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SUMMARY 

Due to the international trade imbalances between countries, liner operators today 

often face a challenge to effectively operate empty containers in a dynamic 

environment. The problem of empty container repositioning therefore is well worth 

studying and has received considerable attention from both academics as well as 

industries in recent years. Among a variety of methods proposed for empty container 

repositioning problem, inventory-based control policies have recently received 

increasing attention. This thesis focuses on maritime empty container repositioning 

problem with inventory-based control policies. 

Firstly, we address the joint empty container repositioning and container fleet 

sizing problem in a multi-port system. A threshold-type policy is developed to 

reposition empty containers periodically. The problem is to optimize the fleet size and 

the threshold levels of the policy so as to minimize the expected total cost per period. 

We show that when the fleet size is equal to the sum of the thresholds, the problem can 

be reduced to a newsvendor problem which can be solved analytically. Meanwhile, we 

show that it is worth to study the scenario in which the fleet size is not equal to the 

sum of the thresholds, since this scenario could result in lower operation cost 

compared to the scenario in which the fleet size is equal to the sum of the thresholds. 

However, since there is no closed-form formulation of the expected cost function, we 

build a simulation model and propose a gradient-driven algorithm with infinitesimal 

perturbation analysis gradient estimator to tackle this problem. The numerical 

experiments are offered to demonstrate the effectiveness of the proposed policy and to 

provide some insights for liner operators in managing empty containers.  
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Then, we extend the previous problem by considering actual service schedule. 

Previous study simply assumes that the transportation time between each pair of ports 

is not greater than one unit time, and empty containers can be repositioned between 

any pair of ports. However, in practical liner shipping operations, empty containers can 

only be repositioned by vessels, which travel according to the fixed schedules of 

service routes. And the transportation time between two ports in a service route could 

be different. Thus, we extend the multi-port system to a liner shipping system with 

multiple services. This has greatly complicated the empty container repositioning 

problem. Focusing on empty container, we formulate the problem in a time-driven way 

and develop two inventory-based control policies to manage empty containers. The 

numerical studies are provided to examine the relative performances of both policies in 

some small size problems. 

  Further, for the problem in the liner shipping system, we optimize the threshold 

values of a given policy by developing a search algorithm based on the convergent 

optimization via most-promising-area stochastic search method. A hybrid coordinate 

and gradient sampling scheme with simultaneous perturbation stochastic 

approximation gradient estimator is proposed to improve the sampling scheme in the 

search algorithm in terms of search efficiency. The numerical studies are offered to 

demonstrate the effectiveness of the proposed sampling scheme and to present the 

performance of the inventory-based policy in a practical problem.     
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Figure 1.1.  Global container trade, 1996-2013 (TEUs and annual percentage change) 

Source: United Nations Conference on Trade and Development (2012) 
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Chapter 1 INTRODUCTION 

 Growth in maritime transportation industries has been stimulated by the increase 

in international merchandise trade as a result of globalization in the last few decades. 

In particular, the containerization of cargo transportation has been the fastest growing 

sector of the maritime industries. Containerized cargoes have grown at an annual 

average rate of about 7.5% over the period 1996 through to 2012 as shown in Figure 

1.1. 

From Figure 1.1, it can be seen that global container trade is continuously 

increasing, except in 2009. In 2009, global container trade volumes fell for the first 

time in the history of containerization, which is due to weak global economic 

conditions. In 2010, however, global container trade experienced robust recovery and 

volumes bounced back at 12.8% over 2009, among the strongest growth rates in the 

history of containerization. It is estimated that global container trade is projected to 

grow by about 6.5% in 2013 to reach 169 million TEUs (Twenty-foot Equivalent 

Units), equivalent to about 1.5 billion tons. There are tremendous potential for growth 



Chapter 1 Introduction 

2 

 

in the containerized shipping industry especially with the rapid economic development 

in economies such like China and India. Meanwhile, the rapid growth of containerized 

shipping has presented challenges on managing container inevitably, in particular on 

repositioning empty containers at various geographical levels. The repositioning 

problem, which is about how to move empty containers from surplus location to 

demand location in order to satisfy customer shipment demands at the least cost, is 

known as Empty Container Repositioning (ECR) problem.   

In the subsequent sections, we first provide an overview of ECR problem，

followed by presenting the objectives and the scope of our study. Then, the 

contributions of this thesis are presented. Finally, a summary of the contents of this 

thesis and its structure are presented. A more detailed discussion of previous and on-

going research on ECR problem will be presented in Chapter 2. 

1.1 Overview of empty container repositioning problem 

The rapid growth of containerized shipping has effectively removed significant 

costs and inefficiencies in the movement of materials for shippers. In the container 

shipping process, it is most efficient that containers are used to hold cargo at all times, 

possibly by loading new cargo after the previous cargo reaching its destination. 

However, due to the nature of the equipments used in containerized shipping, this 

efficient use of containers may not be always possible. Thus, ECR problem persists. 

This problem is further aggravated by the highly imbalanced nature of global trade.  

Figure 1.2 features container trade volumes on the two major East-West container 

routes between 1995 and 2011. It can be seen that in general, container flows and 

imbalance between eastbound and westbound trades are continuously increasing. In the 
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(a) Europe Asia trade route  

(Westbound: Asia – Europe; Eastbound: Europe – Asia) 

 

 
 

(b) Transpacific trade route  

(Eastbound: Asia – North America; Westbound: North America – Asia) 

 

Figure 1.2.  Estimated cargo flows along two major container trade routes, 1995-2011 (in Million TEUs) 
                    Source: United National Conference on Trade and Development (2011, 2012) (2011) 

(2012) 
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Europe Asia trade route, in 1995, the flow was 2.4 million TEUs from Asia to Europe 

and 2.0 million TEUs in the opposite direction. By 2004, the flow had increased to 8.2 

million TEUs in the westbound direction and 4.3 million TEUs in the reverse direction. 

By 2008, the flow reached 13.3 million TEUs in the westbound direction and 5.2 

million TEUs in the reverse direction. Although the westbound trade volumes fell in 

2009 due to weak economic conditions, it experienced recovery in 2010. Hence, the 

annual container flow in the westbound direction, i.e., from Asia to Europe, increased 

by 5.8 million TUEs in the 9 years from 1995 to 2004, and by 5.1 million TEUs in the 
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Figure 1.3. Empty share of container movements (1990-2006) 

Source: Economic and social commission for Asia and the Pacific (2007) 
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4 years from 2004 to 2008. In addition, the imbalance of container flow between the 

westbound trade and the eastbound trade has also increased. The imbalance was 0.4 

million TEUs in 1995, that was 3.9 million TEUs in 2004, and that reached 7.9 million 

TEUs in 2011. The situation is similar for container flows in the transpacific trade 

route.  

The port in the favorable balance of trade, such as port in mainland China, has a 

shortage of empty containers. On the other hand, the port in the adverse balance of 

trade, such as port in Europe, accumulates a large number of surplus empty containers. 

The unbalanced empty containers between the export-dominated port and the import-

dominated port result in a delay of fulfilling customer shipment demands, holding and 

maintenance costs of unused empty containers, extra purchasing or leasing cost of 

containers, etc (Liu et al., 2011). Hence, repositioning empty containers from one port 

to another is an essential mechanism to balance the container flow.  

Figure 1.3 shows the ratio of empty containers to total containers handled in ports 

during 1990 and 2006. It can be seen that until approximately 1996, there was a 

declining trend in the ratio of empty containers to full containers, since increasingly 
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sophisticated container logistics gradually reduced the number of empty container 

movements. However, since 1998, the empty container handling has accounted for 

more than 20% of global port handling activities, mainly due to the very pronounced 

imbalance in the two main Asian trades with Europe and North America.   

Besides, it is estimated that the cost of repositioning empty containers is just under 

$15 billions, which is 27% of the total world fleet running cost based on the data of 

2002 (Song et al., 2005). Drewry also estimated that there were 50 million TEUs of 

empty container movements in 2009. Assuming a nominal cost of $400 per TEU for 

each empty container movement, the total cost of repositioning empty containers was 

estimated about $20 billion in 2009 (United Nations Conference on Trade and 

Development, 2011). Therefore, efficiently and effectively repositioning empty 

containers is a crucial issue that shipping companies have to address.  

Industrial practitioners and theoretical researchers have come up with various 

valuable mathematical programming models regarding repositioning empty containers. 

The decisions about empty containers in those mathematical models are usually 

presented by a series of values that describe how many empty containers should be 

moved from which ports to other ports. One major attempt of those models is to find 

the optimal values of the ECR decisions to balance the container flow or to minimize 

the related operation cost. However, it is usually difficult to find those optimal values 

for the ECR decisions and even more difficult to execute the decisions in the situations 

with high uncertainty (Dong and Song, 2009).   

Inventory-based control policies for ECR problem have recently received 

increasing attention. Such policies utilize the feedback of inventory information to 

manage empty containers, and are characterized by a set of rules and a set of 
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parameters. Once the rules and parameters are designed, the ECR decisions can be 

made by following these simple rules. Hence, in practice, inventory-based control 

policies appear to be more appropriate for making the ECR decisions in systems with 

uncertainty since they can provide flexibility to cope with dynamic changes and 

unexpected fluctuation of stochastic factors, such as future customer demands.  

Based on the literature review, it has been found that the threshold-type inventory 

control policy is the optimal repositioning policy for empty containers in some systems, 

such as one port system and two-depot system (Li et al., 2004; Song, 2005; Song, 

2007), and such policies have advantage of being easy-to-operate and easy-to-

understand. Hence, our study focuses on ECR problem with inventory-based control 

policies and tries to provide some managerial insights for shipping companies.   

1.2 Research objectives and scope 

This thesis studies maritime ECR problem with inventory-based control policies. 

The specific objectives of this thesis are:  

 To study ECR problem in a multi-port system. In particular, a single-level 

threshold policy with intelligent rule is developed to manage empty containers. Two 

approaches are proposed to optimize the fleet size and the parameters of the policy by 

taking advantage of the property of this problem. The performance of the proposed 

policy is evaluated by some numerical experiments and some insights for managing 

empty container in the multi-port system are also provided. 

 To extend the simulation model of ECR problem in the multi-port system to 

that in a complex liner shipping system with multiple service routes. In particular, two 

inventory-based control policies are developed. 

 To optimize the parameters of a two-level threshold policy by a proposed 

search algorithm. In particular, a hybrid sampling scheme with gradient information is 

proposed to speed up the convergence rate of the search algorithm. The performance of 
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the proposed sampling scheme is tested on a benchmark function and the proposed 

algorithm is utilized to tackle an ECR problem in a complex liner shipping system. 

The focus of this thesis is to make maritime ECR decisions for liner shipping 

companies. We only consider one maritime transportation mode, i.e., by vessel. Other 

transportation modes, such as by barge, by truck or by rail are not considered in this 

study. Besides, following a traditional assumption (Cheung and Chen, 1998), we only 

consider one type of container, i.e., TEU. In addition, in the liner shipping system, we 

assume that the schedule of a service route is given and fixed. The service schedule is 

the timetable of when each vessel will call at each port in the service route. And a 

service route is defined as a special sequence of calling ports. Weekly service for each 

route is commonly provided by most liner shipping companies. That is, in each week, 

for the port in a service route, it will be called by a vessel deployed in this route at a 

fixed day according to the service schedule. Finally, note that we do not make 

decisions on laden container transportation in this study. As laden container 

transportation problem and ECR problem are usually considered separately in current 

shipping industry. 

1.3 Contributions of the thesis 

The contributions of this thesis are listed as follows: 

 We develop a single-level threshold policy with a repositioning rule in terms of 

minimizing repositioning cost to reposition empty containers in a multi-port system. 

Applying this intelligent policy, the operation cost for repositioning empty container 

could be significantly reduced. 

 We present the proof that for the multi-port system with a single-level 

threshold policy, the policy with sum of thresholds   the fleet size could result in less 

operation cost than the policy with sum of thresholds   the fleet size. It provides a 
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important insight that keeping more (less) empty containers over the threshold in 

import-dominated (export-dominated) port in advance when it becomes a deficit 

(surplus) port could reduce the repositioned in (out) quantity of empty containers.   

 We propose a gradient-driven algorithm with infinitesimal perturbation 

analysis (IPA) gradient estimator to optimize the fleet size and the parameters of the 

policy for the multi-port system. The value of this gradient can be obtained from only 

one simulation run in each iteration, which can greatly save the computation time to 

provide good solution. 

 In the procedure to obtain the gradient estimator, we develop a modified 

stepping stone technique to explore the perturbations on ports. It is innovative and 

provides a potential methodology contribution in the field of application of the 

stepping stone method. 

 We build a time-driven simulation model with considering multiple service 

routes and uncertain demand, supply and residual capacity on vessel for empty 

containers. And inventory-based threshold policies are developed to manage empty 

containers. The simulation model and the policies can be used by the liner shipping 

company analysts to explore other operation options in the future. 

 We develop a search algorithm based on the Convergent Optimization via 

Most-Promising-Area Stochastic Search (COMPASS) algorithm to optimize the 

parameters of an inventory-based policy in a liner shipping system. It provides a 

potential methodology contribution to the application of COMPASS algorithm in 

complex systems. 

 We propose a Hybrid Coordinate and Gradient Sampling (HCGS) scheme to 

improve the convergence rate of COMPASS. The HCGS scheme could be easily 

applied in other random search algorithms to speed up the convergence rate, especially 

for high-dimensional problems.  

 The optimal values of the fleet size and the thresholds of the policy in the 

general or complex liner shipping system could be used as reference points for 

shipping companies to make strategic decisions. 
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1.4 Organization of the thesis 

The thesis consists of six chapters. The rest of this thesis is organized as follows. 

Chapter 2 introduces existing studies about ECR problem. In Chapter 3, the model for 

ECR problem with a single-level threshold policy in multi-port system is presented. 

Two approaches, one non-linear programming approach and one gradient-driven 

algorithm, as well as numerical studies are presented. Chapter 4 studies the 

complicated ECR problem in a multi-service liner shipping system, and a time-driven 

simulation model is developed. Numerical studies are provided to analyze the 

performance of policies for some simple systems. In Chapter 5, for the ECR problem 

in Chapter 4, a search algorithm based on COMPASS with proposed hybrid sampling 

scheme is developed to optimize the parameters of a given policy. Numerical studies 

are conducted and results are presented in this chapter. Finally, in Chapter 6, we 

conclude this thesis and discuss several issues for future research. 
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Chapter 2 LITERATURE REVIEW 

In this chapter, we present a survey of literature pertinent to ECR problem. There 

have been a lot of studies considering ECR problem. From the viewpoint of the 

adopted methodologies, we generally categorize the literature into two groups. The 

first group tries to seek the solutions about ECR decisions, involving whether to 

reposition empty containers, to or from which ports, by solving mathematical 

programming models. The second group focuses on examining inventory-based 

control policies and their implementation for ECR problem.   

2.1 Mathematical programming models for ECR problem 

Extensive literature could be found for ECR problem with mathematical 

programming models. Much of the work has considered the empty equipment 

allocation and distribution problem and the balancing of demand and supply between 

depots or terminals to meet future customer demands.  

Crainic et al. (1989) presented a class of models for the Multicommodity 

Location/allocation problem with interdepot Balancing requirements (MLB). Their 

models were initially developed as part of a strategic and tactical planning system for a 

maritime shipping company. Their general goal was to locate depots for empty 

containers with the objective of satisfying client demand, while minimizing depot 

opening and operation costs, bidirectional client-depot transportation costs, as well as 

the costs of the interdepot movements necessary to counter the unbalancing of demand. 

These interdepot movements differentiated such problem from classical 

location/allocation applications. Many studies have attempted to solve the MLB 
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problem. Crainic and Delorme (1993) used a dual-ascent based approach for this 

problem. Crainic et al. (1993b) solved the problem by an adaption of the tabu search 

metaheurist. The method of Crainic et al. (1993b) generally could obtain better 

solutions than that by Crainic and Delorme (1993), while it requires rather large 

computing times. Gendron and Crainic (1995) later used a branch-and-bound 

algorithm, in which bounds were computed by a dual-ascent procedure, to solve the 

MLB problem. Gendron and Crainic (1997) then presented a parallel branch-and-

bound algorithm based on a depth-first branch-and-bound procedure. Bourbeau et al. 

(2000) proposed three strategies that may be used to parallelize most brand-and-bound 

algorithms specialized to location/network design formulations. 

