−θ , C+
φ , and C−φ , we can

apply Theorem 6 and 7, respectively. Now, assume that the relative distance between

the follower and the desired position is (dx, dy, dz) = (−17,−18,−8). Hence, the

initial state of the system is R8,13,5. Also, assume that the leader is in R7,13,5. Since
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the leader is located on the path of follower towards the desired position, a collision

avoidance alarm will be generated to activate the collision avoidance mechanism and

to push the follower UAV to avoid collision. The collision avoidance behavior of the

system is shown in Fig. 4.23. The projection of the relative distance between the

follower and its desired position onto the x − y plane is shown in Fig. 4.24. The

follower first has moved towards the region R8,14,5 to avoid the collision, and then, it

has resumed reaching the formation to complete the mission.
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Figure 4.23: The position of the UAV for the collision avoidance mechanism.

4.6.4.2 Simulation of Keeping the Formation

To monitor reaching and keeping the formation, let the leader track a circle with the

diameter of 20m and choose the partitioning parameters like the previous mentioned

scenario. The follower is initially located at (dx, dy, dz) = (−20,−20,−20) with

respect to the leader. It is expected that after a while, the follower reaches the

relative distance of (dx, dy, dz) = (5, 5, 5) with respect to the leader. The behavior

of the follower UAV is shown in Fig. 4.25. As it can be seen the follower has finally
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Figure 4.24: The relative distance between the follower and the desired position for

the collision avoidance mechanism projected onto x-y plane.

reached the desired formation and has successfully kept it.
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Figure 4.25: The position of the UAVs in a circle formation mission.

4.7 Conclusion

In this chapter, we proposed a new approach of hybrid supervisory control for the

leader follower formation problem. The approach was based on the polar partitioning
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of the motion space. Several multi-affine feedback controllers were designed to keep

the system inside a partitioning element or derive it out through the desired direction.

These multi-affine feedback controllers were then used to establish a hybrid controller

that makes the controlled system able to reach the formation, starting from any

arbitrary initial position inside the control horizon. In addition, a collision avoidance

mechanism was embedded in the controller in a modular way. After reaching the

formation, the supervisor will keep the obtained configuration. The switching between

different modes of operation were properly handled by the supervisor and it can be

guaranteed that the system will reach the final states due to the bisimilarity relation

between the abstracted system and the original plant in the proposed abstraction

approach. Then, the method was extended to a 3-D space using spherical abstraction

of the motion space.

Next chapter will discuss some implementation issues on the proposed algorithm

and will demonstrate actual flight test results for this algorithm.
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Chapter 5

Implementation Issues and Flight Test

Results for the Proposed Hybrid

Formation Algorithm

5.1 Introduction

In the previous chapter, we proposed a hybrid supervisory control algorithm for UAV

helicopters which integrated the discrete supervisory logic of the system and its con-

tinuous low level control and addressed all parts of a formation mission within a

unified framework. The approach was based on polar abstraction of the motion space

and utilizing the properties of multi-affine functions over the partitioned space. This

abstraction technique, can convert the original continuous system with infinite states

into a finite state machine for which one can use the well developed theory of super-

visory control of discrete event systems (DES) [67]. Due to the proven bisimulation

relation, the abstracted system can behave as the same as the original system so that

the discrete supervisor, designed for the discrete finite model, can be applied to the

original system. However, there are certain issues that need to be considered before

applying the designed supervisor to the real flying systems.
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This chapter focuses on the implementation issues of the proposed algorithm.

More specifically, firstly, an interface layer is introduced to connect the discrete su-

pervisor layer to the continuous plant. This interface layer on the one hand converts

the continuous signals of the plant into some symbols understandable by the discrete

supervisor, and on the other hand, translates discrete commands of the supervi-

sor into continuous signals applicable to the continuous plant. Secondly, the time

scheduling of the events being generated by the system has been investigated and has

been correspondingly considered in the implementation of the supervisor. Thirdly, a

control scheme is proposed to smoothly transit through the partitioning elements so

that there is no jump in the generated control signal when the system transit from

one region to the adjacent region. Finally, the proposed algorithm has been verified

through actual flight tests.

