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Summary

We establish some new existence and multiplicity results for positive solutions of

the following Einstein-scalar field Lichnerowicz equations on compact manifolds (M, g)

without the boundary of dimension n > 3,

−∆gu+ hu = fu
n+2
n−2 + au−

3n−2
n−2 ,

with either a negative, a zero, or a positive Yamabe-scalar field conformal invariant h.

These equations arise from the Hamiltonian constraint equation for the Einstein-scalar

field system in general relativity.

The variational method can be naturally adopted to the analysis of the Hamilto-

nian constraint equations. However, it arises analytical difficulty, especially in the case

when the prescribed scalar curvature-scalar field function f may change sign. To our

knowledge, such a problem in its most generic case remains open.

Finally, we establish some Liouville type results for a wider class of equations with

constant coefficients including the Einstein-scalar field Lichnerowicz equation with con-

stant coefficients.
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1.2.2 The Einstein-scalar field constraint equations . . . . . . . . . . . . . . . . . . . 7
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1.4 Structure of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

The Einstein theory of relativity or general relativity is a geometric theory of grav-

itation. In this theory, gravity is considered as a geometric property of space and time.

Because of the geometric property of space and time, general relativity partially in-

cludes both special relativity and the Newton law of universal gravitation as special

cases. Theoretically, general relativity describes objects in large scale, like the universe,

as Lorentzian manifolds on which gravitation interacts and the universe evolves over

time through a system of partial differential equations known as the Einstein equa-

tions. Being the central object of the theory, studying the Einstein equations becomes

a significant subject in order to understand the whole theory.

In an effort to solve the general Einstein equations, physicists first try to tackle the

equations in some simple cases. Fortunately, some remarkably solutions have been found

in this direction. Although general relativity nearly coincides with the Newton law of

universal gravitation, those known solutions for the Einstein equations in particular

cases have led theoretical physicists to predict some new phenomena which deserve

investigation carefully. However, much less is known about the solutions of the general

Einstein equations. On the other hand, due to the geometric nature of the theory,

solving the general Einstein equations turns out to be a wonderful research topic not

only for physicists but also for mathematicians, pushing the development of the research

rapidly.

However, along with the rapid development of the research, it poses many challenging

problems to mathematicians, for example, the initial value problems, the well-posedness

problems, the global stability problems, etc. Among these problems, the initial value
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problems which have their own interest from the mathematical point of view turns

out to be the most interesting problem since it involves the theoretical question of the

beginning and the end of our universe. When solving the initial value problems, one

needs to solve the so-called constraint equations that form an under-determined system

of equations which are not easy to solve. For this reason, understanding the constraint

equations is a key step to understanding the initial value problems.

This chapter provides a brief description of the constraint equations for the general

Einstein equations, while a more detailed discussion of the Einstein equations with field

sources is given in Chapter 2. The content of this chapter was basically adapted from

[8], see also [30, 7]. Before we describe the constraint equations, we will briefly recall

the Einstein equations in general relativity.

1.1 The Einstein equations in general relativity

1.1.1 The Einstein equations

Let (V,g) be a differentiable manifold of dimension n + 1 equipped with a non-

degenerate, smooth, symmetric metric tensor g which, unlike a Riemannian metric,

needs not be positive-definite, but must be non-degenerate. Such a metric is called a

pseudo-Riemannian metric and, clearly, its values can be positive, negative or zero.

With a pseudo-Riemannian metric g, the pair (V,g) is called a pseudo-Riemannian

manifold, or simply we call V a pseudo-Riemannian manifold if metric g is already

known.

If we further assume that the signature of metric g is (1, n), that is, (−,+ · · ·+),

then g is called a Lorentzian metric and (V,g) becomes a Lorentzian manifold. In

general relativity, the main objects of study are spacetimes. A spacetime in general

relativity is a Lorentzian manifold. An usual spacetime manifold is of dimension four,

but higher dimensions are considered in the aim of unification of gravitation with the

other fundamental forces of nature, electromagnetism, weak and strong interactions,

and also in super-symmetric theories. There is a priori no restriction on the topology

of spacetime.

We assume throughout this chapter that (V,g) is a Lorentzian manifold of dimension

n+1. Like other field equations in physics, the original Einstein equations can be derived

from an action through the principle of least action. More precise, the action∫
V

(Scalg +L) dvolg (1.1.1)

is required to be stable under compact perturbations of the metric where L is the

Lagrangian associated with non-gravitational fields. When L = 0, the action (1.1.1)

is known as the Einstein-Hilbert action. By computing the variation of (1.1.1) with

respect to g, we obtain the field equation

Ricg−
1

2
Scalg g = T (1.1.2)
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where the left hand side of (1.1.2) is known as the Einstein tensor which is denoted

by Einsg. If we look at the computation carefully, we then see that the Einstein tensor

is a multiple of the variation of
∫
V Scalg dvolg with respect to g while the tensor T

is a multiple of the variation of
∫
V L dvolg with respect to g and is known as the

stress-energy tensor. By taking the trace of the Einstein tensor, we arrive at

trace Einsg =
1− n

2
Scalg .

A vacuum space time is a Lorentzian manifold (V,g) that satisfies (1.1.2) with T = 0.

In this case, we can take the trace of (1.1.2) to find Scalg = 0 and obtain the vacuum

Einstein equations Ricg = 0. The fully Einstein equations (with cosmological constant)

may be written in the following form

Einsg +Λg = T

where Λ is constant called the cosmological constant. The cosmological constant term

was originally introduced by Einstein to allow for a static universe. It is clear to see

that the cosmological term could be absorbed into the stress-energy tensor T as dark

energy.

1.1.2 Real scalar fields

As can be seen from the previous section, the Einstein equations involve the so

called stress-energy tensor T representing the density of all the energies, momentum,

and stresses of the sources. On a macroscopic scale, one can couple gravity to either field

sources or matter sources such as electromagnetic fields, Yang-Mills sources, and scalar

fields. While the latter are more phenomenological, the former, which are deduced di-

rectly from special relativity, are one of the simplest non-vacuum models which are the

core of studies in recent years. In addition, interest in those models stems partly from

recent attempts to use such models to study the observed acceleration of the expan-

sion of the universe. Throughout this thesis, we only focus on the Einstein equations

equipped with scalar fields.

In modern cosmology, one can introduce on the spacetime (V,g) a real scalar field

ψ with potential U as a smooth function of ψ. A particular Einstein field theory is

specified by the choice of an action principle with

L = −1

2
|∇ψ |2g − U(ψ). (1.1.3)

This choice of action principle also includes the well-known massive or massless Klein-

Gordon field theory where U(ψ) = 1
2m

2ψ2. In view of the Einstein–Hilbert action and

by a fairy standard computation, one can easily deduce that

Tαβ = ∇αψ∇βψ−
1

2
gαβ∇µψ∇µψ−gαβU(ψ).

It is worth noticing that a cosmological constant Λ can be considered as a particular

scalar field with potential Λ. For this reason, we do not consider the cosmological term

in our Einstein equation.
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In view of the contracted Bianchi identities, the scalar field ψ is supposed to satisfy

the following wave equation

∇α∇αψ= U ′(ψ).

Of course, this equation should be coupled to the field equations (1.1.2).

1.1.3 The Cauchy problem for the Einstein equations and the

Einstein constraint equations

Since g is a pseudo-Riemannian metric, that metric naturally splits each tangent

space into three regions depending on the sign of g. A vector X is called timelike,

spacelike, or null if g(X,X) is negative, positive, or zero respectively. Therefore, a

curve is said to be timelike, spacelike, or null if its tangent vector at every point is

timelike, spacelike, or null respectively. Similarly, we say a hypersurface M of V is

timelike, spacelike, or null if its tangent space at every point has a spacelike, timelike,

or null normal vector respectively.

A spacelike hypersurface M of V is called a Cauchy surface if every inextensible

timelike curve in V intersects M once and only once. One can easily observe that not

every Lorentzian manifold V admits a Cauchy surface. For those that admit a Cauchy

surface are called globally hyperbolic. The globally hyperbolic property of Lorentzian

manifold plays an important role since it is well-known that every globally hyperbolic

Lorentzian manifold always admits a continuous, globally defined, timelike vector field

F so that a time orientation can be defined through F . With the choice of time ori-

entation, any timelike vector X is said to be future or past if g(F,X) is negative or

positive respectively.

Since the Einstein equations are geometric equations, one can expect solutions of the

Einstein equations verifying the causality principle, that is, the relativistic spacetime

future cannot influence the past. Based on two works by Leray [26] and Geroch [17],

we know that the globally hyperbolic spacetime (V,g) are topological products M ×R
with each M × {t} intersected once by each inextensible timelike curve. In view of our

definition above, such a submanifold M × {t} is a Cauchy surface.

In order to formulate an appropriate Cauchy problem for the Einstein equations, we

assume that the globally hyperbolic spacetime (V,g) admits M as a Cauchy surface.

We let g be the Riemannian metric on M induced by g. Having such a Cauchy surface,

we let n be the future pointing timelike unit normal vector to M . We also let K be the

extrinsic curvature of M computed with respect to n. We are now able to formulate the

Cauchy problem for the Einstein equations intrinsically through the following definition,

see [8, Chapter VI].

Definition 1.1.

1. An initial data set is a triplet (M, g,K) where M is an n-dimensional smooth man-

ifold, g is a properly Riemannian metric on M and K a symmetric 2-tensor.

2. A Cauchy development of an initial data set is a spacetime (V,g) such that there

exists an embedding ι : M → V enjoying the following properties
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(a) The metric g is the pullback of g by ι, that is, g = ι∗g. In other words, if M is

identified with its image ι(M) = M0 in V , then g is the metric induced by g on

M0.

(b) ι(K) is the second fundamental form of ι(M) as submanifold of (V, g).

3. A Cauchy development (V,g) of (M, g,K) is called a Einsteinian development if

the metric g satisfies the Einstein equations on V .

We now suppose that V is a Cauchy development of (M, g,K). If it is also true that

every Cauchy development of (M, g,K) can be isometrically embedded in V , we say

V is called the maximal development of (M, g,K). It is easy to see that a maximal

development is unique up to isomorphism.

We have seen that in order to generate a Cauchy development the initial data

(M, g,K) for the Einstein equations cannot be arbitrary, they must satisfy some con-

ditions. In view of the Gauss-Codazzi equations, those conditions can be rewritten in

a form consisting two equations known as the Hamiltonian and momentum constraints

as shown below

• The Hamiltonian constraint

H(g,K) = Scalg −|K|2g + (tracegK)2 − 2T (n,n) = 0; (1.1.4)

• The momentum constraint

M(g,K) = ∇g ·K −∇g tracegK − T (·,n) = 0; (1.1.5)

where n is an unit vector normal to the slice M .

The quantity T (n,n), denoted by ρ, is often called the matter energy density (or

simply energy density) while the quantity T (·,n), denoted by J , is often called the

matter momentum density (or simply momentum density) which is a vector on M de-

termined by the projection on M and the normal to M , when embedded in a spacetime

(V,g), of the tensor T of the sources.

Conversely, we wish that for given initial data verifying those constraint equations

above, one can generate a corresponding Cauchy development the for initial data. The

following theorem due to Y. Choquet-Bruhat and R. Geroch shows that these constraint

equations also give us a sufficient condition.

Theorem 1.1 (See [9]). Given smooth initial data (M, g,K) satisfying the constraint

equations, there exists a smooth, maximal, globally hyperbolic Cauchy development of

the initial data.

Consequently, there is a strong connection between the globally hyperbolic Cauchy

development of the initial data and the Einstein constraint equations. However, there

is no one-to-one correspondence between solutions of the Einstein constraint equations

and their globally hyperbolic maximal Cauchy developments in the sense that two

distinct solutions of the Einstein constraint equations may generate isometric globally

hyperbolic maximal Cauchy developments. Nevertheless, as a first step, it is important

to understand solutions of the constraint equations.



6 Introduction

1.2 The conformal method

As can be seen, the couple of constraint equations consist of n+1 equations (a scalar

equation and an n-vector equation) with more than n+ 1 unknowns (for example, the

metric g consists of n(n+1)
2 components). Since the constraint equations form an under-

determined system, they are in general hard to solve. Fortunately, we have a technique

known as the conformal method that can be used in most of cases, see [14].

1.2.1 Background of the conformal method

The basic idea of the conformal method is to equalize the number of equations and

the number of unknowns in such a way that the resulting system is determined. More

specific, the idea of the conformal method is to split the set of initial data (M, g,K)

into the following two catalogue

• Conformal data: Degrees of freedom that can be freely chosen; and

• Determined data: Degrees of freedom that are to be found by solving a determined

system of partial differential equations

We now discuss the method more precise. The conformal data basically consists of

(g, σ, τ) where g is a metric, σ is a symmetric 2-tensor, and τ is a number. In order

to reduce the number of unknowns, we select g as a metric of the conformal class [g]

represented by the metric g. Concerning to the 2-tensor σ and the number τ , they come

from the second fundamental form K. To be exact, they are the weighted traceless part

and the trace of K with respect to g. The determined data now consists of a function

u, the conformal factor, and a vector field W . Mathematically, these quantities fulfill

the following

g = u
4

n−2 g,

K = u−2(σ + LgW ) +
τ

n
u

4
n−2 g,

(1.2.1)

where L is the conformal Killing operator relative to g.

In the case when gravity is coupled with real scalar fieldsψ, the conformal data now

includes more information, that is (g, σ, τ, ψ, π), where ψ is the scalar field restricted

to M and π is the normalized time derivative of ψ restricted to M .

Using this relationship and the change of the scalar curvature under conformal

transformations, one can recast the Einstein constraint equations (1.1.4)–(1.1.5) into

the following

4(n− 1)

n− 2
∆gu− Scalgu+ |σ + LgW |2gu

−3n+2
n−2 −

(
n− 1

n
τ2 − 2ρ

)
u
n+2
n−2 = 0 (1.2.2)

and

divg(LgW ) =
n− 1

n
u

2n
n−2∇gτ + u

2(n+2)
n−2 J. (1.2.3)

As can be seen, the question of solving the Einstein constraint equations now be-

comes solving the recast constraint equations (1.2.2)–(1.2.3) for u and W . Unfortu-

nately, without making additional assumptions, solving these recast constraint equa-

tions still remains open, even for the vacuum case. In order to seek for additional
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assumptions, let us consider these recast constraint equations in the vacuum case, that

is
4(n− 1)

n− 2
∆gu− Scalgu+ |σ + LgW |2gu

−3n+2
n−2 − n− 1

n
τ2u

n+2
n−2 = 0 (1.2.4)

and

divg(LgW ) =
n− 1

n
u

2n
n−2∇gτ. (1.2.5)

Since (1.2.4)–(1.2.5) form a coupled system of partial differential equations, the most

simplest way to deal with (1.2.4)–(1.2.5) is to decouple (1.2.4)–(1.2.5). Apparently, this

can be achieved if one assumes that τ is constant.

Since tracegK = τ , the resulting solutions of the constraint equations are known as

constant mean curvature solutions, or CMC solutions. It turns out that this technical

assumption on the mean curvature plays a crucial role in the conformal method. To see

this more precise, it was remarked in [22] that the conformal method can be effectively

applied in most cases. For example, in the vacuum Einstein case, a complete picture of

the solvability of the constraint equations on compact manifolds was obtained under

the CMC assumption in a remarkable work of Isenberg [22]. Subsequently, several sim-

ilar results were obtained for asymptotically hyperbolic and asymptotically Euclidean

manifolds, see [23, 12]. Equally importantly, CMC solutions of the constraint equations

for several field sources such as the Einstein–Maxwell and the Einstein–Yang–Mills have

already been achieved.

1.2.2 The Einstein-scalar field constraint equations

Unlike those cases mentioned above where we do know exactly which sets of confor-

mal data lead to solutions and which do not, the solvability of the constraint equations

with field sources is less understood both in the CMC and the non-CMC cases. This is

because when the conformal method is applied in this setting, the constraint equations

include terms of types which are not seen in these other cases.

In order to see this, let us mention the decomposition of scalar field initial data (ψ, π).

Since the decomposition of (g,K) has locally introduced n + 1 unknowns function (u

and the components of W ), and since there are n+ 1 constraint equations to solve, in

the scalar field decomposition we must not introduce any new unknowns. One readily

finds that the only decomposition that satisfies these objectives is given as follows

ψ = ψ,

π = u−
2n
n−2π.

(1.2.6)

Combining these decompositions, we can write out the constraint equations as the

following

−4(n− 1)

n− 2
∆gu+ (Scalg −|∇ψ|2g)u

= −
(
n− 1

n
τ2 − 2U(ψ)

)
u
n+2
n−2 + (|σ + LgW |2g + π2)u

−3n+2
n−2

(1.2.7)

and
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divg(LgW ) =
n− 1

n
u

2n
n−2∇gτ − π∇gψ. (1.2.8)

By denoting

Rg,ψ =
n− 2

4(n− 1)
(Scalg −|∇ψ|2g),

Bτ,ψ =
n− 2

4(n− 1)

(
n− 1

n
τ2 − 2U(ψ)

)
,

Ag,W,π =
n− 2

4(n− 1)
(|σ + LgW |2g + π2),

(1.2.9)

one can see that (1.2.7) simply becomes

−∆gu+Rg,ψu = −Bτ,ψu
n+2
n−2 +Ag,W,πu−

3n−2
n−2 . (1.2.10)

Unlike in the vacuum case, one can easily see that, in (1.2.10), the sign of the

coefficient Bτ,ψ does not maintain a constant sign on M since it involves the potential

U . In addition, the sign of the coefficient Rg,ψ does depend not only on the metric g,

but also on the scalar field ψ. These major differences bring a lot of difficulties for the

analysis of solvability.

Recently, in the elegant paper of Choquet-Bruhat et al. [11], the authors discov-

ered the Yamabe-scalar field conformal invariant Yψ([g]) which plays a similar role as

the Yamabe conformal invariant Y([g]) in the study of the Yamabe problem, see [3].

Having this new conformal invariant, the authors successfully proved in [11] that every

Riemannian metric g can be conformally transformed to a new metric g in such a way

that Rg,ψ is either everywhere positive, everywhere negative, or every zero. Using this

important result and the sign of the Yamabe-scalar field conformal invariant Yψ([g]),

the authors were able to split the set of pairs ([g], ψ) into classes corresponding to the

positive, zero, and negative value of Yψ([g]). Such a division of conformal data for the

constraint equations with scalar fields allows us to study these constraint equations

easier. In fact, it was showed in [11] that, among other things, for most sets of confor-

mal data, it is known whether the constraint equations can be solved in the compact

case. By following this method, similar results have been obtained in the asymptoti-

cally Euclidean and asymptotically hyperbolic cases; we refer the reader to [41, 10] for

details.

1.3 Objective, method, and significance of the study

While, as we have noted, the conformal method can be effectively applied for solving

the constraint equations with scalar fields in most cases, it should be pointed out that

there are several cases for which either partial result or no result was achieved, see [11]

for details. In order to talk about the objectives of the current study, let us go back

to [11]. A typical result contained in [11] is a fairly complete picture of sets of CMC

conformal data which lead to solutions of the constraint equations with scalar fields

and which do not. This picture can be summarized in the following two tables where

• ‘Y’ indicates that (1.2.10) can be solved for that class of conformal data;
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• ‘N’ indicates that (1.2.10) has no positive solution;

• ‘PR’ indicates that we have partial results; and

• ‘NR’ indicates that for this class of initial data we have no results indicating existence

or non-existence.

Bτ,ψ other B < 0 B 6 0 B ≡ 0 B > 0 B > 0

Yψ < 0 NR N N N PR Y

Yψ = 0 NR N N Y N N

Yψ > 0 PR PR PR N N N

Table 1.1. Results for the case Aγ,W,π ≡ 0.

Bτ,ψ other B < 0 B 6 0 B ≡ 0 B > 0 B > 0

Yψ < 0 NR N N N PR Y

Yψ = 0 NR N N N Y Y

Yψ > 0 PR PR PR Y Y Y

Table 1.2. Results for the case Aγ,W,π 6≡ 0.

Unlike the Einstein vacuum case so that a complete picture is obtained, one can

see from tables 1.1 and 1.2 that there are some sets of conformal data for which it is

not known whether (1.2.10) can be solved. These sets of conformal data basically force

(1.2.10) to have a sign-changing term.

As a step toward achieving the full answer, the main purpose of this study was to

search for some sufficient conditions for the solvability of (1.2.10) in those cases left

in [11]. In order to make the study more general, we consider a more general form of

(1.2.10) which can be written as the following

−∆gu+ hu = fu
n+2
n−2 + au−

3n−2
n−2 , (1.3.1)

where h, f , and a are smooth functions. Following to what we have already discussed,

we assume throughout our study that a > 0. In addition, the function h is assumed to

be either everywhere positive, everywhere negative, or everywhere zero.

As was remarked in [11], second order elliptic equations of the type (1.3.1) with the

presence of sign-changing f turn out to be difficult to solve. In order to overcome that

difficulty, in our study, a careful and deep analysis of (1.3.1) was developed to suit the

analysis. Along the line in this study, another purpose of the study was to prove some

Liouville type results for positive smooth solution of (1.3.1). In addition, we also derive

the Einstein-scalar field constraint equations in the dimension n = 2 by adopting those

arguments used in [11] and by making use of the conformal method.

In the light of the presented analysis in this study, a class of equations arising from

several applied problems could be solved in the same way (see [25, 43]). Hence, the

results of the present study may be useful and could provide a new way to tackle
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related problems in the literature. In addition, it is worth noticing that the basic idea

underlying the presented analysis has found a fruitful application in other problems;

for interested readers, we refer to [38] and the references therein.

Although the Einstein-scalar field constraint equations were successfully derived by

using the conformal method, those constraint equations form an under-determined sys-

tem of coupled equations, which is hard to solve in its general form. For this reason,

this study was limited to the constant mean curvature setting so that those constraint

equations are decoupled. Besides, it should also be mentioned that in our study, those

constraint equations were considered only on compact manifolds. Hence, the Einstein-

scalar field constraint equations for asymptotically hyperbolic and asymptotically Eu-

clidean initial data are out of the scope of this study.

1.4 Structure of the present work

Having the discussion of the Einstein constraint equations with field sources in the

previous section, a more detailed discussion of the Einstein constraint equations with

scalar fields will be presented in Chapter 2. In addition, results in the work of Choquet-

Bruhat et al. [11] will also be discussed in details in this chapter.

In Chapter 3, we prove some basic properties of solutions of (1.3.1). Besides, we

also present some necessary conditions for the solvability of (1.3.1). In the last part of

the chapter, we further study a minimizing problem that was first studied in [38]. This

minimizing problem plays an important role in our study.

In Chapter 4, we mainly study (1.3.1) in the negative Yamabe-scalar field conformal

invariant, that is h < 0.

In Chapter 5, we turn to study (1.3.1) in the null Yamabe-scalar field conformal

invariant, namely h = 0.

In Chapter 6, we study (1.3.1) in the positive Yamabe-scalar field conformal invari-

ant, that is h > 0.

Lastly, we establish in Chapter 7 some Liouville type results for a wider class of

equations of the following form

−∆gu+ hu = λuq + u−q−2 (1.4.1)

where h and λ are constants and q > 0. We show that if the Ricci curvature is bounded

from below by some constant to be determined in the sense of quadratic form, then

every smooth positive solution of (1.4.1) is constant.
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As mentioned earlier, in this chapter, we discuss the derivation of the Einstein-scalar

field constraint equations in the dimension n > 2 by using the conformal method. The

chapter basically consists of three parts as the following.

In the first part of the chapter, we show how to use the conformal method to derive

the recast constraint equations in the dimension n > 3. Since, except the part of scaling

the scalar fields that needs more attention, the rest of the procedure is well-known, and

therefore, we shall not discuss this procedure in details. The content of this part was

basically borrowed from [8], see also [10].

Following this strategy, in the second part of the chapter, we adopt this approach to

derive the recast Einstein-scalar field constraint equations in the dimension n = 2. To

our best of knowledge, the Einstein constraint equations in the dimension n = 2 was

first computed in the vacuum case in [31]. However, due to the presence of the scalar

field, the structure of the Einstein-scalar field constraint equations in the dimension

n = 2 seems to be richer than that of the vacuum case. We shall address this issue

later.
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Finally, in the last part of the chapter, we focus on the division of conformal data

for the Einstein-scalar field constraint equations in the dimension n > 3 recently found

in [11]. Some notations and conventions are also mentioned in this part.

2.1 The Einstein-scalar field constraint equations in the

dimension n > 3

We are now in a position to apply the conformal method to the Einstein constraint

equations with the presence of a real scalar field ψ with potential U . Notice that, we

always assume throughout this section n > 3, the case n = 2 will be treated in the last

section of this chapter.

Given a spacetime (V,g), we start by choosing an (n+ 1)-foliation of the spacetime

manifold Ft : M → V , t ∈ R, for which each of the leaves Ft(M) of the foliation,

as a level set of the global time function t, is presumed spacelike. The future-directed

normal unit vector n can be defined by using the gradient 1-form ∇t which is nothing

but

n = −N∇t,

where N is the positive definite lapse function.

It is also convenient to choose a threading of the spacetime V . The choice of a

foliation and a threading together with a choice of coordinates for M automatically

induce local coordinates (x0 = t, x1, ..., xn) on V . For a natural frame on M , we choose

∂i =
∂

∂xi
∀i = 1, n.

The dual coframe (θi)ni=0 is found to be such that

θi = dxi + βidt ∀i = 1, n,

while the 1-form θ0 is nothing but dt. Here βi are the components of the spacelike shift

vector β which is the difference between Nn and ∂t. To be exact, the shift vector is

chosen as follows

β = ∂t −Nn.

The last thing we need to find is the vector ∂0. To make it suitable, we choose

∂0 = ∂t − βj∂j .

It is now easy to check that ∂0 = Nn in our case.

By using the coframe (θi)ni=0, we may locally rewrite the metric in the form

g = −N2θ0 ⊗ θ0 + gijθ
i ⊗ θj ,

where gij are the components of the spatial metric tensor. We note that for each t,

gij(t)dx
i ⊗ dxj is the induced Riemannian metric on the leaf Ft(M). Besides, on each

leaf Ft(M), we have a tangent vector basis given by (∂0, ∂1, ..., ∂n). We also use K to

denote the second fundamental form defined by the foliation. Let us also denote by τ

the mean curvature, that is, τ = tracegK.

In this section, we derive constraint equations from (1.1.4) and (1.1.5).



2.1 The Einstein-scalar field constraint equations in the dimension n > 3 13

2.1.1 The Hamiltonian constraint equation

In order to transform the Hamiltonian constraint (1.1.4) to an elliptic equations,

one considers the metric g sitting in the conformal class of a given metric g; that is,

g = e2ϕg

with ϕ a function to be determined. It is well-known that the scalar curvatures of the

conformal metrics g and g are linked by the following rule

Scalg = e−2ϕ
(
Scalg − 2(n− 1)∆gϕ− (n− 1)(n− 2)gij∂iϕ∂jϕ

)
. (2.1.1)

When n > 3, we set e2ϕ = u2p for some u > 0 and we choose p in such a way that

the operator on u appearing within the brackets is somewhat linear in u; this goal is

attained by choosing p = 2
n−2 , that is, g = u

4
n−2 g which we suppose from now on. To

see this, one immediately has u = e
ϕ
p which implies after a direct computation that

∆gu =
1

p2
giju∂iϕ∂jϕ+

1

p
u∆gϕ.

Thus,

gij∂iϕ∂jϕ = u−1p2∆gu− p∆gϕ.

Hence,

−2(n− 1)∆gϕ− (n− 1)(n− 2)gij∂iϕ∂jϕ

= −(n− 1)(2− p(n− 2))∆gϕ− (n− 1)(n− 2)u−1p2∆gu

= −4(n− 1)

n− 2
u−1∆gu

provided p = 2
n−2 . Thus, equation (2.1.1) transforms to

Scalg = u−
n+2
n−2

(
uScalg −

4(n− 1)

n− 2
∆gu

)
.

The Hamiltonian constraint (1.1.4) now becomes a semilinear elliptic equation for u

given below
4(n− 1)

n− 2
∆gu− Scalgu+ (|K|2g − τ2 + 2ρ)u

n+2
n−2 = 0. (2.1.2)

2.1.2 The momentum constraint equation

We still use the fact that g = u
4

n−2 g. If we denote by divg and divg the divergences

in metrics g and g respectively, we then have the following rule

divg P
ij = u−

2(n+2)
n−2 divg(u

2(n+2)
n−2 P ij)− 2

n− 2
u−1gij∂iutracegP (2.1.3)

where P is a contravariant (2, 0)-tensor, see [8, Lemma 3.1]. In view of (2.1.3), it is

convenient to split the unknown K into a weighted traceless part and its trace, namely,

we write

K
ij

= u−
2(n+2)
n−2 K̃ij +

τ

n
gij .
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By lowering the indices in K and K̃, one gets

Kij = u−2K̃ij +
τ

n
gij .

It is clear to see that the tensor K̃ is symmetric and traceless, that is

tracegK̃ = gijK̃ij = u−
4

n−2 gijK̃ij = u
2n
n−2 gij

(
Kij −

τ

n
gij

)
= 0.

In view of the momentum constraint (1.1.5) and with the fact that

u−
4

n−2 τ = tracegK

we have

J
j

+ gij∂iτ = ∇iK
ij

= u−
2(n+2)
n−2 ∇i(u

2(n+2)
n−2 K

ij
)− 2

n− 2
u−1gij∂iu tracegK

= u−
2(n+2)
n−2 ∇i

(
K̃ij +

1

n
u

2(n+2)
n−2 gijτ

)
− 2

n− 2
u−1gij∂iu tracegK

= u−
2(n+2)
n−2 ∇iK̃ij +

1

n
u−

2(n+2)
n−2 ∇i

(
u

2n
n−2 gijτ

)
− 2

n− 2
u−1gij∂iu tracegK

= u−
2(n+2)
n−2 ∇iK̃ij +

1

n
giju−

2(n+2)
n−2 ∇i

(
u

2n
n−2 τ

)
− 2

n− 2
u−1gij∂iu tracegK

= u−
2(n+2)
n−2 ∇iK̃ij +

1

n
gij∂i(tracegK).

Thus,

∇iK̃ij = u
2(n+2)
n−2 J

j
+
n− 1

n
u

2(n+2)
n−2 gij∂iτ.

Equivalently,

∇iK̃ij =
n− 1

n
u

2n
n−2 gij∂iτ + u

2(n+2)
n−2 J

j
.

In other words, the momentum constraint (1.1.5) now becomes

divg K̃ =
n− 1

n
u

2n
n−2∇gτ + u

2(n+2)
n−2 J. (2.1.4)

In particular, if J is zero and τ is constant, the symmetric (2, 0)-tensor K̃ is also

divergence free. Symmetric (2, 0)-tensors which are divergence free and trace free are

called TT-tensors (tranverse, traceless). Let us go back to the decomposition of K.

Clearly,

|K|2g = gihgjkK
ij
K
hk

= u−
4n
n−2 gihgjkK̃

ijK̃hk +
τ2

n

= u−
4n
n−2 |K̃|2g +

τ2

n
.

Therefore, (2.1.2) now reads as follows

4(n− 1)

n− 2
∆gu− Scalgu+ |K̃|2gu

−3n+2
n−2 −

(
n− 1

n
τ2 − 2ρ

)
u
n+2
n−2 = 0. (2.1.5)

This is a semilinear elliptic equation for u.
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2.1.3 Scaling of the scalar fields

Recall that M is an n-dimensional manifold with the spatial metric g. We denote

by an overbar the values induced on M by the spacetime quantities.

For the scalar field ψ, there is no need to do any time and space decomposition.

However, the wave equation that ψ fulfills, that is

∇α∇αψ= U ′(ψ),

suggests that the initial data for the scalar field ψ should be the induced function and

normalized time derivative of the function on M . Based on this reason and for the sake

of simplicity, we use π to denote the normalized time derivative of ψ restricted to M ,

that is,

π = N−1∂0ψ.

where ∂0ψ is the value of ∂0ψ on M . In addition, we also denote by ψ and ∂iψ the

values of ψ and ∂iψ on M respectively.

Due to the fact that the background metric g is unphysical, we associate it to an

unphysical lapse Ñ so that N and Ñ have the same associated densitized lapse, that is

N(det g)−
1
2 = Ñ(det g)−

1
2 . (2.1.6)

For a background of the choice of this densitized lapse, we refer the reader to a work by

Choquet-Bruhat and Ruggeri [13]. Thanks to g = u
4

n−2 g, this condition is equivalent

to

N = u
2n
n−2 Ñ .

In this setting, we denote π = Ñ−1∂0ψ for the initial data π. Therefore, we have the

following scaling

π = N−1∂0ψ = u−
2n
n−2π.

In order to get the constraint equations for the initial data, let us first calculate

T (n,n) and T (∂i,n).

For the energy density on M of a scalar field ψ with potential U(·), one need to

calculate T (n,n). First, an easy calculation shows that

T00 = ∂0ψ∂0ψ−
1

2
g00

n∑
i,j=0

gij∇iψ∇jψ−g00U(ψ)

and

T0i = ∂0ψ∂iψ ∀i = 1, n.

Under the choice of our adapted frame, there hold

gαβ =

g00 g0j

gi0 gij

 =

−N2 0

0 gij


and
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gαβ =

g00 g0j

gi0 gij

 =

− 1
N2 0

0 gij

 .

Therefore, we can rewrite

T00 = N2
(
N−2∂0ψ∂0ψ+

1

2

n∑
i,j=0

gij∇iψ∇jψ+U(ψ)
)

= N2
(1

2
N−2∂0ψ∂0ψ+

1

2
gij∂iψ∂jψ+U(ψ)

)
.

Since in our local frame, the unit normal vector n is nothing but

n =
(
− 1

N
, 0, ..., 0︸ ︷︷ ︸
n times

)
,

one can verify that

T (n,n) = N−2T00

=
1

2
N−2∂0ψ∂0ψ+

1

2
gij∂iψ∂jψ+U(ψ).

Thus, by considering ψ only on M , we have just showed that the energy density is

nothing but

ρ =
1

2

(
N−2∂0ψ∂0ψ + gij∂iψ∂jψ

)
+ U(ψ).

In terms of the initial data set, ρ becomes

ρ =
1

2

(
u−

4n
n−2π2 + u−

4
n−2 |∇ψ|2g

)
+ U(ψ).

Hence, we can regroup (2.1.5) as

4(n− 1)

n− 2
∆gu− (Scalg − |∇ψ|2g)u

+ (|K̃|2g + π2)u−
3n−2
n−2 −

(
n− 1

n
τ2 − 2U(ψ)

)
u
n+2
n−2 = 0.

(2.1.7)

Now for the momentum density, one can see that

T (∂i,n) = − 1

N
T0i = − 1

N
∂0ψ∂iψ ∀i = 1, n.

Therefore, by raising the index i and considering only on M , we obtain

J
i

= −N−1gij∂jψ ∂0ψ = −u−
2(n+2)
n−2 πgij∂jψ.

That is

J = −u−
2(n+2)
n−2 π∇gψ.

Using the formula for J , (2.1.4) becomes

divgK̃ =
n− 1

n
u

2n
n−2∇gτ − π∇gψ. (2.1.8)
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2.1.4 The transverse-traceless decomposition

We consider in this subsection the solvability of (2.1.8) using the transverse-traceless

decomposition. Roughly speaking, we search for K̃ of the form

K̃ = K̃TT + LgW (2.1.9)

where K̃TT is a TT-tensor, say the TT-part of K̃, W is an unknown vector field to be

determined, and L is the conformal Killing operator relative to g defined by

(LgW )ij = ∇iW j +∇jW i − 2

n
gij∇kW k. (2.1.10)

If the right hand side of (2.1.10) vanishes, the vector field W is called a conformal

Killing vector. By definition, any tensor of the form LgY for some vector field Y has

trace free. The procedure of solving (2.1.8) is to find W and TT-part of K̃. This so-

called TT-part is not unique in general and we have many ways to extract such a piece

of information from K̃.

We first deal with W . In accordance with (2.1.9), we first have

(K̃TT )ij = K̃ij − (LgW )ij . (2.1.11)

The choice of the conformal Killing operator and the fact that K̃ is tracefree make

the right hand side of (2.1.11) trace free. Besides, the transversality requirement

∇i(K̃TT )ij = 0 and (2.1.8) lead to covariant equations for W given by

∇i(LgW )ij =
n− 1

n
u

2n
n−2 gij∂iτ − πgij∂iψ.

If we formally denote ∆g,conf = divg ◦Lg, then we can rewrite the equation for W in

the vector form as the following

∆g,confW =
n− 1

n
u

2n
n−2∇gτ − π∇gψ. (2.1.12)

It is well-known that the operator ∆g,conf which is similar to the vector Laplacian is a

second order, self-adjoint, linear, elliptic operator whose kernel consists of the space of

conformal Killing vector fields, see [8, Appendix II]. Thus under some mild conditions,

we can solve (2.1.12) for W up to conformal Killing vector fields. Notice that, any

conformal Killing vector field does not constitute any extra information to K̃TT in

(2.1.11).

We now consider the TT-tensor K̃TT . The search of such a tensor is somewhat freely.

