

OPTION PRICING, HEDGING AND SIMULATION WITH GPU

UNDER MULTIDIMENSIONAL LÉVY PROCESSES

CHEN DACHENG

(B.Sci.(Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGPAORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48657364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to acknowledge the help from Prof. Peter Tankov and

the support from Prof. Rongfeng SUN who is the supervisor of this

thesis.

Abstract

In this project, we review some basic concepts and methods of the

transformation method for the calculation of derivatives’ prices. We

modify some of the methods to solve some pricing problems under

multivariate Lévy model. Then we proceed to review some mean

variance strategies to hedge our risk under multivariate Lévy model.

To verify the result of the transformation method, we also conducted

Monte Carlo simulation for the multivariate Lévy process upon which

our model is built.

Recently, there have been great developments on the massive parallel

computing with computer graphic card. We apply this new technology

to our project to do Monte Carlo simulation. We also give a side by

side comparison of the result between this GPU(Graphic Processing

Unit) parallel computing and the C++ implementation of the same

algorithm calculated sequentially by CPU.

Contents

Contents iii

1 Introduction 1

2 Lévy Process and Non-Arbitrage Pricing 5

2.1 Basic Definitions . 5

2.2 Some important Lévy processes 8

2.2.1 Jump Diffusion Models . 8

2.2.2 Subordination Models . 9

2.3 Exponential Lévy model . 11

2.4 Non-Arbitrage Pricing . 11

2.4.1 Esscher Transform . 12

2.4.2 Non-arbitrage condition in the multidimensional setting . . 14

3 Transformation Method for Option Pricing 15

3.1 Formulation with Partial Integro-Differential Equation (PIDE) . . 16

3.2 Practical calculation of several derivative contracts 17

3.2.1 Rainbow Option . 18

3.2.2 Basket Option . 19

3.3 Fast Fourier Transform . 22

3.3.1 Definition of FFT . 22

3.3.2 Discretization . 22

3.4 Application . 23

3.4.1 A Multivariate Subordinator Model 23

3.4.2 Construction of the Model 24

iii

CONTENTS

3.4.3 Example with Inverse Gaussian and Gamma Subordinator 25

3.4.4 Numerical Results and Benchmark Comparison 26

4 Hedging Methods 29

4.1 Locally Risk-minimizing Hedging Strategy 30

4.2 Alternative Hedging Methods . 35

4.2.1 Multi-Dimensional Option Hedging with Receding Horizon

Control . 35

4.2.2 Multidimensional Option Hedging with Malliavin calculus 36

5 Simulation Method and GPU computing with CUDA 40

5.1 Simulation method . 40

5.2 Choosing hardware according to the nature of the problem 42

5.3 GPU and CUDA . 44

5.3.1 GPU at a glimpse . 44

5.3.2 CUDA-thrust implementation 45

6 Conclusions 48

Appendix A 49

Appendix B 51

References 58

iv

Chapter 1

Introduction

It has been almost 40 years since the first appearance of the Black-Scholes’s paper

“The Pricing of Options and Corporate Liabilities”. During this 40 years’ time,

many similar models based on Brownian motion have been developed, perfected

and widely used in the financial industry. Despite its popularity among academics

and practitioners, many facts in the market showed that this model is flawed.

The actual security prices have jumps whereas Brownian motions do not.

The distribution of the log-return1shows that the empirical data has heavy tails 2

whereas it is difficult to represent the heavy tails in the diffusion models(See figure

1.1). Some may argue that nowadays people do not usually use this model to price

a certain option but to use this model to give implied volatility.3 Rebonato[21]

described this as “wrong number which, plugged into the wrong formula, gives

the right answer.” But in comparison with the empirical facts, there are some

defects. In Figure 1.2, the z-axis represents the implied volatility. The surface

showed its relationship with moneyness and time to maturity. At a given time to

maturity, we can have a curve on the plane Moneyness-Implied volatility. From

the surface we can see, as time to maturity becomes bigger and bigger, the plane

1The log-return is defined as: rlog = ln(
Sf

Si
) where Si and Sf are initial and ending prices

of the equity respectively
2It is sometimes called leptokurtosis in academic literature, it is the fact that: Kurtosis−

3 := E(x−µ)4
σ4 − 3 > 0

3the Black-Scholes value of an option is a strictly increasing function of volatility, with
inversion [7] we can find the implied volatility by a particular market price.

1

1. Introduction

(a) Microsoft Corporation

(b) Black-Scholes model (c) Kou’s model

Figure 1.1: Time series of log return and its simulations with same annualized
return and volatility

is becoming more and more flat and the curve just mentioned becomes more and

more flat too. The convexity of the curve comes from the fear of jumps but this

surface is telling us that the convexity is becoming smaller and smaller as time to

maturity grows. This decrease in convexity contradicts the omnipresent nature

of the skews.

Figure 1.2: Implied volatility of DAX index option

In light of these problems, a new framework is needed. Here comes the jump

2

1. Introduction

models based on Lévy process. Actually, Lévy models appeared in finance fairly

early. As early as early 60s, α-stable Lévy process was proposed to model cotton

prices. During the last several decades, many researchers have contributed to its

development. There were jump diffusion models like Merton’s model with Gaus-

sian jumps, Kou’s model with double exponential jumps; there were Brownian

subordination models like Variance Gamma and Normal Inverse Gaussian models.

Under many circumstances there are no closed form equations for option prices in

these jumping models. Even if some models happen to have some nice properties

like the exponential distribution’s memoryless properties for Kou’s double expo-

nential model, the resulting solution is too complicated to read. During the 90s,

some researchers introduced the Fourier transform method and not long after,

Madan[4] applied Fast Fourier Transform (FFT) to it. With these developments,

the theoretical models become more useful in practice.

Recently, in the global financial market, especially in the big mutual funds,

hybrid products have become more and more popular. These hybrid products

essentially combine various different simple products to satisfy the return expec-

tations and risk constraints of customers. To manage the risk of these products

we need to study multivariate Lévy processes. Though much research has been

done on the pricing of contingent claims based on single asset, it is much more

difficult to price derivatives on multiple assets1. There are several approaches

to tackle this problem: the simpler one is the Monte Carlo method whose basic

idea can be found in [5]; then there is resolution of Partial Integro-Differential

Equation (PIDE) by Reich[22] and its numerical implementation in 2 dimensions

by Winter[23]. But this method is very hard to reach higher dimensions, because

the number of the mesh grid points will simply grow exponentially as dimension

grows.

Apart from pricing, the study of hedging is also very important. Good hedg-

ing strategy will protect the writer (issuer) of a financial contract from the risk of

the market. Delta hedging strategy is the strategy most applied in the financial

1It is called the ”Curse of Dimensionality” in some literature.

3

1. Introduction

market. Delta(∆) is the Greek letter used to denote the sensitivity1. But under

jumping processes, the situation will not be the same. A position cannot be per-

fectly hedged. The hedging problem thus becomes a optimization problem. Here

we focused on the locally risk minimization strategy. Though this one is popular,

this strategy is by no means the only one. In Chapter 4 we are going to discuss

this problem.

Though theoretical development is important, sometimes developments in

other areas can open other doors to the very same problem. Recently, there have

been some great developments in the massive parallel computation with graphic

card. This new technology is leading the scientific computation to a whole new

era. Currently, we can find its application in bioinformatics, geographical data

processing, physics, seismic simulation, etc. These problem has at least one point

in common, they need to process huge quantity of data. The computation with

graphic card gives a very good solution to this data parallel problem. Monte

Carlo simulation bears similar traits to those problems described. In this project

we will apply this technology to do Monte Carlo Simulation and compare it with

a C++ implementation.

In this project, Chapter 2 will introduce the basic concepts and definitions of

Lévy jumping processes which serve as foundations for later chapters. Chapter 3

will discuss the pricing problem under multivariate Lévy model. In this chapter,

we borrow the idea of Hurd[10] to calculate the transform of basket option and

extend the formula to variable weight rather than fixed equal weight for each

asset. Furthermore, we also correct the published result by Luciano[16] before

we finally apply it to the calculation at the end of this chapter. Chapter 4

will discuss mainly local risk minimization hedging strategy under multivariate

Lévy model and Chapter 5 will firstly introduce simulation method. Then, this

method will be implemented with C++, Matlab and GPU parallel computing

method respectively to see their comparisons. Computer programs and some

heavy calculations can be found in the Appendix at the back.

1So sometimes it is also called sensitivity variable.

4

Chapter 2

Lévy Process and Non-Arbitrage

Pricing

In this chapter we review some basic concepts and definitions of Lévy processes

which lay the foundation for later chapters. In the first part, we will see how

Lévy processes are defined and some of its properties. The second part will show

some concrete and commonly used examples of the process. The third part will

define the exponential Lévy model which will be the model we use later on. The

last part will show some foundations about Non-Arbitrage pricing.

2.1 Basic Definitions

Definition 2.1.1 (Lévy Process) A Rd valued cadlag 1 stochastic process (Xt)t≥0

on (Ω,F,P) is a Lévy process if X0 = 0, (Xt)t≥0 has independent and stationary

increments

Remark 2.1.2 Independent increments means given a sequence of time t0, .., tn,

the random variables Xt0 , Xt1 − Xt0 , ..., Xtn − Xtn−1 are independent; stationary

increments means the law of Xt+h −Xt depends only on h.

1It is the abbreviation of French “continue à droite, limite à gauche”, meaning a function is
right continuous and has left limit: ∀t ∈ R, f(t) = limx↑t+ f(x) and left limit f(t−) = limx↑t f(x)
exists.

5

2. Lévy Process and Non-Arbitrage Pricing

Remark 2.1.3 Here we assume also the Lévy process is also“cadlag”. This prop-

erty is important for the models that we are going to use. Right continuous at t

means the value is not predictable until time t and if it is left continuous, people

can just have the value at t by taking a limit to it. But in real price time series,

jumps are nonpredictable, so this choice is consistent with the model. On the

contrary, the trading strategy should be something predictable, so under this case,

we use “caglad”1.

Proposition 2.1.4 (Characteristic function of a Lévy process) Given a Lévy

process (Xt)t≥0 on Rd, there is a continuous function ψ : Rd → R, such that:

E[eiz·Xt] = etψ(z), z ∈ Rd, (2.1)

where the function ψ is called characteristic exponent.

Definition 2.1.5 (Lévy measure) Given a Lévy process (Xt)t≥0, the Lévy mea-

sure ν on Rd can be viewed as:

ν(M) = E[]t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈M], M ∈ B(Rd). (2.2)

Literally speaking, ν(M) is the expected number of jumps that are in M, per unit

time.

Proposition 2.1.6 (Lévy Itô decomposition) (Xt)t≥0 is a Lévy process on

Rd with Lévy measure ν which satisfies:∫
|x|≤1

|x|2ν(dx) <∞;

∫
|x|≥1

ν(dx) <∞.

There exists a vector µ and a d-dimensional Brownian motion (Bt)t≥0 with co-

variance matrix Σ such that:

Xt = µt+Bt +X l
t + limε↓0X̃

ε
t , (2.3)

1It is the abbreviation of French “continue à gauche et limite à droite”, meaning a function
is left continuous and has right limit: ∀t ∈ R, f(t) = limx↑t− f(x) and right limit f(t+) =
limx↓t+ f(x) exists.

6

2. Lévy Process and Non-Arbitrage Pricing

where

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx),

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

xJX(ds× dx)− ν(dx)ds.

JX is the jump measure of X, it is a Poisson measure on [0,∞[×Rd with

intensity measure ν(dx)dt.

With this decomposition, every Lévy process can be characterized by a triplet

(µ,Σ, ν), which is commonly known as the characteristic triplet.

