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Abstract 

Early diagnosis and localization of head and neck cancers with effective 

treatment is critical to decreasing the mortality rates. But identification of early cancer 

can be difficult by using the conventional white-light reflectance (WLR) imaging 

which heavily relies on visualization of tissue gross morphological changes associated 

with neoplastic transformation. Optical spectroscopic techniques, such as 

autofluorescence (AF) spectroscopy and diffuse reflectance (DR) spectroscopy, which 

provide the information about tissue optical properties, morphologic structures, 

endogenous fluorophore distribution, blood content and oxygenation, have been 

comprehensively investigated for in vitro or in vivo precancer and cancer diagnosis 

with high diagnostic sensitivity. Raman spectroscopy is an optical vibrational 

technique capable of providing specific information about biochemical compositions 

and structures of tissue, which has excelled in the early cancer detection with high 

diagnostic specificity. This thesis work aims to develop a multimodal optical 

spectroscopy and imaging technique to complement the WLR imaging for improving 

cancer diagnosis and characterization at endoscopy. 

We have developed an endoscope-based AF/DR spectroscopy and AF/WLR 

imaging system for cancer detection in the head and neck. The point-wise AF/DR 

spectra can be acquired in real-time from any specific area of the imaged tissue of 

interest under the AF/WLR imaging guidance. Spectroscopic measurements of normal 

(n = 207) and cancerous (n = 239) laryngeal tissue samples from 30 patients were 

performed to evaluate the diagnostic utility of the combined AF/DR spectroscopy for 

improving laryngeal cancer diagnosis. The composite AF and DR spectra in the range 

of 500–660 nm were analyzed using principal component analysis (PCA) and linear 
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discriminant analysis (LDA), which yielded a diagnostic accuracy of 94.8% 

(sensitivity of 91.6% and specificity of 98.6%) for cancer detection. 

We have also developed a miniaturized fiber-optic Raman endoscopy 

technique for in vivo tissue Raman measurements in the head and neck. We carried 

out the transnasal image-guided Raman endoscopy for the first time to directly assess 

distinctive Raman spectral properties of nasopharyngeal and laryngeal tissues in vivo 

during endoscopic examinations. A total of 874 high-quality in vivo Raman spectra 

were successfully acquired from different anatomic locations of the nasopharynx and 

larynx (i.e., posterior nasopharynx (PN) (n=521), the fossa of Rosenmüller (FOR) 

(n=157), and true laryngeal vocal chords (LVC) (n=196)) in 23 normal subjects at 

transnasal endoscopy. The PCA-LDA modeling provides a sensitivity of 77.0% and 

specificity of 89.2% for differentiation between PN vs. FOR, and sensitivity of 67.3% 

and specificity of 76.0% for distinguishing LVC vs. PN using leave-one subject out, 

cross validation. We demonstrated that transnasal image-guided Raman endoscopy 

can be used to acquire in vivo Raman spectra from the nasopharynx and larynx in 

real-time. Significant Raman spectral differences (p<0.05) identified reflecting the 

distinct composition and morphology in the nasopharynx and larynx should be 

considered as an important parameter in the interpretation and rendering of diagnostic 

decision algorithms for in vivo tissue diagnosis and characterization in the head and 

neck. 

Further, we also explored the utility of transnasal image-guided high 

wavenumber (HW) Raman spectroscopy to differentiate tumor from normal laryngeal 

tissue at endoscopy. A total of 94 HW Raman spectra (22 normal sites, 72 tumor sites) 

were acquired from 39 patients who underwent laryngoscopic screening. Significant 

differences in Raman intensities of prominent Raman bands at 2845, 2880 and 2920 
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cm-1 (CH2 stretching of lipids), and 2940 cm-1 (CH3 stretching of proteins) were 

observed between normal and cancer laryngeal tissue. PCA-LDA modeling on HW 

Raman spectra yields a diagnostic sensitivity of 90.3% and specificity of 90.9% for 

laryngeal cancer identification.  

The results of this thesis work suggest that the unique image-guided 

multimodal (AF/DR/Raman) spectroscopy technique developed has great potential for 

improving in vivo diagnosis and detection of cancer in the head and neck during 

clinical endoscopic examination. 
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Chapter 1 Introduction 1 

1.1 Background 2 

Cancer continues to be a major health threat to human beings in both 3 

developed and developing countries over the world. One of most remarkable features 4 

is the proliferative ability which makes the cancerous cells spread and invade distant 5 

sites of human body after a certain stage of development. The tumor cells can invade 6 

and destroy the adjacent tissues, even spread to other locations in the body through 7 

lymph or blood. Compared to the malignant tumors, benign tumors do not invade or 8 

metastasize in the tissue and they are more manageable with a higher rate of success. 9 

Hence, early cancer detection and diagnosis with effective treatments is crucial to 10 

reducing mortality rates of patients at a high risk of cancer. According to the cancer 11 

statistics 2010, more than 562,875 cancer deaths were reported in United States in 12 

2007, and more than 1.5 million new cancer cases are expected to be diagnosed [1]. 13 

Figure 1.1 depicts the long-term trends in cancer incidence and death rates for 14 

all cancers by sex. Death rates for all cancer sites combined decreased by 2.0% per 15 

year in men from 2001 to 2006 and by 1.5% per year in women from 2002 to 2006 [1]. 16 

The statistic evidence shows that mortality rates of cancer have continued to decrease 17 

substantially, but cancer still accounts for about 23% of all deaths, ranking second 18 

only to heart disease that is the leading cause of death among men and women ages 40 19 

to 79 years [1]. In Singapore, a total number of 51,657 (48.6% males, 51.4% females) 20 

incident cancer cases were diagnosed among the resident populations during the 21 

period 2006-2010 [2]. The annual incidence rates for total male and female cancer 22 

patients for the period 2006-2010 were 277.8 and 288.0 per 100,000 resident 23 

populations, respectively. Cancer as a cause of death continued to increase in 24 



 2

importance over the last three decades [2]. 1 

 2 
Fig. 1.1 Long term trends in cancer incidence and death rates (1975-2006) [1]. 3 

 4 

1.1.1 Head and neck cancers 5 

Head and neck cancers (HNCs) refer to a diverse group of biologically similar 6 

malignancies and include upper aerodigestive tract (i.e., lip, mouth, tongue, throat, 7 

larynx, etc.), salivary glands, nasal cavity, nasopharynx and lymph nodes in the neck 8 

[3]. Other cancers occur in the brain, eye, esophagus and thyroid as well as those in 9 

muscles and bones are usually not classified as HNCs. The figure 1.2 shows the 10 

overview of the head and neck cancer (HNC) regions. Some common symptoms of 11 



 3

HNCs include a non-healing lump, a sore throat, trouble swallowing and a change or 1 

hoarseness in the voice. 2 

 3 
Fig. 1.2 Overview of Head and neck cancer (HNC) regions [4]. 4 

 5 

Around 40% cases of HNCs occur in the oral cavity which is a major sub-6 

group of HNCs, 25% in larynx, 15% in pharynx and the rest in the remaining sites 7 

(e.g., salivary glands, thyroid) [5]. Histologically, more than 90% of all malignant 8 

neoplasm of HNCs are squamous cell carcinomas (SCC) which originate from the 9 

mucosal lining (epithelium) of these regions [3]. It usually spreads to the lymph nodes 10 

of the neck, and this is often the first (and sometimes only) sign of the disease at the 11 

time of diagnosis. HNCs are highly associated with certain environmental and 12 

lifestyle risk factors, including tobacco smoking, alcohol consumption, ultraviolet 13 

(UV) light irradiation, particular chemicals used in certain workplaces and certain 14 

strains of viruses, such as human papillomavirus (HPV) [6, 7]. 15 

Approximately 500,000 new cancerous cases were confirmed as the head and 16 
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neck squamous cell carcinoma (HNSCC) per year, making HNSCC the 6th most 1 

common cancer worldwide [6]. Particularly, HNSCC such as laryngeal and 2 

nasopharyngeal cancers are diseases with high mortality rates [8]. In East Asia and 3 

Africa, the rates of incidence and mortality due to nasopharyngeal carcinomas (NPC) 4 

and laryngeal cancer are significantly higher than other parts of the world [9]. The 5-5 

year survival rate decreases significantly due to delayed diagnosis and NPC 6 

symptoms generally present at late tumor-node-metastasis. Early identification and 7 

adequate preoperative assessment of both nasopharyngeal carcinomas (NPC) and 8 

laryngeal cancers allow functional preserving therapy (e.g., radiation therapy, 9 

chemotherapy, surgery, etc.) and are also critical measures to reducing the mortality 10 

rates of the patients. Yet, early diagnosis of nasopharyngeal and laryngeal precancer 11 

and early cancer is clinically challenging even for experienced clinicians with the aid 12 

of conventional white-light reflectance (WLR) endoscopy (e.g., microlaryngoscopy, 13 

transnasal esophagoscopy) [10]. Moreover, positive identification of these lesions 14 

highly relies on visualization of gross morphological manifestations that can be very 15 

subjective. Therefore, it would be of imperative clinical value to develop a real-time 16 

biomolecular sensitive optical diagnostic technology (‘optical biopsy’) that can assist 17 

in the early detection of nasopharyngeal and laryngeal dysplasia and neoplasia during 18 

transnasal endoscopic inspections. 19 

1.1.2 Conventional cancer screening methods 20 

Cancer diagnostic techniques developed for generating visual information (e.g., 21 

pictures, electrical curves and spectral curves) from the specific organ or tissue have 22 

become an important element of early cancer detection. Screening techniques are not 23 

only simply used for cancer detection but also important for determining the cancer 24 

stage (e.g., Tumor-node-metastasis (TNM) stages) which determines how advanced 25 
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the cancer is. The precise location of the cancer is also determined as a reference for 1 

the consequent surgery and further treatments. What is more, cancer screening 2 

methods also can be used to follow up the therapeutic efficacy and the possible 3 

recurrences after the treatments. In the following sections, the conventional 4 

biomedical imaging methods and advanced optical diagnostic techniques will be 5 

briefly introduced, which include X-ray computed tomography (CT) scan, positron 6 

emission tomography (PET), magnetic resonance imaging (MRI) and optical 7 

endoscopic imaging techniques. 8 

X-ray Computed Tomography (CT) 9 

X-ray Computed Tomography (CT), one of the biomedical imaging 10 

techniques, has been widely practiced in clinic for in vivo diagnosis of disease in 11 

humans via employing x-ray and tomography together with computer processing. 12 

Briefly, the basic components of CT scanners include an X-ray source, a detector and 13 

rotation system. X-ray CT imaging consists of directing X-rays through an object 14 

from multiple orientations and measuring the decrease in intensity along a series of 15 

linear paths. The x-ray transmission intensity is characterized by a single exponential 16 

decay function, which describes intensity reduction as a function of initial X-ray 17 

intensity, path length, and tissue linear attenuation coefficient. The Three-dimensional 18 

(3D) CT image of the inside of an object is generated from a large series of two-19 

dimensional X-ray images taken around a single axis of rotation [11]. 20 

Since the first successful application was introduced into clinical practice in 21 

1972 [12], CT scan has been considered as the standard imaging modality for 22 

monitoring diseases in the head and neck in the past decades. However, the diagnostic 23 

accuracy of CT scan heavily relies on the certain criteria, such as contract-24 

enhancement patterns, which are not very specific [13]. One study for detection of 25 
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nodal metastases has reported the diagnostic specificity of ~39% only using CT scan 1 

with standard protocols in patients with known carcinoma of oral cavity, oropharynx, 2 

hypopharynx or larynx [14]. In addition, there are some other challenges such as 3 

financial affordability, radiation dosimetry concerns [15] and time-consuming 4 

procedures for the utilization of CT techniques for rapid HNCs detection. For instance, 5 

full skull scanning is not necessary as the whole CT scanning procedure is very time-6 

consuming. 7 

Positron Emission Tomography (PET) 8 

The Positron Emission Tomography (PET) is a powerful non-invasive 9 

technique to observe the functional difference between healthy and diseased tissue. 10 

The principle of PET is based on the detection of very small quantities (picomolar) of 11 

biological substances such as carbon-11, oxygen-15, nitrogen-13, and fluorine-18 12 

which are labelled with a positron emitter [16]. After the emission from the parent 13 

nucleus, the energetic positron traverses a few millimeters through the tissue until it 14 

becomes thermalized by electrostatic interaction between the electrons and the atomic 15 

nuclei of the media and combines with a free electron to form a positronium [16]. The 16 

positronium decays by annihilation, generating a pair of gamma rays which travel in 17 

nearly opposite directions with an energy of 511 keV each, and the opposed photons 18 

from positron decay can be detected by using pairs of collinearly aligned detectors in 19 

coincidence [16]. 20 

Since the initial development of PET around 30 years ago, PET has become an 21 

established nuclear imaging modality which has been proved useful in oncology. PET 22 

technique was invented at the Mallinkrodt Institute of Radiology at Washington 23 

University and the first applications of PC-I in tomographic mode as distinguished 24 

from the computed tomographic mode were reported in 1970 [17, 18]. James 25 
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Robertson and Z.H. Cho proposed for the first time a ring system that has become the 1 

prototype of the current shape of PET[19, 20]. The PET/CT scanner, attributed to Dr 2 

David Townsend and Dr Nutt was named by TIME Magazine as the medical 3 

invention of the year in 2000 [21]. 4 

 Many types of tracers have been developed for PET imaging, but the most 5 

majority of clinical oncologic PET studies performed at present utilize an analog of 6 

glucose, Fluorodeoxyglucose (18F) (FDG) [17]. The use of the radioactive tracers to 7 

explore the possibility of cancer metastasis (i.e., spreading to other sites) results in the 8 

functional imaging of tissue for medical care (90% of current scans). Currently, FDG 9 

is the one of the agents approved by the Food and Drug Administration (FDA) for 10 

PET scan in oncology studies. So far thousands of PET scanners are used worldwide, 11 

providing substantial advantages over anatomic imaging modalities in oncologic 12 

imaging due to its ability of imaging biochemical or physiologic phenomena [17]. 13 

Note that PET is a relatively expensive modality, requiring not only a million-dollar-14 

plus PET scanner but also sophisticated and highly trained personnel to generate the 15 

radiopharmaceuticals used for PET imaging [17]. 16 

Magnetic Resonance Imaging (MRI) 17 

It is well known that human body tissue contains lots of water (each water 18 

molecule has two hydrogen nuclei or protons) which gets aligned under a large 19 

magnetic field applied. When a person is inside a powerful magnetic field of the 20 

scanner, the average magnetic moment of many protons becomes aligned with the 21 

direction of the field. A radio frequency (RF) field is briefly turned on, producing a 22 

varying electromagnetic field, known as the resonance frequency which flip the spin 23 

of the protons in the magnetic field, and after the electromagnetic field is turned off, 24 

the spins of the protons return to thermodynamic equilibrium and the bulk 25 
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magnetization becomes re-aligned with the static magnetic field [22]. During this 1 

relaxation, a RF signal is generated, which can be measured with receiver coils. 2 

Hence, such magnetic properties of hydrogen and its interaction with both a large 3 

external magnetic field and radio-frequency field can be used to produce highly 4 

detailed images of the human body, which can be examined on a computer monitor. 5 

Different from ionizing radiation (x-rays) CT imaging, MRI is a non-ionizing imaging 6 

technique that can be applied for imaging the whole body of the patients but provide 7 

structural information at a high spatial resolution as well as CT scan and it therefore is 8 

also routinely used in the initial staging of tumors in patients [13]. Detailed MR 9 

images allow clinicians to better evaluate various parts of the body and determine the 10 

presence of certain diseases that may not be assessed adequately with other imaging 11 

methods such as CT or ultrasound [23]. 12 

Currently, MRI is one of the most sensitive imaging modalities for scanning 13 

the head (particularly in the brain) and other organs in routine clinical practice. 14 

Nevertheless, MRI technique also has relatively poor specificity in the assessment of 15 

residual or recurrent disease following radical therapy [24]. The mainly reason is after 16 

radiation and/or chemotherapy, changes in tumor metabolism precede morphologic 17 

changes. Similarly, after radical surgery or radiation therapy for head and neck 18 

malignancies, normal tissue planes are altered substantially, leading to relatively poor 19 

specificity in the assessment of residual or recurrent disease following radical therapy 20 

[13]. The disadvantages of MRI also include the long operation time with increased 21 

risk of motion artifacts and higher cost. Besides, contraindications to MRI include the 22 

presence of pacemakers, metal foreign bodies and claustrophobia [25]. 23 

Endoscopic imaging techniques 24 

Medical Endoscopy is a diagnostic procedure which allows a clinician to 25 
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examine inside human bodies using endoscopes. Usually, an endoscope consists of a 1 

rigid or flexible tube, a light source for illumination during the inspection, which is 2 

typically guided via an optical fiber, a optical imaging system displaying the picture to 3 

the clinician via the eye-piece lens or monitor to the examiner and an additional 4 

channel to allow entry of medical instruments to perform necessary operations (e.g., 5 

biopsy and resection). Note that there are two types of endoscopes: fiber-optic 6 

endoscopes which use a fibre-optic bundle to transfer the image of an internal tissue 7 

surface and an eye-piece lens which allows the image to be viewed directly or through 8 

a video camera mounted on the endoscope, and videoscopes which install a video chip 9 

at the distal end of endoscope instead of the eye-piece to directly transfer images 10 

inside of the body to a monitor with a clear view of the area of interest (AOI). The 11 

effectiveness of flexible endoscopes relies on the possibility to access areas deep 12 

inside the body (e.g., oral cavity, respiratory tract, gastrointestinal tract (GI tract), 13 

colon and cervix) with minimal invasiveness than surgical approaches. 14 

In biomedical diagnostic applications, the white-light endoscopy (WLE) is so 15 

far well-established and widely used for screening cancer in the head and neck, 16 

providing white-light images of the tissue surface with intuitionistic morphology 17 

information so that it could be used for quantifying the pathological changes in 18 

abnormal tissue. However, it inevitably suffers from the great limitation of low 19 

specificity in clinical use which may lead to high false negative rate [26]. Recently, 20 

advances in bioengineering have spawned various imaging modalities which have 21 

revolutionized endoscopy. Some of these technologies which provide real-time, high-22 

resolution, subcellular imaging such as various spectroscopic techniques, 23 

autofluorescence imaging (AFI), narrow band imaging (NBI), optical coherence 24 

tomography (OCT) and confocal endomicroscopy are going to be introduced in the 25 
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following sections. 1 

1.1.3 Gold standard 2 

Effective cancer diagnosis is used to confirm the presence of disease, to 3 

monitor the disease process, and to decide and evaluate the effectiveness of further 4 

treatment. Sometimes, it is necessary to repeat the diagnosis when a patient’s 5 

condition has changed. Diagnostic procedures for cancer may include imaging, 6 

laboratory tests (including tests for tumor markers), tumor biopsy, endoscopic 7 

examination, surgery, genetic testing, etc. Usually, the definitive diagnosis of most 8 

malignancies is confirmed by histological examination of the cancerous cells in 9 

tissues. Suspicious tissues of patients can be obtained from a biopsy or surgery during 10 

the endoscopic inspection. Tissues biopsied were fixed and then delivered to the 11 

pathologists and cut into thin sections, placed on slides and stained with dyes before it 12 

can be examined under microscopy. It is the so-called “gold standard” of assessing 13 

pathological changes in tissue. Histopathology is the medical specialty that deals with 14 

the examination of tissues and cells under the microscope in order to arrive at a 15 

diagnosis. When cancer occurs, a pathological diagnosis is the gold standard that 16 

indicates the presence or absence of cancer, the type of cancer and its classification. 17 

Unfortunately, medical studies over the last two decades have demonstrated that this 18 

gold standard is not that consistently reliable for specific tumors such as sarcoma [27]. 19 

In fact, multiple studies in various cancers have demonstrated discrepancy rates of up 20 

to 30% with an average of approximately 10% [27]. What is more, the long 21 

processing time of biopsy and the interpretation of the results may leads to diagnostic 22 

delay and the added possibility of taking an unrepresentative sample [28]. 23 
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1.1.4 Optical techniques for cancer diagnosis 1 

Applying different screening methods is effective for cancer detection and 2 

diagnosis and helpful for further treatment to reduce cancer-related mortality, but the 3 

limitations for these conventional screening methods which have been discussed 4 

above render a demand for new cancer detection and diagnosis techniques. Recently, 5 

optical diagnosis techniques have been introduced to cancer detection in biological 6 

and medical fields. The optical spectroscopic techniques are to gain both high 7 

sensitivity and specificity which show potential to replace the conventional biopsy 8 

technique. Compared to conventional biomedical imaging modalities (e.g., 9 

ultrasonography, X-ray computed tomography (CT) and magnetic resonance imaging 10 

(MRI)) optical spectroscopy and imaging techniques with high biochemical and 11 

biomolecular sensitivity and specificity of tissue without labeling possess unique 12 

advantages that make them particularly attractive in clinical cancer management in 13 

different organ sites such as the breast, cervix, oral cavity, brain and prostate [29-36]. 14 

More details on the background of optical spectroscopy (e.g., diffuse reflection, 15 

autofluorescence and Raman) and the contribution of these light-tissue interactions for 16 

optical signal measurements will be elaborated in more detail in Chapter 2. In the 17 

following, some optical screening methods are briefly outlined to show the potential 18 

of optical diagnostic techniques for the early cancer diagnosis in the head and neck. 19 

Autofluorescence endoscopy (AFE) 20 

AFE is based on the detection of native tissue fluorescence emitted by 21 

endogenous molecules (fluorophores) such as collagen, nicotinamide, adenine 22 

dinucleotide, flavins and porphyrins [37]. The endogenous fluorophores emit light 23 

