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Summary 

Enveloped viruses consist of a host-derived lipid envelope which is a detailed 

representation of the lipid composition at budding sites. For example, influenza 

viruses hijack plasma membrane microdomains which are generally enriched in 

cholesterol, sphingolipids and in certain glycerophospholipid species. Enveloped 

viruses not only acquire such host lipids, but also have the capability to modify host 

cell metabolism for efficient replication.  

 

In this study, we harnessed a comprehensive lipidomics approach using mass 

spectrometry to get a better understanding of the role of lipids during influenza A 

virus replication. We performed a detailed analysis of host cell lipid metabolism in a 

lung epithelial cell line. We identified a variety of sphingo- and glycerophospholipids 

to be differentially regulated in human lung epithelial cells during the course of an 

infection. Specifically, we observed an upregulation of sphingomyelin, ether linked 

and odd chain ester linked phosphatidylcholine species, but a concomitant decrease in 

even chain ester linked phosphatidylcholine species in infected cells. Consistent with 

a redirection of glycolytic flux into the biosynthesis of ether- and sphingolipids, we 

detected an early phosphorylation of pyruvate kinase M2 and a decrease in 

peroxisomal ß-oxidation. Significance of increased lipogenesis (ether and odd chain 

lipid biosynthesis) but decreased ß-oxidation in the peroxisome was further supported 

by the antiviral activity of a PPARɑ agonist. 

 

The influenza virus induced changes in host cell lipid metabolism correlated with the 

lipid composition of purified virus particles. Further analysis revealed an influenza 



 

xi 

specific remodelling of phosphatidylcholine species when compared to other 

enveloped viruses. We hypothesized that these changes reflected the requirement of 

polarized vesicular trafficking for influenza virus assembly and budding. 

Subsequently, we identified NS1 as a determinant modulating host cell lipid 

metabolism which was confirmed by distinct sphingolipid and phosphatidylcholine 

profiles of two closely related influenza virus strains differing in a non-conservative 

point mutation in NS1. We further showed that the influenza virus non-structural 

protein NS1 harbours a highly conserved putative peroxisome targeting sequence 2. 

 

Based on these findings and published data, we proposed a model whereby influenza 

virus redirects glycolytic flux into the biosynthesis of ether linked- and sphingolipids, 

to facilitate proper virion morphogenesis in the exocytic pathway which correlates 

with virus pathogenicity. The importance of choline containing sphingo- and ether 

lipids was additionally highlighted by impaired virus production from cells either 

treated with a sphingomyelin synthase inhibitor or from ether lipid deficient cells. 

 

Besides, we also detected a significant enrichment of ceramide in influenza virus 

envelopes despite not being differentially regulated in virus infected cells. Further 

scrutiny revealed a specific enrichment of ceramide in enveloped viruses fusing at late 

endosomal compartments, and we subsequently derived a model whereby 

ceramide/cholesterol ratios of cellular and viral membranes mediate intracellular 

trafficking.  
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1. Introduction 

 

2 

1.1 Overview 

 

Influenza viruses are zoonotic pathogens circulating in many animal hosts including 

humans, birds, horses, dogs and pigs (Taubenberger and Morens, 2010). They are 

enveloped viruses with a segmented negative-strand RNA genome. They belong to 

the family of the Orthomyxoviridae consisting of the three virus types A, B and C, 

which differ in their host range and pathogenicity (Cox and Subbarao, 2000). 

Influenza A viruses, being the most common and virulent pathogens among the three 

influenza virus types, can be further divided into subtypes by the antigenic and 

genetic nature of their surface glycoproteins hemagglutinin (HA) and neuraminidase 

(NA). The high degree of antigenic variation in HA and NA is caused by two 

important mechanisms known as antigenic drift and antigenic shift. Antigenic drift is 

mediated by the high mutation rate of influenza A viruses through the accumulation 

of point mutations in HA and NA genes to escape neutralization by antibodies 

generated against previous strains (Cox and Subbarao, 2000). For example, it has 

recently been shown that positive Darwinian selection acts on antigenic sites in HA 

(Chen and Holmes, 2006; Fitch et al., 1997; Ina and Gojobori, 1994). Antigenic shift 

refers to the transmission of an animal or avian virus from an animal reservoir to 

humans or to the reassortment of the HA and NA gene segments between animal and 

human influenza A viruses caused by coinfection of the same host cell (Cox and 

Subbarao, 2000). Genetic reassortment has been commonly implicated in host switch 

events (Garten et al., 2009; Scholtissek et al., 1978; Taubenberger and Kash, 2010) 

and shown to participate in influenza A virus evolution (Dugan et al., 2008; Holmes et 

al., 2005). So far, viruses bearing all known 16 HA (H) and 9 NA (N) subtypes were 
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exclusively isolated from avian hosts, but only viruses of the H1N1, H2N3 and H3N2 

subtypes have been associated with causing the febrile respiratory human disease, 

influenza, which is commonly referred to as the flu (Cox and Subbarao, 2000; 

Taubenberger and Morens, 2010).  

 

Every year, seasonal influenza virus epidemics result in approximately three to five 

million cases of severe illness and in 250,000 to 500,000 deaths worldwide. While 

most of deaths occur among children below the age of two and adults above the age of 

65 due to influenza and pneumonia (WHO Fact sheet N°211, April 2009), higher 

mortality rates can also be observed in patients predisposed to cardiopulmonary and 

other chronic diseases (Cox and Subbarao, 2000). However, pandemic influenza A 

virus strains with novel antigenic subtypes can occasionally emerge resulting in 

global outbreaks affecting up to 50% of the population with a 20-fold elevated risk for 

younger adults (Taubenberger and Kash, 2010). Hitherto, 14 influenza A virus 

pandemics have been reported over the last 500 years with the most recent outbreak in 

2009 (Taubenberger and Kash, 2010; Taubenberger and Morens, 2010). The 2009 

influenza virus pandemic was referred to as the “swine flu” since it was caused by a 

novel H1N1 virus derived from two unrelated swine H1N1 viruses (Garten et al., 

2009). It spread over 214 countries resulting in >622,482 lab-confirmed cases and 

18,449 lab-confirmed deaths (Cheng et al., 2012). The first H1N1 virus pandemic 

known as the “Spanish flu” occurred in 1918 and was the worst influenza virus 

pandemic ever recorded in history which killed over 50 million people worldwide 

(Johnson and Mueller, 2002). Isolation and reconstruction of the virus genome from 

victims’ tissues revealed an avian origin of the causative H1N1 influenza virus strain 

(Taubenberger et al., 2005) and its unique pathogenicity when compared to other 
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human influenza viruses (Tumpey et al., 2005). It is intriguing that direct descendants 

of the 1918 virus are still circulating in human populations and continuously 

contribute to the emergence of new viruses to cause epidemics and pandemics 

(Taubenberger and Kash, 2010). For instance, the 2009 H1N1 swine flu strain was a 

fourth generation descendant of the 1918 virus (Morens et al., 2009) illustrating the 

long-term epidemiologic success of influenza viruses. 

 

Despite recent advances in the understanding of influenza virus outbreaks, prediction 

of future influenza virus pandemics is still a difficult challenge. Not only does it 

require global surveillance of genetic diversity of influenza viruses from their natural 

reservoirs, but also new advances in basic research are needed to obtain a combined 

picture of influenza virus host adaption and pathogenicity. Considering the recent 

surge in drug resistance (Le et al., 2005; Medina and Garcia-Sastre, 2011), advances 

in basic research are additionally instrumental with regard to the development of 

novel antiviral strategies to counteract future influenza virus pandemics. Currently, 

there are four drugs in use which directly target influenza viruses but they only 

constitute two families. Amantadine and Rimantadine belong to the first family of 

drugs inhibiting matrix protein 2 (M2), whereas Zanamivir and Oseltamivir are 

members of the second family of compounds targeting influenza virus NA. This 

limited number of antiviral drugs and targets against influenza virus demonstrates the 

need for broad-spectrum therapeutic approaches targeting viral and host factors in 

different life cycle stages to minimize the development of resistance. Especially, 

identification and understanding of host factors and their complex interaction with 

influenza virus are crucial in the search for host determinants in influenza virus 

pathogenesis.  
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Contribution of host proteins to the influenza virus life cycle have been extensively 

addressed in recent years, yet, the role of host cell metabolites, such as lipids has been 

neglected so far. This is surprising since infectious influenza virions not only consist 

of a host derived lipid bilayer but also depend on host cell lipid metabolism for 

replication, budding and assembly (Hidari et al., 2006; Munger et al., 2008; Nayak et 

al., 2009; Nayak et al., 2004; Rossman et al., 2010; Rossman and Lamb, 2011; 

Takahashi et al., 2008). Despite recent advances in dissecting the lipid inventory of 

purified influenza virus particles (Blom et al., 2001; Gerl et al., 2012; Polozov et al., 

2008; Scheiffele et al., 1999; van Meer and Simons, 1982), there is still a substantial 

lack in our understanding of how influenza virus regulates lipid metabolism to ensure 

biogenesis of functional viral envelopes with a particular lipid composition, and 

whether lipids are mediators of virus pathogenicity. Furthermore, host derived virus 

envelopes are inert biological membranes and represent attractive targets for antiviral 

therapy, minimizing the development of drug resistance (Vigant et al, submitted). 

 

This chapter will first present a brief overview of recent literature about the structure 

and life cycle of influenza A viruses, followed by a second part which will 

specifically discuss the importance of host cell metabolites in the influenza virus life 

cycle. We will highlight emerging roles of cellular lipids within the context of host-

virus interactions and will finally derive novel hypotheses that could have a potential 

share in advancing our current knowledge of lipid involvement during influenza virus 

infections.  
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1.2 The biology of influenza virus 

 

1.2.1 The structure of influenza virus 

 

Influenza viruses are negative-sense single stranded RNA viruses encoding 11 virus 

proteins, eight of which are expressed in infectious, enveloped virions (Rossman and 

Lamb, 2011). They are pleomorphic in structure and appear either as spherical with a 

diameter of 100nm or as filamentous particles, 100nm in diameter but more than 

20µm in length. They are similar with regard to their genome and protein composition 

(Roberts et al., 1998; Rossman and Lamb, 2011), but the functional difference 

between filamentous and spherical influenza virus particles still remains uncertain. 

Nevertheless, it is thought that filamentous particles are mainly produced by in vivo 

infections (Chu et al., 1949; Kilbourne and Murphy, 1960) whereas spherical particles 

are the product of an adaptation to virus growth in eggs (Choppin et al., 1960).  

 

The RNA genome of influenza viruses is divided into eight segments which are 

numbered in order of decreasing length (Figure 1-1A). The eight segments are 

separately packaged into ribonucleoprotein (RNP) particles composed of the RNA 

polymerase complex proteins PB1 (segment 2), PB2 (segment 1) and PA (segment 3), 

and the nucleocapsid protein NP (segment 5) which mediates packing and binding of 

the RNA genome. The matrix protein M1 (segment 7) bridges the RNP core to the 

host derived virus envelope and confers structure to influenza virus particles. 

Influenza virions express the two surface spike glycoproteins HA (segment 4) and NA 

(segment 6) as well as matrix protein M2 (segment 7) on their surface (Figure 1-1A). 
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While HA mediates receptor binding and fusion during the virus entry process into 

host cells, NA is mainly implicated at late stages of the virus life cycle, responsible 

for the release of virus progenies by the enzymatic cleavage of viral receptors on the 

host cell surface. The third integral membrane protein M2 is a multifunctional, proton 

selective ion channel which mediates virus assembly and budding, as well as virus 

entry into host cells (Rossman and Lamb, 2011). The proteins encoded on segment 8 

are non-structural proteins NS1 and NEP/NS2 which are highly expressed in infected 

cells and mediate influenza virus replication, but they do not get incorporated into 

infectious influenza virions. 

 

Besides viral proteins, additional evidence suggests a significant incorporation of (36 

unique) host proteins into infectious influenza virions (Shaw et al., 2008). For 

instance, incorporation of annexin II into influenza virions is thought to mediate the 

proteolytic cleavage of HA through binding and activation of plasminogen into 

plasmin (LeBouder et al., 2008). Yet, the exact function of identified host proteins in 

influenza virus particles is not well understood.  
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1.2.2 The life cycle of influenza virus 

 

1.2.2.1 Virus attachment and entry 

 

The lifecycle of influenza virus is initiated by the binding of influenza virus particles 

to the host cell surface (Figure 1-1B). This is mediated by HA recognizing N-

acetylneuraminic (sialic) acid residues of glycoproteins- and –lipids on the host cell 

surface (Chandrasekaran et al., 2008; Chu and Whittaker, 2004; de Vries et al., 2012; 

Kuiken et al., 2006; Maines et al., 2006; Russell et al., 2006; Shinya et al., 2006; 

Skehel and Wiley, 2000; van Riel et al., 2006). Sialic acids are acidic 

monosaccharides containing nine carbons and are usually attached to terminal 

galactose residues. The second carbon of sialic acid can either bind to carbon 3 or 

carbon 6 of galactose, resulting in ɑ2-3 and ɑ2-6 linkages, respectively. The various 

subtypes of HA have differential specificities towards the two different sialic acid 

linkages and human viruses preferentially bind to ɑ2-6 linkages which are 

predominantly found in the upper respiratory tract (Bouvier and Palese, 2008). On the 

other hand, avian viruses have a greater specificity to ɑ2-3 linkages which are widely 

expressed in the guts and respiratory tracts of bird species. The complex affinity of 

influenza A virus towards (α2-6)- and (α2-3)-linked sialic acids is believed to be a key 

mediator of airborne virus transmission (Bouvier and Palese, 2008; Olofsson et al., 

2005). The ability of hemagglutinin to switch its preference from (α2-3)-linked sialic 

acids to (α2-6)-linked sialic acids is closely associated with the transmission from 

birds to sustained human to human transmissions and with its potential to cause 

widespread pandemic outbreaks (Bouvier and Palese, 2008; Herfst et al., 2012; Imai 
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et al., 2012; Olofsson et al., 2005). Recently, it has been shown that mutations in HA 

of avian H5N1 virus strains were able to confer airborne transmissibility between 

mammals due to adaption from avian ɑ2-3 to the human ɑ2-6 linkages (Herfst et al., 

2012; Imai et al., 2012). In addition, a recent study showed that hemagglutinin 

specificity is not exclusively determined by sialic acid linkage but also by long 

sialylated glycans with characteristic structural topologies (Chandrasekaran et al., 

2008). 

 

Binding of influenza virus HA to host cell surface receptors initiates a signalling 

cascade, leading to endocytosis of the bound virus particle (Figure 1-1B). The exact 

mechanism is still obscure but a recent study showed that influenza virus binding 

results in clustering of plasma membrane lipids to establish “lipid-raft” based 

platforms for receptor tyrosine kinase signalling. This, in turn, mediates de novo 

formation of clathrin coated pits and enhances influenza virus uptake (Eierhoff et al., 

2010; Rossman and Lamb, 2011; Rust et al., 2004). Moreover, influenza virus 

particles are also able to functionally enter host cells via a clathrin and caveolin 

independent entry pathway which has been identified as macropinocytosis (de Vries 

et al., 2011; Lakadamyali et al., 2004; Rust et al., 2004; Sieczkarski and Whittaker, 

2002). The endocytosed influenza virus particle is transported to late endosomes 

where a low pH triggered conformational change of HA (pH ≈5) induces membrane 

fusion (Figure 1-1B). In parallel, the low pH environment also activates the influenza 

virus ion channel M2 leading to the conduction of protons into the viral core. This 

influx of protons causes dissociation of RNPs from M1 proteins and subsequently 

releases the dissociated RNPs into the cytoplasm for transport to the nucleus where 
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virus replication takes place (Bouvier and Palese, 2008; Luo, 2012; Rossman and 

Lamb, 2011).  

 

1.2.2.2 Virus replication 

 

Transport of released RNPs into the nucleus via the nuclear pore complex (NPC) is 

mediated by NP carrying three nuclear localization signals (NLSs) which facilitate 

interaction and recruitment of various host factors (Cros and Palese, 2003). Once in 

the nucleus, viral RNA (vRNA) is transcribed into two positive sense RNA species by 

the vRNA dependent RNA polymerase: one serves as the capped, polyadenylated 

messenger RNA (mRNA) for host cell translation of viral proteins, and the other one 

is a complementary RNA (cRNA) which is used as a template to transcribe more 

copies of the negative-sense genomic vRNA (Figure 1-1B). Newly synthesized 

vRNAs are packaged into RNPs and their export from the nucleus into the cytoplasm 

is regulated by interactions of viral proteins NEP/NS2 und M1 with the nuclear pore 

complex (Bouvier and Palese, 2008; Nagata et al., 2008).  

 

Virus replication within a host cell is a complex interplay of host and viral factors 

which involves hijacking of favourable cellular pathways but, at the same time, 

requires interference and inhibition of antiviral responses. Non-structural protein 1 

(NS1), which is highly expressed in infected cells but not incorporated into infectious 

influenza virions, is considered to be the major viral factor regulating the balance 

between cellular pro- and antiviral activities. It is a multifunctional protein localized 

to the nucleus and cytoplasm consisting of a N-terminal RNA binding domain and a 
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C-terminal “effector” domain which mediates both, binding to host proteins and 

stabilizing the RNA binding domain. NS1 not only antagonizes interferon-ɑ/ß 

mediated antiviral responses but also executes a plethora of other important functions 

to ensure proper virus replication including (1) regulation of vRNA synthesis, (2) 

mRNA splicing and translation, (3) virus particle morphogenesis, (4) suppression of 

apoptosis through activation of PI3K/Akt signalling and (5) contribution to virus 

pathogenesis (Hale et al., 2008).  

 

1.2.2.3 Virus assembly and budding 

 

After efficient viral protein synthesis and genome replication, viral constituents are 

individually transported to the assembly and budding sites at the apical plasma 

membrane. While it is well understood that HA, NA and M2 harness classical cellular 

exocytic transport pathways which are involved in polarized trafficking (Nayak et al., 

2004), it is still unclear how M1 and vRNPs get transported to budding sites. M1 does 

not possess any determinants for polarized trafficking but has the capability to bind 

lipids, vRNPs as well as the tails of HA and NA. Thus, it is proposed that the apical 

transport of M1 involves its binding to the piggy-back of HA and NA (Nayak et al., 

2009). Polarized trafficking of vRNPs to the budding site has been recently shown to 

be dependent on Rab11 positive recycling endosomes (Bruce et al., 2010; Eisfeld et 

al., 2011; Momose et al., 2011).  

 

There is still no exact model of how the transported viral constituents get assembled 

into a virus particle and finally induce virus budding at the plasma membrane. One of 
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the major difficulties to derive a common model for influenza virus morphogenesis is 

found in the differences between virus like particle (VLP) budding and virus budding 

(Rossman and Lamb, 2011). While separate expression of influenza virus proteins 

HA, NA, M2 and membrane targeted M1 all have the capability to induce VLP 

budding, the driving force behind the spatial and temporal orchestration of these 

individual events into a combined functional framework for influenza virus budding is 

more complex. Unlike budding of retroviruses, such as human immunodeficiency 

virus (HIV), budding of influenza virus is not dependent on a functional endosomal 

sorting complex required for transport (ESCRT) (Bruce et al., 2009; Chen et al., 2007; 

Rossman et al., 2010), and involvement of other host proteins is not well understood. 

Rossman and Lamb (Rossman and Lamb, 2011) recently proposed a model whereby 

clustering of HA and NA initiates bud formation, followed by recruitment of M1 via 

binding to the cytoplasmic tails of HA and NA. M1 proteins subsequently serve as 

docking sites for vRNPs. Elongation of the budding virions is induced by 

polymerization of M1 proteins, leading to the polarized localization of vRNPs. M2 is 

later recruited to the periphery of budding sites through its interaction with M1. 

Insertion of the amphipathic helix of M2 at the lipid phase boundary leads to changes 

in membrane curvature and membrane scission of the budding virions. Finally, NA 

mediates the release of surface bound virions by cleaving off sialic acids from the host 

cell surface.  

 

Yet controversial, “lipid rafts” are proposed to be the plasma membrane budding sites 

of influenza virus. The synergistic and lipid-driven packaging of cholesterol, 

sphingolipids and saturated glycerophospholipids into plasma membrane 

microdomains accounts for the unique biophysical characteristics of this liquid-
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ordered (lo) state (Chan et al., 2010; Hanzal-Bayer and Hancock, 2007; Simons and 

Vaz, 2004). Evidence supporting involvement of “lipid rafts” in the influenza virus 

life cycle is mainly based on the intrinsic association of HA and NA with “lipid rafts” 

and/or on the effect of cholesterol depletion on virus production (Barman and Nayak, 

2000; Chen et al., 2005; Leser and Lamb, 2005; Takeda et al., 2003). However, 

interpretation of such results might be exacerbated by two main problems: firstly, 

choosing an appropriate “lipid raft” marker is crucial and controversial (Briggs et al., 

2003). Definition and extraction of “lipid rafts” is based on the conception that pre-

existing lo-domains form insoluble detergent resistant membranes (DRM) when 

treated with low concentrations of a non-ionic detergent such as Triton X-100. 

Neither presence nor absence of proteins in DRM is sufficient to find “lipid raft” 

markers since it is clear that detergent treatment can alter lipid raft composition and 

can even induce phase separation (Hanzal-Bayer and Hancock, 2007). Secondly, 

cholesterol depletion from the plasma membrane by cyclodextrins is commonly used 

to disrupt “lipid rafts” and to proof “lipid raft” mediated processes. This is definitely 

insufficient because a recent study showed that cyclodextrin treatment has additional, 

cholesterol-independent effects on membrane protein mobility (Shvartsman et al., 

2006). For example, HA contains three palmitoylated cysteine residues in the 

transmembrane domain which are responsible for its targeting to “lipid raft” domains 

(Chen et al., 2005; Scheiffele et al., 1997; Takeda et al., 2003). On the contrary, it is 

intriguing that HA dynamics at the plasma membrane do not follow “lipid raft” 

fluctuations (Hess et al., 2007; Nikolaus et al., 2010) and that HA does not co-localize 

with another “lipid raft” associated virus protein, HIV Gag (Khurana et al., 2007). 

Furthermore, influenza virus M2 proteins are excluded from such “raft” domains 

despite their requirement for influenza virus budding (Rossman and Lamb, 2011). M2 
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mediated changes in membrane curvature and membrane scission were closely 

associated with cholesterol levels whereby a high cholesterol concentration was 

inhibitory due to higher membrane rigidity (Rossman et al., 2010). In line with this, 

cholesterol depletion from the plasma membrane increased influenza virus but 

decreased budding of another “lipid raft” budding virus, HIV (Barman and Nayak, 

2007; Ono and Freed, 2001; Pickl et al., 2001). Similarly, the Ebola virus 

glycoprotein (GP) , also a “lipid raft” associated protein, and HIV envelope protein 

(Env) did not co-localize with each other on the plasma membrane and HIV Gag 

pseudotyped VLPs exclusively carried either only GP or Env despite their expression 

in the same producer cell (Leung et al., 2008). These findings together suggest 

heterogeneous lipid and protein compositions of plasma membrane microdomains, 

and such heterogeneities were recently demonstrated in living cells (Itano et al., 2011; 

Neumann et al., 2010).  

 

Induction of plasma membrane microdomains most probably is a general feature of 

enveloped virus budding and categorization of enveloped viruses into “lipid raft”-

dependent or -independent is too simplified. Enveloped viruses, including vesicular 

stomatitis virus (VSV) and Semliki forest virus (SFV) which are “lipid raft” 

independent, generally show high levels of cholesterol (Blom et al., 2001; Brugger et 

al., 2006; Chan et al., 2008; Gerl et al., 2012; Kalvodova et al., 2009; Polozov et al., 

2008; Scheiffele et al., 1999; van Meer and Simons, 1982). The high content of 

cholesterol possibly reflects its importance for structural integrity and organization of 

membranes as discussed below. Furthermore, several virus envelope proteins have 

been found to localize to or to induce “lipid raft” domains including the envelope 

protein of VSV (VSV-G) (Barman and Nayak, 2000; Chen et al., 2005; Harder et al., 
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1998; Leser and Lamb, 2005; Luan and Glaser, 1994; Rousso et al., 2000; Takeda et 

al., 2003). Considering such compelling evidence, it is more likely to envision that 

arrival of virus surface proteins at the plasma membrane induces protein-lipid 

interactions generating unique plasma membrane domains required for virus budding 

(Nikolaus et al., 2010), rather than virus proteins are transported to pre-existing 

plasma membrane microdomains such as “lipid rafts”. This would also explain 

observed differences in the lipid and protein composition of virus particles and would 

be in line with the recent discovery of specific lipid binding domains in 

transmembrane proteins (Contreras et al., 2012). 

 

Comparing the proposed model for influenza virus budding (Rossman and Lamb, 

2011) to a recent study showing that surface glycoproteins are actively recruited to 

virus assembly sites during pseudotyping of retrovirus particles (Jorgenson et al., 

2009), there are two possible scenarios determining the unique protein and lipid 

compositions of enveloped viruses (Lorizate and Krausslich, 2011): The first 

mechanism is a matrix protein driven mechanism (pushing force) implicated in the 

budding of retroviruses. Surface glycoproteins transported to the plasma membrane 

induce aggregation of lo-like lipids and proteins in their proximity. Only concomitant 

expression of the matrix protein, Gag, leads to clustering of surface glycoproteins and 

induction of assembly sites for retrovirus particles. The second mechanism, observed 

during budding of influenza viruses, is a surface glycoprotein driven process (pulling 

force). The surface glycoproteins HA and NA are already expressed as clusters on the 

plasma membrane and are able to initiate bud formation on their own. As a result, the 

lipid composition of influenza virus particles is mainly mediated by HA and NA and 

slightly modified by the activity of M2 to induce membrane scission and bud closure. 
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Interestingly, influenza viruses carrying mutations in the cytoplasmic tails of HA and 

NA have been shown to exhibit distinct lipid compositions when compared to wild 

type viruses (Zhang et al., 2000).   

 

1.2.3 The role of lipids in the influenza virus life cylce 

 

The above described involvement of plasma membrane microdomains in influenza 

virus morphogenesis and their subsequent incorporation into virus envelopes 

highlights the importance of lipids in the influenza virus life cycle. In this respect, 

lipids are an important bridge of virus exit to virus entry, since induction of lipid and 

protein clusters at the plasma membrane are not solely important for virus budding 

but, in turn, the acquired lipid inventory is also essential for structural integrity, entry 

and fusion of infectious influenza virions. This suggests that enveloped viruses 

acquire their lipid inventory in an organized fashion to support subsequent steps in the 

virus life cycle. Hepatitis C virus (HCV) is a prominent virus example linking virus 

exit and entry for life cycle progression. HCV buds at lipid droplet associated ER 

membranes (Miyanari et al., 2007) and it has been shown that infectious HCV 

particles commonly associate with apolipoproteins and only Very Low Density 

Lipoprotein (VLDL)-HCV particles are successfully released from infected cells 

(Gastaminza et al., 2008; Gastaminza et al., 2006; Merz et al., 2011). In this way, 

HCV actually mimics the molecular identity of lipoproteins to hijack lipoprotein 

transport mechanism for entry into host cells (Agnello et al., 1999; Andre et al., 2002; 

Molina et al., 2007).  
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1.2.3.1 Structure of lipids  

 

Lipids have been once neglected as structural and storage entities, and only recently, 

with the advance in technology, our understanding of functional roles of lipids is 

emerging (Guan et al., 2009; van Meer et al., 2008; Wenk, 2005). Lipids are 

structurally and chemically diverse molecules which either act as aggregates in 

subcellular membranes (e.g. plasma membrane microdomains and lipid droplets) but 

also as single entities (e.g. inflammatory mediators such as platelet activating factor 

and eicosanoids) (Figure 1-2A). The various combinations of fatty acids with 

functional head groups give rise to an estimated 10,000 to 100,000 different lipid 

species (Wenk, 2010). Mammalian lipids can be further classified into the five major 

classes known as fatty acyls, glycerolipids, glycerophospholipids, sterol lipids and 

sphingolipids (Figure 1-2A). Biological membranes predominantly consist of 

glycerophospholipids, sterol lipids (cholesterol) and sphingolipids and their 

distribution in cellular membranes is highly organized (Figure 1-2A) (van Meer et al., 

2008). This compartmentalization is essential for proper functionality of biological 

systems and represents an attractive target for pathogens which is underlined by 

increasing evidence of lipid involvement in host-pathogen interactions (Wenk, 2006).  

 

Glycerophospholipids usually consist of a glycerol backbone made of two fatty acyl 

moieties and a functional head group giving rise to phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), 

phosphatidic acid (PA) and phosphatidylglycerol (PG) (Figure 1-2A). In some cases, 

the fatty acid moieties in the glycerol backbone can also be attached by an ether 
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linkage rather than the usual ester linkage (Figure 1-2B). This gives rise to ether lipids 

which are mainly represented by two classes: The plasmanyl species and the 

plasmenyl (known as plasmalogens) species which have one of their fatty acids 

(usually at the sn-1 position) attached by an ether- or by a vinyl ether linkage 

respectively (Figure 1-2B). While the majority of ether lipids exist as PC and PE 

lipids, ether linkages in other glycerophospholipid classes have also been reported 

(Ivanova et al., 2010). With respect to this study, we will refer to ether PC (ePC) and 

PE (ePE) lipids as the combination of plasmanyl and plasmenyl structures.  