The rest of this chapter is organized as follows. In Section 5.2, a hierarchical

hybrid control structure is proposed which has the discrete supervision layer on the

top, and an interface layer which connects the supervision layer to the continuous

plant. Section 5.3 describes implementation issue for the algorithm. The flight test

results are demonstrated in Section 5.4. The chapter is concluded in Section 5.5.
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5.2 Hierarchical Control Structure for the Forma-

tion Control

In chapter 4, we designed a discrete supervisor which pushes the system trajectories

to pass through the desired regions. The designed discrete supervisor cannot directly

be connected to the continuous plant. Hence, it is required to construct an interface

layer which can translate continuous signals of the plant to a sequence of discrete

symbols understandable for the supervisor. Also, the interface layer is responsible

to convert discrete commands received from the supervisor, to continuous control

inputs to be given to the plant. These two jobs are respectively realized by the blocks

Detector and Actuator embedded in the interface layer as it is shown in Fig. 5.1. In

this control hierarchy, the supervisor layer was discussed in Section 4.4.2. Here, the

elements of the interface layer are explained in the following section.

Figure 5.1: Linking the discrete supervisor to the plant via an interface layer.
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5.2.1 The Interface Layer

5.2.1.1 The Detector Block

When the system’s trajectory crosses the boundaries of the region, a detection event

will be generated which informs the supervisor that the system has entered a new

region.

More specifically, a detection event d̂([i′, j′], [i, j]) will happen at t(d̂([i′, j′], [i, j]))

when the system’s trajectory x(t) satisfies the following conditions:

• ∃τ > 0 such that x(t) /∈ Ri,j for t ∈ (t(d̂([i′, j′], [i, j]))− τ, t(d̂([i′, j′], [i, j]))

• ∃τd > 0 such that x(t) ∈ Ri,j for t ∈ [t(d̂([i′, j′], [i, j])), t(d̂([i′, j′], [i, j])) + τd)

Also, if the leader position locates in the way of the follower towards the desired

position, the event C will be generated to inform the supervisor about the risk of

collision.

5.2.1.2 The Actuator Block

Having the information about the newly entered region, the supervisor can issue a

discrete command to push the system trajectory to move towards the desired region.

However, the discrete symbols generated by the supervisor need to be translated to a

continuous form. For such a purpose, we utilize the properties of multi-affine function

by which we can design continuous controllers that drive the system’s trajectory to

either exit from one of its edges or to stay in the current region for ever.

Solving the inequalities given in Corollaries 2 and 3, for the dynamics given in
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(4.1) the following control values at the vertices of the region Ri,j can make it an in-

variant region or can make one of its edges an exit edge. For the invariant controller,

the control label is C0 and the control values at the vertices are:

u(v0) = 1∠(θj + 0.5 | θj − θj+1 + π
2
|)

u(v1) = 1∠(θj + π − 0.5 | θj − θj+1 + π
2
|)

u(v2) = 1∠(θj+1 − 0.5 | θj − θj+1 + π
2
|)

u(v3) = 1∠(θj+1 + π + 0.5 | θj − θj+1 + π
2
|)

To have the edge E+
r as the exit edge, the control label is C+

r and the control values

at the vertices are:
u(v0) = u(v1) = 1∠(θj + 0.5 | θj − θj+1 + π

2
|)

u(v2) = u(v3) = 1∠(θj+1 − 0.5 | θj − θj+1 + π
2
|)

To have the edge E−r as the exit edge, the control label is C−r and the control values

at the vertices are:
u(v0) = u(v1) = 1∠(θj + π − 0.5 | θj − θj+1 + π

2
|)

u(v2) = u(v3) = 1∠(θj+1 + π + 0.5 | θj − θj+1 + π
2
|)

To have the edge E+
θ as the exit edge, the control label is C+

θ and the control values

at the vertices are:

u(v0) = 1∠(θj + 0.5 | θj − θj+1 + π
2
|)

u(v1) = 1∠(θj + π − 0.5 | θj − θj+1 + π
2
|)

u(v2) = 1∠(θj+1 + 0.5 | θj − θj+1 + π
2
|)

u(v3) = 1∠(θj+1 + π − 0.5 | θj − θj+1 + π
2
|)