(autofluorescence (AF)) of longer wavelengths under excitation at certain wavelength 24 

range (e.g., UV, visible (VIS) and near infrared (NIR)). The metabolites may be 25 
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responsible for the observed differences in the AF spectra of normal and diseased 1 

tissues and normal tissue and vessels respectively appear green and bright green in 2 

AFI images [37]. 3 

Kulapaditharom et al. (1998) compared the diagnostic ability of using a lung 4 

imaging fluorescence endoscopy (LIFE) system and WLE in exploiting the 5 

differences in tissue AF properties between normal and cancerous tissues from 25 6 

patients with HNCs [38]. The result showed all 16 cancerous lesions were identified 7 

(100%) by LIFE, while WLE achieved only an 87.5% detection rate. LIFE (specificity 8 

87.5%) was more helpful to WLE (specificity 50%) in differentiating inflammation 9 

from malignancy, suggesting potential roles of LIFE in early detection, correct staging, 10 

and treatment evaluation of HNCs. Zari et al. (2000) used Xillix Technologies 11 

(Richmond, Canada) to perform AFI to detect and localize early laryngeal carcinoma 12 

[39]. The preliminary study showed that AFI can be a useful complementary method 13 

to microlaryngoscopy for detecting and delineating laryngeal malignancies. Paczona 14 

et al. (2003) reported tumor presented as darker areas under AF inspection in their 15 

study of using autofluorescence videoendoscopy for HNSCC diagnosis [40]. AFI 16 

technique has shown better sensitivity than the conventional white light imaging 17 

endoscopy. However, it still has some limitations of its low specificity with a high rate 18 

of false positive findings. Recently, autofluorescence endoscopy, especially combined 19 

with the NBI technique, offers great promise for enhancing endoscopic surveillance 20 

performance. 21 

Narrow-band imaging (NBI) endoscopy 22 

In recent year, NBI technique has been shown to visualize capillary patterns in 23 

early cancer and is complementary to magnification endoscopy and become a novel 24 

blue light endoscopic technique that enhances the diagnostic capability of endoscopes 25 
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in characterizing tissues by using narrow band-width filters in a sequential red-green-1 

blue (RGB) illumination system. In contrast to standard white-light endoscopy which 2 

employs light in the full visible wavelength range (400–700 nm), NBI uses two 3 

discrete bands of light of which central wavelength of each band is 415 nm and 540 4 

nm, respectively, highlighting the superficial vasculature [41]. NBI images on the 5 

monitor show that capillaries on the surface are displayed in brown and veins in the 6 

sub surface are displayed in cyan. Therefore, NBI can identify superficial mucosal 7 

lesions that may be missed by standard white-light imaging (WLI) at endoscopy and 8 

further guide biopsy, providing a novel approach to improve the pathologic detection 9 

rate and early diagnostic rate of the lesions. 10 

Gono et al. first applied NBI technique to implement a successful detection of 11 

superficial, precancerous mucosal lesions over the esophagus [42]. NBI system was 12 

therefore believed to be superior to conventional WLE for the detection of superficial 13 

mucosal lesions. Watanabe et al. used NBI-assisted rhinolaryngoscopy to detect 14 

cancerous lesions in the head and neck of patients with esophageal cancer and prove 15 

that the NBI system might cause an improvement in the sensitivity of the detection of 16 

HNSCC in patients with esophageal cancer [43]. After that, studies showed that the 17 

effectiveness of NBI in the early cancer detection of HNSCC over the mouth floor, 18 

nasopharynx, larynx, oropharynx and hypopharynx [44-48]. For now, it has been 19 

accepted that NBI has the great capability of detecting superficial mucosal lesions in 20 

HNSCC. However, the NBI technique also has some limitation of spectrum analysis 21 

on pathological changes due to the application of narrow-bandwidth filters in the 22 

imaging system. 23 

Optical coherence tomography (OCT) 24 

OCT technique is a relatively new diagnostic tool which operates in a manner 25 
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similar to ultrasound, but uses NIR light instead of sound to discriminate intrinsic 1 

differences in tissue structures [49]. It works by projecting a signal of low coherence 2 

light on tissue, which is then reflected and measures the magnitude and phase of light 3 

from tissues of different depths. Briefly, the infrared light used in the OCT technique 4 

is transmitted through a beam splitter (BS) and divided into a reference beam (RB) 5 

and a sample beam (SB). The RB is reflected unchanged through a mirror and the SB 6 

is dispersed by the different layers of tissue. These beams are then united again in the 7 

BS and emitted to a photo detector [50]. The majority of current OCT devices used in 8 

clinical trials have an axial resolution of 10 µm and a penetration of up to 2 mm in 9 

most tissues [51]. 10 

In the head and neck cancer studies, OCT technique has been used to mainly 11 

focus on the examination of laryngeal cancer. Sergeev et al. first acquired OCT 12 

images of the laryngeal mucosa in vivo by passing a fiber-optic interferometer through 13 

the biopsy channel of a conventional flexible endoscope [52]. Usually, the basement 14 

membrane could be easily identified in normal mucosa tissue layer, which is at the 15 

junction of the bright lamina propria and the darker epithelium, but the layered 16 

structures are lost associated with neoplastic transformation in HNCs [53]. More 17 

recently, OCT has also been comprehensively studied for cancer diagnosis in oral 18 

cavity and related work is reviewed elsewhere [54-57]. 19 

Confocal endomicroscopy 20 

Confocal endomicroscopy (also called confocal laser scanning microscopy 21 

(cLSM)) is another new endoscopic modality developed to obtain very high-22 

resolution images of the mucosal layer. It is based on tissue illumination with a low-23 

power laser with subsequent detection of the light reflected or fluorescence from the 24 

tissue through a pinhole. The term confocal refers to the alignment of both 25 
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illumination and collection systems in the same focal plane [58-60]. The laser could 1 

focus on a selected depth of interest in the tissue and reflected light or fluorescence 2 

from the tissue dyed is then refocused back to the detector by the same lens. Only 3 

returning light refocused through the pinhole is detected. The light reflected or stained 4 

fluorescence at other geometric angles from the illuminated object or refocused out of 5 

plane with the pinhole is excluded from detection. This dramatically increases the 6 

spatial resolution of confocal endomicroscopy and provide sectioning capabilities [61, 7 

62].  8 

Confocal endomicroscopy is well studied in the digestive tract (e.g., esophagus, 9 

stomach and the colon) [58, 63-68]. In contrast, limited work was investigated in 10 

HNCs. Just et al. (2006) reported the first application of confocal endomicroscopy 11 

for laryngeal endoscopy [69]. By using confocal endomicroscopy with a rigid probe, 12 

Patricia et al. (2007) obtained good structural images of tongue using ALA and 13 

fluorescein and was able to distinguish morphological differences between normal 14 

and lesion tissue [70]. Boris et al. (2010) have investigated the feasibility of using 15 

the flexible endoscope in different regions in the head and neck such as oral cavity 16 

and the oropharynx after intravenous application of fluorescein sodium [29]. These 17 

successful applications of confocal endomicroscopy have demonstrated the potential 18 

for a non-destructive optical biopsy to perform microscopic analysis with imaging of 19 

live cells. It could be a powerful diagnostic tool before or during therapeutic 20 

treatment as more prospective studies have elucidated the clinical value of this 21 

technology. However, further technical advances are still required to explore the full 22 

potential for cancer detection and diagnosis in the head and neck, such as sectioning 23 

at greater depth and reducing scanning time. 24 
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1.2 Motivations and Research Objectives 1 

Currently, the endoscopic examination combined with positive biopsy is 2 

regarded as the gold standard for cancer detection and diagnosis. Conventional white 3 

light endoscopy depends on the outstanding tissue morphological changes, and thus, it 4 

suffers from low sensitivity of detection for subtle changes in the mucosa epithelium 5 

(e.g., flat lesions, dysplasia, carcinoma in situ (CIS)). Moreover, biopsy is invasive 6 

and has the risk with medical complications. For example, it is highly impractical for 7 

multiple biopsies of high-risk patients with laryngeal caner, which might affect the 8 

quality of the voice. Optical spectroscopic techniques, such as AF spectroscopy and 9 

DR spectroscopy, which provide the information about tissue optical properties (e.g., 10 

absorption and scattering coefficients), morphologic structures, endogenous 11 

fluorophore distribution, blood content (e.g., hemoglobin) and oxygenation associated 12 

with neoplastic transformation, have been comprehensively investigated for in vitro or 13 

in vivo precancer and cancer diagnosis in various organs with high diagnostic 14 

specificity. Raman spectroscopy provides very specific biochemical and biomolecular 15 

information by probing molecular vibrations of tissue. Since all these complementary 16 

information are associated with tissue neoplastic transformation and functional 17 

changes, the combination of the multimodal spectroscopy and imaging techniques 18 

proposed in this study is expected to improve accuracy of cancer detection and 19 

diagnosis. It is clinically significant to develop different advanced optical 20 

spectroscopic diagnostic techniques systematically to complement conventional 21 

endoscopy for improving the diagnosis of cancer non-invasively. Besides, it is also 22 

important to compare them individually and in combination for cancer diagnosis and 23 

detection in the head and neck. 24 

Therefore, the primary aims of this work are to develop multimodal optical 25 
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point-wise spectroscopy (AF/DR/Raman) and imaging technique associated with 1 

multivariate statistical technique (e.g., PCA-LDA) and to evaluate its clinical 2 

potential for improving cancer diagnosis in human tissues. More specifically, (i) we 3 

evaluate the feasibility of using point-wise DR/AF spectroscopy system integrated 4 

with AFI system developed for in vivo tissue measurements and characterization of 5 

optical properties of human tissues in the larynx; (ii) we examine the clinical utility of 6 

a rapid fiber-optic NIR Raman spectroscopy system developed for real-time, in vivo 7 

characterizing the tissue Raman properties of internal organ tissues (e.g., nasopharynx 8 

and larynx); (iii) we further investigate the potential of using the endoscope-based 9 

high-wavenumber Raman spectroscopy for differentiation from laryngeal cancerous 10 

tissue and normal tissues. 11 

1.3 Thesis Organization 12 

This thesis is organized as follows: 13 

Chapter 2 reviews the spectroscopy and imaging techniques and their 14 

applications in biomedical diagnosis, as well as multivariate statistical techniques for 15 

cancer diagnosis and classification. 16 

Chapter 3 reports the development of the novel integrated simultaneous point-17 

wise AF/DR spectroscopy and endoscopic imaging system, and gives preliminary 18 

results on tissue measurement in vivo and laryngeal tissue characterization of tumor 19 

and cancer using this developed AF/DR spectroscopy technique. 20 

Chapter 4 reports the development of a fiber-optic Raman endoscopic 21 

technique and assesses the diagnostic utility of the Raman endoscopic technique in 22 

conjunction with multivariate statistical techniques for in vivo tissue diagnosis and 23 

characterization in the head and neck. 24 

Chapter 5 presents the diagnostic performance of the high-wavenumber (HW) 25 
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Raman spectroscopy for cancer tissue diagnosis in the larynx.  1 

The final Chapter 6 concludes the work and proposes future directions in this 2 

research. 3 

4 
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Chapter 2 Overview of Spectroscopy and Endoscopic 1 

Imaging Techniques for Cancer Diagnosis 2 

This Chapter presents the overview of the optical spectroscopy techniques and 3 

multivariate analytical techniques as well as their applications in biomedical diagnosis 4 

for cancer classification. The necessary principal knowledge and concepts of light-5 

tissue interactions for developing optical spectroscopy technique for precancer and 6 

cancer detection are presented first. The related works of using different spectroscopy 7 

techniques for cancers diagnosis in the head and neck are also reviewed. In the end, 8 

we introduce the principle of multivariate analytical techniques (e.g., PCA, LDA and 9 

PLS, etc.) for cancer classification which are mainly employed in this thesis. 10 

2.1 Principles of Optical Spectroscopy and Imaging 11 

Biological tissues are generally optically turbid with the probability of light 12 

scattering and absorption exceeding that of conversion to fluorescence. As shown 13 

below in Figure 2.1, when the light reaches the tissue, part of the incident light is 14 

directly reflected by the surface while the rest part propagates into the tissue. It can be 15 

either absorbed or diffusely reflected by the tissue. When the part of the light keeps 16 

penetrating into the deeper layer of tissue, some of them will go out after the multiple 17 

scattering in tissue and finally come through the tissue into the air while some will be 18 

absorbed by the tissue. The former part is called diffused reflection which is 19 

determined by the scattering and absorption properties of the tissue. The absorbed 20 

light can be converted to fluorescence emission. This fluorescent light scatters in the 21 

tissue, where it can either be reabsorbed or remitted from the front tissue surface. The 22 

remitted fluorescence detected from the tissue surface thus contains contributions not 23 
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only from tissue fluorophores, but also from absorbers and scatters. 1 

When photons are scattered from a molecule, most photons are elastically 2 

scattered (also called Rayleigh scattering named after Lord Rayleigh), the scattered 3 

photons have the same energy (frequency) as the incident photons. A very small 4 

fraction of the scattered photons (approximately 1 in 10 million) is scattered by an 5 

excitation, with the scattered photons having a frequency different from, and usually 6 

lower than, that of the incident photons, which is called Raman scattering. Typically, 7 

Raman scattering (inelastic scattering) is inherently as weak as around 10-9 to 10-6 of 8 

the intensity of the Rayleigh background (elastic scattering), intense monochromatic 9 

excitation and a sensitive detector are critical towards obtaining observable Raman 10 

signals [71]. 11 

 12 

Fig. 2.1 Interactions between tissue and light 13 

 14 

2.1.1 Diffuse reflectance 15 

Diffuse reflection is the reflection of light from a surface such that an incident 16 

ray is reflected at many angles rather than at just one angle as in the case of specular 17 

reflection [72]. An illuminated ideal diffuse reflecting surface will have equal 18 

luminance from all directions in the hemisphere surrounding the surface (Lambertian 19 
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reflectance) [72]. When the photons enter the tissue, some of the light is absorbed due 1 

to absorbers (chromophores), some is reflected (scattered), and some passes through 2 

the tissue unperturbed (transmitted) [73]. Since only a portion of the scattered photons 3 

are returned to the tissue surface and emerge for detection, and the intensity of the 4 

emerging light is reduced (attenuated). Therefore, the relative changes of specific 5 

structures within the tissue can be determined based on the measurement of changes 6 

in the intensity of reflected light over a spectral range. 7 

Absorbers 8 

There are many biochemical compounds in biological tissue which absorb 9 

light radiation, collectively known as tissue chromophores (e.g., hemoglobin, water, 10 

melanin, lipid, etc.). Each of tissue chromophores has its own particular absorption 11 

spectrum, which describes the level of absorption at each wavelength. Hemoglobin 12 

is one of important tissue chromophores which varies in concentration and directly 13 

reflects the absorption of blood flows. Hemoglobin is carried by red blood cells and 14 

is responsible for transporting oxygen to our tissues. Since hemoglobin can exist in 15 

both an oxygenated state (HbO2) and a deoxygenated state (Hb), and since each 16 

form of the molecule has its own characteristic absorption spectrum (shown in 17 

Figure. 2.2), the identification of tissue oxygenation (HbO2) and blood volume (as 18 

total hemoglobin, thb=HbO2+Hb) is possible [73]. In Fig. 2.2, both the oxy- and 19 

deoxy- hemoglobin absorb strongly in the visible (VIS) range, but the absorption of 20 

deoxyhemoglobin is slightly stronger beyond about 590 nm. Hence, venous blood 21 

appears in a darker red than the arterial blood. Note that the absorption of HbO2 22 

drops off very sharply and remains low. However, the absorption of Hb does not 23 

drop sharply and stays relatively high. The two absorption spectra cross at around 24 

800 nm (the isosbestic point) [74]. Since oxygen (and therefore a healthy blood 25 
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supply) is vital to tissue survival, the ability to detect its presence is of highly 1 

clinical significance. By measuring the spectral changes of tissue chromophores (e.g., 2 

hemoglobin), tissue blood and oxygenation status can be determined before they are 3 

visually apparent. The ability of the technique to make an early assessment of tissue 4 

health means that interventions aimed at saving the tissue can be applied before 5 

tissue cancerization occurs. 6 

 7 

Fig. 2.2 Absorption spectra of oxy- and deoxyhemoglobin in the ranges 450-1000 nm (left), and 8 
650-1050 nm (right) [74]. 9 

 10 

Water is the most abundant chemical substance in the human body, 11 

accounting for 60 to 80 % of total body mass [75]. Water is also considered to be 12 

one of the most important chromophores in tissue spectroscopy measurements due to 13 

its high concentration in most biological tissue. Figure 2.3 shows the absorption 14 

spectrum of water in the range of 200-1000 nm (left) and an expended scale from 15 

650-1050nm (right) [76]. Obviously, absorption rises sharply after 900 nm with 16 

increasing wavelength, with a spectral peak being visible at 970 nm. The region of 17 

low absorption (wavelength<900nm) acts as a “water transmission window’, 18 

allowing NIR spectroscopic measurements through several centimeters of tissue to 19 

be made. 20 
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 1 

Fig 2.3 Absorption spectrum of water in the ranges 200-1000 nm (left) and an expended scale 2 
from 650-1050nm (right) [76]. 3 

 4 

There are two other tissue chromophores that are worth mentioning: melanin 5 

and lipid. Melanin, the pigment found in the epidermal layer of human skin, has a 6 

large scattering coefficient in the UV region, which protects the skin from damaging 7 

UV radiation from the sun, and a significant absorption coefficient in the NIR region. 8 

For lipid, the absorption coefficient is of the same order of magnitude as for water, is 9 

low at shorter wavelengths (down to about 600 nm), with a strong peak at about 930 10 

nm. 11 

2.1.2 Fluorescence [77, 78]  12 

Fluorescence phenomenon arises upon light absorption and is related to an 13 

electronic transition from the excite state to the ground state of a molecule. In the case 14 

of thin (a few micrometer thickness) samples, fluorescence intensity is proportional to 15 

the concentration c and the fluorescence quantum yield η of the absorbing molecules 16 

[79]. In scattering media, the path lengths of scattered and un-scattered photons within 17 

the sample are different, and should be accounted for [80]. Fluorescence is defined as 18 

the radioactive transition between two electronic states of the same spin multiplicity 19 
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[81]. It is a luminescence in which the molecular absorption of a photon triggers the 1 

emission of another photon with a longer wavelength [78].The processes between 2 

absorbance and emission of light (fluorescence) are usually illustrated by using simple 3 

potential energy diagrams, known as Jablonski diagram, which is used in a variety of 4 

forms to illustrate various molecular processes that can occur in excited states. Figure 5 

2.4 depicts the absorption and emission transitions between vibrational sublevels in 6 

ground and electronically excited states. 7 

 8 
Fig. 2.4 Energy diagram showing absorption and emission transitions between vibrational 9 
sublevels in ground and electronically excited states [78]. 10 
 11 

When a molecule absorbs a photon of incident light and the energy of the 12 

incident radiation exactly matches one of the available energy-level transitions, the 13 

molecule would move from ground singlet electronic state into successively higher 14 

energy excited singlet states and the lowest excited triplet state. After excitation, the 15 

molecule is quickly relaxed to the lowest vibrational level of the excited electronic 16 

state with emission of a photon. This rapid vibrational relaxation (VR) process occurs 17 

on the time scale of femtoseconds to picoseconds. This relaxation process is 18 

responsible for the Stoke shift, which describes the observation that fluorescence 19 
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photons are longer in wavelengths than the excitation radiation. 1 

Therefore, fluorescence can be expressed as Excitation: 0 1S hv S+ →  , 2 

Fluorescence (emission): 1 0S S hv→ + , here hv  is a generic term for photon energy 3 

where: h = Planck's constant and v = frequency of light. State 0S  is called the ground 4 

state of the fluorophore (fluorescent molecule) and 1S  is its first (electronically) 5 

excited state. A molecule in its excited state, 1S  can relax by various competing 6 

pathways besides fluorescence. It can also undergo “non-radiative relaxation” in 7 

which the excitation energy is dissipated as heat (vibrations) to the solvent [82]. 8 

Excited organic molecules can also relax via conversion to a triplet state which may 9 

subsequently relax via phosphorescence or by a secondary non-radiative relaxation 10 

step [82]. 11 

Autofluorescence [83-85] 12 

Tissue autofluorescence is intrinsic fluorescence emission from endogenous 13 

fluorophores in tissue. Generally, the biochemical species in tissue are structural or 14 

metabolic, so they can provide a significant amount of information about differences 15 

in tissues. When cells in various disease states often undergo different rates of 16 

metabolism or have different structures, there are often distinct differences in their 17 

fluorescent emission spectra. These differences in fluorescence emission generally 18 

depend on at least one of the following parameters: fluorophore concentration or 19 

spatial distribution throughout the tissue; local microenvironment surrounding the 20 

fluorophores; the particular tissue architecture. Since the biological sources of this 21 

fluorescence are endogenous to the tissue, this type of tissue fluorescence is called 22 

“autofluorescence”. The molecules responsible for this are called fluorophores and 23 

include such biological substances as connective matrix (collagen, elastin), cellular 24 
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metabolic coenzymes (reduced nicotinamide adenine dinucleotide (NADH), flavin 1 

adenine dinucleotide (FAD) and flavin mononucleotide (FMN)), aromatic amino acids 2 

(tryptophan, tyrosine, and phenylalanine), byproducts of the heme biosynthetic 3 

pathway (porphyrins) and lipopigments (lipofuscin, ceroids, etc.). Each group of 4 

fluorophores is characterized by distinct excitation and emission wavelength ranges. 5 

The most important endogenous fluorophores which are molecules widely 6 

distributed in cells and tissue is shown in Figure 2.5 as below. Nicotinamide adenine 7 

dinucleotide NAD(P) is a major electron acceptor in the energy metabolism pathways. 8 