 

Sphingolipids usually consist of a ceramide backbone attached to highly diverse sugar 

head groups. For example, gangliosides are characterised by sialylated sugar head 

groups (Figure 1-2A). The head group can also be represented by choline giving rise 

to sphingomyelin (SM). The ceramide backbone can either exist as dihydroceramide 

whereby a sphinganine (saturated sphingoid base) is attached to a fatty acid or as 

ceramide consisting of a sphingosine (unsaturated sphingoid base) attached to a fatty 

acid (Figure 1-2C). Recent evidence suggests a vast diversity of ceramide backbones 

based on the variations and modifications of sphingoid bases attached to distinct fatty 

acids (Merrill, 2011). With respect to this study, we will mainly focus on 

(dihydro)ceramide, glucosyl/galactosyl ceramide (GlcCer), ganglioside GM3 and SM 

species. 
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1.2.3.2 Role of lipids for influenza virus particle structure 

 

Influenza virions are generally enriched in cholesterol, PS, PE, SM, GlcCer and 

ceramide species (Blom et al., 2001; Gerl et al., 2012; Polozov et al., 2008; Scheiffele 

et al., 1999; van Meer and Simons, 1982) (Figure 1-3). The high enrichment of 

cholesterol is a general feature of enveloped viruses required for membrane fluidity 

and structural integrity, and depletion of cholesterol from influenza virus envelopes 

decreased infectivity (Barman and Nayak, 2007; Chan et al., 2008; Takeda et al., 

2003). Influenza virus envelope lipids are usually found in a disordered state at 

physiological temperatures but at very low temperatures, they are able to form solid-

phase and gel-phase states which confer higher stability to virus particles (Polozov et 

al., 2008). This temperature dependent phase transition can be explained by the 

interaction and competition of cholesterol with ceramide in biological membranes 

(Goni and Alonso, 2009; Megha and London, 2004; Yu et al., 2005). Ceramide 

enriched gel domains are usually solubilized in biological membranes with high 

cholesterol content at physiological temperatures, but they reorganize into gel 

domains at lower temperatures (Castro et al., 2009). Hence, the relatively higher 

enrichment of ceramide species found in influenza virus particles as compared to 

other enveloped viruses (Chan et al., 2008; Gerl et al., 2012; Kalvodova et al., 2009) 

could mediate the increased stability and transmission of influenza viruses at lower 

temperature (Lowen et al., 2007; Polozov et al., 2008). This supports the notion that 

the acquired lipid inventory is specifically tailored for the virus life cycle.  
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Enrichment of PS species in influenza virus envelopes supports the reported 

involvement of annexin A5 as a secondary receptor during influenza virus entry 

(Chan et al., 2010; Huang et al., 1996) and reflects the incorporation of annexins into 

purified influenza virus particles (Shaw et al., 2008). Annexins are PS binding 

proteins which have been previously implicated in the entry of several enveloped 

viruses including influenza viruses by specifically mediating membrane fusion (Chan 

et al., 2010; Huang et al., 1996). Furthermore, the finding of macropinocytosis as an 

alternative entry pathway for influenza virus particles (de Vries et al., 2011) 

represents another possible role for PS during influenza virus entry. Vaccinia virus 

expresses PS on the outer layer of its envelope to mimic apoptotic material which 

commonly gets internalized by many cells using PS mediated macropinocytosis 

(Henson et al., 2001; Mercer and Helenius, 2008). Considering induction of apoptosis 

in influenza virus infected cells at later stages of infection (Gannage et al., 2009; 

Zhirnov and Klenk, 2007) and the associated externalization of PS from the 

cytoplasmic to the outer leaflet of the plasma membrane (Lee et al., 2012; Martin et 

al., 1995; Shiratsuchi et al., 2000), one could assume that PS species are possibly 

exposed on the surface of influenza virus particles. In line with this, it has been 

estimated that equal proportions of PS are found in the inner and outer surface of 

purified influenza virus membranes (Rothman et al., 1976). 

 

The discussed lipid composition of influenza virus particles represents an extracellular 

stage but it is still an open question whether functionally relevant modifications occur 

during the virus entry process. Late endosomes harbour a variety of lipid degrading 

enzymes which have the potential to act on influenza virus envelopes. For example, 

acid sphingomyelinase has a pH optimum of around 5.5 (similarly to the pH required 
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for HA mediated fusion) and is highly active in late endosomes (Kolter and Sandhoff, 

2010). It has been shown that phago-lysosomal fusion is dependent on ceramide 

generation by the activity of acid sphingomyelinase (Utermohlen et al., 2008; 

Utermohlen et al., 2003). In this respect, it would be interesting to see whether a 

similar mechanism is harnessed during influenza virus fusion in late endosomes. 

Ceramide, a conical lipid, induces negative curvature and facilitates formation of a 

fusion stalk which is discussed in further detail below (Chan et al., 2010; 

Chernomordik and Kozlov, 2003, 2008). 

 

1.2.3.3 Role of lipids during influenza virus entry 

 

Besides the importance of lipids incorporated into influenza virus envelopes, the 

functional role of host cell lipids is equally crucial during virus entry into host cells. 

Similar to sialylated glycoproteins, complex sialylated glycosphingolipids (GSL) 

expressed on the host cell plasma membrane can serve as functional receptors for 

influenza virus HA and mediate virus entry (Ablan et al., 2001; Chu and Whittaker, 

2004; Gambaryan et al., 2004; Hidari et al., 2007; Kogure et al., 2006; Matrosovich et 

al., 2006b). The predominating occurrence of O-linked glycosylation in GSL but N-

linked glycosylation in glycoproteins exposes some interesting differences with 

regard to their functionality. While macropinocytic entry of influenza virus was 

impaired into cells depleted of N-linked glycans, the classical endocytic pathway was 

not affected (de Vries et al., 2012). Conversely, influenza virus entry in the absence of 

N-linked glycans was more sensitive to NA inhibitors. These findings together 

suggest a specific involvement of NA in a GSL mediated endocytic route. One 
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possible explanation for a requirement of NA in a GSL mediated entry pathway 

comes from a recent literature mining study performed by us, revealing importance of 

internally sialylated GSL species in entry and trafficking of viruses fusing at late 

endosomes (Ravindran, Tanner & Wenk, submitted). Several in vitro studies showed 

that influenza virus preferentially binds to complex internally sialylated GSL species 

(Matrosovich et al., 2006b). However, specific binding of HA to internally sialylated 

GSL species in biological membranes is likely to be exacerbated, due to steric 

hindrance caused by the tight packaging of GSL in membranes (Hakomori, 2003). 

Therefore, cleavage of externally attached sialic acids from GSL by NA is required to 

facilitate binding of influenza virus HA to internally attached sialic acids of GSL and 

to mediate the successful entry of influenza viruses into host cells. Considering the 

high abundance of O-linked glycosylation in mucus and epithelial surfaces of airways 

(Fahy and Dickey, 2010), such an entry pathway might be relevant in vivo as reflected 

by the importance of NA to initiate influenza virus infection in human airway 

epithelium (Matrosovich et al., 2004). In contrary, a GSL mediated entry pathway is 

masked in laboratory conditions, due to the dominant role of N-linked glycosylated 

growth factor receptors promoting influenza virus entry in vitro (de Vries et al., 2011; 

Eierhoff et al., 2010). The rather supportive role of O-linked glycans during influenza 

virus entry in vitro is further backed by the insensitivity to NA inhibitors in the 

presence of N-linked glycans (de Vries et al., 2012) and by a three to four fold 

reduction of influenza virus infection into host cells lacking GSL (Matrosovich et al., 

2006b).  

 

Lipids are also mediators of subsequent influenza virus membrane fusion which has 

been extensively studied and reviewed (Chan et al., 2010; Chernomordik and Kozlov, 
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2003, 2008; Hamilton et al., 2012). Membrane lipid composition greatly influences 

fusion efficiency which is mainly due to spontaneous curvature of lipids, influenced 

by their individual geometries (Chan et al., 2010; Chernomordik and Kozlov, 2003, 

2008). PA, cholesterol, ceramide, diacylglycerol (DAG) and PE are conical lipids 

having relatively small head groups in relation to their fatty acyl tails and promote 

negative spontaneous curvature. On the other hand, inverted-conical lipids having 

proportionally large head groups such as lysolipids induce positive spontaneous 

curvature (Chan et al., 2010; Chernomordik and Kozlov, 2003, 2008). Insertion of HA 

into the target membrane leads to positive curvature bringing the two membranes 

together (Fuhrmans and Marrink, 2012). Upon contact of the two membranes, 

formation of a fusion stalk is induced which is facilitated by conical lipids exhibiting 

negative spontaneous curvature. In line with that, influenza virus membrane fusion 

was inhibited by the inverted-conical lipid lysophasphatidylcholine (LPC) but 

promoted by conical lipids such as oleic acid and PE (Alford et al., 1994; Baljinnyam 

et al., 2002; Chernomordik et al., 1998; Chernomordik et al., 1997). In contrary, the 

subsequent opening of the fusion pore is mediated by inverted-conical shaped lipids 

due to their spontaneous positive curvature (Chernomordik and Kozlov, 2003). 

Finally, expansion of the fusion pore occurs and the viral genome is released into the 

host cell cytoplasm. It has been shown, that this final step is mediated by cholesterol 

but inhibited by sphingolipids (Biswas et al., 2008; Nussbaum et al., 1992; Razinkov 

and Cohen, 2000). 
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1.2.3.4 Role of lipids during intracellular stages of influenza virus replication 

 

Loss of membrane mass by virus budding has to be compensated by biogenesis of 

new membranes. Therefore, enveloped viruses need to interfere with host cell 

metabolism redirecting metabolic intermediates into lipid biosynthesis (Chan et al., 

2010). Several enveloped viruses have been shown to upregulate flux through the 

central carbon metabolism, including glycolysis, and its efflux to fatty acid and lipid 

biosynthesis (Liu et al., 2011; Munger et al., 2008; Perera et al., 2012; Roe et al., 

2011). Only a few studies addressed the impact of influenza virus on host cell 

metabolism. A very early study reported increased glucose breakdown in influenza 

virus infected chick embryo cells (Klemperer, 1961) which is now backed with more 

recent evidence clearly associating influenza virus with host cell glycolysis: (1) 

purified influenza virus particles were highly enriched in glycolytic  enzymes (Shaw 

et al., 2008), (2) expression of glycolytic enzymes was upregulated in influenza virus 

infected cells (Brown et al., 2010; Coombs et al., 2010; Dove et al., 2012; Kroeker et 

al., 2012) and their knockdown impaired influenza virus infection (Brass et al., 2009; 

Karlas et al., 2010; Shapira et al., 2009), and (3) influenza virus infected cells showed 

an increased glycolytic flux which was correlated with virus replication efficiency 

(Ritter et al., 2010). Especially, an upregulation of initial steps of glycolysis was 

observed, similar to the phenomenon of aerobic glycolysis called Warburg effect in 

cancer cells. Cancer cells primarily rely on the Warburg effect to convert nutrients 

into the biosynthesis of nucleotides, amino acids and lipids to support the biomass 

requirement for proliferative growth (Vander Heiden et al., 2009). For example, 

production of serine via redirection of glycolytic flux by phosphoglycerate 



1. Introduction 

 

28 

dehydrogenase has been shown to contribute to oncogenesis (Locasale et al., 2011). 

This could possibly reflect the high levels of glycosphingolipids and bioactive 

sphingolipids in cancer cells (Furukawa et al., 2012; Hakomori, 2000; Oskouian and 

Saba, 2010) since serine is a direct precursor for sphingolipid biosynthesis.  

 

A recent metabolomics study identified differential regulation of fatty acid and 

cholesterol metabolites in influenza virus infected cells (Lin et al., 2010) which was 

supported by increased activities of enzymes catalysing intermediate steps of lipid 

biosynthesis (Janke et al., 2011). Increased expression of malonyl coenzyme A 

decarboxylase (MLYCD) but decreased expression of fatty acid desaturase 2 

(FADS2) and FADS3 have been consistently observed in influenza virus infected 

cells (Coombs et al., 2010; Dove et al., 2012; Kroeker et al., 2012), together 

indicating an important role of de novo fatty acid biosynthesis. Furthermore, 

inhibition of fatty acid biosynthesis using pharmacological inhibitors or siRNA 

constructs greatly impaired influenza virus replication (Munger et al., 2008; Shapira 

et al., 2009; Sui et al., 2009). Interestingly, chronic influenza virus infections and 

more severe influenza virus pathologies such as encephalopathy have been linked to 

accumulation of very long chain fatty acids due to defects in ß-oxidation (Diaconita et 

al., 1985; Yao et al., 2007). Since ß-oxidation of very long chain fatty acids occurs in 

the peroxisome, the reported interaction of influenza virus NS1 with hydroxysteroid 

(17-beta) dehydrogenase 4 (HSD17B4) is of great interest (Lazarow, 2011; Wolff et 

al., 1996). HSD17B4 is an essential part of the peroxisomal ß-oxidation system and its 

overexpression reduced influenza virus protein expression and replication (Lazarow, 

2011; Wolff et al., 1996). Such an inhibitory mechanism of influenza virus on 

peroxisomal ß-oxidation is also supported by the antiviral activity of acyl-CoA 



1. Introduction 

 

29 

oxidase 1 (ACOX1) (Shapira et al., 2009) and by the downregulation of carnitine-O-

octanoyltransferase (CROT) in influenza virus infected cells (Kroeker et al., 2012). 

Both are crucial enzymes in the peroxisomal ß-oxidation cascade. Altogether this 

could explain the findings of reduced fatty acid ß oxidation in mice infected with 

influenza virus (Murphy et al., 1996; Trauner et al., 1988).  

 

Interference with lipid metabolism has been proven to be a potent antiviral strategy, 

especially inhibition of cholesterol biosynthesis using statins which significantly 

reduced influenza related mortality (Vandermeer et al., 2012). Downregulation of 

cholesterol metabolism in immune cells upon virus infections has been identified to 

be part of the host antiviral response (Blanc et al., 2011). This is in line with the 

influenza virus induced expression of viperin inactivating farnesyl diphosphate 

synthase (FDPS) which is an essential enzyme for isoprenoid biosynthesis (Tan et al., 

2012a; Wang et al., 2007). Its general downregulation upon influenza virus infections 

has been repeatedly observed (Billharz et al., 2009; Coombs et al., 2010; Dove et al., 

2012; Kroeker et al., 2012). Cholesterol and fatty acid metabolism have been 

generally proposed to be essential for late stages in the virus life cycle, especially for 

the organization of virus assembly sites and generation of viral lipid envelopes (Janke 

et al., 2011; Munger et al., 2008; Tan et al., 2012a; Wang et al., 2007). 

 

Involvement and regulation of glycerophospholipids and sphingolipids in influenza 

virus infection, on the other hand, have been addressed only to a lesser extent. Early 

studies suggested an increased incorporation of glucose breakdown products into 

neutral lipids with a concomitant inhibition of glycerophospholipid biosynthesis in 

influenza virus infected cells (Caric-Lazar et al., 1978; Frischholz and Scholtissek, 
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1984). Especially, the accumulation of the phospholipid precursor, phosphorylcholine, 

has been linked to a decrease in glycerophospholipid metabolism in influenza virus 

infected cells (Caric-Lazar et al., 1978). This is reflected by the virulence dependent 

downregulation of genes and proteins involved in glycerophospholipid metabolism 

during the course of an infection (Billharz et al., 2009; Dove et al., 2012; Josset et al., 

2012; Kroeker et al., 2012; Ma et al., 2011b). One study especially revealed influenza 

virus NS1 as the major factor blocking expression of genes involved in host interferon 

and lipid metabolism pathways including expression of sterol-response element-

binding protein 1 (SREBP1) (Billharz et al., 2009), a major regulator of 

phosphatidylcholine biosynthesis (Walker et al., 2011). SREBP1 has been shown to 

regulate the one-carbon cycle producing the methyl donor S-adenosylmethionine 

(SAMe) required for the de novo methylation pathway of PC biosynthesis (Walker et 

al., 2011). In contrast, there is clear proof of sphingolipids as positive mediators of 

influenza virus replication. It has been shown that pharmacological inhibition of 

ceramide synthase and glucosyl ceramide transferase impaired late stages of influenza 

virus replication (Hidari et al., 2006), while upregulation of sulfatide increased 

influenza virus replication through efficient translocation of NPs from the nucleus 

into the cytoplasm (Takahashi et al., 2008). In line with this, accumulation of 

sphingosine-1-phopshate (S1P), an important mediator of sphingolipid metabolism, 

stimulated influenza virus replication, whereas overexpression of S1P lyase (SPL), 

which irreversibly degrades S1P, led to the inhibition of influenza virus replication 

(Seo et al., 2010).   
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1.3 Aims of the thesis 

 

The above described findings suggest an increase of glycolytic flux in influenza virus 

infected cells and a redirection of its intermediates into sphingolipid and fatty acid 

biosynthesis with a concomitant inhibition of glycerophospholipid metabolism. One 

explanation of this shift in metabolism is the requirement of new sphingolipid mass 

for membrane biogenesis during influenza virion morphogenesis since influenza virus 

envelopes are enriched in sphingolipids (Blom et al., 2001; Gerl et al., 2012). 

Importance of lipids and lipid metabolism is additionally illustrated by the increasing 

number of lipid metabolic enzymes that mediate influenza virus replication. For 

instance, the five recent siRNA screens together identified 110 lipid metabolic 

enzymes as mediators of influenza virus replication (Brass et al., 2009; Hao et al., 

2008; Karlas et al., 2010; Konig et al., 2010; Shapira et al., 2009; Sui et al., 2009; 

Watanabe et al., 2010). This represented only 8% of the total hits and demonstrates 

the redundancy and post transcriptional regulation of metabolic pathways which 

exacerbate their identification on the basis of genes and proteins. For example, it has 

been shown, that lysine acetylation of metabolic enzymes plays a major role in 

metabolic regulation in response to nutrient availability and cellular metabolic state 

(Zhao et al., 2010). Therefore, more detailed studies are indispensable which directly 

address and measure the levels of lipid metabolites during influenza virus infection. 

For this purpose, we decided to harness a systems-scale lipidomics approach to 

investigate the role of lipids in the influenza virus lifecycle.  
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More specifically, we pursued the following aims: 

 

1. Establishing a detailed temporal lipid profile of influenza virus infection in a 

human lung epithelial cell line (Chapter 2). 

 

2. Linking lipid changes in virus infected host cells to influenza virus 

morphogenesis by analysing the lipid composition of purified influenza virus 

particles produced from human lung epithelial cells (Chapter 3). 

 

3. Identifying severity related lipids by analysing the lipid composition of virus 

mutants exhibiting differences in pathogenicity and replication dynamics 

(Chapter 3). 

 

4. Determining the functional importance of identified lipid species for influenza 

virus replication using a combination of genetic and pharmacological 

approaches to interfere with lipid metabolic pathways (Chapter 4). 

 



 

 

2 Lipidomics of Virus Infected Cells
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2.1 Introduction and rationale 

 

Influenza viruses hijack host cell machineries and impact host cell metabolism to 

tailor cellular pathways and resources to their needs for efficient replication, assembly 

and budding. In recent years, systems-scale studies investigating the function of genes 

(Billharz et al., 2009; Brass et al., 2009; Geiss et al., 2002; Hao et al., 2008; Karlas et 

al., 2010; Konig et al., 2010; Shapira et al., 2009; Watanabe et al., 2010) and proteins 

(Coombs et al., 2010; Dove et al., 2012; Kroeker et al., 2012; Lietzen et al., 2011) 

during influenza virus infections have been extensively addressed, but there is still a 

significant lack in our understanding of how these complex networks interact with 

each other and function together as a system (Watanabe et al., 2010). Especially, 

understanding the regulation of host cell metabolism, not only in virus infected cells 

but also, for example, in cancer cells, is still in its fledgling stages. Only recently and 

as a consequence of the advance in technology, studies started to address the 

functional role of metabolites in various cellular contexts (Jain et al., 2012; Liu et al., 

2011; Locasale et al., 2011; Munger et al., 2008; Vander Heiden et al., 2010; Vastag 

et al., 2011; Yuan et al., 2008).  

 

Several studies investigated regulation of glycolysis and redirection of its 

intermediates into the biosynthesis of macromolecules such as nucleic acids and 

amino acids in virus infected cells (Liu et al., 2011; Munger et al., 2008; Ritter et al., 

2010; Roe et al., 2011; Vastag et al., 2011). Yet, there exist only a limited number of 

more detailed studies addressing the regulation and role of lipids in virus infected 

cells. While there are systems-scale level analyses of lipid metabolism in dengue virus 
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(Perera et al., 2012), HCV (Roe et al., 2011) and human cytomegalovirus infected 

cells (Liu et al., 2011), there is still no detailed analysis of lipid metabolism during 

influenza virus infection despite its requirement for replication and morphogenesis of 

virus progenies (Munger et al., 2008). The envelope of influenza virus particles is a 

host-derived lipid bilayer from plasma membrane budding sites. Regardless of its well 

resolved lipid and protein composition (Blom et al., 2001; Gerl et al., 2012; Polozov 

et al., 2008; Scheiffele et al., 1999; Shaw et al., 2008; van Meer and Simons, 1982), 

yet, our knowledge of its biogenesis is not sufficient. Since biogenesis of cellular and 

viral membranes is directly linked to lipid metabolism, we were interested in 

harnessing a comprehensive lipidomics approach using mass spectrometry to identify 

differential regulated host lipids important for influenza virus replication.  

 

In this chapter, we will discuss our findings of differentially regulated lipid species in 

influenza virus infected cells. We will first introduce several host sphingo- and 

glycerophospholipids which were altered in human lung epithelial cells during virus 

infection. Specifically, accumulation of saturated SM, odd chain aPC and ePC species 

with the concomitant decrease in even chain aPC species will be separately discussed 

within the context of existing literature. Subsequently, data supporting the role of 

decreased peroxisomal but increased glycolytic activity in virus infected cells will be 

introduced. The chapter will conclude with a general discussion combining our 

observations into a common model describing lipid metabolism in influenza virus 

infected cells.   
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2.2 Materials and methods 

 

2.2.1 Cells, viruses and reagents 

 

Human alveolar adenocarcinoma (A549) cells (CCL-185) and Madin Darby canine 

kidney (MDCK) cell lines (CCL-34) were originally obtained from ATCC; egg grown 

influenza virus A/PR/8/34 H1N1 was kindly provided by Mike Kemeney (Department 

of Microbiology, National University of Singapore); Ham’s F12 GlutaMAX™, 

Dulbecco's Modified Eagle Medium (DMEM) GlutaMAX™, Fetal bovine serum 

(FBS), 100x streptomycin and penicillin (P/S) were obtained from Gibco®, Life 

Technologies Co. (San Diego, California, USA); Avicel Microcrystalline Cellulose 

was kindly provided by FMC Biopolymer (Philadelphia, USA); TPCK Trypsin, 

HPLC and analytical grade chloroform and methanol, ammonium hydroxide, 4% 

formaldehyde and crystal violet were all purchased from Sigma-Aldrich (St. Louis, 

USA); Lipid standards were purchased from Avanti Polar Lipids, Inc. (Alabama, 

USA) unless otherwise stated; Anti-influenza virus M2 (sc-32238) and anti-α-tubulin 

antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA); 

Anti pyruvate kinase M2 (PKM2), anti-phospho PKM2 (Tyr-105) and anti-actin 

antibodies were obtained from Cell Signaling Technologies Inc. (Massachusetts, 

USA); Secondary antibodies goat anti-mouse and goat anti-rabbit IgG (H+L)-HRP 

conjugate were purchased from Biorad (California, USA). 
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2.2.2 H1N1 virus growth in A549 cells 

 

A549 cells were grown in F12 GlutaMAX™ (10% FBS, 50u/ml penicillin & 50µg/ml 

streptomycin) in 12-well plates to confluency (80 to 100%) and infected with purified 

influenza virus at a multiplicity of infection of 5 (MOI 5). Influenza virus A/PR/8/34 

H1N1 virus was purified over a sucrose gradient as discussed in chapter 3 (Shaw et 

al., 2008) and used to determine virus growth in a time dependent manner. 500µl of 

virus inoculum (serum free F12 GlutaMAX™ supplemented with 50u penicillin, 

50µg streptomycin & 1µg/ml TPCK trypsin) was incubated for 1 hour (5% CO2, 

37oC) before incubation in fresh serum free F12 GlutaMAX™ (50u penicillin & 50µg 

streptomycin) medium at 5% CO2, 37oC. Subsequently, virus supernatants and cell 

lysates were collected at 1, 3, 6, 12, 18, 24 and 30 hours post infection (hpi) to 

determine virus release and protein expression by plaque assay and western blot 

respectively. Duplicates were sampled for each time point and plaque assay was 

performed in duplicates for each replicate (n=4 per condition). 

 

2.2.2.1 Plaque assay to determine influenza virus release 

 

Plaque assay was done as previously described (Matrosovich et al., 2006a). Briefly, 

2x105 MDCK cells were seeded into 24-well plates one day prior to infection and 

incubated in DMEM GlutaMAX™-I (10%FBS, 50u/ml penicillin & 50µg/ml 

streptomycin) at 5% CO2, 37oC. Cells were washed twice with serum free DMEM 

GlutaMAX™ (50u/ml penicillin & 50ug/ml streptomycin) and infected with 10-fold 

dilutions of virus supernatants in 200µl of serum free DMEM GlutaMAX™ 
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supplemented with 1µg/ml TPCK trypsin. Virus inoculum was removed after 1 hour, 

exchanged with 2.4% Avicel in 2xDMEM (50u penicillin, 50µg streptomycin & 

1ug/ml TPCK Trypsin) and incubated for another 60 to 70 hours at 5% CO2, 37oC. 

Subsequently, Avicel containing media was aspirated and cells were fixed with 4% 

formaldehyde for 20 minutes. Then, fixed cells were washed twice with 1x phosphate 

buffered saline (PBS) and stained for ten minutes with 1% crystal violet dissolved in 

20% methanol and water. 

 

2.2.2.2 Detection of virus and host protein expression by western blot 

 

Cell lysates were washed twice with ice-cold 1xPBS prior to collection by a modified 

radio immunoprecipitation assay (RIPA) buffer with protease inhibitors (Roche 

Diagnostics, Rotkreuz, Switzerland). Cells were scraped, transferred to a fresh 

centrifuge tube (Axygen Inc, California, USA) and were mixed in a bench top 

ThermoStat (Eppendorf, Hamburg, Germany) for 20min at 4oC. Then, samples were 

pelleted in a pre-chilled (4oC) bench top centrifuge (Eppendorf, Hamburg, Germany) 

for 20min at maximum speed (25,000xg). The supernatant was transferred to a fresh 

centrifuge tube and protein concentration was determined in duplicates using a 

modified Lowry’s assay (Biorad, California, USA) according to the manufacturer’s 

protocol. Briefly, 25µl of a mixture (20µl of surfactant solution (Reagent S) in 1ml of 

alkaline copper tartrate (reagent A)) was added to 5µl of each sample in a 96-well 

plate, followed by addition of 200µl of a diluted folin solution (reagent B). 0 mg/ml, 

0.2 mg/ml, 0.4 mg/ml, 0.6 mg/ml, 0.8 mg/ml, 1.0 mg/ml, 1.2 mg/ml, 1.4 mg/ml, 1.6 

mg/ml, 1.8 mg/ml and 2.0 mg/ml bovine serum albumin (BSA) dilutions in RIPA 
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buffer were used to draw a standard curve. The plate was kept in the dark for 10 

minutes before reading the intensity at an absorbance of 750nm using a 

SpectraMax190 micro titre plate reader (Molecular Devices LLC, California, USA).  

 

For each sample, 10µg of protein was run on a 10% SDS-polyacrylamide gel, first at 

80V (for stacking), then at 120V (for resolving). Separated proteins were transferred 

onto a nitrocellulose membrane using a semi-dry transfer blotter (Biorad, California, 

USA) (100mA for 1 hour). The membrane was then blocked in 10% non-fat milk in 

Tris-buffer saline Tween (TBST) for 1 hour and successively incubated with a 

primary antibody for 2 hours at room temperature or overnight at 4oC. After 1 hour 

incubation with a secondary antibody conjugated to horse radish peroxidase (HRP), 

the blots were developed using Super signal West Dura chemiluminescent (Pierce, 

Rockford, USA). Mouse anti-influenza virus matrix protein 2 (M2) antibody (1:1000) 

was used to assess virus protein expression, mouse anti-α-tubulin antibody (1:1000) 

as a loading control and goat anti-mouse (1:10,000) as secondary antibody. 

 

Determination of PKM2 phosphorylation and expression was performed using rabbit 

anti-PKM2 antibody (1:1000), rabbit anti-phospho-PKM2 (Tyr105) antibody (1:1000) 

and goat anti-rabbit secondary antibody (1:10,000). A549 cells were infected with 

MOI 2 and also collected on ice after 6, 12, 18 and 24hpi in modified RIPA buffer 

supplemented with protease (Roche Diagnostics, Rotkreuz, Switzerland) and 

phosphatase inhibitors cocktails 2 and 3 (Sigma-Aldrich, St. Louis, USA). 
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2.2.3 Collection of infected cells for lipid analysis 

 

A549 cells were seeded into 10cm cell culture dishes 24 hours prior to infection and 

incubated in F12 GlutaMAX™ (10% FBS, 50u penicillin & 50µg streptomycin). 80 

to 100% confluent A549 cells were infected with a 5ml inoculum of purified 

influenza virus A/PR/8/34 H1N1 at MOI 5 as described above. Virus-infected cells 

and mock infected cells were collected at 12, 18 and 24hpi. Three independent 

experiments were performed with three replicates each per condition (n=9 per 

condition). Prior to harvesting, cells were washed twice with ice cold 1xPBS and then 

scraped in 500µl ice cold methanol. Samples were collected in fresh centrifuge tubes 

(Axygen Inc, California, USA) and kept at -20oC before lipid extraction. Lipid 

extraction for all conditions and replicates in any given experiment was performed at 

the same time.  

 

2.2.4 Lipid extraction 

 

Only pre-chilled HPLC grade reagents were used. Lipid extraction was conducted 

according to a modified Bligh and Dyer extraction method (Bligh and Dyer, 1959). 

