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SUMMARY  

 

Metabolic Engineering employs targeted alterations of metabolism in 

microbial organisms for biochemical production. In practice, the re-engineering of 

cellular metabolism involves a cyclic procedure, including strain construction, 

strain characterization, metabolic systems analysis and strain design. 

Mathematical modeling plays an important role in this procedure, in describing 

system dynamics and predicting system responses upon perturbations. Here, 

kinetic models are especially useful when the system dynamics and regulatory are 

of particular interest in the study.  

Recent advances in molecular biology techniques have permitted the 

simultaneous collection of large quantities of metabolic network information, 

such as time-course measurements of gene expression, protein abundances and 

metabolite concentrations. The underlying information about the metabolic 

network in those data, however, is implicit and requires subsequent extraction, 

which can be facilitated by building mathematical models. Constructing kinetic 

models from time-series data is challenging and parameter estimation remains a 

bottlenecking step in this process. The challenges can be categorized into four 

areas: data-related, model-related, computational and mathematical issues. To 

tackle these issues, extensive efforts have previously been made in developing 

various support algorithms as well as optimization methods. Nevertheless, 

numerous problems still remain unsolved, constituting significant research gaps in 

the field. 
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Motivated by some of the issues in the kinetic metabolic modeling, the present 

PhD project focuses on the development of efficient model identification methods 

and framework to capture model uncertainty. More specifically, the methods are 

developed to address three common issues related to the estimation of parameters 

in kinetic metabolic models, namely (1) missing information of some metabolites, 

(2) high computational demand associated with stiff ordinary differential 

equations (ODEs) and large parameter search space, and (3) degrees of freedom 

in the model due to larger number of metabolic fluxes than metabolites. These 

problems often led to challenging parameter estimations for which existing 

algorithms either fail or become impractical due to high computational 

requirement. In this thesis, I present three computationally efficient algorithms for 

the purposes of (1) estimating parameters from incomplete metabolic profiles 

using a two-phase dynamic decoupling method, (2) estimating parameters using 

an incremental approach, and (3) constructing a kinetic model ensemble using an 

incremental approach. The efficacy of the three proposed methods has been 

demonstrated through applications to a few case studies (artificial and real 

metabolic pathways) and through comparisons with existing methods.  
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CHAPTER 1 :  INTRODUCTION 

1.1   Problem Formulation 

1.1.1   Metabolic Engineering and Mathematical Modeling  

Chemical industry is undergoing a dramatic change motivated by an 

increasing demand for sustainable processes for the production of fuels, materials 

and pharmaceuticals. As traditional synthetic routes often face numerous 

problems due to increasing raw material costs, environmental constraints and 

sustainability requirements, biotechnology, in conjunction with genetic 

engineering, offers a sustainable and environmental-friendly solution [1]. With 

the invention of recombinant DNA technology, microbes like Escherichia coli 

and Saccharomyces cerevisieae (yeast) can be used to produce valuable products 

through modification or introduction of some biochemical reactions. This is the 

essence of Metabolic Engineering [2], an area that has garnered global attention 

from academia to industry and has experienced unprecedented growth in the last 

fifteen years. Within this frame, many metabolites with great therapeutic and 

economic values have been produced, such as Lycopene [3], Artemisinin 

precursors [4], Benzylisoquinoline alkaloids [5], L-valine [6] and Isoprenoids [7]. 

Metabolic Engineering relies on the knowledge of cellular metabolism and its 

regulation, and the technology encompasses two defining steps: analysis and 

synthesis, relying on an integrated view of metabolic pathways instead of 
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individual reactions [8]. Consequently, mathematical modeling of metabolic 

networks has played an important role in predicting and analyzing microbial 

metabolism in silico, from which metabolic manipulations can be rationally 

designed and screened prior to actual experiments. The value of mathematical 

models has been clearly shown in understanding essential qualitative features of 

biological systems, capturing essential quantitative characteristics of experimental 

data, describing interactions within complex systems, correcting conventional 

knowledge, and predicting possible system responses upon different perturbations, 

all of which have been widely documented in prior studies [9].  

Mathematical models of metabolic pathways are typically constructed based 

on mass balances of intracellular metabolites, written as a set of ordinary 

differential equations (ODEs) as follow: 

 ,X = Sv  (1.1) 

where X = {X1, X2, ..., Xm}d is the vector of the concentrations of m metabolites, v 

= {v1, v2, ..., vn} is the metabolic flux vector, and S denotes m n stoichiometric 

matrix [8,10]. In general, metabolic fluxes depend on both metabolite 

concentrations X and (unknown) kinetic parameters p, i.e., vi = vi (X, p). Such 

kinetic ODE models can be used directly in analysis, or by assuming steady state, 

simplified to an algebraic stoichiometric model Sv=0. Below, I will discuss these 

two models in greater detail. 
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1.1.2   Stoichiometric Models 

The stoichiometry of metabolic pathways describes the topology of metabolic 

networks, which can be visualized by a wiring diagram of metabolic pathways. 

Conventionally, metabolites are represented by nodes and metabolic fluxes by 

directed edges or arrows. Vice versa, given a topological wiring diagram with m 

metabolites and n fluxes, a stoichiometric matrix can be constructed, in which the 

rows correspond to metabolites and the columns to reactions that affect the said 

metabolite concentration (see Figure 1.1). That is, Sij is the stoichiometric 

coefficient of the i-th metabolite participating in the j-th reaction. The 

construction of this matrix constitutes one step in model identification that 

translates the biological network diagram into mathematical terms [11].  

 

Figure 1.1. A wiring diagram and stoichiometric matrix of a metabolic network. 

Under steady-state assumption, giving Sv=0, several methodologies have been 

developed to exploit mathematical descriptions for cell metabolism, which are 

based on different assumptions (e.g., maximal growth rate, maximal productivity 

Aex

Cex

Bex

r1b1

r3

b2

r2

b3

r1 r2 r3 b1 b2 b3

A -1 0 1 -1 0 0

B 1 1 0 0 -1 0

C 0 -1 -1 0 0 1

Stoichiometric matrix    

(rows, columns)

Wiring diagram 

(nodes, arrows)
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or minimal nutrient consumption), have different purposes (e.g., to analyze a 

network or to make predictions upon perturbations), and adopt different 

mathematical frameworks (e.g., linear algebra or convex basis). Basically, these 

methods can be classified into two branches: those for determining feasible flux 

solutions (e.g., Metabolic Flux Analysis and Flux Balance Analysis) and those 

focused on the properties of the entire space of possible flux distributions (e.g., 

Extreme Pathway Analysis and Elementary Mode Analysis) [12,13] (see Figure 

1.2). 

Metabolic Flux Analysis (MFA) has been commonly used to predict the 

intracellular fluxes, based on a set of measured extracellular fluxes from which 

the information is sufficient enough to reduce the solution space of the system to 

finitely many points [14,15]. Mathematically speaking, this requires a determined 

system, of which its linearly independent constraints are sufficient to uniquely 

identify the unmeasured fluxes. For an underdetermined system, Flux Balance 

Analysis (FBA) can be applied to predict flux distributions. As there are more 

fluxes than metabolites in a typical metabolic pathway, there exist an infinite 

number of solutions to the steady-state model Sv=0. To select the most 

biologically relevant flux distribution among the set of feasible solutions, the FBA 

relies on the assumption that cells have evolved to achieve an optimal status 

owing to evolutionary pressure [15,16]. For instance, the most common 

hypothesis in FBA is that microbes regulate their metabolism to maximize the 

growth of themselves [17,18]. The advantage of FBA is that only the 

stoichiometric matrix information is needed to predict the metabolic fluxes. 
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Nevertheless, these flux predictions greatly depend on the optimality assumption, 

which may not stand in the same organisms all the time and even after a genetic 

modification. Furthermore, it is not clear whether the same optimality condition 

can be maintained by different organisms. 

Other analyses based on the steady-state assumption have also been 

formulated, including Extreme Pathway Analysis (EPA) and Elementary Mode 

Analysis (EMA) [19]. Built on the concept of convex analysis, in these analyses, 

one compute the basis flux vectors, called extreme pathways [20,21] or 

elementary modes [22,23], from which all the solutions of Sv=0 can be 

constructed. Hence, instead of computing a single solution as in the FBA, these 

analyses can generate all biochemically-meaningful flux distributions based on 

the stoichiometric matrix. However, it is still difficult to predict the effect of 

genetic perturbations without resorting again to some assumptions on how cells 

regulate their metabolism.  

To summarize, stoichiometric models with the steady-state assumption are 

easy to build, but their predictive power is highly dependent on the assumption of 

optimality and hence is very limited. Many problems are essentially caused by the 

lack of dynamic and regulatory information in the modeling approach [24]. Thus, 

this thesis focuses on kinetic models, as detailed below. 

1.1.3   Kinetic Models 

When detailed information on the kinetics of cellular processes is available 

(e.g., enzyme-catalyzed reactions, protein–DNA binding or protein–protein 
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interactions), kinetic models as shown in Equation 1.1 can be constructed to study 

dynamic properties of the system. Based on the assumed functionality of the flux 

vector, kinetic models can be generally divided into three categories (Figure 1.2): 

  (1) Mechanistically Based Models:  

These models are built on biological mechanistic understanding, such as using 

the formulism of mass action [25] or Michaelis–Menten (MM) rate law [26], of 

which the former is applied to describe elementary reactions and the latter is to 

describe simple enzymatic reactions. However, which formula to use may become 

difficult to be determined a priori, especially for complex biochemical reactions, 

which involve non-elementary reactions or are catalyzed by enzymes that are not 

understood in sufficient detail.  

  (2) Ad hoc Models:  

When detailed information on biochemical reactions is unknown or unclear, 

ad hoc black-box models, which are formulated to fit the observations, can be 

constructed. But these models can be highly arbitrary in formulism and structure, 

and involved parameter estimation may become very problematic [27]. In many 

cases, a canonical model could be a better option (see below).  

  (3) Canonical Models:  

Canonical models have homogeneous structures and their individuality comes 

from different values of model parameters. This property keeps the model 

structure case-independent and simplifies the method development for model 

analysis and parameter estimation. 
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Figure 1.2. Mathematical modeling of metabolic pathways. 

Among canonical models of biochemical systems, power-law models under 

the Biochemical Systems Theory (BST) [28,29], including Synergistic-system (S-

system) and Generalized Mass Action (GMA) [30], have drawn much attention 

for many reasons [24]. This type of model consists of a set of differential 

equations, which can be generalized as:  

 
1 2( , ,..., ),i i mX f X X X      (1.2) 

where Xi is the concentration of the i-th metabolite, and its change depends on 

some of the independent variables X1, X2, ..., Xm. In the S-system model, the 

multivariate function fi is divided into two parts, denoting an influx (production) 

term and an efflux (degradation) term: 

 
1 2 1 2( , ,..., ) ( , ,..., )i i m i mX v X X X v X X X       (1.3) 

In this case, the aggregate influx (vi
+
) and efflux (vi

-
) terms are represented by 

power laws: 

Stoichiometric model

• Metabolic flux analysis (MFA)

• Flux balance analysis (FBA)

• Extreme pathway analysis (EPA)

• Elementary mode analysis (EMA)

Kinetic model

• Mechanistically based model

• Ad hoc model

• Canonical model

Dynamic 

Mathematical models

Steady state 
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1 1

ij ij

m m
g h

i i j i j

j j

X X X 
 

         (1.4)

Here, model parameters consist of rate constants αi, βi and kinetic orders gij, hij. 

The rate constants are non-negative real numbers, and the kinetic orders can take 

any real values, the sign of which indicates the nature of the connectivity among 

metabolites: positive represents a substrate or activation and negative refers to an 

inhibition.  

Unlike the S-system, GMA formalism does not aggregate vi into single influx 

and efflux terms, but here each reaction is written as a separate power-law flux, 

giving:  

 
1 1

,( )
i

ipj

p m
f

i ip j

p j

X r X
 

         (1.5) 

where again the rate constants γip are non-negative and the kinetic orders fipj can 

take any real values. One can rewrite Equation 1.5 into the form of Equation 1.1 

with power-law flux functions.  

The formulations of the S-system and GMA models differ only at metabolic 

branch points (i.e., where there are multiple arrows going into or out of a node), 

while their other details remain the same. The S-system model reserves highly 

generic formalism, while the GMA model is considered to be closer to 

biochemical reality.  

The power-law formulations are specifically designed to mimic kinetic 

reactions, and are sufficiently general to model metabolic pathways, as well as 
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other biological systems, including genetic networks [31], multi-level systems [32] 

and signal transduction cascades [33]. Their highly ordered mathematical 

structure (power-law) facilitates numerical analyses, and is able to capture any 

forms of non-linear behaviors (e.g., oscillation or chaos) [34,35]. As canonical 

models, these power-law models can be set up without much mechanistic 

information of the system. In addition, parameter values (i.e., rate constants and 

kinetic orders) directly characterize the connectivity of the metabolic pathway, as 

described above, and this one-to-one relationship (between kinetic parameters and 

structural features) facilitates parameter estimation and structure identification in 

a single identification step. Namely, if the knowledge of structural properties is 

available, it can be directly applied to determine where the corresponding 

parameters shall appear in the BST models. Conversely, if a parameter has been 

identified, its interpretation in terms of structural features is also immediate [28-

30]. All the aforementioned advantages of the BST models give motivation to the 

major focus on this model framework in the case studies here.  
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1.2   Kinetic Model Construction 

To construct a kinetic model, one requires the detailed information about the 

structure and kinetic parameters of the system, which is typically not available a 

priori. An inference method is thus desired to extract information about the 

structure and dynamics of the system from experimental data, and such "model 

building" task consists of several major phases as shown in Figure 1.3. Briefly, 

based on prior knowledge and time-course data, the first major phase requires 

structure identification to infer the topology of the metabolic network. A network 

graph is established using nodes to represent metabolites or other biological 

molecules and arrows to denote transformations between them. Following this, a 

suitable modeling framework, like an S-system or GMA model, is chosen to 

represent the system dynamics. Given the model equations, the next phase is to 

estimate unknown model parameters by matching model simulations with 

experimental observations. In the following, model invalidation can be conducted, 

either using information from other sources or independent experimental 

observations. If the model is proved to be invalid, a model refinement and new 

data generation will be necessary before repeating the procedure again. This 

process is iterative until the model is deemed to be reliable and appropriate for 

end-applications. For example, such model can be analyzed for the information 

about steady state, sensitivity and other dynamic features of the metabolic 

network. 
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Figure 1.3. An iterative procedure of model identification. 

The development of model identification methods is driven by the availability 

of experimental data, where different types of data require distinctly different 

methods. Based on many in-depth studies, the methods can be generally divided 

into two: forward (bottom-up) strategy and inverse (top-down) strategy. The 

former builds the model up by integrating “local” kinetic information on 

individual metabolites, enzymes and modulators, while in the latter, metabolic 

network topology and parameter values are directly inferred from “global” time-

series data.  
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1.2.1   Forward (bottom-up) Strategy 

Forward strategy follows a traditional reductionist approach for mathematical 

modeling in biology before the availability of high-throughput and/or systems-

wide data. Early metabolic modeling studies were developed from “local” kinetic 

information. For instance, one particular enzyme, catalyzing a particular reaction 

within a metabolic pathway of interest, was purified and characterized one at a 

time to determine its optimal temperature, pH, quantified cofactors and 

modulators. Then this information was converted into a suitable function or rate 

expression such as Michaelis–Menten or Hill rate law. Once the reactions in the 

metabolic pathway had been identified, all the collected information would be 

merged into a comprehensive pathway model (e.g., see [30,36]). This model 

identification process benefits greatly from available databases such as KEGG 

[37,38], MetaCyc [39] and Brenda [40], which collect information on pathway 

topologies and kinetic parameters retrieved from literature. The strategy of 

studying these ‘local’ components (one enzymatic reaction at a time) and 

combining them into a more comprehensive metabolic model is known as 

“forward” or “bottom-up” modeling.   

The advantage of this strategy lies in its straightforward nature and a direct 

use of available information. However, the biggest drawback is that the model 

built from the descriptions of individual processes seldom works as observed or 

expected as a whole in practice. Specially, knowledge about many constituents 

and processes in the model is often studied individually, where “local” data were 

obtained either from different organisms or from experiments conducted under 
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different conditions and often in vitro [41,42]. It is thus difficult to predict how 

the same constituents and processes will behave in a particular organism under the 

conditions of interest. Furthermore, the processes of involved model building and 

iterative refinements are usually labor intensive, requiring a combination of 

biological and computational expertise [24]. These severe drawbacks bring the 

next strategy to the stage.  

1.2.2   Inverse (top-down) Strategy  

Now, modern techniques of molecular biology are able to produce time-series 

data which measure the responses of a whole pathway to a stimulus, such as a 

change in experimental inputs or environmental conditions. In contrast to the 

“local” data, the appeal of such “global” data is that the measurements are taken 

simultaneously in vivo or in vitro, providing time-series snapshots of cellular 

constituents and processes. These measurements contain valuable information 

regarding the functional connectivities and regulations of biological networks. 

The information within such time-course data, however, is implicit, requiring 

regression analyses and estimation methods.   

The inverse modeling from data is depicted in Figure 1.4. This model 

identification process begins with comprehensive data at a system level, which 

ideally consist of simultaneous time-course measurements on metabolites, gene 

expression or protein abundance in the same organism or cell type under identical 

conditions. First, there may be a need for data processing, such as a smoothing 

method to remove experimental noises. In the figure, power-law model 
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formulation (S-system or GMA model) is selected for modeling the reactions 

because of its advantages discussed earlier in Section 1.1.3. Thus, structure 

identification is integrated into the process of parameter estimation. If any prior 

knowledge of topology and regulation is available, it can be converted as 

constraints in parameter estimation, which is performed next to determine 

parameter values by fitting to the time-course data. Typically, the solutions are 

not unique but suggesting alternative network candidates that are all consistent 

with the provided data, so proposals for model invalidation are provided next. 

This iterative process of system inference is repeated until no further 

improvement can be made.  
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Figure 1.4. Inverse strategy of model identification. 

In practice, several challenges exist in this inverse modeling process rooted 

from the complexity of biological systems, which will be discussed in the next 

chapter. 
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CHAPTER 2 :  CHALLENGES AND OPEN 

PROBLEMS IN THE INVERSE MODELING  

2.1   Challenges in the Inverse Modeling 

The difficulties in this inverse modeling approach generally fall into one of 

four categories: data-related, model-related, computational and mathematical 

issues (see Figure 2.1). A detailed review of these challenges has been presented 

elsewhere [24]. 

 

Figure 2.1. Challenges in the inverse approach of model identification. 

2.1.1   Data-related Issues 

There are different types of data available for model building. To characterize 

steady-state systems, isotopic labeling experiments have been combined with 
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metabolic flux analysis, allowing for a reliable estimation of fluxes, especially for 

some unmeasured intracellular fluxes [43-45]. Time-series measurements of 

metabolite concentrations can be made in vivo or in vitro by current techniques, 

such as Nuclear Magnetic Resonance (NMR) [46,47], Mass Spectrometry (MS) 

[48,49] and High Performance Liquid Chromatography (HPLC) [50,51]. NMR is 

more commonly used for online in vivo measurement, coupled with isotopic 

labeling, e.g. C
13

 for glycolytic metabolites and P
31

 for ATP, Pi. The involved 

experimental procedure includes sample preparation and on-line NMR 

measurement [52]. 

 However, the datasets from these experimental measurements are seldom 

complete due to two roadblocks particular in biology: complexity and technology. 

First, a metabolic network typically involves a large number of metabolites with 

complex connectivity, which means that the complete measurement of all relevant 

metabolites is practically not feasible. These problems are especially severe for 

the intermediate species, which may be very difficult to measure explicitly. 

Second, in order to capture the dynamic behaviors of the metabolites, time-course 

data must be measured accurately and frequently enough, which often challenges 

the limit of current available techniques. In practice, data collection could be 

missing at certain time points because of various reasons (e.g., human error). The 

issue of this missing time-points can be partly addressed by standard interpolation, 

and in a few instances, it may be possible to obtain the missing metabolite 

measurements by analyzing the left null space of stoichiometric matrix to 

generate sets of metabolites whose total weighted concentrations are time 
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invariant [53]. However, a complete loss of data for certain metabolites poses a 

much more challenging problem in parameter estimation, which requires more 

sophisticated methods to bridge the left gap. This problem will be tackled in 

Chapters 3 and 4.   

Even when data are complete, they are usually noisy due to technical or 

human reasons. To this end, data smoothing methods, such as splines [54-56], 

polynomial fitting [57], filters [58] and artificial neural networks (ANNs) [59,60], 

can be employed to alleviate the problems associated with measurement noise. 