Its procedure can be formulated as follows. We start with a freely chosen traceless 2-

tensor Z, then we solve for Y from the following equation

∆g,confY = − divg Z. (2.1.13)

The existence of some Y from (2.1.13) comes from the fact that divg Z is orthogonal

to the space of conformal Killing vector fields whose proof is just a simple application

of integration by parts as follows
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M

(∇iZij)Hj dvolg = −
∫
M
Zij(LgH)ij dvolg = 0

where H is a conformal Killing vector field. Since

∇j(LgY + Z)ij = (∆g,confY )i +∇jZij = 0

we know that the traceless tensor LgY + Z is also transverse, thus, a TT-tensor. Let

us denote LgY +Z by σ. In conclusion, we first begin with a freely chosen Z and solve

(2.1.13) for Y . We then solve (2.1.12) to find W . Finally, we find K̃ = σ + LgW by

means of the decomposition (2.1.9). Such a K̃ will satisfy (2.1.8).

In summary, let us recall some information that we have already seen from previous

sections. By using the conformal method we are able to transform the Einstein-scalar

field constraint equations into a couple of two equations given below

−4(n− 1)

n− 2
∆gu+ (Scalg −|∇ψ|2g)u

= −
(
n− 1

n
τ2 − 2U(ψ)

)
u
n+2
n−2 + (|σ + LgW |2g + π2)u−

3n−2
n−2

(2.1.14)

and

divg(LgW ) =
n− 1

n
u

2n
n−2∇gτ − π∇gψ (2.1.15)

where τ = tracegK. The main objective of our study here is to determine which

choices of the conformal data (g, σ, τ, ψ, π) permit one to solve (2.1.14)-(2.1.15) for the

determined data (u,W ) and which do not. Equation (2.1.14) is a semilinear elliptic

equation, called the Einstein-scalar field Lichnerowicz equation, for u provided σ and

W are already known.

2.2 The Einstein-scalar field constraint equations in the

dimension n = 2

In the previous section, we have shown how the conformal method may be used

to derive the constraint equations with scalar fields when the dimension n > 3. In

this section, we continue to use the conformal method to construct the constraint

equations with scalar fields in the dimension n = 2. To the best of our knowledge,

the first paper dealing with the Einstein equations in the two dimensional cases is

[31]. Subsequently, some generalization of the corresponding situation for the Einstein–

Maxwell and Einstein–Maxwell–Higgs equations were also obtained by the author in

[32]. Again, no result is known for the case of scalar fields.

In order to fix notations, we keep using g = e2ϕg. We first prove the following simple

result which was motivated by (2.1.3).

Lemma 2.1. On any 2-dimensional manifold, if g = e2ϕg, the covariant derivatives in

g and g being respectively denoted ∇ and ∇, the divergences in the metrics g and g of

an arbitrary contravariant (2, 0)-tensor P ij verify the following identity

divgP
ij = e−4ϕdivg(e

4ϕP ij)− gij∂iϕtracegP. (2.2.1)
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Proof. For the purpose of clarity we may denote the tensor P by

P = P ij
∂

∂xi
⊗ ∂

∂xj
.

Using the Leibniz rule, one easily gets

(∇P )

(
·, ·, ∂

∂xk

)
= ∇ ∂

∂xk

(
P ij

∂

∂xi
⊗ ∂

∂xj

)
=
∂P ij

∂xk
∂

∂xi
⊗ ∂

∂xj
+ P ij

(
∇ ∂

∂xk

∂

∂xi

)
⊗ ∂

∂xj
+ P ij

∂

∂xi
⊗
(
∇ ∂

∂xk

∂

∂xj

)
=

(
∂P ij

∂xk
+ P ljΓ

i
lk + P ilΓ

j
lk

)
∂

∂xi
⊗ ∂

∂xj
.

Therefore, (2, 1)-tensor ∇P , which is of the form

∇P = ∇kP ij
∂

∂xi
⊗ ∂

∂xj
⊗ dxk = P ij ,k

∂

∂xi
⊗ ∂

∂xj
⊗ dxk,

verifies

∇kP ij = P ij ,k = ∂kP
ij + P ljΓ

i
lk + P ilΓ

j
lk.

We take the divergence, that is, to use

divP = δki P
ij
,k
∂

∂xj
= δki∇kP ij

∂

∂xj
= ∇iP ij

∂

∂xj

to arrive at

∇iP ij = ∂iP
ij + P ljΓ

i
li + P ilΓ

j
li.

Notice that under the conformal change g = e2ϕg, the Christoffel symbols computed

with respect to g and g verify the following identity

Γ
k
ij = Γ kij + (δki ∂jϕ+ δkj ∂iϕ− gijgkl∂lϕ).

Therefore,

∇iP ij =∂iP
ij + P ljΓ ili + P ilΓ jli

+ P lj(δil∂iϕ+ δii∂lϕ− gligim∂mϕ)

+ P il(δjl ∂iϕ+ δji ∂lϕ− glig
jm∂mϕ)

=∇iP ij + (P ij∂iϕ+ 2P lj∂lϕ− Pmj∂mϕ)

+ (P ij∂iϕ+ P jl∂lϕ− P ilgligjm∂mϕ)

=∇iP ij + 4P ij∂iϕ− gjm∂mϕ traceg P

=e−4ϕ∇i(e4ϕP ij)− gjm∂mϕ traceg P.

The proof immediately follows. �

2.2.1 The momentum constraint equation

Let us consider the momentum constraint. Using Lemma 2.2.1, for a (2, 0)-tensor

K, we decompose it as follows



20 Background of the constraint equations in the dimension n > 2

K
ij

= e−4ϕK̃ij +
τ

2
gij .

This decomposition obeys the same properties as n > 3, that is, K̃ is symmetric and

traceless. Therefore, one has the following

J
j
+gij∂iτ = ∇iK

ij

= e−4ϕ∇i(e4ϕK
ij

)− gij∂iϕ tracegK

= e−4ϕ∇i
(
K̃ij +

1

2
e4ϕgijτ

)
− gij∂iϕ tracegK

= e−4ϕ∇i
(
K̃ij +

1

2
e2ϕgijτ

)
− gij∂iϕ tracegK

= e−4ϕ∇iK̃ij +
1

2
e−4ϕgij∇i(e2ϕτ)− gij∂iϕ tracegK

= e−4ϕ∇iK̃ij +
1

2
e−2ϕgij∇iτ.

In other words,

∇iK̃ij = e4ϕJ
j

+
1

2
e4ϕgij∂iτ.

Thus, the momentum constraint equation that we need is

divg K̃ =
1

2
e2ϕ∇gτ + e4ϕJ. (2.2.2)

2.2.2 The Hamiltonian constraint equation

Let us now consider the Hamiltonian constraint. One first obtains by (2.1.1)

Scalg = e−2ϕ(Scalg − 2∆gϕ).

Consequently, the Hamiltonian constraint temporarily reads as the following

−2∆gϕ+ Scalg −(|K|2g − τ2 + 2ρ)e2ϕ = 0.

Obviously,

|K|2g = gihgjkK
ij
K
hk

= e−4ϕ|K̃|2g +
1

2
τ2

which implies that

− 2∆gϕ+ Scalg −
(
e−4ϕ|K̃|2g −

1

2
τ2 + 2ρ

)
e2ϕ = 0. (2.2.3)

2.2.3 Scaling of the scalar fields

Using (2.1.6) one easily gets N = e2ϕÑ which immediately implies

π = N−1∂0ψ = e−2ϕπ.

Therefore, we can decompose the energy density on M as follows

ρ =
1

2

(
e−4ϕπ2 + e−2ϕ|∇ψ|2g

)
+ U(ψ).
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Now for the momentum density, one can see that

J
i

= −N−1gij∂jψ ∂0ψ = −e−4ϕπgij∂jψ.

That is

J = −e−4ϕπ∇gψ.

Using the formula for J , we can rewrite (2.2.2) as

divg K̃ =
1

2
e2ϕ∇gτ − π∇gψ. (2.2.4)

We now regroup (2.2.3) as

− 2∆gϕ+ (Scalg − |∇ψ|2g) = −
(1

2
τ2 − 2U(ψ)

)
e2ϕ + (π2 + |K̃|2g)e−2ϕ. (2.2.5)

At this stage, the Einstein constraint equations in 2 dimensions become a system of

partial differential equations (2.2.5)–(2.2.4). Notice that the coefficient of e−2ϕ is always

non-negative in this setting. In the vacuum case, that is U(ψ) ≡ 0, the coefficient of

e2ϕ is always negative and one can use the method of sub- and super-solutions to prove

the existence result, see [31] for details.

2.3 Sobolev spaces and related inequalities

Given a smooth compact Riemannian manifold (M, g) of dimension n, one easily

defines the Sobolev spaces Hk
p (M) for any positive integers k and p. To be precise, we

define Hk
p (M) as the completion of C∞(M) with respect to the following norm

‖u‖Hk
p

=
k∑
j=1

∥∥∇ju∥∥
Lp
.

When p = 2, we simply write Hk
2 (M) as Hk(M).

By K1 and A1 we mean the positive constants such that the Sobolev inequality holds,

that is, for all u ∈ H1(M),

K1

∫
M
|∇u|2 dvolg + A1

∫
M
u2 dvolg >

(∫
M
|u|2? dvolg

) 2
2?

. (2.3.1)

We notice that those constants K1 and A1 are independent of u.

As one may observe from (1.3.1) that the operator appearing in the left hand side

of (1.3.1), that is −∆ + h, admits some interesting features when we impose some

conditions on the potential h. A typical assumption that people usually make is to

assume that −∆+ h is coercive. Roughly speaking, this is equivalent to saying that

inf
u∈H1(M)

∫
M |∇u|

2 dvolg +
∫
M hu2 dvolg∫

M u2 dvolg
> 0.

In particular, one may see that
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‖u‖H1
h

=

(∫
M
|∇u|2 dvolg +

∫
M
hu2 dvolg

) 1
2

is an equivalent norm in H1(M). It is standard to check that if h > 0 everywhere then

−∆+ h is coercive.

Another useful inequality appearing in this setting is the following. For all u ∈
H1(M), there holds∫

M
|∇u|2 dvolg +

∫
M
hu2 dvolg > Sh

(∫
M
|u|2? dvolg

) 2
2?

, (2.3.2)

where the constant Sh is called the Sobolev constant and is independent of u.

2.4 The Yamabe-scalar field conformal invariant

Let us assume that (M, g) is a compact Riemannian manifold without boundary.

We recall from the study of the Yamabe problem [3, 42, 45] on (M, g) the conformal

Laplacian operator Lg acting on a smooth function u is defined by

Lgu = ∆gu−
n− 2

4(n− 1)
Scalg u. (2.4.1)

Operator Lg has the conformal covariance property

Lg̃u = θ−
n+2
n−2Lg(θu) (2.4.2)

for any g̃ = θ
4

n−2 g for some θ > 0 being a smooth function. Inspired by (2.4.1), the

authors in [11] introduced the so-called conformal scalar field Laplacian operator Lg,ψ
given by

Lg,ψu = ∆gu−
n− 2

4(n− 1)
(Scalg −|∇ψ|2g)u. (2.4.3)

It follows from (2.4.1) and (2.4.3) that

Lg,ψu = Lgu+
n− 2

4(n− 1)
|∇ψ|2gu.

We wish that Lg,ψ also has the conformal covariance property. For this reason, we first

have

|∇ψ|2g̃ = g̃ij∂iψ∂jψ = θ−
4

n−2 gij∂iψ∂jψ = θ−
4

n−2 |∇ψ|2g.

This and (2.4.2) immediately give

Lg̃,ψu = Lg̃u+
n− 2

4(n− 1)
|∇ψ|2g̃u

= θ−
n+2
n−2Lg(θu) +

n− 2

4(n− 1)
θ−

4
n−2 |∇ψ|2gu

= θ−
n+2
n−2Lg(θu) +

n− 2

4(n− 1)
θ−

n+2
n−2 |∇ψ|2g(θu).
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In other words, the operator Lg,ψ also verifies the same conformal covariance property

in the sense that

Lg̃,ψu = θ−
n+2
n−2Lg,ψ(θu). (2.4.4)

We now define the so-called conformal-scalar field Dirichlet energy of u by

Eg,ψ(u) = −4(n− 1)

n− 2

∫
M
uLg,ψu dvolg

=
4(n− 1)

n− 2

∫
M

(
|∇u|2g +

n− 2

4(n− 1)
(Scalg −|∇ψ|2g)u2

)
dvolg

and the conformal-scalar field Sobolev quotient by

Qg,ψ(u) =
Eg,ψ(u)

‖u‖2
L

2n
n−2

.

Using (2.4.4) one has

Qg̃,ψ(u) = Qg,ψ(θu) (2.4.5)

where g̃ = θ
4

n−2 g. We denote by [g] the conformal class of the metric g given by

[g] = {g̃ = θ
4

n−2 g, θ ∈ C∞(M), θ > 0}.

Then we define the so-called Yamabe-scalar field conformal invariant by

Yψ([g]) = inf
u∈H1(M)

Qg,ψ(u). (2.4.6)

By (2.4.5), it is obvious that Yψ([g]) is independent of the choice of background metric

g in the conformal class used to define it, and is therefore an invariant of the conformal

class [g].

We observer from the Hölder inequality and the compactness of M that∣∣∣∣∫
M

(
(Scalg −|∇ψ|2g)u2

)
dvolg

∣∣∣∣ 6 C ‖u‖2L 2n
n−2

for some positive constant C independent of u. Thus, Yψ([g]) is finite. Consequently,

by using the sign of Yψ([g]), we may partition the set of pairs ([g], ψ) into three classes

which we label Y−, Y0, Y+, and refer to as the negative, zero, and positive Yamabe-

scalar field conformal invariants on M .

The following important result was proved in [11].

Proposition 2.1 (See [11]). The following conditions are equivalent

(i) Yψ([g]) > 0 (respectively = 0, < 0);

(ii) There exists a metric g̃ ∈ [g] which satisfies

Scalg̃ −|∇ψ|2g̃ > 0

everywhere on M (respectively = 0, < 0);

(iii) For any metric g̃ ∈ [g], the first eigenvalue λ1 of the self-adjoint elliptic operator

−Lg̃,ψ is positive (respectively zero, negative).



24 Background of the constraint equations in the dimension n > 2

For any constant c > 0 and any metric g̃ ∈ [g], let us consider the following metric

ĝ = c
4

n−2 g̃. In terms of the metric g, one may write ĝ = (cu)
4

n−2 g provided g̃ = u
4

n−2 g.

Then a direct computation shows that

Scalĝ −|∇ψ|2ĝ = Scalĝ −c−
4

n−2 |∇ψ|2g̃

= c−
4

n−2 Scalg̃ −
4(n− 1)

n− 2
c−

n+2
n−2∆g̃(c)− c−

4
n−2 |∇ψ|2g̃

= c−
4

n−2

(
Scalg̃ −|∇ψ|2g̃

)
.

Therefore, we can extend the preceding proposition as follows.

Proposition 2.2. The following conditions are equivalent

(i) Yψ([g]) > 0 (respectively = 0, < 0);

(ii’) There exists a metric g̃ ∈ [g] which satisfies

Scalcg̃ −|∇ψ|2cg̃ > 0

everywhere on M (respectively = 0, < 0) and for any constant c > 0;

(iii) For any metric g̃ ∈ [g], the first eigenvalue λ1 of the self-adjoint elliptic operator

−Lg̃,ψ is positive (respectively zero, negative).

The advantage of Proposition 2.2 is that it allows us to assume that the manifold

M has unit volume by choosing a suitable constant c > 0.

One of the most important properties of the Einstein-scalar field Lichnerowicz equa-

tions is that they are conformally covariant in the following sense.

Proposition 2.3 (See [11]). Let D = (g, σ, τ, ψ, π) be a conformal initial data set for

the Einstein-scalar field constraint equations on M . If g̃ = θ
4

n−2 g for a smooth positive

function θ, then we define the corresponding conformally transformed initial data set

by

D̃ = (g̃, σ̃, τ̃ , ψ̃, π̃) = (θ
4

n−2 g, θ−2σ, τ, θ−
2n
n−2ψ, π).

Let W be the solution to the conformal form of the momentum constrain equation

with respect to the conformal initial data set D (for which we assume that a solution

exists), and let W̃ be the solution of the momentum constrain equation with respect to

the conformally transformed initial data set D̃ (which will exist if W does). Then u

is a solution to the Einstein-scalar field Lichnerowicz equation for the conformal data

D with W if and only if θ−1u is a solution to the Einstein-scalar field Lichnerowicz

equation for the transformed conformal data D̃ with W̃ .

Using Proposition 2.3 above, it turns out that the sign of Yψ([g]) plays an important

role in the study because we can first perform a conformal transformation on the

conformal initial data from (g, σ, τ, ψ, π) to (θ
4

n−2 g, θ−2σ, τ, θ−
2n
n−2ψ, π) in such a way

that R
g̃,ψ̃

has a fixed sign by means of Proposition 2.1. Therefore, it suffices to study

the solvability of the Einstein-scalar field Lichnerowicz equation for the transformed

data (θ
4

n−2 g, θ−2σ, τ, θ−
2n
n−2ψ, π) rather than to study to solvability the Einstein-scalar

field Lichnerowicz equation for the original data (g, σ, τ, ψ, π).
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2.5 A classification of Choquet-Bruhat–Isenberg–Pollack

2.5.1 Solving the momentum constraints

As we have already known that the operator ∆g,conf is a second order, self-adjoint,

linear, elliptic operator whose kernel consists of the space of conformal Killing vector

fields, see [8, Appendix II]. It follows from the Fredholm alternative that for a given

set of functions (u, τ, ψ, π) we may solve the momentum constraint

∆g,confW =
n− 1

n
u

2n
n−2∇gτ − π∇gψ

if either

• (M, g) admits no conformal Killing vector fields, and thus, W is unique;

or

• n−1
n u

2n
n−2∇gτ −π∇gψ is orthogonal in the L2 sense to the space of conformal Killing

vector fields.

In the case of constant mean curvature and (M, g) admits conformal Killing vector

fields, it suffices to require that π∇gψ is orthogonal to the space of conformal Killing

vector fields. Notice that, under the constant mean curvature assumption, the momen-

tum constraint equations consist of only scalar field ψ. Therefore, we can solely solve

it to obtain W . Having the existence of W and the fact that our system of constraint

equations are decoupled, we may solely solve the conformal form of the Hamiltonian

constraint for u.

2.5.2 Solving the Hamiltonian constraints

Unlike the Einstein equations in the vacuum case where we know exactly which sets

of vacuum constant mean curvature conformal data permit the corresponding Lich-

nerowicz equation to be solved and which do not, the analysis for the Einstein-scalar

field Lichnerowicz equation is more complicated, primarily because there are more rel-

evant possibilities for the signs of the coefficients in (2.1.14). Let us recall from the

previous chapter that the corresponding Lichnerowicz equation is simply given by

−∆gu+Rg,ψu = −Bτ,ψu
n+2
n−2 +Ag,W,πu−

3n−2
n−2

where coefficients Rg,ψ, Bτ,ψ, and Ag,W,π are given in (1.2.9).

In [11], their classification only depends on the sign of Rg,ψ and Bτ,ψ since Ag,W,π >
0. As for Bτ,ψ, there are six different possibilities, namely, this coefficient can be strictly

positive, greater than or equal to zero, identically zero, less than or equal to zero, strictly

negative, or of changing sign. For Rg,ψ, in view of Proposition 2.1, under a suitable

conformal change, we can fix its sign, thus, there are three possibilities, namely, this

could be negative, identically zero, or positive. These classification of sign combined

with the two options Ag,W,π ≡ 0 and Ag,W,π 6≡ 0 gives us a total of 36 classes of data,

see Tables 1.1 and 1.2. Based on this division, the authors in [11] proved for almost

all cases, we do know which sets of data permit the Einstein-scalar field Lichnerowicz

equation to be solved and which do not. For a detailed statement of this result, we

prefer to [11, Theorems 1 and 2].
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2.6 The Lichnerowicz equations with Rg,ψ being constant

By Proposition 2.1, we know that, after a suitable conformal transformation, the

function h is a smooth function having a fixed sign on M . Again, by Proposition 2.1,

the function h vanishes if we are in the null Yamabe-scalar field conformal invariant,

that is equivalent to saying that h is constant (which is equal to zero) in this case. In

this section, we show that in fact if we are in the negative Yamabe-scalar field conformal

invariant, namely Yψ([g]) < 0, we still can perform another conformal transformation

on the conformal data from (g, σ, τ, ψ, π) to (u
4

n−2 g, u−2σ, τ, u−
2n
n−2ψ, π) in such a way

that h is a negative constant. Thanks to Proposition 2.3, we may freely assume that h

is a negative constant on M .

Proposition 2.4. There exists a smooth function u > 0 such that under the trans-

formed data (u
4

n−2 g, u−2σ, τ, u−
2n
n−2ψ, π) obtained from data (g, σ, τ, ψ, π) through the

conformal change g̃ = u
4

n−2 g, coefficient R
g̃,ψ̃

is a negative constant.

Proof. First, in view of Proposition 2.1 we may assume that function Rg,ψ < 0 in the

original data, that is,

Scalg −|∇ψ|2g < 0.

Notice that if g̃ = u
4

n−2 g, coefficient R
g̃,ψ̃

verifies the following rule

R
g̃,ψ̃

=
n− 2

4(n− 1)
(Scalg̃ −u−

4
n−2 |∇ψ|2g)

=
n− 2

4(n− 1)

(
u−

4
n−2 Scalg −

4(n− 1)

n− 2
u−

n+2
n−2∆gu− u−

4
n−2 |∇ψ|2g

)
= u−

n+2
n−2 (−∆gu+Rg,ψu),

(2.6.1)

which yields

−∆gϕ+Rg,ψϕ = R
g̃,ψ̃
ϕ
n+2
n−2 .

Therefore, in terms of our notation, it suffices to prove that the following equation with

h and h̃ being negative and h̃ is constant

−∆gu+ hu = h̃u
n+2
n−2 (2.6.2)

always admits a smooth positive solution u. We use the method of sub- and super-

solutions to seal this issue.

Existence of a sub-solution. This is obvious since a sufficiently small, positive constant

u will serve. To see this, one can choose any u satisfying the following

u 6

(
supM h

h̃

)n−2
4

.

With this, we immediately have −∆gu+hu 6 h̃u
n+2
n−2 . By definition, u is a sub-solution

of (2.6.2).

Existence of a super-solution. We also show that a sufficiently large positive constant

u will serve. Indeed, similarly to the argument above, one can show that any positive

constant u satisfying
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u >

(
infM h

h̃

)n−2
4

is a super-solution to (2.6.2) in the sense that −∆gu+ hu > h̃u
n+2
n−2 .

Finally, it is an easy task to select those u and u so that u < u. The method of

sub- and super-solutions now guarantees that (2.6.2) admits a positive solution which

turns out to be smooth by a simple regularity argument as in the study of the Yamabe

problem. The proof is complete. �
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Let us recall from the previous chapter that the general form of the Einstein-scalar

field Lichnerowicz equations can be written as follows

−∆gu+ hu = fu
n+2
n−2 + au−

3n−2
n−2 , u > 0, (3.0.1)

where coefficients h, f , are a are smooth functions. Due to the presence of a term with

a critical exponent and a term with a negative exponent, at the beginning, we try to

solve the following subcritical equation

−∆gu+ hu = f |u|q−2
u+

au

(u2 + ε)
q
2
+1

(3.0.2)

where q ∈ (2, 2?) and ε > 0 are fixed. Obviously, (3.0.2) goes back to (3.0.1) if q = 2?

and ε = 0 and u > 0.

In order to achieve that goal, in this chapter, we first study some basic properties of

solutions of (3.0.2) such as non-existence results, regularity, and uniqueness properties.

Since the sign of h does affect the analysis of (3.0.2), we basically split our analysis into

two cases, one is of the case that h 6 0 is constant and the other is of the case h > 0.

In the next part of the chapter, we study an auxiliary minimizing problem related

to the case that the function f might change sign. It should be mentioned that the

basic idea underlying this part was borrowed from Rauzy [38]. In the last part of the
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chapter, we derive some necessary condition for f and h in order for (3.0.1) to have

positive smooth solutions.

Finally, all results represented within this chapter was mainly adapted from [34, 35,

36].

3.1 Basic properties of positive solutions of (3.0.2)

We start with a result saying that positive C2 solutions of (3.0.2) actually have a

strictly positive lower bound.

3.1.1 A lower bound for positive solutions

Our purpose here was to derive a lower bound for a positive C2 solution u of (3.0.2).

In the first part of this subsection, we prove that if h < 0 is constant, then any C2

solution of (3.0.2) always admits a positive lower bound independent of the function a.

This is the content of the following.

Lemma 3.1. Let u be a positive C2 solution of (3.0.2) with h a negative constant.

Then, there holds

min
M

u > min

{(
h

infM f

) 1

2[−2

, 1

}
> 0 (3.1.1)

for any q ∈ (2[, 2?) and any ε > 0.

Proof. Let us assume that u achieves its minimum value at x0. For the sake of simplicity,

we denote u(x0), f(x0), and a(x0) by u0, f0, and a0 respectively. Notice that u0 > 0

since u is a positive solution. We then have ∆gu|x0 > 0; in particular,

hu0 > f0(u0)
q−1 +

a0u0

((u0)2 + ε)
q
2
+1
> f0(u0)

q−1.

Consequently, we get f0 < 0 and thus 0 < h
f0
6 (u0)

q−2 which immediately implies

min
M

u >

(
h

infM f

) 1
q−2

> min

{(
h

infM f

) 1

2[−2

, 1

}

for any q ∈ (2[, 2?) and any ε > 0. This proves our lemma. �

Next we consider (3.0.2) with h > 0. Unlike the case h < 0 where we assume no

condition on a, for the case h > 0, we do require infM a > 0 since the lower bound for

any positive C2 solution u depends on infM a > 0. We first consider the case h ≡ 0.

We prove the following lemma.

Lemma 3.2. Let u be a positive C2 solution of (3.0.2) with h ≡ 0. Then, there holds

min
M

u >
1

2
min

{(
infM a

− infM f

) 1

22[

, 1

}
(3.1.2)
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for any q ∈ (2[, 2?) and any

ε <
1

2
min

{(
infM a

− infM f

) 1

2[

, 1

}
. (3.1.3)

Proof. Let us assume that u achieves its minimum value at x0. For simplicity, let us

denote u(x0), f(x0), and a(x0) by u0, f0, and a0 respectively. Notice that u0 > 0 since

u is a positive solution. We then have ∆gu|x0 > 0; in particular,

f0(u0)
q−1 +

a0u0

((u0)
2 + ε)

q
2
+1
6 0. (3.1.4)

Consequently, we get that f0 < 0. Using (3.1.4) we can see that

a0 6 −f0(u0)q−2((u0)2 + ε)
q
2
+1 6 −f0((u0)2 + ε)q

which implies that

(u0)
2 + ε >

(
a0
−f0

) 1
q

>

(
infM a

− infM f

) 1
q

.

Thus, one can conclude that u0 satisfies (3.1.2) for any q ∈ [2[, 2?) and any ε verifying

the condition (3.1.3). The proof is complete. �

In the last step, we mainly consider the case h > 0. Since such a result was proved

in [21], here we just calculate a precise lower bound for positive C2 solutions of (3.0.2).

Lemma 3.3. Let u be a positive C2 solution of (3.0.2) with h > 0. Then there holds

min
M

u > min

{(
1

22[
infM a

supM h+ supM |f |

) 1

2[+2

, 1

}
(3.1.5)

for any q ∈ (2[, 2?) and any

ε < min

{(
1

22[
infM a

supM h+ supM |f |

) 2

2[+2

, 1

}
. (3.1.6)

Proof. Following [21], we let δ > 0 be the unique positive solution of the following

algebraic equation

δq+2

(
sup
M

h+ (sup
M
|f |)δq−2

)
=

1

22[
inf
M
a. (3.1.7)

Since δ depends on q, we shall prove that for q ∈ (2[, 2?), δ has a strictly positive lower

bound. We have the following two cases.

Case 1. Suppose

sup
M

h+ sup
M
|f | > 1

22[
inf
M
a.

In this case, there holds δ 6 1. Consequently, we can estimate

1

22[
inf
M
a 6 δq+2

(
sup
M

h+ sup
M
|f |
)
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which immediately gives us

δ >

(
1

22[
infM a

supM h+ supM |f |

) 1
q+2

>

(
1

22[
infM a

supM h+ supM |f |

) 1

2[+2

.

Case 2. Suppose

sup
M

h+ sup
M
|f | < 1

22[
inf
M
a.

In this case, there holds δ > 1 which immediately gives us a lower bound for δ.

Combining two cases above, we conclude that

δ > min

{(
1

22[
infM a

supM h+ supM |f |

) 1

2[+2

, 1

}
.

Suppose that u is a positive C2 solution of (3.0.2) with ε > 0 satisfying the condition

(3.1.6) above, that is,
∆gu

u
+ h = fuq−2 +

a

(u2 + ε)
q
2
+1
.

Let us assume that u achieves its minimum value at x0, then we have

h(x0) + (−f(x0))u(x0)
q−2 >

a(x0)

(u(x0)
2 + ε)

q
2
+1
. (3.1.8)

We assume u(x0) < δ. From the choice of δ, one can verify that

sup
M
|h|+ (sup

M
|f |)δq−2 > h(x0) + (−f(x0))u(x0)

q−2. (3.1.9)

Since ε < δ2 and u(x0) < δ, it is easy to see that

a(x0)

(u(x0)
2 + ε)

q
2
+1
>

infM a

(
√

2δ)
q+2 >

1

22[
infM a

δq+2
. (3.1.10)

Using (3.1.8), (3.1.9), and (3.1.10), we easily get a contradiction, thus proving that

u(x0) > δ. In particular, there holds u > δ in M . This proves our lemma. �

3.1.2 Regularity for non-negative weak solutions of (3.0.2)

This subsection is devoted to the regularity of weak solutions of (3.0.2). Despite

the fact that h can be chosen as a constant in the non-positive Yamabe-scalar field

conformal invariant, in this subsection, we allow h to be non-constant. As such, we

assume that h, f and a > 0 are smooth functions and that the function h has a fixed

sign on M .

Lemma 3.4. Assume that u ∈ H1(M) is an almost everywhere non-negative weak

solution of Equation (3.0.2). We assume further that infM a > 0 in the case when

h > 0. Then

(a) If ε > 0, then u ∈ C∞(M). In particular, u > 0 in M .
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(b) If ε = 0 and u−1 ∈ Lp(M) for all p > 1, then u ∈ C∞(M).

Proof. We first rewrite (3.0.2) as

−∆gu+ b(x)(1 + u) = 0

with

b(x) =
u(x)

1 + u(x)

(
h(x)− a(x)

(u(x)2 + ε)
q
2
+1
− f(x)|u(x)|q−2

)
.

By the Sobolev embedding, we know that u ∈ Lq(M) for any q ∈ (2[, 2?]. This and the

conditions in both cases (a) and (b) imply

h(x)− a

(u2 + ε)
q
2
+1
− f |u|q−2 ∈ L

q
q−2 (M).

Notice that from q 6 2? there holds q
q−2 >

n
2 . We now use the Brezis–Kato estimate [40,

Lemma B.3] to conclude that u ∈ Ls(M) for any s > 0. Thus the Caldéron–Zygmund

inequality implies that u ∈ Hp(M) for any p > 1. The Sobolev embedding again implies

that u is in C0,α(M) for some α ∈ (0, 1). Thus, we know from the Schauder theory that

u ∈ C2,α(M) for some α ∈ (0, 1). In particular, u has a strictly positive lower bound by

means of Lemmas 3.1, 3.2, and 3.3. Since u stays away from zero, we can iterate this

process to conclude u ∈ C∞(M). �

3.1.3 Non-existence results for smooth positive solutions of (3.0.1) of

finite H1-norm in the case h 6 0

Let u be a smooth positive solution of (3.0.1). The main result of this subsection

was to derive a necessary condition for a such that ‖u‖H1 is bounded by a given

constant. More precise, assume that α and β are two positive constant, we wish to

estimate
∫
M aα|f−|β dvolg from above in terms of ‖u‖H1 . Such a result is basically due

to Hebey–Pacard–Pollack [21]. We note that we are in the case h 6 0.

In the first part of this subsection, we consider a simple case, that is, α = 2n
5n−2 and

β = 0. By integrating (3.0.1) over M we get that∫
M
hu dvolg =

∫
M
fu2

?−1 dvolg +

∫
M

a

u2?+1
dvolg . (3.1.11)

Let β = 2?

22?+1 . First, the Hölder inequality implies∫
M
aβ dvolg =

∫
M

( a

u2?+1

)β
(u2

?+1)
β

dvolg

6

(∫
M

a

u2?+1
dvolg

)β(∫
M

(u2
?+1)

β
1−β dvolg

)1−β

=

(∫
M

a

u2?+1
dvolg

)β(∫
M
u2

?
dvolg

)1−β
.

(3.1.12)

Thanks to h 6 0, one can easily see that the second term in the right of (3.1.11) can

be bounded as



34 Basic properties of solutions of the Lichnerowicz equations∫
M

a

u2?+1
dvolg =

∫
M
hu dvolg −

∫
M
fu2

?−1 dvolg

6 −
∫
M
fu2

?−1 dvolg

6
∫
M
|f |u2?−1 dvolg ,

(3.1.13)

while the first term can be controlled as∫
M
|f |u2?−1 dvolg 6

(∫
M
|f |2? dvolg

) 1
2?
(∫

M
(u2

?−1)
2?

2?−1 dvolg

) 2?−1
2?

=

(∫
M
|f |2? dvolg

) 1
2?
(∫

M
u2

?
dvolg

) 2?−1
2?

.

(3.1.14)

Combine (3.1.11)–(3.1.14) to get∫
M
aβ dvolg 6

(∫
M
|f |2? dvolg

) β
2?
(∫

M
u2

?
dvolg

) 2?−1
2?

β+1−β

=

(∫
M
|f |2? dvolg

) β
2?
(∫

M
u2

?
dvolg

)1− β
2?

.

(3.1.15)

We now consider the general case. In order to state the result, let us assume that u

is a smooth positive solution of (3.0.1) and, as always, α ∈ (0, 1), β > 0 are constant.

The exact condition for α is given as follows

0 < α <
2?

22? + 1
.

By the Hölder inequality, we get that∫
M
aα|f−|β dvolg 6

(∫
M

a

u2?+1
dvolg

)α(∫
M
|f−|

β
1−αu

(2?+1)α
1−α dvolg

)1−α
.

By integrating both sides of (3.0.1), we get∫
M

a

u2?+1
dvolg = −

∫
M
fu2

?−1 dvolg 6
∫
M
|f−|u2?−1 dvolg . (3.1.16)

Again, by the Hölder inequality, we can estimate∫
M
|f−|u2?−1 dvolg 6

(∫
M
|f−|2? dvolg

) 1
2?
(∫

M
u2

?
dvolg

) 2?−1
2?

.

Therefore, we have∫
M
aα|f−|β dvolg 6

(∫
M
|f−|2? dvolg

) α
2?
(∫

M
u2

?
dvolg

) (2?−1)α
2?

(∫
M
|f−|

β
1−αu

(2?+1)α
1−α dvolg

)1−α
.

From that choice of α, we immediately see that (2?+1)α
1−α < 2?. Therefore, by the Hölder

inequality, we further have
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∫
M
|f−|

β
1−αu

(2?+1)α
1−α dvolg 6

(∫
M
|f−|

2?β
2?−(22?+1)α dvolg

) 2?−(22?+1)α
2?(1−α)

(∫
M
u2

?
dvolg

) (2?+1)α
2?(1−α)

which helps us to conclude that∫
M
aα|f−|β dvolg 6

(∫
M
|f−|2? dvolg

) α
2?
(∫

M
u2

?
dvolg

) (2?−1)α
2?

(∫
M
|f−|

2?β
2?−(22?+1)α dvolg

) 2?−(22?+1)α
2?

(∫
M
u2

?
dvolg

) (2?+1)α
2?

.

Thus, we have proved that∫
M
aα|f−|β dvolg 6

(∫
M
|f−|2? dvolg

) α
2?

(∫
M
|f−|

2?β
2?−(22?+1)α dvolg

) 2?−(22?+1)α
2?

(∫
M
u2

?
dvolg

)2α

.

(3.1.17)

Next, let us consider the case when (2?+1)α
1−α = 2?. In this context, we immediately have

α = 2?

22?+1 . Making use of (3.1.15), we get that∫
M
a

2n
5n−2 |f−|β dvolg 6(max

M
|f−|β)(∫

M
|f−|2? dvolg

) 1
22?+1

(∫
M
u2

?
dvolg

) 22?

22?+1

.

(3.1.18)

If we now adopt the convention that, in the case α = 2?

22?+1 ,

(∫
M
|f−|

2?β
2?−(22?+1)α dvolg

) 2?−(22?+1)α
2?

=
∥∥|f−|β∥∥

L∞
,

then by collecting (3.1.17) and (3.1.18), we have the following result.

Proposition 3.1. Let (M, g) be a smooth compact Riemannian manifold of dimension

n > 3. Let also a, f be smooth functions on M with a > 0 in M . If∫
M
aα|f−|β dvolg >

(∫
M
|f−|2? dvolg

) α
2?