Theorem 2.1.7 (Lévy-Khinchin representation and characteristic exponent)

Given a Lévy process (Xt)t≥0 defined on Rd with characteristic triplet (µ,Σ, ν),

we have

E[eiz·Xt] = etψ(z), z ∈ Rd (2.4)

with

ψ(z) = −1

2
z · Σz + iµ · z +

∫
Rd

(eiz·x − 1− iz · x1|x|≤1)ν(dx). (2.5)

The function here is called the characteristic exponent. We will denote the

characteristic function by Φ. The characteristic function of process Xt at time t

is just the expectation in the formula (2.4).

7

2. Lévy Process and Non-Arbitrage Pricing

2.2 Some important Lévy processes

2.2.1 Jump Diffusion Models

A jump diffusion type Lévy process has the following form:

Xt = µt+ σWt +
Nt∑
i=1

Yi, (2.6)

where (Nt)t≥0 is the number of jumps, counted by a Poisson process, Yi (i.i.d.

variables) are jump sizes specified by the distribution ν0.

Example 2.2.1 (Kou Model) The Kou Model combined two exponential dis-

tributions for upward and downward jumps. The jump size distribution is as

follows:

ν0(dx) = [pλ+e
−λ+x1x>0 + (1− p)λ−e−λ−|x|1x<0]dx. (2.7)

The Lévy measure is ν = λν0, where λ is the jump intensity. The characteristic

exponent is:

ψ(u) = −σ
2u2

2
+ iµu+ iuλ

p

λ+ − iu
− 1− p
λ− + iu

(2.8)

Another famous example of Jump Diffusion Models is Merton model. For this

model the jump distribution is just normal distribution N(µ, σ2). The character-

istic exponent is

ψ(u) =
σ2u2

2
+ iγu+ λ(e−δ

2u2/2+iµu − 1). (2.9)

Kou’s model is good in its direct representation of upward and downward

jumps by a double exponential distribution. By doing this, it is possible to

adjust the probability and intensity of upward and downward jumps. It is better

than Merton’s model in that it needs not to be symmetrical. We can have either

8

2. Lévy Process and Non-Arbitrage Pricing

upward or downward jump more probable or more intense.

2.2.2 Subordination Models

Subordination simply speaking is to use one process to “time change” another

process. The former is called subordinator whose trajectory should be almost

surely increasing1. Evidently, time goes forward. The later is the process time

changed. In the financial modeling, Brownian motion is usually used as the

process time changed and several Lévy processes are used as subordinator. The

logic behind is that instead of having the information arrives at constant rate,

we can have the information arrives faster or slower when time ‘accelerated’ or

‘decelerated’. As described above, the general form of these processes is Xt =

µSt + σB(St), where St is a subordinator. It is put at the time variable place of

a Brownian motion with drift µ.

Theorem 2.2.2 We fix a probability space (Ω,F,P). Let (St)t≥0 be a subordi-

nator with Laplace exponent2 l(u) and triple (µs, 0, νs). Let (Xt)t≥0 be a Lévy

process on Rd with triplet (µ,Σ, ν) and characteristic exponent ψ(u). Then for

each ω ∈ Ω, Y (t, ω) = X(S(t, ω), ω) is a Lévy process with characteristic func-

tion:

E[eiuYt] = etl(ψ(u)). (2.10)

The triplet of Y is given as (µY ,ΣY , νY), where

ΣY = µsΣ, (2.11)

νy(D) = µsν(D) +

∫ ∞
0

pXt (D)νs(dt), ∀D ∈ B(Rd), (2.12)

1This can be guaranteed by either Xt ≥ 0 almost surely or more practically it has only
positive jumps of finite variation and positive dirft, and does not have diffusion component
which can be seen as µ ≥ 0, Σ = 0,

∫∞
0

(x ∧ 1)ν(dx) <∞ and ν((∞, 0]) = 0.
2Defined similarly to characteristic exponent. Instead of doing Fourier transform, we do

Laplace transform here. One can also obtain Laplace transform from characteristic function by
substituting −iu.

9

2. Lévy Process and Non-Arbitrage Pricing

µY = µsµ+

∫ ∞
0

νs(dt)

∫
|x|≤1

xpXs (dx), (2.13)

where pXt is the probability distribution of Xt.

Example 2.2.3 (Variance Gamma) Variance Gamma process is a subordi-

nated Lévy process obtained by time changing a Brownian motion with a gamma

process. A gamma process Γ(m,n) has a Lévy triplet defined as such: µs =
m
n
− me−n

m
,Σ = 0, ν(dx) = m e−nx

x
dx, x > 0.

To construct a variance gamma process we take (Xt)t>0 as a drifted Brownian mo-

tion defined as Xt = µt + σBt, (St)t>0 as a gamma process Γ(1/a, 1/a), a > 0.

Then the variance gamma process is defined as

YV G = µSt + σB(St). (2.14)

The characteristic function of the process YV G is:

ΦVG(u) = (1− iuµa+
1

2
σ2au2)−

t
a . (2.15)

Example 2.2.4 (Normal Inverse Gaussian) The Normal Inverse Gaussian

(NIG) process is defined similarly as the Variance Gamma process. Its subor-

dinator is changed to an Inverse Gaussian process which has a Lévy measure

νIG(x) = a√
ax3
exp(− b2x

2
)dx, x > 0. The characteristic function of a Normal

Inverse Gaussian process with parameters a > 0,−a < b < a, c > 0 is:

ΦNIG(z) = et(−c(
√
a2−(b+iu)2−

√
a2−b2)). (2.16)

In this expression there is no specific parameter comes form the drifted Brownian

motion. Because they are together incorporated in the parameters in the above

expression. For an expression with explicit parameter from the drifted Brownian

motion refer to [5] page 117. The Normal Inverse Gaussian process was first

proposed in 1995 by Barndorff-Neilsen. This process gains its popularity because

it fits the log returns on German stock market data very well.

10

2. Lévy Process and Non-Arbitrage Pricing

2.3 Exponential Lévy model

Exponential Lévy model can be considered as a generalization of the Black-

Scholes model. It can be achieved by simply replacing the Brownian motion

with a Lévy process (Xt)t≥0

St = S0e
rt+Xt . (2.17)

According to [5], there are several advantages of using the exponential Lévy

model. The closed-form characteristic function of certain Lévy processes makes

the Fourier transform method possible; the Markov property of the price makes it

possible to express the derivative price as a solution of Partial Integro-Differential

Equations; the flexibility of being able to choose the Lévy measure makes the cali-

bration and the implied volatility calculation possible. Sometimes the exponential

Lévy model is written as exp-Lévy model.

2.4 Non-Arbitrage Pricing

Theorem 2.4.1 (Fundamental theorem of asset pricing) The market model

is defined by (Ω,F,P). The asset prices St, t ∈ [0, T] is arbitrage-free if and only

if there exists a probability measure Q equivalent to P such that the discounted

asset1 S
′
t, t ∈ [0, T] is martingale with respect to Q.

Remark 2.4.2 We sometimes use the term risk neutral measure, but this does

not mean the investors are risk neutral. Rather it means that the contingent

claim is priced in an arbitrage-free way. With this theorem, we translate the

real world arbitrage-free situation into the matters of looking for an equivalent

martingale measure that satisfies certain maximization conditions. In the Black-

Scholes model, the equivalent martingale measure(EMM) is unique and is found

by doing Girsanov transform which is essentially equating the drift of the process

1S′t = e−rtSt

11

2. Lévy Process and Non-Arbitrage Pricing

to the risk neutral return like the LIBOR1. However, in the jumping models, the

EMM is not unique anymore and there can be infinitely many of them, so looking

for an appropriate EMM is a non-trivial task.

It was shown that under some optimisation criterion, the Esscher transform of

the historic measure is optimal.

2.4.1 Esscher Transform

Esscher transform has existed for a very long time, but previously used in actuarial

science. It can be used for pricing derivative contracts if the logarithms of the

prices of the underlier follows Lévy process [9]. Since we are modeling the risk

neutral dynamics with exponential Lévy processes. Esscher transform can be

applied here.

Definition 2.4.3 (Esscher Transform) Let X be a Lévy process with charac-

teristic triplet (µ, σ2, ν). Define a probability space (Ω,F,P). We assume that the

Lévy measure satisfies
∫
|x|≥1

eθxν(dx) < ∞, where θ is a real number. The Es-

scher transform is to find an equivalent probability Q under which X is a Lévy

process which has a characteristic triplet (µe, 0, νe), where µe = µ +
∫ 1

−1
x(eθx −

1)ν(dx), νe(dx) = eθxν(dx). The Radon-Nikodym derivative that corresponds to

this measure change is

dQ
dP
|Ft =

eθXt

E[eθXt]
= exp(θXt − h(θ)t), (2.18)

where h(θ) = −ψP(−iθ).

Remark 2.4.4 The discounted price process of the stock is e−rtSt. It must be a

martingale under Q. Therefore for t > 0, we have

S0 = EQ[e−rtSt] = S0E
P[e(1+θ)Xt−h(θ)t−rt]. (2.19)

1London Interbank Offered Rate. This rate is not controlled by any government, only
decided by the market.

12

2. Lévy Process and Non-Arbitrage Pricing

From the above equation, we have the following relationship:

−tψP(−i(1 + θ))− h(θ, t)− rt = 0. (2.20)

The Same procedure applies to the riskless bond dynamic Bt = B0e
rt. We have

another relation:

B0 = EQ[Bte
−rt] = EQ[B0e

rte−rt] = B0E
P[eθXt−h(θ)t]. (2.21)

So

−tψP(−iθ)− h(θ, t) = 0. (2.22)

We can solve for h(θ) = −ψP(−iθ) and substitute into the equation (2.20) we

have the following relationship:

−r − ψP(−i(1 + θ)) + ψP(−iθ) = 0. (2.23)

If the solution for the equation (2.23) exists, the Esscher transform exists. The

characteristic exponent of X under measure Q is given by:

ψQ(t) = ψP(t− iθ)− ψP(−iθ). (2.24)

Example 2.4.5 Let us apply the above result to a Brownian Motion Xt = µt +

σBt. As we know that the characteristic exponent of the Brownian Motion is

ψP(t) = σ2t2

2
− iµt. We substitute this equation into (2.23) and solve for θ =

−µ+σ2/2−r
σ2 . Consequently the characteristic exponent of the process under risk

neutral measure Q is just ψQ(t) = ω2t2

2
− it(r − σ2

2
), which is a result can be

obtained by Girsanov transform. This is not a surprise, because the risk neutral

measure is unique under diffusion models. So the Esscher transform and the

Girsanov transform should give the same result.

Remark 2.4.6 A more general result is ψQ(−i) = −r. Similar results can also

be obtained by analogously applying the Itô Formula for semi-martingales to the

Exponential Lévy process and set the drift term to zero.

13

2. Lévy Process and Non-Arbitrage Pricing

2.4.2 Non-arbitrage condition in the multidimensional set-

ting

In Remark 2.4.6 we have seen a non-arbitrage condition of one dimension case.

This result has existed for many years, whereas the extension to the multidimen-

sional setting is just recent.

Theorem 2.4.7 (Non-arbitrage in multidimensional exp-Lévy model) Let

(X,P) be a Lévy process defined on Rd with triplet (µ,Σ, ν). The following state-

ments are equivalent:

1.There exists a probability measure Q equivalent to P. (X,Q) is a Lévy process

and (X i) is a Q-martingale for all 1 ≤ i ≤ d.

2.Denote Y to be a linear combination of X i. Y has triplet (µ, σ2, ν). All such Y

satisfy one of the following four conditions:

. 2.1. Y ≡ 0 or (Y,P) is not almost surly monotone,

. 2.2. σ > 0,

. 2.3. σ = 0 and
∫
|x|≤1
|x|ν(dx) =∞,

. 2.4. σ = 0,
∫
|x|≤1
|x|ν(dx) <∞ and −b is in the relative interior of the smallest

convex cone containing the support of ν, where b = µ −
∫
|x|≤1

xν(dx) is the drift

of Y .