Crainic et al. (1993a) described the problem of allocating empty containers in a 

land distribution and transportation system, which involved allocating empty 

containers of different types in response to requests by export customers and 

repositioning other empty containers to depots or ports to meet future demands. They 

introduced two dynamic deterministic formulations for the single and multi-

commodity cases, which offer a general modelling framework for this class of 

problems. Abrache et al. (1999) used the formulation of Crainic et al. (1993a) for a 

multi-commodity empty containers allocation problem in a deterministic and dynamic 

situation. To solve the model, they proposed a decomposition approach, which was 

based on the classical restriction framework that takes into account the specificities of 

the model, particularly the substitution property between the different container types.   

Belmecheri et al. (2009) proposed a mathematical model to optimize empty container 

movements between regional consignees, shippers, and port terminal, which was 

solved by the Solver of Excel. 
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Shen and Khoong (1995) developed a decision support system to solve a large-

scale planning problem about the multi-period repositioning of empty containers based 

on network optimization models. Besides optimizing on the quantities of repositioned 

empty containers across ports, their system was also able to recommend container 

leasing-in and off-leasing decisions. Bandeira et al. (2009) later proposed a decision 

support system for integrated distribution of empty and full containers among 

customers, leasing companies, harbors and warehouses. The problem was modeled as a 

network, and the underlying mathematical model was operated in stages. First, it 

prioritized and adjusted demands considering available empty container supplies, and 

then statically optimized costs. Transportation routes were registered and dynamically 

controlled, cyclically, for a given time horizon.   

Olivo et al. (2005) considered the ECR problem with multiple transportation 

models for logistic companies. They adopted a dynamic network with an hourly time-

step for the problem. In the network, arcs represented service routes, inventory links 

and decisions concerning the time and place to lease containers from external sources. 

A case study of the Mediterranean basin was conducted to show good computational 

efficiency of their algorithms. Francesco (2007) provided several mathematical 

optimization models for ECR problem in terms of minimizing the total operation cost.  

Another popular problem that many researchers have looked at is the empty 

container balancing strategies within the context of a maritime network design problem. 

Shintani et al. (2007) formulated a two-stage model to address the design of container 

liner shipping service networks by explicitly taking into account empty container 

repositioning. The first stage model was to construct the calling port sequence, and the 

second stage model was to estimate the profit of container management with 

repositioning empty containers. A genetic algorithm-based heuristic was developed to 
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get the optimal port sequence. They had shown that considering ECR in the network 

design problem could provide a more insightful solution than the one not considering. 

Subsequently, Chen and Zeng (2010) focused on the optimization of container 

shipping network under changing cargo demand and freight rates. They formulated this 

problem as a mixed integer non-linear programming problem with an objective of 

maximizing the average unit ship-slot profit at three stages. Their first two stages were 

similar with that in Shintani et al. (2007). But they used a series of the matrices of 

demand to represent fluctuating demand at the second stage rather than only a matrix 

of average demand. The third stage was to determine and to arrange the optimal 

configuration of container with the owned container quantity, long-term leasing 

container quantity and short-term leasing container quantity. A bi-level genetic 

algorithm was designed to solve the problem. 

Imai et al. (2009) studied two typical service networks with different ship sizes, 

i.e., multi-port calling by conventional ship size and hub-and-spoke mega-ship, taking 

ECR into consideration. In their study, the problem was analyzed in two phases: the 

service network design and container distribution. In the container distribution phase, 

the problem was formulated as an integer programming solved by a commercial 

mathematical programming solver. Their work provided that under some 

circumstances, the conventional hub-and-spoke operation was an optimal solution 

without ECR, whereas the multi-port-calling operation dominated when considering 

the issue of empty containers. It highlights that ECR has significant impacts on the 

liner shipping network. Meng and Wang (2011) considered a liner shipping service 

network design problem with combined hub-and-spoke and multi-port-calling 

operations and ECR. It introduced a concept segment defined as a pair of ordered ports 

served by one shipping line and subsequently developed a mixed-integer linear 
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programming model for the proposed problem. They had shown that it is advantageous 

to design a network with the consideration of empty containers. 

Some researchers also study the ship deployment problem, which is to assign a 

fleet of ships to a given network with fixed calling sequence, with considering ECR. 

Liu et al. (2011) developed a tactical model which considered jointly container flow 

management and ship deployment problem. They presented that jointly considering the 

container flow, including laden container flow as well as empty container flow, and 

ship deployment problem could improve the utilization of shipping capacity and 

profitability of the shipping company.  

Jula et al. (2006) considered the ECR problem, which they referred to as the 

empty container reuse problem from a different perspective. Their aim was the 

reduction of the traffic congestion in the Los Angeles and Long Beach area caused 

heavily by empty container traffic. They considered two empty container reuse 

methodologies, street-turn and depot-direct. In street-turn, empty containers were 

directly moved from local consignees to local shippers. In depot-direct, empty 

containers were moved from depot to local shippers. A network formulation model 

was constructed in order to optimize empty container movements following the both 

methodologies. The problem was solved in two phases. In the first phase, they 

transformed the model into a bipartite transportation network, and in the second phase, 

they found the best match between supply and demand of empty containers in the 

transportation network. They showed that when time is critical, empty container reuse 

is shifted towards depot-direct, since waiting time is minimal in this methodology. On 

the other hand, when the traveling cost and traffic congestion are the important factors, 

street-turn methodology provides the best match between supply and demand of empty 

containers. Based on the empty container reuse problem presented in Jula et al. (2006), 
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Chang et al. (2006) investigated multi-commodity empty container substituted 

problem, in which one type of containers can be substituted with another container. 

They presented that the cost of empty container reuse can be further reduced by 

allowing the substitution between empty containers. Besides, they also showed that the 

reuse approaches in Jula et al. (2006) can also perform well in a stochastic 

environment.  

Moon et al. (2010) studied the ECR problem that considered short-term leasing 

and purchasing. Mixed integer linear programming and genetic algorithms were used 

to solve the model and a hybrid genetic algorithm was proposed to reduce the 

computation time. In the hybrid genetic algorithm, a heuristic method was developed 

to find feasible solutions for the problem. The main idea of the heuristic method was to 

try to satisfy customer demands by owned empty containers first and then to reposition 

surplus empty containers randomly. These feasible solutions obtained from the 

heuristic method could be further utilized to find the optimal solution by solving a 

linear mathematical model. They presented that their proposed algorithms were 

capable of solving problems of larger size. Moon et al. (2013) considered the ECR 

problem with foldable and standard containers. Similar heuristic methods with that in 

Moon et al. (2010) were proposed to find feasible solutions for the problem, in which 

the decisions about repositioned empty containers were related to the purchasing cost 

and repositioning cost at each port. Then, a local search algorithm was applied to 

improve the quality of the obtained feasible solutions. They pointed out that the 

potential cost saving could be achieved by using foldable containers in maritime 

transportation. 

The effect of the planning horizon length on empty container distribution 

management has also been looked at by a few researchers. Choong et al. (2002) 
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conducted a computational analysis of the effect of planning horizon length on empty 

container management for intermodal transportation networks. The analysis is based 

on an integer programming that aims to minimize total costs related to repositioning 

empty containers, subject to meeting requirements for moving laden containers. The 

study concludes that a longer planning horizon can encourage the use of inexpensive, 

slow transportation modes, such as barge. 

Most of above studies reviewed have taken the deterministic approach and the 

decisions about empty containers are dynamic in time. However, in container shipping, 

there are many stochastic factors, such as the real transportation time between two 

ports/depots, future customer demands and returned containers, and the available 

capacity in vessels for empty containers, etc. Such stochastic factors of the ECR 

problem have attracted much attention since 1990s.  

Cheung and Chen (1998) developed a two-stage stochastic network model to 

determine the maritime ECR and leasing decisions in terms of minimizing the total 

operation cost. All information in the first stage was given while some parameters in 

the second stage were uncertain when decisions in the first stage were made. A 

stochastic quasi-gradient method and a stochastic hybrid approximation procedure 

were applied to solve the stochastic model. Lam et al. (2007) formulated the ECR 

problem as a dynamic stochastic programming with the decision policy optimal in the 

infinite horizon average cost sense. Linear approximation architecture was chosen to 

approximate the cost function. A simulation based approximate dynamic programming 

approach was deployed to solve the problem. Erera et al. (2009) presented a robust 

optimization framework based on time space network for dynamic ECR problems. The 

robust repositioning plan was developed based on the nominal forecast value and could 

be adjusted under a set of recovery sections. Di Francesco et al. (2009) proposed a 
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multi-scenario model to address the ECR problem in a scheduled maritime system. In 

the scenario-based model, deterministic optimization techniques could be applied to 

solve the stochastic ECR problem. Long et al. (2012) formulated a two-stage 

stochastic programming model with random demand, supply, ship weigh capacity, and 

ship space capacity for ECR problem. The sample average approximation method was 

applied to approximate the expected cost function and they considered the scenario 

aggregation by combining the approximate solution of the individual scenarios 

problem. Two heuristic algorithms based on the progressive hedging strategy were 

applied to solve the problem. 

The mathematical programming models often successfully capture the stochastic 

and dynamic nature of the ECR problem (Song, 2007). However, they also give rise to 

some concerns.  

Firstly, the decisions about empty containers in those mathematical models are 

usually presented by a series of values that describe how many empty containers 

should be moved from which ports to other ports. One major attempt of those models 

is to find the optimal values of ECR decisions to balance the container flow or to 

minimize the related operation cost. However, it is usually difficult to find those 

optimal values for ECR decisions due to the computational complexity. And additional 

mechanisms could be required to execute the decisions in the situations with 

uncertainties.   

Secondly, a pre-specified planning horizon is usually required for the 

mathematical models. In other words, it is important to select an appropriate planning 

horizon for the mathematical models. According to Choong et al. (2002), the planning 

horizon had a significant effect on empty container management. They reported that a 
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longer planning horizon could encourage the use of inexpensive slow transportation 

modes to reposition empty containers.  

2.2 Inventory-based control policies for ECR problem 

Inventory-based control policies for ECR problem have recently received 

increasing attentions. Such policies utilize the feedback of inventory information to 

manage empty containers. Their decision process is more like rule-based rather value-

based. That is, the number of repositioned empty containers is not designed in advance; 

instead, the parameters and the rules of the policy should be designed in advance. For 

example, (U, D) policy (Li et al., 2004) is a inventory-based control policy with two 

parameters, i.e., U and D.  Its rule is repositioning in empty containers up to U when 

the number of empty containers in a port is less than U, or repositioning out empty 

containers down to D when the number of empty containers is larger than D, doing 

nothing otherwise. Therefore, once the parameters and the rules of the policy are set up, 

such policy can be applied to make the ECR decisions involving whether to reposition 

empty containers, to or from which ports, and in what quantity. Hence, in practice, 

such policies appear to be more appropriate for making ECR decisions in stochastic 

systems since they provide flexibility to cope with dynamic changes and unexpected 

fluctuation of stochastic factors, such as future customer demands.  

Such policies, in fact, are quite similar with the policies for traditional inventory 

systems, such as (s, S) policy, in which numerous literature have been developed, e.g., 

Iglehart (1963) and Sheopuri et al. (2010).  However, there are significant differences 

between the studies about the inventory-based policies for ECR problem with that for 

the traditional inventory problems. For example, in the maritime transport, container 

itself has to be carried by vehicle such as vessel. Since most vessels are committed to 
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specific service routes with published schedules that are often fixed for more than six 

months, the routes for repositioning empty containers are, of course, fixed.  Besides, 

due to the uncertainty of the customer demand and supply for containers, the source 

points for empty containers repositioned could be varied in different periods.   

Focusing on the inventory-based control policies for ECR problem, there are a 

number of studies. Imai and Rivera (2001) addressed the problem of fleet size planning 

for refrigerated containers, in which a heuristic strategy was developed to allocate 

empty containers between each ports. Lai et al. (1995) considered the ECR problem 

from mid-east port to far-east ports. They used a simulation model to evaluate different 

container allocation policies, which were characterized by a safety stock level, critical 

allocation point and port priority. Their study is a major milestone in the development 

of simulation model for container fleet sizing problem with inventory policies. Du and 

Hall (1997) utilized inventory and queuing theory and proposed a single threshold 

policy to redistribute empty containers in a hub-and-spoke system with random 

demands and deterministic travel times. Their model was based on the assumptions 

that the number of terminals was large and terminal stock-out probabilities were low. 

A decomposition approach was then developed to determine the fleet size and control 

parameters for the policy. Feng and Chang (2008) formulated the ECR problem for 

intra-Asia liner shipping as a two-stage problem. The first stage identified safety stock 

at each port to determine the number of repositioned empty containers, and the second 

stage solved the transportation problem by linear programming. The value of safety 

stock in each port was estimated as an average of difference in known inbound 

containers and outbound containers during two weeks. 

Several researchers turn to explore the inventory-based mechanism in addressing 

ECR problem in the stochastic systems. Li et al. (2004) formulated the one port 
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containerization problem as a non-standard inventory problem with positive and 

negative demands. They showed that the two-level threshold policy was optimal for 

the single port system and a value iterative algorithm was proposed to calculate the 

optimal threshold values. Song and Zhang (2010) also considered ECR problem for a 

single port. In their study, the flow of containers was treated as continuous fluid and 

dynamic programming was used to solve the problem. They demonstrated that the 

optimal policies were given in terms of threshold levels and closed form solutions of 

these threshold levels could be obtained. Song (2005) and Song and Earl (2008) 

considered the empty vehicle redistribution problem in a two-depot system with 

continuous-reviewed. As they had mentioned, a vehicle may be defined as a reusable 

resource for realization of a given kind of transportation, such as ECR in shipping 

business. They applied Markov decision process theory to the problem and presented 

that the optimal stationary policy for ECR was of threshold control type when the 

long-run average cost and the infinite-horizon expected discounted cost, respectively. 

The explicit form of the cost function under such threshold controls can be obtained, 

and then the optimal threshold values can be derived. Song (2007) considered the 

similar problem with Song (2005) with periodical-reviewed. Song (2007) proved that 

optimal empty repositioning policy was also of threshold control structure in such 

system and a value iterative algorithm was applied to find the optimal threshold values. 

These studies demonstrate that the optimal repositioning policies are of threshold-type, 

which are characterized by a set of parameters and a set of rules, in some situations 

such as one-port and two-port systems. Once the parameters and rules are designed in 

advance, such threshold control type policies are easy to operate. 

Above works are extended to focus on the implementation of the threshold-type 

control policies for ECR problem in more general systems. Li et al. (2007) extended 
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the study by Li et al. (2004) to a multi-port system. Since multiple ports were 

considered, the optimal two-level policy for only one port may not be used 

successfully in the multi-port case. They modified the policy and designed a heuristic 

algorithm to compute the number of empty containers allocated between each pair of 

ports. Song and Carter (2008) further extended works by Song (2005)  and Song and 

Earl (2008) to a hub-and-spoke system, in which only the demands between the hub 

and spokes were considered. It was found that static threshold-type control policy was 

not usually optimal in such system. Thus, a dynamic decomposition algorithm was 

proposed. And the analysis showed that the dynamic decomposition procedure can 

produce a near-optimal policy. Song and Dong (2008) applied the threshold policy for 

empty container management in a cyclic shipping route problem and demonstrated that 

the threshold policy significantly outperformed the heuristic policies with simulation 

results. Heuristic methods based on experiences were used to set up the threshold 

control parameters.  

Dong and Song (2009) considered the joint container fleet sizing and ECR 

problem in a multi-vessel liner system. A two-level threshold policy was adopted to 

allocate empty containers and a simulation-based optimization tool based on genetic 

algorithm was developed to optimize the container fleet size and the parameters of the 

policy simultaneously. Dong and Song (2009) investigated the impact of inland 

transportation times and their variability on the optimal container fleet size in liner 

services. A rule-based policy was applied to manage containers, whose idea was to 

satisfy important customer demands first and then to reposition empty containers by 

balancing the container flows in each port-pair. Three simulation-based optimization 

approaches, golden section, genetic algorithm and simulated annealing were applied to 

solve the optimal container fleet sizing problem. Song and Dong (2010) studied the 
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Table 2.1 Comparison between this thesis and previous studies about implementation of inventory-based 

policies for ECR problem 
 

 General shipping system 
Liner shipping system 

Single service route Multiple service routes 

ECR 

 

Li et al. (2007) 

Song and Carter (2008) 

Song and Dong (2008) 

 

Chapter 3 

Dong and Song (2009) 

Dong and Song (2009) 

Song and Dong (2011) 

Song and Dong (2010) 

 

Chapters 4 and 5 

 

ECR policy with flexible destination ports. Numerical results showed that such policy 

outperformed the conventional policy significantly in situations where trade demands 

were imbalanced and container fleet sizes were within reasonable range. Song and 

Dong (2011) formulated the ECR problem for shipping service routes at the tactical 

decision level. Two types of flow balancing mechanisms were considered in their 

study: one is a point-to-point repositioning policy and the other is a coordinated 

repositioning policy.  A heuristic procedure was developed to solve the coordinated 

balancing problem. 