(∫
M
|f−|

2?β
2?−(22?+1)α dvolg

) 2?−(22?+1)α
2?

(K1 + A1)
2?αΛ22?α

for some Λ > 0, some 0 < α 6 2n
5n−2 , and some β > 0, then the Einstein-scalar field

Lichnerowicz equation (3.0.1) does not possess smooth positive solutions with ‖u‖H1 6
Λ.

Proof. Let u be a smooth positive solution of (3.0.1) such that ‖u‖H1 6 Λ. By the

Sobolev inequality, there holds(∫
M
u2

?
dvolg

)2α

6 (K1 + A1)
2?α ‖u‖22

?α
H1 .
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This and our calculation above show that∫
M
aα|f−|β dvolg 6

(∫
M
|f−|2? dvolg

) α
2?

(∫
M
|f−|

2?β
2?−(22?+1)α dvolg

) 2?−(22?+1)α
2?

(K1 + A1)
2?αΛ22?α,

which immediately concludes the result. �

It is worth noting that a similar result was obtained in [21, Theorem 2.1] for the

non-negative case h > 0. We shall use this result somewhere in the case h > 0.

3.1.4 The uniqueness of positive smooth solutions for (3.0.1)

We now turn to the question of uniqueness of positive smooth solutions of (3.0.1).

We prove in this section that if f 6 0, then (3.0.1) admits the uniqueness property of

positive smooth solutions. To this purpose, we prove by way of contradiction and our

approach is based on the method of sub- and super-solutions. Before doing so, we need

the following result.

Lemma 3.5. For any smooth functions h, f , and a > 0 with
∫
M a dvolg > 0 and h

has a fixed sign in M . We further assume that there exists a continuous super-solution

u > 0 to (3.0.1). Then there always exists a sub-solution u > 0 to (3.0.1) such that

u < u.

Proof. In order to prove the existence of a sub-solution, we introduce the following trick.

Depending on the sign of h, we naturally have two cases.

Case 1. Suppose h 6 0. In this case, the function f always admits negative values in

M . We first observe that∫
M

(
a+

∫
M a dvolg∫

M |f−| dvolg
f−
)

dvolg = 0.

Consequently, there exists a function u0 ∈ H1(M) solving

−∆gu0 = a+

∫
M a dvolg∫

M |f−| dvolg
f− (3.1.19)

Since the right hand side of (3.1.19) is of class Lp(M) for any p < +∞, the Caldéron–

Zygmund inequality tells us that the solution u0 is of class W 2,p(M) for any p < +∞.

Thanks to the Sobolev Embedding theorem [3, Theorem 2.10], we can conclude that

u0 ∈ C0,α(M) for some α ∈ (0, 1). In particular, the solution u0 is continuous. Therefore,

by adding a sufficiently large constant C to the function u0 if necessary, we can always

assume that minM u0 > 1.

We now find the sub-solution u of the form εu0 for small ε > 0 to be determined.

To this purpose, we first observe that

−∆gu = εa+
ε
∫
M a dvolg∫

M |f−| dvolg
f−. (3.1.20)
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Since maxM u0 < +∞, it is easy to see that, for any 0 < ε 6 (maxM u0)
− 2?+1

2?+2 , we

immediately have

εa 6
a

ε2?+1u2
?+1

0

. (3.1.21)

Besides, since f− 6 0 and 2? > 2, it is not difficult to see that the following inequality

ε
∫
M a dvolg∫

M |f−| dvolg
f− 6 ε2

?−1u2
?−1

0 f−

holds provided

ε 6

( ∫
M a dvolg∫

M |f−| dvolg

) 1
2?−2

(max
M

u0)
− 2?−1

2?−2 (3.1.22)

In particular, the following

ε
∫
M a dvolg∫

M |f−| dvolg
f− 6 ε2

?−1u2
?−1

0 f (3.1.23)

holds provided (3.1.22) holds. Combining (3.1.20), (3.1.21), and (3.1.23), we conclude

that for small ε

−∆gu 6 ε
2?−1u2

?−1
0 f +

a

ε2?+1u2
?+1

0

.

In other words, and thanks to h 6 0, we have showed that

−∆gu+ hu 6 fu2
?−1 +

a

u2?+1
.

Finally, since u has a strictly positive lower bound, we can choose ε > 0 sufficiently

small such that u 6 u.

Case 2. Suppose h > 0. In this context, our approach is basically the same as that

used in Case 1. We consider the following equation

−∆gu+ (h− f−)u = a. (3.1.24)

Since h− f− > 0, a > 0, a 6≡ 0, and the manifold M is compact without the boundary,

the standard argument shows that (3.1.24) always admits a weak solution, say u0. By

a standard regularity result, one can easily deduce that u0 is at least continuous. Thus,

by the Maximum Principle, we conclude u0 > 0.

As before, we now find the sub-solution u of the form εu0 for small ε > 0 to be

determined. To this purpose, we first write

−∆gu+ hu = εa+ f−u. (3.1.25)

Notice that the term involving εa can be controlled using (3.1.21). Besides, since f− 6 0

and 2? > 2, it is not difficult to see that the following inequality

εu0f
− 6 ε2

?−1u2
?−1

0 f−

holds provided ε 6 1
maxu0

. In particular, the following

εu0f
− 6 ε2

?−1u2
?−1

0 f (3.1.26)
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holds provided ε 6 1
maxu0

. Combining all estimates above, we conclude that for small ε

−∆gu+ hu 6 ε2
?−1u2

?−1
0 f +

a

ε2?+1u2
?+1

0

.

In other words, we have showed that u is a sub-solution of (3.0.1). Finally, since u has

a strictly positive lower bound, we can choose ε > 0 sufficiently small such that u 6 u.

We conclude the proof. �

We now prove a uniqueness property of positive smooth solutions of (3.0.1).

Lemma 3.6. For any smooth functions h, f 6 0, and a > 0 with
∫
M a dvolg > 0 and h

has a fixed sign in M . We further assume that there exists a continuous super-solution

u > 0 to (3.0.1). Then (3.0.1) admits at most one positive smooth solution.

Proof. Suppose that there exists two positive smooth solution u1 and u2 of (3.0.1) with

u1 6= u2. We may assume that u1 > u2 in M . Indeed, if u1 6> u2 and u2 6> u1 in M , we

then set

u(x) = min{u1(x), u2(x)}, x ∈M.

It is easy to see that u > 0 in M and from [37, Proposition 1] we know that u is a

super-solution of (3.0.1), that is

−∆gu+ hu > fu2
?−1 +

a

u2
?+1 .

In addition, since u1 and u2 are smooth, it is clear that u is at least continuous, thus

showing that infM u > 0. By Lemma 3.5, there exists a continuous, positive sub-solution

u of (3.0.1) with u < u. By the sub- and super-solutions method, there is a solution v

of (3.0.1) satisfying

u 6 v 6 u on M.

So we may choose v to replace u2. In other words, we can assume that u1 > u2 on M .

We now show that in fact u1 > u2 on M . Indeed, we first recall that the following

−∆gu1 + hu1 = fu2
?−2

1 + au−2
?−1

1 ,

−∆gu2 + hu2 = fu2
?−2

2 + au−2
?−1

2 ,
(3.1.27)

hold. We now suppose that there exists a point x0 ∈M such that u1(x0) = u2(x0), by

setting w(x) = u1(x)− u2(x) with x ∈M , we arrive at
−∆gw + hw =

(
f
u2

?−1
1 − u2?−12

u1 − u2
+ a

u−2
?−1

1 − u−2?−12

u1 − u2

)
w, on M,

w > 0, on M,

w = 0, at x0.

By using the Strong Maximum Principle, there holds w > 0 in M which contradicts to

the fact that w(x0) = 0. Thus, we have proved that u1 > u2 in M . Since u1 and u2 are

solutions of (3.0.1), from (3.1.27), we easily obtain
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M
∇u1∇u2 dvolg +

∫
M
hu1u2 dvolg =

∫
M
fu2

?−1
1 u2 dvolg +

∫
M

au2

u2
?+1

1

dvolg ,∫
M
∇u2∇u1 dvolg +

∫
M
hu2u1 dvolg =

∫
M
fu2

?−1
2 u1 dvolg +

∫
M

au1

u2
?+1

2

dvolg .

By subtracting, we get that∫
M
fu1u2(u

2?−2
1 − u2?−22 ) dvolg +

∫
M
au1u2

(
1

u2
?+2

1

− 1

u2
?+2

2

)
dvolg = 0,

which is a contradiction since u1 > u2 > 0, f 6 0, and a > 0 with a 6≡ 0. Such a

contradiction implies that u1 ≡ u2, thus proving the uniqueness of positive smooth

solution of (3.0.1). �

3.2 An auxiliary minimizing problem

The following next two subsections are basically due to Rauzy [38]. Here we just

relax some conditions in the Rauzy arguments for future benefit. Besides, since our

functional energy is different from the one in [38], it is worth to reproduce several parts

in order to make the thesis to be self-contained.

3.2.1 The number λf

Following [38], we define the following number

λf =

 inf
u∈A

∫
M |∇u|

2 dvolg∫
M |u|2 dvolg

, if A 6= ∅,

+∞, if A = ∅,
(3.2.1)

where

A =

{
u ∈ H1(M) : u > 0, u 6≡ 0,

∫
M
|f−|u dvolg = 0

}
. (3.2.2)

Functions in A are to be thought of as functions that vanish on the support of f−. It is

clear that λf < +∞ if and only if the set {f > 0} has positive measure, that is, either

supM f > 0 or supM f = 0 and
∫
{f=0} 1 dvolg > 0.

We now show that in any case λf is actually strictly positive. To this end, it suffices

to consider the case λf < ∞, that is equivalent to saying that the set M1 = {x ∈ M :

f(x) > 0} has positive measure. Let us recall from [38, Lemme 1] that it was proved

that λf coincides with the first eigenvalue λ1 of the associated Dirichlet problem over

M1, that is,

λ1 = inf
u∈A′

∫
M |∇u|

2 dvolg∫
M |u|2 dvolg

(3.2.3)

where

A′ = {u ∈ C∞(M) : u > 0 in M1, u = 0 on ∂M1} . (3.2.4)

Obviously, λ1 > 0, thus proving λf > 0.
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3.2.2 The number λf,η,q

At the beginning of the subsection we temporarily leave our equation to study

another minimizing problem. The proof of our main result depends on λf,η,q which will

be defined below. This quantity was first introduced by Rauzy [38]. To be precise, we

introduce A (η, q), another subspace of H1(M), which is defined as the following

A (η, q) =

{
u ∈ H1(M) : ‖u‖Lq = 1,

∫
M
|f−||u|q dvolg = η

∫
M
|f−| dvolg

}
. (3.2.5)

We assume for a moment that A (η, q) is not empty which will be mentioned later after

proving Lemma 3.7 below. We define the number

λf,η,q = inf
u∈A(η,q)

‖∇u‖2L2

‖u‖2L2

. (3.2.6)

Clearly, λf,η,q > 0. We are going to prove the following result.

Lemma 3.7. Starting from some small η > 0 and as a function of η, λf,η,q is monotone

decreasing.

In the present case, it is hard to consider the equality sign, nevertheless we study

the following problem first

λ′f,η,q = inf
u∈A′(η,q)

‖∇u‖2L2

‖u‖2L2

where

A′ (η, q) =

{
u ∈ H1(M) : ‖u‖Lq = 1,

∫
M
|f−||u|q dvolg 6 η

∫
M

∣∣f−∣∣ dvolg

}
.

With q and η being fixed, the set A′ (η, q) is not empty since it includes the set of

functions u ∈ H1(M) such that ‖u‖Lq = 1 and with supports in the set

{x ∈M : f(x) > 0} ⊂
{
x ∈M, |f−|(x) < η

∫
M
|f−| dvolg

}
.

As can be seen form the definition of A′ that if η1 6 η2 then A′ (η1, q) ⊂ A′ (η2, q); thus

proving λ′f,η2,q 6 λ
′
f,η1,q

. This amounts to saying that λ′f,η,q is monotone decreasing.

We are going to show that λ′f,η,q = λf,η,q. For that reason, it suffices to show that

λ′f,η,q > λf,η,q since the reverse is trivial. The fact A′ (η, q) is not empty implies that

λ′f,η,q is finite. We are now in a position to prove Lemma 3.7.

Proof of Lemma 3.7. Before proving the lemma, let us first assume that λ′f,η,q > 0 for

some small η. Otherwise, this is trivial since we always have λ′f,η,q > 0. We first prove

that λ′f,η,q is achieved.

Let {vj}j ⊂ A′(η, q) be a minimizing sequence for λ′f,η,q. Obviously the sequence

{|vj |}j is also a minimizing sequence in A′(η, q) and therefore we can assume from the

beginning that vj > 0 in M . By the Hölder inequality, one has ‖vj‖L2 6 1. Then for

j sufficiently large, we obtain ‖∇vj‖2L2 6 λ′f,η,q + 1. Thus {vj}j is bounded in H1(M).

Being bounded, there exists v ∈ H1(M) such that, up to subsequences,
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• vj ⇀ v weakly in H1(M);

• ∇vj ⇀ ∇v weakly in L2(M);

• vj → v strongly in Lp(M) for any p ∈ [1, 2?);

• vj → v almost everywhere in M .

Consequently, v > 0 almost everywhere in M and ‖v‖Lq = 1. Using the Lebesgue

Dominated Convergence Theorem, we can pass to the limit to obtain∫
M
|f−||v|q dvolg 6 η

∫
M
|f−| dvolg .

In other words, v ∈ A′(η, q). We notice that

‖∇v‖2L2 6 lim
j→∞

‖∇vj‖2L2 , ‖v‖2L2 = lim
j→∞

‖vj‖2L2 .

Therefore, ‖∇v‖2L2 ‖v‖−2L2 6 λ′f,η,q. Thus λ′f,η,q is achieved by v. Notice that ‖∇v‖L2 > 0

since λ′f,η,q > 0. Since |∇|v|| = |∇v| we may assume that v > 0. We are going to prove

that v ∈ A(η, q). Indeed, we assume by contradiction that v /∈ A(η, q), that is,∫
M
|f−|vq dvolg < η

∫
M
|f−| dvolg .

Then there exists a suitable constant κ > 0 such that∫
M
|f−|(v + κ)q dvolg = η

∫
M
|f−| dvolg .

It follows from ‖v + κ‖L2 > ‖v‖L2 and ∇(v + κ) = ∇v that

‖∇(v + κ)‖2L2

‖v + κ‖2L2

<
‖∇v‖2L2

‖v‖2L2

.

Observe that
v + κ

‖v + κ‖Lq
∈ A′ (η, q) .

Since ‖v + κ‖Lq > ‖v‖Lq = 1 and ‖∇v‖L2 > 0, we get that∥∥∥∥∇( v + κ

‖v + κ‖Lq

)∥∥∥∥2
L2

∥∥∥∥ v + κ

‖v + κ‖Lq

∥∥∥∥−2
L2

=
‖∇(v + κ)‖2L2

‖v + κ‖2L2

<
‖∇v‖2L2

‖v‖2L2

,

which gives us a contradiction, thus proving that v ∈ A(η, q). In particular, one easily

gets that λ′f,η,q = λf,η,q. Consequently, λf,η,q is decreasing as a function of η. �

Remark 3.1. The fact that A(η, q) is not empty is a direct consequence of the proof of

Lemma 3.7.

Next we prove that λf,η,q > 0 if η 6= 1. Although we shall not use this result, we

provide a proof here for completeness.

Lemma 3.8. For each q ∈ (2, 2?) and 0 < η 6= 1 fixed, it holds λf,η,q > 0.
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Proof. We suppose the contrary, that is, λf,η,q = 0. By the previous lemma, there

exists some v ∈ A(η, q) such that ‖∇v‖2L2 ‖v‖−2L2 = 0. Since ‖v‖Lq = 1, there holds

‖∇v‖L2 = 0. Thus v is constant. Making use of the constraint for A we know that

v = 1 and thus proving η = 1, a contradiction. The proof is complete. �

We are now in a position to derive a strictly positive lower bound for λ′f,η,q. We

prove the following result.

Lemma 3.9. For any q ∈ [2[, 2?), there holds

λ′f,η,q > min
{
λ′
f,η2

[/2? ,2[
, λ′

f,η,2[

}
. (3.2.7)

Proof. We first pick u ∈ A′(η, q) arbitrarily. We have two cases depending on whether

η > 1 or not.

Case 1. We assume η > 1. Using the Hölder inequality, one gets

∫
M
|f−||u|2[ dvolg 6

(∫
M
|f−||u|q dvolg

) 2[

q
(∫

M
|f−| dvolg

)1− 2[

q

6

(
η

∫
M
|f−| dvolg

) 2[

q
(∫

M
|f−| dvolg

)1− 2[

q

= η
2[

q

∫
M
|f−| dvolg

6 η
∫
M
|f−| dvolg .

Hence, we have proved that A′(η, q) ⊂ A′(η, 2[). By taking the infimum, we arrive at

λ′f,η,2[ 6 λ
′
f,η,q.

Case 2. We assume η < 1. Using the Hölder inequality, one still gets

∫
M
|f−||u|2[ dvolg 6

(∫
M
|f−||u|q dvolg

) 2[

q
(∫

M
|f−| dvolg

)1− 2[

q

6

(
η

∫
M
|f−| dvolg

) 2[

q
(∫

M
|f−| dvolg

)1− 2[

q

=
(
η

2[

2?
) 2?

q

∫
M
|f−| dvolg

6 η
2[

2?

∫
M
|f−| dvolg .

Hence, we have proved that A′(η, q) ⊂ A′(η2
[/2? , 2[). By taking the infimum, we arrive

at λ′
f,η2

[/2? ,2[
6 λ′f,η,q.

Combining two cases above, one can conclude the lemma. �

Our next lemma describes a comparison between λf,η,q and λf . Intuitively, A is

smaller than A′(η, q), thus making λf,η,q 6 λf . We now prove this affirmatively.

Lemma 3.10. For each q ∈ (2, 2?) and η > 0 fixed, if supM f > 0, then λf,η,q 6 λf .
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Proof. We pick u ∈ A arbitrarily. Then there holds
∫
M u dvolg > 0, otherwise, u ≡

0. By the definition of A, we know that
∫
M |f

−|u dvolg = 0 which also implies that∫
M |f

−|uq dvolg = 0. Again, from the definition of A and the fact that supM f > 0 we

must have
∫
M uq dvolg > 0. We now choose ε > 0 such that∫

M
(εu)q dvolg = 1.

This amounts to saying that εu ∈ A′(η, q) which helps us to write

λ′f,η,q 6 ‖∇(εu)‖2L2 ‖εu‖−2L2 = ‖∇u‖2L2 ‖u‖−2L2 .

Since the preceding inequality holds for any u ∈ A, we may take the infimum on both

sides with respect to u to arrive at λ′f,η,q 6 λf . The proof follows easily since we have

seen that λ′f,η,q = λf,η,q. �

The next lemma concerns that for each q ∈ (2, 2?) fixed, there holds λf,η,q → λf as

η → 0 provided supM f > 0.

Lemma 3.11. For each q ∈ (2, 2?) fixed, if supM f > 0, then λf,η,q → λf as η → 0.

Proof. It suffices to show that for any sequence ηj → 0 as j →∞, there is a subsequence,

still denoted by ηj such that {λf,ηj ,q} converges to λf as j → ∞. In the following, for

the simplicity, we just simply omit the sub-index j. First, by the proof of Lemma 3.7,

we can assume that λf,η,q is achieved by some function vη,q ∈ A(η, q). By the Hölder

inequality, we easily get ‖vη,q‖2L2 6 1. Also by Lemma 3.10, we obtain ‖∇vη,q‖2L2 6
λf < +∞. Thus, for η small, vη,q is uniformly bounded in H1(M). Therefore, there

exists vq ∈ H1(M) such that, up to subsequences,

• vη,q ⇀ vq weakly in H1(M);

• ∇vη,q ⇀ ∇vq weakly in L2(M);

• vη,q → vq strongly in Lp(M) for any p ∈ [1, 2?);

as η → 0. Consequently, we can pass to the limit to see that vq ∈ A. This together with

‖∇vq‖2L2 6 lim inf
η→0

‖∇vη,q‖2L2 6 lim sup
η→0

(
λf,η,q ‖vη,q‖2L2

)
6 λf lim

η→0
‖vη,q‖2L2 = λf ‖vq‖2L2

yield ‖∇vq‖2L2 ‖vq‖−2L2 = λf . Hence,

lim inf
η→0

λf,η,q = lim inf
η→0

(
‖∇vη,q‖2L2 ‖vη,q‖−2L2

)
> ‖∇vq‖2L2 ‖vq‖−2L2 = λf

where we have used the fact that ‖∇vq‖2L2 6 lim infη→0 ‖∇vη,q‖2L2 . This immediately

gives us the desired result. The proof is complete. �

We now prove an analogous version of Lemma 3.11 for the case when λf = +∞. Keep

in mind that this is the case when either supM f < 0 or supM f = 0 and
∫
{f=0} 1 dvolg =

0. We now focus on the latter case.

Lemma 3.12. For each q ∈ (2, 2?) fixed, if supM f = 0 and
∫
{f=0} 1 dvolg = 0, then

λf,η,q → +∞ as η → 0.
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Proof. We assume by contradiction that λf,η,q 6→ +∞, then there exist a positive

constant C and a sequence {ηj}j such that ηj → 0 and λf,ηj ,q < C . We denote by

vηj ,q the minimizer for λf,ηj ,q. Keep in mind that we can always assume that vηj ,q > 0

almost everywhere. A similar argument shows that the sequence {vηj ,q}j is bounded in

H1(M). Consequently, up to subsequences, vηj ,q ⇀ vq weakly in H1(M), strongly in

Lq(M) for some vq ∈ H1(M). By passing to the limit, one gets∫
M

(vq)
q dvolg = 1,

∫
M
|f−|(vq)q dvolg = 0.

The last equality implies that vq = 0 almost everywhere which contradicts to the fact

that
∫
M (vq)

q dvolg = 1. The proof is complete. �

In the next two lemmas, we point out that λf,η,q can be arbitrary close to λf in any

case. First, we consider the case λf < +∞, we have the following lemma.

Lemma 3.13. For each δ > 0 fixed, there exists η0 > 0 such that for all η < η0, there

exists qη ∈ (2[, 2?) so that λf,η,q > λf − δ for every q ∈ (qη, 2
?).

Proof. We assume by contradiction that there is some δ0 > 0 such that for every

η0 > 0, there exist η < η0 and a monotone sequence {qj}j converging to 2? so that

λf,η,qj < λf − δ0 for every j. We can furthermore assume that λf,η,qj is achieved by

some vη,qj ∈ A(η, qj). We then immediately have∥∥∇vη,qj∥∥2L2

∥∥vη,qj∥∥−2L2 6 λf − δ0

for any j. Due to the finite of λf , we can prove the boundedness of vη,qj in H1(M)

which helps us to select a subsequence of vη,qj so that

• vη,qj ⇀ vη,2? weakly in H1(M);

• ∇vη,qj ⇀ ∇vη,2? weakly in L2(M);

• vη,qj → vη,2? strongly in Lp(M) for any p ∈ [1, 2?);

for some vη,2? ∈ H1(M) as j →∞. Therefore, by sending to the limit we can guarantee

the following estimate

‖∇vη,2?‖2L2 ‖vη,2?‖−2L2 6 λf − δ0.

Besides, the Hölder inequality implies 1 6 ‖vη,qj‖L2? for each j. Using this and the

Sobolev inequality applied to vη,qj , we get

1 6

(
K1

∥∥∇vη,qj∥∥2∥∥vη,qj∥∥2 + A1

)∥∥vη,qj∥∥2 6 (K1(λf − δ0) + A1

)∥∥vη,qj∥∥2
which yields (K1λf + A1)

−1 6 ‖vη,qj‖2L2 . Again after passing to the limit as j →∞, one

obtains
1

K1λf + A1
6
∫
M
|vη,2? |2 dvolg .

For every qj > 2[, by the Hölder inequality and the fact that vη,qj ∈ A(η, qj) one has∫
M
|vη,qj |2

[
dvolg 6 1
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and ∫
M
|f−||vη,qj |2

[
dvolg 6

(∫
M
|f−||vη,qj |

qηj dvolg

) 2[

qj

(∫
M
|f−| dvolg

)1− 2[

qj

=

(
η

∫
M
|f−| dvolg

) 2[

qj

(∫
M
|f−| dvolg

)1− 2[

qj

= η
2[

qj

∫
M
|f−| dvolg .

Letting j →∞, by the Fatou lemma, we deduce that∫
M
|vη,2? |2

[
dvolg 6 1

and ∫
M
|f−||vη,2? |2

[
dvolg 6 η

2[

2?

∫
M
|f−| dvolg .

Now we let η0 → 0, then clearly η → 0. The boundedness of vη,2? in H1(M) follows

from the fact that vη,qj ⇀ vη.2? and λf is finite. Therefore, there exists v ∈ H1(M)

such that, up to subsequence,

• vη,2? ⇀ v weakly in H1(M);

• vη,2? ⇀ v strongly in Lp(M) for any p ∈ [1, 2?);

• vη,2? ⇀ v almost everywhere in M .

Before giving out contradiction, we notice that

‖∇v‖2L2 6 (λf − δ0) ‖v‖2L2 . (3.2.8)

Then it is enough to see

0 6
∫
M
|f−||v|2[ dvolg 6 lim

η→0

(∫
M
|f−||vη,2? |2

[
dvolg

)
6 lim

η→0

(
η

2[

2?

∫
M
|f−| dvolg

)
= 0.

In other words, we would have
∫
M |f

−||v|2[ dvolg = 0. In particular,
∫
M |f

−||v| dvolg =

0. The strong convergence vη,2? → v in L2(M) also implies that (K1λf +A1)
−1 6 ‖v‖2L2 .

Therefore, v 6≡ 0, and thus |v| ∈ A. By the definition of λf , we know that

λf ‖v‖2L2 6 ‖∇|v|‖2L2 = ‖∇v‖2L2 (3.2.9)

The inequalities (3.2.8) and (3.2.9) obviously provide us a desired contradiction. This

proves the lemma. �

Then, we consider the case λf = +∞, we have

Lemma 3.14. There exists η0 such that for all η < η0, there exists qη < 2? so that

λf,η,q > |h| for every q ∈ (qη, 2
?).
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Proof. We assume by contradiction that for every η0, there exist η < η0 and a monotone

sequence {qj}j converging to 2? so that λf,η,qj 6 |h| for all j. We assume furthermore

that λf,η,qj is achieved by some vη,qj ∈ A(η, qj). Then the following estimate holds∥∥∇vη,qj∥∥2L2

∥∥vη,qj∥∥−2L2 = λf,η,qj 6 |h|,

for all j. As in the proof of Lemma 3.13, there is some vη,2? ∈ H1(M) such that, up to

subsequence,

• ∇vη,qj ⇀ ∇vη,2? weakly in L2(M) and

• vη,qj → vη,2? strongly in L2(M)

as j →∞. This and the fact that

‖∇vη,2?‖2L2 6 lim inf
j→∞

(‖∇vη,qj‖2L2)

give, after sending j →∞, the following estimate

‖∇vη,2?‖2L2 ‖vη,2?‖−2L2 6 |h|.

Besides, the Hölder inequality implies that 1 6 ‖vη,qj‖L2? . Using this and the Sobolev

inequality we get
1

K1|h|+ A1
6
∫
M
|vη,qj |2 dvolg .

By strong convergence in L2(M), one obtains after passing to the limit

1

K1|h|+ A1
6
∫
M
|vη,2? |2 dvolg .

For every qj > 2[, by the Hölder inequality and the fact that vη,qj ∈ A(η, qj) one has∫
M
|vη,qj |2

[
dvolg 6 1

and ∫
M
|f−||vη,qj |2

[
dvolg 6 η

2[

qj

∫
M
|f−| dvolg .

Followed by the proof of Lemma 3.13, we obtain∫
M
|vη,2? |2

[
dvolg 6 1

and ∫
M
|f−||vη,2? |2

[
dvolg 6 η

2[

2?

∫
M
|f−| dvolg .

Now let η → 0, the boundedness of vη,2? in H1(M) follows from the fact that vη,qj ⇀

vη.2? and that |h| is finite. Being bounded, there is some v ∈ H1(M) such that, up to

subsequence,

• vη,2? ⇀ v weakly in H1(M) and

• vη,2? → v strongly in L2(M).
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Clearly, ‖∇v‖2L2 6 |h| ‖v‖2L2 . However,

0 6
∫
M
|f−||v|2[ dvolg 6 lim

η→0

(∫
M
|f−||vη,2? |2

?
dvolg

)
6 lim

η→0

(
η

2[

2?

∫
M
|f−| dvolg

)
= 0.

Hence,
∫
M |f

−||v|2[ dvolg = 0 which yields v = 0 almost everywhere. So, we cannot use

the rest of argument as in the proof of Lemma 3.13. The strong convergence vη,2? → v in

L2(M) also implies that limη→2? ‖vη,2?‖L2 = 0 which provides us a desired contradiction

since ‖vη,2?‖L2 has a strictly positive lower bound 1
K1|h|+A1

. The proof follows. �

Remark 3.2. As can be seen from the preceding proof, a stronger form of Lemma 3.14

can be obtained where |h| is replaced by any given positive constant. However, we don’t

need that strong one.

3.3 Necessary conditions for f and h

3.3.1 A necessary condition for
∫
M
f dvolg

The purpose of this subsection was to derive a condition for
∫
M f dvolg so that

(3.0.2) admits positive smooth solutions. Our argument was motivated from a same

result for the well-known prescribing scalar curvature problem.

Proposition 3.2. Assume that h 6 0 is constant. Then then necessary condition for f

so that Equation (3.0.2) admits positive smooth solution is
∫
M f dvolg < 0. In particular,

the necessary condition for (3.0.1) to have positive smooth solution is
∫
M f dvolg < 0.

Proof. We assume that u > 0 is a smooth solution of (3.0.2). By multiplying both sides

of (3.0.2) by u1−q, one gets

(−∆gu)u1−q + hu3−q = f +
au2−q

(u2 + ε)
q
2
+1
.

Integrating over M and noticing that h 6 0 give∫
M

(−∆gu)u1−q dvolg >

∫
M
f dvolg +

∫
M

au2−q

(u2 + ε)
q
2
+1

dvolg .

By the divergence theorem, one obtains∫
M

(−∆gu)u1−q dvolg =

∫
M
∇u · ∇(u1−q) dvolg

= (1− q)
∫
M
u−q|∇u|2 dvolg .

This and the fact that q > 2 deduce that∫
M
f dvolg +

∫
M

au2−q

(u2 + ε)
q
2
+1

dvolg < 0.

Obviously, there holds
∫
M f dvolg < 0 as claimed. �

It is important to note that in the case h > 0, there is no such a condition on∫
M f dvolg .
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3.3.2 A necessary condition for h

In this subsection, we show that the condition |h| < λf is necessary if λf < +∞ in

order for (3.0.1) to have a positive smooth solution. In the light of the condition a > 0,

one may go through [38, Section III.3] to conclude this necessary condition. However,

here we provide a different proof which is shorter than the proof in [38, Section III.3].

Our argument depends on a Picone type identity for integrals [1] whose proof makes

use of the density. We believe that such an identity has its own interest.

Lemma 3.15. Assume that v ∈ H1(M) with v > 0 and v 6≡ 0. Suppose that u > 0 is a

smooth function. Then we have∫
M
|∇v|2 dvolg = −

∫
M

∆u

u
v2 dvolg +

∫
M
u2
∣∣∣∇(v

u

)∣∣∣2 dvolg .

Proof. By density, there exist a family of regular functions {vj}j such that

vj → v strongly in H1(M), vj → v a.e. in M, vj ∈ C1(M).

The standard Picone identity tells us that∫
M
|∇vj |2 dvolg = −

∫
M

∆u

u
v2j dvolg +

∫
M
u2
∣∣∣∇(vj

u

)∣∣∣2 dvolg . (3.3.1)

Since u > 0 is smooth and vj → v strongly in H1(M) we immediately have∫
M
|∇vj |2 dvolg →

∫
M
|∇v|2 dvolg

and ∫
M

∆u

u
v2j dvolg →

∫
M

∆u

u
v2 dvolg

as j → +∞. Again using the smoothness of u, we can check that
vj
u →

v
u strongly in

H1(M). Therefore, ∫
M
u2
∣∣∣∇(vj

u

)∣∣∣2 dvolg →
∫
M
u2
∣∣∣∇(v

u

)∣∣∣2 dvolg

as j → +∞. The proof now follows by taking the limit in (3.3.1) as j → +∞. �

We now provide a different proof for necessary condition |h| < λf .

Proposition 3.3. If Equation (3.0.1) has a positive smooth solution, it is necessary to

have |h| < λf .

Proof. We only need to consider the case λf < +∞ since otherwise it is trivial. We

let v ∈ A arbitrary and assume that u is a positive smooth solution to (3.0.1). Using

Lemma 3.15 and (3.0.1), we find that∫
M
|∇v|2 dvolg =−

∫
M

∆u

u
v2 dvolg +

∫
M
u2
∣∣∣∇(v

u

)∣∣∣2 dvolg

=|h|
∫
M
v2 dvolg +

∫
M
fu2

?−2v2 dvolg

+

∫
M

av2

u2?+2
dvolg +

∫
M
u2
∣∣∣∇(v

u

)∣∣∣2 dvolg

>|h|
∫
M
v2 dvolg +

∫
M
u2
∣∣∣∇(v

u

)∣∣∣2 dvolg .
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In other words, there holds∫
M |∇v|

2 dvolg∫
M v2 dvolg

> |h|+
∫
M u2

∣∣∇ ( vu)∣∣2 dvolg∫
M v2 dvolg

. (3.3.2)

In particular, λf > |h| > 0 by taking the infimum with respect to v. Notice that∫
M u2

∣∣∇ ( vu)∣∣2 dvolg∫
M v2 dvolg

=

∫
M u2

∣∣∇ ( vu)∣∣2 dvolg∫
M u2

(
v
u

)2
dvolg

>

(
infM u

supM u

)2
∫
M

∣∣∇ ( vu)∣∣2 dvolg∫
M

(
v
u

)2
dvolg

> λf

(
infM u

supM u

)2

since v
u ∈ A. Having this, we can check from (3.3.2) that∫

M |∇v|
2 dvolg∫

M v2 dvolg
> |h|+ λf

(
infM u

supM u

)2

.

By taking the infimum with respect to v, we obtain

λf > |h|+ λf

(
infM u

supM u

)2

.

This and the fact that λ > 0 give us the desired result. �

From the above proof, one can observe that the function a plays no role but a > 0.

In fact, the proof is still valid if a ≡ 0, thus providing a different proof for the Rauzy

result [38, III.3. Condition nécessaire].
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In this chapter, we are interested in the existence (if possible, the multiplicity and

the uniqueness) of positive solutions to the Einstein-scalar field Lichnerowicz equations

(3.0.1) in the negative Yamabe-scalar field conformal invariant, that is the case h < 0.

As we have noted before, in order to study (3.0.1), we follow the subcritical ap-

proach. Since the subcritical equation (3.0.2) is variational, we study (3.0.2) by using

the variational method [2, 40]. Our main procedure is to show that solutions of (3.0.1)

exist as first ε→ 0 and then q → 2? under various assumptions.

The content of this chapter consists of two main parts depending of the sign of f .

Thanks to the necessary condition
∫
M f dvolg < 0 that we have already proved before,

in the first part of the chapter, we mainly consider the case when the function f takes

both positive and negative values. Our main theorem for this part can be stated as

follows.

Theorem 4.1. Let (M, g) be a smooth compact Riemannian manifold without the

boundary of dimension n > 3. Assume that f and a > 0 are smooth functions on

M such that
∫
M f dvolg < 0, supM f > 0,

∫
M a dvolg > 0, and |h| < λf where λf is

given in (3.2.1) below. Let us also suppose that the integral of a satisfies∫
M
a dvolg <

1

n− 2

(
n− 1

n− 2

)n−1( |h|∫
M |f−| dvolg

)n ∫
M
|f−| dvolg (4.0.1)

where f− is the negative part of f . Then there exists a number C > 0 to be specified

such that if
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supM f∫
M |f−| dvolg

< C , (4.0.2)

Equation (3.0.1) possesses at least two smooth positive solutions.

To be precise, the constant C appearing in (4.0.2) is given in (4.4.25) below, see also

Remark 4.5. Roughly speaking, for the existence part, the constant C depends only on

the negative part of f . However, for the multiplicity part, C also depends on the positive

part of f . The question of whether we can find a explicit formula for C turns out to be

difficult, even for the prescribed scalar curvature equation, for interested readers, we

refer to [4].

If we assume that f does not change sign in the sense that f 6 0 in M , we obtain

necessary and sufficient solvability conditions as pointed out by Choquet-Bruhat, Isen-

berg, and Pollack [11] in the case of (1.2.10). That is the content of the second part of

the chapter.

Theorem 4.2. Let (M, g) be a smooth compact Riemannian manifold without boundary

of dimension n > 3. Let h < 0 be a constant, f and a be smooth functions on M with

a > 0 in M , f 6 0 but not strictly negative. Then Equation (3.0.1) possesses one

positive solution if and only if |h| < λf .