The reduced form, NAD(P)H, is fluorescent and has an excitation maximum at 340 9 

nm and emission maximum at approximately 450 nm. In the case of flavins, the 10 

excitation maxima are at 360 and 450 nm, while the emission maximum is 11 

approximately 520 nm. Autofluorescence of proteins is associated with amino acids 12 

such as tryptophan, tyrosin, and phenylalanine with absorption maxima at 280, 275 13 

and 257 nm, respectively, and emission maxima between 280nm (phenylalanine) and 14 

350nm (tryptophan, which usually dominated the protein emission AF spectrum) [85]. 15 

Fluorescence from collagen or elastin using excitation between 300 and 400 nm 16 

shows broad emission bands between 400 and 600 nm with maxima around 400, 430 17 

and 460 nm [85]. In particular, fluorescence of collagen and elastin can be used to 18 

distinguish various types of tissues, e.g., epithelial and connective tissues [86, 87]. 19 

Lipopigments are pigments associated with lipid oxidation products which are 20 

generally distinguished in ceroids and lipofuscins [83]. Lipopigments show excitation 21 

maxima ranging from 340–395 nm and the emission spectrum has a minor peak at 22 

approximately 450 nm and a broad major peak centered at approximately 600 nm, 23 

which is responsible for the intense orange autofluorescence that characterize these 24 

chromophores [88]. For Endogenous porphyrins, the excitation maximum is at around 25 



 27 

400 nm and emission maxima are approximately 630 and 680 nm. 1 

 2 
Fig. 2.5 Excitation (A) and emission spectra (B) of the principal endogenous fluorophores [84]. 3 

 4 

Changes occurring in the cell and tissue during physiological and/or 5 

pathological processes result in modifications of the amount and distribution of 6 
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endogenous fluorophores in tissues as well as chemical-physical properties of their 1 

microenvironments [89]. Therefore, tissue autofluorescence is sensitive to alterations 2 

in tissue morphology, neovascularity and biochemistry resulting from malignant 3 

transformation. Analytical techniques based on AF monitoring can be utilized to 4 

obtain information about morphological and physiological states of cells and tissues. 5 

Besides, AF analysis can be performed in real time because it does not require any 6 

treatment of fixing or staining of the specimens. 7 

2.1.3 Raman scattering 8 

The Raman scattering process is defined as inelastic scattering of a photon and 9 

is also termed Raman Effect. It was discovered by Sir Chandrasekhara Venkata 10 

Raman and Kariamanickam Srinivasa Krishnan in liquids and [79] by Grigory 11 

Landsberg and Leonid Mandelstam in crystals [78, 81]. Raman received the Nobel 12 

Prize in 1930 for his work on the scattering of light. When light is scattered from an 13 

atom or molecule, most photons are elastically scattered (Rayleigh scattering), such 14 

that the scattered photons have the same energy (frequency) and wavelength as the 15 

incident photons. However, a small fraction of the scattered light (approximately 1 in 16 

10 million photons) is scattered by an excitation, with the scattered photons having a 17 

frequency different from, and usually lower than, the frequency of the incident 18 

photons. In theory, the light interaction with a molecule leads to a polarization of the 19 

molecule and then the polarized molecule exhibits an induced dipole moment caused 20 

by the external field. The induced dipole moment P is proportional to the electric field 21 

E and to a property of the molecule called the polarizability α as shown in the 22 

following equation [90]: 23 

;P Eα=  0 0cos 2E E v tπ= ; 0 0cos 2P E v tα π=  24 
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In the equations, 0E  and 0ν  are the vibrational amplitude and frequency of the 1 

incident light, respectively. The polarizability α  is dependent upon the position of the 2 

nuclei in the molecule. For a molecule containing N atoms, there are 3N degrees of 3 

freedom available to the nuclei. Of there, 3N-6 (3N-5 for a linear molecule) results in 4 

the vibrations of the molecule. Considering a diatomic molecule with the single 5 

normal coordinate 1Q , the induced dipole moment is as below [90]: 6 

( ) ( )0
0 0 0 0 1 0 1 0 1

1 0

1
cos 2 cos 2 cos 2

2
P E v t E Q t v v t v v

Q

αα π π π
 ∂= + × + + −    ∂ 

 7 

In the equations, 0α  is the inherent polarizability of the molecule, 0
1Q  and 1ν  are 8 

the vibrational amplitude and frequency of the molecule, respectively. The first term 9 

represents Rayleigh scattering, and if 1Q∂∂α is nonzero, Raman scattering occurs. 10 

The second and third terms represent anti-stokes and stokes Raman scattering, 11 

respectively, as shown in Figure 2.6. 12 

 13 
Fig. 2.6 Energy level diagram showing the states involved in Raman signal. The line thickness is 14 
roughly proportional to the signal strength from the different transitions [91]. 15 
 16 

Conventional Raman spectroscopy is based on stokes Raman scattering. A Raman 17 
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spectrum is created by determining the Raman intensity as a function of frequency 1 

shift (1/λexcitation-1/λRaman), so called Raman shift which is quantified in wavenumber 2 

(cm-1). Most commonly, the units chosen for expressing wavenumber in Raman 3 

spectra is inverse centimeters (cm-1). Thus, Raman spectrum is characterized by a few 4 

distinct bands attributed to specific group of vibrational bonds in the molecules of the 5 

sample. In addition, Figure 2.6 also implies that the frequency shift for certain 6 

vibration band of the same molecule remains the same for Raman scattering and IR 7 

absorption. However, the selection rule of Raman scattering differs from that of 8 

infrared (IR) absorption. A molecule absorbs IR light only when the dipole moment 9 

changes during the molecular vibration. Whereas, the Raman Effect is caused by an 10 

oscillation-induced dipole moment, which means that the molecular interaction with 11 

light is through the polarizability of the molecule. Therefore, not all the molecules are 12 

both Raman-active and IR-active, which makes Raman spectroscopy and IR 13 

spectroscopy complementary to each other. 14 

2.2 Reviews of Optical Spectroscopy Techniques in Cancer 15 

Diagnosis 16 

The light interaction between human tissue and radiated energy has been used 17 

for disease recognization since the mid-1800s. Optical spectroscopy (OS) is the study 18 

of light interaction with tissue and it involves ultraviolet (UV), visible (VIS), near 19 

infrared (NIR) or infrared (IR) light, alone or in combination, and is part of a larger 20 

group of spectroscopic techniques called electromagnetic spectroscopy. Meanwhile, 21 

the great developments of light sources, detectors and fiber optic probes provide 22 

opportunities to quantitatively measure these interactions, which yield information for 23 

diagnosis at the biochemical, structural or physiological level within intact tissues. In 24 
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the past two decades, optical spectroscopic techniques have been a very hot research 1 

area, playing an important role in cancer diagnosis. In this section, we will review 2 

current advances of several popular optical spectroscopy techniques specifically 3 

focusing on diffuse reflectance spectroscopy (DRS), autofluorescence spectroscopy 4 

(AFS) and Raman spectroscopy (RS) which are based on characterizing endogenous 5 

optical contrasts in tissues. 6 

2.2.1 Diffuse reflectance spectroscopy 7 

Diffuse reflection spectroscopy (DRS) is a non-invasive technique that can be 8 

used to quantitatively determine the optical absorption and scattering properties of a 9 

turbid medium, which in turn can provide important functional and/or structural 10 

parameters relevant to the interrogated target. DRS are usually implemented by 11 

coupling a broadband light source (VIS or NIR range) to a medium of interest using a 12 

fiber-optical conduit and detecting the remitted signal from the surface using another 13 

optical fiber that is fed into a spectrometer [92].The detected signal is sensitive to the 14 

distribution of the optical properties of the medium that lie enclosed in a volume 15 

between the source and detection fibers. The intensity of board-band diffused 16 

reflected light was measured after the incident light undergoes the absorption and 17 

scattering interactions with tissue, and the intensity of reflected light after being 18 

scattered as function of the wavelength defines the reflectance spectrum. It has been 19 

shown previously that the overall depth sampled by the detected signal depends both 20 

on the source–detector fiber-probe geometry and on the optical properties of the 21 

medium itself [92]. Considered the nondestructive nature of this technique along with 22 

its ability to quantify optical absorption, which in turn can directly be related to the 23 

concentration and the oxygen carrying status of blood, this method has been widely 24 

used in several applications related to diagnosis, prognosis and assessing treatment 25 
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response of cancers [92]. However, relatively fewer in vivo studies have been 1 

conducted on the head and neck such (e.g., cavity, throat, nasopharynx and larynx). 2 

Emelink et al. used a specific type of DRS named after differential path-length 3 

spectroscopy (DPS) to determine the superficial optical properties of oral mucosa in 4 

vivo from 31 patients, demonstrating that the mucosa of oral squamous cell carcinoma 5 

(SCC) is characterized by a significant decrease in microvascular oxygenation and 6 

increase in mucosal blood content compared to normal oral mucosa as well as a 7 

significant decrease in scattering amplitude and increase in scattering slope [93]. 8 

Mallia et al. presented their results of clinical trials conducted in 29 patients to detect 9 

oral precancer using the DR spectral ratio (R545/R575) of oxygenated hemoglobin 10 

bands at 545 and 575 nm for grading malignancy and obtained a sensitivity of 100% 11 

and specificity of 86% for discriminating precancer (dysplasia) from hyperplasia, and 12 

a sensitivity of 97% and specificity of 86% for discriminating hyperplasia from 13 

normal [94]. Subsequently, De et al. (2003) compared DRS and fluorescence 14 

spectroscopy (FS) to investigate normal and premalignant oral tissue with a non-15 

invasive system in vivo. The results of classification between normal and 16 

premalignant tissues can reach sensitivity of ~80% and specificity of ~85% with DRS 17 

but with FS they obtained better sensitivity (~90%) and poor specificity (~70%) [95]. 18 

Besides, some studies also have reported the application of DRS to perform non-19 

invasive optical diagnoses in many different organ sites including the breast, 20 

esophagus, GI tract and cervix and to characterize pre-cancers and cancers [96-102]. 21 

2.2.2 Autofluorescence spectroscopy 22 

In 1984, Alfano et al. first studied the laser-induced fluorescence spectroscopy 23 

(LIFS) to distinguish cancerous tissues from normal and results shown its potential of 24 

detecting microscopic lesions during endoscopic examinations [103]. To date, 25 
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fluorescence spectroscopy becomes a new diagnostic modality with the potential to 1 

bridge the gap between clinical examination and invasive biopsy [104]. Ingrams et al. 2 

compared fluorescence spectra from a total of 12 normal (healthy mucosa or benign 3 

lesions) and 10 abnormal (dysplastic or malignant) tissue samples to determine 4 

whether fluorescence spectroscopy can effectively differentiate dysplasia from normal 5 

tissues in vitro [105]. Significant spectral differences were observed between two 6 

groups and most differences were marked at the excitation wavelength of 410 nm. 7 

Using this wavelength, fluorescence correctly diagnosed 20 of 22 samples studied. 8 

Betz et al. investigated 49 patients for autofluorescence and spectroscopic 9 

measurements under the excitation of 375-440 nm range [106]. The results showed 10 

that tumors were obviously distinguished from their surroundings normal through a 11 

reduction of green autofluorescence than by ordinary inspection and tumor detection 12 

abilities varied for different locations and morphologies. Spectral analysis showed 13 

contrasts in autofluorescence intensities between tumor and normal tissues (94.4%). 14 

Besides, autofluorescence spectra of normal mucosa varied both inter- and intra- 15 

individually. Majumder et al. studied oral cavity caners from 25 patients and applied 16 

Principle Components Analysis (PCA), yielding a sensitivity of 86% and a specificity 17 

of 63% using [107]. They compared PCA and non-linear classification algorithms to 18 

distinguish cancerous and normal tissues from 16 patients as well as 13 healthy 19 

volunteers. The non-linear algorithm provided a sensitivity of 93% and a specificity of 20 

96% for the training set, and 95% and 96% for the validation set, which is significant 21 

improved performance as compared to the PCA method [108]. De et al. (2003) 22 

studied the fluorescence spectra (455–867 nm) of different oral sites (cheek mucosa, 23 

tongue, floor of mouth, buccal fold, gingival, lip mucosa ,palate and vermilion border, 24 

etc.) were recorded from 97 healthy volunteers using seven excitation wavelengths 25 
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(350–450 nm) [109]. Spectral intensity was further studied and applied PCA with 1 

classification algorithms. Normalized spectra looked similar for locations, except for 2 

the dorsal side of the tongue (DST) and the vermilion border (VB). Porphyrin like 3 

fluorescence was observed frequently, especially at DST. PCA and classification 4 

confirmed VB and DST to be spectrally distinct. The remaining locations showed 5 

large class overlaps. It also revealed that no relevant systematic spectral differences 6 

have been observed between most locations, allowing the use of one large reference 7 

database.  Muller et al. measured 91 oral tissue sites from 15 patients using an 8 

upgraded version of the FastEEM instrument, which can provide 11 laser excitation 9 

wavelengths from 337–610 nm and broadband white light (350–700 nm), which 10 

showed the similar results [110]. 11 

One AF spectroscopy study of nasopharyngeal carcinoma and normal tissue 12 

from 27 subjects was conducted by Qu’s group [111]. Two algorithms (two-13 

wavelength and three-wavelength) for discrimination of cancer and normal tissues 14 

were compared. For the two-wavelength algorithm, carcinoma can be differentiated 15 

from normal tissue with a sensitivity and specificity of 93% and 92%, respectively. 16 

For the three-wavelength algorithm with compensation of variation of blood content 17 

in tissue, a sensitivity of 98% and specificity of 95% were achieved. In later study, 18 

they investigated larger data set (85 carcinoma, 131 normal) from 59 patients and 19 

compared two diagnostic algorithms based on PCA and the ratio of the spectral 20 

signals between multiple-wavelength bands [112]. The PCA based algorithm can 21 

differentiate carcinoma lesions from normal tissue with 95% sensitivity and 93% 22 

specificity. With 94% sensitivity, the specificity of the multiple-wavelength ratio 23 

algorithm is about 83%. 24 

Eker et al. performed an in vivo spectroscopic measurement in laryngeal 25 
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carcinoma using laser light at 337 and 405 nm for excitation [113]. They were able to 1 

differentiate between benign and malignant tissue in 85% of the cases. In a 2 

prospective study by Arens et al., 42 patients with suspected one-sided precancerous 3 

or cancerous lesions of the vocal folds were investigated during microlaryngoscopy 4 

[114]. Normal mucosa presented a bright green fluorescence under blue light 5 

excitation (375-440 nm) and the intensity increased from the ventricular folds to the 6 

subglottic area. Precancerous as well as cancerous lesions showed a significant 7 

decrease in autofluorescence intensity. They achieved a sensitivity of 97% and a 8 

specificity of 82%. 9 

In recent times, times-resolved (time-domain and frequency-domain) 10 

autofluorescence spectroscopy techniques, which are different from the steady-state 11 

(spectral-resolved or intensity measurements) autofluorescence spectroscopy that 12 

measures the overall intensity, peak wavelength and spectral shape from tissue, 13 

become a new tool for cancer diagnosis in the head and neck. Some pilot studies on 14 

oral buccal model were conduct by Farwell et al. and Meier et al. [115, 116]. The 15 

results revealed the significance of the shorter lifetime between 440-470 nm in 16 

malignant tissues. This addition of time-resolved fluorescence derived parameter 17 

average lifetimes as well as the Laguerre coefficients, LEC-2 significantly improved 18 

the capability of fluorescence spectroscopy–based diagnostics in the head and neck, 19 

suggesting the potential of time-resolved fluorescence spectroscopy as a non-invasive 20 

diagnostic technique for HNSCC. 21 

2.2.3 Raman spectroscopy 22 

In recent years, Raman spectroscopy, especially near-infrared Raman 23 

spectroscopy, has been investigated for two decades and considered a complementary 24 

or even as an alternative technique for biopsy and shown promising results for the 25 
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point-wise diagnosis and characterization of disease progression in various organs 1 

(e.g., gastrointestinal tracts, oral cavity, nasopharynx, larynx, lung, cervix, bladder, 2 

skin and the breast) with high biomolecular specificity [117-140]. However, the 3 

applications of Raman spectroscopy in the clinical medicine are still in the early 4 

stages of development. In particular, clinical studies in head and neck area are still 5 

scant [141]. Malini et al. studied the ability of Raman spectroscopy to discriminate 6 

216 spectra (10 pre-malignant, 90 malignant, 37 inflammatory and 79 normal) of 7 

tissue samples from the oral cavity [142]. Spectral profiles of different conditions 8 

showed pronounced differences between one another. Spectra of normal tissues were 9 

attributed mainly to lipids whereas pathological tissue spectra are dominated by 10 

proteins. It was shown that by the method of PCA combined with multiparameter 11 

limit tests all the four tissue types could be differentiated and diagnosed correctly. In 12 

the study of Oliveira et al., a total of 123 spectra were obtained and divided in normal 13 

and malignant tissue groups and analyzed statistically through PCA and classified 14 

using Mahalanobis distance [143]. Major differences between normal and malignant 15 

spectra seemed to arise from the composition, conformational, and structural changes 16 

of proteins, and possible increase of its content in malignant epithelia. The algorithm 17 

based on PCA was able to separate the samples into two groups (i.e., normal and 18 

carcinoma). For the algorithm training group, 91% sensitivity and 69% specificity 19 

were observed, while the prospective group had 100% sensitivity and 55% specificity. 20 

For nasopharyngeal cancers, Lau et al. (2003) used Raman spectroscopy to 21 

classify tissue obtained from the post-nasal space in cancer and normal patients [129]. 22 

The importance of utilizing Raman spectroscopy in the nasopharynx is the ability to 23 

detect sub-mucosal tumors associated with this cancer in this region, preventing the 24 

need for random biopsy. Noted that NIR Raman spectroscopic studies on the 25 
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nasopharynx and larynx have been limited to in vitro tissue Raman measurements due 1 

to the lengthy data acquisition times as well as technical challenges in making 2 

miniaturized flexible fiber-optic Raman probes with high collection efficiencies while 3 

effective elimination of interferences from fluorescence and silica Raman signals 4 

[144]. Stone et al. (2000) performed a feasibility study of the use of Raman 5 

spectroscopy for early diagnosis of laryngeal malignancy. The diagnostic sensitivities 6 

and specificities of ~70-95% have been achieved for differentiation between different 7 

laryngeal pathologic types (e.g., normal, dysplasia and carcinoma) in vitro using NIR 8 

Raman spectroscopy, revealing that Raman spectroscopy may become a useful 9 

adjunct to pathological diagnosis allowing directed or guided biopsies and assessment 10 

of adequacy of resection margins [133]. Lau et al. confirmed the feasibility of 11 

nasopharyngeal and laryngeal cancer diagnosis in vitro [129, 130]. Teh et al. reported 12 

the diagnostic sensitivity of 88.0% and specificity of 91.4% for detecting laryngeal 13 

carcinoma in vitro when coupled with random recursive partitioning ensemble 14 

techniques [132]. This study showed that NIR Raman spectroscopy in conjunction 15 

with random forests algorithm has a great potential for the rapid diagnosis and 16 

detection of malignant tumors in the larynx. 17 

In addition, Harris et al. (2009) evaluated the possibility of using Raman 18 

spectroscopy to discriminate between cancer and normal patients through a peripheral 19 

blood sample [145]. 40 blood samples were obtained from patients with HNCs and 20 

patients with respiratory illnesses to act as a positive control. The Raman spectra 21 

acquired from samples were further analyzed through building a classifier for 22 

differentiation between the cancer and respiratory patients' spectra, yielding a 23 

sensitivity of 75% with a specificity of 75% with a “trained” evolutionary algorithm. 24 

This preliminary study showed the feasibility of using Raman spectroscopy in cancer 25 
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screening and diagnostics of solid tumors through a peripheral blood sample, 1 

Note that NIR Raman spectroscopy exhibits advantages for the detection of 2 

HNCs, such as non-invasive, real-time and higher accuracy, as compared to 3 

conventional screening/diagnosis methods, however, most work in literature above 4 

was studied on in vitro tissue samples. 5 

2.3 Multivariate Statistical Analysis Techniques for Tissue 6 

Classification 7 

Optical spectroscopy techniques may be facilitated to provide biomolecular 8 

information from biological tissues and present the intensity information on a 9 

spectrum to significantly improve medical diagnosis. Whereas, the spectral dataset 10 

usually are multivariate function of wavelengths and consist of results of observation 11 

of many variables (e.g., wavelength and Ramsn shift) for different classes (e.g., 12 

normal, benign, dysplasia, neoplasia and carcinoma). On the other hand, biochemical 13 

information from each individual spectrum generally covers many overlapping bands. 14 

As such, it is not easy to differentiate normal tissue from pre-cancer or cancer by 15 

directly visual inspection for subtle change in tissue pathology. Therefore, 16 

mathematical statistical techniques are required to be implemented as effective 17 

classification algorithms to reduce this massive dimensional space to an interpretable 18 

dimensional space for tissue characterization. 19 

Multivariate statistical analysis is concerned with data that consists of sets of 20 

measurements on a number of individuals or objects [146]. In general, There are many 21 

different models including principle components analysis (PCA), linear discriminant 22 

analysis (LDA), partial least squares regression (PLS regression), analysis of variance 23 

(ANOVA), artificial neural network (ANN) and support vector machines (SVM), 24 
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which have been extensively applied as diagnostic models for classification of 1 

different cancers in tissue spectroscopy [147-157]. However, different techniques 2 

could not sufficiently satisfy the requirements in clinical applications. Therefore, we 3 

make a brief introduce of the popular statistical analysis techniques (e.g., PCA, LDA, 4 