Briefly, 250µl of ice cold chloroform was added to the scraped cells in 500µl of 

methanol (chloroform to methanol 1:2 volume to volume (v/v)). The cells were mixed 

at high speed for 1 hour at 4oC. Subsequently, 250µl of ice cold chloroform and 275µl 

of ice cold distilled water were added to break phases. After additionally mixing the 

samples for 1 minute at high speed, samples were centrifuged in a 4oC pre chilled 

bench top centrifuge (10,000rpm for 2 minutes). The organic phase, containing the 
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majority of lipids, was transferred to a fresh centrifuge tube and kept on ice. The 

aqueous phase was re-extracted with 500µl of chloroform, mixed again for 1 minute 

and spun down for 2 minutes (4oC; 10,000rpm). The organic phase was collected 

again and combined with the organic phase of the first extraction. Samples were dried 

under vacuum using a miVac Duo Concentrator (Genevac Ltd, Suffolk, UK). Samples 

were stored at -80oC until further analysis by mass spectrometry. 

 

2.2.5 Quantitative analysis of cellular phospho- and sphingolipids by high 

performance liquid chromatography multiple reaction monitoring mass 

spectrometry (HPLC MS/MS; operated in MRM mode) 

 

The three independent experiments (Supplementary Table 7-1) were run separately 

and mass spectrometry analysis of phospho- and sphingolipid species was performed 

as previously described (Shui et al., 2011b). Briefly, dried cellular lipid extracts were 

dissolved in 60 to 80µl of chloroform:methanol (1:1 v/v). 20µl of sample were spiked 

with 20µl of 2x internal standard mixture containing representative standards for PS 

(dimyristoyl-glycero-phosphoserine or DMPS; final concentration 2µg/ml), PE (1,2-

dimyristoyl-glycero-3-phosphoethanolamine or DMPE; final concentration 10µg/ml), 

PI (2-dioctanoyl-glycero-3-phosphoinositol or C8PI; final concentration 1µg/ml), PC 

(1,2-dimyristoyl-glycero-3-phosphocholine or DMPC; final concentration 10µg/ml), 

SM (lauroyl sphingomyelin or LSM; final concentration 2µg/ml), Ceramide (N-

heptadecanoyl-D-erythro-sphingosine or C17Cer; final concentration 1µg/ml) and 

GlcCer (D-glucosyl-ß1-1'-N-octanoyl-D-erythro-sphingosine or C8GlcCer; final 

concentration 1µg/ml) species.  
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Sample injection volume was 15µl and prior to introduction into a triple quadrupole 

instrument ABI 3200 QT (Applied Biosystems, California, USA), lipid classes were 

separated by high performance liquid chromatography (HPLC) using a Luna 3-µm 

silica column (Phenomenex Inc, California, USA) coupled to an Agilent 1200 HPLC 

system (Agilent, California, USA). A linear two-gradient setup was used consisting of 

mobile phase A (chloroform:methanol:ammonium hydroxide, 89.5:10:0.5) and mobile 

phase B (chloroform:methanol:ammonium hydroxide:water, 55:39:0.5:5.5). The flow 

rate was kept at 300 µl/min; 5% mobile phase B for 3 minutes, then linearly switched 

to 30% mobile phase B in 24 minutes and maintained for 5 minutes, and then linearly 

changed to 70% mobile phase B in 5 minutes and maintained for 7 minutes. Then, the 

composition of the mobile phase was returned to the original ratio over 5 minutes and 

maintained for 6 minutes before the next sample was analysed (Shui et al., 2011b). 

Lipids were ionized by electro spray ionization (ESI) and analysed by a targeted 

multiple reaction monitoring (MRM) approach measuring 159 unique transitions 

(Supplementary Table 7-6). The samples were first run in the negative ion mode 

measuring transitions corresponding to PS, PE, PI and GM3 species and afterwards 

PC, SM, Cer and GlcCer specific transitions were analysed in the positive ion mode. 

Odd chain PC species were distinguished from ePC species by their different elution 

time.  

 

2.2.5.1 Analysis of MS raw data 

 

Signal intensities for each lipid species were extracted according to their retention 

time using an in-house developed MATLAB algorithm (Bowen Li, National 
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University of Singapore) (MathWorks, Massachusetts, USA) and imported into Excel 

(Microsoft, Washington, USA). Concentrations of measured lipid species were 

calculated by normalization to the representative spiked internal standards. GM3 

levels were normalized to the PI internal standard (C8PI). Lipid species were 

represented as a molar fraction of the total amount of measured lipid species (Chan et 

al., 2008). The data of the three independent experiments were combined and 

significant differences between influenza virus infected and mock infected cells were 

identified by two criteria to account for experimental variations and differences 

between independent analytical mass spectrometry runs: 1) A given lipid species had 

to be statistically significant (unpaired Student’s t-test; two-tailed; p<0.05) at 18hpi 

and/or 24hpi in at least one experiment between mock and virus infected cells, and (2) 

the identified lipid specie followed the same trend in all three independent 

experiments. A lipid species was considered to follow the same trend as long as the 

interval [Average(log(H1N1/mock)) - StdDev(log(H1N1/mock)); 

Average(log(H1N1/mock)) + StdDev(log(H1N1/mock))] calculated by the 

log(H1N1/mock) values of all three independent experiments did not include zero. 

The fold-ratio was used to present the data and to make the three independent 

experiments comparable with regard to lipid changes between infected and mock 

infected cells. The variations of absolute values between independent experiments 

were high and hence, identification of small changes would not have been possible to 

detect by combining the absolute values of the three independent experiments. The 

differences of significantly regulated lipid species were plotted as log(H1N1/mock) 

ratios in a heat plot generated by an in-house developed MATLAB algorithm (Bowen 

Li, National University of Singapore) (MathWorks, Massachusetts, USA) or by basic 

bar plots with standard deviations drawn in Excel (Microsoft, Washington, USA). 
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Finally and similar to gene expression data, we harnessed a one-tailed Fisher’s exact 

test (right/greater tail; p<0.05) to identify significant enrichment of a certain lipid 

class in the identified differentially regulated lipid species using an online tool 

(http://www.langsrud.com/fisher.htm) (Supplementary Table 7-2). This analysis was 

used to account for overrepresentation of a certain lipid class in our MRM list 

covering 175 lipid species.  

 

2.2.6 Quantitative analysis of neutral lipids 

 

Neutral lipids were measured for only two of the three independent experiments. 20µl 

of the same lipid extracts used for HPLC/MS/MS (operated in MRM mode) were 

mixed with a standard mixture containing standards for TAG (d5-TAG 48:0 

(5µg/ml)), cholesterol ester (d6-C18 cholesterol ester (10µg/ml)), DAG (4-methyl 

16:0 diether DAG (3µg/ml)) and cholesterol (d6-cholesterol (5µg/ml)). Internal 

standards for TAG, cholesterol ester and cholesterol were obtained from C/D/N 

Isotopes Inc. (Quebec, Canada). 30µl of sample plus standard mixture were injected 

and neutral lipids (DAG and TAG species, cholesterol ester and cholesterol) were 

analysed by reverse phase HPLC/ESI/MS on an ABI 3200QT (Applied Biosystems, 

Foster City CA) instrument coupled to an Agilent 1200 HPLC system (Agilent, 

California, USA) as previously described (Shui et al., 2010; Shui et al., 2011b; Tan et 

al., 2012b). Neutral lipids were separated from polar lipids using an Agilent Zorbax 

Eclipse XDB-C18 column (inner diameter 4.6x150mm) (Agilent, California, USA) 

with an isocratic gradient (chloroform, methanol, 0.1M ammonium acetate 100:100:4 

(v/v/v)) at a flow rate of 250 μl/min.  84 ions (Supplementary Table 7-7) were 
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monitored in the positive mode and corresponding intensities were extracted based on 

their elution profile by an automated in-house developed MATLAB algorithm 

(Bowen Li, National University of Singapore) (MathWorks, Massachusetts, USA) and 

imported into Excel (Microsoft, Washington, USA). Intensities were normalized to 

internal standards and represented as a ratio to the total amount of measured 

phospholipids. Significant differences were identified by an unpaired Student’s t-test 

(two-tailed; p<0.05).  

 

2.2.7 Catalase assay in virus infected cells 

 

A549 cells were seeded into 12-well plates and grown in F12 GlutaMAX™ (10% 

FBS, 50u penicillin & 50µg streptomycin) at 5% CO2, 37oC. Confluent monolayers 

(80% to 100%) were infected with influenza virus A/PR/8/34 H1N1 (MOI 2) as 

described above and infected cells were incubated for another 18 hours. Afterwards, 

cells were washed twice with 1xPBS and collected in 60µl of RIPA buffer. Catalase 

was measured according to the manufacturer’s protocol using a commercial kit 

purchased from Sigma-Aldrich (St. Louis, USA). Two independent experiments with 

triplicates per condition were performed at room temperature. Briefly, 10µl of 

samples were added to 65µl of 1x Assay Buffer (50mM potassium phosphate buffer, 

pH 7.0) and transferred to a fresh centrifuge tube. Subsequently, 25µl of the 

Colorimetric Assay Substrate Solution (adjusted to 200mM H2O2 in 1x Assay Buffer) 

were added and the reaction was kept for 1 to 5 minutes. The reaction was stopped by 

adding 900µl of Stop Solution (15mM sodium azide in water) and 10µl aliquots of the 

catalase enzymatic reactions were transferred to a fresh centrifuge tube. 1ml of Color 
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Reagent (30µl of Peroxidase Solution in 30ml of Chromogen Solution) was added and 

absorbance at 520nm was measured after 15 minutes incubation using a 

SpectraMax190 micro titre plate reader (Molecular Devices LLC, California, USA). 

Values of both experiments represented relative to mock infected cells were combined 

and significant differences were calculated by an unpaired Student’s t-test (two-tailed; 

p<0.05).  
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2.3 Results and discussion 

 

2.3.1 Influenza virus infection had a stringent but significant effect on host cell 

phospho- and sphingolipid metabolism  

 

To systematically characterize phospho- and sphingolipid metabolism during 

influenza virus infection, we used HPLC-MS/MS (operated in MRM mode) to 

identify differentially regulated lipid species during the course of an infection in A549 

cells (Figure 2-1A). First we established the growth of purified MDCK cell culture 

derived influenza virus A/PR/8/34 H1N1 in A549 cells to select time points that fall 

into late stages of virus growth, to allow for de novo lipid biosynthesis and complete 

virion morphogenesis. On this note, a recent study investigating major metabolic 

pathways (such as glycolysis and amino acid biosynthesis) during influenza virus 

infection, detected virus related changes only after 10 to 12hpi (Ritter et al., 2010). 

A549 cells were infected with MOI 5 and a synchronized one round of infection was 

assumed. MOI 5 was chosen based on another study investigating the impact of 

influenza virus infection on host cell metabolism (Ritter et al., 2010). Virus 

supernatant and cell protein extracts were collected at 3, 6, 12, 18, 24 and 30hpi and 

virus titre, as well as virus protein expression, were assessed by plaque assay and 

western blot, respectively. The peak of virus growth was determined to be at 18hpi. 

As a result, we decided to sample the 12, 18 and 24hpi time points for the analysis of 

influenza virus specific changes in lipid metabolism (Figure 2-1A).  
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Three independent experiments with three replicates per condition (three mock and 

three infected at 12hpi, 18hpi and 24hpi) were conducted. Since virus infection was 

done in serum free conditions, it was necessary to additionally probe for mock 

infection during the time course to exclude any metabolic changes that were not virus 

related but rather due to serum free conditions (Ritter et al., 2010). Samples were 

collected and subjected to lipid extraction prior to the targeted analysis of 175 

different lipid species by HPLC-MS/MS (operated in MRM mode). The collected data 

were combined and differentially regulated lipid species were identified using two 

criteria to account for variations between independent analytical mass spectrometry 

runs: (1) a given lipid species had to be statistically significant (unpaired Student’s t-

test; two-tailed; p<0.05) at 18hpi and/or 24hpi in at least one experiment, and (2) the 

lipid followed the same trend in all three independent experiments. A lipid species 

was considered to follow the same trend as long as the interval 

[Average(log(H1N1/mock)) - StdDev(log(H1N1/mock)); Average(log(H1N1/mock)) 

+ StdDev(log(H1N1/mock))] calculated by the log(H1N1/mock) values of all three 

independent experiments did not include zero.  

 

Applying these two criteria allowed us to identify 78 differentially regulated lipid 

species in virus infected cells as compared to mock infected cells grown in serum free 

conditions (Figure 2-1C). The 78 differentially regulated species were mainly 

enriched in choline containing lipids (p<0.001) and sphingolipid species (p<0.01) as 

calculated by a one-tailed (right/greater tail) Fisher’s exact test (p<0.05) (Figure 2-1B 

& Supplementary Table 7-2). More specifically, there was a general increase in ePC 

and odd chain aPC, SM and GlcCer species with a concomitant decrease in even 

chain aPC and ganglioside GM3 species (Figure 2-1B&D). PS, PI and PE species 
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were only affected to a lesser extent (Figure 2-1B) whereas total amounts of aPE 

species continuously decreased during the course of an influenza virus infection 

(Figure 2-1D). There was a general increase of saturated lipid species within most of 

the investigated lipid classes in influenza virus infected A549 cells (Figure 2-1E). For 

example, PS 32:0 was the only differentially regulated PS and was increased across 

all three time points. Furthermore, the saturated ester linked PC species (aPC 34:0a, 

aPC 36:0a and aPC 38:0a) showed a similar upregulation in infected cells as opposed 

to the general downregulation of unsaturated aPC species (Figure 2-1C).  
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2.3.1.1 aPC species were decreased while ePC, odd chain aPC and SM species were 

increased in influenza virus infected cells 

 

A specific remodelling within the PC lipid class was observed, resulting in an increase 

of ether-linked and odd chain aPC species but a decrease in even chain aPC species 

(Figure 2-1C&D). The increase in ether linked PC species peaked at 18hpi whereas 

the increase in odd chain and the decrease in even chain aPC species peaked at 24hpi 

(Figure 2-1C&D). The reduced levels of aPC species in influenza virus infected cells 

have been previously proposed to be related to an impairment in aPC biosynthesis by 

measuring metabolite rates of phospholipid precursors and by global gene and protein 

expression experiments (Billharz et al., 2009; Caric-Lazar et al., 1978; Kroeker et al., 

2012). Especially SREBP1, which is a major regulator of the one-carbon cycle 

producing the methyl donor SAMe required for the de novo methylation pathway for 

aPC biosynthesis, was significantly downregulated in influenza virus infected cells 

(Billharz et al., 2009; Walker et al., 2011). These changes at 24hpi coincided with the 

upregulation of another choline containing lipid, SM, which suggested an important 

correlation of influenza virus replication with choline lipid metabolism (Figure 2-1D). 

For example increase in SM and decrease in PC species could be explained by the fact 

that sphingomyelin synthases SMS1 and SMS2 use PC as a substrate to transfer the 

choline head group onto a ceramide backbone. Another valuable observation made in 

the gene expression study by Billharz et al (2009) was the significant downregulation 

of ethanolamine kinase 1 (ETNK1) which is a rate-controlling step in PE 

biosynthesis. Indeed, in our temporal lipid profile we also observed a continuous 

downregulation of PE biosynthesis (Figure 2-1D). It could be argued that the 
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downregulation of ETNK1 generally decreased PE species but within the choline 

containing species, exclusively aPC species were downregulated, due to the decrease 

in SREBP1 expression. On the other hand ePC and SM species were upregulated 

because their rate-controlling steps in the form of choline kinases were not affected by 

virus infection. 

 

2.3.1.2 Sphingolipids with a dihydroceramide backbone were upregulated while 

sphingolipids with a ceramide backbone were downregulated in influenza 

virus infected cells 

 

The differential regulation of sphingolipids was striking, especially the general 

increase in SM and GlcCer species accompanied by the decrease in GM3 species 

(Figure 2-1C). The decrease of GM3 species was most probably related to influenza 

virus NA activity, cleaving the externally attached sialic acid on the sugar head group 

(Sato et al., 1998). Most likely, this did not reflect the general increase in sphingolipid 

biosynthesis since influenza virus replication has been shown to be dependent on 

sphingolipids (Gerl et al., 2012; Hidari et al., 2006; Takahashi et al., 2008). GM3 

species were thus excluded from further data analysis under the assumption that their 

downregulation did not reflect the general upregulation of sphingolipid biosynthesis.  

 

For a more detailed analysis, levels of sphingolipid species (Cer, GlcCer and SM) 

were represented relative to the total amount of measured sphingolipids. Specific 

changes with regard to the (un-)saturation of the sphingoid base backbone as well as 

to the chain length and (un-)saturation of the fatty acyl moiety were revealed. For 
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example, there was an overall increase of dihydroceramide containing sphingolipids 

during the course of an infection, whereas ceramide containing sphingolipids were 

slightly downregulated (Figure 2-2A). However, it was evident that sphingolipids 

consisting of a ceramide backbone with a saturated fatty acyl chain showed a slightly 

increasing trend whereas ceramide containing sphingolipids with an unsaturated fatty 

acyl moiety in their ceramide backbone were substantially downregulated during the 

course of the infection (Figure 2-2C). This is in line with our general observation of 

increased incorporation of saturated fatty acyl moieties into phospholipid species in 

virus infected cells (Figure 2-1C) which might cause increased lipid order required for 

virus assembly and budding.  

 

Infected cells also showed an increased incorporation of C20, C22 and C26 fatty acyl 

moieties into sphingolipid species (Figure 2-2B). Especially, saturated C18:0, C20:0, 

C22:0 and C26:0 fatty acyls, whereas saturated C16:0 and unsaturated C16:1 and 

C24:1 fatty acyls were decreased (Figure 2-2D). On the other hand, C20:1 and C26:1 

were the only unsaturated fatty acyl moieties in sphingolipid species which were 

upregulated in virus infected cells (Figure 2-2D). Incorporation of fatty acid moieties 

into sphingolipids is catalysed by six ceramide synthases (CerS1-6) specific for fatty 

acid chain lengths (Levy and Futerman, 2010; Mullen et al., 2012). Based on this, the 

observed increased incorporation of C20, C22 and C26 fatty acids into sphingolipid 

species possibly reflected a CerS2 mediated upregulation of sphingolipid biosynthesis 

(Levy and Futerman, 2010; Mullen et al., 2012). Differences in ceramide fatty acid 

composition can greatly influence cellular function (Grosch et al., 2012) and for 

instance, depletion of CerS2 results in impaired vesicular trafficking (Markham et al., 

2011; Silva et al., 2012). Therefore, increased incorporation of very long chain fatty 
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consisting of either saturated or unsaturated fatty acyl chains. (D) Chain length and saturation of fatty 
acyl moieties of sphingolipid species were also investigated. Data is shown as the average of the 
log(H1N1/mock) calculated from the three independent experiments. Error bars represent standard 
deviations.  
 

 

2.3.1.3 Peroxisomal catalase activity was decreased in influenza virus infected cells 

 

The increase of ePC and odd chain aPC species led us to investigate peroxisomal 

activity since biosynthesis of ether lipids and production of odd chain fatty acyl 

moieties by one cycle ɑ-oxidation of very long chain fatty acids solely occurs in the 

peroxisome (Guo et al., 2010; Wallner and Schmitz, 2011; Wanders et al., 2000). For 

this purpose, we measured peroxisomal catalase activity which correlates with 

peroxisomal ß-oxidation. ß-oxidation in the peroxisome is not coupled to ATP 

synthesis but instead produces hydrogen peroxide which consequently gets converted 

into oxygen and water by catalase (Perichon and Bourre, 1995). We infected cells 

with MOI 2 to ensure synchronized infection of host cells. We found a 20% decrease 

in catalase activity in infected cells indicative of decreased ß-oxidation in the 

peroxisome. This is in line with our temporal lipid data showing an enrichment of 

C26:0 and C26:1 but a decrease of C24:1 fatty acyl moieties in sphingolipid species 

(Figure 2-2D). Accumulation of C26:0 and C26:1 fatty acid moieties in sphingolipids 

have been proposed to be diagnostic markers for diseases caused by defects in 

peroxisomal ß-oxidation (Pettus et al., 2004). It has been shown that accumulation of 

C26:0 fatty acids was inhibitory to the biosynthesis of C24:1 fatty acids (Sargent et 

al., 1994). C24:1 fatty acids were upregulated by increased peroxisomal ß-oxidation 

mediated by increased ACOX1 activity (Vluggens et al., 2010). ACOX1 has also 

been identified to be antiviral among other host factors implicated in influenza virus 
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replication (Shapira et al., 2009). This is further backed by a different report showing 

that overexpression of another essential enzyme involved in the peroxisomal ß-

oxidation cascade, HSD17B4, inhibits influenza virus protein expression (Wolff et al., 

1996). On the contrary, proteins involved in peroxisomal ɑ-oxidation such as 

PHYHIP have been identified to be proviral (Brass et al., 2009). 

 

In summary, accumulation of odd-chain aPC species might be a result of increased ɑ-

oxidation of very long chain fatty acids in the peroxisome which are unable to get 

further metabolized due to decreased peroxisomal ß-oxidation. As a consequence, 

they might get incorporated as odd chain fatty acyls into phospho- and sphingolipids. 

Such a mechanism has been observed in differentiating adipocytes where increased ɑ-

oxidation was also coupled prior to fatty acid ∆9-desaturation (Su et al., 2004). 

Interestingly, knockdown of the enzyme stearoyl-CoA desaturase (∆9-desaturase; 

SCD) essential for the synthesis of unsaturated lipids has also been found to decrease 

influenza virus replication (Hao et al., 2008).  

 

Due to the tight balance between anabolism and catabolism, accumulation of ePC 

species in virus infected cells could be explained by a relative increase in lipogenesis 

in the peroxisome since the catabolic arm of peroxisomal ß-oxidation was decreased. 

The possibility that the identified lipid changes in virus infected cells represented a 

specific impairment of peroxisomal ß-oxidation could be further supported by the 

decreased levels of TAG in virus infected cells (Figure 2-1F). We observed a 

continuous accumulation of TAG levels in mock infected cells most likely due to the 

serum free growth condition leading to an increase in glycolytic flux and neutral lipid 

biosynthesis. Alternatively, levels of TAG in virus infected cells seemed to increase 
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2.3.1.4 Influenza virus infection induced early phosphorylation of PKM2 

 

Ether lipid biosynthesis is directly linked to glycolysis by its metabolic intermediate 

dihydroxyacetone phosphate (DHAP) which gets converted into acyl-DHAP by 

dihydroxyacetone phosphate acyl transferase (DHAPAT) and subsequently to alkyl-

DHAP by alkyldihydroxyacetone phosphate synthase (AGPS) in the peroxisome. It 

has been shown that influenza virus infection upregulates upstream glycolytic 

intermediates similarly to the Warburg effect in cancer cells (Ritter et al., 2010). The 

phosphorylated and less active dimeric form of PKM2 has been postulated to be a 

major driver for the Warburg effect redirecting upstream glycolytic intermediates into 

the biosynthesis of nucleotides, amino acids and lipids (Eigenbrodt et al., 1992; 

Hitosugi et al., 2009), explaining the relatively high levels of ether lipids found in 

cancerous cells (Magnusson and Haraldsson, 2011; Wallner and Schmitz, 2011). 

Based on this, we decided to measure expression and phosphorylation levels of PKM2 

in virus infected A549 cells. We infected cells with MOI 2 to ensure synchronized 

infection of host cells. We observed a slightly increased (in two independent 

experiments between 6hpi and 12hpi) PKM2 phosphorylation in infected cells as 

compared to mock infected cells. The differences in phosphorylation of PKM2 

between infected and non-infected cells were small, which was most probably due to 

the already high levels of PKM2 and its phosphorylated form in A549 cells since they 

are of cancerous origin (Hitosugi et al., 2009). Nevertheless, the importance of PKM2 

in influenza virus replication was additionally supported by its 100-fold upregulation 

in a primary human tracheobronchial airway epithelial cell line infected with 

influenza virus and by its association with purified influenza virus particles (Kroeker 
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2.4 Conclusion 

 

In this chapter, we established for the first time a detailed temporal lipid profile of an 

influenza virus infection in A549 cells. Our findings were in agreement with previous 

studies based on gene and protein expression data, generally pointing towards an 

increase in sphingolipid but a decrease in glycerophospholipid biosynthesis in 

influenza virus infected cells (Figure 2-1) (Billharz et al., 2009; Caric-Lazar et al., 

1978; Coombs et al., 2010; Dove et al., 2012; Kroeker et al., 2012). Especially, the 

increase in SM and GlcCer in combination with decreased levels of aPE and aPC 

species (Figure 2-1) reflected the previously described lipid composition of purified 

influenza virus particles from MDCK cell lines (Gerl et al., 2012). This suggested that 

influenza virus tailors host cell lipid metabolism to its needs for virion morphogenesis 

and tempted us to further investigate the lipid composition of A549 produced 

influenza virus (addressed in Chapter 3). The increase in SM could be linked to a 

decrease in aPC species, since biosynthesis of SM is catalysed by SMS1 and SMS2 

which transfer the choline of PC onto the ceramide backbone. Ceramide levels 

remained constant or only decreased slightly due to a general stimulation of 

sphingolipid biosynthesis in virus infected cells (Figure 2-1) (Hidari et al., 2006; 

Takahashi et al., 2008). Furthermore, the identified specific remodelling within the 

PC lipid class, consisting of an increase in ePC and odd chain aPC species but of a 

concomitant decrease in aPC species, implied an important role of the peroxisome for 

influenza virus replication (Figure 2-1). In line with increased lipogenesis and 

decreased ß-oxidation in the peroxisome, we found a significant reduction in catalase 

activity which reflected decreased peroxisomal ß-oxidation (Figure 2-3). We 
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speculated that decreased peroxisomal ß-oxidation was accompanied by a 

concomitant increase in mitochondrial peroxisomal ß-oxidation since TAG levels 

were significantly reduced in influenza virus infected cells (Figure 2-1), despite the 

importance of fatty acid biosynthesis for influenza virus replication (Munger et al., 

2008).  

 

In combination with previous findings from our laboratory (Lukas Tanner & Xueli 

Guan, unpublished), upregulation of sphingolipids (via increased endogenous 

production of serine and incorporation into ceramide) and ePC species (via increased 

levels of DHAP) led us to hypothesize that lipid biosynthesis in infected cells could 

be linked to the previously reported increase in glycolysis during influenza virus 

infection (Ritter et al., 2010) in a similar manner as observed in cancer cells 

exhibiting high levels of sphingolipids and ether lipids (Magnusson and Haraldsson, 

2011; Wallner and Schmitz, 2011). In line with this, PKM2 levels were highly 

upregulated in influenza virus infected cells (Kroeker et al., 2012) and we observed an 

early induction of PKM2 phosphorylation (Figure 2-4).  

 

Finally, we were able to integrate our findings with data from siRNA screens (Brass 

et al., 2009; Karlas et al., 2010; Konig et al., 2010; Shapira et al., 2009; Sui et al., 

2009; Watanabe et al., 2010), protein expression (Coombs et al., 2010; Dove et al., 

2012; Kroeker et al., 2012) and gene expression data (Billharz et al., 2009) to 

manually derive and propose a cellular lipid flux model during influenza virus 

infection (Figure 2-5). We hypothesized that lipid flux in influenza virus infected cells 

is regulated by high glucose consumption under the control of PI3K/Akt signalling 

which is induced upon influenza virus infection (Charmaine Chng & Lukas Tanner, 
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unpublished) (Ehrhardt and Ludwig, 2009; Zhirnov and Klenk, 2007). Activation of 

Akt has been shown to induce PKM2 upregulation and phosphorylation via the 

mTOR complex which could possibly explain observations of PKM2 upregulation 

(Kroeker et al., 2012) and phosphorylation (Figure 2-5) in influenza virus infected 

cells. Consequently, this leads to an increase in glycolytic flux (Ritter et al., 2010) 

similar to the Warburg effect in cancer cells which inhibits AMP activated protein 

kinase (AMPK) activity. In contrast, AMPK activity has been shown to suppress 

tumour growth (Shackelford and Shaw, 2009) and AMPK agonists have successfully 

been used to treat influenza virus infected mice (Moseley et al., 2010). Therefore, the 

antagonistical regulation of downstream effectors by PI3K/Akt signalling and AMPK 

activity might determine the balance between anabolic and catabolic functions in 

influenza virus infected cells. The rather descriptive and hypothetical nature of our 

proposed model needs further experimental validation, but it can serve as the basis for 

future studies addressing role and regulation of lipid metabolism in influenza virus 

infected cells. It would be of great interest to repeat a similar study in primary lung 

cells due to the cancerous nature of the used A549 cells. It is well known that 

metabolism of cancer cells is extensively different to non-cancerous cells. Hence, 

differences observed in lipid metabolism during influenza virus infection could be 

even more striking in primary cells. This is supported by the finding of a 100-fold 

upregulation of PKM2 in a primary human tracheobronchial airway epithelial cell line 

infected with influenza virus (Kroeker et al., 2012).  
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Figure 2-5: Proposed lipid flux in influenza virus infected cells (Page 64): The model was derived 
by combining our lipid data with published data from siRNA screens (Brass et al., 2009; Karlas et al., 
2010; Konig et al., 2010; Shapira et al., 2009; Sui et al., 2009; Watanabe et al., 2010), protein 
expression studies (Coombs et al., 2010; Dove et al., 2012; Kroeker et al., 2012) and gene expression 
studies (Billharz et al., 2009). Genes, proteins and metabolites reported to affect influenza virus 
replication are depicted in black (no change or not identified), bold red (proviral or upregulated) and 
bold blue (antiviral or downregulated); Bold arrows and dashed arrows represent proposed increased 
and decreased fluxes, respectively; Bold black lines with round ends indicate an inhibition of 
expression or activity; ATP-binding cassette, sub-family D 1 (ABCD1), acetyl-CoA carboxylase alpha 
(ACACA), acyl-CoA oxidase 1 (ACOX1), acyl-CoA synthetase long-chain family member 1/4 
(ACSL1/4), alkylglycerone phosphate synthase (AGPS), AMP activated protein kinase (AMPK), N-
acylsphingosine amidohydrolase (acid ceramidase) 1 (ASAH1) , UDP-Gal:betaGlcNAc beta 1,3-
galactosyltransferase, polypeptide 4 (B3GALT2), UDP-Gal:betaGlcNAc beta 1,4- 
galactosyltransferase polypeptide 4 (B4GALT2), carboxyl ester lipase (CEL), diacylglycerol (DAG), 
dihydroxyacetone phosphate (DHAP), DHAP acyl transferase (DHAPAT), ethanolamine kinase 1 
(ETNK1), fatty acid reductase 1 (FAR1), fatty acid synthase (FASN), glyceraldehyde-3-phopshate 
dehydrogenase (GAPDH), facilitated glucose transporter 2 (GLUT2), glycerol-3-phosphate 
dehydrogenase 2 (GPD2), glycosphingolipids (GSL), hexokinase 2 (HK2), hydroxysteroid (17-beta) 
dehydrogenase 4 (HSD17B4), 3-ketodihydrosphingosine reductase (KDSR), ceramide synthase 4 
(LASS4), lipin 1 (LPIN1), membrane bound O-acyltransferase domain containing 2 (MBOAT2), 
malonyl-CoA decarboxylase (MLYCD), phosphatidic acid (PA), phosphatidylcholine (PC), 
phosphatidylethanolamine (PE), phopsphatidylinositol (PI), pyruvate kinase 2 (PKM2), 
phosphatidylserine (PS), stearoyl-CoA desaturase (SCD), fatty acid transporter 5 (SLC27A5), 
sphingomyelin (SM), sphingomyelin synthase 1/2 (SMS1/2), sterol regulatory element binding 
transcription factor 1 (SREBP1) & triacylglycerol (TAG). 
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3.1 Introduction and rationale 

 

After establishing a detailed temporal lipid profile in influenza virus infected cells, we 

were wondering whether the lipid composition of influenza virus particles correlates 

with the enrichment of certain lipid species in virus infected host cells. Influenza A 

viruses are enveloped viruses which derive their lipid-bilayer from the host plasma 

membrane during budding. Their envelope is a detailed representation of the lipid 

composition at the budding site and can provide additional insights into the 

importance of lipids in the virus life cycle. Several studies scrutinized the lipid 

composition of purified influenza virus particles (Blom et al., 2001; Gerl et al., 2012; 

Polozov et al., 2008; Scheiffele et al., 1999; van Meer and Simons, 1982) without 

addressing its regulation and link to host cell lipid metabolism. Consequently, we 

applied our targeted lipidomics approach to first establish the lipid composition of 

purified A549 grown influenza virus A/PR/8/34 H1N1 in comparison to its producer 

cell. Then, we looked at the lipid composition of two closely related influenza virus 

A/Aichi/2/68 H3N2 strains, which exhibit differences in pathogenicity and replication 

dynamics, to identify potential viral determinants interfering with host cell lipid 

metabolism.  