To have the edge E−θ as the exit edge, the control label is C−θ and the control values

at the vertices are:
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u(v0) = 1∠(θj − 0.5 | θj − θj+1 + π
2
|)

u(v1) = 1∠(θj + π + 0.5 | θj − θj+1 + π
2
|)

u(v2) = 1∠(θj+1 − 0.5 | θj − θj+1 + π
2
|)

u(v3) = 1∠(θj+1 + π + 0.5 | θj − θj+1 + π
2
|)

Now, the responsibility of the actuator is to relate the discrete symbols ud ∈

{C0, C
−
r , C

+
r , C

+
θ , C

−
θ } to the continuous control signal uc(x). Using the properties of

multi-affine functions described in Theorem 1, the control signal can be constructed

as uc(x) = f(x, ud) =
∑3

m=0 λm(x)u(vm), where u(vm),m = 0, ..., 3, are the control

values at the vertices corresponding to the control label ud.

5.2.2 Applying the Discrete Supervisor to the Continuous

Plant via the Interface Layer

In Section 4.4.2, a discrete supervisor was designed for the discrete model of the

plant. Here, we will show that this discrete supervisor can be applied to the original

system via the interface layer, while the same result can be achieved and the desired

specification still is achievable.

Theorem 8 With the aid of interface layer, the discrete supervisor S = SC ||SF

can be applied to the original partitioned system, TQ, so that the closed-loop system

satisfies the required specification, KF ∩KC.
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Proof: As constructed in Section 4.3.4, the plant and the interface layer elements,

together with the actuator and the detector, form the transition system TQ. Theorem

4 shows that this transition system can be bisimilarly abstracted to the finite state

machine Tξ for which we designed the discrete supervisor. Due to the bisimilarity of

TQ and Tξ, the designed supervisor for Tξ can work for TQ so that their closed-loop

system behaviors are the same.�

5.3 Implementation Issues

5.3.1 Time Sequencing of the Events

An important issue in the designed control structure is the time scheduling of the

events. In the proposed framework, we assume that the discrete control signals , C0,

C+
r ,C−r , C+

θ , or C−θ , can be applied after entering a new region, unless a collision

alarm be generated which requires an immediate reaction. But, the question is that,

transiting to a new region, when should exactly the new control signals be applied to

the system?

Indeed, from practical reasons, the detector cannot recognize entering a region

until the system trajectory crosses the region’s boundary. This is why in the definition

of the exit edge we have considered a time delay τd > 0. Only after this time delay,

the controller can be ensured that the system trajectory has transited to a new region

and hence, a new actuation event C0, C
+
r ,C−r , C+

θ , or C−θ , can be generated based on

the desired behavior. This also guarantees that the resulting model is not Zeno [99],
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meaning that the number of discrete transitions in a finite time is finite.

More precisely, when the last visited region is Ri,j and the supervisor detects

an event d̂([i, j], [i′, j′]), it means that the system trajectory has entered the new

region Ri′,j′ . Then, a control command Cs
q will be generated which pushes the system

trajectory to enter another region Ri′′,j′′ . Again, when the system’s trajectory crosses

the boundaries of the region Ri′′,j′′ , this will cause the event d̂([i′, j′], [i′′, j′′]) to appear.

Hence, for the successive events d̂([i, j], [i′, j′]), Cs
q , d̂([i′, j′], [i′′, j′′]), we will have:

t(d̂([i, j], [i′, j′])) < t(Cs
q ) < t(d̂([i′, j′], [i′′, j′′])) (5.1)

To consider the time delay τd > 0, the sequence of the events should respect the

following condition:

t(Cs
q ) ≥ t(d̂([i, j], [i′, j′])) + τd (5.2)

5.3.2 Smooth Control over the Partitioned Space

When the system trajectory enters a new region, a new discrete command will be

generated. This may cause the discontinuity in the generated control signal to be

applied to the lower levels of the control structure.

Fig. 5.2, shows a case that the control command C−r has pushed the system’s

trajectory to transit from the region R1 to the region R2. After reaching the region

R2, the control command has changed from C−r to C+
θ . Since the generated continuous

control signal is a multi-affine function, based on Corollary 1, the control value at
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Figure 5.2: The control value at the vertices while transiting through the regions.

any point on the edges is determined by the control values at its vertices. In this

example, u(v0(R1)) = u(v1(R2)) but u(v2(R1)) 6= u(v3(R2)). Since, the control values

at the vertices of the common edge between R1 and R2 change, there is a jump on

the generated continuous control signal. Next theorem shows how we can resolve this

problem.

