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Summary

Summary

This thesis studies the measurement-based feedback control of quantum systems. From

the control point of view, a key property of quantum measurement-based feedback control

that has to be taken into account carefully is the measurement backaction: the measurement

of quantum systems inevitably changes the system state in a probabilistic way. Due to the

probabilistic nature of quantum measurement, the stochastic stability theory is instrumental

in analyzing the measured and feedback controlled quantum systems. For the first time,

we introduce a non-smooth Lyapunov function-like theory for generic stochastic nonlinear

systems, which includes a continuous Lyapunov-like theorem, a discontinuous Lyapunov-like

theorem, and an 1-time switching Lyapunov-like theorem for stability in probability. This

theory provides a powerful tool for the stability analysis and feedback control synthesis

of quantum systems. Indeed, because of the inherent symmetric topology of filter state

space, i.e., the space of conditional state conditioned on the measurement outcomes, smooth

controls synthesized via the smooth Lyapunov stochastic stability theory are difficult to

obtain the global stabilizability and deterministic control performance for quantum filters.

The non-smooth Lyapunov function-like theory is thus important in the synthesis of global

stabilizing and deterministic control for quantum systems.
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Summary

Though quantum system under measurement is intrinsically non-deterministic, by com-

bining measurement with feedback control, we can deterministically generate desired quan-

tum state in the means that the desired state is produced almost surely or with probability-1.

In this thesis, we will interchangeably utilize the terms “deterministically”, “almost surely”,

and “with probability-1”. Applying the continuous Lyapunov-like theorem and the discon-

tinuous Lyapunov-like theorem, switching control and continuous control in saturation form

are constructed to almost surely globally stabilize the desired eigenstate of a general class

of quantum filters, without knowledge about the initial state.

In the measurement-based feedback control of quantum systems, due to the very fast

dynamics of the quantum mechanical systems, the time to compute the conditional state

and the control input is not negligible. Owing to this feature, to implement a measurement-

based feedback control strategy in real time, we have to take the computation time explicitly

into account. To deal with this problem, we investigate the time delay control approach in

which the time to compute the filter-based control input is fully compensated for by the

delay time in the control input. A new Lyapunov-LaSalle-like theorem for delay-dependent

stochastic stability is presented for a class of time delay stochastic nonlinear systems. Non-

smooth time delay control is then constructed to compensate for the computation time, that

is known but arbitrarily long, while globally stabilizing the quantum filters almost surely.

Entanglement is another key feature that distinguishes quantum systems from classical

(non-quantum) ones and attracts much research attention owing to its potential use as

a valuable resource for quantum computation and quantum information. However, it is

difficult to produce entanglement by single measurement. As such, we introduce the concept

of SWM-(simultaneous-weak-measurement)-induced quantum state reduction for quantum

systems which states that under SWMs of commutative observables, the filter state, i.e.,

the conditional state, almost surely converges to the common set of these observables’

eigenspaces. In the applications of this concept, we probabilistically generate the maximally

entangled two-qubit Bell states and multipartite entangled states such as the maximally

x



Summary

entangled three-qubit |GHZ⟩ (Greenberger-Horne-Zeilinger) state.

Combining the concept of SWM-(simultaneous-weak-measurement)-induced quantum

state reduction with the 1-time switching Lyapunov-like theorem, a continuous control is

designed to almost surely generate the maximally entangled two-qubit Bell states from any

initial state. This concept is also utilized together with the time delay bang-bang control

to almost surely generate the Bell states and the multipartite entangled states such as the

|GHZ⟩ state in the real time.
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Chapter 1

Introduction

1.1 Introduction

Quantum dynamical systems describe the evolution of physical systems at atomic and molec-

ular scales. Due to the steady growth of capabilities to manipulate matter and light at those

scales as well as the fast development of quantum technology, it is possible to transfer the

interest from the interpretation of quantum mechanics to the active control of quantum

systems. This area of quantum control has attracted an extensive research effort during the

last two decades, and its rapid development in the near future is foreseeable.

This thesis studies the measurement-based feedback control of quantum systems. The

objective of the thesis is to introduce a framework to drive the inherently probabilistic

nature of quantum measurement towards the deterministic control performance by using

feedback control (note that in this thesis, we will interchangeably utilize the terms “de-

terministically”, “almost surely”, and “with probability-1”). To achieve this objective, the

thesis will address several fundamental problems in quantum feedback control: quantum

measurement, stability analysis, deterministic quantum feedback control design, real-time

implementation of quantum feedback control, and deterministic generation of entangled
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1.2 Quantum Control

states. In the following, we give a brief description of quantum control schemes. Several

challenges in quantum feedback control are then analyzed, motivating the study in this

thesis.

1.2 Quantum Control

Since the time of the first pioneering contributions to the field [1–4], quantum control has

gained a stable development. Some very good reviews of this emerging field have been

widely appreciated [5,6]. This section hence does not aim at presenting an overview of this

field. Instead, we shall provide a brief description of quantum control paradigms. From the

control system point of view, the existing quantum control schemes can be classified into

three main groups: open-loop control, measurement-based feedback control, and coherent-

feedback control.

Open-loop control is the conceptually simplest but very important type of quantum

control, in which open-loop controller acts without obtaining knowledge about the under-

lying state of the system. Instead, the controller may be provided with some information

about the system model and system’s initial state. In order to achieve the desired evolu-

tion of the system, quantum open-loop control involves basically engineering the system

Hamiltonian [7] and the interaction between the quantum system of interest and its envi-

ronment, i.e., the reservoir engineering [8–11]. The remarkable open-loop quantum control

techniques include optimal control [4, 7, 12–14], Lyapunov-based design [15–17], dynamical

decoupling [18,19], and learning control [20,21].

The advantage of quantum open-loop control lies in its simple implementation, while

the disadvantages come from the requirement of exact knowledge about system model as

well as initial state, which may cause it ineffective in robust control. Thanks to its easy

implementation, open-loop quantum engineering plays a central role in many applications

2
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

Homodyne
detector

Probe laser

Beam spliter

y

z

Magnetic
field

Cavity

Mirror

System

Controller

yt

u

Fig. 1.1: Typical setup for measurement-based quantum feedback control. The quantum
system interacts with an optical field produced by a laser. The optical field is detected by
homodyne measurement. The measurement outcomes are processed and then fed back via
a magnetic field to modify the system Hamiltonian.

including control of electronic [22], rotational and translational degrees of freedom of molec-

ular systems [23], trapped ions, Bose Einstein condensates [24], nuclear and electron spin

engineering in nuclear magnetic resonance (NMR) [25] and electron spin resonance (ESR)

applications.

The second important type of quantum control is measurement-based feedback con-

trol [26, 27]. Typically, this approach also involves Hamiltonian engineering by applying

suitable control fields, but in addition, the system is monitored, usually via continuous

weak measurements, and information gained from the observation is fed back to the actua-

tors as shown in Fig. 1.1.

Depending on the type of information to be fed back, there are two main techniques in

measurement-based quantum feedback control: direct feedback control and estimate feed-

back control. Direct, or Markovian, feedback control [27,28], utilizes the physical measure-

ment results to feed back to the system. It has been extensively investigated [29–32] as it

promises the real-time control implementation. Estimate, or Bayesian, feedback control [33],

is based on feeding back the estimation state conditioned on the measurement outcomes to

3



1.2 Quantum Control

alter the dynamics of the systems. It is widely appreciated in control community since it

provides a greater flexibility in control design than direct feedback control [34,35].

The advantage of quantum measurement-based feedback control is its flexibility in con-

trol design which greatly benefits from a rigorous literature of classical control theory and

stochastic stability and synthesis. Its main disadvantages include the difficulty in performing

continuous measurement on the system and the real-time implementation, especially with

estimate feedback control. In addition, the backaction of quantum measurement is also a

challenge for quantum measurement-based feedback control. While open-loop Hamiltonian

engineering usually involves control of non-equilibrium dynamics, measurement-based feed-

back control is very important for control of equilibrium dynamics, including steering the

system to a steady state [36] with applications in laser cooling of atomic or molecular mo-

tion [37], control of solid-state qubits [38], quantum state reduction [34], and decoherence

control [32].

A recently introduced paradigm for quantum control is coherent feedback control [39–45].

Unlike measurement-based feedback control, coherent feedback control does not (at least

not directly) involve any classical actuators or measurements. Instead, it relies on indirect

control of a target quantum system through its coherent interaction with another quantum

system acting as the controller, as in Fig. 1.2.

Quantum coherent feedback control promises a great potential to deal with the real-

time control since all the components, i.e., plant and controller, in the control systems are

quantum systems with very fast dynamics. However, quantum controllers cannot solve the

problem of controlling quantum systems completely as the quantum controller itself needs

to be controlled in some form, and this usually requires interaction with a non-quantum

system such as classical laboratory equipment at some stage, and thus control strategies

such as Hamiltonian engineering or state preparation using measurement-based feedback.

4
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Quantum
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Quantum
Controller
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Quantum
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Fig. 1.2: Quantum coherent feedback

1.3 Motivations of the Thesis

This thesis is devoted to the measurement-based feedback control of quantum systems. In

the feedback control of quantum systems, the intrinsic feature of measurement backaction,

i.e., the stochastic change of system state under measurement, appears and makes the

quantum feedback control much challenging. The indeterminism of quantum measurement

outcomes has motivated us to the main question of this thesis: is it possible and how

to deterministically obtain the control performance for quantum systems by combining

measurement and feedback schemes?

To answer this question, we face with several challenges. Due to the probabilistic nature

of quantum measurement, the stochastic stability theory is instrumental in analyzing the

measured and controlled quantum systems. The first challenge of deterministic quantum

feedback control comes from the inherent symmetric topology of filter state space, i.e., the

space of system state conditioned on measurement outcomes. Because of this symmetric

topology, the smooth controls synthesized via the smooth Lyapunov stochastic stability the-

ory are difficult to obtain the global stabilizability and deterministic control performance

for quantum filters. This motivated us to introduce a non-smooth Lyapunov function-like

5



1.4 Outline of the Thesis

theory for the synthesis of global stabilizing and deterministic control for quantum systems.

It will be proved in this thesis that the non-smooth Lyapunov function-like theory pro-

vides us with a powerful tool to deterministically control the quantum systems by feedback

schemes.

The second challenge of quantum measurement-based feedback control is the real-time

implementation. In the measurement-based feedback control of quantum systems, due to

the very fast dynamics of the quantum mechanical systems, the time to compute the con-

ditional state and the control input is not negligible. Owing to this feature, to implement a

measurement-based feedback control strategy in real time, we have to take the computation

time explicitly into account. To deal with this problem, we bring in the method of time

delay control. In this method, the delay time is used to compensate for the computation

time and thus the real-time implementation of quantum feedback control is guaranteed.

A special and characteristic feature of quantum systems, which attracts a huge research

interest in the literature, is entanglement. Recently, the attention on entanglement has been

renewed owing to its potential use as a valuable resource for quantum computation and

quantum information which outperforms that solely based on classical physics. However,

it is difficult to produce entanglement by single measurement. This motivated us to study

the effect of simultaneous weak measurements on quantum systems. It turns out that

the introduced concept of SWM-(simultaneous-weak-measurement)-induced quantum state

reduction plays an important role in the generation of quantum entangled states.

1.4 Outline of the Thesis

The thesis starts with a brief introduction of quantum control schemes. Several challenging

problems in quantum feedback control, which motivated the research of the thesis, are then

presented in Chapter 1. For self-containedness, Chapter 2 gives a brief summary of the

basic notions in quantum mechanics which are frequently utilized in this thesis.

6



1.4 Outline of the Thesis

In Chapter 3, we introduce a non-smooth Lyapunov function-like theory for generic

stochastic nonlinear systems, which includes a continuous Lyapunov-like theorem, a dis-

continuous Lyapunov-like theorem, and an 1-time switching Lyapunov-like theorem for

stability in probability. This theory provides a necessary and powerful tool for the sta-

bility analysis and feedback control synthesis of quantum systems. Indeed, because of the

inherent symmetric topology of filter state space, the smooth controls synthesized via the

smooth Lyapunov stochastic stability theory are difficult to obtain the global stabilizabil-

ity and deterministic control performance for quantum filters. The non-smooth Lyapunov

function-like theory is thus very important in the the synthesis of global stabilizing and

deterministic control for quantum systems.

In Chapter 4, we combine the continuous weak measurement with feedback control to

deterministically generate the desired quantum state. Applying the continuous Lyapunov-

like theorem and the discontinuous Lyapunov-like theorem, switching control and continuous

control in saturation form are constructed to deterministically globally stabilize the desired

eigenstate of a general class of quantum filters, without knowledge about the initial state.

In Chapter 5, we solve the problem of the real time feedback control of quantum systems

by using the time delay control approach in which the time to compute the filter-based

control input is fully compensated for by the delay time in the control input. A new

Lyapunov-LaSalle-like theorem for delay-dependent stochastic stability is presented for a

class of time delay stochastic nonlinear systems. Non-smooth time delay control is then

constructed to compensate for the computation time, that is known but arbitrarily long,

while globally stabilizing the quantum filters almost surely.

The next two chapters deal with the deterministic generation of entanglement. In Chap-

ter 6, we introduce the concept of SWM-(simultaneous-weak-measurement)-induced quan-

tum state reduction for quantum systems which states that under SWMs of commutative

observables, the filter state, i.e., the estimate state conditioned on the measurement records,

7



1.5 Conclusions

almost surely converges to the common set of these observables’ eigenspaces. In the ap-

plications of this concept, we probabilistically generate the maximally entangled two-qubit

Bell states. By combining this concept with the 1-time switching Lyapunov-like theorem,

we design the continuous control to deterministically generate the maximally entangled

two-qubit Bell states from any initial state.

In Chapter 7, the concept of SWM-(simultaneous-weak-measurement)-induced quan-

tum state reduction is generalized and utilized to probabilistically prepare the multipartite

entangled states such as the maximally entangled three-qubit |GHZ⟩ (Greenberger-Horne-

Zeilinger) state. It is also harnessed together with the time delay bang-bang control to

deterministically generate the Bell states and multipartite entangled states such as the

|GHZ⟩ state in the real time.

1.5 Conclusions

In this chapter, after a brief description of the background of quantum control, several

challenging problems in quantum feedback control have been discussed, motivating the

research of the thesis and highlighting the importance of this work. Finally, the organization

of the thesis is presented with a description of the purposes, contents, and methodologies

used in each chapter.

8



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we provides a brief summary of the basic notions in quantum mechanics,

which will be frequently utilized in this thesis, including observables, state vectors, density

operators, entanglement, quantum system dynamics, and quantum filtering equation.

2.2 Quantum Dynamical Systems

In this section, we present the basic elements of quantum theory for finite-dimensional

systems. More details can be seen in the monograph [46] or [7]. Any quantum system Q is

associated to a Hilbert space H over the complex field C. The dimension of H depends on

the possible outcomes of its variables. In this thesis, we will only consider finite-dimensional

quantum systemsH ≃ CN . A great motivation to study finite-dimensional quantum systems

is their importance to the emerging field of quantum information [47]. Let B(H) denote

the set of linear operators on H and h(H) ⊂ B(H) denote the real subspace of Hermitian

operators.

9



2.2 Quantum Dynamical Systems

2.2.1 Observable Quantities and State Vectors

Central to quantum mechanics are the notions of observables, which are mathematical

representations of physical quantities that can (in principle) be measured, and state vectors,

which summarize the status of physical systems and permit the calculation of expectations

of observables.

Any observable is associated to an Hermitian operator Y ∈ h(H). When the state of

the system is (ideally) known exactly, it can be described by a state vector |ϕ⟩ which is a

norm-1 vector in the complex N-dimensional Hilbert space H. The state vector |ϕ⟩ is living

on the unit sphere on the Hilbert space H : |ϕ⟩ ∈ S2N−1 ⊂ H.

2.2.2 Density Operators

Density operators are used to describe the state of statistical ensembles, i.e., collections of

identical quantum systems, or of a single system in the presence of classical uncertainty.

More precisely, assume that fj , j = 1, ...,m, is the fraction of population of some ensemble

prepared in the state |ϕj⟩, with different state vectors not necessarily orthogonal to each

other. The associated quantum density operator is defined by

ρ =
m∑
j=1

fj |ϕj⟩⟨ϕj | s.t. fj ≥ 0,
m∑
j=1

fj = 1. (2.1)

Clearly, ρ = ρ† ≥ 0 and Tr(ρ) = 1. Density operators form a convex set, denoted S(H) ⊂

h(H). An important subset of density operators is the following: if f1 = 1, the whole

ensemble is prepared in the same state |ϕ⟩ , so that ρ = |ϕ⟩⟨ϕ| is a rank-one orthogonal

projector. Such a ρ is called a pure state. In this case, the description one obtains is

completely equivalent to that provided by the state vector |ϕ⟩, up to an irrelevant global

phase. On the other hand, an ensemble in which at least two of the fj of Eq. (2.1) are

nonzero is called a mixed ensemble, or mixed state and does not admit a description in

10



2.2 Quantum Dynamical Systems

terms of a single state vector.

2.2.3 Closed Quantum Systems

The Schrödinger equation: The basic dynamical postulate of quantum dynamics is that

the state vector |ϕ⟩ of a closed system obeys the autonomous linear ordinary differential

equation called the Schrödinger equation:

~|ϕ̇⟩ = −iH0|ϕ⟩ (2.2)

|ϕ(0)⟩ = ϕ0,

where H0 is the Hamiltonian of the system and ~ is the reduced Planck constant. In this

thesis, the units are chosen such that the reduced Planck constant ~ = 1.

The quantum Liouville-von Neumann equation: Given a certain Hamiltonian H0, the dy-

namics of ρ is described by the quantum Liouville-von Neumann equation:

ρ̇ = −i[H0, ρ] (2.3)

ρ(0) = ρ0.

The control of a quantum mechanical system is typically obtained by coupling it with one

or more tunable electromagnetic fields. Then, the Hamiltonian H0 in (2.2) and (2.3) can be

replaced by H0 +
∑k

i=1 uiHi where Hi = H†
i is the control Hamiltonian and ui ∈ R is the

control input. Such controls are usually called coherent control as they preserve the unitary

evolution of the state vector.

11



2.3 Entanglement

2.3 Entanglement

Consider a bipartite system, i.e., quantum system that is composed of two physically distinct

subsystems. It is associated with a Hilbert space H that is given by the tensor product

H1 ⊗ H2 of the predefined factor spaces. For pure state, one distinguishes two different

kinds of states. A state |Ψ⟩ is called a product state or separable, if it can be written as a

tensor product of subsystem states:

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, ψi ∈ Hi (2.4)

Such state describes a situation analogous to a classical one as the system state contains

exactly the information that is contained in the subsystem states. A state reduction caused

by a measurement performed on one subsystem has no influence on the state of the other

subsystem. This means that measurement results on the different subsystems are uncorre-

lated. In contrast to this, they are correlated for entangled states, i.e., states that cannot

be written as a product of subsystem states as in Eq. (2.4).

For mixed states, the situation is more complicated. A mixed state is entangled if it

cannot be represented as a convex sum of separable pure states:

ρ ̸=
∑
i

pi|ψi
1⟩ ⊗ |ψi

2⟩, with
∑
i

pi = 1 (2.5)

Otherwise, it is separable.

Generally, for a n-partite system, a mixed state ρ that cannot be presented in the form

ρ =
∑
i

pi|ψi
1⟩ ⊗ |ψi

2⟩...⊗ |ψi
n⟩, with

∑
i

pi = 1, (2.6)

in which |ψi
j⟩ is a pure state of j − th subsystem, is an entangled state.
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2.4 Quantum Filtering Equation

2.4 Quantum Filtering Equation

Consider the quantum systems (2.3), in which H0 is replaced by H = H0 +
∑k

i=1 uiHi,

subject to the continuous weak measurement of the observable L. We have the quantum

filtering equation or Stochastic Master Equation (SME) describing the evolution of the

conditional state ρt ∈ S(H) conditioned on the measurement outcomes [34,48]:

dρt = (−i[H, ρt] + ΓD[L]ρt)dt+
√
ηΓH[L]ρtdwt, (2.7)

dyt = Tr(Lρt)dt+
1

2
√
ηΓ
dwt (2.8)

where

• yt is measurement outcome;

• wt is the 1−dimensional Wiener process defined on the classical complete probability

space
(
Ω,F ,P

)
with a filtration {Ft}t≥0, in which Ω is a sample space, F is a σ−field,

and P is a probability measure;

• Γ and η are measurement strength and efficiency; and

• D[A]ρ := AρA† − 1
2(ρA

†A + A†Aρ) and H[A]ρ := Aρ + ρA† − [Tr(Aρ + ρA†)]ρ are

respectively the drift and diffusion parts introduced by the measurement of the field

quadrature.

Here {ρt}, the solution of (2.7) given an initial condition ρ0, exists, is unique, adapted to

the filtration {Ft}t≥0 generated by the (classical) white noise wt, and it is S(H)-invariant

by construction [34, 49]. We note that the filtering equation (2.7) also holds true when

the quantum system is in contact with a Markovian environment and under continuous

measurements of multiple observables [48].
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2.5 Conclusions

2.5 Conclusions

In this chapter, we have presented some basic concepts essential for the thesis, which include

observables, state vectors, density operators, entanglement, quantum system dynamics, and

quantum filtering equation.
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Chapter 3

Nonsmooth Lyapunov Stability

3.1 Introduction

In this thesis, we are interested in the problem of deterministic control for quantum sys-

tems by measurement-based feedback control. By the quantum filtering theory [2, 49–51],

this problem can be seen as a stochastic control problem for quantum filter described by

quantum filtering equation [52], which is also called stochastic master equation describing

the evolution of conditional state conditioned on the measurement outcomes. In particular,

we aim at globally stabilizing quantum filters.

One of the main challenges of this problem arises from the symmetric topology of the

manifold on which the filter state involves. Generally, the symmetric topology of filter state

space makes the smooth controls [34,35,53], synthesized via the classical Lyapunov stochas-

tic stability theory [54–56], difficult, if not impossible, to obtain the global stabilizability

for a given desired state. The underlying reason is the existence of the so-called antipodal

eigenstates which, together with the final desired state, are equilibrium points of the closed-

loop systems; see [15] for the origin of the name antipodal eigenstates from deterministic

case. As such, the global stabilization for quantum filters calls for a non-smooth control
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3.1 Introduction

design method to deal with the symmetric topology of filter state space.

In [34], after the introduction of quantum filters, the global stabilizability was shown

to be difficult to obtain even for 2-dimensional quantum filters. Continuous control was

then proposed, through computer search, to break the symmetric topology of 2-dimensional

filter state space and to globally stabilize the desired state. The design method is, however,

computationally involved and the global stability is hard to prove as the design method is

not analytical [57]. In [57], control in hysteresis form was introduced to globally drive the

expectation of filter state of angular momentum systems to the final desired state, in which

the state convergence was proved based on a detailed analysis of the sample paths of filter

state.

In this thesis, we present a systematic approach based on Lyapunov stability analysis for

the globally stabilizing, non-smooth control synthesis of quantum filters. Since smooth con-

trols are designed via smooth Lyapunov stability theory, the non-smooth control synthesis

for quantum filters intuitively calls for a non-smooth Lyapunov stability theory. The need

for a non-smooth Lyapunov stability theory also arises from the practical point of view.

In practice, many systems in biology, physics, engineering, and information science exhibit

stochastic and impulsive dynamical behaviors subjected to stochastic disturbances and/or

stochastically abrupt changes at certain instants during the dynamical processes [58–60].

The analysis and control design of such stochastic systems with intrinsically non-smooth

energy generally desire a non-smooth Lyapunov stability theory because the system energy

is usually a typical candidate for Lyapunov function [61,62].