PLS, etc.) in tissue spectroscopy in the following sections. 5 

2.3.1 Principle component analysis (PCA) 6 

Principal component analysis (PCA) is a variable reduction procedure that 7 

uses an orthogonal transformation to convert a set of observations of possibly 8 

correlated variables into a set of values of uncorrelated variables (called principal 9 

components (PCs)) which account for most of the variance in observed variables and 10 

may then be used as predictor or criterion variables in subsequent analysis. The 11 

number of PCs is less than or equal to the number of original variables. This 12 

transformation is defined in such a way that the first principal component has the 13 

largest possible variance which accounts for as much of the variability in the data as 14 

possible, and each succeeding component in turn has the highest variance possible 15 

under the constraint that it should be orthogonal to (i.e., uncorrelated with) the 16 

preceding components [158]. As reduction of dimensionality focusing on a few PCs 17 

versus many variables is a goal of PCA, therefore, several criteria have been proposed 18 

to determine how many PCs should be investigated and how many should be ignored 19 

[159, 160]. One common criterion for ignoringi PCs at the point wehre the next PC 20 

offers increase in the total variances. Another is to include all those PCs up to a 21 

predetermined total percent variance explained, such as 90%. In addition, PCA 22 

decomposes the spectral data matrix into scores and loadings, which also can be used 23 

to provide a method to evaluate the relationships between samples measured and help 24 

to detect the potential outliers via inspecting the plots generated using scores [161, 25 
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162]. 1 

2.3.2 Linear discriminant analysis (LDA) 2 

Linear discriminant analysis (LDA) is a statistical method used in pattern 3 

recognition and machine learning to seek a linear combination of features from 4 

measurement variables which characterizes or separates two or more classes of 5 

objects. LDA is closely related to ANOVA (analysis of variance) and regression 6 

analysis, which also attempt to express one dependent variable as a linear 7 

combination of other features or measurements. Usually, LDA is also closely related 8 

to principal component analysis (PCA) because they both look for linear 9 

combinations of variables which best explain the data, while LDA explicitly attempts 10 

to model the difference between the classes of data. PCA on the other hand does not 11 

take into account any difference in class. The aim of LDA is to find a discriminant 12 

function line that maximizes the variance in the data between groups and minimizes 13 

the variance between members of the same group. Thus, the new measurements from 14 

tissue samples can then be classified according to its position with respect to the 15 

discriminant function line [89]. 16 

2.3.3 Partial least squares (PLS) 17 

Partial least squares (PLS) (also called Projection to Latent Structure) 18 

regression is a popular method for modeling in industrial applications, providing an 19 

alternate approach to PCA technique. PLS technique is an extension of the multiple 20 

linear regression model and a linear model specifies the (linear) relationship between 21 

a dependent (response) variable Y, and a set of predictor variables, the X's. Briefly, 22 

PLS tried to find out the linear decomposition of X and Y such that X = TPT + E and Y 23 

= UQT + F, where T = X-scores, U = Y-scores, P=X-loadings, Q=Y-loadings, E=X-24 
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residuals and F=Y-residuals. Decomposition is finalized to maximize covariance 1 

between T and U, and PLS algorithm works in the same fashion whether Y is single 2 

response or multi-response. In the previous sections, we introduced that PCA was 3 

widely used to reduce the spectral dimension by extracting a set of PCs accounting for 4 

maximum spectral variations for tissue disease diagnostics. But the use of PLS, the 5 

regression extension of PCA, would be beneficial for spectroscopic tissue diagnostics 6 

by providing group affinities (class membership of zeros and ones) information to 7 

maximize the variations between groups of samples. It follows the principle of PCA, 8 

but further rotates the components (latent variables (LVs)) to achieve the maximum 9 

group separation [163, 164]. Hence, the LVs could explain the diagnostic relevant 10 

variations rather than the significant differences in the dataset. 11 

2.3.4 Support vector machine (SVM) 12 

As another powerful multivariate technique, Support Vector Machines (SVM) 13 

was based on the machine learning method and was developed by Vapnik in 1995 14 

[165, 166]. In the past decades, it has attracted great attention due to its capability of 15 

producing models that generalized well in classifying the unseen data [167-170]. 16 

Basically, SVM classifies two separable dataset which belong to two different classes 17 

through the use of a hyperplane [166]. Intuitively, a good separation is achieved by 18 

finding the hyperplane which has the largest distance to the nearest training data point 19 

of any class (so-called functional margin), since in general the larger the margin the 20 

lower the generalization error of the classifier. Hence, there are infinitely many 21 

hyperplanes that separate the two classes, but SVM classifiers find the optimized 22 

hyperplane that maximizes the distances between the two groups by solving a 23 

quadratic optimization equation, the Lagrangian dual problem. In addition to 24 

performing linear classification, SVMs can also efficiently perform non-linear 25 
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classification using kernel trick, implicitly mapping their inputs into high-dimensional 1 

feature spaces [166]. 2 

2.3.5 Artificial neural network (ANN) 3 

An Artificial Neural Network (ANN) (also known as neural network (NN)) is 4 

a mathematical model or computational model inspired by the structure and/or 5 

functional aspects of biological neural networks such as neurons, axons, dendrites, 6 

and synapses, which constitute the processing elements of biological neural networks 7 

investigated by neuroscience. It is an information-processing system that has certain 8 

performance characteristics in common with biological neural networks. Generally, 9 

An ANN generally consists of some interconnected processing elements, called nodes, 10 

which are connected to each other via a combination of adaptable interconnections, 11 

called weights. To date, it has become another non-linear statistical data modeling tool 12 

which can be used to develop a classification algorithm [171]. An ANN system has 13 

three layers. In the first layer (input layer), neurons act as input to send data via 14 

synapses to the second layer of neurons, and then via more synapses to the third layer 15 

of output neurons. More complex systems will have more layers of neurons with some 16 

having increased layers of input neurons and output neurons. The synapses store 17 

parameters called “weights” that manipulate the data in the calculations. In an ANN 18 

performance, there are two phases which are training phase and test phase. The former 19 

starts with assigning initial values of parameters to the ANN and presenting input 20 

patterns. The process proceeds with adaptation of weights until the ANN learns these 21 

patterns. In a test set, the patterns which are not used in training phase are presented to 22 

ANN and ANN’s outputs are used to evaluate ANN’s performance. 23 

24 
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Chapter 3 Development of Simultaneous Point-wise 1 

AF/DR Spectroscopy and Endoscopic Imaging 2 

Technique 3 

In this chapter, we report the development of an integrated point-wise 4 

spectroscopy and autofluorescence (AF) endoscopic imaging technique for real-time 5 

in vivo tissue measurements at endoscopy. A unique customized point spectrum 6 

optical design is implemented to realize real-time AF imaging and AF/or diffuse 7 

reflectance (DR) spectroscopy measurements from a small tissue area of interest (AOI) 8 

on the AF image. By applying this point-wise spectroscopy, both the AF image and 9 

the point-wise AF/DR spectra can be simultaneously acquired from the oral cavity in 10 

vivo within 0.1 second, suggesting the potential of the integrated spectroscopy and 11 

endoscopic imaging technique developed to facilitate in vivo tissue diagnosis and 12 

characterization at endoscopy. 13 

Further, we evaluate the diagnostic utility of the combined AF and DR 14 

spectroscopy for improving cancer diagnosis in head and neck at clinical endoscopy. 15 

The above point-wise AF/DR spectroscopy with endoscopic imaging guidance was 16 

employed for spectroscopic measurements of normal (n = 207) and cancer (n = 239) 17 

tissues specimens from 30 patients. The composite AF and white light reflectance 18 

(WLR) spectra in the range of 500–660 nm were analyzed using principal component 19 

analysis (PCA) and linear discriminant (LDA) to extract diagnostic information 20 

associated with distinctive spectroscopic processes of tissue malignancies. PCA-LDA 21 

diagnostic modeling on the combined AF and WLR yielded a diagnostic accuracy of 22 

92.2% (sensitivity of 85.5% and specificity of 94.0%) for tumor and normal tissues 23 
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classification. The integration area under the receiver operating characteristic (ROC) 1 

curve using the combined point-wise AF/DR spectroscopy was 0.982, which is 2 

superior to either the AF or DR spectroscopy alone. This study demonstrates that the 3 

complementary AF/DR spectroscopy techniques can be integrated together with 4 

endoscopic imaging system and has potential to improve the early cancer diagnosis 5 

and detection in the head and neck. 6 

3.1 Introduction 7 

It is well known that early diagnosis and localization of head and neck cancer 8 

with effective treatment is critical to decrease the mortality rates [172]. However, the 9 

conventional white light reflectance (WLR) endoscopy, which is accepted as the gold 10 

standard method for screening and surveillance of cancer in the head and neck, 11 

heavily relies on the observation of tissue gross morphological changes associated 12 

with neoplastic transformation. Subtle tissue changes may not be apparent, limiting its 13 

diagnostic accuracy. Positive endoscopic biopsy is the standard means for head and 14 

neck cancer diagnosis, but is invasive and impractical for screening high-risk patients 15 

who may have multiple suspicious lesions. Hence, it is highly desirable to develop 16 

advanced optical techniques to complement the WLR endoscopy for improving the 17 

early cancer diagnosis and characterization during clinical examinations. 18 

In the past decades, despite AF imaging technique is capable of detecting the 19 

changes of endogenous fluorophores and morphological architectures of tissue and 20 

has been developed to significantly improve the diagnostic sensitivity of early 21 

neoplastic lesions at endoscopy, however, AF imaging still suffers from moderate 22 

diagnostic specificities [173]. Optical spectroscopic techniques, such as AF 23 

spectroscopy and DR spectroscopy, which provide the information about tissue 24 

optical properties (e.g., absorption and scattering coefficients), morphologic structures, 25 
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endogenous fluorophore distribution, blood content (e.g., hemoglobin) and 1 

oxygenation associated with neoplastic transformation, have been comprehensively 2 

investigated for in vitro or in vivo precancer and cancer diagnosis in various organs 3 

with high diagnostic specificity [174-177]. The combination of AF imaging with 4 

optical spectroscopic technique offers a potential of providing both high diagnostic 5 

sensitivity and specificity for cancer tissue diagnosis and detection [176-179]. 6 

Therefore, we developed an integrated point-wise spectroscopy (AF/DR) and 7 

AF imaging technique for real-time in vivo tissue measurements at endoscopy. 8 

Different from other previous work which also integrated imaging with spectroscopy, 9 

but limited to spectral measurements at the centroid of the endoscopic field of view 10 

[178, 179], in our embodiment, the in vivo point-wise AF/DR spectra can be quickly 11 

acquired from any specific areas of the imaged tissue of interest under the AF/WLR 12 

imaging guidance during endoscopic examination. 13 

3.2 Integrated Point-wise DR/AF Spectroscopy and 14 

Imaging System 15 

3.2.1 Novel point-wise AF/DR spectroscopy 16 

The schematic diagram of the integrated point-wise spectroscopy and AF 17 

endoscopic imaging technique developed for in vivo tissue measurements at 18 

endoscopy is shown in Figure 3.1. This novel system mainly consists of a dedicated 19 

300 W xenon short arc lamp coupled with two customized band-pass (BP) filters (BP1: 20 

375-440 nm for AF excitation; BP2: 400-700 nm for WL illumination) for AF/DR 21 

spectroscopy and imaging, a medical endoscope (HOPKINS II 7230BP, Karl Storz, 22 

Germany), a sensitive three-chip charge-coupled device (CCD) camera (red (R) 23 

channel (600-700 nm); green (G) channel (500-580 nm), and blue (B) channel (400-24 
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480 nm); 752x582 pixels, TRICAM® SL II, Karl Storz, Germany), a spectrograph 1 

equipped with a CCD detector (FWHM of ~1.5 nm with a 600 gr/mm holographic 2 

grating, USB2000, Ocean Optics Inc, Florida), and a specially designed point 3 

spectrum optical adaptor (inset of Fig. 3.1) for realizing simultaneous in vivo 4 

endoscopic imaging and point-wise AF/DR spectral measurements on the specific 5 

areas of the imaged tissue of interest. The customized optical adaptor comprises three 6 

lenses (f=50 mm), a thin quartz glass plate (30 × 30 × 1 mm3) coated with a gold 7 

mirror (diameter of 100 µm, reflection of ~99% in 400-1000 nm) and a 2-D motorized 8 

translational stage (travel range: 13 mm; 8MT184-13, Standa Inc., Lithuania) for 9 

controlling the rapid movement of the gold mirror to realize the spectral 10 

measurements on the points of interest of the tissue imaged. 11 

For simultaneous AF imaging and spectroscopy measurements, the filtered 12 

blue excitation light (375-440 nm) is conducted into the endoscope via a flexible 13 

fiber-optic light guide and shines onto the tissue with an incident power of 35 mW on 14 

the fiber tip of the endoscope. AF emitted from the tissue is collected by the same 15 

fiber tip of the endoscope, and then coupled into the customized optical adapter by 16 

passing through a long-pass (LP) filter (cut off at 480 nm) for removing the 17 

interference of the excitation light scattered from tissue, and then is focused onto the 18 

quartz glass plate which is positioned at the interim imaging plane of Lens 1 with an 19 

orientation of 45° with respect to the incident light direction. The tissue fluorescence 20 

light passes through the 45° oriented glass plate and is focused onto the 3-chip CCD 21 

camera through Lens 2 for fluorescence imaging measurements. Meanwhile, a very 22 

small portion of tissue fluorescence is reflected from the 100 um gold mirror coated 23 

on the quartz plate and focused onto a 100 µm fiber via Lens 3 which is connected to 24 

the spectrograph for fluorescence spectroscopic measurements. 25 
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Fig. 3.1 Schematic of the integrated point-wise spectroscopy and autofluorescence (AF) imaging 2 
system for in vivo tissue measurements at endoscopy. 3 
 4 

Further, an automatic motorization of the small gold mirror coated on the 5 

quartz plate together with the point-wise spectral measurement module enables a 6 

rapid movement of the dark spot (of ~ 0.5 mm in diameter due to the refection of gold 7 

mirror in the point spectrum optical adapter with 5 × magnifications) on the image to 8 
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any spot of the imaged tissue of interest (see video 3.1). Hence, the AF imaging and 1 

point-wise AF spectroscopy now can be simultaneously acquired from the same tissue 2 

imaged without introducing an optical fiber catheter into the instrument channel of an 3 

endoscope as in conventional endoscopic spectral measurements which prolong the 4 

endoscopic operation procedures. Similarly, the simultaneous WLR imaging and 5 

point-wise DR spectroscopy on the same tissue can also be realized simply by 6 

switching the excitation light filter to the white light illumination mode (BP2: 400-7 

700 nm) and removing the 480 nm LP filter in the customized optical adaptor. 8 

 9 
Video 3.1 Video illustrating simultaneous AF imaging and point-wise AF spectral in vivo 10 
measurements of the cheek in real-time during AF endoscopic imaging (QuickTime, 11 MB). 11 
[URL: http://dx.doi.org/10.1117/1.3475955.1]. 12 
 13 

By rapidly moving the reflection mirror in the optical adapter, we also 14 

demonstrate the ability of the integrated endoscopic imaging and spectroscopy 15 

technique developed for pinpointing the spectral properties of specific area of interest 16 

on the tissue imaged. Video 3.1 illustrates the in vivo AF image of the cheek acquired 17 

together with simultaneous AF spectral measurements on different spots of the tissue 18 

imaged during rapid scanning of the gold reflection mirror (shown as dark spot in AF 19 

image). The point-wise spectral measurements across the entire image size of ~10 mm 20 

can be quickly completed within 2 to 3 seconds, making the in vivo AF measurements 21 

feasible in clinical settings. In vivo AF spectral differences of different spots on the 22 
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same tissue imaged can also be clearly identified (Video 3.1), indicating the ability of 1 

our technique developed for revealing the inhomogeneity of endogenous fluorophore 2 

distributions in tissue. Our point-wise spectrum adapter design associated with rapid 3 

scanning and optics allows for a more convenient spectral measurement on the point-4 

of-interest of the tissue imaged for spectral analysis, and may have a significant 5 

impact for practical clinical applications. 6 

In this work, in order to apply this novel system into clinical practice for 7 

improving the working efficiency of measurements, we have also developed a 8 

Maltlab/C-based software with Bluetooth mini-keyboard remote control for 9 

performing real-time endoscopic image (WLR/AF) acquisition and point-wise 10 

spectral measurements and automatic data-processing (e.g., wavelength of interest 11 

selection, system spectral response calibration, CCD dark-noise subtraction, spectral 12 

curve smoothing, signal saturation detection, etc.). Both the live AF/WLR image and 13 

AF/DR spectrum can be simultaneously displayed on the computer monitor for real-14 

time review, and stored in the computer for further diagnostic analysis. 15 

3.2.2 In vivo experimental measurement in the head and neck 16 

We have applied the integrated point-wise spectroscopy and endoscopic 17 

imaging technique developed for in vivo tissue measurements in the head and neck. 18 

Figure 3.2 shows an example of in vivo WLR images and the corresponding DR 19 

spectra of different tissue sites (i.e., chin, buccal mucosa, dorsal of the tongue, and 20 

lower lip) simultaneously acquired from a healthy volunteer under the white light 21 

illumination mode. Point-wise DR spectra from different anatomical locations (dark 22 

spots in the WLR images in Fig. 3.2a) in the oral cavity can be acquired within 10 ms, 23 

and the absorption peaks (e.g., 420, 540 and 580 nm) attributed to hemoglobin 24 
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absorptions in the vessels can be clearly identified, but with large absorption 1 

variations among different tissue locations. 2 

 3 

Fig. 3.2 In vivo white-light images and the corresponding diffuse reflectance (DR) spectra from 4 
different anatomical locations (chin, buccal mucosa, dorsal of the tongue, and lower lip) 5 
simultaneously acquired from a healthy volunteer. 6 

 7 

By swapping the excitation filter in the xenon lamp to the blue BP filter (375-8 

440 nm) for tissue fluorescence excitation, in vivo tissue AF images and point-wise 9 

AF spectra can also be simultaneously acquired from the head and neck. Figure 3.3 10 

shows the representative in vivo AF images and AF spectra of different locations in 11 

the oral cavity from a healthy volunteer. Obviously, AF images (Fig. 3.3) that contain 12 

the information about endogenous fluorophores distributions in tissue provide a 13 

higher image contrast as compared to WLR images (Fig. 3.2). High quality in vivo 14 
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tissue AF spectra can be acquired within 0.1 s from the dark spot areas on the AF 1 

images (Fig. 3.3). 2 

 3 

Fig. 3.3 Comparison of in vivo AF images and the corresponding point-wise AF spectra from 4 
different anatomical locations (chin, buccal mucosa, dorsal of the tongue, and lower lip) 5 
simultaneously acquired from a healthy volunteer. Note that each DR spectrum is acquired within 6 
10 ms, whereas the AF spectrum is acquired within 0.1 s. 7 

 8 

Again, AF spectra from different anatomical tissue locations also vary, 9 

revealing the differences in concentrations of endogenous fluorophores among 10 

different tissue locations. For instance, the prominent fluorescence peak at 535 nm for 11 

flavins is observed in all different tissues, but a much stronger fluorescence at 630 nm 12 

for protoporphyrins is found, particularly in the chin and the tongue. 13 

Fig 3.4 shows that in vivo AF spectral differences of different spots on the 14 

same tissue imaged (cheek) can be clearly identified due to different spectral shape. 15 
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Furthermore, different fluorescent intensity distributions (e.g., fluorescence peak at 1 

535 nm for flavins, fluorescence peak at 630 nm for protoporphyrins) across different 2 

spots along the lines on the same tissue imaged can also be observed (Fig. 3.5) within 3 

1 s, indicating the feasibility of our technique developed for revealing the 4 

inhomogeneity of endogenous fluorophores distributions in the same tissue. 5 

 6 

Fig. 3.4 Comparison of in vivo AF spectra of different sites of the cheek on the AF endoscopic 7 
image simultaneously acquired from a healthy volunteer. 8 

 9 

 10 

Fig. 3.5 AF intensity profiles along the line indicated on the autofluorescence image acquired 11 
from the cheek: (I) Distribution of the endogenous fluorophore-flavins (autofluorescence peaking 12 
at 535 nm). (II) Distribution of the endogenous fluorophore–protoporphyrin (autofluorescence 13 
peaking at 630 nm). 14 

 15 
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3.3 Endoscopy based AF/DR Spectroscopy for Laryngeal 1 

Cancer Diagnosis 2 

3.3.1 Subjects and tissue preparation 3 

All patients preoperatively signed an informed consent permitting the 4 

investigative use of the tissue and this study was approved by the Institutional Review 5 

Board (IRB) of the National Healthcare Group (NHG) of Singapore. In this work, a 6 

total of 33 pair (i.e., normal and cancer) tissue specimens were collected from 30 7 

patients with a mean age of 65 who underwent surgical resection through 8 

laryngoscopy clinics. Immediately after surgical resections, the tissue specimens were 9 

immersed in physiological saline solution and sent to the Laboratory for AF/DR 10 

imaging measurements. The paired tissue specimens from each patient were placed on 11 

a high quality quartz glass slide (25 × 75 × 1.2 mm3) for the spectral measurements. 12 

For each piece of tissue specimen, random sites (2-5) were selected for 13 

spectral measurements, and 3-5 measurements were performed on each site. Both 14 

AF/DR spectra were directly acquired from the suspicious lesion sites for each patient 15 

under endoscopic imaging guidance in less than 1 s. As a result, a total of 446 AF/DR 16 

pair spectra (207 normal, 239 cancers) from different tissue sites were collected. After 17 

the imaging and spectral acquisitions, the tissue specimens were fixed in 10% 18 

formalin solution and then submitted back to the hospital for histopathological 19 

examinations. For the assessment of diagnostic sensitivity and specificity of this 20 

combined AF/DR spectroscopy for normal and cancer tissue classification, the 21 

histopathological results were regarded as the gold standard. The histopathogical 22 

examinations confirmed that 33 tissue specimens were normal, and 33 tissue 23 

specimens were cancer (moderately differentiated adenocarcinoma). 24 



 54 

3.3.2 Combine AF/DR spectra for improving cancer diagnosis 1 

Generally, DR spectroscopy measures the properties of tissue scattering and 2 

absorption, which depict the morphological and biochemical information of the tissue 3 

epithelial layer. While AF spectroscopy provides the bio-information about 4 

endogenous fluorophores in tissue excited with illumination (e.g., UV-VIS light). 5 

