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SUMMARY 

Induction motors are widely used in industries.  However, online predictive detection 

and diagnosis of mechanical faults of an induction motor is still a challenging problem.  

The increasing economic pressure has required the development of a cost-effective 

maintenance system to guarantee induction operating reliability and relatively low cost. 

Therefore, it is crucially important to develop intelligent tools to detect and diagnose 

mechanical faults for the reliable operation of induction motor systems. This thesis aims 

at studying this issue and proposing effective solutions. The major contributions of the 

thesis are: 

Fast Fourier Transform (FFT) is known to be an efficient algorithm of computing the 

Discrete Fourier Transform (DFT) [1], which decomposes a vibration signal of time 

domain into frequency domain and is generally used in digital signal processing. 

Furthermore, Envelope Analysis is an algorithm to translate a signal into Intrinsic Mode 

Functions (IMF) and gain instantaneous frequency data. The new design combines these 

two algorithms and proposes a hybrid method, named as FFT-En, which translates 

vibration signal of induction motors from time domain to frequency domain, and then 

using Envelope Analysis significantly reduces the influence of noise and effectively 

extracts the fault signals. 

Independent Component Analysis (ICA) is developed to separate a multivariate blind 

signal source into additive subcomponents, which assumes that the source signals are 

non-Gaussian mutual statistical independence signals. ICA is widely applied in load 

estimation of power systems, image processing, and biomedical engineering areas. 
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However, ICA is rarely applied to detect induction motors fault. The new design utilizes 

ICA to perform reliable diagnosis and applied Support Vector Machine (SVM) to sort the 

ICA results for classification and regression analysis. The new design is shown to have 

outperformed previously reported algorithms by significantly increasing the speed and 

accuracy of predictive detection and diagnosis of induction motors mechanical faults. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivations and Objectives 

Induction motors play a significant role as essential power in transportation, 

production and manufacturing industries due to their robust design, simplicity in 

construction and relatively low cost. The performance of induction motors is closely 

related to guarantee its health operational condition. Although the robustness and 

reliability of induction motors is relatively high, some unforeseen faults are unavoidable. 

If they are badly damaged, problems such as rotor bar failures, stator winding failures and 

bearing failure will occur. The unexpected failure of induction motors will lead to 

catastrophic consequences in marine vessel, transportation vehicles and other situations. 

To achieve automatic diagnosis and detection aim, it is crucial to establish 

understanding of early fault diagnosis. Currently, main procedures of motors maintenance 

contain periodic visual inspections and replacement of damaged units at machine down 

time. Nevertheless, at the initial period of faults appearance, it is difficult to perceive 

motors faults at high speed rotation since failure degree is very slight. The faults can only 

be found when the motors make big noise or vibrate strongly.  Early fault diagnosis and 

detection can reduce unscheduled machinery outages, consequential damage and 

maintenance cost. Therefore, it is important to develop a system to automatic fault 

detection continuously for improving motor performance and prolonging machine life. 
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A typical system of induction motor fault detection is illustrated as Fig. 1.1. The main 

parts of the system are data acquisition, data pre-processing, analysis algorithm, and data 

post-processing based on the results from algorithm. The signature from induction motor 

is collected using accelerometers or optical encoder. Data pre-processing and analyzing 

are post processed in a Matrix Laboratory or Digital Signal Processing environment.  

Finally, the system can automatically diagnose the condition of induction motor. 

 

Fig. 1.1 A typical system of induction motor fault detection 

Most motor fault signals are mixed in power frequency. Effective diagnosis and 

condition monitoring of an induction motor mechanical faults is not only important but 

complicated. Thus, the second aim of this thesis is to find a reasonable and effective way 

to process vibration signals. 

 

Diagnosis and Detection 

Industry 
Motor Data Acquisition 

Data Pre-
processing 

Algorithms 

Data Post Processing Based on the Results from Algorithms 
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1.2 Previous Work and Contributions of This Thesis 

There is a significant amount of research in motors fault detection area. However 

vibration (acoustic) and current (electromagnetic flux) information are generally used for 

condition monitoring of induction motors. Even though current signal analysis is 

providing continuous monitoring in a nonintrusive way, vibration signal analysis is more 

commonly used for periodic inspections in industry. This thesis is based on spectra 

analysis of the vibration data. 

Previous research developed varieties of methods to detect and diagnose motors fault 

on vibration signal, including the Fourier spectrum, wavelet package, the Kullback index 

of complexity, pseudo-phase diagrams, singular spectrum analysis, and fuzzy logic 

classification techniques, neural networks, etc [2]. These methods can be classified into 

time domain, frequency domain, time-frequency domain, higher-order spectra analysis, 

neural-network, and model-based techniques [3]. 

In the time domain, approaches enhance vibration signals through a filtering and direct 

analysis signals morphology or some other related time domain signal statistical 

parameters, such as peak, kurtosis and crest factor. This technique is simple, but it has 

crucial shortcoming. For instance, some approach detects fault by the values of kurtosis 

and crest factor, which can measure the spikiness of the vibration signal in the motors 

slight damage stage. However, when the motors degradation level increases, vibration 

signals become random, and kurtosis and crest factor lack the ability of measuring signal 

spikiness. Therefore, this thesis is based on analysis in the frequency domain instead of 

time domain. 
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Frequency domain analysis can also be named spectrum analysis. Vibrations signals 

are commonly converted from time domain to frequency domain by the Fourier transform. 

In the frequency domain, the signal information of time domain is converted to a 

magnitude and phase component of each frequency. The important purpose for vibration 

signals analysis of this thesis in the frequency domain is the analysis of signal properties. 

The vibration spectrum contains harmonics associated with the defective component of 

induction motor. As damage occur in a motor, the spectrum peaks at the corresponding 

motor defect frequency. Furthermore, there are sidebands around each peak. The spacing 

of the sidebands depends on the periodic properties of the loading and transmission path 

[4]. The vibration spectrum amplitudes of the peaks increase, as the corresponding motor 

component damage increases. 

In the time and frequency domain, approaches utilize both time and frequency domain 

information to analysis signal transient features, including wavelet transform, short-time 

Fourier transform, etc. 

High-order spectra show the corresponding phase angles among different signal 

frequencies. The bispectrum and trispectrum analysis are generally used to derive 

features, which are related to the motor condition.  

Model-based techniques require to study and dependent on the system information.  

Mathematical models are built according to mechanical systems and reflect the 

relationship between the vibration signals received from specific location sensor and the 

type of fault present in the motor. 
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Neural networks are widely applied to signal processing in recently years, and some of 

which have the characteristic of self-organizing, self-learning and parallel processing of 

distributed information. To use this approach in motor detection and diagnose a feature 

extraction algorithm is needed to provide useful information to train the neural network. 

Since motor fault detection and diagnosis is first of all a pattern recognition problem. 

This algorithm strongly determines the performance of neural networks approach. This 

thesis using ICA extracts signal features from the vibration data, and then uses these 

features to train and test neural networks. These features then are classified into the 

required number of healthy and faulty clusters in the feature space, which are then used to 

measure the health condition of the induction motor. 

In view of that the above, this thesis proposes an easy-to-implement and efficient 

system to detect and diagnose status of induction motors and electromechanical systems 

by providing vibration signature analysis in the frequency-domain. This system combines 

Fast-Fourier-Transform technology with Envelope Analysis, which is widely known as 

the high frequency resonance technique, greatly reduces the noise influence and more 

effectively extracts fault signals. This system also proposes an automatic and effective 

design for signals classification. It applies ICA, extracts features obtained from the results 

of FFT-En, and then uses SVM separate these features from each other in the feature 

space. Therefore, this thesis explores an automatic way to monitor and diagnosis 

induction motors and electromechanical systems instead of 

manual diagnosis, and achieves a diagnostic accuracy of almost 100%. 
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1.3 Thesis Outline 

This thesis aims to develop an automatic software platform for fault detection and 

diagnosis of induction motors and electromechanical systems, analyzing vibration data 

features and studying and comparing related algorithm, and targeting at a robust and 

highly accurate fault classification. In addition to fault detection on induction motors, the 

platform has also been applied to fault detection on wind-power turbines and train-drive 

system of Singapore’s mass-rapid transit railway to demonstrate its robustness for 

detecting abnormal vibrations in complex electromechanical systems. As shown in Fig. 

1.2, the platform uses FFT and Envelope Analysis for processing each time-domain 

healthy or faulty waveform collected from a healthy or faulty motor, ICA for extracting 

the features to describe its signature as identified by Envelope Analysis and SVM for 

classifying between healthy and faulty signatures. The in-depth description of each 

component of the proposed platform will be given in remaining Chapters of this thesis. 
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Fig. 1.2 Proposed automatic motor fault detection and diagnosis scheme
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The thesis is therefore organized as follows: 

Chapter 1 introduces the motivations and objectives of this thesis, reviews earlier work, 

summarizes the contributions of this research, and shows the thesis outline. 

Chapter 2 focuses on the structure and operation principle of induction motor, and 

introduces the classification of induction motor faults. This thesis mainly studies the 

detection and diagnosis of bearing fault, and additional source of vibration data sets are 

from three different research organizations outside NUS: Bearing Data Center of Case 

Western Reserve University, Vestas R&D Centre (Singapore) and SKF. 