Motivated by the above considerations, in this chapter, we introduce a non-smooth

Lyapunov-like theory for the stability analysis of generic stochastic nonlinear systems, which

will be instrumental in synthesizing non-smooth controls in the following chapters. In par-

ticular, in Sections 3.3.1 and 3.3.2, we introduced the continuous Lyapunov-like theorem and

the discontinuous Lyapunov-like theorem which will be utilized in the deterministic global
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3.2 Classical Lyapunov Stochastic Stability

stabilization of a class of quantum filters in Chapter 4. The 1-time switching Lyapunov-

like theorem for stability in probability is then presented in Section 3.3.3. This theorem is

instrumental in controlling of entanglement in Chapter 6.

We note that this non-smooth Lyapunov stability theory for stochastic nonlinear systems

whose state evolves on the vector spaces Rn, n = 1, 2, ..., is applicable to quantum filters

evolving on the space S ⊂ Cn×n because the density matrix ρ ∈ S can be equivalently

represented by a vector in the vector space Rn2−1 [34].

3.2 Classical Lyapunov Stochastic Stability

Consider the stochastic nonlinear systems described by

dxt = f(xt)dt+ σ(xt)dwt, (3.1)

where xt is the state, f : Rn → Rn and σ : Rn → Rn×nw are locally bounded, Borel-

measurable functions satisfying f(0) = 0, σ(0) = 0, wt is an nw−dimensional standard

Wiener process (or Brownian motion) defined on the classical complete probability space(
Ω,F ,P

)
with a filtration {Ft}t≥0, in which Ω is a sample space, F is a σ−field, and P is

a probability measure.

Definition 3.1. ( [56,63]) The equilibrium x = 0 of the system (3.1) is

• globally stable in probability if ∀ϵ > 0, there exists a K−class function γ(·) such that

for all t ≥ 0, for all x0 ∈ Rn \ {0},

P{|xt| < γ(|x0|)} ≥ 1− ϵ. (3.2)
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3.2 Classical Lyapunov Stochastic Stability

• globally asymptotically stable in probability if it is globally stable in probability and

P{ lim
t→∞

|xt| = 0} = 1, ∀x0 ∈ Rn. (3.3)

We recall the following results.

Lemma 3.1. ( Itô’s formula [54,55]) Let xt be a stochastic processes defined by

xt = x0 +

∫ t

0
fsds+

∫ t

0
σsdws, (3.4)

in which wt is the standard Weiner process. Suppose that the function V (x, t) : Rn×R → R

is twice continuously differentiable in x, ∀x ∈ R, and continuously differentiable in t, ∀t ∈ R.

Consider the process {Vt}t∈R defined by Vt = V (xt, t).

Then, for any stopping times τ and ρ, we have

Vρ = Vτ +

∫ ρ

τ

[
∂Vs
∂t

+
∂Vs
∂x

fs +
1

2
Tr
(
σTs

∂2Vs
∂x2

σs
)]
ds+

∫ ρ

τ

∂Vs
∂x

σsdws. (3.5)

Theorem 3.1. (Classical Lyapunov stability theorem [56,63]) For the system (3.1), if there

exist a function V (x) : Rn → R positive definite, radially unbounded, and twice continuously

differentiable in x,∀x ∈ R, and a continuous nonnegative function W (x) : Rn → R such

that

Lf,σV (x) ≤ −W (x), ∀x ∈ R, (3.6)

where Lf,σV is the infinitesimal generator of xt acting on the function V,

Lf,σV (x) :=
∂V (x)

∂x
f(x) +

1

2
Tr
(
σ(x)T

∂2V (x)

∂x2
σ(x)

)
,
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3.3 Nonsmooth Lyapunov-like Theory

then the equilibrium x = 0 is globally stable in probability and

P{ lim
t→∞

W (xt) = 0} = 1. (3.7)

If, in addition,W (x) is positive definite, then the equilibrium x = 0 is globally asymptotically

stable in probability.

3.3 Nonsmooth Lyapunov-like Theory

3.3.1 Continuous Lyapunov-like Theorem for Stability in Probability

The continuous Lyapunov-like theorem utilizes the observation that the convergence of

stochastic system state is guaranteed, if the Lyapunov function is continuous and decreas-

ing at its smooth segments. Such a Lyapunov function is constructed from multiple smooth

functions via a partition of the state space Rn, and is defined as partition-based Lyapunov

function. It is relevant to note that though being made up of multiple functions, the

partition-based Lyapunov function is different from the standard Multiple Lyapunov func-

tions in switched systems [64–66] where each Lyapunov function is constructed for each

subsystem on the whole state space.

Definition 3.2. (Partition-based Lyapunov function)

The partition-based Lyapunov function is of the form:

V (x) = Vi(x), x ∈ Φi, i ∈ {1, 2, ..., r}, (3.8)

where

• Vi : Rn → R+ is twice continuously differentiable for all i ∈ {1, 2, ..., r},

• {Φi}ri=1 is a partition of the state space Rn, i.e.,
r
∪
i=1

Φi = Rn and Φi ∩Φj = ∅,∀i ̸= j,
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3.3 Nonsmooth Lyapunov-like Theory

where ∅ is the empty set,

• the origin is in the interior of Φ1, and

• V (x) is continuous, i.e., Vi(x) = Vj(x), ∀x ∈ Λij , where Λij := Φ̄i∩ Φ̄j is the boundary

between Φi and Φj , and Φ̄i denotes the closure of Φi, i ∈ {1, 2, ..., r}.

To guarantee that the Lyapunov function is decreasing at its smooth segments, we shall

apply the Itô’s formula for this Lyapunov function in each smooth segment between two

consecutive stopping times τi and τi+1 at which the system trajectory xt is on the boundary

Λ :=
r
∪
i ̸=j

Λij . In order to make {τi} be well-defined stopping times, by which Lemma 3.1

applicable, we have the following assumption.

Assumption 3.1. There is no sliding motion of the system trajectory xt on the boundary

Λ.

By Assumption 3.1, the system trajectory xt intersects the boundary Λ at separated

times τi, i = 1, 2, ..., which are all well-defined stopping times (see the proof of Theorem

3.2). In addition, when applied for the control design of quantum filters in Section 4.4.1,

Assumption 3.1 helps us to prove the well-posedness of the closed-loop system by joining

the solutions in consecutive time intervals (τi, τi+1).

Therefore, in this chapter, the Itô’s formula is applied for partially smooth functions,

rather than for twice continuously differentiable Lyapunov functions as in classical stability

theorems of stochastic systems [54–56,63].

Theorem 3.2. Consider the stochastic nonlinear systems described by (3.1). Suppose that

there exist a Lyapunov function of the form (3.8) satisfying Assumption 3.1, K−class func-

tions α1, α2, and a continuous, non-negative function W : Rn → R such that

C.1 α1(|x|) ≤ Vi(x) ≤ α2(|x|), ∀x ∈ Rn, i ∈ {1, 2, ..., r},

C.2 Lf,σVi(x) ≤ −W (x), ∀x ∈ Φi, i ∈ {1, 2, ..., r}, where Lf,σV is the infinitesimal
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3.3 Nonsmooth Lyapunov-like Theory

generator of xt acting on the function V :

Lf,σV (x) :=
∂V (x)

∂x
f(x) +

1

2
Tr
(
σ(x)T

∂2V (x)

∂x2
σ(x)

)
.

Then

P{ lim
t→∞

W (xt) = 0} = 1. (3.9)

If, in addition, W (x) is positive definite, then from any initial state, the system trajectory

xt converges to the origin almost surely.

Proof: Under Assumption 3.1, the trajectory xt of system (3.1) intersects the boundary

Λ =
r
∪
i̸=j

Λij at separated time instants. Let τ1 be the first time that xτ1 is on the boundary

Λ. Let τ2 be the first time after τ1 that xτ2 is on Λ. By this procedure, we obtain the

sequence of times {τi}i=1,2,..., at which xt is on Λ. Under Assumption 3.1, these times are

well-defined. Note that these time instants are exit times. Indeed, for example, if x0 is in

Φi0 for some i0 ∈ {1, 2, ..., r}, then τ1 is the first time that xt exits from the open set
◦
Φi0 ,

where
◦
Φi0 denotes the interior of Φi0 . As τi, i = 1, 2, ..., are exit times, they are stopping

times [54]. Thus, the following equation holds [55]:

E
[∫ τj

τi

h(s)dws

]
= 0, (3.10)

for any process h inM2([a, b];R), the family of process {ξ(t)}a≤t≤b satisfying that E
[∫ b

a |ξ(t)|2dt
]
<

∞. For any t > 0, we denote by τ0 := 0 < τ1 < ... < τn(t) < t := τn(t)+1, n(t) ∈ [0,∞], the

sequence of stopping times between 0 and t, at which xt is on the boundary Λ. Suppose that

in the interval (τi, τi+1), i = 0, ..., n(t), the trajectory xt is in Φqi , qi ∈ {1, 2, .., r}. Hence, the

Lyapunov function V (xs) = Vqi(xs) for all s ∈ (τi, τi+1). As Vj , j ∈ {1, 2, ..., r}, are twice
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3.3 Nonsmooth Lyapunov-like Theory

continuously differentiable, Lemma 3.1 is applicable. For all i = 0, ..., n(t), we have

Vqi(xτi+1)− Vqi(xτi) =

∫ τi+1

τi

Lf,σVqi(xs)ds

+

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws (3.11)

Combining these equations and noting that V (x) is continuous, i.e., Vqi(xτi) = Vqi−1(xτi), ∀i =

1, ..., n(t), we obtain

V (xt)− V (x0) =

n(t)∑
i=0

(
Vqi(xτi+1)− Vqi(xτi)

)
=

n(t)∑
i=0

∫ τi+1

τi

Lf,σVqi(xs)ds

+

n(t)∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws (3.12)

From Condition C.2, we have Lf,σVqi(x) ≤ −W (x), ∀x ∈ Φqi . Taking the expectation of

both sides of (3.12), it holds that

E[V (xt)]− V0 ≤ −E[
n(t)∑
i=0

∫ τi+1

τi

W (xs)ds]

+ E[
n(t)∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws]

= −E[
∫ t

0
W (xs)ds]

+ E[
n(t)∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws], (3.13)

where V0 = V (x0). Letting t→ ∞, we obtain

E[
∫ ∞

0
W (xs)ds] ≤ V0 + lim

t→∞
E[

n(t)∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws] (3.14)
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We prove that lim
t→∞

E[
n(t)∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws] = 0. Indeed, if for some sample paths, there

are finite number of stoping times τi, namely, for example τ0, τ1, ..., τk, then we can add

more times as follows: τi = τk + i, ∀i > k. As such, we can assume that there are infinite

number of stopping times in almost all sample paths. Applying (3.10) yields

lim
t→∞

E[
n(t)∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws]

= E[
∞∑
i=0

∫ τi+1

τi

∂Vqi
∂xs

σ(xs)dws] = 0. (3.15)

By (3.14) and (3.15), we have

E
[∫ ∞

0
W (xs)ds

]
≤ V0 <∞ (3.16)

As W (x) is continuous and f(x), σ(x) are locally bounded, using the same arguments as in

Step 2 of the proof of Theorem 2.1 in [67], from (3.16), we have

P
{
lim
t→∞

W (xt) = 0
}
= 1. (3.17)

If, in addition, W (x) is positive definite, then (3.17) leads to P
{
lim
t→∞

|xt| = 0
}
= 1, which

means that from any initial state, the system trajectory xt converges to the origin almost

surely. The proof of Theorem 3.2 is completed. �

Remark 3.1. Though Theorem 3.2 is a generation of the standard stochastic stability

theorems, see e.g. Theorems 2.1, 2.2 in [63], to the case when the Lyapunov function

is non-smooth, it serves as an indispensable criterion for the globalizing non-smooth control

synthesis of quantum filters in Section 4.4.1, Chapter 4.

Remark 3.2. Although Assumption 3.1 is stated on the system trajectory xt, it can be

checked a priori by the condition that Lf,σVi(x) ̸= Lf,σVj(x), ∀x ∈ Λij , ∀i ̸= j ∈ {1, ..., r},

since the boundary Λ satisfies: Λ =
r
∪
i̸=j

Λij ⊂
r
∪
i̸=j

{x ∈ Rn : Vi(x) = Vj(x)}. (See Step 1 in
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Φ2

Φ∗

1

xt transits almost surely

xt switches finite number of times

0

Φ1 : LV1(x) ≤ −W (x)

Φ∗

2
: LV2(x) ≤ −M

Fig. 3.1: Illustration of Discontinuous Lyapunov-like theorem.

the proof of Theorem 4.1, Chapter 4.)

3.3.2 Discontinuous Lyapunov-like Theorem for Stability in Probability

This section presents a discontinuous Lyapunov-like theorem for stability in probability of

the stochastic nonlinear system (3.1). In this theorem, the Lyapunov function is constructed

from a couple of smooth functions via a partition of the state space. Interestingly, these

smooth functions are not necessarily equal at the boundary between two regions as in

Definition 3.2. The discontinuous Lyapunov-like theorem exploits the observation, showed

in Fig. 3.1, that if there exists a partition {Φi}i=1,2 of the state space such that in the

region Φ2, there exists a Lyapunov function V2(x) of which the infinitesimal LV2(x) is

strictly negative, then any trajectory xt of (3.1) transits to Φ1 in a finite time almost surely.

In Φ1, if there exists a Lyapunov function V1(x) such that LV1(x) is negative definite, then

the trajectory xt of (3.1) converges to the origin almost surely. Remarkably, as V1(x) and

V2(x) are not required to be equal at the boundary of Φ1 and Φ2, the overall Lyapunov

function is not necessarily continuous, making the theorem convenient in applications.
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3.3 Nonsmooth Lyapunov-like Theory

Theorem 3.3. For the stochastic systems described by (3.1), consider the Lyapunov func-

tion

V (x) =


V1(x), x ∈ Φ1,

V2(x), x ∈ Φ2,

(3.18)

where V1 and V2 are twice continuously differentiable functions defined on Rn and {Φi}i=1,2

is a partition of the state space Rn such that the origin is in the interior of Φ1. If there

exist a closed set Φ∗
1 ⊂ Φ1 containing the origin, a positive constant M, and a continuous,

non-negative function W (x) such that

C.1 Vi(x) ≥ 0, i = 1, 2, ∀x ∈ Rn,

C.2 Lf,σV1(x) ≤ −W (x), ∀x ∈ Φ1,

C.3 Lf,σV2(x) ≤ −M, ∀x ∈ Rn \ Φ∗
1 := Φ∗

2, and

C.4 sup
x∈Φ∗

1

V1(x) < inf
x∈Λ

V1(x) where Λ := Φ̄1 ∩ Φ̄2.

Then, the following statements hold:

S.1 From any initial state x0, after a finite time, the trajectory xt evolves in Φ1

permanently.

S.2 The equilibrium x = 0 of the system (3.1) is globally stable in probability and

P{ lim
t→∞

W (xt) = 0} = 1. (3.19)

S.3 If, in addition, W (x) is positive definite in Φ̄1, then the equilibrium x = 0 of the

system (3.1) is globally asymptotically stable in probability.

Proof: We note that Theorems 2.1 and 2.2 in [63] still hold true when the initial state is a

random variable. From these theorems, Statements S.2 and S.3 are corollaries of Statement

S.1 and Conditions C.1 and C.2. As such, it is sufficient to prove S.1 only.
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Step 1: Firstly, we prove that any trajectory xt, beginning at x0, will transit to Φ∗
1 in a finite

time almost surely. This is obvious if x0 ∈ Φ∗
1. Consider the case when x0 ∈ Rn \ Φ∗

1 and

let τ1(x0) be the first time xt exits Rn \Φ∗
1. Applying the Dynkin’s formula and combining

with Condition C.3, we obtain

E[V2(xτ1(x0))]− V2(x0) = E[
∫ τ1(x0)

0
Lf,σV2(xs)ds]

≤ −ME[τ1(x0)]. (3.20)

As such, E[τ1(x0)] ≤
V2(x0)

M
<∞, which means that xt transits to Φ∗

1 in a finite time almost

surely.

Step 2: Now, we consider the trajectory xt that begins at x0 ∈ Φ∗
1. We will prove that there

are almost surely a finite number of switches of the trajectory xt from Φ∗
1 to Φ2. With xt

beginning at x0 ∈ Φ∗
1, there are two probabilities:

P1 : xt evolves in Φ1 permanently.

P2 : After a finite time, xt transits to Φ2.

Consider ω ∈ P2 and denote by τ2(x0) the first time xt transits to Φ2. Note that in Φ1, we

have Lf,σV1(x) ≤ −W (x) ≤ 0. This, together with Dynkin’s formula, leads to

E[V1(xτ2(x0))] = V1(x0) +

∫ τ2(x0)

0
Lf,σV1(xs)ds

≤ V1(x0). (3.21)

Denote α = sup
x∈Φ∗

1

V1(x) and β = inf
x∈Λ

V1(x). Applying Chebyshev’s inequality and from

(3.21), we have P{ sup
0≤s≤τ2(x0)

V1(xs) ≥ β} ≤
E[V1(xτ2(x0))]

β
≤ V1(x0)

β
≤ α

β
. This implies that
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3.3 Nonsmooth Lyapunov-like Theory

P{P2} ≤ α

β
. Denote the events:

An =
{
xt begins at x0 ∈ Φ∗

1 and transits to Φ2 n times
}

with n = 1, 2, ... Then, it holds that P{An} ≤
(
α

β

)n

. As in Condition C.4, α < β. Therefore

∞∑
n=1

P{An} ≤
∞∑
n=1

(
α

β

)n

<∞. (3.22)

By Borel-Cantelli Lemma, there are almost surely a finite number of switches of the trajec-

tory xt from Φ∗
1 to Φ2.

Combining two steps, we conclude that any trajectory xt transits to Φ∗
1 in a finite time

almost surely and from Φ∗
1, it only switches to Φ2 almost surely a finite number of times. As

such, after a finite time, xt evolves in Φ1 permanently, and thus, Statement S.1 is proved.

�

3.3.3 1−Time Switching Lyapunov-like Theorem for Stability in Proba-

bility

To facilitate the design for control of entanglement in Chapter 6, in this section, we provide

a non-smooth Lyapunov-like theorem for stability in probability of generic stochastic non-

linear systems. In the non-smooth Lyapunov-like theorems in Sections 3.3.1 and 3.3.2, the

switching-number of system state between desired space and undesired space is uncontrol-

lable, resulting in long-time convergence of system state. However, due to the fragileness of

entanglement under environmental effect [68], it it desirable to drive the system state to the

desired entangled state as fast as possible, before the environment takes dominant effect.

Therefore, in the practical control of entanglement, the above feature of switching-number

uncontrollability should be removed.
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In this section, we introduce an 1−time switching Lyapunov-like theorem for stabil-

ity in probability, which assures that the system state switches between desired space and

undesired space no more than one time, and thus eliminates the switching-number uncon-

trollability. Based on this new theorem, the non-smooth control essentially reduces the

converge time of system state, while still guaranteeing that the system state deterministi-

cally converges to the desired entangled state from any initial state.

Theorem 3.4. Consider the stochastic systems described by (3.1) and the Lyapunov func-

tion

V (x) =


V1(x), x ∈ Φ1,

V2(x), x ∈ Φ2,

(3.23)

where V1, V2 : Rn → R+ are positive, twice continuously differentiable functions and Φ1 :=

{x ∈ Rn : V1(ρ) ≤ k} for some positive real number k,Φ2 := Rn \Φ1. If there exist a positive

constant M, K−class functions α1, α2, and a continuous function W (x) positive definite on

Φ1 such that

C.1 α1(|x|) ≤ V1(x) ≤ α2(|x|), ∀x ∈ Rn,

C.2 Lf,σV1(x) ≤ −W (x),∀x ∈ Φ1,

C.3 Lf,σV2(x) ≤ −M, ∀x ∈ Φ2,

where Lf,σV is the infinitesimal generator associated with (3.1):

Lf,σV (x) :=
∂V (x)

∂x
f(x) +

1

2
Tr
(
σ(x)T

∂2V (x)

∂x2
σ(x)

)
.

Then, the equilibrium x = 0 of the system (3.1) is globally asymptotically stable in proba-

bility.

Proof: Firstly, we prove that there is no sliding motion of the system trajectory on the
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boundary Λ := Φ̄1 ∩ Φ̄2 between Φ1 and Φ2. Indeed, as Λ is described by

Λ := {x ∈ Rn : V1(x) = k}, (3.24)

if there exists sliding motion of xt on Λ, then, there exist some xτ ∈ Λ such that

Lf,σV1(xτ ) = 0 (3.25)

Note that xτ ∈ Λ ⊂ Φ1. As such, by Condition C.2, we have

Lf,σV1(xτ ) ≤ −W (xτ ) (3.26)

Since the function W (x) is positive definite on Φ1 and the origin is not on Λ, it holds that

W (x) > 0, ∀x ∈ Λ. Therefore,

Lf,σV1(xτ ) ≤ −W (xτ ) < 0 (3.27)

which is contradict with (3.25).

Now, we prove that from any initial state x0, after a finite time, the system trajectory

xt will permanently evolve in Φ1 almost surely.

Case 1: x0 ∈ Φ2. Let τ1(x0) be the first time xt at which exits the open set Φ2. Applying

the Dynkin’s formula and combining with Condition C.3, we obtain

E[V2(xτ1(x0))]− V2(x0) = E[
∫ τ1(x0)

0
Lf,σV2(xs)ds]

≤ −ME[τ1(x0)]. (3.28)

As such, E[τ1(x0)] ≤
V2(x0)

M
< ∞, which means that xt exits Φ2 and transits to Φ1 in a

finite time almost surely.
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As there is no sliding motion of xt on the boundary Λ, there is a time instant τ2(x0) at

which xt meets the boundary Λ of the sets Φ1 and Φ2, and after the time instant τ2(x0), the

system trajectory xt will enter the interior of the set Φ1. Note that there may exist the case

that the system trajectory from the set Φ2 will tend to be tangent to the boundary Λ and

then come back the set Φ2. However, by the analysis similar to (3.28), after a finite time,

the system trajectory xt must enter the interior of Φ1, from which τ2(x0) is well defined.

We prove that after the time τ2(x0), xt will evolve in Φ1 permanently. Define the set

A := {ω : after the time τ2(x0), xt enters the interior of

Φ1 and then comes back Φ2} (3.29)

Consider ω ∈ A and let τ3(x0) be the first time after τ2(x0) at which xt meets the boundary

Λ, i.e., τ3(x0) is the first time after τ2(x0) that xτ3(x0) exits the open set
◦
Φ1, which is the

interior of Φ1. For 0 < µ < k, we define the compact set

Λµ := {x ∈ Rn : µ ≤ V1(x) ≤ k} (3.30)

Note that 0 /∈ Λµ and Λ ⊂ Λµ ⊂ Φ1. As the continuous function W (x) is positive definite

on the set Φ1, there exists

Wm := min
x∈Λµ

W (x) > 0. (3.31)

Let δ(x0) be the length of duration between τ2(x0) and τ3(x0) in which xt is in the set Λµ.

By definition, we have δ(x0) > 0 for all sample paths that ω ∈ A. We define the sets

An := {ω ∈ A : δ(x0) ≥
1

n
}, n = 1, 2, ... (3.32)
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Then, for all ω ∈ An, from (3.31), we have

∫ τ3(x0)

τ2(x0)
W (xs)ds ≥ δ(x0)Wm ≥ 1

n
Wm > 0. (3.33)

On the other hand, applying the Dynkin’s formula and combining with Condition C.2, we

achieve

E[IAnV1(xτ3(x0))]− E[IAnV1(xτ2(x0))]

= E[IAn

∫ τ3(x0)

τ2(x0)
Lf,σV1(xs)ds]

≤ −E[IAn

∫ τ3(x0)

τ2(x0)
W (xs)ds] (3.34)

where IAn is the indicator function of the set An. Note that V1(x) = k, ∀x ∈ Λ. As such

V1(xτ2(x0)) = V1(xτ3(x0)) = k. From (3.33) and (3.34), we have

0 ≤ −E[IAn

∫ τ3(x0)

τ2(x0)
W (xs)ds] ≤ −E[IAn ]

1

n
Wm, (3.35)

which implies that E[IAn ] = 0. Therefore, for any n = 1, 2, ..., there is almost surely no

sample path in which δ(x0) ≥ 1/n. Letting n→ ∞, we conclude that there is almost surely

no sample path that enters the interior of the set Φ1 and then comes back the set Φ2. As

such, after the time τ2(x0), the system trajectory xt will evolve in Φ1 permanently.