In addition, our approach can be used to handle the case supM f < 0 although this

has been done in [11] by using the method of sub- and super-solutions. We shall address

this issue later. Finally, we should mention that the content of this chapter was adapted

from [34].

4.1 The analysis of the energy functionals

4.1.1 The functional setting

For each q ∈ [2[, 2?) and k > 0, we introduce Bk,q, a hyper-surface of H1(M), which

is defined by

Bk,q =
{
u ∈ H1(M) : ‖u‖Lq = k

1
q

}
. (4.1.1)

Notice that for any k > 0, our set Bk,q is non-empty since it always contains k
1
q . Now

we construct the energy functional associated to problem (3.0.2). For each ε > 0, we

consider the functional F εq : H1(M)→ R defined by

F εq (u) =
1

2

∫
M
|∇u|2 dvolg +

h

2

∫
M
u2 dvolg

− 1

q

∫
M
f |u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg .

By a standard argument, F εq is continuously differentiable on H1(M), see Lemma 4.1

below, and thus weak solutions of (3.0.2) correspond to critical points of the functional

F εq . Now we set

µεk,q = inf
u∈Bk,q

F εq (u) .
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By the Hölder inequality, it is not hard to see thatF εq |Bk,q is bounded from below by

−k supM f + h
2k

2
q and thus µεk,q > −∞ if k is finite. On the other hand, using the test

function u = k
1
q , we get

µεk,q 6
h

2
k

2
q − k

q

∫
M
f dvolg +

1

q

∫
M

a

(k
2
q + ε)

2 dvolg (4.1.2)

which tells us that µεk,q < +∞. Our aim was to find critical points of the functional F εq .

In order to support our aim, we prove the following result.

Lemma 4.1. The first variation of F εq at a point u in a direction v is given by

δF εq (u) (v) =

∫
M
∇u · ∇v dvolg + h

∫
M
uv dvolg

−
∫
M
f |u|q−2uv dvolg −

∫
M

au

(u2 + ε)
q
2
+1
v dvolg

where ∇u ·∇v stands for the pointwise scalar product of ∇u and ∇v with respect to the

metric g.

Proof. The proof is simple, we include it here for completeness. In fact, for any smooth

function v, there holds

δF εq (u) (v) =
d

dt
F εq (u+ tv)

∣∣∣∣
t=0

=
d

dt

[
1

2

∫
M
|∇(u+ tv)|2 dvolg +

h

2

∫
M

(u+ tv)2 dvolg

] ∣∣∣∣
t=0

+
d

dt

[
−1

q

∫
M
f |u+ tv|q dvolg +

1

q

∫
M

a

((u+ tv)2 + ε)
q
2

dvolg

] ∣∣∣∣∣
t=0

=

∫
M

(−∆gu)v dvolg + h

∫
M
uv dvolg

−
∫
M
f |u|q−2uv dvolg −

∫
M

au

(u2 + ε)
q
2
+1
v dvolg ,

which provides the desired result. �

4.1.2 µεk,q is achieved

The purpose of this subsection was to show that, if k, q, and ε are fixed, then µεk,q
is achieved by a smooth positive function, say uε. The proof is standard and is based

on the so-called direct methods in the calculus of variations.

Lemma 4.2. For each k > 0, q ∈ (2, 2?), and ε > 0 fixed, the number µεk,q is achieved

by some smooth positive function.

Proof. Let {uj}j ⊂ Bk,q be a minimizing sequence for µεk,q, that is,∫
M
|uj |q dvolg = k
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for any j and

lim
j→+∞

F εq (uj) = µεk,q.

Since F εq (uj) = F εq (|uj |), we may assume from the beginning that uj > 0 for all j.

Observe that q−2
q + 2

q = 1, so for any j, by the Hölder inequality we get

∫
M

(uj)
2 dvolg 6

(∫
M

(uj)
q dvolg

) 2
q

= k
2
q . (4.1.3)

Therefore, for j sufficiently large such that F εq (uj) < µεk,q + 1, one has

1

2

∫
M
|∇uj |2 dvolg 6

1

2

∫
M
|∇uj |2 dvolg +

h

2

(∫
M

(uj)
2 dvolg − k

2
q

)
− 1

q

(∫
M
f |uj |q dvolg − k| sup

M
f |
)

6
1

2

∫
M
|∇uj |2 dvolg +

h

2

∫
M

(uj)
2 dvolg −

1

q

∫
M
f |uj |q dvolg

+
1

q

∫
M

a

(u2 + ε)
q
2

dvolg −
h

2
k

2
q +

k

q
| sup
M

f |

=F εq (uj)−
h

2
k

2
q +

k

q
| sup
M

f |

<µεk,q −
h

2
k

2
q +

k

q
| sup
M

f |+ 1.

That is ∫
M
|∇uj |2 dvolg < 2

(
µεk,q −

h

2
k

2
q +

k

q
| sup
M

f |+ 1

)
. (4.1.4)

The inequalities (4.1.3) and (4.1.4) imply that {uj}j is bounded in H1(M). Being

bounded, there exists uε ∈ H1(M) such that, up to subsequences,

• uj ⇀ uε weakly in H1(M);

• uj → uε strongly in Lp(M) for any p ∈ [1, 2?);

• uj → uε almost everywhere in M .

Consequently, uε > 0 almost everywhere in M and limj→∞ ‖uj‖Lq = ‖uε‖Lq = k
1
q . In

particular, uε ∈ Bk,q. Clearly, it follows from the definition of µεk,q that

F εq (uε) > µ
ε
k,q. (4.1.5)

On the other hand, since uj → uε almost everywhere, we also have ((uj)
2 + ε)−

q
2 →

((uε)
2 + ε)−

q
2 almost everywhere in M as j →∞. Notice that functions a((uj)

2 + ε)−
q
2

and a((uε)
2 + ε)−

q
2 are bounded by the function aε−

q
2 which is of class L1(M). By the

Lebesgue Dominated Convergence Theorem, we obtain∫
M

a

((uj)2 + ε)
q
2

dvolg →
∫
M

a

((uε)2 + ε)
q
2

dvolg

as j →∞. We now observe that the part

1

2

∫
M
|∇uj |2 dvolg +

h

2

∫
M
u2j dvolg −

1

q

∫
M
f |uj |q dvolg
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is weakly lower semi-continuous. We therefore get

µεk,q = lim
j→+∞

F εq (uj)

> lim inf
j→+∞

[
1

2

∫
M
|∇uj |2 dvolg +

h

2

∫
M

(uj)
2 dvolg −

1

q

∫
M
f |uj |q dvolg

]
+

1

q
lim

j→+∞

∫
M

a

((uj)2 + ε)
q
2

dvolg

>
1

2

∫
M
|∇uε|2 dvolg +

h

2

∫
M

(uε)
2 dvolg

− 1

q

∫
M
f |uε|q dvolg +

1

q

∫
M

a

((uε)2 + ε)
q
2

dvolg

=F εq (uε) .

In other words, we would have

µεk,q > F
ε
q (uε) . (4.1.6)

In view of the inequalities (4.1.5) and (4.1.6), there holds µεk,q = F εq (uε). This and the

fact that uε ∈ Bk,q prove that µεk,q is achieved by uε.

It leaves out to prove the smoothness and positivity of uε. Keep in mind that the

Euler-Lagrange equation for functional F εq with the constraint (4.1.1) is

−∆guε + huε − f |uε|q−2uε −
auε

((uε)2 + ε)
q
2
+1
− λ|uε|q−2uε = 0

for some constant λ. Equivalently, uε solves

−∆guε + huε = (f + λ)|uε|q−2uε +
auε

((uε)2 + ε)
q
2
+1

(4.1.7)

in the weak sense. The regularity result, Lemma 3.4(a), can be applied to (4.1.7).

It follows that uε ∈ C∞(M) and uε > 0 in M . The Strong Maximum Principle [3,

Proposition 3.75] can be applied to conclude that either uε ≡ 0 or uε > 0 in M . Since∫
M (uε)

q dvolg = k 6= 0, we know that uε 6≡ 0. Thus, uε is a smooth positive solution of

(4.1.7). Therefore, we have shown that µεk,q is achieved by smooth positive function uε
and the claim follows. �

4.1.3 The continuity of µεk,q with respect to k

The objective of this subsection was to prove the following result.

Proposition 4.1. For ε > 0 fixed, µεk,q is continuous with respect to k.

Proof. Since µεk,q is well-defined at any point k, we have to verify that for each k fixed

and for any sequence kj → k there holds µεkj ,q → µεk,q as j → +∞. This is equivalent

to showing that there exists a subsequence of {kj}j , still denoted by kj , such that

µεkj ,q → µεk,q as j → +∞.

We suppose that µεk,q and µεkj ,q are achieved by u ∈ Bk,q and uj ∈ Bkj ,q respectively.

Keep in mind that u and uj are positive smooth functions on M . Our aim was to prove
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the boundedness of {uj}j in H1(M). It then suffices to control ‖∇uj‖L2 . As in (4.1.4),

we have ∫
M
|∇uj |2 dvolg < 2

(
µεkj ,q −

h

2
k

2
q

j +
kj
q

sup
M

f

)
.

Thus, we have to control µεkj ,q. By the homogeneity we can find a sequence of positive

numbers {tj}j such that tju ∈ Bkj ,q. Since kj → k as j → +∞ and k
2
q

j = ‖tju‖Lq =

tjk
2
q , we immediately see that tj → 1 as j → +∞. Now we can use tju to control µεkj ,q.

Indeed, from the definition of µεkj ,q and by using the function tju, we know that

µεkj ,q 6F
ε
q (tju)

=t2j

(
1

2

∫
M
|∇u|2 dvolg +

h

2

∫
M
u2 dvolg

)
− 1

q
tqj

∫
M
fuq dvolg +

1

q

∫
M

a

((tju)2 + ε)
q
2

dvolg

6t2j

(
1

2

∫
M
|∇u|2 dvolg +

h

2

∫
M
u2 dvolg

)
− 1

q
tqj

∫
M
fuq dvolg +

1

q
ε−

q
2

∫
M
a dvolg .

Notice that u is fixed and tj belongs to a neighborhood of 1 for large j. Thus, {µεkj ,q}j
is bounded which also implies by the preceding estimate that {‖∇uj‖L2}j is bounded.

Hence {uj}j is bounded in H1(M). Being bounded, there exists u ∈ H1(M) such that,

up to subsequences,

• uj ⇀ u weakly in H1(M);

• uj → u strongly in Lp(M) for any p ∈ [1, 2?);

Consequently, limj→+∞ ‖uj‖Lq = ‖u‖Lq = k
2
q , that is, u ∈ Bk,q. In particular, F εq (u) 6

F εq (u). We now use weak lower semi-continuity property of F εq to deduce that

F εq (u) 6 F εq (u) 6 lim inf
j→+∞

F εq (uj).

We now use our estimate for µεkj ,q above to see that

lim sup
j→+∞

µεkj ,q 6 F
ε
q (u).

This is due to the Lebesgue Dominated Convergence Theorem and the fact that tj → 1

as j → +∞. In summary, limj→+∞ µ
ε
kj ,q

= µεk,q which proves the continuity of µεk,q. �

4.2 Asymptotic behavior of µεk,q in the case supM f > 0

In this section we investigate the behavior of µεk,q when both k and ε vary. Under

some suitable conditions, we show among other things that there exist k? < 1, k0, and

k?? > 1 with k0 ∈ (k?, k??) such that

(a) µεk?,q > 0 for any ε 6 k?;
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(b) µεk0,q < 0 for any ε > 0;

(c) µεk,q < 0 for any ε > 0 and any k > k??;

It is worth noticing that the assertions (b) and (c) play different role in our argument.

In fact, we prove in the next section that µεk,q < 0 for some k ∈ (k0, k??) and for any

ε > 0.

First, we investigate the behavior of µεk,q when both k and ε are sufficiently small.

Lemma 4.3. There holds limk→0+ µ
k
2
q

k,q = +∞. In particular, there is some k? suffi-

ciently small and independent of both q and ε such that µεk?,q > 0 for any ε 6 k?.

Proof. The way that ε comes and plays immediately shows us that µεk,q is strictly

monotone decreasing in ε for fixed k and q. For any ε 6 k
2
q , any 1 < q

2 <
2?

2 , and any

u ∈ Bk,q, we have the following estimate,

∫
M

√
a dvolg 6

(∫
M

a

(u2 + ε)
q
2

dvolg

) 1
2 (∫

M
(u2 + ε)

q
2 dvolg

) 1
2

6

(∫
M

a

(u2 + ε)
q
2

dvolg

) 1
2 (∫

M
(u2 + k

2
q )

q
2

dvolg

) 1
2

6

(∫
M

a

(u2 + ε)
q
2

dvolg

) 1
2 (

2
q
2
−1
∫
M

(|u|q + k) dvolg

) 1
2

= 2
q
4

√
k

(∫
M

a

(u2 + ε)
q
2

dvolg

) 1
2

.

Squaring both sides, we get∫
M

a

(u2 + ε)
q
2

dvolg >
1

2
2?

2 k

(∫
M

√
a dvolg

)2

.

This helps us to conclude that

F εq (u) =
1

2

∫
M
|∇u|2 dvolg +

h

2

∫
M
u2 dvolg

− 1

q

∫
M
f |u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg

> k
2
q
h

2
− k

q
| sup
M

f |+ 1

q

∫
M

a

(u2 + ε)
q
2

dvolg

> k
2
q
h

2
− k

q
| sup
M

f |+ 1

2
2?

2 qk

(∫
M

√
a dvolg

)2

,

which proves that µk
2
q

k,q → +∞ as k → 0+. We wish now to find some small k? < 1

independent of both q and ε such that

k
2
q
?
h

2
− k?

q
| sup
M

f |+ 1

2
2?

2 qk?

(∫
M

√
a dvolg

)2

> 0.
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The preceding inequality is equivalent to

1

2
2?

2 q

(∫
M

√
a dvolg

)2

> k?

(
k?
q
| sup
M

f |+ k
2
q
?
|h|
2

)
.

Since k? < 1, it is clear to see that

k?

(
k?
q
| sup
M

f |+ k
2
q
?
|h|
2

)
< k?

(
1

q
| sup
M

f |+ |h|
2

)
.

Summing up, it suffices to choose k? < 1 such that

1

2
2?

2 q

(∫
M

√
a dvolg

)2(
1
q | supM f |+ |h|

2

) > k?.
Since 2 < q < 2? we know that

1

2
2?

2 q

(∫
M

√
a dvolg

)2(
1
q | supM f |+ |h|

2

) > 1

2
2?

2 2?

(∫
M

√
a dvolg

)2(
1
2 | supM f |+ |h|

2

) .
Therefore, we can choose k? as

k? = min

{ (∫
M

√
a dvolg

)2
2

2?

2
−12? (| supM f |+ |h|)

,

(
|h|∫

M |f−| dvolg

)n−1
, 1

}
. (4.2.1)

For such a choice of k?, we notice that k? 6 k
2
q
? . Clearly, k? given by (4.2.1) is indepen-

dent of both q and ε. �

We now investigate the behavior of µεk,q as k → +∞. A direct use of constant

functions as in (4.1.2) gives us nothing since f changes its sign. To avoid this difficulty

we need to construct a new suitable test function, to this end we have to control f− by

using a suitable cut-off function which is supported in the positive part of f .

Lemma 4.4. There holds µεk,q → −∞ as k → +∞ if supM f > 0.

Proof. We first choose a point, say x0 ∈ M , such that f(x0) > 0. For example, one

can choose x0 such that f(x0) = supM f . By the continuity of f , there exists some

r0 > 0 sufficiently small such that f(x) > 0, for any x ∈ Br0(x0) and f(x) > 0 for any

x ∈ B2r0(x0). Let ϕ : [0,+∞)→ [0, 1] be a smooth non-negative function such that

ϕ(t) =

{
1, 0 6 t 6 r20,

0, t > 4r20.

For small r0, the function ϕ is clearly smooth. We then define

w(x) = ϕ(dist(x, x0)
2), x ∈M,

and set

g(t) =

∫
M
fetw dvolg , t ∈ R.
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Obviously, g is continuous and g(0) < 0 by assumption
∫
M f dvolg < 0. For arbitrary

t, we have

g(t) =

∫
M
f+etw dvolg +

∫
M
f−etw dvolg

> ( min
Br0 (x0)

f+)

∫
Br0 (x0)

etw dvolg +

∫
M
f−etw dvolg

= ( min
Br0 (x0)

f+) vol(Br0(x0))e
t +

∫
M
f−etw dvolg .

Keep in mind that
∫
M f−etw dvolg is bounded since∣∣∣∣∫

M
f−etw dvolg

∣∣∣∣ 6 ∫
M
|f−|etw dvolg =

∫
M\B2r0 (x0)

|f−| dvolg <∞.

It follows that

g(t) > ( min
Br0 (x0)

f+) vol(Br0(x0))e
t −
∫
M\B2r0 (x0)

|f−| dvolg .

Thus, there exists some t0 sufficiently large such that g(t0) > 1. The monotonicity

property of g, that can be seen from

g′(t) =

∫
M
fwetw dvolg =

∫
B2r0 (x0)

f+wetw dvolg > 0,

allows us to conclude that g(t) > 1 for any t > t0. We now take a positive function

v ∈ C1 of the following form

v(x) = cet0w(x), x ∈M

where c is a positive constant chosen in such a way that
∫
M vq dvolg = 1. By our

construction above, the function et0w(x) is independent of both q and ε. Therefore,∫
M
fvq dvolg = cq

∫
M
feqt0w dvolg = cqg(qt0) > cqg(t0) > 0. (4.2.2)

Since k
1
q v ∈ Bk,q, a direct computation leads us to

F εq (k
1
q v) =

1

2

∫
M
|∇(k

1
q v)|2 dvolg +

h

2

∫
M

(k
1
q v)

2
dvolg

− 1

q

∫
M
f(k

1
q v)

q
dvolg +

1

q

∫
M

a(
(k

1
q v)

2
+ ε
) q2 dvolg

6
1

2
k

2
q

[∫
M
|∇v|2 dvolg + h

∫
M
v2 dvolg −

2

q
k
1− 2

q

∫
M
fvq dvolg

]
+

1

q
ε−

q
2

∫
M
a dvolg .

With the help of (4.2.2) we deduce F εq (k
1
q v) → −∞ by sending k → +∞ in the

preceding inequality, thus proving our claim. �

We are going to show that there exists k0 such that µεk0,q < 0 and µεk,q > 0 for some

k > k0. These results together with Lemmas 4.3 and 4.4 give us a full description of

the asymptotic behavior of µεk,q. First we prove the existence of such a k0.
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Lemma 4.5. There exists some k0 > 0 independent of ε such that µεk0,q 6 0 for any

ε > 0 provided ∫
M
a dvolg 6

(
2 + q

4

|h|∫
M |f−| dvolg

) q+2
q−2 |h|

4
(q − 2). (4.2.3)

In particular, k0 > k?.

Proof. Since k
1
q ∈ Bk,q, by removing the negative term involving f+, we know from

(4.1.2) that, for any ε > 0,

F εq (k
1
q ) =

hk
2
q

2
− k

q

∫
M
f dvolg +

1

q

∫
M

a

(k
2
q + ε)

q
2

dvolg

6
hk

2
q

2
− k

q

∫
M
f dvolg +

1

q

∫
M

a

k
dvolg

6
hk

2
q

2
+
k

q

∫
M
|f−| dvolg +

1

qk

∫
M
a dvolg .

Clearly, the non-positivity of the right hand side of this inequality is equivalent to∫
M
a dvolg 6

|h|q
2
k
q+2
q − k2

∫
M
|f−| dvolg . (4.2.4)

By a simple calculation, at

k0 =

(
2 + q

4

|h|∫
M |f−| dvolg

) q
q−2

the right hand side of (4.2.4) is equal to(
2 + q

4

|h|∫
M |f−| dvolg

) q+2
q−2 |h|

4
(q − 2).

Thus, by definition, we claim that µεk0,q 6 0 provided
∫
M a dvolg satisfies (4.2.3). The

fact that k0 > k? can be seen from Lemma 4.3. �

Now we have the following remark which also plays some role in our argument.

Remark 4.3. It follows from q ∈ [2[, 2?) that

min

{(
|h|∫

M |f−| dvolg

)n−1
, 1

}
6 k0

since 2+q
4 > 1 and the function q

q−2 is monotone decreasing. Moreover, if we keep the

term involving f+ in the proof of Lemma 4.5, we immediately see that

F εq (k
1
q

0 ) 6 −k0
q

∫
M
f+ dvolg .

Thus, we can easily control the growth of µεk0,q as below
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µεk0,q 6 −
1

2?
min

{(
|h|∫

M |f−| dvolg

)n−1
, 1

}∫
M
f+ dvolg (4.2.5)

for any ε > 0. Keep in mind that the right hand side of (4.2.5) is strictly negative and

is independent of both q > q0 and ε provided supM f > 0 which is always the case in

this section. Furthermore, from the choice of k? as in the proof of Lemma 4.3 we have

k? < k0.

Since the right hand side of (4.2.3) depends on q, its behavior for q near 2? is

needed in future argument. In fact under the condition (4.2.6) below we show that it

is monotone increasing.

Lemma 4.6. As a function of q,(
2 + q

4

|h|∫
M |f−| dvolg

) q+2
q−2 |h|

4
(q − 2)

is monotone increasing in (2, 2?) provided

2?|h|
2
6
∫
M
|f−| dvolg . (4.2.6)

Proof. This is elementary. Let

β(q) =
q + 2

q − 2
log

(
2 + q

4

|h|∫
M |f−| dvolg

)
+ log

(
|h|
4

(q − 2)

)
.

Our condition (4.2.6) implies that

2 + q

4

|h|∫
M |f−| dvolg

6 1.

Hence we have

β′(q) = − 4

(q − 2)2
log

(
2 + q

4

|h|∫
M |f−| dvolg

)
+

2

q − 2
> 0,

if q > 2. The conclusion follows. �

Remark 4.4. The preceding proof shows that β′(q) is non-negative for any 2 < q < 2?.

Also, a simple calculation shows that

lim
q→2?

eβ(q) =
1

n− 2

(
n− 1

n− 2

)n−1( |h|∫
M |f−| dvolg

)n ∫
M
|f−| dvolg

since 2?+2
2?−2 = n− 1. This suggests that a good condition for

∫
M a dvolg could be (4.0.1).

Notice that, so far our estimate on µεk,q is still not enough for our purpose. We need

finer estimates. We prove that, as a function of k where k > k0, µ
ε
k,q is bounded from

above by a constant independent of q ∈ [2[, 2?) and ε > 0.

Lemma 4.7. Assume that (4.0.1) holds. Then there exists some constant µ independent

of q and ε such that µεk,q 6 µ for any ε > 0, q ∈ [2[, 2?) and k > k0. In other words,

µεk,q has an upper bound when k is large.
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Proof. Thanks to the proof of Lemma 4.4, we can conclude our lemma by taking a

positive function v of the following form v(x) = cet0w(x), x ∈ M where c is a positive

constant chosen so that
∫
M vq dvolg = 1, namely,

c =

(∫
M
eqt0w dvolg

)− 1
q

.

With this choice of c, we immediately have(∫
M
e2
?t0w dvolg

)−1
6 cq 6 1.

Therefore,

F εq (k
1
q v) =

1

2

∫
M
|∇(k

1
q v)|2 dvolg +

h

2

∫
M

(k
1
q v)

2
dvolg

− 1

q

∫
M
f(k

1
q v)

q
dvolg +

1

q

∫
M

a

((k
1
q v)

2
+ ε)

q
2

dvolg

6
1

2
k

2
q c2
[∫

M
|∇(et0w)|2 dvolg + h

∫
M

(et0w)
2

dvolg

]
− k

q

∫
M
fvq dvolg +

1

qk

∫
M
av−q dvolg

6
1

2
k

2
q c2
∫
M
|∇(et0w)|2 dvolg −

k

q

∫
M
fvq dvolg +

1

qk

∫
M
av−q dvolg .

We first observe that∫
M
fvq dvolg = cqg(qt0) >

(∫
M
e2
?t0w dvolg

)−1
.

For the term 1
qk

∫
M av−q dvolg , notice that

vq > cq >

(∫
M
e2
?t0w dvolg

)−1
.

Therefore,

1

qk

∫
M
av−q dvolg 6

1

2k

(∫
M
e2
?t0w dvolg

)(∫
M
a dvolg

)
.

We still have to analyze the last integral. Thanks to c 6 1, clearly

c2
∫
M
|∇(et0w)|2 dvolg 6

∫
M
|∇(et0w)|2 dvolg .

Putting all the estimates together, we deduce that

F εq (k
1
q v) 6

1

2
(k + 1)

2
q c2
∫
M
|∇(et0w)|2 dvolg −

k

q

∫
M
fvq dvolg +

1

qk

∫
M
av−q dvolg

6
1

2
(k + 1)

2

2[

∫
M
|∇(et0w)|2 dvolg

− k

q

(∫
M
e2
?t0w dvolg

)−1
+

1

2k

(∫
M
e2
?t0w dvolg

)(∫
M
a dvolg

)
.

(4.2.7)
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As a function of k and with k > k0, it is clear that the right hand side of (4.2.7) achieves

its maximum, say µ due to the fact that 2[ > 2. This helps us to complete the proof. �

In order to take the limit as q → 2? we need to control Lq-norm of the mountain

pass solutions. Since our mountain pass solutions have non-negative energy, what we

really need is to show that there is an upper bound k?? > max{k0, 1} independent of ε

and q such that µεk,q < 0 for any k > k??. This is done by the following lemma.

Lemma 4.8. There is some k?? sufficiently large and independent of both q and ε such

that µεk,q < 0 for any k > k??.

Proof. From the proof of Lemma 4.7, it is easy to see that the right hand side of (4.2.2),

being considered as a function of k, is continuous and independent of q and ε. Again,

thanks to 2
2[
< 1, we know that the function on the right hand side of (4.2.2) goes to

−∞ as k → +∞. Consequently, there is some k?? > max{k0, 1} sufficiently large and

independent of both q and ε such that µεk,q < 0 for any k > k?? and any ε > 0. �

Now, we prove that, for any ε > 0 and for some k > k0, µ
ε
k,q > 0. A similar result

was studied in [38, Proposition 2].

Proposition 4.2. Suppose that |h| < λf and supM f > 0. Then there exists η0 > 0

sufficiently small and its corresponding qη0 sufficiently close to 2? such that

δ =
λf,η0,q + h

2
>

3

8
(λf + h) (4.2.8)

for any q ∈ [qη0 , 2
?). For such a choice of δ, we denote

Cq =
η0

4|h|
min

{
δ

(A1 + 2K1(|h|+ 2δ))
,
|h|
2

}
︸ ︷︷ ︸

m

. (4.2.9)

If
supM f∫

M |f−| dvolg
< Cq, (4.2.10)

then there exists an interval Iq = [k1,q, k2,q] so that for any k ∈ Iq, any ε > 0, and any

u ∈ Bk,q, there holds

F εq (u) >
1

2
mk

2
q .

In particular, µεk,q > 0 for any k ∈ Iq and any ε > 0.

Proof. It follows from Lemma 3.13 that there exist some 0 < η0 < 2 and its correspond-

ing qη0 ∈ [2[, 2?) such that

0 6 λf − λf,η0,q <
1

4
(λf − |h|)

for any q ∈ (qη0 , 2
?). This immediately confirms (4.2.8). We now let

k1,q =

(
|h|q

η0
∫
M |f−| dvolg

) q
q−2

. (4.2.11)
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From Remark 4.3 and the fact that η0 < 2 we deduce that k0 < k1,q. We assume from

now on that k > k1,q. We write

F εq (u) = Gq (u)− 1

q

∫
M
f+|u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg ,

where

Gq (u) =
1

2
‖∇u‖2L2 +

h

2
‖u‖2L2 +

1

q

∫
M
|f−||u|q dvolg .

Then, there are two possible cases.

Case 1. Assume that ∫
M
|f−||u|q dvolg > η0k

∫
M
|f−| dvolg .

In this case, the term Gq can be estimated from below as follows

Gq (u) =
1

2
‖∇u‖2L2 +

h

2
‖u‖2L2 +

1

q

∫
M
|f−||u|q dvolg

>
h

2
‖u‖2L2 +

η0k

q

∫
M
|f−| dvolg

>
|h|
2
k

2
q

2η0
∫
M |f

−| dvolg

|h|q
k
1− 2

q︸ ︷︷ ︸
>2

−1


>
|h|
2
k

2
q ,

(4.2.12)

where in the last inequality we have used the fact that k > k1,q and (4.2.11).

Case 2. Assume that ∫
M
|f−||u|q dvolg < η0k

∫
M
|f−| dvolg .

Under this condition, it is clear that k
− 1
q u ∈ A′(η0, q) which implies ‖∇u‖2L2 ‖u‖−2L2 >

λf,η0,q by the definition of λf,η0,q. Therefore, we can estimate Gq(u) as follows

Gq (u) >
1

2
(λf,η0,q + h) ‖u‖2L2 +

1

q

∫
M
|f−||u|q dvolg

= δ ‖u‖2L2 +
1

q

∫
M
|f−||u|q dvolg .

Clearly,

‖u‖2L2 =
2

|h|

(
1

2
‖∇u‖2L2 +

1

q

∫
M
|f−||u|q dvolg −Gq (u)

)
.

Now if we write δ‖u‖2L2 as δ ‖u‖2L2 = (α+ β) ‖u‖2L2 where α = βA1

2|h|K1
and α+β = δ, we

then get

Gq (u) >α ‖u‖2L2 +
2β

|h|

(
1

2
‖∇u‖2L2 +

1

q

∫
M
|f−||u|q dvolg −Gq (u)

)
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+
1

q

∫
M
|f−||u|q dvolg

>α ‖u‖2L2 +
2β

|h|

(
1

2
‖∇u‖2L2 −Gq (u)

)
which gives (

1 +
2β

|h|

)
Gq (u) > α ‖u‖2L2 +

β

|h|
‖∇u‖2L2

>
β

|h|

(
‖∇u‖2L2 +

α|h|
β
‖u‖2L2

)
.

Using K1 ‖∇u‖2L2 + A1 ‖u‖2L2 > k
2
q and the fact that α|h|

β = A1
2K1

, one easily obtains

‖∇u‖2L2 +
α|h|
β
‖u‖2L2 >

k
2
q

2K1
.

Since β = 2K1|h|δ
A1+2K1|h| , we therefore have

Gq (u) >
β

2|h|
k

2
q

K1

(
1 +

2β

|h|

)−1
=

δ

A1 + 2K1(|h|+ 2δ)
k

2
q . (4.2.13)

It follows from (4.2.9), (4.2.12), and (4.2.13) that Gq (u) > mk
2
q . Thus, we obtain

F εq (u) > mk
2
q − k

q
sup
M

f.

If we let k <
(

mq
2 supM f

) q
q−2

we then get F εq (u) > 1
2mk

2
q > 0. Since

sup
M

f 6 Cq

∫
M
|f−| dvolg =

mη0
4|h|

∫
M
|f−| dvolg ,

one has, by (4.2.11), the following(
mq

2 supM f

) q
q−2

>

(
2q|h|

η0
∫
M |f−| dvolg

) q
q−2

= 2
q
q−2k1,q.

Hence, if we set k2,q = 2
n
2 k1,q, then for arbitrary k ∈ [k1,q, k2,q] we always have F εq (u) >

1
2mk

2
q . In other words, µεk,q > 0 for arbitrary k ∈ [k1,q, k2,q] which completes the present

proof. �

4.3 The Palais-Smale condition

This subsection is devoted to the proof of the Palais–Smale compactness condition.

To our knowledge, there is no such a result in the literature since our energy functional

contains both critical and negative exponents that cause a lot of difficulty. In addition,

the negative constant h also raises several difficulties.
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Proposition 4.3. Suppose that the conditions (4.2.8)-(4.2.10) hold. Then for each ε >

0 fixed, the functional F εq (·) satisfies the Palais–Smale condition.

Proof. Let ε > 0 be fixed. Suppose that {vj}j ⊂ H1(M) is a Palais–Smale sequence,

that is, there exists a constant C such that

F εq (vj)→ C , ‖δF εq (vj)‖H−1 → 0

as j →∞, where H−1(M) is the dual space of H1(M). As the first step, we shall prove

that, up to subsequences, {vj}j is bounded in H1(M). Without loss of generality, we

may assume ‖vj‖H1 > 1 for all j. By means of the Palais–Smale sequence, one can

derive

1

2

∫
M
|∇vj |2 dvolg +

h

2

∫
M
|vj |2 dvolg

− 1

q

∫
M
f |vj |q dvolg +

1

q

∫
M

a

((vj)2 + ε)
q
2

dvolg = C + o(1)
(4.3.1)

and ∫
M
∇vj · ∇ξ dvolg + h

∫
M
vjξ dvolg −

∫
M
f |vj |q−2vjξ dvolg

−
∫
M

avj

((vj)2 + ε)
q
2
+1ξ dvolg

= o(1)‖ξ‖H1

(4.3.2)

for any ξ ∈ H1(M). By letting ξ = vj in (4.3.2), we obtain∫
M
|∇vj |2 dvolg + h

∫
M
|vj |2 dvolg −

∫
M
f |vj |q dvolg

−
∫
M

av2j

((vj)2 + ε)
q
2
+1

dvolg = o(1)‖vj‖H1 .

(4.3.3)

Therefore, from (4.3.1) and (4.3.3) we obtain(
1

2
− 1

q

)∫
M
f |vj |q dvolg +

1

2

∫
M

av2j

((vj)2 + ε)
q
2
+1

dvolg

+
1

q

∫
M

a

((vj)2 + ε)
q
2

dvolg = C +
1

2
o(1)‖vj‖H1 + o(1).

(4.3.4)

For the sake of simplicity, let us denote

kj =

∫
M
|vj |q dvolg .

There are two possible cases.

Case 1. Assume that there exists a subsequence of {vj}j , still denoted by {vj}j , such

that ∫
M
|f−||vj |q dvolg > η0kj

∫
M
|f−| dvolg .

Using (4.2.9) and (4.2.10), we get that
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F εq (vj) =
1

2
‖∇vj‖2L2 +

h

2
‖vj‖2L2 +

1

q

∫
M
|f−||vj |q dvolg

− 1

q

∫
M
f+|vj |q dvolg +

1

q

∫
M

a

((vj)2 + ε)
q
2

dvolg

>
h

2
k

2
q

j +
η0kj
q

∫
M
|f−| dvolg −

1

q

∫
M
f+|vj |q dvolg

>
h

2
k

2
q

j +
η0kj
q

∫
M
|f−| dvolg −

kj
q

sup
M

f

>
h

2
k

2
q

j +
η0kj
q

∫
M
|f−| dvolg −

kj
q

η0
8

∫
M
|f−| dvolg

=

(
7η0
8

∫
M
|f−| dvolg

)
kj
q
− |h|

2
k

2
q

j .

This and the fact that F εq (vj)→ C imply that {kj}j is bounded. In other words, {vj}j
is bounded in Lq(M). Hence, the Hölder inequality and (4.3.1) imply that {vj}j is also

bounded in H1(M).

Case 2. In contrast to Case 1, for all j sufficiently large, we assume that∫
M
|f−||vj |q dvolg < η0kj

∫
M
|f−| dvolg .

Using (4.3.1) and (4.3.3), we obtain

−1

q

∫
M
f |vj |q dvolg =− 2

q − 2
C + o(1)‖vj‖H1 + o(1)

+
1

q − 2

∫
M

av2j

((vj)2 + ε)
q
2
+1

dvolg +
2

q(q − 2)

∫
M

a

((vj)2 + ε)
q
2

dvolg .

Therefore, we may rewrite F εq as follows

F εq (vj) =
1

2
‖∇vj‖2L2 +

h

2
‖vj‖2L2 −

1

q

∫
M
f |vj |q dvolg +

1

q

∫
M

a

((vj)2 + ε)
q
2

dvolg

>
1

2
‖∇vj‖2L2 +

h

2
‖vj‖2L2 −

2

q − 2
C + o(1)‖vj‖H1 + o(1) +Aj

(4.3.5)

where

Aj =
1

q − 2

(∫
M

a(vj)
2

((vj)2 + ε)
q
2
+1

dvolg +

∫
M

a

((vj)2 + ε)
q
2

dvolg

)
.

Dividing (4.3.5) by ‖vj‖L2 and using the equivalent norm to ‖vj‖H1 = ‖∇vj‖L2+‖vj‖L2 ,

one obtains

F εq (vj)

‖vj‖L2

>
‖∇vj‖L2

‖vj‖L2

(
1

2
‖∇vj‖L2 + o(1)

)
+
h

2
‖vj‖L2

− 2

(q − 2)‖vj‖L2

C + o(1) +
o(1)

‖vj‖L2

+
Aj
‖vj‖L2

.

(4.3.6)

Observe that, from the definition of λf,η0,q, there holds ‖∇vj‖2L2 > λf,η0,q ‖vj‖
2
L2 . There-

fore, from (4.3.6) and for j large enough, there holds
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F εq (vj)

‖vj‖L2

>
1

2
(λf,η0,q + h)‖vj‖L2 + o(1)

√
λf,η0,q

− 2

(q − 2)‖vj‖L2

C + o(1) +
o(1)

‖vj‖L2

+
Aj
‖vj‖L2

.

