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Summary

Online reinforcement learning (RL) in collaborative multi-agent domains is difficult

in general. The number of possible actions that can be considered at each time step

is exponential in the number of agents. This curse of dimensionality poses serious

problems for online learning as exploration requirements are huge. Consequently, the

learning system is left with lesser opportunities to exploit. Apart from the exploration

challenge, the learning models for multiple agents can quickly become complex as the

number of agents increase, and agents may have communication restrictions that vary

dynamically with the state.

This thesis seeks to address the challenges highlighted above. Its main contribution

is the introduction of a new kind of expert knowledge based on coordination between

multiple agents. These are expressed as constraints that provide an avenue for guiding

exploration towards states with better goal fulfilment. Such fragments of knowledge

involving multiple agents are referred to as coordination constraints (CCs). CCs are

declarative and are closely related to propositional features used in function approxi-

mation. Hence they may be (re)used for both purposes.

For a start, this work presents a centralized coordination guided reinforcement learn-

ing (CGRL) system that learns to employ CCs in different states. This is achieved

through learning at two levels: the top level decides on CCs while the bottom level

decides on actual primitive actions. Learning a solution in this augmented problem

solves the original multi-agent problem. Coupled with relational learning, experiments

show that CCs result in better policies and higher overall goal achievement than existing

approaches.

xiii



SUMMARY

Then, a distributed version of CGRL was developed for domains whereby commu-

nication between agents changes over time. This necessitates that learned parameters

are distributed among agents. To do so, localized learning was designed for individual

agents with coordination where possible. Thus, demonstrating that CCs are able to im-

prove multi-agent learning in a distributed setting as well, albeit with some drawbacks

in terms of model complexity.

Next, this thesis deals with issues of model complexity in the distributed case by in-

troducing a distributed form of relational temporal difference learning. This is achieved

by an agent localized form of relational features and a message passing scheme. The

solution allows agents to generalize learning respectively over its interactions with other

agents and among groups of agents whenever a communication link is available. The

results show that the solution improves performance over non-relational distributed ap-

proaches while learning less parameters, and performs competitively with the central-

ized approach.

Subsequently, a novel preliminary application was developed for the medical imag-

ing domain of retinal image analysis to illustrate the flexibility of multi-agent RL. The

objective of retinal image analysis is to extract measurements from the vascular struc-

ture in the human retina. Interactively editing an extracted vascular structure from the

retinal image to improve accuracy is cast as a collaborative multi-agent problem. Con-

sequently, the methods described in this thesis may be applied. Experiments were con-

ducted on a real world retinal image data set for evaluation and further discussion on

how this application can be further improved.

Last, the thesis concludes and provides suggestions for future work for RL in col-

laborative multi-agent domains.

xiv
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Chapter 1

Introduction

An autonomous agent is one that is able to make sense of its environment and take

logical actions to complete a task without human intervention. For example, a robotic

vacuum cleaner moves to various locations in a room by itself in order to clean it.

Assuming a simplified robotic vacuum cleaner that may only do one of: switching on

or off the vacuum or move in a particular direction, the robot has to make sequential

decisions, picking actions to perform at different points in time. Being able to make

optimal decisions in appropriate situations to get the job done makes the robotic cleaner

autonomous.

Put a team of these vacuum cleaners in the room and problems will appear. The

cleaners may start to collide or re-clean parts of the room already cleaned by another

cleaner resulting in less than optimal efficiency. One of the reasons for this is due to

conflicting action selection, e.g. two robots each detect that no obstacle is on the left

and right of them respectively, they collide when they try to move to the same spot

simultaneously. Clearly, these robots will have to collaborate by coordinating their ac-

tions to achieve their aim of cleaning the room efficiently. In fact this is often necessary

when multiple possibly conflicting actions have to be taken in parallel.

Many real world problems do not have known optimal solutions that work for all

situations. This makes agents that are capable of learning to act and coordinate through

experience particularly useful. However, with reference to our previous example, each
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additional vacuum cleaner exponentially increases the space of actions to choose from.

This has a direct effect on increasing the complexity of learning as well. Some real

world problems that have large action spaces that can benefit from having efficient

coordinated solutions include: computers that are part of a computing grid network

deciding whether to reboot themselves when they begin to get faulty (Guestrin et al.,

2001), animating crowds of autonomous virtual agents (e.g. humans, road traffic) in

a life-like manner for realistic simulation or video rendering (Conde and Thalmann,

2006), urban traffic control (Kuyer et al., 2008), among others.

Over the years, there have been increasing interest for research in a myriad of multi-

agent games. A popular genre is Real Time Strategy (RTS) games (Guestrin et al.,

2003; Buro, 2004; Marthi et al., 2005; Wilson et al., 2007; Balla and Fern, 2009; Judah

et al., 2010). These computer games normally include: multiple players, large num-

bers of player controllable units, tactical and strategic decisions, resource gathering,

production, and exploration. The goal of each game may vary but is most often the an-

nihilation of the enemy player’s forces. Some popular commercial RTS games include:

WarcraftTM and StarcraftTM series by Blizzard and the Age of EmpiresTM series by

Microsoft. A typical instance of an RTS game requires the human player to issue strate-

gic commands to anywhere between 10 to 100 units, while the computer aids the player

in low-level tactical control. Coordination between the in-game units are often crucial

to success.

Currently, the state of the art for Artificial Intelligence (AI) in commercial RTS

games relies on hard-coded static scripts or finite state machines (Yue and de Byl, 2006).

This results in AI for RTS games being of poor aid to the player, or mostly predictable

and seldom a match for the human player. However, machine learning of fine-grained

control for complex domains like RTS games is not straightforward. Beside their en-

tertainment value, games like RTS also serve as a test bed for evaluating multi-agent

machine learning ideas.
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1.1. EFFICIENT MULTI-AGENT LEARNING & CONTROL

Figure 1.1: An example tactical RTS game of 10 versus 10 marines.

1.1 Efficient Multi-Agent Learning & Control

Consider a tactical RTS game in Figure 1.1 rendered by the Open RTS system (Buro,

2004). There are two teams, red and blue, of 10 marines each. The world has a square

boundary, no obstacles and is fully observable with 2402 = 57600 locations. Each

marine has a number of hit points representing its health that depletes to zero as the

marine comes under attack. With 10 marines and considering positions alone, the upper

bound on the state space is
(
57600
10

)
> 1041. Assuming in the depicted state that each

marine may take a step in one of the eight standard compass directions or simply idle,

the joint action space for one team is 910. The large numbers in this example are due to

the curse of dimensionality – as more agents are introduced, naive solutions for learning

fine-grained control quickly become intractable.

The goal of this thesis is to further develop methods that efficiently learn control

policies for collaborative multi-agent domains (e.g. Figure 1.1). Such a policy is a

mapping from the state space to the joint action space. Here, ‘efficiently’ means that

emphasis is placed on the overall learning rate rather than the actual computation of

the mapping from state to action. In particular, the focus is on the online (incremental)

learning problem where the collaborative agents seek to maximize the global goal while

concurrently learning to do so. Incremental learning approaches are generally more
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flexible in their application than batch learning. For example, if some generative model

of the environment is available, agents may learn in simulation (offline), before being

deployed to learn online in the real environment.

Achieving this goal brings about a variety of benefits. This includes better automa-

tion of real-world systems that involve multiple physical or virtual agents. Furthermore,

better multi-agent AI can bring about a more interesting and challenging experience for

millions of gamers world-wide.

1.2 Research Challenges

Highlighted next are a number of major research challenges that exists for machine

learning in multi-agent domains. Overcoming these challenges will allow learning to

generalize more effectively to various multi-agent domains with similar issues.

1.2.1 Exploration Versus Exploitation

To learn good coordinated policies agents need to explore, however to achieve the goal

they need to exploit. Already an ongoing research problem in single agent domains, this

trade-off is further aggravated in multi-agent domains due to the exponentially large

joint action space to be explored. The large action space tilts the trade-off towards

lengthy exploration as otherwise, learned information will be unreliable for effective

exploitation. For online learning to be viable, exploration has to be better managed.

Hence the number of agent interactions with the environment for learning a good coor-

dinated policy has to be optimized.

1.2.2 Limited Communication & Distribution

Closely related are the issues of communication and distribution. Collaborative agents

that work towards a global goal may communicate with each other to better solve the

problem. However, it may not always be the case that all agents can communicate with

every other agent or it may incur too much overhead to do so. Where the communi-
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cation structure between agents are fixed, e.g. computers on a wired network, we may

be concerned with fine-grained issues such as the quantity of messages passed between

them. But, a bigger challenge is when communication is dynamic, for example: net-

work links are disrupted, agents are physically mobile, or removed from the game in

the case of RTS, resulting in isolated groups of agents. Here, distribution is important

as critical components of the machine learning method must not entirely reside in any

one agent.

1.2.3 Model Complexity & Encoding Knowledge

Machine learning often requires optimizing the parameter values of some model. With

multiple agents, the parameters to be learned may also increase exponentially. This

results in slow learning and poor generalization. Furthermore, models usually requires

the user to encode some expert background knowledge of the problem. For multiple

agents, this may become a tedious process for the user. Simplifying the representational

requirements of such knowledge will have a direct impact of the practical applicability

of the learning method. Furthermore, representations rich in semantics may offer gen-

eralization capabilities over the large joint state and action spaces. Such generalizations

have the potential to improve learning efficiency.

1.2.4 Others

Highlighted above are some main challenges for multi-agent learning that this work

intends to confront. By no means is the list exhaustive. Notably, joint policy exe-

cution, i.e., the mapping from the current state to an action for each agent, must be

computed in a reasonable amount of time. Other challenges in multi-agent domains in-

clude: handling non-stationary environments that arise if agents learn independent so-

lutions without communication, partial observability due to the presence of other agents

or imperfect sensors, synchronization between agents, heterogeneous agent roles, team

formation and discovery, credit assignment, and adversarial settings where agents have

selfish goals.
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1.3 Existing Approaches & Gaps

Advances in the area of reinforcement learning (RL) have made applications to prob-

lems that have high dimensional joint action spaces increasingly practical. The basic

RL framework is a machine learning method that learns to maximize a reward signal

over a given discrete time horizon from interaction with the environment. It is particu-

larly attractive for problems where a complete notion of optimality is unknown (Sutton

and Barto, 1998). Furthermore, with a good environment simulator, it is possible to

learn offline and continue to improve the learned results online in an incremental fash-

ion. This allows an intelligent agent to continue to learn from and adapt to changes in

the environment.

Expert knowledge is commonly employed in large-scale RL in a variety of ways.

In particular, hierarchical RL (HRL) handles single agent Markov decision processes

(MDPs) by recursively partitioning them into smaller problems using a task hierarchy

(Sutton et al., 1999; Dietterich, 2000; Andre and Russell, 2002). The task hierarchy

constrains the solution space (policies) of the learning problem so that only relevant

actions for a task can be selected at each time step. Learning a good task selection

policy will direct exploration towards the more promising parts of the MDP, mitigating

some challenges in lengthy exploration.

As described, learning to make sequential decisions for multiple collaborating agents

is a difficult problem in general. The HRL and other task-centric single agent methods

have been adapted into a multi-agent setting. At each time step, agents are individually

constrained to the actions allowed for the current task they are assigned to. Task as-

signment may be part of the learning process (Marthi et al., 2005; Ghavamzadeh et al.,

2006) or derived separately (Proper and Tadepalli, 2009). Once each agent’s task is

selected, it will have a constrained (reduced) set of actions to consider. However, this

framework cannot be easily extended to incorporate constraints based on coordination

among multiple agents. Illustrated below, is an example of the useful effects in directing

exploration that are derived from coordination-based knowledge.

Example 1.1 (RTS coordination knowledge). Consider the simplified view of states

6
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Overlap

N NE
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(a) Before alignment

Overlap
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(b) After alignment

Figure 1.2: Example of coordination-based knowledge in a tactical RTS game. Figures show

simplified states. Solid circles represent marines (2 for grey team and 1 for white

team). Dotted circles indicate the range of their rifle (black bar). Black arrow

indicates movement direction for white marine. Dashed line shows alignment of

grey marines. Grey arrows in (a) are movement actions that may result in the state

in (b).

from a tactical RTS game in Figure 1.2. Two marines from the grey team are shown with

an oncoming enemy marine from the white team. The objective is to destroy the enemy.

Each marine may move in 8 compass directions as shown in the figure or stay put and

shoot at the enemies within range of its rifle. In Figure 1.2a, the joint action space of

the grey team is 92 = 81. Careful examination reveals that much of this space is of less

importance for exploration as they may not lead quickly to the goal of destroying the

enemy. For example, the grey marines should not move in such a way that prevents both

from shooting at the enemy at the same time. An ideal situation is illustrated in Figure

1.2b where the overlapped shooting range is aligned to the enemy’s approach. Once the

shooting begins, the white marine may only shoot at one grey marine while both grey

marines can shoot at it. With this simple coordination strategy, the joint action space in

Figure 1.2a is reduced by 81% to that of {NW,W, SW, stay}× {NE,E, SE, stay}−

{〈stay, stay〉} which has a size of 15.

The effects of multi-agent coordination knowledge described in Example 1.1 do

not fit well within procedural task definitions. This is because the user of task-based

systems will have to encode increasingly complex joint procedural tasks as the number
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of agents increases. Existing works usually delegate such coordination knowledge as

basis features (Marthi et al., 2005) or as static rules (Proper and Tadepalli, 2009). This

lack of an active involvement of coordination knowledge for exploration serves as a

strong motivation to further investigate its utility in directing exploration for multi-agent

problems.

Another line of works use static fixed heuristics to bias the policies of the origi-

nal agents towards better exploration (Bianchi et al., 2007; Zhang et al., 2009, 2010).

However, many of these and the task-based methods do not fully satisfy the distribution

requirements we have described in Section 1.2.2. Namely, they are either centralized

approaches (Marthi et al., 2005; Proper and Tadepalli, 2009) or they have learning com-

ponents that rely on a fixed communication structure between the agents (Zhang et al.,

2009, 2010).

In terms of handling model complexity (see Section 1.2.3), various existing works

seek to generalize or approximate similar model parameters to reduce the number of

parameters to be learned (Stone and Sutton, 2001; Silver et al., 2007; Sutton and Barto,

1998, chap. 8). Of particular interest are the works in relational reinforcement learning

(RRL) that make use of declarative relationships between objects to generalize model

parameters (Guestrin et al., 2003; Tadepalli et al., 2004; Asgharbeygi et al., 2006).

However, study on how RRL may be used in a multi-agent setting is preliminary (Croo-

nenborghs et al., 2005; Ponsen et al., 2010). Hence more work is needed to bring RRL

ideas into the distributed case.

1.4 Overview of Contributions

The main contribution is to exploit coordination knowledge in multi-agent RL to im-

prove the learning rate of useful policies by modelling coordination among agents as

hard constraints. These hard constraints are referred to as coordination constraints

(CCs), and are used to guide (limit) the joint action space for exploration. Unary con-

straints defined on single agents are a special case of CCs.
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CCs dynamically depend on the state to guide exploration. Deciding which CCs

to employ in different states is part of the learning process, enabling the RL system to

learn to guide itself during exploration. The next example describes situations where

this is desirable.

Example 1.2 (RTS dynamic coordination). In Example 1.1, the CC that indicates the

grey marines movements should be constrained may not be suitable if one of the grey

marines is badly wounded. It may make more sense for the healthy grey marine to

engage the enemy first while the wounded marine supports from behind.

The new learning methods must be able to handle most of the challenges identified

in Section 1.2. In addition, it should integrate easily with existing works in multi-agent

RL as far as possible. This thesis makes the following specific contributions.

1.4.1 Coordination Guided Reinforcement Learning

First, the problem is approached from a centralized perspective. This corresponds to

domains where communication is free, e.g. an RTS game. A model-free two level RL

system is presented where the top level learns to place CCs on the bottom level to guide

exploration for the solution to the original problem (Lau et al., 2012). Equations for two

level temporal difference learning are formulated and we describe how action selection

under constraints can be computed. Next, we highlight the close relationship between

basis features used in function approximation and CCs that allows the user to reuse

definitions for both. The system can be incorporated with RRL and other existing works

on coordination. Experiment results show that the inclusion of coordination knowledge

in guiding exploration outperforms existing methods.

1.4.2 Distributed Coordination Guidance

The second contribution distributes the coordination guided RL system into the indi-

vidual agent boundaries such that no critical component resides in any one agent (Lau

et al., 2011). Each agent carries their own portion of learned parameters. This allows
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the system to be applied in domains where agents’ communication structure changes

over time. In particular, agents are able to learn from local information by communicat-

ing with their current neighbours and observing their local reward. Experiment results

show that agents are able to learn more effectively with CCs under the communication

restrictions.

1.4.3 Distributed Relational Reinforcement Learning

The third contribution deals with issues of model complexity in the distributed set-

ting. Existing work in centralized RRL provides the means to generalize learning over

semantically similar situations. This results in models with less parameters to learn.

However, there has been little work in this regard for the distributed setting. As the

use of CCs introduces more learning parameters into the system, it will be prudent to

mitigate the increase in parameters for the distributed case. We propose an internal and

external relational generalization scheme for multiple agents (Lau et al., 2013). Agents

provide locally learned parameters to their current neighbours that they may communi-

cate with. By combining such information from each agent’s neighbours with respect to

relational semantics, experiences can be shared among agents. These ideas are incorpo-

rated with existing multi-agent distributed RL and the work in distributed coordination

guidance. Experiment results show improvement in learning efficiency and competi-

tiveness with centralized RL methods.

1.4.4 Application in Automating Retinal Image Analysis

The last contribution investigates a preliminary prototype application of the ideas in

this thesis to the real-world domain of retinal image analysis. This is a novel appli-

cation of RL to the field of retinal image analysis. Currently, the state of the art for

practical large scale retinal image analysis involves a computer assisted feature extrac-

tion process (Cheung et al., 2010, 2011a,b, 2012). Much manual time and expertise

are required to verify and edit the extracted vascular structure of retinal images before

measurements of interests are recorded. Hence the motivation for a fully automated

10
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solution. We formulate the correct editing of retinal vascular structure as a multi-agent

MDP problem. Subsequently, we integrate RL solution methods with retinal image

analysis system currently in active use. Last, we analyse the utility of our prototype ap-

plication on real world data from population studies and discuss directions in which the

solution can be improved as well as the challenges faced. This application demonstrates

the wide applicability of multi-agent RL methods.

1.5 Organization

The rest of the thesis is organized as follows, Chapter 2 describes the basic details of

RL that are important for our task. Next, Chapter 3 reviews the literature for coor-

dinated multi-agent reinforcement learning. Then, we present the centralized coordi-

nation guided RL system and describe CCs in detail in Chapter 4. In Chapter 5, we

develop a distributed version of coordination guided RL that is applicable in domains

with dynamic communication between agents. Further in Chapter 6, we describe meth-

ods for relational generalization in the distributed case. Subsequently, we present the

preliminary application in retinal image analysis in Chapter 7. Last, in Chapter 8, we

conclude and discuss the possible directions for future work.
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Chapter 2

Preliminaries

In this chapter, we review the basic concepts that form the foundation of reinforcement

learning such as: Markov decision processes, value functions, policies, and optimality.

Then, we highlight the temporal difference learning algorithm, its variants, and a com-

mon function approximation method used for large value functions. Finally, we present

in brief the concept of semi-Markov decision processes that is used in the following

chapter on related work.

2.1 Markov Decision Processes

Reinforcement Learning is a learning framework for a class of discrete time decision

problems that are called finite Markov decision processes (Puterman, 1994; Bertsekas

and Tsitsiklis, 1996). More formally, a Markov decision process (MDP) is defined as

the tuple 〈S,A,R,P〉 where,

• S is a finite set of states,

• A is a finite set of actions,

• R : S ×A×S 7→ R is a reward model such thatR(s, a, s′) is the expected value

of reward, r, for taking action a in s and reaching state s′, where r is the reward

signal received from the environment,

• P is a transitional probability model such that P(s′|s, a) gives the probability that

taking action a in state s will result in reaching state s′ ∈ S .

13
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A typical episodic MDP starts from an initial state, s0, and experiences a sequence

of transitions,

s0, a0, r0, s1, a1, r1, ..., st, at, rt..., s∅

where st, at, rt is the state , action and reward at time t respectively, and s∅ is the ter-

minal state. Such a sequence is termed an episode and arbitrary sequences can also be

referred to as trajectories. Episodic MDPs are special cases of continuous (infinite hori-

zon) MDPs, that do not end. Continuous MDPs may represent episodic MDPs simply

by specifying that every terminal state s∅ transits to itself with certainty regardless of

action taken.

A solution to the MDP is a policy, π : S 7→ A. This is a function that maps the

current state to an action to be taken in it. Alternatively, π may be a stochastic policy,

in which case it will be defined as π : S × A 7→ R. Then the stochastic policy will

take action a in state s with probability π(s, a). Being able to develop a policy to

make decisions based on the current state reveals that some assumption of the problem

is made. This assumption can be summarized as the Markov Property. In short, this

means that the probability of reaching the next state and next reward depends only on

the current state and the action taken in it, i.e. the current state is informative enough to

include all necessary past information required within it.

A simple extension of the MDP to the multi-agent case is that of the factored MDP

where for N agents the joint action space may be factored into multiple variables, i.e.,

A = A1×A2× ...×AN . Then, a joint action in this space is given by a = 〈a1, ..., aN〉,

where ai ∈Ai. The notation, a, is used when there is a need to emphasize the action is a

tuple of values, otherwise we simply write a. Note that to facilitate discussion we have

assumed a one to one mapping between agent and action variables. Agents that have

more than one action variable may be presumed to be composed of other sub-agents.
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2.2 Reinforcement Learning

In reinforcement learning (RL), we wish to learn a policy by interacting with the en-

vironment (Sutton and Barto, 1998) without given transition (P) and expected reward

(R) models. At each time step, the environment sends the state and a reward signal to

the agent from a user specified reward function1 that encodes the goal of the problem.

RL usually learns value functions and derive policies from them. One such function is

the state-value function V π : S 7→ R. V π(s) gives the expected return2 of being in state

s if the policy π is being followed,

V π(s) = Eπ{Rt|st = s} (2.1)

= Eπ{
∞∑

t′=0

γt
′

rt+t
′

|st = s} (2.2)

=
∑

a

π(s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γV π(s′)] (2.3)

Equation 2.1 states that the state value function based on policy π gives the expected

total reward, Rt beginning from the current state st and subsequently experiencing new

states by taking actions determined by π until termination. Equation 2.3 is a Bell-

man equation that shows how V π(s) is related to its successor states V π(s′) under the

stochastic policy π. Essentially, we sum over each possible action and each possible

successor state, the reward experienced and the expected reward from there on after.

The real variable γ ∈ [0, 1] is a constant called the discount factor that controls propor-

tionally how much future states matter to the current state.

Another function of interest that RL may seek to learn instead of V π is the action

value function, Qπ : S × A 7→ R. Qπ(s, a) returns the expected total reward of taking

1Where it is clear, we also write the reward function asR.
2A return is a function on the sequence of rewards.
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action a in state s and following policy π to termination, i.e.,

Qπ(s, a) = Eπ{Rt|st = s, at = a} (2.4)

=
∑

s′

P(s′|s, a)[R(s, a, s′) + γV π(s′)] (2.5)

Equation 2.4 states that the expected total reward Rt depends on the current state st

and action at taken in it. Equation 2.5 expresses Qπ(s, a) in terms of the state-value

functions of successor states, V π(s′). By substituting Equation 2.5 in 2.3 we have,

V π(s) =
∑

a

π(s, a)Qπ(s, a) (2.6)

= Qπ(s, π(s)) (2.7)

where Equation 2.7 is a shortened notation for expectation over a. Then, the Bellman

equation for Qπ relating the current state and the next is,

Qπ(s, a) =
∑

s′

P(s′|s, a)[R(s, a, s′) + γQπ(s′, π(s′))] (2.8)

With these value functions, policies may be derived from them in a few ways. For

example, the ǫ-greedy policy always chooses a greedy action,

π(s) = argmax
a∈A

Qπ(s, a) (2.9)

with probability 1− ǫ and an arbitrary non-greedy action otherwise.

A basic approach to represent action value functions such asQ, would be the tabular

approach. Each entry in the table for Q is keyed by the state and action, and has the

corresponding data value, Q(s, a). Although the tabular approach is feasible for small

state and action spaces, it does not scale well to larger domains such as multi-agents

ones. Other common methods to approximate functions will be mentioned in Section

2.4.

The optimal policy, π∗ for an MDP, always seeks to maximize its expected rewards
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in any given state. Such a policy necessarily has optimal state and action value func-

tions, V ∗ and Q∗. These give higher or equal expected return when compared to any

other value functions for arbitrary policy π, V π and Qπ. Otherwise a new optimal state

and action function can be constructed using the policy that gives a higher value, con-

tradicting the fact that V ∗ and Q∗ are already optimal. Therefore,

V ∗(s) = max
π

V π(s) (2.10)

Q∗(s, a) = max
π

Qπ(s, a) (2.11)

and the Bellman optimality equations for the optimal value functions are,

V ∗(s) = max
a
Q∗(s, a) = max

a

∑

s′

P(s′|s, a)[R(s, a, s′) + γV ∗(s′)] (2.12)

Q∗(s, a) =
∑

s′

P(s′|s, a)[R(s, a, s′) + γ ·max
a′

Q∗(s′, a′)] (2.13)

Then, the deterministic optimal policy π∗ based on V ∗ or Q∗ is given as,

π∗(s) = argmax
a

∑

s′

P(s′|s, a)[R(s, a, s′) + γV ∗(s′)] (2.14)

= argmax
a

Q∗(s, a) (2.15)

From Equation 2.15, one can observe that the optimal policy is a greedy policy.

2.2.1 Model-Free Versus Model-Based Learning

The benefit of learning action value functions over state value functions is obvious.

Learning V ∗ is called a model-based approach as it requires learning the state transition

model P and reward model R for action selection (see Equation 2.14). These models

can be difficult to specify in general and especially so for multi-agent domains that

require them to be decomposable for efficient action selection. However, by directly

learning action value function Q∗ in the model-free approach, we immediately have π∗

without any special requirements on P and R (see Equation 2.15). Furthermore, when
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a good model design is available, RL with Q, planning, and model building can be

integrated rather independently using search based methods (Gelly and Silver, 2007;

Silver et al., 2008; Sutton and Barto, 1998, chap. 9.2).

In general, to learn policies, model-free RL uses policy iteration that consists of

two main steps. Policy Evaluation seeks to learn the value function (e.g. Qπ) for the

current policy π. Policy Improvement seeks to improve the current given policy π. This

is achieved by changing the action to take in the state by maximizing the learned value

function (e.g. Equations 2.14 and 2.15) from the previous policy evaluation step. The

two steps described are repeated in sequence iteratively until the policy and its value

function converges to the optimal policy.

2.2.2 Direct Policy Search Versus Value Functions

Another approach to RL is to avoid learning the value functions and directly learn the

stochastic policy, π : S × A 7→ R. An example of this on a small two agent soccer

domain through gradient descent on a differentiable policy is reported in Peshkin et al.

(2000). They find that learning the action value function performs poorer than policy

search when there is partial observability. A more comprehensive empirical compari-

son was done by Kalyanakrishnan and Stone (2009). They found that RL with value

functions can learn significantly faster than policy search when accurate function ap-

proximation is available (see Section 2.4) and the Markov property holds. Conversely,

when there is partial observability or the function approximation is poor, policy search

may learn better policies than value function approaches in the long term. But, value

functions perform better in the short term.

Interestingly, Kalyanakrishnan and Stone (2009) found that combining the two ap-

proaches, by first learning the value function then the policy directly, can yield the ben-

efits of both approaches. This results in better performance than either method alone.

Guestrin et al. (2002) also presented a method to fuse both approaches for multi-agent

domains by first learning the value function. Since RL with value functions has shown

to be an important first step in fusion with policy search methods, we focus on learning
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value functions in this thesis.

The next few sections details an incremental approach to RL for action value func-

tions called temporal difference learning, and other methods in its context that are rel-

evant to applying model-free RL. For the rest of this chapter, whenever the policy is

obvious we use V and Q to denote the state and action value function respectively.

2.3 Temporal Difference Learning

Temporal difference (TD) learning is a method to combine both policy evaluation and

policy improvement into a single step for policy iteration (Sutton, 1988). In its simplest

form, it allows an RL agent to update its value function after each action is taken.

This makes the updates incremental and allows an agent to adapt to changes during the

course of a single episode.

Assuming that tabular functions are used, the outline of a general TD algorithm

for a single episode is shown in Algorithm 2.1. At each iteration, the next state and

reward in the current time step is observed, then an update for action function Q is

performed before the subsequent iteration. Note that there are two policies involved,

the exploration policy π and the learning policy ψ. If π = ψ, i.e. the exploration policy

is also the learning policy, then an on-policy update method is said to be used, otherwise

the TD algorithm uses an off-policy update method. Both methods of updating have

been proven to cause Qψ to converge to Q∗ in the limit of episodes being experienced

if some constrains on π and ψ are observed. Two popular methods, SARSA and Q-

Algorithm 2.1 General TD learning algorithm for one episode

Input: exploration policy π, learning policy ψ, initial tabular action value function Q
Output: updated function Q

1: Observe the initial state s0
2: s← s0 ; a← π(s) # Compute action for s
3: while ¬terminal(s) do

4: Take action a, observe the next state s′ and reward r.
5: Compute an update for the value Q(s, a) using s′, r and policy ψ.

6: s← s′ ; a← π(s)
7: end while
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learning, for on-policy and off-policy updates respectively are presented next to explain

the details of the TD learning algorithm.

2.3.1 SARSA

SARSA (Rummery and Niranjan, 1994; Sutton, 1996) is a form of on-policy TD learn-

ing algorithm that performs updates using the tuple 〈st, at, rt, st+1, at+1〉, hence SARSA.

Being an on-policy update method, the exploration policy, π = ψ, the learning policy.

Therefore, in Algorithm 2.1 Step 5, the following update is performed,

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, π(st+1))−Q(st, at)] (2.16)

where α is the step size parameter that controls the learning rate – a value of zero

indicates no learning is taking place. In some applications, α is dependent on t and

decays with time. If π is a Greedy in the Limit of Infinite Exploration (GLIE) policy

and if α fulfils the conditions,

∞∑

t=1

αt =∞ and

∞∑

t=1

α2
t <∞. (2.17)

Then under SARSA, Q will converge to the optimal action function Q∗ (Rummery

and Niranjan, 1994). An example of a step size that satisfies the above conditions is

αt = 1/t. A GLIE policy is one that will visit each action infinite number of times and

converge to the greedy policy in the limit. An example of such a policy is the ǫ-greedy

policy, where an exploratory action is chosen with ǫ probability and a maximal action

with 1 − ǫ probability. As the parameter ǫ decays towards zero over time the policy

becomes increasingly greedy in the limit.

2.3.2 Q-learning

Q-learning (Watkins, 1989) is an off-policy update method that uses an exploration

policy (π) to take actions in the environment but uses the greedy policy (ψ) for updates
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to the action function. Essentially in Algorithm 2.1, for Step 5 the following update is

performed,

Q(st, at)← Q(st, at) + α[rt + γ ·max
a∗∈A

Q(st+1, a
∗)−Q(st, at)] (2.18)

Similar to SARSA, if the conditions for α in Equation 2.17 is met, Q-learning will

converge to the action value functionQ∗ for the optimal policy π∗. Although Q-learning

may learn optimal policies, it may not perform as well in practice as SARSA in the

online case as it does not take into account the randomness of the exploration policy.

The two methods’ policies will become equivalent if the exploration policy is GLIE.

2.4 Function Approximation

In MDPs with large state and action spaces, tabular representation for action value func-

tions quickly become infeasible. To this end, function approximation is often used to

estimate Q. In general, any incremental regression technique may be used to estimate

Q. One popular method for function approximation is the use of Artificial Neural Net-

works (ANN). This approach has shown to be very effective in creating game players

for Backgammon (Tesauro, 1994) and is widely used in other domains.

Another popular and simpler approach to function approximation that has also been

studied widely is linear function approximation (Lagoudakis and Parr, 2001; Stone and

Sutton, 2001; Guestrin et al., 2002; Marthi et al., 2005). In linear function approxi-

mation for action value functions, we approximate Q through a set of basis functions,

fi ∈ F . Each basis function fi : S × A 7→ R is also called a feature and encodes

some aspect of the state action space. For example, in the domain of a single marine

RTS game, health(s, a) may be the health level of the marine in state s regardless of

the action and collide(s, a) may be a binary feature that returns a value in {0, 1} if the

marine will collide with some object after taking action a.
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The function Q may be approximated in linear form using N features by,

Q(s, a) =
N∑

i=1

wifi(s, a) (2.19)

where wi is the corresponding weight of each feature to be learned. Gradient descent

methods may then be used for TD updates to the weights. Let ~w = 〈w1, ..., wN〉 be a

vector of the weights and ~fs,a = 〈f1(s, a), ..., fN(s, a)〉 be a vector of the feature values

for state s and action a. Note that in the multi-agent case, features may only depend on

a subset number of action variables.

The general gradient descent update equation for learning is,

~w ← ~w + α[r + γQ(s′, π(s′))−Q(s, a)]∇ ~Qs,a (2.20)

where ∇ ~Qs,a is a vector of update gradients (e.g. partial derivatives) of Q for s, a. The

commonly used ∇ ~Qs,a in TD updates for SARSA and Q-learning respectively are,

~w ← ~w + α[r + γQ(s′, π(s′))−Q(s, a)]~fs,a (2.21)

~w ← ~w + α[r + γ ·max
a∗∈A

Q(s′, a∗)−Q(s, a)]~fs,a (2.22)

These update gradients are commonly used because of their computational complexity

that is typically linear in the number of weights. Update time can be further reduced the

special case of binary features if implementations are optimized for fi(s, a) = 0 and

~fs,a is sparse. The SARSA update in Equation 2.21 converges within an error bound of

the optimal approximation, where the error with the true function is minimal, with same

condition at Equation 2.17 for α (Tsitsiklis and Roy, 1997). Additionally, with more

stringent conditions, SARSA has been show to converge to the optimal approximation

(Perkins and Precup, 2002; Melo et al., 2008). But in the case of off-policy methods

such as Q-learning, learning updates with Equation 2.22 is not proven to converge to

an optimal approximation to Q∗ in general due to the gradient (Baird, 1995). A better

gradient was presented in Lagoudakis and Parr (2001), but at the cost of quadratic time
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complexity. More recently, a convergent off-policy and linear time complexity updating

method was presented in the works of Sutton et al. (2009b,a) that uses two types of

gradients.

2.5 Semi-Markov Decision Processes

A generalization of the MDP with actions that may take more than one time step to

complete is the semi-Markov decision process (SMDP). This model is necessary for

explaining some of the related work in Chapter 3. SMDP may be defined as modifying

the reward model R and transitional probability model P to include provision for an

action a ∈ A that may take N number of time steps to complete (Sutton et al., 1999;

Dietterich, 2000). R is redefined as R : S × A × S × Z
+ 7→ R, and P is now the

joint probability that given state s and action a we reach state s′ in N time steps, i.e.

P(s′, N |s, a). The Bellman equation, one step SARSA and one step Q-learning updates

are then,

Q(s, a) =
∑

s′

P(s′, N |s, a)[R(s, a, s′, N) + γNQπ(s′, π(s′))] (2.23)

Q(s, a) ← Q(s, a) + α[rN + γNQ(s′, π(s′))−Q(s, a)] (2.24)

Q(s, a) ← Q(s, a) + α[rN + γN max
a∗∈A

Q(s′, a∗)−Q(s, a)] (2.25)

Note that for Equations 2.24 and 2.25, rN is the sum of the reward received from the

environment over N time steps.
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Chapter 3

Literature Review

This chapter reviews selected approaches to handle the challenges of model-free re-

inforcement learning (RL) in multi-agent problems. We begin by reviewing hierar-

chical task based methods that were developed to improve the learning rate for single

agent Markov decision processes (MDPs) by using procedural expert knowledge. Next,

methods to handle the various important aspects of multi-agent RL such as joint action

selection, value function representation, and learning updates are described. Then, hi-

erarchical learning concepts for multi-agent problems are discussed. Finally, we briefly

review reward shaping and relational reinforcement learning. The ideas introduced in

the subsequent chapters will be discussed in relation to some of the works highlighted

in this chapter.

3.1 Single Agent Task Based Learning

This section presents an overview of the methods used to improve the learning rate of

single agent reinforcement learning. Hierarchical RL (HRL) approaches were origi-

nally conceived to deal with the problem of lengthy exploration trajectories through

the MDP before rewards are encountered. In other words, the problem was one of the

depth of exploration required. This is resolved by the introduction of tasks – procedu-

ral sub-problems that may in turn be decomposed further to sub-tasks. The effect is to

decompose the original MDP into sub-MDPs (i.e., sub-problems) where more focused
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solutions (sub-policies) may be discovered. Tasks correspond to their same real-world

concept humans use and are encodings of expert knowledge.

Choosing of tasks is part of the RL process, hence tasks are higher level actions

that are represented in a task hierarchy. As tasks may last multiple time steps, these

methods use SMDPs (see Section 2.5) as the problem formulation. This allows HRL to

propagate rewards multiple steps back in time where the high level task action is first

selected. Hence the temporal abstraction. The specification of a task generally consists

of a few components that give rise to a sub-MDP:

1. A set of starting states in which the task may be initialized. That is, the action to

perform the task is available for selection.

2. A set of terminal states that ends the task, returning control to the parent task.

This may be specified as a probability distribution over states that depends on the

history of visited states within the task.

3. A sub-policy for the sub-MDP. The sub-policy limits the agent’s actions to only

those allowed for the task.

4. An optional pseudo-reward model that is used to improve task transfer among

problems and encourage faster learning in the task. Introducing pseudo-rewards

is a double-edged sword as they may pollute the original reward signal resulting

in sub-optimal behaviour.

Next, we briefly review the three common HRL methods: Options (Sutton et al., 1999),

MAXQ decomposition (Dietterich, 2000), and hierarchical abstract machines (Parr and

Russell, 1997; Andre and Russell, 2002; Marthi et al., 2006).

3.1.1 Options

Sutton et al. (1999) details how RL may work with temporally extended action, i.e.

a sequence of actions that follow their own given policy. Such temporally extended

actions are called options. Options may come in two variants:

1. A Markov option is similar to an RL formulation.
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2. A semi-Markov option has a policy that considers histories of the states and ac-

tions taken within the option and also for its a termination probability distribution.

The latter allows options to self-terminate after a certain amount of time.

An MDP augmented with a set of options becomes an SMDP. The framework was

presented as a two level hierarchy with the RL framework with its standard actions

(called primitive actions), extended with options. It was shown that options can speed

up learning and convergence to the optimal value functions under certain conditions.

An interesting point to note is that options may be interrupted during execution

allowing more flexibility in their usage. Interruption also allows convergence to opti-

mality for options that do not fit well in their entirety as a sub-task to a problem by

prematurely truncating them after certain number of steps. Choosing to interrupt is

done by comparing the state value with the action value, i.e., for current option o, if

Q(s, o) < V (s), then terminate o.

3.1.2 MAXQ Decomposition

Dietterich (2000) proposed another HRL method called MAXQ decomposition. Using

this method, the value function for an RL task is hierarchically decomposed to additive

sub-task components. The purpose of such decompositions of theQ function is to focus

the observed rewards on the relevant sub-task (or sub-routine) in hope that the learning

rate for the sub-task will be improved. Each sub-task component is a miniature MDP

problem. Solving each of them will solve the original MDP. Sub-tasks are added to

the action space A much like how options are added as actions in Sutton et al. (1999).

Within a sub-task, primitive actions or calls to other sub-tasks may be performed. In

essence, introducing extra decisions in the form of calling sub-tasks partitions the single

action space in a hierarchical manner. Good design of these subtasks and their hierarchy

has been shown to improve learning.

This hierarchical decomposition of the value function can be represented as a di-

rected acyclic graph, called a MAXQ graph, to be executed as described in the following

examples.
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Root

Hunt Flee 

Hunt Flee

Navigate For Flee Attack Navigate For Hunt 

Rifle Grenade 
Navigate(t) 

North(t) South(t) East(t) West(t) 

North South East West 

t / flee location t / enemy location 

Figure 3.1: Example of a MAXQ decomposition graph, shown for a single marine RTS game.

Actions are: 4 movement directions, and usage of 2 weapons. Rectangles are Q

nodes and triangles are MAX nodes. Direction of edges are top-down.

Example 3.1 (MAXQ graph). Suppose that we have a simple RTS game whereby each

team consists of one marine armed with a rifle and a grenade in a small square envi-

ronment with no obstacles. The marine may move in one of four standard compass

directions or use one of its weapons. The episode ends when the enemy marine is de-

feated (positive reward), the marine is defeated (negative reward) or fled from battle

(zero reward). One possible MAXQ graph is given in Figure 3.1. The triangles are

called MAX nodes that correspond to primitive actions (leaf nodes) or sub-tasks. The

rectangles are called Q nodes and they correspond to the possible action or sub-task

selections available to choose from in a particular sub-task. All edges are top down

directed from the root node.
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Example 3.2 (MAXQ execution). An example execution of a MAXQ RL agent using

this graph will first begin from Root. A decision has to be made between two sub-

tasks: to Hunt the enemy, or to Flee the battle. Once a decision is made, the sub-task is

executed. When some terminating condition is met, control is returned from a sub-task

back to the parent task. For example, if sufficient damage has been taken, the Hunt

sub-task will terminate and control returned to Root where the agent may decide to call

the Flee sub-task. Sub-tasks may be parametrized as shown by the Navigate sub-task.

Both instances of the Navigate sub-task will have to be learned.

Dietterich (2000) further proposes that sub-goals in the form of local rewards be

added by the domain expert to encourage sub-tasks to converge locally. The argu-

ment is that the sub-goal rewards will enable learnt sub-tasks to become more portable

across different MDP problems for re-usability. However, this compromises optimality.

In HRL, expert knowledge imposes constraints on the MDP hence learning may only

converge to hierarchical optimality – optimality that is consistent with the constraints

placed on the MDP. The sub-goal rewards for the sub-tasks in MAXQ compromise this

further and MAXQ learning converges to the weaker form of recursive optimality.

3.1.3 Hierarchical Abstract Machines

Hierarchical abstract machines (HAMs) were first presented in Parr and Russell (1997)

as a means to impose a hierarchy on the MDP using finite state machines augmented

with certain special states. From a high level perspective, HAMs define a partially spec-

ified program due to certain choice states that are meant to be decided upon by the RL

agent at runtime, thus completing the program. These choice states are similar to the

high level actions that correspond to tasks. Tasks are represented as subroutines in the

program that may contain choices for other subroutines or a limited set of primitive ac-

tions. The MDP is augmented with the hierarchy by adding the program call stack to the

state and choice states to the actions. Hence the goal is to learn a program completion

that consequently solves the original task.
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Andre and Russell (2002) introduced a specialized language ALisp that is Lisp aug-

mented with non-deterministic constructs for the purpose of specifying HAMs pro-

grammatically by the user. The paper further details a three part decomposition of the

action value function Q as opposed to the two part decomposition in Dietterich (2000).

Decomposing the Q function based on sub-routines serves the purpose of improving

the learning rate of the sub-routine by propagating rewards further back in time. The

benefit of the three-part decomposition is that sub-goals do not need to be specified

for sub-routines. This is because the external component of the Q function decompo-

sition models the reward that comes from after the return of a sub-routine (i.e. at the

stop state). Hence an RL learning agent that uses HAMs will be able to converge on

hierarchically optimal value functions that is better than recursive optimality in MAXQ.

However, the external component of the Q function decomposition depends on

many states as it comes from the sequences of events after a sub-routine has returned to

the parent routine. Thus, although no sub-goals are specified, RL with this system may

lead to slow convergence to hierarchical optimality, i.e., a reduced learning rate. This

concern was addressed to a certain extent in Marthi et al. (2006).