Although the methods of splines are easy to be implemented, they may produce 

artificial fluctuations in the smoothened curves when the data are very noisy. On 

the other hand, polynomial fitting is an efficient and widely applied method, but 

additional care needs to be taken to avoid over-fitting problems. Common filters 

such as Kalman, Savitzky-Golay and Whittaker filters have also been used [58]. 

For example, Vilela and co-workers [61] had presented a Whittaker-Eilers 

smoother and its implemented software AutoSmoother, in which the optimization 

criterion is defined as Renyi’s second-order entropy of the cross-validation error. 

Almeida et al.[59] applied ANNs to biochemical time-series data, showing the 

great promise of this method. The interpolating functions obtained from ANNs 

are universal and flexible, but may lead to artifacts in the slope approximation, 

e.g., resulting in an undesirable offset in the smoothed data. 

Aside from frequency and accuracy of measurements, another data-related 

problem is due to “non-informative” experiments, e.g., some metabolite time-

profiles are co-linear or constant. Such co-linearity may cause ill conditioning of 



19 
 

the estimation process, a problem known as parameter identifiability issue [62]. 

There exist methods through which the lack of complete parameter identifiability 

can be assessed, even prior to parameter estimation [63,64]. 

2.1.2   Model-related Issues 

The inverse problem asks for an “ideal” mathematical model to be capable of 

capturing all possible nonlinear dynamics of the system while keeping the 

involved mathematics relatively simple. As introduced in Section 1.1.3, the 

feasible model candidates include a large variety of structures and mathematical 

formulations. Some models are mechanistically formulated, some are only meant 

for data fitting regardless of model structure and others try to achieve a balance 

between the aforementioned two.  

Mechanistic models are commonly used in modeling chemical reactions, and 

have also been applied to describe biological phenomena. In practice, this 

approach may not always be the best choice due to two reasons. On the one hand, 

the exact mechanisms of the targeted biochemical reactions are seldom known 

completely, so that the potential model candidates may include a number of 

models with different mechanistic formulations. On the other, time-course 

experimental data are often not sufficient and accurate enough to discern among 

those candidates. As a result, it is more prudent to adopt a generic approach, 

meeting the demands including dynamic flexibility to capture important features 

of time-course data, simplicity of mathematical approximation to represent the 

system, and interpretability of the parameter estimation results for biological 
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meanings behind. To this end, the power-law representations under the BST, as 

described above, are especially useful to overcome some of the model-related 

issues. Chou et al. [24] listed the common metabolic models used for testing 

method algorithms, including a three-variable cascaded pathway [65,66], a four 

variables didactic system [67], a four-variable branched pathway [60,66], a five 

variables gene regulatory network [68], a five-variable ethanol fermentation 

model [69], the five-variable metabolism model in E. coli [70], the anaerobic 

fermentation pathway in S. cerevisiae (five dependent variables and eight 

independent variables) [71-74], the five-variable glycolysis pathway in S. 

cerevisiae [66], the six-variable glycolysis pathway in L. lactis [75-78] and the 

eight-variable trehalose pathway in S. cerevisiae [79,80]. 

2.1.3   Computational Issues 

One of computational challenges in the inverse modeling lies in the expensive 

numerical computation for model solutions. For ODE models shown above, 

numerical integration can be extremely computationally expensive to perform 

during estimation. One study showed that such numerical integrations consumed 

the majority of computational resources during the parameter estimation, up to 95% 

[60]. In another study, the application of standard parameter estimation methods 

(e.g., least square or maximum likelihood) to an S-system model encountered 

numerical integration problems due to ODE stiffness (a numerical difficulty 

caused by large differences in time scales among simulations), leading to non-

convergence of the estimation results [66]. While such stiffness can genuinely 
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arise due to a large time scale separation of the reaction kinetics in the real system, 

stiff ODEs could also result from unrealistic combinations of parameter values 

during the parameter optimization procedure, especially when a global optimizer 

is used. The parameter estimation of ODE models using power-law kinetics is 

particularly prone to stiffness problem since many of the unknown parameters are 

the exponents of the concentrations. To circumvent this computationally-costly 

integration of ODE models, several methods have been proposed, such as 

decoupling [30,60], ODE decomposition [31,81] and collocation methods [65]. 

Some of these methods form the basis for the present thesis. 

Furthermore, as the typical parameter estimation is formulated as a 

minimization of model prediction error, complicated error function surfaces can 

result in a slow convergence toward global minimum or convergence to local 

minima. In addition, the parameterization of kinetic ODE models often lead to a 

combinatorial increase of unknown parameters along with the increasing number 

of metabolites, resulting in a large-scale optimization problem. Overcoming these 

difficulties calls for powerful global optimization tools [31,60,82] and sufficient 

constraints for parameter search space [30,83].  

To reduce the computational requirements of performing parameter estimation, 

incremental estimation methods have been proposed [77,84]. In these methods, 

dynamic metabolic fluxes are first estimated and the parameter estimation is 

subsequently done one flux at a time. Such incremental identification approach 

generally has the advantages of low sub-problem complexity, low computational 

effort, flexible use of physically motivated equations for each flux, and ease of 
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validation of flux equations [85]. Nevertheless, more work is still required to 

make the approach more efficient for metabolic network modeling.  

2.1.4   Mathematical Issues 

An often-ignored problem in parameter estimation is mathematical 

redundancy in some models. Even after more than 100 publications in the 

applications of BST modeling to biochemical networks, the parameter estimation 

remains a bottlenecking step. Different estimation techniques often produce 

widely different parameter estimates and these parameters could fit experimental 

data equally well [86]. One possible cause lies in model formulation, where there 

could be a case of over-parameterization. For instance, if two parameters p and q 

always enter an equation in the same combination as (p+q), then their individual 

values cannot be identified. In essence, the difficulty in identifying p and q 

individually results from the fact that perturbations in each parameter will cause 

the same changes in the system outputs, and thus they cannot be differentiated 

from looking at the output measurements.  

It may also happen that non-equivalent solutions exhibit similar residual errors. 

In the context of power-law formulas, error compensations can occur within or 

between metabolic fluxes, producing different rate constants and kinetic orders 

with similar model prediction errors. Such error compensations may be caused by 

degrees of freedom in the inverse problem. For example, when the number of 

metabolites is smaller than the number of reactions, there exist many flux values 

that satisfy Equation 1.1, a common circumstance in metabolic networks. Since 
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some metabolites in the pathway can participate in more than one reaction, e.g. 

the pathway usually has branched or reversible reactions, the issues associated 

with underdetermined systems will be very likely encountered. For example, the 

GMA model of the three-variable cascaded pathway, introduced in Section 2.1.2, 

has 2 degrees of freedom, and the 5-variable glycolysis pathway in S. cerevisiae 

has 3 degrees of freedom. This kind of issue will be tackled in Chapters 4 and 5. 

These are other contributors of parameter identifiability, aside from the 

aforementioned data issues. The situation can be much improved by performing 

more and better experiments that cover wide ranges of input variations. A priori 

kinetic information on individual reactions can also help in this case and should 

always be incorporated if available [87].  

In response to the four issues discussed above, many studies have been 

working on the solutions. A representative collection of these studies will be 

reviewed in the next section.  
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2.2   Support Algorithms for the Inverse Approach 

Many advanced techniques for the inverse approach of model identification 

have been developed and the representative support algorithms are listed 

historically in Table 2.1.  

Table 2.1. A historical listing of the representative support algorithms for the inverse 

modeling approach. 

Authors Year Methods Features Model 

Bonvin and 

Rippin [88] 
1990 Target factor analysis 

Stoichiometry 

check 
―  

Chevalier et 

al.[89] 
1993 

Evaluation of stationary-state 

Jacobian matrix elements 

Structure 

identification 
BST 

Arkin and Ross 

[90] 
1995 

Correlation metric construction: 

analysis of a time-lagged multivariate 

correlation function 

Structure 

identification 

Mass 

action 

Tominaga et 

al.[91] 
2000 Genetic algorithm  

Parameter 

estimation 
S-system 

Samoilov et 

al.[92] 
2001 

Entropy metric construction, entropy 

reduction method 

Structure 

identification 

Mass 

action 

Maki et al.[93] 2002 
Step-by-step strategy (decomposition 

method) 

Genetic network 

inference 
S-system 

Vance et al.[94] 2002 
Direct observation for causal 

connectivities 

Structure 

identification 

MM, 

BST 

Kikuchi et 

al.[95] 
2003 

Penalty on small kinetic orders, 

genetic algorithm with simplex 

crossover method 

Kinetic network 

inference 
S-system 

Veflingstad et 

al.[96] 
2004 Multivariate linear regression on data 

Data processing, 

Parameter 

constraining  

BST 

Crampin et 

al.[97]  
2004 “general-to-specific” approach 

Kinetic network 

inference 

Mass 

action 

Voit and 2004 Decoupling method, ANN smoothing Parameter S-system 
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Almeida [60] estimation 

Katare et 

al.[98] 
2004 

Particle swarm optimizer with 

Levenberg-Marquardt method 

Parameter 

estimation 
― 

Kimura et 

al.[99] 
2005 

ODE decomposition strategy, 

cooperative coevolutionary 

algorithm. 

Kinetic network 

inference 
S-system 

Tsai and Wang 

[65] 
2005 

Data collocation, hybrid differential 

evolution 

Parameter 

estimation 
S-system 

Tucker and 

Moulton [100] 
2005 

Interval analysis for parameter 

reconstruction 

Parameter 

constraining  
S-system 

Marino and 

Voit [101] 
2006 

“Simple-to-general” approach, 

gradient-based optimization 

Model 

generation, 

model fitting, 

model selection 

S-system 

Marquardt et 

al.[102] 
2006 Incremental identification 

Kinetic network 

inference 

Mass 

action 

Polisetty et 

al.[73] 
2006 Branch-and-reduce method 

Parameter 

estimation 
GMA 

Daisuke and 

Horton [103] 
2006 

Distributed genetic algorithm, scale-

free network 

Kinetic network 

inference 
S-system 

Cho et al.[104] 2006 
S-trees representation, genetic 

programming 

Biochemical 

network 

inference 

S-system 

Kutalik et al. 

[105] 
2007 Newton-flow optimization 

Parameter 

estimation 
S-system 

Tucker et 

al.[106] 
2007 

Interval analysis with constraint 

propagation 

Parameter 

constraining 
GMA 

Noman and Iba 

[107] 
2007 

Information criteria-based fitness 

evaluation, differential evolution 

Genetic network 

inference 
S-system 

Gonzalez et 

al.[108] 
2007 Simulated annealing algorithm 

Kinetic network 

inference 
S-system 

Vilela et 

al.[109] 
2008 

Eigenvector optimization, parameter 

pruning 

Kinetic network 

inference 
S-system 

Goel et al.[77] 2008 Dynamic flux estimation 
Kinetic network 

inference 
GMA 

Zuniga et 

al.[110] 
2008 Ant colony optimization algorithm 

Parameter 

estimation 
S-system 



26 
 

Machina et 

al.[111] 
2010 

Automated piecewise power-law 

modeling 

Data processing, 

parameter 

estimation 

Piecewise 

power-

law  

Zhan and 

Yeung [112] 
2011 

Spline approximation, linear and 

nonlinear programming 

Parameter 

estimation 

Mass 

action, 

MM 

 

2.2.1   Methods of Data Processing and Model-free Structure 

Identification 

The information about metabolic network topology and constraints for 

parameter search space can be inferred using data processing methods, where 

various methods have been developed for data with different characteristics. For 

instance, one method relied on the transient measurements of a metabolic system 

after small perturbations from steady state. In this case, the system behavior can 

be approximated in a linear fashion. Network connectivity was then obtained by 

determining the Jacobian matrix from experimental data [96,113].  

Vance and co-workers [114] proposed an alternative strategy for structure 

deduction from direct observations of time profiles by perturbing different 

components in the network. This approach involved an interpretation of the 

profile shapes, and the observable features regarding the responses of unperturbed 

components can unveil the network connectivity. For example, the extreme values 

of the unperturbed components in response to the perturbation reveal the 

topological distances among them, and the initial slopes of the time courses 

reflect whether the components are directly affected by the perturbed component. 

Compared with the methods based on the Jacobian matrix above, this method has 
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lower limitation of experiments, in which the perturbations can be done in 

arbitrary amplitude at different locations in the network.  

However, this strategy may become extremely difficult for the applications to 

larger and more complicated systems, where complex relationships between 

metabolites can hardly be extracted from the simple interpretation of time profiles. 

In this case, correlation-based approaches (e.g., correlation metric construction 

and entropy metric construction) [92,115,116] may be more helpful, especially 

when multiple datasets covering large variations are available. Once preliminary 

stoichiometry of the network has been identified, Target Factor Analysis (TFA) 

can be applied to test each candidate for compatibility with experimental data 

[117,118]. 

2.2.2   Methods of Model-based Structure Identification  

Without a completely known network topology, identification of network 

structure and parameter estimation can be performed simultaneously using the 

aforementioned power-law model formulism. One approach, coined “simple-to-

general”, starts with the simplest reasonable model and gradually increases its 

complexity until no further improvement in the minimum modeling error function 

is made. For example, Marino and Voit [101] began with a simple S-system 

model and gradually increased the model complexity, which enabled model 

generation, model fitting and model selection. On the other hand, “general-to-

specific” modeling initiates a full symbolic model with all parameters unknown 

and eliminates reactions until the model prediction error becomes unacceptable 
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[119]. Crampin et al. [97,120] developed global nonlinear models using 

elementary reactions as a basis set, and applied the “general-to-specific” and 

“simple-to-general” approaches to infer reaction mechanisms from time-series 

data. In their case studies, the results indicated that the former approach generally 

outperformed the later. 

Generally speaking, these model-based methods are feasible only for 

relatively small systems, where building an all-encompassing model and finding 

the optimization solution is tractable. However, the estimation task can grow very 

quickly with the system size (i.e., the number of variables and parameters) and 

often suffers from a “combinatorial explosion”, posing significant challenges in 

finding the optimal solution. Fortunately, biology naturally offers a beneficial 

feature that the connections within genomic, proteomic and metabolic networks 

are generally sparse. Studies show that the majority of metabolites are directly 

involved in fewer than four or five processes. For example, Thieffry et al. [121] 

characterized the transcriptional regulation in E. coli and found out that its mean 

connectivity fell between 2 and 3, which presents a rather loosely interconnected 

structure. More comprehensively, Jeong et al. [122] have examined the core 

metabolic network topologies of 43 different organisms representing all three 

domains of life (Archae, Bacterium and Eukaryote). Built from the existing 

databases, their study again shows that scale-free properties can describe all the 

chosen organisms and the average number of incoming/outgoing links per node 

for each organism is generally lower than 4 or 5. Furthermore, the large-scale 

organization of interactions among these cellular constituents appears to be 



29 
 

composed of small subnetworks that are loosely interconnected. Therefore, by 

limiting the number of structural connections within the network, the 

identification task can be significantly simplified.  

Benefited from this general observation, parameter-pruning methods could be 

used to remove unlikely connections. For example, one can define a threshold for 

the minimal value of kinetic parameters, below which the parameters are set to be 

zero and thus are pruned [60,109]. Researchers have extended this pruning 

strategy by adding a penalty term associated with kinetic parameters in the cost 

function, aiming to penalize the small-valued parameters that have a negligible 

effect on the system dynamics [95,99,123]. However, a common challenge arising 

along with the introduction of the additional penalty term is that the 

corresponding weighted coefficient in the penalty term must be tuned carefully, 

since the weightings can greatly affect the estimation results. 

In summary, the existing strategies of structure identification can be 

categorized into two groups, namely, model-free and model-based approaches (as 

shown in Figure 2.2), each of which has their own strengths and weaknesses. The 

latter can take advantage of the assumed model, such that data requirement 

(quantity and quality) is not as high as the former. However, proposing a model 

may also introduce “bias”, in which the model enforces some constraints on the 

set of feasible behavior that the in silico system could produce. For structure 

identification, some model-free data processing can be performed prior to model-

based estimation to simplify the problem beforehand (i.e. to alleviate 
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combinatorial explosion). Therefore, a combination of the two approaches shall 

be suggested to give a more powerful identification strategy.  

 

Figure 2.2. Structure identification strategies. 

2.2.3   Methods of Circumventing the Integration of Coupled 

Differential Equations 

As can be seen in Section 2.1.3, the numerical integration of coupled 

differential equations often requires very high computational efforts, driving the 

estimation task unachievable for some large-scale models. Alternative 

formulations have been proposed to avoid these integrations either partially or 

completely. In 2002, Maki et al.[93] proposed a strategy to integrate each 

differential equation of the ODE model one at a time, and therefore decomposed 
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the coupled ODE system into independent single ODEs. During the integration of 

an ODE, other states (metabolites) were treated as external inputs, whose values 

were interpolated from experimental data. The computational effort was reduced, 

but could still be expensive especially for large-scale model identification.  

Another decoupling method was proposed by fitting the ODE model to the 

slopes of time-concentration data directly, thereby avoiding the ODE integrations 

completely and furthermore decoupling the ODEs into algebraic equations [60]. 

In a similar fashion, instead of fitting slopes, Tsai et al.[65] proposed a collocation 

method to approximate the dynamic profiles of the measured data at sampling 

points. In addition, Zhan and Yeung [112] combined the spline theory with 

(non)linear programming to remove the need for ODE solvers in the identification 

process. However, a big drawback is that the estimation results may become 

inaccurate if the measurement data are very noisy, since the mass balance is only 

satisfied at discrete time points (as no integration is performed between time 

points).  

2.2.4   Methods of Constraining the Parameter Search Space 

The viable range of kinetic parameters can be bounded by various types of 

constraints from mass balance, thermodynamics (e.g., effective reversibility or 

irreversibility of reactions), enzyme or transporter capacities (e.g., maximal 

uptake or reaction rates vmax) and so forth [124]. For example, several studies have 

provided some information about the maximal values of metabolic fluxes in some 

specific organisms, such as vmax = 4.698×10
5
 mM/min in central carbon 
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metabolism of Escherichia coli [125], vmax = 384.2 mM/min in citric acid 

production of mold Aspergillus niger [74], vmax = 3440 mM/min in anaerobic 

fermentation of Saccharomyces cerevisiae [72] and vmax = 231.0 mM/min in 

purine metabolism of human cell [126]. Provided the increasing amount of 

information on network structure and dynamics, feasible phenotypes and their 

associated parameters could be further specified. For instance, under the power-

law representations, prior knowledge about the network structure and regulation 

can be immediately interpreted as bounds of certain parameter values, because of 

the unique mapping from the structural features onto the model parameters. 

Generally, rate constants are non-negative (i.e., reactions are written as 

irreversible) and real-valued kinetic orders lie typically between -1 and +2 [66].  

Some other studies on reducing the parameter search space are summarized 

below. Kutalik et al.[105] presented a parameter estimation method using a 

Newton-flow analysis and constructed a one-dimensional basin of attraction with 

true optimum contained, which significantly reduced the parameter search space. 

Tucker and Moulton [100] developed a parameter reconstruction method based on 

interval analysis, enabling an exhaustive search of the entire parameter space 

within a finite number of steps. This method attempted to solve the problem in a 

deterministic way through a pruning scheme based on a Boolean function, instead 

of recasting the parameter reconstruction as a global minimization problem. 

Tucker et al. [106] also used interval analysis in combination with constraint 

propagation to obtain the viable range of parameter values, which, in particular, is 

well suited to parameter estimation for the GMA models. 
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2.2.5   Methods of Incremental Model Identification 

The majority of existing model identification methods, including those 

mentioned thus far, involve simultaneous (single-step) parameter estimation, 

where model prediction errors are minimized over the entire parameter space. 

This approach relies on efficient and robust global optimization methods (see the 

next section). However, as discussed in Section 2.1, the problem of obtaining the 

best-fit parameter estimates is ill-posed due to the issues related with data 

informativeness, problem formulation and parameter correlation, all of which 

contribute to the lack of complete parameter identifiability. Not to mention, 

finding the global minimum of model residuals over highly multidimensional 

parameter space is challenging and can become prohibitively expensive to 

perform on a computer workstation, even for tens of parameters. These factors 

motivate the development and use of an incremental identification approach.  

In incremental identification, the estimation problem is decomposed into a 

sequence of sub-problems. For the parameter estimation of kinetic ODE model 

given in Equation 1.1, the model fitting to data is done incrementally: (1) obtain 

the rate of change in species concentrations, (2) estimate the reaction rates or 

fluxes, and (3) perform parameter regression for each flux. Such estimation has 

been applied to the modeling of complex homogeneous reaction systems [102] 

and to the GMA models (known as Dynamic Flux Estimation (DFE)) [77]. 