However, AF spectra obtained from tissue are distorted by tissue absorption and 6 

scattering that may lead to the limited accuracy of tissue characterization. In our work, 7 

AF spectra were used in conjunction with DR spectra from the same specific 8 

anatomical locations to evaluate the capability of increasing the efficiency of cancer 9 

diagnostic via extracting the intrinsic (undistorted) fluorescence (IF), in such a way 10 

that the effect of the dips which appear around 540 and 580 nm in autofluorescence 11 

spectra will be as small as possible. Several modeling approaches have been 12 

developed to extract IF spectra of the tissue [180-184]. In our case, extracting from 13 

the paired AF and DR spectra obtained, the IF spectra were calculated based on the 14 

equation as below [95]:  15 

  16 

Intrinsic Fluorescence (IF) emission spectra of endogenous fluorophores 17 

: Bulk autofluorescence spectra (measurements) 18 

 Diffuse reflectance spectra (measurements) 19 

Note that the k(λ) is a scaling factor which denotes the ratio between the path-20 

lengths for AF and DR light, which is independent of wavelength [95]. Several 21 

complicated methods were reported in literature [185-187], but we determine the 22 

variable power k based on the simple way that the blood absorption dips that appear 23 

around 540 and 580 nm in the corrected autofluorescence spectra were as small as 24 
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possible [95], which is 1.5 in our work. Prior to data-analysis, the raw spectra (AF/DR) 1 

were firstly smoothed using the adjacent-five-point averaging method. The 2 

background-subtracted AF, DR and IF spectra were both normalized to minimize the 3 

effect of the instrument handling variations during clinical measurements with respect 4 

to different subjects and tissue sites. All processed spectra were assembled into three 5 

matrixes, and the mean centering of the entire dataset was then performed. PCA-LDA 6 

algorithm with leave-one-subject-out cross validation method was then used to reduce 7 

the dimension of the spectral data and highlight the similarities and differences within 8 

the data set for tissue characterization. Each variable in the data set is expressed as a 9 

principal component (PC). Accordingly, loadings on the PCs represent orthogonal 10 

basis spectra of the most prominent spectral variation in the dataset accounting for 11 

progressively decreasing variance, whereas the scores on the PCs represent the 12 

projection value of the tissue spectra on the corresponding loading. Thus, PCA can 13 

efficiently be used to resolve spectral variations while reducing the dimension of the 14 

dataset to a minimum. The significant PCs chosen to retain for further discriminant 15 

analysis is based on Student’s t-test (p<0.05). All these multivariate statistical analysis 16 

was automatically performed via developed programs in the Matlab (Mathworks Inc., 17 

Natick, MA) environment. 18 

3.3.3 Results and discussion 19 

Figure 3.6 shows the representative examples of AF/WRL images (lower is 20 

cancer, top is normal) of laryngeal tissue specimens under blue light (375-440 nm) 21 

and white light (400-700 nm) illumination, respectively. In the AF images (Fig. 3.6a), 22 

the normal’s intensity (top bright area surrounding the dark spot) is approximately 23 

1.2~2 times compared to the cancer (lower area in the AF/WLR images) while the 24 

intensity ratio of normal to tumor in WLR image (Fig. 3.6b) is ~1.0. Therefore, AF 25 



 56 

image contrast between normal and cancer is much better than that WLR imaging. 1 

 2 
Fig. 3.6 Representative examples of (a) AF images and (b) WLR images of laryngeal tissue 3 
specimens (upper normal, lower tumor) using blue light/white light as excitation. 4 
 5 

The comparison of mean spectra (AF/DR/IF) ±1 SD of normal (207) and 6 

tumor (239) laryngeal specimens are shown in left of Figure 3.7a, 3.7c and 3.7e, 7 

respectively. The plots in Figure 3.7b, 3.7d and 3.7f refer to the comparison of 8 

normalized mean spectra (AF/DR/IF) of normal and tumor tissues, respectively. 9 

Clearly, the normal tissue has higher intensity than the tumor in AF/IF spectra (Fig. 10 

3.7a, 3.7b). Besides the peak intensity, another feature is that the emission peak of the 11 

tumor tissue is slightly shifted towards the red region. One more feature that needs to 12 

be highlighted is that the tumor tissues have higher emission intensity after 13 

wavelength around 560nm (Fig. 3.7b). In DR spectra (Fig. 3.7c, 3.7d), most curves 14 

showed significant dips around 540 and 580 nm due to the oxygenated hemoglobin 15 

absorption. The Figure 3.7e is the mean IF spectra of normal tissues and tumor tissues 16 

after combination. The peak shift of the tumor tissues to the red region is more 17 

apparent. Similarly, the intensity of tumor tissues IF spectra in the region more than 18 

560 nm is higher than that of the normal tissues (Fig 3.7f) where as in the region 500-19 

560 nm, normal is higher, and what is more, it shows more significant intensity 20 

increase than those in Fig. 3.7b. 21 

22 
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 1 
Fig. 3.7 Comparison of mean spectra ±1 standard deviations (SD) and normalized spectra of 2 
normal (n=207) and tumor (n=239) laryngeal tissues. (a) mean AF spectra ±1 SD; (b) normalized 3 
AF spectra; (c) mean DR spectra ±1 SD; (d) normalized DR spectra; (e) mean IF spectra ±1 SD; (f) 4 
normalized IF spectra; The shaded area represents the respective standard deviations. 5 

6 
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To compare the tissue diagnostic performance of different spectroscopic 1 

techniques, PCA-LDA multivariate algorithm was applied to evaluate the elusive 2 

differences observed in the spectra of different tissue types. The normalized AF, DR 3 

and combined AF/DR (IF) spectral datasets were first mean centered to eliminate 4 

common variance and ensures the principal components (PCs) form an orthogonal 5 

basis [188, 189]. The leave-one-site-out cross-validated PCA-LDA diagnostic models 6 

were further developed for AF, DR and combined AF/DR spectral datasets using three 7 

dominant PCs which are shown in Figure 3.8, accounting for 85.1% (PC1), 1.41% 8 

(PC3) and 0.62% (PC4) of AF spectral variations, 97.4% (PC1), 0.66% (PC3) and 9 

0.13% (PC4) of DR spectral variations as well as 92.5% (PC1) 0.60% (PC3) and 10 

0.04% (PC7) of IF spectral variations, respectively. Noted that the features of different 11 

significant PCs are distinct, but some PC features roughly correspond to spectral 12 

characteristic, such as (e.g., oxy- and deoxy-hemoglobin absorption near 540 nm and 13 

580 nm) similar to those of tissue AF/DR spectra. The first significant PC accounts for 14 

the largest variance within the spectral data sets (e.g., 85.1%, 97.4% and 92.5%), 15 

whereas successive PCs describe features that contribute progressively smaller 16 

variances. Paired two-sided Student’s t-tests on the first several PCs of different 17 

spectral dataset (AF/DR/IF) show that only three PCs (p<0.005) are diagnostically 18 

significant, respectively. The diagnostically significant PCs are then fed into the LDA 19 

model together with leave-one site-out, cross-validation technique for tissue 20 

classification. Figure 3.9 shows the prediction results (posterior probabilities) between 21 

normal and cancer pathologies as calculated for (a) AF, (b) DR and (c) combined 22 

AF/DR (IF) datasets, respectively. 23 

 24 

25 
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 1 
Fig. 3.8 The three significant principal components (PCs) accounting for more than 90% of the 2 
total variance calculated from AF/DR/IF spectra of laryngeal tissue. The significant PCs loadings 3 
of (a) AF spectra (PC1: 85.1%; PC3: 1.41%; PC4: 0.62%), (b) DR spectra (PC1: 97.4%; PC3: 4 
0.66%, PC4: 0.13%) and (c) IF spectra (PC1:92.5%, PC3: 0.60%, PC7: 0.04%)) is shown 5 
respectively. Note that the PCs loading curves was shifted vertically for better visualization. 6 
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Fig. 3.9 Scatter plot of the posterior probability values belonging to the normal and cancerous 2 
tissue categories calculated from (a) AF, (b) DR and (c) combined AF/DR spectra, respectively, 3 
using the PCA-LDA technique together with leave-one-site-out, cross-validation method. The 4 
dashed line gives the sensitivities of 87.0% (208/239), 97.5% (233/239), and 91.6% (219/239); 5 
specificities of 93.2% (193/207), 84.1% (174/207), and 98.6% (204/207), respectively, for 6 
discriminating cancer from the normal laryngeal tissues. 7 
 8 

The threshold line (0.5) in the posterior probability scatter plot (Table 3.1) 9 

yielded diagnostic accuracies of 89.9% (401/446), 91.3% (407/446) and 94.8% 10 

(423/446) (sensitivities of 87.0% (208/239), 97.5% (233/239), 91.6% (219/239) and 11 

specificities of 93.2% (193/207), 84.1% (174/207), 98.6% (204/207)) as shown in 12 

Table 3.1, respectively, suggesting that combined AF/DR spectroscopy is a more 13 

powerful tool for laryngeal cancer diagnosis. 14 

Table 3.1 Comparison of diagnostic performance of different spectral techniques (AF, DR and the 15 
combined AF/DR) for discrimination of cancer from normal laryngeal tissue. 16 
 17 

Spectra dataset Sensitivity Specificity Accuracy 

AF spectra 87.0% (208/239) 93.2% (193/207) 89.9% (401/446) 

DR spectra 97.5% (233/239) 84.1% (174/207) 91.3% (407/446) 

IF spectra 91.6% (219/239) 98.6% (204/207) 94.8% (423/446) 
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Furthermore, the ROC curves (Figure 3.10) were also generated from the 1 

posterior probability plot in Fig. 3.9 at different threshold levels to determine the 2 

probability of predictions either being cancer or normal for all tissue data. The 3 

integration areas under the curves (AUC) were 0.979, 0.978 and 0.982 for AF, DR and 4 

combined AF/DR spectroscopy, respectively, further confirming the greater efficacy 5 

of the integrated point-wise AF/DR spectroscopy coupled with PCA-LDA 6 

multivariate diagnosis algorithms for laryngeal cancer classification as compared to 7 

AF or DR spectroscopy alone. 8 
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Fig. 3.10 Receiver operating characteristic (ROC) curves of discrimination results for AF, DR and 10 
combined AF/DR spectra, respectively, for cancer tissue classification through the use of point-11 
wise AF/DR spectroscopy and PCA-LDA diagnostic algorithms. The integrated area under curves 12 
(AUC) are 0.979, 0.978 and 0.982 for the AF, DR and combined AF/DR spectra, respectively, 13 
illustrating the best performance of integrated point-wise AF/DR spectroscopy for laryngeal 14 
cancer diagnosis. 15 
 16 

The results in this study are shown that our developed point-wise AF/DR 17 

spectroscopy has great potential as a powerful clinical tool for in vivo laryngeal 18 

cancer diagnosis. In AF spectroscopy, the lower intensity of tumor tissues in 19 
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comparison to normal tissues is similar to the results from early literature [113, 190, 1 

191]. The flavins (e.g., riboflavin, flavin mononucleotide (FMN), flavin adenine 2 

dinucleotide (FAD)) are the major fluorophore in the laryngeal cancer diagnosis, the 3 

decrease in concentration of flavin in tumor tissues is the major contributor to this 4 

observation of lower intensity. As is well-known, the emission peak of flavins occurs 5 

at the region of 480-540 nm under the excitation of ultra violet (UV) or blue light 6 

[192, 193]. In addition to the decrease in flavins concentration, the flavins may be 7 

present in its reduced form which has less fluorescence than oxidized flavin in healthy 8 

tissues [190]. The presence of a disease may alter the scattering and absorption 9 

properties of the tissue, due to changes in blood concentration, nuclear size 10 

distribution, epithelial thickness and collagen content in the tissues. Mucosal 11 

thickening or replacement of the sub-mucosa by tumor cells may also lead to a 12 

decrease in the fluorescence emission of the sub-mucosa flavins and other 13 

fluorophores such as collagen. Tumor tissues have higher emission after 560 nm 14 

which may be contributed to flavins whose emission peak occurs at 560 nm. This 15 

finding of red-shift (Fig. 3.7b and 3.7f) for tumor samples relative to that of normal 16 

tissues when a UV/blue light is used as excitation source is consistent with results 17 

from Gillenwater et al who was able to differentiate between normal and cancerous 18 

mucosa of the oral cavity by using a diagnostic algorithm based on spectra at 337 nm, 19 

yielding a sensitivity of 88% and a specificity of 100% [104]. In our work, 20 

considering the complexity of biological tissue, we applied PCA-LDA classification 21 

algorithms for differentiation between normal and tumor instead of using prominent 22 

peak shift, yielding better diagnostic result with accuracy of 94.8% (sensitivity of 23 

91.6%, specificity of 98.6%), further verifying that PCA-LDA combined AF/DR 24 

spectra data for analysis is more robust and rigorous to differentiate spectra of either 25 
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normal or cancer tissues. 1 

Currently, we are conducting an in vivo clinical measurement on a large size of 2 

head and neck patients to further evaluate the clinical merits of the integrated AF/DR 3 

spectroscopy techniques for improving early head and neck cancer detection at 4 

endoscopy. 5 

3.4 Conclusion 6 

In conclusion, we have developed an integrated autofluorescence endoscopic 7 

imaging and point-wise spectroscopy system and evaluated the performance of in vivo 8 

measurement in the head and neck. The simultaneous acquisition of endoscopic AF 9 

image and AF/DR spectrum from a specific area of imaged tissue in vivo can be 10 

realized within 0.1 s, which may facilitate the rapid, non-invasive, in vivo tissue 11 

diagnosis and characterization in clinical settings. We have also assessed the 12 

diagnostic capability of integrated AF endoscopic imaging system and point-wise 13 

AF/DR spectroscopy together with PCA-LDA modeling for normal and cancer in 14 

vitro tissue classification in the head and neck with good diagnostic accuracy, which 15 

is superior to either the AF or DR spectroscopy alone. The unique AF image-guided 16 

point-wise spectroscopy technique developed in this work also can be readily adapted 17 

to study other internal organs in vivo by using different flexible medical endoscopes 18 

(e.g., bronchoscope, colonoscope, gastroscope, etc.). 19 

20 
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Chapter 4 Endoscope-based Fiber-optic Raman 1 

Spectroscopy for Characterizing Raman Properties of 2 

Human Tissue in the Head and Neck 3 

In this chapter, we report for the first time an integrated Raman spectroscopy 4 

and trimodal (white-light reflectance, autofluorescence and narrow band) imaging 5 

technique developed for real-time in vivo tissue Raman measurements at endoscopy. A 6 

special miniaturized Raman probe (diameter < 2mm) with filtering modules is 7 

developed permitting effective elimination of interference of fluorescence background 8 

and silica Raman in fibers while maximizing Raman collections from the tissue. High 9 

quality in vivo Raman spectra of oral cavity can be acquired within 1s under 10 

immediate guidance of different wide-field imaging modalities, greatly facilitating the 11 

adoption of Raman spectroscopy into clinical research and practice during routine 12 

endoscopic inspections. 13 

Afterwards, we have implemented this transnasal image-guided Raman 14 

endoscopy to assess Raman spectral properties of nasopharyngeal and laryngeal tissue 15 

in vivo during clinical endoscopic examinations, realizing rapid, real-time and in vivo 16 

Raman measurements of different anatomical locations in the head and neck. A total 17 

of 874 high-quality in vivo Raman spectra were successfully acquired from different 18 

anatomic locations of the nasopharynx and larynx (i.e., posterior nasopharynx (PN) 19 

(n=521), the fossa of Rosenmüller (FOR) (n=157) and true laryngeal vocal chords 20 

(LVC) (n=196)) in 23 normal subjects at transnasal endoscopy. Difference spectra and 21 

principal component analysis (PCA) were employed for tissue characterization, 22 

enlightening the tissue variability at the biomolecular level. The PCA-linear 23 

discriminant analysis (LDA) provides sensitivity of 77.0% and specificity of 89.2% 24 
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for differentiation between PN vs. FOR, and sensitivity of 67.3% and specificity of 1 

76.0% for distinguishing LVC vs. PN using the leave-one subject-out cross validation. 2 

This work demonstrates for the first time that transnasal image-guided Raman 3 

endoscopy can be used to acquire in vivo Raman spectra from the nasopharynx and 4 

larynx in real-time. Significant Raman spectral differences (p<0.05) identified 5 

reflecting the distinct composition and morphology in the nasopharynx and larynx 6 

should be considered as an important parameter in the interpretation and rendering of 7 

diagnostic decision algorithms for in vivo tissue diagnosis and characterization in the 8 

head and neck. 9 

4.1 Introduction 10 

In the past decade, autofluorescence imaging (AFI) technique which is able to 11 

detect the changes of endogenous fluorophores and morphologic architectures of 12 

tissue has been developed to significantly improve the detection sensitivity of early 13 

neoplastic lesions in the epithelium at endoscopy [173]. Very recently, narrow band 14 

imaging (NBI) technique which is able to enhance visualization of the mucosal 15 

glandular and vascular pattern changes beneath the tissue surface has shown great 16 

promise for improving in vivo histologic diagnosis of intraepithelial neoplastic lesions 17 

[194-198]. Although AF and NBI imaging techniques provide high detection 18 

sensitivities, these wide-field endoscopic imaging modalities suffer from moderate 19 

diagnostic specificities owing to their lack of ability revealing biomolecular 20 

information about the tissue. Raman spectroscopy is a unique vibrational probe that is 21 

capable of providing specific fingerprints of biochemical and biomolecular structures 22 

and compositions of tissue, and has been excelled in the early detection of precancer 23 

and cancer with high diagnostic specificity [199-202]. Hence, it is highly desirable to 24 

incorporate Raman point measurements into endoscopic imaging system for direct 25 
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biochemical and biomolecular assessments of suspicious spots in real-time. However, 1 

Raman clinical endoscopic applications have been limited not only by the difficulty in 2 

capturing inherently weak tissue Raman signals [199, 201], but also by the relatively 3 

slow speed of spectral acquisition [201]. The miniaturization of flexible Raman 4 

probes that can fit into the instrument channel of conventional endoscopes for 5 

effective collections of tissue Raman scattering renders another challenge in clinical 6 

settings [201, 203-205]. 7 

4.2 Integrated Raman Spectroscopy at Endoscopy 8 

In this section, an integrated rapid Raman spectroscopy and trimodal imaging 9 

(WLR/AFI/NBI) techniques was developed for realizing real-time in vivo tissue 10 

Raman measurements at endoscopy. Successful incorporation of the endoscopic 11 

Raman spectroscopy for probing biomolecular fingerprints into the endoscopic 12 

trimodal imaging for providing tissue morphology structures and vascular patterns 13 

will increase the diagnostic value and ultimately improve the effectiveness of 14 

surveillance of histopathological status of internal organs. 15 

4.2.1 Integrated Raman spectroscopy and endoscopic imaging 16 

system 17 

Figure 4.1 shows the schematic of the integrated Raman spectroscopy and 18 

trimodal wide-field imaging system developed for in vivo tissue measurements at 19 

endoscopy. The Raman spectroscopy system consists of a spectrum stabilized 785 nm 20 

diode laser (maximum output: 300 mW, B&W TEK Inc., Newark, DE), a transmissive 21 

imaging spectrograph (Holospec f/1.8, Kaiser Optical Systems), a liquid nitrogen-22 

cooled, near-infrared (NIR)-optimized, back-illuminated and deep depletion CCD 23 

camera (1340× 400 pixels at 20× 20 µm per pixel; Spec-10: 400BR/LN, Princeton 24 
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Instruments), and a specially designed Raman endoscopic probe for both laser light 1 

delivery and in vivo tissue Raman signals collection. 2 

We have also developed a Matlab-based software for Raman data acquisition 3 

and analysis (including liquid nitrogen-cooled CCD dark-noise subtraction, laser 4 

On/Off control, wavelength calibration, system spectral response calibration, signal 5 

saturation detection, cosmic ray rejection, tissue autofluorescence background 6 

subtraction (5th-order polynomial fit), Raman curve adjacent averaging smoothing, 7 

etc.), as well as real-time display of in vivo tissue Raman spectra during clinical 8 

endoscopic measurements. The trimodal endoscopy imaging system primarily 9 

comprises a 300 W short-arc xenon light source, a videoscope (GIF-FQ260Z, 10 

Olympus), and a video system processor (CV-260SL, Olympus). The dedicated xenon 11 

light source coupled with different sets of filters (WLR (red-green-blue (RGB) filters: 12 

red filter: 585-655 nm, green filter: 500-575 nm, and blue filer: 390-495 nm); AFI 13 

(blue filter of 390-470 nm and green filter of 540-560 nm for reflectance image 14 

normalization), and NBI (narrowband filters: green filter of 530-550 nm and blue 15 

filter of 390-445 nm) provides different illumination light for trimodal endoscopic 16 

imaging (WLR/AFI/NBI). The light reflected or fluorescence emitted from tissue are 17 

detected by two monochrome CCD chips mounted behind the two objective lens 18 

placed next to each other at the distal tip of the videoscope: one CCD for WLR/NBI 19 

and the other one for AFI. The video system processor will then convert the signal 20 

received from the CCD in the endoscope into RGB video image for display on a video 21 

monitor. 22 

Hence, trimodal wide-field endoscopic images (WLR/AFI/NBI) and the 23 

corresponding real-time in vivo processed Raman spectra of the tissue imaged can be 24 

simultaneously displayed and recorded in the video system processor and the personal 25 
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computer (PC), respectively. 1 