Chapter 3 describes the definition and principle of FFT-Envelope Analysis, which is 

used to extract the feature of vibration signature of induction motors and 

electromechanical systems. This system uses Fast Fourier Transformation to transform 

the signal from time domain to frequency domain, and then uses Envelope Analysis to 

reduce the noise influence and extract the fault signals. In the last Section of this Chapter, 

it presents three groups of results by using FFT-En.  

Chapter 4 focuses on the principle and implementation of Independent Component 

Analysis (ICA). Due to the simple and reliability of ICA, this thesis adopts it as a feature 

extraction method in induction machine condition monitoring and fault diagnosis field. 

Furthermore, demonstrations on how FastICA works are presented at the end of this 

Chapter. 

The application of neural networks is widely employed to solve classification problem 

for condition monitoring and fault diagnosis. Chapter 5 introduces a machine-learning 
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algorithm SVM and how it is applied in the case of induction motors and 

electromechanical systems condition detection.  

Chapter 6 presents and discusses results of the proposed method of condition detection 

and diagnosis of induction motors and electromechanical systems.  

Chapter 7 concludes the present research completed with automatic detection and high 

accuracy and proposes the future work by development of a more powerful SVM and 

more efficient Zoom-FFT into the system for more types of induction motors and 

electromechanical systems faults detection.  
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CHAPTER 2 

INDUCTION MOTOR AND DATA COLLECTION 

2.1 Introduction 

2.1.1 Structure of Induction Motor 

Induction motors are widely used in industrial drives, because they have the 

characteristics of practicality, robustness, simplicity in construction, and relatively low 

capital/maintenance costs. Their speed is determined by the supply or inverter frequency. 

A labeled cutaway view of a typical motor is demonstrated in the Fig. 2.1.1-a) [5] 

below, which shows the main parts: the stator, rotor, and enclosure. 

 

Fig. 2.1.1-a) Structure of an induction motor [5] 
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The stator is the motor’s outside stationary part, which is illustrated in Fig. 2.1.1-b) [6].  

Many thin metal sheets, called laminations, are made as stator core to keep down 

energy loses. Laminations are normally made by steel and form a hollow cylinder. Coils 

of insulated wire placed in slots of the motor housing, and the stator windings are directly 

linked to the power source. When the current is supplied, coils become electromagnets. 

Electromagnetism is the essential principle of the motor operation. 

 

Fig. 2.1.1-b) The stator of an induction motor [6] 

The rotor is the inside rotating part of the motor’s electromagnetic circuit. Fig. 2.1.1-c) 

[6] provides the cutaway view of motor rotor. The most common type of rotor used in 

asynchronous motor is the “squirrel cage” rotor, which consists  of  evenly  spaced  

conductor  bars  around  the cylinder of  the  end rings covered by  stacking thin steel 

laminations to reduce eddy current. After die casting, rotor conductor bars are 

mechanically and electrically connected with end rings. Then, the rotor is pressed onto a 

shaft to form an integral part of the rotor construction. 
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Fig. 2.1.1-c) The rotor of an induction motor [6] 

The enclosure consists of a frame and two bearing housings. As shown in Fig. 2.1.1-d) 

[6], the rotor is inside the stator, which is assembled in the motor frame. There is an air 

gap to provide no direct physical connection between the rotor and stator. Bearings are 

mounted on the shaft to support the rotor.  

 

 

Fig. 2.1.1-d) Partially assembled motor [6] 
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2.1.2 Basic Operation of Induction Motor 

Insulated wire coils are placed in stator slots of motors. The principle of rotating 

magnetic field explains the shaft rotation of motors. Fig. 2.1.2-a) [7] shows a schematic 

diagram of three-phase stator.  

 

Fig. 2.1.2-a) A 3-phase stator [7] 

In this example, three-phase windings (A, B, and C) are separated by 120° from one 

another, and a second set of three-phase windings is placed between the space. This is a 

2 poles stator. Because each phase winding appears twice, the number of times that a 

phase winding appears determines the number of poles. 

When the stator is connected to a 3-phase AC power supply, current flows through 

the windings. The direction of the current flow through winding decides the magnetic 

pole of the phase winding. Fig. 2.1.2-b) [7] illustrates how three-phase power 
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produces a rotating magnetic field. In this example, we assume that A1, B1 and C1 

windings connect to a positive current and result in a north pole. 

 

Fig. 2.1.2-b) 360 degree rotation [7] 

At time instant 0, phase A has no current flow, phase B has a negative current flow, 

and phase C has a positive current flow. Furthermore, windings B2 and C1 become 

north poles, windings B1 and C2 become south poles, and a magnetic field results, 

which direction as the arrow in the illustration. 

At time instant 1 (angle = 60°), phase C has no current flow, phase A has a positive 

current flow, and phase B has a negative current flow. Similarly, windings A1 and B2 

become north poles, windings A2 and B1 become south poles, and the magnetic field has 

rotated 60°. 
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At time instant 2, phase A has a decreasing positive current flow, phase B has no 

current flow, and phase C has a negative direction. Thus, windings A1 and C2 become 

north poles, windings C1 and A2 become south poles, and the magnetic field has rotated 

60°. 

Therefore, the magnetic field will rotate 360 degree (a full revolution) at the end of 

time instant 6. Such fields will vary 50 times per second on a 50 Hz power supply. 

2.2  Fault Specifications 

There are two types of induction motor faults studied in the thesis: mechanical faults, 

which include bearing faults, gear faults, mechanical looseness, etc., and electrical faults, 

which include unbalanced power supply, non-even air-gap, imbalance in motor load, 

stator-winding, etc. 

 

Fig. 2.2 Fault located on the bearing  

A bearing is the machine element that supports the rotor bar. Fig. 2.2 indicates a 

bearing-fault that was created on a motor with a dent on the seal connected to the inner 
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race of the bearing. According to the investigation carried out by the Electric Power 

Research Institute, the most common failure faults in induction motor is failure of rolling 

element bearing followed by stator winding failures and rotor bar failures. A bearing 

failure will increase the rotor rotational friction, reduce the efficiency of induction motors, 

and cause overheating and to wear to the motor. Therefore, diagnosing bearing health is 

extremely important for the reliability of induction motor systems. In this thesis, bearing-

fault detection and diagnosis will be studied. 

2.3 Data Collection 

This thesis studies three groups of vibration data, from the Bearing Data Center of 

Case Western Reserve University (CWRU) [8], Vestas R&D Centre in Singapore and 

Svenska Kullager-Fabriken in Singapore (SKF) respectively. 

2.3.1 Data from CWRU [8] 

There are 4 sets of data from CWRU, which collected the vibration data for normal 

and faulty bearings using a 2 hp Reliance Electric motor. Motor bearings faults were 

made by electro-discharge machining (EDM), and their diameter is 0.007-0.040 inches 

located at the bearing ball, inner raceway, or outer raceway. The information of motor 

bearing used in simulation is shown in Table 2.3.1-a) [8]. 

Table 2.3.1-a) Defect frequencies: (multiple of running speed in Hz) [8] 

Type Inner Ring Outer Ring Cage Train Rolling Element 

Drive-end 5.4152 3.5848 0.39828 4.7135 

Fan-end 4.9469 3.0530 0.3817 3.9874 
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Fig. 2.3.1 Test stand [8] 

As shown in Fig. 2.3.1 [8] above, the test stand supports a dynamometer, a torque 

transducer, a 2 hp motor and control electronics, which are not shown in this figure. 

The test motor bearings faults were drilled by EDM. The fault diameters on SKF 

bearing are 0.007 inches, 0.014 inches, and 0.021 inches, and the fault diameters on NTN 

bearing are 0.028 inches, and 0.040 inches. Table A.2.3.1-b) [8] and Table 2.3.1-c) [8] 

provide the diameter and depth information of holes to simulate different bearing fault. 

Table 2.3.1-b) Drive-end bearing-fault specifications (1 mil=0.001 inches) [8] 

Location Inner Raceway Outer Raceway Ball 

Diameter 7 14 21 28 7 14 21 40 7 14 21 28 

Depth 11 11 11 50 11 11 11 50 11 11 11 150 

Type SKF SKF SKF NTN SKF SKF SKF NTN SKF SKF SKF NTN

Torque Transducer Dynamometer 2 hp motor 
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Table 2.3.1-c) Fan-end bearing-fault specifications (1 mil=0.001 inches) [8] 

Location Inner Raceway Outer Raceway Ball 

Diameter 7 14 21 7 14 21 7 14 21 

Depth 11 11 11 11 11 11 11 11 11 

Type SKF SKF SKF SKF SKF SKF SKF SKF SKF 

 

Vibration data pre-processed in a MATLAB platform are recorded in .mat format at 

12,000 samples/second for drive and fan-end bearing faults, and at 48,000 

samples/second only for drive-end bearing faults.  

The data was collected by vibration sensors, which were placed with magnetic bases at 

the 12 o’clock position at both of the motor drive-end and fan-end. The data of motor 

speed (from 1797 to 1720 RPM) and motor loads (from 0 to 3 horsepower) were 

collected by torque transducer and recorded manually. Table 2.3.1-d) [8] indicates the 

collection speed and load of normal baseline data. 