We have reviewed the studies about ECR problem with inventory-based control 

policies. These prior studies enable us to have a better understanding of the general 

implementation of such policies for ECR problem. However, from the literature, we 

find that the current studies are not sufficient in addressing ECR problem with the 

inventory-based policies in general or complicated liner shipping systems. Table 2.1 

summarizes the differences between this thesis and previous studies about 

implementation of inventory-based policies for ECR problem.  

Firstly, few of the studies have considered the implementation of such policies in 

multi-port system with direct empty container flows between each pair of ports. Li et 

al. (2007) considered a two-level threshold policy in a multi-port system and proposed 

a heuristic algorithm to allocate the empty containers. However, it could be 
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computationally expensive when the number of ports and the fleet size are very large. 

Besides, the fleet sizing problem is also not fully studied in such system. Moreover, 

most policies in current works apply simple rule, such as linear rationing rule to 

reallocate empty containers. The repositioning rule in terms of minimizing the 

repositioning cost has not been considered yet.  

Secondly, the existing studies are not sufficient in addressing ECR problem in the 

liner shipping system with multiple service routes. There is a series of papers by Song 

et al. considering the implementation of threshold policies for ECR problem in liner 

shipping systems. However, to our knowledge, only one study considers the system 

with multiple service routes. For the problem considering multi-service, it is possible 

that multiple vessels will arrive at or depart from a same port within one week, or even 

at the same day. This is one of key differences between studies about multi-service 

system and that about single-service system. Thus, the rules with considering the 

cooperation of multiple vessels to reposition empty containers are worth to study. 

Moreover, to our knowledge, no existing study considers the optimization about the 

parameters of the inventory-based policy for ECR problem in the multi-service system 

due to the complexity of this problem. 

To fill these gaps, the major aim of our study is to study the implementation of the 

inventory-based policy for ECR in a general system, and then to extend it to more 

complicated system with taking multiple service routes into account. 
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Chapter 3 EMPTY CONTAINER MANAGEMENT IN MULTI-

PORT SYSTEM WITH INVENTORY-BASED CONTROL  

In this chapter, we address the joint ECR and container fleet sizing problem in a 

multi-port system with inventory-based control mechanism. A single-level threshold 

policy with repositioning rule in terms of minimizing the repositioning cost is 

proposed. The objective is to optimize the fleet size and the parameters of the policy to 

minimize the expected total cost per period, incurred by repositioning empty 

containers, holding unused empty containers and leasing empty containers. Taking 

advantage of an interesting property of the problem, we propose two approaches, a 

non-linear programming and a gradient-driven algorithm with IPA gradient estimator 

to tackle this problem. 

3.1 Problem formulation  

We consider a multi-port system, which is consisting of ports connected to each 

other. A fleet of owned empty containers (ECs) meets exogenous customer demands, 

which are defined as the requirements for transforming ECs to laden containers and 

then transporting these laden containers from original ports to destination ports. A 

single-level threshold policy with periodical review is adopted to manage ECs. 

According to the study by Li et al. (2004), the optimal repositioning policy minimizing 

the long-run average cost existed with the two-level structure, but it may degenerate to 

a single level. Moreover, although the single-level threshold policy cannot be shown to 

be optimal, it is adopted here because of its simplicity and it is similar to the base stock 

policy which is widely accepted and applied in many literatures.  



Chapter 3 EC Management in Multi-Port System with Inventory-based Control 

25 

 

At the beginning of a period, the ECR decisions are made for each port, involving 

whether to reposition ECs, to or from which ports, and in what quantity. Then, when 

customer demands occur in the period, we can use those ECs that are currently stored 

at the port and those ECs that are repositioned to the port in this period to satisfy 

customer demands. If it is not enough, we need to lease additional ECs immediately 

from vendors. 

3.1.1. Modeling assumptions 

The following assumptions are made: 

 Customer demands must be satisfied in each period; and customer demands for 

each pair of ports in each period follow independent Normal distributions. 

 Short-term leasing is considered and the quantity of the leased ECs is always 

available in the port at any time.  

 The leased ECs are not distinguished from owned ECs, i.e., the shipping 

company can return owned ECs to the vendors when it has sufficient ECs available. 

 The travel time for each pair of ports is less than one period length. 

 When the repositioned ECs arrive at the destination ports, they will become 

available immediately; and when laden containers arrive at the destination ports, they 

will become empty and be available at the beginning of next period. 

 The cost of repositioning an EC from   to port   is the summation of the 

handling cost of an EC at port   , the handling cost of an EC at port   , and the 

transportation cost of an EC from   to port  . 

3.1.2. Notations 

Notations used in this study are presented as follows: 

  The fleet size, which is the number of owned ECs 

  The set of ports 
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  The discrete time decision period 

  
  The surplus port subset in period   

  
  The deficit port subset in period   

     The beginning on-hand inventory of port   in period   

     The inventory position of port   in period   after making the ECR decisions 

       The number of ECs repositioned from port   to port   in period   

       The random customer demand from port   to port   in period   

    
  The number of estimated EC supply of surplus port   in period   

    
  The number of estimated EC demand of deficit port   in period   

              the vector of the beginning on-hand inventory in period   

              the vector of the inventory position in period   

                        the array of repositioned quantities for all ports 

                        the stochastic customer demands in period   

    
  The cost of repositioning an EC from port   to port  ,      

  
  The cost of holding an EC  at port   per period 

  
  The cost of leasing an EC at port   per period 

   The threshold of port   

           vector of the thresholds 

    
                  the number of total exported laden containers of port   in 

period   

                                     the net actual imported ECs of port   in 

period   

      The cumulative distribution function for     
  

                         
   the net imported laden containers of port   in period   

     The set of ports, whose net actual imported ECs are changed by perturbing the 

estimated supply or demand of port   in period   

     The set of ports, whose beginning on-hand inventories in period   are affected 
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by perturbing threshold of port   

      The corresponding dual variable for port   constraint  in the transportation 

model in period   

  
  The port whose beginning on-hand inventory in period   is affected by 

perturbing the fleet size 

     An indicator function, which takes 1 if the condition in the brace is true and 

otherwise 0 

In every period  , the ECR decisions are firstly made at the beginning of this 

period. Then, the inventory position can be obtain by 

                     (3.1) 

After customer demands are realized and the laden containers become available, the 

beginning on-hand inventory in the next period can be updated by 

                       (3.2) 

It should be noted that      can be negative. This is due to the fact that customer 

demands are random and beyond control. If      is negative, it represents the number of 

containers that are leased from port p and stored at other ports. In this situation, there 

are no ECs stored at port p; otherwise, they will be returned to vendors to reduce the 

number of leased containers according to the assumption. If       is positive, it 

represents the number of ECs that are available at port p, which implies that there are 

no container leased out from vendors at this port. Note that there are   owned ECs in 

the system, we have  

              . (3.3) 

Let            be the total cost in period  . It can be defined as: 
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                           (3.4) 

where the value of    is determined by the beginning on-hand inventory    and the 

policy  , about which the details will be explained in the next section;       and 

         are the EC repositioning cost and   the EC holding and leasing cost in 

period  , respectively. They are defined as follow 

             
                  . (3.5) 

                     
          

            
  

 
   

       
       

 
    . (3.6) 

where             
   represents the EC holding and leasing cost of port    in 

period  ;    max      . More specifically, the EC repositioning cost       refers to 

the cost of repositioning ECs between multiple ports. The EC holding and leasing cost 

         is the cost incurred when ECs are stored at some ports and additional ECs 

are leased from vendors at the other ports. 

Next, the single-level threshold policy is developed to make the ECR decisions at 

the beginning of period  . 

3.1.3. A single-level threshold policy  

Note that when we make the ECR decisions in a period, customer demands in this 

period have not been realized yet. Hence, our policy tries to maintain the inventory 

position at a target threshold value  . More specifically,     is the target threshold level 

of port   . In period   , if the beginning on-hand inventory       is larger than   , 

i.e.,        , then port   is a surplus port and the quantity excess of    should be 

repositioned out to other ports, which may need ECs, to try to bring the inventory 
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position down to    ; if        , then it is a deficit port and ECs should be 

repositioned in from other ports, which may supply ECs, to try to bring the inventory 

position up to   ; if        , then it is a balanced port and nothing is done. 

From the policy, therefore, if there are no surplus or deficit ports in period   , no 

ECs should be repositioned. Otherwise, ECs should be repositioned from surplus ports 

to deficit ports in the right quantity at the least movement. Without loss of generality, 

we consider the ECR decisions in period  . The two subsets, i.e., surplus port subset 

and deficit port subset can be obtained as   
              and   

             , 

respectively. For a surplus port, the number of excess ECs, namely the number of 

estimated EC supply is calculated by Eq. (3.7); and for a deficit port, its number of 

estimated EC demand by Eq. (3.8).   

     
               

  (3.7) 

     
               

  (3.8) 

If either   
  or   

  are empty, we have     . Otherwise, we get that             

     
          

       and the value of             
      

  are determined 

by solving a transportation model. 

Note that when   
  and    

  are   non-empty, the total number of estimated EC 

supplies       
 

    
  could be not equal to the total number of estimated EC 

demands      
 

    
 . Thus, we propose to move as many excess ECs of surplus ports as 

possible to the deficit ports to satisfy their demands. Hence, when       
 

    
  

     
 

    
 , a transportation model is formulated as follows to determine the 

repositioned quantities in each period: 
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 . (3.9) 

                           
                          s.t.             

      
       

 . (3.10) 

 
           

      
       

 . (3.11) 

 
              

      
  (3.12) 

Constraints (3.10) ensure that the repositioned out ECs of a surplus port should not 

exceed its estimated EC supply; constraints (3.11) ensure that the EC demand of a 

deficit port can be fully satisfied; constraints (3.12) are the non-negative quantity 

constraints. When       
 

    
       

 
    

 , a similar model is formulated by 

substituting             
      

       
  and             

      
 ,      

  for inequations 

(3.10) and (3.11), respectively. 

3.1.4. The optimization problem 

Let        be the expected total cost per period with the fleet size   and policy  , 

when the system is in steady state. The problem, which is to optimize the fleet size and 

the parameters of the policy in terms of minimizing the expected total cost per period, 

can be formulated as 

    
   

       (3.13) 

subject to the inventory dynamic Eqs. (3.1)~(3.3) and the single-level threshold policy. 

As in many papers on EC movement (see, e.g.,  Moon et al. (2010) and Long et al. 

(2012)), the variables that relate to the flow of ECs are considered as continuous 
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variables in this study. That is, the fleet size and the parameters of the policy are 

considered as real numbers. It is fine when the values of these variables are large. 

In general, it is difficult to solve problem (3.13), since there is no closed-form 

formulation for the computation of        involving the repositioned empty container 

quantities determined by the transportation models. Next, we analyze the optimization 

problem and then provide two approaches to solve the problem.     

3.2 Analysis of the optimization problem 

When the transportation model is balanced in period  , i.e., the total number of 

estimated EC supplies, namely      
 

    
 , is equal to the total number of estimated EC 

demands, namely       
 

    
 , the excess ECs in the surplus ports can be fully 

repositioned out to satisfy the demands of the deficit ports, so that the inventory 

position of each port can be kept at its target threshold level   in this period, i.e.,      

  . Further, the repositioning cost in next period will be only related to customer 

demand in this period. From Eqs. (3.3), (3.7) and (3.8), we obtain that      
 

    
  

     
 

    
     if and only if         . Hence, we have an important property of the 

problem as follows: 

PROPERTY 3.1: When the fleet size is equal to the sum of thresholds, the inventory 

position can be always maintained at a target threshold value and then the empty 

container repositioning cost in a period is only dependent on the customer demand. 

Let Scenario-I (Scenario-II) represent the scenario in which            

       . Taking advantage of this property, we propose two approaches to tackle 

problem (3.13) under both scenarios, respectively.  
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3.2.1. Scenario-I 

Consider the problem under Scenario-I. From Property 3.1, it implies that      

         , and only the EC holding and leasing cost in a period is related to values 

of   and  . Hence, the optimal solution which minimizes        should be equivalent 

to the optimal solution which minimizes the expected EC holding and leasing cost per 

period. From (3.6), since that holding and leasing cost function for each port is 

independent, the problem (3.13) under Scenario-I can be reduced to a newsvendor 

problem, which is formulated as a Non-Linear Programming (NLP): 

            
        

  
 

   
     

     
 
    .  

 s.t.            

where the subscript   in the notation of     
  is dropped since customer demands in each 

period are independent and identically distributed. This newsvendor problem can be 

further decomposed into   separate sub-newsvendor problems with the optimal 

solutions as follows: 

   
    

     
    

    
     (3.14) 

       
 

   . (3.15) 

where   
      is the inverse function of      .  

3.2.2. Scenario-II 

The problem under Scenario-II is more complex than that under Scenario-I, since 

the EC repositioning cost is also affected by the values of   and  . Consider that the 

minimum expected holding and leasing cost of problem (3.13) can only be achieved 
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under Scenario-I, since only under Scenario-I, the inventory position of each port can 

be kept at its optimal threshold level. The problem under Scenario-II is worth to study 

if and only if the minimum expected EC repositioning cost under this scenario could 

be less than that under Scenario-I.  

There is no closed-form formulation for the expected EC repositioning cost. 

Therefore, without loss of generality, we mathematically compare the EC repositioning 

costs in a period under both scenarios with the same customer demands. More 

specifically, we have Scenario-I with parameters        and Scenario-II with 

parameters          where       
 

       
  

   . Let other various quantities in 

both scenarios be distinguished by displaying the arguments      and   , respectively. 

From property 3.1, we can get that under Scenario-I, we have    
       . 

Similarly, under Scenario-II, we can have   
       (    ) if   is     

  
    ( 

   
  

   ). We know that when   is     
  

    (    
  

   ), the transportation model 

in each period should be unbalanced, i.e., the total number of estimated EC supplies, 

namely      
 

    
 , is greater (less) than the total number of estimated EC demands, 

namely      
 

    
 . This unbalanced situation, such as      

 
    

       
 

    
 , means 

that all EC demands at the deficit ports can be satisfied and some excess ECs still stay 

at some surplus ports. Hence, the inventory position of each port in each period could 

be not less (greater) than its target threshold level when   is     
  

    (    
  

   ).  

Note that when there are EC movements in a period, the EC repositioning cost will 

be the minimum objective value of the transportation model. Hence, we first 

investigate the constraints of ports under both scenarios and have following lemmas. 
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LEMMA 3.1: For all period   , we have      
        

     and      
         

   
 if    

   
  

   ;      
         

   
 and      

        
    

, if       
  

    with same customer 

demand   . 

PROOF: With the help of Eq. (3.2), we have       
    

             . It implies 

that               
     and               

   
.  

Note that we investigate both scenarios with same    . We have       
       

   

  
          

    if       
  

   , and        
       

     
          

    if       
  

   . 

Hence, we can obtain that      
        

     if       
  

   , and      
        

     if    

   
  

   . 

Considering that    
    

    for any scenario, we have      
         

   
 if    

   
  

    and     
         

   
 when      

  
   .   

From lemma 3.1, there are only two possible cases about the port subsets under 

both scenarios. One is that there are same port subsets. The other is that there are 

greater (smaller) surplus port subset and smaller (greater) deficit port subset under 

Scenario-II than that under Scenario-I when the fleet size is greater (less) than the sum 

of thresholds. Furthermore, for the port that is common to surplus or deficit port 

subsets under both scenarios, we investigate its quantity of excess or deficit ECs. 