Recently, Machina et al. [111] extended the DFE method by adopting piecewise 

power-law functions, which offered an effective solution to produce an almost 

unbiased representation of time-series data. 
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The existing incremental estimation methods generally have the advantages of 

low computational effort, low sub-problem complexity, flexible use of physically 

motivated equations for each flux, and ease of validation for flux equations [85]. 

However, available methods typically assume that the number of species is at 

least equal to the number of reaction fluxes, such that the estimation of fluxes 

from the rate of change of species concentrations can produce a unique solution. 

However, in the typical metabolic networks, the number of measured metabolites 

is smaller than that of fluxes, as a metabolite usually participates in more than one 

reaction. Thus, a generalization of this incremental estimation approach is 

urgently needed (see Chapters 4 and 5 for further details).  
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2.3   Optimization Algorithms 

The aforementioned identification strategies typically rely on finding a global 

optimal solution to a nonlinear programming problem. Hence, the efficacy of any 

strategies relies heavily on the choice of optimization algorithms. These 

algorithms could be generally categorized into three groups: deterministic, 

stochastic search and hybrid optimizations, as summarized in Figure 2.3. 

 

Figure 2.3. Optimization algorithms: deterministic, stochastic and hybrid optimizations. 

2.3.1   Deterministic Optimization Algorithm 

If the gradients of objective functions can be (cheaply) computed, the most 

common optimization algorithm for parameter estimation is a gradient-based 

approach, where the search for optimality corresponds to finding the parameter 

values for which the gradient vanishes [127]. Many methods of this type have 
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been applied to metabolic network modeling. For example, Marino and Voit [101] 

developed an automated information extraction procedure involving gradient-

based optimization methods, and this procedure combined model generation, 

parameter estimation (model fitting) and model selection using S-system models. 

As mentioned earlier, Kutalik et al.[105] employed a Newton-flow optimization 

for S-system parameter estimation and constructed a one-dimensional basin of 

attraction where the true optimum resides.  

Of course, gradient-based methods cannot be applied to the cases where the 

objective functions or associated derivatives are discontinuous. More importantly, 

the parameter estimation of nonlinear ODE models typically encounters non-

convex objective function surface with many local minima. The efficacy of 

gradient-based search methods often depends on the starting points of the 

optimization in order to converge to the global optimum [128], i.e., one should 

start with the initial parameter guesses close enough to the global solution. 

Branch-and-bound strategy could be useful in avoiding the premature 

convergence to local optimum solutions [129]. For power-law models, Polisetty et 

al.[73] introduced a branch-and-reduce method and formulated a convex 

optimization problem. However, the major drawback of this method is the high 

computational requirement.  

2.3.2   Stochastic Search Optimization Algorithm 

This group of optimization methods introduce stochasticity (randomness) into 

the optimization algorithm in order to prevent the search process from getting 
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trapped into local minima [130]. Examples of stochastic search optimization 

methods include Evolutionary Algorithms, Swarm Algorithms and Simulated 

Annealing, which have been widely applied in the model identification of 

biological systems. 

  (1) Evolutionary Algorithms 

Evolutionary Algorithms (EAs) were developed for generic population-based 

meta-heuristic optimization. Inspired by the process of natural evolution, EA 

incorporates biologically motivated mechanisms in the optimization process, 

including reproduction, mutation, recombination and selection. Some examples of 

widely used algorithms in this group include Genetic Algorithms, Differential 

Evolution and Genetic Programming. These methods only differ in the details of 

the implementations of the evolutionary processes.  

Genetic Algorithms (GAs) [131] have been routinely used in the parameter 

estimation of power-law models. For instance, Tominaga et al.[91] implemented a 

simple version of GA and an S-system formulation to predict structure and 

dynamics of a simple oscillation system and a gene expression network. However, 

the proposed method could only predict a small number of parameters and its 

convergence was slow. Responding to these drawbacks, Kikuchi et al.[95] 

extended the method by adding a structure-related penalty term and by employing 

a novel crossover method and a gradual optimization strategy. However, the 

computational cost was still somewhat high due to the costly numerical 

integrations of coupled ODE systems. In addition, several studies have been 
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conducted to improve the efficiency of GA when using time-course data in the 

inverse modeling of power-law models. For example, Okamoto et al.[132] 

incorporated GA into a modified Powell method and case studies showed that this 

procedure can locate the global minimum with considerably fast convergence. 

Ueda et al. [133,134] proposed an efficient optimization technique for S-system 

models based on real-coded GA using unimodal normal distribution crossover and 

minimal generation gap. In addition, Daisuke and Horton [103] developed 

distributed GA to estimate parameters of S-system models with scale-free 

properties, and Ho et al.[135] proposed another modified GA with intelligent 

crossover based on an orthogonal experimental design to efficiently infer genetic 

networks in a two-stage manner.  

Differential Evolution (DE) is another type of commonly used evolutionary 

algorithms [136,137]. Using DE coupled with a hill-climbing local search, Noman 

and Iba [138-140] introduced a novel fitness evaluation based on information 

criteria to infer gene regulatory networks, instead of the conventional fitness 

defined by least-squared errors. Tsai and Wang [65] applied hybrid DE to obtain a 

starting point for gradient-based optimization methods and used a collocation 

method to convert ODEs into algebraic equations. Furthermore, they implemented 

a multi-objective optimization method with the hybrid DE to estimate the 

parameters of S-system models [141]. 

Genetic Programming (GP) [142] adopts a tree-based internal data structure to 

represent computer programs or mathematical expressions, providing a general 

technique for identifying metabolic pathway models from time-course data. Koza 
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et al. [143] applied the GP optimization to construct the topology of metabolic 

pathways and identify the rates of involved chemical reactions. Sugimoto et 

al.[144] introduced numerical mutations into the conventional GP procedure and 

added a penalty term to the cost function, enabling a simultaneous search for the 

network topology and its parameters without the complete knowledge of 

biochemical reaction mechanisms. On the other hand, without adding any penalty 

terms, Cho et al.[104] showed that one can still identify the network structure and 

the involved parameters at the same time by proposing a new S-tree 

representation for the network models, which functioned efficiently with the S-

tree based GP method.  

Generally speaking, EAs perform quite well in the most parameter estimation 

problems because of their generality, without any requirements on fitness 

landscape and on differentiability of objective functions. In addition, the 

framework is amenable to parallel implementation for use in a high performance 

computing cluster. However, by mimicking the evolution process, these 

algorithms often experience a slow convergence to the global optimal solution. 

Some comparisons among the aforementioned techniques have been presented by 

applying them to benchmark nonlinear programming problems (subject to 

nonlinear differential algebraic constraints) [145,146]. The studies found that 

gradient-based local optimization methods often failed to reach satisfactory 

solutions. Although some evolutionary algorithms like the real-valued GA and 

DE were capable to handle complex and multi-modal search space, additional 
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fine-tuning of the corresponding algorithm settings was still crucial for the 

success of the optimization. 

  (2) Swarm Algorithms 

Swarm Algorithms were developed to replicate the collective behaviors of 

decentralized and self-organized natural systems, such as those found in an ant 

colony or a school of fishes. Some methods belonging to this classification 

include Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), 

of which the former is motivated by ant foraging through pheromone 

communication to form paths [147] and the latter is modeled on how a swarm of 

particles move in the search space based on the information shared among swarm 

members [148]. Zuniga et al.[110] successfully applied the ACO strategy for 

network inference using S-system models, while Naval et al.[149] used modified 

PSO to infer the kinetic parameters of S-system and GMA models. Like the 

aforementioned EAs, the computational requirement for these algorithms is high 

and convergence is often slow. Similarly, the computation of objective functions 

can be straightforwardly parallelized, if desired.  

  (3) Simulated Annealing 

Simulated Annealing (SA) [150] obtained its name and inspiration from 

annealing process in Metallurgy, a process of heating and controlled cooling to 

achieve minimal internal energy state of materials. By analogy with this physical 

process, the SA algorithm attempts to reach a “state with the minimal energy” 

(minimum of objective function) from an arbitrary “initial state” (a point in 
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parameter search space) by adjusting “cooling-down schedule” (a strategy of 

sample reproduction and selection). Ceric and Kurtanjek [151] applied SA to 

partial re-estimation for the kinetic parameters of the central metabolism in 

Escherichia coli, and the built model could correctly predict oscillatory responses 

upon glucose impulses. Gonzalez et al.[108] also applied SA to estimate the 

kinetic parameters of S-system models from time-course data, and the efficiency 

of this method has been proved in the applications of artificial and actual 

metabolic networks.  

The convergence of the SA algorithm can be rigorously proven and SA can 

perform like a global stochastic optimization technique at high “temperatures” 

and gradually behave like a local optimization technique at low “temperatures”. 

Unlike the aforementioned stochastic algorithms, this method generally involves 

time-costly computations that are not easy to be parallelized. 

2.3.3   Hybrid Optimization Algorithm 

Deterministic methods are generally faster than stochastic search methods, but 

run a high risk of getting trapped in local minima especially for non-convex 

problems. On the other hand, stochastic methods can significantly increase the 

chance of finding the global optimal solution by vastly exploring the parameter 

space, but often at the cost of great computational effort and slow convergence. 

Consequently, new methods have been created by combining both strategies in 

order to arrive at the global optimal solution more efficiently. In these methods, 

stochastic searches are initially applied to isolate local regions in the parameter 
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space in which the global optimal solution may lie and subsequently, gradient-

based methods are performed using the initial parameter guesses from the 

stochastic search optimization.  

Katare et al.[98] proposed a hybrid algorithm for parameter estimation, 

combining population-based stochastic PSO with a Levenberg-Marquardt 

optimizer. Their results showed that this hybrid method was more effective than 

the PSO alone in finding the global optima for six benchmark problems. In their 

another publication, Katare et al. [152] used GA to identify the promising regions 

of parameter search space and further explored these regions locally by a 

modified Levenberg–Marquardt method, again, achieving the global optimum 

much faster than the GA alone. In addition, a number of studies have 

demonstrated the advantage of hybrid strategy over each individual approach, e.g., 

combining evolutionary strategy [153] with other deterministic search methods, 

like Gauss-Newton [154], Nelder-Mead [155] and Levenberg-Marquardt [156] 

methods.  

A notable hybrid optimizer is a Scatter Search method (SSm), a population-

based meta-heuristic global optimization method incorporating stochastic and 

deterministic strategies [157-159]. Importantly, this method offers an automated 

switch between global search phases and local intensification phases with a 

number of local solvers available in the toolbox, so that it is very effective in 

solving multi-minima optimization problems. These advantages motivate the use 

of the SSm as the global optimizer in this thesis.  
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2.4   Open Issues and Thesis Scope 

Among the aforementioned challenges in the inverse modeling of metabolic 

networks, previous studies mostly addressed the first three classes: data-related, 

model-related and computational issues, but mathematical issues have not been 

adequately investigated. However, more efforts are still required for tackling the 

unresolved difficulties in all of these four categories, which are summarized 

below and in Table 2.2. 

The use of canonical models, like power laws, often leads to a large-scale 

parameter estimation problem and stiff ODEs, and consequently to a 

computationally intractable estimation. As described above, methods exist that 

avoid the integration of ODEs, such as the decoupling method, which can 

alleviate the cost associated with the numerical integration of stiff ODEs. 

However, these methods require the complete measurements of all species in the 

pathways, and thus the practical applications could be very limited. In this thesis, 

I have developed a new method to circumvent the issue of missing metabolic time 

profiles in the application of decoupling strategy, as to be described in Chapter 3.  

Thus far, the parameter identifiability issue has not been directly tackled 

during the parameter estimation. The lack of complete parameter identifiability 

simply means that there exists no unique solution to the estimation problem. As 

discussed previously, such identifiability issue arises from the existence of 

degrees of freedom in the estimation problem due to, for example, noise in the 

data, parameter correlation or model formulation. The parameter correlation can 
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also affect the optimization process negatively, where the dimension of the 

parameter search space is unnecessarily large. Chapters 4 and 5 describe two 

attempts to address the identifiability issue directly using an incremental 

estimation approach.  

Two incremental estimation methods have been developed to handle the 

degrees of freedom that arise from having more reactions or fluxes than species, a 

common circumstance in metabolic pathways. Existing incremental approach 

cannot be applied in this situation. Such degrees of freedom mean that there could 

be (infinitely) many flux combinations (  tv ) that match data on the measured 

rate of change of species concentrations (  m tX ). There are two implications 

from this fact. First, there are two groups of parameters, defined according to how 

they enter the flux functions, where one group can be set independently and the 

rest can be computed from the first group using the relationship in Equation 1.1. 

In other words, the parameter estimation search space can be reduced to only over 

the first group of parameters, and this becomes the premise of a new highly-

efficient parameter estimation method. Second, if one treats any feasible flux 

combinations matching  m tX  as equivalent, then one can create an ensemble of 

kinetic models that agree with the given data. Thus, in the second incremental 

estimation approach, the method is designed to provide the ensemble of all 

biologically meaningful kinetic models of the metabolic networks, given time-

series measurements of metabolite concentrations and realistic bounds on the 

parameter values.  
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Note that model identification consists of several major phases, including data 

processing, structure identification, parameter estimation, model invalidation and 

experimental design (as shown in Figure 1.3). All these steps are challenging, 

especially for biological systems. Among these, the parameter estimation is the 

central topic of the present thesis. The development of parameter estimation 

algorithms could also benefit model-based structure identification, especially 

under the BST model framework (as introduced in Section 2.2.2). While this 

thesis provides solutions to some important and challenging problems that arise in 

the kinetic modeling of metabolic pathways, other challenges may still remain. 

Chapter 6 provides a short discussion of the remaining challenges and some ideas 

on how to tackle them based on the findings of the work presented in this thesis.  
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Table 2.2. Challenges, solutions and my work in the inverse modeling approach. 

Challenges Solutions 

Method 

1 

(Chapter 
3) 

Method 

2 

(Chapter 
4) 

Method 

3 

(Chapter 
5) 

D
a

ta
-r

e
la

te
d

 Incomplete data 

Interpolation 

(missing points) 
   

Sophisticated methods 

(missing metabolites)    

Noisy data Smoothing methods    

Non-informative 
Identifiability analysis; 

Inference methods 
   

M
o

d
el

-r
e
la

te
d

 Unknown mechanism 

of reactions 
Canonical models (BST)     

Different dynamic 

formulations 
Hybrid models    

Unknown structure Structure identification    

C
o

m
p

u
ta

ti
o

n
a

l 

Slow or lacking 

convergence; 

Local optima 

Global optimization    

Constrained parameter 

space 
   

Stiff ODEs 

Decoupling method    

Decomposition method    

Collocation method    

M
a

th
em

a
ti

ca
l 

Over parameterization; 

Error compensation 

Incremental identification    

Ensemble modeling    

Additional kinetic 

information 
   

Tick: involved methods; Star: key focuses.  
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CHAPTER 3 : TWO-PHASE DYNAMIC 

DECOUPLING METHOD 

3.1   Summary  

Time-series measurements of metabolite concentrations have become 

increasingly more common, providing data for building kinetic models of 

metabolic networks using ODEs. In practice, however, such time-course data are 

usually incomplete and noisy, and the estimation of kinetic parameters from these 

data is challenging. Practical limitations due to data and computational aspects, 

such as solving stiff ODEs and finding global optimal solution to the estimation 

problem, give motivations to develop a new estimation procedure that can 

circumvent some of these constraints. 

In this chapter, an iterative parameter estimation method is proposed that 

combines and iterates between two estimation phases. One phase involves the 

decoupling method, in which a subset of model parameters associated with 

measured metabolites is estimated using the minimization of slope errors. The 

other phase follows, in which the ODE model is solved one equation at a time and 

the remaining model parameters are obtained by minimizing concentration errors. 

The performance of this two-phase method was tested on a generic branched 

metabolic pathway, an E. coli metabolism model and the glycolytic pathway of 

Lactococcus lactis. The results show that the method is efficient in obtaining 

accurate parameter estimates, even when some information is missing.  
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3.2   Method 

3.2.1   Decoupling Method  

In order to circumvent expensive computational efforts in solving coupled 

ODEs, a method was proposed previously by fitting the right hand side of the 

ODE model in     ;t f tX = X p  to the slopes of concentration data directly, 

thereby decoupling the ODEs [28,29,60]: 
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  (3.1) 

Thus, assuming that time-series concentration data of all metabolites Xi(tk) are 

available, the slopes Si(tk) can be calculated and the estimation simplifies to 

solving a set of m×N (nonlinear) algebraic equations, where m is the number of 

metabolites and N is the number of time points. Note that since there is no 

integration of the ODEs, the minimization of the difference between slopes and 

f(X,p) is computationally efficient, even for a large number of parameters. 

However, one drawback of this method is that the molar balance is only satisfied 

at discrete time points tk and thus, the resulting parameter estimates often give 

concentration time profiles that offset the data. 
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When data are noisy, slope estimates by finite differencing will have spurious 

fluctuations as noise is amplified by such calculations. Thus, data smoothing is a 

necessary step in this method, for example using polynomial fitting, neural 

network [60] or automated smoother [61]. Regardless of the smoothing methods 

used, extra care has to be taken to avoid data over-fitting, and even with 

automated methods, user judgment is still needed in this process. 

3.2.2   ODE Decomposition Method  

A different decoupling strategy has been proposed that involves solving each 

of the ODEs one-by-one, and parameter estimates are obtained by minimizing the 

sum of squares of time-concentration difference between model simulations and 

data [93,99,101]. During the integration of each ODE, the other states 

(metabolites) are treated as external inputs, whose values are interpolated from 

smoothened time-series data. By solving and fitting one metabolite at a time, this 

method avoids the integration of coupled ODEs and also reduces the parameter 

search space. In contrast to the decoupling method above, the molar balance of 

each metabolite is approximately satisfied over time, not just at discrete time 

points. Furthermore, this method can still be applied in the situation where there 

are missing metabolite concentrations. However, the ODE stiffness problem, 

though greatly lessened, is not completely eliminated. 
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3.2.3   Combined Iterative Estimation 

The proposed parameter estimation in this chapter iterates between the 

aforementioned two methods according to the flowchart shown in Figure 3.1. By 

doing so, this proposed method combines the computational efficiency of the 

decoupling method and the reduced search space of the ODE decomposition 

method, and is also able to handle missing metabolite measurements. 

In consideration of missing data of some metabolites, the ODE model is 

rewritten as: 

 
 

 

, ;
,

, ; ,

m m m u m

u u m u m u

f

f

 




X X X p

X X X p p
      (3.2) 

where Xm and Xu denote the measured and unmeasured metabolites, respectively, 

pm includes all parameters appearing in fm, and pu includes the remaining 

parameters (specific to fu) and the initial concentrations for Xu. Prior to the 

iteration, data smoothing was performed to reduce noise effects and to obtain 

slope estimates. Using the smoothened data and initial guesses of the parameters 

pu and pm, a simulation of unmeasured metabolites is carried out by solving the 

ODEs for Xu only, as done in the ODE decomposition method. 

The first iteration then begins with the decoupling method to obtain pm by 

minimizing the following slope errors: 
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where Sm(tk) is the slope of smoothened data for Xm at t=tk. Using the estimates of 

pm, the values of pu are obtained in the next estimation phase by minimizing the 

concentration errors: 

        , ,

1

,
N

T

m data k m k m data k m k

k

t t t t


        X X X X    (3.4) 

in which all the ODEs are solved one at a time. In this case, the ODEs for Xu are 

solved prior to Xm and the newly simulated Xu values are then used in the next 

iteration. If there are more than one unmeasured metabolites, the involved ODEs 

for Xu may need to be solved simultaneously. The procedure iterates between the 

two estimation phases until convergence. Here, the iterations will stop when 

parameter estimates between iterations differ by less than a chosen convergence 

factor. 

 

Figure 3.1. Flowchart of the parameter estimation process. 

As motivated in Chapter 2, the optimization problems in the two phases are 

solved using the SSm GO MATLAB toolbox (Scatter Search Method for Global 

Optimization) [157,158]. In addition, to alleviate the ODE stiffness problem, each 
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ODE simulation is limited to a given maximum time and those exceeding this 

upper bound are assigned with a large objective function value. 
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3.3   Results 

The performance of the proposed method is demonstrated in the applications 

to a generic branched pathway [60], E. coli metabolism [70].and the glycolytic 

pathway of Lactococcus lactis (L. lactis) [160]. 