Table 2.3.1-d) Normal baseline data [8] 

 Motor Load (HP) Approx. Motor Speed (rpm) Normal Baseline Data 

0 1797 Normal_0 

1 1772 Normal_1 

2 1750 Normal_2 

3 1730 Normal_3 

 

Outer raceway is stationary. Therefore, the placement of the fault directly affects 

motor vibration response. In order to quantify this effect, the experiments for bearing 
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outer raceway faults (including fan and drive-end bearing) placed vibration sensors at 

three different places: load zone (3 o’clock), load orthogonal zone (6 o’clock), and 12 

o’clock. Collection information of fault bearing data is listed in the appendix A.1 CWRU 

Vibration data Information. 

2.3.2 Data from Vestas 

There are 18 sets of data from Vestas, which collected the wind-power generator 

bearing vibration data using accelerometers. Accelerometers were placed on three 

turbines and at Generator Drive-end and not Generator Drive-end for each turbine. And 

the data were recorded in different time period and the recording time for each is around 

40 seconds. The detail of collection date and time is shown in Table 2.3.2. 

Table 2.3.2 Vestas in Singapore vibration data record list 

Turbines Accelerometers Location Collection Date and Time 

No.10 GDE 26-Mar-2009 

18.00.05 

25-Oct-2008 

01.31.50 

16-Sep-2008 

16.12.31 

GNDE 26-Mar-2009 

18.00.05 

25-Oct-2008 

01.31.50 

16-Sep-2008 

16.12.31 

No.31 GDE 17-Apr-2009 

05.59.30 

27-Jun-2009 

08.12.46 

19-Mar-2009 

12.23.36 

GNDE 17-Apr-2009 

05.59.30 

27-Jun-2009 

08.12.46 

19-Mar-2009 

12.23.36 

No.44 GDE 24-Dec-2007 

05.21.22 

24-Dec-2007 

13.18.18 

22-Feb-2008 

23.49.03 

GNDE 15-Oct-2007 24-Dec-2007 24-Dec-2007 
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16.29.34 05.21.22 13.18.18 

(GDE means Generator Drive-end, GNDE means not Generator Drive-end) 

2.3.3 Data from SKF 

There are 2 sets of vibration data from SKF, which collected on two different motors 

(Motor AHU 124 and Motor RCU 01). For Motor AHU 124 sampling frequency is 2560 

Hz and number of samples is 2048, and for Motor RCU 01 sampling frequency is 1280 

Hz and number of samples is 2048.  
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CHAPTER 3 

SIGNATURE FEATURE EXTRACTION  

3.1 Theoretical Analysis of the Proposed FFT 

Fourier Transform is an important algorithm in the fault detection field. According to 

Fourier principle, a continuous measurement of the timing or signal can be represented by 

infinite superposition of different frequency sine wave signals. On this principle, Fourier 

transform cumulatively calculates the frequency, amplitude and phase of sine wave 

signals in the original signal by using direct measurements. Inverse Fourier transform is 

essentially also a treatment of cumulative, which can convert independent sine wave 

signals into a new signal. Therefore, Fourier transform can convert original time-domain 

signal, which is difficult to deal, into a new frequency-domain signal, which is easy to 

process and analysis by tools. 

FFT, which is a fast algorithm for the discrete Fourier transform, can transform a 

signal into the frequency domain. This signal in time-domain is difficult to see its 

features, but it is easier to analyze the features transformation in frequency-domain. 

From the view of modern mathematics, the Fourier transform is a special integral 

transformation. The frequency-domain signal F(ω) can be transformed from an original 

time-domain signal f(t) by using FFT [9]: 

…         (3.1.1) 
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Here  1,2, … ,  is amplitude, and 1,2, … ,  means time point, where 

L records the number of samples. 

                    (3.1.2) 

where FFT represents fast Fourier transform function. 

 

Fig. 3.1 The process of DFT and Inverse DFT 

Fig. 3.1 [10] indicates the method of transformation signals from time-domain to 

frequency-domain and the inverse process. The left part of illustration represents signals 

in time-domain, and the right part represents signals in frequency –domain.  

where x[ ] is the time domain signal, and N is the length of this signal; 

Re x[ ] and Im x[ ] represent real part and imagine part of frequency domain, 

respectively.  N/2+1 is the length of these signals.  

The MATLAB source code of FFT arithmetic used in this system is attached in the 

Appendix 2.1. 
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  …          (3.1.3) 

Here 1,2, … ,  represents the magnitude information, where N is the 

selected number of the frequency components  1,2, … , , and ∆ ω ω  

is the selected resolution. 

The frequency-domain signal F(ω) generated by transformation (3.1.2) includes the 

magnitude information about each frequency components as the above (3.1.3) 

  …       (3.1.4)                          

  …       (3.1.5)                         

where F(), fbr(t), and fbr(t) represent the healthy motor, broken rotor bar motor and 

bearing-fault motor vibration signatures in frequency-domain, respectively. 

1,2, … ,  and 1,2, … ,  represents the magnitudes of two 

kinds of faulty motors, where N is the number of the frequency components  

1,2, … , . 

The frequency spectrum of the bearing-fault motor has the frequency signatures of the 

bearing faults around the fundamental harmonics, and the frequency spectrum of the 

broken rotor-bar motor has sidebands around the fundamental harmonics. Therefore, 

(3.1.3), (3.1.4) and (3.1.5) can be merged into (3.1.6) in the following. 
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_

 … 0 … 0 0 … 0

 …  … 0 … 0

 … 0 … 0  …

            

(3.1.6)                          

Equation (3.1.6) can also be simplified as: 

_
0 0

0
0

                                        (3.1.7) 

Here   …  , and represents the healthy frequency 

characteristics of motors.   

  …   , and represents the frequency 

characteristics of motors with broken rotor bar fault. 

  …   , and represents the frequency 

characteristics of motors with bearing fault. 

In the first row of (3.1.7), there are magnitudes of healthy motor frequency 

components. The healthy motor is assumed to be perfectly normal, so the magnitudes of 

broken rotor bar and bearing faulty frequency components equal zero. In the same way, 

the second row of (3.1.7) represents the magnitudes of frequency signatures of broken 

rotor bar motor, and the magnitudes of bearing-fault frequency components equal zero. 
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Similarly, the third row of (3.1.7) shows the magnitudes of frequency signatures of 

bearing-fault motor, and the magnitudes of broken rotor bar fault frequency components 

equal zero. 

From (3.1.7), it can be observed that healthy and different faults signatures have their 

own frequency characteristics, such as Ab, Abr and Abe. It means that healthy and faulty 

motors can be distinguished by the magnitudes of the frequency components rather than 

the frequency components themselves. For example, if the frequency components are 

fundamental constants, the system can diagnose motors healthy status and faults type 

only by the magnitudes of the frequency components and regardless of other motor 

parameters. 

Therefore, this Section proposes a frequency-domain signals analysis algorithm using 

the magnitudes of the selected frequency components. The benefit of this algorithm is 

that the detection process does not need the information of the frequency spectrum range, 

which is based on the inverter frequency and must be estimated for new set of signals.  

3.2 Envelope Analysis 

Envelope Analysis, which can extract the related characteristics of signals from high 

frequency modulation signatures, is generally used as frequency analysis technique for 

the detection and diagnosis of induction motors and electromechanical systems faults.  

The principle of signatures analysis of Envelope Analysis is using wavelet analysis to 

find fault signal band and envelope spectrum analysis in the signal band by Hilbert 

transformation. 



35 
 

3.2.1 Steps of the Envelope Analysis  

Envelope Analysis is signatures demodulation method as theoretically based on the 

Hilbert transformation. The major steps are showed in Fig. 3.2.1. 

 

Fig. 3.2.1 Steps of Envelope Analysis diagnosis 

Firstly, Envelope Analysis, which is the high frequency resonance method, extracts the 

resonance frequency band of the natural frequency of fault signal using wavelet packet 

transform filtering, and reconstructs this signal to filter out the interference of other 

signatures frequency component. Then, Envelope Analysis implements envelope 

demodulation by using Hilbert transform to extract the reconstructed signal, removes 

high frequency natural vibration components, and finally finds the fault band and 

diagnoses defect information of fault induction motors and electromechanical systems. 

3.2.2 Definition of Hilbert Transformation 

Theory of Hilbert Envelope Analysis is the envelope of the absolute value of 

signatures, extract modulated signals, and analyze the changes of the modulation function, 

which greatly advantage extraction of fault characteristic. 

The function of Hilbert transformation is made the phase of all frequency components 

of raw signature waveform shift -90 degree. Equation (3.2.2.1) and (3.2.2.2) [11] indicate 

Vibration Signals Digital Band Pass Filter Hilbert Transformations

Spectrum AnalysisFault Diagnosis
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the mathematical description of Hilbert transformation in time-domain. Mathematical 

description of Hilbert transformation in frequency-domain is provided in (3.2.2.3) [11]. 