Case 2: x0 ∈ Φ1. If after a finite time, xt transits to the set Φ2 then, by similar analysis

as above, we conclude that after a finite time, xt will evolve in Φ1 permanently. Otherwise,

xt also evolves in Φ1 permanently.

Combining two cases, it follows that after a finite time, xt will permanently evolve in

Φ1 almost surely. From Conditions C.1, C.2, and the positive definiteness of the continuous

function W (x) on the set Φ1, applying Theorem 2.2 in [63], we conclude that the origin is

globally asymptotically stable in probability. Theorem 3.4 is proved. �
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Remark 3.3. It can be seen from the proof of Theorem 3.4 that, by its conditions, Theorem

3.4 guarantees that the system trajectory switches no more than one time between the sets

Φ1 and Φ2. This differentiates it from the non-smooth control design in [57,69,70] and the

non-smooth Lyapunov-like theorems in Sections 3.3.1 and 3.3.2, where the switching-number

of system state between the desired space and undesired space is uncontrollable. Therefore,

though the proof of Theorem 3.4 is inspired by the that of control design in [57,69,70] and

the proof of Theorem 3.3, it enables an important feature of controllable switching-number

which will be instrumental in controlling of entanglement in Chapter 6. In comparison to

Theorem 3.3, we can also observe that Condition C.4 of Theorem 3.3 is no longer needed in

Theorem 3.4, and the feature of 1−time switching is guaranteed via exploiting the specific

form of the set Φ1 as a level set of the corresponding Lyapunov function V1(x).

3.4 Conclusions

The non-smooth Lyapunov-like theory for stability analysis of generic stochastic nonlinear

systems has been presented. Exploiting the observation that the stability is achieved, if

the Lyapunov function is continuous and decreasing at it smooth segments, a continuous

Lyapunov-like theorem for stability in probability has been introduced. A discontinuous

Lyapunov-like theorem for stability in probability of generic stochastic nonlinear systems has

been also presented. To eliminate the uncontrollable switching numbers in these theorems,

we introduced the 1-time switching Lyapunov-like theorem. This theorem enabled the short

time convergence of system state, which is essential in the control of entanglement.
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Chapter 4

Global Stabilization

4.1 Introduction

In this chapter, we are interested in the problem of global stabilization for quantum filters.

The main challenge of this problem arises from the symmetric topology of the manifold

on which the filter state involves. Generally, the symmetric topology of filter state space

makes the smooth controls [34, 35, 53], synthesized via the classical Lyapunov stochastic

stability theory [54–56], difficult, if not impossible, to obtain the global stabilizability for a

given desired state. The underlying reason is due to the existence of the so-called antipodal

eigenstates which, together with the final desired state, are equilibrium points of the closed-

loop systems; see [15] for the origin of the term antipodal eigenstates from deterministic case.

As such, the global stabilization for quantum filters calls for a non-smooth control design

method to deal with the symmetric topology of filter state space.

In [34], after the introduction of quantum filters, the global stabilizability was shown

to be difficult to obtain even for 2-dimensional quantum filters. Continuous control was

then proposed, through computer search, to break the symmetric topology of 2-dimensional

filter state space and to globally stabilize the desired state. The design method is, however,
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computationally involved and the global stability is hard to prove as the design method is

not analytical [57]. In [57], control in hysteresis form was introduced to globally drive the

expectation of filter state of angular momentum systems to the final desired state, in which

the state convergence was proved based on a detailed analysis of the sample paths of filter

state.

In this chapter, applying the non-smooth Lyapunov-like theory, non-smooth controls

are synthesized to solve the problem of global stabilization for quantum filters. Firstly,

based on the continuous Lyapunov-like theorem, switching control is designed to globally

asymptotically drive the filter state to the final desired state almost surely. We utilize a

continuous Lyapunov function in minimum form to break the symmetric topology of filter

state space. The control design is based on a partition of the filter state space with consid-

eration of the sliding motion of filter state on the boundary among the regions. Secondly,

based on the discontinuous Lyapunov-like theorem, continuous control in saturation-form

is presented. For simplicity, we consider 2-dimensional quantum filters and prove that the

proposed control globally asymptotically renders the 2-dimensional filter state to the final

desired state almost surely.

In both control designs, the eigenstate-transferring of quantum filters is achieved as

a special consequence of global stabilization for quantum filters. This points out the ad-

vantage of the non-smooth Lyapunov-based controls over the smooth control approaches

for quantum filters [34, 35, 53]. In addition, the fact that control performance is analyzed

based on a Lyapunov-like theory distinguishes our approach from the sample path analysis

approach in [57]. Moreover, the use of Lyapunov-based theory generally provides a great

potential to deal with other control problems such as robust control [71], which is essential

when the system dynamics is uncertain. These features together assert the uniqueness and

advantages of the non-smooth Lyapunov-based approach for the control of quantum filters.

In Section 4.2, we present the system description and the problem formulation. The
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necessity of non-smooth Lyapunov theory for global stabilization of quantum filters is an-

alyzed in Section 4.3. The switching control and the saturation-form control designs for

quantum filters are then presented in Section 4.4. We show explicitly that these controls

globally asymptotically render the filter state to the final desired state almost surely. In

Section 4.5, the effectiveness of the proposed controls is demonstrated through the control

design for the Spin−1/2 systems. Section 4.6 includes concluding remarks.

4.2 Preliminaries

4.2.1 System Description

Consider the finite-dimensional quantum filters whose state is represented by the density

matrix ρ evolving on the space

S := {ρ ∈ Cn×n : ρ = ρ† ≥ 0,Tr(ρ) = 1}, (4.1)

and the time evolution of quantum filter state is described, in units such that ~ = 1, by the

following stochastic master equation (SME) [34]

dρt =
(
− i[H0, ρt] + LρtL

† − 1

2
L†Lρt −

1

2
ρtL

†L
)
dt

− i[H1, ρt]utdt

+
√
η
(
Lρt + ρtL

† − Tr(Lρt + ρtL
†)ρt

)
dwt

:= f(ρt)dt+ g(ρt)utdt+ σ(ρt)dwt, (4.2)

where

• wt is the 1−dimensional Wiener process defined on the classical complete probability

space
(
Ω,F ,P

)
with a filtration {Ft}t≥0, in which Ω is a sample space, F is a σ−field,

and P is a probability measure;
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• H0,H1 are n× n Hermitian matrices (or self-adjoint matrices) with entries in C;

• L ∈ Cn×n, η ∈ (0, 1], and ut ∈ R.

The quantum filter (4.2) describes the evolution of conditional state (filter state) of the

quantum system with free Hamiltonian H0, subjected to the continuous measurement of

the observable L with the measurement efficiency η, and the coherent control given by the

control input ut and the control Hamiltonian H1. As S is an invariant set of (4.2) [34], it is

a natural state space of the filter (4.2).

4.2.2 Problem Formulation

From the applications in quantum chemistry and atomic physics, the problem of transferring

a quantum system from initial states to desired states is of importance. We have the

following control problem:

(P1) Global stabilization by state-feedback: design a control law of the form

ut = u(ρt) to globally asymptotically render the quantum filter (4.2) from any initial

state to the final desired state ρf almost surely, i.e.,

P{ lim
t→∞

ρt = ρf} = 1, ∀ρ0 ∈ S. (4.3)

Towards a solution to the problem (P1), we consider the following assumptions made

on the system (4.2).

Assumption 4.1. The final desired state ρf is an eigenstate of the measurement operator

L, i.e., ρf = ψfψ
†
f where ψf is an eigenvector of L :

Lψf = λfψf . (4.4)

Remark 4.1. It was shown in [34] that under continuous measurement, the filter state
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converges to one of eigenstates of L in an asymptotic manner. This phenomenon was termed

quantum state reduction due to its compatibility with the usual quantum state reduction

postulate [46] in quantum mechanics which states that quantum system state jumps to one of

eigenstates of L under projective (discrete time) measurement. From this view, Assumption

4.1 is physically plausible.

Assumption 4.2. The measurement operator L is self-adjoint, i.e., L = L†, and regular,

i.e., the eigenvalues of L are different. The system free Hamiltonian H0 and L are com-

mutative. As H0 and L are commutative, we can choose a basis in which H0 and L are

diagonal.

Remark 4.2. Assumption 4.2 is to guarantee that ρf is an equilibrium point of the stochas-

tic master equation (4.2) without the control input, i.e., u = 0. This assumption is practi-

cally reasonable as in many experiment settings, e.g., trapping a cold atomic ensemble in

an optical cavity [34, 35, 72], H0 and L are chosen to be diagonal and L regular. The case

when L is not self-adjoint is also of interest; see [73].

Assumption 4.3. In the basis that H0 and L are diagonalized, H1 = [hkl]n×n is connected,

i.e., hi(i+1) ̸= 0 for all i = 1, .., n− 1.

Lemma 4.1. Under Assumptions 4.2 and 4.3, there does not exist ρ ∈ S that is an equi-

librium of (4.2) for all u.

Proof: Suppose that ρe is an equilibrium of (4.2) for all u. Then, f(ρe) = g(ρe) = σ(ρe) = 0.

Multiplying both sides of the equation f(ρe) = 0 with ρe and taking trace of both sides, we

obtain
∣∣[L, ρe]∣∣2 = 0. It follows that [L, ρe] = 0. Since L is diagonal and regular, ρe must be

diagonal. As g(ρe) = 0 and H1 is connected, it must hold that ρe = aIn for some constant

a. Since Tr(ρe) = 1, it follows that ρe =
1

n
In. Then, σ(ρe) differs from 0 as L is regular,

showing the contradiction. �

Lemma 4.1 guarantees the solvability of the problem of global stabilization for quan-

tum filter (4.2). The class of quantum filters (4.2) with Assumptions 4.1, 4.2, and 4.3
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encompasses the angular momentum systems considered in [34,57,70].

4.3 Non-smooth Lyapunov Necessity for Global Stabilization

of Quantum Filters

In this section, we review the smooth controls synthesized via smooth Lyapunov theory

[54–56], which was investigated in [34, 35, 53]. We point out that such smooth controls

are difficult to obtain the global stabilizability for quantum filters because of the intrinsic

symmetric topology of filter state space. This highlights the importance of non-smooth

Lyapunov-like theory for the global stabilization of quantum filters.

Consider the smooth Lyapunov function candidate of the Frobenius norm/variance form

[53]:

VS(ρ) = 1− Tr(ρρf ) + cU(ρ) (4.5)

where U(ρ) := Tr(L2ρ)−Tr2(Lρ) is the variance of filtering process along the measurement

operator L [46] and c > 0 is a constant. From Assumption 4.2, a straightforward computa-

tion (see Section 1, Appendix A) gives the infinitesimal generator of ρt acting on U(ρ) and

VS(ρ):

Lf+gu,σU(ρt) = gU (ρt)u− 4ηU(ρt)
2, (4.6a)

Lf+gu,σVS(ρt) = gS(ρt)u− 4cηU(ρt)
2, (4.6b)

where Lf+gu,σV is the infinitesimal generator of function V associated with (4.2):

Lf+gu,σV :=
∂V

∂ρ
(f(ρ) + g(ρ)u) +

1

2
Tr(σT (ρ)

∂2V

∂ρ2
σ(ρ)),
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and

gU (ρ) = Tr
(
− i[H1, ρ](L

2 − 2LTr(Lρ))
)
,

gS(ρ) = Tr
(
− i[H1, ρ](c(L

2 − 2LTr(Lρ))− ρf )
)
.

With the natural smooth state-feedback control law ut = uS(ρt) = −gS(ρt) as in [53], the

infinitesimal generator of VS(ρ) along (4.2) becomes

Lf+gu,σVS(ρt) = −gS(ρt)2 − 4cηU(ρt)
2 ≤ 0. (4.7)

According to Theorem 2.1 in [63], the filter state almost surely converges to

lim
t→∞

(
gS(ρt)

2 + 4cηU(ρt)
2
)
= 0. (4.8)

As L is diagonal and regular,
(
gS(ρ)

2+4cηU(ρ)2
)
= 0 iff ρ is an eigenstate of L (see Section 2,

Appendix A). As such, (4.8) means that ρt almost surely converges to one of the eigenstates

of L, which, as L is diagonal and regular, include ρi = diag{0, ... , 1︸︷︷︸,
i−th

..., 0}, i = 1, ..., n.

Note that these eigenstates are equilibrium points of the closed-loop systems. Consequently,

the smooth control ut = uS(ρt) fails to render the filter from the antipodal eigenstates of ρf ,

i.e., the other eigenstates ρi ̸= ρf of L, to ρf . Therefore, the smooth control designed via

the smooth Lyapunov stability theory is not sufficient to obtain the global stabilizability for

quantum filters. As such, the problem of global stabilization by state-feedback for quantum

filters intuitively calls for a non-smooth Lyapunov-based control approach which will be

presented in the next section.
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4.4 Nonsmooth Lyapunov Function-Based Global Stabiliza-

tion

4.4.1 Continuous Lyapunov Function-Based Global Stabilization

In this section, we present details of our approach to solution of the problem (P1). Basically,

we design the control such that the closed-loop system fulfills conditions of Theorem 3.2 in

Chapter 3. The control design is based on a partition of the filter state space into three

regions with consideration of the sliding motion of filter state on the boundary among the

regions.

1. Control Design

In order to break the symmetric topology of the filter state space, we shall choose the

Lyapunov function V (ρ) smooth around the eigenstates of L such that the coefficient of u

in Lf+guV (ρ) is equal to 0 at ρf , while being different from 0 at all antipodal eigenstates

ρi of ρf , i.e.,

∂V (ρ)

∂ρ
g(ρ)

∣∣∣
ρ=ρf

= 0, (4.9a)

∂V (ρ)

∂ρ
g(ρ)

∣∣∣
ρ=ρi

̸= 0, ∀ρi ̸= ρf . (4.9b)

Condition (4.9b) can be fulfilled via the following lemma.

Lemma 4.2. Under Assumption 4.3, there exists X = [xij ]n×n ∈ Cn×n self-adjoint and

off-diagonal, i.e., xii = 0, ∀i = 1, .., n, such that

−i[X,H1] = A = [aij ]n×n, (4.10)

in which aii ∈ R \ {0}, ∀i = 1, ..., n.

Proof: See Section 3, Appendix A. �
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A corollary of Lemma 4.2 is that the coefficient of u in Lf+guTr(Xρ) is different from 0 at

all antipodal eigenstates ρi of ρf :

Tr(−iX[H1, ρi]) = Tr(Aρi) = aii ̸= 0. (4.11)

Noting this corollary, we construct a Lyapunov function candidate satisfying (4.9). Let

0 < m < min
i=1,..,n

a2ii; 0 < a < min
i=1,..,n

a2ii −m;

M > max
i=1,..,n

a2ii. (4.12)

Consider the continuous Lyapunov function candidate in minimum form as follows:

V (ρ) = min
{
(M −m)(1− Tr(ρρf )) + cU(ρ),

M − Tr(Aρ)2 + |lTr(Xρ)− a|+ cU(ρ)
}

(4.13)

where the constants l > 0 and c > 0 are chosen later. The Lyapunov function V (ρ) can be

described in the form (3.8):

V (ρ) = Vi(ρ), ρ ∈ Φi, i ∈ {1, 2, 3}, (4.14)

with the smooth functions:

V1(ρ) = (M −m)(1− Tr(ρρf )) + cU(ρ), (4.15a)

V2(ρ) =M − Tr(Aρ)2 + lTr(Xρ)− a+ cU(ρ), (4.15b)

V3(ρ) =M − Tr(Aρ)2 − lTr(Xρ) + a+ cU(ρ), (4.15c)
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and the partition of the state space S:

Φ1 =
{
ρ ∈ S :(M −m)(1− Tr(ρρf ))

< M − Tr(Aρ)2 + |lTr(Xρ)− a|
}
, (4.16a)

Φ2 =
{
ρ ∈ S :(M −m)(1− Tr(ρρf ))

≥M − Tr(Aρ)2 + |lTr(Xρ)− a|,

lTr(Xρ) ≥ a
}
, (4.16b)

Φ3 =
{
ρ ∈ S :(M −m)(1− Tr(ρρf ))

≥M − Tr(Aρ)2 + |lTr(Xρ)− a|,

lTr(Xρ) < a
}
. (4.16c)

In the sequel, a function ϕ(ρ) is called positive definite with respect to ρf on the set

Φ containing ρf if ϕ(ρ) ≥ 0, ∀ρ ∈ Φ, and ϕ(ρe) = 0, ρe ∈ Φ, iff ρe = ρf . Note that

U(ρ) ≥ 0 for all ρ ∈ S (see Section 2, Appendix A) and the function (1 − Tr(ρρf )) is

positive finite with respect to ρf on the set S. As S is compact [34], with M chosen such

that M −max
ρ∈S

Tr(Aρ)2 > 0, then V (ρ) is positive definite with respect to ρf on the set S.

As the solution X of (4.10) is off-diagonal, i.e., xii = 0, ∀i = 1, .., n, it follows that

Tr(Xρi) = xii = 0. Moreover, Tr(ρ2f ) = 1 and Tr(ρiρf ) = 0 for all antipodal eigenstates

ρi of ρf . Therefore, from (4.12) and (4.16), it must hold that ρf ∈ Φ1 and ρi ∈ Φ3 for

all antipodal eigenstates ρi of ρf . In addition, there is no eigenstate of L on the boundary

Λ :=
3
∪
i̸=j

Λij where Λij = Φ̄i ∩ Φ̄j , i ̸= j ∈ {1, 2, 3}. Hence, ρf is in the interior of Φ1 and all

antipodal eigenstates ρi of ρf are in the interior of Φ3.
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A straightforward computation (see Section 4, Appendix A) gives the infinitesimal gen-

erator of ρt acting on V1(ρ), V2(ρ), and V3(ρ) :

Lf+gu,σV1(ρ) = g1(ρ)u− 4cηU(ρ)2, (4.17)

Lf+gu,σV2(ρ) = g2(ρ)u+ h2(ρ)− Tr(Aσ(ρ))2 − 4cηU(ρ)2, (4.18)

Lf+gu,σV3(ρ) = g3(ρ)u+ h3(ρ)− Tr(Aσ(ρ))2 − 4cηU(ρ)2, (4.19)

where

g1(ρ) = Tr(−i[H1, ρ](c(L
2 − 2LTr(Lρ))− (M −m)ρf )),

g2(ρ) = lTr(Aρ)− 2Tr(Aρ)Tr(−i[H1, ρ]A)

+ cTr
(
− i[H1, ρ](L

2 − 2LTr(Lρ))
)
,

g3(ρ) = −lTr(Aρ)− 2Tr(Aρ)Tr(−i[H1, ρ]A) (4.20)

+ cTr
(
− i[H1, ρ](L

2 − 2LTr(Lρ))
)
,

h2(ρ) = −2Tr(Aρ)Tr(Af(ρ)) + lTr(Xf(ρ)),

h3(ρ) = −2Tr(Aρ)Tr(Af(ρ))− lTr(Xf(ρ)).

Equation (4.17) suggests us the control law u = u1(ρ) = −g1(ρ), ρ ∈ Φ1, which yields

Lf+gu,σV1(ρ) = −g1(ρ)2 − 4cηU(ρ)2 := −W1(ρ), (4.21)

for all ρ in Φ1. We now design the control in Φ2 and Φ3. From (4.16b) and (4.16c), in Φ2

and Φ3, we have

M −m ≥ (M −m)(1− Tr(ρρf )) ≥M − Tr(Aρ)2.
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Hence, |Tr(Aρ)| ≥
√
m for all ρ ∈ Φ2 ∪ Φ3. Let c > 0 and l > 0 such that

l
√
m > max

ρ∈S

∣∣∣2Tr(Aρ)Tr(−i[H1, ρ]A)

− cTr
(
− i[H1, ρ](L

2 − 2LTr(Lρ))
)∣∣∣

+max
ρ∈S

|g1(ρ)|. (4.22)

Therefore

l|Tr(Aρ)| > max
ρ∈S

∣∣∣2Tr(Aρ)Tr(−i[H1, ρ]A)

− cTr
(
− i[H1, ρ](L

2 − 2LTr(Lρ))
)∣∣∣

+max
ρ∈S

|g1(ρ)|, ∀ρ ∈ Φ2 ∪ Φ3.

As such, it follows from (4.20) that |g2(ρ)| > |g1(ρ)| ≥ 0, ∀ρ ∈ Φ2, and |g3(ρ)| > |g1(ρ)| ≥

0, ∀ρ ∈ Φ3. Hence, the coefficient of u in Lf+guV (ρ) is different from zero for all ρ in

Φ2∪Φ3, which containing all antipodal eigenstates of ρf . Consequently, (4.9b) is satisfied. In

addition, the difference between the coefficient g1(ρ) of u in Lf+gu,σV1(ρ) and the coefficients

g2(ρ), g3(ρ) of u in Lf+gu,σV2(ρ),Lf+gu,σV3(ρ) will be utilized to avoid the sliding motion

of ρt on the boundary Λ.

As g2(ρ) ̸= 0, ∀ρ ∈ Φ2 and g3(ρ) ̸= 0, ∀ρ ∈ Φ3, in Φ2 and Φ3, we can choose the control

laws:

u = u2(ρ) =
−h2(ρ)− k

g2(ρ)
, k > 0, ∀ρ ∈ Φ2, (4.23a)

u = u3(ρ) =
−h3(ρ)− k

g3(ρ)
, k > 0, ∀ρ ∈ Φ3. (4.23b)
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Substituting (4.23a) into (4.18) and (4.23b) into (4.19), respectively, we obtain

Lf+gu,σV2(ρ) = −k − Tr(Aσ(ρ))2 − 4cηU(ρ)2 < 0,

∀ρ ∈ Φ2, (4.24a)

Lf+gu,σV3(ρ) = −k − Tr(Aσ(ρ))2 − 4cηU(ρ)2 < 0,

∀ρ ∈ Φ3. (4.24b)

Combining (4.21) and (4.24), we obtain the infinitesimal generator of ρt that acts on V (ρ) :

LV (ρ) =


−W1(ρ), ρ ∈ Φ1,

−k − Tr(Aσ(ρ))2 − 4cηU(ρ)2, ρ ∈ Φ2,

−k − Tr(Aσ(ρ))2 − 4cηU(ρ)2, ρ ∈ Φ3.

(4.25)

2. Stability Analysis

In the sequel, we shall show that the control derived above solves the problem (P1).

Theorem 4.1. Consider the quantum filter (4.2) satisfying Assumptions 4.1, 4.2, and 4.3.

Then, there exists k > 0 such that the following switching control renders the filter (4.2)

from any initial state to the final desired state ρf almost surely:

u(ρ) =


u1(ρ) = −g1(ρ), ρ ∈ Φ1,

u2(ρ) = (−h2(ρ)− k)/g2(ρ), ρ ∈ Φ2,

u3(ρ) = (−h3(ρ)− k)/g3(ρ), ρ ∈ Φ3.

(4.26)

Proof: In order to apply Theorem 3.2 in Chapter 3, firstly, we fulfill Assumption 3.1,

i.e., to make sure that there is no sliding motion of the system trajectory on the boundary

Λ :=
3
∪
i ̸=j

Λij , where Λij = Φ̄i ∩ Φ̄j , i ̸= j ∈ {1, 2, 3}. Secondly, we show that with each

initial state, there exists a unique solution of the closed-loop systems. Lastly, we construct
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a continuous, non-negative function W (ρ) such that all the conditions of Theorem 3.2 are

satisfied.