14

Chapter 3

Transformation Method for

Option Pricing

In this part we are going to see how Fourier transform is used to calculate the

option price. The first part will recall how the pricing formula comes from. After

the first part we will see that to calculate the option price, we need two things:

one is Fourier transform of payoff function which is normally calculated in closed

form, the other is the characteristic exponent of the underlying processes. We

have seen the one dimensional case in the previous chapter. Here we focus on

the multidimensional case. In [10], Hurd and Wei proposed a method which was

used to transform the payoff function of spread option. We borrow his idea to

calculate the Fourier transform of basket options and we furthermore give each

dimension a variable weight instead of a fixed equal weight in their original work.

These payoff transforms is put in section 3.2. As for the characteristic exponent,

we use the research by Luciano[16]. In his published work, he tried to use the

theoretical result in [1]. This result can be viewed as a multivariate version of

Theorem 2.2.2 in the previous chapter. But the published characteristic exponent

of Normal Inverse Gaussian process by Luciano wrongly used the theorem. We

corrected the problem in this project and used this corrected version to do the

calculation. The corrected characteristic exponent and the calculation results

are put together in section 3.4. The transformation results are compared with

Monte Carlo simulation which is served as benchmark. We also gave a detailed

15

3. Transformation Method for Option Pricing

description to the implementation for multidimensional Fast Fourier Transform

in section 3.3.

3.1 Formulation with Partial Integro-Differential

Equation (PIDE)

Recall that in the Black-Scholes model, we have the following PDE:

∂V

∂t
(t, St) + rSt

∂V

∂St
+

1

2
σ2
tS

2
t

∂2V

∂S2
t

(t, St)− rV (t, St) = 0. (3.1)

Analogously, in the jump models, there is a similar formulation in terms of

Partial Integral Differential Equation [11].

Consider V (t, St) to be the price at time t of an option, written on a vector of

d underlyings St. Let φ(ST) be the T-maturity payoff. In an arbitrage-free and

frictionless market, the value of the option is the discounted expectation under a

risk-neutral measure Q, namely:

V (t,St) = EQ
t [e−r(T−t)φ(ST)]. (3.2)

Now taking St = S0e
Xt where Xt is a Lévy process under risk neutral measure

with characteristic triplet (µ,Σ, ν). The discount-adjusted and transformed price

process:

v(t,Xt) := er(T−t)V (t, St). (3.3)

We thus have the following formulation:(∂t + L)v = 0

v(T, x) = φ(S0e
x),

(3.4)

where L is the infinitesimal generator of the multi-dimensional Lévy process X

16

3. Transformation Method for Option Pricing

and acts on twice differentiable functions v(x)1 as follows:

Lv(x) = (µ · ∂x +
1

2
∂x · Σ∂x)v(x) +

∫
Rn/{0}

(v(x+ y)− v(x)− y · ∂xv(x)1|y|<1)µ(dy).

(3.5)

We take the Fourier transform on both sides of the above formula, to find that:

F[Lv](t, ω) = {iµ · ω − 1

2
ω · Σω +

∫
Rn

(eiωy − 1− iyω1|y|<1)µ(dy)}F[v](t, ω).

(3.6)

Recall the Lévy-Kintchine representation in (2.5), we can see that the right side

of above formula is just Ψ(ω)F[v](t, ω). Consequently, (3.4) is transformed to:∂tF[v](t, ω) + Ψ(ω)F[v](t, ω) = 0

F[v](T, ω) = F[φ(S0)ex](ω).
(3.7)

This is an ordinary differential equation and its solution is:

F[v](t1, ω) = F(T, ω)eψ(ω)(T−t), (3.8)

and the final result is obtained by taking an inverse transform:

v(t, x) = F−1{F[v](T, ω)eψ(ω)(T−t)}(x). (3.9)

3.2 Practical calculation of several derivative con-

tracts

Recently, Hurd and Wei[10] proposed a method to calculate the spread option

price with multivariate exponential Lévy model. The essential point of their

method is to scale the payoff function with respect to strike K. Take for example

the spread option’s payoff function (S1
T − S2

T −K)+ 2. If we scale it with respect

1We assume v(x) to be twice differentiable
2(S1

T − S2
T −K)+ means max{(S1

T − S2
T −K), 0}

17

3. Transformation Method for Option Pricing

to strike K, it will give K(
S1
T

K
− S2

T

K
− 1)+. We take one more step to transform

this function into exponential form K(ex1−ex2−1)+, where x1,2 = log(
S1,2
T

K
). The

calculation will be carried out with this transformed payoff function. After we

have calculated the result, we have to multiply back the K to obtain the actual

price. With the equation (3.9) above, we need to firstly calculate the interior

Fourier transform of payoff function. This step is to get a closed form expression

for the Fourier transform of payoff function. Then we combine the Fourier trans-

form just calculated and the characteristic function which is also in closed form

for certain models into one single closed form expression. The final step is to take

an inverse Fourier transform on this expression. This step is carried out by FFT.

From here we can see why people want to have a closed form characteristic func-

tion of a model. Because with closed form expression of characteristic function,

the calculation will actually be reduced to only one numerical integration which

can be done by FFT.

In the following we will extend Hurd and Wei’s method on the calculation

of Spread option price to two other options: rainbow option and basket option.

Both of them are showed in two dimensional case. It will be simple to extend to

higher dimension.

3.2.1 Rainbow Option

Rainbow option is actually a family of options: there are “Call on max” (max(S1, ..., Sn)−
K)+; “Call on min” (min(S1, ..., Sn)−K)+; “Put on max” (K−max(S1, ..., Sn))+

and “Put on min” (K−min(S1, ..., Sn))+. Since the calculation are generally sim-

ilar, here only the call on min is studied. As mentioned above, we firstly transform

the payoff function into this form: φ(x) = (min(ex
1
, ex

2
)−1)+. Then, we calculate

the Fourier transform of this payoff function φ̂(u):

φ̂(u) =

∫ ∞
0

∫ ∞
x1

(ex
1 − 1)e−i(u1x

1+u2x2)dx2dx1 +

∫ ∞
0

∫ ∞
x2

(ex
2 − 1)e−i(u1x

1+u2x2)dx1dx2.

(3.10)

18

3. Transformation Method for Option Pricing

Since x1, x2 are symmetrical, we only need to evaluate one of those two double

integrals on the righthand of the equation (3.10). We choose the second integra-

tion. The evaluation does not involve any contour integration, and the result is

− 1
(i(u1+u2)−1)(u1+u2)u1

. By symmetry, the first integral is just − 1
(i(u1+u2)−1)(u1+u2)u2

.

Summing up, we have

φ̂(u) = − 1

(i(u1 + u2)− 1)u1u2

. (3.11)

Having the Fourier transform of payoff function in closed form, with the help of

equation (3.9), we have

Proposition 3.2.1 The value of rainbow option call on min is written as the

following double integral:

Vcall on min(X0) =
1

(2π)2
e−rT

∫ ∫
R2+iε

eiu·X0Φ(u;T)φ̂(u)d2u, (3.12)

where Φ(u;T) is the characteristic function of XT , X0 = (x1
0, x

2
0)′, x1,2

0 = log
S1,2
0

K
.

ε = (ε1, ε2), ε1,2 < 0.

Remark 3.2.2 Those two εs in the above double integral are to make the double

integral finite in the actual numerical calculation these parameters are used to

make imaginary part of the result go to 0. This integration on complex plane

approach was proposed by [15]. Refer to his work for more details. As for this

case, we can see that if we substitute iε in the place of u of eiu·X0, we have e−ε·X0.

This means if X0 is negative, the value of this exponential term will be smaller

than 1. This coincides with the real situation when the call is out of money1, the

price of this call is generally very small.

3.2.2 Basket Option

The basket option’s payoff defined on d assets St = (S1
t , ..., S

d
t) is usually defined

as (ω1S
1
t +, ...,+ωdS

d
t −K)+, where ωi are weights of each underlying asset. Here

we study the two assets case: (ω1S
1
t +ω2S

2
t −K)+. First we consider the relation

1S0 < K, in this situation, the log S0

K < 0.

19

3. Transformation Method for Option Pricing

(ω1S
1
t + ω2S

2
t − K)+ − (K − ω1S

1
t − ω2S

2
t) = ω1S

1
t + ω2S

2
t − K. Following the

same procedure of scaling as before we have the relationship

(ω1e
x1 + ω2e

x2 − 1)+ = ω1e
x1 + ω2e

x2 − 1 + (1− ω1e
x1 − ω2e

x2)+, (3.13)

where x1,2 = log
S1,2
t

K
. We will explain the reason for applying this relationship

later after the calculation.

We take the expectation under risk neutral measure Q. The left hand side of

equation (3.13) gives us the price of the basket option:

Vbasket(X0) = e−rTEQ[(ω1e
x1 + ω2e

x2 − 1)+]

= e−rTEQ[ω1e
x1 + ω2e

x2 − 1] + e−rTEQ[(1− ω1e
x1 − ω2e

x2)+]

=
ω1S

1
0

K
+
ω2S

2
0

K
− e−rT + e−rTEQ[(1− ω1e

x1 − ω2e
x2)+]

=
ω1S

1
0

K
+
ω2S

2
0

K
− e−rT +

e−rT

(2π)2

∫ ∫
R2+iε

eiu·X0Φ(u;T)φ̂(u)d2u.

(3.14)

As we can see in (3.14), we need to evaluate φ̂ to get an explicit expression.

Before we start let’s recall the definition of Beta function:

B(p+ 1, q + 1) =

∫ 1

0

xp(1− x)qdx, (3.15)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3.16)

20

3. Transformation Method for Option Pricing

We have the following calculation:

φ̂(u) =

∫ − logω1

−∞
e−iu1x

1

∫ log(1−ω1ex
1
)

−∞
e−iu2x

2

(1− ω1e
x1 − ω2e

x2)dx2dx1

=
1− iu2 + ω2iu2

(−iu2)(1− iu2)

∫ − logω1

−∞
e−iu1x

1

(1− ω1e
x1)1−iu2dx1

= ωiu11

1− iu2 + ω2iu2

(−iu2)(1− iu2)

∫ 1

0

t−1−iu1(1− t)1−iu2dt, ω1e
x1 = t

(3.17)

Applying the equation (3.15) and (3.16) to the last line of (3.17), the following

result is obtained:

φ̂(u) = (1− (ω2 − 1)iu2)ωiu11

Γ(−iu2)Γ(−iu1)

Γ(2− iu1 − iu2)
. (3.18)

Now it is easy to understand that the reason we use the relationship (3.13) is

to construct the form of Beta integral. Summing up we have a similar proposition

for basket option as follows:

Proposition 3.2.3 The valued of basket option Call is written in the following

form:

Vbasket =
ω1S

1
0

K
+
ω2S

2
0

K
− e−rT +

e−rT

(2π)2

∫ ∫
R2+iε

eiu·X0Φ(u;T)φ̂(u)d2u, (3.19)

where φ̂(u) = (1 − (ω2 − 1)iu2)ωiu11
Γ(−iu2)Γ(−iu1)
Γ(2−iu1−iu2)

, Φ(u;T) is the characteristic

function of XT , X0 = (x1
0, x

2
0)′, x1,2

0 = log
S1,2
0

K
, ε = (ε1, ε2), ε1,2 > 0.1

Remark 3.2.4 This calculation of basket option price can be extended to higher

1Because this time, the integration is actually calculating a Put which is the inverse of the
setting in the Rainbow option calculated above.

21

3. Transformation Method for Option Pricing

dimensions and the Fourier transform of φ is as follows:

φ̂(u) = (1− iun + iωnun)

∏n
k=1 Γ(−iuk)

Γ(2− i
∑n

k=1 uk)

n−1∏
k=1

ωiukk . (3.20)

The exact calculation which is a bit long can be found in Appendix A.

3.3 Fast Fourier Transform

In the last section we have explained the way to calculate the option price with

Fourier transform. This Part is basically an explanation of the numerical imple-

mentation of the FFT.