3.1.4 Discussion

Each of the three approaches to HRL is a form of temporal abstraction to the RL prob-

lem. Their aim is to solve the problem of slow learning due to the depth of exploration

required. Of the HRL methods, both MAXQ and HAM specify criteria of how state

space abstraction can be carried out for sub-tasks in Dietterich (2000) and Andre and

Russell (2002) respectively. State space abstractions allow sub-tasks to generalize more

over the state space, potentially speeding up the learning rate. Alternatively, they al-

low tasks to depend on a reduced number of states to mitigate the increase in space

requirements of their tabular value functions due to the hierarchy.

Of the three HRL methods explored, MAXQ and HAMs have specific details on

how the programmer may encode procedural knowledge for decision making. The three

HRL methods started out as a way to represent and incorporate useful real-world knowl-
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edge to improve RL. Subsequently, automated techniques of learning such knowledge

have been studied for building options (Konidaris and Barto, 2007; Jong et al., 2008)

and MAXQ task hierarchies (Mehta et al., 2008).

3.2 Coordination Graphs

A2

A3

A4 A5A1

Figure 3.2: Example of a coordination graph

The concept of the coordination graph (CG) have often been used (Guestrin et al.,

2001, 2002) to specify a structure among a group of agents. This structure can be

interpreted in two ways. First, a CG specifies a coordination structure, i.e., it encodes if

agents need to coordinate. Consider the CG given in Figure 3.2. There are five agents

A1, ..., A5, each represented as a vertex. Between each pair of agents, an edge exists

between them if they need to coordinate. CG as a coordination structure can be used to

additively decompose value functions much like how Bayesian networks (Neapolitan,

2003) factor a joint probability distribution. For example, based on the Figure 3.2, we

may specify Q as sub-components,

Q(s, a) = Q(s, a1, ..., a5)

= qa(s, a1, a2) + qb(s, a2, a3, a4) + qc(s, a4, a5)

Hence a tabular representation will have qb as its largest component involving 3 agents

that is usually smaller than a joint tabular representation of all 5 agents in Q.

The other interpretation of the CG is that it specifies a communication structure

among agents. For example, in Figure 3.2, the agents may only communicate if an edge

exists among them. This interpretation is useful in modelling the communication limi-

tations among agents. Hence agents may only explicitly coordinate their joint actions if
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they are able to communicate. When they are unable to communicate they choose their

actions independently. It is possible for agents to still have implicit coordination if each

agent models other agents internally. However, for simplicity, we will presume that

communication limitations place a hard restriction on the coordination structure among

agents, i.e., agents may only coordinate as far as communication allows.

In general, the structure of the CG may depend on the state. In this case, the dy-

namic CG changes accordingly to the current state value. Depending on interpretation,

this can mean that agents coordination requirements are different in each state, or that

communication links between agents are dynamic.

Finally, choosing a maximizing joint action, argmax
a∈AQ(s, a), is essential for

control and to learn an optimal policy for a given MDP. CGs provide a useful structure

for maximization with the value function. The next two sections describe approaches

for computing the maximizing joint action for centralized and distributed problems re-

spectively.

3.2.1 Centralized Joint Action Selection

For centralized joint action selection using a CG, we presume that action value function

can be additively decomposed into various components where each component depends

on a subset number of agents. An edge exists between a pair of agents in the CG if there

exists some component that depends on both of them. To illustrate, we assume Q may

be additively decomposed into sub-components that depend on at most two agents out

of the N agents in A, i.e.,

Q(s, a) = Q(s, a1, ..., aN) =
N∑

i=1

qi(s, ai) +
∑

i,j∈[1,N ] | i<j

qi,j(s, ai, aj) (3.1)

The components Qi and qi,j may consist of weighted features, w · f , used for linear

function approximation (Section 2.4). For example, using linear function approxima-

tion in an RTS game, we may have some pairwise binary features such as, collide1,2 and

attack1,2 that encode if marines 1 and 2 will collide and if marines 1 and 2 are attack-
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ing the same target respectively. Note that these features only depend on the state and

action variables for marine 1 and 2. Assuming that there are no other pairwise features,

then

q1,2(s, a1, a2) = wa · collide1,2(s, a1, a2) + wb · attack1,2(s, a1, a2)

where wa and wb are the learned weights of their respective features. Note that in the

case of the edges, if a particular qi,j = 0 for the current state, the edge need not be

represented in the CG. To find the joint action that maximizes Q, i.e.,

π(s) = argmax
a∈A

Q(s, a)

the bucket elimination (BE) algorithm (Dechter, 1996, 1999) can be applied using the

CG. The BE algorithm is essentially the same as the variable elimination algorithm for

inference in Bayesian Networks (Zhang and Poole, 1996). We describe how it is used

via an example.

A1

A2A3

A4
q2,4

q1,3 q1,2

(a) Four agents with three

components

A2A3

A4
q2,4

F 1

(b) Elimination of a1

Figure 3.3: Example of bucket elimination on a coordination graph

Example 3.3 (Bucket Elimination). Suppose we have four agents such that

a = 〈a1, a2, a3, a4〉 ∈ A = A1 × A2 × A3 × A4,

and a Q function that is a sum of three pairwise components with no single components

as shown in Figure 3.3a. We wish to compute, by eliminating variables a1, a2, a3, a4 in
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some order,

max
a∈A

Q(a) = max
a1,a2,a3,a4

q1,2(a1, a2) + q1,3(a1, a3) + q2,4(a2, a4) (3.2)

= max
a2,a3,a4

q2,4(a2, a4) + max
a1

q1,2(a1, a2) + q1,3(a1, a3)

= max
a2,a3,a4

q2,4(a2, a4) + F 1(a2, a3) (3.3)

= max
a3,a4

F 2(a3, a4)

= max
a4

F 3(a4)

= F 4

where F 4 is a constant and functions,

F 1(a2, a3) = max
a1

q1,2(a1, a2) + q1,3(a1, a3)

F 2(a3, a4) = max
a2

q2,4(a2, a4) + F 1(a2, a3)

F 3(a4) = max
a3

F 2(a3, a4)

Note that s has been left out for clarity. Equations 3.2 and 3.3 correspond to Figures

3.3a and 3.3b respectively. They show that action variable a1 can be eliminated by

computation of the function F 1(a2, a3) for each possible pair (a2, a3). This computation

is stored in the table, F 1, along with the maximal (argmax) value,

u1(a2, a3) = argmax
a1

q1,2(a1, a2) + q1,3(a1, a3),

i.e., an entry in table F 1 contains 〈a2, a3, F
1(a2, a3), u

1(a2, a3)〉 such that (a2, a3) is an

index. Repeating this process for the tables F 2, F 3, and F 4, we achieve a bottom up

computation of maxaQ(a). Then, we can set each ai in a∗ = 〈a∗1, a
∗
2, a

∗
3, a

∗
4〉 by doing

a reverse pass of the elimination order. For example, in the order,

a∗4 = argmax
a4∈A4

F 3(a4) = u4
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a∗3 = argmax
a3∈A3

F 2(a3, a
∗
4) = u3(a∗4)

a∗2 = argmax
a2∈A2

F 1(a2, a
∗
3) = u2(a∗3)

a∗1 = argmax
a1∈A1

q1,2(a1, a2) + q1,3(a1, a3) = u1(a∗2, a
∗
3)

where the ui(·) values were previously computed and stored in the F i tables.

 

 

 

 

 

 

Figure 3.4: A CG with induced tree width of 3

Letw be the induced tree width of the CG, and n be the size of each action variable’s

domain. The time and space complexities of BE are exponential in w, i.e., O(nw)

and O(nw−1) respectively (Dechter, 1999). To obtain the induced tree width, we first

triangulate the coordination graph by adding an edge between two nodes if they belong

to a cycle of size greater than three. Then, the size of the largest clique in the graph is

the induced tree width. Consequently, it is desirable to have coordination graphs with

small induced tree widths. An example of a graph with induced tree width of 3 is shown

in Figure 3.4, the maximum can be computed in O(n3) time and O(n3−1) space.

There are a few approaches for further improving computational and space effi-

ciency of BE. First, expert knowledge may be used to reduce the density of the CG. In

Marthi et al. (2005) for RTS games, to ensure that the induced tree width remains small,

pruning of CG edges was be carried out based on spatial knowledge. For example, a

pair of agents, (i, j), that are spatially far apart will be considered as having zero value

for their qi,j regardless of their actions taken. This effectively removes edges between

the vertices in the CG.

Second, Kok and Vlassis (2004) presented the idea that the CG may be pruned

using a predefined coordination structure in the form of value rules that define the CG

based on the state. These value rules also make up a linear decomposition of the Q

35



CHAPTER 3. LITERATURE REVIEW

function similar to linear function approximation. They demonstrated that their method

of representing the joint state action space in a sparse manner using rules is effective for

a predator-prey problem in which two predators need to coordinate to explicitly capture

a prey.

Third, where good lower and upper bounds on the Q function is available, the space

requirements of the maximized functions, F i, can be further reduced in practice by

combining BE with branch and bound techniques. This hybrid algorithm was presented

in Larrosa and Dechter (2003).

Last, is to make use of approximate methods to estimate the maximizing value of Q

based on the CG. These methods make use of message passing between agents and are

described in the next section.

3.2.2 Distributed Joint Action Selection

In Kok and Vlassis (2006, Section 3.1), a message passing method called max-plus was

introduced to approximate the maximum value and action of an action value function

represented as a CG. As long as agents may communicate along the edges in the CG,

max-plus is a distributed form of joint action selection. Furthermore, the passing of

messages is iterative, hence action selection may be stopped at any iteration and the

current results returned.

Max-plus requires the Q function to be decomposed into components involving up

to at most a pair of agents as shown in Equation 3.1. Hence the CG directly corresponds

to components of the function with qi components at the vertices and qi,j components at

the edges. From here on, we specify Q functions without the state s as it is fixed during

action selection. Let Γ(i) be the set of neighbours of i. At each iteration, each agent i

sends a message, µi,j , to neighbouring agents j ∈ Γ(i) in the CG, defined as

µi,j(aj) = max
ai∈Ai



qi(ai) + qi,j(ai, aj) +
∑

k∈Γ(i)−{j}

µk,i(ai)



− κi,j (3.4)
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where the normalizing constant κi,j is the average

κi,j = |Aj|
−1 ·

∑

aj∈Aj

µi,j(aj) (3.5)

that prevents the messages from growing too large in CGs with cycles.

After the desired number of iterations, each agent i computes its max-marginal Q

function, Q̂i, using the single agent component qi and its received messages µj,i, where

j ∈ Γ(i),

Q̂i(ai) = qi(ai) +
∑

j∈Γ(i)

µj,i(ai) (3.6)

= max
{a′∈A|a′i=ai}

Q(a). (3.7)

Equation 3.7 expresses that the max-marginal Q̂i maximizes Q, for every value of

ai ∈ Ai, over the possible subset configurations of actions for the other agents. This

corresponds to a bottom up computation of a spanning tree rooted at agent i. Hence for

a∗ = 〈a∗i , ..., a
∗
N〉 = argmax

a∈A
Q(a), (3.8)

the maximal action a∗i for each agent can be individually selected by

a∗i = argmax
ai∈Ai

Q̂i(ai). (3.9)

Figure 3.5 illustrates the messages passed, as described above, for a similar CG to

Figure 3.2 and the max-marginals computed at each agent. Note that Equation 3.9 only

holds when the joint action a∗ is unique. When a∗ is not unique, which is common in

many RL problems, computing an additional pairwise marginal Q̂i,j is required. We

will discuss this case further in Section 4.3.4 page 77.

The max-plus algorithm is analogous to the max-product algorithm used for max-

imum a posteriori (MAP) estimation in probabilistic models with the same pairwise

component among variables. It is only exact and guaranteed to converge when the CG
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Q̂2

Q̂3

Q̂4Q̂1 Q̂5

µ1,2

µ2,1

µ2,3
µ3,2

µ4,2

µ2,4

µ3,4

µ4,5

µ5,4

µ4,3

Figure 3.5: Passing µi,j messages between neighbours in max-plus and the max-marginals

computed at each agent (vertex).

is a tree or, a graph with at most one cycle and one unique solution (Wainwright et al.,

2004). Therefore, in the general case of CG with many cycles, it is an approximation

and may diverge. To mitigate this, actions may be selected after every iteration and the

best action stored. An exact message passing method for any CG with cycles is given

in Petcu and Faltings (2005). However, like bucket elimination, it requires passing

messages of size exponential in induced tree width to be exact.

While only allowing Q to consist of up to at most pairwise function components

may be restrictive, it has the advantage of simplicity. The message passing scheme

directly corresponds to the CG in terms of communication requirements (edges) and

agent boundaries (vertices). If the function components in Q involve more than two

agents, distributed action selection can be computed using factor graphs (Kschischang

et al., 2001). However, unlike CGs, vertices and edges in factor graphs do not directly

correspond to agents and their communication links. Hence more work is required to

adapt factor graphs for situations where agents have dynamic communication.

3.3 Flat Coordinated Reinforcement Learning

In this section, we present methods for multi-agent reinforcement learning with the

action value function. In the simplest centralized case, updating the Q function with the

joint state and action spaces is the same as the update equations described in Chapter 2

while joint action selection is carried out using the methods for coordination graphs as

described in the previous section. However, the Q function and MDP’s reward signal

can be further decomposed among agents so that various updates can be carried out

locally in parallel. This aids distribution and is described next.
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3.3.1 Agent Decomposition

One natural way of decomposing the RL problem among agents is to represent the Q

function as a sum of individual agent functions. In addition, the rewards may also be

decomposed into a sum of individual agent rewards, one for each agent. Suppose a

factored MDP for N agents has a joint action space, A = A1 × A2 × ... × AN and a

reward model that is additively decomposed for each agent, i.e.,

R(s, a, s′) = R1(s, a, s
′) + ...+RN(s, a, s

′) =
N∑

i=1

Ri(s, a, s
′) (3.10)

With the decomposed reward function Ri, the reward signal from the environment is

similarly decomposed as r =
∑N

i=1 ri, where each agent i receives ri at each time step.

Then the Q function may also be additively decomposed to give,

Q(s, a) = Q1(s, a) + ...+QN(s, a) =
N∑

i=1

Qi(s, a) (3.11)

where in general, the state and action available to each agent i may be further restricted.

For example, we may define Qi(si, ai) for agent i as only being able to access state and

action variables of itself and its neighbouring agents instead of the full joint state and

action space.

3.3.2 Independent Updates

The simplest form of updates is that of no coordination. This is referred to as the

independent learners approach (Claus and Boutilier, 1998). Each agent i selects their

action, ai independently and performs TD updates based on,

Qi(si, ai)← Qi(si, ai) + α[ri + γ max
a∗i∈Ai

Qi(s
′
i, a

∗
i )−Qi(si, ai)] (3.12)

where agents may be restricted to only certain state variables and we have used the

greedy policy. An immediate benefit is that action selection is highly efficient as agents

do not coordinate their actions. However, this form of local updating is sub-optimal
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for domains where agents need to coordinate their actions to achieve a common goal

(Russell and Zimdars, 2003), i.e., the sum of Qi functions, as in Equation 3.11, is not a

good estimate of Q.

3.3.3 Global Updates

The next updating method performs global TD updates and is referred to as coordinated

RL in Guestrin et al. (2002). Assuming that each agent i may only access a subset of

the state si and action ai variables, the updates are,

Qi(si, ai)← Qi(si, ai) + α[r + γmax
a∗∈A

Q(s′, a∗)−Q(s, a)] (3.13)

for the greedy policy. Note that the reward signal used is the global reward r and the

TD update is based on the global Q. Action selection can be performed using BE

or max-plus. The benefit of this method is that it does not require the reward signal

to be decomposed. However, it requires the global values of Q(s, a) to be available.

Although computing the global Q values may be achieved by message passing over a

fixed network, they will not be always available in the case where the CG consists of

disjoint sub-graphs due to dynamic communication.

3.3.4 Local Updates

In problems where the user may provide a precise agent decomposition of the reward

signal, learning can be improved as each agent will receive a more accurate share of re-

wards. Local TD updating is an intermediary between independent and global updates.

One local update equation for agent based decomposition (Kok and Vlassis, 2006, Sec-

tion 5.1) is,

Qi(si, ai)← Qi(si, ai) + α[ri + γQi(s
′
i, π(s

′
i))−Qi(si, ai)], (3.14)

where π(s) = argmax
a∈A

Q(s, a) (3.15)
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is a joint greedy policy, and we assume that agents may access subset state si, and action

ai variables. Typically these are from the neighbouring agents in the CG. Although

the updates are local, the joint action is selected globally using π via algorithms such

as BE or max-plus. For tabular functions, this form of updating can converge to an

optimal solution (Russell and Zimdars, 2003) even when each Qi function is updated

individually by agent i. This result is useful for the distributed setting where the global

Q function is the sum of local Qi functions, distributed among agents.

Kok and Vlassis (2006, Section 5.2) further details an edge based decomposition

along the edges of the CG as compared to the agent (vertex) based decomposition shown

in Equation 3.11, i.e., let E be the set of edges (i, j) in the CG,

Q(s, a) =
∑

(i,j)∈E

Qi,j(si, sj, ai, aj) (3.16)

where si, sj are the state values accessible by agent i and j respectively. They then

propose two updating schemes for this edge decomposition. Edge decomposition is

useful for tabular representation of Q functions as space requirements scale linearly in

the number of neighbours instead of exponentially for Equation 3.11. However, it is

unclear how the pairwise Qi,j functions are distributed among agents when the CG is

not fixed due to dynamic communication. Furthermore, it is possible to mitigate space

requirements of Equation 3.11 using function approximation.

Yet another form of local updating with communicated values from neighbouring

agents is that of distributed value functions (Schneider et al., 1999; Ferreira and Khosla,

2000). The global Q function is a sum of N local functions update with,

Qi(si, ai)← Qi(si, ai) + α[ri + γ

N∑

j=1

β(i, j) max
a∗j∈Aj

Qj(s
′
j, a

∗
j)−Qi(si, ai)] (3.17)

where β(i, j) is some weighting scheme that is zero if (i, j) does not exists in the current

CG and non-zero for (i, i). Note that unlike Equation 3.14, each agent’s actions, aj ,

are selected independently instead of jointly, but updates involve Qj values from other

agents. Hence this form of learning tends to be less coordinated than RL with Equation
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3.14.

3.3.5 Others

Apart from the learning update methods presented above. There are other forms of

coordinated RL. Kok et al. (2005) focused on learning the structure (topology) of the

coordination graph itself. This corresponds to learning a factoring of the Q function

by analysing which agents (vertices) should have edges between them, indicating that

they require coordination in some particular state. To do this, they store statistics of the

MDP trajectory and perform a statistical test (t-test) to compare if there is a significant

change in the Q function value when joint actions between two agents are allowed in

that state. If so, a function component involving the two agents in that state replaces the

individual function components involving each of the agents.

While many methods use CGs to represent additively decomposed value functions,

other representations have also been explored. Sallans and Hinton (2004) proposed a

centralized alternative to CGs by using a different model and a sampling method to com-

pute the optimal action. Their method uses a model called the product of experts as a

function approximator to Q. This model contains probabilistic semantics albeit without

encoding causal links (conditional probabilities) like a Bayesian network. The variables

of this model consist of the state space, action space and hidden variables. Inference is

approximated through the use of Markov chain Monte Carlo (MCMC) sampling meth-

ods like Gibbs sampling. For learning they use a SARSA method with a Boltzmann

exploration policy. To select a maximal action, any form of MCMC sampling may be

used and Boltzmann exploration ensures that the optimal action will be selected with

high probability over time. Their experiments show that RL is tractable for joint action

spaces of size 240. However there is no measure of how much additional sampling is

required if more agents are added to the problem.

The term ‘coordinated reinforcement learning’ has also been used to describe RL for

solving other types of problem formulations. One such formulation is that of a Markov

game whereby each agent explicitly models other agents. This is necessary because
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in the absence of communication, independent learning agents may not converge to

global optimality due to the non-stationary environment caused by other learning agents

(Panait and Luke, 2005, Section 3.2). A recent example of learning in Markov games

by predicting other agents’ policies is given in Zhang and Lesser (2010). Markov games

are usually adversarial. Other problem formulations include that of decision-theoretic

planning where each agent take actions that span multiple time steps to solve multiple

tasks (goals). An agent’s actions may have dependencies on another agent’s action in

the past or future. Chen et al. (2005) presented an RL approach to solving such prob-

lems where action dependencies over time are provided as constraints. Their solution

requires an offline phase to process these constraints.

3.4 Hierarchical Multi-Agent Learning

A variety of hierarchical approaches have been developed for multi-agent RL. Unlike

in single agent HRL (see Section 3.1), here, a hierarchy refers to the learning archi-

tecture, where additional decisions have to be made that affect the original decisions

(actions) made by the RL system. These additional, or higher level, decisions may have

their semantics based on different concepts. Below, we explore the methods based on

task based RL and agent organization. They are various methods that encode expert

knowledge to improve learning in problems with large joint action spaces.

3.4.1 Task Based Approach

A number of works build on the procedural task encodings from single agent HRL by

specifying a task hierarchy per agent. First, Marthi et al. (2005) presented a centralized

method for multi-agent RL by extending the ALisp language (see Section 3.1.3) with

multiple threads, one for each agent. At each time step, each agent may be executing

some higher level task action or a low level primitive action. These are selected jointly

using coordination graphs. The action value function is represented using linear func-

tion approximation. Experiments were carried out on RTS games. Although based on
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HRL, the action value function is not decomposed over tasks hence this method does

not make use of temporal abstraction. However, once tasks have been selected, agents

may be individually restricted to a subset of actions. Hence exploration may be directed

based on individual agents.

Second, Ghavamzadeh et al. (2006) presented another task based method called

Cooperative HRL that is based on the MAXQ task decomposition (see Section 3.1.2).

Similar to Marthi et al. (2005), each agent has its own task hierarchy. However, when

choosing actions and updating value functions, agents only take into account other

agents’ actions at special cooperative sub-tasks that are defined by the user. This ap-

proach assumes all state and action values are observable to every agent, i.e., it is a

centralized approach. To decentralize, additional communicate and not-communicate

sub-tasks are added to each agent’s MAXQ hierarchy. If an agent chooses to communi-

cate, it may take additional actions to send and receive information from other agents,

otherwise control and learning is individual.

Third, Proper and Tadepalli (2009) described a centralized two level system whereby

the upper level assigns tasks to agents and the bottom level carries out the learning of

the actual primitive action in the MDP. The MDP has additional states to indicate agents

are assigned a task. However, unlike the previous two methods, the tasks are not higher

level decisions learned by the system. Rather, agents are assigned tasks by finding the

maximal task assignment that maximizes the current Q function. Exhaustive search of

this nested maximization over tasks and primitive actions is prohibitive for all but the

simplest problems. Hence stochastic local search techniques are employed. Primitive

joint action selection uses max-plus while updating and value function representation

is carried out using edge based decomposition (see Section 3.3.4) in Kok and Vlassis

(2006, Section 5.2).

In the three described extensions of single agent task based learning to the multi-

agent setting, only Ghavamzadeh et al. (2006) makes use of temporal abstractions in

learning its value functions and is distributed. Both works of Marthi et al. (2005) and

Ghavamzadeh et al. (2006) may constrain individual agent’s primitive actions once tasks
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are selected. In Proper and Tadepalli (2009), the main benefit from tasks is to reduce

the number of state variables considered to only those relevant for the task each agent is

assigned to, thus the space requirements of the tabular edge decomposed Qi,j functions

are reduced.

3.4.2 Organization Based Approach

A different hierarchical concept was proposed in Zhang et al. (2009) that is inspired by

real world human organizational structure. The original agents in the multi-agent prob-

lem are worker agents that learn their policies based on interacting with neighbouring

agents. Then, additional supervisor agents are defined at a hierarchy above the worker

agents to manage them. These supervisor agents may perform high level actions that

sends suggestions to adapt (bias) the policies of a subset of worker agents and may

in turn have higher level supervisors. A communication protocol between worker and

supervisor agents was specified for a network with fixed structure. Supervisor agents

generally observe state summaries over time to make their decisions. Although in the-

ory supervisor agents may learn, hard-coded supervisor agents were used for evaluating

the approach. Further, to determine the subset of worker agents that supervisors should

be created to manage, Zhang et al. (2010) subsequently proposed a method for their

organization based approach to self-organize. This was also based on a fixed network

structure for agent communication.

3.5 Rewards for Learning

Another direction for improving the learning rate of RL is to modify the reward signal

received from the environment. Ng et al. (1999) formalized how a shaping function may

be used to additively modify the reward function of an MDP,R, without compromising

on optimality. Essentially the shaping function must be one that will give the same

value to the same states. Hence they choose to use a potential difference function for

shaping. This ensures that the net effect of entering a cycling of states from the shaping
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function is always zero. The new reward functionR′ with shaping applied is given as,

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) (3.18)

= R(s, a, s′) + γΦ(s′)− Φ(s) (3.19)

The new reward functionR′ is then used for any RL algorithm, by changing the reward

signal to r′ = r+γΦ(s′)−Φ(s). Experiments show that shaping can lead to an increase

in the learning rate albeit requiring intricate expert knowledge of the problem to craft

the shaping function F .

In some situations it may be difficult for the user of RL to define good rewards.

Where a good policy or sample trajectories is known, inverse reinforcement learning

may uncover or be used to fine-tune the reward for small MDP problems (Ng and Rus-

sell, 2000). For multi-agent problems the more immediate issue is that of credit assign-

ment – decomposing rewards among agents. This may be necessary for the distributed

case or, desirable for more fine-grained updating of value functions where each agent

updates based on rewards relevant to it. Marthi (2007) presented methods to automated

agent decomposition of rewards and further learn shaping functions for them. These

methods can reduce expert knowledge required by the user with regards to the reward

signal.

3.6 Relational Reinforcement Learning

Multi-agent RL usually contains many variables in its MDP specification. For example,

the state and action spaces are usually factored into variables pertaining to each agent.

A relevant line of works that deals with representational and generalization issues in

such problems is relational RL (RRL). An overview of RRL was given by Tadepalli

et al. (2004).

In general, RRL brings about two key benefits. The first is that of representational

simplicity. This is usually desirable in problems whereby specifying the entire joint

state and action space is difficult due to their combinatorial nature. A common example
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used to illustrate this is the blocks-world domain. In this domain, there are N labelled

blocks and the actions are to stack or unstack blocks. The goal is to stack blocks in

some order. Due to the possible permutations of stacked blocks, it is infeasible to apply

tabular learning as both the states and actions grow with the permutations. Predicates,

that are statements in first order logic (Russell et al., 1996, chap. 8), allows compact

representation of the state and action spaces over block objects. Džeroski et al. (2001)

introduced decision trees for regression using such predicates to represent the action

value functions for RRL while Kersting and De Raedt (2004) presented convergence

results for RL on a problem formulation that involves integrating MDP with logic pro-

grams. Croonenborghs et al. (2005) did a preliminary study on multiple agents in the

blocks world. Ponsen et al. (2010) further described how relational learning may be

used to learn a communication policy among multiple agents.

The second benefit is that of generalization along relational semantics. Instead of

having one weight to be learned for features based on propositional statements, the

features can be grouped together using a relational predicate and one weight learned for

this new feature. Such representations of features for solving MDPs have been explored

in Guestrin et al. (2003); Strens (2004); Asgharbeygi et al. (2006).

C1 C2 C3

C4 C5 C6

C7 C8 C9

O X

X

X O

O

X

X

X O O

XXX

O

O X

XX

O

X

O

Figure 3.6: Relational generalization for tic-tac-toe game. Left-most shows the state vari-

ables. Tic-tac-toe states that follow in sequence satisfy: lineX(C7, C5, C3),
lineX(C1, C4, C7), lineX(C4, C5, C6), and lineX(C7, C8, C9).

For example, in the tic-tac-toe game described in Asgharbeygi et al. (2006), suppose

the state has 9 cells (relational objects), i.e., C1, ...C9 (see Figure 3.6). The predicate

for a line of crosses may be specified as,

lineX(ci, cj, ck) := X = symbol(ci) = symbol(cj) = symbol(ck)

∧[Column(ci, cj, ck) ∨Row(ci, cj, ck)

∨Diagonal(ci, cj, ck)]
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where ci, cj, ck are variables of any 3 of the 9 cell objects, symbol is a function that

returns either ‘X’ or ‘O’ for a cell, and predicates Column,Row,Diagonal indicate

that the 3 cells form a valid line. A binding of objects to the variables in lineX is

called a grounding, that can be either true or false, e.g., lineX(C1, C2, C3) will be true

if C1, C2, C3 are marked with ‘X’ and Row(C1, C2, C3) is true. In a propositional

feature representation, each possible binding is a binary basis function with a corre-

sponding weight to be learned. However, in relational learning, these weights can be

combined to give the state value function,

V (s) =
∑

P

wP · |IP (s)| (3.20)

where P is a predicate, e.g. lineX , IP (s) is the set of bindings that give true ground-

ings for P , and wP is the weight of relational feature |IP (s)|, i.e., the number of true

groundings.

In other words, each relational feature is the count of true groundings of predicate P

in state s. For lineX , this will mean the same weight wlineX will be updated regardless

of the line being a column, row or diagonal. This is illustrated in Figure 3.6 where

each of the example states shown will result in an update1 for wlineX because each state

provides one grounding for lineX .

These ideas are closely related to the idea of sharing weights of feature templates.

For example, Silver et al. (2007) illustrated in the game of Go, shape features (i.e. pat-

terns of white and black stones) where the weights are generalized across stone colours

and translations of these shapes around the game board. We intend to use relational

features to further generalize over agents and their actions in multi-agent problems.

1We assume there is a dummy terminal state after these states.
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Chapter 4

Coordination Guided Reinforcement

Learning

This chapter proposes to guide reinforcement learning (RL) with expert coordination

knowledge for multi-agent problems managed by a central controller. The aim is to

use expert coordination knowledge to restrict the joint action space and to direct ex-

ploration towards more promising states, thereby improving the learning rate. Such

coordination knowledge is modelled as a set of constraints. We present a two level RL

system that utilizes these constraints for online applications. This declarative approach

towards specifying coordination in multi-agent learning allows knowledge sharing be-

tween constraints and features for function approximation. Results on different config-

urations of a soccer game and a tactical real-time strategy (RTS) game domains show

that coordination constraints improves the online learning rate compared to using only

unary constraints. The two level RL system also outperforms existing single-level ap-

proach that utilizes joint action selection via coordination graphs. Part of this work has

been published in Lau et al. (2012).

4.1 Motivation

Learning to make sequential decisions for multiple collaborating agents is a difficult

problem in general. This is especially so when agents require coordination to achieve
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(a) Single agent (b) Five agents

Figure 4.1: The depth and width problems illustrated by single agent and multi-agent trajecto-

ries in the MDP respectively. Circles are states, grey circles are initial and terminal

states. Solid squares are (joint) actions. Solid lines indicate the trajectory from top

to bottom, dashed lines indicate possible actions or state transitions.

a common goal. The space of their action combinations is exponential in the number

of agents, quickly rendering RL with naive exploration impractical. For online RL to

be viable, we need to optimize the number of interactions with the environment. This

motivates us to develop a solution to improve the learning rate of good policies in multi-

agent RL (MARL).

Existing works in single agent task based RL makes use of the human concept of

tasks as an abstraction to decompose complex problems into simpler ones to give a task

hierarchy (Sutton et al., 1999; Dietterich, 2000; Andre and Russell, 2002) as described

in Section 3.1 page 25. The learning systems learns to choose between tasks. When

tasks are selected, the actions of an agent may be constrained to those relevant for the

task. In addition, temporal abstraction allows rewards to be propagated further back in

time, improving learning in problems where the depth of exploration required is lengthy.

For multi-agent problems, each agent has a set of actions whose Cartesian product

forms the joint action space. This space is exponential in the number of agents and

therefore, RL with naive exploration results in slow learning. This is because the large

space results in a huge branching factor in the tree of transitions experienced by the
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P1

P2 P3

(a) Bad Pass

P1

P2 P3

(b) Good Pass

Figure 4.2: Example of coordination-based knowledge in simplified soccer. Figures show pos-

sible actions in a grid world state with white and black teams. Triangles are players

that score in the direction they point to. The ball is the grey circle and dashed lines

represent possible actions. (a) is a bad pass example while (b) is a good pass.

agents during exploration. Hence the more immediate problem is one of width instead

of depth.

To illustrate, consider Figure 4.1 that shows conceptually the depth and width issues.

In the single agent MDP shown in Figure 4.1a, the agent has two possible actions to

choose from in every state and receives a reward in the terminal state at the bottom.

Task based RL may propagate the rewards to earlier states faster by a decomposition of

tasks into subtasks and updating the value function back when a (sub)task is initiated.

On the other hand, if there are five of these agents as shown in Figure 4.1b, there are

25 joint actions to choose from, resulting in a large branching factor. To address this

issue of width, multi-agent extensions to task based methods may use tasks to restrict

each individual agent’s available actions (Marthi et al., 2005; Ghavamzadeh et al., 2006;

Proper and Tadepalli, 2009). However, as we noted earlier in Example 1.1 page 6, there

exists coordination knowledge that can further constrain joint actions of agents but are

difficult to incorporate in task based methods. We describe another example from the

soccer game domain below.

Example 4.1 (Soccer coordination knowledge). Consider Figure 4.2 which depicts a

state in a simplified soccer game and player P1 has the ball. Let N , S, E, W , be the

four compass directions. P1’s action set is A1 = {S,E, pass2, pass3, shoot} where
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pass2 and pass3 denote passing the ball to players P2 and P3 respectively, and shoot

denotes the action to kick the ball into the goal. Players P2 and P3 have the action set

A2 = {N,S,E,W} and A3 = {N,W} respectively. We denote a joint action as 〈a1,

a2, a3〉 ∈ A1 × A2 × A3. The size of this joint action space is 5 × 4 × 2 = 40. Notice

that many actions from this space are unlikely to lead to a winning state. For example

in Figure 4.2a, P1 certainly should not pass the ball to P2 if P2 is moving adjacent to an

opponent as the ball can easily be intercepted. With this simple coordination strategy,

the set of disallowed joint actions is {pass2} ×{S,E,W} × A3. Similarly, P1 should

not pass the ball to P3 and the set of disallowed joint actions is {pass3} × A2 × A3.

Immediately, the size of the joint action space is reduced by 35%.

The example of a bad pass in soccer described above does not fit well within indi-

vidual agent task definitions. In the multi-agent extensions to task based RL, using this

coordination knowledge to reduce agents’ actions will not be possible within a single

agent task. Alternatively, we might define joint-tasks on agents, i.e., instead of a task

hierarchy for each agent we may have a task hierarchy defined on a pair of agents. For

example, in the case of soccer, we may have a task involving players P1 and P2 such

that bad pass in an offensive sub-task that can constrain the joint action space, A1×A2.

However, we will not be able to do the same for pairs of players (P1, P3) or (P2, P3)

as the task hierarchies will overlap. Furthermore, defining a joint-task hierarchy for all

three players requires the user to encode procedural knowledge for all three. As the joint

actions to consider increase exponentially with the number of agents such knowledge

may become infeasible for the user to specify in detail. Hence learning may become

limited to coarse-grained high level strategic decisions for the entire team of agents

instead of fine-grained low level actions.

These considerations motivate us to develop learning method that allows fine-grained

control of agents while incorporating coordination knowledge such as bad pass into the

learning process to better direct exploration.
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4.2 Aims & Approach

The expert coordination knowledge described in Example 4.1 and Example 1.1 page 6

are referred to as coordination constraints (CCs). CCs are hard constraints involving

the state and action variables of multiple agents. We consider unary constraints like

those used in task based methods on individual agents as special cases of CCs.

The main aim of this chapter is to handle the research challenges of managing explo-

ration for multi-agent problems while being mindful of model complexity and knowl-

edge representation (see Section 1.2 page 4). For a start, we consider a centralized

approach to the problem and ignore the challenge of distribution.

We propose a two level RL system where the top level learns to select the appropri-

ate CCs to constrain the bottom level’s learning of joint actions. This is because not all

CCs are useful in every state. Deciding which CCs to employ in different states is part

of the learning process, enabling the RL system to effectively guide itself. An example,

of the benefits of dynamically employing CCs for the soccer game follows.

Example 4.2 (Soccer dynamic coordination). In Example 4.1, the CC that P1 should

not pass the ball to P2 is appropriate since there is an opponent next to P2. However,

this CC may not be suitable and should not selected if P2 is standing directly in front

of the goal as it may be better to pass to P2 so that P2 can try to score as illustrated in

Figure 4.3.

The proposed CCs are useful in addition to existing methods of modelling coordina-

P1

P2

P3

Figure 4.3: State in soccer where a “bad pass” should be allowed.
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tion with a communication structure such as a coordination graph (CG) for joint action

selection (Section 3.2 page 31). Furthermore, such a two level RL system is different

from RL for constrained MDPs (Geibel and Wysotzki, 2005; Wu and Durfee, 2005;

Geibel, 2006) as the two level system dynamically learns to use different constraints

to improve learning, instead of using static constraints to prevent failure or entering of

risky error states. Moreover, there is no additional cost signal to be minimized.

Using CCs for online RL has two challenges. First, the system must be able to

efficiently learn to activate the various CCs from its interaction with the environment.

However, different combinations of activated CCs lead to large number of bottom level

value functions to be learned. We address this by formulating learning equations that

exploit similarities among the bottom level components of our system. Second, choos-

ing CCs at the top level introduces an exponential top level joint action space to explore.

We overcome this by identifying those CCs which can never be violated in a given state.

Once identified, these CCs are deactivated, reducing the top level action space for ex-

ploration.

Our model-free approach frees the user from designing models for large MDPs with

many variables. A major benefit of this system is that existing predicate definitions of

features for function approximation can be reused to specify CCs. This sharing of

predicate components between CCs and features aids the user in encoding knowledge

for the top level of the system.

Similar to the origins of task based RL discussed in Section 3.1.4 page 30, this

chapter proposes and verifies a new way to incorporate expert coordination knowledge

to improve multi-agent RL. Subsequent future work may use it as a basis to further

reduce reliance on the expert. We describe the two level learning system next.

4.3 Two Level Learning System

The problem formulation we use is that of a factored MDP. This is essentially the same

as the basic MDP formulation described in Section 2.1 page 13. Except that with N
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Top Level

Environment

Top Action

(Coordination Constraints)

Primitive Action

Sub-MDP b Sub-MDP 2K…
Bottom Level

selects
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selects

taken in

State & 

Reward

produces

observes

Learning 

System

Sub-MDP 1 …

Figure 4.4: Centralized two level learning system

agents, the joint action space is factored as A = A1 × ...× AN , where Ai is the action

variable that corresponds to the i-th agent. S may also be factored into multiple vari-

ables in a similar way. The set of available actions at state s is written as A(s). We will

make use of the original MDP’s reward signal. Hence the user of the system does not

need to decompose the reward function among agents.

Now, we present the system from a centralized viewpoint. Figure 4.4 depicts the

proposed two level learning system. The top level determines which CCs are relevant

to the current state. Its action space A0 consists of the activation or deactivation of

each CC. With K constraints, the size ofA0 is 2K . However, in practice, the number of

activated CCs is typically small. The activated CC restricts the bottom level to a sub-

MDP, b ∈ [1, 2K ], as shown in Figure 4.4. The joint action space of sub-MDP b, denoted

by Ab, is a subset of the original joint action space A. This allows the bottom level to

learn the primitive joint actions quickly. After the bottom level has taken an action in the

environment, execution returns to the top level. Hence the system constantly oscillates

between the top and bottom levels while operating in the environment.

The learning system’s interaction with the environment is summarized in Algorithm

4.1. The system interacts externally with the environment through Line 6. The selection

of top level action and the activations of the sub-MDP through CCs are performed
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Algorithm 4.1 Centralized two level learning overview

1: s← s0 # observe initial state s0
2: while ¬terminal(s) do

3: Select top level action b ∈ A0(s) # at top level

4: Activate CCs in b # activate sub-MDP b
5: Select primitive action a within Ab(s) # at bottom level

6: Take action a, observe reward r and next state s′

7: Perform learning updates using r, s′

8: s← s′

9: end while

internally by the RL system.

4.3.1 Augmented Markov Decision Process

To model the system’s two level learning, we augment the original factored MDP’s state

space with an index b ∈ [0, 2K ] that keeps track of the position within the hierarchy. The

top level corresponds to b = 0, and b ∈ [1, 2K ] refers to one of the sub-MDPs. Then,

given a factored MDP 〈S,A,R,P〉, the augmented MDP with the two level hierarchy

is 〈S ′,A′,R′,P ′〉 where,

• S ′ = [0, 2K ] × S , the state includes the index to the top level or some bottom

level sub-MDP whose primitive actions in s are constrained. 〈b, s〉 ∈ S ′ is an

augmented state.

• A′ = A0 ∪ A, the joint actions space now also includes top level (de)activation

actions. Let an action in A′ be ã.

• R′, the reward model is derived fromR such that the reward is zero for steps that

transit from top level to bottom level i.e.,

R′(〈b, s〉, ã, 〈b′, s′〉) =







R(s, ã, s′) if b ∈ [1, 2K ] ∧ b′ = 0

0 otherwise

(4.1)

Note that ã ∈ A is a primitive action when b ∈ [1, 2K ].

• P ′ is the transition probability model such that the top to bottom level transi-

tions are deterministic, otherwise transitions in the original state follow that of
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the original MDP’s P i.e.,

P ′(〈b′, s′〉|〈b, s〉, ã) =







P(s′|s, ã) if b ∈ [1, 2K ] ∧ b′ = 0 where ã ∈ A

1 if b = 0 ∧ b′ = ã where ã ∈ A0

0 otherwise

(4.2)

Given the above definition, the sequence of transitions in the augmented MDP with

respect to the original is,

〈0, s0〉, b0, r
′, 〈b0, s0〉

︸ ︷︷ ︸

s0

, a0, r0, 〈0, s1〉, ...
︸ ︷︷ ︸

s1,...,

, 〈0, st〉, bt, r
′, 〈bt, st〉

︸ ︷︷ ︸

st

, at, rt, ..., 〈0, s∅〉
︸ ︷︷ ︸

s∅

(4.3)

where r′ = 0 for all transitions, t reflects the time steps in the original MDP, and rt

is the original MDP’s reward signal and 〈0, s∅〉 is the terminal state. The under braces

show the steps in the augmented MDP from the top level to the bottom that take place

within the same state as the original MDP. Figure 4.5 depicts the two level learning

system’s interactions with the environment from two perspectives: (a) the augmented

MDP as a new environment, and (b) the original environment. In the following section

we define the policies and value functions of the augmented MDP for learning.

4.3.2 Policies & Value Functions

Here, we define policies and value functions for the augmented MDP and simplify them

for the learning equations in the following section. We also show that learning in the

augmented MDP solves the original MDP problem.

Quality of Policies

The solution to the augmented MDP is the two level policy ψ′ : S ′ 7→ A′. This can be

expressed as a set of sub-policies, {ψ(0, s), ψ(1, s), ...ψ(2K , s)}, written as two main
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Augmented MDP

Two Level Learning System

b
〈b, s〉, 0

a

〈0, s〉, r

1

2

3

4
Top Level

Original MDP

(a)

Two Level Learning System

b
〈b, s〉, 0

a

〈0, s〉, r

1

2

3

4
Top Level

Original MDP

Environment

Agent

(b)

Figure 4.5: Interaction between two level learning system and environment. Numbers in circles

shows the sequence of interactions. Solid arrows are deterministic interactions,

dashed-dotted arrows are stochastic. (a) Boundary of augmented MDP (environ-

ment) and the two level learning system (agent) from the agent perspective. (b)

Boundary of the original environment defined by the original MDP and the agent

(system) acting in it. Note that the learning system always receives zero reward

from the top level of the system.

parts, one for the top and another for the bottom level, i.e,

ψ′(〈b, s〉) =







ψ(0, s) ∈ A0(s) if b = 0

ψ(b, s) ∈ Ab(s) otherwise, i.e., b ∈ [1, 2K ]

(4.4)

We assume ∀b ∈ A0, Ab 6= ∅, i.e., there is always at least one action that can be selected

after activating the CCs indicated by b. We leave it to the user to design CCs such

that the problem is not over-constrained in any state. Now that we have defined the

augmented MDP for two level learning, we proceed to define its value functions.