Step 1: Avoiding the sliding motion of ρt on Λ.

The boundary Λij between Φi and Φj , i ̸= j ∈ {1, 2, 3} satisfies

Λij ⊂ {ρ ∈ S : Vi(ρ) = Vj(ρ)}. (4.27)

Hence, if the system trajectory ρt slides on Λij , then the infinitesimal generator Lf+gu,σVi(ρt)

of Vi and the infinitesimal generator Lf+gu,σVj(ρt) of Vj are equal at some point ρt ∈ Λij .

As such, in order to guarantee that there is no sliding motion of ρt on Λ, we shall choose

k > 0 such that for all i ̸= j ∈ {1, 2, 3},

Lf+gu,σVi(ρ) ̸= Lf+gu,σVj(ρ), ∀ρ ∈ Λij . (4.28)

Notice that on the boundary Λ1j between Φ1 and Φj , j ∈ {2, 3}, the control input u =

uj(ρ) is applied because Λ1j ⊂ Φj . Hence, on Λ1j , the condition (4.28) is equivalent with

Lf+guj ,σV1(ρ) ̸= Lf+guj ,σVj(ρ), j ∈ {2, 3}, or from (4.17), (4.18), and (4.19),

g1(ρ)
−hj(ρ)− k

gj(ρ)
̸= −k − Tr(Aσ(ρ))2,

∀ρ ∈ Λ1j , j ∈ {2, 3}. (4.29)

Indeed, as |gj(ρ)| > |g1(ρ)|, ∀ρ ∈ Φj , j ∈ {2, 3}, there exists k > 0 such that for all j ∈ {2, 3},

k

(
1−max

ρ∈Φj

∣∣∣g1(ρ)
gj(ρ)

∣∣∣) > max
ρ∈Φj

∣∣∣g1(ρ)hj(ρ)
gj(ρ)

− Tr(Aσ(ρ))2
∣∣∣. (4.30)

Then, (4.29) holds true. Therefore, there is no sliding motion of ρt on Λ12 and Λ13.

Similarly, on the boundary Λ23 ⊂ Φ2, as the control input u = u2(ρ) is applied, (4.28)

46



4.4 Nonsmooth Lyapunov Function-Based Global Stabilization

is equivalent with Lf+gu2,σV2(ρ) ̸= Lf+gu2,σV3(ρ), or from (4.18) and (4.19),

g3(ρ)
−h2(ρ)− k

g2(ρ)
+ h3(ρ) ̸= −k, ∀ρ ∈ Λ23. (4.31)

Note |g2(ρ)− g3(ρ)| = 2l|Tr(Aρ)| ≤ 2l
√
m, ∀ρ ∈ Φ2 ∪ Φ3. We choose k such that

2kl
√
m > max

ρ∈Λ23

|g3(ρ)h2(ρ)− g2(ρ)h3(ρ)|. (4.32)

Hence, k
∣∣g2(ρ)−g3(ρ)∣∣ > ∣∣g3(ρ)h2(ρ)−g2(ρ)h3(ρ)∣∣, ∀ρ ∈ Λ23, and (4.31) follows accordingly.

As such, there is no sliding motion of ρt on the boundary Λ23. Therefore, with k satisfies

(4.30) and (4.32), Assumption 3.1 is fulfilled.

Step 2: Well-posedness.

This subsection proves the well-posedness of the closed-loop system with the proposed

control. Since there is no sliding motion of ρt on Λ, the system trajectory ρt intersects Λ

at separated time instants. As in the proof of Theorem 3.2, we denote by {τi}i=1,2,... the

sequence of stopping times at which ρt is on Λ. Let τ0 = 0. In each period (τi, τi+1), i =

0, 1, ..., one of the three smooth control laws u1(ρ), u2(ρ), and u3(ρ) is applied; we denote

the applied control by uqi(ρ), qi ∈ {1, 2, 3}. From Proposition 3.5 in [57], in each period

(τi, τi+1), i = 0, 1, ..., with the smooth control uqi(ρ) and the initial state ρτi , there exists

a unique segment ρt(ρτi , uqi) of the system (4.2). Moreover, the evolution of ρt(ρτi , uqi) is

on S, which is a compact set. This implies that in each period (τi, τi+1), i = 0, 1, ..., the

segment ρt(ρτi , uqi) is bounded. By joining the segments ρt(ρτi , uqi) in consecutive periods

(τi, τi+1), i = 0, 1, ..., we conclude that with the control law (4.26), for each initial state

ρ0 ∈ S, there exists a unique solution ρt(ρ0, u) of the system (4.2).

Step 3: Construction of the continuous, positive definite function W (ρ).

In this subsection, we construct a continuous, positive definite functionW (ρ) satisfying Con-

dition C.2 of Theorem 3.2, by which the global stability of closed-loop system is guaranteed
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Λ12 ∪ Λ13

LV3(ρ) ≤ −k

Fig. 4.1: Illustration of the construction of continuous, non-negative function W (ρ).

without the use of some LaSalle’s Invariance Principle, which is necessary in the case of semi-

positive definite W (ρ). The idea of constructing the continuous, positive definite function

W (ρ) is sketched in Fig. 4.1. As there is no eigenstate of L on the boundaries Λ12 = Φ̄1∩Φ̄2

and Λ13 = Φ̄1∩ Φ̄3, we have W1(ρ) = g1(ρ)
2+4cηU(ρ)2 > 0, ∀ρ ∈ Λ12∪Λ13. Since Λ12∪Λ13

is compact, there exists min
ρ∈Λ12∪Λ13

W1(ρ) > 0. Let 0 < mw ≤ min{k, min
ρ∈Λ12∪Λ13

W1(ρ)}. Then,

the non-negative function

W (ρ) =


min

{
W1(ρ),mw

}
, ρ ∈ Φ1,

mw, ρ ∈ Φ2,

mw, ρ ∈ Φ3,

(4.33)

is continuous on the whole state space S and satisfies that

W (ρ) ≤


W1(ρ), ρ ∈ Φ1,

k, ρ ∈ Φ2,

k, ρ ∈ Φ3.

(4.34)
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This, along with (4.25), leads to

Lf+gu,σV (ρ) ≤ −W (ρ) ≤ 0, ∀ρ ∈ S. (4.35)

Therefore, Condition C.2 of Theorem 3.2 is satisfied. Note that there is only one eigenstate

of L in the set Φ̄1, that is ρf . From Section 2, Appendix A, we conclude that W1(ρe) = 0

with ρe ∈ Φ̄1 only if ρe = ρf . As such, the function W1(ρ) is positive definite with respect

to ρf on the set Φ̄1. Consequently, the function W (ρ) is positive definite with respect to ρf

on the set S. Applying Theorem 3.2, from (4.35), we conclude that the switching control

(4.26) renders the quantum filter (4.2) from any initial state to the final desired state ρf

almost surely. �

4.4.2 Discontinuous Lyapunov Function-Based Global Stabilization

In this section, we design continuous control in saturation-form, depicted in Fig. 4.2, via the

discontinuous Lyapunov-like Theorem 3.3 in Chapter 3 to globally asymptotically render

the filter (4.2) from any initial state to the final desired state almost surely. The idea

of constructing such a continuous control comes from the observation that we can design

switching control such that Lf+gu,σV (ρ) is negative definite in Φ1 and strictly negative in

Φ2 ∪ Φ3. Since Lf+gu,σV (ρ) is strictly negative around the boundary Λ, we can transform

the switching control in a small neighborhood of Λ to obtain saturation-form control such

that Lf+gu,σV (ρ) is still negative definite on the whole state space S. As the control is

continuous, it is easier to be implemented in practice. See [74] for another interesting

method to transform the discontinuous controls of switched systems to continuous controls.

For the simplicity of presentation and technical proofs, we consider the specific case

of 2-dimensional quantum filters. In addition, in Assumption 4.3, we further assume that

h11 = h22. Then, by similar proof with that of Lemma 4.2, there existsX ∈ C2×2 self-adjoint
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Fig. 4.2: Illustration of the saturation-form control.

and off-diagonal such that

−i[X,H1] = A = 4ρf − 2I2. (4.36)

Consider the Lyapunov function candidates:

U1(ρ) = 1− Tr(ρρf ) + cU(ρ), (4.37a)

U2(ρ) = h+Tr(Xρ), (4.37b)

where h > max
ρ∈S

|Tr(Xρ)| and c > 0 is chosen such that

2cU(ρ) ≤ Tr(ρρf ), ∀ρ ∈ S. (4.38)

This is possible as there exists C > 0 such that U(ρ) = U(ρ) − U(ρa) ≤ C(1− Tr(ρρa)) =

CTr(ρρf ), ∀ρ ∈ S, where ρa is the antipodal eigenstate of ρf . Hence, we can choose c =

1/(2C). Due to the positivity of U(ρ) and the positive definiteness of the function (1 −

Tr(ρρf )), the positivity of U1(ρ) is obvious. As h > max
ρ∈S

|Tr(Xρ)|, we have U2(ρ) > 0, ∀ρ ∈

S.
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For 0 < γ < 1/8, we define the sets:

Φ1 := {ρ ∈ S : U1(ρ) < 1− 1/8 + γ}, (4.39a)

Φ2 := {ρ ∈ S : U1(ρ) ≥ 1− 1/8 + γ}, (4.39b)

Φ∗
1 := {ρ ∈ S : U1(ρ) ≤ 1− 1/8} ⊂ Φ1, (4.39c)

Φ∗
2 := {ρ ∈ S : U1(ρ) > 1− 1/8} = S \ Φ∗

1, (4.39d)

Φ := {ρ ∈ S : 1− 1/8 < U1(ρ) < 1− 1/8 + γ}. (4.39e)

By (A.5), (A.6), and (A.9) in Section 4, Appendix A, the infinitesimal generator of ρt acting

on U1(ρ) and U2(ρ) gives

Lf+gu,σU1(ρ) = Tr(−i[H1, ρ](c(L
2 − 2LTr(Lρ))− ρf ))u

− 4cηU(ρ)2

:= gU (ρ)u− 4cηU(ρ)2, (4.40a)

Lf+gu,σU2(ρ) = Tr(−iX[H1, ρ])u+Tr(Xf(ρ))

= Tr(Aρ)u+Tr(Xf(ρ)). (4.40b)

In Φ∗
2, by (4.38) and (4.39d), we have

1− 1

2
Tr(ρρf ) ≥ U1(ρ) ≥ 1− 1/8 (4.41)

Hence, Tr(ρρf ) ≤ 1/4,∀ρ ∈ Φ∗
2. From (4.36), it follows that

Tr(Aρ) = Tr((4ρf − 2I2)ρ) = 4Tr(ρρf )− 2

≤ −1, ∀ρ ∈ Φ∗
2. (4.42)

Theorem 4.2. Consider the 2-dimensional quantum filter (4.2). Suppose that Assumptions

4.1, 4.2, and 4.3 are satisfied and H1 satisfies that h11 = h22. Then, there exists a sufficiently
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small constant γ > 0 such that the following saturation-form control globally asymptotically

renders the filter (4.2) from any initial state to the final desired state ρf almost surely:

1. u = u1(ρ) = −gU (ρ), if ρ ∈ Φ∗
1;

2. u = u2(ρ) =
−Tr(Xf(ρ))− k

Tr(Aρ)
, k > 0, if ρ ∈ Φ2;

3. u = u3(ρ) =
1− 1/8 + γ − U1(ρ)

γ
u1(ρ) +

U1(ρ)− (1− 1/8)

γ
u2(ρ), if ρ ∈ Φ.

Proof: By (4.42), the above control is well defined. Substituting it into (4.40), we obtain

Lf+gu,σU1(ρ) = −gU (ρ)2 − 4cηU(ρ)2

:= −WU (ρ) ≤ 0, ∀ρ ∈ Φ∗
1, (4.43a)

Lf+gu,σU2(ρ) = −k < 0, ∀ρ ∈ Φ2. (4.43b)

Notice thatWU (ρ) = 0 iff ρ is one of eigenstates of L (see Section 2, Appendix A) and there

is no eigenstate of L in the compact set Λ∗ := Φ̄∗
1∩ Φ̄∗

2 = {ρ ∈ S : U1(ρ) = 1−1/8}. As such,

WU (ρ) > 0, ∀ρ ∈ Λ∗, and consequently, there exists min
ρ∈Λ∗

WU (ρ) > 0, which is independent

with γ. Hence, Lf+gu,σU1(ρ) is strictly negative on Λ∗ and Lf+gu,σU2(ρ) is strictly negative

on Λ := Φ̄1 ∩ Φ̄2.

On the other hand, as u(ρ) is continuous in ρ on the whole space S, Lf+gu,σU1(ρ) and

Lf+gu,σU2(ρ) are also continuous in ρ on the whole space S. Therefore, there exists γ > 0

sufficiently small such that Lf+gu,σU1(ρ) and Lf+gu,σU2(ρ) are strictly negative on the small

region Φ between Λ∗ and Λ in the means that

Lf+gu,σU1(ρ) ≤ −1

2
min
ρ∈Λ∗

WU (ρ), ∀ρ ∈ Φ, (4.44a)

Lf+gu,σU2(ρ) ≤ −1

2
k < 0, ∀ρ ∈ Φ. (4.44b)

Let mU =
1

2
min
ρ∈Λ∗

WU (ρ) and W (ρ) = min{mU ,WU (ρ)}. Then, it follows from (4.43) and
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(4.44) that

Lf+gu,σU1(ρ) ≤ −W (ρ), ∀ρ ∈ Φ∗
1 ∪ Φ = Φ1, (4.45a)

Lf+gu,σU2(ρ) ≤ −1

2
k, ∀ρ ∈ Φ2 ∪ Φ = S \ Φ∗

1. (4.45b)

Thus, Conditions C.1, C.2, and C.3 of Theorem 3.3 in Chapter 3 are satisfied. In addition,

by the definitions of the sets Φ1,Φ2, and Φ∗
1, we have

sup
ρ∈Φ∗

1

U1(ρ) ≤ 1− 1/8 < 1− 1/8 + γ = inf
ρ∈Λ

U1(ρ). (4.46)

As such, Condition C.4 of Theorem 3.3 is satisfied.

On the other hand, from (4.44), we have Lf+gu,σU1(ρ) ≤ −mU < 0 for all ρ ∈ Λ and

ρ ∈ Λ∗. Hence, there is no sliding motion of ρt on Λ and Λ∗. By the same arguments as in

Section 4.4.1, we conclude that under the above continuous control, from any initial state,

there exists a unique solution of the system (4.2).

Notice that there is no eigenstate of L on the boundary Λ between Φ1 and Φ2. As such,

WU (ρ), and then W (ρ), is positive definite with respect to ρf on the set Φ̄1. According to

Theorem 3.3, Statement S.3 holds, i.e., the above saturation-form control globally asymp-

totically renders the filter (4.2) from any initial state to the final desired state ρf almost

surely. �

Remark 4.3. In comparison to the continuous Lyapunov-based control design, the discon-

tinuous Lyapunov-based control design is more convenient because we do not need to ensure

that V (ρ) is continuous as well as to construct the continuous, non-negative function W (ρ)

on the whole state space S.
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4.5 Example: Spin-1/2 Systems

The Spin−1/2 systems [75] have been studied by many researchers due to their important

role in quantum information processing [47]. The stabilization problem for the Spin−1/2

systems was considered in [34]. It is pointed out in [34], that the symmetric topology of the

Bloch sphere S2 makes the smooth controls impossible to obtain the global stabilizability. In

this section, we show that the non-smooth Lyapunov-based controls can solve the problem of

global stabilization by state-feedback for the Spin−1/2 systems. The eigenstate-transferring

will be well performed as a special result. With the Spin−1/2 systems, the density operator

can be represented as follows

ρ =
1

2
(σ0 + xσx + yσy + zσz) (4.47)

where −→s = (x, y, z) ∈ R3 is the Bloch vector of ρ, σ0 = I, and σx, σy, σz are Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =
 1 0

0 −1

 .
The map ρ 7→ −→s described by (4.47) is an isomorphism between the state space S of ρ and

the state space B of Bloch vectors −→s , in which B = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}.

In typical experiment settings [34], the Spin−1/2 system interacts with a laser field set

along the z−axis, and with a controlled magnetic field set along the y−axis; see Fig. 4.3.

Then, the measurement operator is L = σz and the Hamiltonians are H0 = 0,H1 = σy. A

straightforward computation gives

f(ρt) = (−xtσx − ytσy), (4.48a)

g(ρt) = (ztσx − xtσz), (4.48b)

σ(ρt) =
√
η(−xtztσx − ytztσy + (1− z2t )σz). (4.48c)
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Fig. 4.3: The experiment setup of the continuous quantum measurement and control. The
Spin interacts with an optical field produced by a laser. The optical field is detected by
homodyne measurement. The measurement outcomes are sent to a filter and the filter state
is then fed back via a magnetic field to modify the system Hamiltonian.

Hence, the SME (4.2) becomes

dρt =
(
(−xt + uzt)dt−

√
ηxtztdwt

)
σx

+
(
− ytdt−

√
ηytztdwt

)
σy

+
(
− uxtdt+

√
η(1− z2t )dwt

)
σz. (4.49)

From (4.47) and (4.49), the stochastic differential equation of the Bloch vector is


dxt = 2

(
(−xt + uzt)dt−

√
ηxtztdwt

)
dyt = 2

(
− ytdt−

√
ηytztdwt

)
dzt = 2

(
− uxtdt+

√
η(1− z2t )dwt

)
.

(4.50)

When the system is under continuous measurement but without feedback control, i.e.,

u = 0, the quantum state reduction assures that the filter state reduces to one of eigenstates

of L, which comprise of ρ1 = diag(1, 0) and ρ2 = diag(0, 1) (See [34]). This means that the
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Fig. 4.4: Sample paths of the quantum state reduction in measured system without control

state of (4.50) when u = 0 reduces to one of two Bloch vectors (0, 0, 1) and (0, 0,−1).

The simulation data are: −→s0 = (0.5,−0.5, 0). The measurement efficiency is η = 0.9. Fig.

4.4 shows 5 arbitrary sample paths of the quantum state reduction. It can be seen from

Fig. 4.4 that the quantum filter state reduces stochastically from −→s0 to one of two states

(0, 0, 1) and (0, 0,−1), asserting the quantum state reduction phenomenon.

We design non-smooth Lyapunov-based state-feedback controls to render the quantum

filter state deterministically to the final desired state ρf = diag(1, 0), which is an eigenstate

of the measurement operator L. In this case, the corresponding desired Bloch vector of ρf

is −→sf = (0, 0, 1). As ρf is chosen as an eigenvalue of L, Assumption 4.1 is satisfied. Since

H0 and L are diagonal and L is regular, Assumption 4.2 is satisfied. Moreover, H1 = σy is

connected and has h11 = h22 = 0. Hence, all the conditions of Theorems 4.1 and 4.2 are

satisfied.
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4.5.1 Continuous Lyapunov Function-Based Control Design

With X =

 0 1

1 0

, then A = 2diag(1,−1) satisfies Lemma 4.2. Choose M = 6,m = 2,

and a = 1. Then, (4.12) holds. As Tr(ρρf ) = 0.5(1 + z),Tr(Xρ) = x,Tr(Aρ) = 2z, and

U(ρ) = 1 − z2, the partition (4.16a)-(4.16c) of the state space S corresponds with the

following partition of B:

B1 = {(x, y, z) ∈ B : 2(1− z) < 6− 4z2 + l|x− 1

l
|},

B2 =
{
(x, y, z) ∈ B : 2(1− z) ≥ 6− 4z2 + l|x− 1

l
|,

lx ≥ 1
}
,

B3 =
{
(x, y, z) ∈ B : 2(1− z) ≥ 6− 4z2 + l|x− 1

l
|,

lx < 1
}
,

and the Lyapunov function (4.13) becomes:

V =


2(1− z) + c(1− z2), (x, y, z) ∈ B1,

6− 4z2 + lx− 1 + c(1− z2), (x, y, z) ∈ B2,

6− 4z2 − lx+ 1 + c(1− z2), (x, y, z) ∈ B3.

Following the control design procedure in Section 4.4.1, we obtain the control law:

u =



−(4x+ 4cxz), (x, y, z) ∈ B1,

2lx− k

2lz + (16 + 4c)xz
, (x, y, z) ∈ B2,

−2lx− k

−2lz + (16 + 4c)xz
, (x, y, z) ∈ B3.

(4.51)

The designed parameters: c = 0.25, l = 10, k = 10. Then, (4.22), (4.30), and (4.32) hold.

The simulation data: −→s0 = (0, 0,−1), η = 0.9. The simulation results with 5 arbitrary sample
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paths are showed in Fig. 4.5. It can be observed from Fig. 4.5(a) that, in all sample paths,

the filter state is driven from the eigenstate (0, 0,−1) to the desired eigenstate (0, 0, 1), i.e.,

the eigenstate-transferring is well performed. Thus, the eigenstate-transferring is achieved

for Spin−1/2, distinguishing the proposed control from the classical smooth control methods

in [34, 35, 53]. The Lyapunov function V (ρt) is shown to be continuous in Fig. 4.5(c). The

switchings in the control signal ut and the infinitesimal LV (ρt) observed in Figs. 4.5(b) and

4.5(c) are due to the evolution of filter state ρt through the boundary Λ.

4.5.2 Discontinuous Lyapunov Function-Based Control Design

Notice that X and A in Section 4.5.1 also satisfy the Equation (4.36). Following the control

design procedure in Section 4.4.2, we obtain the continuous control law in saturation form:

1. u = u1 = −(x+ 4cxz), if 0.5(1− z) + c(1− z2) ≤ 1− 1/8;

2. u = u2 =
2x− k

2z
, if 0.5(1− z) + c(1− z2) ≥ 1− 1/8 + γ;

3. u =
1− 1/8 + γ − (0.5(1− z) + c(1− z2))

γ
u1 +

0.5(1− z) + c(1− z2)− (1− 1/8)

γ
u2,

if 1− 1/8 < 0.5(1− z) + c(1− z2) < 1− 1/8 + γ.

The designed parameters: c = 0.2, k = 2, γ = 0.05. It can be checked that (4.38) and

(4.44) hold. The simulation data: −→s0 = (0, 0,−1) and η = 0.9. The simulation results with 5

arbitrary sample paths are shown in Fig. 4.6. It can be seen from Fig. 4.6(a) that under the

above control, the filter state is driven from the eigenstate (0, 0,−1) to the desired eigenstate

(0, 0, 1) in all sample paths, i.e., the eigenstate-transferring of the Spin-1/2 system is well

achieved. The control ut is shown to be continuous in Fig. 4.6(b), and thus, is easier to be

implemented than the switching control in Fig. 4.5(b).
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(a) Filter state convergence: from (0, 0,−1) to (0, 0, 1)
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Fig. 4.5: Continuous Lyapunov-based stabilization when c = 0.25, l = 10, k = 10
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(b) Control input ut synthesized based on discontinuous Lyapunov

Fig. 4.6: Discontinuous Lyapunov-based stabilization when c = 0.2, k = 2, γ = 0.05.
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4.6 Conclusions

In this chapter, the non-smooth Lyapunov-based control designs for the deterministic gen-

eration of the desired eigenstate of a class of quantum filters have been presented. Based

on continuous Lyapunov-like theorem, switching control has been constructed to globally

stabilize the quantum filter. Applying discontinuous Lyapunov-like theorem, continuous

control in saturation form has been designed to successfully deal with the global stabiliza-

tion problem of 2-dimensional quantum filters. The control design for the Spin−1/2 systems

has shown that these non-smooth Lyapunov-based controls are effective to cope with the

symmetric topology of filter state space and to achieve the global stabilizability for quantum

filters.
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Chapter 5

Real-time Implementation of

Quantum Feedback

5.1 Introduction

In this chapter, we are interested in the problem of real-time implementation of quantum

feedback control. In the feedback control of quantum systems, due to the very fast dynamics

of the quantum mechanical systems, the time to compute the filter state and the filter-based

control input is not negligible. Because of this inherent feature, to implement a filter-based

control strategy in real time, we have to take the computation time explicitly into account.