Theorem 9 Let the command Cs
q steers the system’s trajectory from the region

Ri,j to the region Ri′,j′ and then, the supervisor issues the new command Cs′

q′ . For

this transition, the multi-affine controller u(x) =
∑

vm∈Vc λm~(u(vm)new, u(vm)old) +∑
vm∈Vn λm(u(vm)) provides a continuous control signal, while preserving the bisimu-

lation relation given in Theorem 4.

where λm, m = 0, 1, 2, 3, are given in Theorem 1, Vn is the set of vertices whose

control values do not change due to the transition, and Vc is the set of vertices whose

control values change after the system’s trajectory enters the region Ri′,j′. For these

vertices, u(vm)old and u(vm)new are the control values at the vertex vm before and
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after transiting to Ri′,j′, respectively. The function ~ provides a smooth rotation from

u(vm)old to u(vm)new and it can be presented as ~(u(vm)new, u(vm)old) =
rm∠( t

4tθmnew + (1− t
4t)θmold) t < ∆t

rm∠θmnew t ≥ ∆t

where u(vm)new = rm∠θmnew , u(vm)old = rm∠θmold, and ∆t is the transition time.

Proof: Let Cs
q = C−r and Cs′

q′ = C+
θ . As shown in Fig. 5.2, for this sequence of

control commands, after transiting from Ri,j to Ri′,j′ , the control value at the vertex

v3 changes from u(v3)old to u(v3)new, and for the other vertices vm, m = 0, 1, 2, there

is no jump for the value of the vector field.

From the definition of the transition rule, ~, since for the whole transition time,

the control values at the vertices satisfy the conditions of Corollary 2, the system’s

trajectory cannot leave the region through the edges E0,2, E0,1, E1,3. However, at

the beginning of the transition mode, the control values at the vertex v3 does not

satisfy the conditions of Theorem 3, and hence, it cannot be concluded that the

system’s trajectory leaves the region through E2,3. But, at some time, u(v3) will

reach u(v3)new, and the configuration of the vector field at the vertices will eventually

satisfy the conditions of Theorem 3 so that it can be guaranteed that the system’s

trajectory for sure leaves the region Ri′,j′ through the edge E2,3, while there is no

jump at the value of the control signal due to the smooth transition of the control

values at the vertices. The same reasoning can be done for the other sequences of the

control commands.�
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5.4 Implementation Results

To verify the algorithm, we have conducted several flight tests. In the first scenario,

to monitor reaching the formation behavior of the UAVs, the follower should reach

the desired position with respect to a fixed leader. In this test the control horizon

Rm = 50m, nr = 10, and nθ = 20. The follower is initially located at a point which

has a relative distance of (dx, dy) = (−40,−5) with respect to the desired position

as shown in Fig. 5.3. The follower state variables and control signals are shown in

Fig. 5.4 and Fig. 5.5, respectively. The follower UAV position in the relative frame

is shown in Fig. 5.6. As it can be seen the follower UAV has started from the region

R9,11 and finally has reached the region R1,11 which is located in the first circle and

hence, the formation has been achieved.

Figure 5.3: The schematic of the scenario with a real follower and a virtual fixed

leader.

In the second scenario, to monitor how the follower is able to maintain the

achieved formation, the leader tracks a line path, and the follower should reach and
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Figure 5.4: The state variables of the follower.

Figure 5.5: Control signals of the follower UAV.
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Figure 5.6: The leader position in the relative frame.

keep the formation. In this test, the control horizon Rm is 50 meter, nr = 10, and

nθ = 20. The follower is initially located at a point which has a relative distance of

(dx, dy) = (−17.8, 11.4) with respect to the desired position and the distance between

the desired position and the leader is (dx, dy) = (−5,−15) as shown in Fig. 5.7.

Figure 5.7: The schematic of the scenario for a leader-follower case for tracking a line.