We define the state value function of the augmented MDP with ψ′ as,

V ψ′

(〈b, s〉) =
∑

〈b′,s′〉∈S′

P ′(〈b′, s′〉|〈b, s〉, ψ(b, s))[R′(〈b, s〉, ψ(b, s), 〈b′, s′〉)

+γ′V ψ′

(〈b′, s′〉)] (4.5)

where we use the simplified notation for expectation over the policy (see Equation 2.7

page 16), γ′ = 1 if the transition is from top level to bottom and γ′ = γ, the original

MDP’s discount factor, if transiting between original states. The γ′ indicates that we

58



4.3. TWO LEVEL LEARNING SYSTEM

remove discounting for the top level case when b = 0 and only discount at each time

step corresponding to that of the original MDP ’s state transitions. Because P ′ is de-

terministic when transiting between top and bottom levels and R′ is zero during those

transitions, we have for the top level where b = 0,

V ψ′

(〈0, s〉) =
∑

〈b′,s′〉∈S′

P ′(〈b′, s′〉|〈0, s〉, ψ(0, s))[R′(〈0, s〉, ψ(0, s), 〈b′, s′〉)

+ γ′V ψ′

(〈b′, s′〉)] (4.6)

= P ′(〈ψ(0, s), s〉|〈0, s〉, ψ(0, s))[R′(〈0, s〉, ψ(0, s), 〈ψ(0, s), s〉)

+ γ′V ψ′

(〈ψ(0, s), s〉)] (4.7)

= 1 · [0 + 1 · V ψ′

(〈ψ(0, s), s〉)] (4.8)

= V ψ′

(〈ψ(0, s), s〉). (4.9)

and, for the bottom level where b > 0, based on Equations 4.1 and 4.2, we have,

V ψ′

(〈b, s〉) =
∑

〈0,s′〉∈S′

P ′(〈0, s′〉|〈b, s〉, ψ(b, s))[R′(〈b, s〉, ψ(b, s), 〈0, s′〉)

+ γ′V ψ′

(〈0, s′〉)] (4.10)

=
∑

s′∈S

P(s′|s, ψ(b, s))[R(〈b, s〉, ψ(b, s), 〈0, s′〉) + γV ψ′

(〈0, s′〉)]. (4.11)

Then, we simplify the augmented state value function in Equation 4.5 using Equations

4.9 and 4.11 as,

V ψ′

(〈b, s〉) =







V ψ′

(〈ψ(0, s), s〉) if b = 0

∑

s′ P(s
′|s, ψ(b, s))[R(s, ψ(b, s), s′) + γV ψ′

(〈0, s′〉)] otherwise

(4.12)

Note that the original MDP’s discount factor, transition and reward model are explicitly

stated.

Having defined the state value function, we first explain stochastic policies before
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presenting the theoretical results relating policies to the original MDP. For stochastic

policies, actions are selected for each state with some probability. Deterministic policies

are a special case of stochastic policies where all probability mass (unity) is assigned to

only one value. A stochastic policy for an MDP is written as π: S × A 7→ [0, 1], i.e.,

π(s, a) = P (a|s) the probability of choosing action a given current state s. The Bell-

man equation for the state value function (see Equation 2.3 page 15) can be rewritten to

take expectation over the stochastic policy, i.e.,

V π(s) = Eπ{Rt|st = s} (4.13)

=
∑

a

π(s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γV π(s′)] (4.14)

In the case of a two level policy ψ′ written in parts in Equation 4.4, the stochastic

versions are,

ψ : {0} × S ×A0 7→ [0, 1], ψ(0, s, b) = P (b|s) (4.15)

ψ : [1, K]× S ×A 7→ [0, 1], ψ(b, s, a) = P (a|s, b) (4.16)

Note that in Equation 4.16 actions can be constrained by b in certain states by having

the P (a|s, b) = 0 entries in the probability table (see Equation 4.67 for an example).

We now present the first lemma.

Lemma 4.1. Given any two level policy ψ′ for the augmented MDP. Let a control policy

for the original MDP be, π(s, a) :=
∑

b ψ(0, s, b)ψ(b, s, a), where ψ(0, ·) and ψ(b, ·)

are top and bottom policies of ψ′ respectively. Then, for all original MDP states, s,

V π(s) = V ψ′

(〈0, s〉) .

Proof. Suppose we are given the augmented MDP stochastic policy ψ′. We need to

show that the evaluated state values V ψ′

(〈0, s〉) in the augmented MDP will be equal

to V π(s) when the two level system executing ψ′ is evaluated as a black-box control

policy, π, in the original MDP.

We begin by showing that the state value function, V ψ′

, is the expected return from
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a sequence of rewards exclusively generated by the original MDP’s reward model, i.e.,

V ψ′

(〈0, s〉) = Eψ′{r′ + rt + r′ + γrt+1 + ...+ r′ + γt
′

rt+t′ + ... | st = s} (4.17)

= Eψ′{rt + γrt+1 + ...+ γt
′

rt+t′ + ... | st = s} , as r′ = 0 (4.18)

= Eψ′{
∞∑

t′=0

γt
′

rt+t′ | st = s} (4.19)

= Eψ′{Rt | st = s} (4.20)

where Rt in Equation 4.20 only consists of the rewards from the original MDP as illus-

trated in Equation 4.3. This result is straightforward as the augmented MDP does not

modify the original reward signal.

Next we show that the probabilities involved in Equation 4.20 that govern original

state transitions from s to s′ are the same as that given by the transition probability in

the original MDP. We rewrite Equation 4.5 after it has been simplified by Equation 4.12

for the case b = 0 for stochastic policies as,

V ψ′

(〈0, s〉) =
∑

b

ψ(0, s, b)V (〈b, s〉) (4.21)

=
∑

b

ψ(0, s, b)
∑

a

ψ(b, s, a)
∑

s′

P(s′|s, a)[R(s, a, s′)

+ γV ψ′

(〈0, s′〉)] (4.22)

=
∑

a

Control policy π in
original MDP using ψ′.

︷ ︸︸ ︷
∑

b

ψ(0, s, b)ψ(b, s, a)
∑

s′

P(s′|s, a)[R(s, a, s′)

+ γEψ′{Rt | st = s′}] (4.23)

as π(s, a) :=
∑

b

ψ(0, s, b)ψ(b, s, a), by relabelling,

=
∑

a

π(s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γEπ{Rt | st = s′}] (4.24)

=
∑

a

π(s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γV π(s′)] (4.25)

= V π(s). (4.26)
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Note that at Equation 4.23, the term
∑

b ψ(0, s, b)ψ(b, s, a) is the control policy derived

by the two level system executing ψ′, which we relabel as π. This indicates that the

probability of the two level system control policy eventually choosing a in s is the

expectation over the choice of top action, i.e., CC activations. No other probabilities

are present since transiting from the top level to the bottom level is deterministic by

definition.

The probabilities used for the expectation are governed by the same probabilities in

the original MDP and the augmented MDP does not introduce any new terminal states.

These imply that in the episodic MDP case, a two level policy that terminates in the

augmented MDP must terminate in the original MDP.

The consequence of Lemma 4.1 is that evaluating the control policy π derived from

the two level system executing ψ′ in the original MDP results in the same state values

as that of ψ′ being evaluated in the augmented MDP. This implies that the quality of

the policy for an augmented MDP remains the same when the policy is applied to the

original MDP using the two level system.

Next, we show that the two level policy does not limit the proposed system’s ability

to represent equivalent policies for the original MDP. This indicates that the two level

policy for the augmented MDP has enough flexibility to represent any original MDP

solution regardless of the CCs designed for the system.

Lemma 4.2. Given any policy π for the original MDP, and given any augmented MDP

based on the original MDP, there exists a two level policy, ψ′ for the augmented MDP,

such that V ψ′

(〈0, s〉) = V π(s).

Proof. As the transition probabilities and reward model of augmented MDPs are fixed

with respect to the original MDP by definition, the only difference between augmented

MDPs is the set of CCs provided by the user that constitutes the top level action space.

Let b∅ be the top level action where all CCs are deactivated. The top action b∅ exists in

any augmented MDP by definition. The simplest representation of a two level policy ψ′

given π is one where the top part of ψ′ deterministically deactivates all CCs in all states,
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i.e.,

ψ(0, s, b) =







1 if b = b∅

0 otherwise

(4.27)

Next, we define the bottom policy for the sub-MDP with respect to b∅, that has the same

primitive joint action space as the original MDP, to be π, i.e.,

ψ(b∅, s, a) = π(s, a). (4.28)

Since the top policy is deterministic, the probability values of ψ(b, s, a) when b 6= b∅ do

not matter. That is, executing the two level system with ψ′ in the original MDP gives

the control policy,

∑

b

ψ(0, s, b)ψ(b, s, a) = ψ(0, s, b∅)ψ(b∅, s, a) (4.29)

= 1 · π(s, a) (4.30)

= π(s, a) (4.31)

Next, the state value function of π′ can be expanded as follows,

V π(s) =
∑

a

π(s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γV π(s′)] (4.32)

=
∑

a

π(s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γEπ{Rt | st = s′}] (4.33)

=
∑

a

ψ(0, s, b∅)ψ(b∅, s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γEψ′{Rt | st = s′}]

(4.34)

=

Top to bottom transition is
deterministic with zero reward.

︷ ︸︸ ︷

ψ(0, s, b∅)
∑

a

ψ(b∅, s, a)
∑

s′

P(s′|s, a)[R(s, a, s′) + γEψ′{Rt | st = s′}]

(4.35)

= ψ(0, s, b∅)V
ψ′

(〈b∅, s〉) (4.36)
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=
∑

b

ψ(0, s, b)V ψ′

(〈b, s〉) , note that ψ(0, s, b) = 0 for b 6= b∅. (4.37)

= V ψ′

(〈0, s〉) (4.38)

Note that at Equation 4.35 we can insert and rewrite the equation using the augmented

MDP’s transition probabilities and reward for augmented states transiting from top level

to bottom level like in Equation 4.5. However we omit them as those transitions are

completely deterministic and their reward is always zero as shown in Equation 4.9.

Hence we have proven that at least one two level policy exists that can represent π for

any augmented MDP.

Lemma 4.2 implies that given π in the original MDP, we can find, or create from

π, a two level policy ψ′ that is of equivalent quality when evaluated in the augmented

MDP. We have proven Lemma 4.2 by using the extreme case where all CCs are deacti-

vated. In practice, it is usually the case that more than one such two level policy exists.

The intuition behind this is observed when representing π(s, a) using the expectation,

∑

b ψ(0, s, b)ψ(b, s, a). This results in an increase in parameterization of π that does

not reduce the flexibility in representing the probabilities. Hence there will not be a

case whereby some primitive actions are always removed from the primitive joint ac-

tion space. However, note that the same cannot be said if static constraints are added

to the augmented MDP that are not placed on the original MDP. Next, we present the

theorem on optimality based on Lemmas 4.1 and 4.2.

Theorem 4.3. Given an optimal policy ψ′∗ for the augmented MDP, the derived control

policy π∗ for the original MDP is optimal for the original MDP.

Proof. We need to prove that ψ′∗ being optimal implies that we can execute the two level

system with ψ′∗ to give the control policy π∗ that is optimal in the original MDP. From

Lemma 4.1, we have V π∗

(·) = V ψ′∗

(〈0, ·〉). Next, we need to show that V π∗

= V ∗, i.e.,

π∗ is the optimal solution to the original MDP. We prove this by contradiction. Suppose

that there exists π∗∗ that performs better than π∗, i.e., V π∗∗

> V π∗

. Then by Lemma 4.2,

there exists ψ′∗∗ such that V ψ′∗∗

(〈0, ·〉) = V π∗∗

(·) and therefore V ψ′∗∗

> V ψ′∗

. However

64



4.3. TWO LEVEL LEARNING SYSTEM

this contradicts the optimality of ψ′∗. Hence π∗ must be optimal.

From Theorem 4.3, we can learn optimal solutions in the augmented MDP to find

optimal solutions in the original MDP. The additional top level and CCs do not prevent

the learning system from discovering optimal primitive action sequences as in general

the system can learn to deactivate CCs that lead to poor returns. This allows the sys-

tem flexibility in figuring out good policies. In practice, we hope that a rational user

designs useful CCs. Hence CCs should bias the bottom level’s availability of primitive

actions towards faster discovery of promising actions. Next, we describe the action

value functions required for model-free learning.

Simplifying Action Value Functions

From here on, we will be dealing with the two level policy, ψ′. Therefore, to reduce clut-

ter we drop the superscript ψ′ when writing value functions that are obviously related

to ψ′. The action value function Q for the augmented MDP is

Q(〈b, s〉, ã) =
∑

〈b′,s′〉∈S′

P ′(〈b′, s′〉|〈b, s〉, ã)[R′(〈b, s〉, ã, 〈b′, s′〉) + V (〈b′, s′〉)] (4.39)

where we have omitted discounting. Like V , we will only discount when the primitive

state s transits to s′. We simplify Q by writing it in two parts, first ∀b ∈ [1, 2K ],

Q(〈0, s〉, b) =
∑

〈b′,s′〉∈S′

P ′(〈b′, s′〉|〈0, s〉, b)[R′(〈0, s〉, b, 〈b′, s′〉) + V (〈b′, s′〉)] (4.40)

= P ′(〈b, s〉|〈0, s〉, b)[R′(〈0, s〉, b, 〈b, s〉) + V (〈b, s〉)] (4.41)

= 1 · [0 + V (〈b, s〉)] (4.42)

= V (〈b, s〉) , substituting Equation 4.12, (4.43)

=
∑

s′∈S

Pb(s
′|s, ψ(b, s))[R(s, ψ(b, s), s′) + γV (〈0, s′〉)] (4.44)

=
∑

s′∈S

Pb(s
′|s, ψ(b, s))[R(s, ψ(b, s), s′) + γQ(〈0, s′〉, ψ(0, s′))], (4.45)
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note that at Equation 4.43, V (〈b, s〉) = Q(〈b, s〉, ψ(b, s)). We could have stopped at

Equation 4.43, however we have further expanded it to Equation 4.45, as we wish to

derive update equations for it based on the reward signal from the original MDP. The

variable b in Equation 4.45 represents a top level action in A0 and also a sub-MDP

with a constrained action space. We subscript P with b to indicate primitive actions

that are disallowed based on b. Equation 4.45 expresses the expected reward of taking

a top level action b and following ψ(b, ·) for one step before returning to the top and

following ψ(0, ·) thereafter.

Then, ∀b ∈ [1, 2K ], where a ∈ Ab(s),

Q(〈b, s〉, a) =
∑

〈b′,s′〉∈S′

P ′(〈b′, s′〉|〈b, s〉, a)[R′(〈b, s〉, a, 〈b′, s′〉) + V (〈b′, s′〉)] (4.46)

=
∑

s′∈S

P ′(〈0, s′〉|〈b, s〉, a)[R′(〈b, s〉, a, 〈0, s′〉) + V (〈0, s′〉)] (4.47)

=
∑

s′∈S

Pb(s
′|s, a)[R(s, a, s′) + γV (〈0, s′〉)] (4.48)

=
∑

s′∈S

Pb(s
′|s, a)[R(s, a, s′) + γQ(〈0, s′〉, ψ(0, s′))]. (4.49)

Equation 4.49 expresses the expected reward at the bottom level that returns to the top

level immediately after one step and following ψ(0, ·) thereafter.

Notice that for the function, Q(〈b, s〉, a), its domain is the cross product of a large

space of size 2K for b and the constrained joint action space Ab. We can represent

this using one Q(〈·, s〉, a) function for each of the 2K values of b. This corresponds to

having one function per sub-MDP, where updating these functions requires exponential

space and time. However we observe that, although Pi and Pj for two sub-MDPs have

different domains as their actions are from Ai and Aj respectively, their probabilities

are contained in the original MDP’s P . This is because the transition probability is

a conditional probability where values are normalized over the state space but not the

action space. As a result, the values Pb(s
′|s, a) where a 6∈ Ab(s) are undefined. There-

fore, the probability tables of Pi and Pj are sub-tables of P that do not contain the

values of a not in Ai and Aj respectively.

66



4.3. TWO LEVEL LEARNING SYSTEM

Consequently, given 2K sub-MDPs, ∀s ∈ S, i, j ∈ [1, 2K ], a ∈ Ai(s) ∩ Aj(s), we

have

Q(〈i, s〉, a) = Q(〈j, s〉, a) (4.50)

that indicates the various sub-MDP functions are the same for their intersected domains.

This leads to a single bottom level function definition: ∀b ∈ [1, 2K ], a ∈ Ab(s),

U(s, a) = Q(〈b, s〉, a) (4.51)

that is independent of b. Incidentally, U is similar to the action value function for the

original MDP but constrained to the joint actions in Ab(s) by the two level policy ψ′.

Now, we redefine the top action value function as,

W (s, b) = Q(〈0, s〉, b) (4.52)

= V (〈b, s〉) (4.53)

= Q(〈b, s〉, ψ(b, s)) (4.54)

= U(s, ψ(b, s)). (4.55)

Equation 4.55 indicates that the top level value function is an expectation of the bottom

function U with respect to the primitive action space. Finally, the Bellman equations

for W and U in terms of themselves are,

W (s, b) =
∑

s′∈S

P(s′|s, ψ(b, s))[R(s, ψ(b, s), s′) + γW (s′, ψ(0, s′))], (4.56)

U(s, a) =
∑

s′∈S

P(s′|s, a)[R(s, a, s′) + γW (s′, ψ(0, s′))]. (4.57)

With the above equations we can select a maximizing primitive action in s by separately

computing,

ψ(0, s) = argmax
b∈A0(s)

W (s, b), (4.58)
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followed by

ψ(b, s) = argmax
a∈Ab(s)

U(s, a). (4.59)

Using the definitions of W and U , we develop the update equations for RL in the next

section.

4.3.3 Update Equations

We use linear function approximation to learn the value functionsW and U as described

in Section 2.4 page 21. This employs a linear combination of m number of features, fp,

with weights, wp, to be learned. In other words, given a function F (s, a), we want to

find ~w = 〈w1, ..., wm〉 such that,

F (s, a) = ~w · ~fs,a, (4.60)

is a dot product where ~fs,a = 〈f1(s, a),f2(s, a), · · · ,fm(s, a)〉.

To obtain ~w for each optimal value function, we perform on-policy temporal differ-

ence (TD) updates using: the two level policy ψ′ = {ψ(b, ·) | b ∈ [0, 2K ]} where each

ψ(b, ·) is a GLIE policy (Dietterich, 2000), and online samples of the form

〈

Used to update W
︷ ︸︸ ︷

〈0, s〉, b, 〈b, s〉, a, r, 〈0, s′〉, b′
︸ ︷︷ ︸

Used to update U

〉 (4.61)

where b′ = ψ(0, s′). The first two entries in the sample denote that the top level is in

the augmented state 〈0, s〉 and it chooses the action ψ(0, s) = b ∈ A0(s). The next

two entries in the sample indicate the state 〈b, s〉 of the bottom level and the primitive

action ψ(b, s) = a ∈ Ab(s) taken by it. The final two entries indicate that both levels

observe reward r and go to next state s′. Note that when the bottom level policy chooses

an exploratory action, i.e., ψ(b, s), it does so by choosing a random action within the

constrained joint action space Ab(s) as specified by the top level action b.
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Let W and U be approximated as

W (s, b) ≈ ~wW · ~fWs,b, (4.62)

U(s, a) ≈ ~wU · ~fUs,a, (4.63)

and α be the step size parameter that decreases over time. Then, the weights ~wW and

~wU are updated as follows:

~wW ← ~wW + α[r + γW (s′, b′)−W (s, b)] ~fWs,b (4.64)

~wU ← ~wU + α[r + γW (s′, b′)− U(s, a)] ~fUs,a. (4.65)

The values involved in these updates are illustrated by the braces in Equation 4.61.

The update Equations 4.64 and 4.65 correspond to the Bellman Equations 4.56 and

4.57 respectively. For both update equations, we are updating between two consecutive

states in the original environment. Therefore, for Equation 4.56 we look ahead an extra

(pseudo) step in the augmented MDP to update the estimate of W with the original

reward signal r.

To explain how the updating equations guide exploration, we first rewrite the top

and bottom sub-policies of ψ′ as probabilities for ǫ-greedy policies. The probability of

selecting a top level action b is

ψ(0, s, b) =







1− ǫ+ ǫ
|A0|

if b = argmaxb′∈A0
W (s, b′)

ǫ
|A0|

otherwise

, (4.66)

and similarly for the primitive action a given b,

ψ(b, s, a) =







1− ǫ+ ǫ
|Ab(s)|

if a = a∗

ǫ
|Ab(s)|

if a ∈ Ab(s)− {a
∗}

0 otherwise, i.e., a 6∈ Ab(s)

(4.67)
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where a∗ = argmaxa′∈Ab(s)
U(s, a′). In general, the ǫ parameters used for the top and

bottom sub-policies need not be the same. Recall that the probability, π(s, a) ∈ [0, 1],

of selecting a primitive action a using the two level policy in s is the expectation,

π(s, a) =
∑

b∈A0

ψ(0, s, b)ψ(b, s, a). (4.68)

The probabilities in Equations 4.66 and 4.67 may be specified using other forms of

GLIE policies such as those used for Boltzmann exploration. But, note that for the

bottom policy in Equation 4.67 the probability of selecting actions outside of the current

sub-MDP b (i.e. CC restrictions) is always zero. Next, we illustrate the guiding effect

of CCs through two examples on the simple MDP shown in Figure 4.6.

s0 s1

a1,−1

a2, 1

Figure 4.6: Guiding learning in a simple deterministic MDP. There are two states, initial state

s0 and terminal state s1. Taking action a1 in s0 transits to itself with a −1 reward

while a2 transits to s1 with 1 reward and the episode ends.

Example 4.3 (Useful CC). For the MDP in Figure 4.6, suppose we have the top level

action space A0 = {b0, b1} for one CC where b0 refers to deactivating the CC while b1

activates it. Let the CC be one that removes action a1 in s0, i.e., resulting in Ab1(s0) =

{a2}. Suppose α = 1, ǫ = 0.1, W and U are tabular functions initialized to zero. The

ǫ-greedy policy chooses with equal probability when there is no maximum. For the first

time step using the two level RL system,

π(s0, a1) =
∑

b∈A0

ψ(0, s0, b)ψ(b, s0, a1)

= ψ(0, s0, b0)ψ(b0, s0, a1) + ψ(0, s0, b1)ψ(b1, s0, a1)

= 0.5(0.5)
︸ ︷︷ ︸

deactivated

+0.5(0)
︸ ︷︷ ︸

activated

= 0.25,
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π(s0, a2) =
∑

b∈A0

ψ(0, s0, b)ψ(b, s0, a2)

= 0.5(0.5)
︸ ︷︷ ︸

deactivated

+0.5(1)
︸ ︷︷ ︸

activated

= 0.75.

Suppose that the two level policy has chosen b0 and a1. Then W (s0, b0) = −1 and

U(s0, a1) = −1. The probabilities for the next step are,

π(s0, a1) =
0.1

2
(
0.1

2
) + (0.9 +

0.1

2
)(0)

= 0.0025,

π(s0, a2) =
0.1

2
(0.9 +

0.1

2
) + (0.9 +

0.1

2
)(1)

= 0.9975.

We tabulate these probabilities from the two level system with that of plain RL in

Table 4.1 for various actions selected in the first step. Plain RL is assumed to use a

ǫ-greedy policy with ǫ = 0.1 and having chosen the same primitive action as two level

learning after the first step with on-policy TD updates. Notice that when the CC is

useful, the probability of picking a good primitive action is always higher than in the

plain RL case. This example demonstrates that the two level RL system will increase

probability of choosing good actions when the given CC is useful for the problem.

Time Actions Probabilities Plain RL Two Level RL ψ(0, s0, b1)

First Step N.A.
π(s0, a1) 0.50 0.2500

0.50
π(s0, a2) 0.50 0.7500

Next Step

b0, a1
π(s0, a1) 0.05 0.0025

0.95
π(s0, a2) 0.95 0.9975

b0, a2
π(s0, a1) 0.05 0.0475

0.05
π(s0, a2) 0.95 0.9525

b1, a2
π(s0, a1) 0.05 0.0025

0.95
π(s0, a2) 0.95 0.9975

Table 4.1: Example probabilities of actions in the simple MDP in Figure 4.6 with a useful CC

for a single update assuming different actions chosen for the first step. Plain RL and

Two Level RL columns show the corresponding probabilities for the state action pair

in the Probabilities column.
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Example 4.4 (Useless CC). In this example we use the same description as in Example

4.3 for the simple MDP in Figure 4.6, except that the CC is now one that removes action

a2 in s0 instead, i.e., resulting in Ab1(s0) = {a1}. Assuming that all other parameters

are the same, suppose the two level RL system has chosen b1 and a1 for the first time

step. Then, W (s0, b1) = −1, U(s0, a1) = −1 and the probabilities for the two level RL

system for the next step are,

π(s0, a1) = (0.9 +
0.1

2
)(
0.1

2
) + (

0.1

2
)(1)

= 0.0975,

π(s0, a2) = (0.9 +
0.1

2
)(0.9 +

0.1

2
) + (

0.1

2
)(0)

= 0.9025.

Time Actions Probabilities Plain RL Two Level RL ψ(0, s0, b1)

First Step N.A.
π(s0, a1) 0.50 0.7500

0.50
π(s0, a2) 0.50 0.2500

Next Step

b0, a1
π(s0, a1) 0.05 0.9525

0.95
π(s0, a2) 0.95 0.0475

b0, a2
π(s0, a1) 0.05 0.0975

0.05
π(s0, a2) 0.95 0.9025

b1, a1
π(s0, a1) 0.05 0.0975

0.05
π(s0, a2) 0.95 0.9025

Table 4.2: Example probabilities of actions in the simple MDP in Figure 4.6 with a useless CC

for a single update assuming different actions chosen for the first step. Plain RL and

Two Level RL columns show the corresponding probabilities for the state action pair

in the Probabilities column.

We tabulate the probabilities for the next step given the three possible top and bot-

tom action sequences selected by two level learning in Table 4.2. For the cases where

the first steps actions are b0, a2 and b1, a1 observe that the two level RL system will

still result in a higher probability for π(s0, a2), albeit less probability than plain RL.

However, notice that there will be a low tendency to activate the useless CC as the

probability ψ(0, s0, b1) = 0.05 is low for those cases. For the case of b0, a1, we see that

two level RL actually tends towards the primitive action a1. This can be explained by

observing that ψ(0, s0, b1) = 0.95, i.e., having not received a good reward, the system
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will prefer to consider the CC before realizing it is useless.

The above two examples illustrate that two level learning with useful CCs can guide

exploration towards states with higher rewards by increasing the probability of selecting

certain primitive actions. When the CCs are not useful, the top level of the system will

tend to deactivate them and learn without the CCs. As CCs are specified by the user, like

task based methods (Sutton et al., 1999; Dietterich, 2000; Andre and Russell, 2002), we

presume the user is rational and will design useful CCs for the learning system. For

ǫ-greedy policies, as ǫ goes to zero, similar to plain RL, the two level policy becomes

the greedy policy. Example 4.4 presented an extreme case for a useless CC. In practice,

we will want the system to learn to deactivate CCs when they are not useful in certain

states (see Example 4.2). We will evaluate empirically, the overall impact of two level

learning with CCs later in Section 4.4. In the following section we describe action

selection in the proposed system.

4.3.4 Action Selection Under Constraints

Applying the bottom component of the two level policy ψ(b, ·) often requires selecting

a primitive action within Ab(s) that maximizes the value functions. For example, the

ǫ-greedy bottom level policy is to select a maximal action

ψ(b, s) = argmax
a∈Ab(s)

U(s, a)

with 1−ǫ probability, or a random action withinAb(s) with ǫ probability. In our system,

Ab(s) is subjected to the constraints activated by the top level action b. This implies that

the problem of finding a maximal action argmaxa∈Ab(s)
U(s, a) can be modelled as a

constraint optimization problem (COP) over the original primitive action space, A, as

follows:

argmax
a∈A

U(s, a),

subject to: cb,1(s, a), ..., cb,p(s, a) c0,1(s, a), ..., c0,q(s, a) (4.69)
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where the constraints cb,j(s, a) are activated by the top level action b, termed dynamic

CCs, and the constraints c0,l(s, a) are always activated regardless of b, termed static

CCs.

Let each constraint be a function on a subset of variables in S and A that returns

−∞ if violated, or 0 otherwise. The objective function to maximize for the COP is

g(s, a) = U(s, a) + C0(s, a) + Cb(s, a) (4.70)

where C0 and Cb are the sum of their respective constraints c0,l and cb,j . Note that to

switch to selecting random actions within Ab(s), we can simply replace U with a ran-

dom function. Likewise, the selection of action for the top level, argmaxb∈A0(s)W (s, b),

can be similarly modelled.

Depending on the characteristics of the COPs, we employ different strategies to

solve them. Next, we review two main methods used to solve action selection based on

coordination graphs (see Section 3.2 page 31), an exact and an approximate method.

Exact Solver

The exact solver is based on bucket elimination (BE) (Dechter, 1999) as described in

Section 3.2.1 page 32, with additional handling of hard constraints using methods from

constraint programming. The main BE algorithm is given in Algorithm 4.2. There are

N agents and each agent i corresponds to an action variable, ai, with domain Ai. We

assume that the objective function g to maximize may be additively decomposed into a

coordination graph (CG). Hence the objective function is a sum of function components

that may depend some of the N action variables, i.e.,

g(s, a) =
N∑

n=1

∑

i1,...,in∈XN

fi1,...,in(s, ai1 , ..., ain) (4.71)
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where XN is the set of all subsequences of the sequence 1, 2, ..., N . For the case where

g consists of at most binary (pairwise) components, we have the simplified case of

g(s, a) =
N∑

i=1

fi(s, ai) +
∑

i,j∈[1,N ]|i<j

fi,j(s, ai, aj). (4.72)

Let the function scope(f) return the set of action variables involved in a function com-

ponent f . Algorithm 4.2 depends on two other functions:

PICKVARIABLE that chooses an action variable from a given set of variables based

on some heuristic. We have use the most constrained variable heuristic to always

pick the variable involved in the highest number of constraints first. And,

ELIMINATE is depicted in Algorithm 4.3. It eliminates a variable ai by summing it

out from the coordination graph to give a new maximized function component for

which ai is maximized for every neighbour of ai in the CG. An example of this

process is given in Example 3.3 page 33.

As the state variable is constant while action selection is carried out, we do not mention

it in the algorithms.

Algorithm 4.2 Recursive bucket elimination algorithm

Input: A – set of action variables, F – set of function components

Global: a[1..N ] – array of action value assignments initialized to null values

Return: maximized value for g
BUCKETELIMINATION(A,F)

1: if A = ∅ then

2: return f(), where {f} = F # f is a constant function

3: end if

4: ai ← PICKVARIABLE(A)

5: Fi = {f ∈ F | ai ∈ scope(f)} # Fi is all functions that involve ai
6: Initialize fi to a table of −∞ values with scope(fi) = [

⋃

f∈Fi
scope(f)]− {ai}

7: Let n = |scope(fi)|, A[1..n] be the domains of the action variables in scope(fi)
and a′[1..n] be auxiliary action values.

8: # fi is passed by reference

9: ELIMINATE(scope(fi)− {ai}, ai, Fi, A[], a
′[], fi)

10: F ← F ∪ {fi} − Fi
11: r ← BUCKETELIMINATION(A,F)

12: # look up the maximum value for a[i] using values in scope(fi)
13: a[i]← lookup(fi, a[1], ..., a[N ])
14: return r
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Algorithm 4.3 Eliminate function with extensions for hard constraints

Input:

• A – remaining variables to maximize,
• ai – the variable to eliminate,
• F – functions involving ai,
• A[1..n] – array of action variable domains in scope(f),
• a[1..n] – array of action values for variables in scope(f),
• f – current function to store, passed by reference

ELIMINATE(A, ai, F, A[], a[], f )

1: if A = ∅ then

2: f(a[1], ..., a[n])← maxa∗∈A[i]
∑

g∈F g(a
∗, a[1], ..., a[n]) # maximize for ai

3: lookup(f, a[1], ..., a[n])← a∗

4: else

5: Let C be the set of constraints over any variables in scope(f)
6: ∀aj ∈ scope(f), remove domain values for A[j] using C with constraint propa-

gation

7: aj ← PICKVARIABLE(A)

8: Let Cj be set of constraints that involve aj
9: for a ∈ A[j] do

10: a[j]← a
11: A[j]← {a} # set the domain of aj to a singleton

12: if ¬∃c ∈ Cj s.t. c(ai, a[1], ..., a[n]) = −∞ then

13: ELIMINATE(A− {aj}, ai, F, A[], a[], f )

14: end if

15: end for

16: end if

The ELIMINATE function is extended with constraint propagation methods to better

make use of hard constraints, i.e., the CCs that are activated in the current state. Before

entering the ELIMINATE function from BUCKETELIMINATION, we first initialize the

new maximized component, fi to −∞ (see Algorithm 4.2 Line 6), for every possible

value. Then, this tabular function is passed by reference to ELIMINATE.

The for loop at Algorithm 4.3 Line 9, and the recursive call to ELIMINATE within,

enumerates every joint action for the variables in the scope of f . This enumeration gives

rise to a worst case time complexity that is exponential in |scope(f)|. Storing f gives

rise to the worst case space complexity that is exponential in |scope(f)| − 1. Note that

|scope(f)| corresponds to the induced tree width of the CG.

Constraint propagation is used in Algorithm 4.3 Line 6 to remove values from the

action variables’ domains (Apt, 2003, Chapter 7). This includes methods such as, node

consistency that directly reduces individual action domains based on violations in unary
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constraints, and arc consistency that removes values if there is no value in other vari-

ables’ domains that will together satisfy a higher arity constraint. Furthermore, domains

are set to singleton values when enumerating actions at Line 11. This may in turn re-

move more actions in a subsequent recursive call. We have further employed forward

checking (Apt, 2003, Section 8.4.1) before the recursive call at Line 12. This is sim-

ilar to the preliminary filtered join method presented in Sánchez et al. (2004) for BE.

These methods may reduce the time complexity in practice. Furthermore, if f is sparse,

the space complexity can be reduced since all unvisited entries in the table have the

pre-initialized value of −∞.

Where the CG is dense, i.e., has many edges, BE is often not feasible in practice. In

this case we turn to the approximate solver described next.

Approximate Iterative Solver

If the problem consists of features and constraints that can be additively decomposed

into component functions involving up to two action variables (e.g. Equation 4.72),

we can utilize the max-plus algorithm (Kok and Vlassis, 2006) for an approximate so-

lution in dense CGs. Max-plus is a message passing method where agents iteratively

exchange messages to compute marginal (objective) functions, one for each, such that

each agent may maximize their action variable individually when the maximization is

unique. However, as previously mentioned in Section 3.2.2 page 36 and Kok and Vlas-

sis (2006), agents should not select their actions individually when the maximization

is not unique. We review max-plus in this case and present a solution derived from

Wainwright et al. (2004) for a similar max-product algorithm.

The max-plus algorithm is presented in Algorithm 4.4. At each message passing

iteration, each agent i sends the messages,

µi,j(aj) = max
ai∈A[i]



fi(ai) + fi,j(ai, aj) +
∑

k∈Γ(i)−{j}

µk,i(ai)



− κi,j (4.73)

at Line 15 where κi,j is a normalizing constant as stated in Equation 3.5 page 37. Once

77



CHAPTER 4. COORDINATION GUIDED REINFORCEMENT LEARNING

Algorithm 4.4 Max-plus algorithm for non-unique maximals

Input: ǫ – threshold for fixed point, max iter – maximum number of iterations

Global: g – function to maximize, fi, fi,j – component functions of g
Return: Maximal joint action

MAXPLUS(ǫ, max iter)

1: Let A[1..N ] be the domains of the action variables

2: ∀c ∈ C, remove domain values from A[·] with constraint propagation

3: Initialize arrays a∗[1..N ] and a[1..N ] to random actions

4: g∗ ← g(a∗) # current best action value

5: Initialize ∀i, j ∈ [1, N ] messages µi,j(·)← 0
6: δ ← 0 ; δ′ ←∞ ; m← 0 # loop variables

7: while |δ − δ′| > ǫ and m < max iter do

8: δ ← δ′ ; δ′ ← 0
9: # pass messages

10: for i ∈ [1, N ] do # for each agent

11: for j ∈ Γ(i) do # for each neighbour in set of neighbours Γ(i)
12: for aj ∈ A[j] do # for each action value

13: v ← maxai∈A[i]

[

fi(ai) + fi,j(ai, aj) +
∑

k∈Γ(i)−{j} µk,i(ai)
]

− κi,j

14: δ′ ← max(δ′, |µi,j(aj)− v|) # find the max. change in message value

15: µi,j(aj)← v # send message step

16: end for

17: end for

18: end for

19: # compute joint action

20: for i′ ∈ [1, N ] do # given a depth-first visit order in the CG

21: i← ORDERING(i′)
22: if root(i) then

23: a[i]← argmaxa′i∈A[i] ĝi(a
′
i) # root agent

24: else

25: p← PARENT(i) # parent in depth-first visit order

26: a[i]← argmaxa′i∈A[i] ĝp,i(a[p], a
′
i) # with constraints C

27: end if

28: end for

29: if g(a) > g∗ then # keep if action better than previous

30: g∗ ← g(a) ; a∗ ← a
31: end if

32: m← m+ 1
33: end while

34: return a∗

the messages have been sent, agents compute the max-marginals ĝ. For the unique

maximum case,

ĝi(ai) = fi(ai) +
∑

j∈Γ(i)

µj,i(ai). (4.74)
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However, since the maximization need not be unique, another pairwise max-marginal

is required, i.e.,

ĝi,j(ai, aj) = max
{〈a1,...,aN 〉∈A|a′i=ai∧a

′
j=aj}

g(a1, ..., aN) (4.75)

= fi(ai) + fj(aj) + fi,j(ai, aj) +
∑

j′∈Γ(i)−{j}

µj′,i(ai) +
∑

i′∈Γ(j)−{i}

µi′,j(aj)

(4.76)

= fi,j(ai, aj) + ĝi(ai)− µj,i(ai) + ĝj(aj)− µi,j(aj). (4.77)

Using Equation 4.74 and 4.77 the maximal action is selected via a pre-determined

depth-first visit order of a spanning tree on the CG given by ORDERING at Line 21.

Starting from the root agent, we maximize ĝi to get the action a[i]. Then, with this ac-

tion we proceed down the ordering of agents. At each agent, its parent in the depth-first

visit order is guaranteed to have been visited. Hence we select at Line 26,

argmax
ai∈A[i]

ĝp,i(a[p], ai) (4.78)

where p is the parent agent of i and a[p] has already been selected. This scheme is

optimal if the CG is a tree. However, in a general graph with cycles, this form of action

selection is also approximate.

The hard constraints are used in Algorithm 4.4 in a few ways. First, the selection

of actions and passing of messages for each agent i are done on the domain A[i] where

constraint propagation with the constraints in C has been applied. Next, at Line 26

we enforce constraints by forward checking. This is done implicitly in Equation 4.78

where we not only maximize over A[i] but we disregard values of ai such that there

exists some violated constraint cp,i(a[p], ai) = −∞. As this constraint will be part of

the fp,i component, fp,i(a[p], ai) = −∞ when c is violated. We illustrate the action

selection with an example.

Example 4.5 (Max-plus selecting actions). Consider the CG in Figure 4.7. The compo-

nent between agents 1 and 4 is zero. The CG has two cycles hence max-plus is inexact.
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A1

A2
A3

A4

a1 = argmaxaĝ1(a)

a2 = argmaxaĝ1,2(a1, a)

a3 = argmaxaĝ1,3(a1, a)

a4 = argmaxaĝ3,4(a3, a)

c1,2(a1, a2)
c1,3(a1, a3)

c3,4(a3, a4)

Figure 4.7: Max-plus action selection in a CG of 4 agents. The thick edges indicate a spanning

tree whereby the depth-first visit ordering for agents is 1, 2, 3, 4.

The thick edges indicate a spanning tree that gives rise to the depth-first visit ordering.

The max-marginals for computing actions in the depth-first agent order 1, 2, 3, 4 is

shown. Constraints are enforceable along the edges of this spanning tree during action

selection.

At each iteration of the max-plus algorithm, the number of messages passed is linear

in the number of edges of the CG. Action selection requires each agent to maximize

over their own domain that is typically smaller than the complexity of the CG. Hence

it has worse case complexity that is linear. As the max-marginals are not guaranteed to

converge and the action selection scheme is also approximate, we store and return the

best action found throughout the iterations. If the function components of the objective

function g have scope greater than two, more general solvers over factor graphs may

be used (Kschischang et al., 2001) while exact computation of the max-marginals can

be achieved at the cost of exponential in induced tree width message sizes (Petcu and

Faltings, 2005).

4.3.5 Features & Constraints

In this section, we show how existing predicate definitions of features (basis functions)

defined for function approximation can be reused to specify the CCs. We further de-
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scribe how the top and bottom levels’ features may share predicate components in their

design and highlight a type of features that may be useful for certain multi-agent prob-

lems. These methods address the challenges of model complexity for the action value

functions and of encoding knowledge.

Predicates are a natural way to encode expert knowledge as features for RL. They

have been used in in first order logic (Russell et al., 1996, chap. 8) to generalize state-

ments over objects. With predicates, we can derive the corresponding list of propo-

sitional features (PFs) by binding the variables of predicates to specific objects. We

illustrate an example of deriving features from a predicate below.

Example 4.6 (Propositional features from a bad pass predicate). In the soccer domain,

the expert knowledge of a bad pass can be written as the predicate:

BadPass(s, ax, ay) := HasBall(Px) ∧ IsPass(Py, ax) ∧MoveNextToOpp(s, ay),

where Px is the player of the action variable ax that is part of the state, HasBall(Px) is

true if player Px has the ball, IsPass(Py, ax) is true if the action of player Px, ax, is to

pass the ball to Py, and MoveNextToOpp(s, ay) is true if the action of player Py is to

move next to an opponent.

Propositional features may be derived from BadPass by binding specific players

(agents) action variables to it. For example, for P1, P2 we have the PF,

fBadPass1,2 (s, a) = BadPass(s, a1, a2)

and for P1, P3,

fBadPass1,3 (s, a) = BadPass(s, a1, a3).

The value of a PF is in {0, 1}.

Throughout this thesis we use alphabet subscripts to indicate unbound variables of

predicates and numbers for bound instance of objects, e.g., specific agents’ actions.
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Relationship Between Constraints, Features, and Learning

Propositional features based on predicates are commonly employed in existing RL sys-

tems to approximate the value function (Marthi et al., 2005; Kok et al., 2005; Asghar-

beygi et al., 2006). We also utilize PFs for the bottom level function U . An immediate

advantage is that the PFs can be reused for specifying CCs. For each PBF f , we can

formulate it into a constraint:

c(s, a) = −∞ · f(s, a) (4.79)

If f(s, a) = 1, the constraint c(s, a) returns −∞ signifying that the condition has been

violated.