3.3.1 Definition of FFT

Definition 3.3.1 X(k) = fft(x(j)) and x(j) = ifft(X(k)) implement the trans-

form and inverse transform pair given for vectors of length N by:

X(k) =
N∑
j=1

x(j)ω
(j−1)(k−1)
N , (3.21)

x(j) =
1

N

N∑
k=1

X(k)ω
−(j−1)(k−1)
N , (3.22)

where ωN = e−
2πi
N .

The fft2(ifft2) is just applying the fft(ifft) on each column of the input

N by N matrix, the result is still an N by N matrix.

3.3.2 Discretization

Since the expressions of the rainbow option price and basket option price in the

previous chapters are similar, the FFTs are carried out in the similar way. So

22

3. Transformation Method for Option Pricing

we only present a two dimensional example for the spread option. The double

integral in Proposition 3.2.1 can be estimated by a double sum over the lattice:

{l(k) = (l(k1), l(k2)) = (−Nη/2 + k1η,−Nη/2 + k2η)|k1, k2 = 0, 1..., N − 1}.
(3.23)

Then we construct a reciprocal lattice with spacing η∗ = 2π/Nη and choose

X0 = logS0 on this lattice. With this we have transformed the space of log

returns to the space of initial log prices.

The new lattice is thus:

{l′(l) = (l′(l1), l′(l2)) = (−Nη∗/2 + n1η
∗/2,−Nη∗/2 + n2η

∗)|n1, n2 = 0, 1, ..., N − 1}.
(3.24)

So the approximation of P (S0, T) is written as:

η2e−rT

(2π)2

N−1∑
k1,k2=0

ei(µ(k)+iε)x′Φ(µ(k) + iε;T)P̂ (µ(k) + iε). (3.25)

The above form can be expressed with ifft2

(−1)l1+l2e−rT (
ηN

2π
)2e−εx(l)′ [ifft2(H)](l)), (3.26)

where

H(k) = (−1)l1+l2Φ(µ(k) + iε;T)P̂ (µ(k) + iε). (3.27)

3.4 Application

3.4.1 A Multivariate Subordinator Model

Much study has been done on subordination models, but many models are based

on one asset. Currently, structured products are becoming more and more pop-

ular, multivariate models are in need. Recently, Luciano[16] proposed a model

which is very interesting to study. This is a model based on multivariate Gaus-

23

3. Transformation Method for Option Pricing

sian subordination. Unlike many similar models appeared before, this model has

a multivariate subordinator, instead of a univariate subordinator. It is better to

have a multivariate subordinator, because even if some major events in the mar-

ket will affect many assets at a time, it is still not reasonable to just bundle all

of them together. With multivariate subordinator, more independence for each

asset will be retained.

3.4.2 Construction of the Model

The model consists of a multivariate subordinator which time changes a Brownian

motion on Rd with independent components. The subordinator is defined as

follows:

St = (S1
t , ..., S

d
t)ᵀ = (X1

t + α1Zt, ..., X
d
t + αdZt)

ᵀ. (3.28)

As we can see, each component of the subordinator consists of two parts: one is

individual part X i
t , the other is common part Zi

t . With this construction, it is

easy to represent the market shock by Zi
t and assets’ own characteristics by X i

t .

The time changed Brownian motion is defined as follows:

Bt = (µ1t+ σ1B
1
t , ..., µdt+ σdB

d
t)ᵀ, µi ∈ R, σi ∈ R+. (3.29)

The time changed Lévy process is just:

Yt = (µ1S
1
t + σ1B

1(S1
t), ..., µdS

d
t + σdB

d(Sdt))ᵀ. (3.30)

To calculate the characteristic function of the subordinated process (Y), we need

theorem 2.2.2. According to the theorem, we need two things, one is the Laplace

exponent of the subordinator at time one, the other is the characteristic exponent

of the subordinated process at time one. To obtain the Laplace exponent we

can first get the characteristic exponent. The characteristic exponent of the

subordinator S satisfies:

24

3. Transformation Method for Option Pricing

ψS(w) =
d∑
i=1

φXi(ωi) + φZ(
d∑
i=1

αiωi), (3.31)

So the characteristic function of the subordinator at time one is as follows:

ΦS(u) =
d∏
i=1

φXi(ui)φZ(
d∑
i=1

αiui). (3.32)

Remark 3.4.1 In the original paper of Luciano[16], he did not transform the

characteristic exponent into Laplace exponent. Instead, he directly applied the

characteristic exponent in the calculation of the characteristic function of the

subordinated process at time one. As a consequence of this misapplication of the

theorem, the resulting formula was originally written as follows:

φY(u) = exp

[
−

d∑
k=1

(1− aγk)

(√
−2i

(
iβkδ2

kuk −
1

2
δ2
ku

2
k

)
+
b2

γ2
k

− b

γk

)
(3.33)

−a


√√√√−2i

d∑
n=1

γn

(
iβnδ2

nun −
1

2
δ2
nu

2
n

)
− b

γn

 .
In the following example this mistake is corrected.

3.4.3 Example with Inverse Gaussian and Gamma Subor-

dinator

In Chapter 2 we introduced inverse Gaussian process and Gamma process. They

were used as one dimensional subordinator. Here we extend the univariate case

to multivariate case, with multivariate subordination.

Example 3.4.2 (Multivariate Gamma subordinator) The Laplace exponent

of gamma subordinator is −a log(1− u
b
). We have Zt in (3.28) follows Γ(a, b) at

time one and X i
t in (3.28) follows Γ(b

αi
− a, b

αi
) at time one. Let 0 < αi <

b
αi
.

25

3. Transformation Method for Option Pricing

Following the above construction, the characteristic function of Y is given by:

ΦY(u) =
d∏

k=1

(
1−

αk(iµkuk − 1
2
σ2
ku

2
k)

b

)−t(b
αk
−a
)(

1−
∑d

k=1 αd(iµkuk −
1
2
σ2
ku

2
k)

b

)−ta
.

(3.34)

Example 3.4.3 (Multivariate Inverse Gaussian subordinator) The Laplace

exponent of Inverse Gaussian subordinator is −2a(
√
b2 − 2t− b). In this example

the X i
t + αiZt in (3.28) is replaced by X i

t + γ2
i Zt, with X i

t follows IG(1− aγi, bγi)
at time one and γ2

i Zt follows IG(aγi,
b
γi

) at time one. The independent Brownian

motions in (3.29) are replaced by βiδ
2t + δiB

i
t. Let b > 0, 1 < a < 1

γi
, αi > 0,

−αi < β < αi, δ > 0, bi = b
γi

= δi
√
α2
i − β2

i . Thus the characteristic function of

the process is as follows:

φY(u) = exp

[
−

d∑
k=1

(1− aγk)

(√
−2

(
iβkδ2

kuk −
1

2
δ2
ku

2
k

)
+
b2

γ2
k

− b

γk

)
(3.35)

−a


√√√√−2

d∑
n=1

γ2
n

(
iβnδ2

nun −
1

2
δ2
nu

2
n

)
+ b2 − b

 .
Remark 3.4.4 The model of the Normal Inverse Gaussian case is of infinite

variation, which verifies the condition 2.3 stated in Theorem 2.4.7. At least, in

this case, the finite dimensional linear combination of several Normal Inverse

Gaussian process with each satisfies that condition will suffice to satisfy the con-

ditions in Theorem 2.4.7. So the model is valid. As for the Variance Gamma

case, it is of finite variation. So one needs to verify the condition 2.4 of the same

theorem.

3.4.4 Numerical Results and Benchmark Comparison

In this part we calculate a European basket call, the payoff function is defined as

(ω1S
1
t + ..+ ωdS

d
t −K)+. (3.36)

26

3. Transformation Method for Option Pricing

Price Pairs FT MC std err
S1

0 = 100, S2
0 = 100, K = 80, ω1 = 0.5, ω2 = 0.5 19.57 19.16 0.051

S1
0 = 120, S2

0 = 70, K = 80, ω1 = 0.5, ω2 = 0.5 14.57 14.99 0.033
S1

0 = 120, S2
0 = 70, K = 80, ω1 = 0.4, ω2 = 0.6 9.57 9.99 0.035

S1
0 = 120, S2

0 = 70, K = 80, ω1 = 0.6, ω2 = 0.4 24.57 24.78 0.022

Table 3.1: Computation comparison between transform method and Monte Carlo
simulation

For the simplicity of the comparison, we choose to implement a two dimensional

case. The price will be calculated by transform method as described in the pre-

vious sections of this chapter and Monte Carlo simulation which will serve as

benchmark. The detailed simulation method can be found in the first section of

Chapter 5.

For the simplicity of the computation and comparison, here we take just 10000

paths for all the Monte Carlo Simulations. We also take the N in definition 3.3.1

to be 210. In the following table we compare several prices and weights pairs.

As we can see, the transformation method confirms relatively well to the

Monte Carlo simulation. As simulation paths number becomes bigger, the stan-

dard error can be further reduced.

Here we want to further compare the Monte Carlo simulation and the trans-

form method. In practice there are indeed advantages for the transform method.

If all parameters are well chosen, the method can in one run generate a matrix

which can be reused for many strikes. From this point of view, it is fast and

efficient. Compared with naive Monte Carlo simulation this method is far better.

But this method also has several ‘down points’. It is much more complicated to

understand than the simple Monte Carlo simulation. It is also not as ‘robust’

as Monte Carlo simulation. As we have seen in both equation 3.12 and 3.19, we

have a small ε under the integral sign. This small variable turns out to play a big

role in the precision of the result. We need to change the value of this ε to make

27

3. Transformation Method for Option Pricing

the imaginary part of the transformed result goes to zero. Only at this moment

can we really get a good result which conforms well the Monte Carlo simulation.

If no weight changes undergo among different dimensions during subsequent cal-

culation it is fine. If their are changes, we need to readjust these εs. One or two

dimensions can still be fine. If the dimension goes up, there will be a very big

trouble. This is not the end, as this is Fourier transform that we are using, it

has one common problem, the solution oscillate at certain parts. This behavior

will sometimes give us aberrant results. Another relatively big problem is the

change of dimension, if we really want to go to higher dimensions we need to

apply multiple times of Fourier transform on a high dimensional matrix which is

technically difficult to be converted to parallel algorithms. If we do not convert

it into parallel algorithms, the high speed will not be guaranteed. Even if a di-

mension adjustable program without parallel algorithms will still introduce a lot

of complexity on the programming itself.

From our discussion above, this should be a dilemma: each one has its prob-

lems and merits. This is where new technology comes into scene to change the

balance. By using massively parallel computation, we can greatly improve the

speed of Monte Carlo simulation. Coupled with its simplicity, it is a good choice

for production code in real life calculation. Still, we have to say transform method

is unbeatable under one dimensional situation.

28

Chapter 4

Hedging Methods

In this chapter we are going to look at the local risk minimization strategy. After

this, we are going to review some other strategies based on the multivariate Lévy

process.

Hedging is also a very important aspect of financial mathematics. A good

strategy will protect the writer1 of a contract from risk of loss. Hedging is usu-

ally achieved by constructing a portfolio which will replicate the payoff of the

contract issued by the writer.

Let us take basket option which we have discussed previously as an example.

We only see the European type basket option and don’t take into consideration

of any default risk. After the option is sold, there are two scenarios that might

happen at the expiration date T . The basket
∑

i ωiSi is lower than or equal to

the strike price K. In this situation, the buyer will not exercise the option and

the deal is closed at this moment. On the contrary, the basket can also be more

expensive than the strike. In this situation, the writer will owe the buyer an

amount equals to
∑

i ωiSi − K. To mitigate this risk, the writer will choose to

hedge the option by using the money comes from the sales of this option to buy

underlying stocks in the basket and risk free bond. The objective is to have this

portfolio’s value greater or equal to the basket minus the strike, thus the writer

1The writer of a contract is the issuer of a contract. In real life situation, many of them are
investment banks. That is the reason that they are called “sell side”. They sell those contracts
to investors, speculators or institutional treasurers, etc.