 

In this chapter we will first introduce the lipid composition of purified A549 grown 

influenza virus A/PR/8/34 H1N1 in relation to other published enveloped viruses. We 

will specifically emphasize on the increase of SM and ePC species and on the 

decrease of aPC species which were consistent with our findings of a differentially 

regulated host cell lipid metabolism during influenza virus infection.  
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Secondly, we will discuss the enrichment of ceramide species in influenza virus 

particles which were not differentially regulated in virus infected cells and in 

combination with extensive literature mining, we will propose a novel concept of how 

ceramide species regulate influenza virus particle trafficking. 

 

In the third part, we will present the lipid composition of two closely related influenza 

virus A/Aichi/2/68 H3N2 strains differing in a point mutation in NS1 and propose 

NS1 to be a potential regulator of viral lipid composition and host cell lipid 

metabolism. We will then bring together the different datasets on host cell lipid 

metabolism, influenza virus lipid composition and virulence related lipids by 

hierarchical clustering revealing severity dependent clusters of co-regulated lipid 

species.  

 

Finally, we will highlight the importance of lipids in the virus life cycle by confirming 

the broad-spectrum antiviral activity of two new compounds which oxidize 

phospholipids in virus envelopes. The chapter will conclude with a general discussion 

on the described results in relation to each other and within the context of recent 

literature. 
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3.2 Materials and methods 

 

3.2.1 Cells, viruses and reagents 

 

Egg grown human influenza virus strain A/Aichi/2/68 H3N2 P0 and egg grown 

mouse adapted human influenza virus strain A/Aichi/2/68 H3N2 P10 were kindly 

provided by Vincent Chow (Department of Microbiology, NUS); Sucrose and 

Glutaraldehyde were purchased from Sigma-Aldrich (St. Louis, USA); All other 

reagents were from identical sources as described in chapter 2 unless stated otherwise. 

 

3.2.2 Virus purification 

 

Virus stocks were prepared by passaging egg grown virus strains once in MDCK 

cells. Purified viruses used for lipid analysis represented the second passage in any 

given producer cell to minimize virus adaption through passaging. Viruses were not 

grown for more than three passages in any given cell line. 

 

Purification of influenza viruses was carried out as previously described (Shaw et al., 

2008) (Supplementary Figure 7-1). Two independent preparations were conducted for 

virus production in A549 cells (Supplementary Table 7-3). A549 cells were grown in 

20x15cm tissue culture dishes and, when confluent (80 to 100%), infected with 

influenza virus A/PR/8/34 H1N1 (MOI <0.05) which has been passaged only once in 

MDCK cells. Infection was done as described above and 12.5ml serum free F12 

GlutaMAX™ supplemented with penicillin (50u/ml), streptomycin (50µg/ml) and 
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TPCK trypsin (1µg/ml) per culture dish were used as inoculum. Medium was 

exchanged after 1 hour and 12.5ml of fresh serum free F12 GlutaMAX™ (50u 

penicillin & 50µg streptomycin) were added. Virus supernatant (250ml) was collected 

after incubation for 72 to 96 hours (37oC, 5%CO2) and clarified twice by 

centrifugation for ten minutes in a pre-chilled bench top centrifuge at 4000rpm (4oC) 

(Eppendorf, Hamburg, Germany). 10x25ml of clarified supernatant was subsequently 

layered over 7ml of 20% sucrose cushions (dissolved in 1xPBS) and concentrated by 

centrifugation at 112,600xg (33PA tubes; swing bucket rotor P28S) for 2 hours at 4oC 

in a HIMAC CP100WX ultracentrifuge (Hitachi, Japan). Virus pellets were dissolved 

in 100µl 1xPBS (a total of 1ml of concentrated virus) and carefully dislodged 

overnight at 4oC before layering 2x500µl of concentrated virus over 30% to 60% 

sucrose gradients (seven 1.4ml steps freshly prepared from the bottom in a 10PA tube: 

60%, 55%, 50%, 45%, 40%, 35% and 30% in 1xPBS). The gradient was centrifuged 

at 112,600xg (swing bucket rotor P40ST) for 3 hours at 4oC in a HIMAC CP100WX 

ultracentrifuge (Hitachi, Japan) and the banded virus (1.18g/cm3 to 1.19 g/cm3; 

interface between 40% and 45% sucrose) was carefully collected, combined and 

diluted with 1xPBS. Finally, purified influenza viruses were pelleted by centrifugation 

for 2 hours at 4oC (swing bucket rotor P28S; 33PA tubes) in a HIMAC CP100WX 

ultracentrifuge (Hitachi, Japan) and pellet was carefully dislodged in 200µl 1xPBS 

over night at 4oC after carefully aspirating the supernatant. Purified viruses were 

aliquoted and stored at -80oC until further analysis by SDS gel electrophoresis (virus 

purity), plaque assay (virus titre) and analysis by mass spectrometry (lipid 

composition). 
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Other virus strains discussed in this chapter were purified using the same protocol. 

For MDCK grown influenza viruses (influenza virus A/PR/8/34 H1N1, influenza 

virus A/Aichi/2/68 H3N2 P0 & influenza virus A/Aichi/2/68 H3N2 P10), only 10x 

15cm culture dishes of confluent MDCK cells were used. Cells were incubated with 

viruses in 12.5ml serum free DMEM GlutaMAX™ (50u/ml penicillin, 50µg/ml 

streptomycin & 2µg/ml TPCK trypsin) and exchanged after 1 hour with fresh serum 

free medium still supplemented with 2µg/ml TPCK trypsin. Virus supernatant was 

collected when at least 75% of the infected MDCK cell monolayer exhibited virus 

induced cytopathic effect (CPE) characterized by cell shedding. Purification of 

influenza virus A/PR/8/34 H1N1 was routinely done and 3 independent preparations 

for influenza virus A/Aichi/2/68 H3N2 P0 and influenza virus A/Aichi/2/68 H3N2 

P10 were performed. 

 

3.2.3 Assessment of virus purity by SDS gel electrophoresis and scanning 

electron microscopy (SEM) 

 

Virus purity was assessed by running 15µl of purified virus samples on precast Tris-

HCl 4 to 15% gradient gels (Biorad, California, USA). Samples were run at 120V and 

proteins were visualized using Coomassie Brilliant Blue R-250 Dye (Life 

Technologies Co, San Diego, USA) dissolved in 45% methanol, 45% water and 10% 

acetic acid) and identified based on their molecular size in comparison to recent 

published literature on influenza virus purification (Gerl et al., 2012; LeBouder et al., 

2008; Shaw et al., 2008). Initial SEM pictures were taken from negative stained 

purified MDCK grown influenza virus A/Aichi/2/68 H3N2 P10 virus particles (fixed 



3. Lipidomics of Influenza Virus 

 

72 

in 1% glutaraldehyde in 1xPBS) with the help from Weifun Cheong (National 

University of Singapore) (Supplementary Figure 7-2).  

 

3.2.4 Lipid extraction of purified influenza virus particles 

 

Lipids of purified influenza virus particles were extracted using a modified Bligh and 

Dyer protocol (Bligh and Dyer, 1959; Chan et al., 2008) as described in chapter 2. 

150µl of influenza virus preparations were split into 50µl replicates in fresh centrifuge 

tubes (Axygen Inc, California, USA) and 600ul of choloroform:methanol (1:1 v/v) 

were added. Samples were mixed for 1 hour at high speed and at 4oC using a 

ThermoStat mixer (Eppendorf, Hamburg, Germany). Subsequently, 300µl of 

chloroform and 200µl of KCl were added, followed by 2 min centrifugation 

(9000rpm) at 4oC in a bench top centrifuge (Eppendorf, Hamburg, Germany). 

Samples were dried under vacuum using a miVac Duo Concentrator (Genevac Ltd, 

Suffolk, UK) and stored at -80oC until further analysis by mass spectrometry.  

 

Samples consisted of the following biological replicates (Supplementary Table 7-3): 

for A549 grown H1N1 virus: two independent experiments split into three replicates 

(n=6); for MDCK grown influenza virus A/PR/8/34 H1N1: one preparation split into 

three replicates (n=3); for influenza virus A/Aichi/2/68 H3N2 P0 and P10 strains: 

three independent experiments split into three replicates (n=9 for each virus strain: 1 

replicate of each virus and independent experiment (n=3) was used for high resolution 

quadrupole time of flight (QTOF) analysis; 2 replicates of each virus and independent 

experiment (n=6) were used for targeted HPLC-MS/MS (operated in MRM mode)). 
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3.2.5 Quantitative analysis by HPLC-MS/MS (operated in MRM mode) 

 

Dried virus lipid extracts were dissolved in 60µl of chloroform:methanol (1:1 v/v). 

Targeted analysis of 159 species of phospho- and sphingolipids from purified 

influenza virus particles and data analysis were conducted as described in chapter 2. 

Two independent experiments with three replicates each were used for the lipid 

analysis of purified A549 grown influenza virus A/PR/8/34 H1N1 (n=6), whereas 

three independent experiments with two replicates each were analysed to determine 

the lipid composition of the two different influenza virus A/Aichi/2/68 H3N2 P0 and 

P10 strains (n=6 for each virus strain). 

 

3.2.6 Untargeted analysis of PC lipid species using a high resolution QTOF 

mass spectrometer  

 

After testing the technical reproducibility, each of the three biological replicates of 

influenza virus A/Aichi/2/68 H3N2 P0 and P10 viruses were analysed (n=3 per virus 

strain). Dried virus lipid extracts were dissolved in 60µl of solvent B (95% 

acetonitrile in water containing 25mM ammonium formate pH 4.6) and 20µl of 

sample were mixed with 20µl of DMPC standard resulting in a final standard 

concentration of 10µg/ml. Untargeted high resolution mass spectrometry coupled to 

liquid chromatography was performed using an Agilent 1200 series HPLC-Chip LC 

system connected to an Agilent 6540 QTOF mass spectrometer (Agilent 

Technologies, California, USA). A custom synthesized HILIC chip with a 160nl 

trapping column and a 75µmx150mm analytical column consisting of Amide-80 
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stationary phase with 5µm particle size and 80Å pore size (Tosoh Bioscience LLC, 

Pennsylvania, USA) was used for lipid separation. The chip cube was operated in 

back flush mode and the run time per sample was 19 minutes. 0.4µl of samples were 

injected onto the trapping column by a capillary pump. Lipid separation was 

performed by a gradient elution of two mobile phases (solvent A: 50% acetonitrile in 

water containing 25mM ammonium formate pH 4.6; solvent B: 95% acetonitrile in 

water containing 25mM ammonium formate pH 4.6) controlled by a nano pump. 

Samples were injected with 100% solvent B for 1.5 minutes in the enrichment column 

at a flow rate of 4µl/minute. Then the valve was switched to place the trapping 

column in line with the analytical column and samples were eluted at a flow rate of 

400nl/minute, first with 85% solvent B for 1.5 minutes, then with 80% solvent B for 

8.5 minutes. Subsequently, the mobile phase was changed to 100% solvent A for 2 

minutes and the column was re-equilibrated by 100% solvent B for 5.5 minutes. 

Separated lipids were introduced into the Agilent 6540 QTOF mass spectrometer 

operated in positive ion mode by ESI and voltage was set at 1800V; temperature at 

300°C; drying gas at 4l/min and fragmentor voltage set at 175V. The instrument was 

operated in auto MS/MS mode at fixed collision energy. MS and MS/MS spectra were 

acquired in the range of m/z 110-1300 and at an acquisition rate of 4spectra/second 

and 2spectra/second respectively. Reference masses (121.05087300 and 

922.00979800) were simultaneously injected for automatic mass correction during the 

analysis. 

 

For data analysis, only PC species were considered. Recorded mass spectra of PC 

species were extracted based on their elution time (7 to 7.5 minutes) with an intensity 

threshold of 10. The data was imported into Excel (Microsoft, Washington, USA) and 



3. Lipidomics of Influenza Virus 

 

75 

two different data analysis methods were performed. In the first method, mass spectra 

from 700 to 850 m/z were plotted and represented in relation to the highest intensity 

peak (aPC34:1). PC species were identified based on their exact mass and on a 

previously established list of 36 PC species in mammalian cells (Kuerschner et al., 

2012). In the second approach, the 36 identified PC intensities were first normalized 

to the spiked internal DMPC standard and finally, to the total measured PC amount. 

Significantly different levels of PC species between the two influenza virus strains 

were identified by a paired Student’s t-test (two-tailed; p<0.05) only including 

species that had the same trend in all three independent experiments. Similarly to the 

time course experiment (Chapter 2), species having the same trend in all three 

independent experiments were determined by calculating a log(P10/P0) value for each 

pair (n=3) and the interval [Average(log(P10/P0))-Stdev(log(P10/P0)); 

Average(log(P10/P0))+StdDev(log(P10/P0))] must not include zero. Significant PC 

species were represented in a heat plot calculated by the log(P10/P0) ratios and 

plotted by an in-house developed MATLAB algorithm (Bowen Li, National 

University of Singapore) (MathWorks, Massachusetts, USA).  

 

3.2.7 Hierarchical clustering of lipid species 

 

The MRM data from eight independent experiments describing virulence (differences 

between influenza virus A/Aichi/2/68 H3N2 P0 and P10 strains; 3 independent 

experiments), viral lipids (the lipid profile of influenza virus A/PR/8/34 H1N1 

compared to its A549 producer cell; 2 independent experiments) and host response 

(virus induced changes in A549 cells at 18hpi and 24hpi; three independent 
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experiments) were considered for clustering. Lipid species with missing values were 

excluded which resulted in a list of 146 lipid species. An average of log(fold-ratios) 

for each lipid class in a given experiment was calculated. Three log(H3N2 P10/H3N2 

P0) were calculated from duplicates in the three independent experiments 

(Supplementary Table 7-4). Six log(H1N1/A549) were calculated from two 

independent preparations of purified virus particles (three replicates in each 

experiment) and three independent experiments of mock infected A549 cells at 12hpi 

(three replicates in each experiment). The two H1N1 preparations were separately 

compared to the three independent experiments of mock infected A549 cells at 12hpi 

and represented viral lipids (Supplementary Table 7-4). Six log(H1N1/mock) were 

calculated from triplicates in the three independent experiments describing influenza 

virus induced changes (host response) at 18 and 24hpi (Supplementary Table 7-4). 

Subsequently, the data was clustered by hierarchical clustering using Pearson 

correlation distances (uncentered) with average-linkage implemented in the open ware 

clustering software Cluster3.0 (de Hoon et al., 2004). Since there are 2N-1 (2145) 

ordering consistent with any tree of N (146) items (lipid species), a GORDER value 

consistent with the order of the input data was assigned. The input data was sorted 

according to lipid classes (PS, PI, GM3, aPE, ePE, aPC, ePC, SM, Cer, GlcCer) 

followed by saturation and chain length and the assigned GORDER values increased 

for each lipid species based on its position in the list order (1 to 146).  This ensured 

that the lipid order produced by clustering was as close as possible (without violating 

the structure of the dendrogram) to the original lipid order.  

 

The calculated dendrogram was visualized using the open ware software Java 

TreeView (Saldanha, 2004) with the colours red (upregulation), blue (downregulation) 
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and white (no change). Patterns in identified clusters were further analysed by Excel 

(Microsoft, Washington, USA). 

 

3.2.8 Determination of IC50 of LJ001 and JL103 by plaque assay 

 

Antiviral compounds LJ025 (negative control), LJ001 and JL103 were kindly 

provided by our collaborators Frderic Vigant and Benhur Lee (University of 

California, Los Angeles, USA). 10mM stock solutions of LJ025, LJ001 and JL103 

were prepared by dissolving the compounds in DMSO. The same batch of purified 

MDCK grown influenza virus A/PR/8/34 H1N1 virus was used for all three 

independent experiments. 3 fold serial dilutions of compounds were prepared in 440µl 

of serum free DMEM GlutaMAX™ to obtain 2x concentrations of compounds to be 

tested. The concentrations of LJ025 and LJ001 were in the micro molar range (10µM, 

3.33µM, 1.11µM, 0.37µM, 0.12µM and DMSO control) whereas the concentrations 

for JL103 were in the nano molar range (0.1µM, 0.033µM, 0.011µM, 0.0037µM, 

0.0012µM, DMSO control). Viruses were also prepared in 440µl of serum free 

DMEM GlutaMAX™ (5x105pfu/ml) and afterwards added to the previously prepared 

serial dilutions of LJ025, LJ001 and JL103. Viruses and compounds were incubated 

in transparent centrifuge tubes under light exposure for 10 minutes. Subsequently, 10 

fold serial dilutions (10-1 to 10-4) of treated viruses were prepared in 261µl of serum 

free DMEM GlutaMAX™ supplemented with 50u/ml penicillin, 50µg/ml 

streptomycin and 2µg/ml TPCK trypsin. Plaque assay was done in triplicates per each 

compound and treatment condition and confluent monolayers of MDCK cells which 

were seeded 1 day prior into 24-well plates were infected with 200µl of virus 
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dilutions. The inoculum was removed after 1 hour, exchanged with 2.4% Avicel in 

2xDMEM (50u/ml penicillin, 50µg/ml streptomycin & 1µg/ml TPCK Trypsin) and 

incubated for another 60 to 70 hours at 5% CO2, 37oC. Avicel containing media was 

aspirated and cells were fixed with 4% formaldehyde for 20 minutes. Then, fixed cells 

were washed twice with 1x PBS and stained for ten minutes with 1% crystal violet 

dissolved in 20% methanol and water. The final virus concentration in each treatment 

condition and replicate was calculated to be 2.41x105 pfu/ml and the observed average 

virus titre in all control samples across three independent experiments was 1.27x105 

pfu/ml. Data was plotted relative to the control samples and IC50 of LJ001 and JL103 

were determined by our collaborator Frederic Vigant (University of California, Los 

Angeles, USA) using GraphPad PRISMTM (GraphPad Software Inc, California, USA). 

 

3.2.9 Mass spectrometry analysis of oxidized lipids in influenza virus envelopes 

 

Two independent experiments were performed using two independent purified 

MDCK grown influenza virus A/PR/8/34 H1N1 preparations. 120µl of purified 

viruses (in 1xPBS) were divided into 6x20µl aliquots (2 for LJ025; 2 for LJ001; 2 for 

JL103) and 20µl of 2x concentrations (10µM) of compounds in 1xPBS were added to 

obtain a final treatment concentration of 5µM. Viruses were incubated with 5µM 

compounds for 1 hour under light exposure, followed by the addition of 600µl of 

chloroform:methanol 1:2 (v/v). Subsequent steps were performed at 4oC and samples 

were mixed under vacuum on a ThermoStat mixer (Eppendorf, Hamburg, Germany). 

Afterwards, 300µl of chloroform and 200µl of distilled water were added, mixed for 

another 15 minutes and afterwards spun down for 2 minutes at 9000rpm. Samples 
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were dried under vacuum using a miVac Duo Concentrator (Genevac Ltd, Suffolk, 

UK) and stored at -80oC until further analysis by mass spectrometry. Mass 

spectrometry was performed with the help of Guanghou Shui (National University of 

Singapore) and samples were analysed using a high resolution Thermo LTQ-Orbitrap 

mass spectrometer (Thermo Fisher Scientific Inc, Massachusetts, USA) and an ABI 

3200 QTRAP mass spectrometer (Applied Biosystems, California, USA) after liquid 

chromatography separation (Davis et al., 2008; Shui et al., 2011b). Data was 

represented either as a molar fraction of the total amount of measured lipids or as a 

single stage positive ion mass spectrum (over a m/z range of 1 Dalton). 
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3.3 Results & discussion 

  

3.3.1 The composition of A549 produced influenza A virus H1N1 

 

A549 grown influenza virus A/PR/8/34 H1N1 virus was purified over a sucrose 

gradient as described previously (Shaw et al., 2008) (Figure 3-1A & Supplementary 

Figure 7-1). Virus purity was assessed by SDS gel electrophoresis and coomassie blue 

staining. We detected six major bands which corresponded to the molecular weight of 

the six most abundant influenza virus particle proteins such as hemagglutinin (HA0, 

HA1 & HA2), NP, NA and M1 (Figure 3-1B). There were also two fainter bands 

visible which did not correspond to any virus proteins but were identified as actin and 

annexins based on their size and recent literature on purified influenza virus particles 

(LeBouder et al., 2008; Shaw et al., 2008) (Figure 3-1B). We considered our influenza 

virus preparations pure due to the high reproducibility (similar results were obtained 

in independent replicate experiments and using H1N1 as well as H3N2 influenza virus 

strains produced in MDCK cells; see below) and the high consistency with previous 

studies using pure influenza virus particles (LeBouder et al., 2008; Shaw et al., 2008). 

Furthermore, SEM pictures taken from MDCK grown purified influenza virus 

A/Aichi/2/68 H3N2 P10 (see below) showed clear virus particles devoid of cellular 

debris (Supplementary Figure 7-2). For lipid analysis, two independent experiments 

with three replicates each were performed (n=6) (Supplementary Table 7-3). Mass 

spectrometry analysis (measuring 159 MRM transitions; excluding odd chain aPC 

species) of all samples was conducted in the same run and collected data were 

compared to the average of serum starved mock infected cells at 12hpi (n=9) 



3. Lipidomics of Influenza Virus 

 

81 

(Supplementary Table 7-1) from the previously described time course experiment 

(Chapter 2). The phospholipid composition of influenza virus particles was 

characterized by decreased levels of total PC, PE and PI content and slightly increased 

levels of PS in comparison to the uninfected A549 producer cell (Figure 3-1C&D). 

There was a general enrichment of ether linked lipid species with only a relatively 

small decrease of ePE and a marginal increase in ePC species. SM, GlcCer and Cer 

were generally enriched in influenza virus with SM being the most abundant lipid 

class. On the other hand, there was an overall decrease in ganglioside GM3 species as 

compared to uninfected producer cells (Figure 3-1C&D). The observed trends were 

not only consistent with recent literature on the lipid composition of influenza virus 

particles (Blom et al., 2001; Gerl et al., 2012; Polozov et al., 2008; Scheiffele et al., 

1999; van Meer and Simons, 1982) but also supported our observations from 

influenza virus infected A549 cells. The nearly absence of ganglioside GM3 species 

and the enrichment of dihydrosphingolipid, SM and GlcCer species in influenza virus 

envelopes were in line with a very recent study (Gerl et al., 2012) and also reflected 

the host response during influenza virus infection (Figure 3-1C&D).  
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infection (Figure 2-1D & Figure 3-1C&D). This was in contrast to Gerl et al’s study 

(2012) which did not report any significant changes regarding ePC species. 

Nevertheless, when looking at the ratio of ether linked to ester linked PC species in 

influenza virus particles, it became evident that both results were in agreement and 

consistent with the idea of an influenza virus dependent remodelling of PC species 

(Figure 3-2). 

 

We then asked ourselves whether this remodelling of PC species was influenza virus 

specific or whether it was just a common feature of enveloped viruses. For this 

purpose, we collected published and unpublished data on the lipid composition of 

several enveloped viruses in comparison to their producer cells including HIV and 

murine leukemia virus (MLV) (Chan et al., 2008)1, VSV and SFV (Kalvodova et al., 

2009) as well as HCV (Merz et al., 2011) and dengue virus2. We calculated their 

respective ePC/aPC ratios to make the different lipidomics data sets comparable since 

comparison of absolute values would not have been possible due to differences in 

analysis platforms. This clearly demonstrated that influenza virus particles were the 

only viruses with a higher ePC/aPC ratio as compared to their producer cells 

(unpaired Student’s t-test; two-tailed; p<0.005) suggesting a functional and specific 

link between influenza virus replication and PC class remodelling (Figure 3-2D). We 

observed similar trends when we analysed purified MDCK grown influenza viruses 

including the influenza virus A/PR/8/34 H1N1 strain as well as influenza virus 

A/Aichi/2/68 H3N2 P0 and P10 strains (Figure 3-2) which are discussed in further 
                                                 

1 The lipid profiles of two MLV strains (43D and 17-5) produced from NIH cells were part of a 
collaborative effort with Hung Fan at the University of California, Irvine.  
2 The lipid profile of dengue virus was part of a collaborative effort with Zhang Qian and Shee Mei 
Lock at Duke-NUS, Singapore and has recently been submitted to JCB (Qian et al, 2012). 
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3.3.1.2 The ceramide levels were high in purified influenza virions when compared 

to other enveloped viruses 

 

We noted relatively high levels of ceramide species in purified influenza virus 

particles from A549 cells but no specific upregulation of ceramide species in infected 

A549 cells (Figure 2-1B&D). In our study, there were around 1.7 times higher 

ceramide levels in H1N1 influenza particles whereas the H7N1 virus analysed by Gerl 

et al (2012) had similar levels in comparison to the lipid composition of their host 

cells (Figure 3-3A). The two other analysed H3N2 strains (discussed in further details 

below) exhibited a similar enrichment of ceramide as compared to the analysed 

MDCK producer cell by Gerl et al, 2012 (Figure 3-3A). Again, this was in contrast to 

other enveloped viruses such as HIV, MLV, VSV, SFV which had around three times 

lower ceramide levels (unpaired Student’s t-test; two tailed; p<0.02) than their 

producer cells (Chan et al., 2008; Kalvodova et al., 2009). This suggested that 

ceramide species were locally enriched at the plasma membrane budding site and that 

they represented an influenza virus specific requirement during the virus life cycle 

(Figure 3-3A).  

 

The reported close interaction between ceramide and cholesterol in membranes and 

subcellular organelles (Castro et al., 2009; Goni and Alonso, 2009; Guan et al., 2009; 

Kolter and Sandhoff, 2010; Megha and London, 2004; Silva et al., 2009; Yu et al., 

2005) prompted us to further investigate their relationship in enveloped viruses. Since 

we did not analyse cholesterol levels in the A549 grown influenza virus, we solely 

focused on the published literature. We first calculated an absolute 
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ceramide/cholesterol ratio for VSV and SFV (Kalvodova et al., 2009), influenza virus 

H7N1 (Gerl et al., 2012) and their producer cells and found a much higher ratio in 

influenza virus particles (0.007) as compared  to the ratios of VSV, SFV and producer 

cells (0.0015-0.0025) (Figure 3-3B). At first, this did not seem to be surprising since 

VSV and SFV are viruses which do not bud from classical “lipid raft” domains 

(Kalvodova et al., 2009) whereas influenza virus has been thought to be “raft-

dependent” (Gerl et al., 2012). For that reason, we decided to additionally include 

other plasma membrane budding viruses which are “raft-dependent” such as HIV and 

MLV (Chan et al., 2008). Since the method to normalize cholesterol was different in 

the study describing the lipid composition of HIV and MLV (Chan et al., 2008), we 

came up with a new concept to investigate the ceramide/cholesterol ratio in relation to 

the plasma membrane. We calculated an enrichment value (EV)3 for HIV and MLV 

(Chan et al., 2008), VSV and SFV (Kalvodova et al., 2009), avian leukosis virus 

(ALV) (Robin Chan, unpublished data) and H7N1 (Gerl et al., 2012) which confirmed 

the high enrichment of ceramide species in influenza viruses (Figure 3-3C). 