Reusing PFs in U as CCs has an added advantage during bottom level action se-

lection. Instead of specifying individual constraints ci,j to sum for Ci in the objective

function in Equation 4.70, we can simply set the corresponding PFs’ weights of the

activated CCs to−∞. In so doing, the set of actions that are disallowed by the CCs will

never be chosen by exact solvers due to its −∞ weight. Then, the objective function g

given the activated CCs, b, becomes,

g(s, a) =
∑

j

wj · fj(s, a)

︸ ︷︷ ︸

Normal PFs & deactivated CCs

+
∑

k∈b

−∞ · fk(s, a)

︸ ︷︷ ︸

CCs activated in b

(4.80)

After selecting actions, we restore the original weights of these PFs during the updates

(Equations 4.64 and 4.65). This is because in practice, incomplete COP solvers like

max-plus may still select actions that violate certain activated CCs. When this happens,

we can learn the weights for the violated constraint PFs that are useful for updating

other weights. Hence PFs can be used both as constraints for guiding exploration and

for function approximation.

Note that the predicates for features that are used as CCs assert what should not be.

But the canonical form for COPs, e.g., Equation 4.69, constraints state what should be.

We have written it this way as it is generally easier for a domain expert to criticize taking
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particular actions in states instead of specifying an immediate solution. Converting to

canonical form is simply taking the negation of the bound predicate (proposition) as

described next.

Example 4.7 (Bad pass predicate as a CC). Consider the BadPass predicate from Ex-

ample 4.6 for players P1 and P2. When activated, its component in the COP’s objective

function is −∞ ·BadPass(s, a1, a2). However its canonical form that the COP is sub-

jected to is the negation ¬BadPass(s, a1, a2), i.e., player P1 should not make a bad

pass to P2.

Top Level Features

The top level value function W is also a linear approximation of some features. Here,

we show how the bottom level PFs can also be reused for the top level features. We

observe that the activation of a constraint is often dependent on the state the system

is in. Hence, we encode such state-dependent activation knowledge as the top-level

features in the following manner: Let Activated(c) be true if constraint c is activated.

For each c corresponding to some PFs in the bottom level, we conjunct Activated(c) or

its negation with selected state predicates of agents involved in c. We give an example

of a simple strategy that allows us to design top level features easily by reusing bottom

level features’ predicates below.

Example 4.8 (Top Level Features for BadPass CCs). In the soccer game, we would

like to deactivate theBadPass1,2 constraint if the receiving player P2 is near the enemy

goal, i.e., NearGoal(P2) is true. This is because it may turn out to be better to take a

chance at scoring. Hence, we define a predicate

NearGoal(Py) ∧ ¬Activated(BadPassx,y)

for each pair of players to capture this condition.

In practice, for our experiments, we programmatically construct top level PFs using

theActivated predicate. For each constraint c, we conjunctActivated(c) or its negation
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with sets of state predicates of agents involved in c that may be relevant. This reduces

the work on the user’s part as compared to manual enumeration.

4.3.6 Relational Features

For applications where the agents are homogeneous or their quantity changes over time,

a new class of features called relational features (RFs) can be utilized for relational

learning (see Section 3.6 page 46). Here, we modify the relations used in Guestrin et al.

(2003); Asgharbeygi et al. (2006) for function approximation of the state value function

to that of the action value function.

Let ρ be a predicate and n be the number of agents (action variables) that is involved

in the predicate. For N agents, an RF based on ρ is then an aggregation of bound PFs,

̺ρ(s, a) =
∑

i1,...,in∈Perm(N,n)

τρ · ρ(s, ai1 , ..., ain) (4.81)

where τρ is a scaling factor and Perm(N, n) is a function that returns all permutations

of a subset of size n from the set {1, ..., N}, i.e., it is the set of n-permutations where

the number of such permutations are |Perm(N, n)| = NPn = N !
(N−n)!

. In the basic case,

the scaling factor may be the constant 1. Then ̺ρ is the count of true valid bindings

for predicate ρ. This is similar to the features used for relational temporal difference

learning in Asgharbeygi et al. (2006). In our case we use the total number of possible

bindings as the scaling factor, i.e., for single agent predicates it is the inverse count of

agents τρ = N−1, for pairwise agent predicates it is N−2. For certain domains like

RTS games, the number of agents N changes, hence τ scales relational features dy-

namically with the state. Note that Equation 4.81 also indicates that RFs are additively

decomposable back into their PFs.

A single weight is learned for an RF. Hence the action value function U may be

represented linearly as

U(s, a) =
∑

i

wifi(s, a) +
∑

ρ

wρ̺ρ(s, a) (4.82)
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where fi are PFs or other kinds of features, and ̺ρ are RFs. W may be similarly

specified. As RFs generalizes over the number of action variables, they may greatly

reduce the number of weights required for W as elaborated next.

Example 4.9 (Top Level Generalization). Consider the top level predicate for features,

ρ(s, BadPassx,y) := NearGoal(Py) ∧ ¬Activated(BadPassx,y),

described in Example 4.8 where BadPassx,y is the top level BadPass CC for any pair

of players Px, Py derived from the top level action. For N agents, there are N(N − 1)

top level action variables for BadPassx,y ∈ {0, 1} such that the top level action,

b = 〈..., BadPass1,2, BadPass1,3, ..., BadPassx,y, ..., BadPassN,N−1,
︸ ︷︷ ︸

N(N − 1) BadPass CCs

...〉

Using RFs defined by equation Equation 4.81 we learn a single weight instead ofN(N−

1) weights if PFs were used, i.e., the RF is,

̺ρ(s, b) =
∑

x,y∈[1,N ]

ρ(s, BadPassx,y).

Where suitable for the domain, relational features can improve the learning rate in

two ways. They can be used as additional features to the PFs to enrich the feature

representation, or as a replacement for PFs to simplify the feature representation. In

both cases they provide generalization for large state action spaces commonly found in

multi-agent domains. We have presented RFs as one method to simplify representation

for the top level value function. For the next section we will discuss how the top level

efficiency issues can be addressed.

4.3.7 Top Level Efficiency Issues

In many domains, we observe that the top level action space, A0, may be heavily con-

strained based on the current state, s. This yields a smaller A0(s) to explore, and
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consequently, faster learning. In fact, this reduction to A0(s) can be directly derived

from the predicates used to create the CCs. If it can be inferred that a CC cannot be

violated in the current state s, then the CC need not be activated. This can be done in

O(K) time as we only need to inspect the predicates of each of the K CCs.

Example 4.10 (Reducing BadPass CCs to choose from). Consider the BadPass2,3

CC. Since only player P1 has the ball (see Figure 4.2), HasBall(P2) is false and CC

for BadPass2,3 can be deactivated. We can also deactivate BadPassx,y CCs for other

pairs of players where Px does not have the ball, thus reducing the quadratic number of

BadPassx,y CCs to a linear number of BadPass1,y CCs.

Another observation is that agents who are very far apart do not need to coordinate.

We can define a Nearbyx,y predicate that is true if two agents are within a given dis-

tance and conjunct it with those predicates involving them. Hence, multi-agent CCs of

agents that are not currently nearby cannot be violated. This simple strategy has proven

effective in reducing A0 for directing top level exploration in practice.

The top level action variables of the system may consist of a number of CCs that is

quadratic in number of agents. While the above two observations can directly deactivate

many of the CCs, there may be situations whereby using max-plus is still inefficient. In

such situations, if the activating CCs are presumed to be independent, we may use PFs

forW that only involve the state and one action variable corresponding to one CC. Con-

sequently, top level actions can be selected independently in O(K) time while bottom

level actions are selected jointly. This turns out to be sufficient for good performance

for our experiments as shown in Section 4.4.

4.3.8 Learning Algorithm

The detailed learning algorithm of the two level RL system which we call coordina-

tion guided reinforcement learning (CGRL), is given in Algorithm 4.5. The algorithm

is presented by an agent (system) driven point of view that interacts with the original

environment (see Figure 4.5b page 58). The algorithm is an on-policy algorithm as we
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Algorithm 4.5 Coordination guided reinforcement learning

1: Observe initial state s
2: b← ψ(0, s) # select top level action from ǫ-greedy policy

3: a← ψ(b, s) # select bottom level action from ǫ-greedy policy

4: while ¬terminal(s) do

5: Take action a, observe reward r and state s′

6: b′ ← ψ(0, s′) # select CCs to activate

7: ~v ← ~wU # backup all weights in wU
8: Activate CCs with b′ # activated CCs’ weights in wU are set to −∞
9: a′ ← ψ(b′, s′) # select primitive actions

10: target← r + γW (s′, b′) # target to update towards

11: ~wW ← ~wW + α[target−W (s, b)] ~fWs,b # update W
12: ~wU ← ~v # restore weights for updating

13: ~wU ← ~wU + α[target− U(s, a)] ~fUs,a # update U
14: s← s′ ; b← b′ ; a← a′

15: end while

update according to the actions taken in the environment, and it is a form of temporal

difference learning.

Each time step in the environment corresponds to one iteration of the while loop.

At Line 7, the weights for activated CCs in the top level action b′ are backed up before

being set to −∞ in the next line for primitive action selection. This is straightforward

for normal features and PFs. For the case of RFs, U is first additively decomposed

before the weight wc for fc, that is an activated CC c, is set to −∞. i.e.,

U(s, a) = w1 · f1(s, a) + w2 · f2(s, a) + ...+ wc · fc(s, a) + ...+ wm · fm(s, a)

= w1 · f1(s, a) + w2 · f2(s, a) + ...+ (−∞) · fc(s, a) + ...+ wm · fm(s, a).

Finally, when a terminal state s′ is observed, note that the value of W (s′, b′) = 0 at Line

10.

4.4 Experiments

We carried out experiments to evaluate the proposed approach on two domains: simpli-

fied soccer and tactical RTS (Buro, 2004). The environments are fully observable and

episodic. All learning is online as no experience is saved and replayed. A video of the
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# Domain RL Agents Action Selection Value Functions Features

1 Soccer 2 Exact Exact N.A. (Tabular)

2 Soccer 4 Exact Approximate Propositional

3 Tactical RTS 10 Approximate Approximate Relational

Table 4.3: Overview of centralized CGRL experiment settings.

sample runs of our policies can be viewed at: http://youtu.be/aloAOTBEUZ41.

To visualize our results we use two main types of plots. The first is the plot of

average reward for each block ofM episodes, e.g., see Figure 4.8a whereM = 10, 000.

A block of episodes is a grouping of sequential episodes experienced by the RL players.

This plot shows the quality of the policy as episodes are experienced. The second is the

plot of cumulative average reward per episode, e.g., see Figure 4.8b. This is the average

reward over all previously experienced episodes, i.e., the i-th data point is the average

reward of i episodes. This plot shows the overall goal achievement in the online setting

as we wish to maximize the goal even while learning from the outset. An important

point to note is that all plots start from the point one and not at zero. Depending on the

scale of each individual plot, this may refer to a different number of initial episodes.

There are a total of four types of experiments. The first three types of experiments

are designed to investigate the performance of the two level learning system on increas-

ingly complex domains as shown in Table 4.3. Each experiment progressively includes

other methods that make RL in complex multi-agent domains practical. In the subse-

quent sections we introduce the reinforcement learning players used and describe the

two domains as they appear in the experiments. The last experiment presents empirical

runtime results of the various RL methods on a large multi-agent problem.

4.4.1 Reinforcement Learning Players

We compare four types of RL players including methods from previous works.

1. Independent player – each agent selects their own action and learn their strategy

independently (Claus and Boutilier, 1998) with their own value functions.

1In the video, CGRL-Solo is called Solo and CGRL-Full is called Coordinated. Alternative link:

http://www.comp.nus.edu.sg/˜plau/cgrl.wmv
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2. Coordinated player – RL using single level on-policy learning with coordina-

tion graphs defined by features for joint action selection (Guestrin et al., 2002).

Global updates are used for learning the weights (see Section 3.3.3 page 40). The

coordinated player is a suitable baseline as it represents a multi-agent RL system

without any coordination guidance.

3. CGRL-Solo player – a representative of having individual task hierarchies for

each agent. In general, task based methods may allow other kinds of expert

knowledge such as procedural knowledge and pseudo rewards to be encoded in

addition to constraining the primitive action space for exploration. To compare

the same type of knowledge for guiding exploration, we use CGRL with only

single agent unary constraints. Hence tasks correspond to high level actions that

activate some combination of unary constraints.

4. CGRL-Full player – uses our full two level learning system with coordination

constraints defined on multiple agents.

The coordinated and CGRL players use the same features for their bottom level value

function. Hence they have the same CGs defined by the features. The independent

player has only features that involve single agents to represent their individual action

value functions.

Comparing different types of expert knowledge used in various RL systems is inher-

ently difficult. For example, it will be difficult to objectively compare hierarchical RL

(see Section 3.4 page 43) with CGRL as the former uses procedural task decomposition

while the latter uses declarative predicates as constraints. If CGRL performs better than

HRL, it may boil down to a poor task decomposition or a weakness in the RL method.

Yet there is no straightforward way to figure out which is the case without being able to

compare the quality of task decomposition with the predicate CCs. Therefore, we have

chosen the coordinated player and CGRL-Solo as state-of-the-art baselines that make

use of the exact same predicates for features and CCs. Furthermore, they make use of

the same techniques for joint action selection.
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For the experiments, discounting (γ) is used in conjunction with the reward scheme

to encourage learning outcomes, i.e., it is a part of problem modelling. The step size

(α) and exploration (ǫ) parameters are set by empirical observation on a small number

of episodes. The α parameters are set based on learning stability considerations while

the ǫ parameters are set to ensure reasonable amount of exploration.

4.4.2 The Simplified Soccer Game Domain

In a game of simplified soccer, the objective is to score the first goal in the shortest

time. The soccer field is a grid world. Soccer players can stay, move in 4 directions,

or the player with the ball may pass or shoot with a probabilistic chance of success

weighted by distance. The ball changes ownership to the opposing team if the player

with the ball collides with any player or if a pass fails. A failure to score a goal results

in the ball going to the nearest player to the goal. In each time step, submitted player

actions are randomly shuffled and executed. Rewards are 1 for winning, and −1 for

losing. The game is initialized by randomly placing soccer players in the half of the

field corresponding to their home goal. The learners are pitted against three scripted

strategy opponents:

1. Random players take actions at random;

2. Defensive players stay around the home quarter of the field and move to intercept

the ball if it enters, the player with the ball does a solo counter-attack;

3. Aggressive players always go for the ball, once attained, the player with the ball

heads for the goal while each of the other players stays near (marks) their respec-

tive enemy players.

The detailed description of the predicates used for this domain are given in Section A.1

page 230.
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4.4.3 Experiment 1: Only Exact Methods

For the first type of experiments, we examine our proposed two level RL system without

any approximation, using exact tabular functions and action selection via enumeration.

This is to investigate if the extra top level is indeed useful for learning performance.

A tabular function is equivalent to a linear function approximation where each feature

is a boolean variable corresponding to an entry in the table. We only compare tabular

coordinated and CGRL-Full players.

The soccer field is 6 × 4 units and the RL players have two soccer players versus

one soccer player for the scripted opponent. RL players are evaluated against all three

scripted strategies. RL players used discounting (γ = 0.99), ǫ-greedy policies with

constant ǫ = 0.1, and constant step size (α = 10−3). The CGRL-Full player used only

pairwise CCs and no unary CCs for this experiment. Its top level has 3 dynamic CCs

giving a top joint action space of size 23. There are only 3 dynamic CCs based on the

3 pairwise CC predicates described in Section A.1.3 page 234 as there is only one pair

of agents. With tabular functions the number of parameters (table entries) to learn are

more than 10,000 for each RL player. Hence we run the experiments for many episodes.

Figures 4.8, 4.9 and 4.10 show the results for the three scripted opponents respec-

tively. One million episodes are used against random, and 10 million episodes against

both defensive and aggressive opponents. Each curve is averaged over 10 runs. From

the results we see that RL players have poorer goal achievement against harder oppo-

nents. The CGRL-Full player performs consistently better than the coordinated player.

This verifies that the top level of our system is stable and improves learning perfor-

mance when there are no other factors such as feature quality or approximate action

selection.

4.4.4 Experiment 2: Function Approximation

For the second type of experiments, we evaluate the RL system using propositional fea-

tures (PFs) for linear value function approximation and exact action selection through

bucket elimination given in Algorithm 4.2. Experiments take place in a 12 × 8 soccer
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Figure 4.8: Centralized Exp. 1: Soccer results for random opponent. One million episodes

averaged over 10 runs for each RL player.
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Figure 4.9: Centralized Exp. 1: Soccer results for defensive opponent. 10 million episodes

averaged over 10 runs for each RL player.
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Figure 4.10: Centralized Exp. 1: Soccer results for aggressive opponent. 10 million episodes

averaged over 10 runs for each RL player.
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RL player
exploration (ǫ) step size (α)

initial final decay initial final decay

Independent & CGRL 1.0 0.01 0.998 0.1 0.01 0.998

Coordinated 1.0 0.01 0.998 0.2 0.10 0.998

Table 4.4: Centralized Exp. 2: Table of parameters for soccer experiments.

RL player Weights Total CCs Static CCs Dynamic CCs

Independent 944 8 8 0

Coordinated 1049 8 8 0

CGRL-Solo 1497 36 8 28

CGRL-Full 1821 66 20 46

Table 4.5: Centralized Exp. 2: Quantity of feature weights and CCs for soccer experiments

with 4 agents.

field. Learners have 4 soccer players versus 6 players for each of the scripted oppo-

nents. The size of the state space is at least 1013 and the size of the action space is 84.

Agents coordinate if they are within a Manhattan distance of 10. For the size of the

grid world, the CG formed by the agents is fully connected in most states. The learners

used discounting with γ = 0.99, and ǫ-greedy policies with decaying step size (α) and

exploration (ǫ) parameters as stated in Table 4.4.

Propositional features were used for soccer as good policies may require agents to

have specific roles. The total number of feature weights to be learned and CCs used

are given in Table 4.5. The static CCs for independent, coordinated and CGRL-Solo

players are the simple and usually used single agent constraints such as preventing

boundary collision and passing (or shooting) when a soccer player does not have the

ball. For multi-agent CCs, we used 12 static collision CCs and 18 dynamic CCs includ-

ing: BadPass, not jointly intercepting as opponent with the ball, and jointly blocking

opponents’ movements.

The results for soccer versus the three opponents are given in Figures 4.11, 4.12,

and 4.13. The RL players are evaluated online for 10,000 episodes and each curve is

averaged over 10 runs. The overall win rate is shown in brackets. In all three opponent

setups, we see that the CGRL methods outperforms existing works that use coordinated

and independent RL. This indicates that CGRL is a useful learning method over existing

approaches. Furthermore, coordinated RL out performs independent RL. This shows
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Figure 4.11: Centralized Exp. 2: Soccer results for random opponent. 10,000 episodes aver-

aged over 10 runs for each RL player.
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Figure 4.12: Centralized Exp. 2: Soccer results for defensive opponent. 10,000 episodes aver-

aged over 10 runs for each RL player.
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Figure 4.13: Centralized Exp. 2: Soccer results for aggressive opponent. 10,000 episodes

averaged over 10 runs for each RL player.
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that the soccer game requires coordination to achieve good results and more so when

the opponent has a coherent strategy such as being defensive or aggressive instead of

having no strategy (random).

We see that CGRL consistently obtains better policies in Figures 4.11a, 4.12a, and

4.13a over the existing methods. The difference in quality of policy between CGRL-

Solo and CGRL-Full against the random opponent is minimal. However, it is more

distinguished against the defensive opponent, followed by the aggressive opponent. In

terms of overall goal achievement while learning online, we see that CGRL-Full per-

forms slightly better than CGRL-Solo in Figure 4.11b, and subsequently, much better

in Figure 4.12b and Figure 4.12a. Further, the CGRL-Full player performs better much

earlier compared to the other RL players. This advantage is the result of better early

exploration in contrast to the other RL players. This indicates that CCs defined over

multiple agents are effective in the online setting.

4.4.5 The Tactical Real-Time Strategy Domain

We have used the Open RTS2 game system to evaluate our methods. The goal in tactical

RTS is to eliminate the enemy team of marines quickly in a 240×240 point based map.

Each marine occupies a point on the map with a fixed radius and a number of hit points.

When its hit points reaches zero, it is destroyed. A marine’s action domain consists of

the 8 compass directions, an attack action for each possible enemy, and idle. The size

of the action space is at least 1010 while the huge state space consists of all the possible

marines’ positions and hit points. An example of the game state is shown in Figure 1.1

page 3. Rewards are −0.1 per time step and 103 for eliminating the opposing team.

We pit the RL players against two scripted opponents:

1. Aggressive marines head for the nearest enemy and shoot enemies in range,

2. Unpredictable marines move in random directions and shoot enemies in range.

The unpredictable opponent may be strong if its marines move in the same direc-

tion towards the enemy, or weak if they scatter.

2http://skatgame.net/mburo/orts/
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Opponents’ marines are able to shoot and move at the same time giving them an ad-

vantage. RL players must quickly learn to shoot and exploit teamwork as marines die

easily. This makes it difficult to explore winning episodes. We use four setups in our

experiments:

1. 10 RL marines versus 10 aggressive marines,

2. 10 RL marines versus 13 unpredictable marines,

3. 10 RL marines versus 13 aggressive marines,

4. 10 RL marines versus 5 unpredictable super marines.

The super marines have twice the firepower and hit points, hence coordination for the

RL players is very crucial for success.

For tactical RTS, we include a new RL player, CGRL-Static, which utilized only the

static collision CCs in addition to the capabilities of the solo player. This is to compare

if the static collision CCs used provide most of the benefit of the CGRL-Full player.

4.4.6 Experiment 3: Relational Features & All Approximations

The third type of experiment integrates methods to deal with large multi-agent problems

where the number of agents change over time. We incorporate the use of relational

features (RFs) for generalization of learning and approximate primitive action selection

using the max-plus algorithm presented in Algorithm 4.4 for 10 iterations.

For each setup, the RL players use no discounting (γ = 1) with the same decaying

parameters. Parameters for RL for the various setups are given in Table 4.6. Setup 2 was

given more exploration due to the unpredictable nature of the opponent that increases

with the number of its marines.

RFs were used for RTS as the number of agents varies over time, except for the inde-

pendent player that learns separate policies using PFs. The number of features weights

and CCs are given in Table 4.7. Note that we use lesser features than in soccer to en-

code knowledge. Furthermore, relational features greatly reduce the number of weights

to learn. Static CCs for independent, coordinated and CGRL-Solo players are those that
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Setup
exploration (ǫ) step size (α)

initial final decay initial final decay

1, 3, & 4 1.0 0.01 0.998 0.01 10−4 0.998

2 1.0 0.10 0.998 0.01 10−6 0.998

Table 4.6: Centralized Exp. 3: Table of parameters for RTS experiments.

RL player Weights Total CCs Static CCs Dynamic CCs

Independent 350 30 30 0

Coordinated 53 30 30 0

CGRL-Solo 70 90 30 60

CGRL-Static 70 135 75 60

CGRL-Full 98 225 75 150

Table 4.7: Centralized Exp. 3: Quantity of feature weights and CCs for RTS experiments with

10 agents.

are simple constraints used on single agents, e.g. disallowing attacking enemies that are

out of range, or a move action that collides with a boundary. For multi-agent CCs,

we used 45 static collision CCs, and 90 dynamic CCs for troop formation to maximize

overlapping firepower on enemies and to protect weaker team members. Further details

of predicates used to create the features are given in Section A.2 page 235. Agents need

to coordinate if they are within 30 points of each other, otherwise their binary features

are set to zero.

Figures 4.14 to 4.17 show the results for the four RTS setups respectively. Total

percentage wins are shown in brackets. We observe that all the RL players’ policies

converged over time. As seen in soccer, all CGRL players outperformed existing ap-

proaches of independent and coordinated RL. The CGRL-Full player was able to learn

quickly in all the four setups with better policies and high overall goal achievement.

The coordinated player experienced few winning episodes and ended up trying to lose

as fast as possible to reduce the total negative reward obtained from each time step.

The independent player managed to learn some strategy in Figure 4.14 and wins more

episodes than the coordinated player in the other setups. However, its reward is less

than the coordinated player in those setups.

The results for the CGRL-Static and CGRL-Solo players are mostly comparable.

This is because the CGRL-Static marines tend to spread out more often and are de-
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Figure 4.14: Centralized Exp. 3: RTS results for 10 versus 10 aggressive marines. 10,000

episodes averaged over 10 runs for each RL player.
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Figure 4.15: Centralized Exp. 3: RTS results for 10 versus 13 unpredictable marines. 10,000

episodes averaged over 10 runs for each RL player.
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Figure 4.16: Centralized Exp. 3: RTS results for 10 versus 13 aggressive marines. 10,000

episodes averaged over 10 runs for each RL player.

102



4.4. EXPERIMENTS

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90  100

A
v
e
ra

g
e
 R

e
w

a
rd

Blocks of 100 Episodes

independent
coordinated
CGRL-Solo
CGRL-Full

CGRL-Static

(a) Average Reward

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0  100  200  300  400  500  600  700  800  900  1000

C
u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 R

e
w

a
rd

Episodes (x10)

independent ( 0.0%)
coordinated ( 0.0%)
CGRL-Solo (22.5%)
CGRL-Full (37.1%)

CGRL-Static (16.4%)

(b) Cumulative Average Reward (final win rate shown in brackets)

Figure 4.17: Centralized Exp. 3: RTS results for 10 versus 5 unpredictable super marines.

10,000 episodes averaged over 10 runs for each RL player.
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stroyed easily when isolated. This occurs while ǫ is high and it has yet to learn a good

formation. After sufficient exploration, the CGRL-Static player is mostly competitive

with the CGRL-Solo player, although it learned a poorer policy in Setup 4.

On the other hand, the performance gains by the CGRL-Full player with dynamic

CCs is large compared to the other players. Hence CCs are obviously crucial for tactical

RTS. It is clear that most learning benefits came from the dynamic CCs. The CGRL-

Full player has more coordination than the CGRL-Solo player. This is also confirmed

in our video which shows the CGRL-Full player overcoming the enemy force simply

by having better coordination among its marines.

4.4.7 Actual Runtime Results

The last experiment investigates runtime performance of the various RL players on a

large multi-agent problem, namely the tactical RTS game. This experiment is conducted

on computers with two quad-core Intel R© Xeon R© E5440 2.83Ghz CPUs with 12MB of

L2 cache, 16GB of main memory, and running Linux. Each RL player is trained using a

single process and a single thread. The CPU time is measured on the time spent within

the RL players for action selection and learning (updating). Each RL player experiences

a total of 10,000 episodes without prior learning. The total CPU time for these episodes

are divided by the total number of time steps to give the mean CPU time per step.

Figure 4.18 shows the runtime results for the experiment of 10 versus 10 aggressive

marines previously depicted in Figure 4.14. The results presented are the average of 10

runs for each RL player. The learning updates for linear function approximation runs in

linear time in the number of features. Therefore, runtime is mostly dominated by joint

action selection using the max-plus algorithm. This is verified by observing the low

runtime of the independent RL player that selects actions independently for each agent.

Notice that the CGRL players are more time efficient than the coordinated RL player

even though they have the additional top level for guiding exploration. There are two

likely reasons. First, the action selection for CC activations is equivalent to independent

action selection as there are no top level features that involve more than two top level
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Figure 4.18: Runtime results of centralized RL players for the experiment in Figure 4.14. The

mean CPU time taken per step for 10,000 episodes averaged over 10 runs.

action variables. Thus the top level does not incur a large runtime overhead during ac-

tion selection. Second, the activated and static CCs allows pruning of the action space

during bottom level joint action selection. Pruning is achieved via constraint propaga-

tion and forward checking described in Section 4.3.4. The CGRL-Full player’s result

further verifies the impact of CCs on pruning as it has additional dynamic pairwise CCs

compared to CGRL-Solo and CGRL-Static. Hence CGRL is able to improve runtime

performance in addition to learning performance.

4.5 Discussion

The results in the previous section indicate that allowing the RL system to guide its

exploration via dynamic multi-agent CCs is effective for improving the learning rate in

MDPs with large joint action spaces. The three experiments progressively incorporated

approximations to deal with increasingly complex domains. Results in Section 4.4.3

demonstrate that the system is stable without any additional factors from features or

approximate action selection coming into play. Throughout the experiments, the results

show that CGRL retains its advantages when integrated with various methods that are

commonly used to handle other essential aspects of RL.
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In detail, CGRL with multi-agent CCs outperforms task based RL with coordination

graphs in terms of beneficial effects from constraining the joint action space during ex-

ploration. The benefits are amplified for larger domains such as RTS where it is difficult

to explore winning episodes. This is because a few marines lost early in the episode can

result in a huge disadvantage such that subsequent good actions taken still result in a

loss. Yet CGRL with multi-agent CCs is able to effectively explore winning episodes.

This is even when some activated CCs are unenforceable as approximate action selec-

tion (max-plus) is used. The coordinated RL players based on coordination graphs had

computational benefits during the selection of exploitative actions. CGRL improves on

this by guiding the selection of exploratory actions in addition to the existing benefits

of coordinated RL. Furthermore, the increase in number of feature weights to learn in

the RTS domain scales reasonably with the use of RFs. Hence the advantage of CGRL

compared with other approaches.

For all the experiments, rewards are provided only for the ultimate goal, that is to

defeat the opponent in the shortest time possible. No fine-grained rewards were de-

composed among agents, nor were any rewards given as sub-goals within episodes. For

example, negative rewards if collision or a bad pass is made in soccer, and positive re-

wards if an enemy marine was destroyed in RTS. This is unlike existing work evaluated

on similar domains (Guestrin et al., 2003; Marthi et al., 2005). However, CGRL was

able to learn better policies than other methods without fine-grained rewards. This is an

advantage as less expert knowledge for specifying rewards is required.

Compared to coordinated RL, CGRL requires the user to pick predicates to be used

as CCs. This additional requirement on the user’s part may appear to be a practical

limitation on domains where it is difficult for the user to identify good CCs. Example

4.4 illustrated that useless CCs do not prevent good policies from being discovered but

they may result in slower learning. Hence, automatically determining which predicates

to use as CCs will be useful for improving practical application and is an important

direction for future work.

Previous works in task based RL for multiple agents require users to define tasks,
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terminating conditions, reward decomposition among tasks and agents, and new fea-

tures for every level in the task hierarchy to represent them (Marthi et al., 2005; Ghavam-

zadeh et al., 2006; Proper and Tadepalli, 2009). They learn high level actions to con-

straint the exploration of primitive MDP actions based on single agent tasks and it is

not straightforward to incorporate coordination among agents.

In contrast, the proposed two level RL system employs declarative CCs and allows

existing predicates for features to be reused as CCs to guide itself. Encoding coordi-

nation knowledge for CCs involves defining predicates with similar semantics as those

used to encode features for function approximation. Hence the user may encode knowl-

edge without having to switch between procedural semantics and declarative semantics.

The work in Proper and Tadepalli (2009) presented a two level method where the

top level assigns tasks and the bottom level learns with the task restrictions. CGRL

differs as the top level explores CC activations that are defined on multiple agents, and

learns two value functions that eliminates the need for a costly nested maximization

when selecting CCs to activate.

The proposed CCs are distinct from methods that learn coordination structure (Kok

et al., 2005) within the value functions themselves. In CGRL, CCs are used to direct

exploration by specifying subsets of the joint action space to be pruned. This is dynam-

ically learned by the top level of CGRL.

In the organization based approach of Zhang et al. (2009), fixed heuristic supervisor

agents biased base agents’ policies with a coarse-grained approach. In contrast, CGRL

employs fine-grained RL at the top level. For example, instead of grouping bad pass

CCs into one large bad pass CC that involves all soccer players, fine-grained CC over

pairs of players were used so that the learning system may activate bad pass for different

pairs based on the current state of those players – the exact states are learned by the top

level in CGRL.

Another branch of works deal with the more restrictive multi-agent problems known

as Markov games where the focus is on handling the non-stationary environment due

to independent learning and the setting is usually adversarial (see Section 3.3.5 page
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42). In Bianchi et al. (2007), heuristics can be provided to influence learning when the

policy selects a maximal action. CCs in CGRL differ as their heuristics do not affect

exploratory actions and are used in an adversarial setting with a much smaller action

space.

4.6 Conclusion

This chapter investigated the use of expert coordination knowledge to improve RL for

multi-agent MDPs. Expert coordination knowledge are expressed as CCs. The sys-

tem’s top level learns to select CCs to guide the bottom level’s exploration towards

better experience. The results demonstrate that the proposed two level CGRL system

leads to better policies in different domains compared to existing approaches such as

coordination graphs. Furthermore, RL with CCs starts off with better performance and

is advantageous for online applications as overall higher goal achievement is attained.

These results show that CGRL has addressed the challenge of exploring large multi-

agent MDPs to a certain extent.

An important benefit of CGRL is that the additional expert knowledge required

by users of the system over existing well-established coordination graph and function

approximation methods is minimal. Existing predicate definitions for features can be

reused to define CCs. Furthermore, similar semantics are used to defined new CCs

enabling them to enrich the current set of features. The use of predicates allows further

relational generalization among features. These benefits addresses the challenges of

model complexity and encoding knowledge for the centralized setting.

For multi-agent domains where communication is free among agents or when the

communication links among agents is fixed, CGRL can effectively address the chal-

lenges stated above. However, critical parts of the system, e.g. the top level and the

learned parameters, require these communication assumptions to hold. The next chap-

ter presents a distributed approach to CGRL that can be applied in domains where com-

munication links between agents change dynamically.
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Chapter 5

Distributed Coordination Guidance

This chapter presents a distributed version of coordination guided reinforcement learn-

ing (CGRL). The focus is on the scenario where agents can communicate with their

neighbours but this communication structure and the number of agents may change

over time. As before, coordination knowledge is expressed as coordination constraints

(CCs) to reduce the joint action space for exploration. However, the top level, that

learns to decide dynamically which CCs are useful, is decentralized among the agents.

This makes it suitable for the communication restrictions. Agents communicate during

action selection while learning is performed within agents using locally updated value

functions. Experiment results on the soccer and tactical RTS game domains show that

distributed CGRL performs better than other existing approaches for dynamic commu-

nication. Part of this work has been published in Lau et al. (2011).

5.1 Motivation

Learning in collaborative multi-agent domains may require agents to communicate to

achieve the global goal. There exists a multitude of existing works for learning under

different communication assumptions (Panait and Luke, 2005, Section 4). In the sim-

plest case, there is no cost to communication and the communication structure among

agents can be modelled as a connected coordination graph (CG). Agents are allowed to

communicate directly through the edges of CG and as the CG is connected, all agents
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(a) (b)

(c) (d)

Figure 5.1: Example of dynamic communication structure in soccer (for grey and black teams)

where communication restricted to agents within a Manhattan distance of 5. Lines

between players indicate the communication links within the soccer team.

will be able to eventually route messages between any pair of agents. This is the multi-

effector case where centralized approaches can be applied directly by modelling the

problem as a factored MDP as we have done in the previous chapter. Note that al-

though the learning problem may be centralized, distributed computation may be used.

The other extreme case of communication is when there is no direct communication

allowed between agents. Communication itself is an action that has to be handled as

part of the learning problem.

This chapter deals with problem domains where direct communication among agents

are allowed and the scenario is fully cooperative, but the communication structure

changes dynamically with the state. An example for the soccer domain is given in

Figure 5.1 where the lines between agents indicate the links in their communication

structure. In this case, agents may communicate with different neighbouring agents at

different times, forming different subgroups, i.e., disjoint CGs. Such problems can oc-

cur when agents are mobile entities that have a certain communication range or are part
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of a network of computers where there may be intermittent disruption to communication

links between them. Naturally, parameters to be learned have to be distributed among

them. Hence critical learning components of the system should not be centralized in

any one agent.

Many existing works focus on flat distributed learning in domains with varying as-

sumptions on communication where agents learn local policies or local value functions

(Claus and Boutilier, 1998; Schneider et al., 1999; Lauer and Riedmiller, 2000; Peshkin

et al., 2000; Russell and Zimdars, 2003). However, few works have incorporated expert

knowledge to guide learning in domains with changing communication structure. One

such work previously discussed is the task based method presented in Ghavamzadeh

et al. (2006) where communicating subtasks are new actions for agents to consider.

Other task based approaches are centralized methods (Marthi et al., 2005; Proper and

Tadepalli, 2009). Further, the organization based approaches are evaluated on fixed

network problem domains (Zhang et al., 2009, 2010) where the extra agents used to

supervise other agents can be pre-located somewhere within the network. These con-

siderations constitute our motivation to devise new method to incorporate coordination

knowledge in a distributed RL system to improve the learning rate for problems with

dynamic communication.

5.2 Aims & Approach

The main aim of this chapter is develop a distributed learning system that may leverage

on expert coordination knowledge to guide exploration during learning. To this end,

we present a distributed CGRL system applicable to domains whereby agents have a

dynamic communication structure. At different time steps, agents may observe the

state variables and coordinate actions with the current neighbouring agents. Therefore,

we focus on resolving the challenge of improving the overall learning rate of the system

under limited communication (see Section 1.2.2 page 4).

Distributing coordination guidance entails three main challenges. First, as the com-
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munication structure between agents is fluid, the top level of the system that learns

to employ coordination knowledge in different states must not critically reside in any

agent. Second, the parameters to learn must be distributed. Agents should be able to

make use of any coordination they have learned when they can communicate with oth-

ers, otherwise they should be able to function effectively on their own. Third, learning

must not detract from the original goal. The original global reward signal of the system

should be maximized.

The first and third challenges are addressed by formulating decomposed value func-

tions to be learned. The learning updates for these value functions are local to each agent

that involve a decomposed reward signal from the original signal. The second challenge

is handled by local update equations for updating the local parameters of each agent’s

distributed value function. Then, message passing methods from distributed constraint

optimization literature can be used to select joint actions that are limited by the current

communication restrictions.

The distributed two level system is decentralized in the sense that learned parame-

ters are split among the agents. Hence the loss of one agent (e.g. in an RTS game) or the

separation of agents into subgroups do not render the system ineffective. The commu-

nication structure is modelled as a coordination graph among agents so that they may

coordinate if they can communicate (see Section 3.2 page 31). As such the proposed

approach is different from methods that learn when such coordination is (un)necessary

(Kok et al., 2005). We next review the learning problem formulation for decentraliza-

tion with communication before describing distributed coordination guidance.

5.3 Decentralized Markov Decision Process

The decentralized Markov decision process (DEC-MDP) formulation (Bernstein et al.,

2002) is employed for the multi-agent RL system as follows. A DEC-MDP is a tuple

〈S,A,P ,R〉 such that given N number of agents:

• S = S0×S1× ...×SN is the state space that is factored into state variable S0 that
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is observable by all agents and S1, ..., SN variables that are local for each agent.

A state is the tuple s = 〈s0, s1, ..., sN〉 ∈ S .

• A = A1 × ...×AN is the joint action space factored into N action variables, one

for each agent. A joint action is the tuple a = 〈a1, ..., aN〉 ∈ A.

• P : S×A×S 7→ [0, 1] is the global transitional probability model, i.e., P(s′|s, a)

is the probability of transiting to state s′ after the joint action is taken in state s.

• R : S × A × S 7→ R is the global reward model that gives the reward received

for taking action a in state s and reaching state s′. R is decomposable into a sum

of local rewards that we will present later in Equation 5.4.

Under different state values in S , agents have a different communication structure.

That is, s ∈ S defines a coordination graph (CG) such that a vertex exists for each

agent and an edge exists between agents that can communicate in s. Each agent, i, may

identify its set of neighbours, Γ(i), in the CG using state values s0 ∈ S0 and si ∈ Si

and send messages to them. Hence agents may coordinate and access the local state

and action variables of their neighbours. Based on this communication restriction, we

define the state tuple si and action tuple ai that are accessible by agent i. The tuples

si and ai are projections of s ∈ S and a ∈ A respectively on agents in Γ(i) ∪ {i}.

This is illustrated for the action variables in Figure 5.2 for four agents with a given

CG. In general, the CG may consists of disjoint sub-graphs and agents within the same

sub-graph may synchronize their actions by sending messages.

A2

A3

A4A1 A5

a1 = 〈a1, a2〉

a2 = 〈a1, a2, a3, a4〉

a3 = 〈a2, a3, a4〉

a5 = 〈a4, a5〉

a4 = 〈a2, a3, a4, a5〉

Figure 5.2: Example of the primitive action tuples accessible by each agent for a coordination

graph that specifies the current communication links between agents.
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A solution to the DEC-MDP is a global policy π : S 7→ A. This policy can be

expressed in terms of a global action value function that is the expected discounted

sum of rewards, r, when taking a in s at time t and discount rate γ, i.e., Qπ(s, a) =

Eπ{
∑∞

t′=t γ
t′−trt′ |s, a}. This is written as the global Bellman equation,

Qπ(s, a) =
∑

s′∈S

P(s′|s, a)[R(s, a, s′) + γQπ(s′, π(s′))] (5.1)

Then, we may express the maximizing policy as π(s) = argmax
a∈A(s)Q

π(s, a), where

A(s) ⊆ A indicates that certain actions may be disallowed in the current state. To

learn an optimal policy π∗ we need only to learn the optimal action value function Q∗

directly, without actually learning the model P (Section 2.2.1 page 17). This is useful

in the case of DEC-MDP as it frees the user from defining a decomposable transition

model for P which can be difficult for multi-agent problems.

For distribution, the global policy π needs to be expressed as local parts, one for

each agent. This can be done by decomposing Qπ into a sum of local components, Qπ
i ,

i.e.,

Qπ(s, a) =
N∑

i=1

Qπ
i (si, ai) (5.2)

where si, ai contain the state and action values of agent i and its current neighbours.

Because the CG is not static, in general the domain of Qπ
i may include all the possible

projections of s and a. For example, if agents are close enough such that the CG is

fully connected, ai = a, and if they are far apart such that none may communicate, then

ai = ai.

The global policy can be learned by updating local value functions Qπ
i using the

local interactions with the environment (Russell and Zimdars, 2003; Kok and Vlassis,

2004),

Qπ
i (si, ai)← Qπ

i (si, ai) + α[ri + γQπ
i (s

′
i, a

′
i)−Q

π
i (si, ai)] (5.3)
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where a′
i is a projection on the global joint action a′ chosen from the global policy π,

α is the step size parameter, and ri = Ri(si, ai) is the reward observed by agent i such

that the global reward is written as,

R(s, a, s′) =
N∑

i=1

Ri(si, ai, s
′
i). (5.4)

Note that in our problem formulation, the CG is not fixed. This indicates that the

state and action variables in s′i, a
′
i may not correspond to those in the previous time step,

si, ai. We will explain how this is handled as we describe our system next.

5.4 Distributed two level System

A conceptual overview of the proposed distributed CGRL (DistCGRL) system archi-

tecture is shown in Figure 5.3 for four hypothetical agents, A1, ..., A4, that are able to

Top

Bottom

A2

CCs

s2, r2

s2, r2 a2

A3

CCs

s3, r3

s3, r3
a3

A4

CCs

s4, r4

s4, r4 a4

A1

CCs

s1, r1

s1, r1 a1

Environment

W1 W2 W3 W4

U1 U2 U3 U4

Figure 5.3: Conceptual architecture of the DistCGRL system with four agents. Grey boxes

are the agent boundaries. Within each agent, two white boxes indicate its learning

components. Those at the top are grouped as the top level and similarly for the

bottom. For each agent, top level components observe the same state and reward as

the bottom level.
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communicate with their adjacent agents (double headed arrows). Each white box rep-

resents a learning component, grouped into global top and bottom level components

(dotted boxes). At each time step, each agent’s top level component decides on the

coordination constraints (CCs) to activate for the bottom level component. These CCs

may be communicated between the agents involved in them. Then, the bottom level

component takes into account the CCs in selecting the actual joint action 〈a1, a2, a3, a4〉

to be taken in the environment. Both levels’ components observe the next local state

and local reward and update themselves internally.

The concept of CCs and their close relationship with predicates used to define

propositional features for function approximation was previously discussed in Section

4.3.5 page 80. We proceed to describe their use in DEC-MDPs for the rest of this

section.