29

4. Hedging Methods

will always be safe whatever the outcome is. Under Black-Scholes’ model, a delta

hedging strategy was introduced. The delta is calculated as

∆t =
∂V

∂S
(S, t), (4.1)

where V is the portfolio as we had seen in equation (4.1). This delta as indicated

by the equation is the change of portfolio price(in this case the option price) with

respect to the price change of the underlying asset. It can also be considered

as a hedge ratio, which indicates how much underlying asset should hold given

an amount of contracts sold. In Black-Scholes’ Model, if the time step is small

enough (continuous re-balancing and dynamic hedging), with this strategy we

can perfectly replicate the portfolio. In this sense, this theory is very good.

However as we have discussed at the very beginning, a model without jump is far

from realistic. We have also discussed about pricing under a jumping model in the

previous sections. It is reasonable to discuss about how to hedge in the jumping

models1.Under these models the exact replication is not possible anymore. Hedg-

ing therefore becomes an approximation of terminal pay-off with an admissible

portfolio with respect to different criterions. Though there are various hedging

strategies available, we are going to emphasis on only one of them - locally risk

minimization strategy and demonstrate how this strategy can be applied in our

context.

To give a more complete discussion on hedging strategies, in the second part

of this section we are going to see two other different hedging strategies which

are based on different theoretical settings from this one.

4.1 Locally Risk-minimizing Hedging Strategy

Before we start, in this part we need some background of pseudo differential op-

erators. For a complete treatment of this subject refer to [12]. This is a three

volumes book, but here we only use some applications for parabolic equation. A

quick checking for theories that related to this part can be found in the Chapter

1Here we are talking about exponential Lévy models.

30

4. Hedging Methods

2 of the second volume.

We approach the problem as a writer of the contract. So as a writer, we

will short (sell) a contract and buy (long) underlying securities upon which the

contract is built. We denote the contract by Ct(St) where St = (S1
t , ..., S

d
t)T .

We denote the weight of each security by ωt where ω = (ω1
t , ..., ω

d
t)
T . At each

instance, we have the following form for the portfolio:

Wt := ωt · St − Ct(St) + wt, (4.2)

where Wt denotes wealth and the wt denotes the residue of wealth.

At each time change ∆t, the portfolio becomes :

Wt+∆t := ωt · St+∆t − Ct+∆(St+∆t) + wt+∆t, (4.3)

where wt+∆t = wte
r∆t.

The objective is to minimize the local variance of this portfolio:

Et[(Wt+∆t − Et[Wt+∆t])
2]. (4.4)

Remark 4.1.1 The probability of this expectation is the historical probability P1,

same for all the expectation afterwards. The dynamics are underlying price pro-

cesses.

We denote xj = lnSjt , c(x, t) = C(ex1 , ..., exn ; t). We substitute the equation

(4.2) and (4.3) to (4.4). After rearrangement, we have the (4.4) equals the fol-

1this probability is the same as the P in Chapter 2 where the risk neutral pricing was
discussed. It is actually the probability defined by the market model.

31

4. Hedging Methods

lowing form

Et[(Ct+∆t(St+∆t)− Et[Ct+∆t(St+∆t)])
2]

− 2
n∑
j=1

ωjtEt[(Ct+∆t(St)− Et[Ct+∆t(St)])(S
j
t+∆t − Et[S

j
t+∆t])]+

n∑
i,j=1

ωitω
j
tEt[(S

j
t+∆t − Et[S

j
t+∆t])(S

i
t+∆t − Et[S

i
t+∆t])]. (4.5)

We minimize this expression with respect to ωt to get for j = 1, ..., n,

n∑
i=1

ωit(Et[S
j
t+∆tS

i
t+∆t]− Et[S

i
t+∆t]Et[S

i
t+∆t])

= Et[Ct+∆t(St+∆t)S
j
t+∆t]− Et[Ct+∆t(St+∆t)]Et[S

j
t+∆t]. (4.6)

We have the following two relations1:

Et[S
i
t+∆tS

j
t+∆t] = e∆tψ(−i(ei+ek))SitS

j
t (4.7)

and

Et[S
i
t+∆t]Et[S

j
t+∆t] = e−∆t(ψ(−iej)+ψ(−iei))SitS

j
t , (4.8)

where ei and ej are standard bases of Rn.

As ∆t goes to 0, we take the first order approximation for the exponential form.

The LHS of the (4.6) becomes

n∑
i=1

ωitS
j
tS

i
t [−ψ(−i(ej + ei)) + ψ(−iej) + ψ(−iei)]∆t. (4.9)

We denote L the infinitesimal generator for the process. We have the following

relation from the Pseudo-Differential Operator theory:

∂t + L = ∂t − ψ(Dx) (4.10)

1The ψ is the characteristic exponent of the underlying price dynamics

32

4. Hedging Methods

ψ(D)exj = exjψ(D − iej), (4.11)

where D is a differential operator.1 Then we can rewrite the RHS of equation

(4.6) in the following form:

E[Ct+∆t(St+∆t)S
j
t+∆t]− Ct(St)S

j
t

− (E[Ct+∆t(St+∆t)]S
j
t − Ct(St)S

j
t)

+ (E[Ct+∆t(St+∆t)]S
j
t − E[Ct+∆t(St+∆t)]E[Sjt+∆t]). (4.12)

There are three lines in the equation (4.12). The first line can be expressed as:

E[Ct+∆t(St+∆t)S
j
t+∆t]− Ct(St)S

j
t = Sjt (∂t − ψ(Dx − iej))c(x, t)∆t+ o(∆t).

(4.13)

The second line can be expressed as:

E[Ct+∆t(St+∆t)]S
j
t − Ct(St)S

j
t = Sjt (∂t − ψ(Dx))c(x, t)∆t+ o(∆t). (4.14)

Then the third line as:

E[Ct+∆t(St+∆t)]S
j
t − E[Ct+∆t(St+∆t)]E[Sjt+∆t] = Sjtψ(−iej)c(x, t)∆t+ o(∆t).

(4.15)

Putting together with the LHS of the equation we have the following form:

for j = 1, ..., n

n∑
i

ωitS
i
t [−ψ(−i(ej + ei)) + ψ(−iej) + ψ(−iei)] =

[−ψ(Dx − iej) + ψ(Dx) + ψ(−iej)]c(x, t). (4.16)

We set matrix {V (ei, ej)}ni,j=1 := {−ψ(−i(ei + ej)) + ψ(−iei) + ψ(−iej)}ni,j=1

vector {m(ej)}j=1,...,n := {−ψ(D− iej)+ψ(D)+ψ(−iej)}j=1,...,n and vector Ωt :=

1for this part, we assume these two relations (4.10)(4.11) to be true. For demonstration
and theory refer to [12], volume II Chapter 2 part 2.7 especially the example in this part.

33

4. Hedging Methods

{ωjtS
j
t }j=1,...,n So the whole equation is as follows:

V ΩT
t = mT c(x, t). (4.17)

If V is invertible, we have the result of the hedging ratio:

ΩT
t = V −1mT c(x, t). (4.18)

It can be verified that if the underlying process follows a multivariate Brownian

Motion, the equation (4.18) will give back the delta hedging strategy.

This equation does not depend on payoff function and can be changed to other

processes given the characteristic exponent is explicit. Further more, if the ma-

trix V is invertible, an explicit hedging ratio can be easily calculated.

We should have posted here an example to demonstrate the calculated result for

our Normal Inverse Gaussian model or Variance Gamma model, for their char-

acteristic exponents are explicit. But as it turned our that the explicit function

is rather complicated thus making the formula (4.18) very hard to calculate by

hand. There are two methods can be applied: if one wants to have an explicit

formula for demonstration purpose, one can use the symbolic toolbox of Matlab

to do the calculation. But this method might be feasible only for lower dimen-

sion. The more practical method is to directly substitute parameters to explicitly

calculate the matrix V and the vector m. This is the way this method can be

used in a computer program.

Local risk minimization is one of those quadratic hedging strategies. Its the-

oretical foundation was laid by Föllmer and Schweizer in [8]. In their research

a minimum martingale measure was proposed and the measure can be uniquely

determined. Also a general form of hedging ratio was proposed in the research

and was written in the form of a Radon-Nikodym derivative was also derived. In

fact the matrix form given in (4.18) can be analogous to equation (2.15) in [8].

Here we use underlying securities to hedge the option. But it is by no means the

only one. In incomplete market, options are no longer redundant. It is also pos-

sible to do the hedging with other options[6] and give better result than simply

34

4. Hedging Methods

using underlying securities.

4.2 Alternative Hedging Methods

In the previous section we have presented a quadratic hedging strategy for our

model. In this section we are going to review two other methods. One is based

on stochastic receding horizon control theory for further details refer to [19] and

[20]. This method is intuitive in its construction and easy for higher dimension

implementation. The other is based on Malliavin calculus, which is a theory that

allows us to take “derivative” with respect to noise in the system. Malliavin

calculus appeared relatively early. But previously much study was for Brownian

kind of noise. For jump type models refer to [13], [2], [3], [18].

This part is written for us to see the hedging problem from different perspectives.

4.2.1 Multi-Dimensional Option Hedging with Receding

Horizon Control

This method is a dynamic hedging strategy formulated to hedge the risk of basket

option with presence of transaction costs. Compared to the method presented

previously this one is more close to the reality. It takes in to account the trans-

action cost and it is discrete.

Receding horizon control means the following: at each time step, we solve

a finite horizon optimal control problem and implement the initial control ac-

tion. Thus this is a sub-optimal control policy. In [20], author used semi-definite

programming to solve the finite horizon optimization problem. In the example

presented in [19], author used a multivariate Brownian motion as noise generator.

But the setting of this model is not subject to the difference of noise if the noise’s

property is “good” enough.

In the text, author formulated the hedging problem into the following control

problem:

maxujk,τ
j
k
δ

35

4. Hedging Methods

subject to:

uj−1 = 0, ujN = 0, j = 1...l

Wk+1− = (1 + rf)Wk− +
∑l

j=1{(µj − rf + w̄jk)u
j
k − (1 + rf)r

j
k}

Sik+1 = (1 + µi + w̄ik)S
i
k, i = 1...n

τ jk = κj|ujk − u
j
k−1

Sjk
Sjk−1

|, j = 1...l

E[WN− −
∑l

j=1 τ
j
N]− γ

√
V ar

(
WN− −

∑l
j=1 τ

j
N

)
≥ δ

E[WN−−
∑l

j=1 τ
j
N−(αTSN−K̄)]−γ

√
V ar

(
W (N−)−

∑l
j=1 τj(N)− (αTS(N)− K̄)

)
≥

δ

In the above control problem, Sik denotes the price of stock j; Wk and Wk− de-

note the wealth immediately after and before the trade at time k respectively; τ jk
denotes the transaction cost by stock j at time k; rf = r∆t is the instant interest;

µj is the instant drift of the underlying dynamics; w̄jk denote the “noise”(price

change) for stock j at time k; κ is the proportion of transaction cost.

This formulation is designed to include first two moments of the dynamics.

Because this allows the formulation of receding horizon on-line optimization to be

solved as a semi-definite program, thus gaining in computation power. However

features further than two moments is not included.

This problem is then transformed to an on-line optimization with horizon T, and

implemented in to a receding horizon algorithm. For details refer to section 3.4

and 3.7 of [19].

4.2.2 Multidimensional Option Hedging with Malliavin

calculus

In the references given at the beginning of this section, we have two approaches.