 2 
Fig. 4.1 Schematic of the integrated Raman spectroscopy and trimodal endoscopic imaging system 3 
for in vivo tissue Raman measurements at endoscopy. WLR, white light reflectance imaging; AFI, 4 
autofluorescence imaging; NBI, narrow band imaging. 5 
 6 

4.2.2 Endoscope-based fiber optics Raman probe 7 

For clinical Raman endoscopic applications, we have developed a bifurcated 8 

fiber-optic Raman probe with a 1.8 mm outer diameter tip and 2.5 m in length, 9 

consisting of 33 ultralow OH fibers: a 200 µm central fiber for laser delivery and 32 10 

200 µm surrounding fibers for Raman collections (Fig. 4.1). A hypo tubing (diameter 11 

of 0.46 mm) is used to separate the excitation fiber from the surrounding collection 12 

fibers to avoid photon cross-talk. The novel micro-coating technique is applied to the 13 

distal end of the Raman probe by coating a narrow band pass filter (centered at 785 14 

nm, transmission of >90%, FWHM= ± 2.5 nm) onto the central excitation fiber 15 
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whereas the edge long pass filters (cut off at 800 nm, transmission of over 90% in 1 

800-1200 nm) are coated onto the collection fibers. The band pass filter reduces most 2 

of the fuse-silica noise generated in the excitation fiber of the Raman probe before the 3 

excitation beam hits the tissue, and the edge long pass filters of the collection fibers 4 

reinforce the reflected excitation light to be blocked yet allowing the scattered tissue 5 

Raman signal to pass back to the detector. At the proximal ends of the Raman probe, 6 

the excitation and emission fibers were separated and coupled into two in-line filter 7 

modules: one integrated with a narrow band pass filter (LL01-785, Semrock Inc.,) for 8 

suppressing laser noise, fluorescence, and Raman emissions from a 200 µm core 9 

diameter fiber that connects the 785 nm laser excitation power of ~1.5 W/cm2 to the 10 

in-line filter end for tissue excitation; one integrated with an edge long pass filter 11 

(LP02-785RU, Semrock Inc.,) for further reducing the scattered laser light while 12 

permitting the scattered Raman signals to pass through towards the Raman 13 

spectrograph. 14 

Moreover, to maximize Raman signal detection while correcting the image 15 

aberration of the spectrograph for improving the spectral resolution of the endoscopic 16 

Raman system, we have also designed a special round-to-parabolic fiber bundle to 17 

relay the collected tissue Raman emission onto the spectrometer [204]. This bundle 18 

comprises 64 100 µm core diameter fibers packed in a round geometry at the 19 

collection in-line filtering module end, but spread out into a parabolic linear array at 20 

the spectrometer entrance end that is aligned in an orientation opposite to the image 21 

aberration of the transmissive spectrograph. This unique design effectively corrects 22 

spectrograph image aberrations (images not shown), thereby enabling the hardware 23 

binning of the entire CCD chip to be implemented by increasing the signal-to-noise 24 

ratio (SNR) up to 20-fold (400/√400) compared with complete software binning [204]. 25 
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The spectral resolution of our Raman system is approximately 9 cm-1 (a 100 µm core 1 

diameter fiber covers 6 pixels with a 1.25 magnification of the spectrograph; each 2 

pixel covers 1.5 cm-1). Despite having a 5 mm long rigid tip, our Raman probe with a 3 

1.8 mm outer diameter tip passes easily through the instrument channel of most 4 

conventional medical endoscopes. 5 

As a result, the image-aberration corrected, high SNR Raman spectrometer 6 

system coupled with the endoscopic Raman probe with minimization of the 7 

fluorescence background and silica Raman signals in the fibers permits reliable in 8 

vivo tissue Raman measurements during clinical endoscopy. To ensure that tissue 9 

Raman endoscopic measurements can be performed in real-time under the guidance 10 

of trimodal wide-field endoscopic imaging modalities, an additional customized long 11 

pass filter (cut off at 800 nm with OD>6 for 400-500 nm) is also incorporated into the 12 

in-line filter coupled with the 785 nm edge long pass filter to effectively eliminate the 13 

second order spectra interference generated from the blue excitation light (390-490 14 

nm) of the trimodal wide-field imaging. 15 

4.2.3 Evaluation of in vivo tissue Raman measurement in the oral 16 

cavity 17 

Figure 4.2 shows in vivo Raman spectra of buccal mucosa acquired from a 18 

healthy volunteer using acquisition times of 0.1, 0.5 and 1.0 s, respectively. The 19 

prominent vibrational features of buccal mucosa, such as the ν(C=O) amide I band at 20 

1655 cm-1, the δ(CH3) and δ (CH2) scissoring modes at 1445 cm-1, the CH2 21 

deformation at 1302 cm-1, the ν(CN) and δ(NH) amide III bands at 1265 cm-1, the 22 

ν(CC) or ν(CO) of phospholipids at 1078 cm-1, the ν(C-C) ring breathing of 23 

phenylalanine at 1004 cm-1, and the ν (CC) of prolines at 855 cm-1 [4-7], can be 24 



 71 

clearly discerned in all Raman spectra. Some weak tissue Raman peaks (e.g., ν(C=O) 1 

of phospholipids at 1745 cm-1) can also be clearly identified even using the exposure 2 

time of 0.1 s. Obviously, the signal-to-noise ratio (SNR) of in vivo Raman spectra 3 

increases with integration times (e.g., SNR of the Raman band at 1445 cm-1 are 4 

approximately 10 and 32 at 0.1 s and 1.0 s, respectively).  5 

We also measure and characterize the effects of the probe-tissue angles and 6 

pressures during in vivo Raman measurements on buccal mucosa, no Raman spectral 7 

artifacts have been observed due to these variations (data not shown). Hence, high 8 

quality and reproducible Raman spectra can be acquired from in vivo buccal mucosa 9 

within 1.0 s or even sub-seconds using the rapid NIR Raman spectroscopy system 10 

coupled with the endoscopic Raman probe, confirming the utility of our Raman 11 

endoscopic system on in vivo tissue Raman measurements within clinically relevant 12 

times. 13 

800 1000 1200 1400 1600 1800

1
7

4
5

1
6

5
51
4
4

5

1
3

0
2

1
2

6
5

1
0

7
8

1
0

0
48
5

5

1.0 s

0.5 s

0.1 s

In
te

n
s

it
y

 (
a
rb

.u
.)

Raman shift (cm
-1
)  14 

Fig. 4.2 Comparison of in vivo Raman spectra of buccal mucosa acquired from a healthy volunteer 15 
under different Raman acquisition times (t = 0.1, 0.5 and 1.0 s). Each spectrum is normalized to its 16 
own acquisition time. 17 
 18 

We also evaluate the viability of in vivo tissue Raman spectra measurements 19 

conducted simultaneously under different wide-field imaging illumination conditions 20 
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(Fig. 4.3). Similar to the Raman spectra obtained without imaging light illumination 1 

(Fig. 4.2), high quality in vivo Raman spectra of buccal mucosa can also be acquired 2 

and the major Raman peaks can be consistently observed. Clearly, the prominent 3 

Raman features from in vivo tissues are not affected by the concurrently illumination 4 

light (i.e., white light for WLR, blue light for AFI and narrow band illumination for 5 

NBI) under different endoscopic imaging modalities. This result demonstrates the 6 

robustness of our Raman endoscopy system that is able to work simultaneously with 7 

different wide-field imaging modalities during routine endoscopic examinations.  8 

 9 
Fig. 4.3 Comparison of in vivo Raman spectra of buccal mucosa acquired from a healthy volunteer 10 
under three different wide-field imaging (i.e., WLR, NBI, and AFI) illumination conditions. All 11 
spectra are normalized to Raman acquisition times of 1.0 s. 12 
 13 

4.3 Characterization of Raman Spectral Properties in the 14 

Nasopharynx and Larynx in vivo 15 

In the previous section, we have elaborate the successful development of a 16 

Raman fiber probe (diameter < 2mm) which can pass down the instrument channel of 17 

most medical endoscopes, which facilitates us to be able to evaluate the clinical merit 18 

of transnasal Raman endoscopy technique for in vivo tissue characterization in the 19 
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head and neck. Since the compositional and morphological profiles of different organs 1 

(i.e., larynx and nasopharynx) in the head and neck are highly functional specialized 2 

and exhibit significant variations in anatomical and morphological properties (e.g., 3 

lymphoid tissues, vascularity, secretion, cartilage, etc.), there is a fundamental 4 

ambiquity to which extent one may account for inter-anatomical variabililty in 5 

developing efficient algorithms for in vivo nasopharyngeal and laryngeal tissue 6 

Raman diagnostics. Therefore, we applied this transnasal image (i.e., WLR and 7 

narrowband imaging (NBI))-guided Raman endoscopy to directly evaluate and 8 

characterize distinctive Raman spectral properties of nasopharyngeal and laryngeal 9 

tissue in vivo. Raman spectral differences reflecting the distinct composition and 10 

morphology among the nasopharynx and larynx are further evaluated using 11 

multivariate techniques (i.e., principal components analysis (PCA) and linear 12 

discriminant analysis (LDA)). 13 

4.3.1 Patients and procedure 14 

A total of 23 normal healthy male subjects of different races (twenty-two 15 

Asian and one Caucasian) were recruited for in vivo tissue Raman measurements at 16 

transnasal endoscopy. In these subjects recruited, no suspicious lesions were identified 17 

under the WLR and NB imaging endoscopic examination. A total of three primary 18 

measurement sites of assumed normal (or benign) tissues were predefined for in vivo 19 

Raman acquisitions, including the true laryngeal vocal cords (LVC), the posterior 20 

nasopharynx (PN), and also the pharyngeal recess (i.e., fossa of Rosenmüller (FOR)) 21 

where NPC typically initiates. The fiber-optic Raman probe was performed by the 22 

assistant of the endoscopist and carefully placed in gentle contact with internal tissues 23 

interrogating with the endogenous biomolecular compositions of tissue in real-time. 24 

The accurate positioning against the biopsied tissue sites was verified on the 25 
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WLR/NBI monitor by the endoscopist in-charge.  1 

The probe allowed Raman spectra to be collected from a small area (~200 µm 2 

in diameter) with probing volume of approximately 1 mm3 and penetration depth of 3 

~800 µm. Each spectrum was acquired within 0.5 s using the 785 nm laser light with 4 

the power of ~50 mW on the tissue surface [206, 207]. The Raman spectra were 5 

displayed in real-time on the PC monitor and were immediately stored for post-6 

procedural inspection. This rapid Raman endoscopic technology is non-destructive, 7 

and can now routinely be used under endoscopic transnasal examinations for clinical 8 

evaluation. To assess the intra-tissue site variance, several Raman spectra (∼18) were 9 

also acquired from each tissue site. As a result, a total of 874 in vivo Raman spectra 10 

from 47 sites were measured at transnasal endoscopy and used for spectral analysis 11 

[PN (n=521), FOR (n=157) and LVC (n=196)] from the 23 subjects. 12 

4.3.2 Multivariate statistical analysis 13 

Before the discriminant data-analysis, the raw Raman spectra were firstly 14 

smoothed using a linear Savitzky Golay filter, and tissue autofluorescence background 15 

was then subtracted from the smoothed spectra using a 5th order polynomial fit. The 16 

background-subtracted Raman spectra were then normalized to the integrated areas 17 

under the curves to minimize the effect of Raman probe handling variations on 18 

clinical Raman measurements with respect to different subjects and tissue sites. All 19 

processed Raman spectra were assembled into a matrix, and the mean centering of the 20 

entire Raman dataset was then performed. To reduce the dimension of the spectral 21 

data, principal component analysis (PCA) was employed to extract a set of orthogonal 22 

principal components (PCs) that account for the maximum variance in the Raman 23 

spectral dataset for tissue characterization [208, 209]. Accordingly, loadings on the 24 

PCs represent orthogonal basis spectra of the most prominent spectral variation in the 25 
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dataset accounting for progressively decreasing variance, whereas the scores on the 1 

PCs represent the projection value of the tissue Raman spectra on the corresponding 2 

loading. Thus, PCA can efficiently be used to resolve spectral variations while 3 

reducing the dimension of the dataset to a minimum [209]. The number of retained 4 

PCs was chosen based on the analysis of variance (ANOVA) and Student’s t-test at 5 

0.05 levels. We employed post-hoc Fisher’s least squares differences (LSD) test to 6 

assess differences in means [124]. Multivariate statistical analysis was performed 7 

using the PLS toolbox (Eigenvector Research, Wenatchee, WA) in the Matlab 8 

(Mathworks Inc., Natick, MA) programming environment. 9 

4.3.3 Results and discussion 10 

High quality in vivo Raman spectra can routinely be acquired in the 11 

nasopharynx and larynx in real-time during transnasal image-guided (i.e., WLR and 12 

NBI) endoscopic inspections. Figure 4.4 shows an example of in vivo raw Raman 13 

spectrum (weak Raman signal superimposed on large tissue autofluorescence 14 

background) acquired from the posterior nasopharynx with an acquisition time of 0.1 15 

s at endoscopy.  16 
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Fig. 4.4 Representative in vivo raw Raman spectrum acquired from the Fossa of Rosenmüller with 1 
0.1 s during clinical endoscopic examination. Inset of Fig.4.4 is the processed tissue Raman 2 
spectrum after removing the intense autofluorescence background. 3 

The background-subtracted tissue Raman spectrum with a signal-to-noise ratio 4 

(SNR) of >10 (Inset of Fig. 4.4) can be obtained and displayed on-line during clinical 5 

endoscopic measurements. Fig. 4.5 depicts the inter-subject in vivo mean Raman 6 

spectra ± 1 standard deviations (SD) of normal nasopharyngeal (i.e., PN (n=521) and 7 

FOR (n=157)) and laryngeal tissues (i.e., LVC (n=196)) when the Raman probe is 8 

gently contacted with the tissue under WLR/NB imaging guidance. Also shown is 9 

WLR images (Fig. 4.5) obtained from the corresponding anatomical locations. 10 
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 11 
Fig. 4.5 In vivo (inter-subject) mean Raman spectra ± 1 standard deviations (SD) of posterior 12 
nasopharynx (PN) (n=521), fossa of Rosenmüller (FOR) (n=157) and laryngeal vocal chords 13 
(LVC) (n=196). Note that the mean Raman spectra are vertically displaced for better visualization. 14 
In vivo fiber-optic Raman endoscopic acquisitions from posterior nasopharynx (upper) fossa of 15 
Rosenmüller (mid) and laryngeal vocal chords (lower) under white light reflectance (WLR) and 16 
narrowband (NB) imaging guidance are also shown. 17 
 18 

Prominent Raman bands associated with proteins and lipids are identified as 19 

tabulated in Table 4.1 with tentative biomolecular assignments [124, 125, 202, 208, 20 

210]. 21 
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 1 

Table 4.1 Tentative assignments of molecule vibrations and biochemicals involved in Raman 2 
scattering of nasopharyngeal and laryngeal tissue [124, 125, 202, 208, 210]. 3 
 4 

Raman peaks (cm-1) Vibrations Biochemicals 

853 ν(C-C) proteins 

940 ν(C-C) proteins 

1004 νs(C-C) breathing proteins 

1078 ν(C-C) lipids 

1265 Amide III ν(C-N) δ(N-H) proteins 

1302 CH2 twisting and wagging lipids/proteins 

1450 δ(CH2) lipids/proteins 

1660 Amide I ν(C=O) proteins 

   

Note: ν, stretching mode; νs, symmetric stretching mode; δ, bending mode;  5 

 6 

Figure 4.6 shows the intra-subject mean spectra ± 1 SD of a randomly chosen 7 

subject. The in vivo tissue Raman spectra were found to be reproducible with 8 

diminutive inter- and intra- subject variances (<10%) in the nasopharynx and larynx. 9 

Further Raman endoscopic testings indicate that the variability between different 10 

tissue sites within the posterior nasopharynx is subtle (< 5%) (data not shown). 11 

 12 
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Fig. 4.6 In vivo (intra-subject) mean Raman spectra ± 1 SD of PN (n=18), FOR (n=18) and LVC 1 
(n=17). Note that the mean Raman spectra are vertically displaced for better visualization. 2 

We also calculated difference spectra ± 1 SD between different tissue types 3 

(i.e., PN-LVC, LV-FOR and PN-FOR) as shown in Fig. 4.7, resolving the distinctive 4 

compositional and morphological profiles of different anatomical tissue sites at the 5 

biomolecular level. ANOVA revealed twelve prominent and broad Raman spectral 6 

sub-regions that showed significant variability (p<0.0001) between the three 7 

anatomical tissue sites centered at: 812, 875, 948, 986, 1026, 1112, 1254, 1340, 1450, 8 

1558, 1655 and 1745 cm-1, reconfirming the importance of characterizing the Raman 9 

spectral properties of nasopharynx and larynx toward accurate in vivo tissue 10 

diagnostics. 11 

 12 
Fig. 4.7 Comparison of difference spectra ± 1 SD of different anatomical tissue types (inter- 13 
subject): [posterior nasopharynx (PN) – laryngeal vocal chords (LVC)]; [posterior nasopharynx 14 
(PN) – fossa of Rosenmüller (FOR)] and [laryngeal vocal chords (LVC) – fossa of Rosenmüller 15 
(FOR)]. 16 
 17 

To investigate the significance of potential confounding factors during 18 

transnasal endoscopy, we also measured in vitro Raman spectra of blood, saliva and 19 

nasal mucus obtained from healthy volunteers which were shown in Figure 4.8. The 20 
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most prominent Raman bands in saliva and nasal mucus are at 1638 cm-1 (v2 bending 1 

mode of water), whereas blood exhibits porphyrin Raman bands nearby 1560 and 2 

1620 cm-1 [199].  3 

 4 
Fig. 4.8 In vitro Raman spectra of possible confounding factors from human body fluids (nasal 5 
mucus, saliva and blood). 6 
 7 

To further assess the spectral differences among different tissues in the head 8 

and neck, a five-component PCA model based on ANOVA and student’s t-test (p<0.05) 9 

accounting for 57.41% of the total variance (PC1: 22.86%; PC2: 16.16%; PC3: 8.13%; 10 

PC4 6.22% PC5: 4.04%) was developed to resolve the significant peak variations of 11 

different anatomical locations. Figure 4.9 shows the PC loadings revealing the resolve 12 

Raman bands associated with proteins (i.e., 853, 940, 1004, 1265, 1450 and 1660 cm-1) 13 

and lipids (i.e., 1078, 1302 1440, 1655 and 1745 cm-1). 14 
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 1 
Fig. 4.9 PC loadings resolving the biomolecular variations among different tissues in the head and 2 
neck, representing a total of 57.41% (PC1: 22.86%; PC2: 16.16%; PC3: 8.13%; PC4 6.22% PC5: 3 
4.04%) of the spectral variance. 4 
 5 

Figure 4.10(A-E) displays box charts of PCA scores for the different tissue 6 

types (i.e., PN, FOR and LVC). The line within each notch box represents the median, 7 

and the lower and upper boundaries of the box indicate first (25.0% percentile) and 8 

third (75.0% percentile) quartiles, respectively. Error bars (whiskers) represent the 9 

1.5-fold interquartile range. The p-values are also represented among different tissue 10 

types. Dichotomous PCA algorithms integrated with linear discriminant analysis 11 

(LDA) provided the sensitivities of 77.0% (401/521), 67.3% (132/192) and 12 

specificities of 89.2% (140/157) and 76.0% (396/521) for differentiation between PN 13 

vs. FOR, and LVC vs. PN, respectively using leave-one subject-out, cross validation.  14 
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 1 
Fig. 4.10 Box charts of the 5 PCA scores for the different tissue types (i.e., PN, FOR and LVC). 2 
The line within each notch box represents the median, but the lower and upper boundaries of the 3 
box indicate first (25.0% percentile) and third (75.0% percentile) quartiles, respectively. Error bars 4 
(whiskers) represent the 1.5-fold interquartile range. The p-values are also given among different 5 
tissue types. 6 
 7 

Overall, these results demonstrate that Raman spectra of nasopharynx and 8 

larynx in the head and neck can be measured in vivo at transnasal endoscopy, and the 9 

diagnostic algorithms development should be tissue site specific to ensure minimum 10 

algorithm complexity. Minimally invasive technologies such as Raman spectroscopy 11 

can greatly benefit in transnasal inspections of the larynx and nasopharynx at clinical 12 

endoscopy. In vitro studies have thoroughly demonstrated that NIR Raman 13 

spectroscopy is sensitive to carcinogenesis (i.e., precancer and cancer) in the head and 14 

neck including nasopharynx and larynx [130, 132, 211, 212]. Direct translation of this 15 

technology into clinic however remains very challenging, as efficient fiber probes, 16 
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short measurement times as well as online data processing and diagnosis are needed 1 

[144]. This study demonstrates for the first time the feasibility of Raman spectroscopy 2 

in transnasal endoscopic applications, providing the foundation for large-scale clinical 3 

studies in the head and neck. Our unique image-guided Raman endoscopy platform 4 

integrated with a miniaturized fiber Raman probe developed provides a rapid and 5 

minimally invasive assessment of endogenous tissue constituents of the head and neck 6 

at the molecular level during clinical endoscopic examination. This greatly facilitates 7 

clinicians to obtain detailed biomolecular fingerprints of tissue in the head and neck, 8 

reflecting the genuine compositional and morphological signatures without 9 

introducing the artifacts caused by vascular puncturing or tissue dehydration, 10 

morphological and anatomical effects, etc. 11 

Distinct Raman bands nearby 936 (v(C-C) proteins), 1004 (νs(C-C) ring 12 

breathing of phenylalanine), 1078 (ν(C-C) of lipids), 1265 (amide III v(C-N) and δ(N-13 