5.4.1 Augmented DEC-MDP

As with the centralized CGRL in the previous chapter (see Section 4.3.1 page 56), the

DEC-MDP is augmented with the choices of CCs as the top level actions. Let there

be K number of CCs. Then the top level joint action space is A0 such that an action

b ∈ A0 is the tuple 〈b1, b2, ..., bK〉. Each variable in the tuple has the domain {0, 1} that

represents deactivation or activation of the CCs. Then, the augmented DEC-MDP is the

tuple 〈S ′,A′,P ′,R′〉 such that,

• S ′ = AΘ × S is the state space, where AΘ = A0 ∪ {Θ} and Θ is a dummy

constant value that indicates that the system is in the top level. A state is written

as 〈b, s〉 ∈ S ′.

• A′ = AΘ ∪A is the action space that includes both top and bottom level actions.

• R′ : S ′ ×A′ × S ′ 7→ R is the reward model that like in Equation 4.1 page 56, it

is zero for all top to bottom state transitions and otherwise, based on the original

DEC-MDP’sR where each agent i receives ri from the environment at each time

step.

• P ′ : S ′ × A′ 7→ S ′ is the transition probability model. Similar to the augmented
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MDP (see Equation 4.2 page 57), it is deterministic when transiting from top to

bottom level otherwise it is the same as the original DEC-MDP’s P .

The solution to the augmented DEC-MDP is the two level global policy written in

two parts: a top policy and bottom policy, i.e.,

ψ′(〈b, s〉) =







ψ(Θ, s) if b = Θ

ψ(b, s) otherwise, i.e., b ∈ A0

(5.5)

where ψ(Θ, s) ∈ A0 and ψ(b, s) ∈ Ab. The bottom level policy ψ(b, ·) only selects

actions in the primitive joint action space constrained by b in state s. As was in the

centralized case, the control policy used by the agents acting in the environment is

given by,

π(s) = ψ(ψ(Θ, s), s) (5.6)

which indicates: first choosing a top level action and then, choosing a bottom level

primitive action. The global top and bottom policies correspond to the dotted boxes in

Figure 5.3. However, in the DEC-MDP case, the global policy consists of local parts

that are distributed among agents. We describe the value functions for the policies next.

5.4.2 Value Functions Within Agents

The solution to the DEC-MDP is represented by a set of local policies that together

constitute the global policy. To decompose the global policies, we use the approach of

decomposing their value functions among agents as previously described in Equation

5.2, but for both levels of the overall multi-agent learning system.

Let bi be the top level action tuple for agent i that is a projection on b. Unlike

the primitive joint actions where one domain Ai exists for each agent i, the individual

top level actions bk from b = 〈b1, b2, ..., bK〉 may be related to multiple agents. Hence

bi is the action tuple 〈bi,1, ..., bi,n〉 such that the n number of CCs corresponding to
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A2

A3

A4A1 A5

b1 = 〈b1〉

b2 = 〈b1, b2, b4〉

b3 = 〈b2, b3〉

b5 = 〈b5〉

b4 = 〈b3, b4, b5〉

b1

b2

b4

b3

b5

Figure 5.4: Example of top level action tuples accessible by each agent. There are 5 pairwise

CCs corresponding to b1, ..., b5. Each agent may access CCs that they are involved

in and that involves a current neighbour in the CG.

bi,1, ..., bi,n involve only agent i and its current neighbours in Γ(i). We illustrate this

with an example.

Example 5.1 (Distributing top level actions). Consider Figure 5.4 with the same four

agents and communication links as Figure 5.2. Suppose there are only CCs involving

pairs of agents. These CCs correspond to the edges in the CG shown in the graph. The

top level action tuples b1, ...,b5 that each agent may access are shown at each agent

vertex of the graph. There may be other pairwise CCs, for example, one for agents 1

and 3. However, because these two agents are not neighbours, these CCs are not part of

the accessible top level actions in the current state.

The global action value functions for the top and bottom policies are given by the

Bellman equations,

W (s,b) =
∑

s′

P(s′|s, ψ(b, s))[R(s, ψ(b, s), s′) + γW (s′, ψ(Θ, s′))] (5.7)

U(s, a) =
∑

s′

P(s′|s, a)[R(s, a, s′) + γW (s′, ψ(Θ, s′))] (5.8)

that correspond to Equations 4.56 and 4.57 on page 67 respectively1. The functions are

in turn additively decomposed into distributed functions, one for each of the N agents,

W (s,b) =
N∑

i=1

Wi(si,bi) (5.9)

1We have omitted the two level policy ψ from the superscripts of these functions.
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U(s, a) =
N∑

i=1

Ui(si, ai). (5.10)

Based on these agent decompositions, each agent i carries its share of the learned Wi

andUi functions within themselves as shown in Figure 5.3 where the grey boxes indicate

the boundaries of individual agents. Next we discuss distributed control.

5.4.3 Distributed Control

Localized Policies

The top and bottom levels’ policies are represented by local parts such that each group

of agents that belong in the same connected CG will participate in selecting actions for

that group. In the extreme case where all agents can communicate in the current state,

this is the same as the centralized case. A policy that selects the maximum action will

maximize over all variables in the action value function. For the more general case

where the CG is disjoint, only sub-groups of agents will be maximized as shown in the

example below.

Example 5.2 (Localized policies). Figure 5.5 depicts, in simplified terms, states in an

RTS game with the white team consisting of four marines and the grey team of two. In

Figure 5.5a the marines are fully connected hence the entire sum of local functions, W

and U , are used to select joint actions for agents 1 to 4. However, in the state shown in

Figure 5.5b, the marines have moved apart into two groups. Assuming we are selecting

the maximal action and CCs between pairs of agents, for the top level action,

ψ(Θ,b) = argmax
b∈A0

W (s,b) = argmax
b∈A0

4∑

i=1

Wi(si,bi) = 〈b
∗
1,2, b

∗
3,4〉

where we can separately maximize in two parts,

b∗1,2 = argmax
b1,2

W1(s1, b1,2) +W2(s2, b1,2),

b∗3,4 = argmax
b3,4

W3(s3, b3,4) +W4(s4, b3,4),
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A1

A2

A3 A4

(a) Connected

A1

A2

A4

A3

(b) Disjoint

Figure 5.5: Example of policies as local parts for a simplified tactical RTS game. Communica-

tion links shown as lines between marines. The four marines (agents) in the white

team in the state depicted in (a) is fully connected. In (b) the marines are in two

disjoint sub-graphs.

that are the maximal top level actions for (de)activating the CCs between the pairs of

agents. Similarly for the maximal primitive action we have,

ψ(b∗, s) = argmax
a∈Ab∗

U(s, a) = argmax
a∈Ab∗

4∑

i=1

Ui(si, ai) = 〈a
∗
1, a

∗
2, a

∗
3, a

∗
4〉

where b∗ = 〈b∗1,2, b
∗
3,4〉, such that we separately maximize,

〈a∗1, a
∗
2〉 = argmax

〈a1,a2〉∈A
1,2

b∗
1,2

U1(s1, a1, a2) + U2(s2, a1, a2),

〈a∗3, a
∗
4〉 = argmax

〈a3,a4〉∈A
3,4

b∗
3,4

U3(s3, a3, a4) + U4(s4, a3, a4),

where Ai,jb∗i,j = Ai × Aj subjected to the (de)activation of the CC, b∗i,j .

Example 5.2 demonstrates how the local action value functions within agents for the

top and bottom levels may be used to localize the policies for control. In general, agents

within the same connected CG may synchronize their local policies. For example, if ǫ-

greedy policies are used, the agents in the same group may choose to select a random

exploratory joint action or exploit the current value functions. Note that the decomposed

functions Wi and Ui may in turn be further decomposed into sub-components using
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features for function approximation.

Computing Joint Actions

We now turn to how the selection of joint actions are computed. Suppose the top level

actions have already been selected, i.e., the CCs have been activated. Computing the

maximal bottom level action is to maximize the objective function2 for a COP,

ψ(b, s) = argmax
a∈Ab(s)

U(s, a) = argmax
a∈A

gb(s, a) (5.11)

where Ab(s) is the joint action space constrained by b in s, and the objective function,

gb, that enforces these constraints is,

gb(s, a) = U(s, a) + C0(s, a) + Cb(s, a) (5.12)

=
N∑

i=0

[Ui(si, ai) + C0i(si, ai) + Cbi
(si, ai)] (5.13)

=
N∑

i=0

gbi
(si, ai), (5.14)

whereC0i are the sum of static CCs involving si, ai from an agent’s neighbours, andCbi

is the sum of dynamic CCs activated by the top level action tuple bi accessible by each

agent in the state s. The CCs return −∞ if violated or zero otherwise. As described

in Example 5.2, the local gbi
functions for each agent i are summed for agents that are

connected in the CG for finding the maximal action.

COPs using the the local functions gbi
can be solved by distributed COP meth-

ods. This typically involves message passing among neighbours. If each C0i , Cbi
, and

Ui can be additively decomposed into components involving up to two agents in their

scope, the max-plus algorithm described in Section 4.3.4 page 77 can be used directly

on each disjoint CG with minor adaptations (Kok and Vlassis, 2006). Otherwise, for

components involving more agents, the max-sum method can be used (Stranders et al.,

2010). These methods are approximate for CG with cycles, hence some CCs may not

2See also the centralized case in Equation 4.70 page 74.
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A1 A2

A3

A4 A5

A1, A2

A2, A3

A2, A4

A3, A4

A4, A5

Original CG

Top Level CG

Figure 5.6: Example of the top level coordination graph derived from the original.

be enforceable. Nevertheless they have been show to be effective in practice.

Next, we deal with the question of who makes the decisions for CCs that involve

multiple agents. Consider Figure 5.6 where each agent is represented as a vertex in

the original CG from Figure 5.4. Suppose that each edge corresponds to a pairwise

CC. Then, each vertex in the top level CG corresponds to the top level action variable

for one CC. The edges in the top level CG indicate that there exists some pairwise

component of the top level function W that involves two CCs. Hence, a similar agent

decomposable objective function as Equation 5.12 can be used to compute the top level

action, ψ(Θ, s).

For each vertex of the top level CG, we use a scheme where one predetermined

agent in the vertex computes the activation of the CC while the other agents relay their

local values of Wi that is relevant to the CC as well as messages from their neighbour-

ing agents. With this scheme, the described distributed COP solutions can be used to

compute ψ(Θ, s) using local Wi values. Note that the restriction that only neighbouring

agents may communicate still holds. If no component in W exists that is defined on

multiple top level action variables, the top level CG has no edges and the activation of

each CC can be selected independently by each group of involved agents. This turns

out to be effective as shown by the experiment results in Section 5.5.

Finally, CCs that are defined on agents currently out of communicable distance

always remain deactivated. This is because agents will not be able to ensure that the
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CCs will be enforced between them. Hence the action variables that represent CCs in

the local top level action bi for agent i will only be present only if the agents that each

CC refers to are current neighbours of the agent. This was shown in Figure 5.4.

5.4.4 Local Function Representation & Updating

Representing the local value functions Wi and Ui for each agent i with tabular func-

tions in the general case results in poor scalability. This is because when agents are

close enough, the tables require storage space that is of size exponential in number

of agents. In practice, we represent each agent’s value functions using linear function

approximation. Features that involve multiple agents may be scaled according to the

number of involved agents. The next example shows how propositional features (PFs)

from predicates may be divided among agents.

Example 5.3 (Local value functions). Suppose we have three agents, 1, 2, and 3. Three

CCs are defined for pairs of agents, i.e., b1,2, b1,3, b2,3. Given the predicate ρ that may

be bound to two agents i, j giving propositions to represent the value functions, the top

level functions Wi may be represented as,

W1(s1,b1) = w1,2

local feature
︷ ︸︸ ︷

(0.5)ρ(s1, s2, b1,2)+w1,3

local feature
︷ ︸︸ ︷

(0.5)ρ(s1, s3, b1,3)

W2(s2,b2) = w2,1(0.5)ρ(s1, s2, b1,2) + w2,3(0.5)ρ(s2, s3, b2,3)

W3(s3,b3) = w3,1(0.5)ρ(s1, s3, b1,3) + w3,2(0.5)ρ(s2, s3, b2,3).

where wi,j are weights to be learned and 0.5 normalizes the pairwise propositions as

each pairwise proposition will appear twice in the global top value function. Hence,

when the above are summed, we obtain

W1(s1,b1) +W2(s2,b2) +W3(s3,b3)

=
w1,2 + w2,1

2
ρ(s1, s2, b1,2) +

w1,3 + w3,1

2
ρ(s1, s3, b1,3) +

w2,3 + w3,2

2
ρ(s2, s3, b2,3)

= W (s,b)
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that is the joint top level value function. The predicate ρ(si, sj, bi,j) is zero if the agents

i and j are too far apart to communicate in s.

The above example showed how PFs can be divided among individual agent’s top

level functions. The bottom level value functions Ui can also be approximated in the

same way. A similar form of function approximation using value rules for the flat

learning of the action value function was also presented in Kok and Vlassis (2004). If

only features that involve up to two agents are used, the number of parameters (weights)

that each agent needs to learn and store scales linearly with the number of agents in the

problem. Hence agents do not need to update tables of exponential size.

Now, we update each local value function with the local temporal difference er-

ror using the local reward. Let the local value functions be linearly approximated as

Wi(si,bi) = ~wWi
· ~fWi,si,bi

and Ui(si, ai) = ~wUi
· ~fUi,si,ai

where ~wWi
and ~wUi

are local

weights and ~fF,si,bi
= 〈f1(si,bi), ..., fn(si,bi)〉 are feature values for an approximated

function, F . The local update equations for both levels are,

~wWi
← ~wWi

+ α[ri + γWi(s
′
i,b

′
i)−Wi(si,bi)]~fWi,si,bi

(5.15)

~wUi
← ~wUi

+ α[ri + γWi(s
′
i,b

′
i)− Ui(si, ai)]

~fUi,si,ai
(5.16)

where b′
i is the top level joint action of agent i and its neighbours projected from the

global top level action, b′ = ψ(Θ, s′). We use ǫ-greedy policies for ψ where an ex-

ploratory action is chosen with ǫ probability and a maximal action with 1−ǫ probability.

These policies are GLIE when ǫ decreases over time. Note that we have not used the

primitive action a′ selected for s′ by the policy as each Wi already encodes the current

local estimate of the expected return.

The variables where the values in si, ai, and bi come from may be different in two

consecutive states as the agents’ neighbours may have changed. To handle this problem

of dynamic communication changes, we only require each feature fj to return zero when

there exists variables in the scope(fj)
3 that do not have corresponding values present in

3The scope of a function is the set of variables from its domain
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si, ai, or bi. Hence, the weights in Equations 5.15 and 5.16 that involve more than one

agent will only be updated for the duration in which the agents remain as neighbours.

5.4.5 Agent’s Algorithm

The DistCGRL algorithm executed by each agent is given in Algorithm 5.1. At

each time step, each agent observes their state si and communicates it to their neigh-

bouring agents during action selection in Lines 3, 11, 16, and 24. In the process, the

Algorithm 5.1 DistCGRL algorithm for one agent.

Remarks: Values bi, ai, si are from state and action variables of the current neighbours.

Value ai is the primitive action for agent i. Local state si is terminal if episode has ended

or agent i is removed from the episode.

1: Observe initial state si
2: if appointed(i) then # agent appointed to choose some top level action

3: bi ← ψ(Θ, s) # select top action using distributed COP with Wi

4: Send bi
5: else

6: Relay messages, receive bi
7: end if

8: Receive si as a consequence of the previous step.

9: ~w′
Ui
← ~wUi

# backup weights

10: Set weights in ~wUi
to −∞ if activated in b′

i.

11: ai ← ψ(b, s) # select primitive action using distributed COP with Ui
12: ~wUi

← ~w′
Ui

# restore weights

13: while ¬terminal(si) do

14: Take action ai, observe reward ri and state s′i
15: if appointed(i) then # agent appointed to choose some top level action

16: b′
i ← ψ(Θ, s′) # select top action

17: Send bi
18: else

19: Relay messages, receive bi
20: end if

21: Receive s′i as a consequence of the previous step.

22: ~w′
Ui
← ~wUi

# backup weights

23: Set weights in ~wUi
to −∞ if activated in b′

i.

24: a′
i ← ψ(b′, s′) # select primitive action

25: target← ri + γWi(s
′
i,b

′
i) # local agent updates

26: ~wWi
← ~wWi

+ α[target−Wi(si,bi)]~fWi,si,bi

27: ~wUi
← ~w′

Ui
# restore weights

28: ~wUi
← ~wUi

+ α[target− Ui(si, ai)]~fUi,si,ai

29: si ← s′i ; bi ← b′
i ; ai ← a′

i

30: end while
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agents receive the joint actions bi and ai. For the top level action selection in Lines 3

and 16, agents appointed to select CCs on behalf of other neighbouring agents selects

the CCs while other agents relay messages from other appointed agents and also their

top level component functions that involve the CC. The target to update towards (Line

25), computed at each time step, uses only the local reward experienced by the agent.

Furthermore, no more communication is necessary during updating at Lines 25–28 as

the joint state and actions of each agent and its neighbours have been received during

action selection.

Like in centralized CGRL (see Section 4.3.5 page 80), the CCs may be represented

by PFs (i.e., bound predicates). Their effects on the distributed COP’s objective function

(Equation 5.12) can be achieved by setting the weights of activated CCs to−∞ (at Line

22) and restoring their weights during updating (at Line 27). This setting of weights

does not require communication since the agents know which CCs are activated during

action selection.

5.5 Experiments with Dynamic Communication

Two domains of simplified soccer and tactical RTS are used to evaluate our proposed

approach. Communication is limited to a certain threshold distance between agents. We

plot average global reward for blocks of episodes to visualize the quality of the global

policy achieved by the local value functions. We also plot the cumulative average global

reward to visualize overall goal achievement in the online setting. An important point

to note is that all plots start from the point one and not at zero. Depending on the scale

of each individual plot, this may refer to a different number of initial episodes.

5.5.1 Agent Setup

We compare four types of RL agents that use linear function approximation for their

value functions.
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1. Independent learners – each agent learns its own value function without any com-

munication and select their actions individually (Claus and Boutilier, 1998).

2. Coordinated learners – each agent has a decomposed value function and performs

on-policy updates using Equation 5.3 with a similar gradient as Equation 5.16.

This is akin to the methods presented in Russell and Zimdars (2003); Kok and

Vlassis (2004).

3. DistCGRL-Solo learners – each agent uses two level learning to select CCs to

guide exploration. This is a representative of the distributed task based methods to

compare the effect of guiding exploration using only individual agent constraints.

4. DistCGRL-Full learners – each agent uses the full DistCGRL method with all

CCs.

For both soccer and RTS domains, the independent learner uses features defined on

single agents. Coordinated learners use single and pairwise features that are the same

as those used in the bottom level value functions of DistCGRL. No relational features

are used as learning parameters are distributed among agents. Hence we only use PFs

in conjunction with other normal features. Each agent uses only features described

in Appendix A page 229 that it is involved in to represent its local value function.

Distributed joint action selection is performed using the max-plus algorithm limited

to 10 iterations. RL parameters are set based on the same considerations outlined in

Section 4.4.1 page 88.

5.5.2 Results For Soccer

The soccer domain used the same game dynamics, scripted defensive, and aggressive

opponents as described in Section 4.4.2 page 90. However, we use a larger variant of

the game previously shown in Figure 5.1. The soccer field is a grid world of 15 × 10

units. Each team has 8 players. Players may communicate within a Manhattan distance

of 5 as shown by the lines between players in the various states in Figure 5.1. This is

different from the centralized soccer experiments where the entire team is part of the

same CG in most states.
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RL player Weights Total CCs Static CCs Dynamic CCs

Independent 1888 16 16 0

Coordinated 3120 16 16 0

DistCGRL-Solo 4016 72 16 56

DistCGRL-Full 7040 212 72 140

Table 5.1: Quantity of feature weights and CCs for distributed soccer experiments with 8

agents.

The global reward signal gives 1 for a win and −1 for a loss. This is decomposed

into individual agent reward signals such that the agent that scores receives 1 while

agents nearest to the home goal receive −1 equally divided among them for a loss.

Hence during a loss, if only one agent is the nearest to the goal, it receives the full −1

reward while the other agents receive zero. All learners used: discounting of γ = 0.99,

ǫ = {1.0, 0.01, 0.998}, and α = {0.01, 10−4, 0.998}; where the first value indicates the

initial parameter setting, the second indicates the final and the third indicates the decay

rate per episode.

The quantities of feature weights and CCs are given in Table 5.1. The types of

features and CCs are the same as the centralized experiment (see Section A.1 page 230)

except that they are now scaled to 8 agents and some features are duplicated across

agents due to distribution.

The results against the defensive opponent are given in Figure 5.7. In terms of qual-

ity of the global joint policy in Figure 5.8a, we see that the DistCGRL-Full learners

reach near perfect policies (final win rate of 98.9%) a few hundred episodes earlier

than the DistCGRL-Solo learners. For overall performance in Figure 5.8b, we see that

DistCGRL-Full achieves the best global goal followed by DistCGRL-Solo. Surpris-

ingly, the coordinated learners do poorer than the independent learners. This may in-

dicate that overcoming the defensive opponent does not require very high coordination

among the soccer players. Overall the DistCGRL learners perform better than coordi-

nated and independent learners.

The results against the aggressive opponent are given in Figure 5.8. From Figure

5.8a, we see that the DistCGRL-Solo and DistCGRL-Full learners have learned better

policies than the coordinated and independent learners throughout the 10,000 episodes
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Figure 5.7: Distributed soccer results for defensive opponent. 10,000 episodes averaged over

10 runs for each type of learners.
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Figure 5.8: Distributed soccer results for aggressive opponent. 10,000 episodes averaged over

10 runs for each type of learners.
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with the DistCGRL-Full learners having higher average reward than the DistCGRL-

Solo learners. In Figure 5.8b, we see that the coordinated learners outperform the inde-

pendent learners and the DistCGRL learners are much better than the flat learners. This

indicates that coordination guidance can be useful in the distributed setting.

5.5.3 Results For Tactical Real-Time Strategy

The tactical RTS game we use for this section is similar to the one in Section 4.4.5 page

97. We pit the RL learners against unpredictable enemy marines and aggressive enemy

marines. For each of the two setups, both teams have 10 marines. Communication is

limited to an Euclidean distance of 30 points within the 240× 240 point map.

The global rewards of −0.1 per time step and 1000 per win is decomposed among

marines as follows. At each time step, marines receive the global reward, equally di-

vided among the number of surviving marines. Marines that have been destroyed do

not receive any reward and no longer participate in the rest of the episode.

Both RTS setups used no discounting (γ = 1). The learning step size and explo-

ration parameters are given in Table 5.2 while the quantities of feature weights and CCs

are given in Table 5.3. Unlike the centralized CGRL, no relational features were used as

the learning parameters are completely distributed among the marines. Hence the num-

ber of weights to learn is much larger in the distributed case. The features descriptions

are given in Section A.2 page 235.

Setup
exploration (ǫ) step size (α)

initial final decay initial final decay

Unpredictable 1.0 0.01 0.998 0.01 10−4 0.998

Aggressive 0.5 0.01 0.998 0.01 0.01 N.A.

Table 5.2: Table of parameters for distributed RTS experiments.

Learners Weights Total CCs Static CCs Dynamic CCs

Independent 350 30 30 0

Coordinated 1970 30 30 0

DistCGRL-Solo 2140 90 30 60

DistCGRL-Full 4660 225 75 150

Table 5.3: Quantity of feature weights and CCs for distributed RTS experiments with 10 agents.
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Figure 5.9: Distributed RTS results for 10 versus 10 unpredictable marines. 10,000 episodes

averaged over 10 runs for each type of learners.
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Figure 5.10: Distributed RTS results for 10 versus 10 aggressive marines. 10,000 episodes

averaged over 10 runs for each type of learners.
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The results for 10 versus 10 unpredictable marines are shown in Figure 5.9. In terms

of quality of global policies in Figure 5.9a, the DistCGRL learners have better policies

than the coordinated and independent learners. The DistCGRL-Full learner has the best

policy followed by DistCGRL-Solo and coordinated learners respectively. From Figure

5.9b the DistCGRL learners attained higher overall goal achievement with the same

trend as the quality of policy shown by Figure 5.9a .

The results for the more difficult setup of 10 versus 10 aggressive marines are shown

in Figure 5.10. A similar trend for the quality of policy is observed for the DistCGRL

learners over the rest. The plots in Figure 5.10b show that for online learning, the

DistCGRL-Full approach has a clear advantage over DistCGRL-Solo that uses only

individual agent constraints.

5.5.4 Comparison with Centralized Approach

For the RTS game in the previous section, we notice that the gains from DistCGRL

over flat approaches are not as significant as the gains in the centralized CGRL (see

Section 4.4.6 page 98) that employs relational features (RFs). To illustrate we plot

together the distributed and centralized results for the 10 versus 10 aggressive marines in

Figure 5.11 for CGRL (CentCGRL) and the coordinated learners. An extra centralized

CGRL learner (CentCGRL-PF) that uses only propositional features (PFs) instead of

RFs is included. The parameter settings for the distributed and centralized learners are

displayed in Table 5.4 while the amount of feature weights are compared in Table 5.5

where both CentCoordinated and CentCGRL uses RFs. The quantity and types of CCs

used are the same for distributed and centralized cases (see coordinated and DistCGRL-

Full in Table 5.3).

Learners
exploration (ǫ) step size (α)

initial final decay initial final decay

Centralized 1.0 0.01 0.998 0.01 10−4 0.998

Distributed 0.5 0.01 0.998 0.01 0.01 N.A.

Table 5.4: Table of parameters for centralized and distributed RL for 10 versus 10 aggressive

marines.
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Learners Weights Ratio to Centralized with RFs

CentCoordinated 53 1.00

DistCoordinated 1970 37.17

CentCGRL 98 1.00

CentCGRL-PF 2500 25.51

DistCGRL 4660 47.55

Table 5.5: Comparing quantity of feature weights between centralized and distributed RTS ex-

periments with 10 agents.

There are two main insights provided by Figure 5.11. First, notice that for the

coordinated learners, the centralized version (CentCoordinated) performs poorer than

the distributed version (DistCoordinated). This may be due to a few factors. For one,

the RFs used in CentCoordinated may have over generalized too quickly, coupled with

coarse global rewards that are not agent decomposed, CentCoordinated converged too

quickly to losing as fast as possible. Having fine-grained agent decomposed reward and

distinct PFs may have helped to better DistCoordinated’s performance. Next, the result

could be due to the step size and exploration parameter settings. The DistCoordinated

learners exploits earlier than CentCoordinated allowing it to experience more winning

episodes.

For the second insight, we see the reverse of the first when comparing central-

ized and distributed CGRL learners. The centralized CGRL (CentCGRL) outperforms

DistCGRL in both quality of the solution (Figure 5.11a) and overall goal achievement

(Figure 5.11b) although it only learned 98 weights compared to 4660. The result of

CentCGRL-PF shows that centralized CGRL with PFs performs poorer than central-

ized CGRL with RFs. This shows that for RTS, the RFs are very useful for generalizing

the top level of the system that selects CCs.

Furthermore, DistCGRL eventually learns a better policy than CentCGRL-PF as

seen in Figure 5.11a. This can be attributed to the fined-grained agent decomposed

rewards that provide a more precise reward signal to individual agents resulting in bet-

ter policies as compared to coarse-grained global rewards. To illustrate, consider the

scenario where a third of the marines approaches the enemy without opening fire and

is destroyed, while the rest overcomes the enemy team with formation and fire-power.
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Figure 5.11: Comparing distributed and centralized learning in RTS for 10 versus 10 aggressive

marines. 10,000 episodes averaged over 10 runs for each type of learners.
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With agent decomposed rewards, only the surviving marines will receive a large positive

reward while the third of the marines that did nothing useful would have only received

the -1 negative reward at every time step they were alive. In contrast, for the centralized

learners, the entire team would have received a large positive reward regardless of indi-

vidual performance. Hence it will be harder to improve individual agents’ behaviours

from the global reward signal.

5.5.5 Actual Runtime Results

Next, we analyse the runtime performance of distributed CGRL with centralized CGRL

and the other coordinated RL learners on the 10 versus 10 aggressive marines set up.

The experiments are conducted on the same platform previously described in Section

4.4.7 page 104. The agents in the distributed RL learners are implemented within a

single process with a single thread, i.e., the experiments do not exploit parallelism. The

mean CPU time per time step for the first 10,000 episodes are measured for each agent

and averaged over 10 runs. CPU time is only measured on computation within the

agents. This includes action selection and updating.

Figure 5.12 shows the runtime results for the various RL learners. Actual refers to
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Figure 5.12: Runtime comparison of centralized and distributed RL learners for the experiment

in Figure 5.11. The mean CPU time taken per step for 10,000 episodes averaged

over 10 runs.
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the runtime measured within the agents. Hypothetical refers to actual divided by 10

marines and is the hypothetical lower bound on the runtime if a parallel implementation

is able to split the CPU time equally among the marines. This is a loose lower bound as

it is usual for some marines to be destroyed in each episode. The results show that the

increase in number of feature weights in the distributed case due to the propositional

features do not heavily impact the runtime. This is expected as runtime is mostly dom-

inated by joint action selection and is also largely affected by the activated CCs (see

Section 4.4.7 page 104). Furthermore, the results show that there is room for runtime

performance gains for the distributed RL learners if parallel computation is employed.

5.6 Discussion

The results in the previous section demonstrate that coordination knowledge, in the

form of CCs, is effective at improving learning performance in the distributed multi-

agent setting. Furthermore, the concept of employing CCs to guide knowledge is useful

in a variety of distributed scenarios. However, the benefit achieved by distributed CGRL

is less than centralized CGRL for certain domains such as RTS. This may be due to a

lack of generalization through relational features resulting in the number of weights to

be learned in the distributed case being much greater than the centralized case.

In terms of constraining the primitive action space to guide exploration, employing

multi-agent CCs has advantages over using only individual agent constraints in dis-

tributed task based methods (Ghavamzadeh et al., 2006). This reinforces the notion that

coordination knowledge can do more than being features for function approximation.

The use of CCs has been investigated under the assumptions of a dynamic commu-

nication structure. In terms of learning to use expert knowledge to guide exploration,

few works have been evaluated under these communication restrictions. In Zhang et al.

(2009), a framework was introduced where supervisor agents bias the policies of worker

agents that select the primitive actions. However, the learning interactions of the super-

visors were not defined. DistCGRL can be viewed from the perspective that each agent
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carries local ‘supervision’ knowledge through CCs as the top level is distributed into

the agent level. This is more applicable for domains where communication structure

among agents change as we have presented.

5.7 Conclusion

This chapter introduced DistCGRL for domains where agents have a dynamic commu-

nication structure. The benefits of CCs in guiding exploration shown in the previous

chapter are further reinforced by this chapter’s results for the distributed case. In terms

of the main research challenges, DistCGRL addresses the challenges of limited and

changing communication. This is handled by decentralizing CC selection and distribut-

ing learned value functions for the top level of the CGRL system into the boundaries of

individual agents. DistCGRL is shown to be effective for online learning, outperform-

ing existing learning approaches in terms of overall goal achievement.

DistCGRL mainly dealt with issues in dynamic communication changes. Although

DistCGRL does not directly address fine-grained communication costs, note that com-

munication only takes place during joint action selection. These selection methods are

message passing distributed COP solvers such as max-plus that are well studied in the

literature (see Section 3.2.2 page 36). To handle fine-grained communication costs, the

number of messages passed between agents can be limited as required. Hence DistC-

GRL may be adapted to better manage communication costs.

The migration from the centralized CGRL system to the distributed one is not with-

out any drawbacks. Because of the requirement of dynamic communication, weights for

learning are distributed among agents. This results in a lack of generalization through

the use of relational features and an increase in model complexity. For domains such as

the tactical RTS game where relational features can yield high performance, this draw-

back constitutes a step back in addressing the challenge of model complexity as shown

in Section 5.5.4. Hence, the next chapter proposes techniques to mitigate this problem

by allowing agents to exchange some learned knowledge between weights of features
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that share relational semantics.
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Chapter 6

Distributed Relational Temporal

Difference Learning

Relational representations have great potential for rapidly generalizing learned knowl-

edge in large Markov decision processes such as multi-agent problems. This chapter in-

troduces relational temporal difference learning for the distributed case where the com-

munication links among agents are dynamic. No critical components of the proposed

method reside in any one agent. Relational generalization among agents’ learning is

achieved through the use of partially bound, local agent based, relational features and a

message passing scheme. These methods are combined with existing multi-agent coor-

dinated reinforcement learning (RL) and distributed coordination guided RL (CGRL).

Experiments were conducted on soccer and real-time strategy game domains with dy-

namic communication. Results show that the proposed methods improve goal achieve-

ment in online learning with a large decrease in number of parameters to learn. Hence,

model complexity can be reduced while simultaneously improving the performance of

distributed RL. Part of this work has been published in Lau et al. (2013).

6.1 Motivation

Relational representations (see Section 3.6 page 46) have the potential to significantly

reduce model complexity for multi-agent learning where huge joint state and action
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spaces are common (Džeroski et al., 2001; Guestrin et al., 2003; Tadepalli et al., 2004;

Croonenborghs et al., 2007). In particular, relational temporal difference (TD) learning

(Strens, 2004; Asgharbeygi et al., 2006) generalizes propositional features (PFs) that

are defined from predicates by combining them to give a single relational feature (RF)

with one weight to be learned (see Section 3.6 page 46). This approach is flexible in that

it allows RFs from predicates to be combined with other kinds of features for function

approximation.

Previously, Chapter 4 described how RFs may be used to generalize TD learning of

the action value functions in Section 4.3.6 page 84. Results in Section 4.4.6 page 98 and

Section 5.5.4 page 134 have shown that RFs have good potential for improving learning

performance in the RTS domain when coupled with centralized CGRL. To emphasize

the generalization capability of RFs that allow a reduction in the number of learning

parameters, we revisit the NotAligned predicate previously described in Example 1.1

page 6.

Capital letters are used to denote first order predicate variables, i.e., variables that

are not fixed to any particular object (agent). Small letters denote that the variables

in the predicate’s arguments are bound to particular objects to yield a propositional

statement. For example, let Pred1(Ai, Aj) be a predicate on any two agents. After

binding Pred1 to agents ax and ay, we have the proposition Pred1(ax, ay) which is

either true or false depending on the actual values of ax and ay. Now we proceed with

the example.

Example 6.1 (Not aligned predicate for RTS). Consider the coordination knowledge

in Example 1.1 page 6 that describes bad alignment of marines’ positions in a tactical

RTS game. Bad alignment occurs when marines take movement actions that result in

less than maximal firepower directed at oncoming enemies. This knowledge can be

captured by a pairwise predicate on any two marines, x and y,

NotAligned(Sx, Sy, Ax, Ay) := SameNearestEnemy(Sx, Sy)

∧ DistanceDiff(Sx, Ax, Sy, Ay) > 0 (6.1)
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Figure 6.1: Example of actions (grey arrows) that will lead to white marines 1 and 2 being

further unaligned to the enemy (dark grey) marine.

where SameNearestEnemy is true if the two marines’ nearest enemy is the same.

Let this nearest enemy be E. Then, the function DistanceDiff returns the magnitude

of the difference in distance between pairs of marines (x,E), and (y, E), after both

marines have each taken actions ax and ay in joint state s. Figure 6.1 depicts a state that

will lead to NotAligned being true for white marines 1 and 2 if they take the actions

indicated by the grey arrows.

If only PFs are used, predicates involving pairs of agents such as NotAligned will

be bound to specific agents. This gives rise to a number of features that is quadratic

in the number of agents in a centralized setting. For example, for NotAligned and N

marines, we will have N(N − 1)/2 number of features as NotAligned is symmetric.

However, with RFs, we can define a single feature that takes into account all possible

binding of agents to the predicates as shown in the example below.

Example 6.2 (Not aligned relational feature for RTS). Suppose we have N marines.

Then, we define the RF for not aligned as

̺NotAligned(s, a) =
∑

x,y∈[1,N ] | x<y

τ ·NotAligned(sx, sy, ax, ay)

where τ is a scaling factor that may be a constant, e.g., N(N − 1)/2 to normalize the

range of ̺NotAligned to [0, 1]. For centralized coordinated learning using linear function

approximation, the weight of this RF is then updated as,

wNotAligned ← wNotAligned + α[r +Qπ(s′, a′)−Qπ(s, a)]̺NotAligned(s, a)
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using the observation 〈s, a, r, s′, a′〉 when following the policy π in the environment.

Hence centralized updates involving knowledge of NotAligned will be performed

on the same weight wNotAligned, effectively generalizing learning and reducing the qua-

dratic in N number of learning parameters to only one parameter.

In spite of the many advantages of RFs, using them in reinforcement learning has

thus far been mostly limited to centralized1 RL where a designated controller is tasked

to compute and store the learned parameters. Unfortunately, in a highly dynamic decen-

tralized scenario, it is not possible to find such a designated controller as the communi-

cation links among agents change over time. For example, in the RTS game, marines

lose communication when destroyed, similarly in some robotics application, malfunc-

tion may render agents unresponsive. In the distributed case, PFs cannot be aggregated

into RFs as weights like wNotAligned will have to reside in some agent that may not al-

ways be accessible by other agents. Thus it is important that the learning system must

be decentralized and that the critical components do not reside in any one agent.

Existing works in multi-agent relational RL are few, and in the distributed case, even

rarer. The works in Guestrin et al. (2003); Croonenborghs et al. (2005) describe multi-

agent relational learning with centralized controllers. While the work in Ponsen et al.

(2010) investigated solving separate tasks for each agent that may seek other expert

agents for advice where relational learning was used to identify such experts.

The above reasons constitutes the motivation to develop a relational TD learning

method for distributed agents with dynamic communication. Consequently, the new

learning method will be combined with distributed RL and the distributed CGRL ap-

proach presented in the previous chapter to further improve online learning.

6.2 Aims & Approach

The aim in this chapter is to develop a relational TD learning method for distributed

agents that have dynamic communication links. The main challenge is to handle the

1In this chapter, centralized corresponds to the same problem but without communication restrictions.
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communication restrictions while maintaining most of the learning benefits of relational

generalization in the centralized case.

To approach the problem, RFs are first devised from predicates that are local to

each agent. Unlike global RFs, these local RFs allow an agent based decomposition of

a global value function that uses global RFs. This scheme enables agents to generalize

their interactions with other agents within themselves. Additionally, the global value

function may be distributed such that no agent is critical to the learning system.

For the next step, message passing between neighbouring agents is used to trans-

fer current knowledge (learned weights) between agents’ features that share relational

semantics. These allows learning from interactions within a group of agents to be trans-

ferred to other groups whenever agents in separate groups come into contact with each

other.

These proposed methods are evaluated on domains with dynamic communication

such as the soccer domain and the tactical RTS game. Agents in these domain have a

limited communication range. Furthermore in RTS, agents may be removed from the

current episodes once they are destroyed and may only rejoin at the start of the next

episode. The proposed methods for relational TD are coupled with distributed coordi-

nated learning, and distributed CGRL to better handle the three research challenges laid

out in Section 1.2 page 4, namely: exploration, model complexity, and distribution. To

the best of our knowledge, the proposed methods are the first that decentralizes relation

features among agents such that no agents are critical in the system.

The evaluation of distributed relational TD learning in this chapter focuses primarily

on its generalization capability to reduce model complexity of the value functions while

simultaneously improving learning efficiency. Less emphasis is placed on the reasoning

benefits and capabilities of relational representations. Hence the proposed approach is

more related to the works of Guestrin et al. (2003); Strens (2004); Asgharbeygi et al.

(2006). These allow relational features to be combined with other types of features for

function approximation as opposed to the family of methods for relational RL using

decision trees (Džeroski et al., 2001; Croonenborghs et al., 2007; Ponsen et al., 2010).
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6.3 Distributed Relational Generalizations

This section describes how relational generalization can be employed for distributed RL

via an approach internal to each agent and an external approach that requires passing

messages. The similar DEC-MDP problem formulation as described in Section 5.3

page 112 is employed for the distributed setting. Before presenting internal and external

generalization, we review the details of TD learning with relational features assuming

full communication.

6.3.1 Centralized Relational Temporal Difference Learning

We briefly review the current form of relational TD learning that was employed for

centralized coordinated learning. Relational generalization can be achieved through the

use of RFs that are generalizations over the possible bindings of objects to the arguments

of first-order logical predicates that yield groundings when true. TD learning using RFs

for the action value function is an adaptation of the work in Asgharbeygi et al. (2006)

that was designed for the state value function.

Let ̺ρ represent an RF based on the predicate ρ with agent arity η(p). The agent

arity is the number unique agents from which the variables of a predicate come from,

as opposed to the usual notion of the arity (or scope) of a function that is the number of

arguments. For example, the predicateEgPredicate(sx, ax, sy, ay) has an arity of 4 but

an agent arity of η(EgPredicate) = 2. Recall that the function Perm(N, n) returns

the set of n-permutations from the set of all N agents. For a given N and n, the number

of such permutations is |Perm(N, n)| = NPn = N !
(N−n)!

. For a given predicate ρ, the

construction of an RF for N agents shown in Equation 4.81 page 84 for the centralized

case is

̺ρ(s, a) = τρ ·
NPn∑

i=1

ρ(si1 , ..., sin , ai1 , ..., ain) (6.2)

where n = η(ρ), τρ is a scaling factor for predicate ρ, and si1 , ..., sin , and ai1 , ..., ain

are projections on s and a respectively, based on some unique i-th n-permutation of the
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agents. Equation 6.2 explicitly states that predicates may consist of the state variables

and action variables accessible by some number of agents. When the τρ = 1, Equation

6.2 describes the RF as the count of number of true propositions for every binding of

variables to the predicate ρ. This is similar to the count of true grounded literals for the

state-only relational features described in Asgharbeygi et al. (2006).

Let F be the set of all predicates. Then, the global relational action value function,

as a linear function approximation, is given by,

Q(s, a) =
∑

ρ∈F

wρ̺ρ(s, a) (6.3)

and the weights can then be updated using

wρ ← wρ + α[r + γQ(s′, a′)−Q(s, a)]̺ρ(s, a) (6.4)

for a centralized system where r is the global reward.

Next, we describe how partial relational generalization is achieved for the individual

agent’s local action value functions for the distributed case.

6.3.2 Internal Generalization

In the DEC-MDP, agents may only access their own and their current neighbours’ state

and action variables. As communication is dynamic, each agent should carry a part of

the learning system within them. Hence each agent x carries the local Qx function that

are approximated using PFs. Agents may internally generalize the weights between re-

lated PFs involving themselves and other agents. This is achieved by the partial binding

of predicates to give RFs local to each agent. The result enables the sharing of learned

parameters from an agent x’s interactions with another agent y in a particular state with

x’s interaction with other agents z 6= y. This is illustrated in Figure 6.2 where the grey

agent generalizes its interactions shown as lines among the various other agents.

We elaborate on the purpose internal generalization using theNotAligned predicate

from before. From here on, without loss of generality, we take the presence of the action
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Figure 6.2: Internal relational generalization. Circles are agents and black lines are interac-

tions. The line with arrowheads indicate the grey agent is internally generalizing

interactions over the various other (white) agents.

variable ax to also indicate the presence of the accessible state variables sx and omit

writing the state variables.

Example 6.3 (Not aligned internal RF). Consider the pairwise NotAligned predicate

defined in Equation 6.1. Suppose we have an RTS game with 4 marines and each agent

has PFs created from predicates that involve themselves. Then, marine 1 will have the

pairwise PFs,

{NotAligned(a1, a2), NotAligned(a1, a3), NotAligned(a1, a4)}

while marine 2 has,

{NotAligned(a1, a2), NotAligned(a2, a3), NotAligned(a2, a4)}

and so on for the other marines. A partially bound predicate may be defined based on

NotAligned by fixing the first agent variable such that x = 1, e.g.,NotAligned(a1, ay)

where ay is any other agent. Then, the internal NotAligned RF for marine x is

̺NotAligned,x(ax) = τ ·
∑

y∈[1,4]−{x}

NotAligned(ax, ay). (6.5)

where τ is a scaling factor, and NotAligned is assumed to be symmetrical, i.e.,

NotAligned(ax, ay) = NotAligned(ay, ax).