3.3.1   A Generic Branched Pathway 

The metabolic pathway in this example is given in Figure 3.2, which describes 

the transformations among four metabolites (double-line arrows) with feedback 

activation and inhibition (dashed arrows with plus and minus signs, respectively). 

 

Figure 3.2. A generic branched pathway [60]. 

This pathway is modeled in the form of an S-system with 12 kinetic 

parameters, as follows [60]: 
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This model was used to generate in silico noise-free and noisy experimental data 

(10% additive noise, Gaussian, i.i.d.) using the parameter values reported in the 

original publication (see Appendix A Table A1) and with the assumption that only 

X1, X2 and X4 were measured. A 6-th order polynomial, for which adjusted R
2
 

reached a maximum, was chosen for data smoothing and to calculate the time-

series slopes. The adjusted R
2
 was used here to avoid data over-fitting [161]. In 

the parameter estimation, the search space was limited to αi, βi ∈  [0, 25], gij,hij ∈  

[−2, 2], and X3(t0) ∈  [0, 5]. The numerical integrations were performed in 

MATLAB using ode15s. 

One practical issue affecting the parameter estimation in this example lies in 

that a majority of biological system modeling suffers from the lack of complete 

parameter identifiability, as discussed in Chapter 2 [64]. In other words, not all 

parameters can be uniquely identified and only a subset can be determined from 

data. Here, the proposed method will first be evaluated under the ideal scenario, in 

which the estimation is done only for the subset of a priori identifiable parameters 

(AIPs) [162] (the other parameters were set to the original values) and using 

noise-free data. The application of standard least square estimation using fully 

coupled ODEs encountered numerical stiffness problem and failed to converge. In 

addition, the decoupling method alone cannot be applied for the estimation 

involving missing measurements. Thus, in this example, the ODE decomposition 

estimation was used as a comparison of the proposed method. 

Table 3.1 summarizes the estimation results under the ideal scenario described 

above. In this case, the performance of the proposed method using 0.01% 
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convergence criterion is comparable to the ODE decomposition alone. The larger 

parameter deviations in the two-phase estimation are caused by the polynomial 

smoothing to obtain the time-slope data, without which the performance of the 

two estimation methods is virtually identical. In addition, by increasing the 

convergence factor, the proposed method can reduce computational time, but at 

the cost of increased errors in the parameter estimates. 

Table 3.1. Estimation of AIPs in branched pathway model 

 
ODE 

Decomposition 

Two-Phase Estimation 

0.01% 
a
 0.1% 

a
 1% 

a
 

Computational 

time (sec) 
c
 

3968.33 
3741.86 

(3823.77) 
b
 

2042.40 810.37 

Number of stiff 

ODE simulations 
203 0 0 0 

Average 

parameter error  
0.24% 

1.37% 

(0.20%)
 b
 

2.26%  8.11% 

Slope error 
d
 2.6435 

2.4374 

(0.0087)
 b
  

2.6052  6.6401 

Concentration 

error 
e
 

0.0047 
0.0187 

(0.0049)
 b
 

0.0198 0.0805 

a 
 Convergence criterion between two estimation phases. 

b 
 Using slope values evaluated directly using the ODEs. 

c
 The computational time was based on Dual Processors Intel Quad-Core 2.83 GHz. 

d
 Slope error was calculated using Equation 3.3, in which Xu , Xm are from simultaneous 

ODE simulation. 

e
 Concentration error was calculated using Equation 3.4, in which Xm are from 

simultaneous ODE simulation. 
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The results of estimating the full parameter set are given in Table 3.2, Figure 

3.3 A–B and Appendix A Table A1. Even when data are noise-free, the relative 

errors of the parameter estimates can reach higher than 300% using the ODE 

decomposition method. While parameter identifiability issue certainly contributes 

to these errors, the ODE decomposition in this case failed to extract the maximum 

information available in the data. As a comparison here, the application of the 

proposed iterative method using noise-free data and 1% convergence criterion 

produced improved parameter estimates and importantly, in much shorter time 

than the ODE decomposition (see Figure 3.4 A–B and Table 3.2). The maximum 

relative error dropped to 150% and fewer parameters had errors above 50%. In 

addition, the predicted concentration and slope profiles were relatively better than 

those from the ODE decomposition alone. While the lack of fit to the missing X3 

data in both methods was expected, parameter estimates from both methods were 

able to capture the trend of metabolite dynamics. 

When using noisy data, the proposed iterative method again gave 

comparatively more accurate parameter estimates and finished in much shorter 

time than the ODE decomposition. The results from the two estimation methods 

are shown in Figures 3.3 C–D and 3.4 C–D and Table 3.2. As expected, these 

parameter estimates were on average less accurate than those obtained from 

noise-free data, and the estimation in this case took two to three times longer than 

those using noise-free data. 
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Table 3.2. Parameter estimation of the branched pathway model 

 ODE Decomposition Two-Phase Estimation 

 w/o noise w/ noise w/o noise w/ noise 

Computational 

time (sec)  
4493.2 10910.3 1062.1 2807.4 

Number of stiff 

ODE simulations  
1247 2012 359 823 

Average 

parameter error 
92.18% 90.97% 36.59% 47.27% 

Slope error  2.5962 9.4303 0.8620 8.5909  

Concentration 

error  
0.5137 5.8207 0.1526 3.6021 

 

Figure 3.3. ODE decomposition estimation in the branched pathway model: parameter 

errors (A, C) and concentration simulations (B, D) using noise-free (A, B) and noisy data 

(C, D); (─) simulation profile, (○) in silico data. 
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Figure 3.4. Two-phase iterative estimation in the branched pathway model: parameter 

errors (A, C) and concentration simulations (B, D) using noise-free (A, B) and noisy data 

(C, D); (─) simulation profile, (○) in silico data. 

3.3.2   E. coli Metabolism Model 

The second case study involves a simplified kinetic model of E. coli 

metabolism under glucose feeding [70]. Experimental time-course data (two 

repeats) were previously reported for two initial glucose concentrations of 40 and 

50 g/L (see Figure 3.5). An S-system model was proposed [70] and is given by: 
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       (3.6) 

where X1, X2, X3, X4 and X5 are the concentrations of cell mass, glucose, protein, 

lactate and acetate, respectively. The four sets of initial concentrations in the 

experimental data are [0.1645, 39.66, 0.04390, 0, 0] g/L, [0.1156, 38.21, 0.03170, 

0, 0] g/L, [0.1931, 48.05, 0.04670, 0, 0] g/L and [0.2227, 51.88, 0.04100, 0, 0] 

g/L. 

In this case, a 4-th order polynomial data smoothing was chosen using the 

same maximization of the adjusted R
2
 criterion, and the smoothened curves were 

used to calculate the slopes. In addition, the parameter search space was limited to 

αi, βi, gij, hij  [10
–3

, 2]. Using complete experimental data, the model parameters 

were first estimated using the decoupling method, which will be used for 

evaluating estimates from incomplete data. The parameter estimates obtained here 

were comparable with the values reported in the original publication (see 

Appendix A Table A3) [70].  

In the following, the measurements of X2 was assumed missing. The 

parameter search space of αi, βi, gij, hij remained the same as above and the search 

space for the two missing initial conditions of X2 were bounded within [0, 100] 

g/L. Like in the previous example, for comparison purpose, the ODE 

decomposition method was applied to obtain parameter estimates from 
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incomplete data. The results are summarized in Table 3.3 and Figure 3.5. In this 

example, one can see the severe consequences of sparse experimental data, 

leading to large slope and concentration errors.  

The application of the proposed iterative method again gave improved 

parameter estimates in shorter amount of optimization time (see Figure 3.6 and 

Table 3.3). In comparison with the results from the ODE decomposition, the slope 

and concentration errors were much reduced, at roughly 2.5 times lower 

computational cost. In addition, the parameter estimates were comparably more 

accurate, especially for the estimates of rate constants. The average error of 

parameter estimates was 74.14% for the two-phase method, while the ODE 

decomposition gave an average error of 119.45 %. 

Table 3.3. Parameter estimation of the E. coli model 

 ODE Decomposition Two-Phase Estimation 

Computational 

time (sec)  
66119.7 26855.0 

Number of stiff 

ODE simulations  
645 0 

Slope error  1863.8 225.82 

Concentration 

error  
38083 21809 
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Figure 3.5. ODE decomposition estimation in the E. coli model: A and B show 

concentration simulations of the duplicates with the initial glucose concentration of 40 

g/L; C and D show concentration simulations of the duplicates with the initial glucose 

concentration of 50 g/L. (─) simulation profile, (○) experimental data. 



62 
 

 

Figure 3.6. Two-phase iterative estimation in the E. coli model: A and B show 

concentration simulations of the duplicates with the initial glucose concentration of 40 

g/L; C and D show concentration simulations of the duplicates with the initial glucose 

concentration of 50 g/L. (─) simulation profile, (○) experimental data. 

3.3.3   Glycolytic Pathway in Lactococcus lactis 

The third case study was taken from the modeling of the glycolytic pathway 

of L.lactis, as shown in Figure 3.7, again using S-system formulism [160]. 

Experimental time-course data of the metabolites were previously obtained using 

in vivo NMR [76,163]. Here, the concentration variables denote the following 
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metabolites: glucose (Glu)—X1, glucose 6-phosphate (G6P)—X2, fructose 1, 6-

biphosphate (FBP)—X3, phosphoenolpyruvate (PEP)—X4, lactate (Lac)—X5, and 

acetate (Ace)—X6. Assuming that the known network connectivity is correct, the 

model equations and initial conditions are given by: 
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    (3.7) 

 

 

Figure 3.7. The glycolytic pathway in L. lactis [78]. 

First, using the parameters reported in the original publication [160] 

(Appendix A Table A4), in silico noise-free data were produced for all 

metabolites except X3. In this case, we have used a piecewise polynomial fitting, 

since the data before t=9.4 minute had markedly different dynamics. Specifically, 
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eighth-order and second-order polynomials were used in the fitting before and 

after this time, respectively, again based on maximizing the adjusted R
2
. The 

parameter search space was limited such that αi, βi ∈  [0, 20], gij, hij ∈  [0, 5] and 

X3(t0) ∈  [0, 20]. 

Table 3.4 reports the parameter estimation results using the ODE 

decomposition and the two-phase iterative method. Compared with the results 

from the ODE decomposition (Figure 3.8 and Table 3.4), the proposed method 

gave better concentration and slope fittings at roughly three times lower 

computational cost. In addition, the average parameter error from the two-phase 

method was comparably lower. Even with the complete measurements, parameter 

identifiability issue has been shown to exist in this system [64]. 

Table 3.4. Parameter estimation of the L. lactis metabolic model   

 ODE Decomposition Two-Phase Estimation  

 w/o noise filtered data w/o noise filtered data 

Computational 

time (sec)  
79772.3  81858.8  24838.9 27325.2 

Number of stiff 

ODE simulations   
875 1023 316 368 

Average 

Parameter error 
243.90% — 97.29% — 

Slope error       

(1/ N 
a
)

 77.350 27090.2 2.3240 1.4910 

Concentration 

error (1/ N 
a
) 

24.777 288.71 24.784 24.573 

a 
 N is the number of time points in each metabolic profile. 
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Finally, the two-phase iterative estimation and the ODE decomposition were 

applied to the published smoothened NMR data using an automated smoother 

[61]. Again without X3, the estimation results are summarized in Table 3.4 and 

illustrated in Figure 3.9. As before, the proposed method gave markedly improved 

concentration and slope fittings in a shorter amount of time than the ODE 

decomposition method. 

 

Figure 3.8. Metabolic profiles in the L.lactis glycolytic pathway: in silico data (open 

circles), ODE decomposition (dashed line), and two-phase iterative estimation (solid line). 
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Figure 3.9. Metabolic profiles in the L. lactis glycolytic pathway: smoothened data (open 

circles), ODE decomposition (dashed line), and two-phase iterative estimation (solid line). 

  



67 
 

3.4   Discussion 

The proposed iterative parameter estimation method in this chapter builds on 

the strengths of the decoupling method and the ODE decomposition method. By 

decoupling the ODEs, this proposed method is significantly faster than other 

methods that require integrating the coupled ODEs for each objective function 

evaluation, while still giving good fit to measured concentration data. In addition, 

like the ODE decomposition method, the combined approach does not require 

complete measurements of all metabolites and has much reduced the parameter 

search space. As shown in the applications to the three cases, the proposed 

method was superior to the two methods from which it was developed. When 

metabolite measurements were incompletely available, the decoupling method 

could not be applied. Compared with the ODE decomposition method, the 

proposed method gave more accurate parameter estimates and better data fit 

(slope and concentration) at a much lower computational cost. While the fit to 

missing concentration measurement unsurprisingly had an offset, it is noteworthy 

that the dynamic trend can still be captured. 

The combination of slope and concentration fittings had also been used in 

several existing parameter estimation methods. For example, Wang and Liu had 

developed a method where kinetic parameters were estimated simultaneously by 

minimizing both slope and concentration errors using a multi-objective 

optimization framework [164]. Similar to the two-phase method here, Gennemark 

and Wedelin had proposed a multi-step method, where a derivative method was 
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used to obtain initial, rough guesses of model parameters and a subsequent 

minimization of concentration error was performed starting from these guesses 

[165]. However, these two methods assumed that all metabolite measurements are 

available. Notably, in the latter, the ODEs were also solved one at a time using 

single or multiple shooting methods, thereby decoupling the parameter estimation 

problem as in the ODE decomposition. The shooting method can in fact be used 

to substitute the role of ODE decomposition method in the two-phase iterative 

estimation here, providing an alternative method. 

Another method extended a class of ODE solvers, called orthogonal 

collocation method, for estimating model parameters [166]. In this case, the 

concentrations were approximated as a linear combination of basis functions, 

where the coefficients were treated as nuisance parameters. Model parameters 

were then simultaneously estimated by minimizing the approximation errors 

between the simulated concentrations and the data, and between the time-

derivatives of concentration predictions and the right hand side of 

    ; .t f tX = X p  Despite the similarities, the proposed method differs from 

this and the aforementioned methods in the grouping parameters into two, those 

associated with measured variables and those with unmeasured concentrations. By 

doing so, the parameter estimation can be achieved more efficiently. This is 

because solving a few small parameter estimation problems is easier than solving 

the simultaneous estimation of the combined parameter set. In addition, if more 

metabolites are measured, the estimation naturally becomes faster, since more 

parameters will be estimated in the first computationally efficient phase. 
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Although the proposed method performed better than the ODE decomposition 

method in terms of data fitting (i.e., smaller slope and concentration errors), many 

of the parameter estimates were still far from the true values (see Appendix A, 

Tables A1, A3 and A4). This may not be surprising as that the estimation 

problems had assumed missing data for metabolites. Nevertheless, even with 

complete data, parameter identifiability has been shown to be lacking in the 

estimation of kinetic parameters from time-series data and the severity of this 

problem can be assessed quantitatively [63,64]. 

Related to the identifiability issue, the kinetic information contained in 

different metabolites are not equal. The expected degradation in the accuracy of 

the parameter estimates from missing data depends on the degree of connectivity 

of the missing metabolite(s) in two ways. The kinetic information (i.e., rate of 

change) of a metabolite is partially contained in the downstream and upstream 

metabolites in the metabolic network. The higher the degree of connectivity, by 

stoichiometry, of a missing metabolite, the more can the missing flux information 

be re-extracted from the available data. While this missing flux can be determined, 

the (initial) concentration of the unmeasured metabolite however is still lost. Thus, 

it is possible to capture the trend of the missing profiles, but not the absolute 

concentration values, giving an offset between the simulated and true 

concentrations, as seen in the first and second and to some degree in the third 

example above. 

However, when considering regulatory connectivity, the concentration of 

metabolite(s) is important. Here, the loss of concentration data of an important, 
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highly connected regulatory metabolite will lead to a significant loss of 

information that cannot be easily recovered. In the first example, the loss of 

metabolite X3 data represented the worst-case scenario, as this metabolite has a 

high regulatory connectivity and missing downstream metabolite data. On the 

other hand, if X2 was not measured, the parameters can still be identified from 

other metabolites, since the set of pu is null, i.e., the estimation can be done using 

only the decoupling method. Finally, an increase in the number of unmeasured 

metabolites will, in general, lead to lower overall kinetic information and poorer 

parameter estimates. In the first example, missing both X2 and X3 indeed gave less 

accurate parameter estimates, but the two-phase method still outperformed the 

ODE decomposition (see Appendix A, Tables A1, A2 and Figure A1). 

For a given system, the computational requirement of the proposed method 

depends on several aspects, such as the numbers of measured and unmeasured 

metabolites, the numbers of parameters associated with measured and unmeasured 

metabolites, the convergence speed of the iterations, and as seen in the examples, 

the noise in the data. In general, the higher the number of parameters involved in 

the first phase, the faster will the estimation finish. Unfortunately, the scalability 

of the method to larger systems is difficult to be determined, as all of the factors 

mentioned above will interact. For example, the scaling will depend on the 

distribution of the additional parameters between the two phases as well as on the 

dynamics of the system (e.g., related to stiffness of the ODEs). In addition, the 

convergence will also play an important role, but unfortunately, this is difficult to 

consider as the two phases have different objective functions. 
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Finally, while the applications considered in this chapter were taken from S-

system models, the proposed iterative estimation is not limited to power-law 

models. The reason to consider these examples was that these models represent 

some of the most difficult parameter estimation problems due to the large number 

of parameters, stiff ODEs and high degree of nonlinearity. The proposed method 

can also be applied to the problems in which complete time-series data are 

available. In such cases, the parameters can be divided into two groups based on 

the level of difficulty in estimating them in each estimation phase. For example, 

for S-system models, the kinetic orders can be grouped together in the first phase 

(decoupling method), while the rate constants can be estimated in the second 

phase (ODE decomposition). 
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CHAPTER 4 : INCREMENTAL PARAMETER 

ESTIMATION OF KINETIC METBABOLIC 

NETWORK MODELS  

4.1   Summary 

Most of the existing parameter estimation methods involve finding the global 

minimum of data fitting residuals over the entire parameter space simultaneously. 

As discussed in Chapter 2, the associated computational requirement often 

becomes prohibitively high due to the large number of parameters and the lack of 

complete parameter identifiability (i.e. not all parameters can be uniquely 

identified). 

In this chapter, an incremental approach is applied to the parameter estimation 

of ODE models from time-concentration profiles. Particularly, the method is 

developed to address a commonly encountered circumstance in the modeling of 

metabolic networks, where the number of metabolic fluxes (reaction rates) 

exceeds that of metabolites (chemical species). Here, the minimization of model 

residuals is performed over a subset of the parameter space that is associated with 

the degrees of freedom (DOFs) in the dynamic flux estimation from the 

concentration time-slopes. The efficacy of this method was demonstrated using 

two generalized mass action (GMA) models, where the method significantly 

outperformed single-step estimations. In addition, an extension of the estimation 

method to handle missing data is also presented. The proposed incremental 
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estimation method is able to tackle the issue on the lack of complete parameter 

identifiability and to significantly reduce the computational efforts in estimating 

model parameters, which will facilitate kinetic modeling of genome-scale cellular 

metabolism in the future. 
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4.2   Method 

The GMA model of cellular metabolism describes the mass balance of 

metabolites, taking into account all metabolic influxes and effluxes, as given in 

Equation 1.1 and rewritten here for reference: 

      , , , ,d t dt t X p X p Sv X p      (4.1) 

where X(t,p) is the vector of metabolic time-concentration profiles, m nS R  is 

the stoichiometric matrix for m metabolites that participate in n reactions, and 

v(X,p) denotes the vector of metabolic fluxes (i.e., reaction rates). As introduced 

in Chapter 1, according to Biochemical Systems Theory, each flux is described by 

a power-law equation: 

  , ,jif

j j i
i

v X X p        (4.2) 

where j is the rate constant of the j-th flux and fji is the kinetic order parameter, 

representing the influence of metabolite Xi on the j-th flux (positive: activation or 

substrate, negative: inhibition).  

In the incremental parameter estimation, noisy time-course concentration data 

Xm(tk) are usually smoothened before the approximation of time-slopes  .m ktX  

Subsequently, the dynamic metabolic fluxes v(tk) are estimated from Equation 4.1 

by substituting  tX  with  .m ktX  Finally, the kinetic parameters associated with 

the j-th flux (i.e., j and fji’s) can be calculated using a least square regression of 
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the power-law flux function in Equation 4.2 against the estimated vj(tk). Note that 

for GMA models, the least square parameter regressions in the last step are 

essentially linear in the logarithmic scale and thus, can be performed very 

efficiently. 