Surprisingly, HIV and MLV had an EV in the range of VSV and SFV, whereas ALV 

had also a high ceramide/cholesterol ratio comparable to the ratio found in the H7N1 

influenza virus. Considering that ALV and influenza virus are dependent on a low pH 

(late endosomal compartments; pH<5.6), but VSV and SFV on an intermediate pH 

(early endosomal compartments; pH<6.4) and MLV and HIV on a neutral pH (plasma 

membrane or early endosomal compartments; pH<7.4) for fusion (Mercer et al., 

2010), we hypothesized that the ceramide/cholesterol ratio could be representative of 

the virus entry pathway. This was also reflected by the low ceramide/cholesterol ratio 
                                                 

3 = 	( )	( 	 )	( )	( 	 )  
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with the nearly absence of ceramide in purified HCV virus particles which fuse in 

early endosomal compartments (Merz et al., 2011).  

 

Functional differences with regard to cholesterol and ceramide dependency were 

observed during influenza virus and HIV entry into host cells. For instance, 

accumulation of ceramide species in host cells facilitated influenza virus infection but, 

in turn, abolished HIV replication due to an increased activity of host cell endocytosis 

(Finnegan and Blumenthal, 2006). This was in line with the finding that ceramide 

production by sphingomyelinase activity inhibited HIV fusion (Finnegan et al., 2007). 

On the other hand, depletion of cholesterol from host cells inhibited HIV virus entry 

due to impaired clustering of co-receptors into “lipid rafts” (Nguyen and Taub, 2002; 

Popik et al., 2002). Different requirements with regard to cholesterol and ceramide 

during virus entry could be explained by the cellular gradient of ceramide and 

cholesterol within eukaryotic cells. It has been proposed, that the highest enrichment 

of cholesterol is found at the plasma membrane with a gradual decrease towards the 

cell body, whereas ceramide is low at the plasma membrane but increases along the 

endocytic pathway with highest levels in highly acidic compartments due to the 

activity of sphingolipid degrading enzymes (Figure 3-2D) (Kolter and Sandhoff, 

2010). This is illustrated by a recent lipidomics study where the fraction of 

intracellular vesicles (dense microsomes; DM) had a much higher absolute 

ceramide/cholesterol ratio than the plasma membrane (Dennis et al., 2010) (Figure 

3-3B).  

 

We propose that the virus lipid composition mimics the ceramide and cholesterol 

content of intra-/extracellular vesicles and fusion occurs more efficiently if the 
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ceramide/cholesterol ratios between the virus and the target membrane are similar. 

Such a model could be extrapolated to the general trafficking and membrane mixing 

of intracellular vesicles (Figure 3-2D). For example, microvesicles (MV) which are 

derived by shedding or budding from the plasma membrane by a similar mechanism 

harnessed by retroviruses (Wurdinger et al., 2012), transfer their intraluminal content 

to neighbouring cells by direct fusion at the plasma membrane (Nabhan et al., 2012). 

Interestingly, their ceramide/cholesterol ratio is low and similar to viruses (e.g. HIV 

and MLV) which directly fuse at the plasma membrane (Chan et al., 2008) (Figure 

3-3C). In contrast, exosomes which are derived by inward budding from the limiting 

membrane into the intraluminal space of multivesicular bodies (MVB) are enriched in 

ceramide due to the action of sphingomyelinases which are essential for this process 

(Trajkovic et al., 2008; Yuyama et al., 2012). Exosomes are then further released into 

the extracellular space via the secretory pathway and one could imagine that the high 

ceramide content of the intraluminal exosomes diminishes the chance of fusion with 

the secretory endosomal membrane which has decreased ceramide but high 

cholesterol content (Figure 3-2D) (Klemm et al., 2009). Alternatively, fusion events at 

late endosomal compartments are dependent on high ceramide levels as shown by the 

importance of acid sphingomyelinase activity for phago-lysosomal fusion (Schramm 

et al., 2008; Utermohlen et al., 2008; Utermohlen et al., 2003). Synaptic vesicles have 

also a high ceramide/cholesterol ratio but their fusion occurs at the presynaptic 

membrane (Takamori et al., 2006) (Figure 3-3B) which would not support the 

proposed concept (Figure 3-2D). However, it has been shown that ceramidase is 

required for efficient completion of vesicle priming and fusion (Rohrbough et al., 

2004) which would suggest that ceramidase activity decreases the ceramide content 

(Figure 3-2D) and as a result, the ceramide/cholesterol ratio in the synaptic vesicle, to 
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mediate fusion at the plasma membrane which is made of a low ceramide/cholesterol 

ratio (Figure 3-3B).   

 

It is well understood, that the ceramide/cholesterol ratio is not the sole driver of 

vesicular membrane mixing and fusion but, for example, it could possibly influence 

the fluidity and rigidity of the direct lipid environment of virus fusion proteins (Ge 

and Freed, 2011; Luan and Glaser, 1994). It has been shown, that transmembrane 

domains of virus fusion proteins are critical determinants for virus entry (Armstrong 

et al., 2000; Bissonnette et al., 2009; Gravel et al., 2011; Popa et al., 2012). Recently, 

transmembrane domains have also been implicated to have specific requirements and 

affinities for certain lipid species which mediate protein functionality and trafficking 

(Contreras et al., 2012; Ronchi et al., 2008). In this respect, our proposed concept 

argues in favour of a link between virus exit and virus entry. The induced 

ceramide/cholesterol ratio required for budding is a determinant for virus fusion since 

it determines the lipid environment of HA which could be favourable for its function. 

Furthermore, the high ceramide content might be also responsible for the stability and 

transmission of influenza viruses at low temperatures due to induction of gel like 

phases (Castro et al., 2009; Lowen et al., 2007; Polozov et al., 2008). It would be 

interesting to see whether activities of endosomal enzymes such as sphingomyelinases 

further increase the ceramide enrichment in influenza virus envelopes, to trigger 

efficient virus fusion in late endosomal compartments. 
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Figure 3-3: Enrichment of ceramide in enveloped viruses and cellular vesicles (Page 91&92). (A) 
An enrichment value of total ceramide content in enveloped viruses and cellular vesicles in comparison 
to producer cells was calculated. *Values from this study were normalized to our list of measured lipid 
classes to make the results comparable. The normalized values for MDCK cell lines were also used to 
compare MDCK grown viruses analysed in this study to producer cells (H1N1, H3N2 P0, H3N2 P10). 
†Depicts a significant difference calculated by an unpaired Student’s t-test between plasma membrane 
(PM)/early endosome (EE) entering viruses (blue) and late endosome (LE) entering viruses and dense 
microsomes (DM) vesicles (red) (two-tailed; p<0.005). (B) An absolute ceramide/cholesterol 
(Cer/Chol) ratio was calculated for studies that represented cholesterol and ceramide data in a similar 
way. Black diamond represents the Cer/Chol ratio of the PM of respective producer cells. (C) Data is 
represented in comparison to the plasma membrane and an enrichment value (EV) as described in the 
main text has been calculated. ‡Depicts a significant difference calculated by an unpaired Student’s t-
test between PM/EE entering viruses plus microvesicles (MV) and LE entering viruses plus DM 
vesicles (two-tailed; p<0.05). 1(Chan et al., 2008); 2(Kalvodova et al., 2009); 3Robin Chan 
(unpublished); 4(Gerl et al., 2012); 5(Andreyev et al., 2010); 6(Takamori et al., 2006). (D) A proposed 
model of how the ceramide/cholesterol ratio modulates vesicular trafficking as described in the main 
text. Ceramide (red) and cholesterol (blue) enriched vesicles are presented as part of trafficking 
pathways in mammalian cells. (1) Exosomes are produced by inward budding due to ceramide 
generation by sphingomyelinase activity at multivesicular bodies (MVB) (Trajkovic et al., 2008; 
Yuyama et al., 2012). Exosomes are enriched in ceramide preventing fusion with the limiting secretory 
vesicle membrane which is high in cholesterol content, but allows their release into the extracellular 
space. (2) Synaptic vesicles are also high in ceramide content (Takamori et al., 2006) but fusion occurs 
with the plasma membrane after decreasing the ceramide/cholesterol ratio by ceramidase activity 
(Rohrbough et al., 2004). (3) Microvesicles are shed from the plasma membrane similarly to retrovirus 
budding (Nabhan et al., 2012; Wurdinger et al., 2012) and exhibit a high cholesterol content. They 
transfer their content to target cells by direct fusion at the plasma membrane (Nabhan et al., 2012). (4) 
Retroviruses exhibit a low ceramide/cholesterol content and enter host cells either by direct fusion at 
the plasma membrane or by fusion at early endosomal compartment (Miyauchi et al., 2009). 
Interestingly, retrovirus particles which are targeted to late endosomal compartments do not 
successfully infect target cells (Finnegan and Blumenthal, 2006). (5) Influenza viruses exhibiting a 
high ceramide/cholesterol ratio are targeted to late endosomal compartments which also exhibit high 
ceramide content.  
 

 

3.3.2 The lipid composition of two different MDCK cell culture derived 

influenza A virus H3N2 strains: implications for virus severity 

 

The consistent enrichment of certain lipid species in purified influenza virus particles 

as well as in virus infected cells tempted us to have a closer look at a potential 

regulatory mechanism. Despite the limited knowledge of how influenza virus impacts 

host cell lipid metabolism, there are a few reports mainly showing the downregulation 

of phospholipid biosynthesis (Billharz et al., 2009; Caric-Lazar et al., 1978; Kroeker 

et al., 2012). In particular, one study investigating changes in host gene expression 
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induced by different influenza viruses having the same genomic background but 

carrying distinct NS1 proteins reported that NS1 of the 1918 pandemic virus blocked 

host lipid metabolism to a greater extent than the NS1 of a less pathogenic influenza 

virus (Billharz et al., 2009). There is additional evidence that NS1 might be 

implicated in lipid metabolism due to its interaction with HSD17B4 which is an 

essential part of the peroxisomal ß-oxidation cascade (Wolff et al., 1996). As a result, 

we decided to look at the lipid profile of purified influenza viruses carrying the same 

genetic background but mutations in NS1. We focused on two influenza virus H3N2 

strains which differ solely in two point mutations and which exhibit differences in 

pathogenicity (Narasaraju et al., 2009). In this study, an influenza A strain 

A/Aichi/2/68 H3N2 was adapted by ten passages in mice which ultimately showed 

higher virulence with enhanced replication ability caused by non-conservative 

mutations in HA (Gly218Glu) and NS1 (Asp125Gly) (Narasaraju et al., 2009). 

Furthermore, the mutation in NS1 (Asp125Gly) has been independently found to be 

selected upon mouse adaption producing high virus titres with enhanced interferon-ß 

antagonism (Forbes et al., 2012). We assumed a negligible effect of the mutation in 

HA (Gly218Glu) on host lipid metabolism since the mutation lies in a region involved 

in sialic acid linkage recognition, important for entry rather than influenza virus 

replication within the host cell (Narasaraju et al., 2009).  

 

Virus strains were grown in MDCK cell lines to obtain high virus titres. The mouse 

adapted and more virulent influenza H3N2 A/Aichi/2/68 virus strain was referred to 

as P10, and the original H3N2 influenza A/Aichi/2/68 virus strain was referred to as 

P0. We performed three independent experiments with three replicates for each virus 

strain. One replicate of each experiment was used for measuring choline containing 
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lipids by an untargeted approach using a high-resolution QTOF instrument and two 

replicates of each experiment were analysed by a targeted MRM approach.  

 

3.3.2.1 The ePC/aPC ratio was higher in the more virulent P10 influenza virus strain 

 

In a first approach, we analysed three biological replicates (one replicate of each 

independent experiment) of both virus strains by high-resolution mass spectrometry to 

investigate whether remodelling of PC species was also apparent in purified influenza 

virus particles differing in their NS1 proteins. The data were represented in two ways. 

Firstly, a mass spectrum normalized to the most abundant peak (aPC 34:1) was 

plotted for the elution period of PC species (7.0 min to 7.5 min) (Figure 3-4A) and 

secondly, 36 PC species were identified based on their exact mass, normalized to an 

internal standard and finally, to the total amount of PC species (Figure 3-4B). 

Significant differences in lipid levels between the two influenza virus strains were 

identified by a paired Student’s t-test (two-tailed; p<0.05) only including species that 

had the same trend in all three independent biological replicates. Similarly to the time 

course experiment, species having the same trend in all three independent experiments 

were determined by calculating a log(P10/P0) value for each pair (n=3) and the 

interval [Average(log(P10/P0))-StdDev(log(P10/P0)); 

Average(log(P10/P0))+StdDev(log(P10/P0))] must not include zero. Indeed, we 

observed a similar remodelling in PC species with an increase in ePC species (e.g. 

ePC 34:1 and ePC 40:6) but decreased levels of aPC species (e.g. aPC 36:1 and aPC 

36:2) (Figure 3-4B). We then also described the data by the ePC/aPC ratio and despite 

some variations between the three independent experiments (the ePC/aPC ratios in the 
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first experiment differed slightly from the ratios in the other two experiments) (Figure 

3-4C), the differences ∆P10-P0 between the P10 and P0 strains were consistent as 

calculated by a paired Student’s t-test (two tailed; p<0.02) (Figure 3-4C). This 

suggested that influenza viruses with different NS1 proteins do not only impact host 

lipid metabolism but also affect the lipid composition of virus particles.  

 

3.3.2.2 PS, GlcCer and SM species were additionally enriched in the P10 virus strain 

 

To get a better idea of whether NS1 has a more global effect on the lipid composition 

of purified influenza virus particles, we analysed 159 lipid species using a targeted 

MRM approach. The data were normalized to the respective internal standards 

measured for each lipid class and subsequently, to the total amount of measured lipid 

species. Significant differences were identified using an unpaired Student’s t-test (two 

tailed; p<0.05). The P10 virus had a significant increase in most of the PS and GlcCer 

species but only in some SM and ePC species (Figure 3-5). Instead, there was a 

general downregulation of aPC species in the more virulent P10 strain as compared to 

the parent P0 strain and the increased ePC/aPC ratios were consistent in both, the 

untargeted QTOF and targeted MRM approaches (Figure 3-4C&D). We concluded 

that the differences in the ePC/aPC ratios between the two virus strains were mainly 

due to depletion of aPC species rather than an enrichment of ePC species.  
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Figure 3-4: Untargeted QTOF approach to identify PC class specific changes between H3N2 P10 
and H3N2 P0 strains (Page 97): (A) Untargeted mass spectrum of PC species normalized to the 
maximum intensity (aPC 34:1). (B) Identified PC species were normalized to the total PC intensity and 
represented as a heat plot showing the log-fold differences between H3N2 P0 and H3N2 P10 strains. 
Significance levels were calculated by a paired Student’s t-test; *(two-tailed; p<0.1); **(two-tailed; 
p<0.05). (C&D) The ePC/aPC ratios for each pair from three independent experiments were calculated 
and plotted from QTOF (one biological replicate per condition) and MRM data (average of two 
biological replicates per condition). The significance levels of the differences between P10 (red) and P0 
(blue) ∆P10-P0 were calculated by a paired Student’s t-test. 
 

 

The increase in GlcCer and some SM and ePC species and the decrease in aPC 

species clearly followed the same trends as the time course and purified virus lipid 

data from A549 cells (Figure 2-1, Figure 3-1 & Figure 3-5). On the other hand, the 

high levels of PS species in the P10 mutant virus were not as striking in the time 

course and purified virus data from A549 cells even though they also showed an 

increasing trend. We did not anticipate such strong differences between two viruses 

only differing in two non-conservative point mutations since one would assume that 

they would follow similar replication and assembly/budding mechanisms. However, 

similar trends have been previously observed between different influenza virus 

strains, but they remained undiscovered (Polozov et al., 2008). In this study, the 

overall lipid compositions of two different influenza virus strains (Influenza virus A 

X-31, A/Aichi/68 and influenza virus A/2/Japan/305/57) were analysed by thin layer 

chromatography (TLC). The X-31 strain showed increased PS and SM levels, but 

decreased PC levels when compared to the Japan strain, whereas levels of PE species 

remained unchanged (Polozov et al., 2008). 

 

Our results and their study support the importance of increased sphingolipid but 

decreased phospholipid metabolism (mainly aPC species) and strengthen the idea of 

NS1 being a major regulator of host cell lipid metabolism during virus infection. This 
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is not surprising considering reports showing different kinetics of cell signalling, 

cellular metabolism and apoptosis induced by different influenza virus strains 

carrying mutations in NS1 (Ehrhardt and Ludwig, 2009; Gannage et al., 2009; 

Heynisch et al., 2010; Ritter et al., 2010; Seitz et al., 2010; Zhirnov and Klenk, 2007). 

For example, it is well understood that induction of apoptosis leads to an upregulation 

of PS biosynthesis combined with the exposure of PS on the cell surface (Lee et al., 

2012; Martin et al., 1995; Shiratsuchi et al., 2000; Yu et al., 2004). More specifically, 

opposite trends of decreasing aPC but increasing PS species which, in contrary, were 

not upregulated in virus infected cells, point towards a localized increase of PS 

biosynthesis at the plasma membrane since PC can be used as a substrate for PS 

synthase 1 (PTDSS1) which exchanges the choline head group of PC with serine. 

Serine exchange reactions using PC as a substrate have been reported to additionally 

occur at the plasma membrane despite their predominant localization to 

mitochondrial-associated membranes (Mozzi et al., 1997; Siddiqui and Exton, 1992; 

Vance, 2008). The increase of PS species in the more virulent P10 strain could thus 

reflect its increased apoptotic potential in virus infected cells.  

 

In addition, metabolites from glycolysis can be redirected into lipid metabolism, 

especially, PS and sphingolipid biosynthesis through the production of serine from 3-

phosphoglycerate and ether lipid biosynthesis by acylation of dihydroxyacetone 

phosphate. Since induction of glycolysis was retarded in a slower replicating 

influenza virus strain as compared to a fast replicating strain which expressed 

different NS1 variants (Ritter et al., 2010), we could argue that more virulent viruses 

do not only have a greater impact on glycolytic flux but additionally on lipid 

metabolism. This is supported by gene expression studies showing a greater impact of 
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more virulent viruses expressing distinct NS1 proteins on lipid metabolism (Billharz 

et al., 2009). 

 

Serine incorporator (Serinc 1-5) has been proposed to be at the forefront linking 

glycolysis, PS and sphingolipid biosynthesis together, by providing a membrane 

embedded scaffold for glycolytic and serine biosynthetic enzymes at various cellular 

membranes, including the plasma membrane (Inuzuka et al., 2005). Interestingly, 

Serinc5, also known as TPO1, expression in influenza virus infected cells was 

dependent on the presence of NS1 (Geiss et al., 2002) and it has been shown to 

localize to sphingolipid rich domains in cellular membranes including the plasma 

membrane (Fukazawa et al., 2006; Krueger et al., 1997). Overexpression of Serinc 

proteins led to the increased incorporation of serine into phosphatidylserine and 

sphingolipids (Inuzuka et al., 2005). Since the observed differences in the two 

purified influenza virus H3N2 strains possibly reflected localized changes of PS, PC 

and GlcCer species at plasma membrane budding sites, we could speculate that such 

effects were due to differences in lipid metabolism redirected from glycolytic 

intermediates at the plasma membrane which would be in line with upregulation 

(Kroeker et al., 2012) and early phosphorylation (Figure 2-4) of PKM2 in influenza 

virus infected cells. This could also explain the enrichment of glycolytic enzymes 

PKM2, enolase 1 (ENO1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) & 

phosphoglycerate kinase 1 (PGK1)) and lipid metabolic proteins (fatty acid synthase 

(FASN) & diazepam binding inhibitor (DBI)) in influenza virus envelopes (Shaw et 

al., 2008).  
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changes (Jain et al., 2012). Being interested in qualitative rather than quantitative 

differences and to make the datasets from various independent experiments 

comparable, we transformed the data points (146 lipid species; species with missing 

values were excluded) of each experiment into a log(fold-ratio) (Supplementary Table 

7-4): for the time course data we obtained six log(H1N1/mock) from the three 

independent experiments at two time points (18hpi and 24hpi); for the lipid profile of 

H1N1 virus produced from A549 cells, we obtained six log(H1N1/A549) by dividing 

the averages of each of the two independent experiments for H1N1 by the three 

averages of mock infected A549 cells at 12hpi obtained from the three independent 

time course experiments; and for the differences between H3N2 P0 and H3N2 P10, 

we obtained three log(P10/P0) representing three independent experiments 

(Supplementary Table 7-4). The obtained dataset was clustered using the open source 

clustering software Cluster3.0 (de Hoon et al., 2004) and the clustered data was 

visualized using Java TreeView (Saldanha, 2004) with red indicating an upregulation, 

blue a downregulation and white no change (Figure 3-6A). 22 clusters were identified 

with unique patterns of lipid regulation within the three groups (virulence associated 

lipids: log(P10/P0); viral lipids: log(H1N1/A549); host response: log(H1N1/mock)) 

which clearly illustrated the increase in sphingolipid and the decrease in phospholipid 

species in influenza virus particles and virus infected cells (Figure 3-6A&B). The 

majority of lipid species belonging to the same class clustered together suggesting a 

lipid class rather than a species dependent regulation of lipid metabolism during 

influenza virus infection (Figure 3-6A). For example, cluster 8 consisted of 38 or 40 

carbon containing saturated aPC species (aPC 38:0 & aPC 40:0) and unsaturated ePC 

species (ePC 38:3; ePC40:4 & ePC40:6) which were decreased in purified influenza 

virus particles but slightly increased in virus infected cells and in more virulent virus 
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particles (Figure 3-6A&C). This possibly reflected changes important for intracellular 

stages of influenza virus replication rather than requirements for virion 

morphogenesis. Cluster 9 solely contained unsaturated aPC and aPE species which 

were downregulated in all three groups (Figure 3-6A&C) and clearly represented the 

inhibitory effect of influenza virus on lipid metabolism. Cluster 14 was considered the 

severity related cluster since it solely included PS species which were enriched in 

more severe P10 virus particles as compared to the P0 strain but showed only slightly 

increasing trends in virus infected cells and purified virus particles (Figure 3-6A&C). 

Cluster 17 was comprised of ceramide contain sphingolipids (SM, Cer and GlcCer 

species) with short chain saturated fatty acids (C16-C18) and of ether linked PE and 

PC species which were enriched in purified influenza virus particles but did not 

exhibited any specific severity and host response related signature (Figure 3-6A&C). 

Clustering of sphingolipids containing ceramides with short chain saturated fatty acids 

together with ePE and ePC in virus envelopes could reflect a special requirement for 

plasma membrane organization and influenza virion morphogenesis. It has been 

reported that shorter chain sphingolipids were enriched in the plasma membrane in 

relation to longer chain sphingolipids which were found to be predominantly localized 

to intracellular vesicles (Koivusalo et al., 2007). This would explain the involvement 

of CerS2 in intracellular trafficking events since it is responsible for the production of 

long chain fatty acid containing sphingolipids. Hence, as previously proposed 

(Chapter 2), upregulation of long chain fatty acid containing sphingolipids in virus 

infected cells likely reflects the need for vesicular trafficking. On the other hand, 

cluster 19 described sphingomyelin species with fatty acid chain moieties >C18 which 

were upregulated in virus infected cells and purified virus particles (Figure 3-6A&C) 

which probably reflected a general requirement of sphingomyelin biosynthesis for 
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influenza virus replication. Finally, cluster 20 combined SM and GlcCer species with 

saturated fatty acid moieties which were upregulated in virus infected cells and their 

enrichment in purified particles was also severity dependent (Figure 3-6A&C). These 

findings could indicate the severity related upregulation of sphingolipid biosynthesis 

in influenza virus infected cells due to increased glycolytic activity.  

 

Hierarchical clustering clearly summarized the separately introduced findings in the 

previous paragraphs and illustrated once more the general importance of PC lipid 

class remodelling and sphingolipid biosynthesis (GlcCer and SM species) for 

influenza virus replication. We additionally identified a severity specific regulation of 

GlcCer and PS species. 
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3.3.4 Lipid composition of purified H1N1 influenza viruses treated with a 

broad spectrum antiviral4 

 

Our results on purified influenza viruses revealed specific and common features in 

relation to other enveloped viruses. The common features of host-derived lipid 

bilayers of enveloped viruses are important to maintain biophysical characteristics 

such as membrane fluidity and membrane curvature which are not only essential for 

structural integrity but also for functionality during the virus life cycle, including 

membrane fusion during infection of host cells. For example, the general enrichment 

of cholesterol in enveloped viruses ensures proper packing and fluidity whereas 

enrichment of PE species maintains a hexagonal phase in virus envelopes which are 

essential for membrane curvature and fusion. In addition, virus membranes are inert 

and do not have any reparative capabilities like biogenic cellular membranes. Such 

characteristics, which are common between enveloped viruses but distinct in 

comparison to mammalian cells, present an attractive target for antiviral therapy. This 

has been recently addressed by several groups (Boriskin et al., 2008; Kesel, 2011; St 

Vincent et al., 2010; Wolf et al., 2010; Zasloff et al., 2011) and LJ001 has been 

identified as a membrane-binding broad spectrum antiviral which inhibits all tested 

enveloped viruses in a very late stage of the fusion cascade (just prior to membrane 

merger and fusion) without exhibiting any cytotoxic effects on host cells (Wolf et al., 

2010) (Vigant et al, submitted). Interestingly, the inhibitory potential of LJ001 was 

not observed in non-enveloped viruses (Wolf et al., 2010) and it was not dependent on 

                                                 

4 This work was part of a collaborative effort with Federic Vigant and Benhur Lee at the University of 
California, Los Angeles (UCLA) and is under review for publication in Nat Chem Biol (Vigant et al, 
submitted). 



3. Lipidomics of Influenza Virus 

 

108 

the presence of cholesterol since SFV produced from cholesterol depleted cells did 

not show any differential sensitivity (Vigant et al, submitted).  

 

This sparked our interest to investigate the effect of LJ001 on the phospholipid 

composition of influenza virus particles. First, we established the IC50 for LJ001 and 

for a second generation compound with higher antiviral potency, JL103, on purified 

MDCK grown H1N1 influenza virus. Three independent experiments were performed 

and virus was exposed for ten minutes to light with three-fold dilutions of compound 

concentrations followed by plaque assay (Figure 3-7A). Light exposure was necessary 

due to the photosensitizing characteristics of the compounds (Vigant et al, submitted). 

We determined the IC50 to be 25.7nM and 1.7nM for LJ001 and JL103 respectively 

which was in the similar IC50 range of the other tested enveloped viruses (Vigant et al, 

submitted) (Figure 3-7B). 
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3.3.4.1 LJ001 and JL103 oxidized phospholipids without affecting the total amount 

of lipids 

 

Subsequently, we proceeded to analyse the lipid composition of purified influenza 

virus particles treated with 5µM of LJ001, JL103 or LJ025 (control compound). In an 

initial experiment viruses were treated and exposed to light for 10min. Samples were 

analysed using a high resolution Thermo LTQ-Orbitrap mass spectrometer and an 

ABI 3200 QTRAP mass spectrometer after liquid chromatography separation (Davis 

et al., 2008; Shui et al., 2011b). Despite the observed antiviral potency, we did not 

detect any lipid related changes (Lukas Tanner & Guanghou Shui, unpublished). 

Hence, we decided to increase the incubation period to an hour, to saturate and 

maximize the anticipated lipid modifications. We performed two independent 

experiments with two replicates for each condition. The total phospholipid 

composition and class distribution did not change in LJ001 and JL103 treated 

influenza virus particles but promptly, there was an up to 300-fold increase in 

unsaturated oxidized phospholipid species as compared to the control LJ025 treated 

viruses (Figure 3-8A). Furthermore, we also noted a consistent higher-fold increase of 

oxidized phospholipids in JL103 treated samples as compared to LJ001 which likely 

illustrated its higher antiviral potency (Figure 3-7A & Figure 3-8A). The precision of 

our measurements (Δ < 1ppm) allowed us to distinguish the spectrum of oxidized 

(OO)PC 36:2 (m/z=818.5910) from (unoxidized) ePC 40:6 (m/z=818.6063). The 

former was present in the LJ001 and JL103 treated samples, but almost completely 

absent in the LJ025 sample (Figure 3-8B). Based on these findings, our collaborators 

confirmed the oxidizing capability of the compounds on liposomes with a defined 
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3.4 Conclusion 

 

In this chapter we investigated the lipid compositions of different influenza virus 

strains and showed their functional importance. For the first time, we reported the 

lipid composition of purified influenza virus particles produced from A549 lung 

epithelial cells which highlighted the capability of influenza virus to tailor host cell 

metabolism to its needs (Chapter 2 & Figure 3-1). Furthermore, the lipid composition 

of A549 produced virus particles also showed high similarity to the previously 

reported MDCK grown influenza virus particles (Gerl et al., 2012). For example, in 

both influenza viruses, an increased remodelling of PC lipid species was evident due 

to an increased ePC/aPC ratio in comparison to their producer cells (Figure 3-2). The 

increased ePC/aPC ratio was specific for influenza virus particles when compared to 

the lipid composition of other enveloped viruses which suggested a functional 

importance of ePC species for influenza virus replication (Figure 3-2 & addressed in 

Chapter 4). We strikingly identified remodelling of PC class lipids to be severity 

dependent as shown by distinct lipid compositions of two influenza strains differing in 

a non-conservative point mutation in NS1 (Asp125Gly) conferring a higher degree of 

pathogenicity (Forbes et al., 2012; Narasaraju et al., 2009) (Figure 3-4). More detailed 

analyses revealed additional differences with regard to PS and GlcCer lipid species 

(Figure 3-5) which further supported the assumption that lipid biosynthesis was linked 

to increased glycolytic flux in a severity dependent manner. In summary, we 

established NS1 to be a regulator of influenza virus particle lipid composition which 

reflected its ability to interfere with host lipid metabolism on a gene expression level 

(Billharz et al., 2009).  
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We also identified a high enrichment of ceramide species in influenza virus particles 

when compared to their producer cells despite no differential regulation in infected 

A549 cells (Figure 2-1 & Figure 3-3). We speculated that an enrichment of ceramide 

levels possibly reflected a localized change at the plasma membrane important for 

virus budding and structure. Integration of our findings with existing literature led us 

to the conclusion that the ceramide/cholesterol ratio in viruses and cellular vesicles 

represents an important determinant for intracellular trafficking and mirrors influenza 

virus entry at late endosomes (Figure 3-3).  