LEMMA 3.2: For all period  , we have 

1) If       
  

   , for       
    and        

    
 (     

      ), we have        
     

      
    and        

           
   

. 
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2) If       
  

   , for       
     (     

      ) and        
   

, we have        
     

      
    and        

           
   

. 

with same customer demand   . 

PROOF: From Eqs. (3.2), (3.7) and (3.8), we get that        
               

and       
                      

        
 . Hence, with the help of lemma 3.1, 

when      
  

   , we have      
                

           
   

, and if     
     is non-empty, 

we have        
                 

           
    

. Similarly, when      
  

   , we 

have       
           

           
     if     

      , and       
           

           
   

.    

From lemma 3.2, it implies that for example, when the fleet size is greater than the 

sum of thresholds, for the common surplus port under both scenarios, its number of 

excess empty containers under Scenario-II is not less than that under scenario-I. We 

next present the proposition about the repositioning costs under both scenarios.  

PROPOSITION 3.1: For all  , with same customer demand   , we have 

 
       

        
  

        
      

  
  

PROOF: Since   
    and   

   
are both nonempty, from the transportation model, we 

have        
        

  . Hence, when either      
     or      

     is empty, we can get 

that       
          

         
        

. 

When      
     is nonempty  in the case of       

  
   , the constraints of the 

transportation models in period     of both scenarios should be inequations (3.10) 

and (3.11), which are as follows: 
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 .  

                 
         

         
 .  

Based on the sensitivity analysis about right-hand side (RHS) of linear programming 

(LP), we get that increasing the RHS coefficient value of the above constraint could 

reduce the minimum objective value.  Depending on the port subsets under both 

scenarios, from lemmas 3.1 and 3.2, there are only two possible cases: 

 Case 1:      
         

    and     
         

   
. It implies that the transportation models 

under both scenarios have similar constraints for all ports       
          

   
. Hence, 

based on the model under Scenario-I, we increase the RHS values from        
    and 

       
     up to       

     and        
    

, respectively. Then, the new model will be equivalent 

to the model under Scenario-II, and we can have       
          

       
        

 . 

 Case 2:      
         

    and     
         

   
. It implies that the transportation models 

under both scenarios have similar constraints for some ports        
          

    
. 

Similarly, based on the model under the Scenario-I (Scenario-II), we increase 

(decrease) the RHS values of ports that are        
        

      (     
         

    ) up (down) 

to zero. Then, the minimum objective cost of the new model-I (model-II), denoted 

by     (     ), should be not greater (less) than that of the original model, i.e., we 

have           
        

 (           
          

). For the new model-I and model-II, 

they have similar constraints for ports       
          

    
. Hence, as that in case 1, we 

have       . Finally, we get that       
          

               
        

.   

Similarly, when      
       in the case of     

  
     , we can get 

that       
          

       
        

.   

From this proposition, it implies that the expected EC repositioning cost per period 

under Scenario-II could be less than that under Scenario-I. Therefore, it is worth to 

study the problem under Scenario-II. Note that tackling problem (3.13) under 
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Scenario-II is a non-trivial task. Simulation optimization technique could be a useful 

tool to solve our problem (Tekin and Sabuncuoglu, 2004). Hence, we adopt the 

simulation technique to estimate        with given values of   and   as follows:  

        
 

 
           

 
    

 

 
                   

 
   . (3.16) 

where    is the number of the simulation periods. Then, our problem becomes the 

optimization via simulation problem. The solution method is presented in the next 

section.  

3.3 IPA-based gradient algorithm 

Due to the rapid growth of computing power and the burst of the applications of 

optimization via simulation, many search algorithms have been designed in the past 

ten years to solve the optimization via simulation problems (see Fu (2002) and Fu et al. 

(2005) for a comprehensive review). One category of well-known search algorithm is 

driven by gradient information, such as the steepest descent algorithm (Debye, 1909) 

and stochastic approximation algorithm (Robbins and Monro, 1951). Such algorithms 

seek the next solution along the steepest descent (negative gradient) direction at the 

current solution resulting in fast convergence speed. Under certain conditions, a 

gradient-driven algorithm converges to a local optimal point almost surely (Spall, 

2003).  

The success of a gradient-driven algorithm relies heavily on the quality of gradient 

estimate, especially in the stochastic problems. If the inside structure of the simulation 

model is known, direct gradients could be obtained to enhance the effectiveness of the 

gradient algorithm. Among many approaches for estimating the gradient (see, e.g., Fu 

and Hu (1997) , Ho and Cao (1991) and Fu (2008)) , IPA technique is one of the best-
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known gradient estimation techniques, which is designed to obtain derivatives of 

continuous parameters and to estimate all partial derivatives from a single run by 

keeping track of related statistics of certain events during a run. It is able to estimate 

the gradient of the objective function from one single simulation run, thus to reduce 

the computational time (Ho and Cao, 1991). Moreover, it has been shown that variance 

of IPA estimator is lower, compared with many other gradient estimators (Suri, 1989). 

Hence, IPA technique has been successfully applied to many problems, such as a two-

echelon assembled-to-stock problem (Chew et al., 2009), stochastic flow models  

(Chen et al., 2010; Wardi et al., 2010), persistent monitoring problems (Cassandras et 

al., 2011), budget allocation for effective data collection (Wong et al., 2011), multi-

location transshipment problem with capacitated production (Özdemir et al., In press), 

etc.  

In this study, taking advantage of the inside structure of our simulation model, we 

propose an IPA-based gradient algorithm to tackle problem (3.13) under Scenario-II. 

The overall gradient technique is briefly described in Figure 3.1. For a given       at 

iteration  , we run simulation to estimate the expected cost        in (3.16). At the 

same time, we can also estimate the gradient vector of the expected cost 

                   
. Briefly, the simulation is run by firstly making the ECR decision 

in a given period by solving transportation models and then customer demands are 

realized. At the same time, the cost and the gradient in this period can also be 

computed. After all periods are run, the overall cost and gradient can be computed 

from the individual values obtained in each period. Based on the gradient information, 

we update parameters by using the steepest descent algorithm, i.e.,          

                             
 .    is the step size at the   -th iteration. 
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Figure 3.1. The flow of the IPA-based gradient technique 

 

After        is updated, we continue the same process for new iteration until the 

stopping criterion is met. 

To estimate the gradient of expected cost, we take a partial derivation of (3.16) 

with respect to the fleet size and the threshold of port  , respectively and have 

 

 
       

  
 

 

 
  

           

  

 

   

 
 

 
   

      

  
  

              
   

        
 
     

  
 

 

   
 

(3.17) 
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(3.18) 

Here, for the EC holding and leasing cost function, we use the expected cost function 

to estimate the gradient instead of sample cost function since we are able to get the 

explicit function to evaluate the average gradient.          or           , which 

measures the impact of the transportation cost in period    when the fleet size or 

threshold of port   is changed, can be found using the dual model information from the 

transportation model.             
        , which measures the impact of the holding 

and leasing cost function of port   in period   when the inventory position is changed, 

can be easily found taking the derivation of Eq. (3.6) with respect to the inventory 

position level.           or           , which measures the impact of the inventory 

position level of port   in period   when the fleet size or threshold of port   change, can 

be estimated using the IPA technique. 

Next, we analyze the gradient of expected total cost with respect to the threshold, 

followed by that to the fleet size. 

3.3.1. Gradient with respect to the threshold 

In this section, we study the gradient of expected total cost with respect to the 

threshold with given fleet size  . 

The nominal path is defined as the sample path generated by the simulation model 

with parameter   and the perturbed path as the sample path generated using the same 
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Figure 3.2 The perturbation flow 

model and same random seeds, but with parameter      , where           . 

Without loss of generality, we only perturb the threshold of port    and keep the 

thresholds of the other ports unchanged, i.e.,     
         and     

 
    for other 

         , where the value of     is sufficiently small. By “sufficiently” small, we 

mean such that the surplus port and deficit port subsets are same in the both paths in 

every period. That is, if port   is a surplus port in period   in the nominal path, it will 

still be a surplus port in the perturbed path. Oftentimes, we will present the changes in 

various quantities by displaying with argument   . For example,     represents the 

change in the beginning on-hand inventory in period  .  

We perturb      with the same quantities in all periods and the representative 

perturbation flow in period   is shown in Figure 3.2. The perturbation of     and the 

perturbation of      will affect the estimated EC supplies or demands, i.e., 

    
  or     

  of some ports, which are the RHS of the constraints in the transportation 

model. Hence, the perturbation of      
  or      

  could change the repositioning cost 

and the net actual imported ECs, i.e.,        of some ports. The perturbations 

of       and     will affect the perturbation on the EC inventory positions      of some 

ports. Further, perturbation of       will affect the holding and leasing cost in this 

period and the beginning on-hand inventory of next period.  
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From the definition of     , we have                 . Thus, depending on the 

status of      , only two scenarios are possible – one with        , the other with 

      . Since the value of    is given, it implies that       and thus       . If 

the perturbation in the first period is propagated to the second period, it could 

lead       . Hence, analysis on the perturbations in the first two periods could be 

representative of the general two scenarios. Consequently, we investigate the 

perturbations in the first two periods to conclude the general formulations for the 

perturbation terms in (3.18). 

3.3.1.1. Perturbation with respect to the threshold in the first period 

We trace the perturbations in the period     following the flow in Figure 3.2. 

Since       , we have       
       or       

     , and       
  or      

    for 

other     from Eqs. (3.7) and (3.8). It implies that only the RHS of port   constraint 

is changed. 

From the transportation model, the perturbation of       
  or      

  will affect the 

perturbation of       , depending on the status of port    constraint at the optimal 

solution. Only two scenarios are possible:  

 Scenario 1: The port    constraint is non-binding. The perturbation 

of      
  or      

  will not affect the optimal repositioned quantities. Hence, it implies 

that         for all    .  

 Scenario 2: The port   constraint is binding. The perturbation could affect the 

optimal repositioned quantities of some ports. However, only for a pair of ports, i.e.,    

and  , the net actual imported empty containers will be changed (explained in section 

3.3.2); while for the other ports, no changes. It implies that         for any      , 

and         for other            . 
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Note that the ECR decisions are made by solving a transportation model (in 

Section 3.1.3). If an inequality constraint holds with equality at the optimal solution, 

the constraint is said to be binding, as the solution cannot be varied in the direction of 

the constraint. Otherwise, if an inequality constraint holds as a strict inequality at the 

optimal solution (that is, does not hold with equality), the constraint is said to be non-

binding, as the point could be varied in the direction of the constraint. 

From the definition of      , we get that                  . Thus, if the 

port    constraint is non-binding, we have        . Otherwise, we have       

         with       . It implies that      is unique in period   . To find set       , a 

modified stepping stone approach (elaborated in section 3.3.2) is proposed. 

Without investigating the details on the perturbation of      , we next consider the 

perturbation on     . From Eq. (3.1), we have                  since         

    . Hence, we can get that: 

 If       ,         for all    . 

 If       ,         for any       , and         for other           . 

From the transportation model, for the port with binding constraint, its inventory 

position will be equal to the threshold. Hence, we have          . Further, we can 

get that         
      since                from Eqs. (3.1) and (3.3). 

We continue to study how the perturbations are carried forward to the next period. 

From Eq. (3.2), we have                      . It implies that the perturbation 

on         will be fully from the perturbation on      , and then we have         

           . From the analysis on the perturbation of       in the case of       , 

we have 
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  (3.19) 

where              when        . And when          , we have          

    ,                    and           for other             . It indicates that 

if there are perturbations propagated to the next period, only for a pair of ports, 

i.e.,   and       , their beginning on-hand inventories will be changed by     and     , 

respectively; while for the other ports, no changes. 

From the analysis on the perturbations of the relevant variables, we have next 

lemma. Note that the value of the EC repositioning cost       is equivalent to the 

value of the objective in the transportation model presented in Eq. (3.9).  

LEMMA 3.3: In the period  =1, we have 

1)                      
        

2)        
   

                                             if       

   
    

              
     if       

       

3)
     

   
  

        if                  

     if                       

      otherwise

 ,      

where                    
         . 

PROOF: Since only the RHS of port   ’s constraint is changed in the first period 

with      
       or      

     , the perturbation on the optimal repositioning cost 

value in the first period is estimated by                   
            from the 

sensitivity analysis about RHS of LP.  By hypothesis the value of     is infinitesimally 
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small. The change in the RHS value is within its allowable range and the status of all 

constraints remains unchanged in the perturbed path. In our problem with real 

variables, the probability of having degenerate optimal solutions or multiple optimal 

solutions is close to 0. Hence, 
      

   
         

      

   
           

       . 

For assertion 2), by taking the first derivation of the holding and leasing cost 

function of port   in Eq. (3.6) with respect to the inventory position level, it is easy to 

have the equations. 

For assertion 3), recall that the perturbation on      is equal to the perturbation 

on         for all      , i.e.,               . We have  
     

   
    

     

     

   
 

   
     

       

   
     . Hence, if          , we have             for all     . 

Otherwise, we have            ,                   , and              for 

other             .    

3.3.1.2. Perturbation with respect to the threshold in the second period  

If       , the analysis about the perturbation in the second period will be similar 

with that in the first period. Hence, we study the other case with               for    . 

Similarly, we analyze the perturbation on relevant variables. We have         
  

     or         
      and      

  or      
    for other             . It implies that 

only the RHS of port      constraint is changed. Hence, if the port      constraint is non-

binding, we have           with         for all    . Otherwise, we have         

               with         for any          , and         for other             
 .  
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Differently, the perturbation on       could be from the both perturbations 

of     and       in this period since      . Hence, from Eq. (3.1), i.e.,           

    , we obtain: 

 If          , we have          ,              , and         for other   

              

 If          , we have        could be     for any             , and        

  for other            . Depending on whether          , we get that: 

 If          , then it implies that                , and                  .     

 If          , then it implies that        . 

From the analysis about the perturbation of       in the case of       , we have: 

 
        

                  if        and           

             otherwise
  (3.20) 

where         is        when           , or           when           and           . 

When         , the values of the perturbations of         and              are same 

with that in the first period. 

3.3.1.3. Total perturbation with respect to the threshold 

According to the analysis about       for    1,  , we can conclude that in any 

period   ,      will be either empty or comprised of a pair of ports, i.e.,          . It 

implies that the analysis about the perturbations in period     by the perturbation 

of     will be similar with that in either of the first two periods. 

From lemma 3.3 and (3.18), in a general form, we have: 
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 (3.21) 

where the first two terms of the RHS of (3.21) present the perturbations on the EC 

repositioning cost in two conditions, i.e.,        and        , respectively; the third 

term presents the perturbation on the holding and leasing cost when          ; 

for    ,       , and for    ,      can be obtained from either (3.19) or (3.20), 

depending on the status of       ; the values of      and           can be calculated from 

assertion 2) of lemma 3.3.    

Next, we present the method to find     , followed by analyzing the gradient of 

expected total cost with respect to the fleet size with given policy. 

3.3.2. Modified stepping stone method 

In this section, we first use a numerical example to show that how the perturbation 

in the supply or demand of one port with binding constraint, such as  , will change the 

net actual imported ECs of a pair of ports. Then, a modified stepping stone (MSS) 

method is proposed to find     , which is defined as the set of ports whose net actual 

imported empty containers is changed by perturbing the estimated supply or demand of 

port   in period  . 

 Consider a numerical example with three surplus ports and two deficit ports. ECs 

are repositioned from the surplus ports to the deficit ports. Assume the total number of 

EC supplies is greater than the total number of EC demands. And the transportation 

tableau is presented Figure 3.3. Note that one dummy node is created in the 

transportation tableau to ensure that the total number of demands is equal to the total 
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Figure 3.3 The transportation tableau 
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Surplus port

 
Figure 3.4 Perturb the number of EC supply of the first surplus port by    

◎ The beginning cell 

number of supplies. For illustration, the value of cell       represents the number of 

ECs repositioned from the  th surplus port to the     deficit port. Two sub-examples are 

investigated. 

S-E1: Perturb the empty container supply of the first surplus port by    

Consider the balance of the transportation tableau. Perturbing the number of EC 

supply of the first surplus port by    implies that the number of EC demand of the 

dummy deficit port will be perturbed by   . However, since cell  1, 3  is a non-basic 

cell (see Figure 3.3), its value should be kept as zero and cannot be changed by the 

perturbation. To track the changes on the basic variables, a loop is developed, which 

begins at cell  1, 3  and is back to this cell (see Figure 3.4).  