               (3.2.2.1) 

        (3.2.2.2) 

         (3.2.2.3) 

3.2.3 Demodulation Principle of Hilbert Transformation  

Hilbert Envelope Analysis, which isolates low-frequency information from raw 

signatures, has demodulation functions. It can obtain the envelope spectrum by analyzing 

spectra of the envelope signatures. In Hilbert-Huang transformation, a real signature is 

expressed as complex/ analytic signatures. The results consist of Envelope Analysis, 

instantaneous frequency and instantaneous phase of the real signature. Therefore, the 

results obtained by Envelope Analysis are generally clearer and more effective.  

Equation (3.2.3.1) presents the real signature. Equation (3.2.3.2) is the analytic 

signature of this signal. 

 cos 2         (3.2.3.1) 

where x(t) is narrow band signal at time t. 

         (3.2.3.2) 

When x(t) is phase-modulated signature, z(t) can be expressed as in (3.2.3.3): 
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׀ ׀         (3.2.3.3) 

where f0 represents selected waveform frequency, and Φ(t) represents the amount of 

phase modulation. Φ(t) is given in (3.2.3.4), 

2         (3.2.3.4) 

Frequency modulation can be obtained from the differentiating of phase modulation, 

so the frequency modulated signal of the real signature  x(t) can be calculated by: 

/ / 2       (3.2.3.5) 

Therefore, the phase and frequency modulation data of the fault motor signals can be 

extracted by FFT and Envelope Analysis (FFT-En). The MATLAB source code of 

Envelope Analysis arithmetic used in this system is attached in the Appendix 2.2. 

3.3 Vibration Data Processing 

This thesis extracts feature from vibration induction motor signatures by using FFT-En. 

FFT transforms the raw waveform from time domain to frequency domain, then 

Envelope Analysis greatly reduces the noise influence and can more effectively extract 

the fault feature from the signature obtained through FFT. 

This Section demonstrates a small part of data results, which are processed by FFT-En. 

More results of this system will be presented and discussed in Chapter 6. 
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3.3.1 Data Processing for CWRU [8] 

There are 4 sets of data collected from CWRU, including one set of normal baseline 

data and 3 sets of bearing-fault data, and each set includes three types of bearing fault: 

ball-fault, inner race fault, and outer race fault. 

The Top figure of Fig. 3.3.1-a) shows a raw vibration signal of normal bearing in the 

time-domain, the Middle figure is the plot of the signal transformed into frequency-

domain using FFT, and the Bottom figure of Fig. 3.3.1-a) presents the feature of normal 

bearing signal processed by FFT and Envelope Analysis. 

 

Fig. 3.3.1-a) FFT-En plot of normal bearing 

The Top figure of Fig. 3.3.1-b) shows a raw vibration signal of drive-end bearing with 

ball-fault in time-domain, the Middle figure is the plot of the signal transformed into the 
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frequency-domain by FFT, and the Bottom presents the feature of ball-fault bearing 

signal processed by FFT and Envelope Analysis. 

 

Fig. 3.3.1-b) FFT-En plot of ball—fault bearing 

The data sets of Fig. 3.3.1-c-f) are collected from the same bearing as Fig. 3.3.1-b), 

however these bearings have race fault instead of ball-fault. Fig. 3.3.1-c) has inner race 

fault. Fig. 3.3.1 d-f) have the same outer race fault, but they are measured by three 

different vibration sensors, which placed at 3 o’clock, 6 o’clock, and 12 o’clock, 

respectively. 

The Top plot of these four figures shows a raw vibration signal of race fault bearing in 

time-domain, the Middle figure is the plot of the signal transformed into frequency-

domain using FFT, and the Bottom plot presents the feature of race fault bearing signal 

processed by FFT and Envelope Analysis. 
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Fig. 3.3.1-c) FFT-En plot of inner race fault Bearing 

 

Fig. 3.3.1-d) FFT-En plot of outer race fault bearing @3 o’clock 
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Fig. 3.3.1-e) FFT-En plot of outer race fault bearing @6 o’clock 

 

Fig. 3.3.1-f) FFT-En plot of outer race fault bearing @12 o’clock 
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From above figures, it can be concluded that healthy bearing and different type fault 

bearing from same motor have individual features. Furthermore, the features of Fig. 

3.3.1-d), Fig. 3.3.1-e) and Fig. 3.3.1-f) are similar, because they all collected from the 

same bearing with the same type of bearing fault with vibration sensors placed at 

different locations. 

Therefore, these results provide the basis for classifying different bearing faults. 

Furthermore, ICA will be used and that will be discussed in next Chapter, to classify 

these features and diagnose the status of motor/ bearing automatically.  

3.3.2 Data Processing for Vestas 

Eighteen sets of data were collected from Vestas’s three different wind turbines (one 

turbine has bearing failure and the other two in good conditions). 

 

Fig. 3.3.2-a) FFT-En plot of a broken Vestas wind turbine 
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The Top figure of above Fig. 3.3.2-a) shows a raw vibration signal of faulty bearing 

located at generator drive-end of wind turbine No. 31, the Middle figure is the plot of the 

signal transformed from time-domain into frequency-domain using FFT, and the Bottom 

figure presents the feature of faulty bearing, which signal processed by FFT and 

Envelope Analysis.  

 

Fig. 3.3.2-b) FFT-En plot of a health Vestas wind turbine 

The Top figure of above Fig. 3.3.2-b) shows a raw vibration signal of healthy bearing 

located at not generator drive-end of wind turbine No. 44, the Middle figure is the plot of 

the signal transformed from time-domain into frequency-domain using FFT, and the 

Bottom figure presents the feature of healthy bearing, which signal processed by FFT and 

Envelope Analysis. 
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From these two figures, it can be demonstrated that wind turbines with healthy bearing 

and faulty bearing have different features. Therefore, the status of wind turbine can be 

diagnosed by these features as further illustrated in Chapter 4. 

3.3.3 Data Processing for SKF Data Sets 

Two sets of data were collected from the same induction motor with two different SKF 

bearings. 

The Top figure of Fig. 3.3.3-a) shows a raw vibration signal from the motor RCU01 

with a healthy bearing in the time-domain, the Middle figure is the plot of the signal 

transformed into frequency-domain using FFT, and the Bottom figure presents the feature 

of this healthy motor signal processed by FFT and Envelope Analysis. 

 

Fig. 3.3.3-a) FFT-En plot of a health motor SKF Bearing 
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The above figure of Fig. 3.3.3-b) shows a raw vibration signal of broken bearing 

RCU01, the Middle figure is the plot of the signal transformed from time-domain to 

frequency-domain using FFT, and the Bottom figure presents the feature of this broken 

motor signal processed by FFT and Envelope Analysis. 

 

Fig. 3.3.3-b) FFT-En plot of a damaged SKF bearing

From these two figures, it can be observed that the signatures from healthy or faulty 

bearings collected from the same motor have different features. Therefore, the status of 

motor can be diagnosed by these features as shown in Chapter 4. 
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CHAPTER 4 

INDEPENDENT COMPONENT ANALYSIS 

4.1 Introduction 

Feature extraction techniques select the relevant and useful information from a high 

dimensional space. Generally, feature extraction techniques are based on linear methods, 

for example, Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), 

and Independent Component Analysis (ICA). 

Independent Component Analysis (ICA) belongs to a blind source separation 

algorithm, which transforms the high dimensional features into underlying components 

with rich information contents. ICA is commonly applied to biomedical signal processing 

[12], financial [13], medical area [14], and image processing [15]. However, ICA is 

relatively less known in the field of induction motor fault detection and diagnosis. 

The aim of this thesis is to classify the type of motor faults by identifying the 

dominating feature. This Chapter will focus on the implementation of ICA. 

Independent Component Analysis (ICA) is a technique that separates a class of blind 

multivariate source data into underlying informational components, which are mutually 

independent. The basic condition of ICA is that these components are independent in 

complete statistical sense and have non-Gaussian distributions.  

ICA is an extension of Principal Component Analysis (PCA) that is also a multivariate 

technique.  PCA is a statistical technique that linearly transforms an original set of 
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variables into a substantially smaller set of uncorrelated variables that represents most of 

the information in the original set of variables [16]. The main difference between ICA 

and PCA is that PCA focuses on uncorrelated and Gaussian components, and that is a 

weaker condition than statistically independent. 

If covariance of two random variables (y1 and y2) is zero, they are said to be 

uncorrelated: 

0       (4.1) 

Being uncorrelated does not imply that the random variables are independent. On the 

contrary, if the variables are independent, they must be uncorrelated. Therefore, ICA is a 

more powerful tool than PCA.  

ICA is capable of finding the underlying factors where classic methods fail completely. 

However, independent components in ICA must be non-Gaussian, because Gaussian 

variables do not contain any information, which will imply the directions of the full-rank 

or mixing matrix. 

PCA is a transformation method based on correlation (second-order statistics) and 

orthogonal transformation. In contrast, not merely does ICA decorrelate the second-order 

statistics signals, it also reduces their dependencies in higher-order statistically. Therefore, 

ICA is a transformation technique of a linear non-orthogonal co-ordinate system in any 

random multivariate data, and the second and higher order statistics of the source data 

determines the directions of this co-ordinate system. The objective of ICA is to transform 

the variables of original data into a statistically independent set from each other.  
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ICA is proper to blind source separation or classification, and was designed to deal 

with the separation of a mixed signal problem. Recently, ICA is generally used in the 

signal processing field, such as fault diagnosis and feature extraction. In this thesis, ICA 

is applied as blind fault feature extraction method on different data sets collected as in 

Chapter 3. 