H) of proteins), 1302 (CH3CH2 twisting and wagging of proteins), 1445 (δ(CH2) 14 

deformation of proteins and lipids), 1618 (v(C=C) of porphyrins), and 1660 cm-1 15 

(amide I v(C=O) of proteins) are consistently observed in different anatomical sites of 16 

the nasopharynx and larynx (Figs. 4.4 - 4.6). The difference spectra ±1 SD (Fig. 4.7) 17 

reveal that the Raman-active tissue constituents are comparable among different 18 

anatomical sites, but the subtle while highly molecular specific inter-anatomical 19 

variations were observed such as relative tissue Raman differences (spectral shape, 20 

bandwidth, peak position and intensity). With the 785 nm laser light penetration depth 21 

in the vicinity of ~800 µm in epithelial tissue [125], it is plausible that Raman spectra 22 

of nasopharyngeal tissues reflect the lymphoid-rich mucosa and epithelia type (i.e., 23 

mostly stratified squamous epithelium).  24 

On the other hand, the distinct morphology in the fossa of Rosenmüller (i.e., 25 
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cartilage) likely explains the spectral appearance associated with the pharyngeal 1 

recess. To further investigate the properties of inter-anatomical variability in the head 2 

and neck, PCA was employed to resolve the spectral variability. ANOVA and noise 3 

level was used to select the PCs in the model. The PCA modeling captured a total 4 

variation of 57.41% after mean-centering of the dataset (PC1: 22.86%; PC2: 16.16%; 5 

PC3: 8.13%; PC4 6.22% PC5: 4.05%) that were found to have significant different 6 

means (Fig. 4.10A-E). Indeed, this indicates that the majority of the spectral variation 7 

is related to inter-anatomical variability. We anticipate that the remaining variance not 8 

accounted for is due to probe handling variations associated with in vivo Raman 9 

endoscopic trials. The loadings on PC1 and PC2 (Fig. 4.9) are generally associated 10 

with lipid signals (i.e., 1302 cm-1 (CH2 twisting and wagging), 1440 cm-1 (δ(CH2)), 11 

1655 cm-1 (v(C=C)) and 1745 cm-1 (v(C=O))) suggesting that FOR exhibit less 12 

signals from lipids (Fig. 4.10). Both PC1 and PC2 components largely reflect 13 

variations in lipids, indicating that distinct lipid types might be associated with the 14 

FOR tissues. In contrast, PC3, PC4 and PC5 represent complex signals related to 15 

proteins (i.e., 853 cm-1 (v(C-C)), 936 cm-1 (v(C-C)) 1004 cm-1 (v(C-C)) 1450 cm-1 16 

(δ(CH2)) and 1660 cm-1 (Amide I v(C=O))), signifying that distinct anatomical 17 

locations are present with a highly specific compositional and morphological 18 

signature (Figs. 4.9 and 4.10). The two binary PCA-LDA classification algorithms 19 

with the leave-one subject- out, cross validation provide the sensitivities of 77.0%, 20 

67.3% and specificities of 89.2% and 76.0% for differentiation among PN vs. FOR, 21 

and LVC vs. PN, respectively, reconfirming that the larynx and nasopharynx are 22 

unique organs. Therefore, the distinct Raman active biomolecules as well as 23 

morphology (e.g., mucosa thickness, cartilage, blood vessels, etc.) and optical 24 

properties together contribute to the complex spectral differences observed between 25 
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different tissue sites in the nasopharynx and larynx. Overall, the subtle spectral 1 

differences of distinct anatomical sites observed would inevitably induce additional 2 

model complexity in developing efficient Raman diagnostic algorithms (e.g., PCA-3 

LDA, PLS-DA, classification and regression trees (CART), etc.) for precancer and 4 

cancer diagnosis in the head and neck [129, 130, 132, 208, 212]. 5 

To further investigate the influence of potential confounding factors at in vivo 6 

transnasal applications, the Raman spectra of body fluids (e.g., blood, saliva and nasal 7 

mucus) in the head and neck were also measured in vitro (Fig. 4.8). Saliva and nasal 8 

mucus are mostly associated with broad Raman peak at 1638 cm-1 (v2 bending mode 9 

of water), whereas the blood exhibits signals of porphyrins near 1560 and 1620 cm-1. 10 

Comparisons with the nasopharyngeal and laryngeal tissue Raman spectra acquired 11 

(Fig. 4.5), we could find that those biochemical in the body fluids do not contribute 12 

significantly to the in vivo tissue Raman spectra at transnasal endoscopy. The in vivo 13 

nasopharyngeal and laryngeal tissue Raman results presented in this work is of great 14 

importance as it transfers the Raman technology from laboratory into in vivo real-time 15 

transnasal Raman endoscopy, paving the way for realizing early cancer and precancer 16 

diagnosis and detection in the head and neck as well as post therapeutic surveillance 17 

of head and neck cancer during clinical examination [129, 130, 132, 212]. One notes 18 

that the pharyngeal recess (FOR) could be too deep to be visually evaluated under 19 

conventional wide-field imaging modalities (Fig. 4.5), resulting in blind/random 20 

biopsies with poor diagnostic accuracy [10]. Our in vivo fiber-optic Raman endoscopy 21 

technique developed can be used for multiple but instant biochemical assessments of 22 

the tissue in situ (Fig. 4.5) that may potentially increase the diagnostic yield and 23 

ultimately improve the effectiveness of surveillance of epithelial lesions in the head 24 

and neck. In short, the in vivo Raman spectra of the head and neck tissue are very 25 
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similar but with subtle spectral differences. This observation correlates well with our 1 

previous study defining the Raman spectral properties of the upper gastrointestinal 2 

tract (i.e., esophagus and gastric) [124]. We have also established the Raman spectral 3 

profiles of dysplastic and neoplastic tissue in the lung, esophagus, gastric and colon, 4 

which in fact exhibit comparable difference spectra (e.g., cancer tissue shows 5 

upregulated DNA and protein but a relative reduction in lipid content) among 6 

different organs associated with neoplastic tissue transformation [124, 125, 202, 213, 7 

214]. We anticipate that similar spectral difference profiles could be found in different 8 

pathologic tissues of the head and neck, but a large Raman dataset is needed to 9 

evaluate the specific impact of cancerous transformation within the distinct 10 

anatomical sites in the nasopharynx and larynx. As such, in vivo transnasal Raman 11 

endoscopic measurements on a larger number of patients are currently in progress to 12 

assess the specific biochemical foundations of the Raman spectral differences 13 

between different pathologic types of nasopharynx and larynx for developing robust 14 

Raman diagnostic algorithms for in vivo tissue diagnostics and characterization in the 15 

head and neck [215]. 16 

4.4 Conclusion 17 

We demonstrate for the first time that transnasal image-guided Raman 18 

endoscopy can be used to acquire in vivo Raman spectra from nasopharyngeal and 19 

laryngeal tissue in real-time. Significant Raman spectral differences identified 20 

reflecting the distinct compositions and morphology in the nasopharynx and larynx 21 

should be considered as an important parameter in the interpretation and rendering of 22 

diagnostic decision algorithms for in vivo tissue diagnosis and characterization in the 23 

head and neck. Hence, the real-time ability of our rapid Raman endoscopy system 24 

under the guidance of different wide-field endoscopic imaging modalities for 25 
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acquiring high quality Raman spectra within 1 s or subseconds illustrates that such a 1 

rapid image-directed Raman endoscopy technique will greatly facilitate the adoption 2 

of Raman spectroscopy into clinical research and practice during routine endoscopic 3 

inspections.  4 

 5 

6 
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Chapter 5 High Wavenumber Raman Spectroscopy 1 

for Laryngeal Cancer Diagnosis 2 

In this chapter, we present our work on the implementation of the transnasal 3 

image-guided high wavenumber (HW) Raman spectroscopy to differentiate tumor 4 

from normal laryngeal tissue at endoscopy. A rapid-acquisition Raman spectroscopy 5 

system coupled with a miniaturized fiber-optic Raman probe was utilized to realize 6 

real-time HW Raman (2800 to 3020 cm-1) measurements in the larynx. A total of 94 7 

HW Raman spectra (22 normal sites, 72 tumor sites) were acquired from 39 patients 8 

who underwent laryngoscopic screening. Significant differences in Raman intensities 9 

of prominent Raman bands at 2845, 2880 and 2920 cm-1 (CH2 stretching of lipids), 10 

and 2940 cm-1 (CH3 stretching of proteins) were observed between normal and cancer 11 

laryngeal tissue. The diagnostic algorithms based on principal components analysis 12 

(PCA) and linear discriminant analysis (LDA) together with the leave-one subject-out, 13 

cross-validation method on HW Raman spectra yielded a diagnostic sensitivity of 14 

90.3% (65/72) and specificity of 90.9% (20/22) for laryngeal cancer identification. 15 

This study demonstrates that HW Raman spectroscopy has the potential for the non-16 

invasive, real-time diagnosis and detection of laryngeal cancer at the molecular level. 17 

5.1 Introduction 18 

Laryngeal cancer is one of the most common malignancies in humans 19 

worldwide due to its high incidence rate and mortality [216]. For instance, in 20 

Southeast Asia, the rates of incidence and mortality of laryngeal cancer are 21 

significantly higher than other areas of the world [9, 217]. Early cancer diagnosis in 22 

the larynx with effective treatment (e.g., surgery, radiotherapy or chemotherapy alone 23 



 88 

or in combination) is crucial to improving the 5-year survival rate [216, 218]. Positive 1 

endoscopic biopsy currently is the gold standard for cancer diagnosis, but it is 2 

invasive and impractical for screening high risk patients, which might affect the 3 

quality of the voice due to multiple biopsies [218]. Fiber-optic laryngoscopy is the 4 

primary physical examination tool options for now [216], which rely on white-light 5 

illumination while require highly experienced skills of recognization and locating 6 

pathologic tissues [219]. Raman spectroscopy is a unique vibrational technique 7 

capable of probing biomolecular changes in tissue, which has shown great promise for 8 

early diagnosis and detection of precancer and cancer diagnosis in a variety of organs 9 

(e.g., skin, cervix, lung, esophagus, stomach, colon, kidney, bladder, breast, 10 

nasopharynx and the larynx) [114, 129, 130, 171, 200, 202, 206, 209, 212, 220-231]. 11 

Current Raman research in diagnosing laryngeal cancer is mostly only focused on the 12 

so-called fingerprint region (i.e., 800 to 1800 cm-1) that contains rich biochemical 13 

information about the tissue [129, 130, 210, 212, 228]. However, the strong 14 

fluorescence background and Raman signals attributed to the silica fiber severely 15 

interfere with the detection of the inherently weak tissue Raman signal, leading to a 16 

complex fiber probe filtering design as well as signal analysis in the fingerprint region. 17 

On the other hand, the high wavenumber (HW) (2800-3800 cm-1) Raman 18 

spectroscopy can also provide complementary biochemical information for tissue 19 

diagnosis and characterization with much stronger tissue Raman signals but reduced 20 

tissue/fiber fluorescence background, as compared to the fingerprint Raman 21 

spectroscopy [209, 232, 233]. To date, HW Raman spectroscopy for laryngeal tissue 22 

diagnosis and characterization has yet been reported in literature. 23 

In this chapter, we proposed the implementation of the transnasal image-24 

guided HW Raman spectroscopy developed to differentiate tumor from normal 25 
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laryngeal tissue. A rapid-acquisition Raman spectroscopy system coupled with a 1 

miniaturized fiber-optic Raman probe was utilized to realize real-time HW Raman 2 

(2800 to 3020 cm-1) measurements in the larynx. Multivariate statistical techniques, 3 

including principal components analysis (PCA) and linear discriminant analysis 4 

(LDA), are utilized to develop diagnostic algorithms for differentiation between 5 

normal and cancerous laryngeal tissue. The receiver operating characteristic (ROC) 6 

curve is also conducted to further evaluate the performance of PCA-LDA algorithms 7 

on HW Raman spectroscopy for laryngeal cancer diagnosis. 8 

5.2 HW Raman Spectroscopy for Cancer Diagnosis 9 

5.2.1 Raman endoscopic instrument 10 

The novel image-guided Raman endoscopy platform developed for in vivo 11 

tissue measurements and characterization has been described in Figure 5.1. Briefly, 12 

the Raman spectroscopy system consists of a spectrum stabilized 785 nm diode laser 13 

(maximum output: 300 mW, B&W TEK Inc., Newark, DE), a transmissive imaging 14 

spectrograph (Holospec f/1.8, Kaiser Optical Systems) equipped with a liquid 15 

nitrogen cooled (-120oC), NIR-optimized, back-illuminated and deep depletion 16 

charge-coupled device (CCD) camera (1340 × 400 pixels at 20 × 20 µm per pixel; 17 

Spec-10: 400BR/LN, Princeton Instruments). We have constructed a 1.8 mm fiber-18 

optic Raman endoscopic probe with dual coatings on the fiber tip for optimizing both 19 

the tissue excitation and Raman collections [144]. The 785 nm laser is coupled into 20 

the central delivery fiber (200 µm, NA=0.22) of the Raman probe for tissue excitation, 21 

while the backscattered tissue Raman photons from the laryngeal tissue are collected 22 

by the surrounding fibers (32x200 µm, NA=0.22). The Raman fiber probe fits into the 23 

instrument channel of laryngoscope and can be safely targeted to different locations in 24 



 90 

the larynx under the multimodal wide-field imaging (i.e., white-light reflectance 1 

(WLR) and narrow-band imaging (NBI)) guidance. 2 

 3 
Fig. 5.1 Schematic of the integrated Raman spectroscopy and trimodal endoscopic imaging system 4 
with software GUI (lower left) developed for in vivo tissue Raman measurements in larynx. 5 
 6 

By tuning the grating position, the Raman system acquires HW Raman spectra 7 

over the HW range of 2800-3020 cm-1, and each raw spectrum is acquired within 1 s 8 

with light irradiance of 1.5 W/cm2. The spectral resolution of the system is about 9 9 

cm-1, and all wavelength-calibrated HW Raman spectra are also corrected for the 10 

wavelength-dependence of the system using a standard lamp (RS-10, EG&G Gamma 11 

Scientific, San Diego, CA). HW Raman spectra are then extracted from the raw tissue 12 

spectra using established preprocessing methods including smoothing, baseline 13 

subtraction, etc [206]. All the spectral pre-processing is completed on-line, and the 14 

Raman spectra (raw data (1510-3200 cm-1) and normalized data (HW range)) and the 15 
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outcome of decision algorithms can be displayed in real-time in a comprehensible 1 

graphical user interface (GUI) shown in Figure 5.1(lower left) during clinical 2 

transnasal Raman endoscopy. 3 

5.2.2 Subjects and procedures 4 

This study was approved by the SingHealth Centralized Institutional Review 5 

Board (IRB), Singapore. A total of 39 different patients with a mean age of 60 who 6 

underwent surgical resection due to laryngeal malignancies were recruited for this 7 

study. All patients preoperatively signed an informed consent permitting Raman 8 

measurements on laryngeal tissue. HW Raman spectra were directly acquired from 9 

the suspicious lesion sites for each patient through gently placing the fiber-optic 10 

Raman probe on the tissue with signal acquisition time of <1 s. HW Raman spectra 11 

were also measured from the surrounding normal sites that appear completely normal 12 

in the laryngoscopist’s opinion (i.e., normal tissue does not exhibit colored patterned 13 

changes that only accompany precursor lesions) [191], but no biopsies were taken 14 

from normal appearing tissue. Only highly abnormal sites measured were biopsied 15 

and then submitted for histopathologic examination. A total of 94 Raman spectra (22 16 

normal, 72 tumor as confirmed by histopathology) from different tissue sites were 17 

collected. For the assessment of diagnostic sensitivity and specificity of Raman 18 

endoscopy for tissue classification, histopathological results served as the gold 19 

standard.  20 

All raw spectral data were processed on-line with software developed in the 21 

Matlab environment (The MathWorks, Inc., Natick, MA) [206]. Raw spectra are first 22 

pre-processed by a first-order Savitsky-Golay filter to reduce background noise [234]. 23 

A first-order polynomial was used to fit tissue autofluorescence background and then 24 

subtracted from the raw spectra to obtain the pure HW Raman spectra. The HW 25 
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Raman spectra are then normalized over the integrated area under the curve from 1 

2800 to 3020 cm-1 to allow a better comparison of the spectral shapes and relative 2 

Raman band intensities among different subjects/tissue sites [202]. Principal 3 

components analysis (PCA) was used to reduce dimensionality of the Raman data 4 

(each Raman spectrum ranging from 2800 to 3020 cm-1 with set of 255 intensities), 5 

retaining the most diagnostically significant information for effective tissue 6 

classification. The spectra were first standardized to ensure that mean of the spectra 7 

was zero and the standard deviation (SD) was one, eliminating the influence of inter- 8 

and/or intra-subject spectral variability on PCA. Mean centering ensures that the 9 

principal components (PCs) form an orthogonal basis [188, 189]. Thus, PCA were 10 

employed to extract a set of orthogonal PCs comprising loadings and scores that 11 

accounted for most of the total variance in original spectra. Each loading vector is 12 

related to the original spectrum by a variable called the PC score, which represents the 13 

weight of that particular component against the basis spectrum. The most 14 

diagnostically significant PCs (p<0.05) were determined by Student’s t-test and then 15 

selected as input for the development of linear discriminant analysis algorithms for 16 

classification [189]. LDA determines the discriminant function that maximizes the 17 

variances in the dataset between groups while minimizing the variances between 18 

members of the same group. The performance of the diagnostic algorithms rendered 19 

by the PCA-LDA models for correctly predicting the tissue groups (e.g. normal vs. 20 

cancer) was estimated in an unbiased manner using the leave-one subject-out, cross-21 

validation method [188, 235] on all model spectra. In this method, the spectra from 22 

each same patient were held out from the data set and the PCA-LDA modeling was 23 

redeveloped using the remaining HW Raman spectra. The redeveloped PCA-LDA 24 

diagnostic algorithm was then used to classify the withheld spectra. This process was 25 
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repeated until all withheld spectra were classified. Receiver operating characteristic 1 

(ROC) curves were generated by successively changing the thresholds to determine 2 

correct and incorrect classifications for all tissues. Multivariate statistical analysis 3 

were performed online using in-house written scripts in the Matlab (Mathworks Inc., 4 

Natick, MA) programming environment [206]. 5 

5.3 Results 6 

5.3.1 Tissue Raman spectra 7 

Figure 5.2A shows the comparison of mean HW Raman spectra ±1 SD of 8 

normal (n=22) and cancer (n=72) laryngeal tissue. 9 

 10 
Fig. 5.2 (A) comparison of the mean HW Raman spectra ±1 standard deviations (SD) of normal 11 
(n=22) and cancer (n=72) laryngeal tissue. (B) Difference spectrum ±1 SD between cancer (n=72) 12 
and normal laryngeal tissue (n=22). Note that the mean normalized HW Raman spectrum of 13 
normal tissue was shifted vertically for better visualization (panel A); the shaded areas indicate the 14 
respective standard deviations. The picture shown is the Raman acquisitions from the larynx using 15 
endoscopic fiber-optic Raman probe. 16 
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Prominent Raman bands such as 2845, 2880, and 2920 cm-1 (CH2 stretching of 1 

lipids), and 2940 cm-1 (CH3 stretching of proteins) are found in both normal and 2 

tumor laryngeal tissues [209, 236, 237]. As shown in the difference spectrum (Figure 3 

5.2B), the intensities of Raman band between 2812 to 2900 cm-1 in cancer tissue is 4 

obviously greater than normal tissue, while the Raman band between 2900 to 3020 5 

cm-1 the normal is higher. This suggests that there is an increase or decrease in 6 

particular types of biomolecules relative to the total Raman-active biomolecules in 7 

cancer tissue as compared to normal tissue, demonstrating the potential role of HW 8 

Raman spectroscopy for cancer diagnosis in the larynx. 9 

5.3.2 Cancer diagnosis by using PCA-LDA 10 

To determine the most significant Raman features for tissue analysis and 11 

classification, the multivariate statistical technique (e.g., PCA-LDA) coupled with 12 

Student’s t-test are performed by incorporating the entire HW Raman spectra. Figure 13 

5.3 shows the first five dominant principal components (PCs) accounting for about 14 

99.2% (PC1: 89.1%; PC2: 7.41%; PC3: 1.52%; PC4: 1.08%; PC5: 0.07%) of the total 15 

variance calculated from HW Raman spectra of laryngeal tissues. Overall, the PC 16 

features among different PCs are different, but some PC features roughly correspond 17 

to HW Raman spectra, with peaks and troughs at positions (e.g., (CH2 stretch band 18 

(lipids) near 2845 cm-1, 2880 cm-1, 2920 cm-1 and CH3 stretch band (proteins) near 19 

2940 cm-1) similar to those of tissue HW Raman spectra. The first PC accounts for the 20 

largest variance within the spectral data sets (i.e., 89.1%), whereas successive PCs 21 

describe features that contribute progressively smaller variances. Unpaired two-sided 22 

Student’s t-tests on the first five PCs show that only three PCs (PC1, PC2 and PC3, 23 

p<0.05) are diagnostically significant.  24 

 25 
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Fig. 5.3 The first five principal components (PCs) accounting for about 99.2% of the total 2 
variance calculated from HW Raman spectra of laryngeal tissue (PC1=89.1%; PC2=7.41%; 3 
PC3=1.52%; PC4=1.08%; PC5=0.07%). 4 
 5 