The loop in Figure 3.4 consists of successive horizontal and vertical segments 

whose end nodes must be basic variables, except for the two segments starting and 
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Figure 3.5 Perturb the number of EC demand of the first deficit port by    

ending at the non-basic variable. More specifically, the changes on the basic variables 

can be obtained as follows: first increase the value of cell  1, 1  by   ; then go around 

the loop, alternately decrease and then increase basic variables in the loop by    , i.e. 

decrease the value of cell   , 1  and increase the value of cell    , 3  by    . It is 

observed that the total numbers of repositioning out ECs at the first and the second 

surplus ports will be increased and decreased by   , respectively. 

S-E2: Perturb the number of EC demand of the first deficit port by    

Perturbing the number of EC demand of a deficit port (not the dummy deficit port) 

by    will result in the total number of demands from deficit ports (excluding the 

dummy deficit port) increasing by   . To maintain the balance of the transportation 

tableau, a hypothetic surplus port is introduced and its supply is assumed to increase 

by    . Besides, to make the transportation tableau non-degeneracy, the cell (the 

hypothetic surplus port, the dummy deficit port), i.e., cell (4, 3) in Figure 3.5, is set as 

a basic cell. 

To track the changes on the basic variables by the perturbation of    on the 

number of EC demand of the first deficit port, similar loop is developed in Figure 3.5. 

It is observed that the total number of repositioning in ECs at the first deficit port and 

the total number of repositioning out ECs at the second surplus port will be both 
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Table 3.1 List of notations for MSS method 

 

 Description 

   the number of surplus ports in period    

   the number of deficit ports in period   

    
  the index of the surplus port   in the transportation tableau of period   

    
  the index of the deficit port   in the transportation tableau of period   

 

increased by   .  

Just as the loop using in the typical stepping stone method (Charnes and Cooper, 

1954), the loop in either Figure 3.4 or Figure 3.5 is unique. The uniqueness of the loop 

guarantees that there will be only a pair of ports, whose net actual imported ECs will 

be affected by perturbing the supply or demand of one port with binding constraint. 

Similar results can be obtained under the other case in which estimated total number of 

EC supplies is less than the estimated total number of EC demands.  

We can conclude that the perturbation in the estimated supply or demand of one 

port with binding constraint will only change the net actual imported ECs of a pair of 

ports. Next, we develop a Modified Stepping Stone (MSS) method to find the set of 

ports whose net actual imported ECs could be changed by perturbing the estimated 

supply or demand of one port in period  . Some additional notations are defined in 

Table 3.1. 

When the number of EC supply or demand of port    in period   is perturbed, a 

MSS method is proposed to find      with the rules as follows. 
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Procedure of MSS 

Step 1. Build the transportation tableau based on the transportation model 

solutions in period  . Create a dummy deficit node,       and a dummy 

surplus node,      . And arbitrarily insert the value    into cell      

        . 

Step 2. If port   is a surplus port in period  , i.e.     
 , select cell      

        ; 

if port   is a deficit port in period  , i.e.     
 , select cell            

   . 

Step 3. If the selected cell is a basic cell, no port’s total repositioned empties 

quantity will be affected, set        and stop. Otherwise, go to Step 4.  

Step 4. Beginning at the selected cell, trace a loop back to the cell, turning 

corners only on basic cells. Only successive horizontal & vertical moves are 

allowed.   

Step 5. If the total empty container supply is more than the total empty 

container demand, record the basic cell         ,           in this 

loop and find port   with     
   . Otherwise, record the basic cell     

    ,           in this loop and find port   with     
   .  Then,      

         with       . 

3.3.3. Gradient with respect to the fleet size 

Similarly with analysis in section 3.3.1, we study the gradient of expected total 

cost with respect to the fleet size with a given policy in this section.  

We define the nominal path as the sample path generated by the simulation model 

with parameter   and the perturbed path as the sample path generated using the same 

model and same random seeds, but with parameter      , where         

   and     is sufficiently small. Since              from Eq. (3.3), we can 
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perturb       by     to investigate the perturbations. That is, we set    
     

with     
       and         for other         

    in the period    .  

The perturbation flow for this problem is similar with that shown in Figure 3.2, 

but the unique difference is that there is no perturbation from the threshold. In other 

words, the perturbations on various variables are only from the perturbation on the 

beginning on-hand inventory. 

3.3.3.1. Perturbation with respect to the fleet size in the first period    

In the period    , we have   
  

   
     or   

  
   

      and      
  or      

  

  for other          
   . It implies that only the RHS of port    

  constraint is 

changed. Hence, we have 

 If the port   
  constraint is not binding, we have    

     . And then     
    

   and         for other         
   . 

 Otherwise, we have     
         

    . And then     
  
   

      and        

  for other          
    . 

Similarly, we have 

 
    

   
  

        if    
     

   
      otherwise

  (3.22) 

where       
          and           for other          

    . It implies that in 

each period, there is a unique port whose beginning on-hand inventory will be affected 

by   . And we can have next lemma. 

LEMMA 3.4: In any period  , we have 
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   if       
  

   othewise
 ,      

PROOF: The proof is similar with that in the assertion 3) of the lemma 3.1.    

3.3.3.2. Total perturbation with respect to the fleet size 

From lemma 3.4 and (3.17), in a general from, we have: 

        

  
 

 

 
           

    
        

         
    

 

   
 (3.23) 

where the first term of the RHS of (3.23)  presents the perturbation on the EC 

repositioning cost; the second term presents the perturbation on the holding and leasing 

cost; for    ,   
   , and for    ,   

  can be obtained from (3.22); the value of 

   
    can be calculated from the assertion 2) of lemma 3.3. 

3.4 Numerical experiments 

In this section we aim to evaluate the performance of the proposed single-level 

threshold policy (STP) and provide some insights for shipping companies.  

While our policy can be applied in a multi-port system with an arbitrary number of 

ports, we use three problems that differ in the number of ports: problem 1 has 6 ports, 

problem 2 has 9 ports and problem 3 has 12 ports, which represent small, moderate 

and large systems, respectively. Besides, considering that the trade imbalance could be 

the most important factor affecting the performance of the proposed policy, we design 

three kinds of trade imbalance patterns, including balanced trade pattern, moderately 

imbalanced trade pattern and severely imbalanced trade pattern. Therefore, a total of 9 

cases are studied.   
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For each problem, the values of cost parameters and the average customer demand 

from port    to port    in a period, denoted by      , are randomly generated. For 

example, for problem 1, the value of the holding cost parameter, i.e., the value 

of    
      , is uniformly generated from the interval (0, 5); the value of the 

repositioning cost parameter, i.e., the value of      
            , is uniformly 

taken from the interval (5, 10) ；the value of the leasing cost parameter，i.e., the 

value of   
      ，is uniformly generated from the interval (10, 30). This reflects 

the general view that the cost of repositioning an EC is greater than the cost of holding 

an EC, while much less than the cost of leasing an EC in a period. In the balanced 

trade pattern, the value of      is uniformly generated from the interval (0, 200), and 

we set                 to balance customer demands between any pair of ports. 

In the moderately (severely) imbalanced trade pattern, we double (treble) the values of 

one port’s or several ports’ exported laden containers and keep other values remain the 

same as those in the balanced trade pattern. The customer demands, i.e.,           , 

are assumed to follow normal distribution with mean      and standard variance     

    , and be left-truncated at zero. In Appendix A, the values of the cost parameters 

and the average customer demands in different trade imbalance patterns of problem 1 

are presented. 

For a multi-port system with STP, we can obtain its optimal fleet size and 

thresholds through sequentially solving the problem (3.13) under Scenario-I and 

Scenario-II. Under Scenario-I, the NLP is solved by Matlab (version 7.0.1). Under 

Scenario-II, the IPA-gradient based algorithm is coded in Visual C++ 5.0. All the 

numerical studies are tested on a PC with 2.67GHz Processor under the Microsoft 

Vista Operation System. Based on preliminary experiments, we set the simulation 
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period   1 1   with 100 warm-up periods. The termination criteria for searching are 

that the maximum iteration, namely      , is achieve or the expected total cost in 

current iteration is significantly greater than that in last iteration. We set      1   . 

3.4.1. Policy performance evaluation 

To evaluate the performance the proposed STP, a match back policy (MBP) is 

introduced for comparison. Such policy is widely accepted and applied in practice and 

its principle is to balance the container flow in each pair of ports. In other words, ECs 

to be repositioned from port    to port    in period      should try to match the 

difference between the total number of laden containers exported from port    to port   

and the total number of laden containers exported from port    to port    in period  . 

Mathematically, we have 

              
                

 
     (3.24) 

When MBP is adopted, the repositioning cost is independent from the fleet size. 

Hence, the fleet size which minimizes the expected holding and leasing cost will be the 

optimal fleet size minimizing the expected total cost. We have          

   
     

    
    

       . 

To facilitate the comparison of STP and MBP, the percentage of expected total 

cost reduction achieved by STP from MBP is given in Figure 3.6. We use a doublet, 

i.e., (number of ports, trade pattern), to present a particular case. For example, (6, B), 

(6, M-IB), and (6, S-IB) mean the cases for problem 1 with 6 ports in the balanced, 

moderately imbalanced and severely imbalanced trade patterns, respectively.  
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Figure 3.6 Percentages of total cost reduction achieved by STP from MBP 
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There are three main observations from the results. First, STP outperforms MBP 

in all cases. As expected, the reduction of total cost by STP is major from the reduction 

of the repositioning cost. Second, as the system becomes larger, STP can reduce more 

cost. Hence, it is important for shipping companies to use better method in 

repositioning ECs, instead of resorting to simple way such as the MBP, especially in 

the complex system. Another observation is that for a problem, it seems that in the 

imbalanced trade patterns, the advantage of using STP over MBP seems not as great as 

that in the balanced trade pattern. One possible explanation is that MBP performs well 

in the imbalanced trade, in which a number of ECs should be repositioned to balance 

the trade flow. However, STP still can reduce cost from MBP in the imbalanced trade 

pattern. For example, under the case of 12 ports problem, the cost reduction can be as 

high as 30%.  

3.4.2. Policy performance sensitivity to the fleet size 

Considering the fact that container fleet is often fixed by operators in practice, we 

further investigate the policy performance under both policies with the given fleet size. 
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Figure 3.7 Comparison of STP and MBP in case (6, B) 
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If the fleet size is given, the optimal thresholds under STP can be found by the two 

proposed approaches with little adjustments. Hence, let    be the optimal fleet size 

under STP. We vary the fleet size from 0.7    to 1.3   in all 7 cases to investigate the 

effect of the fleet size on the expected total cost.  

Figure 3.7 shows the expected total cost under both policies in case (6, B) with 

different fleet sizes. First, it is also observed that STP outperforms MBP in all different 

fleet size cases.  It reveals that the expected total cost per period savings achieved by 

STP over MBP are of the order of 13.18%~37.72%. One possible explanation is that 

the proposed policy makes the ECR decisions in terms of minimizing the repositioning 

cost. Besides, the trend of the diamond line shows that, the cost saving achieved by 

STP from MBP increases gradually when the fleet size increases, and as the fleet 

size increases further, the saving decreases. It is also possible to have a small cost 

saving percentage when the fleet size is too little. The reason is that when the fleet size 

is severely insufficient to satisfy customer demands, a large number of ECs are leased 

and few requirements for repositioning ECs. Third, the results also show that the 

minimum expected total cost per period appears to be convex with respect to the fleet 
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Figure 3.8 The optimal threshold value for case (6, B) under STP 
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size under both policies. It reflects the intuition that the optimal fleet size is the trade-

off between the repositioning cost and the holding and leasing cost.  

Similarly observations can be also found in other cases. 

3.4.3. Sensitivity analysis of the thresholds 

Since the single-level threshold policy is applied to manage ECs in the multi-port 

system, the thresholds of the policy will significantly affect the performance of the 

proposed policy. Many factors may impact the thresholds of the policy. The most 

significant factors are the fleet size and the parameters of leasing cost and holding cost. 

Next, based on the case (6, B), we explore the sensitivity of the thresholds. 

As shown in Figure 3.8, the optimal threshold values generally increase as the 

fleet size increases. More interesting, as the fleet size increases from 1.1   to 1.3  , 

ports 1~5 have very small increments on their thresholds, while port 6 has large 

increment on its threshold. This reflects the fact that as the fleet size is much greater 

than its optimal value, the low holding cost at port 6 works in favor of keeping a large 

number of ECs at this port. While as the fleet size decrease from 0.9   to 0.7  , port 
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Figure 3.9 Optimal thresholds changes in cases A and B from the original case 
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3 has the largest decrement on its threshold. A possible explanation is that as owned 

ECs are insufficient at all ports, many leasing containers have to be used to satisfy 

customer demands. And the low leasing cost at port 3 supports it to keep low inventory 

level of ECs and lease a large number of ECs.  

Next, the sensitivity of the thresholds to the holding and leasing cost parameters is 

considered. From (3.18), we obtain that    
         

   
    

     and 

  
         

   
       

    . It implies that 
         

   
 will decrease (increase) as   

  (       

 ) 

increases. Thus, when the leasing cost of port  
 
increases, the threshold for this port 

will increase while the thresholds for some other ports decrease. The similar property 

for the holding cost parameter can be derived. That is, as the holding cost of port  
 

increases, the threshold of this port will decrease while the thresholds for some other 

ports increase. 

Focusing on the case (6, B) with optimal fleet size under STP, we consider two 

more cases, i.e., cases A and B, in which the holding and leasing cost parameters of 

port 6 are increased by 2 times, respectively. Figure 3.9 shows the results about 

thresholds changes by cases A and B from the original case.  
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It can be observed that when the holding (leasing) cost parameter of port 6 

increases by 2 times, the threshold of port 6 decreases (increases), but the thresholds of 

other ports increase (decrease). This testifies above phenomenon. Hence, the results 

reflect the fact that a higher leasing cost at a port works in favor of keeping a large 

number of ECs while a higher holding cost encourages repositioning out more ECs in a 

surplus port or repositioning in less EC in a deficit port.  

3.5 Summary 

In this chapter, we address the joint ECR and container fleet sizing problem in a 

multi-port system. A single-level threshold policy is developed to reposition ECs 

periodically. Two approaches, a non-linear programming and IPA-based gradient 

technique are developed to solve the problem, which optimizes the fleet size and the 

parameters of the policy under Scenario-I and Scenario-II, respectively. The numerical 

results provide insights that by intelligently repositioning ECs, we can significantly 

reduce the total operation cost.  

As we assumed that the ECs can be dispatched between any pair of ports within 

one period, an extension of this work is needed to relax the one-period assumption and 

to consider more complex liner shipping system.  
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Chapter 4  INVENTORY-BASED EMPTY CONTAINER 

REPOSITIONING IN LINER SHIPPING SYSTEM 

In this chapter, we consider ECR problem in liner shipping system with multiple 

service routes. Two threshold control policies are proposed. A time-driven simulation 

model is formulated. Numerical studies are provided to show the application of the 

simulation model and the performance of the proposed policies.  

4.1 Problem description 

In this study, we extend the previous study to consider ECR problem with the 

inventory-based threshold policy in the liner shipping system with multiple service 

routes. As we have presented former, a service route is defined as a special sequence of 

calling ports, which construct a closed loop. Vessel(s) is deployed in the loop to 

provide weekly service. For example, if the cycle travelling time of a service route is 

four weeks, four vessels are assigned in this service route. 

We consider the inventory-based threshold policy with flexible destination. That is, 

the ports of destinations to unload ECs are not determined in advance when ECs are 

loaded to a vessel from an original port, and when the vessel arrives at a port, ECs can 

be unloaded as need. Such policy has been widely applied in current shipping industry 

and its good performance under some conditions has also been demonstrated by Song 

and Dong (2010).  

We aim to develop a simulation model with considering the dynamic and 

uncertain customer demand, supply and residual capacity. 
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4.2 Problem formulation  

We formulate the problem in a time-driven way. One period is one day. The state 

of the system can be updated at the end of each period. 

4.2.1. Modeling assumptions  

Several assumptions are used in this study. 

 Once a vessel is assigned to a service route, it will stay at this service route for 

the whole planning horizon. This is usually the case in practice, as liner companies do 

not change vessel deployment schedule regularly. 

 Laden containers have priority to occupy the vessel capacity and ECs only take 

up the residual space; the residual vessel space available for EC is randomly generated. 

 When a vessel arrives at a port, we only unload ECs. 