A unique set of dynamic flux values v(tk) can only be computed from 

    ,k km t tX Sv  when the number of metabolites exceeds (or equals) that of 

fluxes. However, a metabolite in general can participate in more than one 

metabolic flux (m < n). In such a situation, there exist an infinite number of 

dynamic flux combinations v(tk) that satisfy    .k km t tX Sv  The dimensionality 

of the set of the flux solutions is equal to the DOF, given by the difference 

between the number of fluxes and the number of metabolites: nDOF = n - m >0 

(assuming S has a full row rank, i.e., there is no redundant ODE in Equation 4.1). 

The positive DOF means that the values of nDOF selected fluxes can be 

independently set, from which the remaining fluxes can be computed. This 

relationship forms the basis of the proposed estimation method, in which the 

model goodness of fit to data is optimized by adjusting only a subset of 

parameters associated with the independent fluxes. 

Specifically, it is started by decomposing the fluxes into two groups: v(tk) = 

[ vI(tk)
T
  vD(tk)

T
 ]

T
 , where the subscripts I and D denote the independent and 

dependent subsets, respectively. Then, the parameter vector p and the 

stoichiometric matrix S can be structured correspondingly as p = [ pI  pD ] and S = 
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[ SI  SD ]. The relationship between the independent and dependent fluxes can be 

formulated by rearranging    k km t tX Sv  into: 

       1 , .D k D m k I I m k It t t    v S X S v X p     (4.3) 

In this case, given pI, one can compute the independent fluxes vI(Xm(tk),pI) using 

the concentration data Xm(tk), and subsequently obtain vD(tk) from Equation 4.3. 

Finally, pD can be estimated by a simple least square fitting of vD(Xm(tk),pD) to the 

computed vD(tk) one flux at a time, when there are more time points than the 

number of parameters in each flux. 

In this work, two formulations of the parameter estimation of ODE models in 

Equation 4.1 are investigated, involving the minimization of concentration and 

slope errors. The objective function for the concentration error is given by 

          
1

1
, , ,

K T

C m k k m k k
k

t t t t
mK 

          p X X X p X X p  (4.4) 

and that for the slope error is given by 

           
1

1
, , , ,

K T

m k m k m k m kS
k

t t t t
mK 

   
   

   p X X Sv X p X Sv X p   (4.5) 

where K denotes the total number of measurement time points and X(tk,p) is the 

concentration prediction (i.e., the solution to the ODE model in Equation 4.1). 

Figure 4.1 describes the formulation of the incremental parameter estimation and 

the procedure for computing these objective functions. Note that the computation 

of ΦC requires integrations of the ODE model and thus, the estimation using this 
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objective function is expected to be computationally costlier than that using ΦS. 

On the other hand, metabolic mass balance is only approximately satisfied at 

discrete time points tk during the parameter estimation using ΦS, as the ODE 

model is not integrated. 

 

Figure 4.1. Flowchart of the incremental parameter estimation. 
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last two aspects should lead to a reduction in the parameter search space as well 

as the cost of finding the global optimal solution of the minimization problem in 

Figure 4.1. The second consideration is regarding constraints in the parameter 

estimation. Biologically relevant values of parameters are often available, 

providing lower and/or upper bounds for the parameter estimates. In addition, 

enzymatic reactions in the ODE model are typically assumed to be irreversible 

and thus, dynamic flux estimates are constrained to be positive. Hence, the 

parameter estimation involves a constrained minimization problem, for which 

many global optimization algorithms exist. 

So far, it has been assumed that the time-course concentration data are 

available for all metabolites. However, the method introduced above can be 

modified to accommodate more general circumstances, in which data for one or 

several metabolites are missing. Like in Chapter 3, the ODE model is first 

rewritten to separate the mass balances associated with measured and unmeasured 

metabolites, such that 

      , , , ,
MM

M U

UU

t t
   
   
   
    

 
X S

X p p v X X p
SX

    (4.6) 

where the subscripts M and U refer to components that correspond to measured 

and unmeasured metabolites, respectively. Again, if the fluxes are split into two 

categories vI and vD as above, the following relationship still applies for the 

measured metabolites: 

      
1

,,k m k I M I kD D Mt t t  
 

 v S X S v      (4.7) 



79 
 

Naturally, the degrees of freedom associated with the dynamic flux estimation 

is higher by the number of components in XU than before. Figure 4.2 presents a 

modified version of the parameter estimation procedure in Figure 4.1 to handle 

the case of missing metabolic profiles, in which an additional step involving the 

simulation of unmeasured metabolites  , ,
U U M U
X S v X X p  will be performed. In 

this integration, XM is treated as an external input, whose time-profiles are 

interpolated from the measured concentrations. The set of independent fluxes vI 

are now selected to include all the fluxes that appear only in 
UX  and those that 

lead to a full column ranked SD,M. If SD,M is a non-square matrix, then a pseudo-

inverse will be done in Equation 4.7. Of course, the same considerations 

discussed above are equally relevant in this case. Note that the initial conditions 

of XU will also need to be estimated. 
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Figure 4.2. Flowchart of the incremental parameter estimation when metabolites are not 

completely measured.  
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4.3   Results 

Two case studies: a generic branched pathway [60] and the glycolytic 

pathway of L. lactis [78], were used to evaluate the performance of the proposed 

estimation method. In addition, simultaneous estimation methods employing the 

same objective functions given in Equations 4.4 and 4.5 were applied to these 

case studies for comparison and to gauge the reduction in the computational cost 

from using the proposed strategy. In order to alleviate the ODE stiffness issue, 

parameter combinations that lead to a violation in the MATLAB (ode15s) 

integration time step criterion is assigned a large error value (ΦC = 10
3
 for the 

branched pathway and 10
5
 for the glycolytic pathway). Alternatively, one could 

also set a maximum allowable integration time and penalize the associated 

parameter values upon violation, as described above. In this work, the 

optimization problems were performed in MATLAB again using the eSSM GO 

(Enhanced Scatter Search Method for Global Optimization) toolbox [157,158]. 

Each parameter estimation was repeated five times to ensure the reliability of the 

global optimal solution. Unless noted differently, the iterations in the optimization 

algorithm were terminated when the values of objective functions improve by less 

than 0.01% or the runtime has exceeded the maximum duration (5 days). 

4.3.1   A Generic Branched Pathway 

The generic branched pathway in this example, which is the same as the one 

used in the first case study of Chapter 3, consists of four metabolites and six 
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fluxes, describing the transformations among the metabolites (double-line arrows), 

with feedback activation and inhibition (dashed arrows with plus or minus signs, 

respectively), as shown in Figure 4.3 A). The GMA model version of this 

pathway is given in Figure 4.3 B, containing a total of thirteen rate constants and 

kinetic orders. This model with the parameter values and initial conditions 

reported previously [60] were used to generate noise-free and noisy time-course 

concentration data (i.i.d additive noise from a Gaussian distribution with 10% 

coefficient of variation). The noisy data were then smoothened using a 6-th order 

polynomial, which provided the best relative goodness of fit among polynomials 

according to Akaike Information Criterion (AIC) [167] and adjusted R
2
 [161]. 

Subsequently, time-slopes of noise-free and smoothened noisy data were 

computed using central finite difference approximation. 

 

Figure 4.3. A generic branched pathway: (A) Metabolic pathway map and (B) The GMA 

model equations. 
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Here, v1 and v6 were chosen as the independent fluxes as they comprise the 

least number of kinetic parameters and lead to an invertible SD. The two rate 

constants and two kinetic orders were constrained to within [0, 25] and [0, 2], 

respectively. In addition, all the reactions are assumed to be irreversible. 

Table 4.1 compares simultaneous and incremental parameter estimation runs 

using noise-free data, employing the two objective functions introduced above. 

Regardless of the objective functions, the proposed incremental approach 

significantly outperformed the simultaneous estimation. When using the 

concentration-error minimization, simultaneous optimization met great difficulty 

to converge due to stiff ODE integrations, as discussed in Chapter 2. Only one out 

of five repeated runs could complete after relaxing the convergence criterion of 

the objective function to 1%, while the others were prematurely terminated after 

the prescribed maximum runtime of 5 days. In contrast, the proposed incremental 

estimation was able to find a minimum of ΦC in less than 120 seconds with 

reasonably good concentration fit and parameter accuracy (see Figure 4.4 A and 

Table 4.1). By avoiding ODE integrations and minimizing ΦS instead, the 

simultaneous estimation of parameters could be completed in roughly 10 minutes 

duration, but this was still slower than the incremental estimation using ΦC. In this 

case, the incremental method was able to converge in under 2 seconds or over 250 

times faster than the simultaneous estimation counterpart was. The goodness of fit 

to concentration data and the accuracy of parameter estimates were relatively 

equal for all three completed estimations (see Figure 4.4 B and Table 4.1).  The 

parameter inaccuracy in this case was mainly due to the polynomial smoothing of 
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the concentration data, since the same estimations using the analytical values of 

the slopes (by evaluating the right hand side of the ODE model in Equation 4.1) 

could give accurate parameter estimates (see Appendix B Table B1). 

Table 4.1. Parameter estimations of the branched pathway model using noise-free data 

 Simultaneous method  Incremental method  

 min C
b
 min S

c
 min C

c
 min S

c
 

Computational 

time (sec) 
a
 

56.00 h  
620.81  

± 64.30 

95.95 

± 11.09 

1.56 

± 0.19 

Average 

parameter error 
49.10% 

36.91% 

± 1.09% 

21.56% 

± 7.57×10
-2

% 

36.85% 

± 6.48×10
-3

% 

C
d

 4.54×10
-3

 
6.54×10

-3 

± 5.20×10
-5

 

4.03×10
-3 

± 6.22×10
-8

 

6.00×10
-3 

± 5.05×10
-7

 

S
d

 7.01×10
-2

 
2.72×10

-2 

± 1.09×10
-5

 

3.92×10
-2 

± 9.86×10
-6

 

2.76×10
-2 

± 4.46×10
-10

 

a. The computational time was based on a workstation with dual Intel Quad-Core 2.83 GHz 

processors.  

b. Only one out of five runs completed with a relative improvement of the objective function 

below 1% between iterations. The rest did not converge within the 5-day time limit after 

iterating for 583, 989, 777, and 661 times. The corresponding
C at termination were 4.85× 10

-2
, 

1.39×10
-2

, 1.75×10
-2

 and 3.75×10
-2

, respectively.  

c. Mean value and standard deviation (±) out of five repeats, which converged with relative 

improvement of the objective function below 0.01%.  

d. Root mean square error of model predictions, where the underlined value refers to the 

objective function of the minimization. 
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Figure 4.4. Simultaneous and incremental estimation of the branched pathway using in 

silico noise-free data (×). (A) Concentration predictions using parameter estimates from 

incremental method by ΦC minimization (─ ); (B) Concentration predictions using 

parameter estimates from simultaneous method (○) and proposed method (- - -) by ΦS 

minimization. 

Table 4.2 provides the results of the same estimation procedures as above 

using noisy data. Data noise led to a loss of information and an expected decline 

in the parameter accuracy. Like before, the simultaneous estimation using ΦC met 

stiffness problem and three out of five runs did not finish within the five-day time 

limit. The incremental approach using either one of the objective functions 

offered a significant reduction in the computational time over the simultaneous 

estimation using ΦS, while providing comparable parameter accuracy and 

concentration and slope fittings (see Figure 4.5 and Table 4.2). In this example, 
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data noise did not affect the computational cost in obtaining the (global) minimum 

of the objective functions. 

Table 4.2. Parameter estimations of the branched pathway model using noisy data. 

 Simultaneous method  Incremental method  

 min C
a

 
min S  min C  min S  

Computational 

time (sec) 

17.86 h 

44.63 h 

534.83 

± 22.12 

71.88 

± 6.33 

1.17 

± 0.12 

Average 

parameter error 

75.42% 

34.98% 

54.36% 

± 4.47% 

75.77% 

± 6.11×10
-3

% 

51.15% 

± 1.38×10
-3

% 

C  
3.62×10

-2 

3.27×10
-2 

6.06×10
-2 

± 1.14×10
-3

 

3.52×10
-2 

± 9.50×10
-9

 

4.76×10
-2 

± 3.81×10
-7

 

S  
2.06×10

-1 

1.60×10
-1 

1.34×10
-1 

± 6.02×10
-4

 

1.64×10
-1 

± 2.23×10
-5

 

1.38×10
-1 

± 2.26×10
-10

 

a. Two out of five runs completed with a relative improvement of the objective function 

below 1% between iterations. The rest did not converge within the 5-day time limit 

after iterating for 805, 699, and 568 times. The corresponding 
C at termination were 

4.08×10
-2

, 5.05×10
-2

 and 6.25×10
-2

, respectively. 
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Figure 4.5. Simultaneous and incremental estimation of the branched pathway using in 

silico noisy data (×). (A) Concentration predictions using parameter estimates from 

incremental method by ΦC minimization (─ ); (B) Concentration predictions using 

parameter estimates from simultaneous method (○) and proposed method (- - -) by ΦS 

minimization. 

Finally, the estimation strategy described in Figure 4.2 was applied to this 

example using noise-free data and assuming X3 data were missing. Fluxes v3 and 

v4 that appear in 
3X  were chosen to be among the independent fluxes and flux v1 

was also added to the set such that the dependent fluxes can be uniquely 

determined from Equation 4.7. In addition to the parameters associated with the 

aforementioned fluxes, the initial condition X3(t0) was also estimated. The bounds 

for the rate constants and kinetic orders were kept the same as above, while the 

initial concentration was bounded within [0, 5]. 
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Table 4.3 summarizes the parameter estimation results. Four out of five 

repeated runs of ΦC simultaneous optimization were prematurely terminated after 

5 days. Meanwhile, the rest of the estimations could provide reasonably good data 

fitting with the exception of fitting to X3 data as expected (see Figure 4.6). Like 

data noise, missing data led to increased inaccuracy of the parameter estimates, 

regardless of the estimation methods. Finally, the computational speedup by using 

the incremental over the simultaneous estimation was significant, but was lower 

than in the previous runs due to the additional integrations of XU and the larger 

number of independent parameters. The detailed values of the parameter estimates 

in this case study can be found in the Appendix B (Tables B2 and B3). 

Table 4.3. Parameter estimations of the branched pathway model using noise-free data 

with X3 missing. 

 Simultaneous method  Incremental method  

 min C
a
 min S  min C  min S  

Computational 

time (sec) 
85.03 h  

4002.01 

± 696.11 

1404.22 

± 120.71 

445.47 

± 35.94 

Average 

parameter error 
71.90% 

43.50% 

± 2.34% 

68.85% 

± 4.57% 

40.47% 

± 0.59% 

C  4.54×10
-3 

6.46×10
-3 

± 4.08×10
-4

 

3.38×10
-3 

± 1.14×10
-4

 

5.94×10
-3 

± 3.23×10
-5

 

S  1.03 
2.99×10

-2 

± 3.82×10
-4

 

8.32×10
-2 

± 4.04×10
-3

 

2.94×10
-2 

± 2.77×10
-6

 

a. Only one out of five runs completed with a relative improvement of the objective 

function below 1% between iterations. The rest did not converge within the 5-day time 

limit after iterating for 471, 435, 863 and 786 times. The corresponding 
C at 

termination were 4.99× 10
-2

, 4.92×10
-2

, 1.17×10
-2

 and 1.57×10
-2

, respectively. 
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Figure 4.6. Simultaneous and incremental estimation of the branched pathway with 

missing X3: in silico noise-free data (×). (A) Concentration predictions using parameter 

estimates from incremental method by ΦC minimization (─ ); (B) Concentration 

predictions using parameter estimates from simultaneous method (○) and proposed 

method (- - -) by ΦS minimization. 

4.3.2   Glycolytic Pathway in Lactococcus lactis 

The second case study was taken from the GMA modeling of the glycolytic 

pathway in L. lactis [78], involving six internal metabolites: glucose 6-phosphate 

(G6P) – X1, fructose 1, 6-biphosphate (FBP) – X2, 3-phosphoglycerate (3-PGA) – 

X3, phosphoenolpyruvate (PEP) - X4, Pyruvate – X5, Lactate – X6, and nine 

metabolic fluxes. External glucose (Glu), ATP and Pi were treated as off-line 

variables, whose values were interpolated from measurement data. The pathway 
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connectivity is given in Figure 4.7 A, while the model equations are provided in 

Figure 4.7 B with a total number of 25 rate constants and kinetic orders. 

 

Figure 4.7. L. lactis glycolytic pathway: (A) Metabolic pathway map (Double-lined 

arrows: flow of material; dashed arrows with plus and minus signs: activation or 

inhibition, respectively) and (B) The GMA model equations [78]. 

The time-course concentration dataset of metabolites were measured using in 

vivo NMR [52,168], and smoothened data used for the parameter estimations 

below were shown in Figure 4.8. The raw data have been filtered previously [78], 

and these smoothened data for all metabolites but X6, were directly used for the 

concentration-slope calculation in this case study. In the case of X6, a saturating 

Hill-type equation: k1t
n
 / (k2+t

n
) where t is time and the constants k1, k2, n are 
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smoothing parameters, was fitted to the filtered data to remove unrealistic 

fluctuations. A central difference approximation was again adopted to obtain the 

time-slope data. 

Fluxes v4, v7 and v9 were selected as the independent set, again to give the 

least number of pI and to ensure that SD is invertible. All rate constants were 

constrained to within [0, 50], while the independent and dependent kinetic orders 

were allowed within [0, 5] and [-5, 5], respectively. The difference between the 

bounds for the independent and dependent kinetic orders was done on purpose to 

simulate a scenario where the signs of the independent kinetic orders were known 

a priori. 

Table 4.4 reports the outcome of the single-step and incremental parameter 

estimation runs using ΦC and ΦS. The values of the parameter estimates are given 

in the Appendix B (Table B4). Like in the previous case study, there was a 

significant reduction in the estimation runtime by using the proposed method over 

the simultaneous estimation, with comparable goodness of fit in concentration and 

slope. None of the five repeats of ΦC simultaneous minimization converged 

within the 5-day time limit, even after relaxing the convergence criterion of the 

objective function to 1%. On the other hand, the incremental estimation using ΦC 

was not only able to converge, but was also faster than the simultaneous 

estimation of ΦS that did not require any ODE integrations. The incremental 

estimation using ΦC was able to provide parameters with the best overall 

concentration fit (see Figure 4.8), despite having a large slope error. Finally, 

minimizing ΦS does not guarantee that the resulting ODE is numerically solvable, 
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as was the case of simultaneous estimation, due to numerical stiffness. But the 

incremental parameter estimation from minimizing ΦS can produce solvable 

ODEs with good concentration and slope fits. 

Table 4.4. Parameter estimations of the L. lactis model. 

 Simultaneous method  Incremental method  

 min C
a
 min S  min C  min S  

Computational 

time (sec) 
>5 days 

3476.89 

± 349.63 

976.72 

± 31.01 

20.82 

± 2.71 

C  — Stiff ODE 
2.20 

± 8.81×10
-3

 

6.18 

± 7.28×10
-2

 

S  — 
2.67 

± 1.93×10
-4

 

1.51×10
3 

± 52.50 

5.79 

± 9.62×10
-4

 

a. None of five runs finished with a relative improvement of the objective function 

below 1% within the 5-day time limit, after iterating for 60, 147, 93, 79 and 31 times. 

The corresponding 
C

 
at termination were 9.31, 7.57, 8.77, 9.39 and 12.9, respectively. 

 

Figure 4.8. Incremental estimation of the L. lactis model: Experimental data (× ) 

compared with model predictions using parameters from concentration error 

minimization (─) and slope error minimization (---).  
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4.4   Discussion 

In this chapter, an incremental strategy is used to develop a computationally 

efficient method for the parameter estimation of ODE models. Unlike most 

commonly used methods, where the parameter estimation is performed to 

minimize model residuals over the entire parameter space simultaneously, here 

the estimation is done in two incremental steps, involving the estimation of 

dynamic reaction rates or fluxes and flux-based parameter regression. Importantly, 

the proposed strategy is designed to handle systems in which there exist extra 

degrees of freedom in the dynamic flux estimation, when the number of metabolic 

fluxes exceeds that of metabolites. The positive DOF means that there exist 

infinitely many solutions to the dynamic flux estimation, which is one of the 

factors underlying the parameter identifiability issues plaguing many estimation 

problems in Systems Biology [63,64]. 