If ‖vj‖L2 → +∞ as j →∞, then we clearly would reach a contradiction by taking the

limit in previous equation as j →∞ since λf,η0,q + h > 0 and Aj > 0 as we notice that

F εq (vj) ‖vj‖−1L2 → 0 as j →∞. Thus, {vj}j is bounded in L2(M). This and (4.3.5) also

imply that {∇vj}j is bounded in L2(M). Consequently, {vj}j is bounded in H1(M).

Combining Cases 1 and 2 above, we conclude that there exists a bounded subse-

quence of {vj}j in H1(M), still denoted by {vj}j . This completes the first step.

Being bounded, there exists v ∈ H1(M) such that, up to subsequences,

• vj ⇀ v weakly in H1(M);

• ∇vj ⇀ ∇v weakly in L2(M);

• vj → v strongly in Lp(M) for any p ∈ [1, 2?);

• vj → v almost everywhere in M .

We now prove that vj → v strongly in H1(M). This can be done once we show that

∇vj → ∇v strongly in L2(M). In order to achieve that goal, the following

δF εq (vj)(vj − v)→ 0,

as j →∞, is crucial in our argument. Indeed, using (4.3.2) with ξ replaced by vj − v,

we get∫
M
∇vj · ∇(vj − v) dvolg +h

∫
M
vj(vj − v) dvolg

−
∫
M
f |vj |q−2vj(vj − v) dvolg −

∫
M

avj

((vj)2 + ε)
q
2
+1

(vj − v) dvolg → 0
(4.3.7)

as j →∞. Since vj → v strongly in L2(M) and {vj}j is bounded in H1(M), the Hölder

inequality can be applied to get∫
M
vj(vj − v) dvolg → 0 (4.3.8)

as j →∞. For the term involving f , we can also use the Hölder inequality as follows∣∣∣∣∣
∫
M
f |vj |q−2vj(vj − v) dvolg

∣∣∣∣∣
6 (sup

M
f)

∫
M
|vj |q−1|vj − v| dvolg

6 (sup
M

f)

(∫
M
|vj |2

?
dvolg

) q−1
2?
(∫

M
|vj − v|

2?

2?−(q−1) dvolg

) 2?−(q−1)
2?

.

Notice that 2?

2?−(q−1) < 2? as long as q < 2?. Hence, thanks to the compact embedding

H1(M) ↪→ L
2?

2?−(q−1) (M), the Sobolev inequality, and the boundedness of {vj}j in

H1(M), there holds
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M
f |vj |q−2vj(vj − v) dvolg → 0 (4.3.9)

as j →∞. For the term involving a, we first observe that∣∣∣∣∣
∫
M

avj

((vj)2 + ε)
q
2
+1

(vj − v) dvolg

∣∣∣∣∣ 6 ε− q2−1
∫
M
a|vj(vj − v)| dvolg

holds true. Using the squeeze theorem, it is immediately to see that∫
M

avj

((vj)2 + ε)
q
2
+1

(vj − v) dvolg → 0 (4.3.10)

as j →∞. Therefore, from (4.3.7), (4.3.8), (4.3.9), and (4.3.10), we obtain∫
M
∇vj · ∇(vj − v) dvolg → 0 (4.3.11)

as j →∞. Making use of the fact that ∇vj ⇀ ∇v weakly in L2(M) gives∫
M
∇v · (∇vj −∇v) dvolg → 0 (4.3.12)

as j →∞. We then obtain immediately from (4.3.11)-(4.3.12) that∫
M
|∇vj −∇v|2 dvolg =

∫
M
∇vj · (∇vj −∇v) dvolg −

∫
M
∇v · (∇vj −∇v) dvolg → 0

as j →∞. In other words, ∇vj → ∇v strongly in L2(M). This completes the proof of

the Palais-Smale condition. �

4.4 Proof of Theorem 4.1

We are now in a position to prove Theorem 4.1. This can be done through three

steps. First, because of Lemma 4.6, we need to make use of the condition (4.2.6) in

order to guarantee the existence of the first solution. This is the content of Proposition

4.4. Next we show that if, in addition, supM f can be controlled by some positive

number, then (3.0.1) has at least two positive solutions. In the last step, we remove

the condition (4.2.6) by using a scaling argument. It is worth noting that although the

condition (4.2.6) is not really important in view of taking the limit as q → 2?, we take

this chance to perform this trick in order to completely remove (4.2.6).

4.4.1 The existence of the first solution

In this section, we obtain the existence of the first solution of (3.0.1). Notice that,

we require (4.2.6) to hold. This restriction will be removed by using a scaling argument

later. We prove the following result.

Proposition 4.4. Let (M, g) be a smooth compact Riemannian manifold without the

boundary of dimension n > 3. Let h < 0 be a constant, f and a > 0 be smooth
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functions on M with
∫
M a dvolg > 0,

∫
M f dvolg < 0, supM f > 0, and |h| < λf . We

further assume (4.2.6) holds and∫
M
a dvolg <

1

n− 2

(
n− 1

n− 2

)n−1( |h|∫
M |f−| dvolg

)n ∫
M
|f−| dvolg .

Then there is a positive number C1 given by (4.4.1) such that if

supM f∫
M |f−| dvolg

< C1,

then (3.0.1) admits at least one smooth positive solution.

Since our proof is quite long, we divide it into several claims for the sake of clarity.

Claim 1. There exists a q0 ∈ [2[, 2?) such that for all q ∈ (q0, 2
?) and some sufficiently

small ε, there will be k0 and k? with the following properties: k0 < k? and µεk0,q 6 0

while µεk?,q > 0.

Proof of Claim 1. We observe that, from Lemma 4.6, the condition (4.2.6), and Remark

4.4, there is some q0 ∈ [2[, 2?) such that the condition (4.2.3) holds for all q ∈ (q0, 2
?).

Hence, by Lemma 4.5, there exists a k0 > 0 small enough such that µεk0,q 6 0. Notice

that 2[ > 2 for any n > 3. The existence of such a k0 makes it possible for us to select

some k? such that k? < min{k0, 1} and µεk?,q > 0 for any ε 6 k?. This settles Claim 1.

Claim 2. Equation (3.0.2) with ε replaced by 0 has two positive solutions, say u1,q and

u2,q.

Proof of Claim 2. By using Proposition 4.2, we have η0 and its corresponding qη0 ∈
[2[, 2?) such that δ = 1

2(λf,η0,q +h) > 3
8(λf +h) for any q ∈ (qη0 , 2

?). Thanks to Lemma

3.10, one has 3
8(λf + h) 6 δ 6 1

2(λf + h). Hence

δ

A1 + 2K1(|h|+ 2δ)
>

3
8(λf + h)

A1 + 2K1(|h|+ (λf + h))
=

3

8

λf + h

A1 + 2K1λf
.

Thus, by (4.2.9), we can define

C1 =
η0

4|h|
min

{
3

8

λf + h

A1 + 2K1λf
,
|h|
2

}
. (4.4.1)

Note that C1 is independent of q and thus never vanishes for q ∈ [qη0 , 2
?). Besides,

Cq > C1 for any q ∈ [qη0 , 2
?). In addition, one can easily see that

lim
q→2?

k1,q =

(
2?|h|

η0
∫
M |f−| dvolg

)n
2

= `, lim
q→2?

k2,q = 2
n
2 `.

By Proposition 4.2, there exists an interval Iq = [k1,q, k2,q] such that µεk,q > 0 for any

k ∈ Iq. Recall that k? < k0 < k1,q, where k? is given as in Claim 1.

The existence of uε1,q with energy µεkε1,q
. We first define the number

µεkε1,q = inf
u∈Dk,q

F εq (u)
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where

Dk,q =
{
u ∈ H1(M) : k? 6 ‖u‖qLq 6 k1,q

}
.

Due to the monotonicity of k1,q, we know that ‖u‖qLq < ` for any u ∈ Dk,q. It follows

from Lemma 4.5 that µεkε1,q
is finite and non-positive. Similar arguments to those used

before show that µεkε1,q
is achieved by some positive smooth function uε1,q. In particular,

µεkε1,q
is the energy of uε1,q. Obviously, uε1,q is a solution of (3.0.2). It is not hard to verify

that any minimizing sequence for µεkε1,q
is bounded in H1(M). Now the lower semi-

continuity of H1-norm implies that ‖uε1,q‖H1 is bounded with the bound independent

of q and ε. If we denote ‖uε1,q‖
q
Lq = kε1 we immediately have kε1 ∈ (k?, k??).

The existence of u1,q with strictly negative energy µk1,q. In what follows, we let {εj}j
be a sequence of positive real numbers such that εj → 0 as j →∞. For each j, let u

εj
1,q

be a smooth positive function in M such that

−∆gu
εj
1,q + hu

εj
1,q = f(u

εj
1,q)

q−1 +
au

εj
1,q

((u
εj
1,q)

2 + εj)
q
2
+1

(4.4.2)

in M . Being bounded, there exists u1,q ∈ H1(M) such that, up to subsequences,

• u
εj
1,q ⇀ u1,q weakly in H1(M);

• u
εj
1,q → u1,q strongly in Lp(M) for any p ∈ [1, 2?);

• u
εj
1,q → u1,q almost everywhere in M .

Using Lemma 3.1, the Lebesgue Dominated Convergence Theorem can be applied to

conclude that
∫
M (u1,q)

−p dvolg is finite for all p. Now sending j →∞ in (4.4.2), we get

that u1,q is a weak solution of the following subcritical equation

−∆gu1,q + hu1,q = f(u1,q)
q−1 +

a

(u1,q)q+1
. (4.4.3)

Thus the regularity result, Lemma 3.4(b), can be applied to (4.4.3). It follows that

u1,q ∈ C∞(M). Since u
εj
1,q → u1,q strongly in Lq(M) as j →∞, if we denote ‖u1,q‖qLq =

k1, we still have k1 ∈ (k?, k??). Consequently, there holds u1,q 6≡ 0. With Lemma 3.1 and

the Strong Minimum Principle in hand, it is easy to prove that u1,q is strictly positive.

From Remark 4.3 and the fact that u
εj
1,q has strictly negative energy µ

εj

k
εj
1 ,q

, by passing

to the limit as j →∞, we know that u1,q also has strictly negative energy µk1,q. Thus,

we have shown that u1,q is a smooth positive solution of (4.4.3) as claimed. Keep in

mind that we still have ‖u1,q‖qLq 6 k?? since we have a strong convergence.

The existence of uε2,q with energy µεkε2,q
. Let k? be a real number such that

µεk?,q = max
{
µεk,q : k1,q 6 k 6 k2,q

}
.

Obviously, µεk?,q > 0. Now we choose k1 ∈ (k0, k1,q) and k2 ∈ (k2,q, k??) in such a way

that µε
k1,q

= µε
k2,q

= 0. The existence of ki is guaranteed by Proposition 4.1. Notice that

µε
k1,q

and µε
k2,q

have been proved to be achieved, say by uk1,q and uk2,q respectively. We

now set

Γ =
{
γ ∈ C([0, 1];H1(M)) : γ(0) = uk1,q, γ(1) = uk2,q

}
.
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Consider the functional E(v) = F εq (uk1,q + v) for any non-negative real valued function

v with

‖v‖ =

(∫
M
|uk1,q + v|q dvolg

) 1
q

.

First we have E(0) = 0. Let ρ = (k?)
1
q . If ‖v‖ = ρ, then set u = uk1,q + v, then∫

M |u|
q dvolg = k?. Hence

E(v) = F εq (u) > µεk?,q > 0.

Next we set v1 = uk2,q − uk1,q, then clearly E(v1) = 0 and ‖v1‖ = (k2)
1
q > ρ. Notice

that our functional E satisfies the Palais-Smale condition as we have shown for F εq .

Thus, Theorem 6.1 in [40, Chapter II] can be applied to E to conclude that the number

µεkε2,q = inf
γ∈Γ

max
06t61

E(γ(t)− uk1,q)

is a critical value of the functional E. Clearly, µεkε2,q
> 0. Thus, there exists a Palais–

Smale sequence {uj}j ⊂ H1(M) for the functional F εq at the level µεkε2,q
. Since F εq (uj) =

F εq (|uj |) for any j, we can assume uj > 0 for all j. Consequently, Proposition 4.3

implies that, up to subsequences, uj → uε2,q strongly in H1(M) for some uε2,q ∈ H1(M)

as j →∞. Therefore, the function uε2,q with positive energy µεkε2,q
satisfies the following

equation

−∆gu
ε
2,q + huε2,q = f(uε2,q)

q−1 +
auε2,q

((uε2,q)
2 + ε)

q
2
+1

(4.4.4)

in the weak sense where we denote ‖uε2,q‖
q
Lq = kε2. The non-negativity of {uj}j implies

that uε2,q > 0 almost everywhere, and thus the regularity result, Lemma 3.4(a), can be

applied to (4.4.4). It follows that uε2,q ∈ C∞(M) which also implies uε2,q > 0 in M . To

see uε2,q is not identically zero, thanks to Lemma 4.7 we first know that µε2,q 6 µ <∞.

Now, if uε2,q = 0, then we have 1
q ε
− q

2

∫
M a dvolg = µε2,q 6 µ < ∞ which is impossible if

ε is small enough. Thus, uε2,q > 0 on M if ε is sufficiently small which we will always

assume from now on. In view of Lemma 4.8, we know that kε2 > 0 is bounded from

above by k?? independent of both ε and q.

The existence of u2,q with positive energy µk2,q. We now let {εj}j be a sequence of small

positive real numbers such that εj → 0 as j → ∞. For each j, let u
εj
2,q be a smooth

positive function in M such that

−∆gu
εj
2,q + hu

εj
2,q = f(u

εj
2,q)

q−1 +
au

εj
2,q

((u
εj
2,q)

2
+ εj)

q
2
+1

(4.4.5)

in M . The boundedness of {kεj2 }j tells us that sequence {uεj2,q}j is bounded in H1(M),

hence, there exists u2,q ∈ H1(M) such that, up to subsequences,

• u
εj
2,q ⇀ u2,q in H1(M),

• u
εj
2,q → u2,q strongly in L2(M),

• u
εj
2,q → u2,q almost everywhere in M .

Consequently, u2,q > 0 almost everywhere in M . We now denote ‖u2,q‖qLq = k2. Since

the sequence {uεj2,q}j is bounded from below by means of Lemma 3.1, the Lebesgue
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Dominated Convergence theorem can be applied to conclude that (u2,q)
−1 ∈ Lp(M) for

any p > 0. By letting j →∞ in (4.4.5), we get that u2,q is the second weak solution of

the following subcritical equation

−∆gu2,q + hu2,q = f(u2,q)
q−1 +

a

(u2,q)q+1
. (4.4.6)

Now the regularity result, Lemma 3.4(b), can be applied to (4.4.6). It follows that

u2,q ∈ C∞(M) and thus u2,q > 0 in M . Since u
εj
2,q has positive energy µ

εj

k
εj
2 ,q

, by passing

to the limit as j → ∞, we know that the energy of u2,q is still non-negative, i.e.,

µk2,q > 0, thus proving u1,q 6≡ u2,q by means of (4.1.7). Note that k2 is still bounded

from above by k?? independent of both ε and q. This completes the proof of Claim 2.

Claim 3. Equation (3.0.1) has at least one positive solution.

Proof of Claim 3. Recall that µki,q are the energy of ui,q found in Claim 2, i.e.,

µki,q =
1

2

∫
M
|∇ui,q|2 dvolg +

h

2

∫
M

(ui,q)
2 dvolg

− 1

q

∫
M
f(ui,q)

q dvolg +
1

q

∫
M

a

(ui,q)
q dvolg .

Keep in mind that by ki we mean ‖ui,q‖qLq = ki. We now estimate µk1,q and µk2,q. We

have noticed that µk1,q < 0 < µk2,q < µ. Since k1 ∈ (k?, k1,q) and h < 0, we obtain

1

2
‖∇u1,q‖2L2 6 µk1,q +

1

q

∫
M
f(u1,q)

q dvolg −
h

2
k

2
q

1

6
k1
q

sup
M

f − h

2
k

2
q

1 ,

which concludes that the sequence {u1,q}q remains bounded in H1(M). Similarly, from

Lemma 4.7 and the following estimate

1

2
‖∇u2,q‖2L2 6 µk2,q +

1

q

∫
M
f(u2,q)

q dvolg −
h

2
k

2
q

2

6 µ+
k2
q

sup
M

f − h

2
k

2
q

2 ,

we know that the sequence {u2,q}q is also bounded in H1(M). Combining these facts,

we get

‖ui,q‖2H1 6 2µ+
2ki
q

sup
M

f + (1− h)k
2
q

i .

Thanks to k?? > 1 and q > 2[, if we denote

Λ =
(
2µ+ (sup

M
f)k?? + (1− h)k

2

2[
??

) 1
2

we then see that ‖ui,q‖H1 6 Λ for i = 1, 2. Hence, there exists ui ∈ H1(M) such that,

up to subsequences,

• ui,q ⇀ ui weakly in H1(M);

• ∇ui,q ⇀ ∇ui weakly in L2(M);
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• ui,q → ui strongly in Lp(M) for any p ∈ [1, 2?);

• ui,q → ui almost everywhere in M .

Notice that ui,q verifies∫
M
∇ui,q · ∇v dvolg + h

∫
M
ui,qv dvolg

−
∫
M
f(ui,q)

q−1v dvolg −
∫
M

a

(ui,q)q+1
v dvolg = 0

(4.4.7)

for any v ∈ H1(M). We have already seen in the proof of the Palais-Smale condition

that ∫
M

(∇ui,q −∇ui) · ∇v dvolg → 0

and ∫
M

(ui,q − ui) v dvolg → 0

as q → 2?. A strictly positive lower bound for ui,q helps us to conclude that∫
M

a

(ui,q)q+1
v dvolg →

∫
M

a

(ui)2
?+1

v dvolg

as q → 2?. So far, we can pass to the limit every terms on the left hand side of (4.4.8)

except the term
∫
M f(ui,q)

q−1v dvolg . Since ui,q → ui almost everywhere, (ui,q)
q−1 →

(ui)
2?−1 almost everywhere. By the Hölder inequality as we have done once, one obtains

∥∥∥(ui,q)
q−1
∥∥∥
L

2?

2?−1
=

(∫
M

(ui,q)
(q−1)2?

2?−1 dvolg

) 2?−1
2?

=

((∫
M

(ui,q)
2? dvolg

) q−1
2?−1

) 2?−1
2?

= ‖ui,q‖q−1L2? .

(4.4.8)

Making use of the Sobolev inequality, we further obtain∥∥∥(ui,q)
q−1
∥∥∥
L

2?

2?−1
6 (K1 + A1)

q−1
2 ‖ui,q‖q−1H1 ,

which proves the boundedness of (ui,q)
q−1 in L

2?

2?−1 (M). According to [3, Theorem

3.45], (ui,q)
q−1 ⇀ (ui)

2?

2?−1 weakly in L
2?

2?−1 (M). Thanks to the embedding H1(M) ↪→
L2?(M), we have v ∈ L2?(M) which also implies fv ∈ L2?(M) since f is smooth.

Therefore, by definition of weak convergence, there holds∫
M
f(ui,q)

q−1v dvolg →
∫
M
f(ui)

2?−1v dvolg

as q → 2?. With these information in hand, we are in a position to send q → 2? in

(4.4.8) to get the following∫
M
∇ui · ∇v dvolg + h

∫
M
uiv dvolg

−
∫
M
f(ui)

2?−1v dvolg −
∫
M

a

(ui)2
?+1

v dvolg = 0,

(4.4.9)
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for any v ∈ H1(M). In other words, ui are weak solutions to (3.0.1). It is not hard to

see that the regularity result, Lemma 3.4(b), can be applied to (3.0.1). It follows that

ui ∈ C∞(M) and ui > 0 in M . In other words, ui are smooth positive solutions of

(3.0.1). The proof of Claim 3 follows.

4.4.2 The existence of the second solution

So far we have just shown that ui are solutions of (3.0.1). However, we have no

information enough to guarantee that these solutions are distinct even that

lim
q→2?

(
F 0
q (u1,q)− F 0

q (u2,q)
)
6= 0.

Therefore, we have here only the existence part. In the next subsection we show that

ui are in fact different provided supM f is sufficiently small, thus proving Theorem 4.1.

We wish to compare F 0
2?(u1) and F 0

2?(u2). Recall that

F 0
2?(ui) =

1

2

∫
M
|∇ui|2 dvolg +

h

2

∫
M

(ui)
2 dvolg

− 1

2?

∫
M
f(ui)

2? dvolg +
1

2?

∫
M

a

(ui)
2? dvolg .

Here we introduce a trick without using any concentration-compactness principle. This

can be done once we can show that limq→2? F
0
q (ui,q) = F 0

2?(ui) for i = 1, 2. If we

carefully look at the formula for F 0
q (ui,q), the only difficult part is to show that∫

M
f(ui,q)

q dvolg →
∫
M
f(ui)

2? dvolg as q → 2?.

In contrast to the previous subsection, the bigger exponents generally make us impos-

sible to guarantee such a convergence. To avoid this difficulty, we have to make supM f

sufficiently small. Intuitively, such a small f is equivalent to saying, for example, that

f(ui,q)
q−1 behaves exactly the same as f(ui,q)

q. We first prove that following.

Proposition 4.5. Assume that all conditions in Proposition 4.6 below hold true, then

the following ‖∇ui,q‖L2 → ‖∇ui‖L2 holds as q → 2?.

Proof. This is elementary. It suffices to prove that ∇ui,q → ∇ui strongly in L2(M).

Using (4.4.7) with v replaced by ui,q − ui, we arrive at∫
M
∇ui,q·∇(ui,q − ui) dvolg +h

∫
M
ui,q(ui,q − ui) dvolg

−
∫
M
f(ui,q)

q−1(ui,q − ui) dvolg −
∫
M

a

(ui,q)
q+1 (ui,q − ui) dvolg = 0.

(4.4.10)

From (4.4.10), in order to pass to the limit to get∫
M
∇ui,q · ∇(ui,q − ui) dvolg → 0,

we still need to estimate
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M
f(ui,q)

q−1(ui,q − ui) dvolg .

This can be done once we apply Proposition 4.6 which is assumed here to be true at

the moment. Indeed, we just write∫
M
f(ui,q)

q−1(ui,q − ui) dvolg =

∫
M
f(ui,q)

q dvolg −
∫
M
f(ui)

2? dvolg

−
(∫

M
f(ui,q)

q−1ui dvolg −
∫
M
f(ui)

2? dvolg

)
.

Since ui are fixed, (ui,q)
q−1 ⇀ (ui)

2?−1 weakly in L
2?

2?−1 (M), and fui ∈ L2? , we get

that ∫
M
f(ui,q)

q−1ui dvolg →
∫
M
f(ui)

2? dvolg

as q → 2?. Using this the fact that ∇ui,q ⇀ ∇ui weakly in L2(M), we obtain∫
M
|∇(ui,q − ui)|2 dvolg → 0

as q → 2?. In other words, ∇ui,q → ∇ui strongly in L2(M). �

Now we conclude that
∫
M f(ui,q)

q dvolg →
∫
M f(ui)

2? dvolg as q → 2?. We prove the

following proposition.

Proposition 4.6. We assume that all requirements in Proposition 4.4 are fulfilled. We

further assume that f verifies

sup
M

f < C2,

where the number C2 > 0 is given in (4.4.16) below. Then∫
M
f(ui,q)

q dvolg →
∫
M
f(ui)

2? dvolg

as q → 2?.

Proof. In (4.4.7), we choose v = (ui,q)
1+2δ for some δ > 0 to be determined later, we

arrive at∫
M
∇ui,q · ∇(u1+2δ

i,q ) dvolg +h

∫
M

(ui,q)
2+2δ dvolg

−
∫
M
f(ui,q)

q+2δ dvolg −
∫
M

a

(ui,q)q−2δ
dvolg = 0.

(4.4.11)

Let wi,q = (ui,q)
1+δ, Equation (4.4.11) can be rewritten as

1 + 2δ

(1 + δ)2

∫
M
|∇wi,q|2 dvolg = |h|

∫
M

(wi,q)
2 dvolg

+

∫
M
f(wi,q)

2(ui,q)
q−2 dvolg +

∫
M

a

(ui,q)q−2δ
dvolg .

This and the Sobolev inequality applied to wi,q tell us that
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‖wi,q‖2L2? 6

(
K1

(1 + δ)2

1 + 2δ
|h|+ A1

)
‖wi,q‖2L2

+K1
(1 + δ)2

1 + 2δ

(∫
M
f+(wi,q)

2(ui,q)
q−2 dvolg +

∫
M

a

(ui,q)q−2δ
dvolg

)
.

(4.4.12)

We now use the Hölder inequality one more time∫
M

(wi,q)
2(ui,q)

q−2 dvolg 6

(∫
M

(wi,q)
2? dvolg

) 2
2?
(∫

M
(ui,q)

(q−2)2?

2?−2 dvolg

)1− 2
2?

.

Notice that (q−2)2?
2?−2 < q so long as q < 2?. Again, by the Hölder and Sobolev inequalities,

one gets ∫
M

(ui,q)
(q−2)2?

2?−2 dvolg 6

(∫
M

(ui,q)
2? dvolg

) q−2
2?−2

6 (K1 + A1)
2?(q−2)
2(2?−2) ‖ui,q‖

2?(q−2)
2?−2

H1 .

Therefore, ∫
M

(wi,q)
2(ui,q)

q−2 dvolg 6 ‖wi,q‖2L2? (K1 + A1)
q−2
2 ‖ui,q‖q−2H1 .

Using (4.4.12) and our calculation above, it is obvious that

‖wi,q‖2L2? 6

(
K1

(1 + δ)2

1 + 2δ
|h|+ A1

)
‖wi,q‖2L2

+ K1
(1 + δ)2

1 + 2δ
(sup
M

f)(K1 + A1)
q−2
2 ‖ui,q‖q−2H1 ‖wi,q‖2L2?

+ K1
(1 + δ)2

1 + 2δ

∫
M

a

(ui,q)
q−2δ dvolg .

(4.4.13)

We wish to impose condition of supM f so that

K1
(1 + δ)2

1 + 2δ
(sup
M

f)(1 + K1 + A1)
2?−2

2 Λ2?−2 <
1

2
(4.4.14)

fulfills. This can be done for a suitable choice of small δ > 0 that will be fixed provided

supM f verifies

K1(sup
M

f)(1 + K1 + A1)
2?−2

2 Λ2?−2 <
1

2
. (4.4.15)

Notice that Λ also contains supM f , therefore a straightforward calculation shows us

that it is enough for (4.4.15) to assume supM f < C2 where

C2 = min

 1

2K1
(1 + K1 + A1)

− 2?−2
2

(
2µ+ k?? + (1− h)k

2

2[
??

)− 2?−2
2

, 1

 . (4.4.16)

In view of (4.4.13), we get from (4.4.14) that

‖wi,q‖2L2? 6 2

(
K1

(1 + δ)2

1 + 2δ
|h|+ A1

)
‖wi,q‖2L2 + 2K1

(1 + δ)2

1 + 2δ

∫
M

a

(ui,q)
q−2δ dvolg .
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By the choice of δ satisfying (4.4.14) and 1 + δ < 2?

2 , we can verify that

‖wi,q‖L2 = ‖(ui,q)1+δ‖L2 = ‖ui,q‖1+δL2(1+δ) 6 ‖ui,q‖1+δL2? .

This and the Sobolev inequality imply that ‖wi,q‖L2 can be controlled by some constant

depending on Λ. On the other hand,
∫
M a(ui,q)

−(q−2δ) dvolg is bounded from above since

q − 2δ > 0 and ui,q has a strictly positive constant lower bound independent of q.

All discussion above shows that {‖wi,q‖L2?}q is bounded, that is, {‖ui,q‖L2?(1+δ)}q is

bounded. We are now in a position to make use [3, Theorem 3.45]. First, by the Hölder

inequality as in (4.4.8), one obtains ‖(ui,q)q‖L1+δ 6 ‖ui,q‖qL2?(1+δ) , that means (ui,q)
q is

bounded in L1+δ(M). This and the fact that (ui,q)
q → (ui)

2? almost everywhere in M

imply (ui,q)
q ⇀ (ui)

2? weakly in L1+δ(M). Therefore, by definition of weak convergence

and the fact that L1+ 1
δ (M) is the dual space of L1+δ(M), there holds∫

M
f(ui,q)

q dvolg →
∫
M
f(ui)

2? dvolg

as q → 2? since f ∈ L1+ 1
δ (M). �

We are now in a position to compare the energy of solutions.

Proposition 4.7. We assume that all requirements in Proposition 4.6 are fulfilled.

Then Equation (3.0.1) possesses at least two smooth positive solutions, one has strictly

negative energy and the other has positive energy.

Proof. It suffices to compare the energies of ui. Using Propositions 4.5 and 4.6, we send

q → 2? in the preceding equalities to reach limq→2? F
0
q (ui,q) = F 0

2?(ui), i = 1, 2. In view

of (4.2.5), there holds F 0
2?(u1) < 0 6 F 0

2?(u2). Thus, ui have different energies. This

completes the proof. �

4.4.3 A scaling argument

In this part, we use the scaling technique to complete the proof of Theorem 4.1

by removing the condition (4.2.5) mentioned in Proposition 4.4. We first observe that

under the variable change ũ = u
c , where c is a suitable constant to be determined later,

Equation (3.0.1) becomes

−∆gũ+ hũ = c2
?−2fũ2

?−1 +
1

c2?+2

a

ũ2?+1
. (4.4.17)

We wish to find a suitable constant c > 0 such that our new coefficients f̃ and ã verify

the conditions in Propositions 4.4 and 4.5 where

f̃ = c2
?−2f, ã =

a

c2?+2
. (4.4.18)

Clearly, once u is a solution of Equation (4.4.17), then cu will solve Equation (3.0.1)

accordingly. Obviously, the coefficient h remains unchanged after the scaling and we

also have λf = λ
f̃

since c > 0. In addition, thanks to (4.4.18), the following conditions
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|h| < λ
f̃
, ã > 0,

∫
M
f̃ dvolg < 0, sup

M
f̃+ > 0

are also fulfilled. Besides, it is obvious to see that

supM f̃∫
M |f̃−| dvolg

=
supM f∫

M |f−| dvolg
.

We now wish to remove (4.2.5) but still keep other conditions. In other words, we choose

a suitable c so that the following conditions

2?|h|
2
6
∫
M
|f̃−| dvolg , (4.4.19)

and

sup
M

f̃ < C2, (4.4.20)

and ∫
M
ã dvolg <

1

n− 2

(
n− 1

n− 2

)n−1( |h|∫
M |f̃−| dvolg

)n ∫
M
|f̃−| dvolg (4.4.21)

hold. Indeed, (4.4.19) and (4.4.21) can be rewritten as the following

2?|h|
2
6 c2

?−2
∫
M
|f−| dvolg (4.4.22)

and

1

c2?+2

∫
M
a dvolg <

1

n− 2

(
n− 1

n− 2

)n−1
(

|h|
c2?−2

∫
M |f−| dvolg

)n
c2
?−2

∫
M
|f−| dvolg .

(4.4.23)

Notice that (2? − 2)n = 22?, this is about to say that again the right hand side of

(4.4.23) can be rewritten as

1

c2?+2

1

n− 2

(
n− 1

n− 2

)n−1( |h|∫
M |f−| dvolg

)n ∫
M
|f−| dvolg .

By canceling the factor 1
c2?+2 , one can easily see that the condition (4.0.1) is invariant

under the variable change. In view of (4.4.22), we can choose

c =

(
2?|h|

2
∫
M |f−| dvolg

) 1
2?−2

.

It suffices to prove that this particular choice of c and the condition (4.0.2) are enough

to guarantee (4.4.20). Notice that

sup
M

f̃ = c2
?−2 sup

M
f

= (sup
M

f)

(
2?|h|

2
∫
M |f−| dvolg

)
=

2?|h|
2

supM f∫
M |f−| dvolg

.

(4.4.24)
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Therefore, if we assume
supM f∫

M |f−| dvolg
<

2

2?|h|
C2,

then the condition (4.4.20) holds. In conclusion, if the constant C in the statement of

Theorem 4.1 is equal to

min

{
C1,

2

2?|h|
C2

}
, (4.4.25)

we know that Equation (3.0.1) has at least two positive smooth solutions. This finishes

the proof of Theorem 4.1.

Remark 4.5. Before finishing the proof of Theorem 4.1, it is important to note that

the existence of the constant C1 depends only on the negative part of f and the set

{x ∈M : f(x) > 0}, thus, is independent of supM f . To see this, let us notice from the

definition of the sets A and A(η, q) that λf and λf,η,q depend only on f−. This ensures

that the existence of C1 given by (4.4.1) depends only on f−. Now one can observe that

the condition

(sup
M

f)

(∫
M
|f−| dvolg

)−1
< C1

actually makes sense and therefore we do have the existence part. However, since the

constant C2 depends on µ and k??, it is hard to check whether or not the condition

(sup
M

f)

(∫
M
|f−| dvolg

)−1
<

2

2?|h|
C2

actually holds but we believe that an example for this case exists. We hope that we

will soon see some responses on this issue.

4.5 The asymptotic behavior of µεk,q in the case

supM f 6 0

According to [11, Proposition 4], if we restrict ourselves to f 6 0 but not strictly

negative, the solvability of (3.0.1), where h, f , and a take the form (1.2.2), is equivalent

to solving the so-called prescribing scalar curvature-scalar field problem

−∆gu+ hu = fu2
?−1. (4.5.1)

The proof of this fact depends heavily on the conformal covariance property of all these

coefficients, that cannot be true for general h, f , and a.

Concerning (4.5.1), Rauzy provided, among other things, necessary and sufficient

conditions for the solvability of (4.5.1) in the general form, that is, for any f 6 0 and

h < 0 a constant. Based on this point, in this section, we prove that there is a natural

extension of the Rauzy result for the prescribing scalar curvature equation (4.5.1) to

(3.0.1) which also provides for necessary and sufficient conditions for the solvability of

(3.0.1). Notice that we have already proved necessary conditions.

As always, we first need to consider the asymptotic behavior of µεk,q for small k and

for large k.
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For small k, since the function f plays no role in the argument used in the proof of

Lemma 4.3, we can go through Lemma 4.3 without any difficulty, that is, for small ε,

µεk,q → +∞ as k → 0 in the sense of Lemma 4.3.

Now we want to study the behavior of µεk,q for large k. As can be seen, if f has zero

value somewhere in M , then in order to control µεk,q for large k, we must study λf,η,q.

Depending on how large the set {f = 0} is, there are two possible cases.

Proposition 4.8. Suppose supM f = 0. If either

•
∫
{f=0} 1 dvolg = 0 or

•
∫
{f=0} 1 dvolg > 0 and λf > |h|

holds, then µεk,q → +∞ as k → +∞ for any ε > 0 sufficiently small and any q

sufficiently close to 2? but all are fixed.

Proof. We begin to prove that there is some η0 > 0 sufficiently small and its corre-

sponding qη0 ∈ [2[, 2?) sufficiently close to 2? such that δ0 = 1
2(λf,η0,q + h) > 0 for any

q ∈ [qη0 , 2
?). We consider two cases separately.

Case 1. Suppose that supM f = 0 and
∫
{f=0} 1 dvolg = 0. Under this case, there holds

f < 0 almost everywhere which implies that the set A is empty, therefore λf = +∞.

Since h is fixed, we know from Lemma 3.12 that we can find some η0 sufficiently

small and its corresponding qη0 ∈ [2[, 2?) such that λf,η0,q + h� 0 for all q ∈ [qη0 , 2
?),

and thus proving the positivity of δ0.

Case 2. Suppose that supM f = 0 and
∫
{f=0} 1 dvolg > 0. Under this case, λf is

well-defined and finite. Notice that λf + h > 0.

As in the proof of Proposition 4.2, there exist some η0 < 2 and its corresponding

qη0 ∈ [2[, 2?) such that 0 6 λf − λf,η0,q < 1
4(λf − |h|) for any q ∈ (qη0 , 2

?). Therefore,

δ0 >
3
8(λf + h).

Now having the strictly positivity of δ0 we can easily go through the proof of Propo-

sition 4.2, hence we get Gq (u) > mk
2
q where m is given as in (3.2.5) which implies that

F εq (u) > mk
2
q due to supM f = 0. Since δ0 has a strictly positive lower bound, so does

m. The proof now follows easily. �

4.6 Proof of Theorem 4.2

From now on, we restrict ourselves to the case q ∈ [qη0 , 2
?). Let us first do some

calculation. Since

F εq (k
1
q ) =

h

2
k

2
q − k

q

∫
M
f dvolg +

1

q

1

(k
2
q + ε)

q
2

∫
M
a dvolg ,

we know by solving
h

2
k

2
q − k

q

∫
M
f dvolg = 0
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that

µεk0,q = F εq (k
1
q

0 ) 6
1

q

1

(k
2
q

0 + ε)

q
2

∫
M
a dvolg <

1

2k0

∫
M
a dvolg

where

k0 =

(
q

2

h∫
M f dvolg

) q
q−2

.