 When a vessel departs from a port, if there is insufficient vessel capacity for 

loading laden containers, some ECs will be unloaded from the vessel to release the 

capacity for laden containers. Otherwise, we can load ECs.  

 All customer demands must be satisfied and cannot be delayed to the next 

period. 

 Short-term leasing is considered and the quantity of the leased ECs is always 

available in the port at any time. 

 The leased containers are not distinguished from owned containers. More 

specifically, we can return owned ECs instead of the leased ones to vendors in order to 

reduce the leasing time.  

 We return the number of the leased ECs to the vendor in the original port after 

a specific period.  

4.2.2. Notations 

To describe the system, we introduce the following notation. 
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Index sets 

  The set of ports 

  The set of all service routes 

   The set of stops on service route   

   The set of vessels on service route   

     The set of periods in which vessel   arrives at stop   

     The set of periods in which vessel   departs from stop   

     The set of stops which vessel   arrives at or departs from within period   

    
  The set of vessels which arrive at port   within period    

    
  The set of vessels which depart from port   within period    

Deterministic parameters  

     The port corresponding to the stop   on service route   

   The carrying capacity in TEUs of vessel   

    
  Cost of unloading an EC from a vessel at port   at period   

    
  Cost of loading an EC to a vessel at port   at period   

      
  The transportation cost of an EC going from stop   to next stop on vessel    

leaving at period    

    
 

 Per period cost for storing an EC at port   at period   

    
  Cost of leasing an EC at port    at period   

   The specific period, after which the leased EC should be returned  

Random data 

     Customer supply at port   at period   

     Customer demand at port   at period   

       The residual capacity on vessel   for ECs when it leaves stop   at period   

State variables 
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     The number of ECs on vessel   at the end of period   (        ) 

     The number of ECs stored at port   at the end of period         

Decision variables  

      
  The number of ECs unloaded from vessel    when it arrives at stop    at 

period                           

      
  The number of ECs unloaded from vessel    when it departs from stop    at 

period                          

       The number of ECs loaded at stop   to vessel   at period               

           

     The number of ECs leased at port   at period         

In this study, we consider three major sources of randomness, namely customer 

demand, customer supply and residual capacity on vessel for ECs. Customer demand 

refers to ECs picked up by customers from the inventory depot to load their cargoes, 

whose actual value at a particular time is highly uncertain. On other hand, customer 

supply refers to ECs returned from consignees (customers) to the inventory depot, 

which is also out of shipping company’s control. Finally, the actual number of laded 

containers on a vessel is also not known with certainty. For example, the weight of 

individual laden containers can vary substantially. A large number of heavy containers 

can reduce the effective capacity on vessel for ECs. We assume that the customer 

demands, customer supplies and vessel capacities for ECs are independent random 

variables. 

4.2.3. State transition 

The states of the system are updated at the end of a period. More specifically, at 

the end of period  , for each port and each vessel, we have 
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(4.1) 

 

                   
 

                     

         
         

                     

   

                      . 

(4.2) 

The end inventory at period   is equal to the original inventory plus total container 

flows at period   for each port and vessel, respectively.  

Within period  , for vessel  , if set      is empty, it implies that this vessel is at sea 

or staying at a port in this period. Otherwise, it implies vessel    will arrive at or depart 

from those stops in the set     . When      is nonempty, we sequentially rank the stops 

in      according to the increasing called time, and have                       , 

where    is the  -th called stop and        is the number of stops in this set. Then, for 

vessel   with        in period  , we need to define other variables: 

      
  The number of ECs on vessel    just before this vessel arrives at stop    at 

period                            

      
  The number of ECs currently on the vessel    at time    and staying on this 

vessel at stop                     

      
  The number of ECs to be repositioned from stop    to next stop on 

vessel   departing at period                            

Then, we can have 
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           if             

         
   if           

  (4.3) 

 
       

   
                        if            

 

       
         

   if                   

  (4.4) 

        
           

         
          (4.5) 

where Eqs. (4.3)~(4.5) guarantee the balance of container flows on vessel  . 

4.2.4. Inventory-based threshold policy   

Inventory-based threshold policy   is applied to make the ECR decisions at the 

beginning of period   for all ports. 

We consider two inventory-based policies with different levels of threshold 

number, i.e., a single-level threshold policy and a two-level threshold policy. 

Denote      and      as the single-level and the two-level threshold policies, 

respectively. We have              with             and         
    

   
   

, 

where    and    
    

   are the thresholds for port   in both policies, respectively. For 

the two-level threshold policy, the lower level threshold should be not greater than the 

upper level threshold for each port, i.e.,   
    

      . Note that the number of ECs 

stored at port    at the end of period   , i.e.,      , is equivalent to the on-hand EC 

inventory at the beginning of period    . The basic rules for both policies are as 

follows: 

 for the single-level threshold policy: If        , then the quantity excess 

of    should be repositioned out to other ports, which may need ECs, to try to bring the 

inventory position down to   ; if        , then ECs should be repositioned in from 
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other ports, which may supply ECs, to try to bring the inventory position up to   ; 

if        , then nothing is done. 

 for the two-level threshold policy: if        
 , then port   is a surplus port and 

the quantity excess of   
  should be repositioned out to other ports to try to bring the 

inventory position down to   
 ; if        

 , then it is a deficit port and ECs should be 

repositioned in from other ports to try to bring the inventory position up to    
 ; 

if   
          

 , then nothing is done. 

It can be seen that the single-level threshold policy is a special instance of the two-

level threshold policy when the lower-level threshold is equal to the upper-level 

threshold. In general, at the beginning of period   , we make the ECR decisions 

following three steps: 

Step 1- Estimate the number of repositioned ECs for all ports 

Denote     and     as the estimated total number of ECs repositioned out from 

and repositioned into port   within period  , respectively. From the basic rule of single-

level policy, we have 

 

 
                         if           

                         if          

                                  if          

         (4.6) 

Similarly, with the two-level policy, we have 

 

 

             
              if           

  

            
               if          

 

                                    if   
            

 

        (4.7) 

Step 2- Estimate the number of repositioned ECs unloaded from or loaded to 

vessels for all ports 
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For port  , it is possible that multiple vessels visit it at period  . Hence, ranking the 

vessels which will depart from port   in period   according the increasing departure 

time, we define    
     

      
    

     
  

  , where     
   is the number of vessels in     

  

and   
  is the  -th departure vessel with   

                     
   . Similarly, 

ranking the vessels which will arrive at port   in period    according the increasing 

arrival time, we define    
     

      
         

  
  , where     

   is the number of vessels 

in     
  and    

  is the  -th arrival vessel with    
                     

   . In 

general, we set the allocation rules as follows:   

 If       , for the vessels which will arrive at port   within stage  , based on 

their arrival sequences, i.e.,    
 

 , we try to unload as many ECs as possible from the 

vessels until the total number of unloaded ECs is equal to      

 If       , for the vessels which will depart from port   within stage  , based 

on their departure sequences, i.e.,    
 

, we try to load as many ECs as possible onto the 

vessels until the total number of loaded ECs is equal to     

Step 3- Implement the repositioning plan subject to constraints 

To simplify the narrative, we first define       (      ) as the estimated remaining 

number of ECs, which are needed to be repositioned out from (repositioned into) 

stop  , just before the vessel   departs from (arrives at) this stop in period  . We have 

 
             

       
 

 

   
          

        
     

            
                 

 

                       
      

                   

(4.8) 
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(4.9) 

When vessel    arrives at stop    at period   , if there is no EC repositioning in 

requirement in this stop, we do not unload ECs. Otherwise, we unload ECs from the 

vessel to satisfy this requirement, while the number of unloaded ECs should not 

exceed the total number of ECs on this vessel. That is,  

       
            

            

                                        

(4.10) 

Note that laden containers have priority to occupy the vessel capacity. Hence, 

when vessel    departs from stop    at period   , we first examine whether there is 

sufficient vessel capacity for loading laden containers. If yes, no ECs on vessel will be 

unloaded. Otherwise, some ECs will be unloaded from the vessel to release the 

capacity for the laden containers, and we have 

       
            

             

                                        

(4.11) 

Then, if there is EC repositioning out requirement in this stop, we load ECs to this 

vessel. The number of ECs loaded should not exceed the residual capacity on vessel. 

                         
        

          

                                         

(4.12) 
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4.2.5. Cost function 

Let    denote the daily cost in our problem, and we have 

 
        

        
 

                                            

      
 

   

       
 

                                         

      
        

                                            

       
 

             
       

      

        
        

 

                                  

 

(4.13) 

where the first two items on the RHS of (4.13) are the unloading handling costs, which 

refer to the cost of unloading ECs from vessels to ports when vessels arrive at and 

depart from ports, respectively; the third item is the loading handling cost referring to 

the cost of loading ECs from ports to vessels; the fourth item is the holding cost, which 

presents the storage cost when ECs are stored at ports; the fifth item is the leasing cost 

incurred when ECs are leased from vendors; the sixth item is the transportation cost 

capturing the cost of transporting ECs on the vessels.  

Given a policy  , we measure its performance by the expected total cost per period. 

Let      be the expected total cost per period with policy  . We have 

            
 

 
         

          
 

 
  

 

 
      

   . (4.14) 

where          is a sample average cost per period, and     is a realization of the 

stochastic process of the random customer supplies, customer demands and residual 
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capacities on vessels for ECs. The system is subject to the policy rules, the state 

transition Eqs. (4.1) and (4.2), and the non-negative integer quantity constraint, i.e., all 

the decisions variables and state variables should be non-negative integer 

       
        

               
        

        
              and integer (4.15) 

Note that in Chapter 3, we simplify ECR problem by considering variables that 

related to the flow of ECs as continuous variables. Now, we keep the integer constraint 

on these variables related to ECs in order to study the performance of the inventory-

based policy in this case. 

4.3 Numerical study 

In this section, we present the application of simulation model and compare the 

performances of the proposed policies. We conduct our experiments using a set of 

problems with actual service routes of one shipping company. The data of the mean 

values for uncertain customer supplies, customer demands and residual capacities is 

generated by using a problem generator that is described below. 

4.3.1. Data generator 

From the idea of Cheung and Chen (1998), we develop a data generator to produce 

the mean values for uncertain customer supplies, customer demands and residual 

capacities for our problem. Some additional notations for data generator are defined in 

Table 4.1. 
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Table 4.1 List of notations for data generator 

 

 Description 

  
        The average number of laden containers to be transported from stop   to stop   on 

vessel   departing at period                                  

          The average residual capacity on vessel   for ECs when it leaves stop   at period   to its 

next stop    

       The time between vessel   departs from stop   and arrive at stop   in one voyage  

      The average customer demand at port   at time   

  
    The average customer supply at port   at time   

 

38 11 15
1 2 3

4

Singapore

HoChiMinhCity

Kaohsiung

 
a) Original calling route of service SVX                  b) Corresponding stop calling route 

 

Figure 4.1 Liner service SVX 

Consider that customer demands, customer supplies and the residual capacities of 

vessels are all high related to laden containers. We first generate the value of   
        by 

  
                      

      
                                   (4.16) 

where           is denoted as an indicator function, which takes 1 if voyage      in 

service route   is open and otherwise 0;   
   and   

    are the in-bound and out-bound 

demand potential for laden container at port  , respectively;    represents the overall 

mean demand of the laden container;        represents a random variable of Poisson 

distribution with mean  . The reason to define           is that some stops in a service 

route may correspond to a same port since ports in a service route may be called twice 

or more in a round-trip. Figure 4.1 shows the route of service SVX.  

For service SVX, stop 2 and stop 4 in the corresponding stop calling route refer to 

the port of HoChiMinhCity. Therefore, there should be no customer cargos from stop 2 
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to 4, i.e.,     ,4       . Besides, physically, customer cargos from original port to 

destination port will be transported by the cheapest stop index-pair in the trip. 

Therefore, for example, customer cargos from port Singapore to port HoChiMinhCity 

should be transported from stop 1 to stop 2, while not from stop 1 to stop 4, i.e., 

   1,       1 and    1, 4       . 

Several days before the scheduled departure of the vessel, ECs must be available 

to customers for loading cargos. Similarly, after laden containers arrive at a stop (i.e., a 

port) and are shipped to the customers, the customers will keep the containers for 

several days before they return the empty ones to the stop. Hence, we denote     
  as the 

probability that an EC is needed   days before the scheduled departure in port  , and 

    
  as the probability that an EC is returned   days after the scheduled arrival in port  . 

Then, the mean customer demand and mean customer supply for port i at period t can 

be computed by 

 

            
      

         

                                                 

 

 

 (4.17) 

 

  
          

     
                

                                                 

 

 

 (4.18) 

Recall that liner shipping company provides weekly service for each port. For the 

system, the average total number of weekly customer demands should be equal to the 

average total number of weekly customer supplies. Besides, residual capacity can be 

calculated as  

 
                

        

                                             

  
(4.19) 
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Figure 4.2 the network of problem 1: one service route and three ports 

                        

where we denote  

               vessel   departing from stop   to stop   will call stop   and stop    

4.3.2. Performance of inventory-based policies  

In this section we present the application of our simulation model with utilizing 

the two policies to manage ECs, i.e., the single-level threshed policy and the two-level 

threshed policy, for two small size problems.  

Both small size problems have three ports, but differ in the number of service 

routes: problem 1 has 1 service route and problem 2 has 2 service routes, which 

represent single- service route and multi-service routes systems, respectively. Besides, 

the uncertainty of customer demands can be represented by probability distributions. 

So we consider two types of distributions, i.e., exponential and normal distribution for 

the daily customer demand, daily customer supply and residual capacity on vessel for 

ECs. And the degree of uncertainty, i.e., the standard deviation, is decreasing from 

exponential to normal distribution. Therefore, a total of 4 cases for both policies are 

studied. The input data for both problems are presented in Appendix B, and we set the 

transportation cost       
    . The networks for both problems are presented in Figure 

4.2 and Figure 4.3, respectively. 
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Table 4.2 Minimum costs for both problems 

 

Distribution 
Problem 1 Problem 2 

SL TL Improve % SL TL Improve % 

Normal 18215.48 17837.51 2.08% 6346.866 6211.838 2.13% 

Exponential 48301.9 44187.07 8.52% 13092.32 11998.18 8.36% 

(SL: single-level threshold policy; TL: two-level threshold policy) 
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Figure 4.3 the network of problem 2: two service routes and three ports 

Given a case, we try to numerically find the optimal values of a given policy by 

brute-force enumerating all the possible designs, in which the best design of thresholds 

could be included. For all designs, we use optimal computing budget allocation 

algorithm (Chen et al., 2000) to allocate the budget for each design in order to save the 

computation time.  The results are presented in Table 4.2. 

To facilitate the comparison of the two-level policy and the single-level policy, the 

percentage of total cost reduction achieved by the two-level threshold policy from the 

single-level threshold policy is presented in the column “Improve %”. From Table 4.2, 

it can be seen that two-level threshold policy outperforms over the single-level 

threshold policy in all cases. The cost reduction percentages achieved by the two-level 

threshold policy under exponential distribution is significant more than those under 
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normal distribution. It implies that two-level threshold policy could be more effective 

to manage ECs, especially in the problem with high uncertainty. 

4.4 Summary  

In this chapter, we consider ECR problem in the liner shipping system with multi-

service. A simulation model is formulated in time-driven way with considering 

uncertain customer demand, customer supply and residual capacity on vessel for ECs. 

Two threshold policies, i.e., a single-level threshold policy and a two-level threshold 

policy, are developed to manage ECs. We investigate the performance of both policies 

in several small size problems by numerical experiments. The results show that the 

two-level threshold policy outperforms over the single-level threshold policy, 

especially in the system with high uncertainty. Hence, focusing on the two-level 

threshold policy, we extend the study to optimize the parameters of the policy in next 

chapter.   
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Chapter 5 COMPASS WITH HYBRID SAMPLING FOR EMPTY 

CONTAINER REPOSITIONING IN LINER SHIPPING 

SYSTEM 

We continue previous work to optimize the parameters of the two-level threshold 

policy. A search algorithm based on convergent optimization via most-promising-area 

stochastic search method is utilized to solve our optimization problem. A hybrid 

coordinate and gradient sampling scheme with simultaneous perturbation stochastic 

approximation gradient estimator is proposed to improve the sampling scheme in 

search method in terms of search efficiency. 