4.1.1 Independence in ICA 

A necessary step of ICA is to estimate the independent component matrix. In this 

thesis, independence of two scalar-valued random variables y1 and y2 is considered to be 

information of variable y1 does not have any same information of variable y2, and vice 

versa. 

Mathematically, independence can be measured by probability densities. Equation 

(4.1.1.1) shows the joint probability density function of y1 and y2. If and only if this 

function is factorizable, random variables y1 and y2 can be said to be independent. This 

definition also can be extended for any number n-variables of random variables. In this 

case, the joint density must be number n terms product. 

,        (4.1.1.1) 

If two random variables have zero-covariance, they are known to be uncorrelated. That 

implies a weaker condition of independence between these two variables as mentioned in 

Section 4.1. On the contrary, if these variables are uncorrelated, they are independent. 

Therefore, most ICA includes the estimation procedure. This procedure always gives 

independent components uncorrelated estimation. The advantage of the estimation 
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procedure in ICA is that it can reduce the number of free parameters and make the 

problem simply.  

ICA finds the independent components by maximizing or minimizing the statistical 

independence of the estimated data. Cardoso [17] gives a review to provide the solutions 

for ICA problem of theoretic criteria of various measures, such as negentropy, mutual 

information, and maximum entropy. 

In this thesis, mutual information method is used to measure the independence of 

random variables. Minimizing mutual information approximately is roughly equivalent to 

finding directions where the negentropy is maximized. That is to say, calculating mutual 

information method aims to find a one-dimensional subspace, in which the projection of 

mutual information has the maximum value of negentropy.  

Projection pursuit is a technique used in statistics, to obtain “interesting” projections of 

multidimensional data. Mutual information connects the relationship between projection 

pursuit and ICA transformation. Projection of mutual information can be applied for 

optimal visualization of density estimation and regression of data. In one-dimensional 

subspace of projection pursuit, ICA attempts to find directions, in which projections of 

the data have interesting distributions. Projection pursuit helps ICA find the non-

Gaussian direction for the estimation the independent components of data. Therefore, 

when all the non-Gaussian directions have been found by projection pursuit, all the 

independent components of the data will be estimated. 

ICA estimation is performed by minimizing mutual information, which equals to 

maximize the sum of non-Gaussianities of the uncorrelated estimates. In this thesis an 
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effective method is used for finding the minimization of non-Gaussian directions to 

obtain ICA transform. 

4.1.2 Data Preprocessing for ICA 

To provide better results, ICA commonly use normalizing, centering, and whitening to 

preprocess the data initially. These preprocessing will now be described briefly below. 

Normalizing: 

Normalizing is a process that changes the amplitude range of raw signals values. This 

process normalizes the signals to have a common maximum amplitude, but does not 

change the relative magnitudes (or signatures) of these features. Therefore, this algorithm 

first finds out the maximum amplitude (recorded as λ) of each signal. Then the algorithm 

divides each signal by its maximum amplitude λ to get the normalizing results of 

signatures. 

Centering: 

Centering is a useful preprocessing strategy for ICA for transforming the input 

signatures to a zero-mean variable, so that all independent components will have zero-

mean as such. The implementation of this algorithm is that it subtracts the mean (E{x}) 

from the observed variable x. 

Whitening: 

Whitening is another preprocessing algorithm in ICA to de-noise the measured data 

vector x by a linear transformation, to transform this vector into a new vector , where its 
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components are mutually uncorrelated and all have equal unity variance. The purpose of 

whitening is to simplify the procedure of ICA by reducing the dimension of parameters, 

which will be estimated after whitening. Furthermore, this preprocessing not only reduces 

the complexity of ICA, but also avoids over-learning in ICA. 

 

 
 

Fig. 4.1.2-a) The signal with normal condition before and after preprocessing 

 
Fig. 4.1.2-b) The signal with bearing-fault before and after preprocessing 
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The above figures present two comparison groups. Fig. 4.1.2-a) [7] shows original and 

preprocessed signal with normal condition and Fig. 4.1.2-b) [7] provides bearing-fault 

signal and their preprocessing signal. These signals are just for demonstrating the 

necessity of preprocessing in ICA, and not belong to any data sets of this thesis.  

From these figures, it can be seen that the range of the left-side graphs (the original 

signal) is from 0 to 10000, but the range of the right-side graphs (signal after 

preprocessing) is only 0-4000. That is to say, only processing one cycle of original signal 

is enough to extract ICA features. Therefore, preprocessing effectively removes the 

repeating part of original signature and simplifies the problem of ICA.  

4.1.3 Fast-ICA 

As mentioned before, ICA can be formulated as: 

 .          (4.1.3.1) 

where X is n-dimensions measured signal vectors, Y is a set of statistically 

independent components, which are extracted from X, and W is the transformation matrix. 

The independent components Y are developed by maximizing the independency with 

respect to W.  

FastICA is an efficient and robust method for independent component analysis. The 

algorithm is based on a fixed-point and iteratively maximizes non-Gaussianity to measure 

the statistical independence. For example, there is a unit vector W, and the projection 

WTX maximizes non-Gaussianity. This algorithm, also can be called as “approximated 

negentropy”, is a quantitative measure of non-Gaussianity.  
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Negentropy is defined as: 

      (4.1.3.2) 

Here G is any non-quadratic function, and v is Gaussian variable, which is zero mean 

and unit variance.  

Negentropy is obtained by differential entropy, and it is zero for a gaussian variable 

and always non-negative. In FastICA, the approximated negentropy is iteratively 

maximized on a fixed-point for finding the independent components with respect to W. 

FastICA improves ICA for faster processing speed and reliability. FastICA uses the 

natural gradient rather than the gradient-descent algorithms. The natural gradient 

multiplies the gradient of the feed forward weight matrix W by a positive definite matrix 

WTW. Then it eliminates the matrix inversion to accelerate the convergence speed. Since 

the time complexity of convergence is at least Θ(n3), the natural gradient is clearly much 

faster than the gradient-descent algorithms for obtaining the convergence when the 

environment does not very change fast. Moreover, FastICA is easy to use, because this 

algorithm does not need any learning rate or other adjustable parameters.  

4.1.4 Formulation of the FastICA 

The MATLAB code of data preprocessing and FastICA can be found in Appendix 2.4 

and 2.5, respectively. FastICA can be simply presented as: 

·          (4.1.4.7) 

·          (4.1.4.8) 
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·  (I represents Identity Matrix)     (4.1.4.9) 

where X is signal vectors as algorithm input, Y is independent component matrix as 

algorithm output, and W and A are separating and mixing matrix respectively. The 

purpose of ICA is finding the separating matrix W, and then performs linear 

transformation of vectors X and gets the output matrix Y. 

In Chapter 3, the vibration signature of induction motor has been processed by FFT-

En , and the result ( ) will be the input of FastICA.  

·         (4.1.4.1) 

Here  is assumed as a set of mutually independent vectors, and  is a constant 

mixing matrix, which will be estimated.  

By rearranging (4.1.4.1), the independent components  can be presented as: 

·         (4.1.4.2) 

where  is the transformation matrix, which is the inverse matrix of   

 Therefore, the extracted statistically independent components  also can be 

expressed as following: 

1
2
3

11 12 … 1
21 22 … 2
31 32 … 3

     (4.1.4.3) 
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Each ICi (i=1,2,3) of (4.1.4.3) has the same length as each of  in (4.1.4.2). The 

 reflect the characteristic of signatures . Therefore,  and signatures  

are used to calculate features of induction motor signature: 

·        (4.1.4.4) 

Here  are the features of signatures  after FFT-En and FastICA. 

 All the magnitude information of induction motors affects the results of the FFT-ICA 

features - . 

For instance,  is the  signal of  in frequency domain: 

1  2 …      (4.1.4.5)                                

Here  1,2, … ,  expresses the magnitude information of component 

 1,2, … , . 

   is transformed to a M-D feature by multiplied independent components  

in (4.1.4.3) and given in the form as below: 

  … 

…
…

… … … …
…

 

          (4.1.4.6) 
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where 
 

1,2, … ,  are respectively the FastICA feature from 1 to M of 

the  signal . Therefore,  contains the magnitude information of each 

component in selected frequency domain. 

Since  , a high dimension signature of vibration signature  in frequency-

domain is mapped into a lower dimension feature 
 

1,2, … , . In this thesis, 

two independent components are enough to diagnosis the status of induction motors. 

4.2 Feature Extraction and ICA Plot 

As mentioned in Chapter 2, vibration signals of induction machines are collected from 

the three sources: CWRU, Vestas and SKF Company.  In this thesis, the features of these 

signatures are extracted by FastICA. The following Sections 4.2.1-4.2.3 will present a 

holistic view of the health and faulty signature database by feature extraction information. 