The position of the UAVs in x-y plane is shown in Fig. 5.8. The follower state

variables and control signals are shown in Fig. 5.9 and Fig. 5.10, respectively. The
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state variables of the leader are shown in Fig. 5.11. The relative distance of the

follower UAV from the desired position is shown in Fig. 5.12. As it can be seen the

follower UAV has finally reached the first circle after 17 sec and then, it has been able

to maintain the formation.

Figure 5.8: The position of the UAVs in the x-y plane.

In the third flight test, the leader path is a circle which is a more complex path.

Here, the control horizon Rm is 50 meter, nr = 10, and nθ = 20. The follower is

initially located at a point which has a relative distance of (dx, dy) = (−30.5, 13.2)

with respect to the desired position and the distance between the desired position and

the leader is (dx, dy) = (−5,−15) as shown in Fig. 5.13. In this test the leader tracks

a circle path with a diameter of 40 m. After a while, the follower reaches the formation

and can keep it for the rest of the mission. The position of the UAVs in x-y plane

is shown in Fig. 5.14. The follower state variables and control signals are shown in
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Figure 5.9: The state variables of the follower.

Figure 5.10: Control signals of the follower UAV.
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Figure 5.11: The state variable of the leader.

Figure 5.12: The distance of the follower from the desired position.
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Fig. 5.15 and Fig. 5.16, respectively. The state variables of the leader and its control

signals during the mission are shown in Fig. 5.17 and Fig. 5.18, respectively. The

relative distance of follower UAV from the desired position is shown in Fig. 5.19. As

it can be seen the follower UAV has finally reached the first circle and the formation

has been achieved. A video for the second and third experiments is available at

uav.ece.nus.edu.sg/video/2dHybridFormation.mpg.

Figure 5.13: The schematic of the scenario for a leader-follower case for tracking a

circle.

In the last case, this algorithm is implemented for the 3-D hybrid formation con-

trol which was explained in Section 4.6. In this experiment, the initial relative distance

between the follower and the desired position is (dx, dy, dz) = (16.1, 22.5,−14.7), and

the distance between the desired position and the desired position is (dx, dy, dz) =

(15, 10, 10). The UAVs’ position are shown in Fig. 5.20. The projection of the relative

distance onto the x-y plane is shown in Fig. 5.21. In this experiment, after a while, the

formation has been reached and it has been successfully maintained. A video of this

experiment is available at http://uav.ece.nus.edu.sg/video/hybridformation.mpg.
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Figure 5.14: The position of the UAVs in the x-y plane.

Figure 5.15: The state variables of the follower.
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Figure 5.16: Control signals of the follower UAV.

Figure 5.17: The state variables of the leader.
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Figure 5.18: Control signals of the leader UAV.

Figure 5.19: The distance of the follower from the desired position.
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Figure 5.20: The position of the UAVs.

Figure 5.21: The relative distance between the UAVs projected onto x-y plane.
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5.5 Conclusion

In this chapter, The implementation issues for the proposed hybrid formation algo-

rithm were investigated. To implement the algorithm, an interface layer was intro-

duced which connects the discrete supervisor to the regulation layer of the UAV. This

interface layer is composed of two main blocks: the detection block to generate the

detection events based on the plant continuous signals; and the actuator block to

convert discrete commands of the supervisor to a continuous form , applicable to the

plant. Also, a method was introduced to smoothly generate control signals during the

transition through the partitioned regions. Several actual flight tests were conducted

to verify the algorithm.
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Chapter 6

Conclusions

This thesis proposed a formal method for the hybrid supervisory control mechanism

for the formation of unmanned helicopters. Formation is a typical cooperative task

and is composed of several subtasks for which a hybrid supervisor is required to

manage the logical rules and govern the continuous low level control of the system.

Therefore, the thesis has addressed two main problems: (1) developing a hybrid

control structure for a single unmanned helicopter in which the low level control and

the discrete decision rules are integrated. (2) developing a hybrid control for team of

UAVs doing a formation mission.