Having k0, it is easy to find upper and lower bounds for k0. For example, one can check

that with

k1 = min


(

h∫
M f dvolg

)n−1
,

(
h∫

M f dvolg

) 2?

2?−2


and

k2 =

(
2?

2

h∫
M f dvolg

+ 1

)n−1
,

we immediately have k1 < k0 < k2. Consequently, we can bound µεk0,q from above as

the following

µεk0,q <
1

2k1

∫
M
a dvolg .

It is important to note that in the proof of Theorem 4.1, we bound µεk0,q from above

by 0, see Lemma 4.5. Since k1 and k2 are independent of both ε and q, this new bound

for µεk0,q is also independent of both ε and q.

We are now in a position to prove Theorem 4.2 whose proof is similar to the proof

of Theorem 4.1, therefore we just sketch it and omit in details.

Proposition 4.9. If |h| < λf and supM f = 0, then Equation (3.0.1) admits a unique

positive solution u.

Sketch of proof. Since the uniqueness part comes from Lemma 3.6, it suffices to study

the existence part. We have to prove the existence of k? and k?? independent of ε and

q with

k? < k1 < k0 < k2 < k??

such that
1

2k1

∫
M
a dvolg < min

{
µεk?,q, µ

ε
k??,q

}
,

for any ε 6 k?. The existence of such a k?? > k2 is clear since F εq (u) > h
2k

n−2
n−1 for any

u ∈ Bk,q, any ε > 0, and any k > 1. For the existence of k? < k1, using h < 0 and
2
q ∈ (1, n−2n−1), there holds

F εq (u) >
h

2
k

2
q +

k

q
| sup
M

f |+ 1

q

∫
M

a

(u2 + ε)
q
2

dvolg

>
hk

2
+

1

2?

∫
M

a

(u2 + ε)
q
2

dvolg

for any u ∈ Bk,q and any 0 < k < 1. Thanks to the proof of Lemma 4.3, for ε 6 k
2
q we

know that
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M

a

(u2 + ε)
q
2

dvolg >
1

2
2?

2 k

(∫
M

√
a dvolg

)2

.

Therefore if we choose k? < min{1, k1} in such a way that

1

2

1

2?
1

2
2?

2 k?

(∫
M

√
a dvolg

)2

> max

{
1

2k1

∫
M
a dvolg ,

|h|k?
2

}
we then have

F εq (u) >
1

2k1

∫
M
a dvolg

for any u ∈ Bk?,q. Taking infimum over Bk?,q we obtain µεk?,q > µεk0,q for any ε 6 k? as

claimed. Having the existence of k? and k?? independent of ε and q we can define

µεk1,q = inf
u∈Dk,q

F εq (u)

for each ε and q fixed where

Dk,q =
{
u ∈ H1(M) : k? 6 ‖u‖qLq 6 k??

}
.

It then turns out that µεk1,q is achieved by a smooth positive function uεq which is

exactly the smooth solution to (3.0.2). Since ‖uεq‖Lq is uniformly bounded, by using a

sequence {εj}j of positive real numbers such that εj → 0 as j → ∞ we can prove, up

to subsequences, that u
εj
q ⇀ uq in H1(M) as j →∞. We then show that uq is smooth

positive solution to (3.0.2) with ε replaced by 0. Finally, we send q → 2? and do the

same argument to claim that (3.0.1) admits a smooth positive solution. �

In order to make the work unique, let us mention here the case supM f < 0 although

this has been done in [11] by using the method of sub- and super-solutions. Suppose

supM f < 0. It suffices to study the asymptotic behavior of µεk,q for large k. Clearly, for

any u ∈ Bk,q,

F εq (u) >

(
h

2
+

1

2?
k
1− 2

q | sup
M

f |
)
k

2
q .

It is then immediate to deduce that µεk,q → +∞ as k → +∞ since 1− 2
q > 0. Hence we

can easily prove the existence of at least one positive smooth solution to (3.0.1). More

precisely, we prove

Proposition 4.10. If supM f < 0, then Equation (3.0.1) admits a unique positive

smooth solution u.

Sketch of proof. First, the uniqueness part comes from Lemma 3.6. For the existence

part, the proof is similar to the proof of Proposition 4.9. The way to find k? is exactly

the same as in the proof of Proposition 4.9. The existence of k?? can be found as in

the proof of Proposition 4.9 since there still holds µεk,q → +∞ as k → +∞. Having

the existence of k? and k?? independent of ε and q we can go through the proof of

Proposition 4.9 to reach the existence of a smooth solution to our equation (3.0.1). �
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In this chapter, we continue to study some quantitative properties of positive,

smooth solutions of the following Einstein-scalar field Lichnerowicz equation (3.0.1)

in the null Yamabe-scalar field conformal invariant, that is the case h = 0.

In the previous chapter, we have already proven that, in the case h < 0, a suitable

balance between coefficients h, f , a of the Einstein-scalar field Lichnerowicz equations

is enough to guarantee the existence of one positive smooth solution. In addition, it was

found that under some further conditions we may or we may not have the uniqueness

property of solutions of the Einstein-scalar field Lichnerowicz equations. This chapter

is a continuation of the previous chapter where we consider the case when h = 0 which

was also left as open question in the classification of [11], that is, we are interested in

the following simple partial differential equation

−∆gu = fu2
?−1 +

a

u2?+1
, u > 0. (5.0.1)

As always, we assume hereafter that f and a > 0 are smooth functions on M with∫
M a dvolg > 0. In addition, the manifold M has unit volume. Besides, it is worth

recalling that in this case, the condition
∫
M f dvolg < 0 is necessary as we have proven

before.
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Following the subcritical approach, as a first step to tackle (5.0.1), we look for

positive smooth solutions of the following subcritical problem

−∆gu = f |u|q−2u+
au

(u2 + ε)
q
2
+1
. (5.0.2)

Again, our main procedure is to show that the limit exists first as ε → 0 and then as

q → 2? under various assumptions.

The content of this chapter consists of three main parts. In the first part of the

chapter, we mainly consider the case supM f > 0. In this context, we was able to show

that if supM f and
∫
M a dvolg are small, then (5.0.1) possesses at least one smooth

positive solutions. The first main theorem can be stated as follows.

Theorem 5.1. Let (M, g) be a smooth compact Riemannian manifold without the

boundary of dimension n > 3. Assume that f and a > 0 are smooth functions on

M such that
∫
M a dvolg > 0,

∫
M f dvolg < 0, and supM f > 0. Then there exist two

positive numbers η0 and λ depending only on the negative part f− of f such that if

sup
M

f 6
η0
2

∫
M
|f−| dvolg (5.0.3)

and ∫
M
a dvolg <

λn

4(η0)n−2

(
2n

n− 2

)n−2(∫
M
|f−| dvolg

)1−n
(5.0.4)

hold, then (5.0.1) possesses at least one smooth positive solution.

By a simple comparison, one can easily see that except the multiplicity part, we

was successful to carry the conclusion of Theorem 4.1 for the case h < 0 to the case

h = 0. However, since the Lichnerowicz equations in the case h = 0 take a form simpler

than that of the case h < 0, we might expect that the above two conditions (5.0.3) and

(5.0.4) could be weakened. Surprisingly, we was able to prove that the condition (5.0.3)

can be relaxed. Unfortunately, for the price we pay, the estimate for
∫
M a dvolg needs

to be replaced by another estimate for supM a. This is the content of our second result.

Theorem 5.2. Let (M, g) be a smooth compact Riemannian manifold without the

boundary of dimension n > 3. Assume that f and a > 0 are smooth functions on

M such that
∫
M a dvolg > 0,

∫
M f dvolg < 0, and supM f > 0. Then if a is small in the

sense of (5.4.1) below, then (5.0.1) possesses at least one smooth positive solution.

In the last part of the chapter, we focus our attention to the case supM f 6 0. It

should mention that in the statement of Theorem 5.1, supM f is nothing but supM f+

where f+ is the positive part of f . Therefore, if we assume f 6 0, we then see that

the condition (5.0.3) is fulfilled for any small η0. However, one can immediately observe

that the right hand side of (5.0.4) goes to +∞ as η0 → 0. This suggests that under the

case supM f 6 0, there is no other condition for
∫
M a dvolg than

∫
M a dvolg > 0. That

is the content of our next result.

Theorem 5.3. Let (M, g) be a smooth compact Riemannian manifold without bound-

ary of dimension n > 3. Let f and a be smooth functions on M with a > 0 in M ,∫
M a dvolg > 0, and f 6 0. Then Equation (5.0.1) always possesses one positive solu-

tion. In addition, this solution is unique.



87

Concerning Theorem 5.3, it is worth noticing that it generalizes the same result

obtained in [11] when our equation takes the form (1.2.10). Roughly speaking, it was

proved in [11] by the method of sub- and super-solutions that (5.0.1) always possesses

one positive solution so long as the functions f and a take the form f = −Bτ,ψ and

a = Ag,W,π with f 6 0 and a > 0. The main ingredient of the proof in [11] is the

conformal invariant property of Bτ,ψ and Ag,W,π. Apparently, this property is no longer

available in our general case.

Before doing so and thanks to λf > 0, we may denote the following

λ =

1
2

(
K1 + 2A1

λf

)−1
, if λf < +∞,

1
2 (K1 + A1)

−1 , if λf = +∞.

In view of Lemmas 3.13 and 3.14, there exist two numbers η0 ∈ (0, 1) and qη0 ∈ [2[, 2?)

so that the following estimate

λf,η0,q >

{
λf
2 , if λf < +∞,

1, if λf = +∞,
(5.0.5)

holds for every q ∈ (qη0 , 2
?). In addition, in the case λf = +∞, we may assume that

η0 <
2n

n− 2

(
λn

4

) 1
n−2
(∫

M
a dvolg

) 1
2−n
(∫

M
|f−| dvolg

) 1−n
n−2

since we may take η0 as small as we wish. This choice of η0 is equivalent to saying that

the condition (4.0.1) is fulfilled. It is important to note that, in the case sup f > 0, the

number η0 depends only on the negative part f− of f . Unless otherwise stated, from

now on, we fix such an η0 and we only consider q ∈ [qη0 , 2
?). Notice that, from (5.0.5)

and the choice of λ, we always have

1

2

(
K1 +

A1

λf,η0,q

)−1
> λ (5.0.6)

for all q ∈ (qη0 , 2
?). Finally, we let

k1,q =
η0
2q

(
λq

η0
∫
M |f−| dvolg

) q
q−2

, k2,q =

(
λq

η0
∫
M |f−| dvolg

) q
q−2

. (5.0.7)

From the choice of η0, one can see that k0 < k1 for any q ∈ [2[, 2?). In addition, one

can easily bound k0 from below and k1 from above, that is, there exists two positive

numbers k < 1 and k > 1 independent of q and ε such that k 6 k0 < k1 6 k, for

example, one can choose

k =
η0
2

min


(

λ

η0
∫
M |f−| dvolg

) 2[

2[−2

, 1

 (5.0.8)

and

k =

(
2n

n− 2

) 2[

2[−2

max


(

λ

η0
∫
M |f−| dvolg

) 2[

2[−2

, 1

 . (5.0.9)
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5.1 The analysis of the energy functionals

Our aim was to derive a suitable analysis of the energy functionals associated to our

problem. Thanks to what we have already built up in the previous chapter, we shall

not mention our argument in details in several parts of the current study.

5.1.1 The functional setting

As always, for each q ∈ (2, 2?) and k > 0, we still use the hyper-surface Bk,q of

H1(M) which is defined in (4.1.1). Again, the set Bk,q is non-empty. Concerning the

energy functional associated to problem (5.0.2), we can continue to use that of the

previous chapter, that is,

F εq (u) =
1

2

∫
M
|∇u|2 dvolg −

1

q

∫
M
f |u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg ,

for ε > 0 small satisfying (3.1.3). There is no doubt to claim that F εq is differentiable

on H1(M) and F εq |Bk,q is bounded from below by −k| sup f |. As such, we can define

µεk,q = inf
u∈Bk,q

F εq (u).

Since critical points of F εq are weak solutions of (5.0.2), we wish to find critical points

of the functional F εq .

5.1.2 µεk,q is achieved

Recall that, it was already proved in the previous chapter that in the case h < 0,

the corresponding µεk,q is achieved by smooth positive function uε. In the present case,

h = 0, the above proof still works since the energy functional is simpler than that of

the case h < 0. Therefore, we omit any proof here.

5.1.3 The continuity of µεk,q with respect to k

Once again, as we have already shown in the previous chapter, in the case h < 0, the

corresponding function µεk,q is continuous with respect to k for each ε fixed. Since the

energy functional of the case h = 0 is simpler than that of the case h < 0, we conclude

that µεk,q is also continuous with respect to k in the case h = 0.

5.2 Asymptotic behavior of µεk,q in the case supM f > 0

Following the same procedure as in the previous chapter, in this subsection, we

investigate the behavior of µεk,q when both k and ε vary. We first study the behavior of

µεk,q as k → +∞. We notice that our argument here is not new since the loss of h does

not affect the behavior of µεk,q for large k. Following the proof of Lemma 4.4, we can

easily prove the following result.

Lemma 5.1. There holds µεk,q → −∞ as k → +∞ if supM f > 0.
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Now we are going to show that µεk1,q ,q < µεk2,q ,q where k1,q and k2,q are given in

(5.0.7). To serve the purpose better, we first need a rough estimate for µεk1,q ,q.

Lemma 5.2. There holds

µεk1,q ,q 6 −
k1,q
q

∫
M
f dvolg +

1

qk1,q

∫
M
a dvolg (5.2.1)

where k1,q is given in (5.0.7).

Proof. This is trivial since µεk1,q ,q 6 F
ε
q (k

1
q

1,q). The proof follows. �

As can be seen, the right hand side of (5.2.1) is always positive. In order to make

µεk2,q ,q > µεk1,q ,q with k2,q > k1,q, we need supM f to be small. We now study the

asymptotic behavior of µεk,q as k → 0. This result together with Lemmas 5.1 and 5.4

give us a full picture of the asymptotic behavior of µεk,q.

Lemma 5.3. There holds limk→0+ µ
k
2
q

k,q = +∞. In particular, there is some k? suffi-

ciently small and independent of both q and ε such that

µεk?,q > −k
∫
M
f dvolg +

1

k

∫
M
a dvolg

for any ε 6 k?. In particular, there holds µεk?,q > µεk1,q ,q.

Proof. The role that ε plays immediately shows that µεk,q is strictly monotone decreasing

in ε for fixed k and q. Following the proof of Lemma 4.3, for any ε 6 k
2
q and 1 < q

2 <
2?

2 ,

we can estimate the integral involving a. In fact, for any u ∈ Bk,q, we have

∫
M

√
a dvolg 6 2

q
4

√
k

(∫
M

a

(u2 + ε)
q
2

dvolg

) 1
2

. (5.2.2)

Squaring (5.2.2), we get∫
M

a

(u2 + ε)
q
2

dvolg >
1

2
2?

2 k

(∫
M

√
a dvolg

)2

.

This helps us to conclude

F εq (u) > −k
q

sup
M

f +
1

2
2?

2 qk

(∫
M

√
a dvolg

)2

.

Consequently, there holds µk
2
q

k,q → +∞ as k → 0. It is a simple task to find some small

k? < 1 independent of both q and ε such that

− k?
q

sup
M

f +
1

2
2?

2 qk?

(∫
M

√
a dvolg

)2

> −k
∫
M
f dvolg +

1

k

∫
M
a dvolg . (5.2.3)

In order to find such a k?, we first let k? < 1. Since q > 2, it suffices to select k? such

that
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1

2
2?

2 2?k?

(∫
M

√
a dvolg

)2

> −k
∫
M
f dvolg +

1

k

∫
M
a dvolg +

1

2
sup
M

f.

Hence, one can choose k? as

k? = min

{
1

2
2?

2 2?

(∫
M

√
a dvolg

)2

(
−k
∫
M
f dvolg +

1

k

∫
M
a dvolg +

1

2
sup
M

f

)−1
, k, 1

}
.

(5.2.4)

Since k? 6 1, we always have k? 6 k
2
q
? . Besides, using

∫
M a dvolg > 0,

∫
M f dvolg < 0,

and Lemma 5.1, we can easily check that µεk?,q > µεk1,q ,q, thus concluding the lemma

with ε 6 k?. �

Notice that, in the proof of Lemma 5.3, we have used k in the formula for k?. The

reason is that we wish to ensure that k? < k1,q in any case.

In the next result, we conclude that the function µεk,q is continuous with respect to

k for each ε fixed. Since a similar result has been proved before, we omit its proof.

Proposition 5.1. For ε > 0 fixed, the function µεk,q is continuous with respect to k.

With the information of λf,η,q that we have already discussed above, let us go back

to our energy functional. In the rest of this section, our aim here was to study µεk,q for

k > k1,q, in particular, µεk1,q ,q < µεk2,q ,q provided supM f is sufficiently small. To this

end, we need to estimate µεk,q for k > k1,q.

Proposition 5.2. There exists two numbers η0 > 0 sufficiently small and its cor-

responding qη0 sufficiently close to 2? such that the estimate (5.0.5) holds for every

q ∈ [qη0 , 2
?). Having the existence of both η0 and qη0, for any u ∈ Bk,q with k > k2,q,

any q ∈ [qη0 , 2
?), and any ε > 0, there holds

F εq (u) > λk
2
q − k

q
sup
M

f.

In particular, for any u ∈ Bk2,q ,q, there holds

F εq (u) >
λ

2
(k2,q)

2
q

provided
supM f∫

M |f−| dvolg
6
η0
2
. (5.2.5)

Proof. Suppose u ∈ Bk,q where k > k2,q is arbitrary. We now estimate F εq (u). We first

write

F εq (u) = Gq(u)− 1

q

∫
M
f+|u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg ,

where

Gq(u) =
1

2

∫
M
|∇u|2 dvolg +

1

q

∫
M
|f−||u|q dvolg .
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We first estimate Gq from below. Then there are two possible cases.

Case 1. Assume that ∫
M
|f−||u|q dvolg > η0k

∫
M
|f−| dvolg .

In this case, the term Gq can be estimated from below as follows

Gq(u) >
η0k

q

∫
M
|f−| dvolg > λk

2
q (5.2.6)

where in the last inequality we have used the fact that k > k2,q and (5.0.7).

Case 2. Assume that ∫
M
|f−||u|q dvolg < η0k

∫
M
|f−| dvolg .

Under this condition, one can easily check that k
− 1
q u ∈ A′(η0, q) which implies that

‖∇u‖2L2 ‖u‖−2L2 > λf,η0,q by the definition of λf,η0,q. Using this and the estimate

K1 ‖∇u‖2L2 + A1 ‖u‖2L2 > k
2
q , we get that(

K1 +
A1

λf,η0,q

)
‖∇u‖2L2 > K1 ‖∇u‖2L2 + A1 ‖u‖2L2 > k

2
q .

Thus, from the definition of λ and thanks to q ∈ [qη0 , 2
?), we obtain

Gq(u) >
1

2

∫
M
|∇u|2 dvolg

>
1

2

(
K1 +

A1

λf,η0,q

)−1
k

2
q

> λk
2
q .

(5.2.7)

It now follows from (5.2.6)-(5.2.7) that Gq(u) > λk
2
q . Therefore, we can estimate F εq (u)

as follows

F εq (u) > λk
2
q − k

q
sup
M

f

for any u ∈ Bk,q. In particular, for any u ∈ Bk2,q ,q, there holds

F εq (u) > λ(k2,q)
2
q − k2,q

q
sup
M

f.

Thus, we obtain F εq (u) > λ
2 (k2,q)

2
q for any u ∈ Bk2,q ,q provided

k2,q
q supM f 6 λ

2 (k2,q)
2
q

which is equivalent to the requirement that supM f 6 η0
2

∫
M |f

−| dvolg . The proof is

complete. �

Remark 5.6. Unlike the case of the positive Yamabe-scalar field invariant, see [21], the

case of the non-positive Yamabe-scalar field invariant requires a control of supM f .

This is basically due to the fact that we probably loss information corresponding to the

L2-norm. Indeed, when h 6 0, the following(∫
M
|∇u|2 dvolg +

∫
M
hu2 dvolg

) 1
2

is not an equivalent norm of H1(M).
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Lemma 5.4. Assume that (5.2.5) and that∫
M
a dvolg <

λη0
4q

(
λq

η0
∫
M |f−| dvolg

) q+2
q−2

. (5.2.8)

Then, there holds

µεk1,q ,q < min{µεk?,q, µ
ε
k2,q ,q}

for any q ∈ [qη0 , 2
?) and any ε ∈ (0, k?).

Proof. First, in view of Lemma 5.3, it suffices to prove µεk1,q ,q < µεk2,q ,q for all q ∈ [qη0 , 2
?)

and ε ≤ k?. First, by Lemma 5.2 and Proposition 5.2, we have the following facts

µεk1,q ,q <
k1,q
2

∫
M
|f−| dvolg +

1

2k1,q

∫
M
a dvolg

and
λ

2
(k2,q)

2
q < µεk2,q ,q.

Therefore, it suffices to prove for any q ∈ [qη0 , 2
?) that

k1,q

∫
M
|f−| dvolg +

1

k1,q

∫
M
a dvolg 6 λ(k2,q)

2
q ,

or equivalently, for any q ∈ [qη0 , 2
?), there holds∫

M
a dvolg 6 −(k1,q)

2

∫
M
|f−| dvolg + λ(k2,q)

2
q k1,q. (5.2.9)

From the choice of k1,q and k2,q, it is clear to see that

− (k1,q)
2

∫
M
|f−| dvolg + λ(k2,q)

2
q k1,q =

λη0
4q

(
λq

η0
∫
M |f−| dvolg

) q+2
q−2

. (5.2.10)

The proof follows easily by comparing (5.2.8), (5.2.9), and (5.2.10). �

5.3 Proof of Theorem 5.1

In this section, we prove Theorem 5.1. The proof that we provide here consists of two

steps. First, in view of Lemma 3.2, we need to make use of the condition infM a > 0

in order to guarantee the existence of one solution. Second, by using a simple sub-

and super- solutions argument, we prove that Equation (5.0.1) still admits one positive

smooth solution even that infM a = 0.

5.3.1 The case infM a > 0

In this subsection, we obtain the existence of one solution of (5.0.1) under the

assumption infM a > 0. For the sake of clarity, we divide the proof into several claims.

Claim 1. There holds

µεk1,q ,q < min{µεk?,q, µ
ε
k2,q ,q}
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for all q ∈ [qη0 , 2
?) and for all ε ∈ (0, k?) satisfying (3.1.3).

Proof of Claim 1. This is a consequence of Lemma 5.4. In order to apply Lemma 5.4,

we have to derive (5.2.8) for suitable q sufficiently close to 2?. Let us first rewrite the

assumption (5.0.4) into the following form∫
M
a dvolg <

(2?)n−2λη0
4

(
λ

η0
∫
M |f−| dvolg

)n−1
.

Observe that

lim
q→2?

q + 2

q − 2
= n− 1, lim

q→2?
q

4
q−2 = (2?)n−2.

Hence, we can choose qη0 ∈ [2[, 2?) sufficiently close to 2? such that (5.0.5) and

∫
M
a dvolg <

λη0
4q

(
λq

η0
∫
M |f−| dvolg

) q+2
q−2

, (5.3.1)

hold for any q ∈ [qη0 , 2
?). This settles Claim 1.

It is important to note that qη0 is independent of q and ε. Thus, from now on, we

only consider q ∈ [qη0 , 2
?).

Claim 2. Equation (5.0.2) with ε replaced by 0 has a positive solution, say u1,q, that

is, u1,q solves the following subcritical equation

−∆gu1,q = f(u1,q)
q−1 +

a

(u1,q)q+1
, (5.3.2)

where q ∈ [qη0 , 2
?).

Proof of Claim 2. We now define

µεq = inf
u∈Dq

F εq (u)

where

Dq =
{
u ∈ H1(M) : k? 6 ‖u‖qLq 6 k2,q

}
.

It follows from k1,q ∈ (k?, k2,q) that

µεq 6 µ
ε
k1,q ,q 6 −

k

2

∫
M
f dvolg +

1

2k

∫
M
a dvolg .

In other words, we have proved that µεq is bounded from above. By using the Ekeland

Variational Principle, one can show that there exists a minimizing sequence for µεq in

Dq. Standard arguments show that any minimizing sequence for µεq in Dq is bounded

in H1(M). Therefore, a similar argument to that we have used before shows that µεq
is achieved by some positive function uε1,q ∈ Dq. Notice that one can claim uε1,q ∈ Dq

since q < 2?. Obviously, uε1,q is a weak solution of (5.0.2). By applying Lemma 3.4(a)

to (5.0.2), we conclude that uε1,q ∈ C∞(M). Since ‖uε1,q‖Lq > (k?)
1

2[ , it is clear to see

uε1,q 6≡ 0. With Lemma 3.2 and the Strong Minimum Principle in hand, it is easy to

prove that uε1.q > 0.



94 The Lichnerowicz equations in the null conformal invariant

Next, in order to send ε → 0, we need a uniformly boundedness of uε1,q in H1(M).

Using the Hölder inequality and the fact that ‖uε1,q‖L2 6 ‖uε1,q‖Lq , it is not hard to

prove that ‖uε1,q‖H1 is bounded from above with the bound independent of q and ε. In

what follows, we let {εj}j be a sequence of positive real numbers such that εj → 0 as

j →∞. For each j, let u
εj
1,q be a smooth positive function in M such that

−∆gu
εj
1,q = f(u

εj
1,q)

q−1 +
au

εj
1,q

((u
εj
1,q)

2 + εj)
q
2
+1

(5.3.3)

in M . Being bounded, there exists u1,q ∈ H1(M) such that, up to subsequences,

• u
εj
1,q ⇀ u1,q in H1(M),

• u
εj
1,q → u1,q strongly in L2(M),

• u
εj
1,q → u1,q almost everywhere in M .

Using Lemma 3.2, the Lebesgue Dominated Convergence Theorem can be applied to

conclude that
∫
M (u1,q)

−p dvolg is finite for all p. Now sending j →∞ in (5.3.3), we get

that u1,q is a weak solution of (5.3.2). Again, by applying Lemma 3.4(b) to (5.3.2), we

conclude that u1,q ∈ C∞(M). Using the strong convergence in Lp(M) and the fact that

‖uεj1,q‖Lq > (k?)
1
q , one can see that u1,q 6≡ 0. Therefore, u1,q > 0 by using Lemma 3.2

and the Strong Minimum Principle. Keep in mind that we still have ‖u1,q‖Lq 6 (k2,q)
1
q .

This settles Claim 2.

Claim 3. Equation (5.0.1) has at least one positive solution.

Proof of Claim 3. Let us denote by µk1,q the energy of u1,q found in Claim 2. We now

estimate the H1-norm of the sequence {u1,q}q. Since k1 ∈ [k?, k2,q], we obtain

1

2
‖∇u1,q‖2L2 6 µk1,q +

1

q

∫
M
f(u1,q)

q dvolg

6 −k
2

∫
M
f dvolg +

1

2k

∫
M
a dvolg +

k

2
sup
M

f.

This and the fact that

‖u1,q‖2L2 6 ‖u1,q‖2Lq = k
2
q

1 6 (k)
2

2[

imply that the sequence {u1,q}q remains bounded in H1(M). Thus, up to subsequences,

there exists u1 ∈ H1(M) such that

• u1,q ⇀ u1 in H1(M),

• u1,q → u1 strongly in L2(M),

• u1,q → u1 almost everywhere in M ,

as q → 2?. Recall that u1,q solves (5.3.2) in the weak sense, that is, the following∫
M
∇u1,q · ∇v dvolg −

∫
M
f(u1,q)

q−1v dvolg −
∫
M

a

(u1,q)q+1
v dvolg = 0 (5.3.4)

holds for any v ∈ H1(M). Observe that, as q → 2?,
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M

(∇u1,q −∇u1) · ∇v dvolg → 0,

∫
M

(u1,q − u1) v dvolg → 0. (5.3.5)

While the latter immediately follows from the strong convergence in L2(M), the former

can be proved easily since ∇u1,q ⇀ ∇u1 weakly in L2(M). In addition, thanks to

infM a > 0 and Lemma 3.2, a strictly positive lower bound for u1,q helps us to conclude

that as q → 2? ∫
M

a

(u1,q)q+1
v dvolg →

∫
M

a

(u1)2
?+1

v dvolg . (5.3.6)

So far, we can pass to the limit every terms on the left hand side of (5.3.4) except the

term involving f . By the Hölder inequality, one obtains

∥∥(u1,q)
q−1∥∥

L
2?

2?−1
6

((∫
M

(u1,q)
2? dvolg

) q−1
2?−1

) 2?−1
2?

= ‖u1,q‖q−1L2? .
(5.3.7)

Making use of the Sobolev inequality (2.3.1) and (5.3.7), we can prove the bound-

edness of (u1,q)
q−1 in L

2?

2?−1 (M). In addition, since u1,q → u1 almost everywhere,

(u1,q)
q−1 → (u1)

2?−1 almost everywhere. According to [3, Theorem 3.45], we conclude

that (u1,q)
q−1 ⇀ (u1)

2?

2?−1 weakly in L
2?

2?−1 (M). Therefore, by definition of weak con-

vergence and the smoothness of f , one has∫
M
f(u1,q)

q−1v dvolg →
∫
M
f(u1)

2?−1v dvolg (5.3.8)

as q → 2?. Combining (5.3.5), (5.3.6), and (5.3.8), one can see, by sending q → 2? in

(5.3.4), that u1 are weak solutions to (5.0.1). Using Lemma 3.4(b) we conclude that

u1 ∈ C∞(M) and u1 > 0 in M .

5.3.2 The case infM a = 0

Under this context, making use of the method of sub- and super-solutions is the

key argument. Thanks to [20], from that we learn this approach. However, it is worth

mentioning that our construction of sub-solutions is different from that of [20]. We let

ε0 > 0 sufficiently small and then fix it so that the following inequality∫
M
a dvolg +ε0 <

λn

4(η0)
n−2

(
2n

n− 2

)n−2(∫
M
|f−| dvolg

)1−n
(5.3.9)

still holds. Since the manifold M has unit volume, we can conclude that from (5.3.9),

the function a + ε0 verifies all assumptions in the previous subsection, thus showing

that there exists a positive smooth function u solving the following equation

−∆gu = fu2
?−1 +

a+ ε0
u2

?+1 .

Obviously, u is a super-solution to (5.0.1), that is

−∆gu > fu
2?−1 +

a

u2
?+1 .

Our aim is to find a sub-solution to (5.0.1). Indeed, since



96 The Lichnerowicz equations in the null conformal invariant∫
M

(
a+

∫
M a dvolg∫

M |f−| dvolg
f−
)

dvolg = 0,

there exists a function u0 ∈ H1(M) solving

−∆gu0 = a+

∫
M a dvolg∫

M |f−| dvolg
f− (5.3.10)

Since the right hand side of (5.3.10) is of class Lp(M) for any p < +∞, the Caldéron-

Zygmund inequality tells us that the solution u0 is of class W 2,p(M) for any p <

+∞. Thanks to the Sobolev Embedding theorem [3, 2.10], we can conclude that u0 ∈
C0,α(M) for some α ∈ (0, 1). In particular, the solution u0 is continuous. Therefore, by

adding a sufficiently large constant C to the function u0 if necessary, we can always

assume that minM u0 > 1. We now find the sub-solution u of the form εu0 for small

ε > 0 to be determined. To this end, we first write

−∆gu = εa+
ε
∫
M a dvolg∫

M |f−| dvolg
f−. (5.3.11)

Since maxM u0 < +∞, it is easy to see that, for any 0 < ε 6 (maxM u0)
− 2?+1

2?+2 , we

immediately have

εa 6
a

ε2?+1u2
?+1

0

. (5.3.12)

Besides, since f− 6 0 and 2? > 2, it is not difficult to see that the following inequality

ε
∫
M a dvolg∫

M |f−| dvolg
f− 6 ε2

?−1u2
?−1

0 f−

holds provided

ε 6

( ∫
M a dvolg∫

M |f−| dvolg

) 1
2?−2

(max
M

u0)
− 2?−1

2?−2 . (5.3.13)

In particular, the following

ε
∫
M a dvolg∫

M |f−| dvolg
f− 6 ε2

?−1u2
?−1

0 f (5.3.14)

holds provided (5.3.13) holds. Combining (5.3.11), (5.3.12), and (5.3.14), we conclude

that for small ε

−∆gu 6 ε
2?−1u2

?−1
0 f +

a

ε2?+1u2
?+1

0

.

In other words, we have showed that

−∆gu 6 fu
2?−1 +

a

u2?+1
.

Finally, since u has a strictly positive lower bound, we can choose ε > 0 sufficiently

small such that u 6 u. Using the sub- and super-solutions method, see [25, Lemma

2.6], we can conclude the existence of a positive solution u to (5.0.1). By a regularity

result developed in [25], we know that u is smooth.
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5.4 Proof of Theorem 5.2

The proof we provide here is based on the method of the sub- and super-solutions,

see [25, 24].

We first construct a positive super-solution u for (5.0.1). By using the change of

variable u = ev, we get that

∆u+ fu2
?−1 + au−2

?−1 = ev(∆v + |∇v|2) + fe(2
?−1)v + ae−(2

?+1)v.

Hence, it suffices to find v satisfying

∆v + |∇v|2 + fe(2
?−2)v + ae−(2

?+2)v 6 0.

In order to do this, thanks to
∫
M f dvolg < 0, we can pick b > 0 small enough such that

|e(2?−2)bϕ − 1| 6 − 1

4 sup
M

f

∫
M
f dvolg

and

b|∇ϕ|2 < −1

4

∫
M
f dvolg ,

where ϕ is a positive smooth solution of the following equation

∆ϕ =

∫
M
f dvolg − f.

We now find the function v of the form

v = bϕ+
log b

2? − 2
.

Indeed, by calculations, we have

∆v+|∇v|2 + fe(2
?−2)v + ae−(2

?+2)v

=∆

(
bϕ+

log b

2? − 2

)
+

∣∣∣∣∇(bϕ+
log b

2? − 2

)∣∣∣∣2
+ fe(2

?−2)(bϕ+ log b
2?−2) + ae−(2

?+2)(bϕ+ log b
2?−2)

=b∆ϕ+ b2|∇ϕ|2 + bfe(2
?−2)bϕ + ae−(2

?+2)bϕb−
2?+2
2?−2

=b

∫
M
f dvolg + b2|∇ϕ|2 + bf(e(2

?−2)bϕ − 1) + ae−(2
?+2)bϕb−

2?+2
2?−2

6b
∫
M
f dvolg −

b

4

∫
M
f dvolg + b(sup

M
f)|e(2?−2)bϕ − 1|+ ae−(2

?+2)bϕb−
2?+2
2?−2

6
b

2

∫
M
f dvolg + ae−(2

?+2)bϕb−
2?+2
2?−2 .

Therefore, if we assume that the function a verifies the following estimate

sup
M

a < −b
22?

2?−2

4
e(2

?+2)bϕ

∫
M
f dvolg , (5.4.1)
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we then get that

∆v + |∇v|2 + fe(2
?−2)v + ae−(2

?+2)v 6
b

4

∫
M
f dvolg < 0,

which concludes the existence of a super-solution u. We now turn to the existence of a

sub-solution. Before doing so, we can easily check that

u = ebϕ+
log b
2?−2 > e

log b
2?−2 = b

1
2?−2 .

Since u has a strictly positive lower bound and thanks to the second stage of the proof

of Theorem 5.1, we can easily construct a sup-solution u with u < u. It is important to

note that the existence of a sub-solution depends heavily on the conditions a > 0 and

a 6≡ 0; and here is the only place we make use of that fact in the proof. The proof of

the theorem is now complete.

Remark 5.7. Having this theorem in hand, one can observe that our problem (5.0.1)

possesses the same phenomena of the Brezis-Nirenberg problem [6]. Although we do

not know, under the conditions supM f > 0 and
∫
M f dvolg < 0, whether the prescribing

scalar curvature equations in the null case, see [16],

−∆gu = fu2
?−1, u > 0,

always admit one positive smooth solution or not, but by adding a term with a negative

exponent, that is,

−∆gu = fu2
?−1 + λu−2

?−1, u > 0, λ > 0,

the perturbed equation always has at least one positive solution provided the constant λ

is small enough. In addition, although our construction of sub- and super-solutions em-

ployed here is simple but it is strong enough to deal with additional nonlinear negative

power terms, for example,

−∆gu = fu2
?−1 +

∑
j

aju
−αj , u > 0,

where αj > 0.

5.5 Asymptotic behavior of µεk,q in the case supM f 6 0

According to [11, Proposition 3], if we restrict ourselves to f 6 0 but not strictly

negative, the solvability of (5.0.1), where h, f , and a take the form (1.2.2), was already

proved. The proof of this fact depends heavily on the conformal covariance property of

all these coefficients, that cannot be true for general h, f , and a. Based on this point,

in this section, we extend the above result for the Lichnerowicz-scalar field equation

(5.0.1). To be precise, we prove that (5.0.1) always admits one positive smooth solution

provided supM f 6 0 and
∫
M f dvolg < 0.

As we have already seen that the behavior of µεk,q for small k and small ε depends

strongly on the term involving a. Despite the fact that we are under the case supM f 6 0,
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we can still go through Lemma 5.3 without any difficulty, that is, for small ε, µεk,q → +∞
as k → 0.