The example indicates that agent 1 may generalize its knowledge of NotAligned
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from interaction with agent 2 to the other agents 3 and 4 as these interactions contribute

towards updating the same feature weight. Furthermore, for N agents, we see that

generalizing internally for pairwise predicates reduces the quadratic in N number of

feature weights to a linear in N number of weights to be learned.

In general, for each predicate ρ, the partially bound, agent based local RF for agent

x is defined as

̺ρ,x(ax) =
τρ
n

n∑

j=1

N−1Pn−1∑

i=1

ρ(ai1 , ..., aij−1
, ax, aij+1

, ..., ain−1
) (6.6)

where there areN agents, n = η(ρ), ‘ai1 , ..., aij−1
, ax, aij+1

, ..., ain−1
’ is an n-permutation

of the values in the tuple ax, and τρ is a scaling factor which we will assume to be 1

from here on. The double summations indicate that the action variable ax is inserted at

the various positions j of the predicate ρwith respect to each (n−1)-permutation drawn

from the other N − 1 agents. That is, while the other n − 1 agents’ action variables

may be drawn from the set of all other N −1 agents, agent x’s participation in the RF is

fixed. As before in Section 5.4.4 page 123, the predicate is false for agent action values

not found in ax, i.e., ρ(·) returns false (zero) for agents that are out of communication

range.

With Equation 6.6 and given the set of predicates F , local action value functions

can be specified for each agent x as the linear function approximation,

Qx(ax) =
∑

ρ∈F

wρ,x̺ρ,x(ax) (6.7)

=
N∑

n=1

∑

ρ∈Fn

wρ,x̺ρ,x(ax) (6.8)

where Fn ⊆ F is the set of predicates {ρ ∈ F | η(ρ) = n} that is a partition of F such

that F =
⋃N

n=1 Fn. Equation 6.8 essentially groups the sums based on the agent arity

of the RFs, assuming that the maximum agent arity is N .

Now we are ready to present the theoretical result that shows the agent based de-

composition in Equation 6.7 is an additive decomposition of the global relational action
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value function in Equation 6.3.

Theorem 6.1. Given the same set of predicates F , the global relational value function

Q(s, a) =
∑N

x=1Qx(sx, ax) the sum of local relational value functions, if the local

weight for each agent x’s local RF wρ,x = wρ the global weight for the global RF based

on the same predicate ρ.

Proof. For this proof we expand on the sum of N local agent action value functions

while omitting the state variables as before. Assume that the scaling factor for local

value functions and the global value function to be τ = 1. It should be similar to prove

the same theorem with conditions on other values of τ . Starting from the sum of local

Qx functions,

N∑

x=1

Qx(ax) =
N∑

x=1

N∑

n=1

∑

ρ∈Fn

wρ,x̺ρ,x(ax) (6.9)

=
N∑

x=1

N∑

n=1

∑

ρ∈Fn

wρ,x
n

n∑

j=1

N−1Pn−1∑

i=1

ρ(ai1 , ..., aij−1
, ax, aij+1

, ..., ain−1
)

(6.10)

=
N∑

n=1

∑

ρ∈Fn

N∑

x=1

wρ,x
n

n∑

j=1

N−1Pn−1∑

i=1

ρ(ai1 , ..., aij−1
, ax, aij+1

, ..., ain−1
)

(6.11)

, as wρ,x = wρ, factor wρ,

=
N∑

n=1

∑

ρ∈Fn

wρ

N∑

x=1

n∑

j=1

N−1Pn−1∑

i=1

ρ(ai1 , ..., aij−1
, ax, aij+1

, ..., ain−1
)

n
(6.12)

, by rearranging the sums,

=
N∑

n=1

∑

ρ∈Fn

wρ

NPn∑

i=1

n∑

j=1

ρ(ai1 , ..., ain)

n
(6.13)

, as j is a redundant index, the last sum is a multiplication by n,

=
N∑

n=1

∑

ρ∈Fn

wρ

NPn∑

i=1

ρ(ai1 , ..., ain) (6.14)

=
N∑

n=1

∑

ρ∈Fn

wρ̺ρ(ai1 , ..., ain) (6.15)
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=
∑

ρ∈F

wρ̺ρ(a) = Q(a) (6.16)

Next we demonstrate that Equation 6.13 can be achieved by rearranging the sums

in Equation 6.12. Notice that there are duplicate terms in each agent’s local function,

for example, NotAligned(a1, a2) appears in agent 1 and agent 2 in Example 6.3. A

predicate term of n agent arity with a particular permutation of its variables will appear

n times due to the terms generated by the sum
∑N

x=1

∑n

j=1

∑
N−1Pn−1

i=1 (...) in Equation

6.12. This is because, the same n-permutation of the variables in the predicate ρ will

be generated once by each of the n agents. This equivalence in number of terms can

also be observed from the following equations relating the total number local terms in

Equation 6.12 to the number of terms in Equation 6.13,

N · n · N−1Pn−1 = n ·N ·
(N − 1)!

[(N − 1)− (n− 1)]!
(6.17)

= n · (n− 1)! ·
N !

(n− 1)![(N − 1)− (n− 1)]!
(6.18)

= n! ·
N !

(n− 1)!(N − n− 1 + 1)!
(6.19)

= n! ·
N !

(n− 1)!(N − n)!
(6.20)

= n! ·
N !

n!(N − n)!
· n (6.21)

= NPn · n (6.22)

In Equation 6.13,
∑

NPn

i=1

∑n

j=1(...) indicates that each n-permutation is summed n

times. From here we eventually arrive at Q(s, a) =
∑N

x=1Qx(sx, ax).

Theorem 6.1 shows that the local relational agent based decomposition is able to

collectively represent the same function values as the ideal global case. This indicates

that representational power is maintained when using the local value functions. Conse-

quently, if the true global value function is well approximated by a linear combination

of global RFs, we expect the same error bound to apply when using the local value

functions with local RFs. Hence, a successful scheme has been devised to make use of
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RFs while ensuring that each agent keeps a portion of the value function. This decom-

position solves the distributed requirements.

With the local value functions given in Equation 6.7, the local agent based on-policy

TD update equations in Section 3.3.4 page 40 for TD learning are used to build a com-

pletely distributed RL system, i.e., for each agent x, its weights for each RF are updated

via,

w′
ρ,x ← wρ,x + α[rx + γQx(s

′
x, a

′
x)−Qx(sx, ax)]̺ρ,x(sx, ax) (6.23)

As the globalQ function is a sum of localQx functions, such a global function is itself a

larger linear function approximation. Hence, we expect using Equation 6.23 to provide

the same optimal convergence guarantees under the same conditions as stated in Perkins

and Precup (2002); Melo et al. (2008). For distributed CGRL in Chapter 5 page 109, we

can represent both top and bottom level local agent value functions with the described

RFs in Equation 6.6.

Using the predicate representation, more complex predicates can be constructed

from logical operators on simpler predicates. The local RFs used in internal general-

ization are based on first order predicates with the constraint that one of the variables is

fixed to the particular agent that the local RF belongs to. Therefore, to compute valid

bindings, a customized implementation or an existing inference engine for single agents

can be used with this constraint for each agent as was done in Džeroski et al. (2001);

Kersting and De Raedt (2004). As in standard distributed RL, joint action selection for

local Qx functions approximated by local RFs can be solved using the same message

passing methods as that for distributed RL (see Section 3.2.2 page 36). This is be-

cause using Equation 6.7, the local Qx functions remain additively decomposable into

components based on the variables in the scope of the features.

However, local TD updates in Equation 6.23 provides a weaker form of relational

generalization in contrast to the global update in Equation 6.4. The key difference is

that the global update assumes no communication restrictions. Pan agents’ RFs are

involved in the TD update through the global function Q in Equation 6.4 whereas in the
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local case, only each agent x’s weights and RFs are involved in Qx. Consequently, the

next section explores a solution to further generalize learning with respect to relations.

6.3.3 External Generalization

Internal generalization allows an agent to generalize learning between its individual in-

teractions over various agents. This introduces a form of shared experience and reduces

the number of learning parameters in the system as a whole. However, there is still

room for further generalization as interactions between other agents in the system do

not play a large role in the updating of local agent’s weights.

To illustrate the difference with centralized relational TD learning, consider the case

where there are disjointed groups of agents for a certain time as shown in Figure 5.5

page 120. Agents may communicate with each other within their group but not outside

of it. The true bindings to the same predicate in one group will not factor into the TD

updates of agents in another group due to the communication restrictions. In contrast,

these true bindings will have an impact in the global centralized case as they are in-

volved in the global RF used in the update in Equation 6.3. Hence, local updates only

allow an agent to generalize learning over its interactions with other agents within its

communication group, but not over interactions between agents from other groups.

More specifically, consider the centralized NotAligned RF in Equation 6.1. It al-

lows all pairwise interactions between any two agents to share experience. That is,

whenever NotAligned(a1, a2), NotAligned(a2, a3), or NotAligned(a3, a4) are true,

they participate in updating the same weight. In contrast, Equation 6.5 only allows agent

1’s individual experience to be generalized within itself. That is, whenever

NotAligned(a1, a2) or NotAligned(a1, a4) are true they update the same weight in

Agent 1, but NotAligned(a2, a3) and NotAligned(a3, a4) do not play a part in the

update by the definition of local RFs in Equation 6.6. Short of neighbouring agents’

influences during coordinated action selection, there is no other mechanism to pass on

learned knowledge to other agents, as local updating shown in Equation 6.23 does not

involve the value functions (learned parameters) of other agents.
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Group 1 Group 2

Figure 6.3: External relational generalization. Circles are agents and black lines are interac-

tions. There are two disjoint groups of three agents. Within each group, interac-

tions among agents are generalized. The line with arrowheads indicates that the

grey agents should share what each has learned in its group when they finally meet.

The above observations motivate us to develop a form of sharing of experience

whenever agents are in contact with each other. This is illustrated in Figure 6.3, where

initially, only agents in their respective disjoint groups share experience. Subsequently,

when the two grey agents are within communication range, they should be able to share

what they have learned from their respective groups with each other. Theorem 6.1

further provides a clue to this goal through the condition that wρ,x = wρ. This suggests

that to obtain comparable results to the centralized case, agents should seek to learn the

same weights for each RF ̺ρ,x that is based on the predicate ρ. We make use of this

intuition to design a experience sharing scheme for external generalization.

We devise a message passing method to share the learned weights of the local RFs

based on the relations that they represent. Under our communication restrictions, agents

may send messages to their current neighbouring agents. This is used to pass messages

for joint action selection with neighbours. In the process, agents are aware of their

neighbours’ local actions and states. Likewise, to achieve further relational general-

ization, additional messages may be passed. The intent is to average the weights of

features related by their predicates so that all wρ,x = wρ the true value of each weight

in centralized relational TD learning. We first present a synchronized message passing

scheme. Then, it is simplified as a piecewise asynchronous update scheme.

In a synchronized message passing system, messages are passed for a number of

iterations within each DEC-MDP time step. At each iteration, agent x computes and

sends the relational messages κx,y(ρ) for each predicate, ρ, to its neighbour, agent y ∈
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Γ(x),

κx,y(ρ) =



wρ,x +
∑

z∈Γ(x)−{y}

κz,x(ρ)



+ cx,y (6.24)

where cx,y is a normalizing constant to ensure messages do not go to infinity in a graph

with cycles (Wainwright et al., 2004). The agent x sends the message κx,y(ρ) to agent

y that is an aggregation of the messages it received from its other neighbours, i.e.,

Γ(x)− {y}, from the previous iteration. In this message passing scheme, a fixed point

exists in a CG without cycles.

Once the desired iteration is achieved or the κ messages have converged, each agent

x updates the weight wρ,x for the each local RF ̺ρ,x based on predicate ρ with

wρ,x ← βxwρ,x +
∑

y∈Γ(x)

βyκy,x(ρ), (6.25)

where βx are mixing parameters local to each agent x, that are used to normalize the

messages or bias the messages from certain agents if desired. In the general case of a

graph with cycles, the messages may not converge but the intermediary result by com-

puting Equation 6.25 at every iteration is usually useful in practice (Kok and Vlassis,

2006).

After applying Equation 6.25 with each βx = 1/N , if the CG is connected without

cycles, each local RF’s weight will be the global average of all agents’ weights for that

RF. This is observable by considering each agent’s node in the CG as the root of a tree.

For the weight of each RF based on the same predicate ρ, the messages from Equation

6.24 propagate weights from the leaves to the root of the tree. At each iteration, a node

sends its parent its weight and the sum of its children’s messages from the previous

iteration, i.e., it sends a sum of the weights within the sub-tree rooted at the node.

A message from a leaf node containing its weight value will require H steps before

arriving at the root as part of the message of one of the root’s child where H is the

height of the tree. Therefore after H iterations, Equation 6.25 will divide the sum of
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all weights for the RF based on ρ by N , yielding the global average. As agents send

messages to all their neighbours for each weight, the same convergence to the global

average applies for trees rooted at every agent for every RF. Hence every agent will

have the same averaged weights.

CGs are formed dynamically in a DEC-MDP. This indicates that they may be dis-

joint in different states and contain cycles. Hence, rarely do all agents form a connected

CG. Furthermore, messages have to be sent for each RF’s weight which may pose a

problem when the number of RFs is large. To address these issues, an asynchronous

message and update scheme is adapted as follows. In each time step, each agent x im-

mediately sends the weight wρ,x of the local RF ̺ρ,x as a message to its neighbours.

Upon receiving any message wρ,y from a neighbour y ∈ Γ(x), the agent immediately

updates the weight of ̺ρ,x using the convex combination,

wρ,x ← (1− β)wρ,x + βwρ,y (6.26)

= wρ,x + β[wρ,y − wρ,x] (6.27)

One advantage of this scheme is that agents may send any subset of its weights as

messages to its neighbours as permitted by its communication channel. Furthermore,

every agent uses the same mixing parameter β.

The update given in Equation 6.27 echoes that of the TD updates using a step size

parameter α described in Equation 6.23. The intent of both equations is to compute a

form of averaging over streaming data. In the case of TD learning, the data comes in

the form of one step transition and reward, where the goal is to estimate the expected

return. In the case of external generalization, the data comes in the form of neighbouring

agents’ weights and the goal is to estimate the mean of these weights.

In our experiments, we use Equation 6.26 together with the general relational TD

learning algorithm for distributed RL and distributed CGRL for each agent given in Al-

gorithm 6.1. Note that agents will have known the states and actions of their neighbours

after exchanging messages with them when selecting actions at Lines 2 and 4.
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Algorithm 6.1 General distributed relational TD learning algorithm for one agent

1: Observe local state sx.

2: Select and perform action ax based on a policy with neighbours.

3: Observe local state s′x and reward rx.

4: Select and perform action a′x based on a policy with neighbours.

5: Perform local updates for RF weights using 〈sx, ax, rx, s
′
x, a

′
x〉.

6: Exchange external generalization messages with neighbours and update weights.

7: Set sx ← s′x and ax ← a′x.

8: If sx is not terminal go to Line 3.

6.4 Experiments

Two sets of experiments are conducted to evaluate the proposed solution. The first set

of experiments investigates the use of RFs on distributed RL in two domains: simplified

soccer and tactical RTS. The predicates used are shown in Section A.1 page 230 and

Section A.2 page 235 for soccer and RTS respectively. These domains were also used in

the previous chapters and other works. The second set of experiments demonstrate the

potential in fusing distributed relational TD learning with distributed CGRL in the tac-

tical RTS domain. The experiments compared a number of RL methods from previous

literature and earlier chapters, namely:

1. Independent refers to independent learners see Agent 1 in Section 5.5 page 126,

2. Coordinated refers to distributed RL, see Agent 2 in Section 5.5 page 126,

3. CentCGRL refers to centralized CGRL introduced in Agent 4, Section 4.4.1 page

88,

4. DistCGRL refers to distributed CGRL, see Agent 4 in Section 5.5 page 126,

5. Coordinated(β = x) refers to distributed relational TD learning,

6. DistCGRL(β = x) refers to relational DistCGRL.

For relational TD, both coordinated and DistCGRL learners are investigated with vari-

ous values for the external generalization parameter, β ≥ 0. β = 0 indicates that only

internal generalization is used. All agents use ǫ-greedy policies. To evaluate online

learning, we plot agent performance over the number of episodes. An important point

to note is that all plots start from the point one and not at zero. Depending on the scale

of each individual plot, this may refer to a different number of initial episodes.
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6.4.1 Results for Soccer

The distributed simplified soccer domain was previously described in Section 5.5.2 page

127. A 15× 10 grid is used with two teams of 8 players each, grey and black. The ob-

jective is to score the first goal. Players may move in 4 directions, and pass or shoot

when in possession of the ball. Communication is allowed only at a Manhattan distance

of 5. The lines in Figure 5.1 page 110 describe the current CG based on different ex-

ample soccer states. The RL players are pitted against a scripted opponent that defends

their goal and counter-attacks once the ball is intercepted (see the Defensive player in

Section 4.4.2 page 90). The total number of weights to learn for function approximation

for each type of RL player is given in Table 6.1. The RL players use γ = 0.99 with

decaying step size, α = {10−2, 10−4, 0.998}, and exploration, ǫ = {1, 10−2, 0.998}.

Parameters are written as param = {initial, final, decay rate}. Only the player that

scores a goal receives a reward of 1 while a reward of -1 is evenly divided among soc-

cer players nearest to their home goal when the opponent scores.

Figure 6.4 shows the results for online learning. Each plot is an average of 10 learn-

ing runs. In terms of overall performance in Figure 6.4b, we observe that internal rela-

tional generalization, coordinated(β = 0), is beneficial to soccer over the coordinated

player, while external generalization, coordinated(β = 0.06), does not yield any benefit

as its curve overlaps with β = 0. In Figure 6.4c we plot the change in reward, i.e., the

reward for the relational players subtract the coordinated player for each episode. Both

forms of relational generalization give rise to high benefit at the start. But, the benefit is

lost over time for most settings of β > 0. This is expected as generalization allows fast

initial learning, yet it is role specialization that gives a soccer team an edge over time.

Nevertheless better performance is achieved while only using 66.15% of the quantity of

RL Method # Weights % of Coordinated

independent 1888 60.51

coordinated 3120 100.00

coordinated(β ≥ 0) 2064 66.15

Table 6.1: Weights to learn for soccer. The last column expresses the number of weights as a

percentage of the number of weights for the non-relational coordinated learner.
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Figure 6.4: Soccer experiment results. 10,000 episodes with each plot averaged over 10 runs.
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learning parameters of the coordinated player (see Table 6.1).

6.4.2 Results for Tactical Real-Time Strategy

For the tactical RTS domain, we use a 240×240 point based world as shown in Figure

1.1 page 3 and described in Section 5.5.3 page 131. There are 10 RL marines, each may

move in 8 directions and shoot at any enemy within range, thus the joint action space is

massive. Marines may only communicate within a range of 30 points. The RL marines

are pitted against scripted aggressive marines that move towards their nearest enemy

and start shooting (see Section 4.4.5 page 97). Rewards are only given to marines that

are alive. The rewards are -1 per time step and 1000 for winning that are equally divided

among the surviving marines.

For RTS, learners used constant α = 10−4 and ǫ = 〈0.5, 10−2, 0.998〉 while the

CentCGRL learner is the same as described in Section 4.4.6 page 98. No discounting

is used, i.e., γ = 1. The number of weights and RL parameters are shown in Table

6.2. Note that the use of internal generalization reduces the weights for the coordi-

nated learner to 26.9% of the original. This is because most predicates are multi-agent,

involving pairs of agents.

Figure 6.5 shows the results for the coordinated learners versus 10 enemy marines.

From Figures 6.5a and 6.5b, it is clear that relational generalization is highly desirable in

the tactical RTS domain where formation among marines is of paramount importance.

Type # Weights % of Non-Relational

of RL RL Method Bottom Top Total Coordinated RL

flat

independent 350 0 350 17.766

coordinated 1970 0 1970 100.000

coordinated(β ≥ 0) 530 0 530 26.904

two level

CentCGRL 53 45 98 2.103

DistCGRL 1970 2690 4660 100.000

DistCGRL(β ≥ 0) 530 450 980 21.030

Table 6.2: Weights to learn for RTS. Bottom indicates the weights for flat RL, e.g, the Q func-

tion, or the U function in CGRL while Top indicates the weights for top level func-

tion W in CGRL. The last column indicates the total number of weights expressed

as a percentage of the total weights for the non-relational coordinated learners for

each type of RL, flat and two level respectively.
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We see improvement from internal generalization in the coordinated(β = 0) learner

and further improvement when external generalization messages are exchanged when

β > 0. Figure 6.5c shows the change in reward over the coordinated learner without

relational learning. We observe that distributed relational TD learning is beneficial for

most values of β and requires learning only a quarter of the number of weights for the

non-relational case.

For the next set of experiments on distributed relational TD learning with DistC-

GRL (i.e., two level RL), we use the same tactical RTS setup of 10 RL marines versus

10 scripted marines. Figure 6.6 shows the results. We also include the result for the

centralized version of CGRL, CentCGRL that uses RFs (see Figures 6.6a and 6.6b). We

observe that DistCGRL without RFs is superior to coordinated(β = 0.06), but its perfor-

mance is nowhere near that of CentCGRL. However, once relational TD is introduced,

DistCGRL outperforms CentCGRL and almost achieves a perfect win rate of 98.7%

when β = 0.06, achieved with only 21% of the number weights in DistCGRL without

RFs. The largest reduction comes from the top level function (see Table 6.2). The im-

proved performance over the CentCGRL may be due to agent-decomposed rewards in

contrast to the global reward scheme in CentCGRL. Agent-decomposed rewards pro-

vide fine-grained information for DistCGRL resulting in more precise updating. This

effect was similarly observed and discussed previously in Section 5.5.4 page 134. Fig-

ure 6.6c plots the change in reward for the relational DistCGRL learners over the plain

DistCGRL learner. Generally, external generalization further improves learning for

most values of β.

To further demonstrate the benefits of our relational TD concepts, we pit the RL

marines against a harder scenario with 13 enemy marines. The results are shown in

Figure 6.7. In this scenario, independent, coordinated, and DistCGRL methods without

RFs are unable to learn to overcome their opponent within 10,000 episodes as shown

in Figures 6.7a and 6.7b. However, relational generalization eventually enables DistC-

GRL to learn better policies than CentCGRL. This illustrates that rapid generalization is

crucial for a fast-paced domain like tactical RTS whereby marines are destroyed easily.
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Figure 6.5: RTS experiment against 10 enemy marines using coordinated learners. 10,000

episodes with each plot averaged over 10 runs.
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Figure 6.6: RTS experiment against 10 enemy marines using DistCGRL learners. 10,000

episodes with each plot averaged over 10 runs.
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Figure 6.7: RTS experiment against 13 enemy marines using DistCGRL learners. 10K episodes

with each plot averaged over 10 runs.
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Consequently, this results in too few samples of winning episodes even with sophis-

ticated exploration in DistCGRL without RFs. In Figure 6.7c, we see that external

generalization improves learning throughout the episodes with the best improvement at

β = 0.2.

6.4.3 Actual Runtime Results

We now turn to the actual runtime performance of the various RL learners. The experi-

ments are conducted on the same platform described in Section 4.4.7 page 104. All RL

learners were implemented as a single process and single threaded program.
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Figure 6.8: Runtime comparison of relational RL learners for the soccer game. The mean CPU

time taken per step for 10,000 episodes averaged over 10 runs.

First, the runtime performance is measured on the soccer experiment previously

presented in Section 6.4.1, Figure 6.4. The results are shown in Figure 6.8. Similar to

Section 5.5.5 page 137, the actual runtime is the mean CPU time measured per time

step while the hypothetical runtime is the actual runtime divided by the number of

agents. The latter represents the loose lower bound for parallel implementations of the

distributed RL learners. The results show that internal and external generalization each

adds a small runtime overhead compared to coordinated RL when the number of agents

are held constant.

Next, runtime performance is measured on the 10 versus 10 aggressive marines

set up for RTS. Figure 6.9 shows the runtime performance of the various RL learners
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Figure 6.9: Runtime comparison of relational RL learners for 10 versus 10 aggressive marines.

The mean CPU time taken per step for 10,000 episodes averaged over 10 runs.

depicted in Figures 6.5 and 6.6. Overall the two level learners (DistCGRL) are more

time efficient than the flat learners (coordinated). This is due to the pruning effect of

the CCs (see Section 4.4.7 page 104).

The runtime performance of the coordinated RL learners in Figure 6.9 shows that

the runtime increases when internal generalization is applied in coordinated(β = 0)

and further increases when external generalization is used in coordinated(β = 0.06).

Unlike the soccer game’s results in Figure 6.8, this increase in runtime is mostly due

to the improvements in policy learned as shown in Figure 6.5. Better policies result

in more marines surviving and consequently, slower joint action selection. In contrast,

the poorer policy of the coordinated learner results in more losing episodes where all

marines are destroyed. Hence better policies result in a higher runtime cost for the

coordinated RL learners in the RTS domain.

For the DistCGRL learners in Figure 6.9, the differences in runtime performance

with relational generalization are less pronounced. We observe a small performance

overhead when comparing DistCGRL(β = 0) and DistCGRL(β = 0.06) respectively

with non-relational DistCGRL. The relational DistCGRL(β ≥ 0) learners have cor-

respondingly performed better as shown in Figure 6.6. Therefore in RTS, distributed
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relational generalization is able to improve learning with a corresponding impact on

runtime performance partly due to policy improvements.

6.5 Discussion

The experiment results indicate that distributed relational generalization is feasible in

practice on various domains, and general enough to be applied to different RL meth-

ods. We have used a coarse-grained approach towards the specification of local RFs for

internal generalization by applying it to all predicates. Results are expected to improve

further if the user carefully defines a subset of predicates to apply internal generaliza-

tion, especially for domains that require specialized roles, e.g., soccer. Furthermore,

the results in Figure 6.4 suggest that for domains like soccer, generalization should be

performed early but decreased over time to allow agents to develop specialized value

functions.

For domains whereby specialization is less important, e.g., in RTS, relational gen-

eralization allows experience to be shared rapidly. The result is better goal achievement

while having less parameters (weights) to learn and store. In some cases the perfor-

mance improvement is dramatic as we have seen in Figures 6.6 and 6.7 where relational

DistCGRL uses only 21% of the number of weights of a propositional DistCGRL ap-

proach.

Guestrin et al. (2003) observed that the homogeneity or heterogeneity of the domain

may affect the learning efficiency gains from relational generalization in solving MDPs.

In light of this, distributed relational TD learning may be preferred for a centralized ap-

plication when it is feasible to provide agent decomposed rewards from the MDP. From

this perspective, the β parameter in external generalization gives the user some con-

trol over the amount of relational generalization for each agent’s learning, i.e., agents

may retain some form of individuality. Results in RTS have shown that it is possible to

outperform even centralized approaches with RFs with certain values of β. Last, most

settings of β demonstrate improvement over learning without RFs, hence the user need
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not fine-tune the value of β if the current goal achievement is acceptable.

Relational generalization for RL arose with the need to compactly represent state

and action spaces in combinatorial domains such as the blocks (un)stacking domain

(Džeroski et al., 2001; Kersting and De Raedt, 2004). Since then, many relational RL

methods have focused primarily on state predicates and model-based RL. Asgharbeygi

et al. (2006) allowed RFs to be used in conjunction with other kinds of features, and

attempts have been made to increasingly address the distributed multi-agent setting

(Croonenborghs et al., 2005). Closely related to relational generalization is the con-

cept of feature templates whereby a feature may be generalized by introducing some

parameter like how the relative layout of some pieces in certain board games like Go

may exhibit similar importance for goal achievement when the layout is rotated (Silver

et al., 2007). One of the first uses of relational generalization for a factored joint ac-

tion space was in planning in RTS games (Guestrin et al., 2003) that generalized over

classes of agents. In this work, we return to the family of earlier methods that make use

of model-free learning, and predicates involving both the state and actions of agents,

albeit with the new definition of local RFs for function representation.

Our proposed approach to distributed relational TD learning is different from other

multi-agent RL works that seek to incorporate parts of the local value functions of

other agents within each agent. The primary difference is the relational semantics that

determine the form of learning experience to be shared among agents. In Schneider

et al. (1999), agents’ updates incorporate tabular Q-values from other agents’ local

value functions based on the current state and action values. However, in our approach

agents may share learned weights for RFs that are not limited to the current state and

action.

Previous works have shown that averaging tabular action value functions between

agents can improve learning performance when some agents are experts (Ahmadabadi

and Asadpour, 2002; Araabi et al., 2007). However, this is prohibitive for large ac-

tion value functions and heterogeneous agents that do not share the same state-action

pairs. Conversely, our approach allows sharing of weights among agents with different
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individual state and action domains, so long as they share relational semantics that is

expressible by some common predicates. Ponsen et al. (2010) investigated learning a

multi-agent communication policy for domains where communication between agents

is costly but expert agents exist. In contrast, our approach begins with no known expert.

We have used the general linear function approximation approach to model value

functions. This is more akin to the work in Asgharbeygi et al. (2006) as opposed to

relational regression tree family of methods used in Džeroski et al. (2001); Kersting

and De Raedt (2004); Croonenborghs et al. (2005, 2007). The benefits of our approach

include the smoothness of the function, the fast update time that is linear to the number

of weights, and the ability to include non-predicate based features. Furthermore, in the

event that the user specifies poor predicates, the effect is similar to having useless fea-

tures in linear function approximation that do not sufficiently distinguish (i.e., correlate

with) state action pairs.

The relational predicates used in this work are provided by the user. No distinction

was made between the base level literals, that encode basic relational representation for

states and actions, from higher level predicates such as NotAligned. Both are regarded

as similar background knowledge since we do not assume a readily encoded domain is

available, e.g., from the General Game Playing framework (Asgharbeygi et al., 2006).

Works in centralized single agent relational TD have discussed possible solutions for

automated construction of higher level predicates from lower level predicates (Kersting

and De Raedt, 2004; Asgharbeygi et al., 2006). Adapting these ideas to the communica-

tion requirements of the distributed case will reduce dependence on the human expert.

6.6 Conclusion

To the best of our knowledge, this is the first work to bring the generalization capabili-

ties of relational TD learning to the distributed case with dynamic communication. This

was achieved using two parts, internal and external generalization. Internal generaliza-

tion creates local RFs from partially bound predicates, enabling individual agents to
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generalize over their interactions with various agents and greatly reduce the number of

parameters to learn in the system as a whole. External generalization involves message

passing of learned parameters that share relational semantics, allowing different groups

of agents to share their experience with others. Experiment results on two domains show

that the proposed methods leads to better online learning through rapid generalization of

experience. Exceptional results are achieved when the domain involves homogeneous

agents like the tactical RTS domain. Distributed relational TD was combined with dis-

tributed RL and CGRL to illustrate the applicability of this approach on various value

function based RL methods. Furthermore, the competitive results with the centralized

case shows that the challenge of distribution can be resolved while retaining much of

the benefits of relational generalization.
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Chapter 7

Application in Automating Retinal

Image Analysis

In this chapter, we investigate a preliminary application of multi-agent reinforcement

learning (RL) to the analysis of images of the human retina (retinal images). We de-

scribe the motivation for computer assisted grading of the retinal images as a means

to extract features for further analysis in hope of finding disease indicators. Then, we

present our attempt at further automating this process by introducing a post processing

step whereby a system modifies the detected vascular structure. This post processing

step interacts with the existing system in a feedback loop and is trained using RL on the

problem domain formulated as a collaborative multi-agent Markov decision process.

Results are evaluated on a real world data set from a population based study. Anal-

ysis shows that our system is able to improve images where the vascular structure is

poorly identified at the start. We further identify the shortcomings of this approach and

suggests how the system can be improved.

7.1 Motivation

A retinal image provides a snapshot of what is happening inside the human body. In

particular, the state of the retinal vessels has been shown to reflect the cardiovascu-

lar condition of the body. Many measures to quantify retinal vascular structure and
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properties have been proposed (Patton et al., 2006; Cheung et al., 2012). Through pop-

ulation studies, some of these measures have been shown to provide good predictive

capabilities for diseases such as high blood pressure, stroke, and hypertension (Wong

et al., 2004b; Cheung et al., 2011a,b). For example, the central retinal artery equivalent

(CRAE), a measure of the diameter of the six largest veins (by diameter) in the retinal

image, has good correlation with hypertension (Wong et al., 2004a, 2006a; Liew et al.,

2008), while the central retinal vein equivalent (CRVE), a measure of the diameter of

the six largest artery, has stronger correlation with coronary heart disease and stroke

(Wong et al., 2006b; McGeechan et al., 2009a,b). Likewise, the junctional exponent

(JE), a measure of the relative diameters of parent and daughter blood vessels, can indi-

cate diseased coronary arteries if there is deviation from the theoretical optimum value

of 3 (Chapman et al., 2002; Witt et al., 2006). These measures require the accurate

extraction of individual vessels in a retinal image and this involves: (a) segmentation

of the vascular structure, (b) separation of vascular structure and linking segments into

individual vessels, and (c) classification of vessels as arteries or veins.

Retina grading is the process where a trained human operator, a grader, makes use

of a computer software to identify and extract properties of a retinal image. For the

purpose of quantifying vascular structure, a grader works with the results of automated

vascular extraction and correct them as necessary to provide high quality results. We

have developed the Singapore Eye Vessel Assessment (SIVA) system that is the current

state-of-the-art computer assisted system used in real world population studies involv-

ing thousands of patients (Cheung et al., 2010, 2011a,b, 2012). The advantages from a

more accurate automated vascular extraction system are obvious, grader man hours may

be reduced thereby increasing productivity. Furthermore, if automated vascular extrac-

tion is reasonably accurate, we may no longer require human graders when extracting

measurements for certain purposes, e.g., for input to a noise tolerant disease classifier

used to screen out high priority patients for early consultation with medical specialists.

The current SIVA system has room for improvement with respect to the extracted

vascular structures before it can be readily used as a fully automated system. Inaccu-
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(a) Initial extracted vascular structure

(b) Human graded result

Figure 7.1: Example of automated and human graded vascular structure in terms of vessel cen-

tre lines. The zone of interest is the ring spanning the inner most white circle to the

outer most white circle. Yellow boxes are vessel root points. (a) shows initial result

from the fully automated extraction with errors. (b) shows the result from a human

grader after working on (a) where the grader followed a grading protocol that only

connects the first bifurcation of each vessel.
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racies in vascular segmentation affects the resulting measurements and may arise from

noise in the image or the inherent difficulties in extracting vascular structures. Such

inaccuracies at the segmentation stage are further compounded in vessel separation and

classification. To illustrate, Figure 7.1 shows vascular structures extracted from an im-

age. Figure 7.1a show the initial extraction results where there are errors due to separate

vessels appearing close together and other complications. These errors are mostly be-

tween 10 to 2 o’clock from the centre of the optic disc marked with a cross. Figure

7.1b shows the same image corrected by a grader based on the initial extraction results.

Hence, more work is required before a fully automated system may perform competi-

tively with a human grader.

Reinforcement learning has been used in a number of real world applications for

various medical image analysis problems. Sahba et al. (2008) reports an application in

segmenting the prostrate from ultrasound images, Chitsaz and Seng (2009) investigates

RL for segmentation of computed tomography (CT) images of the brain, and Wang et al.

(2011) detects anatomical contours in magnetic resonance (MR) images. However, the

retinal vascular structure has a more complex shape than these previous works. To the

best of our knowledge, there are no RL applications in extracting the vascular structure

from retinal images. Apart from segmentation, retinal image analysis requires the cor-

rect separation of individual vessels that branch (bifurcate) and cross each other, as well

as accurate classification of vessels as arteries or veins. This complexity suggests that

an RL solution will have to grapple with a very large state and action space common

to multi-agent problems. Hence, the interest in attempting the multi-agent RL solutions

presented in this thesis to address this problem domain.

7.2 Aims & Approach

This chapter proposes a multi-agent RL approach as a post processing step to the current

automated extraction methods to improve the quality of the extracted vascular struc-

tures. Apart from handling the large state and action space, a multi-agent approach may
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take advantage of coordination in editing complex structures. In contrast, a single agent

approach will require actions to be taken over multiple time steps to achieve the same

effect. Furthermore, parallelism may be exploited with multiple agents especially when

editing vessels that are far apart.

Currently, human graders edit vascular structures in a feedback loop. That is, hu-

man graders make use of the displayed extracted vascular structures to edit the vessel

segmentation. This in turn triggers a rerun of the routines to reconstruct the extracted

vascular structures. The aim is to create an RL system that mimics the human grader,

operating in a similar feedback loop. This approach is modular as it does not interfere

with the individual algorithms used to perform various tasks. Furthermore, the system

as a whole can benefit from improved algorithms in the future by simply replacing those

algorithms. In contrast to the online setting in the earlier chapters of this thesis, the RL

system will be trained in a offline phase on human graded vascular structures and eval-

uated against other human graded images. Furthermore, the RL system will have to

transfer what it has learned from the training images into the testing images.

There are a few challenges in this application. First, a balance has to be struck when

defining the agents between their capabilities (actions), and the amount of information

(states) required to perform them. Then, the reward function has to be one that captures

the concept of a correct vascular structure while enabling agents to learn low level

actions effectively. Last, discerning predicates have to be devised for linear function

approximation and coordination constraints (CCs) in the case of coordination guided

RL (CGRL).

7.3 Computer Assisted Retinal Grading

Computer assisted retinal grading is carried out using the SIVA system shown in Figure

7.2. The general work flow for a grader for each retinal image is given in Figure 7.3

and it consists of the following automated steps.

1. Optic Disc Detection: Automated detection of the optic disc landmark using a
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Figure 7.2: The SIVA System for computer assisted retinal grading.
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Figure 7.3: Work flow of the SIVA system. Feedback loops from human grader edits in dashed

lines. Feedback loop for RL system in dotted lines.
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Figure 7.4: Example of bifurcation and crossover shared segments. There are two vessels, grey

and black, with white boxes as their root points. The black arrow at the confluence

of line segments 1, 4, 5 indicates a bifurcation (branching) while line segment 3 is

shared between the two vessels.

modified template fitting method from Pallawala et al. (2004). Vessels will be

measured within the zone of interest defined by the disc radius and location as

shown by the white circles in Figure 7.1.

2. Vessel Segmentation: In this step we detect the centre lines of the vessels in the

retinal image using an adaptation of a trench detection algorithm (Garg et al.,

2007). Then, the lines are cropped to be within the zone of interest.
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3. Vessel Separation: This step involves distinguishing which line segments belong

to the same vessel. Line segments starting near the beginning of the zone of

interest are marked as root segments shown as yellow boxes in Figure 7.1. From

here the problem of linking up line segments that belong to the same vessel is

cast as the optimization problem of finding the best forest of vessel trees from a

graph. After this step, line segments either belong to some vessel, or are orphans

(e.g., shown in grey in Figure 7.1a). Figure 7.4 shows a conceptual diagram of

two separated vessels. The end result may include shared segments that are due

to one vessel being partially occluded by another as depicted by line segment 3.

4. Vessel Classification: This step involves labelling the individual vessels as either

a vein or an artery. A clustering approach based on the intensity of vessel pixels

is used to classify the two types (classes) of vessels.

5. Width Detection: In this step, the system detects the width (diameter) of the ves-

sels based on the centre lines. Bad width samples are automatically discarded us-

ing an optimization procedure. The vascular structure is now ready to be queried

for measurements of interest.

The grader interacts with the system at various steps as shown by the three feedback

loops represented using dashed lines in Figure 7.3, namely: adjusting the optic disc

result, editing the vessel segmentation and classification, and modifying the width of

the segments. In editing the vessel segmentation, graders may break or detach line

segments from existing vessels, add or delete new line segments, (un)mark hints to

vessel crossover locations for vessel separation, and add new vessel roots.

The primary interest is in correcting the vessel centre line segmentation and ves-

sel classification. This is expressed through the dotted line feedback loop at the top in

Figure 7.3. After these edits are made, the system goes through the automated process

of vessel separation, classification (if new vessels are created) and subsequently, width

detection. Similar to the human grading process, the separation of vessels is not mod-

ified. However, in contrast to the human grading process, we also do not modify the

detected vessel widths and instead rely on automated width detection. The RL system
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interacts with the other algorithms over time through this feedback loop resulting in a

sequence of edit operations. The next section presents an RL system that learns to edit

the vascular structures for improved extraction.

7.4 Retinal Grading As a Multi-Agent Markov Decision

Process

Before detailing the multi-agent Markov decision process (MDP), we first describe the

formulation of editing the vascular structure as a multi-agent problem. The goal of the

system is to produce a modified vascular structure that matches the gold standard, i.e.,

the vascular structure edited by a human grader. To do so, we treat the entire retinal

image as a grid world and disperse a number of editor agents within it. These agents

may move around various locations of interest in the image that are determined by

the current state of the vascular structure. At each time step, each agent may take a

movement action to move to another location of interest, or an edit action that modifies

the vascular structure with respect to its position. The state transition is handled by the

environment, i.e., the vascular extraction system, that processes the new positions of

the agents, the edits made, and recreates the modified vascular structures by calling the

vessel separation and width detection routines. At the end of a pre-determined number

of time steps, the episode ends and a terminal reward is given to the agents.

The above multi-agent problem is formulated with a number of learning and im-

plementation considerations. First, the number of mobile agents is fixed as opposed to

identifying every location of interest as an agent. In the former, the quantity of agents

do not vary with the state unlike the latter. This simplifies implementation and allows

the user to limit the time required to compute the selection of joint actions by limit-

ing the number of agents. Next, the formulation introduces sparsity into an otherwise

massive state space. An agent editing a vessel in one part of an image need not be

concerned with a completely separate vessel on the opposite side of the image. Further-

more, the agent may only make edits in its vicinity. This introduces a local context for
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each agent’s actions that provides a form of state-action space abstraction. Assuming

that editing a vessel is invariant of its orientation, this local context reduces the number

of learning parameters for the system as a whole by allowing the design of features for

function approximation with respect to an agent’s context. Last, by defining locations

of interest to be the positions that agents may move to, learning is further directed to

areas where editing the vascular structure should make the most impact on achieving

the goal. This allows most of the time steps to be spent on edit actions instead of minute

grid by grid movement actions that have little effect on goal achievement.

The motivation for using multiple agents as opposed to a single agent approach is an

obvious one. To illustrate, revisit Figure 7.1. Notice that while there are vessels that are

connected to each other due to vessel crossovers, there are entire groups of vessels that

remain separate. Hence there are opportunities for parallelism. Furthermore, multiple

agents permits the encoding of coordination within a time step that is akin to declarative

predicates, whereas in a single agent case the step-by-step decomposition of procedural

knowledge will be required.

The multi-agent, factored MDP formulation given in Section 2.1 page 13 is used to

model the problem domain. As illustrated in Figure 7.3, the RL editor is a centralized

controller of multiple agents. The RL editor interacts with the existing components for

vascular extraction over time in a feedback loop. Edits made in one time step affects

future edits. The Markov assumption is expected to hold in this case as all the informa-

tion required to make an edit in one time step is in the present state. This holds in most

circumstances, at least for human graders that are usually able to identify errors in the

vascular structure based on its current state. The environment that processes the edits is

a fully deterministic one. However, there is no deterministic transition model. Hence,

the environment serves as a state generator where model-free RL may be employed to

discover solutions. Furthermore, the problem is treated as an episodic MDP. Agents

are allowed to take actions for a certain number of time steps. After which the episode

terminates and a terminal reward is given. Rewards are zero for the other time steps.