To develop effective diagnostic algorithms for tissue classification, the three 6 

diagnostically significant PCs are fed into the LDA model together with leave-one 7 

subject-out, cross-validation technique for tissue classification. PCA-LDA algorithms 8 

on the HW tissue Raman data provide the diagnostic sensitivity of 90.3% (65/72) and 9 

specificity of 90.9% (20/22) for laryngeal cancer identification which is shown below 10 

in Figure 5.4. 11 

In addition, Figure 5.5 shows the ROC curve which was also generated from 12 

the posterior probability plot in Figure 5.4 at different threshold levels, displaying the 13 

performance of PCA-LDA-based diagnostic algorithms derived for laryngeal cancer 14 

detection. The integration area under the ROC curve is 0.97 which further confirms 15 

that HW Raman technique coupled with PCA-LDA-based diagnostic algorithms is 16 

robust for laryngeal cancer diagnosis. 17 
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Fig. 5.4 Scatter plot of the linear discriminant scores for the normal and cancer categories using 2 
the PCA-LDA method together with leave-one subject-out, cross-validation method. The 3 
algorithm yields a diagnostic sensitivity of 90.3% and specificity of 90.9% for differentiation 4 
between normal and tumor tissues. 5 
 6 
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Fig. 5.5 ROC curve of discrimination results for Raman spectra utilizing the PCA-LDA-based 8 
spectral classification with leave-one subject-out, cross validation. The integration area under the 9 
ROC curves is 0.97 for PCA-LDA-based diagnostic algorithm. 10 
 11 
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5.4 Discussion 1 

Raman spectroscopy holds a great promise for clinical application, as it can be 2 

used as a non-invasive technique for tissue Raman signal detection of biomolecular 3 

changes associated with tissue pathology. Our study demonstrates that HW Raman 4 

technique is capable to generate spectral differences between normal and cancer tissue 5 

in the larynx as shown in Figure 5.2 above. The empirical analysis based on the 6 

intensity ratio measurements which relate to the changes in protein-to-lipid contents 7 

has already been reported in literature [202, 214]. Student’s t-test (p<0.0001) is used 8 

to test the significant difference of Raman intensity ratios of normal and cancer tissues. 9 

Intensity at 2920 cm-1 and 2940 cm-1 is higher in normal tissues, while at 2845 and 10 

2890 cm-1 are higher in cancer tissues. The three significant Raman peak intensity 11 

ratios of I2940/I2845, I2940/I2890 and I2940/I2920 correlated with their histopathologic 12 

findings were also evaluated, and the decision lines (i.e., diagnostic algorithms) 13 

separated cancer from normal tissues with a sensitivity of 72.2% (52/72), 45.8% 14 

(33/72) and 44.4% (32/72), while a specificity of 81.8% (18/22), 72.7% (16/22) and 15 

63.6% (14/22), respectively, for laryngeal cancer identification. These indicate that 16 

different ratios of Raman band intensities only give a certain levels of accuracy for 17 

tissue classification. The Raman intensity ratios of I2940/I2845 and I2940/I2890 are both 18 

lower for cancer tissue, this may due to the decrease in content of collagen. In cancer 19 

progression, from genetic mutation to invasive cancer in the laryngeal site, the 20 

epithelium turns thicker and thus obstructs the collagen Raman emission from deep 21 

collagen basal membrane, thereby decreases the overall ratio of I2940/I2845 in laryngeal 22 

cancer tissue [200]. 23 

Besides, the contribution of collagen in cancer tissue should be reduced due to 24 

proliferation of cancerous cells and express as a class of metalloportease which in turn 25 
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decrease the content of collagen level. Raman band at 2845 cm-1 is tentatively 1 

ascribed to CH2 lipids and it seems to correspond to Raman peak at 1450 cm-1 in the 2 

fingerprint region, which is assigned to CH2 protein/lipids. CH2 protein/lipids are 3 

found to be higher in cancer than in normal laryngeal tissues, which can be explained 4 

by the increase of mitotic activity in the nucleus [200, 209, 212, 224, 228]. The 5 

distinctive differences in HW Raman spectra between normal and cancer laryngeal 6 

tissues reinforce that HW Raman spectroscopy can be used to reveal molecular 7 

changes associated with carcinogenesis progression. Considering the complexity of 8 

biological tissue, multivariate statistical analysis (PCA-LDA) which incorporates the 9 

entire Raman spectra data for analysis is more robust and rigorous to differentiate 10 

spectra that represent either normal or cancer tissue. Compared with intensity ratio 11 

approach, there is a great improvement in diagnostic sensitivity (~25%) and 12 

specificity (~11%) of PCA-LDA algorithms (Fig.5.4). The ROC curve (Fig.5.5) of 13 

PCA-LDA modeling (AUC=0.97) further verifies a better diagnostic efficacy of HW 14 

Raman spectroscopy integrated with PCA-LDA algorithm as compared to the 15 

intensity ratio diagnostic algorithms. One notes that PCA is primarily for data 16 

reduction rather than identification of biochemical or biomolecular components of 17 

tissue, it is difficult to interpret the physical meanings from the component spectra. 18 

This could be tackled by using more powerful diagnostic algorithms such as genetic 19 

algorithms [238], the distinctive spectral regions that are optimal for tissue 20 

differentiation may be indentified and related to particular biochemical and 21 

biomolecular changes (e.g., proteins, lipids and nucleic acid) associated with 22 

neoplastic changes.  23 

It is also crucial to further understanding the relationship between the 24 

neoplastic-related morphologic/biochemical changes and tissue HW Raman spectra 25 
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for laryngeal precancer/cancer diagnosis [200, 206, 212]. We are currently working on 1 

this direction by recruiting more patients for developing more powerful HW Raman 2 

genetic diagnostic algorithms for real-time laryngeal tissue diagnosis and 3 

characterization. 4 

5.5 Conclusion 5 

In summary, this work demonstrates that transnasal image-guided real-time 6 

HW Raman spectroscopic technique integrated with an endoscope-based fiber-optic 7 

Raman probe can be used to acquire HW Raman spectra from laryngeal tissue in the 8 

range 2800-3020 cm-1 during clinical endoscopic examination. The significant 9 

differences in HW Raman spectra are observed in normal and cancer laryngeal tissues. 10 

The PCA-LDA modeling on HW Raman spectra provides good tissue classification, 11 

illustrating the potential of HW Raman spectroscopy for real-time laryngeal cancer 12 

detection during clinical endoscopic examination. 13 

14 
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Chapter 6 Conclusions and Future Directions 1 

6.1 Conclusions 2 

In this dissertation, the motivation for our research is to investigate the 3 

feasibility of combining different optical spectroscopic and imaging techniques 4 

developed to improve the diagnosis of cancer in the head and neck compared to the 5 

diagnosis by individual spectroscopic method alone. First of all, we have evaluated 6 

feasibility of applying the developed endoscope-based AF/DR spectroscopy and 7 

AF/WLR imaging system for clinical evaluation of human tissues, and to characterize 8 

the properties of internal and external organ tissues (i.e., oral and skin). The AF/WLR 9 

images and point-wise AF/DR spectra can be simultaneously acquired from the same 10 

tissue site imaged without introducing an optical fiber catheter into the instrument 11 

channel of an endoscope as compared to conventional endoscopic spectral 12 

measurements which prolong the endoscopic operation procedures. The results 13 

demonstrate that the point-wise DR/AF spectra from different anatomical tissue 14 

locations also vary, revealing the differences in concentrations of endogenous 15 

fluorophores among different tissue locations. A total of 446 in vitro AF/DR spectra 16 

(207 normal, 239 tumor) from different tissue sites were collected by using the 17 

integrated AF/DR spectroscopic and imaging system. The composite AF and DR 18 

spectra were further analyzed using principal component analysis (PCA) and linear 19 

discriminant (LDA), yielding a diagnostic accuracy of 94.8% (sensitivity of 91.6% 20 

and specificity of 98.6%) for normal and cancer classification, which shows a 21 

significantly improved diagnostic accuracy compared to the AF or DR spectra alone. 22 

Secondly, an integrated Raman spectroscopy and endoscopy based trimodal 23 

(white-light reflectance, autofluorescence and narrow band) imaging technique for 24 
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real-time in vivo tissue Raman measurements was developed. A customized 1 

endoscopic Raman probe (diameter < 2mm) with filtering modules is developed to 2 

maximize Raman collections from the tissue by eliminating the interference of 3 

fluorescence background and silica Raman from fibers. High quality in vivo Raman 4 

spectra can be acquired within 1s under the guidance of different wide-field imaging 5 

modalities. After that, a total of 874 in vivo Raman spectra were successfully acquired 6 

from different sites of the nasopharynx and larynx (PN (n=521), FOR (n=157) and 7 

true LVC (n=196)) from 23 normal volunteers during endoscopy examinations. 8 

Multivariate statistical techniques, including principal components analysis (PCA) 9 

and linear discriminate analysis (LDA) together with the leave-one tissue site-out, 10 

cross validation, were further applied to develop diagnostic algorithms for 11 

classification. The PCA-LDA modeling on in vivo Raman spectroscopy yielded a 12 

sensitivity of 77.0% and specificity of 89.2% for differentiation between PN vs. FOR, 13 

and sensitivity of 67.3% and specificity of 76.0% for distinguishing LVC vs. PN, 14 

demonstrating the potential of transnasal image-guided Raman spectroscopy for in 15 

vivo, rapid and non-invasive identification of nasopharynx and larynx in real-time. 16 

We have also explored the utility of transnasal image-guided high 17 

wavenumber (HW) Raman spectroscopy to differentiate tumor from normal laryngeal 18 

tissues at endoscopy, and the fiber-optic Raman system acquires HW Raman spectra 19 

over the range of 2800-3020 cm-1 within 1 s at clinical endoscopy. We have applied 20 

the HW Raman spectroscopy to acquire a total of 94 all wavelength-calibrated HW 21 

Raman spectra (22 normal sites, 72 tumor sites) with spectral resolution of 9 cm-1 22 

from 39 patients who underwent laryngoscopic screening. Significant differences in 23 

Raman intensities of prominent Raman bands at 2845, 2880 and 2920 cm-1 (CH2 24 

stretching of lipids), and 2940 cm-1 (CH3 stretching of proteins) were observed 25 
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between normal and cancer laryngeal tissues. PCA-LDA modeling on HW Raman 1 

spectra yields a diagnostic sensitivity of 90.3% and specificity of 90.9% for laryngeal 2 

cancer identification. 3 

In summary, we have developed and assessed the potential of the novel 4 

multimodal optical spectroscopy and imaging technique developed for the sensitive 5 

and specific detection of cancer in the head and neck (e.g., nasopharynx and larynx). 6 

The three spectroscopic techniques (diffused reflectance, autofluorescence and Raman 7 

scattering) are able to be integrated with different endoscopic imaging modalities (i.e., 8 

WLR, NBI and AFI) simultaneously and provide comprehensive information about 9 

tissue biochemistry and morphology which are altered with cancer development. The 10 

work in this thesis demonstrates that the integrated multimodal spectroscopy and 11 

imaging technique developed has the potential to be a clinically powerful tool for 12 

improving cancer diagnosis and detection in the head and neck during clinical 13 

endoscopic examinations. 14 

6.2 Future Directions 15 

The work presented in the thesis mainly focuses on the development of 16 

multimodal spectroscopy and imaging system for tissue diagnosis, but it still suffer 17 

from some limitations, such as lack of depth-resolved ability, and optical section 18 

ability for three-dimensional (3D) tissue imaging, etc. To address these issues, Some 19 

directions for further research are proposed as follows: 20 

1) Development of fiber-optic confocal Raman probe for enhancing 21 

epithelial tissue Raman measurements at endoscopy 22 

NIR Raman spectroscopy is a unique vibrational technique capable of probing 23 

biomolecular structures and compositions of tissue, and has excelled in the early 24 
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detection of precancer and cancer in internal organs [125, 126, 137, 144, 203, 239]. 1 

Very recently, the volume-typed fiber-optic Raman endoscopic probe coupled with 2 

high throughput Raman system has been developed for rapid tissue Raman 3 

acquisitions and cancer diagnostics in internal organs [137, 144, 203, 239]. As 4 

carcinogenic onset (e.g., dysplasia) initially evolves in the epithelial tissue layer, it is 5 

highly desirable to develop a depth-resolved Raman probe to selectively target the 6 

epithelium during clinical endoscopy. Furthermore, certain internal organs and 7 

anatomical tissue sites (e.g., lung, esophageal junction, gastric body region and tongue) 8 

emit relatively strong tissue AF background under the NIR laser excitation (e.g., 785 9 

nm, 830 nm), which may obscure the inherently weak tissue Raman signal while 10 

rapidly saturates the charge-coupled device (CCD) in clinical settings. To reduce the 11 

tissue NIR AF interference and ensure sensitive detection of the shallower layer tissue 12 

structures, we are working on developing a compact confocal Raman endoscopic 13 

probe coupled with a small ball lens for enhancing in vivo epithelial tissue Raman 14 

measurements at endoscopy. The basic prototype of confocal Raman probe design for 15 

in vivo tissue Raman measurements at endoscopy is shown in Fig. 6.1a. Monte Carlo 16 

(MC) simulation method was employed to evaluate the performance of the ball-lens 17 

Raman probe designs under different optical configurations (Fig. 6.1b). Both the MC 18 

simulations and measurements show that the collection efficiency of the confocal 19 

Raman probe has a decreasing trend with the increased fiber-ball lens gaps. Our 20 

further MC simulations indicate that when the ball lens-fiber gap distance is close to 21 

800-1000 µm, confinement to the shallow epithelium can be improved up to ∼6% and 22 

approximately 75% of tissue Raman photons collected could largely originate from 23 

shallow epithelial tissue (within 150 µm) (blue curve in Fig. 6.1b). The cumulative 24 

Raman photons collected as a function of tissue depth under the beveled fiber 25 



 104

confocal Raman probe with a ball-lens (Fig. 6.1c) indicates that a maximum of tissue 1 

Raman signal can be acquired at the tissue depth of ~72 µm in the epithelium; and 2 

almost 90% of the total Raman signal collected originates from the epithelium (within 3 

150 µm) with negligible contributions from the stromal layer (less than 5%). We have 4 

also characterized the confocal ability of the beveled-fiber confocal Raman probe 5 

developed using a polished silicon chip (Raman peak at 520 cm-1); the full width of 6 

half maximum (FWHM) for the depth of focus acquired is about 93 µm, which is 7 

similar to the simulation result of ~100 µm (Fig. 6.1c). 8 

 9 
Fig. 6.1 (a) Schematic of the beveled fiber-optic confocal Raman probe coupled with a ball lens 10 
for in vivo tissue Raman measurements at endoscopy; (b) Comparison of the calculated and 11 
measured Raman collection efficiencies (normalized to maximum) as a function of the gap 12 
distance d between the fiber tip to the ball lens (left y-axis). The blue colored curve in Fig 1b is the 13 
calculated Raman collection efficiency from the shallow epithelium (within 150 µm) with 14 
respective to the total Raman emission in two-layered buccal tissue (right y-axis); (c) The depth-15 
resolved distribution of Raman photons collected in two-layered tissue model. 16 
 17 

We also compared the performance of the confocal Raman probe with a 18 

volume-typed Raman probe at endoscopy. The 785 nm laser intensities on the tips of 19 

the confocal probe and volume-typed probe are regulated to obtain comparable laser 20 

irradiances on the tissue surface. In vivo Raman spectra were obtained from the same 21 

gastric tissue site using both the confocal probe and volume-typed probe with 0.5 s 22 

integration time. Fig. 6.2a shows the mean in vivo raw spectra as well as the ratio 23 

spectrum (confocal spectrum divided by volume spectrum) of the gastric tissue 24 

acquired from a patient undergoing the endoscopic examination with 25 

histopathological confirmed normal mucosa. The in vivo gastric tissue Raman spectra 26 
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acquired by using both the confocal and volume-typed Raman probes are shown in 1 

Fig. 6.2b. Obviously, the stronger and better signal-to-noise ratio (SNR) in vivo 2 

Raman spectra can be acquired from gastric tissue using the confocal probe with a 3 

much reduced tissue AF (reduced by ~30% as shown in ratio spectrum in Fig. 6.2a), 4 

suggesting that NIR AF primarily originating from the deeper tissue layers can be 5 

significantly suppressed using the confocal Raman probe. From Fig. 6.2b, it is also 6 

evident that the in vivo Raman spectra acquired using the confocal probe are 7 

spectrally remarkable distinct compared to the volume-typed probe (e.g., particularly 8 

at around 1302, 1445 and 1655 cm-1), indicating that the information content 9 

interrogated is exceedingly distinct between these two Raman probes. 10 
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Fig. 6.2 (a) Comparison of mean in vivo raw spectra (Raman superimposed on AF) acquired from 12 
the distal esophagus using the confocal Raman probe (n=7) and volume-typed Raman probe (n=7) 13 
with 0.5 s integration time. The blue colored curve is the ratio spectrum (i.e., the confocal Raman 14 
spectrum divided by the Raman spectrum acquired by volume-typed Raman probe). (b) 15 
Comparison of AF background-subtracted tissue Raman spectra acquired by confocal and volume-16 
typed Raman probes. 17 
 18 

We have also compared the performance of confocal endoscopic probe and 19 

volume-typed Raman probe for improving tissue Raman to AF background ratios 20 

among different organs and anatomical sites (e.g., buccal, ventral tongue, distal 21 

esophagus and gastric) which show intense tissue AF under 785 nm laser excitation. 22 

Fig. 6.3 shows the bar diagrams of ±1 standard deviations (SD) of the tissue Raman to 23 

AF intensity ratios. The tissue Raman to AF ratios acquired using the confocal Raman 24 

probe are significantly higher (p<0.05) than those using the volume-typed Raman 25 
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probe among different organ sites. This confirms that NIR AF interference 1 

predominantly associates with deeper layered tissue can be effectively removed using 2 

the confocal Raman probe. 3 
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Fig. Fig. Fig. Fig. 6.6.6.6.3333 Bar diagrams ±1 standard deviations (SD) showing the Raman to AF ratios of 5 
different internal organs and anatomical tissue sites (i.e., buccal, ventral tongue, distal 6 
esophagus and gastric) using confocal and volume-typed Raman probes. 7 

 8 

In summary, these preliminary results from in vivo measurements in two-layer 9 

model tissue (e.g., buccal, gastric) have revealed that fiber-optic confocal Raman 10 

endoscopic probe coupled with a ball-lens may be of great potential for implementing 11 

as an effective diagnostic tool at endoscopy for enhancing epithelial tissue Raman 12 

measurements, which may ultimately further improve early diagnosis and detection of 13 

precancer and early cancer in internal organs at clinical endoscopy. 14 

2) Development of on-line biomedical spectral diagnostic framework and 15 

optimizing the diagnostic model by employing other multivariate statistic 16 

techniques 17 

We have implemented the multimodal spectroscopy for real-time tissue 18 

measurements but most of the current spectroscopic analyses have been limited to off-19 

line post processing for classification of spectra with cross-validation procedures, 20 

which render practical limitations including the setting of exposure times, post-21 

verification of spectrum quality, lack of automatic feedback mechanisms to clinicians 22 

for implementation of straightforward probabilistic diagnostics in clinical settings. 23 
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Hence, fully automated tissue spectral quality verification and real-time tissue cancer 1 

diagnostics are vital to translating the Raman spectroscopic diagnostic technique into 2 

practical clinical endoscopic routine. As such, we aim to develop an on-line 3 

biomedical spectral diagnostic framework integrated with image-guided endoscopy 4 

for real-time probabilistic detection of cancer in the head and neck. We also aim to 5 

validate the efficacy of this on-line framework developed for prospective prediction of 6 

patients with malignancies at clinical endoscopy. 7 

Furthermore, in our study, PCA-LDA was mainly applied for developing 8 

diagnostic algorithms for disease identification. However, there exist other 9 

multivariate statistic techniques which have been used for developing classification 10 

functions, such as support vector machine (SVM), adaptive boosting (Ada Boost), 11 

artificial neural network (ANN), partial least-square discriminate analysis (PLS-DA) 12 

and genetic algorithm (GA) [240-253]. Therefore, choose one or several of these 13 

multivariate statistic techniques for specific organs/tissues as an appropriate algorithm 14 

to optimize the diagnosis may be another meaningful research. For now, we have 15 

planned to integrate more algorithms such as cluster analysis, ant colony optimization 16 

(ACO), adaptive boosting (Ada Boost) and genetic algorithm (GA) into current 17 

programs for optimizing analytical model for in vivo cancer diagnosis. 18 

3) Develop the integrated wide-field imaging (NBI/AF/WLR) and point 19 

spectroscopy coupled with nonlinear optical (NLO) imaging techniques for 20 

improving tissue diagnosis and characterization at endoscopy 21 

Nonlinear optical (NLO) imaging is a powerful optical technique that has 22 

found increasing use in the field of biomedical diagnostics. In NLO imaging, ultrafast 23 

laser excitation is used to exploit several nonlinear optical effects that can provide 24 

high-contrast imaging of biological samples. Commonly, NLO imaging modalities 25 
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include two- and three-photon fluorescence (2P & 3P), second and third-harmonic 1 

generation (SHG & THG), and coherent anti-stokes Raman scattering (CARS) or 2 

stimulated Raman scattering (SRS), which provide label-free, high spatial resolution 3 

and three-dimensional (3D) optical sectioning with high image contrast at the 4 

molecular level. Another advantage is the fact that the excitation wavelengths used for 5 

NLO imaging are preferred in the NIR ranges, which have much better penetration 6 

depths into biomedical tissue with no mutagenic effect/damage to tissue. Therefore, it 7 

will be of great clinical benefit to developing a hybrid NLO imaging technique 8 

(narrow-field imaging) with our developed endoscopic-based multimodal 9 

spectroscopy (AF/DR/Raman) and wide-field imaging as which can provide detailed 10 

information about tissue (morphology, vascularity, endogenous fluorophores (flavin, 11 

NADH, collagen, elastin) distributions, vibrational modes of biochemical and 12 

biomolecules, etc.) for further improving early disease diagnosis and characterization 13 

at the molecular, cellular and tissue levels. 14 

 15 

16 
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