One focuses on jump diffusion type of process, as Bavouzet[2] has presented in

their work. In their research, an integration by parts formula for a general multi-

dimensional random variable that has differentiable density and absolutely con-

tinuous law was developed. Another is based on time-changed models as the

ones we have presented in the beginning chapters of this project. The research

36

4. Hedging Methods

of Bayazit[3] is in this direction. In his research, under one dimensional case,

various Greeks1 are calculated for both Variance Gamma model and Normal In-

verse Gaussian model. In the research of Arturo[13], sensitivities are calculated

for mutidimensional time-changed model. The research of Petroni[18] is also of

multidimensional, and is based on the research of Kohatsu-Higa. Sensitivities

are also calculated under a multidimensional Brownian motion model for various

exotics. For simplicity, here we only present some basics of Malliavin calculus

and give a one dimensional example for the calculation of ∆ for Variance Gamma

model as presented in Bayazit’s[3] research.

Malliavin calculus introduces an additional term, H which is also called Malli-

avin weight. With the help of this term the derivative operator for the expectation

will be removed. i.e..

∂

∂S0

E[φ(ST)|F0] = E[φ(ST)H(ST ,
ST
S0

)|F0].

This is like the test function in the distribution theory which will “smooth” the

expectation. We present some essential definitions of this theory and one example

with the calculation of ∆ of a payoff function based on Variance Gamma process.

Given a sequence of random variables (Un)n∈N∗ on a probability space (Ω,F,P).

Un has moments of any order. We assume ρn to be the density of Un. We also

assume that ρn is continuously differentiable on R, ∀m ∈ N, limy→±∞ |y|mρn(y) =

0 and ∂yρn(y)

ρn(y)
has at most polynomial growth. A random variable F is called

a simple functional if there exists some n ∈ N and some measurable function

f : Rn → R such that F = f(U1, ..., Un). The space of simple functionals f ∈
Cm↑ (Rn)2 is denoted by S(n,m). A k-length simple process is a sequence of random

variables V = (Vi)i≤k, k ≤ n such that Vi = fi(U1, ..., Un). The space of k−length
processes is denoted by P k

(n,m).

Definition 4.2.1 (Inner Product) Let U = (Ui)i≤k and V = (Vj)j≤k be two

1By Greeks we are talking about sensitivities of contracts with respect to different variables.
In the paper, ∆, Γ which is sensitivity of ∆ with respect to price change, Vega, etc are calculated.

2This means f is up to order m differentiable.

37

4. Hedging Methods

k-length simple processes in P k
(n,1) then

〈U, V 〉 =
k∑
i=1

UiVi (4.19)

is called the inner product of U and V .

Definition 4.2.2 (Malliavin Derivative) The k − length simple process Dk :

S(n,1) → P k
(n,0), k ≤ n is called the Malliavin derivative operator and it is defined

as DkF = (DiF)i≤k where F = f(V1, ..., Vn) ∈ S(n,1) and Dk
i F = ∂if(V1, ..., Vn), i ≤

k.

Definition 4.2.3 (Skorohod Integral) δk : P k
(n,0) → S(n,1), k ≤ n is called

the Skorohod integral operator and is defined for any k − length simple process

U ∈ P k
(n,0) such that

δk(U) = −
k∑
i=1

[DiUi + θi(Vi)Ui], (4.20)

where

θi(y) = ∂y ln[ρi(y)] =
ρ
′
i(y)

ρ(y)
, ifρi(y) > 0. (4.21)

Proposition 4.2.4 (Duality Formula) Let F ∈ S(n,1) and U ∈ P k
(n,0), then

E[〈DkF,U〉] = E[Fδk(U)]. (4.22)

Definition 4.2.5 (Malliavin Covariance Matrix) Let F = (F1, F2, ..., Fd) be

an d-dimensional vector of simple functionals such that Fi ∈ S(n,1). The matrix

Mk
σ (F) is called the Malliavin covariance matrix of F whose entries are given by

Mk
σ (F)ij = 〈DFi, DFj〉 =

k∑
t=1

∂tfi∂tfj(V1, ..., Vn), (4.23)

where Fi = fi(V1, ..., Vn).

38

4. Hedging Methods

Theorem 4.2.6 (Integration by Parts) Let F = (F1, F2, ..., Fd) ∈ Sd(n,2) and

G ∈ S(n,1). We assume that the Mk
σ (F) is invertible and denote Mk

γ (F) =

[Mk
σ (F)]−1. We also assume that E[detMk

γ (F)]4 < ∞. The for every smooth

function φ : Rd → R

E[∂iφ(F)G] = E[φ(F)Hk
i (F,G)], (4.24)

where Hk
i (F,G) =

∑d
i=1GM

k
γji
LkF−Mk

γji
(F)〈DkF,DkG〉−G〈DkF,DkMk

γji
(F)〉.

Example 4.2.7 (Variance Gamma model) The Variance Gamma model ST

is discretized as follows:

ST = S0e
rT+

∑n
i=1 σ

√
∆XiBi+θ

∑n
i=1 ∆Xi , (4.25)

where Xt follows gamma process ∆Xi = Xti − Xti−1
. Then the Greek ∆ is as

follows:

∆ = e−rT
∂

∂S0

E[φ(ST)] = e−rTE[φ′(ST)
ST
S0

] = E[φ(ST)Hk
∆(ST ,

ST
S0

)], (4.26)

where Hk
∆(F,GS0) = −1

S0
Mk

γ (F)
(
Mk

σ (F)− S2
T

∑k
j=1 Zjσ

√
∆Gj

)
− 1
S0
Mk

γ (F)Mk
σ (F)+

2
S0
Mk

γ (F)Mk
σ (F), Mk

σ (F) =
∑k

i=1 σ
2∆GiS

2
T and Mk

γ (F) = 1
Mk
σ (F)

.

As we can see from the formula, the ∆ is the sensitivity with respect to S0. This

feature may be where this model is limited. It may be possible to apply the logic

in the receding horizon control and update the S0 at each step and set T.

39

Chapter 5

Simulation Method and GPU

computing with CUDA

In this chapter we are going to firstly present the simulation method for the

multivariate subordination model. Then we are going to discuss about recent

development in GPU1 computing. We are going to implement our simulation

method with both Matlab and CUDA2, and comparison of result will tell the

importance of this development.

5.1 Simulation method

In the previous part of this work, a multivariate time changed model was de-

scribed. Now, we are going to talk about the simulation method for this model.

In Chapter 6 we gave two examples, one was a model that used Gamma process

as its subordinator, another was a model that used Inverse Gaussian process as

its subordinator. Here we are going to present a simulation method with the help

of the second one3.

There are two steps for the simulation: the first step is to construct the time

changing process, the second step is to use the process produced in the first step to

1GPU stands for Graphic Processing Unit.
2CUDA stands for Compute Unified Device Architecture.
3For details see Example 3.4.2.

40

5. Simulation Method and GPU computing with CUDA

subordinate a multivariate independent Gaussian process. So before everything

can start we have to build a Inverse Gaussian random number generator. The

method is as follows:

Algorithm 5.1.1 (Generating Inverse Gaussian Random Variables) The

Inverse Gaussian density has the following form:

f(x) =

√
λ

2πx3
e
−λ(x−µ)

2

2µ2x 1x>0. (5.1)

The algorithm is as follows:

1.Generate a normal random variable N;

2.Set Y = N2;

3.Set X1 = µ+ µ2Y
2λ
− µ

2λ

√
4µλY + µ2Y 2;

4.Generate a uniform [0,1] random variable U. If U ≤ µ
X1+µ

return X1, else return
µ2

X1
.

This algorithm is based on the work of Schucany[17].

With the help of the above Inverse Gaussian random variable generator, we have

the following algorithm for multivariate Normal Inverse Gaussian process.

Algorithm 5.1.2 (Simulating multivariate Normal Inverse Gaussian process)

We are going to simulate the process (6.3) with the subordinator (6.1) on a time

grid of t1, ..., tn. So we have to firstly simulate the subordinator St = (S1
t , ..., S

d
t).

At each time step i:

1. Generate a Inverse Gaussian variable ∆Z with parameter µZi = ti − ti−1 and

λZi = (ti−ti−1)2

ξ2z
where ξz = µ

3/2
z√
λz

;

2. Generate d independent Inverse Gaussian variable ∆Xk
i with each variable has

parameters µxk = ti− ti−1 and λxk = (ti−ti−1)2

ξ
xk

where ξxk =
µ3
xk
/2√
λ
xk

and k = 1, ..., d.

So ∆Ski = ∆Xk
i + αk∆Zk

i ;

3. Generate d i.i.d N(0,1) random variables N1, ..., Nd. Set ∆Y k
i = σNk

√
∆Ski +

θ∆Ski .

Then we just follow this for all time steps until the end for all d assets.

With the above simulation method, we can perform Monte Carlo simulation

to calculate the expectation of the payoff function at the expiry as we have seen

41

5. Simulation Method and GPU computing with CUDA

in the previous chapters. We have implemented a Matlab program to perform

this calculation. Since we are dealing with a multidimensional problem, we have

to pay much attention to the implementation of the program. “for” loops should

be avoided. Matrix forms should be applied in the implementation. By doing this

we are actually trade off memory for speed. The program for Inverse Gaussian

generator and the simulation kernel can be found in the Appendix.

Apart from the Matlab implementation, we also implemented the program

with C++ to double check the performance under industry standard.

5.2 Choosing hardware according to the nature

of the problem

Before we present anything of this part. A comparison shall be produced to

prove its importance. As we have seen in the previous section, we had carefully

implemented the algorithm in Matlab1. The program was run on a laptop with

Intel i7-3612 CPU2which is one of the higher end CPU as of the year 2012. we

tried with 6 assets, and 10000 paths. The Matlab implemetation and the CUDA-

thrust3 implementation gave the same result, whereas the former needed 11.3089

seconds the latter needed just 0.282 second! Dividing 11.3089 by 0.282 gives

40.1025. This is a 40 times speed up. The program is also implemented with

C++ which unfortunately needs 25.893 seconds. If we insist to compare the

GPU calculation with C++ it is a 92 times speed up.

Remark 5.2.1 There might be a little bit of surprise here about the C++ per-

formance. It is even worst than Matlab. There should be no surprise actually.

Because Matlab is a specialized software optimized for the matrix calculation. So

in the Matlab program, we avoided the use of for loops. For example, we generate

1The operating system is Windows 7 (64bit). The Matlab that I am using is Matlab 2012.
The C++ development environment is Visual Studio 2012. The C++ standard that I am using
is the latest C++11 standard. Standard Template Library was involved in the implementation.

2The clock rate of a single core is 2.1 GHz.
3This is the programming language used for the nVidia GPU.

42

5. Simulation Method and GPU computing with CUDA

in one operation a big matrix of random variables, this is much more efficient

than looping for each iteration. The calculation is also done with matrix oper-

ation. So it is normal that our Matlab program actually runs faster than C++

implementation.

Some may argue that it is possible to build a multi-threaded program by using

the multi-threading library of C++11 standard. And in my case the CPU has

actually 8 cores, each one of them actually can give dozens of threads, together

you can have around 60 something threads running. Naively speaking we can

have a 60 times speed up.

However the truth is not that optimistic. The reason lies still in the CPU

itself. Undeniably,threads on different cores are truly independent. It it also true

that one can have multiple threads on one core. In fact many years ago, almost all

our personal computers ran on one single core and we could still watch videos and

edit documents at the same time without any problem. But the truth is the par-

allelism on a single cores is not truly parallel. It is actually a pseudo-parallelism,

which means there is a context switching mechanism undergoing all the time.

This context switching actually chops different tasks into sequential pieces and

switch from one to another all the time. Thus we will have an impression that

all the tasks progressing simultaneously.

Evidently, the higher the clock speed, the faster the context switching and

program execution. So if we trace back the history of processor development be-

fore 2000 or 2003, it was almost a history of raising clock speed. Back to 1980s,

a 80286 processor has a clock rate 16MHz, in 2006, a Intel Core 2 Duo has more

than 2 GHz. But during recent years, the limit comes. Higher speed processor

is becoming exceedingly difficult to build. So instead of building faster single

core CPU, the industry chooses to go to multicore CPU or even build multi-CPU

motherboards.