The main premise of the new incremental method is in recognizing that while 

many equivalent solutions exist for the dynamic flux estimation, the subsequent 

flux-based regression will give parameter values with different goodness-of-fit, as 

measured by ΦC or ΦS. In other words, given any two dynamic flux vectors  ktv

satisfying     ,k km t tX Sv  the associated parameter pairs (pI, pD) may not 

predict the slope or concentration data equally well, due to differences in the 

quality of parameter regression for each  ktv . In addition, because of the DOF, 

the minimization of model residuals needs to be done only over a subset of 

parameters that are associated with the flux degrees of freedom, resulting in much 
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reduced parameter search space and correspondingly much faster convergence to 

the (global) optimal solution. The superior performance of the proposed method 

over simultaneous estimation was convincingly demonstrated in the two GMA 

modeling case studies in the previous section. The minimization of slope error, 

also known as slope-estimation-decoupling strategy method [60], is arguably one 

of the most computationally efficient simultaneous methods. In this strategy, the 

parameter fitting essentially constitutes a zero-finding problem and the estimation 

can be done without having to integrate the ODEs. Yet, the incremental 

estimation could offer more than two orders of magnitude reduction in the 

computational time over this strategy. 

As discussed in Chapter 2, there are many factors, including data-related, 

model-related, computational and mathematical issues, which contribute to the 

difficulty in estimating kinetic parameters of ODE models from time-course 

concentration data [24]. Each of these factors has been addressed to a certain 

degree by using the incremental identification strategy presented in this work. For 

example, in data-related issues, the proposed method can be modified to handle 

the absence of concentration data of some metabolites, as shown in Figure 4.2. 

Nevertheless, the method is neither able nor expected to resolve the lack of 

complete parameter identifiability due to insufficient (dynamical) information 

contained in the data [63,64]. As illustrated in the first case study, the single-step 

and incremental approaches did not provide any significant improvement in 

parameter estimate accuracy over the simultaneous method, and this accuracy 

expectedly deteriorated with noise contamination and loss of data. 
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The appropriateness of using a particular mathematical formulation, like 

power law, is an example of model-related issues. As discussed above, this issue 

can be addressed after the dynamic fluxes are estimated, where the chosen 

functional dependence of the fluxes on a specific set of metabolite concentrations 

can be tested prior to the parameter regression [77]. Next, the computational 

issues associated with performing a global optimization over a large number of 

variables and the need to integrate ODEs have been mitigated in the proposed 

method by performing optimization only over the independent parameter subset 

and using a minimization of slope error, respectively. Finally, in this work, we 

have also addressed a mathematical issue related to the degrees of freedom that 

exist during the inference of dynamic fluxes from slopes of concentration data. 

However, extra degrees of freedom (mathematical redundancies) are also 

expected to influence the second step of the method, i.e., one-flux-at-a-time 

parameter estimation. For (log)linear regression of parameters in the GMA 

models, such redundancy will lead to a lack of full column rank of the matrix 

containing the logarithms of concentration data Xm(tk) and thus, can be 

straightforwardly detected. 

The proposed estimation method has several weaknesses that are common 

among incremental estimation methods. As demonstrated in the first case study, 

the accuracy of the identified parameter relies on the ability to obtain good 

estimates of the concentration slopes. Direct slope estimation from the raw data, 

for example using central finite difference approximation, is usually not advisable 

due to high degree of noise in the typical biological data. Hence, pre-smoothing of 



96 
 

the time-course data is often required, as done in this study. Many algorithms are 

available for such purpose, from simplistic polynomial regression and splines to 

more advanced artificial neural network [59,60] and Whittaker-Eilers smoother 

[61,169]. If reliable concentration-slope estimates are not available, but bounds 

for the slope values can be obtained, then one can use interval arithmetic to derive 

upper and lower limits for the dependent fluxes and parameters using Equation 

4.3 (or Equation 4.7) [170]. When the objective function involves integrating the 

model, validated solution to ODEs with interval parameters can be used to 

produce the corresponding upper and lower bounds of concentration predictions 

[171]. Finally, the estimation can be reformulated, for example by minimizing the 

upper bound of the objective. 

In addition to the drawbacks discussed above, the proposed strategy requires a 

priori knowledge about the network topology, which requires complete 

information of the involved species, reaction stoichiometry and regulatory effects. 

Each aspect can pose significant challenges. For instance, an unknown species 

could be erroneously neglected in the pathway and may not be measured. Even 

with available measurements, the connectivity of this species with the others (by 

reaction or regulation) has to be strong enough to be retrieved from time-series 

concentration data, which can be done using methods including Bayesian network 

inference, transfer entropy, and Granger causality [172-174]. The inference of 

weak connectivity is challenging, as such issue relates to the fundamental problem 

of identifiability. I have discussed some of these problems in Section 3.4 

Paragraph 5 and 6. Fortunately, one can usually gather some basic structure 
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information on the pathways of interest from existing publications and databases. 

For cellular metabolism, such information has become more readily available as 

genome-scale metabolic network of many important organisms, including human, 

E. coli and S. cereviseae, have been and are continuously being reconstructed 

[175].  
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CHAPTER 5 : ENSEMBLE KINETIC 

MODELING OF METABOLIC NETWORKS 

FROM DYNAMIC METABOLIC PROFILES
 

5.1   Summary 

An incremental approach is used here for ensemble modeling of kinetic 

metabolic models. The model ensemble captures the uncertainty in the model 

identification procedure, specifically associated with the degree of freedom in the 

determination of metabolic fluxes from time profiles and non-identifiability of 

parameters from dynamic fluxes. The ensemble modeling method applies an 

existing parameter sampling strategy to explore and generate the viable parameter 

subspace, containing the model parameters that give statistically equivalent 

goodness of fit to metabolite time profiles. Built on the concept of incremental 

identification, the proposed ensemble modeling procedure relies on three 

components: (1) data smoothing and approximation of time-series metabolic 

concentration data, (2) a compact parameter space defining the model ensemble, 

and (3) efficient parameter exploration. The key contribution of this chapter lies 

in the use of an incremental approach to the building of model ensemble, making 

this process much more efficient and possible for applications to large-scale 

metabolic networks. The shift toward using a model ensemble, instead of the 

theoretically non-existent “best-fit” model, is necessary, as predictions from such 

best-fit model can be misleading. The performance of this ensemble modeling 
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approach has been demonstrated using the models of a generic branched pathway 

and the trehalose pathway in Saccharomyces cerevisiae. 
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5.2   Method 

5.2.1   Problem Formulation  

The incremental identification approach is again adopted to develop the model 

identification method in this chapter, but for different purpose and outcome. As 

described in Chapter 2, the estimation of dynamic fluxes from metabolite 

concentration slopes is commonly an underdetermined problem. In the previous 

chapter, the extra DOF in this estimation was used to restrict the parameter search 

space. However, the DOF also implies that there exist infinitely many dynamic 

flux combinations v(tk) that can satisfy the mass balance equation 

    ,m k kt tX Sv
 
containing the true solutions. The set of such fluxes represent 

in essence the uncertainty that arises due to the lack of identifiability of dynamic 

fluxes from the time-course data. Because of such uncertainty, the true solution to 

the inverse modeling cannot be a single model, but rather an ensemble of models. 

The focus of the new methodology development is therefore to construct this 

ensemble of models. Each of the models in this ensemble is derived from the 

same model equations and dynamic metabolic profiles, and member models differ 

only in the values of their kinetic parameters p. In this case, the membership to 

the ensemble is tied to     ,m k kt tX Sv
 
where each model can provide 

(statistically) equivalent goodness of fit to the given dynamic metabolic profiles. 

The method follows the same procedure as the estimation strategy in Chapter 4, 

but naturally differs in the construction of the solution. First, given time-course 
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concentration data Xm(tk), their time-slopes are estimated (e.g., using central 

difference approximation) after data smoothing. The discrepancy between the two 

methods begins from the calculation of the dynamic fluxes. Like before, the 

fluxes are decomposed into two groups: v(tk)=[ vI(tk)
T
  vD(tk)

T
 ]

T
 , corresponding to 

the independent and dependent sets, respectively. The stoichiometric matrix S and 

the parameter vector p are also structured accordingly into S = [ SI  SD ] and p = 

[ pI  pD ]. The dimension of the independent fluxes is given by the DOF, which is 

the difference between the number of fluxes and the number of metabolites: nDOF 

= n – m > 0 (assuming the rank of S is equal to m). As stated in Chapter 4, given 

the values of the independent fluxes, the dependent fluxes can be computed 

according to Equation 4.3. This is the point where the two methods diverge. 

The construction of the model ensemble is equivalent to the mapping of the 

viable region(s) in the parameter space, for which the corresponding model 

predictions fit the given data (statistically) equally well. Briefly, the method relies 

on an exploration of the independent parameter space to identify the viable 

regions for which (1) fluxes and parameters are within biologically relevant 

bounds and (2) the model prediction error is within acceptable statistical bounds. 

Here, the parameter space exploration is carried out using the HYPERSPACE 

toolbox, which implements an out-of-equilibrium adaptive Metropolis Monte 

Carlo (OEAMC) method and a multiple ellipsoid-based sampling (MEBS) 

method [176]. This toolbox was chosen as it has been shown to be very effective 

in exploring high-dimensional, non-convex and poorly connected viable spaces. 

Detailed steps of the ensemble construction are provided below. 
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5.2.2   HYPERSPACE Toolbox 

The HYPERSPACE toolbox provided two key algorithms: the OEAMC and 

the MEBS methods. In short, the OEAMC method provides a coarse-grained 

global exploration of the viable parameter space. This coarse-grained set in turn 

becomes starting points for a fine-grained local exploration offered by MEBS to 

further characterize the space [176]. 

  OEAMC Method 

This algorithm was developed from Metropolis Monte Carlo sampling [177] 

and Simulated Annealing [150]. Given an initial viable parameter point, for 

example the parameter estimates pI from the estimation method in Chapter 4, the 

OEAMC carries out n iterations in which new parameter points are sampled from 

a normal distribution and subjected to the criteria that define the desired viable 

region (see the next section). Specifically, the parameter space exploration starts 

from this known viable parameter point, around which the samples of the normal 

distribution are generated. A criterion manipulated by parameter β determines 

which point of the generated samples becomes the next sampling centre and 

influences the transition frequency between two parameter samples. This scheme 

is repeated for a predefined number of iterations n to guarantee that the defined 

whole space including disconnected areas could be sampled. After every n 

iterations, the algorithm determines whether the sampling should be continued 

depending on a convergence condition. Then, the viable parameter points (blue 

points in Figure 5.1) found so far are grouped into clusters and hyper-ellipsoids 
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(grey areas in Figure 5.1) with minimal volumes are constructed to enclose the 

viable points in each cluster. The convergence of this algorithm is determined 

from the sum of the volumes of these ellipsoids. The output is the set VMC 

containing all the viable parameter points. Figure 5.1 illustrates the working of 

this algorithm. 

 

Figure 5.1. Flowchart of the OEAMC algorithm. On the right, the red closed curves 

represent hypothetical contour plots of the viable parameter space defined by some 

criteria. The viable points are marked in blue and the nonviable points are marked in red. 

Finally, the grey areas illustrate the minimum volume enclosing ellipsoids [176].  
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The MEBS method produces hyper-ellipsoids to bound viable regions in the 

parameter search space, based on another algorithm that has been introduced 

elsewhere [178]. The ellipsoids’ centers, orientations and lengths of axes can be 

fine tuned in order to enclose multiple viable regions as tightly as possible. 

Starting from one parameter point of the set VMC from the OEAMC algorithm, 

this method searches for viable parameter points near the boundary of the viable 

region. Then, it computes the Minimum Volume Enclosing Ellipsoid (MVEE, 

dashed curves in Figure 5.2) that covers these viable points, and samples inside an 

ellipsoid with the same orientation (solid curves in Figure 5.2) using larger axes 

scaled up by a multiplier gi. Among the sample collection, the nonviable points 

(red points) are discarded, and based on the remaining viable ones (blue points), a 

new round of MVEE calculation and sampling are carried out with an updated 

gi+1. The performance of the algorithm strongly depends on the multiplier gi, and 

here I have used the recommended scaling parameters in the original publication 

[176]. The MEBS initiates a i+1-th ellipsoid expansion using the new sample 

point, which is chosen from the set composed by VMC and the union (Vi) of viable 

points obtained after previous ellipsoid expansions. To explore the regions that 

have not been sampled, the algorithm preferentially selects a sample point that is 

far away from the average of all previous starting points. The iteration is repeated 

until the scaling multiplier trends to one or a fixed number of iterations is reached. 

Thereafter, another initial viable point is picked for another round of the above 

steps and this is repeated until the parameter points in the VMC and Vi are 
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exhausted. The final output of the MEBS is a comprehensive set of viable 

parameter points. Figure 5.2 summarizes the procedure of the MEBS algorithm. 

 

Figure 5.2. Flowchart of the MEBS algorithm. On the right, the red closed curves 

represent hypothetical contour plots of the viable parameter space defined by some 

criteria. The viable points are marked in blue and the nonviable points are marked in red. 

Finally, the grey areas illustrate the minimum volume enclosing ellipsoids [176].  

One can apply the OEAMC and MEBS methods for a variety of purposes. In 

this case, the two algorithms will be used to characterize the space of parameters 

that defines the model ensemble. In the following sections, the criteria for viable 

parameters and the details of the application of the OEAMC and MEBS for the 

ensemble modeling will be provided. The HYPERSPACE toolbox also has an 
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inbuilt function to estimate the volume of the viable parameter space using Monte 

Carlo integration. 

5.2.3   Parameter Bounds, Flux Bounds and Error Function 

Threshold 

The first set of criteria for membership into the ensemble is related to the 

parameter and flux values, given by the following constraints: 

           , ; , ; 0, ; 0, ;I I I D D D I k v D k vL U L U t U t U   p p v v  (5.1) 

where LI (LD) and UI (UD) denote the lower and upper bounds for the independent 

(dependent) parameters, and Uv is the maximum value of metabolic fluxes based 

on prior knowledge on the interested metabolic pathway. Reasonable bounds for 

rate constants and kinetic orders as well as the maximal value for metabolic fluxes 

in some specific organisms have been discussed previously in Chapter 2.  

The second viability criterion is meant to establish equivalence among the 

member models in terms of their goodness of fit to data. If one makes the 

assumption that data noise comes from a Gaussian distribution, then the 

confidence bound of error function can be calculated using standard statistical 

analyses. Here, models with error function values within the confidence bound(s) 

are treated to be statistically equivalent. When data noise is not Gaussian and/or 

non-standard error function is used, the confidence interval can still be estimated 

using a Monte Carlo approach [179] 
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In this chapter, the confidence bound for the error function was obtained using 

a Monte Carlo approach. Specifically, the parameter estimation as described in 

Chapter 4 was repeatedly applied to 100 randomly generated time profiles from a 

Gaussian distribution with the noisy/experimental time profiles as the mean 

values. The variance of the data noise was estimated from the residuals of the data 

smoothing procedure. For each dataset, the same data smoothing and slope 

calculation were performed and the corresponding parameter estimates were 

obtained by minimizing the error function (see below). The confidence bound was 

directly estimated from the set of 100 error function values. For example, the 95% 

upper confidence bound of the error function is approximated by the 4-th largest 

error function in this set.   

5.2.4   Ensemble Modeling Procedure 

In the case studies below, the error function was set to be: 

           
1

1
, , , ,

K T

R D k D m k D D k D m k D
k

t t t t
mK 

          p X v v X p v v X p (5.2) 

where K is the total number of measurement time points. This error function is 

implemented in the last step of the incremental estimation, where the kinetic 

parameters are regressed from the dynamic flux estimates. Note that the 

optimization of this error function was actually done one flux at a time. Of course, 

other error functions can be used, such as those given in Equations 4.4 and 4.5. 
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The model ensemble procedure starts with finding an initial viable point for 

the OEAMC algorithm, as discussed above. Next, the upper bound for the error 

function will be set either by applying standard statistical analysis assuming 

Gaussian noise or using the Monte Carlo algorithm described in the previous 

subsection. The OEAMC is then applied to generate the coarse-grained set of 

viable parameters over the space of the independent parameters. Finally, this set 

becomes the input to the MEBS algorithm, producing a population of viable 

parameters pI that represents the ensemble of models. Note that while this work 

concerns with power-law fluxes, the ensemble generation procedure has general 

applicability to any kinetic models that can be written as    , , .t X p Sv X p
 
The 

overall flowchart of the proposed ensemble modeling method can be summarized 

in Figure 5.3. 

 

Figure 5.3. Flowchart of the proposed ensemble modeling method.  
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5.3   Results 

The performance of the proposed procedure is demonstrated in the 

applications to two examples of GMA kinetic modeling, involving: a generic 

branched pathway [60] and the trehalose pathway in Saccharomyces cerevisiae 

[80]. 

5.3.1   A Generic Branched Pathway 

The generic branched pathway in this example is the same as the one used for 

the first case study in Chapters 3 and 4. The pathway map and the GMA model 

equations are given in Figure 4.3. Like before, using the reported parameter 

values and initial concentrations [60] this model was used to generate in silico 

noisy time-course concentration data (i.i.d. Gaussian noise with zero mean and 10% 

standard deviation). For validation purpose, two independent datasets were 

generated in the same manner as above, but with different initial conditions 

         1 0 2 0 3 0 4 0 4 1 3 4X t X t X t X t     and  0.2 0.3 4.2 0.01 ,  

respectively. The noisy data were also smoothened using a 6-th order polynomial, 

which provided the relatively best fit among polynomials according to adjusted R
2 

[161] and Akaike Information Criterion (AIC) [167]. Subsequently, a central 

finite difference approximation was applied to compute the time-slopes of the 

smoothened noisy data. 

The smoothened data were used to compute the initial parameter point, by 

way of applying the estimation method in Chapter 4 to minimize the regression 
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error R . The fluxes v1 and v6 were chosen as the independent set since this 

selection led to an invertible SD and the least number of independent parameters. 

The independent parameters pI included the rate constants {1, 6} and the kinetic 

orders {f13, f64}. The rate constants were constrained to within [0, 100], and the 

kinetic orders to within [0, 5] and the upper bound for allowable metabolic fluxes 

in this artificial network was set as 5×10
5
 mM/min. The result of this estimation is 

summarized in Table 5.1. A comparison to Table 4.2 indicated that the 

minimization of R  can provide similar slope and concentration fittings to the 

objective functions used in Chapter 4. Finally, using the procedure described in 

Section 5.2.3, the upper confidence bound for the error function R  was 

determined to be 3.473×10
-1

. 

Table 5.1. Parameter estimation of the branched pathway model using ΦR. 

R  1.298×10
-1 

a

C  4.125×10
-2

 

b

S  1.444×10
-1

 

a.  Concentration error was calculated by Equation 4.4.  

b.  Slope error was calculated by Equation 4.5.  

 

Table 5.2 summarizes the outcome of the ensemble modeling using a 

sequential application of the OEAMC and MEBS methods of the HYPERSPACE 

toolbox. The actual viable subspace of the independent parameters represented 
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only 0.284
 
% of the original space defined by the upper and lower parameter 

bounds. The ranges of concentration and slope errors were determined by 

generating a uniformly random sampling of parameters from the viable space (n = 

59928) using Equations 4.4 and 4.5, respectively. Figure 5.4 shows two-

dimensional projections of the viable regions onto the parameter axes of each 

independent flux. The member models of the ensemble were able to simulate the 

concentration and slope profiles reasonably well (see Table 5.2), as illustrated by 

the comparison of data and model predictions from five randomly selected models 

in the ensemble in Figure 5.5. 

Table 5.2. Ensemble kinetic modeling of the branched pathway model using ΦR. 

Computational time (sec) 
a
 1664 

Calculated volume of initial parameter space 

(Vci) 
b
 

2.5×10
5
 

Estimated volume of viable parameter space 

(Vev) 
c
 

710.1 ± 5.1 

Ratio of Vev to Vci  (284.0 ± 2.0) ×10
-3 

% 

Value range of concentration errors 
d

C  [3.554×10
-2

, 2.150×10
-1

] 

Value range of slope errors 
e

S  [1.370×10
-1

, 5.081×10
-1

] 

a.  The computational time was the total time of ensemble construction including OEAMC and 

MEBS phases, based on Dual Processors Intel Quad-Core 2.83 GHz. 

b. Vci was calculated through multiplication of initial parameter search ranges (i.e., 

100×5×100×5). 

c.  Vev was calculated by integrating the volumes of an ensemble of ellipsoids that cover the 

viable parameter space [176]. 

d.  Concentration errors were calculated by Equation 4.4, given the parameter samples within 

the viable parameter space.  
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e.  Slope errors were calculated by Equation 4.5, given the parameter samples within the viable 

parameter space.  

 

 

Figure 5.4. Two-dimensional projections of the viable parameter space onto the 

parameter axes of each independent flux (v1: left, v6: right). 

 

Figure 5.5. Concentration simulations of five randomly selected models from the 

ensemble (solid blue, brown, green, red and purple lines) versus the noisy data (×). 