5.1 Introduction   

From the literature, few studies consider the optimization of the parameters of 

inventory-based policies in the practical problem with multiple service routes. Dong 

and Song (2009) considered the joint fleet sizing and ECR problem in a multi-vessel, 

multi-port and multi-voyage system. A simulation-based optimization tool using 

Genetic Algorithm (GA) was developed to optimize the fleet size and the parameters 

of the thresholds of policy. However, only single service route is considered in their 

study. Song and Dong (2010) studied an ECR policy with flexible destination ports in 

a multi-service system. The threshold values of the policy were determined 

heuristically based on demand statistic and service frequency. Their numerical results 

presented that the performance of the policy was quite sensitive to the threshold values. 

Hence, it is interesting to find the optimal parameters of the inventory-based policy 

and to investigate the performance of such policy in practical problem with multiple 
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service routes. From (4.14), the problem, which is to optimize parameters of a given 

policy in terms of minimizing the expected total cost per period, can be formulated as 

                   
 (5.1) 

where   is the vector of the decision variables (also called a solution), i.e., the vector 

of the parameters of the inventory-based threshold policy;   is the feasible region;   is 

a convex and compact set in    , which is the of  -dimensional vectors with real 

elements, and   is defined by a set of linear constraints;    is the set of  -dimensional 

vectors with integer elements;   is the number of parameters of the given policy. In 

this study, we consider that   is finite. 

In this study, we only consider the two-level threshold policy to manage ECs. 

Similar with the problem in Chapter 3, this problem is also an optimization via 

simulation problem. However, the gradient-based IPA algorithm is not suitable for this 

optimization problem. The major reason is that the decision variables are integer, 

which does not satisfy the basic assumption for IPA technique. Besides, even that the 

integer assumption could be relaxed; the IPA gradient is not intuitive to be obtained in 

the complex liner shipping system. Hence, we turn to consider other search algorithms. 

Note that the thresholds of the policy in problem (5.1) should be integer. Our 

problem is further classified to the discrete optimization via simulation (DOvS) 

problem. There have been a number of approaches to DOvS problems proposed in the 

research literature (see Nelson (2010) for a review). When the solution space is large, 

adaptive random search dominates the research literature  (Nelson, 2010). Most of 

adaptive random search algorithms converge to the global optimum, such as the 

stochastic ruler method of Yan and Mukai (1992) and nested partitions algorithm of 
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Shi and Ólafsson (2000). However, such algorithms do not scale up efficiently for 

practical problems with a large number of feasible solutions, which implies that global 

convergence has little practical meaning  (Nelson, 2010). Besides, Dong and Song 

(2009) point that even though the standard deviation of simulation outputs over 

multiple samples is small, their proposed GA-based algorithm may still produce a local 

optimal solution. Hence, for problem (5.1), it is more practical to find the local 

optimum than the global optimum.  

In this study, we develop a search algorithm based on a locally adaptive random 

search method, i.e., COMPASS method, to solve problem (5.1). A hybrid sampling 

scheme, i.e., HCGS scheme, with Simultaneous Perturbation Stochastic 

Approximation (SPSA) gradient estimator is proposed to speed up the convergence 

rate of the search algorithm.  

Next, we present the literature review about COMPASS, followed by the details of 

the COMPASS algorithm with SPSA-based HCGS scheme. 

5.2 Literature review  

The COMPASS method is a randomized optimization method that has been 

recently developed for local optimization of DOvS problems (Hong and Nelson, 2006). 

The main idea of the COMPASS method is to construct the most promising area (MPA) 

that most likely contains the best solution around the current sample-best solution, then 

uniformly sample new solutions from the MPA and evaluate all of the chosen solutions. 

Hong and Nelson (2006) have showed that COMPASS can solve both constrained and 

partially constrained or unconstrained DOvS problems with integer-ordered decision 

variables. And with probability 1, the algorithm converges to the set of locally optimal 
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solutions under some mild conditions. Since its convention, COMPASS has received 

increasing attention and was applied to solve various problems, such as the project 

management problem (Kuhl and Tolentino-Peña, 2008), the multi-objective problem 

(Lee et al., 2011). 

Hong and Nelson (2007) later designed a framework for locally convergent 

random search algorithms, where they showed that the local convergence can be easily 

achieved. They also proposed a revised COMPASS to speed up the convergence of 

COMPASS by modifying the estimate scheme of original COMPASS, i.e., simulating 

only a subset of all chosen solutions instead of all chosen solutions.  

The revised COMPASS was embedded in software called Industrial Strength 

COMPASS (ISC) to solve practical problems (Xu et al., 2010). ISC has three phases: 

global search, local search and final clean up. In the first global search phase, a niching 

genetic algorithm is utilized to identify several regions possible with competitive 

locally optimal solutions. In the second local search phase, COMPASS with constraint 

pruning technique is adapted to find the locally optimal solution for each of the regions 

identified in the global phase. In the third cleanup phase, a two-stage ranking & 

selecting procedure is applied to select the best solution among all identified locally 

solutions and estimate the true value of the selected solution. Numerical experiments 

showed that the ISC algorithm was competitive with OptQuest (which is the most 

popular commercial optimization via simulation software products) for problems up to 

dimension 10 in terms of finite-time performance. However, ISC dramatically slowed 

down when dimensionality increased beyond 10.  

The low convergence rate of COMPASS has hindered its application in practical 

problems. Hence, Hong et al. (2010) investigated why COMPASS slows down for 
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high-dimensional problem. They reported that the uniform sampling scheme is a 

primary reason for the deterioration of COMPASS for high-dimensional problems, 

since it is not efficient to find better solutions from the MPA. Then, they proposed a 

coordinate sampling (CS) scheme to alleviate this problem so as to speed up the 

convergence rate of COMPASS. Both empirical and analytical evidence showed that 

compared with uniform sampling scheme, CS scheme is a much more efficient 

sampling scheme.  

The main idea of CS scheme is to sample a solution that differs in only one 

coordinate from the current sample best solution. The following is a high-level 

description of CS scheme: 

Step 1. Randomly choose a coordinate axis. 

Step 2. Draw a line passing through the current best sample solution and parallel 

to the chosen coordinate axis. 

Step 3. Uniformly sample a solution with integer elements on the line from step 2 

within the MPA. 

It can be seen that CS scheme just randomly chooses the coordinate axis to sample 

new solution without utilizing any information of the structure of the cost function, 

such as gradient information. Therefore, there is some room to improve the efficiency 

of the sampling scheme by making use of gradient information. 

5.3 COMPASS algorithm with SPSA-based HCGS scheme   

In this section, we develop COMPASS algorithm with SPSA-based HCGS scheme 

to solve problem (5.1). We introduce the procedure of COMPASS algorithm, followed 

by the proposed HCGS scheme.  
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Table 5.1 List of notations for COMPASS algorithm 

 

 Description 

     The set of all solutions visited through iteration   

  
  The solution with the smallest aggregated sample mean among all        

           and      
                and     

  , the MPA at iteration   

  The number of solutions to sample in each iteration 

      The additional observations allocated to   at iteration   

              
   , the total number of observations on solution   at iteration   for every   

     

       The sample mean of all       observations of        at iteration   

 

5.3.1. COMPASS algorithm 

Some notations used in COMPASS algorithm are presented in Table 5.1. 

The MPA   consists of all feasible solutions that are at least as close to the 

current sample best solution as to other visited solution. It is the part of feasible 

region  , which is assumed to be finite in this study. The procedure of COMPASS 

algorithm (Hong and Nelson, 2006) used in this study is as follows:  

The COMPASS algorithm  

Step 1. Set iteration count     . Find      , set          and    
    . 

Determine         according to a simulation-allocation rule (SAR). 

Take         observation from    , set               , and 

calculate        . Let    . 

Step 2. Let       . Independently sample                using the SPSA-

based HCGS sampling scheme from     . Remove any duplicates 

from               , and let    be the remaining set. Then, we 

have                . Determine        according to SAR for 

every    in      . For all         , take        observation, and then 

update       and       . 

Step 3. Let   
                    . Construct    and go to step 1. 
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Figure 5.1 New solutions generation process in HCGS scheme 

At the end of iteration, if there is more than one solution having the smallest 

aggregated sample mean, we select   
  randomly from the set of solutions having the 

smallest aggregated sample mean.  

5.3.2. SPSA-based HCGS scheme 

In this section, we first introduce the HCGS scheme, followed by presenting the 

SPSA gradient estimator. 

5.3.2.1. HCGS scheme  

The HCGS scheme is based on the CS scheme (Hong et al., 2010) but the gradient 

information is added by generating a special solution with a gradient-based scheme. 

Hence, two kinds of solutions constitute the set of new solutions in the HCGS scheme: 

the gradient solution and the CS solutions. The former is a single solution generated by 

a gradient-based scheme while the latter are generated by the CS scheme. For the 

gradient-based scheme, it uniformly samples a solution with integer elements 

following the direction of the negative gradient from the current best sample solution 

within the MPA. 
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Let       be the gradient at solution   . In general, the procedure of solution 

generation at iteration   by HCGS scheme is summarized in Figure 5.1 with following 

three steps: 

HCGS scheme at iteration   

Step 1. (Initialization): set the set of sampled solutions    , and the number of 

sampled solution    . 

Step 2.  (Sample CS solutions):  repeat the following sub-steps until       

(a) Uniformly sample an integer   from 1 to   

(b) Determine the values of       and      that are the minimum and 

maximum integer values of    that ensure      
           , 

respectively.    is the  th column of a     identity matrix. 

(c) Uniformly sample an integer   from           . Let      , and we 

have one solution         
     . Let          . 

Step 3. (Sample a gradient solution):  Let    be the point going from current best 

sample solution   
  in the direction of the negative gradient        

  , i.e., 

       
          

  . We denote     
  as the maximum value of   that 

ensures     is within the MPA      Then, uniformly sample a real 

number   from        
  . Let      , and we have a solution 

                 
          

     (5.2) 

And we return          . 

Note that the generated solution is constrained to be with integer components. 

Hence, in Eq. (5.2),  Int represents an operation to adjust     to be a solution with 

integer elements. If either  th component of   , i.e.,   
  is not an integer, we always 

round it down to the next integer, i.e.,    
   if        

    , and round it up to the next 

integer, i.e.,    
   if         

    .        
   is the  th  component of the 
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gradient        
  . Then, if   Int  

    , we project it into the nearest point in the 

feasible region by operation      . 

  As the new scheme samples some solutions by the CS scheme, we can show that 

the proposed scheme still satisfies the required condition for ensuring the local 

convergence (Hong and Nelson, 2007). The proposition is as follows. 

PROPOSITION 5.1: The HCGS scheme ensures that  Pr         for all    

       
     , where       denotes the local neighborhood of a solution    and 

includes all feasible solutions that have Euclidean distance 1 from  , i.e.,        

              .  

PROOF: Denote the    unique solutions in    as              , which are 

independently sampling within    . The first     solutions are CS solutions and the 

last one is a gradient solution. For all           
  , we have  Pr         

Pr         Pr                         Pr           

Pr       . 

When we sample a CS solution, every coordinate axis has a probability 

of     being chosen, and every coordinate axis has at most        feasible solutions, 

where        dentoes the number of solutions within the MPA in the     iteration. 

Note that     is the part of feasible region  , which is finite in our study. Thus, we 

can have  Pr        
 

       
 

 

    
. Further, we obtain that  Pr         

Pr                
 

    
       .   

The HCGS scheme exploits the advantage of both the CS scheme and the 

gradient-based scheme. It maintains the local convergence property of COMPASS and 
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speeds up the convergence rate by utilizing the gradient information. Next, we present 

the method to obtain the gradient, i.e.,       
   for the HCGS scheme.  

5.3.2.2. SPSA-based gradient 

As a general rule, if direct gradient information is conveniently and readily 

available, it is generally to one’s advantage to use this information, such as our 

gradient method with IPA estimator in Chapter 3. However, for many problems, direct 

gradient estimates may not be readily available. In this case, gradient estimates based 

on (noisy) measurements of performance measure itself are the only recourse. Hence, 

in this study, the SPSA algorithm is applied to estimate the gradient for the HCGS 

scheme. 

SPSA algorithm is originally developed by Spall (1992) for the problems in the 

multivariate Kiefer-Wolfowitz setting. Since its convention, it has received 

considerable attention and been used in a wide variety of setting such as statistical 

parameter estimation, adaptive control and many other applications (Spall, 2003). For 

the details literature about SPSA, see the webpage http://www.jhuapl.edu/spsa/. The 

basis of  P A method is an efficient and intuitive “simultaneous perturbation” 

estimation of the gradient from only two noisy function measurements. Compared with 

other gradient-base method, SPSA has two advantages: it requires only two 

simulations per gradient estimate, regardless of the number of input variables, and it 

can treat the simulation model as a black box, i.e., no knowledge of the working of the 

system is required (Fu et al., 2005).  

We can obtain one gradient at the best solution    
  by SPSA method with the 

following procedure: 

http://www.jhuapl.edu/spsa/
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Basic SPSA procedure  

Step 1. Randomly generate the perturbation vector              , where    is 

independent Bernoulli random variables taking the values     with 

probability 1   . 

Step 2. Evaluate two measurements of the cost function      in Eq. (4.14) based 

on the simultaneous perturbation around the current    
  with one 

replication, and compute the approximation to the gradient by 

 
    

   
    

          
     

  
 

  
 (5.3) 

Note that we only consider solution with integer components. Thus, the above 

procedure requires several modifications:  

 In the original procedure of SPSA method (Spall, 1992), the parameter    is 

decreasing sequence with respect to the iteration of simulation, such as   in 

COMPASS algorithm. Although it may change according to the problem, it is suitable 

to define it as a fixed value (Gerencsér et al., 1999; Gerencsér et al., 2001; Hill et al., 

2004) for the discrete problem and we use     in the study. This, together with the 

choice of    makes sure that all evaluates are on the integer lattice on which we 

optimize. 

 Evaluations have to stay within the feasible set area. If both   
     lie outside 

the feasible region, we try to generate a new perturbation vector, with which at least 

one of the evaluations lies inside the feasible region. And the number of maximum 

time to try is given. If only one evaluation lies inside, one-sided SPSA (Chen et al., 

1999) is applied to calculate magnitude of the gradient. That is, we have      
   

    
            

  

 
    or 

    
            

  

  
    , when there is only point   

     or   
  

   inside the feasible region. 

Besides, from Spall (1992), we make another modification on the basic SPSA 

procedure. That is, instead of computing only one search direction   and evaluating the 

cost function in forward and backward direction, we generates several, say  , search 
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directions, resulting in     function evaluations. By incorporating all these 

computations, we can obtain an average gradient as 

 
     

   
 

 
        

  
 

   
 (5.4) 

where         
   is a gradient calculated by Eq. (5.3) with a random perturbation 

vector  . We then use the average gradient      
   as gradient in Eq. (5.2) to generate 

the gradient solution. Despite the expense of the additional function evaluations, it 

could  allow a better approximation of the true gradient (Spall, 1998) and will thus 

provide a better gradient solution. 

5.4 Numerical experiments 

In this section, we first evaluate the performance of the COMPASS algorithm with 

SPSA-based HCGS scheme using a test function. Then, the proposed method is used 

to solve one ECR problem. The proposed algorithm is coded in Microsoft Visual 

studio C# 2010. All the numerical studies are tested on a PC with 2.67GHz Processor 

under the Microsoft Vista Operation System. 

5.4.1. Performance of COMPASS algorithm with SPSA-based HCGS scheme 

The sphere function is a common test function as defined in (5.5). 

  sphere       
  

   . (5.5) 

It has a unique global minimum occurs at   
               with  sphere  

   

 . Set                        , we use this function to compare the 

performances of COMPASS algorithm with different sampling schemes, i.e., CS 

scheme and HCGS scheme. 
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Since there is no stochastic noise in the cost function, we only need to evaluate a 

newly chosen solution once to know its objective value. This allows us to eliminate the 

effect of the estimation scheme and to focus solely on the sampling scheme.  We 

examine two performance measures. One is the number of visited solutions that the 

algorithm evaluates until it first hits the global optimum   , and the other is the CPU 

time that the algorithm spends until it first hit    . The first measure quantifies the 

amount of simulation effort required by COMPASS, and the second measure 

quantifies the amount of computational overhead in running COMPASS (because 

additional function evaluations are needed to estimate the gradient for the gradient-

based sampling scheme). 