Before we proceed, we need to examine a bit more the parallelism. There are

two big categories, one is data parallelism the other is task parallelism. CPU

is optimized for the task parallelism. Task parallelism can be seen everywhere:

43

5. Simulation Method and GPU computing with CUDA

multiple windows running at the same time, multiple internet connections, etc.

Since you won’t have thousands of tasks, dozens of cores will beyond necessary.

Data parallelism is characterised by the huge quantity of data and relatively light

calculation for each data point. For example, if we want to build a neural net-

work, the training of the network many involve big quantity of data. Whereas for

each data point, a simple logistic function calculation may suffice. In our case,

Monte Carlo simulation is similar to the data parallelism. For each path we run

a fixed quantity of lightweight calculation and many paths are needed to give a

satisfactory result. GPU is well suited to this kind of parallelism it may have

thousands of cores. The latest GeForce GTX690 has 3072 cores.

Apart from the number of cores, memory bandwidth might also give a clue

about which hardware is better for the given task. This criteria actually mea-

sures how fast data is transferred. The typical high end CPU(Intel i7 series)

memory bandwidth is around 20GB/s. Whereas the high end GPU (GeForce

GTX 690)will have memory bandwidth around 350GB/s. For data heavy calcu-

lation this is critical to have high bandwidth.

For more information refer to Kirk’s[14] book and nVidia’s web site for devel-

opers.

5.3 GPU and CUDA

5.3.1 GPU at a glimpse

nVidia GPU is formed by Streaming Multiprocessors(SM). For example, my ma-

chine has 96 cores. Each core is actually a streaming processor(SP). These 96

cores are organized in two groups with each group has 48 cores. Each group of

these 48 cores1 or SPs is a Streaming Multiprocessor. Each core or SP can run

one or more threads at a time. Still my example, I have 2 SMs, each one can

be seen as a block. I have thus 2 blocks. Each block in my case can have 1024

1This number depends on the hardware version. Current version 2.1 has 48 cores a SM.

44

5. Simulation Method and GPU computing with CUDA

threads, so together I can have 2048 threads. These two blocks together forms

a grid. In the case of GeForce GTX 690, it has 3072 cores which is 64 SMs, the

threads it can have is 65536. So if each CPU core can have 32 threads and on

each chip we have 8 cores, we need 256 multicore CPU to produce that many

threads. This is equivalent to a medium size cluster already.

5.3.2 CUDA-thrust implementation

CUDA is actually a computing scheme that combines the CPU and GPU com-

puting power together and having each part perform what they do best. The

letter ‘C’ in this acronym actually means unified.

The compiler actually divides the program into two parts: one part execute

on the ‘host’ which is the machine on which the graphic card resides, the other

part executes on the ‘device’ which is the graphic card or more precisely the SMs.

When reflected in the program, we will have the key word “ host ” at the top

of the part for ‘host’, and “ device ” at the top of the part for ‘device’. In our

context, since we are running Monte Carlo simulation to calculate an expectation,

the kernel will do the calculation for one path on one thread. We then achieve

the parallelism with the function “transform reduce()”.1 ‘Transform’ here means

a path of simulation, ‘reduce’ here is to sum the result up.

The program itself is written with thrust2 library which is a C++ like ab-

straction of CUDA language. Thrust is fully compatible with CUDA and C++.

This facilitates the programming process on the host and enhances the readabil-

ity of the program written. But if programmers intend to do lower level control

of threads, a good understanding of CUDA itself is desirable.

The randomness come from XORWOW random generator. It is included

in the latest release of CUDA toolkit. This generator passed the full suite of

NIST pseudorandomness test. In the program it is achieved by calling “cu-

1This function inherit the C++ function “transform reduce()”
2Refer to the website http://thrust.github.com/.

45

5. Simulation Method and GPU computing with CUDA

N Assets C++ Matlab GPU std err speed up C++ speed up Matlab
2 104.065s 32.551s 0.358s 0.004 x290 x91
4 186.280s 49.701s 0.637s 0.005 x293 x78
8 340.044s 81.815s 1.193s 0.003 x285 x69

Table 5.1: Speed up comparison of different asset number

rand uniform double()”.

Some main part of the code is listed in the Appendix.

In the following we calculate basket call options price which is the same con-

tract we did at the end of Chapter 3. The payoff function is the same as (3.36).

All the simulations are run with identical parameters: βi = −0.2, δi = 2, γi = 0.2,

Si0 = 100, T = 1 and K = 80. All assets are equal weighted.

The first table is a table constructed with different number of assets, each

trial with 100000 paths. We can see a very high speed up for our simulations.

The second table for all trials we all have 3 assets but the number of path will

be different. As we can see from the table as path number increases, the speed

up also increases. If you observe more carefully the data, we can also observe

that every time N increases 10 times Mathlab running time increases 10 times

whereas GPU running time increases by approximately ln(10) times.

There is another great effect that can be achieved by GPU implementation:

we can actually simulate an index asset by asset. For this we do not offer a table

for that, but it is tried that with 64 assets and 10000 paths we can simulate a

result for only 0.918 second! Various indexes have around a hundred stocks on it

which is well within the range of the capacity of a graphic card. What can be done

is that we can calibrate each asset in the index for its parameter. This calibration

can also be implemented with GPU or with the newly launched C++11 library

for multithreading. If well implemented the running time should also be short.

46

5. Simulation Method and GPU computing with CUDA

N Paths C++ Matlab GPU std err speed up C++ speed up Matlab
100 0.181s 0.046s 0.004s 0.41 x45 x12
1000 1.448s 0.425s 0.013s 0.07 x111 x33
10000 14.317s 4.146s 0.054s 0.02 x265 x77
100000 143.432s 40.738s 0.501s 0.006 x286 x82

Table 5.2: Speed up comparison of different number of paths

47

Chapter 6

Conclusions

In this project, we have given a framework to the pricing method for the multi-

variate asset models. We applied the Fast Fourier Transformation method to the

calculation of the derivative prices and compared it with Monte Carlo simulation

to verify the consistence between these two methods. We have also deduced a

hedging method based on locally risk minimization and assessed two other hedg-

ing theory based on other theoretical set up. We finished this project by Monte

Carlo simulation. We have also implemented the simulation on C++, Matlab

and with GPU respectively. The comparison of three approaches was given and

the result is impressive – the running time is reduced by almost two orders.

48

Appendix A

The exact calculation of equation (3.20):

φ̂(u) =

∫
· · ·
∫
Rn
e−iu·xφ(x)dnx

=

∫ − logω1

−∞
e−iu1x1

∫ log(1−ω1ex1)

−∞
e−iu2x2 · · ·

∫ log(1−ω1ex1−...−ωnexn)

−∞
e−iunxn

(1− ω1e
x1 − ω2e

x2 − ...− ωnexn)dx1dx2...dxn

=

∫ − logω1

−∞
e−iu1x1

∫ log(1−ω1ex1)

−∞
e−iu2x2 · · ·

∫ log(1−ω1ex1−...−ωn−2e
xn−2)

−∞

e−iun−1xn−1(1− ω1e
x1 − ω2e

x2 − ...− ωn−1e
xn−1)1−iun [

1

−iun
− 1

1− iun
]dx1dx2...dxn−1

=
1− iun + iωnun
(1− iun)(−iun)

∫ − logω1

−∞
e−iu1x1

∫ log(1−ω1ex1)

−∞
e−iu2x2 · · ·

∫ log(1−ω1ex1−...−ωn−2e
xn−2)

−∞

e−iun−1xn−1(1− ω1e
x1 − ω + 2ex2 − ...− ωn−1e

xn−1)1−iundx1dx2...dxn−1.

49

Appendix A

Let t = ωn−1e
xn−1

1−ω1ex1−...−ωn−2e
xn−2 so dt = ωn−1e

xn−1

1−ω1ex1−...−ωn−2e
xn−2 dxn−1. Then, we have

φ̂(u) = ω
iun−1

n−1

1− iun + iωnun
(1− iun)(−iun)

∫ − logω1

−∞
e−iu1x1

∫ log(1−ω1ex1)

−∞
e−iu2x2 · · ·∫ 1

0

(1− ω − 1ex1 − ...− ωn−2e
xn−2)1−iun−iun−1t−1−iun−1(1− t)1−iundx1dx2...dt

= ω
iun−1

n−1 (1− iun + iωnun)
B(−iun, 2− iun)

(1− iun)(−iun)

∫ − logω1

−∞
e−iu1x1

∫ log(1−ω1ex1)

−∞
e−iu2x2

· · ·
∫ log(1−ω1ex1−...−ωn−3e

xn−3)

−∞
e−iun−2xn−2(1− ω1e

x1 − ...

−ωn−2e
xn−2)1−iun−iun−1dx1dx2...dxn−2

= ω
iun−1

n−1 (1− iun + iωnun)
Γ(−iun)Γ(−iun−1)

Γ(2− iun−1 − iun)

∫ − logω1

−∞
e−iu1x1

∫ log(1−ω1ex1)

−∞
e−iu2x2 · · ·∫ log(1−ω1ex1−...−ωn−3e

xn−3)

−∞
e−iun−2xn−2(1− ω1e

x1 − ...

−ωn−2e
xn−2)1−iun−iun−1dx1dx2...dxn−2

By repeatedly doing this, we arrive at the result as follows:

φ̂(u) = (1− iun + iωnun)

∏n
k=1 Γ(−iuk)

Γ(2− i
∑n

k=1 uk)

n−1∏
k=1

ωiukk . (1)

50

Appendix B

Matlab code for Inverse Gaussian random number generator

func t i on f = InvGauRnd(m, n ,mu, lambda)

//m, n are dimension o f the r e s u l t i n g matrix .

A = randn (m, n) ;

B = ones (m, n) ;

muMatri = mu∗B;

Y = A.∗A;

X = muMatri + (muˆ2/2/ lambda) . ∗Y−mu/2/ lambda .

∗ s q r t (4∗mu∗ lambda .∗Y+muˆ2 .∗ (Y.∗Y)) ;

U = rand (m, n) ;

bar = muMatri . / (X+muMatri) ;

index = U<= bar ;

r1 = index .∗X;

r2 = (B−index) . ∗ (muMatri .∗muMatri . /X) ;

f=r1+r2 ;

end

Matlab program for the simulation kernel:

f unc t i on f = SimuKer (S0 ,K,T, beta , de l ta , gamma, aa , b , weight)

n = round (T∗252) ;

A = NIGMultiSimu (n ,T, beta , de l ta , gamma, aa , b) ;

B = cumsum ([S0 ’ ; A]) ;

index = B<0;

re = ze ro s (1 , 2) ;

51

Appendix B

i f index == ze ro s (s i z e (B))

re (1 , 1) = pos i (B(n , :) ∗ weight ’−K) ;

re (1 , 2) = 1 ;

end

f = re ;

end

func t i on f = pos i (a)

i f a>0

f=a ;

e l s e

f =0;

end

end

This is the Inverse Gaussian random number generator with CUDA-thrust

d e v i c e

double generatorIG (double mu, double lambda ,

double nRand , double uRand)

{
double x = mu + mu∗mu∗nRand∗nRand/2/ lambda−mu/2/ lambda∗
s q r t f (4∗mu∗ lambda∗nRand∗nRand+mu∗mu∗nRand∗
nRand∗nRand∗nRand) ;

double bar = mu/(x+mu) ;

re turn (uRand<bar)? x : (mu∗mu/x) ;

}

Note that the “device” indicates that this program is in the kernel and runs on

the device.