Finally, for model validation, Figure 5.6 shows the comparison of model 

simulations from the same five models and independent (simulated) experimental 
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datasets, indicating that these models could predict the systems dynamics under 

different initial conditions reasonably well. 

 

Figure 5.6. Concentration simulations of the same five models as in Figure 5.5 (solid 

blue, brown, green, red and purple lines) versus independent datasets (×), with initial 

concentrations of [4 1 3 4] (a) and [0.2 0.3 4.2 0.01] (b). 

Note that besides the R  minimization, the proposed kinetic ensemble 

modeling approach can also incorporate other error functions, such as the slope 
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error S . The viable parameter space using the slope error S  closely 

resembles that shown in Figure 5.4 (see Appendix C), indicating that the 

robustness of the procedure in capturing the parametric uncertainty. 

5.3.2   Trehalose pathway in Saccharomyces cerevisiae 

The second case study was taken from the modeling of the glycolysis and 

trehalose production in the baker’s yeast Saccharomyces cerevisiae. Figure 5.7 

shows the metabolic pathway and the GMA model, which describes in a 

simplified fashion how glucose is converted into end products and how trehalose 

is synthesized and degraded in a cyclic pathway [79]. The concentrations of 

metabolites in this pathway are denoted as follows: extracellular glucose (Glc) – 

X1, intracellular glucose (Glc) – X2, glucose 6-phosphate (G6P) – X3, trehalose 

(Tre) - X4, fructose 1, 6-biphosphate (FBP) – X5, extracellular end-products 

(ethanol, glycerol and acetate) – X6, pentose phosphate pathway (PPP) – X7 and 

other pathways (Leakage) – X8. In this case, the time-course concentration data 

using in vivo NMR were only measured for X1, X3, X4, X5 and X6 [80]. As an 

illustration here, we adopted the experimental dataset from normally grown cells 

at 30 °C that were fed with a pulse of glucose (see Figure 5.9). The raw 

experimental data were smoothened using a piecewise cubic spline, the fitting of 

which was validated by adjusted R
2
 [161] and Akaike Information Criterion (AIC) 

[167]. Like before, a central difference approximation was applied to obtain the 

time-slopes of concentration data. 
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Figure 5.7. The trehalose pathway in Saccharomyces cerevisiae. (A) Metabolic pathway 

map. (B) The ODE model equations [79]. 

The ODE model contains six species and eight fluxes, as shown in Figure 5.7 

B. In this case, X7 and X8 are not tracked, as none of the metabolites of interest 

depends on their concentrations. The variables Vex and Vin denote the extracellular 

(5.00×10
-2

 L) and intracellular (7.17×10
-3

 L) volumes of the bioreactor and the 

cell population, respectively. While the intracellular glucose X2 was not measured, 

the information for its rate of change can be obtained from the other measured 

metabolites, by performing an overall mass balancing, as follows: 

1
22 1 3 4 5 6 7 8( 2 )ex in in in ex inX X V X V X V X V X V v v V            

 
(5.3) 
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Using this relationship, the model was reduced to the following equations:
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(5.4) 

Hence, the estimation of the dependent fluxes was carried out without the 

need to integrate the ODE for X2, which is different from the procedure outlined 

in Figure 4.2. The parameter estimation procedure in Figure 4.1 was applied to 

this reduced model. 

Fluxes v4, v7 and v8 were chosen as the independent fluxes according to the 

same criteria as before. In this case, v7 and v8 were associated with the 

unmeasured metabolite 
2X

 
according to Equation 5.3. Consequently, the 

independent parameters pI comprise the rate constants {4, 7, 8} and the kinetic 

orders {f44, f73, f85}, which were constrained within [0, 100] and [0, 5], 

respectively. Note that the glucose transport flux (v1) was modeled using 

Michaelis-Menten (MM) kinetics instead of power law, as suggested from the 

time profile of X1 (a constant decrease at high X1 and an exponential-like time 

profile at low X1). The regression of the MM parameters can also be casted as a 

linear regression problem as follows: 

        
1

max1

1 1 1 1 1 1 1 1

m1

T TV
X v X v X v X v

K

 
     

    
(5.5) 
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where  1 1X v  is the vector product of element-wise multiplication of X1 and v1. 

Finally, the upper bound for flux values was set as 5×10
5
 mM/min, according to 

the maximal flux value reported in a similar glycolytic pathway [125].  

The initial parameter point to the OEAMC algorithm was again obtained by 

applying the parameter estimation procedure in Figure 4.1. Table 5.3 reports the 

result from this estimation. The same parameter estimation was applied repeatedly 

to 100 randomly generated datasets, again assuming Gaussian distributed noise 

with the experimental data as the mean values and variance that was estimated 

from the residuals of the smoothing procedure. In this case, the upper confidence 

bound for R  was estimated to be 1.860×10
-1

. 

Table 5.3. Parameter estimation of the trehalose pathway model using ΦR. 

R  7.639×10
-2 

C  2.189 

S  8.009 

 

Table 5.4 gives the summary of the model ensemble for the trehalose model 

above. The volume of the viable region represents 2.590×10
-3

% of the original 

constrained parameter space. The ranges of fitting error values were computed 

based on a uniform random sample of the viable parameter space (n = 3591) and 

Equations 4.4 and 4.5. Note that while the upper bound for the concentration 

errors was quite high, only a very small minority of the random parameter points 
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(3 out of 3591) had concentration errors than 10
2
 and removing these, the upper 

bound for the concentration error reduces to 35.92. This issue is not completely 

unexpected as the model ensemble was created based on the flux error function 

and not the concentration error. In particular, there is no guarantee that parameter 

values with a small flux error will also provide a low concentration error. 

However, we note that the divergence between the flux error and concentration 

error functions occurred only rarely (< 0.1%). Figure 5.8 shows two-dimensional 

projections of the viable parameter subspace onto the parameter axes of each 

independent flux. A comparison between the concentration predictions by five 

randomly sampled models from the ensemble and the metabolite time profiles is 

shown in Figure 5.9. 

Table 5.4. Ensemble kinetic modeling of the trehalose pathway model using ΦR. 

Computational time (sec) 6489 

Calculated volume of initial parameter space 

(Vci) 
a
 

1.25×10
8
 

Estimated volume of viable parameter space 

(Vev)  
3237 ± 125 

Ratio of Vev to Vci  (25.90 ± 1.00) ×10
-4 

% 

Value range of concentration errors C  [1.125, 3.880×10
2
] 

Value range of slope errors S  [5.825, 46.42] 

a.  Vci was calculated through multiplication of initial parameter search ranges (i.e., 

100×5×100×5×100×5). 
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Figure 5.8. Two-dimensional projections of the viable parameter space onto the 

parameter axes of each independent flux (v4: left, v7: middle, v8: right). 

 

Figure 5.9. Concentration simulations of five randomly selected models from the 

ensemble (solid blue, brown, green, red and purple lines) versus the experimental data (×). 
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5.4   Discussion 

The difficulty in simultaneously estimating kinetic parameters of metabolic 

models is often caused by the lack of complete parameter identifiability [64]. In 

other words, not all parameters can be uniquely identified and consequently many 

parameter combinations can give similar data fittings [160]. Hence, even if an 

estimation algorithm can return the “best-fit” model for a given dataset, this 

model may have little predictive capability, or worse, can be misleading. The 

model identification procedure in this chapter circumvents this problem by using 

an incremental identification approach to generate an ensemble of equivalent 

models in the sense that (1) the models closely approximate the same mass 

balance equation and (2) the model approximations are statistically equal (to 

within a 95% confidence level). Although the case studies mainly involved GMA 

models with power-law flux functions, the ensemble modeling procedure can be 

used for any form of flux functions, as long as the ODE model follows equation 

   m k kt tX Sv . For power-law and Michaelis-Menten kinetics, the least square 

regression of the dependent parameters reduces to linear regression, and thus can 

be done very efficiently. The main reason to use power-law models here was that 

they represent some of the most challenging problems in kinetic modeling due to 

the large parameter space, the lack of complete parameter identifiability, stiff 

ODEs and high degree of nonlinearity.  

The proposed ensemble modeling method has the advantages that (1) the 

model ensemble is compactly defined using a small number of independent 
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parameters; (2) the dependent parameters can be efficiently computed from the 

independent parameters; (3) only biologically-meaningful models are included in 

the model ensemble; and (4) data uncertainty (noise) is explicitly accounted for. 

The first two aspects come as courtesy of the step-wise identification approach 

adopted in the development of the method. The computational cost of 

constructing the model ensemble is related with the parameter exploration and the 

computation of the error function. The compactness of the parameter space of the 

ensemble is therefore particularly important for numerical efficiency and 

ultimately for practical applications. For OEAMC and MEBS algorithms, the 

number of required parameter samples during parameter exploration has been 

shown to increase linearly with the parameter dimension, which in this case is 

equal to the number of independent parameters [176]. On the other hand, the 

computational cost of a single evaluation of the error function primarily comes 

from the least square regression of the dependent parameters and possibly from 

the integration of the ODE, if the error function requires the simulation of X(t). 

For the error function used in the case studies above, this computational cost 

should increase linearly with the number of dependent fluxes, assuming that the 

number of unknown parameters in each dependent flux stays about the same. 

In the proposed ensemble modeling, the model uncertainty is related to 

parametric uncertainty that arises from data noise, leaving out the contribution of 

structural uncertainty (mismatch between the assumed model equations and the 

true dynamics). Increasing data noise is therefore expected to increase the size of 

the model ensemble, i.e. the volume of the viable parameter subspace, by directly 
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changing the statistics of the error function. However, in this case, higher noise in 

data will also lead to more uncertainty in the time slopes estimates of the 

concentration data. Since the direct (error function) and indirect (smoothing and 

slope calculation) effects of data noise could not be easily separated, we have 

chosen a Monte Carlo approach in determining the confidence bound of the error 

function (see Method section). 

In the ensemble modeling, I have assumed that time-series data for all 

metabolites in the model are available. When one or more metabolites are not 

measured, before performing the proposed procedure, one can modify the 

procedure by first rewriting the ODE model as Equation (4.6), separating same as 

the balances associated with measured and unmeasured, and simulate the data of 

unmeasured ones in the same way as described in Section 4.2. In addition, I have 

made another assumption that there exists a unique solution to the computation of 

pD from pI. For GMA models, this assumption requires that (1) the number of 

time points exceed the number of parameters pD from each flux (not the total 

number) and (2) the logarithm of the metabolite concentration time profiles 

appearing in each flux are linearly independent and non-constant. The first 

requirement is usually satisfied as the number of parameters involved in every 

flux ranges only between 2 and 5. The second requirement depends on the 

experimental conditions, but is again usually fulfilled since each flux depends 

only on a handful of metabolites and data are contaminated with random noise. If 

this assumption becomes invalid for one or more dependent fluxes, then these 

fluxes can be included into the set of independent fluxes, at the cost of increasing 
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the dimensionality and computational time of the parameter exploration step. In 

such a case, the calculation of dependent fluxes from the independent flux values 

will require taking a pseudo-inverse of SD (see Method). 

Constraints on parameters and fluxes are important in restricting the size of 

the ensemble, in a problem dependent manner. For example, in the first case 

study, the ensemble hit the lower constraints on both kinetic order parameters (set 

at 0) and the upper constraint for the rate constant 1 (see Figure 5.4). Meanwhile, 

parameter constraints affect the second case study more than the first, where the 

lower and upper constraints of all rate constants and the lower bounds of all 

kinetic orders limited the viable parameter subspace (see Figure 5.8). 

Furthermore, in both case studies, the requirement for positivity of the flux values 

(i.e. lower bounds of the fluxes) was an important constraint, as this was 

frequently violated during the parameter exploration (data not shown). 

While the kinetic ensemble models are considered equivalent, each will give a 

slightly different goodness of fit to the data that were used to identify them. This 

difference arises from two factors: (1) the least square regression of the dependent 

parameter values and (2) the use of concentration slopes. The former implies that 

the dependent fluxes are only approximations in the model, and the latter means 

that the mass balance is only satisfied at discrete time points (since the ODEs are 

not integrated in this procedure). In fact, such difference between the member 

models is expected and reasonable considering that the “best-fit” model to a 

single dataset is not reliable due to the data uncertainty and the lack of full model 

identifiability (existing DOFs). 
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Model building in systems biology, especially for metabolic networks, is 

usually formulated as an iterative procedure. While typically such a procedure 

considers a single “optimal” model, there is no guarantee, however, that the 

iteration will converge to a single model due to the issue of model identifiability, 

as mentioned before. The ensemble model creation in this chapter can be 

integrated in such an iterative procedure and here, the efficacy of the generation 

and screening of member models is important. Such efficiency can be guaranteed 

by the inbuilt features of the proposed method, including incremental 

identification (from time-slope approximation and dynamic flux calculation to 

linearized flux-based parameter estimation) and parameter space reduction (the 

independent parameter set). At each iteration, the ensemble size can be reduced 

by removal of member models that are not consistent with the additional 

experimental data. In this sense, any progress in accurate quantification of 

dynamic fluxes turns to be very helpful and is ready to be directly applied in the 

proposed method. 

In addition, the ensemble of kinetic models can be further pruned using 

existing strategies in the generation of an ensemble of metabolic models. For 

example, steady-state data from knock-out studies and thermodynamic principles 

can be used as criteria for further reducing the size of generated ensemble models 

[180]. As another example, the benefits of improving the quantification of 

dynamic fluxes will immediately materialize as such data can be directly used in 

the proposed method. This resulted ensemble again allows for re-examining the 

possible phenotypes of the network upon new information or perturbations, such 
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as enzyme over-expression. This topic is currently under investigation within our 

group. 

Finally, the ability to generate an ensemble of kinetic models also necessitates 

the development of new methodologies on how to utilize such ensemble. The 

obvious challenge is how to analyze and/or optimize the system when it is 

represented by a set of models, not just one model, which may contain an infinite 

number of members. Here, we propose two strategies: the first involves the 

generation of a (random) sample of models from the ensemble and in such a case, 

the results from the analysis and optimization can be represented in the form of a 

histogram. The second strategy is to take the advantage that the ensemble model 

generation involves only linear (or log-linear) algebraic equations. In this case, 

interval or constraint propagation using interval arithmetic can be used to evaluate 

upper and lower bounds for the system behaviors, as done previously for GMA 

models [106]. 
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CHAPTER 6 : CONCLUSIONS AND FUTURE 

WORK  

6.1   Conclusions 

Advancements in biological techniques have made time-series measurements 

of metabolite concentrations more readily available, providing the necessary 

(though likely still insufficient) data to build kinetic models of cellular 

metabolism. Deciphering the information contained in these data about the 

structure and dynamics of metabolic pathways, is challenging but important. 

Kinetic metabolic models will provide an invaluable quantitative tool for 

metabolic engineering efforts [181]. Specifically, kinetic models such as those 

presented in this thesis, can be used to predict system responses to perturbations 

in either regulatory or metabolic networks. When coupled with an optimization 

procedure, the models can lend a hand in guiding genetic manipulations in 

pathway optimization. 

The process of building kinetic models, however, is often complicated by 

issues related with data, model, computation and mathematics. Specially, some of 

the most challenging problems include the lack of complete data and poor data 

quality (noise), the high computational cost in performing parameter estimation 

from data, and the lack of complete parameter identifiability. Resolving these 

problems constitutes the main objective of this thesis, through the development of 

new estimation methodologies. 
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In Chapter 3, an incremental and iterative parameter estimation method was 

developed to address two issues: (1) missing metabolite time profiles and (2) high 

computational cost associated with integrating kinetic ODE models during 

parameter estimation. A new method was built from a combination of two 

existing strategies: the decoupling method and the ODE decomposition method. 

The decoupling method was known to be fast, as it requires no integration of the 

ODE models. However, the requirement of having a completely measured system 

reduces the practical significance of this method. The new combined method loses 

some of the computational efficiency of the decoupling method, as ODE 

integrations are still performed, in order to remove the above requirement. Hence, 

the computational performance of the new method straddles between the faster 

decoupling and the slower ODE decomposition methods. 

However, the deeper issue in parameter estimation related to identifiability, 

especially given incomplete data, is still not accounted for in the iterative 

estimation method above. The lack of complete identifiability is often the real 

reason why existing algorithms fail in obtaining accurate parameter estimates. 

This issue becomes the focus of Chapters 4 and 5, in which I have taken an 

incremental identification approach [85,102]. In this approach, the parameter 

estimation of kinetic ODE models is decomposed into smaller sequential sub-

problems. By doing so, the issue of identifiability can be addressed directly at 

each step. 

In Chapter 4, a new incremental estimation method was formulated to address 

the degrees of freedom that arise from the lower the number of species than the 
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reactions. By using an incremental approach, this DOF could be addressed 

directly during the estimation of reaction fluxes from the metabolite concentration 

slopes. In this case, only a subset of fluxes is independent, i.e., given the values of 

these fluxes, the values of the remaining fluxes can be constrained by the mass 

balance. The important step forward was to recognize that the minimization of 

error function to estimate parameters can be done over the set of independent 

fluxes, offering a significant reduction in the optimization search space. In the 

case studies, the new incremental method outperformed the traditional 

simultaneous estimation methods by providing smaller errors in parameter 

estimates, slope and concentration fittings and importantly, by significantly 

reducing the computational time. The estimation method was flexible enough to 

handle cases of incomplete time profile data with little modifications. 

Specifically, the improvement offered by the new incremental estimation can 

be attributed to three unique features of this method: (1) parameter estimation is 

restricted only within the flux-defined subspace (independent set), reducing 

complexity and computational effort greatly; (2) the incremental approach enables 

easy diagnosis of estimation errors during each step or increment with the 

flexibility of validating the assumed flux functions; and (3) the interplay between 

concentration and slope fittings helps to reduce the potential error compensations 

within the fluxes and to enhance accuracy in both slope and concentration 

predictions. These advantages will bring the kinetic modeling of genome-scale 

metabolic networks closer to reality. 



129 
 

In Chapter 5, the incremental identification approach was used to produce a 

completely different outcome. Here, a new method was developed to construct an 

ensemble of kinetic models of metabolic networks, where models in the ensemble 

have equivalent goodness of fit to given time profiles. The lack of complete 

parameter identifiability implies that the estimation problem is underdetermined 

and thus, there is no unique solution to the inverse problem. This corollary was 

precisely the motivation to generate such an ensemble. In essence, the ensemble 

recapitulates the parametric uncertainty arising from the parameter identifiability 

issue. In fact, the use of the “best fit” model, resulting from the traditional model 

identification procedure, maybe misleading.  

Briefly, the proposed method was built using an efficient random sampling of 

viable parameter subspace [176] to generate the set of biologically meaningful 

values for the independent fluxes, based on which the dependent fluxes and the 

associated parameters can be obtained. During different steps in the construction, 

feasibility checks were performed to make sure that the calculated fluxes and 

parameters were within reasonable bounds. The method however only addressed 

two sources of uncertainty: (1) data noise and (2) the DOF in the estimation of 

fluxes as discussed above. Hence, this part of the thesis represents only a starting 

point of further investigations to incorporate other sources of uncertainty and 

importantly, to build new tools for applying such an ensemble in Metabolic 

Engineering. 
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6.2   Future Work 

Although I have addressed several commonly encountered problems in the 

process of kinetic model identification, many challenges still exist, requiring more 

in-depth work. Below, I have outlined important and relevant research topics to 

the present thesis. 

6.2.1   Data Smoothing 

Biological measurements usually contain significant level of noise, which 

complicates the application of the methods relying on estimating the time-slopes 

of such data. In this regard, reliable methods for data smoothing are highly 

desirable. During the investigations in this thesis, a few algorithms have been 

tried, such as splines [54-56], polynomial fitting [57], filters [58], artificial neural 

networks (ANNs) [59,60] and AutoSmoother [61], but the success of each 

algorithm varies on a case-by-case basis. 

The “ideal” smoother however should provide reliable performance, giving 

unbiased estimates of the slopes, regardless of the noise structure within the data. 

This aspect of the methods needs to be addressed more carefully and deserves 

deeper investigations. A case study in Chapter 4 (branched pathway) indicated 

that up to 70% of the parameter error arose from the inaccuracy in the estimation 

of time-slopes of concentration data (comparing Tables B1 and 4.2), when 

measurements of all metabolites are available. One possible strategy is to use a 
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hybrid of algorithms, for example, by taking an average of the estimates of time-

slopes from the algorithms above.  