Motivating by these two problems, the main contributions of the dissertation can

be described as follows:

• Focusing on the low level control of the UAVs, a two-layer controller was devel-

oped for the NUS UAV helicopter. The lower level is an H∞ controller, which

is responsible for the control of the attitude of the UAV. It provided a stable

and robust control performance for the UAV in the hovering mode. The higher

layer aims at the position control of the UAV and consists of a P-controller

combined with a nonlinear transformation. This control structure makes the

UAV able to perform the path tracking mission. The control structure was im-
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plemented on the NUS UAV helicopter and experimental results showed that

the UAV is able to follow the generated path or do stable hovering successfully.

• To distribute the control tasks among the layers, a hierarchical hybrid con-

trol structure was developed for a UAV helicopter. This hierarchy consists of

three layers: the regulation layer which is responsible for reference tracking; the

coordination layer which is responsible for the path planning, and the super-

vision layer which is responsible for the task scheduling and decision making.

Each layer was modelled by an Input/Output hybrid automaton and the dis-

crete transitions and continuous dynamics of the system were simultaneously

captured within the hybrid framework. Then, a composed hybrid operation

was proposed to synchronise the layers of the control hierarchy and to obtain

the whole closed-loop system. Using this control structure, a flight test was

conducted to verify the proposed approach. In this experiment the UAV was

successfully involved in a mission composed of several successive tasks.

• A new approach of hybrid supervisory control for the leader follower formation

problem was proposed. The approach was based on the polar partitioning of

the state space. Several multi-affine feedback controllers were designed to keep

the system inside a partitioning element or drive it out through the desired

direction. These multi-affine feedback controllers were then used to establish a

hybrid controller that makes the controlled system able to reach the formation,

starting from any arbitrary initial position inside the control horizon. In addi-

tion, a collision avoidance mechanism was embedded in the control structure
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in a modular way. After reaching the formation, the supervisor will keep the

obtained configuration. Moreover, the velocity bounds were applied through

the design procedure.

• The proposed hybrid supervisory control mechanism was extended to a 3-D

space. For this purpose, a spherical partitioning method was used to abstract

the system to find a finite state model of the partitioned space. The general

procedure is similar to the 2-D case, however, since the model is different, the

designed supervisor was accordingly changed to accomplish the formation task.

• The implementation issues for the proposed hybrid formation control method

were investigated. To apply the discrete supervisor to the original continuous

plant, an interface layer was developed which is composed of two main blocks:

the detection block that generates the detection events based on the plant con-

tinuous signals; and the actuator block that converts discrete commands of

the supervisor to a continuous form, applicable to the plant. Also, a control

mechanism was proposed which generate a smooth control signal for the reg-

ulation layer while preserve the bisimilulation relation between the abstract

model and the original continuous system. Furthermore, the proposed forma-

tion algorithm was implemented and several actual flight tests were conducted

to verify the algorithm.

This dissertation may represent a promising step towards developing and imple-

menting a hybrid supervisory control framework for the cooperative control of UAVs.

The method was developed for a leader-follower scenario for two UAV helicopters.
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However, there is a potential to extend the results for more complicated tasks and

take the advantages of symbolic control techniques for the abstracted model of the

system. Therefore, the following directions could be considered for future studies

based on the achievements of this thesis:

• The algorithm was developed for two UAV helicopters. A practically important

problem is to extend the method for a multi-follower scenario. In this case, the

formation specification is a global task for a team of UAVs and to develop a de-

centralized control structure, it is required to design local controllers to satisfy

the global specification. Another important challenge is that a more advance

collision avoidance mechanism is required. Here, the collision avoidance can be

modelled by a safety property and using symbolic control techniques, a hybrid

controller can be designed to satisfy this goal.

• Having a more advance collision avoidance mechanism, the method can be

used to develop a hybrid formation reconfiguration mechanism. Indeed, an

interesting feature is to have a team of UAVs that can quickly respond and

reconfigure for different tasks or scenarios. For instance, to avoid an obstacle

one way is to breaking the formation and after the avoidance of the obstacle,

the team members can merge and reconfigure back to the original formation.

This feature, also improve the team flexility in the sense that the formation

can be reconfigured based on the assigned tasks which may be changed during

the mission.

• The method was developed for a mass point model of the unmanned helicopters,
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whereas the approach can be extended to more complex multi-affine dynamics.