The search algorithms are started with the same initial solution           

       , and stopped when the MPA is singleton. Repeat the process for 10 

replications; we then report the average performance.  In all numerical experiments, 

we set   5, i.e., we sample five solutions from the MPA in each iteration. 

First, to evaluate the effectiveness of the HCGS scheme, we compare the 

performance of the COMPASS algorithm with CS scheme with that with HCGS 

scheme by varying the dimension from 2 to 50. For HCGS scheme, the true gradient 

information of sphere function, i.e.,   sphere  
      

       
             is used to 

generate the gradient solution in Eq. (5.2).  

The results are presented in Table 5.2, where “Number of evaluated solutions” and 

“CPU time” mean the average number of solutions evaluated by COMPASS and the 

average CPU time, respectively, until the algorithm first finds the optimal solution. 

The CPU time is measured in milliseconds. 
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Table 5.2 CS vs. HCGS with true gradient 

 

Dimension 
Number of evaluated solutions 

 
CPU time 

CS HCGS-true 
 

CS HCGS-true 

2 42.1 28.4 
 

5.9 5.3 

5 124.8 41.6 

 

21.3 4.8 

10 319.8 50.7 

 

170.3 9.2 

15 513.8 50.4 
 

508.7 10.5 

20 789.1 60.4 

 

1442.8 20.3 

30 1337.4 92.6 

 

4398.3 56.9 

40 2015.6 122.2 
 

11423.1 132.2 

50 2580.4 160.5 

 

22407.9 290.7 

 

From Table 5.2, it is clear that the COMPASS algorithm with HCGS scheme is 

much more efficient in solving the problem than that with CS scheme, especially when 

the dimension of the problem is high. When the dimension is 2, the difference between 

two algorithms is negligible. When the dimension is 15, compared to the COMPASS 

algorithm with CS scheme, the COMPASS algorithm with HCGS scheme evaluates 

fewer than 10% of the solutions and spends less than 3% of the computation overhead. 

The gradient solution in the gradient-based sampling scheme contributes to the drastic 

differences. The results demonstrate the effectiveness of the HCGS scheme and 

indicate that when the gradient has enough accuracy, the gradient solution could 

greatly improve the convergence rate of the COMPASS algorithm.  

Next, we compare the performances of the COMPASS algorithm with CS scheme 

and that with SPSA-based HCGS scheme. For the SPSA-based HCGS scheme, we 

vary the number of random directions   from 1 to 6. Table 5.3 and Table 5.4 show the 

results. 

From Table 5.3 and Table 5.4, it can be seen that the COMPASS algorithm with 

HCGS scheme outperforms over that with CS scheme when     . When     , 

COMPASS algorithm with HCGS scheme evaluates fewer solutions than that with CS 



Chapter 5 COMPASS with Hybrid Sampling for ECR in Liner Shipping System 

91 

 

Table 5.3 CS vs. HCGS with SPSA gradient in terms of number of evaluated solutions 

 

Dimension CS 
SPSA-based HCGS 

                        

2 42.1 37.8 29.1 31.8 28.5 31 30.6 

5 124.8 138.9 115.3 104.8 98.7 80.8 81.8 

10 319.8 355 301.8 263.5 221 196 189.7 

15 513.8 572 516.1 452.8 390 364.7 318.7 

20 789.1 858.7 751.6 644.9 583.5 457.8 468.9 

30 1337.4 1412.3 1307.1 1175.3 1040.2 871.1 789.9 

40 2015.6 2046.2 1989.5 1656 1533.3 1346.9 1227.3 

50 2580.4 2835.4 2602.9 2382.6 2068 1850.9 1698.6 

 

 

Table 5.4 CS vs. HCGS with SPSA gradient in terms of CPU time 

 

Dimension CS 
SPSA-based HCGS 

                        

2 5.9 8.7 4.5 2.2 2.2 1.3 1.5 

5 21.3 28.9 18.8 16.6 16.4 9.8 8.9 

10 170.3 232.3 179.6 136 89.4 75.1 71.6 

15 508.7 683.1 563.1 460.8 401.3 284.1 221.1 

20 1442.8 1788.4 1405.4 1037.5 857.5 541.4 556.6 

30 4398.3 5587 4844 4013.3 3136 2310 1927.1 

40 11423.1 13690.7 13382.2 9474.6 7924.2 6221.3 5169 

50 22407.9 29496.4 25207.4 20670.1 15440.8 12974.5 11104.8 

 

scheme for some cases; however, it needs a little more computational overhead to find 

the optimal solution. One possible explanation for such issue is that HCGS scheme 

needs additional computational overhead to evaluate the SPSA gradient in each 

iteration. When we set the appropriable value for   , the COMPASS algorithm with 

HCGS scheme is much more efficient in solving the problem than that with CS scheme, 

especially when the dimension of the problem is high. Hence, the results demonstrate 

the effectiveness of the SPSA gradient approximation. Besides, it shows that the more 

random directions we use to average, the better HCGS scheme with SPSA gradient 

could perform. However, since the number of evaluations for SPSA is increased with   , 
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Table 5.5 The cost parameters for the ECR problem 

 

Port number 7 12 14 16 22 24 29 33 34 38 41 48 

Holding 1.5 1.5 1.5 5 5 1.5 1.5 1.5 1.5 1.5 5 5 

Leasing 438 540 369 246 246 303 191 303 438 261 246 246 

Unloading 82 107 73 50 50 61 63 61 82 52 50 50 

Loading 82 107 73 50 50 61 63 61 82 52 50 50 

 

there is a tradeoff between the accuracy of gradient approximation and the 

computation time cost. 

5.4.2. Application for ECR problem 

In this section we show the performance of the COMPASS algorithm with SPSA-

based HCGS scheme for a large size ECR problem.  

The problem has 12 ports with 4 service routes. The network for this ECR 

problem is presented in Figure 5.2. The unit costs of holding, leasing, unloading and 

loading are given in Table 5.5, which are from real data. We set the transportation 

cost       
    . 

The daily customer demands, supplies and residual capacities of vessels are 

assumed to follow normal distribution. For example, we assume that the daily demand 

of port  , i.e.,      follows normal distribution                   
 
  and is left-truncated 

at zero. The mean values of daily supply and demand for each port are represented in 

Table 5.6 and Table 5.7, respectively 
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 Figure 5.2 the network of ECR problem: 4 service routes and 12 ports 

Table 5.7 Average daily customer demand for the ECR problem 

Day 
Port number 

7 12 14 16 22 24 29 33 34 38 41 48 

Mon 60 174 34 93 104 118 104 95 153 212 135 87 

Tues 60 110 0 187 208 118 104 0 153 212 135 175 

Wed 60 110 0 187 208 118 104 0 0 212 68 87 

Thurs 60 155 166 187 104 0 104 95 0 212 68 87 

Fri 60 110 214 93 104 0 104 95 153 212 68 87 

Sat 60 110 248 93 104 0 104 95 153 212 68 87 

Sun 60 110 83 93 104 118 104 95 153 212 135 87 

Total 420 879 745 933 936 472 728 475 765 1484 677 697 

 

Table 5.6 Average daily customer supply for the ECR problem 

Day 
Port number 

7 12 14 16 22 24 29 33 34 38 41 48 

Mon 82 128 119 183 70 105 228 0 0 263 94 0 

Tues 41 128 119 183 70 0 228 71 0 263 94 0 

Wed 41 128 119 0 70 0 228 71 270 229 187 0 

Thurs 41 128 119 0 70 105 228 71 271 240 94 219 

Fri 41 128 20 0 140 105 0 71 271 240 94 219 

Sat 82 128 119 183 140 105 0 71 0 178 94 219 

Sun 82 128 99 183 140 105 0 71 0 263 94 0 

Total 410 896 714 732 700 525 912 426 812 1676 751 657 
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Figure 5.3 Average     
   by COMPASS with SPSA-based HCGS scheme for the ECR problem 
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Iteration 

For the simulation, we set a warm-up period of 40 weeks and then average total 

cost over the next 120 weeks. For the COMPASS algorithm, we generate 8 new 

solutions at each iteration and set the number of random directions    . To allocate 

the observation for each solution, we use an equal SAR with          for all   

    , where                            .  The search algorithm can be stopped 

when the current best sampling solution, i.e.,   
  does not change for concessive 50 

iterations.   

The line in Figure 5.3 is the sample path of the COMPASS algorithm with SPSA-

based HCGS scheme averaged over 30 macroreplications for the ECR problem (only 

the results of the first 100 iterations are shown). It shows the convergence of the 

proposed algorithm.  

The best solution, i.e., the best thresholds of all ports, is given in Table 5.8 (based 

on a single replication). It can be seen that those import-dominated ports, such as port 

24, port 29 and port 41 usually have lower threshold values, and those export-

dominated ports, such as port 14, port 16 and port 22 and port 48 have higher threshold 

values. It is in agreement with the intuition that setting high thresholds in export-
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Table 5.8 The best solution for the ECR problem 
 

 
Port number 

 
7 12 14 16 22 24 29 33 34 38 41 48 

Lower-level 17 89 53 221 303 25 19 50 64 159 72 214 

Upper-level 96 235 808 247 335 138 94 188 287 206 113 272 

 

dominated ports and low threshold in import-dominated ports could encourage 

repositioning EC from import-dominated ports to export-dominated ports. Besides, it is 

observed that the thresholds of port 12, port 34 and port 38, which are import-

dominated ports, are also high. This can be explained by the high variability of demand 

and supply in those ports. For port 16 and port 22, which have similar weekly demands, 

port 22 has higher thresholds than port 16 because it has less weekly supplies. And for 

port 12 and port 29, which have similar weekly supplies, port 12 has higher thresholds 

because it has higher weekly demands. All the results show the reasonability of the 

best solution.  

5.5 Summary  

In this section, we develop a search algorithm based on COMPASS to optimize 

the parameters of the two-level threshold policy in liner shipping system with multiple 

service routes. To improve the convergence rate of COMPASS, we propose a SPSA-

based HCGS scheme to sample the new solutions in each iteration. The result 

demonstrates that the proposed sampling scheme can significantly improve the 

convergence rate of COMPASS. Then, we solve a practical ECR problem by the 

COMPASS algorithm with SPSA-based HCGS scheme. The result shows the 

convergence of the proposed algorithm and the reasonability of the best solution. 
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Chapter 6 CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusion  

This thesis studied ECR problem with inventory-based control policies. It 

contributes to the implementation of inventory-based control policies in general and 

complex liner shipping systems and some methodological issues to optimize the 

parameters of such policies. 

Chapter 3 studied ECR problem in a multi-port system consisting of ports 

connected to each other. A single-level threshold policy with intelligent rule in terms 

of minimizing repositioning cost was proposed to manage ECs. Then, we aimed to 

optimize the fleet size and the parameters of the given policy. When analyzing the 

optimization problem, we found one interesting property of the problem, i.e., when the 

fleet size is equal to the sum of thresholds, the optimal values of the thresholds only 

depend on the holding and leasing cost function. It implies that the optimization 

problem can be reduced to a newsvendor problem, when the fleet size is equal to the 

sum of the thresholds. Meanwhile, we also proved mathematically that it is worth to 

study the scenario in which the fleet size is not equal to the sum of the thresholds, 

since this scenario could produce lower operation cost compared to the scenario in 

which the fleet size is equal to the sum of the thresholds. This provides an important 

insight that keeping more (less) ECs over the threshold in import-dominated (export-

dominated) port in advance when it becomes a deficit (surplus) port could reduce the 

repositioned in (out) quantity of ECs. 
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Since there is no closed-form formulation of the expected cost function when the 

fleet size is not equal to the sum of the thresholds, we built a simulation model and 

proposed a gradient-driven search algorithm to tackle the problem. For the gradient-

driven search algorithm, utilizing the knowledge of inside structure of the simulation 

model, we designed an efficient gradient estimator by IPA technique. In the procedure 

to obtain the IPA gradient estimator, we developed a modified stepping stone 

technique to explore the perturbations on ports. It is innovative and provides a 

potential methodology contribution in the field of application of the stepping stone 

method. In the numerical runs, we demonstrated the effectiveness of the proposed 

policy and provided some insights for liner operators in managing ECs. 

 In Chapter 4, we built a simulation model for a practical ECR problem with 

multi-service, and developed two threshold-type policies to manage ECs. The 

simulation model and the policies can be used by the shipping company analysts to 

explore other operation options in the future. The experiment results showed that the 

two-level threshold policy outperforms over the single-level threshold policy, 

especially in the systems with high uncertainty. 

Chapter 5 further discussed ECR problem with multiple service routes and focused 

on optimizing the parameters of the two-level threshold policy. A search algorithm 

based on COMPASS was developed to solve the optimization problem, which 

provides a potential methodology contribution to the application of COMPASS in 

complex systems. To improve the convergence of COMPASS, we proposed a hybrid 

sampling scheme, i.e., the HCGS scheme by taking use of the gradient information. 

Considering that the simulation model was a black-box in this problem, SPSA 

technique was applied to estimate the gradient for the HCGS scheme. The results 

showed the effectiveness of the proposed algorithm. And the HCGS scheme could be 
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easily applied in other random search algorithms to speed up the convergence rate. 

Besides, a numerical example was offered to demonstrate the convergence of the 

proposed algorithm and to show the reasonability of the best solution. 

6.2 Future research topics 

Despite the contributions described above, the research presented in this thesis has 

some inevitable limitations. Future research related to the topics reported in this thesis 

may be carried out in the areas listed below. 

In the liner shipping system with multiple service routes, it is possible that 

multiple vessels will visit one port within one week. Hence, future research should 

attempt to study the policies with considering the priority for each service route based 

on each port. Besides, we assumed that all of the leased containers will be returned 

after    periods. This assumption is quite limited because when we need to return is an 

important decision for ECR. Therefore, we can relax this assumption in the future 

work. 

Although we have demonstrated the effectiveness of the HCGS scheme, other 

sampling schemes which make use of the gradient information are worth to study 

further. In addition, the use of both standard and foldable for ECR is also worth to 

study.   
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APPENDICES  

Appendix A.  Input data for problem 1 in chapter 3 

 

Table A.1 The values of the cost parameters for problem 1 in Chapter 3 

 

Original 

port   

Destination 

port   
    

    
    

  

1 
2 8.421 

4.396 16.537 
3 9.917 

2 
1 6.761 

2.374 12.395 
3 5.848 

3 
1 9.027 

1.900 24.599 
2 7.053 

 
Table A.2 Average customer demands in different trade imbalance patterns for problem 1 in Chapter 3 

 

Original port   Destination port   

      

Balanced 
Moderately 

imbalanced 

Severely 

imbalanced 

1 
2 95.950 191.900 287.850 

3 126.385 252.771 379.155 

2 
1 95.950 95.950 95.950 

3 176.833 176.833 176.833 

3 
1 126.385 126.385 126.385 

2 176.833 176.833 176.833 

 

Appendix B. Input data for problems 1 and 2 in Chapter 4 

 

Table B.1 Average daily customer supply and demand for problem 1 in Chapter 4 

 

Day 
The daily supply in the port The daily demand in the port 

P-21 P-23 P-30 P-21 P-23 P-30 

Mon 8 15 19 21 9 0 

Tues 8 15 19 21 9 0 

Wed 8 15 19 21 9 25 

Thurs 8 15 19 21 9 29 

Fri 17 15 0 21 9 29 

Sat 17 15 19 21 9 0 

Sun 17 15 19 21 18 0 

 
Table B.2 The values of the cost parameters for problem 1 in Chapter 4 

 

Port name Port number Holding Leasing Unloading Loading 

Moji 21 5 246 50 50 

Naha 23 5 246 50 50 

Pusan 30 1.5 246 57 57 
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Table B.3 Average daily customer supply and demand for problem 2 in Chapter 4 

 

Day 
The daily supply in the port The daily demand in the port 

P-0 P-6 P-38 P-0 P-6 P-38 

Mon 13 7 18 8 8 38 

Tues 13 7 0 8 8 38 

Wed 7 7 20 8 16 0 

Thurs 7 7 20 8 8 0 

Fri 7 7 20 8 8 0 

Sat 7 7 20 8 8 0 

Sun 13 7 20 8 8 38 

 
Table B.4 The values of the cost parameters for problem 2 in chapter 4 

 

Port name Port number Holding Leasing Unloading Loading 

Bangkok 0 1.5 126 25 25 

Chittagong 6 1.5 270 54 54 

Singapore 38 1.5 261 52 52 

 