 

The described data illustrated the importance of host lipid species for the lifecycle 

progression of influenza virus and other enveloped viruses. This was conclusively 

confirmed by new antiviral compounds (LJ025 & JL103) which significantly reduced 

virus infection by oxidation of phospholipids in the virus envelope (Figure 3-7 & 

Figure 3-8). 

 



 

 

4 Functional Role of Lipids in Virus 

Infection and Cell Organization
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4.1 Introduction and rationale 

 

In chapters 2 & 3, we identified distinct lipid patterns which are not only associated 

with influenza virus infections but also with purified influenza virus particles and 

virus pathogenicity. For example, the influenza virus specific remodelling of PC class 

lipids with an increase in ePC but a decrease in aPC species, combined with the 

general upregulation of SM species, pointed towards a specific requirement of choline 

containing lipids for influenza virus replication, which was additionally supported by 

previous reports (Billharz et al., 2009; Caric-Lazar et al., 1978). This prompted us to 

harness a siRNA and a pharmacological approach to interfere with choline containing 

ether- and sphingolipids to elucidate their functional role during an influenza virus 

infection. 

 

In this chapter we will elaborate on the functional roles of lipids during influenza 

virus infection with a special focus on ether- and sphingolipids. First, we will show 

that influenza virus replication is impaired in ether lipid deficient cells by using a cell 

line impaired in DHAPAT activity and a siRNA approach targeting AGPS which both 

are essential enzymes in ether lipid biosynthesis. We will subsequently propose the 

involvement of ether lipids in polarized vesicular trafficking by harnessing an 

extensive literature mining approach and an interaction of influenza viruses with host 

cell peroxisomes. This will be underlined by our findings of a putative peroxisomal 

targeting sequence in NS1 and by the inhibitory activity of a PPARɑ agonist on 

influenza virus replication. 
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In the second part, we will address the function of sphingolipids, especially 

sphingomyelin species, during influenza virus replication by using D609, a 

pharmacological inhibitor of sphingomyelin synthase. The results will be put into 

context with recent literature and based on additional lipid data of D609 treated cells, 

we will propose an involvement of a sphingomyelin salvage pathway which requires 

de novo sphingolipid biosynthesis.  

 

Finally, we will underline the general importance of lipids in cellular organization and 

trafficking by presenting the vast impact of phosphatidylinositol-4 kinase type 3 alpha 

(PI4KIIIɑ) on cellular lipid metabolism. The chapter will conclude with a general 

discussion of the introduced findings in the context of existing literature and in 

relation to each other.  
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4.2 Materials and methods 

 

4.2.1 Cells, viruses and reagents 

 

Wild type Chinese hamster ovary cell line (CHO-K1) cells and its ether lipid deficient 

variant NRel-4 were kindly provided by Raphael A. Zoeller (Boston University, 

USA). Validated silencer select siRNA constructs targeting AGPS (s16248 and 

s16249) and Rab11a (s16703 and s16704) and a control scrambled silencer select 

siRNA were purchased from Ambion (Texas, USA); Anti-AGPS antibody 

(HPA030209) was purchased from Sigma Aldrich (St. Louis, USA), anti-GAPDH 

antibody (sc-47724) from Santa Cruz (California, USA) and anti-Rab11a antibody 

(ab78337) from Abcam (Cambridge, UK); The PPARɑ agonist GW7647 and the 

sphingomyelin synthase inhibitor D609 were obtained from Tocris Bioscience 

(Bristol, UK); All other reagents were from identical sources as described in chapters 

2 and 3 unless stated otherwise.  

 

4.2.2 Lipid profiling of influenza virus infected CHO-K1 and NRel-4 cells 

 

Wild type CHO-K1 and ether lipid deficient NRel-4 cells were routinely grown in 

F12 GlutaMAX™ (10% FBS, 50u/ml penicillin & 50µg/ml streptomycin) and 

infection with influenza virus was performed as described above. Briefly, 24 hours 

prior to infection, CHO-K1 and NRel-4 cells were seeded into 10cm tissue culture 

dishes und subsequently grown to confluency at 37oC, 5%CO2. One experiment with 

three replicates per condition was performed (CHO-K1 mock (n=3); CHO-K1 
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infected (n=3); NRel-4 mock (n=3); NRel-4 infected (n=3)) and cells were infected 

with influenza virus A/PR/8/34 H1N1 (MOI 5). Cells were collected after 18hpi and 

lipid extraction followed by mass spectrometry analysis (excluding odd chain aPC 

species) was performed as described in chapter 2. Analysed data was compared to the 

18hpi time point of the A549 time course experiment (n=9; Chapter 2) solely 

including the 68 differentially regulated lipid species identified in A549 cells 

(excluding odd chain aPC species). Data was represented in a heat plot calculated by 

the log(H1N1/mock) ratios for the three cell types (A549, CHO-K1 & NRel-4). 

 

4.2.3 Impact of DHAPAT deficiency on influenza virus replication 

 

To investigate the impact of ether lipid deficiency on influenza virus replication, 

CHO-K1 and NRel-4 cells grown in 12-well plates were infected with influenza virus 

A/PR/8/34 H1N1 (MOI <1) and virus replication was assessed by western blot and 

plaque assay after 18 hours of infection. A small MOI was used to ensure capturing of 

effects on virus growth. Three independent experiments were performed and 

infection, western blot and plaque assays were executed as in chapter 2. Anti-

influenza virus M2 (1:1000) and anti-GAPDH antibodies (1:1000) were used to 

determine influenza virus protein expression and as a loading control respectively.  
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4.2.4 Impact of AGPS knockdown on influenza virus infection 

 

4.2.4.1 Knockdown of AGPS and Rab11a by siRNA interference 

 

Two siRNA constructs for AGPS (s16248 and s16249) and Rab11a (s16703 and 

s16704) were used. At least three independent experiments with duplicates per 

condition were performed. Reverse transfection of siRNA constructs into A549 cells 

was performed in 12-well plates according to the manufacturer’s protocol. Three 

different concentrations (3nM, 6nM and 12nM) were used and for each experiment, 

two replicates of water and scrambled siRNA controls were performed. Briefly, 200µl 

of OptiMEM (Gibco®, Life Technologies Co. (San Diego, California, USA) ) 

containing 6µl of appropriate stock siRNA concentration and 2µl of lipofectamine 

RNAiMAX reagent (Invitrogen®, Life Technologies Co. (San Diego, California, 

USA)) were added to 24-well plates and incubated for 20min at room temperature. 

Afterwards, A549 cells were seeded into the wells in antibiotics free F12 

GlutaMAX™ supplemented with 10% FBS. Seeded cell density was around 30% of 

confluency and cells were collected after 48 hours incubation at 37oC, 5%CO2. 

Knockdown efficiency was assessed by reverse transcription quantitative polymerase 

chain reaction (RT-qPCR) and immunoblotting. Cell viability was assessed using a 

MTT cell viability assay (Invitrogen®, Life Technologies Co. (San Diego, California, 

USA)) and degree of ether lipid depletion was measured by mass spectrometry. 
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4.2.4.2 Real time PCR 

 

RNA of transfected A549 cells was extracted using QIAshredder and RNeasy mini kit 

(QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. 

Concentration of extracted RNA was determined using a NanoDrop system (Thermo 

Fisher Scientific Inc, Massachusetts, USA) and cDNA for RT-qPCR was synthesized 

using reverse transcription by the Superscript III First-strand synthesis supermix 

purchased from Invitrogen, Life Technologies Co. (San Diego, California, USA). 

Annealing buffer, Oligo-dT nucleotides, 2x first-strand reaction mix and reverse 

transcriptase enzyme mix were added as described in the manufacturer’s protocol. 

Subsequently, synthesized cDNA was mixed together with pre-designed primers 

targeting the gene of interest and with the TaqMan Universal PCR Master Mix 

(Applied Biosystems, California, USA). qPCR was run using the Realtime 3200 

system (Roche Diagnostics, Rotkreuz, Switzerland) and for each run, an endogenous 

control (18s) was included. 

 

4.2.4.3 MTT cell viability assay 

 

Cell viability after knockdown of genes of interest was assessed by the Vybrant MTT 

cell proliferation assay kit (V13154) (Invitrogen®, Life Technologies Co. (San Diego, 

California, USA)). Measurement of cell viability was conducted in at least three 

independent experiments. The assay was performed in a 96-well plate and siRNA 

transfection was performed as described above. After 48 hours, cells were subjected 

to serum starvation (to mimic infection conditions) in antibiotics free F12 
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GlutaMAX™ and after 18 hours, cell culture media was replaced with 100µl of fresh 

serum and antibiotics free F12 media without phenol red (Caisson Labs, Utah, USA). 

Subsequently, 10µl of MTT stock solution was added to each well and cells were 

incubated for two hours at 5%CO2, 37oC. Then, 85µl of media was removed from the 

wells and replaced with 50µl of DMSO. After an additional incubation at 5%CO2, 

37oC for 10 minutes, cell viability was determined by measuring absorbance at 540nm 

using a SpectraMax190 micro titre plate reader (Molecular Devices LLC, California, 

USA).  

 

4.2.4.4 Determination of protein expression by western blot 

 

Knockdown efficiency was additionally determined on the level of protein expression. 

siRNA transfected A549 cells grown in 12-well plates were collected after 48 hours 

and subjected to immunoblotting as described in chapter 2. Antibodies against Rab11a 

(1:1000) and AGPS (1:2000) were used in combination with anti-GAPDH (1:1000) 

and anti-ɑ-tubulin (1:1000) antibodies as loading controls. At least three independent 

experiments with duplicates per condition were performed.  

 

4.2.4.5 Lipid measurements in AGPS depleted cells 

 

Finally, knockdown efficiency was validated on the metabolite level using our 

established HPLC-MS/MS (operated in MRM mode) approach (Chapter 2). Two 

independent experiments with three replicates per condition were conducted. Lipids 

were harvested from cells grown in 10cm dishes for 48 hours and either transfected 
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with AGPS (s16248 and s16249) or scrambled siRNA constructs. Subsequent mass 

spectrometry analysis was performed as described in chapter 2.  

 

4.2.4.6 Effect of AGPS knockdown on influenza virus replication 

 

After establishing knockdown efficiency of transfected siRNA constructs on gene and 

protein expression as well as on metabolite levels, at least three independent 

experiments were conducted to determine the effect of AGPS knockdown on 

influenza virus replication. siRNA transfection and subsequent virus infection were 

done as described above. Briefly, siRNA transfected cells grown for 48 hours in 12-

well plates were infected with influenza virus (MOI <1). A small MOI was used to 

ensure capturing of effects on virus growth. Cell lysates and virus supernatants were 

collected after an additional incubation for 18 hours, subjected to immunoblotting for 

virus protein expression (anti-influenza virus M2 (1:1000) and ɑ-tubulin (1:1000) as 

loading control) and plaque assay according to the above described protocols (Chapter 

2).  

 

4.2.5 Bioinformatics analysis of ether lipid enrichment in trafficking pathways 

 

Hits from a recent systems-scale siRNA screen on endocytosis (Collinet et al., 2010) 

were reanalysed. The list of 4609 gene hits was filtered based on *lipid* in any of the 

annotation categories using Excel (Microsoft, Washington, USA). This resulted in a 

list of 372 genes which had an association with lipid metabolism. Subsequently, this 

list was used to identify enriched lipid pathways as defined by the KEGG 
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PATHWAY database (http://www.genome.jp/kegg/pathway.html#lipid). A manual 

annotation was performed and out of the 372 genes, 240 genes were associated with 

any of the 15 defined lipid pathways. Significant enrichment was assessed using a 

one-tailed Fisher’s exact t-test (right/greater tail) calculated using an online tool 

(http://www.langsrud.com/fisher.htm). Two criteria were used to describe pathway 

enrichment. The first criteria represented the general gene enrichment in a given lipid 

pathway whereas the second criteria described coverage of nodes in a pathway. Nodes 

in KEGG PATHWAY usually contain more than one homologue and the node was 

considered covered as long as one homologue was identified in the gene list. Each 

lipid pathway was scored according to its ranks based on gene enrichment (1 (lowest 

enrichment) to 15 (highest enrichment)), node coverage (1 (lowest enrichment) to 15 

(highest enrichment)) and based on its Fisher’s exact test p-value (1 (highest p-value) 

to 15 (lowest p-value)). The three individual scores for each lipid pathway were 

combined (combined rank score) and the distribution was described by the median 

and median absolute deviation (MAD). A significant enrichment of a lipid pathway 

was considered when the individual combined rank score of a lipid pathway was 

greater than (median+MAD).  

 

4.2.6 Impact of PPARɑ agonist (GW7647) on influenza virus replication 

 

A549 cells were infected with influenza virus (MOI <1) as described above and after 

1 hour of infection, virus inoculum was exchanged with serum and antibiotics free 

F12 GlutaMAX™ supplemented with 1µM, 2µM and 5µM GW7647. Three 

independent experiments were performed in duplicates per condition. Virus 
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supernatants were collected after incubation for another 18 hours and subjected to 

determination of virus titres by plaque assay according to the protocol in chapter 2. 

Additionally, cell viability of GW7647 treated cells was assessed by the above 

described MTT assay in one experiment with three replicates. 

 

4.2.7 Impact of the SMS1/2 inhibitor D609 on influenza virus replication 

 

A549 cells were infected with influenza virus (MOI <1) in 12-well plates as described 

above and incubated for 12 hours in serum and antibiotics free F12 GlutaMAX™ at 

5%CO2, 37oC. Then, medium was exchanged with fresh serum and antibiotics free 

F12 GlutaMAX™ supplemented with 10µM and 100µM D609. Cells were incubated 

for another 6 hours at 5%CO2, 37oC prior to collection of cell lysates and supernatants 

for the determination of virus protein expression by western blot and virus titres by 

plaque assay (Chapter 2). Three independent experiments were conducted and for one 

experiment, cell viability of D609 treated cells was also assessed by the previously 

described MTT assay.  

 

For lipid analysis by mass spectrometry, A549 cells were treated with 10µM D609 in 

serum and antibiotics free F12 GlutaMAX™ for 18hpi. Collected cells were subjected 

to lipid extraction followed by mass spectrometry as outlined in chapter 2. One 

experiment with duplicates per condition was performed. 
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4.2.8 Lipid profile of PI4KIIIɑ KO fibroblasts 

 

Dried lipid extracts prepared from WT and PI4KIIIɑ KO mouse embryonic fibroblasts 

(MEF) according to the modified Bligh & Dyer protocol as described in chapter 2 

were obtained from our collaborators (Fubito Nakatsu & Pietro De Camilli, Yale 

University, USA) (Nakatsu et al, 2012). Dried lipid extracts were dissolved in 100 to 

200µl chloroform:methanol 1:1. 20µl and 5µl aliquots were used for quantitative 

measurements of phospholipids and cholesterol respectively. 

 

4.2.8.1 Quantitative analysis of cellular phospho- and sphingolipids by HPLC-

MS/MS (operated in MRM mode) 

 

Quantitative analysis of phospholipids was performed as described in chapter 2 except 

for using a slightly modified list of MRM transitions also including transitions for PA 

and lysolipid species (Supplementary Table 7-6). 20µl of samples were combined 

with 20µl of 2x standard mixture also containing a representative standard for PA 

(1,2-ditetradecanoyl-sn-glycero-3-phosphate or DMPA; 0.25ug/ml final 

concentration) besides the previously introduced standards.  

 

4.2.8.2 Cholesterol analysis by HPLC APCI mass spectrometry 

 

Free cholesterol was analysed as described previously (Shui et al., 2011a). Only 

HPLC grade solvents were used and the deuterated cholesterol standard (cholesterol-

26,26,26,27,27,27-d6) was obtained from CDN Isotopes Inc. (Quebec, Canada). 
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Briefly, 5µl of dissolved cell lipid extracts were diluted in 25µl chlororform:methanol 

1:1 and combined with 20µl of a 2x standard mix containing the cholesterol-d6 (final 

concentration 2.5µg/ml) standard. Samples were analysed using an Agilent 

HPLC1100 system (Agilent, California, USA) coupled to an Applied Biosystems 

3200 QTrap mass spectrometer (Applied Biosystems, California, USA). MRM 

transitions for endogenous cholesterol (369.4/161.0) and cholesterol-d6 (375.4/161.0) 

were monitored in the positive atmospheric pressure chemical ionization (APCI) 

mode. Measured cholesterol levels were first normalized to the cholesterol-d6 

standard and finally presented relative to the measured phospholipid concentration to 

account for sample-to-sample variation. Statistically significant differences (p<0.05) 

were calculated using an unpaired two tailed Student’s t-test. 
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4.3 Results and discussion 

 

4.3.1 Influenza virus replication is impaired in ether lipid deficient cells5 

 

4.3.1.1 Influenza virus replication was reduced in ether lipid deficient CHO cells 

 

Based on our results showing an influenza virus specific remodelling of PC lipids, 

especially an upregulation of ePC but a downregulation of aPC species, in virus 

infected cells and also in purified virus particles, we decided to use an ether lipid 

deficient cell line to investigate the importance of ether lipids during influenza virus 

infection. We infected a wild type CHO-K1 and its ether lipid deficient variant, NRel-

4 (Nagan et al., 1998), with influenza virus A/PR/8/34 H1N1 to check for differential 

regulation of lipid metabolism as well as impairment in virus replication. The ether 

lipid deficient NRel-4 cells exhibit significant lower levels of ether lipids due to 

DHAPAT activity (Nagan et al., 1998). DHAPAT is localized in the peroxisome and 

attaches a fatty acid moiety onto the glycolytic intermediate DHAP which is essential 

for ether lipid biosynthesis.  

 

Control and mutant CHO cells were infected with influenza virus at an MOI 5 and 

virus titres and lipid changes were assessed after 18hpi.  For lipid analysis, we 

performed one experiment with three replicates each measuring the 159 lipid species 

                                                 

5 This work was part of a MSc project completed by Charmaine Chng under my supervision: Designed 
the experiments (Lukas Tanner & Charmaine Chng), performed the experiments (Charmaine Chng) 
and analyzed the data (Lukas Tanner & Charmaine Chng). 
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(excluding odd chain aPC species) which were also analysed in the previous time 

course experiment in A549 cells (Chapter 2). Subsequently, we compared the 

identified 68 lipid species which were differentially regulated in influenza virus 

infected A549 cells (excluding odd chain aPC species; Figure 2-1) to the lipid 

changes in infected wild type and mutant CHO cells (Figure 4-1A). The general 

changes induced by influenza virus infection in CHO cells were consistent with the 

changes in A549 cells, with an upregulation of sphingolipids (mainly GlcCer and 

some SM species) and a clear downregulation of gangliosides GM3, aPE and some 

aPC species (Figure 4-1A). The relatively small changes in SM species in CHO cells 

at 18hpi were most probably due to delayed influenza virus replication kinetics in 

CHO cells since these cells are less supportive for influenza virus replication as 

observed by decreased virus titres when compared to A549 cells (Narasaraju et al., 

2009). However, there was an obvious upregulation of the total amount of ePC 

species in wild type CHO cells (unpaired Student’s t-test; two-tailed; p<0.05) but not 

in its ether lipid deficient variant NRel-4 cells, which reflected their reported 

impairment in ether lipid biosynthesis (Figure 4-1A). Furthermore, the saturated aPC 

species (aPC 36:0 and aPC 38:0), which were usually upregulated in infected A549 

and CHO-K1 cells, were downregulated in the mutant NRel-4 cell line, suggesting 

again a crucial involvement of PC species in influenza virus replication. In contrary, 

total amount of aPE species showed an increasing trend in virus infected NRel-4 cells, 

as opposed to decreased levels in A549 and unchanged levels in CHO WT cells 

(Figure 4-1A).  

 

After establishing the differential regulation of PC species in influenza virus infected 

ether lipid deficient NRel-4 cells as compared to infected wild type CHO and A549 
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cells, we analysed the effect of ether lipid deficiency on influenza virus infection. 

Ether lipid deficient NRel-4 cells consistently exhibited slightly lower expression 

levels of influenza virus proteins NS1 and M2 and a three- to four-fold decrease in 

infectious virus particle formation when compared to wild type CHO-K1 cells (Figure 

4-2B). These results conclusively emphasized a possible requirement for ether lipids 

in influenza virus replication. 

 

4.3.1.2 Influenza virus replication was also reduced in AGPS depleted A549 cells 

 

Since DHAP can also be redirected into TAG biosynthesis under high glucose 

consumption (Hajra et al., 2000) and since the two CHO cell variants were not 

isogenic, we decided to use a siRNA approach targeting AGPS in A549 cells to obtain 

a clearer picture of ether lipid involvement in influenza virus replication. AGPS 

exchanges the fatty acid of acyl-DHAP with a fatty alcohol introducing the 

characteristic ether bond at the sn-1 position or less frequently at the sn-2 position. 

This irreversible step lies just downstream of DHAPAT and is also localized in the 

peroxisome. Two siRNA constructs (s16248 and s16249) targeting AGPS were 

transfected into A549 cells and three different concentrations were used to validate 

the knockdown efficiency of AGPS mRNA, protein and ether lipid metabolite levels 

by RT-qPCR, western blot and mass spectrometry, respectively. Validation of off-

target effects was beyond this study since purchased siRNA constructs have been 

tested for off-target effects as stated by the manufacturer. Cell viability after 

knockdown was assessed by MTT assay. We observed a significant reduction (>90%) 

of AGPS mRNA expression for both constructs (s16248 and s16249) across all three 
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different concentrations without affecting cell viability after 48 hours in three 

independent experiments (Supplementary Figure 7-3). Subsequently, we decided to 

use the 12nM concentration for further experiments and immunoblotting additionally 

confirmed the knockdown efficiency showing decreased AGPS protein expression in 

cells transefected with AGPS targeting siRNA constructs as compared to water and 

non-targeting siRNA control expressing cells (Figure 4-1C).  

 

We then proceeded in testing whether ether lipid levels were also affected by the 

siRNA treatment. Two independent experiments with three replicates each were 

performed and lipids were extracted after 48 hours of transfection. We observed a 

small (around 1.5-fold) but significant decrease in ether linked lipid species (ePC and 

ePE) with a concomitant increase in ester linked lipid levels (aPC and aPE) whereas 

other phospho- and sphingolipid classes remained unchanged (Figure 4-1D). These 

results underlined the tight balance between ester linked- and ether linked lipid 

species and posed a good system to further investigate the functional role of ether 

lipids in influenza virus infection.  

 

AGPS deficiency resulted in two- to three-fold reduced levels of infectious virus 

particles as observed by plaque assay (Figure 4-1C). Taking into account the 

relatively small decrease in ether linked lipids (<1.5-fold) upon AGPS knockdown 

(Figure 4-1D), we considered the two- to three-fold reduction in infectious virus titres 

biologically significant. Furthermore, the effects on influenza virus infection were 

similar to our positive control targeting Rab11a which has been previously shown to 

be essential for late stages of influenza virus replication, in particular assembly and 

budding (Amorim et al., 2011; Bruce et al., 2010; Eisfeld et al., 2011). Rab11a was 
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chosen as a positive control since we assumed that changes in lipid metabolism might 

be directly or indirectly linked to virus morphogenesis or assembly/budding due to 

their relatively late occurrence (between 18hpi and 24hpi) in virus infected cells and 

due to their enrichment in purified virus particles.  

 

Levels of virus proteins in AGPS depleted A549 cells were similar to control cells, 

which was in contrast to the observed reduction in virus protein expression in ether 

lipid deficient NRel-4 cells (Figure 4-1). One explanation might be that the 

differences in ether lipid levels between the two CHO cell types were much more 

substantial than between AGPS depleted and control A549 cells. Furthermore, we 

cannot exclude the fact that the two CHO cells are not of isogenic nature and the 

possibility that they might exhibit additional phenotypic differences.  
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also resulted in a two to three-fold reduction in virus titres while virus protein expression was not 
affected. Negative controls (-ve) are scrambled siRNAs. Data is from at least three independent 
experiments and error bars depict standard errors. Western blot from one experiment is shown which is 
representative of three independent experiments. (D) AGPS knockdown slightly but significantly 
reduced ether lipid levels while ester linked lipid levels were increased as measured by mass 
spectrometry. Data are from two independent experiments and error bars represent standard deviations. 
 

 

4.3.2 Ether lipids are possibly involved in polarized trafficking 

 

The necessity of ether lipids during influenza virus infection was highlighted by (1) 

the upregulation of ePC species during the course of an influenza virus infection, (2) 

by the influenza virus specific enrichment of ether lipid species in the virus envelope 

and (3) by the impairment of virus replication in ether lipid deficient cells. Hitherto, 

there is still limited knowledge about the functional role of ether lipids, especially 

ether PC species, in cell as well as virus biology. The majority of studies on ether 

lipids investigated ethanolamine species due to their higher abundance. Nevertheless, 

recent evidence pointed towards a role in vesicular trafficking, since ether lipids have 

been shown to be enriched in vesicles originating from the endo-/exosomal system 

such as synaptic vesicles, exosomes and enveloped viruses (Chan et al., 2008; Gerl et 

al., 2012; Honsho et al., 2008; Takamori et al., 2006). The functional importance of 

such an enrichment in cellular vesicles could possibly reflect their role in membrane 

fusion due to their high fusogenicity (Glaser et al., 2002; Han et al., 1998) and in 

membrane integrity  due to their enrichment, along with cholesterol, in plasma 

membrane microdomains (Pike et al., 2002). Cells lacking ether lipids also exhibited a 

partial reduction in protein secretion (Munn et al., 2003) and a potential co-regulation 

and –segregation of ether lipids with cholesterol was further supported by studies 
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showing defective cholesterol homeostasis in ether lipid deficient cells (Mankidy et 

al., 2010; Munn et al., 2003; Thai et al., 2001).  

 

To get a better view on the involvement of ether lipids in membrane trafficking, we 

decided to harness a bioinformatics approach and to reanalyse data from a systems-

wide siRNA screen on endocytosis (Collinet et al., 2010). This study identified 4609 

genes grouped into 14 clusters which played an essential part in the organization and 

control of the endocytic system (Collinet et al., 2010). We filtered 372 (~8%) genes 

being associated with lipid metabolism with high enrichment in phospholipid and 

fatty acid metabolism (Figure 4-2A). We used two criteria to determine the degree of 

pathway enrichment and coverage. The first measure represented how many gene 

homologues in the KEGG pathway were covered accompanied by a significance level 

calculated by the Fisher’s exact test. The second criteria accounted for the general 

coverage of the pathway or how many nodes were covered since a node in KEGG 

pathways can consist of several homologues (Figure 4-2A). Lipid pathways were 

scored according to their rank based on each criterion (1 for lowest coverage and 

highest p-value to 15 for highest coverage and lowest p-value). Subsequently, a 

combined rank score including the score for p-value was calculated (Figure 4-2B). 

The pathways that scored highest (glycerophospholipid (39), glycerolipid (35) and 

ether lipid metabolism (33.5)) were considered functionally important in vesicular 

trafficking, since their rank score was greater than the median (27.5) plus the median 

absolute deviation (MAD; 5.5) which was 33. Genes involved in ether lipid 

metabolism showed a relatively high gene coverage rate (29%; Fisher’s exact test; 

two tailed; p<10-38) and the highest pathway coverage of 80% (Figure 4-2A&B).  
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The unique feature of a high ePC/aPC ratio in influenza virus particles, which was not 

observed in other enveloped viruses (Chapter 3), pointed us towards a specificity of 

virus budding at the apical membrane which is a characteristic feature for influenza 

virus. As a result, we reanalysed the data of a recent study investigating lipid 

regulation during epithelial cell polarization (Sampaio et al., 2011) and similarly, we 

found an increased ePC/aPC ratio which was characterized by increasing ePC but 

decreasing aPC species peaking at day five with the initiation of epithelial cell 

polarity (Figure 4-2C) (Sampaio et al., 2011). Establishment of cell polarity is tightly 

linked to the secretory system by polarized trafficking of newly synthesized 

components to the plasma membrane (Golachowska et al., 2010; Rodriguez-Boulan et 

al., 2005). Hence, lipid changes at an early stage of cell polarization would 

hypothetically represent a massive induction of secretory vesicle formation. Influenza 

virus assembly and budding also requires the controlled and polarized transport of 

virus components to the site of particle morphogenesis at the plasma membrane. 