The next few sections describe the following: the state space, the actions that include
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(a) Vessel widths (b) Gradient map of intensity

(c) Illumination corrected image (d) Histogram equalized

Figure 7.5: State information for vascular extraction. The widths in (a) change based on edits

made by agents, but (b) and (d) do not. (d) is the histogram equalized image of (c).

the definition of the locations of interest, the reward function that attempts to quantify

the degree of matching between the current vascular structure and the gold standard,

and last, the details for our proposed RL solution.

7.4.1 State Space

The state space consists of two types of information. The first type of information is

static and does not change based on actions taken by agents. This includes the intensity

values in the retinal image, the optic disc, and the zone of interest. The environment that

the agents operate in is limited to the zone of interest. In addition, we have also added

an intensity gradient map (Kang et al., 2007), and a histogram equalized illumination

corrected image. Respective examples of these images are shown in Figure 7.5b and
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Figure 7.5d.

The second type of state information is dynamic, i.e., it varies due to agent actions.

Besides the agent positions, we have the current vascular structure that includes: the

root points of vessels, the vessel type (artery, vein, or orphaned), the centre lines of

individual vessels as shown in Figure 7.1, the automated vessel width detection result

as shown in Figure 7.5a, and a map of crossover hints. The last is a binary map that

provides a hint to the vessel separation routine that a crossing of vessels is near some

vessel pixel.

7.4.2 Actions

Each agent has a dynamic set of actions available depending on the current state and

position it is in. Therefore, actions are limited to the local context an agent is in. By

having multiple agents present in the system we may coordinate the actions between

agents. The types of actions available to each agent are divided into two categories,

namely: movement actions, and edit actions. Also, an idle action is always available

for each agent that essentially does nothing.

First, we present the edit actions. Recall that a vessel is a tree of line segments. Let

the vascular centre line structure be referred to as the line image. All edit actions may

only take place on points in the line image. For example, the red, blue and grey lines

in Figure 7.1 together constitute the line image. Agents may take the following actions

with respect to their current position (two dimensional point) in the retinal image:

Add Root This action will mark a new line segment end point as a vessel root and is

only allowed near the inner circle of the zone of interest. After a new root is

added, the environment will create a new vessel based on it in the next state.

Break Segment This action removes the point in the line image that the agent is on,

and any adjacent points to the agent in its 8-neighbourhood (see white pixels in

Figure 7.6).

Detach Segment This action disconnects a line segment from the nearest junction to

the agent as shown in Figure 7.7.

181



CHAPTER 7. APPLICATION IN AUTOMATING RETINAL IMAGE ANALYSIS

Figure 7.6: Example of 8-neighbourhood and the set of add segment actions. Each square is

a pixel. The agent occupies the pixel with a cross. White pixels indicate the 8-

neighbourhood of the agent. There are 15 Add Segment actions indicated by the

grey pixels. Each Add Segment action results in a line drawn between the agent

and one of the grey pixels.

(a) Before (b) After

Figure 7.7: Example of the detach action. Grey lines are points in the line image, the cross

indicates the agent.

Add Segment This is a set of 15 actions that adds a line segment to the line image

originating from the agent’s position and ending at any of the 15 locations shown

in the grey boxes in Figure 7.6. The agent will move to the end location.

Toggle Vessel Type This action changes the type of the vessel the agent is on from vein

to artery and vice versa. It does nothing if the line segment is not part of a vessel,

i.e., is an orphan segment.

Mark & Unmark Crossover These actions mark or unmark a point as a crossover hint

for the vessel separation algorithm.

Central to the definition of the movement actions in each state are the locations of

interest. As previously mentioned, agents move from one location of interest to the

next. This narrows down the massive state space of the entire vascular structure to a

smaller number of locations where we think the agent edit actions are best carried out.

The following rules define points (pixel locations) on the vessel centre lines that are

considered locations of interest. The locations of interest for the vessel centre lines of

the image in Figure 7.1 is displayed in black in Figure 7.8.

1. The first and last point, i.e., the end points, of every line segment. Such points
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Figure 7.8: Locations of interest and movement model corresponding to the vessel centre lines

in Figure 7.1. Grey lines are vessel points, black points are locations of interest,

purple crosses with numbers are agents and other coloured lines emanating from

each agent depicts the available movement actions. The arrows highlight locations

of interest identified by the acute angle of the line segments.

may be candidates for the Add Root action or may be extended by Add Segment.

2. Junction points that are points on the line image that are at the confluence of

three or more line segments. These points allow agents to destroy junctions using

Break or Detach Segment actions. Furthermore, agents may mark or unmark such

points as crossover hints to the vessel separation algorithm.

3. Each point on a line segment whereby the angle between lines rooted at the point

is less than 120◦. Vessels seldom bend at acute angles. Hence such points may

indicate erroneously linked segment lines due to noise and are candidates for

Break Segment. Additionally, such points may be due to a missing line segment

at a bifurcation (see the arrows in Figure 7.8) that the Add Segment actions may
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remedy.

With the description of locations of interest, we now explain how to compute the

movement actions using the following movement model. In each state, each agent

extends a ray in one of the eight compass directions as shown by the white pixels sur-

rounding the agent in Figure 7.6. The ray extends through the inner circle in the zone of

interest but is bounded by the outer circle. If the ray encounters a location of interest,

an action is added to the agent’s set of movement actions that moves the agent to that

location (point). If the ray encounters a point, p, on a segment line, the line is followed

in both directions until each encounters a location of interest. Then, the nearest of the

locations to p is added as a movement action. In all other cases, no movement actions

will be added. Hence from this movement model, there are at most eight movement

actions for each agent in every state.

In Figure 7.8, coloured lines emanating from each agent (purple cross) illustrate its

movement actions in the current state based on the movement model described above.

Typically the movement actions will allow an agent to move back and forth between

locations of interest within connected groups of line segments that form vessels. How-

ever, agents may also cover great distances by moving to a new group of line segments

as shown by the agent 1 in Figure 7.8. Together with the locations of interest, the move-

ment model allows agents to quickly arrive at locations that usually require editing

while establishing a local context for learning. Next, we proceed to define the reward

function.

7.4.3 Reward Function

The goal of the agents is to produce a vascular structure similar to the gold standard so

that it can be queried for measurements. As we are employing a centralized solution,

we may design a global reward function for all agents. There are a few measures of

performance from which the reward function can be derived. One measure is to define

the reward based on the error of a particular vascular measurement of interest with

the goal standard measurement. This approach is undesirable as there are multiple
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measurements. Furthermore, many measurements are aggregates. A measurement with

small error may be based on an incorrectly extracted vascular structure. Hence, the

reward function is based directly on the quality of the vascular structure.

Quantifying the quality of the vascular structure with respect to a given gold stan-

dard requires some method to match each extracted vessels to an appropriate gold stan-

dard vessel. Consider vessels in the automated extraction of vascular structure in Figure

7.1a. Notice, at one o’clock from the optic disc centre, that the automated extraction

may produce vessels that have line segments belonging to two different vessels in the

gold standard in Figure 7.1b. Therefore, some criteria is needed to decide which vessel

in the gold standard should the vessel to be scored against, i.e., matched. To do this, we

turn to an idea in evaluating clustering solutions.

Clustering is the problem of grouping similar data points together. Many notions of

similarity exists, as well as the definition of a group. While the former is immaterial for

our purpose, the latter is important. We are interested in the evaluation of hard clusters

where each data point definitively belongs to one group. A group is essentially a label

for the data point. Since we have the gold standard, this is a problem of evaluation with

an external criterion where the concept of cluster purity (Manning et al., 2008, Section

16.3) can be applied. Let a cluster be a set of data points. Given N data points, the set

of clusters X, and the set of gold standard clusters Y, purity is defined as,

purity(X,Y) =
1

N

∑

X∈X

max
Y ∈Y
|X ∩ Y |. (7.1)

The purity provides a score for each computed cluster by assigning (matching) it to the

gold standard cluster where the majority of its data points come from. This score is the

count the number of majority points and summing over all computed clusters gives the

final purity score. Hence clusters close to the original will have a purity near one while

the converse will result in a purity near zero. We illustrate this with an example.

Example 7.1 (Cluster Purity). Consider the clusters in Figure 7.9. There are two clus-

ters in the gold standard, circle points and square points respectively. The dotted boxes
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Cluster 2Cluster 1

(a) Poorer Clusters

Cluster 1 Cluster 2

(b) Better Clusters

Figure 7.9: Example of cluster purity. Circle and squares are two gold standard clusters while

the dotted boxes are the clustering results.

are the result of the computed clusters. There are a total of 10 points in the data set and

the purity for Figure 7.9a is, 1
10
[3 + 3] = 0.6, where cluster 1 is assigned to the square

cluster with an intersection count of 3 and cluster 2 is assigned to the circle cluster with

a count of 3. However, in Figure 7.9b the purity is 1
10
[4 + 4] = 0.8 corresponding to the

better fit with the gold standard clusters.

Armed with the concept of purity we are ready to adapt it to quantify the quality

of the extracted vascular structure. Pixels from the same vessel are treated as a “clus-

ter”. With the widths of the vessels already detected, e.g., as shown in Figure 7.5a, the

polygon of each vessel can be computed, consequently all pixels in the polygon can be

identified. Let each artery vessel XA ∈ XA be represented by a set of pixels where

pixels are from the polygon representing the vessel. Similarly, define each vein vessel

XV ∈ XV as a set of points in its polygon, and all points in orphaned segments as the

set XS . Then, given the set of all extracted vessels X = {XA,XV , XS}, and the gold

standard set of vessels Y = {YA,YV , YS}, the purity of the extracted vessels is,

V esPurity(X,Y) =
1

NX








∑

i∈{A,V }

∑

X∈Xi

max
Yj∈Yi

|Xi ∩ Yj|



+ |XS ∩ YS|



 (7.2)

where NX is the total number of pixels in the extracted vessels’ polygons.

A few explanations of the intuition behind Equation 7.2 are in order. First, Equation

7.2 is scaled by NX as unlike Equation 7.1, the number pixels can defer from the gold

standard. If many more pixels are present that are absent in the gold standard, purity

will be reduced. Second, like cluster purity, the range of V esPurity is in [0, 1]. A

completely wrong vascular structure will result in a purity near zero while a vascular

structure resembling the gold standard will result in purity near one. Third, all orphans
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are grouped into one cluster and counted as long as the orphan’s pixel appears in some

gold standard orphan. This means that having more orphans than the gold standard

lowers purity. Next, the vessels are treated like clusters but they further are split into

three classes, arteries, veins, and orphans. This indicates that only arteries are matched

with gold standard arteries and similarly for veins. Therefore, both a mislabelling of

vessel type and erroneous linkage of between vessels will result in lower purity. Last,

in making use of points from vessel polygons, the purity is implicitly biased towards

large vessels that will be naturally represented by larger “clusters”. This is deliberate as

many vascular measurements of interest involve querying the larger vessels.

Using V esPurity we propose two reward functions for the terminal reward. The

first is the change in purity from the initial state. Let,

∆(Xa,Xb) = V esPurity(Xa,Y)− V esPurity(Xb,Y) (7.3)

for any two vascular structure Xa and Xb. Then given that the state s consists of the

current extracted vascular structure Xs, the reward is,

R∆(s) =







∆(Xs,X0) if ∆(Xs,X0) < 0

ζ ·∆(Xs,X0) otherwise

(7.4)

where X0 is the vascular structure from the initial state s0 and ζ is a scaling factor to

bias positive outcomes. The reward function R∆ gives a negative reward if the vascular

structure has less purity than the initially extracted vascular structure. If the vascular

structure has been improved (higher purity), we give a positive reward scaled by ζ to

encourage positive outcomes. We used ζ = 10 in our experiments.

The second reward function is the negative reward,

R−ve(s) = V esPurity(Xs,Y)− 1. (7.5)

This reward function has the range [-1, 0]. Vascular structures with higher purity results
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in a reward near zero while those with low purity will receive a reward near −1.

7.4.4 Learning

Reinforcement learning in this application differs from the previous chapters of this

thesis. While the previous chapters focused on online learning within the same envi-

ronment, this application is a case of offline learning. Each retinal image initializes a

different environment as the static state information shown in Figures 7.5b and 7.5d

will not be the same, neither will the reward function as it is based on the gold standard

and the initial state. Hence there is an additional element of transfer learning in this

domain. Furthermore, learning is partially supervised as we make use of gold standard

graded images to compute the reward for RL during training. However, while the gold

standard result is known, the sequence of edit actions to achieve it is unknown. Hence

RL is employed to learn such a sequence of actions.

The solution employs model-free TD learning and linear function approximation.

The agents’ local contexts allow the design of features with respect to the relative con-

text they are in. To handle the problem of transfer learning, we have normalized and

equalized the static state information shown in Figures 7.5b and 7.5d respectively. Fur-

thermore, we make use of relational features (RFs) from predicates to generalize among

local contexts. For example, let the predicate MoveToSameV essel(ax, ay), from No.

68 in Section A.3.1 page 239, encode if two agents are moving to the same vessel. This

predicate can be used regardless of the retinal image, vessel, and agents in question. Us-

ing such predicates we can encode meaningful information that is likely to generalize

across different retinal images.

Similarly if two level CGRL is used, such predicates can define coordination con-

straints (CCs) that are equally meaningful for different retinal images. For example, we

may have the predicate,

P0(ax, ay) :=Move(ax) ∧Move(ay) ∧ [vessel(ax) = vessel(ay)]

∧ [vessel(pointAfter(ax)) 6= vessel(pointAfter(ay))] (7.6)
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where vessel(ax) is a function that returns the current vessel an agent is on, and

pointAfter(ax) returns the point after the agent has moved. P0 encodes whether two

agents that are on the same vessel will no longer be on the same vessel after moving.

Such a predicate can be useful, both as an RF or a CC, to encourage agents to remain

on the same vessel. A detailed listing of predicates used is given in Section A.3 page

239.

The multi-agent MDP formulation allows agents to coordinate their actions as de-

scribed by the binary predicates. However, coordination is not necessary in every state.

We define the following situations where agents must coordinate,

1. Agents are in the same connected component of the line image. This is because

the edit actions by one agent is likely to affect the actions taken by another agent.

2. Agents that share at least one destination in their movement actions. This is a

loose measure of proximity based on our movement model and can be used to

prevent agents from colliding if desired.

3. Agents are within a fixed Euclidean distance. This is another measure of agent

proximity.

In the cases where agents need not coordinate, they may select their actions individually.

This speeds up joint action selection.

The online RL methods can be directly applied for the training phase that takes place

offline. Our set up for offline learning is as follows. An episode consists of agents taking

actions using an exploration policy in a retinal image and updating their value functions

for a fixed number of steps. The initial positions of agents in the vascular structure

are randomized so that agents may encounter different states more rapidly. A terminal

reward is given at the end of the episode. Given T training images, we perform RL on

each image once to give an episode block of T episodes. Then, we continue training by

reiterating through the images. After training for a certain number of episode blocks,

we evaluate the current value function by using a greedy policy on a separate set of test

images. The learning process stops at any desired number of training episode blocks.
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7.5 Experiments

The experiments make use of retinal images taken from the real world Singapore Malay

Eye study (SiMES) data set (Foong et al., 2007). The vascular structures from the retinal

images have been extracted by human graders using the SIVA system by following a

fixed grading protocol to standardize decision making.

The experiments are conducted using the method given in Section 7.4.4 with four

agents and twenty steps per episode. We compare the different variations of RL editors

as shown in Table 7.1. Coordinated RL and CGRL learning methods, and variations in

the MDP formulation such as different reward functions and multi-agent RL methods

are also investigated. Exploration policies are ǫ-greedy and bucket elimination (see

Algorithm 4.2 page 75) is used for action selection among the 4 agents.

RL Editor RL Method Reward Function

Coordinated R∆ coordinated R∆

CGRL R∆ CGRL R∆

Coordinated R−ve coordinated R−ve

CGRL R−ve CGRL R−ve

Table 7.1: Various RL editors used to edit the retina’s vascular structures.

We analyse the results in a few ways. First, we present results to evaluate the various

RL methods on the training set and a separate set of testing images. Second, we analyse

results based on the actual impact on retinal measurements of interest. This allows us

to compare the strengths of different methods. Third, we perform decile analysis on our

results to yield insights into how the RL editors perform on images with varying errors

in their vascular structure. Last, we show some sample edited images.

7.5.1 Learning Efficiency

This section presents the results of training on a set of ten retinal images (i.e., an episode

block of length 10). First, we present plots for training performance on the training set

that is akin to online learning. Then, we show plots for testing performance evaluated

on five retinal images at intervals of ten episode blocks, i.e., evaluation is performed
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Figure 7.10: Training results using R−ve. Each plot is an average of five runs.

after 100 training episodes. Plots for testing performance show offline learning results.

The purpose of this comparison is to analyse learning efficiency.

The first set of results are shown in Figures 7.10 and 7.11 for the reward functions

R−ve and R∆ respectively. The RL editors are trained for 3000 episode blocks giving a

grand total of 30,000 episodes using ǫ-greedy policies. Each plot is the average of five

training runs, the black line labelled Base show the initial reward before any editing.

All RL editors used the same RL parameters, γ = 1, α = 10−4, and ǫ starting at value

1 and decaying at a rate of 0.997 until remaining constant at 0.1.

From the plots, we see that CGRL outperforms Coordinated RL on the training data.
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Figure 7.11: Training results using R∆. Each plot is an average of five runs.

This is as expected as the training results are similar to online learning. The oscillations

in the plots are due to the constant α used. In terms of the reward function, RL editors

using R−ve do not perform better than the baseline reward. However, R∆ is able to

achieve rewards that exceed the baseline. This may be due to the exploration steps

and unlike in the case where R∆ is positive, R−ve is not asymmetrically scaled. These

results verify that the multi-agent RL methods are able to learn using our proposed

MDP formulation.

For the next set of results, we evaluate the RL editors after every 10 training episode

blocks (i.e., 100 episodes) on five testing images. RL editors are applied on each of the
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Figure 7.12: Testing results where each plot is the maximum average out of five runs.

five testing images using the trained value functions with ǫ = 0, i.e., the greedy policy.

Each testing image is edited 20 times with random starting positions. The average of

these 5× 20 = 100 testing episodes are computed. There are five training runs for each

RL editor. Since we are only interested in the best performer, we plot the maximum

average from these five runs that is shown in Figure 7.12.

From Figure 7.12, we see that there are some similarities to the general trend be-

tween the testing and training results. However, the differences between the CGRL and

Coordinated RL editors are less apparent. This may be due to the transfer learning is-

sues that are present due to offline learning. Every retinal image presents a different
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MDP environment as the static state values differs, e.g., the gradient map (see Figure

7.5b) differs between images. While in the training phase, CGRL performs better than

Coordinated RL, this advantage may be lost to difficulties in transferring the learned

results.

The results in this section has shown that the MDP formulation allows RL tech-

niques to be applied to this problem domain. However, it tells us little of the impact on

the retinal vascular measurements due to the different reward functions and RL meth-

ods. We investigate this further in the next section.

7.5.2 Comparing Problem Formulations

Improving the accuracy of vascular measurements is the true goal of our application.

Therefore, in this section, we analyse the results based on the actual vascular measure-

ments of interest by evaluating our trained RL editors on 900 retinal images with gold

standard graded results. We compare variations of our approach based on the different

reward functions by using the best performer out of the five runs for each RL editor,

i.e., the run shown in Figure 7.12 at 3000 episode blocks (last point). Also, we study if

applying our RL editor multiple times on the same retinal image in sequence yields any

benefits. The six measurements of interest are:

CRAE & CRVE These two measurements are based on the aggregated widths (cali-

bre) of the six largest arteries and six largest veins respectively.

cTORT The average curvature tortuosity of all arteries (cTORTa) and all veins

(cTORTv) respectively. This measurement quantifies how tortuous are the vessel

centre lines (Hart et al., 1997; Cheung et al., 2011b).

JE The average junctional exponent deviation of the six largest arteries (JEa) and six

largest veins (JEv) respectively. This measurement requires vessels to be linked

up correctly as the junctional exponent deviation is a ratio of the sum of the

daughter segments’ widths to the parent segment width at the first bifurcation

of a vessel.
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Figure 7.13: MAE results for various retinal measurements. Lower is better. RL editors are

applied up to three consecutive times indicated by 1, 2, 3. Each bar is the mean of

30 evaluations on 900 images, the error bars show +1 and −1 standard error.

These measurements are important as they have been shown to be correlated to a num-

ber of diseases as described earlier in Section 7.1.

The first series of plots in Figure 7.13 is based on the mean absolute error (MAE) of

each measurement with the gold standard. The MAE is the mean of the absolute differ-

ence between the measurement of each image after editing and the measurement from

the gold standard. RL editors are applied to each of the 900 images 30 times giving 30
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sets of results. The mean MAE with its standard error is illustrated in Figure 7.13 for

each measurement. In addition, the initial bars shows the MAE before any editing. We

further investigate applying the RL editors on the same image multiple times consecu-

tively. These are shown as the bars labelled 2 and 3 in the plots corresponding to the

number of times the RL editors are applied. Ideal MAE values should be close to 0.

The second series of plots in Figure 7.14 show the Pearson correlation coefficient

(PCC) between the edited images and the gold standard. Each bar in shows the mean

PCC of the 30 sets of results along with the standard error. We have chosen PCC as

a comparison as it is less affected by constant error factors. Furthermore, the PCC is

usually used to correlate retinal vascular measurements with the risk of diseases. Ideal

PCC values should be close to 1.

The results in Figure 7.13 show that certain measurements benefit from the RL ed-

itors more than others. Notably, there exists an RL editor that is able to reduce the

MAE values of CRAE in Figure 7.13a and cTORTv Figure 7.13d. Furthermore, the

CGRL R∆ editor has generally lower MAE values than the other RL editors. For the

PCC results in Figure 7.14, the RL editors result in lower PCC values for most mea-

surements with the obvious exception of the CRAE in Figure 7.14a where all editors

improve the PCC. This indicates that the RL editors may be most useful for improving

the CRAE measurement. We notice that the initial PCC of CRAE in Figure 7.14a is the

lowest among the other measurements in Figures 7.14b to 7.14d, indicating that it may

be easier to improve an already poor measure. However, this is not the case for the JE

measures from vessel bifurcations that have low initial PCC values shown in Figures

7.14e and 7.14f where the RL editors were not able to improve the PCC. This suggests

that the RL editors are not adept at connecting correct branches to vessels.

Among the various RL editors, the CGRL R∆ editor stands out the most as it either

improves the PCC, or results in a PCC closest to the initial value. The same can be

observed for the MAE results. From these results we conclude that the CGRL R∆ is

mostly superior to the rest of the RL editors. Furthermore, additional application of the

RL editors beyond the first (bar labelled 1) do not yield significant benefits as seen in
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Figure 7.14: PCC results for various retinal measurements. Higher is better. RL editors are

applied up to three consecutive times indicated by 1, 2, 3. Each bar is the mean of

30 evaluations on 900 images, the error bars show +1 and −1 standard error.

the bars labelled 2 and 3. The results thus far have only shown marginal improvement

for certain measurements. For a more detailed analysis, we divide the 900 images into

deciles in the next section.
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7.5.3 Decile Analysis of Measurement Quality

To gain a better insight into the impact of the quality of the initial extracted vascular

structures on RL editor performance, we perform decile analysis on our results. For

each measurement of interest, the 900 retinal images are ranked based on their absolute

error between the initial automated vascular extraction and the gold standard. Then,

the ranked images are partitioned into deciles of 90 images each. Subsequently, we

analyse the performance in terms of MAE and PCC with respect to each decile. To

better illustrate the results with respect to the initial extracted vascular structures, the

changes in MAE and PCC with respect to the initial values for each decile are plotted.

The results for MAE and PCC are shown in the Figures 7.15 to Figure 7.16 respec-

tively. For each plot, the left most bar is the decile with lowest absolute error (high

quality) and the right most bar is the decile with the highest absolute error (low qual-

ity). As before, each bar plot is a mean of 30 evaluations for a decile and the error bars

represent +1 and −1 standard error.

Figure 7.15 depicts the MAE by decile for the six measurements of interest. Gen-

erally, the RL editors increase the MAE for the high quality deciles and conversely,

decreases the MAE for the low quality deciles. These suggest that the RL editors per-

form best on retinal images with low quality extracted vascular structures at the start. In

particular, notice that the CGRL R∆ editor is the most conservative. Its changes to the

MAE for both high quality and low quality images are much less compared to the other

RL editors. This may be due to the coordination constraints (CCs) present in CGRL that

may bias the solution towards more conservative editing. For the other RL editors, such

as Coordinated R∆, that greatly reduces error in the low quality deciles, more errors are

introduced in the high quality deciles.

There are variations in quality between the artery and vein measurements. For ex-

ample, the results of CGRL R∆ editor for the CRAE in Figure 7.15a are similar to the

results for CRVE in Figure 7.15b. However, this is not the case for the RL editors using

R−ve, where the MAE of the CRVE mostly increases throughout the deciles. This in-

dicates that there may be spurious arteries (i.e., mislabeled veins) resulting from these
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Figure 7.15: Change in MAE by decile for various measurements. Lower is better. Decile from

lowest error on the left to highest error on the right.

RL editors. Hence, the CGRL R∆ editor, is most consistent between the same artery

and vein measurements for vessel widths. The results for the JE values in Figures 7.15e

and 7.15f indicate that the RL editors are mostly able to improve these values for the

low quality deciles for both arteries and veins.

Figure 7.16 illustrates the PCC results by decile for each of the measurements of

interest. In general, the CGRL R∆ editor is similarly conservative in the way it affects
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Figure 7.16: Change in PCC by decile for various measurements. Higher is better. Decile from

lowest error on the left to highest error on the right.

the PCC values for most measurements. In terms of the measurements, the editors using

R∆ improve the PCC values in some proportion to the decrease in MAE for the lowest

quality decile of the CRAE in Figure 7.16a. However, this is not as evident for the R−ve

editors. For the CRVE in Figure 7.16b, only the CGRL R∆ editor increases the PCC

for the lowest quality decile, suggesting that the other editors have mostly inaccurately

edited veins. The tortuosity measurements in Figures 7.16c and 7.16d generally show
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no improvement across most deciles, suggesting that the RL editors have not performed

well for these measures. Last, notice that the PCC for the JE values in Figures 7.16e

and 7.16f correspondingly improved as the MAE decreased for the low quality deciles.

7.5.4 Example Edited Images

This section attempts to visualize the edited results from images based on their reward.

The top 20 results in terms of reward for the CGRLR∆ editor from the 30 evaluations of

the 900 images are examined. As a sample, the top two images are displayed in Figures

7.17 and 7.18. Note that the extent of the vessels is limited to the zone of interest but the

zone is omitted to reduce clutter. For each image, we present the initial extracted vas-

cular structures, then, the edited vascular structures and last, the gold standard vascular

structure edited by a trained human grader.

The human graders followed a grading protocol to standardize their decision mak-

ing. This protocol is a set of rules for editing the vascular structure. In the SiMES study

where the gold standard was obtained, the grading protocol only connected the first or-

der bifurcation (branch) of each vessel, while disconnecting higher order bifurcations.

Previously, this was depicted in Figure 7.1b and it can be further observed clearly in

Figure 7.18c, where the second order bifurcations in the veins (in blue) at eleven and

one o’clock from the optic disc centre are not connected.

From Figures 7.17 and 7.18, the most obvious changes made by the RL editor is

the toggling of the vessels type. In the top half of Figure 7.17b above the optic disc,

two veins have been changed to arteries and one small artery to a vein. These changes

are correct when verified with Figure 7.17c. Similarly in Figure 7.18b, toggling the

vessel types for three vessels resulted in more correct measurements. Further visual

inspection of the other top 20 images reveals that most have toggled vessels but the

other edit actions are not heavily used. This suggests that the Toggle Vessel Type action

yielded the most reward.
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(a) Initial

Toggle

Add Line

Toggle

Toggle

(b) Edited

(c) Gold Standard

Figure 7.17: Example edited retinal image 1. Final reward is 1.686.
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(a) Initial

Toggle

Toggle

Toggle

(b) Edited

(c) Gold Standard

Figure 7.18: Example edited retinal image 2. Final reward is 1.674.
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7.6 Discussion

The next few sections discuss the experiment results and suggestions to improve the

current application.

7.6.1 Learning & Problem Formulation

The overall results have shown that it is feasible to employ RL in this problem domain

with the CGRL R∆ editor showing the most promise. The CGRL R∆ editor is more

conservative than the other RL editors. This is likely due to a combination of coordi-

nation constraints and the R∆ reward function that directed learning towards a more

conservative solution. From the decile based analysis in Section 7.5.3, CGRL R∆ re-

duces errors in the lowest quality decile albeit with a lesser reduction than the other

RL editors. However, unlike the other RL editors, CGRL R∆ does not introduce much

higher errors into the higher quality deciles. Furthermore, it produces more balanced

results between artery and veins for the same measurement.

The proposed MDP formulation has resulted in the Toggle Vessel Type action yield-

ing the most improvement. This discovery can be explained by the definition of the re-

ward function based on vessel purity in Equation 7.2. As vessels are considered to have

higher purity if they correspond to the correct vessel type, the act of toggling a large

vessel can result in large changes in the vessel purity. In contrast, other actions such as

Add Segment modifies the vessel slightly and are unlikely to result in large changes in

the resulting reward.

We have some suggestions to better encourage learning to use the other actions

besides Toggle Vessel Type. The first, is to split the current problem formulation into

two sub-problems to be solved in sequence: one for editing the vessels, and one for

labelling the vessels. In this way, the Toggle Vessel Type actions will not dominate the

reward function. Alternatively, ideas from multi-objective RL (Vamplew et al., 2011)

may be attempted to prevent the accurate vessel type objective from dominating the

reward signal. Last, is to refine the reward function into a more fine-grained one such
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as an agent decomposed reward. Consequently, the agents will have a more precise

sample of the reward for their individual actions.

7.6.2 Domain Related Issues

The RL editors have shown that it is possible to improve measurement quality for certain

images. Of all the measurements of interest, improving the CRAE is the most promising

as evidenced by the results in both Sections 7.5.2 and 7.5.3. The decile based MAE

results and PCC results in Section 7.5.3 suggest that in general the CRAE and JE values

for low quality images can be improved with our methods.

One obvious issue with the gold standard data used in this study is the grading

protocol. As only the first bifurcations are connected in the gold standard, the results

of RL editors will be penalized if higher order bifurcations are connected. Apart from

directly impacting vessel purity, the MAE and PCC of the measurements of interest are

also affected. This is most severe for the cTORT measurement as it is an average of

all arteries or veins including the small vessels. In contrast, the width measurements,

CRAE and CRVE, are less affected as they use the six largest arteries and veins, while

the JE measures are least affected as they only measure the first order bifurcation of

the six largest arteries and veins. This partly explains the poor PCC results for cTORT

in Figures 7.16c and 7.16d. Results are expected to improve after training on more

complete human graded vascular structures as they become available.

The better performance of the RL editors on the low quality deciles suggests that it

may be useful to design a filter method to sieve out images where our existing vascular

extraction methods will perform poorly. These images are most likely to be similar to

the lowest quality decile where the RL editors can perform best. In a fully automated

solution, we can apply the RL editor on only the poor images before measuring their

vascular structures.
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7.6.3 Related Work

We have presented an RL application that edits the result of automated vascular struc-

tures in a post-processing feedback loop. The edits interact sequentially with the other

automated vessel separation, classification, and width detection algorithms. Hence this

RL application is agnostic to the other algorithms used in the process of extracting

vascular structures. In contrast, other related works that employ RL on other types of

medical images do so directly within the segmentation algorithms (Sahba et al., 2008;

Chitsaz and Seng, 2009; Wang et al., 2011) and hence, are more tightly coupled to those

algorithms.

Abdul-Karim et al. (2005) made use of an RL system to automatically tune the

parameters of vessel for a neurite segmentation algorithm. Our application differs in

that it participates in the process of obtaining the vascular structure in a more direct

way by iteratively modifying the input to other parts of the process chain to obtain

the extracted vascular structures. Furthermore, our approach is independent of vessel

segmentation.

Our work mostly differs from the other existing works in the complexity of the

extracted structure that involves additional processing after segmentation. This gave rise

to a large state and action space that we reformulated into a multi-agent RL problem.

Therefore, we are able to handle greater complexity as opposed to the single agent

formulation for the existing works.

7.7 Conclusion

This chapter presented a preliminary application of multi-agent RL for improving the

extraction of vascular structures from images of the human retina. Subsequently, the

vascular structure can be queried for measurements of interests that may be used as

feature inputs to disease risk predictors or for population studies. To the best of our

knowledge, this is the first attempt to apply multi-agent RL to extracting vascular struc-

tures from retinal images.

206



7.7. CONCLUSION

This work proposed a multi-agent MDP problem formulation that was inspired by

the real world computer assisted process of manually editing vascular structures to cor-

rect inconsistencies. Explanations were provided for the design decisions that handle

scalability in this large domain through the use of agent dependent local contexts. Ex-

periment results on real world data set demonstrate the feasibility of the solution. How-

ever, there is room for improvement when the vascular measurements of interests are

considered. The solution performs best for poor initially extracted vascular structures

and is most useful for improving the CRAE measure. Enhancing the current solution in-

volves: adjusting the MDP problem formulation, obtaining a more comprehensive data

set as the gold standard, and developing a filter to identify poorly extracted vascular

structures.

In the wider scope of this thesis, this chapter provides an example of a real world

application to automating computer assisted tools that is formulated as a collaborative

multi-agent RL. Hence, demonstrating the flexibility of the solutions developed in this

thesis for various seemingly unrelated domains.

207



A Blank Page



Chapter 8

Conclusion

This thesis investigated reinforcement learning (RL) for collaborative multi-agent do-

mains. It primarily focused on three main research challenges for online learning in

these domains, namely:

1. Exploration. Multiple agents result in exponentially large state and action spaces

to explore. The heavy exploration requirements result in less time to exploit in

the online setting.

2. Distribution. Communication among agents are dynamic. This requires learning

systems to be distributed among agents. Agents should be able to make effective

use of communication when available.

3. Model Complexity. Many learning parameters may be required for multiple agents

resulting in slow learning. Furthermore, models usually encode some expert

knowledge. Simplifying model representation will improve applicability of pro-

posed methods.

For each of these challenges specific gaps in current research were addressed. First,

is the absence of an active involvement of coordination knowledge among agents for

improving online exploration in large multi-agent problems. The second follows from

the first but with respect to a distributed setting with dynamic communication restric-

tions. Third, there are few works that decentralize relational RL whereby a solution

has the potential to greatly reduce model complexity. Addressing these gaps are the
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contributions of this thesis.

8.1 Contributions

The main contribution of this thesis over existing works is the introduction of coordi-

nation constraints (CCs). CCs are fragments of expert coordination knowledge used

to dynamically remove large parts of the joint action space from exploration. When

to make use of CCs is a part of the overall RL system, i.e., the system learns to make

use of CCs. An important benefit of this contribution is that encoding declarative CCs

are similar to encoding propositional features based on predicates for function approx-

imation. In fact, this similarity allows CCs to guide exploration in conjunction with

representing value functions. The burden of encoding expert knowledge on the users of

the proposed methods is reduced as existing predicates for features can be used as CCs

and vice versa. Hence, CCs increase the effectiveness of the same predicate building

blocks, that are commonly used to handle other aspects of multi-agent RL, by making

greater use of them in RL.

The coordination guided reinforcement learning (CGRL) system was presented to

learn when to make use of CCs to guide exploration of primitive actions. The first

step developed the centralized CGRL method that has two levels. The top level learns

to select CCs to activate. Activated CCs constrain the policy of the bottom level that

selects the actual primitive actions to be taken in the environment. Learning an optimal

solution to this augmented learning problem yields an optimal solution for the original

problem. Temporal difference (TD) updates were used to learn value functions for

both levels incrementally while the system interacts with the environment. CGRL may

also be combined with relational TD learning through the use of relational features

(RFs). Experiment results demonstrated that CGRL outperforms existing methods for

coordinated RL for many different variations of simplified soccer and tactical real-time

strategy (RTS) game domains. Hence, CGRL addresses the exploration and model

complexity challenges for centralized multi-agent RL.
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The second contribution dealt with the challenge of dynamic communication. In this

situation, communication links among agents change over time and agents may be re-

moved from the environment. The distributed CGRL system was developed to address

these issues. The top and bottom level value functions were decomposed such that each

agent learns its share, ensuring that no one agent is critical to the learning system. In-

stead of using global TD updates for learning, local updates were based on each agent’s

decomposed local functions and observation of its local reward. Communication be-

tween agents took place during action selection. The results on variations of soccer and

tactical RTS games with dynamic communication showed that CCs improve learning

over existing distributed RL methods. However, in addressing the issue of communi-

cation, distribution resulted in more learning parameters for the multi-agent system as

a whole. This is because relation features cannot be employed directly like in the cen-

tralized system. As a result of this lack of relational generalization, the overall solution

quality of distributed CGRL for domains like tactical RTS is reduced as compared to

centralized CGRL. Overcoming these limitations led to the third contribution.

The third contribution investigated a distributed solution for relational TD learning.

This mitigates the problem of model complexity in distributed CGRL and in general,

distributed RL. Two types of relational generalization were used, namely, internal and

external. Internal generalization proposed a scheme to develop agent decomposed value

functions based on local agent based RFs. The sum of the agent decomposed value func-

tions with suitably learned weights can be equivalent to the global value function used in

centralized relational TD learning. Internal generalization allows an agent to generalize

learning over its interactions with various agents. To further generalize learning among

different groups of agents, external generalization was introduced. This is achieved us-

ing a message passing scheme to share learned parameters that share relational seman-

tics. Experiment results show that relational TD learning integrates well with existing

works in distributed RL and distributed CGRL; outperforming them in terms of learning

performance while using a much reduced number of learning parameters. Furthermore,

the learning performance of distributed CGRL with relational TD learning was com-
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petitive with centralized approaches in certain domains. Thus, a reasonable trade-off

between distribution requirements and model complexity was achieved.

The last contribution is a prototype application for automating a real world program

for computer assisted image analysis of the human retina. The goal of this analysis

is to extract the vascular structure from retinal images so that they can be queried for

measurements. Such measurements may then be used for population studies or for dis-

ease predictions. A novel multi-agent MDP formulation was used to model the prob-

lem of interactively editing the vascular structure. Consequently, a reward function to

capture the correctness of the structure was defined. Agents repeatedly modify the vas-

cular structure like a human grader, triggering the existing system to re-separate and

re-identify individual vessels. The approach was evaluated using data from a real world

population study. The results demonstrated that it is feasible to employ multi-agent

RL in this domain, and that there are some improvements to the measurement quality

for certain measurements when the initial extracted vascular structure is poor. Hence,

this preliminary solution demonstrates promise and verifies the wide applicability of

collaborative multi-agent learning techniques.

8.2 Future Work

There are few main directions for future work. First, like most methods that introduce

new uses for expert knowledge, the reliance on expert knowledge should be reduced. In

the short term, plausible directions include automatically deciding on features to double

up as CCs and automatically constructing top level features for these CCs. However,

there is also a need to construct the CCs themselves. For this, note that CCs are co-

ordination knowledge encoded by predicates. By deliberately using the same form of

knowledge encoding as many works in the larger field of relational learning, future

work for automated predicate construction can serve as a basis for developing methods

to create the predicates for CCs and RFs. Likewise, developing methods to incremen-

tally construct useful predicates online can benefit both RL and relational learning.
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Another form of expert knowledge that will have wide benefits if reduced relates to

the agent decomposition of the global reward signal. Good reward signals are crucial

for RL. Agent decomposed signals can provide fine grained information to centralized

approaches and are a requirement for distributed RL. To aid in applicability of RL meth-

ods, it will be useful to have automated methods to decompose global reward signals

into individual agent signals such as the methods highlighted in Section 3.5 page 45.

More so if this decomposition can be learned online or handle non-stationary envi-

ronments. Providing such solutions will further reduce the overall reliance on expert

knowledge in RL.

Second, much work remains in determining the strengths of various RL methods

that rely on different forms of expert knowledge to improve online exploration. CGRL

makes use of existing predicate based knowledge used in encoding features to provide

CCs. This aids in its applicability for improving existing learning projects. Further-

more, CGRL is suitable for domains whenever a predicate feature encoding for function

approximation is suitable. However, when choosing an RL method for new projects,

there is little work that compares the strengths of existing works such as the task based

or organizational based approaches described in Section 3.4 page 43. The main imped-

iment to a fair comparison of these alternatives is the inherent difficulty in objectively

quantifying the different forms of expert knowledge. Contemporary works that make

use of probability models in Bayesian multi-agent RL (Teacy et al., 2012) and adap-

tively modifying reward shaping (Devlin and Kudenko, 2012) further add to the myriad

of employable expert knowledge for improving exploration. Comparisons will also re-

quire well defined categories for various domains. However this may take much time to

discover. Therefore, a more expedient avenue to evaluate various approaches is through

the development of fusion methods where multiple ideas are integrated. For example, a

hybrid task based CGRL can be compared with plain task based RL and CGRL. Similar

difficulties were noted in the comparison of value function based RL and direct policy

search in Kalyanakrishnan and Stone (2009) that also included a hybrid approach.

Third, there may be merit in determining if there is a relationship between the
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model-free and model-based approaches to improving exploration. A number of model-

based methods make use of uncertainty in the model to direct exploration concurrently

with exploitation (Strens, 2000; Poupart et al., 2006; Epshteyn et al., 2008). In contrast,

many model-free methods reviewed in this thesis makes use of some hierarchical con-

cept to adjust explorations, e.g., through higher level actions or decisions that affect the

actions, rewards, or value functions. Such hierarchical concepts to adjust exploration

can be viewed as introducing some form of bias into a stochastic exploration policy.

Investigating the link between hierarchical concepts and uncertainty in an approximate

model may yield new insights to improve online exploration.

The fourth relates to distributing relational TD learning. Future work in this di-

rection includes investigating an adaptive method to adjust the amount of relational

generalization over time for domains where specialized roles are important, and auto-

matically identifying the predicate based features that are suitable for relational gener-

alization. Automatic construction of higher level predicates remains a crucial problem

to address in multi-agent domains to reduce the dependency on background knowledge

provided by human experts. This thesis demonstrated how relational generalization can

work for CGRL that has higher level actions based on coordination constraints. This

may provide insights as to how other multi-agent hierarchical RL methods that involve

higher level actions (Marthi et al., 2005; Ghavamzadeh et al., 2006; Zhang et al., 2010)

can be augmented with relational constructs.

Fifth, generalizing the methods in this thesis to more complex problem formula-

tions will increase their applicability. This thesis explored variations of the multi-agent

MDP formulation with respect to decentralization. However, adapting to more com-

plex formulations, such as partially observable Markov decision processes and Markov

games, will extend the proposed methods to the respective domains where the infor-

mation of the state is a stochastic signal and where adversarial agents are present. In

the case of Markov games, there may still be collaborative agents among adversarial

agents. Hence, the idea of CCs may remain relevant for the collaborative agents. How-

ever, there will be a need to overcome the stronger communication restrictions and the

214



8.2. FUTURE WORK

non-stationary environment that is common in Markov game formulations.

Finally, the sheer complexity of multi-agent learning and flexibility in its applica-

tion ensures that research in this field has great potential as more complex and larger

domains are encountered. There remains many exciting opportunities to apply agent

learning to improve automation in real world computer assisted tools and autonomous

robotics, as well as to provide a better entertainment experience in computer games. In-

deed in time to come, autonomous and smart multi-agent systems may become essential

tools in our daily lives.
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Appendix A

Implementation Details

This chapter contains implementation details such as predicates that are used to create

features for function approximation and coordination constraints. Code for the experi-

ments in this thesis was written in C++, compiled as 32-bit binaries, and ran on Linux.