We now study the behavior of µεk,q for k → +∞ when supM f 6 0. As can be seen

from the proof of Proposition 4.8 that if f has zero value somewhere in M , then in

order to control µεk,q for large k, we have to study λf,η,q. Depending on how large the

set {f = 0} is, there are two possible cases. We prove the following result.

Proposition 5.3. Suppose supM f = 0, then µεk,q → +∞ as k → +∞ for any ε > 0

sufficiently small and any q sufficiently close to 2? but all are fixed.

Proof. As we have noticed that there exist two numbers η0 ∈ (0, 1) and qη0 ∈ [2[, 2?) so

that the estimate (5.0.5) holds true for every q ∈ [qη0 , 2
?). In particular, (5.0.6) holds

for any q ∈ [qη0 , 2
?). Depending on the size of the set {f = 0}, we consider two cases

separately.

Case 1. Suppose supM f = 0 and
∫
{f>0} 1 dvolg = 0. Under this case, it is obvious

to see that λf = +∞. Following the proof of Proposition 5.2, for any k > k2,q, any

u ∈ Bk,q, any q ∈ [qη0 , 2
?), and any ε > 0, there holds

F εq (u) = Gq(u) +
1

q

∫
M

a

(u2 + ε)
q
2

dvolg > λk
2
q , (5.5.1)

thus proving the fact that µεk,q → +∞ as k → +∞.

Case 2. Suppose supM f = 0 and
∫
{f>0} 1 dvolg > 0. Under this case, λf is well-

defined and finite. Again, from the choice of λ, we know that (5.0.6) still holds. As in

Case 1 above, the estimate (5.5.1) remains true for any k > k2,q, for any u ∈ Bk,q, any

q ∈ [qη0 , 2
?), and any ε > 0. This proves that µεk,q → +∞ as k → +∞. �

Our next lemma gives a full picture for µεk,q similarly to that proved in Section 3.

Lemma 5.5. There holds

µεk1,q ,q < min{µεk?,q, µ
ε
k2,q ,q}

for any ε ∈ (0, k?) and any q ∈ (qη0 , 2
?).

Proof. As in the proof of Lemma 5.4, the proof is similar and straightforward. �

5.6 Proof of Theorem 5.3

In view of Lemma 3.6, we can conclude the uniqueness part.

Proposition 5.4. If |h| < λf and supM f = 0, then Equation (3.0.1) admits a unique

positive solution u.

Sketch of proof. The proof of the existence part of Theorem 5.3 consists of two parts.

In the first stage of the proof, we assume that infM a > 0 and ε ∈ (0, k?) satisfying

(3.1.3). Following the first stage of the proof of Theorem 5.1, we first define
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µεk2,q ,q = inf
u∈Dq

F εq (u)

where the set Dq is nothing but

Dq =
{
u ∈ H1(M) : k? 6 ‖u‖qLq 6 k2,q

}
.

With information that we have already proved in Lemma 5.5, we can easily go through

Claims 1, 2, and 3 in the first stage of the proof of Theorem 5.1. In other words, we

can prove the existence of at least one positive smooth solution to (5.0.1). Since there

is no difference in the proofs, we omit the details here.

In the second stage of the proof, we assume infM a = 0. Since we have no control on∫
M a dvolg , we can freely add small ε0 > 0 to a as in the proof of Theorem 5.1. Since

the trick that was used in the proof of Theorem 5.1 still works in this new context, a

sub- and super-solutions argument as used before concludes that (5.0.1) has at least

one positive smooth solution. �

In order to make the work unique, let us mention here the case supM f < 0 although

this has been done in [11] by using the method of sub- and super-solution. Suppose

supM f < 0. It suffices to study the asymptotic behavior of µεk,q for large k. Clearly, for

any u ∈ Bk,q, we can estimate µεk,q directly as the following

F εq (u) >
1

2?
| sup
M

f |k.

It is then immediate to deduce that µεk,q → +∞ as k → +∞. Hence we can easily

prove the existence of at least one positive smooth solution to (3.0.1). More precisely,

we prove

Proposition 5.5. If supM f < 0, then Equation (3.0.1) admits a unique positive

smooth solution u.

Sketch of proof. First, the uniqueness part comes from Lemma 3.6. For the existence

part, the proof is similar to the proof of Proposition 5.4. �

5.7 Some remarks

5.7.1 Construction of smooth, sign-changing functions f with small

supM f

As can be seen from Theorems 4.1 and 5.1, both theorems involve some upper

bound for supM f . In this subsection, we provide some functions f such that either the

condition (4.0.2) or the condition of (5.0.3) is fulfilled. We take a smooth function f

with supM f > 0 and
∫
M f dvolg < 0. The idea is to lower supM f but still keep the

negative part f− of f .

For the sake of simplicity, let us only consider the condition (5.0.3). For each number

η > 0, let us denote

Ωη = {x ∈M : f(x) > η} .
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By the Morse–Sard theorem, there exist two numbers ξ and η with 0 < ξ < η 6
η0
4

∫
M |f

−| dvolg such that

|Ωξ\Ωη| > 0, dist(∂Ωξ, ∂Ωη) > 0.

We then take φ : M → [0, 1] to be a (smooth) cut-off function such that

φ(x) =

{
0, if x ∈M\Ωξ,
1, if x ∈ Ωη.

Having such a cut-off function φ, we construct the function f̃(x) = f(x)e−tφ(x) where

t > 0 is a parameter to be determined later. Obviously, f̃ |{M\Ωξ} ≡ f |{M\Ωξ}. In

particular, there holds f̃ |{f60} ≡ f |{f60}. From the choice of η, for any x ∈ Ωξ\Ωη,
there holds

f̃(x) < f(x) 6 η 6
η0
4

∫
M
|f−| dvolg .

For x ∈ Ωη, since f̃(x) = f(x)e−t, one can choose t sufficiently large such that f̃(x) 6
η0
4

∫
M |f

−| dvolg . Notice that, this choice of t is independent of x, for example,

t = ln

(
1 +

4

η0
(max
M

f)

(∫
M
|f−| dvolg

)−1)
.

It is now clear to see that the function f̃ satisfies all conditions in Theorem 5.1.

5.7.2 A relation between supM f and
∫
M
a dvolg

Throughout this subsection, we always assume supM f > 0. We spend this subsection

to point out a connection between supM f and
∫
M a dvolg . To be precise, we conclude

that if we lower supM f but still keep f−, then we may find a better upper bound for∫
M a dvolg . We note that although in the statement of Theorem 5.1, the right hand side

of (5.0.4) only depends on the negative part f−, there is no contradiction to what we

are going to discuss here because (5.0.4) is just a sufficient condition for the solvability

of (5.0.1). More than that, this connection explains why in the case supM f 6 0, we

require no condition on
∫
M a dvolg rather than its positivity.

In order to see this, let us first introduce a scaling constant τ > 1. We assume that

supM f satisfies the following

sup
M

f 6
η0
2τ

∫
M
|f−| dvolg . (5.7.1)

Since τ > 1, it is clear that (5.7.1) is stronger than (5.0.3). We also introduce the

following

k1,q =
η0

2τq

(
τλq

η0
∫
M |f−| dvolg

) q
q−2

and

k2,q =

(
τλq

η0
∫
M |f−| dvolg

) q
q−2

.
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Clearly, k1,q < k1,q < k2,q and k2,q > k2,q. Notice that η0 and λ remain unchanged

since f− is being kept. Following Proposition 5.2, it follows from (5.7.1) that, for any

u ∈ Bk2,q ,q
,

F εq (u) >
λ

2
(k2,q)

2
q .

Therefore, in view of Lemmas 5.3 and 5.4, it suffices to compare µε
k1,q ,q

and µε
k2,q ,q

.

Indeed, a simple calculation shows that µε
k1,q ,q

< µε
k2,q ,q

provided

∫
M
a dvolg <

λη0
4τq

(
τλq

η0
∫
M |f−| dvolg

) q+2
q−2

.

By sending q to 2?, one arrives at∫
M
a dvolg <

τn−2λn

4(η0)
n−2

(
2n

n− 2

)n−2(∫
M
|f−| dvolg

)1−n
. (5.7.2)

Obviously, (5.7.2) is better than (5.0.4) since n > 3 and τ > 1.
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In this chapter, we again continue our study of some quantitative properties of

positive smooth solutions to the Einstein-scalar field Lichnerowicz equations (3.0.1) in

the positive Yamabe-scalar field conformal invariant, that is when h > 0.

As always, we assume hereafter that f , h > 0, and a > 0 are smooth functions on

M with
∫
M a dvolg > 0. For the sake of simplicity, it is important to note that we can

freely choose a background metric g such that manifold M has unit volume.

As far as we know, Equation (3.0.1) with h > 0 was first considered in [21] by

using variational methods. In that elegant paper, Hebey–Pacard–Pollack proved, among

other things, a fundamental existence result which roughly says that a suitable control

of
∫
M a dvolg from above is enough to guarantee the existence of one positive smooth

solution. Their result basically makes use of the fact that the operator −∆g + h is

coercive. Although the coerciveness property is slightly weaker than the condition h > 0,

however as one can see from Chapter 2 that this condition is enough to guarantee that

‖ · ‖H1
h

is an equivalent norm on H1(M). The advantage of this setting is that the first

eigenvalue of the operator−∆g+h is strictly positive, and thus, various goods properties

of the theory of weighted Sobolev spaces can be applied. Using our notations, their result

can be restated as follows: There exists a constant C = C(n), C > 0 depending only

on n, such that if

‖ϕ‖2
?

H1
h

∫
M

a

ϕ2?
dvolg 6

C

(Sh sup
M
|f |)n−1

(6.0.1)
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and ∫
M
fϕ2? dvolg > 0 (6.0.2)

for some smooth function ϕ > 0 in M , then the Einstein-scalar field Lichnerowicz

equation (3.0.1) possesses a smooth positive solution in the case a > 0.

As can be seen from (6.0.2), the condition supM f > 0 is crucial. Therefore, it is not

clear whether (3.0.1) possesses a smooth positive solution or not in the case supM f 6 0.

Moreover, it is necessary to have a > 0 in M in order to get a positive lower bound

for smooth solutions of (3.0.1), see Lemma 3.3. Besides, the condition (6.0.1) involves

not only supM f+ but also infM f−. In other words, for given a, the negative part f−

of f cannot be too negative. This restriction basically reflects the fact that the energy

functional has to verify the mountain pass geometry as their solution was found as a

mountain pass point.

The present chapter was also motivated by a recent preprint by Ma–Wei [28]. In

their paper, provided u is a positive smooth solution, Ma–Wei proved the existence of

a mountain pass solution of (3.0.1) of the form u+ v for some smooth function v > 0.

More precise, they proved that in the case 3 6 n < 6 and that the first eigenvalue of

the following operator

−∆+ h− n+ 2

n− 2
fu

4
n−2 +

3n− 2

n− 2
au

4n−4
n−2 (6.0.3)

is positive, (3.0.1) possesses a mountain pass, smooth, positive solution.

It is easy to see that the positivity of the first eigenvalue of the operator given in

(6.0.3) immediately implies that the solution u is strictly stable. Therefore, it is natural

to seek for positive smooth solutions of (3.0.1) as local minimizers.

Another reason that supports this approach is to look at the profile of the functional

associated to (3.0.1). Due to the presence of the term au−2
?−1, the energy of u is very

large when maxM u is small. Clearly, in the case f 6 0, the energy of u is also large

when maxM u is large. Consequently, a local minimizer of the energy functional should

exist which could provide a possible solution. Similarly, if one assumes that supM f > 0

and that the energy functional admits some mountain pass geometry, a local minimizer

of the energy functional again exists.

While searching for positive smooth solutions of (3.0.1), we found that the method

used in the case of non-positive Yamabe-scalar field invariant still works in this context.

While the non-positive Yamabe-scalar field invariant h 6 0 involves more conditions and

our analysis of solvability of the Lichnerowicz-scalar field equations strongly depends on

the ratio between supM f and
∫
M |f

−| dvolg , the positive Yamabe-scalar field invariant

h > 0 requires fewer conditions than the non-positive case. In fact, as we shall see later,

in the case supM f > 0, no condition for f is imposed and we are able to show that if∫
M a dvolg is small, then (3.0.1) possesses at least one smooth positive solutions since

the condition for supM f can be absorbed to the condition for
∫
M a dvolg . The first

main theorem can be stated as follows.
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Theorem 6.1. Let (M, g) be a smooth compact Riemannian manifold without the

boundary of dimension n > 3. Assume that f , h > 0, and a > 0 are smooth func-

tions on M such that
∫
M a dvolg > 0 and supM f > 0. We assume further that there

exists a constant τ > max{1, ( 2
Sh

∫
M h dvolg)

2?

2 } such that∫
M
a dvolg <

(2n− 1)n−1

22n−1nn
Sh
τ

(
Shτ

τ supM f −
∫
M f dvolg

)n−1
(6.0.4)

holds. Then (3.0.1) possesses at least one smooth positive solution.

Observe from (6.0.4) that τ plays no role but a scaling factor. Therefore, for given∫
M a dvolg , we could select τ sufficiently large and supM f sufficiently small in such a

way that (6.0.4) is fulfilled. This suggests that under the case when supM f is small,

the condition for
∫
M a dvolg appearing in (6.0.4) can be relaxed. In the second part of

the present paper, we prove this affirmatively. That is the content of the following.

Theorem 6.2. Let (M, g) be a smooth compact Riemannian manifold without the

boundary of dimension n > 3. Let f , h, and a be smooth functions on M with h > 0,

a > 0 in M ,
∫
M a dvolg > 0, and supM f > 0. Then there exists a positive constant C to

be specified later such that if supM f < C , then Equation (3.0.1) possesses one positive

smooth solution.

Apparently, Theorem 6.2 provides a slightly stronger result than that of Hebey–

Pacard–Pollack as the negative part f− of the function f could be arbitrarily small.

Besides, in view of Theorems 5.2 and 6.1, one may expect that, at least, when supM a

is very large, Equation (3.0.1) does not possess any positive smooth solution in the case

h > 0. Unfortunately, we have no evidence in order to support this point.

In the third part of the present paper, we focus our attention to the case when

supM f 6 0. In this context, we are able to get a complete characterization of the

existence of solutions of (3.0.1) in the case when f 6 0. Roughly speaking, it should

mention that in the statement of Theorem 6.1, supM f is exactly supM f+ where f+

is the positive part of f . Therefore, without any supM f , one can immediately observe

that the right hand side of (6.0.4) goes to +∞ as τ → +∞. This suggests that under

the condition supM f 6 0, no condition is imposed.

Theorem 6.3. Let (M, g) be a smooth compact Riemannian manifold without boundary

of dimension n > 3. Let f , h, and a be smooth functions on M with h > 0, a > 0 in

M ,
∫
M a dvolg > 0, and f 6 0. Then Equation (3.0.1) always possesses one and only

one positive smooth solution.

Concerning Theorem 6.3, it is worth noticing that it generalizes the same result

obtained in [11] when our equation takes the form (1.2.10). Roughly speaking, it was

proved in [11] by the method of sub- and super-solutions that (3.0.1) always possesses

one positive solution so long as the functions f and a take the form f = −Bτ,ψ and

a = Ag,W,π with f 6 0 and a > 0. The main ingredient of the proof in [11] is the

conformal invariant property of Bτ,ψ and Ag,W,π. Apparently, this property is no longer

available in our general case.
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As a standard routine, in the first step to tackle (3.0.1), we look for positive smooth

solutions of the following subcritical problem

−∆gu+ hu = f |u|q−2u+
au

(u2 + ε)
q
2
+1
. (6.0.5)

It is worth noticing that in [21], the authors just considered (6.0.5) with q replaced

by 2?. This deference somehow reflects the fact that we need the compact embedding

H1(M) ↪→ Lq(M) while searching for minimum points.

Observe that τ > 1 and therefore τ supM f >
∫
M f dvolg . Having this, we then

introduce the following numbers

k1,q =

(
q + 2

4q

Shτ
2
q

τ supM f −
∫
M f dvolg

) q
q−2

, k2,q = τk1,q. (6.0.6)

One can observe that k1,q < k2,q. Moreover, one can easily bound k1,q from below and

k2,q from above, that is, there exists two positive numbers k < 1 and k > 1 independent

of q and ε such that k 6 k1,q < k2,q 6 k. In order to find such bounds, one first note

that

τk1,q =

(
q + 2

4q

Shτ
τ supM f −

∫
M f dvolg

) q
q−2

.

Therefore, we can choose

k =
1

τ
min


(

1

4

Shτ
τ supM f −

∫
M f dvolg

) 2[

2[−2

, 1

 (6.0.7)

and

k = max


(

1

2

Shτ
τ supM f −

∫
M f dvolg

) 2[

2[−2

, 1

 . (6.0.8)

6.1 The analysis of the energy functionals

Our aim was to derive a suitable analysis of the energy functionals associated to our

problem. Thanks to what we have already built up in the previous two chapters, we

shall not mention our argument in details in several parts of the current study.

6.1.1 The functional setting

As always, for each q ∈ (2, 2?) and k > 0, we still use the hyper-surface Bk,q of

H1(M) which is defined in (4.1.1). Again, the set Bk,q is non-empty. Concerning the

energy functional associated to problem (6.0.5), we can continue to use that of the

previous chapter, that is,

F εq (u) =
1

2

∫
M
|∇u|2 dvolg +

1

2

∫
M
h|u|2 dvolg

− 1

q

∫
M
f |u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg ,
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for ε > 0 small satisfying (3.1.6). There is no doubt to claim that F εq is differentiable

on H1(M) and F εq |Bk,q is bounded from below by −k| supM f |. As such, we can define

µεk,q = inf
u∈Bk,q

F εq (u).

Since critical points of F εq are weak solutions of (6.0.5), we wish to find critical points

of the functional F εq .

6.1.2 µεk,q is achieved

Recall that, it was already proved in Chapter 4 that in the case h < 0, the corre-

sponding µεk,q is achieved by smooth positive function uε. In the present case, h > 0,

the above proof still works since h is smooth. Therefore, we omit its proof here.

6.1.3 The continuity of µεk,q with respect to k

Once again, as we have already shown in Chapter 4, in the case h < 0, the corre-

sponding function µεk,q is continuous with respect to k for each ε fixed. Since the order

of the term involving h in the energy functional of the case h > 0 is lower than 2?, we

conclude that µεk,q is also continuous with respect to k in the case h > 0.

6.2 Asymptotic behavior of µεk,q in the case supM f > 0

Following the same procedure as in the previous two chapters, in this section, we

investigate the behavior of µεk,q when both k and ε vary.

We first study the behavior of µεk,q as k → +∞. We notice that our argument here

is not new since the order of the term involving h in F εq is lower than 2? that does not

affect the behavior of µεk,q for large k. Following the proof of Lemma 4.4, we can easily

prove the following lemma.

Lemma 6.1. There holds µεk,q → −∞ as k → +∞ if supM f > 0.

We are going to show that µεk1,q ,q < µεk2,q ,q where k1,q and k2,q are given in (6.0.6).

To this purpose, we first need a rough estimate for µεk1,q ,q.

Lemma 6.2. There holds

µεk1,q ,q 6
k

2
q

1,q

2

∫
M
h dvolg −

k1,q
q

∫
M
f dvolg +

1

qk1,q

∫
M
a dvolg (6.2.1)

where k1,q is given in (6.0.6).

Proof. This is trivial since µεk1,q ,q 6 F
ε
q (k

1
q

1,q). The proof follows. �

As a consequence of Lemma 6.2 and thanks to k < 1 6 k, we can bound µεk1,q ,q with

the bound independent of q and ε as follows
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µεk1,q ,q 6
k

2

2[

2

∫
M
h dvolg +

k

2
sup
M
|f |+ 1

2k

∫
M
a dvolg .

We now study the asymptotic behavior of µεk,q as k → 0. This result together with

Lemmas 6.1 and 6.4 give us a full description of the asymptotic behavior of µεk,q.

Lemma 6.3. There holds limk→0+ µ
k
2
q

k,q = +∞. In particular, there is some k? suffi-

ciently small and independent of both q and ε such that

µεk?,q > −k
∫
M
f dvolg +

1

k

∫
M
a dvolg

for any ε 6 k?. In particular, there holds µεk?,q > µεk1,q ,q.

Proof. The way that ε comes and plays immediately shows us that µεk,q is strictly

monotone decreasing in ε for fixed k and q. Following the proof of Lemma 4.3, for any

ε 6 k
2
q , any 1 < q

2 <
2?

2 , any any u ∈ Bk,q, we have

∫
M

√
a dvolg 6 2

q
4

√
k

(∫
M

a

(u2 + ε)
q
2

dvolg

) 1
2

(6.2.2)

By squaring (6.2.2), we get that∫
M

a

(u2 + ε)
q
2

dvolg >
1

2
2?

2 k

(∫
M

√
a dvolg

)2

.

This helps us to conclude

F εq (u) > −k
q

sup
M

f +
1

2
2?

2 qk

(∫
M

√
a dvolg

)2

,

which proves that µk
2
q

k,q → +∞ as k → 0. Since the right hand side of the preceding

inequality is independent of u, in order to get the desired estimate, it suffices to find

some small k? < 1 independent of both q and ε such that the following inequality

−k?
q

sup
M

f +
1

2
2?

2 qk?

(∫
M

√
a dvolg

)2

> k
2

2[

∫
M
h dvolg + k sup

M
|f |+ 1

k

∫
M
a dvolg

(6.2.3)

holds. In order to find such a k?, we first let k? < 1. Since q > 2, it suffices to select k?
such that

1

2
2?

2 2?k?

(∫
M

√
a dvolg

)2

> k
2

2[

∫
M
h dvolg + k sup

M
|f |+ 1

k

∫
M
a dvolg +

1

2
sup
M

f

which is equivalent to

k? 6
1

2
2?

2 2?

(∫
M

√
a dvolg

)2

(
k

2

2[

∫
M
h dvolg + k sup

M
|f |+ 1

k

∫
M
a dvolg +

1

2
sup
M

f

)−1
.
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Hence, one can choose k? as

k? = min

{
1

2
2?

2 2?

(∫
M

√
a dvolg

)2

(
k

2

2[

∫
M
h dvolg +

(
k +

1

2

)
sup
M
|f |+ 1

k

∫
M
a dvolg

)−1
, k, 1

}
.

(6.2.4)

Since k? 6 1, we always have k? 6 k
2
q
? . By Lemma 6.1, we can check that µεk?,q > µεk1,q ,q,

thus concluding the lemma with ε 6 k?. �

Notice that, we have used k in the formula for k?. The reason is that we wish to

ensure that k? < k1,q in any case.

In the next result, we claim that the function µεk,q is continuous with respect to k

for each ε > 0 and q ∈ (2[, 2?) fixed. Since a similar result has been proved before, we

omit its proof.

Proposition 6.1. For ε > 0 and q ∈ [2[, 2?) fixed, the function µεk,q is continuous with

respect to k.

In the rest of this section, our aim here was to study µεk,q for k > k1,q. It was found

that µεk1,q ,q < µεk2,q ,q provided
∫
M a dvolg is sufficiently small. To this end, we need to

estimate µεk,q for k > k1,q.

Proposition 6.2. For any u ∈ Bk,q with k > k1,q, any q ∈ [2[, 2?), and any ε > 0,

there holds

F εq (u) >
1

2
Shk

2
q − k

q
sup
M

f.

In particular, there holds

µεk,q >
1

2
Shk

2
q − k

q
sup
M

f

for any k > k1,q.

Proof. Suppose u ∈ Bk,q where k > k1,q is arbitrary. We now estimate F εq (u) from

below. To this purpose, from (2.3.2) and the Hölder inequality, we first have∫
M
|∇u|2 dvolg +

∫
M
hu2 dvolg > Shk

2
q

It is then easy to estimate F εq from below as follows

F εq (u) >
1

2

(∫
M
|∇u|2 dvolg +

∫
M
hu2 dvolg

)
− 1

q

∫
M
f+|u|q dvolg .

In particular, there holds

F εq (u) >
1

2
Shk

2
q − k

q
sup
M

f.

Thus, we can conclude the lemma by taking the infimum with respect to u ∈ Bk,q. �

In order to prove the existence of a local minimum point, the following lemma plays

an important role in our analysis.
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Lemma 6.4. Assume that∫
M
a dvolg <

q − 2

4q

Sh
τ

(
q + 2

4q

Shτ
τ supM f −

∫
M f dvolg

) q+2
q−2

. (6.2.5)

Then there holds

µεk1,q ,q < min{µεk?,q, µ
ε
k2,q ,q}

for any q ∈ [2[, 2?) and any ε ∈ (0, k?).

Proof. First, in view of Lemma 6.3, it suffices to prove µεk1,q ,q < µεk2,q ,q for all q ∈ [2[, 2?).

By making use of Lemma 6.2 and Proposition 6.2, we obtain the following facts

µεk1,q ,q <
k

2
q

1,q

2

∫
M
h dvolg −

k1,q
2

∫
M
f dvolg +

1

2k1,q

∫
M
a dvolg

and
1

2
Shk

2
q

2,q −
k2,q
q

sup
M

f 6 µεk2,q ,q.

Therefore, it suffices to prove that

k
2
q

1,q

∫
M
h dvolg −k1,q

∫
M
f dvolg +

1

k1,q

∫
M
a dvolg 6 Shk

2
q

2,q − k2,q sup
M

f,

for any q ∈ [2[, 2?). Notice that, from the choice of τ , that is,

τ > max

{
1,

(
2

Sh

∫
M
h dvolg

) 2?

2
}
,

we can verify that Shτ
2
q > 2

∫
M h dvolg . This amounts to saying that

k
2
q

1,q

∫
M
h dvolg 6

1

2
Shτ

2
q k

2
q

1,q =
1

2
Shk

2
q

2,q.

Therefore, it suffices to show that

−k1,q
∫
M
f dvolg +

1

k1,q

∫
M
a dvolg 6

1

2
Shτ

2
q k

2
q

1,q − τk1,q sup
M

f

or equivalently,∫
M
a dvolg 6

1

2
Shτ

2
q k

1+ 2
q

1,q − k
2
1,q

(
τ sup

M
f −

∫
M
f dvolg

)
= k21,q

(
1

2
Shτ

2
q k

2−q
q

1,q −
(
τ sup

M
f −

∫
M
f dvolg

))
,

(6.2.6)

for any q ∈ [2[, 2?). Again, from the choice of k1,q, it is clear to see that

τ
2
q k

2−q
q

1,q = τ
2
q

(
q + 2

4q

Shτ
2
q

τ supM f −
∫
M f dvolg

)−1

=
4q

q + 2

τ supM f −
∫
M f dvolg

Sh
.
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Therefore,

1

2
Shτ

2
q k

2−q
q

1,q −
(
τ sup

M
f −

∫
M
f dvolg

)
=
q − 2

q + 2

(
τ sup

M
f −

∫
M
f dvolg

)

=
q − 2

4q
Shτ

2
q

(
q + 2

4q

Shτ
2
q

τ supM f −
∫
M f dvolg

)−1
.

By using this identity, (6.2.6) is equivalent to

∫
M
a dvolg 6

q − 2

4q
Shτ

2
q

(
q + 2

4q

Shτ
2
q

τ supM f −
∫
M f dvolg

) q+2
q−2

=
q − 2

4q

Sh
τ

(
q + 2

4q

Shτ
τ supM f −

∫
M f dvolg

) q+2
q−2

.

(6.2.7)

The proof follows easily by comparing (6.2.5) and (6.2.7). �

6.3 Proof of Theorem 6.1

In this section, we prove Theorem 6.1. Similar to the proof of Theorem 5.1, the

proof that we provide here consists of two steps. First, in view of Lemma 3.3 we need

to make use of the condition infM a > 0 in order to guarantee the existence of one

solution. Second, by using a simple sub- and super- solutions argument, we prove that

(3.0.1) still admits one positive smooth solution even that infM a = 0. Apparently, the

result for the case infM a = 0 is new since this case was left open in [21].

6.3.1 The case infM a > 0

In this subsection, we obtain the existence of one solution of (3.0.1) under the

assumption infM a > 0. For the sake of clarity, we divide the proof into three claims.

Claim 1. There exists a q0 ∈ (2[, 2?) such that for all q ∈ [q0, 2
?) and for all ε ∈ (0, k?)

satisfying (3.1.6), there will be k1,q, k2,q, and k? with the following properties k? <

k1,q < k2,q and

µεk1,q ,q < min{µεk?,q, µ
ε
k2,q ,q}.

Proof of Claim 1. This is a consequence of Lemma 6.4. In order to apply Lemma 6.4,

we have to derive (6.2.5) for suitable q close enough to 2?. Observe that

lim
q→2?

q + 2

q − 2
= n− 1, lim

q→2?

q − 2

4q

(
q + 2

4q

) q+2
q−2

=
(2n− 1)n−1

22n−1nn
.

Hence, we can choose q0 ∈ [2[, 2?) sufficiently close to 2? such that the condition

Shτ
2
q > 2

∫
M h dvolg and the following inequality
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∫
M
a dvolg 6

q − 2

4q

Sh
τ

(
q + 2

4q

Shτ
τ supM f −

∫
M f dvolg

) q+2
q−2

(6.3.1)

holds for any q ∈ [q0, 2
?). Thanks to (6.3.1), we can now use Lemma 6.4 to finish the

proof of this claim.

It is important to note that q0 is independent of q and ε. Thus, from now on, we

only consider q ∈ [q0, 2
?).

Claim 2. Equation (6.0.5) with ε replaced by 0 has a positive solution, say u1,q, that

is, u1,q solves the following subcritical equation

−∆gu1,q + hu1,q = f(u1,q)
q−1 +

a

(u1,q)q+1
, (6.3.2)

where q ∈ [q0, 2
?).

Proof of Claim 2. For the sake of clarity, we divide our proof into several steps.

Step 1. The existence of uε1,q with energy µεkε1,q
. We now define

µεkε1,q = inf
u∈Dq

F εq (u)

where

Dq =
{
u ∈ H1(M) : k? 6 ‖u‖qLq 6 k2,q

}
.

It follows from k1,q ∈ (k?, k2,q) and Lemma 6.2 that

µεkε1,q 6 µ
ε
k1,q ,q 6 k

2

2[

∫
M
h dvolg +k sup

M
|f |+ 1

k

∫
M
a dvolg .

In other words, we have proved that µεkε1,q
is bounded from above.

By a standard argument and the Ekeland Variational Principle, one can show that

there exists a H1-bounded minimizing sequence for µεkε1,q
in Dq. Therefore, a similar

argument to that we have used before shows that µεkε1,q
is achieved by some positive

function uε1,q ∈ Dq. Notice that one can claim uε1,q ∈ Dq since q < 2?. Obviously,

uε1,q is a weak solution of (6.0.5). Thus, the regularity result, Lemma 3.3(a), developed

in Section 2 can be applied to (6.0.5). It follows that uε1,q ∈ C∞(M). If we denote

‖uε1,q‖Lq = kε1, we then see that kε1 > (k?)
1

2[ . Consequently, there holds uε1,q 6≡ 0. With

Lemma 3.3 and the Strong Minimum Principle in hand, it is easy to prove that uε1,q is

strictly positive.

Step 2. The existence of u1,q with energy µk1,q. Next, in order to send ε→ 0, we need

a uniform bound for uε1,q in H1(M). Using the Hölder inequality and the fact that

‖uε1,q‖L2 6 ‖uε1,q‖Lq , it is not hard to prove that ‖uε1,q‖H1 is bounded from above with

the bound independent of q and ε.

In what follows, we let {εj}j be a sequence of positive real numbers such that εj → 0

as j →∞. For each j, let u
εj
1,q be a smooth positive function in M such that

−∆gu
εj
1,q + hu

εj
1,q = f(u

εj
1,q)

q−1 +
au

εj
1,q

((u
εj
1,q)

2 + εj)
q
2
+1

(6.3.3)

in M . Being bounded in H1(M), there exists u1,q ∈ H1(M) such that, up to subse-

quences, as j →∞,



6.3 Proof of Theorem 6.1 113

• u
εj
1,q ⇀ u1,q weakly in H1(M);

• u
εj
1,q → u1,q strongly in Lp(M) for any p ∈ [1, 2?);

• u
εj
1,q → u1,q almost everywhere in M .

Using Lemma 3.3, the Lebesgue Dominated Convergence Theorem can be applied to

conclude that
∫
M (u1,q)

−p dvolg is finite for all p. Now sending j → ∞ in (6.3.3), we

get that u1,q is a weak solution of the subcritical equation (6.3.2). Thus Lemma 3.4(b)

can be applied to (6.3.2). It follows that u1,q ∈ C∞(M). For simplicity, let us denote

‖u1,q‖qLq = k1. Using the strong convergence in Lp(M) and the fact that kε1 > k?, one

can see that k1 > k?, thus proving u1,q 6≡ 0. With Lemma 3.3 and the Strong Minimum

Principle in hand, it is easy to prove that u1,q is strictly positive. Keep in mind that

we still have k1 6 k2,q since we still have a strong convergence. This settles Claim 2.

Claim 3. Equation (3.0.1) has at least one positive solution.

Proof of Claim 3. Let us denote by µk1,q the energy of u1,q found in Claim 2, i.e.,

µk1,q =
1

2

∫
M
|∇u1,q|2 dvolg +

1

2

∫
M
h(u1,q)

2 dvolg

− 1

q

∫
M
f(u1,q)

q dvolg +
1

q

∫
M

a

(u1,q)
q dvolg .

Keep in mind that by k1 we mean ‖u1,q‖qLq = k1. Since q < 2?, by strong convergences,

we have

µk1,q = lim sup
j→∞

µ
εj

k
εj
1 ,q

6 lim sup
j→∞

µ
εj
k1,q ,q

6
k

2

2[

2

∫
M
h dvolg +

k

2
sup
M
|f |+ 1

2k

∫
M
a dvolg .

(6.3.4)

We now estimate the H1-norm of the sequence {u1,q}q. Clearly, since h > 0 and a > 0,

we get that

1

2

∫
M
|∇u1,q|2 dvolg =µk1,q −

1

2

∫
M
h(u1,q)

2 dvolg

+
1

q

∫
M
f(u1,q)

q dvolg −
1

q

∫
M

a

(u1,q)
q dvolg

6µk1,q +
1

q

∫
M
f(u1,q)

q dvolg

6µk1,q +
k1
2

sup
M
|f |.

Since k1 ∈ [k?, k2,q], we then easily obtain

1

2

∫
M
|∇u1,q|2 dvolg 6

k
2

2[

2

∫
M
h dvolg + k sup

M
|f |+ 1

2k

∫
M
a dvolg .

This and the fact that ‖u1,q‖2L2 6 (k)
2

2[ imply that the sequence {u1,q}q remains

bounded in H1(M). Thus, up to subsequences, there exists u1 ∈ H1(M) such that,

as q → 2?,
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• u1,q ⇀ u1 weakly in H1(M);

• u1,q → u1 strongly in Lp(M) for any p ∈ [1, 2?);

• u1,q → u1 almost everywhere in M .

Notice that u1,q verifies∫
M
∇u1,q · ∇v dvolg +

∫
M
hu1,qv dvolg

−
∫
M
f(u1,q)

q−1v dvolg −
∫
M

a

(u1,q)q+1
v dvolg = 0

(6.3.5)

for any v ∈ H1(M). By similar arguments to those used before, one immediately has

the following ∫
M

(∇u1,q −∇u1) · ∇v dvolg → 0,∫
M

(u1,q − u1) v dvolg → 0,∫
M

a

(u1,q)
q+1 v dvolg →

∫
M

a

(u1)
2?+1 v dvolg ,

(6.3.6)

as q → 2?. So far, we can pass to the limit every terms on the left hand side of (6.3.5)

except the term involving f . By the Hölder inequality, one obtains

∥∥(u1,q)
q−1∥∥

L
2?

2?−1
6

((∫
M

(u1,q)
2? dvolg

) q−1
2?−1

) 2?−1
2?

= ‖u1,q‖q−1L2? .
(6.3.7)

Making use of the Sobolev inequality and (6.3.7), we can prove the boundedness of

(u1,q)
q−1 in L

2?

2?−1 (M). In addition, since u1,q → u1 almost everywhere, (u1,q)
q−1 →

(u1)
2?−1 almost everywhere. According to [3, Theorem 3.45], we can conclude that

(u1,q)
q−1 ⇀ (u1)

2?

2?−1 weakly in L
2?

2?−1 (M). Therefore, by definition of weak convergence

and the smoothness of f , one has∫
M
f(u1,q)

q−1v dvolg →
∫
M
f(u1)

2?−1v dvolg (6.3.8)

as q → 2?. Combining (6.3.6) and (6.3.8), one can see, by sending q → 2? in (6.3.5), that

u1 are weak solutions to (3.0.1). Using Lemma 3.4(b) we conclude that u1 ∈ C∞(M)

and u1 > 0 in M .