This Chapter just presents part of feature extraction results. Chapter 6 will summarize 

and analyze the remaining results. 
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4.2.1 ICA Plot of CWRU Data sets [8] 

 

Fig. 4.2.1 ICA plot for CWRU data sets 

In this figure, the normal signals shown as green triangle cluster at the bottom left-

hand corner of the plot, the faulty signals are located at the opposite corner, and all the 

signals are situated around the 45 degree straight line. Therefore, the figure clearly 

classifies the status of induction motor (healthy or fault) by using two ICA features of 

signal. 
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4.2.2 ICA Plot of Vestas sets 

 

Fig. 4.2.2 ICA plot for Vestas data sets 

In Fig. 4.2.2, two groups of ICA results are presented. The signatures shown as green 

triangles are collected from a faulty wind turbine No. 31, and others signatures illustrated 

as blue cross are collected from a health wind turbine No. 44. 

Wind turbine No. 44 is healthy from start to finish, and Wind turbine No. 31 was 

damaged since the end of June 2009. In the figure, all the health signals cluster at the 

bottom left-hand corner, and the faulty one shown as the biggest green triangle is situated 
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degree straight line of this graph, which suggests the use of only one ICA feature for 

adequate fault classification.   

4.2.3 ICA Plot of SKF Data sets 

 

Fig. 4.2.3 ICA plot for SKF data sets 

Fig. 4.2.3 demonstrates the ICA plot of on motor RCU01 provided by SKF. The 

signals are collected at 5 different times, and the motor is seen to have demonstrated 

worse performance with time since December 2011. 

All the signals are situated round the 45 degree straight line of the plot. ICA clearly 
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left-hand corner of plot on a 45-degree line, and the faults signals migrate with time 

towards the other top right-hand corner of the plot. 
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CHAPTER 5 

SUPPORT VECTOR MACHINE 

5.1 Introduction 

Support Vector Machine (SVM) is a relatively new machine-learning method, which 

is based on the statistical learning theory invented by Vladimir Vapnik and co-workers at 

AT&T Bell Labs in 1999 [18]. 

SVM is widely used in classification problem of varieties of disciplines as neural 

networks technique, such as biomedical [19], chemical process [20], financial analysis 

[21], image processing and face recognition [22], etc.  The application SVM as well as 

intelligent system is reported in condition monitoring and fault detection of induction 

motor for faults classification. For instance, gear faults detection [23], bearing’s ball-

faults detection [24], cavitation detection of butterfly valve [25], condition classification 

of small reciprocating compressor [26], and so on. 

5.1.1 Data Preparation for SVM 

Before doing SVM, inputs data need special transformation for guaranteeing the good 

performance of classification. The feature extraction or feature selection is generally used 

for preparation of data inputs, which will be inputted into the SVM classifier. 

The key reason of preparation data instead of directly inputting them into classifier is 

that large vibration data collected from induction motor have too many features. Most of 
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these features are usually irrelevant and redundant that will degrade the performance of 

classifier and cause problem of dimensionality phenomenon. Therefore, feature 

extraction or feature selection method is necessary to avoid the redundancy. As discussed 

in last Chapter, ICA, one of feature extraction methods, is selected to extract the useful 

features from vibration signals of frequency-domain.  

5.1.2 Classification of SVM 

In neural networks, SVM supervised learning model constructs a hyperplane / a set of 

hyperplanes in a high dimensional space for classification or regression analysis.  

Given data set Σ containing     samples is partitioned into two sets: 

A training set:   , , . . . , ,     (5.1.2.1) 

A test set:   , , . . . ,  ,      (5.1.2.2) 

where   , with     .  1,2, … ,    is the label of each 

sample, which be 1  for healthy class and 1  for fault class, respectively. 

Training data set S is for constructing SVM, and test data set  is for evaluating 

performance of SVM. 

In the case of linearly data, a hyperplane, which can separate the given data, denoted 

by (w, b), can be expressed as: 

Discriminant function:        0    (5.1.2.3) 
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This is the decision function here w is N-dimensional vector and b is a scalar, and they 

are used to define the position of hyperplane. One side of hyperplane belongs to healthy 

class and the other side is fault class. 

Separating hyperplane classifies a given xi with 

  
1           0
1           0         (5.1.2.4) 

Hyperplane classifies an example (xi, di) correctly if    , the processing is 

shown as Fig. 5.1.2-a). 

 

Fig. 5.1.2-a) Steps of classification of SVM 

 

Fig. 5.1.2-b) Classification using SVM 
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There are many possible separating hyperplanes for classification, but there is only one 

optimal hyperplane, which produces the maximum margin between the plane and the 

nearest data. Fig. 5.1.2-b) [27] illustrates an optimal separating hyperplane for linear 

classification between two classes. Therefore, finding the maximum margin between the 

two different classes is the key to find optimal hyperplane. 

The function margin of an example (xi, di) with respect to a hyperplane (w, b) is 

defined as: 

          (5.1.2.5) 

The geometric margin of an example (xi, di) with respect to a hyperplane (w, b) is 

defined as: 

         (5.1.2.6) 

The functional margin of a training set S, with respect to a hyperplane (w, b) is the 

minimum of all the function margin of the individual examples in S, i.e., 

       (5.1.2.7) 

The geometric margin of a training set S, with respect to a hyperplane (w, b) is the 

minimum of all the geometric margin of the individual examples in S, i.e., 

       (5.1.2.8) 

Therefore, the relationship between the functional margin and the geometric margin of 

a training set S is: 
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         (5.1.2.9) 

To find the optimal hyperplane with the maximum margin,  is maximized by fixing 

 then minimizing . 

Therefore, the optimal separating hyperplane can be found as following constrained 

optimization problem [27]: 

Minimizing: || ||        (5.1.2.10) 

Subject to:  1 ,       1,2, … ,              (5.1.2.11) 

Equation (5.1.2.10) and (5.1.2.11) can be alternated with Karush-Kuhn-Tucker (KKT) 

condition [28] by using method of Lagrange multipliers [29] [30]: 

Minimizing: , , ∑ ∑    (5.1.2.12) 

Subject to: 
, , 0,      0 

Here  and  are the Lagrange multipliers.  The problem is minimizing (5.1.2.12) 

with respect to w and b 

Consider the KKT condition: 

, , 0        (5.1.2.13) 

 
, ,

0         (5.1.2.14) 

Therefore: 
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∑                  (5.1.2.15) 

∑ 0         (5.1.2.16) 

where w is contained by xi in the subspace spanned. Then by replacing (5.1.2.15) and 

(5.1.2.16) into (5.1.2.12), the dual quadratic optimization hyperplane can be expressed as 

following: 

Maximizing: ∑ ∑ ∑                      (5.1.2.17) 

Subject to: (1) ∑ 0 

   (2)   0,      1, 2, … . ,                               (5.1.2.18) 

Thus, finding Lagrange multipliers    , expressed the w to solve (5.1.2.10), is the 

key to solve the dual optimization problem.  

5.2 Training and Classification 

Since SVM needs abundant training data for constructing SVM, data sets from Vestas 

and SKF Company are not large enough to train SVM, this thesis will only process 

CWRU data sets by SVM. 

Two groups of samples have been selected from the CWRU data set to form a training 

set (with 37 samples). Another group of 37 samples are then selected from the remaining 

samples in the CWRU data set to form a test set. Each sample has 2 features that have 

been computed by ICA feature extraction. 
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Fig. 5.2-a) SVM plot of training set 

Fig. 5.2-a) presents the SVM training results. The green stars are normal signals, and 

the red points represent all bearing faulty signals including ball-fault, inner race fault and 

outer race fault. The blue straight line is placed as a linear boundary between the two 

different groups. 

To show the classification more clearly, Fig. 5.2-b) zooms the boundary part of Fig. 

5.2-a). From this figure, it can be seen that health signatures and faulty signatures are 

completely separated by the SVM in the linear classification. 
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Fig. 5.2-b) Zoom plot of training set SVM result 

 

Fig. 5.2-c) SVM plot of test set 
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Fig. 5.2-c) is a plot of the SVM test results. The blue straight line, which is the same as 

the line in Fig. 5.2-a), is calculated by the processing of SVM training. It successfully 

classifies the normal signals (green stars) and the bearing faulty signals (red points).  

 

Fig. 5.2-d) Zoom plot of test set SVM result 

Fig. 5.2-d), zoom graph of Fig. 5.2-c), indicates that SVM can automatically diagnose 

the status of induction motor bearing by separating signatures into two classes according 

to their features. 
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CHAPTER 6 

PROPOSED FAULT CLASSIFICATION PLATFORM 

AND RESULTS 

6.1 System Scheme 

Fig. 1.3 shows linkages in the proposed platform between various the algorithms, 

which have been described in previous Chapters of this thesis.  The platform has four 

functional steps, which are described as follows: 

Firstly, the raw vibration signal in MATLAB data format (*.m) is inputted into the 

training system. Signals are in time-domain and include all types of bearing faults, for 

example, ball-fault, inner race fault and outer race fault. 

Secondly, the raw vibration signals are transformed from the time-domain to 

frequency-domain by FFT using the magnitudes of the selected frequency components. 

Thirdly, signatures in frequency-domain are processed by Envelope Analysis for 

extracting the related characteristics of signals from high frequency modulation 

signatures and reducing the noise influence. The function of Envelope Analysis is to find 

fault signal band and envelope spectrum analysis in the signal band. 