In the functions and predicates, we refer to a controllable agent as a friendly unit ai,
an enemy as ei, and either type of unit as ui. We presume that these variables include

both the state and action of the agents they refer to. To simplify, we have written

functions and predicates with the action variables (agents) only. A unit refers to some

agent entity, e.g. a soccer player or a marine.

To facilitate listing we define the set conjunction operator
∧

for two sets of pred-

icates with the same bound variables that returns a set of conjunctions of those predi-

cates. For example, given the sets of predicates,

P1 = {p11(ai), p12(ai), ..., p1m(ai)}, and P2 = {p21(ai), p22(ai), ..., p2n(ai)},

then P1
∧
P2 is the set of predicates formed by conjuncting the values in every tuple

of the set product P1× P2, i.e.,

P1
∧

P2 =







p11(ai) ∧ p21(ai) p11(ai) ∧ p22(ai) · · · p11(ai) ∧ p2n(ai)
p12(ai) ∧ p21(ai) p12(ai) ∧ p22(ai) · · · p12(ai) ∧ p2n(ai)

...
...

. . .
...

p1m(ai) ∧ p21(ai) p1m(ai) ∧ p22(ai) · · · p1m(ai) ∧ p2n(ai)







.

Where each conjuncted predicate’s variable, ai, is the same. The same applies to sets

of predicates involving multiple agents.

For the centralized methods, function approximation for the entire learning system

as a whole does not contain duplicate features. For the distributed methods, each Ui,Wi

or Qi function contains all the non-predicate based features and all the predicate based

features that agent i is involved in. Hence in the global sense, pairwise features may be

duplicated. For example, in distributed CGRL for RTS, marines 1 and 2 will each have

a copy of the PairAttack(a1, a2) propositional feature and a corresponding weight to

learn.
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APPENDIX A. IMPLEMENTATION DETAILS

A.1 Simplified Soccer Game

A.1.1 Base Predicates & Functions

The following are basic functions:

1. distance(ui, uj) is the Manhattan distance between two soccer players.

2. Pball A function of the state that returns the player object that has the ball.

3. nearestEnemy(ai) A function of the state that returns the nearest enemy player

object.

4. pass(ai) A function that returns the player object that player ai action passes to,

otherwise returns null player.

5. intercept(ai) A function that returns the enemy player object that player ai after

taking a move action will collide with. Null if no such enemy or player is not

moving.

6. moveTo(ai) A function that returns the player object with new positional co-

ordinates if the action was successful, otherwise the player object with current

positional coordinates is returned.
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Figure A.1: Soccer field positions

Let A be the set of friendly controlled players and E be the set of opposing enemy

players. The following are state only base level predicates with reference to the parts of

the soccer field given in Figure A.1.

7. HasBall(ui) := ui = Pball the player has the ball

8. BackQuarter(ui) player is in the quarter of the field nearer to its home goal.

9. MidField(ui) player is in the middle half of the field, from a quarter to three

quarters.

10. FrontQuarter(ui) player is in the quarter of the field nearer to its scoring goal.

11. RightF lank(ui) player is in the right flank.

12. LeftF lank(ui) player is in the left flank.

13. Center(ui) player is in the center.

14. Flank(ui) := RightF lank(ui) ∨ LeftF lank(ui).
15. EnemyWithind(ai) := distance(ai, nearestEnemy(ai) ≤ d, player is ≤ d

distance to an enemy player.

16. TeamHasBall(T ) the team, A or E , has the ball
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17. TeamOffensive(T ) := ∀ui ∈ T ,¬BackQuarter(ui) the entire team of play-

ers T are not in the back quarter of the field.

18. TeamDefensive(T ) := ∀ui ∈ T ,¬FrontQuarter(ui) the entire team of play-

ers T are not in the front quarter of the field.

The following are predicates based on player’s actions.

19. Pass(ai) player is passing the ball.

20. IsPass(ai, aj) := Pass(ai) ∧ pass(ai) = aj .
21. Forward(ai) action taken moves player strictly closer to scoring side.

22. Backward(ai) action taken moves player strictly closer to home side.

23. Left(ai) action taken moves player strictly closer to the left of the field.

24. Right(ai) action taken moves player strictly closer to the right of the field.

25. MoveToScoring(ai) player moving towards scoring side.

26. MoveToHome(ai) player moving towards home side.

27. MoveToBall(ai) player moving closer to ball location, false if player has ball.

28. MoveFromBall(ai) player moving further from ball location, false if player has

ball.

29. Shoot(ai) action shoots.

30. PassFront(ai) player is passing the ball to a receiver that is in front of the player.

31. PassBack(ai) player is passing the ball to a receiver that is behind the player.

32. PassSide(ai) player is passing the ball to a receiver either left or right to the

player.

33. MoveWithind(ai) := EnemyWithind(moveTo(ai)) player moving to≤ d dis-

tance to enemy.

A.1.2 Bottom Level Predicates

The following are predicates used as features for bottom level function approximation

for U and Q. First, we list the predicates based on only the state:

34. BackQuarter(Pball)
35. FrontQuarter(Pball)
36. MidField(Pball)
37. TeamDefensive(A)
38. TeamOffensive(A)
39. TeamDefensive(E)
40. TeamOffensive(E)
41. TeamHasBall(A)
42. TeamHasBall(E)

Second, the list of features based on single player actions (unary) in the team:

43. Base predicates 21 to 32 used directly.

44. CollideBorder(ai) player will collide with the environment boundary.

45. CollideEnemy(ai) player will move to a square that contains an enemy, note

that player will loss ball if it has a ball or will intercept an enemy player’s ball.

46. MoveWithin1(ai).
47. MoveWithin2(ai).
48. NoShoot(ai) := HasBall(ai) ∧ ¬Shoot(ai).
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49. BallCollideEnemy(ai) := HasBall(ai) ∧ CollideEnemy(ai).
50. Intercept(ai) := intercept(ai) 6= ∅ ∧HasBall(intercept(ai)).
51. ¬Intercept(ai).
52. Not passing or shooting when enemy is in the next grid square.

NotBallActionNextToEnemy(ai)

:=HasBall(ai) ∧ ¬Shoot(ai)

∧ ¬Pass(ai) ∧ distance(ai, nearestEnemy(ai)) ≤ 1.

53. PassFrontQuarter(ai) := IsPass(ai) ∧ FrontQuarter(pass(ai)).
54. PassBackQuarter(ai) := IsPass(ai) ∧ BackQuarter(pass(ai)).
55. PassMidF ield(ai) := IsPass(ai) ∧MidField(pass(ai)).
56. PassLeftF lank(ai) := IsPass(ai) ∧ LeftF lank(pass(ai)).
57. PassRightF lank(ai) := IsPass(ai) ∧RightF lank(pass(ai)).
58. PassCenter(ai) := IsPass(ai) ∧ Center(pass(ai)).
59. PassEnemyNear(ai) := IsPass(ai) ∧ EnemyWithin1(ai).
60. MoveToEnemyBall(ai) := TeamHasBall(E) ∧MoveToBall(ai).
61. MoveFromEnemyBall(ai) := TeamHasBall(E) ∧MoveFromBall(ai).
62. Move next to an enemy player with the ball. Let the statement

E := nearestEnemy(moveTo(ai)).

Then,

NearEnemyBall(ai)

:=nearestEnemy(moveTo(ai)) = Pball ∧MoveWithin1(ai).

63. Let Ma be the set of positional predicates 8–13. Let Mb be the set of move-

ment related predicates 21–26, and 44–47. We use unary predicates in the set

{HasBall(ai)} ∪Ma

∧
Mb.

64. Let Mc be the set of predicates 27–32, and 48–62. We use unary predicates in the

set Ma

∧
Mc.

Third, the list of predicates based on pairwise players’ action in the team:

65. Collide(ai, aj) players will move to the same square.

66. BallCollide(ai, aj) := [HasBall(ai) ∨HasBall(aj)] ∧ Collide(ai, aj).
67. Moving nearer when one of the players has the ball.

BallNearer(ai, aj)

:= [HasBall(ai) ∨HasBall(aj)]

∧ distance(ai, aj) < distance(moveTo(ai),moveTo(aj))

68. Moving further when one of the players has the ball.

BallFurther(ai, aj)

:= [HasBall(ai) ∨HasBall(aj)]

∧ distance(ai, aj) > distance(moveTo(ai),moveTo(aj))
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69. Moving towards enemy with ball.

EnemyBallNearer(ai, aj) :=TeamHasBall(E)

∧MoveToBall(ai) ∧MoveToBall(aj)

70. Moving away from enemy with ball.

EnemyBallFurther(ai, aj) :=TeamHasBall(E)

∧MoveFromBall(ai) ∧MoveFromBall(aj)

71. Moving back to midfield from front quarter.

Defensive(ai, aj) :=FrontQuarter(ai) ∧ FrontQuarter(aj)

∧MidField(moveTo(ai)) ∧MidField(moveTo(aj))

72. Moving forward to midfield from back quarter.

Offensive(ai, aj) :=BackQuarter(ai) ∧ BackQuarter(aj)

∧MidField(moveTo(ai)) ∧MidField(moveTo(aj))

73. Moving forward along the flanks.

FlankOffensive(ai, aj) :=Flank(ai) ∧ Flank(aj)

∧ Forward(ai) ∧ Forward(aj)

74. Moving backward along the flanks.

FlankDefence(ai, aj) :=Flank(ai) ∧ Flank(aj)

∧ Backward(ai) ∧Backward(aj)

75. Joint interception,

JointIntercept(ai, aj) := Intercept(ai) ∧ Intercept(aj).

76. ¬JointIntercept(ai, aj).
77. Less4(ai, aj) := distance(moveTo(ai),moveTo(aj)) ≤ 4.

78. Less8(ai, aj) := distance(moveTo(ai),moveTo(aj)) ≤ 8.

79. GoodPass(ai, aj) := IsPass(ai, aj) ∧ ¬MoveWithin1(ai).
80. BadPass(ai, aj) := IsPass(ai, aj) ∧MoveWithin1(ai). This is a redefinition

of Example 4.6 page 81.

81. Not moving together towards enemy with ball.

NotPairBlock(ai, aj) :=TeamHasBall(E)

∧ [distance(moveTo(ai), Pball) > distance(ai, Pball)

∨ distance(moveTo(aj), Pball) > distance(aj, Pball)]
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82. Not jointly moving closer to intercept when within distance of 2.

NotMoveToIntercept(ai, aj)

:= TeamHasBall(E)

∧ distance(ai, Pball) ≤ 2

∧ distance(aj, Pball) ≤ 2

∧ distance(moveTo(ai), Pball) < distance(ai, Pball)

∧ distance(moveTo(aj), Pball) < distance(aj, Pball)

A.1.3 Coordination Constraints

Constraints are the negation of selected predicates. The following are static CCs in

addition to obvious constraints (e.g. shooting or passing without the ball):

83. BackQuarter(ai) ∧ Shoot(ai), this comes from 63;

84. BallCollideEnemy(ai),
85. Collide(ai, aj),
86. BallCollide(ai, aj).

The set of dynamic single agent CCs, C1, used are:

87. HasBall(ai) ∧ Backward(ai) from 63,

88. HasBall(ai) ∧MoveWithin1(ai) from 63,

89. NotBallActionNextToEnemy(ai),
90. MoveFromEnemyBall(ai),
91. FrontQuarter(ai) ∧NoShoot(ai) from 64,

92. MidField(ai) ∧NoShoot(ai) from 64,

93. ¬Intercept(ai),

The dynamic pairwise agent CCs, C2, used are:

94. BadPass(ai, aj),
95. NotPairBlock(ai, aj),
96. NotMoveToIntercept(ai, aj).

A.1.4 Top Level Predicates

The top level predicates for features are programatically generated using state only pred-

icates and the Activated(c) predicate that returns true if a top level CC is activated. Let

T0 be the predicates in 34–42 that involve only the state, T1 = {HasBall(ai)} ∪Ma

from 63, T2,1 is the set of disjunction of the predicates in T1, e.g., MidField(ai) ∨
MidField(aj), and T2,2 is the set of predicates {HasBall(ai)∨HasBall(aj), F lank(ai)∧
Flank(aj)}. Further let C1 = {Activated(c) | c ∈ C1} and C2 = {Activated(c) | c ∈
C2}. The following top level predicates are generated:

97. T0
∧
C1,

98. T1
∧
C1,

99. T0
∧
C2,

100. T2,1
∧
C2,

101. T2,2
∧
C2.
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A.2 Tactical Real Time Strategy

A.2.1 Base Predicates & Functions

The following are basic functions.

1. nearestEnemy(ai) Return the nearest enemy unit object.

2. nearestFriend(ai) Return the nearest friendly unit object.

3. target(ai) Return the enemy unit object that is the current target of an attack

action taken by the unit. If the unit is not attacking, the unique null enemy object

is returned.

4. distance(ai, ej) Euclidean distance between a friendly and enemy unit after fri-

endly unit’s action is taken. The distance is scaled over the diagonal length of the

map.

5. distance(ai, aj) Euclidean distance between two friendly units after their actions

are taken. The distance is scaled over the diagonal length of the map.

6. targetDamage(ai) Returns the health points lost in percentage of the current

attack target of unit ai or zero if ai is not taking an attack action.

7. Eiso A function of the state that returns the most isolated enemy that is furthest

away from its other teammates.

8. health(ui) Returns the health of a unit in a percentage.

9. weaker(ui, uj) Returns the unit object with lower health.

The following predicates were used to build (e.g., through conjunction) more com-

plex predicates used as features. Predicates are functions that return a boolean value in

{0, 1}.

10. BoundaryCollide(ai) Action taken by unit will cause it to collide with some

boundary.

11. EnemyCollide(ai) Action taken by unit will cause it to collide with some enemy.

12. TargetOutRange(ai) Unit is taking attack action and target of attack is out of

range of the unit’s weapons.

13. Stoning(ai) Unit is taking noop action while within range of some enemy’s

weapon.

14. Idling(ai) Unit is taking noop action.

15. PairCollide(ai, aj) Units ai and aj will collide after taking their respective ac-

tions.

16. MoveToIsolated(ai) Moving towards the isolated enemy.

17. NoAttack(ai) Unit is not attacking any enemy within range when there is at least

one enemy within range of the unit’s weapon.

18. Closer(ai, ei) Unit takes an action that moves it closer to enemy ei.
19. Further(ai, ei) Unit takes an action that moves it further from enemy ei.
20. Attacked(ai) Unit is within some enemy’s attack range.

21. IsAttack(ai) Unit takes some attack action.

22. TargetInRange(ai) Unit takes attack action (i.e. IsAttack(ai) is true) and the

target is in range of the unit’s weapon.

23. SameNearestEnemy(ai, aj) := nearestEnemy(ai) = nearestEnemy(aj)
Both units are closest to the same nearest enemy unit.

24. HealthWithinh1,h2(ui) Health of unit(friendly or enemy) in percentage is be-

tween (h1, h2].
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A.2.2 Bottom Level Predicates

In this section we list the bottom level predicates used as features for function U , they

are also the features for flat RL’s action value function Q. The following predicate

based features were constructed using base predicates and functions. These predicates

are either used as propositional features by binding specific agents to their parameters,

or relational features by summing over various possible bindings.

25. These base predicates are used directly as features:

Stoning(ai), Idling(ai), PairCollide(ai, aj).
26. NotAligned(ai, aj) as defined in Equation 6.1 page 142.

27. Both units ai and aj take attack actions targeting the same enemy unit that is

within attack range of both of them:

PairAttack(ai, aj) := IsAttack(ai)∧ IsAttack(aj)∧ target(ai) = target(aj)

28. Units ai and aj will have Euclidean distance within the range (l, h] after their

actions are taken,

PairDistl,h(ai, aj) := l < distance(ai, aj) ≤ h,

The following ranges were used: (0, 20], (20, 40] , (40, 60], and (60,∞].
29. The following encode knowledge with reference to isolated enemies:

(a) Iso1(ai) := health(ai) ≥ health(Eiso) ∧ Closer(ai, Eiso)
(b) Iso2(ai) := health(ai) < health(Eiso) ∧ Closer(ai, Eiso)
(c) Iso3(ai) := health(ai) ≥ health(Eiso) ∧ Further(ai, Eiso)
(d) Iso4(ai) := health(ai) < health(Eiso) ∧ Further(ai, Eiso)
(e) PairIso1(ai, aj) := Iso1(ai) ∧ Iso1(aj)
(f) PairIso2(ai, aj) := Iso2(ai) ∧ Iso2(aj)
(g) PairIso3(ai, aj) := Iso3(ai) ∧ Iso3(aj)
(h) PairIso4(ai, aj) := Iso4(ai) ∧ Iso4(aj)

30. Let the set H = {HealthWithinh1,h2(ai)} for the health ranges: (−∞, 0.25],
(0.25, 0.5], (0.5, 0.75] and (0.75, 1.0]. Let the set,

P1 =







NoAttack(ai), Closer(ai, nearestEnemy(ai)),
Attacked(ai), Further(ai, nearestEnemy(ai)),

TargetInRange(ai)







We use the conjuncted predicates in the set H
∧
P1 as features.

31. Two agents moving closer to same nearest enemy:

PairCloser(ai, aj) :=SameNearestEnemy(ai, aj)

∧ Closer(ai, nearestEnemy(ai))

∧ Closer(aj, nearestEnemy(ai))

32. Two agents attacking the same target:

PairAttack(ai, aj) :=TargetInRange(ai) ∧ TargetInRange(aj)

∧ target(ai) = target(aj)
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33. Only one of two agents that share a target in range is attacking that target:

OneOfTwoAttack(ai, aj) :=[TargetInRange(ai) ∨ TargetInRange(aj)]

∧ ¬PairAttack(ai, aj)

34. A weaker marine is in front of the other and moving closer to a shared nearest

enemy:

WeakerInFrontAndCloser(ai, aj) := SameNearestEnemy(ai, aj)

∧ Closer(weaker(ai, aj), nearestEnemy(ai))

35. Not attacking an enemy together whose health is in the range (h1, h2]:

NotPairAttackh1,h2(ai, aj) := ¬[PairAttack(ai, aj)

∧HealthWithinh1,h2(target(ai))]

for the health ranges: (−∞, 0.25], (0.25, 0.5], (0.5, 0.75] and (0.75, 1.0].

Apart from the predicates listed above, we also use the following non-predicate

based features.

36. Base function used: targetDamage(ai).
37. SimpleUnitDiff Difference in number of player’s units and enemy units scaled

by the total number of units in the game at the beginning.

38. TotalHealthFriendly Percentage total health (hit) points of enemy.

39. TotalHealthEnemy Percentage total health (hit) points of enemy.

40. AveFriendlyHealth The average friendly marines’ health points.

41. AveEnemyHealth The average enemy marines’ health points.

A.2.3 Coordination Constraints

Constraints are the negation of selected predicates. The following are used as static

CCs: TargetOutRange(ai), BoundaryCollide(ai), EnemyCollide(ai), and

PairCollide(ai, aj). The single agent (unary) dynamic CCs used are based on Sec-

tion A.2.2 Feature 30:

42. c1(ai) := HealthWithin−∞,0.25(ai) ∧NoAttack(ai)
43. c2(ai) := HealthWithin0.25,0.5(ai) ∧NoAttack(ai)
44. c3(ai) := HealthWithin0.5,0.75(ai) ∧NoAttack(ai)
45. c4(ai) := HealthWithin0.75,1.0(ai) ∧NoAttack(ai)
46. c5(ai) := HealthWithin0.5,0.75(ai) ∧ Further(ai, nearestEnemy(ai))
47. c6(ai) := HealthWithin0.75,1.0(ai) ∧ Further(ai, nearestEnemy(ai))

Finally, the pairwise agent (binary) dynamic CCs used are:

48. c7(ai, aj) := NotAligned(ai, aj)
49. c8(ai, aj) := WeakerInFrontAndCloser(ai, aj)
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A.2.4 Top Level Predicates

The dynamic CCs listed in Section A.2.3 are action variables for the top level. Each

top level action variable may be activate (1) or deactivate (0). The basic state-only

predicates of the top level function are: SimpleUnitDiff , TotalHealthFriendly,

AveFriendlyHealth, and AveEnemyHealth.

We define a few more predicates based on only the state:

50. HasEnemyInRange(ai) Unit has some enemy in range of its weapon.

51. NoEnemyInRange(ai) := ¬HasEnemyInRange(ai).
52. DistanceWithind1,d2(ui, uj) := d1 < distance(ui, uj) ≤ d2. Distance of two

units is within some range (d1, d2].
53. Both units have health within a range (h1, h2]:

PairHealthWithinh1,h2(ui, uj) :=HealthWithinh1,h2(ui)

∧HealthWithinh1,h2(uj).

54. Either unit has its nearest enemy within some range,

NearestInd1,d2(ai, aj) :=DistanceWithind1,d2(ai, nearestEnemy(ai))

∨DistanceWithind1,d2(aj, nearestEnemy(aj))

We describe the other predicates used to approximate W by constructing sets to

conjunct. Let the set of all unary CCs be Ci and binary CCs be Ci,j . Let Activated(c)
be true if the CC, c is activated. The set of all unary CC activated predicates is Ci =
{Activated(c) | c ∈ Ci} and for binary CCs Ci,j = {Activated(c) | c ∈ Ci,j}. The

other top level predicates are:

55. The following set is set conjuncted (
∧

) with Ci and Ci,j:

{
TotalHealthFriendly ≥ TotalHealthEnemy,
TotalHealthFriendly < TotalHealthEnemy

}

.

56. The set of {NoEnemyInRange(ai), HasEnemyInRange(ai)} is conjuncted

with the set of Activated for unary CCs 42 to 45.

57. HealthWithin−∞,0.25(ai) ∧ Activated(c1)
58. HealthWithin0.25,0.5(ai) ∧ Activated(c2)
59. HealthWithin0.5,0.75(ai) ∧ Activated(c3)
60. HealthWithin0.75,1.0(ai) ∧ Activated(c4)
61. The following set is set conjuncted (

∧
) with Ci,j:







DistanceWithin−∞,20(ai, aj), DistanceWithin20,40(ai, aj),
DistanceWithin40,60(ai, aj), DistanceWithin60,∞(ai, aj),
NearestIn−∞,20(ai, aj), NearestIn20,40(ai, aj),
NearestIn40,60(ai, aj), NearestIn60,∞(ai, aj),

PairHealthWithin−∞,0.25, PairHealthWithin0.25,0.5,
PairHealthWithin0.5,0.75, PairHealthWithin0.75,1.0







.
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A.3 Automated Retinal Image Analysis

This section details the predicates used for relational features in Chapter 7 page 171.

As RL is centralized, to reduce clutter we omit the global state variable when action

variables are present in the function or predicates.

A.3.1 Base Predicates & Functions

Let V es(s) be a set of all vessels in state s, Art(s) ⊆ V es(s) be the set of arteries and

V en(s) ⊆ V es(s) be the set of all veins. We use the variable V set to denote one of

the functions V es, Art, V en that returns a set of vessels. Further let p be the variable

denoting some point in the retinal centre line image. In every state, the agent’s state si
(assumed to be present when ai is present) is also treated as a point since agents can

only occupy one point as its current position. The following are basic functions:

1. numV set(s) = V set(s) Returns the number of vessels in V set in the current

state.

2. fractalDimV set(s) Returns the box counting fractal dimension of the given set

of vessels.

3. densityV set(s) Returns the number of pixels in the centre line of the vessels given

by V set divided by square root of the area in the ring that forms the zone of

interest.

4. percentV set(s) Returns the sum of centre line points in the vessels given by V set
divided by all centre line points (that includes those of orphaned line segments).

5. pointAfter(ai) Return a point in the image that an agent i should be after it has

taken its action.

6. vessel(p) Returns a vessel object at a point is on.

7. segment(p) Returns a line segment object a point is on.

8. component(p) Returns a connected centre line component object from the line

image that a point is on.

9. type(p) Returns the type object of the vessel that a point is on.

10. intensity(p) The value at p from the illumination corrected map (see Figure 7.5d

page 180).

11. gradient(p) The value at p from the gradient map (see Figure 7.5b page 180).

12. rootIntensity(p) The mean value of the pixels at the root segment of the vessel

at point p from the illumination corrected map.

13. diffIntensity(ai) = intensity(ai)− intensity(pointAfter(ai)).
14. diffGradient(ai) = gradient(ai)− gradient(pointAfter(ai)).
15. width(p) The value of the vessel width at point p.

16. diffWidth(ai) = width(ai)− width(pointAfter(ai)).
17. widthShift(p) The absolute difference between the distance of the centre line

point p to each end of the vessel width.

18. widthShiftAfter(ai) = widthShift(pointAfter(ai)).
19. diffWidthShift(ai) = |widthShift(ai)− widthShiftAfter(ai)|
20. localDensity(p) The number of pixels in the centre line of the vessels in a square

of side 21 pixels centred on point p divided by 10.

21. widthAngle(p) The angle orientation of the vessel width at point p.

22. diffWidthAngle(ai) = |widthAngle(ai)− widthAngle(pointAfter(ai))|.
23. lineAngle(p) The angle between the lines ending at point p in the line image.

239



APPENDIX A. IMPLEMENTATION DETAILS

24. boxDist(pi, pj) = min{|x(pi)−x(pj)|, |y(pi)− y(pj)|} The length of the side of

the smallest square that includes the two points.

25. l2norm(pi, pj) The Euclidean distance between the points pi and pj .

The following are action predicates:

26. Idle(ai) Agent i is taking an idle action that does nothing.

27. Move(ai) Agent i is taking a move action.

28. Edit(ai) Agent i is taking an edit action, i.e., any action that is not Move(ai) and

not Idle(ai).
29. Line(ai) Agent i is taking any one of the 16 add segment line actions.

30. Break(ai) Agent i is taking a break action.

31. Detach(ai) Agent i is taking a detach action.

32. AddRoot(ai) Agent i is taking add root action.

33. Mark(ai) Mark crossover action.

34. Unmark(ai) Unmark crossover action.

35. Toggle(ai) Toggle vessel type action.

36. BreakOrDetach(ai) := Break(ai) ∨Detach(ai).

The following are basic or parametrized state predicates used to build more complex

predicates. Note that where p is used, the variable is some point that can be substituted

by an agent’s state indicating the point the agent is on.

37. Withinf,h1,h2(s) := f(s) ≥ h1 ∧ f(s) < h2 Returns true if the return value of

function f is in the range [h1, h2).
38. AgentWithinf,h1,h2(ai) := f(ai) ≥ h1 ∧ f(ai) < h2 Returns true if the return

value of function f with respect to agent i is in the range [h1, h2).
39. The 67 AgentWithin predicates with given parameters in Table A.1.

Next are basic predicates with respect to a point or agent location. Let Punit(p) denote

the set of the following predicates:

40. OnSegment(p) Agent is on some line segment.

41. OnRoot(p) Agent is on a root segment.

42. OnV ein(p) Agent is on a vein.

43. OnArtery(p) Agent is on an artery.

44. OnShared(p) Agent is on a crossover segment, e.g., line segment 3 in Figure 7.4

page 176.

45. OnOrphan(p) Agent is on an orphan (non-vessel) line segment.

46. OnJunction(p) Agent is on a junction pixel that is a confluence of more than 2

line segments.

47. OnAdjJunction(p) Agent is next to a junction pixel.

48. OnLineEnd(p) Agent is on the end point of a line segment.

49. OnFirstOrder(p) Agent is on the first order branch of a vessel.

50. OnSecondOrderMore(p) Agent is on a second or higher order branch of a ves-

sel.

51. OnNearRoot(p) Agent is on a root pixel or on a vessel pixel next to a root pixel.

52. OnSameTypeAsOther(p) Agent is on a vessel that crosses another vessel that

is of the same type.

53. OnAltTypeAsAdj(p) Agent is on a vessel with a different type from its left and

right vessel in clockwise root point order.
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f [h1, h2) # of predicates

intensity

0 21

421 41

41 61

61 255

gradient

0 21

4
21 41

41 61

61 255

rootIntensity 0, 16, 32, ..., 240 16, 32, 48, ..., 256 16

diffIntensity,

-255 -25

14

-25 -15

-15 -5

diffGradient

-5 6

6 16

16 26

26 256

width

0 1

6

1 5

5 10

10 15

15 20

20 ∞

diffWidth

0 5

35 10

10 ∞
widthShift, 0 1

15
widthShiftAfter,

1 2

2 4

diffWidthShift
4 6

6 ∞

diffAngle

0 π
8

5

π
8

π
4

π
4

3π
8

3π
8

π
2

π
2

π

localDensity

0.0 0.2

30.2 0.4

0.4 1.0

Table A.1: Parameters used for predicate AgentWithinf,h1,h2

54. OnSameTypeAsAdj(p) Agent is on a vessel with the same type as its left and

right vessel in clockwise root point order.

55. Agent is on vessel that is same type as one and only one of its left or right vessel

in clockwise root point order.

OnSameTypeAsOneAdj(p) :=¬OnAltTypeAsAdj(p)

∧ ¬OnSameTypeAsAdj(p)

56. OnLoop(p) Agent is on a centre line that forms a loop.

The following are basic predicates involving two agents:

57. Two agents are within range to link up segment lines,

CanLinkUp(ai, aj) := boxDist(ai, a2) ≤ 5.
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58. OnHigherOrder(ai, aj) Agent i is on a higher order branch than agent j when

both are on the same vessel.

59. On different vessels,

OnDiffV essel(ai, aj) := OnV essel(ai) ∧OnV essel(aj)

∧ vessel(ai) 6= vessel(aj)

60. On different segments,

OnDiffSegment(ai, aj) := OnSegment(ai) ∧OnSegment(aj)

∧ segment(ai) 6= segment(aj)

61. On different vessel types,

OnDiffType(ai, aj) := OnDiffV essel(ai, aj) ∧ type(ai) 6= type(aj)

62. OnSameComponent(ai, aj) := component(ai) = component(aj).
63. OnSameSegment(ai, aj) := OnSegment(ai) ∧ segment(ai) = segment(aj).
64. OnSameV essel(ai, aj) := OnV essel(ai) ∧ vessel(ai) = vessel(aj).
65. AreAdjacent(ai, aj) := boxDist(ai, aj) ≤ 1.

66. OnAdjacentSegment(ai, aj) True if both agents are on segments and there ex-

ists one point in each segment that have a boxDist of at least 1.

67. OnAdjacentV essel(ai, aj) True if both agents are on vessels and there exists on

point in each vessel that have a boxDist of at least 1.

68. Moving to the same vessel,

MoveToSameV essel(ai, aj) := OnV essel(pointAfter(ai))

∧ vessel(pointAfter(ai)) = vessel(pointAfter(aj))

69. Moving to the same segment,

MoveToSameSegment(ai, aj) := OnSegment(pointAfter(ai))

∧ segment(pointAfter(ai)) = segment(pointAfter(aj))

70. Moving to same component,

MoveToSameComponent(ai, aj) :=

∧ component(pointAfter(ai)) = component(pointAfter(aj))

71. Moving to the different vessel,

MoveToDiffV essel(ai, aj) :=

OnV essel(pointAfter(ai)) ∧OnV essel(pointAfter(aj))

∧ vessel(pointAfter(ai)) 6= vessel(pointAfter(aj))
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72. Moving to different segment,

MoveToDiffSegment(ai, aj) :=

OnSegment(pointAfter(ai)) ∧OnSegment(pointAfter(aj))

∧ segment(pointAfter(ai)) 6= segment(pointAfter(aj))

73. Moving to different component,

MoveToDiffComponent(ai, aj) :=

component(pointAfter(ai)) 6= component(pointAfter(aj))

74. MoveToHigherOrder(ai, aj) Agent i will be on a higher order branch of the

same vessel as agent j after their actions are taken.

A.3.2 Bottom Level Predicates

f [h1, h2) # of predicates

numV set

0 3

93 6

6 ∞

fractalDimV set

0.00 1.00

18

1.00 1.25

1.25 1.50

1.50 1.75

1.75 2.00

2.00 ∞

densityV set

0.000 0.025

15

0.025 0.050

0.050 0.075

0.075 0.100

0.100 1.000

percentV set

0.0 0.2

15

0.2 0.4

0.4 0.6

0.6 0.8

0.8 1.0

Table A.2: Parameters used for predicate Withinf,h1,h2(s). The number of predicates takes

into account predicates for each V set namely V es,Art, V en.

There are a total of 573 predicates used for bottom level features of which 58 are

global, 375 are unary that depend on single agents, and 140 are binary that depend

on two agents. The following are nullary predicates that are not based on any agent’s

actions but the current global state.

75. IsBig6(s) Returns true if there are at least six arteries and at least six veins.

76. 57 Within predicates are created, one for each of the entries in Table A.2 for

each of the possible values of V set.

The following predicates are based on a single (unary) agent’s action and the state.

77. Idle(ai) ∧ ¬IsBig6(s)
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78. BreakWillOrphan(ai) An agent carrying out a Break or Detach orphan while

on a vessel will result in an orphaned segment.

79. Break(ai) ∧ lineAngle(ai) < 85◦. Breaking at a line point with a small angle.

80. SmallAngleLink(ai) An agent performing a Line action from one line’s end

point to another line’s end point will result in a small angle of < 85◦ between the

lines.

81. SmallAngleExtension(ai) An agent performing a Line action at a line’s end

point results in a line angle of < 85◦, i.e., a ‘V’ shaped line.

82. FormNearbyBranch(ai) An Agent performing a Line action that will create a

new junction that it is near an existing junction.

83. The set of predicates {Move(ai), Line(ai)} is conjuncted (
∧

) with each of the

following set of predicates,







component(ai) = component(pointAfter(ai)),
component(ai) 6= component(pointAfter(ai)),
vessel(ai) = vessel(pointAfter(ai)),
vessel(ai) 6= vessel(pointAfter(ai)),

OnV essel(ai) ∧ OnCross(pointAfter(ai)),
¬OnV essel(ai) ∧ OnCross(pointAfter(ai)),

OnJunction(pointAfter(ai)), OnAdjJunction(pointAfter(ai)),
¬OnJunction(pointAfter(ai)), OnV essel(pointAfter(ai)),

OnLineEndPoint(pointAfter(ai)),







84. The predicate Move(ai) ∨ Idle(ai) is conjuncted with each of the predicates in

Table A.2.

85. The predicate in {AddRoot(ai), T oggle(ai)} are conjuncted (
∧

) with the set of

Within predicates from the entry numV set in Table A.2.

86. The predicates in {Line(ai),Move(ai)} are conjuncted (
∧

) with the set of

AgentWithin predicates from the entries width, widthShift,
widthShiftAfter, and diffWidthShift in Table A.1.

87. The predicates in {Unmark(ai),Mark(ai), AddRoot(ai), Break(ai), Line(ai),
Move(ai)} are conjuncted (

∧
) with the set of AgentWithin predicates from the

entries intensity and gradient in Table A.1.

88. The predicates created from,

{Toggle(ai)}
∧

{OnV ein(ai), OnArtery(ai)}

∧
{
OnSameTypeAsOther(ai), OnAltTypeAsAdj(ai)
OnSameTypeAsAdj(ai), OnSameTypeAsOneAdj

}

89. The predicates in {Move(ai), Line(ai)} are conjuncted (
∧

) with the set of

AgentWithin predicates from the entries diffIntensity, diffGradient.
90. Line(ai) ∧OnLineEnd(ai) ∧OnLineEnd(pointAfter(ai))
91. The predicate Line(ai) is conjuncted with each of the AgentWithin predicates

from the entry diffAngle in Table A.1.

92. The predicates created from,

{AddRoot(ai),Mark(ai), Unmark(ai)}
∧

({OnFirstOrder(ai), OnSecondOrderMore(ai)} ∪ Pwidth ∪ PwidthShift)
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where Pwidth and PwidthShift are the sets of AgentWithin predicates from the

width and widthShift entries in Table A.1 respectively.

93. The predicates created from,

{Break(ai), Detach(ai), Line(ai)}
∧

(PlocalDensity ∪ [Punit(ai)− {OnV essel(ai), OnSegment(ai)}])

where PlocalDensity is the set of AgentWithin predicates from the localDensity
entry in Table A.1, and Punit(ai) is the set of predicates 40 to 56 with respect to

ai.

Let Pon2 be the set of predicates from 62 to 67, Pmove2 be the set of predicates from 68

to 74, Pdiff2 be the set of predicates from 59 to 61, and

Pother2 =







OnDiffV essel(ai, aj) ∧OnSameComponent(ai, aj),
OnDiffSegment(ai, aj) ∧OnSameComponent(ai, aj),
OnDiffType(ai, aj) ∧OnSameComponent(ai, aj),
OnDiffSegment(ai, aj) ∧OnSameV essel(ai, aj)







The following are predicates for features involving two agents, i.e., they contain knowl-

edge of coordination.

94. Predicates created by {Line(ai) ∧ Line(aj)}
∧
[Pon2 ∪ Pmove2 ∪ Pother2].

95. Predicates created by {Move(ai) ∧Move(aj)}
∧
[Pon2 ∪ Pmove2 ∪ Pother2].

96. Predicates created by {Move(ai) ∧Move(aj)}
∧
[Pon2 ∪ Pdiff2]

∧
Pmove2.

97. Predicates created by,

{Break(ai) ∧Break(aj), Detach(ai) ∧Detach(aj)}
∧

[Pon2 ∪ Pother2]

98. Agents are linking up to form a line that does not join at a unrealistic angle,

LinkedLine(ai, aj) := Line(ai) ∧ Line(aj)

∧ lineAngle(pointAfter(ai)) < 90◦

∧ AreAdjacent(pointAfter(ai), pointAfter(aj))

99. FormJunction(ai, aj) Line actions taken by two agents are forming a junction.

100. NotFormJunction(ai, aj) Line actions taken by two agents are not forming a

junction.

101. Two agents that can link lines up but are not doing so,

NotLinking(ai, aj) := Line(ai) ∧ Line(aj)

∧ CanLinkUp(ai, aj) ∧ ¬LinkedLine(ai, aj)

102. Agents are moving nearer,

MoveNearer(ai, aj) :=

∧ l2norm(pointAfter(ai), pointAfter(aj)) < l2norm(ai, aj)
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103. Agents are moving further,

MoveFurther(ai, aj) :=

∧ l2norm(pointAfter(ai), pointAfter(aj)) > l2norm(ai, aj)

104. Move out of coordination range where Cmax is the coordination range constant,

MoveOutOfCoord(ai, aj) := l2norm(ai, aj) ≤ Cmax

∧ l2norm(pointAfter(ai), pointAfter(aj)) > Cmax

105. FormNearbyBranches(ai, aj) Two agents are forming nearby branches that are

close together.

106. If either of two agents is breaking or detaching a higher order branch of a vessel

while the other is performing an edit action on a lower order branch of the vessel.

BreakDetachHigherOrder(ai, aj) :=

[BreakOrDetach(ai) ∧ Edit(aj) ∧OnHigherOrder(ai, aj)]

∨ [BreakOrDetach(aj) ∧ Edit(ai) ∧OnHigherOrder(aj, ai)]

107. BreakDetachWillOrphan(ai, aj) True if two break or detach actions by two

agents are required to create a new orphaned segment, but a single action by

either agent will not.

108. BreakDetachCross(ai, aj) True if BreakDetachWillOrphan(ai, aj) is true

and the orphan segment was formally a crossover shared segment, i.e., line seg-

ment 3 in Figure 7.4 page 176.

A.3.3 Coordination Constraints

For static constraints, we incorporate constraints to disallow illegal actions. For exam-

ple, breaking a line segment when there is none where the agent is, toggling the vessel

type for an orphaned segment, and adding a new root point in the middle of a line seg-

ment instead of at the end. We also disallow agents from colliding. In addition, the

following predicates are used as static constraints for both coordinated RL and CGRL.

109. Predicate 81 to disallow creating ‘V’ kinks in line segments.

110. Line(ai) ∧ AgentWithinwidth,20,∞(ai) created at 86.

111. Line(ai) ∧ AgentWithindiffAngle,π
2
,π(ai) created at 86.

112. Line(ai) ∧ AgentWithindiffWidth,10,∞(ai) created at 86.

113. Line(ai) ∧ AgentWithinwidthShift,6,∞(ai) created at 86.

114. Line(ai) ∧ AgentWithinwidthShiftAfter,6,∞(ai) created at 86.

115. Line(ai) ∧ AgentWithinlocalDensity,0.4,1(ai) created at 93.

116. Break(ai) ∧OnNearRoot(ai) created at 93.

117. AddRoot(ai) ∧ AgentWithinwidthShift,6,∞(ai) created at 92.

118. Detach(ai) ∧Detach(aj) ∧OnSameSegment(ai, aj) created at 97.

The following predicates are used as dynamic constraints for CGRL.

119. Move(ai) ∧ component(ai) = component(pointAfter(ai)) created at 83.

120. Move(ai) ∧ vessel(ai) = vessel(pointAfter(ai)) created at 83.

121. Line(ai) ∧ component(ai) = component(pointAfter(ai)) created at 83.
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122. Line(ai) ∧ vessel(ai) = vessel(pointAfter(ai)) created at 83.

123. Line(ai) ∧ AgentWithindiffWidth,5,10(ai) created at 86.

124. Line(ai) ∧ AgentWithinwidthShift,4,6(ai) created at 86.

125. Line(ai) ∧ AgentWithinwidthShiftAfter,4,6(ai) created at 86.

126. Line(ai) ∧ AgentWithindiffWidthShift,4,6(ai) created at 86.

127. Line(ai) ∧ AgentWithinlocalDensity,0.2,0.4(ai) created at 93.

128. Break(ai) ∧ AgentWithinlocalDensity,0,0.2(ai) created at 93.

129. Detach(ai) ∧OnFirstOrder(ai) created at 93.

130. Detach(ai) ∧OnRoot(ai) created at 93.

131. Toggle(ai) ∧OnV ein(ai) ∧OnSameTypeAsOther(ai) created at 88.

132. Toggle(ai) ∧OnV ein(ai) ∧OnAltTypeAsOther(ai) created at 88.

133. Toggle(ai) ∧OnArtery(ai) ∧OnSameTypeAsOther(ai) created at 88.

134. Toggle(ai) ∧OnArtery(ai) ∧OnAltTypeAsOther(ai) created at 88.

135. Predicates 80 and 82.

136. Binary predicates 101 to 106.

137. Binary predicate Move(ai) ∧Move(aj) ∧OnSameComponent(ai, aj)
∧MoveToDiffComponent(ai, aj) created at 96.

138. Binary predicate Move(ai) ∧Move(aj) ∧OnSameV essel(ai, aj)
∧MoveToDiffV essel(ai, aj) created at 96.

139. Binary predicate Move(ai) ∧Move(aj) ∧OnSameSegment(ai, aj)
∧MoveToDiffSegment(ai, aj) created at 96.

140. Binary predicate Detach(ai) ∧Detach(aj) ∧OnDiffSegment(ai, aj)
∧OnSameV essel(ai, aj) created at 97.

A.3.4 Top Level Predicates

The top level predicates are created from bottom level and basic predicates by con-

juncting selected predicates with the Activated(c) predicate that indicates if a CC is

activated or not. In addition, nullary predicates from 75 and 76 are used as features for

the top level value function.

Let C1 be the set of unary CCs from predicates 119 to 135, and C2 be the set of

binary CCs from predicates 136 to 140. We define three sets of top level predicates,

nullary (P0), unary (P1), and binary (P2). Nullary and unary predicates are conjuncted

withActivated for CCs inC1. While all three sets are conjuncted with CCs inC2 where

in the case of unary predicates in P1, they are used for both agents. For example, for

some binary CC, cij and unary predicateAgentWithinintensity,0,20, a top level predicate

will be,

AgentWithinintensity,0,20(ai) ∧ AgentWithinintensity,0,20(aj) ∧ Activated(cij)

141. P0: Predicates from 75 and 76.

142. P1: Predicates from 40 to 56. AgentWithin predicates from the entries of

intensity, gradient, width, localDensity, and widthShift in Table A.1.

143. P2: Predicates from 62 to 67. Predicates from the set Pother2 defined before binary

predicates in Section A.3.2.
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