In [37] and [76], a filter-reduction approach was introduced, in which an approximation

of the filter state is obtained by using a reduced-dimension filter. This approximation

approach reduces the computation time considerably. The limitation of this approach is

that the inevitable error between the real filter and the reduced-dimension filter may cause

the filter-reduction-based control ineffective. Another approach based on the time delay

control was introduced in [77, 78], in which the computation time is compensated for in

the control law, i.e., ut = u(ρt−τ ), where τ > 0 denotes the time spent to compute the
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filter state. However, the control design in [77, 78] is only applicable for 2−dimensional

quantum filters. As the computation time raises a problem when the quantum filter is

of high dimension, the real-time quantum measurement-based feedback control calls for a

systematic control synthesis for high-dimensional quantum filters.

Motivated by the above considerations, in this chapter, we introduce globally stabilizing,

non-smooth time delay control for a class of arbitrary high-dimensional quantum filters to

deal with the problem of compensating for the computation time in real-time quantum

measurement-based feedback control. Inspired by the control design in [57], the proposed

control is of hysteresis form with two modes, of which the constant control almost surely

pushes the filter state off all antipodal points of the desired state ρf in a finite time, while

the nonlinear control drives the filter state to the desired state ρf almost surely. The main

advantages of our control strategy over the delay-free one in [57] and the time delay ones

for 2−dimensional systems in [77,78] include:

1) The control design is constructive and the obtained control is explicit instead of being

guaranteed to exist only as in [57];

2) The known, but arbitrarily long, computation time is compensated for the first time,

while the computation time in [78] is required to be small, as can be seen in Section

III.B of [78];

3) The proposed control is given in an analytic form and valid for arbitrary high-

dimensional quantum filters rather than for 2−dimensional ones as in [77,78]; and

4) The proposed control encompasses the bang-bang control which can be trivially im-

plemented in practice.

For the stability analysis of the closed-loop stochastic time delay system, we introduce

a Lyapunov-LaSalle-like theorem for delay-dependent stability in probability. In time delay

systems, due to the inevitable effect of the delay, the increment of the Lyapunov function,
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which represents system energy, along the system trajectory is unavoidable. Fortunately,

when the time delay is constant, the energy caused by the delay can be canceled by the

delay-free terms [67,79]. Exploiting this observation, the stability of the closed-loop system

is guaranteed without the use of Lyapunov-Krasovskii-type or Lyapunov-Razumikhin-type

conditions as in usual stability theorems for time delay systems [80, 81]. The introduced

Lyapunov-LaSalle-like theorem in this chapter is thus much less conservative.

In Section 5.2, we present the system description and the problem formulation. The

Lyapunov-LaSalle-like theorem for stability in probability of a class of time delay stochastic

nonlinear systems is introduced in Section 5.3. In Section 5.4, we design non-smooth time

delay control to globally asymptotically render the quantum filter to the final desired state

almost surely. The effectiveness of the proposed control approach is demonstrated through

the real-time control design for the Spin−1/2 systems in Section 5.5. Section 5.6 includes

concluding remarks.

5.2 Problem Formulation

Consider the finite-dimensional quantum filters whose state is represented by the density

matrix ρ evolving on the space

S := {ρ ∈ Cn×n : ρ = ρ† ≥ 0,Tr(ρ) = 1}, (5.1)

and the time evolution of quantum filter state is described, in units such that ~ = 1, by the

following stochastic master equation (SME) [34]

dρt = f(ρt)dt+ g(ρt)utdt+ σ(ρt)dwt (5.2)

=
(
− i[H0, ρt] + LρtL

† − 1

2
L†Lρt −

1

2
ρtL

†L
)
dt− i[H1, ρt]utdt

+
√
η
(
Lρt + ρtL

† − Tr(Lρt + ρtL
†)ρt

)
dwt,
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where

• wt is the 1−dimensional standard Wiener process defined on the classical complete

probability space
(
Ω,F ,P

)
with a filtration {Ft}t≥0, in which Ω is a sample space,

F is a σ−field, and P is a probability measure. The Wiener increment dwt = dyt −
√
ηTr(Lρt + ρtL

†)dt, where yt is the measurement record of the output, appears due

to the probabilistic nature of quantum observation;

• ut ∈ R is the control input;

• The free Hamiltonian H0 and control Hamiltonian H1 are n × n Hermitian (or self-

adjoint) matrices with entries in C;

• L is the measurement operator (or measured observable), determining how the system

interacts with the measurement apparatus; and

• η ∈ (0, 1] is the measurement efficiency.

From the applications in quantum chemistry and atomic physics, the problem of trans-

ferring a quantum system from initial states to desired states is of importance. In practice,

the time to compute any filter-based control input is not negligible. This is especially essen-

tial in quantum systems due to their very fast dynamics. As such, to enable the real-time

feedback control, we consider the time delay state-feedback control input ut = u(ρt−τ ),

where τ > 0 denotes the time spent to compute the filter state and control input.

We have the following control problem:

(P2) State-transferring by time delay state-feedback: design a time delay control

law of the form ut = u(ρt−τ ), where τ > 0 is known but of arbitrary length, to globally

asymptotically render the quantum filter (5.2) from any initial data {ρθ ∈ S,−τ ≤

θ ≤ 0} to the final desired state ρf almost surely, i.e.,

P{ lim
t→∞

ρt = ρf} = 1,
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for all initial data {ρθ ∈ S,−τ ≤ θ ≤ 0}.

Towards a solution to the problem (P2), we consider the standard assumptions made

on the system (5.2) as in Chapter 4.

Assumption 5.1. The final desired state ρf is an eigenstate of the measurement operator

L, i.e., ρf = ψfψ
†
f where ψf is an eigenvector of L :

Lψf = λfψf . (5.3)

Assumption 5.2. The measurement operator L is self-adjoint, i.e., L = L†, and regular,

i.e., the eigenvalues of L are different. The system free Hamiltonian H0 and L are com-

mutative. As H0 and L are commutative, we can choose a basis in which H0 and L are

diagonal.

Assumption 5.3. In the basis that H0 and L are diagonalized, H1 = [hkl]n×n is connected,

i.e., hi(i+1) ̸= 0 for all i = 1, .., n− 1.

With the time delay control ut = u(ρt−τ ), the closed-loop system (5.2) is a stochastic

nonlinear time delay system. To facilitate the control design in Section 5.4, in the next

section, we shall present a Lyapunov-LaSalle-like theorem for delay-dependent stochastic

stability of a class of stochastic nonlinear time delay systems.

In the typical Lyapunov stability theory [62], to guarantee the system stability (or to

drive the system to some desired state), we shall introduce a positive definite function of

the system state (or of the distance from system state to the desired state), called Lyapunov

function, which is decreasing along the system trajectory. This decrease can be obtained

by designing the control such that the derivative of Lyapunov function is negative definite

along the system trajectory.

In time delay systems, the derivative of Lyapunov function may contain some posi-

tive terms caused by the time delay variables. As such, the stability of time delay systems
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generally calls for some complex conditions such as Lyapunov-Krasovskii-type or Lyapunov-

Razumikhin-type conditions [80, 81]. Fortunately, in our case, since the time delay is con-

stant, the long time effect of positive terms caused by the delay can be canceled by the

delay-free terms. Utilizing this observation, the stability of the system is guaranteed with-

out the use of Lyapunov-Krasovskii-type or Lyapunov-Razumikhin-type conditions as in

usual stability theorems for time delay systems [80,81].

5.3 Delay-dependent Stochastic Stability

In this section, we introduce a Lyapunov-LaSalle-like theorem for the stability in probability

of a class of stochastic nonlinear systems, which will be instrument to the control design in

the next section. This theorem for stochastic nonlinear systems, whose state evolves on the

vector spaces Rn, n = 1, 2, ..., can be applied for the quantum filters evolving on the density

matrix space S ⊂ Cn×n because the density matrix ρ ∈ S can be equivalently represented

by a vector in the vector space Rn2−1 [34].

Consider the stochastic nonlinear time delay systems described by

dxt = f(xt, xt−τ )dt+ σ(xt, xt−τ )dwt, (5.4)

where xt is the state, τ is the constant time delay, f : Rn×Rn → Rn and σ : Rn×Rn → Rn×r

are Borel-measurable, locally bounded, and locally Lipschitz continuous functions, f(0, 0) =

0, σ(0, 0) = 0, wt is an r−dimensional standard Wiener process (or Brownian motion)

defined on the classical complete probability space
(
Ω,F ,P

)
with a filtration {Ft}t≥0, in

which Ω is a sample space, F is a σ−field, and P is a probability measure. The initial

data is {xθ : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0
([−τ, 0];Rn). From [82], for each initial data ξ ∈

Cb
F0
([−τ, 0];Rn), there exists a unique solution of (5.4) denoted as x(t, ξ) = xt.
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For the stochastic nonlinear time delay system (5.4), we recall the concept of delay-

dependent stability in probability [82].

Definition 5.1. The equilibrium x = 0 of the system (5.4) is

• (delay-dependent) globally stable in probability if for all ϵ > 0, there exists a K−class

function γ(·) such that for all t ≥ 0, for all ξ ∈ Cb
F0
([−τ, 0];Rn),

P
{
|xt| < γ

(
∥ξ∥
)}

≥ 1− ϵ

where ∥ξ∥ = sup
θ∈[−τ,0]

|xθ|.

• (delay-dependent) globally asymptotically stable in probability if it is (delay-dependent)

globally stable in probability and

P{ lim
t→∞

|xt| = 0} = 1, ∀ξ ∈ Cb
F0
([−τ, 0];Rn).

In the sequel, we refine a Lyapunov-LaSalle-like theorem, proposed in [67], such that it

is applicable to the control design of quantum filters in Section 5.4. Noting the compactness

property of filter state space, this theorem introduces conditions less conservative than those

of Theorem 2.1 in [67]. Moreover, in its proof, we show explicitly the global stability in

probability property of the equilibrium x = 0, which was omitted in [67].

Theorem 5.1. Assume that there exist a continuously twice differentiable, non-negative

Lyapunov function V (x), K∞-class functions α1(·), α2(·) satisfying that

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ Rn, (5.5)

and continuous, non-negative functions W1(x),W2(x) such that along the solution xt of the

system (5.4), we have

Lf,σV (xt, xt−τ ) ≤W1(xt−τ )−W1(xt)−W2(xt), ∀t ≥ 0, (5.6)

68



5.3 Delay-dependent Stochastic Stability

where Lf,σ is the infinitesimal operator associated with (5.4):

Lf,σV (xt, xt−τ ) :=
∂V (xt)

∂xt
f(xt, xt−τ ) +

1

2
Tr
(
σT (xt, xt−τ )

∂2V (xt)

∂x2t
σ(xt, xt−τ )

)
.

Then, the equilibrium x = 0 of the system (5.4) is globally stable in probability and

P
{

lim
t→∞

W2(xt) = 0
}
= 1, ∀ξ ∈ Cb

F0
([−τ, 0];Rn). (5.7)

If, in addition, W2(x) is positive definite, then the equilibrium x = 0 of the system (5.4) is

globally asymptotically stable in probability.

Proof. Applying Dynkin’s formula for the continuously twice differentiable function

V (x), we have

E[V (xt)]− V (x0) = E
[ ∫ t

0
Lf,σV (xs, xs−τ )ds

]
(5.8)

Combining (5.6) and (5.8), we obtain

E[V (xt)]− V (x0) ≤ E
[ ∫ t

0

[
−W2(xs)−W1(xs) +W1(xs−τ )

]
ds
]

(5.9)

= E
[
−
∫ t

0
W2(xs)ds−

∫ t

0
W1(xs) +

∫ t−τ

−τ
W1(xs)ds

]
≤ E

[
−
∫ t

0
W2(xs)ds

]
+ E

[ ∫ 0

−τ
W1(xs)ds

]

Since W2(x) ≥ 0, ∀x ∈ Rn, (5.9) leads to

E[V (xt)] ≤ V (x0) + τ sup
−τ≤θ≤0

W1(xθ) (5.10)

Let a(s) = sup
|x|≤s

V (x), b(s) = sup
|x|≤s

W1(x), and c(s) = a(s)+ τb(s). It follows from (5.10) that

E[V (xt)] ≤ c(∥ξ∥) (5.11)
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5.3 Delay-dependent Stochastic Stability

where ∥ξ∥ = sup
−τ≤θ≤0

|xθ|. Applying Chebyshev’s inequality, for any K−class function δ(·),

we have

P{|V (xt)| ≥ δ(∥ξ∥)} ≤ E[|V (xt)|]
δ(∥ξ∥)

(5.12)

It follows from (5.11), (5.12), and the fact that V (x) ≥ 0, ∀x, that

P{V (xt) ≥ δ(∥ξ∥)} ≤ E[|V (xt)|]
δ(∥ξ∥)

=
E[V (xt)]

δ(∥ξ∥)
≤ c(∥ξ∥)
δ(∥ξ∥)

As such

P{V (xt) ≤ δ(∥ξ∥)} ≥ 1− c(∥ξ∥)
δ(∥ξ∥)

. (5.13)

For any ϵ > 0, we choose the K−class function δ(·) such that δ(∥ξ∥) ≥ c(∥ξ∥)
ϵ

and let the

K−class function γ = α−1
1 ◦ δ ◦ α2. Then, from (5.13), we obtain

P
{
|xt| ≤ γ(∥ξ∥)

}
≥ P

{
V (xt) ≤ δ(∥ξ∥)

}
≥ 1− c(∥ξ∥)

δ(∥ξ∥)
≥ 1− ϵ (5.14)

Therefore, the equilibrium x = 0 is globally stable in probability.

On the other hand, from (5.9), we have

E
[ ∫ t

0
W2(xs)ds

]
≤ V (x0)− E[V (xt)] + E

[ ∫ 0

−τ
W1(xs)ds

]
<∞. (5.15)

Letting t → ∞, we obtain that E
[ ∫∞

0 W2(xs)ds
]
< ∞. From (5.10) and the boundedness

of initial state, E[V (xt)] is bounded. By (5.15), applying Lemma 3 in [83], we have

P
{
lim
t→∞

W2(xt) = 0
}
= 1. (5.16)
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5.4 Time Delay Control Design

If, in addition, W2(x) is positive definite, then, (5.16) leads to

P
{
lim
t→∞

|xt| = 0
}
= 1, (5.17)

which, together with the global stability in probability, means that the equilibrium x = 0

is globally asymptotically stable in probability. The proof of Theorem 5.1 is completed.

�

Remark 5.1. The condition (5.6) is posed on the solution xt of the system (5.4), instead

of on the whole state space as the condition of Theorem 2.1 in [67]. Hence, the condition

here is less conservative, enabling it applicable to the control design of quantum filters in

Section 5.4 due to the compactness of filter state space (See Remark 5.3).

Remark 5.2. Theorem 5.1 implies that when conditions (5.5) and (5.6) are satisfied, then

the system trajectory xt converges in probability to the set {x ∈ Rn :W2(x) = 0} regardless

of the initial data ξ ∈ Cb
F0
([−τ, 0];Rn).

5.4 Time Delay Control Design

Using results in the previous section, in this section, we solve the problem of global state-

transferring by time delay state-feedback control for the quantum filter (5.2). Firstly, we

consider time delay smooth controls synthesized based on the smooth Lyapunov theory and

show that, similar to the delay-free case [34,35,53], such smooth controls are not sufficient

to globally render the filter state to the final desired state due to the symmetric topology

of the filter state space S. Then, combining this time delay smooth control with a constant

control, we obtain time delay control in hysteresis form capable of globally asymptotically

rendering the filter state to the desired state almost surely.
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5.4.1 Control Design

Consider the Lyapunov function candidate of mixed Frobenius norm/variance form [53]:

V (ρ) = 1− Tr(ρρf ) + cU(ρ) (5.18)

where U(ρ) = Tr(L2ρ)− Tr2(Lρ) is the variance of filtering process along L and c > 0 is a

constant to be chosen later. In the Lyapunov function (5.18), the term 1 − Tr(ρρf ) is the

distance from the state ρ to the final desired state ρf and the term U(ρ) takes into account

the probabilistic nature of the system.

Under Assumption 5.2, the stochastic master equation (5.2) becomes

dρt =
(
− i[H0, ρt] + LρtL− 1

2
L2ρt −

1

2
ρtL

2
)
dt− i[H1, ρt]utdt (5.19)

+
√
η
(
Lρt + ρtL− Tr(Lρt + ρtL)ρt

)
dwt

= f(ρt)dt+ g(ρt)utdt+ σ(ρt)dwt.

From (5.19) and Assumptions 5.1 and 5.2, a straightforward computation (see Section 1,

Appendix B) gives us the infinitesimal operator of ρt acting on V (ρ) :

Lf+gu,σV (ρt) = Tr
(
−i[H1, ρt]

(
c(L2 − 2LTr(Lρt))− ρf

))
ut − 4cηU2(ρt), (5.20)

where Lf+gu,σ is the infinitesimal operator associated with (5.19):

Lf+gu,σV (ρt) :=
∂V (ρt)

∂ρt
(f + gu) +

1

2
Tr
(
σT

∂2V (ρt)

∂ρ2t
σ
)
.

Note that the filter state space S is a compact set since Tr(ρ2) ≤ 1 for all ρ ∈ S [34]. As

such, there exists

max
ρ∈S

∣∣∣Tr (−i[H1, ρt]
(
c(L2 − 2LTr(Lρt))− ρf

)) ∣∣∣ :=M. (5.21)
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We choose the following smooth time delay control law ut = uS(ρt−τ ), where

uS(ρt−τ ) ≤
U2(ρt−τ )

M̄
=

(
Tr(L2ρt−τ )− Tr2(Lρt−τ )

)2
M̄

, M̄ > 0. (5.22)

Then, it follows from (5.20) that

Lf+gu,σV (ρt, ρt−τ ) ≤
M

M̄
U2(ρt−τ )− 4cηU2(ρt) (5.23)

or equivalently,

Lf+gu,σV (ρt, ρt−τ ) ≤
M

M̄
U2(ρt−τ )−

M

M̄
U2(ρt)− (4cη − M

M̄
)U2(ρt). (5.24)

Therefore, with 0 <
M

M̄
< 4cη, the condition (5.6) of Theorem 5.1 is satisfied with the

continuous, non-negative functions W1(ρ) =
M

M̄
U2(ρ) and W2(ρ) = (4cη − M

M̄
)U2(ρ). Note

that the condition (5.5), which is used to prove the boundedness of system solution (see

the proof of Lemma 3 in [83]), is not necessary in the case of quantum filter as S is a

compact set, implying that the system trajectory is always bounded. Applying Theorem

5.1 (see Remark 5.2), we conclude that when the control input ut = uS(ρt−τ ) ≤
U2(ρt−τ )

M̄

is applied, then ρt converges in probability to the set

{
ρ ∈ S : (4cη − M

M̄
)U2(ρ) = 0

}
(5.25)

regardless of the initial data.

Remark 5.3. The density matrix ρ ∈ S can be equivalently represented by a vector −→s in

the vector space Rn2−1 [34]. The map ρ 7→ −→s is an isomorphism between the set S and a

compact set B ⊂ Rn2−1. Notice that the maximum value M in (5.21) is only guaranteed to

exist in a compact set. Consequently, Inequality (5.24) only holds true when ρ ∈ S, i.e.,
−→s ∈ B. In that view, Theorem 2.1 in [67], whose condition is posed on the whole state space

Rn2−1, is not applicable. We, however, can apply Theorem 5.1, in which the condition (5.6)
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5.4 Time Delay Control Design

is posed on the system trajectory.

Note that as L is regular, (4cη − M

M̄
)U2(ρ) = 0 iff ρ is one of eigenstates of L. As such,

(5.25) means that ρt converges to one of eigenstates of L almost surely. As L is diagonal

and regular, its eigenstates are: ρi = diag{0, ... , 1︸︷︷︸,
i−th

..., 0}, i = 1, ..., n. These eigenstates

are equilibrium points of the closed-loop systems. Consequently, the time delay smooth

control ut = uS(ρt−τ ) cannot render the filter from the antipodal eigenstates of ρf , i.e., the

eigenstates ρi ̸= ρf of L, to ρf . Therefore, similar to the delay-free case [34,35,53], the time

delay smooth control is difficult to globally render the filter state to the final desired state

due to the symmetric topology of the filter state space S.

In the sequel, inspired by the control synthesis for the delay-free case in [57, 70], we

construct time delay control in hysteresis form to render the system trajectory ρt from any

initial state to the desired ρf almost surely. This two-mode control comprises of a constant

control, that almost surely pushes the filter state off all antipodal eigenstates of the desired

state ρf in a finite time, and the time delay control ut = uS(ρt−τ ) that drives the filter state

to ρf almost surely. To present the control, let us denote

MV := max
ρ∈S

V (ρ),Sα := {ρ ∈ S : V (ρ) = α},

S>α := {ρ ∈ S : α < V (ρ) ≤MV },S≥α := {ρ ∈ S : α ≤ V (ρ) ≤MV },

S<α := {ρ ∈ S : 0 ≤ V (ρ) < α},S≤α := {ρ ∈ S : 0 ≤ V (ρ) ≤ α}.

The positive constant c in the Lyapunov function V (ρ) is chosen to be small enough such

that the distance (1 − Tr(ρρf )) from the state ρ to the desired state ρf dominates the

variance term cU(ρ). Let c satisfy

c
(
U(

1

n
In) + max

ρ∈S
U(ρ)

)
<

1

n
. (5.26)

Then, by the definition of MV , we have 1 ≤MV ≤ 1 + cmax
ρ∈S

U(ρ) < 1 +
1

n
− cU(

1

n
In). As
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such, there exists γ > 0 such that

2(MV − 1) < γ < MV − 1 +
1

n
− cU(

1

n
In). (5.27)

Note from (5.23) that the energy increment caused by the time delay is small when gain M̄

in the nonlinear control (5.22) is large. Let M̄ satisfy

0 <
M

M̄
< 4cη, (5.28a)

τ
M

M̄
max
ρ∈S

U2(ρ) <
γ

2
. (5.28b)

Remark 5.4. The parameters γ and M̄ chosen as in (5.27) and (5.28) are very important

in our control design; see their role in the proofs of Propositions 5.1 and 5.2 and Theorem

5.2 below. The left hand side of (5.28b) is the largest energy caused by the initial data

(see (5.9) and (B.19) in Appendix B). As the time delay is constant, the energy caused by

the delay in a long time is canceled by the delay-free terms. Inequality (5.28b) utilizes the

observation that when the largest energy caused by the initial data is sufficiently small, the

effect of time delay can be fully eliminated.

Before presenting the control, let us introduce two technical propositions of which the

proofs are found in Appendix B.

Proposition 5.1. For any initial data with ρ0 ∈ S>MV −γ , the solution of (5.2) with ut = 1

exits S>MV −γ in a finite time with probability 1.

Proof. See Section 2, Appendix B. �

Proposition 5.2. Let

p := 1−
MV − γ + τ max

ρ∈S
W1(ρ)

MV − γ/2
.

Then, p > 0 and for any initial data with ρ0 ∈ S≤MV −γ , the solution ρt of (5.2) with the
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5.4 Time Delay Control Design

nonlinear control input ut = uS(ρt−τ ) ≤ U2(ρt−τ )/M̄ remains in S<MV −γ/2 with probability

larger or equal to p.