6.3.2 The case infM a = 0

Under this context, making use of the method of sub- and super-solutions is the

key argument. Thanks to [20], from that we learn this approach. However, it is worth

mentioning that our construction of sub-solutions is different from that of [20]. We let

ε0 > 0 sufficiently small and then fix it so that the following inequality∫
M
a dvolg + ε0 <

(2n− 1)n−1

22n−1nn
Sh
τ

(
Shτ

τ supM f −
∫
M f dvolg

)n−1
(6.3.9)
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still holds. Since the manifold M has unit volume, we can conclude that from (6.3.9),

the function a + ε0 verifies all assumptions in the previous subsection, thus showing

that there exists a positive smooth function u solving the following equation

−∆gu+ hu = fu2
?−1 +

a+ ε0
u2

?+1 .

Obviously, u is a super-solution to (3.0.1), that is

−∆gu+ hu > fu2
?−1 +

a

u2
?+1 .

Our aim is to find a sub-solution to (3.0.1). In this context, we consider the following

equation

−∆gu+ (h− f−)u = a. (6.3.10)

Since h − f− > 0, a > 0, a 6≡ 0, and the manifold M is compact without boundary,

the standard argument shows that (6.3.10) always admits a weak solution, say u0. By

a standard regularity result, one can easily deduce that u0 is at least continuous. Thus,

by the Maximum Principle, we conclude u0 > 0.

As before, we now find the sub-solution u of the form εu0 for small ε > 0 to be

determined. To this purpose, we first write

−∆gu+ hu = εa+ f−u. (6.3.11)

Since maxM u0 < +∞, it is easy to see that, for any 0 < ε 6 (maxM u0)
− 2?+1

2?+2 , we

immediately have

εa 6
a

ε2?+1u2
?+1

0

. (6.3.12)

Besides, since f− 6 0 and 2? > 2, it is not difficult to see that the following inequality

εu0f
− 6 ε2

?−1u2
?−1

0 f−

holds provided ε 6 (maxM u0)
−1. In particular, the following

εu0f
− 6 ε2

?−1u2
?−1

0 f (6.3.13)

holds provided ε 6 (maxM u0)
−1. Combining all estimates (6.3.11), (6.3.12), and

(6.3.13) above, we conclude that for small ε, there holds

−∆gu+ hu 6 ε2
?−1u2

?−1
0 f +

a

ε2?+1u2
?+1

0

.

In other words, we have shown that u is a sub-solution of (3.0.1). Finally, since u has

a strictly positive lower bound, we can choose ε > 0 sufficiently small such that u 6 u.

Using the sub- and super-solutions method, see [25, Lemma 2.6], we can conclude the

existence of a positive solution u to (3.0.1). By a regularity result developed in [25], we

know that u is smooth.
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6.4 Proof of Theorem 6.2

In order to prove Theorem 6.3, we need to show that the condition (6.0.4) is fulfilled.

Although we have not assumed any upper bound for
∫
M a dvolg , we are able to show

that we can recover the condition (6.0.4) provided supM f is sufficiently small. As usual,

we first assume infM a > 0. Depending on the sign of
∫
M f dvolg , we have two cases.

Case 1. Suppose
∫
M f dvolg > 0. In this context, we can easily verify that

Sh
supM f

6
Shτ

τ supM f −
∫
M f dvolg

.

Therefore, it suffices to show that∫
M
a dvolg <

(2n− 1)n−1

22n−1nn
Sh
τ

(
Sh

supM f

)n−1
,

which is equivalent to

sup
M

f <

(
(2n− 1)n−1

22n−1nn
Snh

τ
∫
M a dvolg

) 1
n−1

.

Case 2. Suppose
∫
M f dvolg < 0. In this context, we assume for a moment that

supM f > 0 is small in such a way that we can select

τ =
1

supM f
> max

{
1,
( 2

Sh

∫
M
h dvolg

) 2?

2

}
.

Then, thanks to f = f+ + f−, we have

Shτ
τ supM f −

∫
M f dvolg

=
1

supM f

Sh
1−

∫
M f dvolg

>
1

supM f

Sh
1 +

∫
M |f−| dvolg

.

Therefore, it suffices to show that∫
M
a dvolg <

(2n− 1)n−1

22n−1nn
Sh sup

M
f

(
1

supM f

Sh
1 +

∫
M |f−| dvolg

)n−1
,

which is equivalent to

sup
M

f <

(
(2n− 1)n−1

22n−1nn
Snh

(1 +
∫
M |f−| dvolg)

∫
M a dvolg

) 1
n−2

.

From our calculation above, we conclude that there exists some positive constant

C > 0 depending only on a, h, and f− such that if 0 < supM f < C , our equation

(3.0.1) always admits at least one positive smooth solution.

It remains to consider the case infM a = 0. However, since the size of a plays no

role in the above calculation, we can freely add a small constant ε0 to a as in the

second stage of the proof of Theorem 6.1. This procedure ensures that we always get a

super-solution of (3.0.1) with a strictly positive lower bound and this is enough since

a suitable positive sub-solution always exists.
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6.5 Asymptotic behavior of µεk,q in the case supM f 6 0

Unlike the case when supM f > 0 that forces µεk,q → −∞ as k → ∞, it is found

that, in the case supM f 6 0, we always have µεk,q → +∞ as k →∞ and this is enough

to guarantee the existence of at least one solution.

Before doing so, one can observe that, thanks to f+ ≡ 0, k1,q and k2,q simply become

k1,q = τ
2
q−2

(
q + 2

4q

Sh
−
∫
M f dvolg

) q
q−2

, k2,q = τk1,q, (6.5.1)

where τ is a suitable scaling constant to be determined later.

As we have already seen that the behavior of µεk,q for small k and small ε depends

strongly on the term involving a. Despite the fact that we are under the case supM f 6 0,

we can still go through Lemma 6.3 without any difficulty, that is, for small ε, µεk,q → +∞
as k → 0. We now study the behavior of µεk,q for k → +∞ when supM f 6 0.

Proposition 6.3. Suppose supM f 6 0, then µεk,q → +∞ as k → +∞ for any ε > 0

and any q ∈ [2[, 2?) but all are fixed.

Proof. By using (2.3.2) and the Hölder inequality, for any u ∈ Bk,q, any q ∈ [2[, 2?),

and any ε > 0, there holds

F εq (u) =
1

2

∫
M

(|∇u|2 + hu2) dvolg

− 1

q

∫
M
f |u|q dvolg +

1

q

∫
M

a

(u2 + ε)
q
2

dvolg

>
1

2
Shk

2
q ,

which immediately implies that µεk,q >
1
2Shk

2
q . Thus, we have shown that µεk,q → +∞

as k → +∞. �

Our next lemma gives a full description for µεk,q similarly to that proved for the case

supM f > 0. The only difference is that we do not require q to be close to 2? since we

have no condition on
∫
M a dvolg . In order to avoid any condition on

∫
M a dvolg , thanks

to Proposition 6.3 above, we just have to select a suitable large τ .

Lemma 6.5. There holds

µεk1,q ,q < min{µεk?,q, µ
ε
k2,q ,q}

for any ε ∈ (0, k?) and any q ∈ [2[, 2?).

Proof. As in the proof of Lemma 6.4, the proof is similar and straightforward. To see

this, for new k1,q and k2,q, we can also bound by k and k. Therefore, we can define

k? as in (6.2.4). Having such a k?, the estimate µεk1,q ,q 6 µεk?,q still holds; therefore, it

suffices to prove

µεk1,q ,q 6 µ
ε
k2,q ,q
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by choosing a suitable τ � 1. Equivalently, we need to prove that

k
2
q

1,q

∫
M
h dvolg −k1,q

∫
M
f dvolg +

1

k1,q

∫
M
a dvolg 6 Shk

2
q

2,q,

for any q ∈ [qη0 , 2
?). From the choice of τ , we only need to prove that∫

M
a dvolg 6 k

2
1,q

(
1

2
Shτ

2
q k

2−q
q

1,q +

∫
M
f dvolg

)
. (6.5.2)

A simple calculation shows that (6.5.2) is equivalent to∫
M
a dvolg 6 τ

4
q−2

q − 2

4q
Sh

(
q + 2

4q

Sh
−
∫
M f dvolg

) q+2
q−2

.

Hence, by choosing τ sufficiently large, one easily gets the desired result. �

6.6 Proof of Theorem 6.3

This section is devoted to the proof of Theorem 6.3. In view of Lemma 3.6, we can

conclude the uniqueness part.

Proposition 6.4. If supM f 6 0 and h > 0, then Equation (3.0.1) admits a unique

positive solution u.

Sketch of proof. The proof of the existence part of Theorem 6.3 consists of two parts.

In the first stage of the proof, we assume that infM a > 0 and ε ∈ (0, k?) satisfying

(3.1.3). Following the first stage of the proof of Theorem 5.1, we first define

µεkε1,q = inf
u∈Dq

F εq (u)

where the set Dq is nothing but

Dq =
{
u ∈ H1(M) : k? 6 ‖u‖qLq 6 k2,q

}
.

With information that we have already proved in Lemma 6.5, we can easily go through

Claims 1, 2, and 3 in the first stage of the proof of Theorem 6.1. In other words, we

can prove the existence of at least one positive smooth solution to (3.0.1). Since there

is no difference in the proofs, we omit the details here.

In the second stage of the proof, we assume infM a = 0. Since we have no control on∫
M a dvolg , we can freely add small ε0 > 0 to a as in the proof of Theorem 6.1. Since

the trick that was used in the proof of Theorem 6.1 still works in this new context, a

sub- and super-solutions argument as used before concludes that (3.0.1) has at least

one positive smooth solution. �
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6.7 Some remarks

In view of Theorem 6.2, Equation (3.0.1) always admits at least one positive smooth

solution provided supM f 6 0. Let us now assume that the smooth function f verifies

supM f 6 0. For each λ ∈ R, we denote

fλ(x) = f(x) + λ, x ∈M.

Clearly, functions in the class {fλ}λ are to be thought of as translation of the function

f by the value λ. Let us now consider the following equation

−∆gu+ hu = fλu
2?−1 +

a

u2?+1
, u > 0. (6.7.1)λ

Obviously, in view of Theorem 6.3 and the condition supM f 6 0, (6.7.1)λ always admits

one positive smooth solution provided λ 6 0. We are now interested in the case λ > 0.

It was found that there is a critical number λ? > 0 which affects the number of positive

smooth solutions of (6.7.1)λ when λ crosses λ?. That is the content of the following

theorem.

Theorem 6.4. There exists a constant λ? > 0 such that

(i) Problem (6.7.1)λ has no positive smooth solution if λ > λ?.

(ii)Problem (6.7.1)λ has at least one positive smooth solution if λ < λ?.

We now sketch a proof of this theorem.

Proof. In order to prove this theorem, let us observe from Theorem 6.2 that Equation

(6.7.1)λ has at least one positive smooth solution for some small λ > 0 since fλ depends

continuously on λ. In order to see this, our aim was to make use of Theorem 6.1.

Let us first observe that supM fλ = λ. Since
∫
M f dvolg < 0, we can select λ > 0

small such that
∫
M fλ dvolg < 0. As usual, let us first suppose infM a > 0. Now we show

that there exists some τ > max{1, ( 2
Sh

∫
M h dvolg)

2?

2 } and some λ ∈ (0, 1) small enough

such that ∫
M
a dvolg <

(2n− 1)n−1

22n−1nn
Sh
τ

(
Shτ

τ sup fλ −
∫
M fλ dvolg

)n−1
.

Indeed, we can start with small λ such that 1
λ > max{1, ( 2

Sh

∫
M h dvolg)

2?

2 } and∫
M fλ dvolg < 0. In particular, we can choose τ = 1

λ and observe that

0 < 1−
∫
M
fλ dvolg = 1− λ−

∫
M
f dvolg < 1−

∫
M
f dvolg .

Therefore, a simple calculation shows that it suffices to show that∫
M
a dvolg <

(2n− 1)n−1

22n−1nn
Snh
λn−2

(
1

1−
∫
M f dvolg

)n−1
,

or equivalently,

λ <

(
(2n− 1)n−1

22n−1nn
Snh∫

M a dvolg

) 1
n−2( 1

1−
∫
M f dvolg

)n−1
n−2

,
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which proves the existence of some small λ as claimed in the case infM a > 0. In the case

infM a = 0, as in the second stage of the proof of Theorem 6.1, we simply replace a by

a+ε0 for some small ε0 > 0 and repeat the above procedure to obtain a super-solution.

Since a sub-solution always exists, the existence result for small λ follows.

Therefore, we can define

λ? = sup
λ∈R
{ (6.7.1)λ has at least one positive smooth solution }.

We now prove the following comparison: if 0 < λ1 < λ2 < λ? such that Problem

(6.7.1)λ2 has at least one positive smooth solution, then Problem (6.7.1)λ1 also has

at least one positive smooth solution. Indeed, suppose that u2 is a positive smooth

solution of (6.7.1)λ2 , we then see that u2 is a super-solution of (6.7.1)λ1 since fλ2 > fλ1
pointwise. Having such an u2, one can easily construct a sub-solution u1 of (6.7.1)λ1
with u1 < u2. By the method of sub- and super-solutions, one can prove the existence

of at least one positive smooth solution of (6.7.1)λ1 . This concludes the comparison

result.

In order to see why should we have λ? < +∞, we make use of [21, Theorem 2.1].

Indeed, for sufficiently large λ, we obviously have fλ > 0. Moreover, the following

estimate (
nn

(n− 1)n−1

)n+2
4n
∫
M
a
n+2
4n f

3n−2
4n

λ dvolg >

∫
M
h
n+2
4 f

2−n
4

λ dvolg

holds provided λ is sufficiently large, which immediately proves the finiteness of λ? since

n > 3. �

Before closing this chapter, we should mention here the role of the size of h in our

study. To be exact, for given a > 0 and f with
∫
M a dvolg > 0, if h is large enough,

Equation (3.0.1) always possesses one positive smooth solution. Indeed, following the

proof of Theorem 5.2, one can observe that (3.0.1) admits u = 1 as a constant super-

solution provided

−h+ f + a 6 0.

Therefore, if h verifies

h > sup
M
|f |+ sup

M
a in M,

one concludes that u = 1 as a constant super-solution for (3.0.1). Since a sub-solution u

with u ∈ (0, 1) always exists, we have shown that (3.0.1) always possesses one positive

smooth solution.
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The purpose of this chapter was to derive a Liouville type result for positive, smooth

solutions of (3.0.1). For simplicity, in this chapter, we only consider the cases when h,

f , and a are constants with a > 0. Our aim here was to give some sufficient conditions

so that (3.0.1) has only constant solution. By a scaling argument, we may assume that

a = 1. Therefore, in this chapter, we are interested in the following model equation

−∆gu+ hu = λuq + u−q−2, u > 0, (7.0.1)

where h and λ are constants. It is worth noticing that after using a scaling the sign of

h still matches the sign of the Yamabe-scalar field conformal invariant since a > 0. We

also notice that the exponent q > 0 here is arbitrary and will be specified later. It is

worth noting that we may consider the case q < 0 if physical problems motivate it.

Our result was inspired by a couple of recent papers by Ma et al. [29, 27]. In these

papers, the authors considered the following model equation

−∆gu = −uq + u−q−2, u > 0, (7.0.2)

in Rn with the standard metric where q ∈ (1, 2?), that is, h = 0 and λ = −1. First,

they proved in [29] that smooth positive solutions of (7.0.2) are uniformly bounded.

Then by using the idea from Redheffer [39], Ma [27, Theorem 1] was able to prove that

any smooth positive solution of (7.0.2) is constant, hence, is equal to 1. In [5], Brezis

used a different approach to establish, among other things, such a Liouville type result.

Besides, it was shown in [27, Theorem 2] that the similar Liouville type result is also
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true for smooth positive solutions for (7.0.2) in a complete non-compact Riemannian

manifold with the Ricci curvature bounded from below.

Motivated by all discussion above, we prove in this chapter that any smooth positive

solution for (7.0.1) in a complete compact Riemannian manifold with the Ricci curva-

ture bounded from, whose the bound will be determined, is constant. To be precise, we

now state our main result.

Theorem 7.1. Let (M, g) be a smooth closed Riemannian manifold of dimension n >
3. Let h, λ, and q > 0 be constants. Then there is a constant K(n, q, h) depending only

on n, q and h so that if Ricg > K in the sense of quadratic forms, then every smooth

positive solution of (7.0.1) is constant provided that in the case h > 0, λ > 0, we have

to restrict q 6 n+2
n−2 .

Our first result can be formulated as in the following table.

h λ q Ricg > K

h < 0 λ < 0 q > 1 Ricg > 0

q < 1 Ricg > n−1
n

(q − 1)h

h = 0 λ < 0 q > 0 Ricg > 0

h > 0 λ < 0 q > 0 Ricg > −n−1
n
h

λ > 0 q 6 n+2
n−2

Ricg > n−1
n

(q − 1)h

Table 7.1. The Liouville type result in terms of the Ricci curvature.

Surprisingly enough, as can seen from the above table, the constant K does not

depend on λ. It is worth noticing that by integrating both sides of (7.0.2) over M ,

one easily gets that Equation (7.0.2) has no positive solution if h 6 0 and λ > 0. The

papers by Gidas–Spruck [19] and M. Véron–L. Véron [44] were sources of inspiration.

Finally, as usual, we should mention that the content of this chapter was adapted

from [33].

7.1 Some basic computations

From now on, we shall prove Theorem 7.1. For simplicity, we shall use
∫
M to denote

the integral with respect to the measure induced by the metric g. First, we need a

preparation. Let us denote u = v−β for some β 6= 0 to be determined later. A direct

computation shows that

∆gv = (β + 1)
|∇v|2

v
+

1

β
(−∆gu)vβ+1.

This and the fact that

−∆gu = −hv−β + λv−βq + vβ(q+2)
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give

∆gv = (β + 1)
|∇v|2

v
+

1

β
(−hv + λv1−β(q−1) + v1+β(q+3)). (7.1.1)

Applying the Bochner-Lichnerowicz-Weitzenböck formula [3] to function v, one obtains

1

2
∆g(|∇v|2) = |Hess(v)|2 + 〈∇∆gv,∇v〉+ Ricg(∇v,∇v). (7.1.2)

Multiply both sides of (7.1.2) by vγ where γ ∈ R will be chosen later and integrate on

M , to obtain

A+B + C +D = 0, (7.1.3)

where

A =
1

n

∫
M
vγ(∆gv)2 +

∫
M
vγ
(
|Hess(v)|2 − 1

n
(∆gv)2

)
, (7.1.4)

B =

∫
M
vγ 〈∇∆gv,∇v〉,

C = −1

2

∫
M
vγ∆g(|∇v|2),

and

D =

∫
M
vγRicg(∇v,∇v).

We notice that γ may not necessarily be nonzero. Besides, there holds

J =

∫
M
vγ
(
|Hess(v)|2 − 1

n
(∆gv)2

)
> 0

since it is well-known that

|Hess(v)|2 − 1

n
(∆gv)2 > 0.

7.1.1 Computations of A, B, and C

We treat the first term of A in the following way. In fact, using (7.1.1), one obtains

1

n

∫
M
vγ(∆gv)2

=
1

n

∫
M
vγ(∆gv)

(
(β + 1)

|∇v|2

v
+

1

β
(−hv + λv1−β(q−1) + v1+β(q+3))

)
=
β + 1

n

∫
M
vγ−1|∇v|2

(
(β + 1)

|∇v|2

v
+

1

β
(−hv + λv1−β(q−1) + v1+β(q+3))

)
+

1

nβ

∫
M

(−hvγ+1 + λvγ+1−β(q−1) + vγ+1+β(q+3))(∆gv)

=
(β + 1)2

n

∫
M
vγ−2|∇v|4

+
β + 1

nβ

∫
M
|∇v|2(−hvγ + λvγ−β(q−1) + vγ+β(q+3))

+
1

nβ

∫
M

(−hvγ+1 + λvγ+1−β(q−1) + vγ+1+β(q+3))(∆gv).
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Therefore, this and (7.1.4) imply that

A =J +
(β + 1)2

n

∫
M
vγ−2|∇v|4

+
β + 1

nβ

∫
M
|∇v|2(−hvγ + λvγ−β(q−1) + vγ+β(q+3))

+
1

nβ

∫
M

(−hvγ+1 + λvγ+1−β(q−1) + vγ+1+β(q+3))(∆gv).

(7.1.5)

By the divergence theorem, it holds∫
M
vγ+1∆gv = −(γ + 1)

∫
M
vγ |∇v|2,∫

M
vγ+1−β(q−1)∆gv = −(γ + 1− β(q − 1))

∫
M
vγ−β(q−1)|∇v|2,∫

M
vγ+1+β(q+3)∆gv = −(γ + 1 + β(q + 3))

∫
M
vγ+β(q+3)|∇v|2.

Therefore, we can further simplify (7.1.5) as follows

A =J +
(β + 1)2

n

∫
M
vγ−2|∇v|4

+
β + 1

nβ

∫
M
|∇v|2(−hvγ + λvγ−β(q−1) + vγ+β(q+3))

− λ

nβ
(γ + 1− β(q − 1))

∫
M
vγ−β(q−1)|∇v|2

+
1

nβ
(γ + 1)

∫
M
hvγ |∇v|2 − 1

nβ
(γ + 1 + β(q + 3))

∫
M
vγ+β(q+3)|∇v|2.

Thus, finally, we have

A =J +
(β + 1)2

n

∫
M
vγ−2|∇v|4 +

h(γ − β)

nβ

∫
M
vγ |∇v|2

− λ(γ − βq)
nβ

∫
M
vγ−β(q−1)|∇v|2 − γ + β(q + 2)

nβ

∫
M
vγ+β(q+3)|∇v|2.

(7.1.6)

For the term B, again using (7.1.1), we have

B =

∫
M
vγ
〈
∇
(

(β + 1)
|∇v|2

v
+

1

β
(−hv + λv1−β(q−1) + v1+β(q+3))

)
,∇v

〉
=(β + 1)

∫
M

〈
∇
(
|∇v|2

v

)
, vγ∇v

〉
− h

β

∫
M
vγ |∇v|2 + λ

1− β(q − 1)

β

∫
M
vγ−β(q−1)|∇v|2

+
1 + β(q + 3)

β

∫
M
vγ+β(q+3)|∇v|2.

Notice that∫
M

〈
∇
(
|∇v|2

v

)
, vγ∇v

〉
= −

∫
M

|∇v|2

v
∇ · (vγ∇v)
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= −γ
∫
M
vγ−2|∇v|4 −

∫
M
vγ−1|∇v|2∆gv.

Therefore,

B =− (β + 1)γ

∫
M
vγ−2|∇v|4 − (β + 1)

∫
M
vγ−1|∇v|2∆gv

− h

β

∫
M
vγ |∇v|2 + λ

1− β(q − 1)

β

∫
M
vγ−β(q−1)|∇v|2

+
1 + β(q + 3)

β

∫
M
vγ+β(q+3)|∇v|2.

Again we use (7.1.1) to reach at

B =− (β + 1)γ

∫
M
vγ−2|∇v|4

− (β + 1)

∫
M
vγ−1|∇v|2

(
(β + 1)

|∇v|2

v
+

1

β
(−hv + λv1−β(q−1) + v1+β(q+3))

)
− h

β

∫
M
vγ |∇v|2 + λ

1− β(q − 1)

β

∫
M
vγ−β(q−1)|∇v|2

+
1 + β(q + 3)

β

∫
M
vγ+β(q+3)|∇v|2.

By simplifying the right hand side of the above identity, one gets

B =− (β + 1)(γ + β + 1)

∫
M
vγ−2|∇v|4

+ h

∫
M
vγ |∇v|2 − λq

∫
M
vγ−β(q−1)|∇v|2 + (q + 2)

∫
M
vγ+β(q+3)|∇v|2.

(7.1.7)

For the term C, we first observe that∫
M
vγ∆g(|∇v|2) =

∫
M
∆g(v

γ)|∇v|2.

Therefore,

C =− 1

2

∫
M
|∇v|2∆g(v

γ)

=− 1

2

∫
M
|∇v|2

(
γvγ−1∆gv + γ(γ − 1)vγ−2|∇v|2

)
=− 1

2

∫
M
γvγ−1|∇v|2

(
(β + 1)

|∇v|2

v
+

1

β
(−hv + λv1−β(q−1) + v1+β(q+3))

)
− γ(γ − 1)

2

∫
M
vγ−2|∇v|4.

In other words,

C =
γh

2β

∫
M
vγ |∇v|2 − γλ

2β

∫
M
vγ−β(q−1)|∇v|2 − γ

2β

∫
M
vγ+β(q+3)|∇v|2

− γ(γ + β)

2

∫
M
vγ−2|∇v|4.

(7.1.8)

We now have enough information to treat (7.1.3).



126 The Lichnerowicz equations in the positive conformal invariant

7.1.2 The transformed equation

By using (7.1.6)-(7.1.8), one can see that (7.1.3) reduces to

J +

(
(β + 1)2

n
− (β + 1)(γ + β + 1)− γ(γ + β)

2

)∫
M
vγ−2|∇v|4

+

(
h(γ − β)

nβ
+ h+

γh

2β

)∫
M
vγ |∇v|2

+

(
−λ(γ − βq)

nβ
− λq − γλ

2β

)∫
M
vγ−β(q−1)|∇v|2

+

(
−γ + β(q + 2)

nβ
+ (q + 2)− γ

2β

)∫
M
vγ+β(q+3)|∇v|2

+

∫
M
vγRicg(∇v,∇v) = 0.

(7.1.9)

For simplicity, we rewrite Equation (7.1.9) as

J + a

∫
M
vγ−2|∇v|4 +

∫
M
vγ(c|∇v|2 + Ricg(∇v,∇v))

+ b

∫
M
vγ−β(q−1)|∇v|2 + d

∫
M
vγ+β(q+3)|∇v|2 = 0,

where

a = −1

2

(
γ2 + (3β + 2)γ + 2

n− 1

n
(β + 1)2

)
,

b =
λ(n+ 2)

2n

(
−γ
β
− 2q

n− 1

n+ 2

)
,

c =
n+ 2

2n

(
γ

β
+ 2

n− 1

n+ 2

)
h,

d =
n+ 2

2n

(
(q + 2)

2(n− 1)

n+ 2
− γ

β

)
.

Next we wish to describe the method used in the present paper. Our goal was to

find β 6= 0 and γ ∈ R such that

a > 0, b > 0, Ricg + cg > 0, d > 0. (7.1.10)

Having (7.1.10), our result follows easily since |∇v| = 0 since a > 0 forces d > 0. Thus,

the key point is a > 0. To better serve this purpose, we set y = 1 + 1
β and δ = − γ

β

where y 6= 1 and δ ∈ R. Thus the set of conditions in (7.1.10) becomes

2
n− 1

n
y2 − 2δy + δ2 − δ 6 0, (7.1.11)

λ

(
δ − 2q

n− 1

n+ 2

)
> 0, (7.1.12)

2n

n+ 2
Ricg > h

(
δ − 2

n− 1

n+ 2

)
g, (7.1.13)

and
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δ > −2(q + 2)
n− 1

n+ 2
. (7.1.14)

In view of (7.1.11), it is necessary to have

δ

n
(2(n− 1)− (n− 2)δ) > 0

which is equivalent to

0 6 δ 6
2(n− 1)

n− 2
. (7.1.15)

With (7.1.15) in hand, one can see that (7.1.14) is automatically satisfied. Moreover,

d > 0 provided δ > 0. Thus, our set of conditions now reduces to (7.1.12), (7.1.13), and

(7.1.15). Notice that if inequalities in (7.1.15) are strict, then we can always find some

y 6= 1 verifying (7.1.11).

7.2 Proof of Theorem 7.1

For the sake of clarity, we split our studying into four cases depending on the sign

of h and λ.

7.2.1 The case h < 0

In this case, it is necessary to have λ < 0. Then the condition (7.1.12) and the lower

bound for δ in (7.1.15) imply

0 6 δ 6 2q
n− 1

n+ 2
. (7.2.1)

Combining (7.1.15) and (7.2.1) gives

0 6 δ 6 min

{
2q
n− 1

n+ 2
,
2(n− 1)

n− 2

}
. (7.2.2)

There are two possible sub-cases.

Case 1. Suppose q > n+2
n−2 . Then we claim that, with K = 0, we can always select δ such

that it satisfies (7.1.12), (7.1.13), and (7.1.15). To this end, we notice that the right

hand side of (7.1.13) is always non-negative. In order to see that (7.1.12), (7.1.13),

and (7.1.15) hold, we have to select δ = 2(n−1)
n+2 . Then we have to choose y such that

Equation (7.1.11) holds. However we are left without many choices but one, that is,

y = n
n+2 6= 1. This is enough to serve our purpose since the left hand side of (7.1.11)

equals −8(n−1)
(n+2)2

when y is equal to y = n
n+2 .

Case 2. Suppose q < n+2
n−2 . Then δ needs to satisfy (7.2.1). With this region for δ, the

right hand side of (7.1.13) is not smaller than 2(q − 1)n−1n+2hg. Thus, we select

K =
n− 1

n
(q − 1)h.

Similarly as above, then we may choose δ = 2q(n−1)
n+2 to make sure that (7.1.13), and

(7.1.15) hold. Now it is easy to find some y 6= 1 satisfying (7.1.11) since the solution of
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(7.1.11) is an interval. For example, when q 6= n+2
n , we may choose y = qn

n+2 since the

left hand side of (7.1.11) now equals

2q(n− 1)(q(n− 2)− (n+ 2))

(n+ 2)2
.

Otherwise, we may choose y = 1−
√

2
n , in this case, the left hand side of (7.1.11) now

vanishes.

7.2.2 The case h = 0

Under this case, the right hand side of (7.1.13) vanishes, thus it is enough to take

K = 0. Besides, it is necessary to have λ < 0. Therefore, δ must satisfy (7.2.2). It is now

a simple task to find some δ and y 6= 1 verifying both conditions (7.1.12) and (7.1.15).

7.2.3 The case h > 0, λ 6 0

Again, in this context, δ has to satisfy (7.2.2). First we show that K = −n−1
n h is

enough. Indeed, this condition can be rewritten as

2n

n+ 2
Ricg > h

(
−2

n− 1

n+ 2

)
g. (7.2.3)

Under the condition (7.2.3), we have to select δ = 0. In order to see how could this

choice of δ work, we just go back to (7.1.9) to get

J − n− 1

n
(β + 1)2

∫
M

|∇v|4

v2

+
n− 1

n
h

∫
M
|∇v|2 − n− 1

n
λq

∫
M
v−β(q−1)|∇v|2

+
n− 1

n
(q + 2)

∫
M
vβ(q+3)|∇v|2 +

∫
M

Ricg(∇v,∇v) = 0.

(7.2.4)

Clearly, we have no choice but β = −1 or equivalently, y = 0. With this choice of y, we

immediately see that the left hand side of (7.2.4) is non-negative. This forces ∇v = 0

thus giving us the desired result.

7.2.4 The case h > 0, λ > 0

Under this case, it follows from (7.1.12) and (7.1.15) that

2q
n− 1

n+ 2
6 δ 6

2(n− 1)

n− 2
.

In other words, it is necessary to have q 6 n+2
n−2 . Our choice for K is that

K =
n− 1

n
(q − 1)h.

We will see how this condition is enough for our argument.
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Case 1. Suppose q < n+2
n−2 . We rewrite the condition for Ricci curvature in the following

way
2n

n+ 2
Ricg > h

(
2q
n− 1

n+ 2
− 2

n− 1

n+ 2

)
g.

Thus, we may choose δ = 2q(n−1)
n+2 . Consequently, the conditions (7.1.12) and (7.1.13)

clearly hold. Therefore, we may select y 6= 1 verifying (7.1.11) since δ ∈ (0, 2(n−1)n−2 ) as

we have already done in the second case when h < 0.

Case 2. Suppose q = n+2
n−2 . Then necessarily δ = 2(n−1)

n−2 which verifies (7.1.12). The

condition for Ricci curvature can be rewritten as

2n

n+ 2
Ricg > h

(
2
n− 1

n− 2
− 2

n− 1

n+ 2

)
g =

(
8h(n− 1)

n2 − 4

)
g.

Thus, we can pick K = 4h(n−1)
n(n−2) and clearly (7.1.13) holds. It suffices to find some y 6= 1

verifying (7.1.11). Due to the fact that q = n+2
n−2 , we only have one choice for y, that is,

y = nq
n+2 . Thanks to q = n+2

n−2 , we immediately see that y = n
n−2 6= 1. With this, the left

hand side of (7.1.11) vanishes as required.

7.2.5 Proof of Theorem 7.1 completed

Finally let us assume that u is a smooth positive solution of Equation (7.0.2). From

our discussion above, we know that all inequalities in (7.1.10) are fulfilled. In fact, we

have already shown that d > 0. Consequently,∫
M
vγ+β(q+3)|∇v|2 = 0

which implies that v, hence u is a constant.
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Conclusion

In an effort to understand the Einstein equations with sources, the primary goal

of this thesis was to study some quantitative properties of solutions of the following

Lichnerowicz-scalar field constraint equations,

−∆gu+ hu = fu
n+2
n−2 + au−

3n−2
n−2 , u > 0,

such as the existence, the non-existence, the multiplicity, and the Liouville property of

positive solutions in all cases where the corresponding Yamabe-scalar field invariant may

take either negative, zero, or positive sign. These Lichnerowicz-scalar field constraint

equations naturally arise in the Einstein-scalar field constraint equations for the Cauchy

problem for the Einstein field equations.

Our main results, included in Theorems 4.1, 4.2, 5.1, 5.2, 5.3, 6.1, 6.2, 6.3, 7.1,

demonstrated that a suitable balance between coefficients h, f , a of the Lichnerowicz-

scalar field equations is enough to guarantee the existence of one positive smooth solu-

tion. In addition, it was found that under some further conditions we may or we may

not have the uniqueness property of solutions of the Lichernowicz-scalar field equations.

In order to seek for solutions, variational methods were used to examine the

Lichnerowicz-scalar field equations. This is because these equations have variational

structures. However, since the constraint equations include two terms, the term au−
3n−2
n−2

with a negative exponent and the term fu
n+2
n−2 with a sign changing function f , it is

well-known that standard variational methods do not work in this context. This is be-

cause the term au−
3n−2
n−2 forces the associated energy functional to be unbounded from

above while the term fu
n+2
n−2 forces the functional to be unbounded from below. In

addition, when making use of those variational methods, the compactness property of

the embedding H1(M) ↪→ L2?(M) is crucial. Such a compactness property is no longer

available in our study due to the presence of the term fu
n+2
n−2 with a critical exponent

in the Lichnerowicz-scalar field equations.

To avoid these difficulties, we developed a suitable variational method. Along with

the development of this new method, some basic and essential results for standard

variational methods were successfully carried into the new method. An important fea-

ture of this new approach is that it is possible to deal with equations whose forms
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have more than three terms. Such an equation, for example, comes from the Einstein-

Maxwell-scalar field equations or Einstein-scalar field equations with the cosmological

constant.

Having these theorems in hand, one can observe that two aspects of the structure

of the Lichernowicz-scalar field equations can be drawn.

First, it was shown that the term fu
n+2
n−2 with a critical exponent, represented by

the dependence of the potential of the scalar field source, plays a central role in the

analysis of solvability when f may change sign. This fact partially tells us that any

small perturbation with either a negative exponent or a subcritical exponent does not

affect the solvability of original equation.

Compared with other problems such as the prescribing scalar curvature equations,

which have simpler form than those of the Lichernowicz-scalar field equations, this fact

also suggests that the structure of the Lichernowicz-scalar field equations may also

depend on the topology of (M, g), and thus could be studied using topology methods.

We leave this topic for our study in the future.

Second, it was also shown that there is a certain difference between conformal classes

with different Yamabe-scalar field invariants. While the non-positive Yamabe-scalar

field invariant h 6 0 involves more conditions and our analysis of solvability of the

Lichnerowicz-scalar field equations strongly depends on the ratio between supM f and∫
M |f

−| dvolg , the positive Yamabe-scalar field invariant h > 0 requires fewer conditions

than the non-positive case. To be precise, our main result for the case h > 0 showed

that the Lichnerowicz-scalar field equations always admit one positive smooth solution

so long as
∫
M a dvolg is sufficiently small in the sense that

∫
M a dvolg is bounded from

above by some constant depending on f . One of the by-products of this result is an

interesting result arising from the prescribing scalar curvature equations in the positive

case. To be precise, it can be proved that the there always exists a positive, smooth,

super-solution to the prescribing scalar curvature equations in the positive case

−∆gu+ hu = fu
n+2
n−2 , u > 0.

In order to complete the proof, it suffices to find a suitable sub-solution. To the best of

our knowledge, such a sub-solution to this equation has long been believed to exist.

Overall, our findings are of crucial importance and intriguing because they not only

give us an answer to the question of which sets of conformal data lead to solutions

and which do not in the Einstein field equations, but also introduce a new approach

to study other similar equations. However, in view of the theory of the Einstein field

equations, our findings are still far from the fully understanding of the solutions of

the Einstein-scalar field constraint equations since we always assume throughout our

study that (M, g) has constant mean curvature. This assumption on the mean curvature

basically reflects the complexity of the structure of the Einstein-scalar field constraint

equations. Despite several progress that recently have been made [15, 18], in general,

we unfortunately do not know what happens if (M, g) does not have constant mean

curvature. For this reason, the more we understand the non-constant mean curvature

case, the more we understand the whole Einstein-scalar field equations. We also leave

this topic for our study in the future.
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