Based on this, remodelling of PC species leading to a high ePC/aPC ratio in influenza 

virus infected cells as well as in influenza virus particles might represent an unique 

requirement for polarized trafficking. Influenza virus particles showed a higher 

enrichment of short chain ePC species, whereas long chain ePC species were 

predominantly upregulated in infected cells (Figure 3-6). Similarly, this could reflect 

a chain length dependent requirement for trafficking, as identified by hierarchical 

clustering in sphingomyelin species (Figure 3-6). Experimental evidence of an 

importance of PC metabolism in the secretory pathway is compelling. For example in 

yeast, it is well understood that PC metabolism and the major PC/PI transfer protein 

Sec14p are required for vesicular transport from the Golgi (Bankaitis et al., 1989; 

Cleves et al., 1991). Sec14p regulates the phospholipid composition at the Golgi and 
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4.3.3 Activation of PPARɑ impaired influenza virus replication 

 

The decrease in peroxisomal fatty acid ß-oxidation but the increase in peroxisomal 

phospholipid (ether lipid) synthesis during the course of an influenza virus infection 

was strikingly reflected by (1) accumulation of ether and odd chain phospholipids 

(Figure 2-1C&D) with a concomitant increased incorporation of long chain C26 fatty 

acids into sphingolipid species (Figure 2-2B), by (2) the decreased catalase activity in 

influenza virus infected cells (Figure 2-3) and by (3) the identification of HSD17B4, 

ACOX1, CROT as antiviral mediators (Figure 2-5) (Kroeker et al., 2012; Shapira et 

al., 2009; Wolff et al., 1996). Peroxisomal function and metabolism are mainly 

regulated by the three peroxisome proliferator-activated receptors which exist as three 

isoforms (PPARɑ, PPARß/δ and PPARγ) (Peters et al., 2012; Schupp and Lazar, 

2010). PPARɑ and PPARγ play major roles in the regulation of genes involved in 

lipid anabolism and catabolism. PPARγ has been implicated in fatty acid uptake, 

transport, and storage whereas PPARɑ mainly regulates fatty acid oxidation and has 

been shown to be involved in the metabolic switch between glucose usage and lipid 

oxidation (Peters et al., 2012; Ribet et al., 2010). Recent studies showed that 

activation of PPARɑ increased peroxisomal fatty acid ß-oxidation but decreased 

glycolysis and diminished lipogenesis (Lee et al., 1995; Ribet et al., 2010). In 

contrary, activation of PPARγ had no effect on fatty acid oxidation and glycolysis 

(Ribet et al., 2010). Since influenza virus infection had exactly the opposite effect on 

lipogenesis and –lysis as described in chapter 2, we decided to use a highly specific 

PPARɑ agonist (GW7647) to investigate its impact on influenza virus infection. A549 

cells were infected with influenza virus and GW7647 agonist was added 1 hour after 
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infection. Virus supernatant was collected 18hpi and virus titre was assessed by 

plaque assay. We observed a significant reduction in infectious virus particle 

formation in three independent experiments (Figure 4-3A). These results supported 

the observed changes in cellular metabolism and together established activation of 

PPARɑ and expression of its downstream effectors to be antiviral. PPARɑ agonists 

have been previously proposed as alternative treatments for influenza virus infections 

and a recent study showed their antiviral activity in vivo since gemfibrozil increased 

survival in a severe influenza infection mouse model (Budd et al., 2007; Fedson, 

2008).  

 

The recent finding that peroxisomes are initial sites of antiviral signalling inducing 

interferon independent expression of host defence factors via the RIG-I-like receptor 

(RLR) adaptor protein MAVS (Dixit et al., 2010) confirms a possible interaction 

between influenza virus and peroxisomal function. In this study, the effects were 

observed using a NS1 depleted influenza virus strain, since NS1 antagonizes 

interferon signalling and the antiviral host immune response in general (Dixit et al., 

2010; Hale et al., 2008). NS1 proteins exhibiting a higher inhibitory impact on the 

host antiviral response also impacted expression of lipid metabolic genes to a greater 

extent (Billharz et al., 2009). This highlights NS1 to be the potential virus factor 

interfering with peroxisomal function and its interaction with the peroxisomal 

HSD17B4 protein (Wolff et al., 1996) would suggest a functional important targeting 

of NS1 to the peroxisome. Targeting of proteins to the peroxisome is mediated by two 

distinct peroxisome targeting sequences (PTS1 and PTS2) (Ma et al., 2011a) and 

hence, we were interested in whether NS1 harbours a putative PTS sequence.  
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We identified a putative PTS2 sequence 30 amino acids downstream of the N-

terminus, similar to the PTS2 sequence of AGPS, by screening NS1 of influenza virus 

A/PR/8/34 H1N1 using the PTS2 Block algorithm (www.peroxisomedb.org) (Figure 

4-3B). We further investigated the identified sequence with a recently described PTS2 

predictor (Kunze et al., 2011)6 which revealed the predicted sequence to be a weak 

targeting sequence (Supplementary Figure 7-5). Consistent with a function as a 

putative PTS2 targeting signal, the predicted sequence forms an amphipathic helix 

but, significantly deviates from other PTS2 sequences by having the expected positive 

charge histidine (H) at S3 replaced with a negatively charged serine (S) (Figure 4-3 & 

Supplementary Figure 7-5). The predicted sequence also lies in the RNA binding 

region of NS1 defined by the two highly conserved arginines (R). Therefore, it would 

rather exhibit a secondary function as a peroxisomal targeting sequence with limited 

evolutionary perfection to not interfere with RNA binding. Dual functionality of the 

predicted PTS2 sequence would not be of great surprise due to the multifunctional 

nature of NS1 (Hale et al., 2008), the fact that peroxisomes have been identified to be 

secondary localization sites for several proteins (Freitag et al., 2012) and since many 

proteins carry hidden peroxisomal targeting sequences (Neuberger et al., 2004). 

Additional experiments using immunocytochemistry and site-.directed mutagenesis 

are currently under way to further scrutinize the functionality of this predicted 

sequence. 

 

                                                 

6 Predictions using the recently described PTS2 predictor (Kunze et al, 2011) were kindly performed by 
Sebstian Maurer-Stroh and Frank Eisenhaber at the Bioinformatics Institute (BII), Singapore. 
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in the virus life cycle (Hidari et al., 2006; Takahashi et al., 2008). SM is synthesized 

from PC by SMS1 and SMS2 which are either solely located at the Golgi (SMS1) or 

additionally located to the plasma membrane (SMS2) (Huitema et al., 2004). Both 

isoforms transfer a phosphocholine moiety from PC onto ceramide producing SM and 

DAG. Such an activity would be in line with our observations of decreased levels in 

aPC species but increased levels in SM species during an influenza virus infection 

(Figure 2-1C&D). SMS activity is essential for controlling cellular ceramide and 

DAG levels, and SM levels have generally been implicated in the functional and 

structural organization of cellular membranes (Subathra et al., 2011). For example, 

SMS activity at the Golgi generating DAG has been shown to be an important 

requirement for vesicular trafficking (Subathra et al., 2011). On the other hand, 

sphingomyelin biosynthesis at the plasma membrane mediates integrity of plasma 

membrane microdomains (Li et al., 2007).  

 

We proceeded to investigate the role of sphingomyelin species at later stages of 

influenza virus infection in further details using a pharmacological inhibitor (D609) of 

both SMS isoforms (Adibhatla et al., 2012). D609 was originally discovered to inhibit 

PC-PLC specific activity (Amtmann, 1996). While the bacterial PC-PLC has been 

cloned and purified, the mammalian protein still remains unknown. Most of the 

studies measured PC-PLC activity based on accumulation of DAG and decreasing 

levels of PC (Adibhatla et al., 2012). Later studies evidently proved that D609 also 

actively inhibits SMS activity due to the similarity of the two enzymes, both cleaving 

the phosphocholine head group from the DAG backbone (Luberto and Hannun, 1998; 

Luberto et al., 2000).  
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A549 cells were infected with influenza virus and D609 was added after 12 hours of 

infection. Virus supernatant was collected after an additional incubation of 6 hours 

and virus titre was assessed by plaque assay. Three independent experiments were 

performed and, despite no impact on cell viability (Supplementary Figure 7-3), 

influenza virus production was inhibited in a dose dependent manner, with nearly no 

plaques observed at the highest concentration used (100µM). Influenza virus M2 

protein expression was only decreased slightly at 100µM without any significant 

changes at 10µM. This suggested that PC-PLC and/or SMS activity might be essential 

for influenza virus assembly/budding. Subsequently, we performed one more 

experiment to check for changes in lipid metabolism after treatment with D609. For 

this purpose, we used the 10µM concentration and incubated the cells for 18 hours 

before lipid extraction and mass spectrometry. Two (control) and three (D609 treated 

samples) independent measurements were performed and we did not observe any 

substantial changes in the total levels of phospholipid classes except an increase in 

ePC species which was paralleled by the accumulation of Cer, GlcCer and ganglioside 

GM3 species (Figure 4-4B). The increase in ePC species most probably reflected 

decreased PC-PLC and/or SMS activity since ePC species appeared to be a better 

substrate than aPC species (Albi and Viola Magni, 2004). Surprisingly, we did not 

detect any obvious changes in the levels of SM but our results were in line with 

evidence indicating an induction of de novo sphingolipid biosynthesis (Perry and 

Ridgway, 2004) which was reflected by increased Cer, GlcCer and ganglioside GM3 

levels in D609 treated cells (Figure 4-4B). This was explained by the inhibitory 

activity of D609 on a SM salvage (resynthesis) pathway (Luberto and Hannun, 1998; 

Luberto et al., 2000) rather than de novo SM biosynthesis since incorporation of 

serine into Cer and subsequently into SM was also stimulated (Perry and Ridgway, 
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2004). In the light of that, we could argue that late stages of influenza virus 

replication, including budding and/or assembly, are dependent on a SM salvage 

pathway, which could be initiated by NA activity leading to the observed decrease of 

ganglioside GM3 levels in influenza virus infected cells (Gerl et al., 2012; Sato et al., 

1998). It has been shown that GM3 degradation by sialidase activity at the plasma 

membrane resulted in the production of Cer and subsequently of sphingosine, which 

was recycled for sphingolipid synthesis including the formation of SM and GlcCer 

species (Valaperta et al., 2006). The possibility that ganglioside degradation might be 

directly implicated in a SM salvage pathway during influenza virus infection is 

underlined by the antiviral effects of two inhibitors targeting different arms of 

sphingolipid biosynthesis on influenza virus replication (Hidari et al., 2006). 

Fumonisin B1 acting on ceramide synthases inhibits de novo biosynthesis and 

resynthesis of sphingolipids whereas d,l-threo-1-phenyl-2-decanoylamino-3-

morpholino-1-propanol (PDMP) is a specific inhibitor of glycosphingolipid 

biosynthesis by acting on glucosylceramide synthase. While both inhibitors impaired 

influenza virus replication, only fumonisin B1 also significantly decreased SM levels 

(Hidari et al., 2006) suggesting, together with the D609 data, a specific requirement of 

glycosphingolipid synthesis in the formation of SM through a salvage pathway.  

 

Additional indirect evidence pointing towards a possible role of a sphingolipid 

salvage pathway during influenza virus replication comes from a recent study 

showing increased virus titres produced from SPL, the enzyme responsible for the 

irreversible degradation of S1P, deficient cells (Seo et al., 2010). SPL deficiency leads 

to accumulation of S1P and induction of sphingolipid formation via recycling at the 

expense of de novo sphingolipid biosynthesis (Hagen-Euteneuer et al., 2012); indeed 
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4.3.5 PI4KIIIɑ as a major regulator of lipid metabolism7 

 

Our findings of differentially regulated lipid species and their potential roles during 

influenza virus replication, combined with extensive literature, underline an important 

function of lipids, not only in mediating membrane structure and energy storage but 

also in regulating cellular organization and signalling. For example, one of the best 

understood lipid class implicated in cell physiology are phosphoinositides, which are 

generated by the phosphorylation of PI at the 3, 4 and 5 positions of the inositol ring 

and are minor components of cellular membranes (Di Paolo and De Camilli, 2006). 

Different degrees of phosphorylation of their head groups confer structural and 

functional diversity to the seven phosphoinositide species which are heterogeneously 

distributed in cellular membranes. Their head groups are exposed on the cytosolic 

leaflet of membranes and facilitate binding of a plethora of proteins generating a code 

for membrane identity (Lemmon, 2008).  

 

PI4P is the most abundant phosphoinositide and plays fundamental roles in the 

structure and function of the Golgi, endosomal system as well as the plasma 

membrane (D'Angelo et al., 2008). It is synthesized at the Golgi and plasma 

membrane by phosphorylation of PI through the activity of four encoded PI4-kinases 

(PI4KIIɑ, PI4KIIß, PI4KIIIɑ and PI4KIIIß). Despite the evidence that PI4KIIIɑ 

activity is responsible for the generation of PI4P at the plasma membrane, its cellular 

localization, regulation and downstream implications are still obscure (Balla and 

                                                 

7 This work was part of a collaborative effort with Fubito Nakatsu and Pietro De Camilli at Yale 
University and is in revision for publication in JCB (Nakatsu et al, 2012). 
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Balla, 2006). Recent findings suggest a critical dependency of HCV replication on 

PI4KIIIɑ (Alvisi et al., 2011; Berger et al., 2009; Borawski et al., 2009; Tai et al., 

2009; Trotard et al., 2009) which further highlights the need to start elucidating its 

subcellular localization and the role of its generated PI4P pool in cell physiology.  

 

For this purpose, our collaborators (Fubito Nakatsu & Pietro DeCamilli, Yale 

University) generated and characterized PI4KIIIɑ KO MEFs (Nakatsu et al, 2012). 

They revealed by immunocytochemistry (ICC) that, in comparison to WT MEFs, 

PI4KIIIɑ KO MEFs exhibited decreased levels of cholesterol at the plasma membrane 

but its accumulation in intracellular vesicles (Figure 4-5C). We further analysed 

cholesterol levels by mass spectrometry as described previously (Shui et al., 2011a) 

and found a small but significant increase in free cholesterol in PI4KIIIɑ KO MEFs 

(n=12 for WT and n=12 for KO MEFs; generated over four independent experiments) 

which together suggested a regulatory role of PI4KIIIɑ in cholesterol homeostasis.  

 

We also analysed the lipidome of PI4KIIIɑ KO MEFs in relation to control MEFs. 

The 12 WT and 12 KO samples were analysed by HPLC MS/MS (operated in MRM 

mode) as described above (Chapter 2), but using a slightly modified MRM list to also 

include lysolipids and PA species (Supplementary Table 7-6). KO MEFs exhibited 

higher levels of total PI and PA species while PC levels were only increased to a 

lesser extent (Figure 4-5A&B). The accumulation in PI levels most probably reflected 

decreased PI4KIIIɑ activity since PI is the substrate for PI4KIIIɑ. In line with this, 

PI4KIIIɑ KO MEFs also exhibited decreased levels of PI4P (Nakatsu et al, 2012). 

Since PA is a strong allosteric activator of PIPKIs (Jenkins et al., 1994), accumulation 

of PA supported the findings of a modest reduction in PI(4,5)P2 levels in PI4KIIIɑ KO 
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MEFs, due to a massive compensatory upregulation of PIPKIs converting PI4P to 

PI(4,5)P2. This was in contrast to decreased levels of PS in PI4KIIIɑ KO cells which 

probably reflected inhibition of the PI4P 4-phosphatase Sac1 since PS has recently 

been shown to be its allosteric activator (Zhong et al., 2012). Thus, loss of PI4KIIIα 

leads to initiation of homeostatic mechanisms by activation of PIP kinases and 

inhibition of PI4P phosphatases to restore PI(4,5)P2 levels (Nakatsu et al, 2012).  

 

Despite no overall or only small changes in the PE and PC classes respectively, there 

was a remodelling with regard to their ether and ester linkages (Figure 4-5A). While 

the increase in ePE species was accompanied by decreased aPE species, the PC class 

lipid species showed the reverse trend with decreasing levels of ePC but increasing 

levels of aPC species in PI4KIIIɑ KO MEFs (Figure 4-5A). The opposite regulation 

of ester and ether lipids was consistent with our time course data of influenza virus 

infected cells (Chapter 2). This suggested an important cellular balance between ether 

and ester linked lipids and was further supported by other studies showing the reverse 

regulation of ester and ether linked lipid species (Nagan et al., 1998; Raa et al., 2009). 

For example, there were significantly higher levels of ester linked lipid species in 

AGPS depleted cells (Figure 4-1D) and DHAPAT deficient cells (Nagan et al., 1998).  

 

Upregulation of ePE species was of great interest with regard to the defect in 

cholesterol homeostasis observed in PI4KIIIɑ KO MEFs (Figure 4-5C). While it is 

evident that ether lipid deficiency impairs cholesterol homeostasis, there is still no 

consensus with regard to a plausible mechanism (Mandel et al., 1998; Mankidy et al., 

2010; Munn et al., 2003; Thai et al., 2001). Nonetheless, our findings support the 

reported defect in cholesterol transport (Munn et al., 2003; Thai et al., 2001) on the 
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basis of vesicular trafficking since PI4KIIIɑ knockdown increased endocytosis 

(Collinet et al., 2010). This would support our findings of cholesterol depletion from 

the plasma membrane but its accumulation in intracellular vesicles (Figure 4-5C). In 

line with increased trafficking from, but decreased trafficking to the plasma 

membrane in PI4KIIIɑ KO MEFs, we observed a decrease in ePC species, which 

would be in line with our proposed hypothesis about their involvement in the 

secretory pathway (Figure 4-2). Such opposite actions of ePC and ePE species could 

explain contradictory findings between different studies on ether lipids with regard to 

their involvement in cholesterol homeostasis since distribution of ePC and ePE levels 

might be different between cell lines and dependent on cellular function. 
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4.4 Conclusion 

 

In this chapter, we confirmed the functional importance of choline containing lipid 

species for influenza virus infection. We showed the importance of PC lipid class 

remodelling for influenza virus replication (Figure 4-1) and based on a data mining 

approach, we hypothesized a specific involvement of ePC species in polarized 

vesicular trafficking facilitating influenza virus budding at the apical plasma 

membrane (Figure 4-2). We also demonstrated a requirement of SM biosynthesis for 

late stages of influenza virus infection and hypothesized a possible involvement of a 

salvage pathway rather than de novo biosynthesis (Figure 4-4). Our findings warrant 

future studies to further dissect the function of choline containing lipid species for 

influenza virus replication. On this note, we are in the process of performing EM 

experiments to check for an influenza virus budding phenotype at the plasma 

membrane of ether lipid deficient A549 cells and of cells treated with a 

sphingomyelin synthase inhibitor.  

 

We additionally confirmed the functional importance of the hypothesized 

differentially regulated peroxisomal balance between anabolic (increased biosynthesis 

of ether lipids) and catabolic activities (decreased catalase activity and accumulation 

of C26 fatty acid containing sphingolipids) by observing an inhibitory effect of a 

PPARɑ agonist on influenza virus replication (Figure 4-3). This supported the 

therapeutic potential of PPARɑ agonists (Budd et al., 2007; Fedson, 2008). Based on 

the distinct lipid compositions of two influenza virus strains differing by a point 

mutation in NS1 (Figure 3-4 & Figure 3-5) and on recent literature (Billharz et al., 
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2009; Wolff et al., 1996), we further proposed NS1 as a regulator of lipid metabolism 

and found a putative peroxisomal targeting sequence in NS1 (Figure 4-3). Although 

supported by the reported interaction of NS1 with the peroxisomal protein HSD17B4 

(Wolff et al., 1996), these findings need further experimental validation to prove 

localization of NS1 with peroxisomes.  

 

Finally, we illustrated the complex regulation and the multifunctional diversity of 

lipids by presenting the vast impact of PI4KIIIɑ deficiency on lipid metabolism and 

cellular function (Nakatsu et al, 2012). We were able to combine the observed 

cholesterol homeostasis phenotype in PI4KIIIɑ KO MEFs to our postulated concept 

of ether lipid involvement in vesicular trafficking, whereby ePE and ePC species exert 

opposite activities in endocytic and exocytic pathways respectively. Based on these 

findings, PI4KIIIɑ KO MEFs represent an attractive model to further investigate the 

regulatory mechanism behind dependency of cholesterol and vesicular trafficking on 

ether lipid metabolism.  
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5.1 Final discussion 

 

With this work, we presented for the first time a detailed temporal lipid profile of 

influenza virus infection in a lung epithelial cell line (A549) which correlated with the 

lipid composition of purified influenza virus particles (Chapters 2 & 3). We 

confirmed the functional importance of PC class remodelling and SM biosynthesis for 

influenza virus replication (Chapter 4) and additionally showed that influenza virus 

NS1 is a determinant for the lipid composition of influenza virions, bridging virus 

pathogenicity to host cell lipid metabolism (Chapter 3).  

 

5.1.1 Lipid metabolism in influenza virus infected cells (Figure 5-1) 

 

We were able to derive a model of lipid flux in influenza virus infected cells (Figure 

2-5) by combining our lipid data from the initial time course experiment (Chapter 2) 

to existing genomics (Billharz et al., 2009; Karlas et al., 2010; Konig et al., 2010; 

Shapira et al., 2009; Sui et al., 2009; Watanabe et al., 2010) and proteomics data 

(Coombs et al., 2010; Dove et al., 2012; Kroeker et al., 2012). Subsequently, we 

modified the proposed model (Figure 5-1) by integrating additional data describing 

the lipid composition of different influenza virus strains (Chapter 3) and showing the 

functional importance of sphingolipids and ether lipids for influenza virus replication 

(Chapter 4). 
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5.1.1.1 Incorporation of serine into sphingolipid and phosphatidylserine biosynthesis 

is localized to the plasma membrane (Figure 5-1) 

 

We hypothesized that the observed lipid changes were directly linked to a redirection 

of glycolytic flux due to an upregulation of early glycolytic steps, similar to aerobic 

glycolysis (Warburg effect) in cancer cells (Ritter et al., 2010) (Paragraph 2.4). This 

was supported by the upregulation (Kroeker et al., 2012) and early phosphorylation of 

PKM2 in virus infected cells (Figure 2-4) which has been shown to be the major 

driver for aerobic glycolysis and tumour growth (Vander Heiden et al., 2009). In the 

light of that, the observed increase in sphingolipid biosynthesis, especially GlcCer and 

SM species, can be explained by the increased endogenous synthesis of serine from 

glycolytic intermediates via phosphoglycerate dehydrogenase (Locasale et al., 2011). 

In line with this, enhanced serine biosynthesis upon influenza virus infection has been 

previously reported (Ritter et al., 2010).  

 

Similar trends were also reflected by distinct lipid compositions of two influenza virus 

strains exhibiting different degrees of pathogenicity due to a point mutation in NS1 

(D125G) (Figure 3-5). In addition to higher levels of GlcCer and some SM species, 

there was also an enrichment of PS species in the more virulent strain (Figure 3-5) 

despite no changes in PS levels during the course of an infection (Figure 2-1). This 

suggested a severity dependent regulation of host cell lipid metabolism, which was 

supported by a recent study showing a NS1 dependent expression of lipid metabolic 

genes (Billharz et al., 2009). Furthermore, our results pointed towards localized 

changes of host cell metabolism at the plasma membrane and highlighted a possible 
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involvement of serine incorporator 5 (Serinc5 or TPO1). Serinc5 is localized to 

sphingolipid rich domains in cellular membranes (Fukazawa et al., 2006; Krueger et 

al., 1997) and provides a membrane embedded scaffold for enzymes involved in 

glycolysis, sphingolipid- and serine metabolism (Inuzuka et al., 2005). 

Overexpression of Serinc5 stimulates PS and sphingolipid biosynthesis by facilitating 

serine exchange with other lipid head groups and ceramide biosynthesis, respectively 

(Inuzuka et al., 2005). Therefore, enrichment of PS in more virulent influenza virions 

can be directly linked to the decrease in aPC species (Figure 3-5) via activity of 

PTDSS1, exchanging the choline head group of PC with serine to generate PS. 

Similar reverse trends between PS and PC species have been recently observed in 

different influenza virus strains (Polozov et al., 2008) and together strengthen the NS1 

dependent upregulation of Serinc5 expression in influenza virus infected cells (Geiss 

et al., 2002).  

 

5.1.1.2 A salvage pathway is responsible for the increase of SM biosynthesis in 

influenza virus infected cells (Figure 5-1) 

 

A more general picture was observed for sphingolipids (GlcCer and SM) since they 

were upregulated in virus infected cells (Figure 2-1), enriched in purified influenza 

virus particles (Figure 3-1) and even showed some dependency on severity (Figure 

3-5). For example, increased levels of SM species were usually accompanied by 

decreased levels of aPC species which likely reflected SMS1 and SMS2 activities. 

Importance of SM biosynthesis for late stages of influenza virus replication was 

confirmed by impairment of infectious virus particle production after treatment with 
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the SMS1/2 inhibitor D609 (Figure 4-4A). Incorporation of additional experiments 

showing antiviral activity of different sphingolipid inhibitors, such as fumonisin B1 

and PDMP (Hidari et al., 2006), generated an interesting hypothesis with regard to an 

involvement of a SM salvage pathway. We hypothesized that such a SM salvage 

pathway is mediated by influenza virus NA activity and dependent on de novo 

sphingolipid biosynthesis (Paragraph 4.2.7). The possible involvement of a SM 

salvage pathway is further highlighted by the identification of both, sphingolipid 

biosynthetic- and sphingolipid degrading enzymes which support influenza virus 

replication. For example, recent siRNA screens identified ceramide synthase 4 

(LASS4) and 3-ketodihydrosphingosine reductase (KDSR), which are involved in 

sphingolipid biosynthesis, and N-acetylgalactosaminidase alpha (NAGA), sialidase 1 

(lysosomal) (NEU1) and N-acylsphingosine amidohydrolase (acid ceramidase) 1 

(ASAH1) which mediate sphingolipid degradation (Figure 5-1). 

 

5.1.1.3 The increased lipogenesis but decreased ß-oxidation in the peroxisome is a 

mediator of lipid flux (Figure 5-1) 

 

In contrast to a decrease in aPC species, we detected a severity independent increase 

in ePC species during influenza virus infection (Figure 2-1, Figure 3-4 & Figure 3-5). 

Upregulation of ePC biosynthesis can similarly be explained by increased glycolytic 

activity since DHAP is a direct precursor for ether lipid biosynthesis. We confirmed 

the functional importance of ether lipid biosynthesis by observing reduced virus titres 

produced from DHAPAT deficient cells and from AGPS depleted cells (Figure 

4-1B&C). Consistent with enhanced peroxisomal lipogenesis, we also detected an 
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accumulation of odd chain aPC species (Figure 2-1). Alternatively, we observed a 

reduction in peroxisomal ß-oxidation which was supported by declined catalase 

activity (Figure 2-3), enrichment of C26 fatty acids, but depletion of C24:1 fatty acids 

in sphingolipids (Figure 2-2B&D), and by the inhibitory activity of a PPARɑ agonist 

(GW7647) on influenza virus replication (Figure 4-3A). We hypothesized that 

reduction in fatty acid ß-oxidation was specific to the peroxisome as we continuously 

observed low levels of TAG in influenza virus infected cells (Figure 2-1 & Paragraph 

2.3.1.3). Identification of enzymes involved in the peroxisomal ß-oxidation cascade 

being antiviral, further strengthened our findings (Figure 5-1).   

 

Especially, the identification of a putative PTS2 sequence in NS1 (Figure 4-3B & 

Supplementary Figure 7-5) and its inhibitory interaction with the peroxisomal protein 

HSD17B4 (Wolff et al., 1996) sparked our interest. It has been reported that increased 

glycolysis in differentiating adipocytes induced TAG synthesis but, in contrary, ether 

lipid levels remained constant despite high DHAPAT activity (Hajra et al., 2000). 

This was explained by the concomitant activity of acyl-DHAP reductase generating 

acyl-glycerol-3-phopshate (Hajra et al., 2000). While the yeast acyl-DHAP reductase 

is known as Ayr1p (Athenstaedt and Daum, 2000), so far, the mammalian homologue 

has not been identified. We decided to perform a blast search8 on the human genome 

using Ayr1p (33kDa) as a query sequence, identifying HSD17B1 (DHB1) with the 

highest degree of similarity (Score: 74.7; E value: 2e-17). HSD17B1 is a 35kDa 

protein and belongs to the same protein family as HSD17B4. Subsequent alignment of 

HSD17B1, HSD17B4 (80kDa) and Ayr1p (35kDa) revealed a high conservation of 

                                                 

8 The blast search was performed by BLASTP 2.2.27+ (Altschul et al., 1997; Altschul et al., 2005) run 
on http://blast.ncbi.nlm.nih.gov using standard settings.  



5. Final Discussion & Conclusion 

 

159 

active sites in the N-terminus which corresponded to the region responsible for its 

(3R)-hydroxyacyl-CoA dehydrogenase activity (Supplementary Figure 7-6). This 

sequence is characterized by its short chain dehydrogenase/reductase (SDR) motif 

which is found in 73 human proteins (Bray et al., 2009). Since the mammalian acyl-

DHAP reductase has been proposed to be localized to the peroxisomal membrane 

(Ghosh and Hajra, 1986; Hajra et al., 2000), we decided to screen all reported 

peroxisomal proteins (Wiese et al., 2007) for a SDR motif. We identified 29 

peroxisomal proteins carrying a SDR motif, and in combination with the predicted 

size of 75kDa for the mammalian acyl-DHAP reductase (Datta et al., 1990), we ended 

up with five candidates having a size between 70 and 80kDa (Supplementary Figure 

7-7). However, HSD17B4 was the only candidate with a classical SDR sequence 

similar to Ayr1p. In combination with increased catalase activity upon induction of 

acyl-DHAP reductase (Hajra et al., 2000), these results collectively suggested 

HSD17B4 being a potential candidate responsible for the mammalian acyl-DHAP 

reductase activity.  

 

Putting these findings into the context of an influenza virus infected cell with high 

glycolytic activity, we propose that NS1 is not solely modulating lipid metabolism by 

differentially regulating gene expression (Billharz et al., 2009), but also, due to its 

inhibitory interaction with HSD17B4, impairing peroxisomal fatty acid ß-oxidation 

and TAG accumulation, facilitating lipogenesis (ether lipid and odd chain lipid 

biosynthesis) in the peroxisome. Future studies should address whether HSD17B4 

accounts for the mammalian acyl-DHAP reductase activity and whether its inhibition 

leads to impaired lipid flux under high glycolytic activity. Subsequently, it would be 

interesting to determine whether the interaction of NS1 with HSD17B4 is severity 
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dependent. This would be of great significance since the peroxisome has recently 

been identified as a major site for initial steps of antiviral signalling (Dixit et al., 

2010).  