Proof. See Section 3, Appendix B. �

5.4.2 Convergence Analysis

Theorem 5.2. Consider the quantum filter (5.2) evolving on the state space S. Suppose

that Assumptions 5.1, 5.2, and 5.3 are satisfied. Then, the following hysteresis time delay

control solves the problem (P2):

1. ut = 1, if ρt−τ ∈ S≥MV −γ/2;

2. ut = uS(ρt−τ ) ≤ U(ρt−τ )
2/M̄, if ρt−τ ∈ S≤MV −γ ;

3. If ρt−τ ∈ Φ := S<MV −γ/2 ∩ S>MV −γ , then ut = uS(ρt−τ ) ≤ U2(ρt−τ )/M̄ if ρt−τ last

entered Φ through the boundary SMV −γ and ut = 1 otherwise.

Proof. We denote by mode C and mode N the periods that the constant control input

ut = 1 and the nonlinear control input ut = uS(ρt−τ ) ≤ U2(ρt−τ )/M̄ is applied, respectively.

For simplicity, the proof of the Theorem 5.2 is divided into three steps with the idea showed

in Fig. 5.1:

• Step 1: Showing that a state in mode C almost surely transits to mode N in a finite

time.

• Step 2: Showing that the system switches between modes C and N in a finite number

of times and the final mode is N .
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S≥MV −γ/2

S≤MV −γ

ρt transits almost surely

ρt switches finite number of times

ρfρi

ut = 1

ut = uS(ρt−τ )

S≤MV −γ/2

Fig. 5.1: Illustration of the hysteresis control and the proof of Theorem 5.2.

• Step 3: Showing that when the state is in mode N permanently, it converges to the

final desired state ρf almost surely.

Proposition 5.1 implies that a state in mode C almost surely transits to mode N in a finite

time. Step 1 is complete.

Suppose that at a time instant, the mode changes from C to N . After that time instant,

there are two probabilities as follows:

P1 : the state remains in N permanently.

P2 : the mode changes to C again.

Proposition 5.2 implies that P2 occurs with probability smaller than or equal to (1−p). We

denote the events

Bn := {the mode switches from N to C n times}, n = 1, 2, ...

Then, the probability of Bn satisfies P{Bn} ≤ (1− p)n. Since

∞∑
n=1

P{Bn} ≤
∞∑
n=1

(1− p)n =
1− p

p
<∞,
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Borel-Cantelli’s Lemma assures that there exist almost surely finitely many switches from

mode N to mode C. This, together with Step 1, implies that mode N is the final mode.

Step 2 is complete.

As such, after a finite time, only the nonlinear control input ut = uS(ρt−τ ) is ap-

plied. From (5.24) and Theorem A.1 in [67], with the time delay nonlinear control input

ut = uS(ρt−τ ), there exists a unique solution of the system (5.19). Employing the similar

arguments with those of Lemma 4.10 in [57], we conclude that with the hysteresis control

law defined above, for each initial data {ρθ : −τ ≤ θ ≤ 0}, there exists a unique solution of

the system (5.19).

Now, we proceed with Step 3. Note that in mode N , the nonlinear control input

ut = uS(ρt−τ ) ≤ U2(ρt−τ )/M̄ is applied. Similar to (5.25), we conclude that the system

trajectory ρt converges in probability to the set

{
ρ ∈ S : (4cη − M

M̄
)U2(ρ) = 0

}
, (5.29)

which implies that ρt almost surely converges to one of eigenstates of L.

On the other hand, the nonlinear control input ut = uS(ρt−τ ) is applied only when

ρt−τ ∈ S≤MV −γ/2. As such, when the state is in mode N permanently, it is in the set

S≤MV −γ/2 permanently. Therefore, ρt almost surely converges to one of eigenstates of L in

the set S≤MV −γ/2.

Notice that in the set S≤MV −γ/2, as 1−Tr(ρρf ) + cU(ρ) ≤MV − γ

2
, by (5.27), we have

Tr(ρρf ) ≥ 1 +
γ

2
−MV > 0, ∀ρ ∈ S≤MV −γ/2. (5.30)

As L is diagonal and regular, its eigenstates are ρi = diag{0, ... , 1︸︷︷︸,
i−th

..., 0}, i = 1, ..., n.

Thus, Tr(ρiρf ) = 0 for all eigenstates ρi ̸= ρf of L. As such, by (5.30), there is only one
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eigenstate of L lying in the set S≤MV −γ/2, that is ρf . Therefore,

P
{

lim
t→∞

ρt = ρf

}
= 1. (5.31)

Combining the three above steps, we conclude that with the time delay control law

defined as in Theorem 5.2, there exists a unique solution of (5.19) for each initial data and

the desired state ρf is globally asymptotically stable in probability. �

Remark 5.5. As ut = 0 is a trivial form of the control ut = uS(ρt−τ ) ≤ U2(ρt−τ )/M̄, the

proposed control encompasses the bang-bang control, which can be trivially implemented in

practice, while still obtaining the same stability for the system. Actually, it can be seen from

(5.23) that as Lf+gu,σV (ρt, ρt−τ ) is non-positive with the control ut = 0, the filter state in

mode N converges quicker to the desired state ρf . This means that the bang-bang control

even achieves the better convergence.

5.5 Example: Spin-1/2 Systems

The Spin−1/2 systems [75] have been studied by many researchers due to their impor-

tant role in quantum information processing [47]. In this section, we show that the non-

smooth time delay control can solve the problem of real-time global state-transferring for

the Spin−1/2 systems. With the Spin−1/2 systems, the density matrix can be represented

as follows

ρ =
1

2
(σ0 + xσx + yσy + zσz) (5.32)

where −→s = (x, y, z) ∈ R3 is the Bloch vector of ρ, σ0 = I2, and σx, σy, σz are Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =
 1 0

0 −1

 .
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The map ρ 7→ −→s described by (5.32) is an isomorphism between the state space S of ρ and

the state space B of Bloch vectors −→s , in which B = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}.

In typical experiment settings [34], the Spin−1/2 system interacts with a laser field set

along the z−axis, and with a controlled magnetic field set along the y−axis. Then, the

measurement operator is L =
√
µσz, where µ > 0 represents the strength of the interaction

between the system and the laser field, and the Hamiltonians are H0 = 0,H1 = σy. A

straightforward computation gives

LρtL− 1

2
L2ρt −

1

2
ρtL

2 = µ(−xtσx − ytσy), (5.33a)

−i[H1, ρt]u = u(ztσx − xtσz), (5.33b)

σ(ρt) =
√
ηµ(−xtztσx − ytztσy + (1− z2t )σz). (5.33c)

Substituting (5.33) into (5.2) and by (5.32), the stochastic differential equation of the Bloch

vector is 
dxt = 2

(
(−µxt + uzt)dt−

√
ηµxtztdwt

)
dyt = 2

(
− µytdt−

√
ηµytztdwt

)
dzt = 2

(
− uxtdt+

√
ηµ(1− z2t )dwt

)
.

(5.34)

When the system is isolated, i.e., u = 0, the quantum state reduction assures that

the filter state reduces to one of eigenstates of L, which comprise of ρ1 = diag(1, 0) and

ρ2 = diag(0, 1). This means that the state of (5.34) when u = 0 reduces to one of two Bloch

vectors (0, 0, 1) and (0, 0,−1).

The simulation data are: −→s0 = (0.5,−0.5, 0), µ = 1. The measurement efficiency is

η = 0.9. Fig. 5.2 shows sample paths of the quantum state reduction. It can be seen from

Fig. 5.2 that the quantum filter state reduces stochastically to one of two states (0, 0, 1)

and (0, 0,−1).
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0 0.5 1 1.5 2
0

0.5

1

xt

0 0.5 1 1.5 2
−1

−0.5

0

yt

0 0.5 1 1.5 2
−1

0

1

zt

time

Fig. 5.2: Sample paths of the quantum state reduction in open-loop system.

We design time delay state-feedback control to globally render the quantum filter state

almost surely to the final desired state ρf = diag(1, 0), i.e., −→sf = (0, 0, 1), which is an

eigenstate of the measurement operator L. As ρf is chosen as an eigenstate of L, Assumption

5.1 is satisfied. Since H0, L are diagonal and L is regular, Assumption 5.2 is satisfied.

Moreover, as H1 = σy is connected, Assumption 5.3 is satisfied. Hence, all the conditions

of Theorem 5.2 are satisfied.

Suppose that the computation time is τ = 2. Note that the control law in [78] is not

applicable for the computation time τ ≥ 1. Following the control design procedure in Section

4, V (ρ) =
1

2
(1− z) + c(1− z2). The designed parameters: c = 0.2, γ = 0.2, M̄ = 25. Then,

MV = 1 and conditions (5.26), (5.27), and (5.28) hold. The proposed time delay control

law becomes:

1. ut = 1, if V (ρt−τ ) ≥ 0.9;

2. ut = uS(ρt−τ ) ≤ (1− z2t−τ )
2/25, if V (ρt−τ ) ≤ 0.8;

3. If ρt−τ ∈ Φ := {ρ ∈ S : 0.8 < V (ρ) < 0.9}, then ut = uS(ρt−τ ) ≤ (1 − z2t−τ )
2/25 if

ρt−τ last entered Φ through the boundary S0.8 and ut = 1 otherwise.
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−2 0 2 4 6 8 10 12 14
−2

−1

0

1

2

xt

yt

zt

−2 0 2 4 6 8 10 12 14
−1

0

1

−2 0 2 4 6 8 10 12 14
−2

0

2

time

Fig. 5.3: Convergence of filter state: from (0, 0,−1) to (0, 0, 1).

The initial data is: xθ = 0, yθ = 0, zθ = −1, ∀ − τ ≤ θ ≤ 0. The simulation results, with

uS(ρt−τ ) = (1 − z2t−τ )
2/25, are showed in Figs. 5.3 and 5.4. It can be seen from Fig. 5.3

that the convergence of the filter state to the final desired state is well achieved in spite of

the effect of time delay τ. The switchings in the control signal observed in Fig. 5.4 are due

to the evolution of system state through the boundaries S0.9 and S0.8.

−2 0 2 4 6 8 10 12 14
−0.5

0

0.5

1

1.5

time

ut

Fig. 5.4: Control input with time delay τ = 2.
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5.6 Conclusions

In this chapter, we have solved the problem of real-time measurement-based feedback control

for quantum systems by the means of the non-smooth time delay control approach. Ex-

ploiting the observation that when the time delay is constant, its effect in a long time can

be canceled by the delay-free terms, a Lyapunov-LaSalle-like theorem for delay-dependent

stability in probability has been introduced for a class of stochastic time delay nonlinear

systems. Based on this theorem and employing the common hysteresis-control design, time

delay control in hysteresis form has been constructed to compensate for the known but

arbitrarily long computation time, while globally asymptotically rendering the filter state

to the final desired state almost surely. The convergence of the filter state of the Spin−1/2

systems to the final desired state was well obtained in the presence of long delayed time,

showing that the proposed control is effective in dealing with the quantum filters.
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Chapter 6

Deterministic Generation of Bell

States

6.1 Introduction

6.1.1 Motivations

Entanglement [84] is a key feature that distinguishes quantum systems from classical (non-

quantum) ones and has a long standing history initiated by the Einstein-Podolsky-Rosen

paradox [85]. Recently, the attention on entanglement has been renewed owing to its po-

tential use as a valuable resource of quantum computation and quantum information which

outperforms that solely based on classical physics [47,86–92]. The Bell states, named after

John S. Bell who made the most significant progress towards the resolution of the EPR

paradox [93], are two-qubit states possessing maximal entanglement [94], and play an es-

sential role in quantum information science; see [84] for an overview of Bell states as the

powerful tool for quantum protocols such as quantum teleportation, quantum cryptography,

and quantum dense coding.

Motivated by the above considerations, we naturally raise the question: is it possible
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to deterministically generate the Bell states by weak measurement and feedback control?

In this chapter, we shall address this question. In particular, we harness simultaneous

weak measurements and Lyapunov-based feedback control to deterministically generate any

desired Bell state from any initial state, i.e., to globally stabilize the desired Bell state.

6.1.2 Other Works on Feedback Control of Entanglement

The research on entanglement has been very vigorous during the last two decades. The

most active area is on the entanglement of two-qubit systems thanks to the existence of the

(unique) analytical measure, namely concurrence [94], to quantify two-qubit entanglement.

Many works have been done in the direction of generating entanglement for two-qubit

systems. Direct, or Markovian, feedback control [27,28], in which the physical measurement

results are directly fed back to the system, has been extensively utilized [29–32] as it enables

the real-time control implementation. Estimate, or Bayesian, feedback control [33], which

is based on feeding back the estimation state conditioned on the measurement results to

alter the dynamics of the systems, provides a greater flexibility in control design than direct

feedback control [34]. It was used in [35] to almost globally stabilize a special Bell state

when the filter state space reduces to the 2−dimensional space of symmetric, pure states.

Estimate feedback control and single measurement of the collective angular momentum

operator were also exploited in [57] to generate two Bell states of two-qubit system via

a detailed sample path analysis, and in [95] to produce highly entangled Dicke states of

an atomic spin ensemble. This chapter will provide a way to deterministically produce

maximal entanglement through the global stabilization of any Bell state by utilizing SWMs

and estimate feedback control via the Lyapunov-based analysis.

6.1.3 Contributions

A fundamental physical principle states that Local Operations and Classical Communication

(LOCC) cannot generate entanglement between initially separable states [96]. As such, to

85



6.1 Introduction

produce entanglement we need some nonlocal effects. For the case of Bell states, we show

that if we use single measurement, then it is hard to prepare the Bell states even if the

measured observable and the free Hamiltonian are nonlocal. The underlying reason is

the degenerateness of the observable usually utilized in the generation of Bell states, the

continuous measurement of which renders the filter state to the eigenspace of the measured

observable, instead of some eigenstates, and thus the Bell states are hard to obtain.

Motivated by this difficulty, we introduce an interesting property of the quantum systems

subjected to simultaneous weak measurements (SWMs). We prove that under SWMs of

two commutative observables A1 and A2, i.e., A1A2 = A2A1, the filter state almost surely

converges to the common set of the eigenspaces of A1 and A2, which is defined as SWM-

induced space. We term this property as SWM-induced quantum state reduction owing to

its consistency with the quantum state reduction postulate in quantum mechanics [46]. The

SWM-induced quantum state reduction has great potential in generating quantum states.

To produce a desired state, we shall perform the SWMs of two commutative observables

A1 and A2 such that the desired state is one tangent point between eigenspaces of A1 and

A2, i.e., the SWM-induced space becomes points including the desired state.

For the Bell states, two possible observables possessing that property are A1 = σz1 ⊗ σz2

and A2 = σx1 ⊗ σx2 , where σ
x,y,z
i are the Pauli operators and ⊗ denotes the tensor product

of operators. From the notion of stabilizer code [47], it is known that Bell states are

unique common points of eigenspaces of A1 and A2 [47]. As such, applying the SWM-

induced quantum state reduction, we can utilize the SWMs of observables A1 and A2 to

generate the Bell states. It is relevant to note the difference between the notions of SWM-

induced quantum state reduction and stabilizer code. The stabilizer code suggests some

useful observables when we apply the SWM-induced quantum state reduction to generate

some desired states (e.g., Bell states), but it does not imply the SWM-induced quantum

state reduction. In addition, the properties and efficiencies of stabilizer code, such as those

for quantum error correction, are shown through applying projective (discrete) measurement
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on quantum systems [47], while the effectiveness of SWM-induced quantum state reduction

manifests through the mechanism of continuous weak measurement.

Since measurements can only produce Bell states stochastically, i.e., each Bell state is

generated with a positive probability, we move towards with the deterministic generation of

any desired Bell state by using both SWM-induced quantum state reduction and estimate

feedback control. Due to the symmetric topology of filter state space, there exist points

other than the desired Bell state which are also tangent points between eigenspace of A1

and eigenspace of A2, and are said to be antipodal tangent states of the desired Bell state.

Therefore, similar to the case of angular momentum systems [34, 35], the smooth controls

as [34, 35], synthesized by classical smooth Lyapunov stability theory, is not sufficient to

transfer the filter state from one antipodal tangent state to the desired Bell state because

they are all equilibrium points of the closed-loop system. In other words, the smooth

controls synthesized by classical smooth Lyapunov stability is difficult to obtain the global

stabilizability for the desired Bell state.

From the above analysis, the global stabilization of the desired Bell state intuitively calls

for a non-smooth control synthesis. Indeed, the non-smooth controls, based on sample path

analysis [57,69,70] and non-smooth Lyapunov analysis as in previous chapters, are standard

and efficient for the global stabilization of quantum states. These controls consist of different

components in the desired space containing the desired state and the undesired space. A

feature of these controls is that the resulting switching-number of system state between

desired space and undesired space is uncontrollable (though this number of switchings is

finite), which may result in longtime convergence of system state. On the other hand,

entanglement is very fragile under the effect of environment. The strange phenomenon

of entanglement sudden death (ESD) even shows that entanglement may disappear in a

finite time due to environmental effect [68]. In the practical control of entanglement, it is

thus desirable to drive the system state to the entangled state as fast as possible, because

at the longtime instant, the environment may take dominant effect and make the control
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ineffective. Therefore, to effectively generate the desired Bell state, the feature of switching-

number uncontrollability of existing non-smooth controls should be removed.

In this chapter, we continuously utilize the non-smooth Lyapunov-based control tech-

nique, but we shall equip it with an important feature relevant to the control of entan-

glement in practice. In particular, we present a non-smooth control design, based on the

1-time Lyapunov-like theorem for stability in probability, introduced in Chapter 3, which

guarantees that the system state deterministically converges to the desired Bell state from

any initial state, while essentially reducing the converge time of system state. Unlike the

existing non-smooth control designs [57,69,70,97,98], the 1-time switching Lyapunov-based

control in this chapter assures that the system state switches between desired space and

undesired space no more than one time, by which the convergence time of system state is re-

duced considerably. This feature enables the proposed control in this chapter to be suitable

with the generation of entanglement in realistic condition. We also note that the non-

smooth Lyapunov-based analysis distinguishes our approach from the sample path analysis

approach in [57,69,70].

In Section 6.2, we present the model utilized in this chapter. Section 6.3 re-investigates

the quantum state reduction and points out the difficulty of single weak measurement in

the generation of Bell states. The concept of SWM-induced quantum state reduction is

introduced in Section 6.4 and then utilized to produce the maximal entanglement via the

generation of Bell states in Section 6.5. Section 6.6 combines the SWM-induced quantum

state reduction with the non-smooth Lyapunov function-based control design to globally

stabilize the desired Bell state. The effectiveness of the proposed schemes is numerically

illustrated in Section 6.7. Section 6.8 includes concluding remarks.
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Fig. 6.1: The setup for estimate feedback control of two atoms. Two cavities C1 and C2, each
of which contains a two-level atom, are connected in a closed loop through optical fibers.
The off-resonant driving field Ac generates an effective Hamiltonian H0. The optical fields
are continuously measured by the homodyne detectorsD = {D1, ..., Dm}. The measurement
records yt = [y1t, ..., ymt] are sent to a filter and the filter state (estimate state) ρt is then
fed back via the controller ut and magnetic fields L1, L2 to modify the system Hamiltonian.

6.2 The Model

In this chapter, we consider the two-qubit model in [99], which consists of a couple of

two-level atoms, 1 and 2. These atoms are placed in two distant cavities and interact

through a radiation field in a dispersive way. The two cavities are arranged in a cascade-

like configuration such that, given a coherent input field with amplitude Ac in one of them,

the output of each cavity enters the other as depicted in Fig. 7.1. After eliminating the

radiation fields, the effective interaction Hamiltonian for the internal degrees of the two

atoms becomes of Ising type, namely

H0 = 2Jσz1 ⊗ σz2 (6.1)

in which σx,y,zi are the Pauli operators of the qubit i = 1, 2, and J is the spin-spin coupling

constant dependent on |Ac|2 [99]. We assume that the coupling strength J is fixed.
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To produce the Bell states, we utilize the weak measurement and estimate feedback

control. A typical experiment set-up for weak measurement and estimate feedback control

of two-qubit system is depicted in Fig. 7.1. Weak measurement [48,49,100,101] is modeled

by a stochastic master equation (SME) which is obtained by introducing an ancillary system

weakly coupled to the system of interest. Then, we make a measurement on the auxiliary

system, obtain a stochastic result, and then trace it out. This leaves only the system of

interest and a stochastic measurement record y. The filter (or estimate) state ρ, conditioned

on the measurement record y, is considered as state of knowledge and will be fed back via

estimate feedback controller to modify the dynamics of the system [34].

When considering both estimate feedback control on the system and simultaneous weak

measurements over multiple observables {Al}
m

l=1, we have the following SME or filtering

equation describing the evolution of the filter state, and the stochastic measurement records

[32,48] (in units such that ~ = 1):

dρ = −i[H0, ρ]dt−
∑
k

i[Hk, ρ]ukdt

+
∑
l

ΓAl
D[Al]ρdt+

∑
l

√
ηAl

ΓAl
H[Al]ρdwAl

(6.2)

dyl = Tr(Alρ)dt+
1

2
√
ηAl

ΓAl

dwAl
, l = 1, ...,m

where

• ρ is the density matrix belonging to the space S := {ρ ∈ C4×4 : ρ = ρ† ≥ 0,Tr(ρ) = 1};

• Hk is the control Hamiltonian adjusted by the time-dependent control input uk ∈ R;

• D[A]ρ := AρA† − 1
2(ρA

†A+A†Aρ);

• H[A]ρ := Aρ+ ρA† − [Tr(Aρ+ ρA†)]ρ;

• ΓAl
and ηAl

are measurement strengths and efficiencies; and

90



6.3 Motivation of Simultaneous Weak Measurements

• {dwAl
} are independent Wiener increments, dwAidwAj = δijdt, where δij is the Kro-

necker delta.

We would design the weak measurement and feedback control to render the filter state

ρt from any initial state ρ0 to a desired Bell state ρd, which is one of the Bell states. In the

standard basis {|0⟩, |1⟩}, where |0⟩ and |1⟩ are Dirac notations of the two eigenstates of the

qubit [75], the Bell states are represented as:

|ϕ±⟩ = 1√
2
(|00⟩ ± |11⟩); |ψ±⟩ = 1√

2
(|01⟩ ± |10⟩) (6.3)

or equivalently by density matrices:

ϕ± =
1

2



1 0 0 ±1

0 0 0 0

0 0 0 0

±1 0 0 1


, ψ± =

1

2



0 0 0 0

0 1 ±1 0

0 ±1 1 0

0 0 0 0


. (6.4)

6.3 Motivation of Simultaneous Weak Measurements

A fundamental physical principle states that Local Operations and Classical Communication

(LOCC) cannot produce entanglement between initially separable states; see [96] for a proof

of this principle. As such, to generate entanglement we need some nonlocal effects. In this

section, we show that if we use single measurement, then it is hard to prepare the Bell states

even if the measured observable and the free Hamiltonian are nonlocal. This difficulty of

single measurement will be dealt with by introducing the SWM-induced quantum state

reduction in the next section.

Theorem 6.1. For the quantum system with nonlocal free Hamiltonian H0 = 2Jσz1 ⊗ σz2,

it is impossible to make sure that the filter state almost surely converges to one of the Bell

states by the single weak measurement of neither σz1 ⊗ σz2 nor σx1 ⊗ σx2 .
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Proof: We consider the typical continuous weak measurement of the nonlocal observable

A = σz1⊗σz2 . The analysis is similar when we utilize single weak measurement of the nonlocal

observable σx1 ⊗ σx2 . We have the following stochastic master equation and measurement

record:

dρ = −i[H0, ρ]dt+ ΓAD[A]ρdt+
√
ηAΓAH[A]ρdwt (6.5)

dy = Tr(Aρ)dt+
1

2
√
ηAΓA

dwt

where ΓA and ηA are measurement strength and efficiency and dwt is the Wiener increment.