Fourthly, the extracted signatures are inputted into ICA to select the signatures from 

high dimensional space into underlying informational components. According to the 
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dominating feature of signatures, ICA separates them into two groups with one being 

normal signatures and the other one being faulty. 

Using the above data group as the training data sets, test signatures are entered into the 

system and processed as training signatures (from steps 1st to 4th).  

Given the test set after further data collection, both ICA features of the training set and 

ICA features of the test set are directly loaded into SVM. Each of these two data sets 

contains two variables: the matrix variable data, in which each column represents one 

sample signal, and the variable label, which contains the class label (i.e., −1 for Healthy 

Signal and+1 for Fault Signal) of the samples. SVM classifies the given training set and 

test set, plots classification results of these two data sets, and calculates the classification 

rates with ICA feature extraction. Furthermore, the procedure of test data classification is 

automatic processing of detection and diagnosis of induction motor condition.  

6.2 Project Results and Discussion 

6.2.1 Summary of Results for CWRU [8] 

Results of CWRU data sets are seen in Table 6.2.1, which lists the classification rates 

for training and testing of the 6 experimental data sets.  

Table 6.2.1 Accuracy of fault classification using SVM (%) 

 Drive-end 

(fs:12k, DE) 

Drive-end 

(fs:12k,FE) 

Drive-end 

(fs:48k,DE)

Drive-end 

(fs:48k,FE) 

Fan-end 

(fs:12k,DE) 

Fan-end 

(fs:12k,FE) 

Training 100 100 100 100 100 100 
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Testing 100 87.88 100 100 100 100 

The accuracy of classification is defined as following: 

Classification rate = the number of correct classification/ the whole sample size of 

training or test set 

The classification rate of this process as shown in this table is nearly 100%. 

Fig. 6.2.1-a)-c) show the classification results of drive-end motor bearing test. 

Experiments are processed using a 2 hp Reliance Electric motor, and acceleration data is 

collected at locations near to fan-end at 12,000 samples per second.  The test set 

classification rate of this data set is 87.88%, and the sample size of the test set is 33. That 

is to say, the number of wrong classifications of the test set is four. 

 

Fig. 6.2.1-a) SVM plot for training set 
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Fig. 6.2.1-b) SVM plot for test set 

From Fig. 6.2.1-c), it can be seen that two healthy signatures as green triangle and two 

ball-fault signatures as blue cross are misclassified. One of the reasons for this result is 

that the sample size of training set is not big enough to train SVM well. Large data 

volumes for training are necessary for constructing SVM, so that the boundary between 

the health class and fault class will be clearer, and when new test data are loaded, their 

classification rate will be higher.  
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Fig. 6.2.1-c) Zoom of SVM plot for test set 

The other reason is this thesis only uses 2 real-valued features of each signal in SVM. 

These features are extracted by ICA from induction motor vibration signatures. As shown 

in Section 4.2, two features of each signal are good enough to detect the condition of 

induction motor. However, some of the healthy data of the test data move away from the 

lower left-hand corner of the plot. In this case, more features should be used to recreate 

SVM. 

However, the accuracies of this study for diagnosis of induction motor is sufficiently 

high, and using ICA as preprocessing algorithm of SVM is useful and efficient. 
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6.2.2 Results for Vestas 

The number of data sets of Vestas Company is not large enough to construct SVM, but 

the results of ICA are extremely clear to diagnose the status of wind turbine. 

 

Fig. 6.2.2-a) Classification of Vestas data sets using ICA 

Fig. 6.2.2-a) presents the features of signatures of three different wind turbine. To get 

better view, this figure is transform into 3D coordinate space shown as Fig. 6.2.2-b). 

From this Figure, the signatures of wind turbine No. 44 shown as blue are concentrated at 

the corner of the origin coordinates, part of the signatures of wind turbine No. 31 shown 
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and all of the signatures of wind turbine No. 10 shown as red are scattered at the opposite 

direction of the origin coordinates. 

Therefore, this thesis succeeds with detection of the condition of wind turbine. Wind 

turbine No. 44 is healthy, Wind turbine No. 10 is broken, and Wind turbine No. 31 is 

broken during the measure period. 

 

Fig. 6.2.2-b) Classification of Vestas data sets using ICA in 3dimension 
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6.2.3 Results for SKF data sets 

 

Fig. 6.2.3-a) Classification of SKF data sets using FFT-En-ICA 

Fig. 6.2.3-a) presents the plot of ICA features, which have been extracted by FFT and 

Envelope Analysis. As mentioned in Section 4.2.3, this motor RCU01 was healthy until 

December 2011. In this figure, all the signals are situated round the 45 degree straight 

line of the plot, normal signals cluster is at the bottom left-hand corner of plot, and the 

faults signals cluster is towards the other top right-hand corner of the plot. 

Fig. 6.2.3-b) demonstrates the plot of ICA features extracted from the same motor 

RCU01 as used in Fig. 6.2.3-a). However, the method of extraction is only using FFT. In 

this figure, normal signals are at the bottom of the plot, and the faults signals are at the 

top of the plot. The classification of this figure is not clear as Fig. 6.2.3-a). When the 

condition of the motor is unknown, it is difficult to make a correct diagnosis just 

according to FFT-ICA features. Due to Envelope Analysis can significantly reduce the 
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influence of signature noise, the hybrid method of FFT and Envelope analysis can more 

efficiently extract the fault features. 

 

 Fig. 6.2.3-b) Classification of SKF data sets only using FFT-ICA 
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CHAPTER 7 

CONCLUSION 

7.1 Outcomes 

This thesis addresses application of computational intelligence for fault detection of 

induction machines and electromechanical systems. The method of fast Fourier transform 

and Envelope Analysis is applied to the vibration waveforms measured from a set of 

healthy and faulty induction motors for converting the time-domain signals into the 

frequency domain. Independent component analysis is then applied to the resulted 

frequency spectrums for extracting their dominant features from each healthy or faulty 

motor. The support vector machine is finally applied for classifying patterns obtained 

from these electric motors for detecting bearing problems from the faulty motors. 

Extensive studies have been conducted to evaluate the performance of fault detection and 

diagnosis of induction machines. 

In this thesis, the integration of FFT and Envelope Analysis is proposed to the 

vibration signatures measured. Envelope Analysis based on Hilbert transformation not 

only extracts the useful signatures from the high frequency modulation signature, but also 

reduces the noise influence in signals.  The hybrid method of FFT and Envelope Analysis 

has efficiently extracted the fault features. 

Quantification feature extraction method can improve the reliability and performance 

of fault detection and diagnosis results. This thesis uses ICA as feature extraction method.  
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ICA is simple and reliable to extract the relative features from the signatures in 

frequency-domain, and does not require any prior knowledge of induction machine 

parameters for fault detection and diagnosis. That is to say, ICA can monitor the 

condition of induction machine just using a set of healthy and faulty signatures collected 

from this machine instead of using information of machine parameters. 

This thesis is not only applicable to induction motor’s condition monitoring and fault 

detection, and can also detect and diagnose the condition of electromechanical systems. 

As mentioned in Section 6.2.2, this thesis presents the successful detection results of 

three wind turbines of Vestas.  

In conclusion, this thesis introduced a new fault detection and diagnosis of induction 

machines and electromechanical system based on fast Fourier transform, Envelope 

Analysis, independent component analysis and support vector machine of vibration 

signatures. The new system was tested with experimental data collected from sensor 

measuring the vibration from three groups: the Bearing Data Center of Case Western 

Reserve University, Vestas R&D Centre in Singapore and SKF. The system is a robust 

and effective for fault detection and diagnosis of induction machines and 

electromechanical systems. 

7.2 Future Work 

Most vibration data sets studied in this thesis were collected from bearings. However, 

there are still some other common faults in induction motors, such as rotor bar fault, gear 

faults, mechanical looseness, imbalance in motor load, and so on. In the future, these 
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types of induction motor faults should be established on laboratory motors, and be 

detected and diagnosed by FFT-En and ICA-SVM. 

To classify more classes of motor faults, this system will improve SVM. Because there 

are only two types of motor status for detection in this thesis, which are linearly separable, 

this system uses linear and hard-margin SVM for classification. In future research, SVM 

with characteristics of non-linear, soft-margin, and multi-class classification should be 

developed. More powerful SVM classification will help the system to become a more 

functional motor fault technique, which should be used in other induction motor detection 

and diagnosis. 