6.2.2   Ensemble Kinetic Modeling in Consideration of Model 

Uncertainty 

Many difficulties within the inverse modeling from data are rooted from the 

fundamental issue of model uncertainty. Here, model uncertainty accounts for 

most of the uncertain factors in the model identification process, including (1) 

structural uncertainty, (2) parametric uncertainty and (3) dynamic uncertainty (see 

Figure 6.1). As a result, efforts on finding a single (best-fit) model may become 

pointless due to the aforementioned uncertainties and the best-fit model, if found, 

may have little predictive capability or worse, it could be misleading [182].  

Here, a different strategy, tackling each aspect of model uncertainty, is clearly 

needed, so that eventually it become possible to create a more comprehensive 

ensemble of kinetic models in consideration of all the three aspects. Those 

uncertainties can be recapitulated in the member models of the ensemble, which 

differ from each other (1) in the material (or information) flows of the biological 

pathways (structural uncertainty), (2) in the values of dynamic fluxes and kinetic 

parameters (parametric uncertainty), and (3) in the mathematical approximations 

of biochemical reactions (dynamic uncertainty). The methodology described in 

Chapter 5 addressed the second factor, i.e., the parametric uncertainty. 
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Structural uncertainty results from the lack of complete knowledge on the 

topology or connectivity in the pathways. In this case, a set of biologically 

feasible pathways could be constructed and used to generate the ensemble model, 

which could be mathematically described as: 

    : S S S NP        (6.1) 

where N denotes a superset of stoichiometric matrix, including all the possible 

connections (reactions) in the network, P is a permutation matrix to remove 

unlikely links between components (metabolites), and S represents the confirmed 

topology. Such structural uncertainty can be further constrained using the 

methods of model-free or model-based structural identification, such as target 

factor analysis (TFA) [88].  

Lastly, there also exists uncertainty in the formulation of the flux functions. In 

this regards, mechanistically based or canonical models, such as Michaelis-

Menten, Hill-type and power-law kinetics, have been commonly used to describe 

the flux dynamics. Nevertheless, it may not be appropriate to adopt the same basis 

function for modeling all the fluxes that show distinctive characteristics. Hence, it 

is also important to tailor the modeling frameworks to accommodate the 

possibility of combining different canonical flux functions. Finally, the model 

ensemble should account all of these uncertainty sources, as illustrated in Figure 

6.1. 
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Figure 6.1. Model uncertainty and its parameterization, in which structural, dynamic and 

data uncertainties are represented by the sets {N}, {v(X,p)} and [153], respectively. 

6.2.3   Applications of Ensemble of Kinetic Models 

Along with the ensemble construction of kinetic models, the computational 

tools for the applications of the built models also need to be developed. The tools 

will need to consider (1) what type of outputs is desired from the model ensemble 

and (2) the computational requirement in producing these outputs from the 

ensemble. These two considerations will depend on the specific applications. For 

example, let us assume that the model ensemble is used to come up with the input 

profile (e.g., glucose) that optimizes some system performance (e.g., ethanol 

yield). In this case, one can borrow a concept from robust control theory, in which 

the ensemble model will be used to predict the worst-case performance among all 

feasible models, and the optimization of input profiles will be done to maximize 

this worst-case performance. One possible strategy to estimate the worst-case 

performance using the ensemble modeling is to use validated ODE solvers [171]. 
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Finally, the future research topics discussed in this chapter: data smoothing, 

kinetic ensemble modeling and its applications, can and should still be integrated 

into the model identification cycle (Figure 1.3). The research findings shall 

provide the enabling tools for kinetic modeling under uncertainties and for 

resolving the issues related to data, model, computation and mathematics in the 

process of model identification of metabolic pathways as well as other biological 

networks.  
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APPENDIX A  

A1    A Generic Branched Pathway 

Table A1 summarizes the parameter values of this generic branched pathway, 

including their true values. As a complete comparison, ODE decomposition and 

two-phase estimation methods were both applied to the cases under the following 

three conditions: noise-free data with X3 missing, noisy data with X3 missing and 

noise-free data with X2 X3 both missing (Figure A1). Given half information (X2 

X3 both missing), it was expected that all the indexes would increase in Table A2, 

but the proposed method was still better than the ODE decomposition alone, in 

terms of reduced slope error and concentration error at more than half reduced 

computational cost. In addition, parameter estimates from both methods were able 

to capture the trend of X2, but the proposed method can also follow the rough 

trend of X3. 
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Table A1. Parameter values in the branched metabolic pathway model 

 

Is the 

parameter 

a priori 

identifiable

?
a 

True 

Values 

[60] 

ODE Decomposition Two-Phase Estimation 

w/o noise         
(X3 

missing) 

w/ noise         
(X3 missing) 

w/o noise       
(X2 and X3 

missing) 

w/o noise       
(X3 

missing) 

w noise          
(X3 

missing) 

w/o noise       
(X2 and X3 

missing) 

 N 20 14.3251 7.4638 8.6907 7.3915 11.9498 0.3621 

 Y 10 15.5590 7.8476 20.0081 7.1857 9.4370 8.0324 

 N 8 7.1566 7.6614 18.3646 7.0850 9.1653 0 

 Y 3 2.1827 3.1131 24.4023 2.6401 5.2429 1.9480 

 Y 5 21.2695 14.8967 24.7699 6.3065 9.9220 5.5003 

 N 6 21.6201 2.6303 10.7145 4.4590 2.6462 9.7779 

g13 Y -0.8 -0.7376 -1.8268 1.9996 -0.3467 -0.2569 2.0000 

h11 Y 0.5 0.6008 0.5623 0.9972 0.5065 0.2896 0.0625 

h22 N 0.75 0.9141 0.5854 0.1257 0.7601 0.4338 2.0000 

h33 N 0.5 0.6717 2.0000 1.2316 0.2599 0.2288 -0.4420 

h34 N 0.2 0.8234 0.5852 0.7596 0.1676 0.1727 2.0000 

h44 N 0.8 0.7780 1.5199 1.4350 2.0000 1.2618 0.1298 

X3(t0) N 1.2 0.3879 0.7886 2.3493 0.2216 0.7612 5 

X2(t0) N 2.7 — — 0.7374 — — 1.325 

a A priori identifiable parameter (AIP) with missing X3 data. The a priori identifiability was determined using orthogonal 

decomposition of the sensitivity matrix [162].  
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Table A2. Parameter estimation of the branched pathway model 

 ODE Decomposition Two-Phase Estimation 

 
w/o noise 

(X3 missing) 

w/ noise  

(X3 

missing) 

w/o noise          

(X2 and X3 

missing) 

w/o noise 

(X3 missing) 

w/ noise  

(X3 

missing) 

w/o noise          

(X2 and X3 

missing) 

Computational time 

(sec) a 4493.2 10910.3 180045 1062.1 2807.4 88667.4 

Number of stiff ODE 

simulations 
1247 2012 9173 359 823 4401 

Parameter error 92.18% 90.97% 209.31% 36.59% 47.27% 175.00% 

Slope error b 2.5962 9.4303 2.6321 0.8620 8.5909  2.5389 

Concentration error c 0.5137 5.8207 0.0533 0.1526 3.6021 0.0186 

a  The computational time was based on Dual Processors Intel Quad-Core 2.83 GHz.                                 

b  Slope error was calculated using Equation 3.3, in which Xu , Xm are from simultaneous ODE simulation.             

c  Concentration error was calculated using Equation 3.4, in which Xm are from simultaneous ODE simulation. 

 

 

Figure A1. ODE decomposition parameter estimation (A) and two-phase estimation (B) 

in the branched pathway model: concentration simulations for the case where both X2 and 

X3 are missing; (─) simulation profile, (○) in silico data. 
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A2    E. coli Metabolism Model 

Table A3 presents the parameter values and initial concentration of X2 in an E. 

coli model [70]. Data in the first column are the values reported by Chih-Lung et 

al., and the parameter values of the second column are estimated based on 

complete data using decoupling method. The true values for X20(1), X20(2) are 

directly obtained from the data by taking average on the duplicates of the initial 

glucose concentrations. The third and fourth columns contain the estimates from 

ODE decomposition method and the proposed method respectively, given 

incomplete experimental data (measurements of X2 are completely missing). 

Table A3. Parameter values in the E. coli model  

 Parameter estimates from complete data Parameter estimates from incomplete data 

 Previous report [183]  

Decoupling 

method 

ODE decomposition Proposed method 

 0.1891 0.0088     0.3883     0.0010     

 0.6917 1.0448     1.8627 0.1969     

 0.0655 0.0026     0.2182 0.0010     

 1.2010 0.4513 1.9847 0.0010     

 0.2493 0.2470     0.1889    0.2460     

g11 0.0100 0.5980     0.2762 0.4682     

g12 0.2118 1.0505     0.1989 1.4741     

h21 1.7219 0.9059     1.7259 0.9941     

h22 0.2126 0.2793     1.3655 0.6279     
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g31 0.0100 0.5160 0.4642 0.3341     

g32 0.3033 1.1891     0.1976 1.2915     

g41 0.8578 0.9907     0.8242 1.4235     

g42 0.1080 0.4014     0.1237 1.8239     

g51 0.0497 0.1887          0.2233 0.1890     

g52 0.0100 0     0.0902 0.0010 

Initial 

concentration 

of X2 

True values Estimated values  

X2(t0) 38.933  17.1720 65.1193 

X2(t0)
’ 49.965 17.5776 65.1193 

 

A3    Glycolytic Pathway in Lactococcus lactis  

Table A4 summarizes the parameter values of this L. lactis metabolic model 

with ODE decomposition and two-phase methods, given in silico data or filtered 

experimental data with X3 missing. 

Table A4. Parameter values in the L. lactis metabolic model  

 

Parameter 

values from 

previous report 

[160] 

ODE Decomposition Two-Phase Estimation 

w/o noise           
(X3 missing) 

filtered data            

(X3 missing) 

w/o noise         
(X3 missing) 

filtered data            

(X3 missing) 

 1.3113 6.8442 12.1396    2.1655 0.2126 

 4.0821 10.279 15.0059 5.0486 2.4090 

h11 0.1230 0.0453 0.0303    0.1345 0.2165 

h14 0.4142 0.1651 0.0732 0.2665 0.3976 
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 0.5071 10.5324 3.3458 0.0538 0.7470 

g21 0.8844 0.8008 0.8325 1.5938 0.3164 

g24 0.1118 0.0243 0.0614 0.1112 0 

 0.9852 11.4034 6.8004 0.6320 1.1690 

h22 1.0720 1.4443 1.1673 1.1857 0.4771 

 12.7563 9.1829 16.0482 5.0910 16.0907 

g32 0.7635 0.1634 0.7812 0.2595 1.9114 

 7.2386 10.9689 12.2713 4.0641 19.9999 

h33 0.3976 0.6603 1.7885 0.1708 1.1560 

 5.3176 16.2099 10.2630 0.3023 2.9194 

g43 0.1466 0.3471 1.9885 1.0195 0.2588 

 6.2504 8.0156 3.4196 0.3563 0.5300 

h42 0.3704 0.7773 1.9038 1.4371 1.8527 

h44 0.1102 0.9822 1.0493 0.5654 0.2042 

 13.8804 6.5624 3.4473 20.0 17.6495 

g54 0.2255 0.5162 1.8048 0.1453 0.1383 

 8.5617 2.0799 0.0313 14.5981 12.6867 

 0.4206 0.4164 0.5316 0.4442 0.4697 

g64 0.7670 0.7504 1.8335 0.6177 0.4852 

X3(t0) 0.4000 0.4253 — 0.3467 — 

X3*(t0) 
a  9.7381 — 2.3708 — 2.2187 

 a  The initial concentration which was used in filtered data                       
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APPENDIX B  

Table B1. Parameter estimations of the branched pathway model using noise-free data 

and analytical slope values 

 Simultaneous method Incremental method 

 min C
b
 min S

c
 min C

c
 min S

c
 

Computational 

time (sec) 
a
 

56.00 hours 
785.79  

±50.80  

108.91 

±2.99 

3.17 

±4.72×10
-2

 

Average 

parameter error 
49.10% 

4.93×10
-3

% 

±2.84×10
-4

% 

5.06×10
-5

% 

±8.47×10
-7

% 

1.96×10
-5

% 

±7.63×10
-7

% 

C


d  4.54×10
-3 

2.17×10
-6 

±4.00×10
-9

 

5.37×10
-9 

±7.52×10
-12

 

6.75×10
-9 

±1.19×10
-10

 

S


d
 4.84×10

-2
 

3.01×10
-6 

±2.57×10
-9

 

3.41×10
-8 

±7.22×10
-10

 

1.36×10
-8 

±6.17×10
-11

 

a. The computational time was based on a workstation with dual Intel Quad-Core 2.83 GHz 

processors.  

b. Only one out of five runs was stopped with relative improvement of the objective function 

below 1% between iterations. The rest did not converge within the 5-day time limit after iterating 

for 583, 989, 777, and 661 times. The corresponding 
C  at termination were 4.85×10

-2
, 1.39×10

-2
, 

1.75×10
-2

 and 3.75×10
-2

, respectively.  

c. Mean value and standard deviation (±) out of five runs, which converged with relative 

improvement of the objective function below 0.01%.  

d. Root mean square error of model predictions and the underlined part refers to the objective 

function of the minimization.  
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Table B2. Parameter estimates of the branched metabolic pathway model (simultaneous 

method) 

* 

True 

Values 

[60] 

Simultaneous method 

min S  

(1) (2) (3) (4) 

1 20 19.9999 22.0151 23.2163 20.9692 

f13 0.8 0.8000 0.6179 0.2340 0.3713 

2 8 7.9998 10.1122 6.5743 9.8968 

f21 0.5 0.5000 0.3498 0.5569 0.3599 

3 3 2.9998 5.1168 2.3392 4.9036 

f32 0.75 0.7500 0.5174 0.7568 0.5342 

4 5 4.9998 7.0401 2.7497 9.3560 

f43 0.5 0.5000 0.3262 0.4526 0.3054 

f44 0.2 0.2000 0.1135 0.0031 0.2082 

5 2 2.0002 1.5302 7.6821 4.2064 

f51 0.5 0.4999 0.8258 0.0003 0.1642 

6 6 5.9997 7.7990 8.4180 6.4270 

f64 0.8 0.7999 1.2250 0.0452 0.2945 

X3(t0) 1.2 — — — 0.7548 

* This table reports the parameter estimates with the minimal objective function value out of five 

runs. 

(1) using noise-free data and analytical slopes; (2) using noise-free data; (3) using noisy data; (4) 

using noise-free data with missing X3 
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Table B3. Parameter estimates of the branched metabolic pathway model (incremental 

method) 

* 

True 

Values 

[60] 

Incremental method                                 

min C  

Incremental method                                       

min S  

(1) (2) (3) (4) (1) (2) (3) (4) 

1 20 20.0000 20.0105 24.9989 13.4674 20.0000 22.5904 15.0593 24.9585 

f13 0.8 0.8000 0.7634 0.3366 1.0920 0.8000 0.6058 0.7824 0.4894 

2 8 8.0000 8.7730 14.1896 7.4143 8.0000 10.3220 7.2424 10.1723 

f21 0.5 0.5000 0.4410 0.2610 0.5301 0.5000 0.3417 0.4804 0.3479 

3 3 3.0000 3.6749 8.6709 2.5980 3.0000 5.2978 2.8968 5.1604 

f32 0.75 0.7500 0.6680 0.3577 0.8098 0.7500 0.5072 0.6827 0.5160 

4 5 5.0000 5.9268 10.9451 8.2781 5.0000 7.2630 3.4761 7.0669 

f43 0.5 0.5000 0.4021 0.1585 0.8642 0.5000 0.3213 0.4371 0.3023 

f44 0.2 0.2000 0.1719 0.0579 0.4950 0.2000 0.1133 0.0338 0.1042 

5 2 2.0000 1.3828 0.3694 1.6768 2.0000 1.6284 0.8468 3.2351 

f51 0.5 0.5000 0.8068 0.0000 1.2353 0.5000 0.7753 1.4665 0.2243 

6 6 5.9999 7.3216 1.4041 15.0425 6.0000 7.7068 11.1042 5.7002 

f64 0.8 0.8000 1.2352 0.6459 1.7137 0.8000 1.1649 2.0000 0.3960 

X3(t0) 1.2 — — — 0.7865 — — — 1.2773 

* This table reports the parameter estimates with the minimal objective function value out of five 

runs. 

(1) using noise-free data and analytical slopes; (2) using noise-free data; (3) using noisy data; (4) 

using noise-free data with missing X3 
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Table B4. Parameter estimates of the L. lactis metabolic model 

* 

Simultaneous 
method 

Incremental method 

min S  min C  min S  

1 2.2638 9.7891 0.4994 

f1, Glu 0.0690 0.2627 0.8716 

f11 1.2991 0.0309 -1.0343 

f14 -0.5461 0.3979 0.9642 

2 0.2330 49.9072 49.9999 

f21 1.9573 0.4358 0.4404 

f2, ATP 0.9219 -0.3360 -0.8733 

3 5.8716 8.3470 5.9069 

f32 0.2739 0.4571 0.3602 

f3, Pi -0.1315 0.1254 0.0477 

4 1.5800×10
-13

 49.6053 0.4193 

f44 8.9194×10
-6

 4.9730 1.7635 

5 49.9999 5.2494 49.9999 

f53 -0.4609 3.4524 -0.0887 

6 3.3189 11.0241 8.2447 

f62 0.4006 0.3926 0.2874 

f64 0.1383 0.0208 0.2041 

f6, Pi -0.2920 0.0279 -0.2545 

7 0.0001 0 3.0295×10
-5

 

f74 4.9999 1.0855×10
-7

 0.0005 

8 6.3648×10
-9

 0.5332 0.5332 

f85 1.7507 0.1781 0.1781 

f82 4.4842 0.4804 0.4804 

9 5.4359 34.4010 17.7804 
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f95 0.5957 0.4394 0.3410 

* This table reports the parameter estimates with the minimal objective function value out of five 

runs. 
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APPENDIX C  

 

Table C1 summarizes the parameter estimation results in the generation of the 

initial parameter point for the OEAMC algorithm, for the generic branched 

pathway example in Chapter 5. The same estimation was repeated for 100 

randomly generated data using the same assumption and procedure as done in the 

case study in Chapter 5. The upper confidence bound for S  was estimated to 

be 2.952×10
-1

. 

Table C1. Parameter estimation of the branched pathway model using ΦS. 

a

S  1.369×10
-1 

b

R  1.380×10
-1

 

c

C  4.632×10
-2

 

a.  Slope error, the minimized objective, was defined by Equation 4.5. 

b.  Regression error was calculated by Equation 5.2. 

c.  Concentration error was calculated by Equation 4.4. 

 

Table C2 provides the summary of the ensemble construction based on the 

slope error function S . The volume of the viable subspace of pI was 0.2701% 

of the volume set by the parameter bounds. The range of values for the slope and 

concentration errors were again computed from uniformly sampling parameter 

points from the viable space (n = 75680). Figure C1 shows two-dimensional 
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projections of the viable parameter space onto the parameter axes of fluxes v1 and 

v6. Lastly, Figure C2 compares the metabolite concentration predictions produced 

by five randomly picked member models and the in silico generated noisy data 

used for the construction of the model ensemble. Again, these models could 

provide similar goodness-of-fit to the data. 

Table C2. Ensemble kinetic modeling of the branched pathway model using ΦS. 

Computational time (sec) 
a
 1865 

Calculated volume of initial parameter space 

(Vci) 
b
 

2.5×10
5
 

Estimated volume of viable parameter space 

(Vev) 
c
 

675.3 ± 4.2 

Ratio of Vev to Vci  (270.1 ± 1.7) ×10
-3 

% 

Value range of concentration errors 
d

C  [3.526×10
-2

, 2.366×10
-1

] 

Value range of slope errors 
e

S  [1.370×10
-1

, 2.952×10
-1

] 

a.  The computational time was the total time of ensemble construction including OEAMC and 

MEBS phases, based on Dual Processors Intel Quad-Core 2.83 GHz. 

b. Vci was calculated through multiplication of initial parameter search ranges (i.e., 

100×5×100×5). 

c.  Vev was calculated by integrating the volume of an ensemble of ellipsoids that cover the 

viable parameter space [176]. 

d.  Concentration errors were calculated by Equation 4.4, given the parameter samples within 

the viable parameter space.  

e.  Slope errors were calculated by Equation 4.5, given the parameter samples within the viable 

parameter space.  
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Figure C1. Two-dimensional projections of the viable parameter space onto the 

parameter axes of each independent flux (v1: left, v6: right). 

 

Figure C2. Concentration simulations of five randomly selected models from the 

ensemble (solid blue, brown, green, red and purple lines) versus the noisy data (×). 
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