Consider the Lyapunov function candidate U(ρ) = Tr(A2ρ)−Tr2(Aρ), which is the variance

of the filtering process along A. A straightforward computation (see Section 1, Appendix

C) gives the infinitesimal generator associated with (6.5) acting on U(ρ) :

LU(ρt) = −4ηAΓAU(ρt)
2 ≤ 0 (6.6)

Applying Theorem 2.1 in Ref. [63], we achieve

P{ lim
t→∞

U(ρt) = 0} = 1. (6.7)

As such, the weak measurement of the observable A renders the variance U(ρt) of the

filtering process along A to 0 almost surely. We prove that this drives the filter state to the

eigenspace of A. Indeed, with the density matrix ρ = [ρij ]4×4 ∈ S, then

U(ρ) = Tr(A2ρ)− Tr2(Aρ) = Tr(ρ)− Tr2(Aρ)

= 1− (ρ11 − ρ22 − ρ33 + ρ44)
2

= 4(ρ11 + ρ44)(ρ22 + ρ33) (6.8)
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Hence, Eq. (6.7) is equivalent to

P{ lim
t→∞

(ρ11 + ρ44)(ρ22 + ρ33) = 0} = 1. (6.9)

Let ΦA := {ρ ∈ S : U(ρ) = 0} = {ρ ∈ S : (ρ11 + ρ44)(ρ22 + ρ33) = 0} = Φ1
A ∪ Φ2

A, where

Φ1
A := {ρ ∈ S : ρ11 + ρ44 = 0} and Φ2

A := {ρ ∈ S : ρ22 + ρ33 = 0}.

If ρ ∈ Φ1
A then ρ11 = ρ44 = 0 since ρii ≥ 0, i = 1, ..., 4. Due to its positivity, ρ is of the form

ρ =



0 0 0 0

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

0 0 0 0


, (6.10)

where ρ∗23 is the complex conjugate of ρ23. Similarly, if ρ ∈ Φ2
A then ρ22 = ρ33 = 0. From

its positivity, ρ is of the form

ρ =



ρ11 0 0 ρ14

0 0 0 0

0 0 0 0

ρ∗14 0 0 ρ44


. (6.11)

Thus, Φ1
A and Φ2

A are eigenspaces of A corresponding to eigenvalues −1 and 1. Therefore,

under weak measurement of the nonlocal observable A, the filter state converges to the

eigenspace ΦA = Φ1
A ∪ Φ2

A of A.

On the other hand, as H0 = 2Jσz1 ⊗ σz2 , H0 is commutative with all points in the

eigenspace ΦA. As such, any point in the eigenspace ΦA is an equilibrium of the filter.

Therefore, under the single weak measurement of the nonlocal observable A, the filter state

can converge to any point in ΦA, i.e., the limit set is equal to ΦA. We note that though the

eigenspace ΦA contains all the Bell states, it is impossible to make sure that the filter state
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converges to one of the Bell states almost surely. Theorem 6.1 is proved. �

From Theorem 6.1, it can be observed that if we use single weak measurement, then it

is difficult to generate the Bell states even when the free Hamiltonian and the measured

observable are nonlocal. This difficulty motivated us to consider the effect of simultaneous

weak measurements of multiple observables in the next section.

6.4 SimultaneousWeakMeasurement-Induced Quantum State

Reduction

Having pointed out in the previous section the difficulty of single weak measurement in

the Bell state generation, in this section, we introduce an interesting property of quantum

systems subjected to simultaneous weak measurements, termed as SWM-induced quantum

state reduction, which will be utilized to generate the Bell states in the next section. We

prove that under SWMs of two Hermitian, commutative observables A1 and A2, the filter

state almost surely converges to the common set of eigenspace of A1 and eigenspace of A2.

Consider the quantum system, of arbitrary dimension and with free Hamiltonian H0,

subjected to the simultaneous weak measurements of two self-adjoint observables A1 and

A2 that are commutative with each other and with H0.We have the SME and measurement

records:

dρ = −i[H0, ρ]dt+ ΓA1D[A1]ρdt+
√
ηA1ΓA1H[A1]ρdwA1

+ ΓA2D[A2]ρdt+
√
ηA2ΓA2H[A2]ρdwA2 (6.12)

dy1 = Tr(A1ρ)dt+
1

2
√
ηA1ΓA1

dwA1

dy2 = Tr(A2ρ)dt+
1

2
√
ηA2ΓA2

dwA2

where dwA1 and dwA2 are independent Wiener increments. Consider the Lyapunov function
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candidate

V (ρ) = U1(ρ) + U2(ρ) (6.13)

which is a combination of the variances U1(ρ) and U2(ρ) of the filtering process along A1

and A2 :

U1(ρ) = Tr(A2
1ρ)− Tr2(A1ρ),

U2(ρ) = Tr(A2
2ρ)− Tr2(A2ρ). (6.14)

A straightforward computation (see Section 2, Appendix C) gives the infinitesimal generator

associated with (6.12) acting on V (ρ) :

LV (ρt) = −4ηA1ΓA1U
2
1 (ρt)− 4ηA2ΓA2U

2
2 (ρt)

− 4(ηA1ΓA1 + ηA2ΓA2)U
2
12(ρt), (6.15)

where U12(ρ) := Tr(A1A2ρ)− Tr(A1ρ)Tr(A2ρ). Hence,

LV (ρt) ≤ −4ηA1ΓA1U
2
1 (ρt)− 4ηA2ΓA2U

2
2 (ρt)

≤ −ηmV (ρt)
2 ≤ 0, (6.16)

where ηm = 2min{ηA1ΓA1 , ηA2ΓA2} > 0. Similar to Section 6.3, we conclude that

P lim
t→∞

V (ρt) = 0 = 1 (6.17)

leading to

P{ lim
t→∞

U1(ρt) = 0} = 1, (6.18)
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and

P{ lim
t→∞

U2(ρt) = 0} = 1. (6.19)

Therefore, the SWMs of two commutative observables A1 and A2 render both variances

U1(ρ) and U2(ρ) of the filtering process along A1 and A2 to 0 almost surely. Let ΦAi =

{ρ ∈ S : Ui(ρ) = 0}, i = 1, 2, which by the similar analysis as in the previous section, are

eigenspaces of A1 and A2. Then, Equations (6.18) and (6.19) imply that the filter state ρt

converges almost surely to the common set ΦA1 ∩ ΦA2 of eigenspace of A1 and eigenspace

of A2, which is defined as simultaneous weak measurement-induced space. We have the

following property of SWMs, termed as SWM-induced quantum state reduction because of

its consistency with the quantum state reduction postulate in quantum mechanics [46]:

Theorem 6.2. (SWM-induced quantum state reduction) Consider the system with free

Hamiltonian H0 under simultaneous weak measurements of two Hermitian observables A1

and A2 that are commutative with each other and with H0. Then, the filter state almost

surely converges to the SWM-induced space, which is the common set of eigenspace of A1

and eigenspace of A2. �

An illustration of the SWM-induced space is given in Fig. 6.2. It is relevant to note

that the SWM-induced quantum state reduction has great potential in generating quantum

states. To generate a desired quantum state, we can perform SWMs of two commutative

observables such that the desired state is a tangent point of eigenspaces corresponding to

these observables, i.e., the SWM-induced space becomes points including the desired state.

6.5 Probabilistic Generation of the Bell States

In Section 6.3, we showed that it is difficult, if not impossible, to generate the Bell states by

single weak measurement of either σz1 ⊗ σz2 or σx1 ⊗ σx2 , where σ
x,y,z
i are the Pauli operators
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Fig. 6.2: Illustration of the simultaneous weak measurement-induced space ΦSWM which is
the attractive set of filter state under the SWMs of two commutative observables A1 and
A2.

of the qubit i = 1, 2. In this section, exploiting the SWM-induced quantum state reduction,

we show that the Bell states can be produced by the joint measurements of two observables

A1 = σz1 ⊗ σz2 and A2 = σx1 ⊗ σx2 . This clearly shows the significance of SWM-induced

quantum state reduction.

Theorem 6.3. Consider the system with free Hamiltonian H0 as in (6.1), subjected to the

SWMs of two commutative observables A1 = σz1 ⊗ σz2 and A2 = σx1 ⊗ σx2 . Then, from any

initial state, the filter state ρt converges to one of the Bell states almost surely.

Proof: It can be verified that the observables A1 and A2 are Hermitian and A1, A2, and

H0 = 2Jσz1 ⊗ σz2 are commutative to each other. As such, all conditions of Property 4.1 are

satisfied. From the notion of stabilizer code, we know that Bell states are unique common

points of eigenspaces of A1 and A2 (page 454 [47]). In other words, the SWM-induced space

associated with A1 and A2 becomes Bell states. Applying Property 4.1, we conclude that

under SWMs of commutative observables A1 = σz1 ⊗ σz2 and A2 = σx1 ⊗ σx2 , the filter state

ρt converges to one of the Bell states almost surely, i.e., Theorem 6.3 is proved.
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For completeness, we provide a detailed proof for the fact that the SWM-induced space

ΦSWM associated with A1 and A2 reduces to the Bell states. Let the density matrix be

ρ = [ρij ]4×4 ∈ S. In the standard basis {|0⟩, |1⟩}, we have

A1 =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


;A2 =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


. (6.20)

Since A2
1 = A2

2 = I4, it holds that

U1(ρ) = Tr(A2
1ρ)− Tr2(A1ρ) = 1− (ρ11 − ρ22 − ρ33 + ρ44)

2 (6.21a)

U2(ρ) = Tr(A2
2ρ)− Tr2(A2ρ) = 1− (ρ14 + ρ23 + ρ32 + ρ41)

2 (6.21b)

Noting that ρ11 + ρ22 + ρ33 + ρ44 = Tr(ρ) = 1 and ρii ≥ 0, ∀i = 1, .., 4, we conclude that

U1(ρ) = 0 iff

ρ11 = ρ44 = 0 or ρ22 = ρ33 = 0. (6.22)

Thus, the eigenspace of A1 is

ΦA1 = {ρ = [ρij ]4×4 ∈ S : ρ11 = ρ44 = 0 or ρ22 = ρ33 = 0} (6.23)
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Noticing the positivity and self-adjointness of ρ, we have

|ρ14 + ρ23 + ρ32 + ρ41| ≤ |ρ14 + ρ41|+ |ρ23 + ρ32|

= 2|Re(ρ14)|+ 2|Re(ρ23)|

≤ 2|ρ14|+ 2|ρ23|

≤ 2
√
ρ11ρ44 + 2

√
ρ22ρ33

≤ ρ11 + ρ44 + ρ22 + ρ33 = 1 (6.24)

As such, by (6.21b), it holds that U2(ρ) = 0 iff

ρ14 = ρ41 = ±ρ11 = ±ρ44 and ρ23 = ρ32 = ±ρ22 = ±ρ33 (6.25)

Hence, the eigenspace of A2 is

ΦA2 = {ρ = [ρij ]4×4 ∈ S :ρ14 = ρ41 = ±ρ11 = ±ρ44 and

ρ23 = ρ32 = ±ρ22 = ±ρ33} (6.26)

Combining (6.23) with (6.26), we conclude that ΦSWM = ΦA1 ∩ΦA2 = {ϕ±, ψ±}, in which

ϕ± =
1

2



1 0 0 ±1

0 0 0 0

0 0 0 0

±1 0 0 1


, ψ± =

1

2



0 0 0 0

0 1 ±1 0

0 ±1 1 0

0 0 0 0


.

This mean that the SWM-induced space ΦSWM reduces to the Bell states. �

Remark 6.1. As all the Bell states possess maximal entanglement, measured by concur-

rence [94], Theorem 6.3 provides an interesting way based on SWMs to deterministically

produce maximal entanglement, which is a valuable resource in both quantum information

and quantum computation [47].
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6.6 Non-smooth Lyapunov Function-Based Global Stabiliza-

tion of the Bell States

As measurements can only stochastically generate Bell states, i.e., each Bell state is gener-

ated with a positive probability, in this section, we harness the SWM-induced state reduc-

tion and estimate feedback control to deterministically generate any desired Bell state from

any initial state, i.e., to globally asymptotically stabilize the desired Bell state. Firstly, we

prove that the smooth controls [34, 35], synthesized by smooth Lyapunov theory [54–56],

are difficult to obtain the global stabilizability for the desired Bell state because of the

existence of the antipodal tangent points of that Bell state. Then, we introduce a discontin-

uous Lyapunov-like theorem for stability in probability and apply it to design non-smooth

controls that globally asymptotically stabilize the desired Bell state.

Consider the SWMs of two commutative observables A1 = σz1 ⊗ σz2 and A2 = σx1 ⊗ σx2 ,

and the arbitrary feedback control operator, given by the control Hamiltonian H1, on the

system. We have the SME and measurement records:

dρ = −i[H0, ρ]dt− i[H1, ρ]udt

+ ΓA1D[A1]ρdt+
√
ηA1ΓA1H[A1]ρdwA1

+ ΓA2D[A2]ρdt+
√
ηA2ΓA2H[A2]ρdwA2 (6.27)

dy1 = Tr(A1ρ)dt+
1

2
√
ηA1ΓA1

dwA1

dy2 = Tr(A2ρ)dt+
1

2
√
ηA2ΓA2

dwA2

where dwA1 and dwA2 are independent Wiener increments.
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6.6.1 Motivation of Non-smooth Lyapunov-Based Control

In Section 6.5, we have presented that SWMs of commutative observables can be used

to produce Bell states in the means that under SWMs of two commutative observables,

the filter state converges to one of the Bell states almost surely. In this section, however,

we show that a combination of SWMs and smooth feedback controls [34, 35], designed via

smooth Lyapunov stability theory [54–56], is not sufficient for the global stabilization of

the desired Bell state. This intuitively shows the necessity of a non-smooth Lyapunov-like

theory to the global stabilization of Bell states.

Consider the smooth Lyapunov function candidate of the distance/variance form [53]

VS(ρ) = 1− Tr(ρρd) + c
(
U1(ρ) + U2(ρ)

)
(6.28)

Note that the desired Bell state ρd is commutative with A1, A2, and H0 because all the

Bell states are eigenstates of these operators. As such, Tr(ρd[H0, ρ]) = 0,Tr(ρdD[A1]ρ) =

Tr(ρdD[A2]ρ) = 0. Therefore,

dTr(ρtρd) = Tr(−iρd[H1, ρt])udt

+
√
ηA1ΓA1Tr(ρdH[A1]ρt)dwA1

+
√
ηA2ΓA2Tr(ρdH[A2]ρt)dwA2 (6.29)

As such, the infinitesimal generator associated with (6.27) acting on Tr(ρρd) is

LTr(ρtρd) = Tr(−iρd[H1, ρt])u (6.30)

From this and similar to (6.15), the infinitesimal generator associated with (6.27) acting on
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VS(ρ) is

LVS(ρt) = −
(
Tr(−iρd[H1, ρt]) + 2cTr(A1ρt)Tr(−iA1[H1, ρt])

+ 2cTr(A2ρt)Tr(−iA2[H1, ρt])
)
u

− 4ηA1ΓA1U
2
1 (ρt)− 4ηA2ΓA2U

2
2 (ρt)

− 4(ηA1ΓA1 + ηA2ΓA2)U
2
12(ρt)

:= −gS(ρt)u− 4ηA1ΓA1U
2
1 (ρt)− 4ηA2ΓA2U

2
2 (ρt)

− 4(ηA1ΓA1 + ηA2ΓA2)U
2
12(ρt) (6.31)

where U12(ρ) := Tr(A1A2ρ)−Tr(A1ρ)Tr(A2ρ).With the natural smooth control u = lgS(ρ),

where l > 0, then, LVS(ρt) becomes

LVS(ρt) = −lg2S(ρt)− 4ηA1ΓA1U
2
1 (ρt)− 4ηA2ΓA2U

2
2 (ρt)

− 4(ηA1ΓA1 + ηA2ΓA2)U
2
12(ρt) ≤ 0 (6.32)

Similar to Section 6.5, this also implies that the filter state converges to one of the Bell

states. However, it can be verified that [H0, ρB] = D[Ai]ρB = H[Ai]ρB = gS(ρB) = 0 for

any Bell state ρB and i = 1, 2. Hence, all the Bell states are equilibrium points of the closed-

loop system (6.27) composed of the above smooth control. As such, we cannot transfer the

system from one antipodal tangent state, i.e., the other Bell state, to the desired Bell state

by the above smooth control. Therefore, the smooth controls designed via the classical

smooth Lyapunov theory are hard to achieve the global stabilizability for the desired Bell

state because of the existence of its antipodal tangent states (the other Bell states). This

intuitively calls for non-smooth controls which are synthesized via non-smooth Lyapunov

theory.
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6.6.2 Non-smooth, Globally Stabilizing Control Design

In this section, we present an application of the SWM-induced quantum state and non-

smooth Lyapunov-based control to the global stabilization of the desired Bell state ρd.

Basically, we aim at making the closed-loop system (6.27) to fulfill conditions of the discon-

tinuous Lyapunov-like Theorem 3.4 in Chapter 3.

1. Control Design

In order to break the symmetric topology of the filter state space, we shall choose the

Lyapunov function candidate V (ρ) such that the coefficient of u in LV (ρ) is equal to 0 at

ρd, while being different from 0 at all antipodal tangent states ρa of ρd, i.e.,

∂V (ρ)

∂ρ
[H1, ρ]

∣∣∣
ρ=ρd

= 0, (6.33a)

∂V (ρ)

∂ρ
[H1, ρ]

∣∣∣
ρ=ρa

̸= 0, ∀ρa. (6.33b)

Condition (6.33b) can be satisfied via the following lemma.

Lemma 6.1. If the matrix H = diag [h1, ..., hn] ∈ Cn×n satisfies that hi ̸= hj , ∀i ̸= j, then

for any zero-diagonal matrix B, i.e., matrix with all diagonal entries being zero, there exists

a matrix Y ∈ Cn×n such that

−i [Y,H] = B. (6.34)

Proof: Let the matrix Y = [yij ]n×n. As H = diag[h1, ..., hn], we have

−i[Y,H] = −i[(hj − hi)yij ]n×n. (6.35)

Let the zero-diagonal matrix B = [bij ]n×n, in which b11 = ... = bnn = 0. Then, we can take
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a solution Y = [yij ]n×n of Equation (6.34) as follows:

yij =


i

bij
hj − hi

, i ̸= j

arbitrary, i = j.

(6.36)

Lemma 6.1 is proved. �

Let A = I4 − 4ρd. Note that Tr(A) = 0. As any square matrix with zero trace is unitarily

similar to a square zero-diagonal matrix [102], there exists a unitary matrix P such that

the matrix B = P−1AP has all zero diagonal entries. Choose H = σz1 ⊗ I2 + 0.5I2 ⊗ σz2 =

diag[1.5, 0.5,−0.5,−1.5]. Applying Lemma 6.1, there exists Y ∈ C4×4 such that

−i[Y,H] = B (6.37)

Let the control Hamiltonian be H1 = PHP−1. Let X = PY P−1. Then, Equation (6.37)

leads to

−i[X,H1] = PBP−1 = A = I4 − 4ρd. (6.38)

This equation plays an important role in the design of non-smooth Lyapunov function-based

control. A corollary of of Equation (6.38) is that the coefficient of u in LTr(Xρ) is different

from 0 at all antipodal tangent states ρa of ρd :

Tr(−iX[H1, ρa]) = Tr(−i[X,H1]ρa)

= Tr(ρa)− 4Tr(ρdρa) = 1 > 0. (6.39)

Noting this corollary, we construct a Lyapunov function candidate satisfying (6.33).
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Consider the discontinuous Lyapunov function candidate

V (ρ) =


V1(ρ), ρ ∈ Φ1,

V2(ρ), ρ ∈ Φ2,

(6.40)

where

V1(ρ) = 1− Tr(ρρd) + c
(
U1(ρ) + U2(ρ)

)
, (6.41a)

V2(ρ) = a+Tr(Xρ), a > max
ρ∈S

|Tr(Xρ)|, (6.41b)

Φ1 := {ρ ∈ S : V1(ρ) ≤ k},Φ2 := S \ Φ1, (6.41c)

and the positive constants 0 < k < 1 and c are chosen such that

1− k + cmax
ρ∈S

(U1(ρ) + U2(ρ)) < 1/4. (6.42)

Note that V1(ρd) = 0 and V1(ρa) = 1 for all antipodal tangent states ρa of ρd. As such, by

(6.41c), we conclude that ρd ∈ Φ1 and ρa ∈ Φ2 for all antipodal tangent states ρa of ρd. In

Φ1, we choose the control law

u = u1(ρ) = lgS(ρ), l > 0, ρ ∈ Φ1. (6.43)

Then, from (6.32), the infinitesimal generator associated with (6.27) acting on V1(ρ) is

LV1(ρ) = −lg2S(ρ)− 4ηA1ΓA1U
2
1 (ρ)− 4ηA2ΓA2U

2
2 (ρ)

− 4(ηA1ΓA1 + ηA2ΓA2)U
2
12(ρ)

:= −W (ρ) ≤ 0, ∀ρ ∈ Φ1. (6.44)

Now, we calculate the infinitesimal generator associated with (6.27) that acts on V2(ρ).
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For convenience, in (6.27), we denote

f(ρ) = −i[H0, ρ] + ΓA1D[A1]ρ+ ΓA2D[A2]ρ

σ(ρ) =
[√

ηA1ΓA1H[A1]ρ
√
ηA2ΓA2H[A2]ρ

]
wt = [wA1 wA2 ]

T

Then, (6.27) is equivalent with

dρ = −i[H1, ρ]udt+ f(ρ)dt+ σ(ρ)dwt (6.45)

Note that as dwA1 and dwA2 are independentWiener increments, dwt is a standard 2−dimensional

Wiener increment. As such,

dV2(ρ) = dTr(Xρ) = Tr(Xdρ)

= Tr
(
X(−i[H1, ρ]udt+ f(ρ)dt) + σ(ρ)dwt

)
= Tr(−i[X,H1]ρ)udt+Tr(Xf(ρ))dt+Tr(Xσ(ρ))dwt

By (6.38), we have

Tr(−i[X,H1]ρ) = Tr((I4 − 4ρd)ρ) = 1− 4Tr(ρρd). (6.46)

Therefore, dV2(ρ) becomes

dV2(ρ) = (1− 4Tr(ρρd))udt+Tr(Xf(ρ))dt+Tr(Xσ(ρ))dwt

As such, the infinitesimal generator associated with (6.27) acting on V2(ρ) is

LV2(ρ) =
(
1− 4Tr(ρρd)

)
u+Tr(Xf(ρ)). (6.47)
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We prove that the gain
(
1−4Tr(ρρd)

)
of u in the infinitesimal generator LV2(ρ) is always

positive for any density matrix ρ in the set Φ2. Indeed, by definition, in Φ2, we have

k < V1(ρ) = 1− Tr(ρρd) + c(U1(ρ) + U2(ρ)) (6.48)

This, together with (6.42), yields

Tr(ρρd) < 1− k + c(U1(ρ) + U2(ρ)) < 1/4, ∀ρ ∈ Φ2. (6.49)

As such, the control gain
(
1− 4Tr(ρρd)

)
is positive for all ρ in Φ2. Therefore, in Φ2, we can

choose the control:

u = u2(ρ) =
−M − Tr(Xf(ρ))

1− 4Tr(ρρd)
,M > 0, ρ ∈ Φ2, (6.50)

by which the infinitesimal generator LV2(ρ) in (6.47) becomes

LV2(ρ) = −M, ∀ρ ∈ Φ2. (6.51)

It is relevant to note that the control composed of (6.43) and (6.50) is a switching control.

To make the control continuous and easier to be implemented, we define the set

Φϵ
2 := {ρ ∈ S : V1(ρ) ≥ k + ϵ} ⊂ Φ2, (6.52)

with ϵ > 0 sufficiently small. Let Φ = Φ2 \ Φϵ
2 = {ρ ∈ S : k < V1(ρ) < k + ϵ}. Then, we

have the continuous control

u(ρ) =


u1(ρ), ρ ∈ Φ1,

u2(ρ), ρ ∈ Φϵ
2,

u3(ρ), ρ ∈ Φ,

(6.53)
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where u3(ρ) :=
1

ϵ

(
(k + ϵ− V1(ρ))u1(ρ) + (V1(ρ)− k)u2(ρ)

)
.