Furthermore, through the design procedure, only the velocity constraints were

applied while it is desired to consider other constraints such as acceleration

bounds and turning rates.
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Chapter 7

APPENDIX

7.0.1 Proof for Theorem 4

Consider the relation R = {(qQ, qξ)|qQ ∈ XQ, qξ ∈ Xξ, and qQ ∈ =(qξ)}. We will

show that this relation is a bisimulation relation between TQ and Tξ.

Let’s start with the first condition of the bisimulation relation, defined in Defi-

nition 6. For any qQ ∈ XQ0 there exists a region Ri,j such that qQ ∈ Ri,j. For this

region, there exists a label, R̃i,j such that Ri,j = =(R̃i,j) and R̃i,j ∈ Xξ0 . Hence,

(qQ, R̃i,j) ∈ R. Conversely, it can be similarly shown that for any qξ ∈ Xξ0 , there

exists a qQ ∈ XQ0 such that (qξ, qQ) ∈ R.

For the second condition of the bisimulation relation, following from the definition

of Tξ, for any (qQ, qξ) ∈ R and qQ
u−→Q q′Q, there exists a transition qξ

u−→ξ q
′
ξ, where

q′Q ∈ =(q′ξ) or equivalently (q′Q, q
′
ξ) ∈ R. For the converse case, assume that qξ

u−→ξ q
′
ξ.

According to the definition of R, all x ∈ =(qξ) are related to qξ. Hence, to prove the

second condition of the bisimulation relation, we should investigate it for all x ∈ =(qξ).

Based on the control construction procedure, the labels u, qξ, and q′ξ can be one of

the following cases:

1. u = C0 and qξ = q′ξ. In this case, since the controller C0 makes the region

an invariant region (Theorem 2), all of the trajectories starting from any qQ ∈
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=(qξ) will remain inside the region =(qξ). Therefore, for any qQ ∈ =(qξ), there

exists a q′Q ∈ =(qξ) such that qQ
u−→Q q

′
Q and q′Q = =(q′ξ).

2. u ∈ Cs
q , qξ ∈ {R̃i,j| 1 ≤ i ≤ nr − 1, 1 ≤ j ≤ nθ − 1}, and q′ξ ∈

{d̃([i, j], [i′, j′])| 1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1}. In this case, based

on Theorem 3 and Lemma 2, starting from any qQ ∈ =(qξ), the controller

Cs
q drives the system trajectory towards the detection element =(q′ξ). There-

fore, for any qQ ∈ =(qξ), there exists a q′Q ∈ =(q′ξ) such that qQ
u−→Q q′Q and

q′Q ∈ =(q′ξ).

3. u ∈ Uc = {d̂([i, j], [i′, j′])|1 ≤ i, i′ ≤ nr − 1, 1 ≤ j, j′ ≤ nθ − 1} and q′ξ ∈

{R̃i′,j′ | 1 ≤ i′ ≤ nr − 1, 1 ≤ j′ ≤ nθ − 1}, and qξ ∈ {d̃([i, j], [i′, j′])| 1 ≤ i, i′ ≤

nr−1, 1 ≤ j, j′ ≤ nθ−1}. In this case, based on Lemma 2, for any qQ ∈ =(qξ)

there exists a controller v ∈ Cs
q that has led the trajectory of the system

from the region Ri,j to the point qQ on the detection element d([i, j], [i′, j′]).

Since Ri′,j′ is the unique adjacent region of the element Ri,j, common in the

detection element d([i, j], [i′, j′]), based on the definition of the controller for

the exit edge and Theorem 3, the controller v leads the trajectory of the system

to a point inside the region Ri′,j′ so that the detection event u = d̂([i, j], [i′, j′])

is generated. Therefore, for any qQ ∈ =(qξ), there exists a q′Q ∈ =(q′ξ) such that

qQ
u−→Q q

′
Q and q′Q ∈ =(q′ξ).

4. u ∈ Ue is the external event. In this case, the state of the system does not

change, meaning that qQ = q′Q and qξ ∈ q′ξ. Therefore, trivially for any qQ ∈

=(qξ) and qξ
u−→ξ q

′
ξ, we have qQ

u−→Q q
′
Q, where q′Q ∈ =(q′ξ).
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In all of the above mentioned cases, the second condition of the bisimulation relation

for the converse case holds true. Hence, Tξ and TQ are bisimilar.�
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