 

NS1 most probably is just one part of a complex network incorporating cellular and 

viral factors to regulate host cell lipid metabolism. For example, the balance between 

metabolite levels is crucial to maintain lipid flux. This could explain our inability to 

rescue influenza virus production from ether lipid deficient cells (Supplementary 

Figure 7-4). 1-O-hexadecyl-sn-glycerol (HG) enters ether lipid metabolism 

downstream of AGPS and its addition rescues ether lipid deficiency (Nagan et al., 

1998). However, we were not able to rescue virus production suggesting importance 

of metabolic flux through ether lipid metabolism rather than sole dependency on ether 

lipid metabolites. Impairment of DHAPAT and AGPS under high glucose 

conditions/influenza virus infection probably leads to the accumulation of glycolytic 

intermediates and to a redirection in glycolytic flux which might disturb the metabolic 

balance needed for influenza virus production. Therefore, addition of HG might have 

additional, non-ether lipid related effects which could be inhibitory for virus 

production. It would be interesting to scrutinize the effects of higher glycolytic flux in 

DHAPAT deficient and AGPS depleted cells.  
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Figure 5-1: Final model of proposed lipid flux in influenza virus infected cells (Page 159). The 
model was derived by modifying the proposed lipid flux model (Chapter 2; Figure 2 5) with additional 
data from chapters 3and 4. Our data was combined with published data from siRNA screens (Brass et 
al., 2009; Karlas et al., 2010; Konig et al., 2010; Shapira et al., 2009; Sui et al., 2009; Watanabe et al., 
2010), protein expression studies (Coombs et al., 2010; Dove et al., 2012; Kroeker et al., 2012) and 
gene expression studies (Billharz et al., 2009). Genes, proteins and metabolites reported to affect 
influenza virus replication are depicted in black (no change or not identified), bold red (proviral or 
upregulated) and bold blue (antiviral or downregulated); Bold arrows and dashed arrows represent 
proposed increased and decreased fluxes, respectively; Bold black lines with round ends indicate an 
inhibition of expression or activity; ATP-binding cassette, sub-family D 1 (ABCD1), acetyl-CoA 
carboxylase alpha (ACACA), acyl-CoA oxidase 1 (ACOX1), acyl-CoA synthetase long-chain family 
member 1/4 (ACSL1/4), alkylglycerone phosphate synthase (AGPS), AMP activated protein kinase 
(AMPK), N-acylsphingosine amidohydrolase (acid ceramidase) 1 (ASAH1) , UDP-Gal:betaGlcNAc 
beta 1,3-galactosyltransferase, polypeptide 4 (B3GALT2), UDP-Gal:betaGlcNAc beta 1,4- 
galactosyltransferase polypeptide 4 (B4GALT2), carboxyl ester lipase (CEL), diacylglycerol (DAG), 
dihydroxyacetone phosphate (DHAP), DHAP acyl transferase (DHAPAT), ethanolamine kinase 1 
(ETNK1), fatty acid reductase 1 (FAR1), fatty acid synthase (FASN), glyceraldehyde-3-phopshate 
dehydrogenase (GAPDH), facilitated glucose transporter 2 (GLUT2), glycerol-3-phosphate 
dehydrogenase 2 (GPD2), glycosphingolipids (GSL), hexokinase 2 (HK2), hydroxysteroid (17-beta) 
dehydrogenase 4 (HSD17B4), 3-ketodihydrosphingosine reductase (KDSR), ceramide synthase 4 
(LASS4), lipin 1 (LPIN1), membrane bound O-acyltransferase domain containing 2 (MBOAT2), 
malonyl-CoA decarboxylase (MLYCD), influenza virus neuraminidase (NA), N-
acetylgalactosaminidase alpha (NAGA), sialidase 1 (lysosomal) (NEU1), influenza virus NS1 (NS1), 
phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
phopsphatidylinositol (PI), pyruvate kinase 2 (PKM2), peroxisome proliferator-activated receptor alpha 
(PPARɑ), phosphatidylserine (PS), stearoyl-CoA desaturase (SCD), serine incorporator 5 (SERINC5), 
fatty acid transporter 5 (SLC27A5), sphingomyelin (SM), sphingomyelin synthase 1/2 (SMS1/2), sterol 
regulatory element binding transcription factor 1 (SREBP1), sialyltransferase 8 (ST8SIA1) & 
triacylglycerol (TAG); yellow box indicates the scaffold provided by serine incorporator 5 (SERINC5); 
Pharmacological inhibitors inhibiting influenza virus infection are depicted in underlined bold black; 
*identified in this study; Sphingomyelin synthase inhibitor (D609), ceramide synthase inhibitor 
(fumonisin B1; FB1) & glucosyltransferase inhibitor (d,l-threo-1-phenyl-2-decanoylamino-3-
morpholino-1-propanol; PDMP). 
 

 

5.1.2 Lipid composition of influenza virus particles 

 

We concluded that influenza viruses tailor host lipid metabolism according to their 

needs for virion morphogenesis, due to similarities observed between influenza virus 

lipid composition (Figure 3-1) and influenza virus induced changes in host cell lipid 

metabolism (Figure 2-1). Especially, enrichment of SM, GlcCer, and ePC but 

decrease in aPC species in virus particles correlated with the temporal lipid profile. In 

contrast, ceramide species exhibited a relatively high enrichment in influenza virus 

particles without being differentially regulated in influenza virus infected cells. This 
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suggested a localized change at the plasma membrane budding site (Figure 2-1 & 

Figure 3-1). Subsequently, we were able to combine differences in ceramide 

enrichment of enveloped viruses and cellular vesicles to a lipid mediated model of 

intracellular trafficking (Figure 3-3). Collectively, our data underlined the importance 

of lipids in the virus life cycle and highlighted the general antiviral potential of 

disturbing the lipid composition of virus envelopes (Figure 3-7 & Figure 3-8). 

 

5.1.2.1 The ePC/aPC ratio is unique for influenza virus and implies a need for 

polarized vesicular trafficking 

 

Besides the described enrichment of SM and GlcCer species in influenza virus 

particles, we observed distinct remodelling within the PC lipid class. This was clearly 

in line with the lipid changes in influenza virus infected cells whereby enrichment of 

ePC species was accompanied by depletion of aPC species (Figure 2-1 & Figure 3-1). 

The increased ePC/aPC ratio was not only conserved across four different influenza 

virus strains, but also unique to influenza when compared with other enveloped 

viruses (Figure 3-2). Additionally, more virulent influenza virions exhibited an 

increased ePC/aPC ratio which was due to lower levels of aPC species rather than 

increased ePC species (Figure 3-4 & Figure 3-5), highlighting a general requirement 

of ePC species for influenza virus replication. Importance of ether lipid metabolism 

was further supported by decreased production of infectious virus particles from 

DHAPAT deficient and AGPS depleted cells (Figure 4-1). As discussed previously, 

the virulence dependent downregulation of aPC species most likely reflected 

increased SM and PS biosynthesis at the plasma membrane (Figure 5-1), and 
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supported the severity dependent regulation of SREBP1 (Billharz et al., 2009), a 

major regulator of aPC biosynthesis (Walker et al., 2011). In line with budding of 

influenza virus at the apical plasma membrane, using an in silico approach, we 

hypothesized a possible involvement of ePC species in polarized vesicular trafficking 

(Figure 4-2). Analysis of PI4KIIIɑ KO MEFs exhibiting greatly impaired lipid 

metabolism with increasing levels of ePE, but decreasing levels of ePC species, 

showed an accumulation of cholesterol in intracellular vesicles but its near absence 

from the plasma membrane (Figure 4-5). This was supported by evidence showing the 

involvement of ether lipids in cholesterol homeostasis, especially in regulating 

cholesterol transport (Mandel et al., 1998; Munn et al., 2003; Thai et al., 2001). 

Therefore, we explained accumulation of cholesterol in intracellular vesicles by 

increased endocytic activities due to PI4KIIIɑ depletion (Collinet et al., 2010). 

Considering higher enrichment of ePC species in intracellular membranes but 

increased levels of ePE species at the plasma membrane (Andreyev et al., 2010), we 

could envision reverse functionalities between ePC (exocytic) and ePE (endocytic) 

species. 

 

Differential regulation of ePE and ePC species is of high interest. For example, 

upregulation of ePC species in influenza virus infected cells was intriguing since ePE 

species, despite being present in much higher abundance in mammalian cells, did not 

exhibit any differential regulation upon influenza virus infection. This clearly points 

towards specific fine tuning of ether lipid metabolism, which might be of relevance 

for cell physiology. Clearly, our experiments on ether lipid deficient cells were not 

conclusive with respect to functional differences between ePC and ePE species, but 

the hypothetical opposite functionality in trafficking between ePC and ePE highlights 
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the necessity of addressing ePE and ePC functions separately, rather than treating 

ether lipids as a whole. 

 

5.1.2.2 The ceramide/cholesterol ratio is a determinant of vesicular trafficking 

 

No substantial changes were observed in ceramide species during the course of an 

influenza virus infection (Figure 2-1). Nevertheless, influenza virus particles were 

generally enriched in ceramide species (Figure 3-1 & Figure 3-3A), consistent with an 

earlier study (Gerl et al., 2012). Further analysis revealed specific ceramide 

enrichment in viruses fusing at late endosomal compartments (Figure 3-3A) and 

subsequently we derived a model linking the ceramide/cholesterol ratio of cellular and 

viral membranes to vesicular trafficking (Figure 3-3B,C&D). On the basis of an 

increasing ceramide/cholesterol gradient from the plasma membrane towards the cell 

body of mammalian cells, we hypothesized that vesicular fusion occurs most 

efficiently when the ceramide/cholesterol ratio of the fusing membranes are similar 

(Figure 3-3). For example, influenza virus having a high ceramide/cholesterol ratio 

fuses at late endosomal membranes (Figure 3-3) whereas retroviruses such as HIV 

fusing at the plasma membrane, or at early endosomal compartments, exhibit a low 

ceramide/cholesterol ratio. We were also able to describe several cellular trafficking 

events using ceramide/cholesterol ratios. We concluded that intracellular fusion 

events occur at target membranes with a high ceramide/cholesterol ratio, whereas 

vesicles with a low ceramide/cholesterol ratio more likely fuse at the plasma 

membrane (Figure 3-3).  
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The high activity of sphingolipid degrading enzymes in late endosomal compartments 

(Kolter and Sandhoff, 2010) and the general sphingolipid enrichment of influenza 

virus particles (Figure 3-1) (Gerl et al., 2012), made us wonder whether further 

modifications to the virus lipid content occur to mediate fusion. For example, high 

activity of acid sphingomyelinase in the late endosome might also degrade SM in the 

virus envelope, generating ceramide and increasing the ceramide/cholesterol ratio to 

mediate virus fusion. Modifications to the sphingolipid content have been shown to 

mediate fusion whereby sphingomyelinase activity (ceramide generating) is needed 

for phago-lysosomal fusion (Utermohlen et al., 2008; Utermohlen et al., 2003), and 

ceramidase activity (ceramide degrading) primes synaptic vesicles for fusion at the 

plasma membrane (Rohrbough et al., 2004). This clearly demonstrates the functional 

importance of lipid composition in cellular membranes. On this note, it has been 

observed that influenza virosomes9, having a distinct lipid composition than natural 

influenza viruses, get trafficked to different intracellular compartments than wild type 

influenza viruses, despite similar uptake mediated by HA (Bernd Wollscheid, 

personal communication). One possible explanation could be impairment in virus 

fusion due to the different lipid compositions, in spite of normal function of HA. This 

collectively underlines the significance of lipid-protein relationships as mediators of 

cell physiology.  

                                                 

9 An influenza virosome is a liposome made of synthetic and natural phospholipids carrying wild type 
HA and NA. 
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5.2 Conclusion 

 

In summary, this is the first in-depth study specifically addressing host lipid 

metabolism and function during influenza virus infection. It further highlighted 

lipidomics as a powerful tool to derive novel hypotheses for virus and cell biology.  

 

Firstly, we revealed and proposed a detailed lipid flux model for influenza virus 

infection which warrants further studies, especially addressing its regulation for virion 

morphogenesis with respect to virus severity. It also raises the question whether 

different lipid compositions of influenza virus particles are mediators of virulence by 

conferring higher stability and infectivity to influenza virions. For instance, it would 

be exciting to extend our lipidomics approach to a wide range of other influenza virus 

strains exhibiting differences in pathogenicity.  

 

Secondly, our findings put lipids at the forefront of cell organization and regulation. 

We introduced a concept of lipid composition mediated intracellular trafficking 

hijacked by enveloped viruses. Identification and understanding the mechanism of 

how viruses and vesicles tailor their lipid compositions to functionality is crucial. For 

example, it would be interesting to screen the lipid compositions of diverse virus like 

particles pseudotyped with different virus surface glycoproteins (e.g. pH dependent or 

pH independent) to understand whether protein functionality is directly linked to lipid 

environment.  
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7.2 Supplementary tables 

Supplementary Table 7-1: Overview of samples used for quantitative MRM analysis of 159 
sphingo- and phospholipid species from A549 cells infected with influenza virus A/PR/8/34 H1N1. 

Time Point Experiment 1 Experiment 2 Experiment 3 

12 hpi 
Mock 
(n=3) 

H1N1 
(n=3) 

Mock 
(n=3) 

H1N1 
(n=3) 

Mock 
(n=3) 

H1N1 
(n=3) 

18 hpi 
Mock 
(n=3) 

H1N1 
(n=3) 

Mock 
(n=3) 

H1N1 
(n=3) 

Mock 
(n=3) 

H1N1 
(n=3) 

24 hpi 
Mock 
(n=3) 

H1N1 
(n=3) 

Mock 
(n=3) 

H1N1 
(n=3) 

Mock 
(n=3) 

H1N1 
(n=3) 

 

Supplementary Table 7-2: Two by two contingency table for the calculation of lipid class 
enrichment in differentially regulated lipid species using a Fisher’s exact test: 

 Significant Lipids MRM List 
Lipid class A C 
Other class B D 

Total 78 (A+B) 175 (C+D) 

 

Supplementary Table 7-3: Overview of purified influenza virus samples analysed by MRM or 
QTOF mass spectrometry. 

 MRM QTOF 
Lipids analysed 
MRM QTOF 

A549 grown H1N1 
Exp1 
(n=3) 

Exp2 
(n=3) 

 
159 

MRM 
transitions 

 

MDCK grown H1N1 
Exp 1 
(n=3) 

 
PC 

species 
 

MDCK grown H3N2 P10 
Exp1 
(n=2) 

Exp2 
(n=2) 

Exp3 
(n=2) 

Exp1 
(n=1) 

Exp2 
(n=1) 

Exp3 
(n=1) 

159 
MRM 

transitions 

PC 
species 

MDCK grown H3N2 P0 
Exp1 
(n=2) 

Exp2 
(n=2) 

Exp3 
(n=2) 

Exp1 
(n=1) 

Exp2 
(n=1) 

Exp3 
(n=1) 

159 
MRM 

transitions 

PC 
species 

 

Supplementary Table 7-4: Overview of log(fold-ratios) used for hierarchical clustering. 
Host response  

(log(H1N1/mock)) 
Viral lipids  

(log(H1N1/A549)) 
Virulence 

(log(P10/P0)) 
18hpi 24hpi A549 Exp1 A549 Exp2 A549 Exp3    

Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 
H1N1 
Exp1 

H1N1 
Exp2 

H1N1 
Exp1 

HN1 
Exp2 

H1N1 
Exp1 

H1N1 
Exp2 

Exp1 Exp2 Exp3 

 

Supplementary Table 7-5: Overview of purified MDCK grown H1N1 samples used for the 
analysis of oxidized lipid species. 

Treatment condition Experiment 1 Experiment 2 
LJ025 n=2 n=2 
LJ001 n=2 n=2 
JL103 n=2 n=2 
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Supplementary Table 7-6: Overview of MRM transitions used for phospho- and sphingolipid 
measurements. 

Lipid Name MRM Flu Time Course Flu PI4KA 
LysoPS 16:0 496.5/409.4 x 
LysoPS 18:0 524.5/437.4 x 
LysoPS 16:1 494.5/407.4 x 
LysoPS 18:1 522.5/435.4 x 

PS 32:0 734.6/647.6 x x x 
PS 34:0 762.6/675.6 x x x 
PS 36:0 790.6/703.6 x x x 
PS 32:1 732.6/645.6 x x x 
PS 34:1 760.6/673.6 x x x 
PS 36:1 788.6/701.6 x x x 
PS 38:1 816.6/729.6 x x x 
PS 34:2 758.6/671.6 x x x 
PS 36:2 786.6/699.6 x x x 
PS 38:2 814.6/727.6 x x x 
PS 38:3 812.6/725.6 x x x 
PS 40:4 838.6/751.6 x x x 
PS 40:5 836.6/749.6 x x x 
PS 40:6 834.6/747.6 x x x 

LysoPI 16:0 571.6/241.0 x x 
LysoPI 18:0 599.6/241.0 x x 

PI 34:0 837.6/241.1 x x x 
PI 34:1 835.5/241.1 x x x 
PI 36:1 863.6/241.1 x x x 
PI 36:2 861.6/241.1 x x x 
PI 36:3 859.6/241.1 x x x 
PI 38:3 887.6/241.1 x x x 
PI 38:4 885.6/241.1 x x x 
PI 40:4 913.6/241.1 x x x 
PI 38:5 883.6/241.1 x x x 
PI 40:5 911.6/241.1 x x x 
PI 38:6 881.6/241.1 x x x 

GM3 d18:0/16:0 1153.6/290.1 x x x 
GM3 d18:0/18:0 1181.6/290.1 x x x 
GM3 d18:0/20:0 1209.6/290.1 x x x 
GM3 d18:0/22:0 1237.6/290.1 x x x 
GM3 d18:0/24:0 1265.6/290.1 x x x 
GM3 d18:1/16:0 1151.6/290.1 x x x 
GM3 d18:1/18:0 1179.6/290.1 x x x 
GM3 d18:1/20:0 1207.6/290.1 x x x 
GM3 d18:1/22:0 1235.6/290.1 x x x 
GM3 d18:1/24:0 1263.6/290.1 x x x 
GM3 d18:1/26:0 1291.6/290.1 x x x 
GM3 d18:1/16:1 1149.6/290.1 x x x 
GM3 d18:1/18:1 1177.6/290.1 x x x 
GM3 d18:1/20:1 1205.6/290.1 x x x 
GM3 d18:1/22:1 1233.6/290.1 x x x 
GM3 d18:1/24:1 1261.6/290.1 x x x 
GM3 d18:1/26:1 1289.6/290.1 x x x 

LysoPE 16:0 452.5/196.1 x 
LysoPE 18:0 480.5/196.1 x 
LysoPE 16:1 450.5/196.1 x 
LysoPE 18:1 478.5/196.1 x 
LysoPE 18:2 476.5/196.1 x 

LysoPE 18:0e 464.5/196.1 x 
LysoPE 20:0e 492.5/196.1 x 

PE 32:0a 690.6/196.1 x x x 
PE 34:0a 718.6/196.1 x x x 
PE 32:1a 688.6/196.1 x x x 
PE 34:1a 716.6/196.1 x x x 
PE 36:1a 744.6/196.1 x x x 
PE 34:2a 714.6/196.1 x x x 
PE 36:2a 742.6/196.1 x x x 
PE 36:3a 740.6/196.1 x x x 
PE 38:3a 768.6/196.1 x x x 
PE 38:4a 766.6/196.1 x x x 
PE 40:4a 794.6/196.1 x x x 
PE 38:5a 764.6/196.1 x x x 
PE 40:5a 792.6/196.1 x x x 
PE 34:0e 702.6/196.1 x x x 
PE 34:1e 700.6/196.1 x x x 
PE 36:1e 728.6/196.1 x x x 
PE 36:2e 726.6/196.1 x x x 
PE 38:2e 754.6/196.1 x x x 
PE 36:3e 724.6/196.1 x x x 
PE 38:3e 752.6/196.1 x x x 
PE 38:4e 750.6/196.1 x x x 
PE 40:4e 778.6/196.1 x x x 
PE 38:5e 748.6/196.1 x x x 
PE 40:5e 776.6/196.1 x x x 
PE 38:6e 746.6/196.1 x x x 
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PE 40:6e 774.6/196.1 x x x 
PA 32:0 647.5/153.0 x 
PA 34:0 675.5/153.0 x 
PA 36:0 703.5/153.0 x 
PA 32:1 645.5/153.0 x 
PA 34:1 673.5/153.0 x 
PA 36:1 701.5/153.0 x 
PA 34:2 671.5/153.0 x 
PA 36:2 699.5/153.0 x 

PC 32:0a 734.6/184.1 x x x 
PC 34:0a 762.6/184.1 x x x 
PC 36:0a 790.6/184.1 x x x 
PC 38:0a 818.7/184.1 x x x 
PC 40:0a 846.7/184.1 x x x 
PC 32:1a 732.6/184.1 x x x 
PC 34:1a 760.6/184.1 x x x 
PC 36:1a 788.6/184.1 x x x 
PC 38:1a 816.6/184.1 x x x 
PC 40:1a 844.7/184.1 x x x 
PC 32:2a 730.5/184.1 x x x 
PC 34:2a 758.6/184.1 x x x 
PC 36:2a 786.6/184.1 x x x 
PC 38:2a 814.6/184.1 x x x 
PC 40:2a 842.7/184.1 x x x 
PC 34:3a 756.6/184.1 x x x 
PC 36:3a 784.6/184.1 x x x 
PC 38:3a 812.6/184.1 x x x 
PC 40:3a 840.6/184.1 x x x 
PC 36:4a 782.6/184.1 x x x 
PC 38:4a 810.6/184.1 x x x 
PC 40:4a 838.6/184.1 x x x 
PC 38:5a 808.6/184.1 x x x 
PC 40:5a 836.6/184.1 x x x 
PC 38:6a 806.6/184.1 x x x 
PC 40:6a 834.6/184.1 x x x 
PC 32:0e 720.6/184.1 x x x 
PC 34:0e 748.6/184.1 x x x 
PC 36:0e 776.7/184.1 x x x 
PC 38:0e 804.7/184.1 x x x 
PC 32:1e 718.6/184.1 x x x 
PC 34:1e 746.6/184.1 x x x 
PC 36:1e 774.6/184.1 x x x 
PC 38:1e 802.7/184.1 x x x 
PC 34:2e 744.6/184.1 x x x 
PC 36:2e 772.6/184.1 x x x 
PC 38:2e 800.7/184.1 x x x 
PC 34:3e 742.6/184.1 x x x 
PC 38:3e 798.6/184.1 x x x 
PC 40:4e 824.7/184.1 x x x 
PC 40:5e 822.6/184.1 x x x 
PC 40:6e 820.6/184.1 x x x 
PC 31:0a 720.6/184.1 x 
PC 33:0a 748.6/184.1 x 
PC 35:0a 776.7/184.1 x 
PC 37:0a 804.7/184.1 x 
PC 31:1a 718.6/184.1 x 
PC 33:1a 746.6/184.1 x 
PC 35:1a 774.6/184.1 x 
PC 37:1a 802.7/184.1 x 
PC 33:2a 744.6/184.1 x 
PC 35:2a 772.6/184.1 x 
PC 37:2a 800.7/184.1 x 
PC 33:3a 742.6/184.1 x 
PC 37:3a 798.6/184.1 x 
PC 39:4a 824.7/184.1 x 
PC 39:5a 822.6/184.1 x 
PC 39:6a 820.6/184.1 x 

LysoPC 16:0 496.5/184.1 x 
LysoPC 18:0 524.5/184.1 x 
LysoPC 16:1 494.5/184.1 x 
LysoPC 18:1 522.5/184.1 x 
LysoPC 18:2 520.5/184.1 x 
LysoPC 20:4 544.5/184.1 x 
LysoPC 22:6 568.5/184.1 x 

SM d18:0/16:0 705.6/184.1 x x x 
SM d18:0/18:0 733.6/184.1 x x x 
SM d18:0/20:0 761.7/184.1 x x x 
SM d18:0/22:0 789.7/184.1 x x x 
SM d18:0/24:0 817.7/184.1 x x x 
SM d18:0/26:0 845.7/184.1 x x x 
SM d18:0/26:1 843.7/184.1 x x x 
SM d18:1/16:0 703.6/184.1 x x x 
SM d18:1/17:0 717.6/184.1 x x x 
SM d18:1/18:0 731.6/184.1 x x x 
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SM d18:1/19:0 745.6/184.1 x x x 
SM d18:1/20:0 759.6/184.1 x x x 
SM d18:1/21:0 773.7/184.1 x x x 
SM d18:1/22:0 787.7/184.1 x x x 
SM d18:1/23:0 801.7/184.1 x x x 
SM d18:1/24:0 815.7/184.1 x x x 
SM d18:1/16:1 701.6/184.1 x x x 
SM d18:1/18:1 729.6/184.1 x x x 
SM d18:1/20:1 757.6/184.1 x x x 
SM d18:1/24:1 813.7/184.1 x x x 
SM d18:1/18:2 727.6/184.1 x x x 

Sph d18:0 302.4/284.2 x 
Sph d18:1 300.4/282.2 x 

Cer d18:0/16:0 540.5/266.4 x x x 
Cer d18:0/18:0 568.6/266.4 x x x 
Cer d18:0/20:0 596.6/266.4 x x x 
Cer d18:0/22:0 624.6/266.4 x x x 
Cer d18:0/24:0 652.7/266.4 x x x 
Cer d18:0/26:0 680.7/266.4 x x x 
Cer d18:0/24:1 650.6/266.4 x x x 
Cer d18:0/26:1 678.7/266.4 x x x 
Cer d18:1/16:0 538.5/264.4 x x x 
Cer d18:1/18:0 566.6/264.4 x x x 
Cer d18:1/20:0 594.6/264.4 x x x 
Cer d18:1/22:0 622.6/264.4 x x x 
Cer d18:1/24:0 650.6/264.4 x x x 
Cer d18:1/26:0 678.7/264.4 x x x 
Cer d18:1/24:1 648.6/264.4 x x x 
Cer d18:1/26:1 676.7/264.4 x x x 

GlcCer d18:0/16:0 702.6/266.4 x x x 
GlcCer d18:0/18:0 730.6/266.4 x x x 
GlcCer d18:0/20:0 758.7/264.4 x x x 
GlcCer d18:0/22:0 786.7/266.4 x x x 
GlcCer d18:0/24:0 814.7/266.4 x x x 
GlcCer d18:0/26:1 840.7/264.4 x x x 
GlcCer d18:1/16:0 700.6/264.4 x x x 
GlcCer d18:1/18:0 728.6/264.4 x x x 
GlcCer d18:1/20:0 756.6/264.4 x x x 
GlcCer d18:1/22:0 784.7/264.4 x x x 
GlcCer d18:1/24:0 812.7/264.4 x x x 
GlcCer d18:1/24:1 810.7/264.4 x x x 

 

Supplementary Table 7-7: Overview of m/z values used for neutral lipid measurements 
Lipid Name Ion 
DAG 32:0 586.5 
DAG 34:0 614.6 
DAG 32:1 584.5 
DAG 34:1 612.6 
DAG 36:1 640.6 
DAG 34:2 610.6 
DAG 36:2 638.6 
DAG 36:3 636.6 
DAG 36:4 634.6 
DAG 38:4 662.6 
TAG 44:0 768.8 
TAG 46:0 796.8 
TAG 48:0 824.8 
TAG 52:0 880.9 
TAG 54:0 908.9 
TAG 56:0 936.9 
TAG 58:0 964.9 
TAG 60:0 992.9 
TAG 44:1 766.8 
TAG 46:1 794.8 
TAG 48:1 822.8 
TAG 49:1 836.8 
TAG 50:1 850.8 
TAG 52:1 878.9 
TAG 53:1 864.9 
TAG 54:1 906.9 
TAG 56:1 934.9 
TAG 58:1 962.9 
TAG 60:1 990.9 
TAG 44:2 764.8 
TAG 46:2 792.8 
TAG 48:2 820.8 
TAG 49:2 834.8 
TAG 50:2 848.8 
TAG 52:2 876.9 
TAG 53:2 862.9 
TAG 54:2 904.9 
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TAG 56:2 932.9 
TAG 58:2 960.9 
TAG 60:2 988.9 
TAG 46:3 790.8 
TAG 48:3 818.8 
TAG 50:3 846.8 
TAG 52:3 874.9 
TAG 54:3 902.9 
TAG 56:3 930.9 
TAG 58:3 958.9 
TAG 60:3 986.9 
TAG 48:4 816.8 
TAG 50:4 844.8 
TAG 52:4 872.9 
TAG 54:4 900.9 
TAG 56:4 928.9 
TAG 57:4 942.9 
TAG 58:4 956.9 
TAG 60:4 984.9 
TAG 52:5 870.9 
TAG 54:5 898.9 
TAG 56:5 926.9 
TAG 58:5 954.9 
TAG 60:5 982.9 
TAG 52:6 868.9 
TAG 54:6 896.9 
TAG 56:6 924.9 
TAG 58:6 952.9 
TAG 60:6 980.9 
TAG 52:7 866.9 
TAG 54:7 894.9 
TAG 56:7 922.9 
TAG 58:7 950.9 
TAG 60:7 978.9 
TAG 54:8 892.9 
TAG 56:8 920.9 
TAG 58:8 948.9 
TAG 60:8 976.9 
TAG 54:9 890.9 
TAG 56:9 918.9 
TAG 58:9 946.9 
TAG 60:9 974.9 

TAG 54:10 888.9 
TAG 58:10 944.9 
TAG 60:10 972.9 
Cholesterol 369.4 

Cholesterol Ester 369.4 
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