This is the part that we calculate the weighted sum of the simulated portfolio

price.

f o r (unsigned i n t i = 0 ; i < N; ++i)

{
delZ = generatorIG (a , b , curand normal double (&s) ,

52

Appendix B

curand uni form double (&s)) ;

f o r (unsigned i n t k = 0 ; k < AssetCount ; ++k)

{
randholder = (Assets [k] . gamma)∗ delZ+generatorIG (Assets [k]

.mu, Assets [k] . lambda , curand normal double (&s) , curand

uni form double (&s)) ;

sum += Weight [k] ∗ (Assets [k] . sigma∗ curand normal double (&s

)∗ s q r t (randholder)+Assets [k] . theta ∗ randholder) ;

}
}

This is the function that we used to realize the parallel sum.

double est im = thrus t : : t rans fo rm reduce (

th rus t : : c o u n t i n g i t e r a t o r<int >(0) ,

th ru s t : : c o u n t i n g i t e r a t o r<int >(M) ,

e s t imate (assetArray , weightArray , i n i t i a l A r r a y ,

1 .0/ daysInyear f , b∗b∗b/a/ days Inyear f / daysInyear f ,

a s s e t s . s i z e () , Time , s t r i k e) ,

0 . 0 f ,

th ru s t : : plus<double > ()) ;

C++ program for the Monte Carlo Simulation.

#inc lude<iostream>

#inc lude<numeric>

#inc lude< l i s t >

#inc lude<vector>

#inc lude<random>

us ing namespace std ;

const i n t daysInYear = 252 ;

const double a = 1 . 2 ;

const double b = 1 . 0 ;

l i s t <double> SimuRec ;

53

Appendix B

// Holder o f Parameters

s t r u c t ParaNIG{
double S0 , mu, lambda , sigma , theta , gamma, weight , S t r i k e ;

ParaNIG(double S0 , double mu , double lambda , double

sigma , double theta , double gamma , double weight ,

double s t r i k e) : S0 (S0) , mu(mu) , lambda (lambda) , sigma

(sigma) , theta (the ta) , gamma(gamma) , weight (we ight) ,

S t r i k e (s t r i k e){} ;

} ;

// Generator o f Inve r s e Gaussian random number

double InvGausGen (double mu, double lambda , double nRand ,

double uRand){
double x = mu + pow(mu, 2)∗pow(nRand , 2) / (2∗ lambda)−mu/

(2∗ lambda)∗ s q r t (4∗mu∗ lambda∗pow(nRand,2)+pow(mu, 2)∗pow(nRand , 4)) ;

double bar = mu/(x+mu) ;

re turn (uRand<bar)? x : (pow(mu, 2) / x) ;

}

//One path o f s imu la t i on

double SimuOnce (i n t AssetNum , double T, double s t r i k e ,

vector<ParaNIG>¶){
random device rd ;

mt19937 gen (rd ()) ;

u n i f o r m r e a l d i s t r i b u t i o n<> uRand (0 , 1) ;

no rma l d i s t r i bu t i on<> nRand (0 , 1) ;

unsigned i n t N = (i n t) daysInYear∗T;

double delZ , randholder , sum=0;

f o r (i n t i =0; i<AssetNum;++ i){
sum=sum+para [i] . weight∗para [i] . S0 ;

54

Appendix B

}

//Path genera to r gene ra t ing o f a path o f N s t ep s

f o r (unsigned i n t i = 0 ; i < N; ++i){
delZ = InvGausGen (a , b , nRand(gen) , uRand(gen)) ;

f o r (i n t k = 0 ; k < AssetNum ; ++k){
randholder = para [k] . gamma∗delZ+InvGausGen (para [k] . mu,

para [k] . lambda , nRand(gen) , uRand(gen)) ;

sum = sum + para [k] . weight ∗(para [k] . sigma∗nRand(gen)

∗ s q r t (randholder)+para [k] . theta ∗ randholder) ;

}
}

r e turn (sum−s t r i k e >0)?(sum−s t r i k e) : 0 ;

}

i n t main (){

i n t AssetNum ;

unsigned i n t PathNum ;

double T, s t r i k e ;

cout<<”Please input number o f a s s e t s , s t r i k e ,

time per iod and number o f paths”<<endl ;

c in>>AssetNum>>s t r i k e>>T>>PathNum ;

cout<<”Fast mode : Al l a s s e t s w i l l be the same .

Complete mode : a s s e t s s h a l l be i n s e r t e d one by one . ”

<<endl ;

cout<<”Fast mode input 1 ; Complete mode input 2 .”

<<endl ;

55

Appendix B

i n t mode ;

vector<ParaNIG> para ;

double S0 , beta , de l ta , gamma, weight ;

c in>>mode ;

// This part i s f o r speed ing up the input p roce s s

(s i n c e i t i s mul t id imens iona l in the f a s t mode we presume

a l l the dimensions are i d e n t i c a l)

switch (mode){
//mode where a l l d imensions are equal

case 1 :

cout<<”Please input in sequence S0 , beta , de l ta ,

gamma”<<endl ;

c in>>S0>>beta>>de l ta>>gamma;

f o r (i n t i =0; i<AssetNum;++ i){
para . push back (ParaNIG(S0 , 1 . 0 / daysInYear , pow(b , 3)

/(pow(gamma, 3)∗pow(daysInYear ,2)∗(1−a∗gamma)) , de l ta ,

pow(de l ta , 2)∗ beta , pow(gamma, 2) , 1 .0/ AssetNum ,

s t r i k e)) ;

}
break ;

//mode where you can input the parameter f o r

each o f the dimensions

case 2 :

f o r (i n t i =0; i<AssetNum;++ i){
cout<<”Please input in sequence the f o l l o w i n g

v a r i a b l e s f o r a s s e t”<< i+1<<endl ;

cout<<”S0 beta de l t a gamma weight”<<endl ;

c in>>S0>>beta>>de l ta>>gamma>>weight ;

para . push back (ParaNIG(S0 , 1 .0/ daysInYear , pow(b , 3)

/(pow(gamma, 3)∗pow(daysInYear ,2)∗(1−a∗gamma)) , de l ta ,

pow(de l ta , 2)∗ beta , pow(gamma, 2) , weight , s t r i k e)) ;

}
break ;

56

Appendix B

d e f a u l t :

cout << ”Value Unknown”<<endl ;

}

double ho lder =0;

f o r (unsigned i n t i = 0 ; i<PathNum ; ++i){
ho lder = SimuOnce (AssetNum ,T, s t r i k e , para) ;

SimuRec . push back (ho lder) ;

}
// t h i s i s from the <numeric> o f the STL to get the

sum of each term in the l i s t

double r e s u l t = accumulate (SimuRec . begin () ,

SimuRec . end () , 0 . 0) ;

cout<<r e s u l t<<endl ;

c in>>mode ;

}

57

References

[1] O.E. Barndorff-Nielsen, J. Pedersen, and K.I. Sato. Multivari-

ate subordination, self-decomposability and stability. Advances in Applied

Probability, 33, 2001. 15

[2] M.P. Bavouzet and M. Messaoud. Computation of greeks using malli-

avin’s calculus in jump type market models. Institut National de Recherche

en Informatique et en Automatique Rapport de Recherche, 2005. 35, 36

[3] D. Bayazit and C.A. Nolder. Malliavin calculus for levy markets and

new sensitivities. 2009. 35, 37

[4] P. Carr and D.B. Madan. Option valuation using the fast fourier trans-

form. Journal of COmputational Finance, 2:753–778, 1998. 3

[5] R. Cont and P. Tankov. Financial Modelling with Jump Processes.

CHAPMAN HALL/CRC, New York, 2004. 3, 10, 11

[6] R. Cont, P. Tankov, and E. Voltchkova. Hedging with options in

models with jumps. Proceedings of the Abel Symposium in honor of Kiyosi

Ito, 2005. 34

[7] B. Dupire. Pricing with a smile. RISK, 7:18–20, 1994. 1

[8] H. Föllmer and M. Schweizer. Hedging of contingent claims under

incomplete information. Applied Stochastic Analysis, 5, 1991. 34

[9] H. Gerber and E. Shiu. Option pricing by esscher transforms. Transac-

tions of Society of Actuaries, 46, 1994. 12

58

REFERENCES

[10] T.R. Hurd and Z. Wei. A fourier transform method for spread option

pricing. Working paper McMaster University. 4, 15, 17

[11] K.R. Jackson, S. Jaimungal, and V. Surkov. Fourier space time-

stepping for option pricing with lévy models. 2008. Department of Computer

Science and Department of Statistics, University of Toronto. 16

[12] N. Jacob. Pseudo Differential Operators and Markov Processes. Imerial

College Press, 2002. 30, 33

[13] R. Kawai and A. Kohatsu-Higa. Computation of greeks and multi-

dimensional density estimation for asset price models with time-changed

brownian motion. 2009. 35, 37

[14] D.B. Kirk and W.W. Hwu. Programming Massively Parallel Processors:

A Hands-on Approach. Elsevier, 2010. 44

[15] A. Lewis. A simple option formula for general jump-diffusion and other

exponential lévy processes. 2001. http://www.optioncity.net. 19

[16] E. Luciano and P. Semeraro. Multivariate time changes for lévy asset

models: Characterization and calibration. Journal of Computational and

Applied Mathematics, 233:1937–1953, 2010. 4, 15, 23, 25

[17] J. Michael, W. Schucany, and R. Haas. Generating random vari-

ates using transformations with multiple roots. The American Statistician,

30:88-90, 1976. 41

[18] N.C. Petroni and P. Sabino. Multidimensional quasi-monte carlo malli-

avin greeks. 2011. 35, 37

[19] J.A. Primbs. Dynamic hedging of basket options under proportional trans-

action costs using receding horizon control. International of Journal, 2009.

35, 36

[20] J.A. Primbs and C. Sung. Stochastic receding horizon control of con-

trained linear systems with state and control multiplicative noise. IEEE

Transactions on Automatic Control, 2009. 35

59

REFERENCES

[21] R. Rebonato. Volatility and Correlation in the Pricing of Equity. Wiley,

Chichester, 1999. 1

[22] N. Reich, C. Schwab, and C. Winter. On kolmogorov equations for

anisotropic multivariate lévy processes. Research Report, Seminar für Ange-

wandte Mathematik Eidgenössische Technische Hochschule, 2008. 3

[23] C. Winter. Wavelet Galerkin schemes for option pricing in multidimen-

sional Lévy models. PhD thesis, ETH Zürich, 2009. 3

60

	OPTION PRICING
	thesis
	Contents
	1 Introduction
	2 Lévy Process and Non-Arbitrage Pricing
	2.1 Basic Definitions
	2.2 Some important Lévy processes
	2.2.1 Jump Diffusion Models
	2.2.2 Subordination Models

	2.3 Exponential Lévy model
	2.4 Non-Arbitrage Pricing
	2.4.1 Esscher Transform
	2.4.2 Non-arbitrage condition in the multidimensional setting

	3 Transformation Method for Option Pricing
	3.1 Formulation with Partial Integro-Differential Equation (PIDE)
	3.2 Practical calculation of several derivative contracts
	3.2.1 Rainbow Option
	3.2.2 Basket Option

	3.3 Fast Fourier Transform
	3.3.1 Definition of FFT
	3.3.2 Discretization

	3.4 Application
	3.4.1 A Multivariate Subordinator Model
	3.4.2 Construction of the Model
	3.4.3 Example with Inverse Gaussian and Gamma Subordinator
	3.4.4 Numerical Results and Benchmark Comparison

	4 Hedging Methods
	4.1 Locally Risk-minimizing Hedging Strategy
	4.2 Alternative Hedging Methods
	4.2.1 Multi-Dimensional Option Hedging with Receding Horizon Control
	4.2.2 Multidimensional Option Hedging with Malliavin calculus

	5 Simulation Method and GPU computing with CUDA
	5.1 Simulation method
	5.2 Choosing hardware according to the nature of the problem
	5.3 GPU and CUDA
	5.3.1 GPU at a glimpse
	5.3.2 CUDA-thrust implementation

	6 Conclusions
	Appendix A
	Appendix B
	References