In addition, features of composite bearing faults (ball-fault, inner race fault, and outer 

race fault) can be mixed. To solve this problem, Zoom-FFT should be developed and 

integrated into this system. Spectra component of signatures, which can detect the 

condition of induction motor commonly lie in a certain frequency window. Zoom-FFT 

can find these windows and extract the features of signature better and faster. Therefore, 

Zoom-FFT should be built for more robust detection of induction motor faults in the 

future study. 
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APPENDICES 

A.1 CWRU Vibration data Information [8] 

Table A.1-a) 12k drive-end bearing-fault data 

Fault 
Diameter 
(inches) 

Motor 
Speed 
(rpm) 

Inner 
Race 

Ball Outer Race  
Position Relative to Load Zone (Load 

Zone Centered at 6:00) 

Centered 
@6:00 

Orthogonal 
@3:00 

Opposite 
@12:00 

0.007" 1797 I07_0 B07_0 O07@6_0 O07@3_0 O07@12_0 

  1772 I07_1 B07_1 O07@6_1 O07@3_1 O07@12_1 

  1750 I07_2 B07_2 O07@6_2 O07@3_2 O07@12_2 

  1730 I07_3 B07_3 O07@6_3 O07@3_3 O07@12_3 

0.014" 1797 I14_0 B14_0 O14@6_0   

  1772 I14_1 B14_1 O14@6_1   

  1750 I14_2 B14_2 O14@6_2   

  1730 I14_3 B14_3 O14@6_3   

0.021" 1797 I21_0 B21_0 O21@6_0 O21@3_0 O21@12_0 

  1772 I21_1 B21_1 O21@6_1 O21@3_1 O21@12_1 

  1750 I21_2 B21_2 O21@6_2 O21@3_2 O21@12_2 

  1730 I21_3 B21_3 O21@6_3 O21@3_3 O21@12_3 

0.028" 1797 I28_0 B28_0    

  1772 I28_1 B28_1    
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  1750 I28_2 B28_2    

  1730 I28_3 B28_3    

Table A.1-b) 48k drive-end bearing-fault data 

Fault 
Diameter 
(inches) 

Appr
ox. 

Motor 
Speed 
(rpm) 

Inner 
Race 

Ball Outer Race  
Position Relative to Load Zone (Load 

Zone Centered at 6:00) 

Centered 
@6:00 

Orthogonal 
@3:00 

Opposite 
@12:00 

0.007" 1797 I07_0 B07_0 O07@6_0 O07@3_0 O07@12_0 

  1772 I07_1 B07_1 O07@6_1 O07@3_1 O07@12_1 

  1750 I07_2 B07_2 O07@6_2 O07@3_2 O07@12_2 

  1730 I07_3 B07_3 O07@6_3 O07@3_3 O07@12_3 

0.014" 1797 I14_0 B14_0 O14@6_0   

  1772 I14_1 B14_1 O14@6_1   

  1750 I14_2 B14_2 O14@6_2   

  1730 I14_3 B14_3 O14@6_3   

0.021" 1797 I21_0 B21_0 O21@6_0 O21@3_0 O21@12_0 

  1772 I21_1 B21_1 O21@6_1 O21@3_1 O21@12_1 

  1750 I21_2 B21_2 O21@6_2 O21@3_2 O21@12_2 

  1730 I21_3 B21_3 O21@6_3 O21@3_3 O21@12_3 

Table A.1-c) 12k fan-end bearing-fault data 

Fault 
Diameter 
(inches) 

Appr
ox. 

Motor 

Inner 
Race 

Ball Outer Race  
Position Relative to Load Zone (Load 

Zone Centered at 6:00) 
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 Speed 
(rpm) 

Centered 
@6:00 

Orthogonal 
@3:00 

Opposite 
@12:00 

0.007" 1797 I07_0 B07_0 O07@6_0 O07@3_0 O07@12_0 

  1772 I07_1 B07_1 O07@6_1 O07@3_1 O07@12_1 

  1750 I07_2 B07_2 O07@6_2 O07@3_2 O07@12_2 

  1730 I07_3 B07_3 O07@6_3 O07@3_3 O07@12_3 

0.014" 1797 I14_0 B14_0 O14@6_0 O14@3_0  

  1772 I14_1 B14_1  O14@3_1  

  1750 I14_2 B14_2  O14@3_2  

  1730 I14_3 B14_3  O14@3_3  

0.021" 1797 I21_0 B21_0 O21@6_0   

  1772 I21_1 B21_1  O21@3_1  

  1750 I21_2 B21_2  O21@3_2  

  1730 I21_3 B21_3  O21@3_3  

 

A.2 MATLAB Source Codes 

A.2.1 FFT.m 

function FFT(y,fs,style,varargin) 
  
nfft= 2^nextpow2(length(y)); 
  
y=y-mean(y); 
y_ft=fft(y,nfft); 
y_p=y_ft.*conj(y_ft)/nfft; 
y_f=fs*(0:nfft/2-1)/nfft; 
 
if style==1 
    if nargin==3 
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        plot(y_f,2*abs(y_ft(1:nfft/2))/length(y)); 
         
        FE24O123=2*abs(y_ft(1:nfft/2))/length(y); 
         
    else 
        f1=varargin{1}; 
        fn=varargin{2}; 
        ni=round(f1 * nfft/fs+1); 
        na=round(fn * nfft/fs+1); 
        plot(y_f(ni:na),abs(y_ft(ni:na)*2/nfft)); 
    end 
  
elseif style==2 
        plot(y_f,y_p(1:nfft/2)); 
    else 
        subplot(211);plot(y_f,2*abs(y_ft(1:nfft/2))/length(y)); 
        ylabel('7');xlabel('8');title('9'); 
        subplot(212);plot(y_f,y_p(1:nfft/2)); 
        ylabel('10');xlabel('11');title('12'); 
    end 
end 
 

A.2.2 EnvelopAnalysis.m 

function Baoluo(y,fs,style,varargin) 
  
y_hht=hilbert(y); 
y_an=abs(y_hht); 
    if nargin==3 
        FFT(y_an,fs,style); 
         
    elseif nargin==5 
        f1=varargin{1}; 
        f2=varargin{2}; 
        FFT(y_an,fs,style,f1,f2); 
                 
    else 
        error('error'); 
    end 
end 
 

A.2.3 SVM.m 

%% Compute the discriminant function for SVMs 
clear all 
close all 
clc 
  
%% Preprocess the train data 
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load train.mat 
train_data=mapminmax(data);  % Normalize 
target_train=label; 
[m_train,n_train]=size(train_data); 
  
%% Hard-margin SVM 
%% Constrains 
f=-ones(n_train,1); 
Aeq=target_train'; 
Beq=0; 
lb=zeros(n_train,1); 
ub=1e6*ones(n_train,1); 
  
alpha0=rand(n_train,1); 
options=optimset('LargeScale','off','MaxIter',1000); 
  
%% A hard-margin SVM with the linear kernel 
for i=1:n_train 
    for j=1:n_train 
        K_hl(i,j)=train_data(:,i)'*train_data(:,j); 
        H_hl(i,j)=target_train(i)*target_train(j)*K_hl(i,j); 
    end 
end 
  
[x_hl,fval_hl,exitflag_hl]=quadprog(H_hl,f,[],[],Aeq,Beq,lb,ub,alpha0,o
ptions); 
med_hl=0; 
  
for i=1:n_train 
    if x_hl(i)>1e-4 
        for j=1:n_train 
            med_hl=med_hl+x_hl(j)*target_train(j)*K_hl(j,i); 
        end 
        b_hl=target_train(i)-med_hl; 
        break; 
    end 
end 
  
%% Implement the SVMs with the discriminant functions. 
clc 
  
%% Classify the training set 
%% A hard-margin SVM with the linear kernel 
sum_train_hl=zeros(n_train,1); 
for i=1:n_train 
    for j=1:n_train 
        
sum_train_hl(i)=sum_train_hl(i)+x_hl(j)*target_train(j)*K_hl(i,j); 
    end 
    g_train_hl(i)=sum_train_hl(i)+b_hl; 
    d_train_hl(i)=sign(g_train_hl(i)); 
end 
error_train_hl=d_train_hl'-target_train; 
result_train_hl=length(find(error_train_hl==0))/length(error_train_hl) 
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A.2.4 ICA_Pre-Processing.m 

function y = ICAprepro(x) % input x is column vector; 
y1 = x;    
maxofarray = max(y1); 
minofarray = min(y1); 
heightofarray = (maxofarray - minofarray)/2; 
y = y1/heightofarray; 
  
  
[y2,meanvalue]= remmean(y1); % centering by remove the mean value; 
  
y3 = y2.';    % y3 is a row vector 
[E,D] = pcamat(y3); 
[y4,wm,dm] = whitenv(y3,E,D); % whitening 
  
y = y4; 
 
A.2.5 ICA_Feature_Extraction.m 

% ICA method for feature extraction (Faulty Motor Current Waveform) 
% By default, there should a 4X4013 matrix as input 
% Output y will be the feature of each types of waveform 
  
function [y,A,W] = ICAfeature(x) 
  
tic 
[icasig,A,W] = 
fastica(x,'g','gauss','epsilon',0.0001,'maxNumIterations',4013); 
% s = W*[w1;w2;w3;w4]; 
  
y = icasig; 
  
toc 
  
format short 
  
figure(8) 
subplot(4,1,1)  
plot(x(1,:)) 
title('Original Data') 
subplot(4,1,2) 
plot(x(2,:)) 
subplot(4,1,3) 
plot(x(3,:)) 
subplot(4,1,4) 
plot(x(4,:)) 
  
%  ICA Components 
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ICA1 = y(1,:); 
ICA2 = y(2,:); 
ICA3 = y(3,:); 
ICA4 = y(4,:); 
  
figure(9) 
subplot(4,1,1) 
plot(ICA1) 
title('component 1') 
subplot(8,1,2) 
plot(ICA2) 
title('component 2') 
subplot(8,1,3) 
plot(ICA3) 
title('component 3') 
subplot(8,1,4) 
plot(ICA4) 
title('component 4') 
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