2. Stability Analysis

We are ready to prove that a combination of SWM-induced quantum state reduction

and the non-smooth Lyapunov-based control is sufficient to deterministically generate the

desired Bell state from any initial state.

Theorem 6.4. Consider the SME (6.27) with the control Hamiltonian H1 chosen as in

(6.38) and the continuous control (6.53). Then, there exists ϵ > 0 sufficiently small such

that the desired Bell state ρd of the closed-loop system is globally asymptotically stable in

probability.

Proof: In the sequel, a function ϕ(ρ) is called positive definite with respect to ρd on a

set Ω containing ρd if ϕ(ρ) ≥ 0, ∀ρ ∈ Ω, and ϕ(ρe) = 0, ρe ∈ Ω, iff ρe = ρd. It can be checked

that V1(ρ) is positive definite with respect to ρd on the set Φ1. As a is chosen such that

a > max
ρ∈S

|Tr(Xρ)|, it holds that V2(ρ) = a+ Tr(Xρ) > 0 for all ρ ∈ Φ2. Therefore, V (ρ) is

positive definite with respect to ρd on the set S. Condition C.1 of Theorem 3.4 is satisfied.

By the continuous control (6.53), from (6.44) and (6.51), we have the infinitesimal of

V (ρ) along (6.27):

LV (ρ) =


LV1(ρ) = −W (ρ) ≤ 0, ρ ∈ Φ1,

LV2(ρ) = −M < 0, ρ ∈ Φϵ
2.

(6.54)

As u(ρ) is continuous w.r.t ρ, the infinitesimal generator LV2(ρ) is continuous w.r.t ρ also.

Therefore, from (6.54), there exists ϵ > 0 sufficiently small such that

LV2(ρ) < −M
2
, ρ ∈ Φ (6.55)
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This, together with (6.54), leads to

LV (ρ) =


LV1(ρ) = −W (ρ) ≤ 0, ρ ∈ Φ1,

LV2(ρ) < −M
2
< 0, ρ ∈ Φϵ

2 ∪ Φ = Φ2.

(6.56)

Therefore, Conditions C.2 and C.3 of Theorem 3.4 are satisfied.

It can also be verified that the function W (ρ) is positive definite with respect to ρd on

the set Φ1 because ρd is the unique Bell state in Φ1. Thus, all the conditions of Theorem

3.4 are satisfied. By the same analysis as in the proof of Theorem 3.4, we conclude that

there is no sliding motion of ρt on the boundary Λ := {ρ ∈ S : V1(ρ) = k} between Φ1 and

Φ as well as on the boundary Λϵ := {ρ ∈ S : V1(ρ) = k+ ϵ} between Φϵ
2 and Φ. As such, the

system trajectory ρt intersects Λ and Λϵ at separated time instants, which are denoted as

τ1, τ2, ... Similar to Proposition 3.5 in [57], we conclude that in the intervals between these

two consecutive time instants, there exists a unique segment ρt with the smooth control

u1(ρ) or u2(ρ) or u3(ρ). Jointing these consecutive segments, from any initial state ρ0, we

obtain a unique solution ρt with the above continuous control (6.53). As such, under the

continuous control (6.53), the closed-loop system is well-posed.

As all conditions of Theorem Theorem 3.4 are satisfied, we conclude that the desired

Bell state ρd of the closed-loop system is globally stable in probability, i.e., the filter state

is deterministically driven to the desired Bell state ρd from any initial state ρ0. �

6.7 Numerical Illustration

In this section, we illustrate the effectiveness of the above SWM-induced quantum state

reduction and non-smooth Lyapunov function-based control schemes in the generation of

the Bell states for two-qubit system. The entanglement of a two-qubit state ρ ∈ S is
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quantified by the concurrence [94] defined as

C(ρ) = max{
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4, 0} (6.57)

where λi are the eigenvalues, in decreasing order, of the matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy). ρ∗

is the complex conjugate of ρ in the standard basis {|0⟩, |1⟩} and the Pauli operator

σy =

 0 −i

i 0

 (6.58)

in the same basis. Note that 0 ≤ C(ρ) ≤ 1 for all ρ ∈ S and C(ρ) = 1 implies ρ being one

of the Bell states.

We quantify the distance between a state ρ and the desired Bell state ρd by the function

d(ρ) = 1− Tr(ρρd). (6.59)

It is obvious that 0 ≤ d(ρ) ≤ 1, ∀ρ ∈ S, d(ρd) = 0, and d(ρa) = 1 for all antipodal tangent

states ρa of ρd because all the antipodal tangent states ρa are Bell states. Therefore,

C(ρ) = 1 and d(ρ) = 0 iff ρ = ρd, while C(ρ) = 1 and d(ρ) = 1 iff ρ being one of the

antipodal tangent states ρa of ρd.

6.7.1 SWM-Induced Quantum State Reduction

This section illustrates the effectiveness of the SWM-induced quantum state reduction asso-

ciated with two commutative observables A1 = σz1 ⊗σz2 and A2 = σx1 ⊗σx2 in the generation

of the Bell states. Let the spin-spin coupling constant J be 0.05. Let the measurement

strengths ΓA1 = ΓA2 = 0.9 and the measurement efficiencies ηA1 = ηA2 = 0.8.
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Fig. 6.3: SWM-induced quantum state reduction of four arbitrary sample paths. (a) Con-
currence. (b) Distance from ρt to ρd.
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Fig. 6.4: SWM-induced quantum state reduction in average over 100 sample paths. (a)
Average concurrence. (b) Average distance.
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The numerical illustration is carried out with the initial condition

ρ0 =



0.3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.7


(6.60)

which is an unentangled state. The simulation results with 4 arbitrary sample paths are

showed in Fig. 6.3. It can be observed from Fig. 6.3(a) that, in all sample paths, the filter

state is driven from the unentangled initial state ρ0 to the states with maximal entanglement

C(ρ) = 1, i.e., to one of the Bell states. As such, the maximal entanglement of two-atom

system is well produced as the consequence of the SWM-induced quantum state reduction

associated with two commutative observables A1 = σz1 ⊗ σz2 and A2 = σx1 ⊗ σx2 .

We can also observe from Fig. 6.3(b) that the distance d(ρ) is stochastically driven to

one of two values 0 and 1. This, together with the fact C(ρ∞) = 1, shows that the filter

state is rendered to one of the Bell states, each Bell state with a positive probability.

Fig. 6.4 shows the averages of concurrence C(ρ) and distance d(ρ) over 100 sample

paths. It can be observed from Fig. 6.4 that the entanglement is almost surely enhanced

to its maximal value 1, while the distance converges in average to 0.58, meaning that the

filter state converges to one of the Bell states, each of which with a positive probability.

Therefore, the simulation results in Figs. 6.3 and 6.4 show that the SWMs can be used to

deterministically produce the maximal entanglement, though the generation of Bell states

is probabilistic.
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Fig. 6.5: SWM-induced quantum state reduction of four arbitrary sample paths under
smooth control. (a) Concurrence. (b) Distance from ρt to ρd.
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Fig. 6.6: SWM-induced quantum state reduction in average over 100 sample paths under
smooth control. (a) Average concurrence. (b) Average distance.
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6.7.2 SWM-Induced Quantum State Reduction under Smooth Control

We consider the SWM-induced quantum state reduction under the smooth controls as in

Section 6.6.1. The desired Bell state is

ρd =
1

2



1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1


. (6.61)

Choose the standard control Hamiltonian H1 = σy1 ⊗ I2 + I2 ⊗ σy2 , which can be physically

implemented by applying the magnetic fields to the y−axis of both atoms. From Section

6.6.1, we obtain the smooth control:

uS = lgS(ρ) = l
(
Tr(−iρd[H1, ρ]) + 2cTr(A1ρ)Tr(−iA1[H1, ρ])

+ 2cTr(A2ρ)Tr(−iA2[H1, ρ])
)

= lRe(−ρ12 − ρ13 + ρ24 + ρ34).(
2 +

2

5
(ρ11 − ρ22 − ρ33 + ρ44)−

4

5
Re(ρ14 + ρ23)

)
, l > 0. (6.62)

The numerical illustration is performed with l = 4 and the same simulation data as in

Section 6.7.1: ΓA1 = ΓA2 = 0.9, ηA1 = ηA2 = 0.8, J = 0.05. Fig. 6.5 shows 4 arbitrary

sample paths ρt under SWMs and smooth control. It can be seen that though there are

more sample paths in which the system trajectory ρt converges to the desired state ρd, there

is still some sample paths in which ρd converges to the antipodal tangent states ρa. It can

be also observed from Fig. 6.6 that almost surely all sample paths tend to the maximal

entanglement, and comparison to the case of SWMs, there are more sample paths converge

to the desired state ρd, showed by the smaller steady state of average distance obtained:

da(ρ∞) = 0.43 < 0.58. However, as 0.43 > 0, there is still some positive probability that

ρt converges to the antipodal tangent states ρa. Therefore, smooth controls increase the
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Fig. 6.7: SWM-induced quantum state reduction of four arbitrary sample paths under non-
smooth Lyapunov-based control. (a) Concurrence. (b) Distance from ρt to ρd. (c) Control
input u(ρt).

probability that ρt converges to the desired Bell state ρd, but fail to achieve the global

stabilization for ρd because of the existence of the antipodal tangent states ρa.

6.7.3 SWM-Induced Quantum State Reduction and Non-smooth Lyapunov-

Based Global Stabilization

This section moves towards with the combination of SWM-induced quantum state reduction

and non-smooth Lyapunov-based controls for the global stabilization of the desired Bell state

(6.61). We have

A = I4 − 4ρd =



−1 0 0 2

0 1 0 0

0 0 1 0

2 0 0 −1


(6.63)
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Fig. 6.8: SWM-induced quantum state reduction in average over 100 sample paths under
non-smooth Lyapunov-based control. (a) Average concurrence. (b) Average distance.

As such, the unitary matrix P and zero-diagonal matrix B that satisfy B = P−1AP are

B =



0 −1 −1 1

−1 0 −1 1

−1 −1 0 1

1 1 1 0


,

P =
1

5
√
2



0 5 5 0

3 −4 4 3

4 3 −3 4

−5 0 0 5


. (6.64)
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Thus, the control Hamiltonian H1 and matrix X that satisfy Equation (6.38) are

H1 = PHP−1 =



0 −0.4 0.3 0

−0.4 0 0 −0.9

0.3 0 0 −1.2

0 −0.9 −1.2 0


,

X = PY P−1 = i



0 −0.1 −1.8 0

0.1 0 0 −0.6

1.8 0 0 1/30

0 0.6 −1/30 0


.

Note that H1 = −0.8I2 ⊗ σx + 0.4σz ⊗ σx − 0.3σx ⊗ I2 + 0.6σx ⊗ σz. As such, in practice,

the control Hamiltonian H1, which is constituted by local and non-local Hamiltonians, can

be physically implemented by using appropriate local magnetic fields applied to the x−axis

of two atoms and nonlocal magnetic fields applied to both x-axis and z−axis of two atoms,

in which the strengths of these fields are adjusted by the control input u(ρt). We note

that the local control Hamiltonian were widely utilized in the entangled state generation,

e.g., [99, 101, 103]. In addition, the idea of using non-local control Hamiltonian to control

the two-qubit entanglement was presented in [32], while the non-local control Hamiltonian

was shown to be physically implementable in [104].

The simulation is carried out with the control parameters: k = 0.85, c = 0.05,M =

3, ϵ = 0.04, l = 4. It can be checked that (6.42) and (6.55) hold. The simulation data is as

in Section 6.7.1. Fig. 6.7 shows the SWM-induced quantum state reduction of 4 arbitrary

sample paths ρt under non-smooth Lyapunov function-based control. It can be seen that

at some time period, the system trajectory may tend to one of the antipodal tangent states

ρa, showed by the fact that C(ρ) and d(ρ) tend to 1, but then, the control drives it back to

the desired Bell state ρd. This makes all the sample paths eventually converge to ρd. Fig.

6.8 shows the averages of concurrence C(ρ) and distance d(ρ) over 100 sample paths. It can
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be observed from Fig. 6.8 that Ca(ρ∞) = 1 and da(ρ∞) = 0, from which we conclude that

the system trajectory ρt almost surely asymptotically converges to the desired Bell state

ρd. This clearly shows the effectiveness of the SWM-induced quantum state reduction and

non-smooth Lyapunov-based control in the global stabilization of the desired Bell state as

well as the advantage of the non-smooth Lyapunov-based control over the smooth controls.

6.8 Conclusions

In this chapter, we have presented a weak measurement-estimate feedback control scheme to

deterministically generate the Bell states of two separated atoms from any initial state. For

the first time, the concept of SWM-induced quantum state reduction has been introduced

for quantum systems, providing a great potential in generating quantum states. We have

harnessed the SWM-induced quantum state reduction to produce maximal entanglement

via the stochastic generation of the Bell states. In addition, the SWM-induced quantum

state reduction has been utilized together with the non-smooth control, synthesized via

the 1-time Lyapunov-like theorem for stability in probability, to deterministically render

the filter state from any initial state to the desired Bell state. The 1-time Lyapunov-like

theorem enabled the short time convergence of system state, which is essential in the control

of entanglement. The numerical illustrations have clearly pointed out the effectiveness of

the proposed schemes.
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Chapter 7

Real-time Generation of Entangled

States

7.1 Introduction

In this chapter, we are interested in the real-time deterministic generation of the Bell states

as well as the multipartite entangled states by utilizing feedback control. The main obstacles

of realizing quantum estimate feedback control include the measurement back-action, which

inevitably disturbs the observed systems, and the real-time implementation, which arises

due to the long computation time of filter state and control input in comparison to the very

fast dynamics of quantum systems. To deal with the measurement back-action, we have

introduced the concept of simultaneous weak measurements-induced quantum state reduction

in Chapter 6, providing a way for utilizing measurement back-action of two observables

to control the observed systems as desired. We also combined it with feedback control

to deterministically produce the two-qubit maximally entangled Bell states, without the

consideration of real-time control implementation. In this chapter, to enable the generation

of multipartite entangled states, we further generalize this concept to the case of multiple

observables. In addition, to cope with the real-time implementation challenge, we exploit the
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time-delay feedback control, in which the computation time of the estimate state and control

input is fully compensated for by the (constant) delayed time in the control input [77,105].

In particular, to deal with the challenge of real-time implementation, we introduce

the time-delay bang-bang control, in which the delayed time fully compensates for the

computation time, and the bang-bang control structure permits the global stabilization of

the desired state. This control structure consists of two modes of which the 1−mode pushes

the system trajectory off all the undesired states in a finite time and then the 0−mode

drives the system trajectory to the desired state almost surely. The simplicity of bang-bang

control also enables it to be trivially implemented in practice.

Interestingly, our SWMs and time-delay control schemes can be used as a general mech-

anism to deterministically produce many multipartite entangled states in real time, such

as the stabilizer states [106] and Dicke states [107]. For illustration, we report the use of

such mechanism for the generation of the maximally entangled three-qubit |GHZ⟩ state.

Firstly, the |GHZ⟩ state is probabilistically produced via the SWMs of three commutative

observables B1 = σz1 ⊗ σz2 ⊗ I3, B2 = σz1 ⊗ I2 ⊗ σz3 , and B3 = σx1 ⊗ σx2 ⊗ σx3 , where σ
x,y,z
i and

Ii are the Pauli operators and identity operator of the qubit i. Then, the SWM-induced

quantum state reduction associated with these observables is combined with the time-delay

bang-bang control to deterministically generate the |GHZ⟩ state, without knowledge about

the initial state.

In Section 7.2, the concept of SWM-induced quantum state reduction is combined with

the time delay bang bang control to globally stabilize the desired Bell state. The deter-

ministic generation of the |GHZ⟩ state is presented in Section 7.3. The effectiveness of

these measurement and feedback control schemes are illustrated in Section 7.4. Section 7.5

includes concluding remarks.
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7.2 Real-time Deterministic Generation of the Desired Bell State

7.2 Real-time Deterministic Generation of the Desired Bell

State

We consider the the two-qubit model in [99], which consists of a couple of two-level atoms,

1 and 2. These atoms are placed in two distant cavities and interact through a radiation

field in a dispersive way. The two cavities are arranged in a cascade-like configuration such

that, given a coherent input field with amplitude Ac in one of them, the output of each

cavity enters the other as depicted in Fig. 7.1. After eliminating the radiation fields, the

effective interaction Hamiltonian for the internal degrees of the two atoms becomes of Ising

type:

H0 = 2Jσz1 ⊗ σz2 (7.1)

in which σx,y,zi are the Pauli operators of the qubit i = 1, 2, and J is the spin-spin coupling

strength dependent on |Ac|2 [99]. We assume that the coupling strength J is fixed. To

present the idea of the paper, we further assume that we work in the time period in which

the spontaneous atomic decay has not happened.

In Chapter 6, we have introduced the concept of simultaneous weak measurements-

induced quantum state reduction and harnessed it to probabilistically generate the Bell

states. As measurements can only stochastically produce Bell states, i.e., each Bell state is

generated with a positive probability, we proceed with the combination of SWM-induced

quantum state reduction and feedback control to deterministically generate any desired Bell

state, without knowledge about the initial state. Unlike Chapter 6, where we have presented

a Lyapunov-based feedback control approach for the deterministic generation of Bell states,

but without the consideration of real-time control implementation, in this section, we shall

utilize the the time-delay bang-bang control to deal with the real-time implementation

challenge of quantum feedback control.

Consider the system with free Hamiltonian H0 as in (7.1), subjected to the SWMs of two
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Fig. 7.1: The setup for estimate feedback control of two atoms. Two cavities C1 and C2, each
of which contains a two-level atom, are connected in a closed loop through optical fibers.
The off-resonant driving field Ac generates an effective Hamiltonian H0. The optical fields
are continuously measured by the homodyne detectorsD = {D1, ..., Dm}. The measurement
records yt = [y1t, ..., ymt] are sent to a filter to extract the information of the system and the
filter state (estimate state) ρt is then fed back via the controller ut = u(ρt−τ ) and magnetic
fields L1, L2 to modify the system Hamiltonian.
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7.2 Real-time Deterministic Generation of the Desired Bell State

commutative observables A1 = σz1 ⊗ σz2 and A2 = σx1 ⊗ σx2 , and the feedback control given

by the control Hamiltonian H1. We have the filtering equation and measurement records:

dρ =− i[H0, ρ]dt− i[H1, ρ]udt

+ ΓA1D[A1]ρdt+
√
ηA1ΓA1H[A1]ρdwA1

+ ΓA2D[A2]ρdt+
√
ηA2ΓA2H[A2]ρdwA2 (7.2)

dy1 =Tr(A1ρ)dt+
1

2
√
ηA1ΓA1

dwA1

dy2 =Tr(A2ρ)dt+
1

2
√
ηA2ΓA2

dwA2

where dwA1 and dwA2 are independent Wiener increments, and u ∈ R is the control input,

R denotes the set of real numbers.

We shall utilize the local control Hamiltonian H1 = (σx1 + iσy1) ⊗ I2/2. This control

Hamiltonian H1 can be physically implemented by applying the local magnetic fields along

the x−axis and y−axis of the first qubit, in which the strength of these fields is adjusted

by the control u ∈ R to be designed. The local control Hamiltonians were widely utilized

in the entangled state generation, e.g. [99, 101,103].

Our objective in this section is to design the time-delay feedback control of the form ut =

u(ρt−τ ) to render the filter state ρt from any initial state ρ0 to a desired Bell state ρd almost

surely, where τ > 0 is known but arbitrarily long. The delayed time τ is used to compensate

for the filter state and control computation time, by which the real-time implementation

of the proposed control scheme is guaranteed. In the standard basis {|0⟩, |1⟩}, where |0⟩

and |1⟩ are Dirac notations of the two eigenstates of the qubit [75], the Bell states are
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7.2 Real-time Deterministic Generation of the Desired Bell State

represented as:

ϕ± =
1

2



1 0 0 ±1

0 0 0 0

0 0 0 0

±1 0 0 1


, ψ± =

1

2



0 0 0 0

0 1 ±1 0

0 ±1 1 0

0 0 0 0


.

7.2.1 Control Structure

Notice that all Bell states are mutually orthogonal. As such, all the other Bell states ρa ̸= ρd

lie in the set {ρ ∈ S : D(ρ) = 1}, where D(ρ) = 1 − Tr(ρρd) is the distance from ρ to ρd.

Utilizing this observation, we shall design the control that pushes the filter state off the set

{ρ ∈ S : D(ρ) > 1− γ}, containing all the other Bell states ρa ̸= ρd, in a finite time almost

surely, where γ > 0 sufficiently small. Then, it will push the filter state off all the other

Bell states ρa ̸= ρd in a finite time almost surely.

Indeed, inspired by the control design in [57, 105], we shall construct the time delay

bang-bang control in hysteresis form with two modes, of which the 1−mode pushes the

system trajectory ρt off the set {ρ ∈ S : D(ρ) > 1− γ}, and then the 0−mode drives ρt to

the desired Bell state ρd almost surely. To present the control in details, we denote:

Sα := {ρ ∈ S : D(ρ) = α},

S>α := {ρ ∈ S : α < D(ρ) ≤ 1},

S≥α := {ρ ∈ S : α ≤ D(ρ) ≤ 1},

S<α := {ρ ∈ S : 0 ≤ D(ρ) < α},

S≤α := {ρ ∈ S : 0 ≤ D(ρ) ≤ α}. (7.3)

We will prove that with γ < 1/4, the following time-delay bang-bang control renders

the filter state to the desired state ρd almost surely from any initial state:
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1. ut = 1, if ρt−τ ∈ S≥1−γ/2;

2. ut = 0, if ρt−τ ∈ S≤1−γ ;

3. If ρt−τ ∈ Φ := S<1−γ/2 ∩ S>1−γ , then ut = 0 if ρt−τ last entered Φ through the

boundary S1−γ and ut = 1 otherwise.

We can interpret this control as follows. If the system state ρt−τ is near one of the undesired

Bell states ρa ̸= ρd, shown as ρt−τ ∈ S≥1−γ/2, then we set the control ut = 1 to push the

system state off these undesired Bell states. If the system state ρt−τ is near the desired Bell

state ρd, then we switch off the control, and the system state will converge to the desired

Bell state as a consequence of Theorem 6.3 in Chapter 6. We note that with the case 3,

the above control is of hysteresis form. This form of control prevents the system from the

harmful phenomenon of chattering, which arises when the control is of switching form [108].

In order to see clearly the effects of the above control on the system trajectory ρt, let

us introduce two technical propositions, the proofs of which are found in Sections 1 and 2,

Appendix D.

Proposition 7.1. Let γ < 1/4. Then, from any initial data with ρ0 ∈ S>1−γ , the solution

of (7.2) with ut = 1 exits S>1−γ in a finite time with probability 1.

Proof. See Section 1, Appendix D. �

Proposition 7.2. From any initial data with ρ0 ∈ S≤1−γ , the solution ρt of (7.2) with the

control input ut = 0 remains in S<1−γ/2 with probability larger or equal to p := 1− 1− γ

1− γ/2
.

Proof. See Section 2, Appendix D. �

7.2.2 Convergence Analysis

We are ready to prove the convergence of the system trajectory under the above bang-bang

control.
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7.2 Real-time Deterministic Generation of the Desired Bell State

Theorem 7.1. Consider the quantum filter (7.2). Then, from any initial state, the above

time-delay bang-bang control renders the filter state to the desired Bell state ρd almost surely.

Proof. The proof of Theorem 7.1 is similar to that of Theorem 5.2 in Chapter 5 and is

inspired by that of Theorem 4.2 in [57]. We denote by mode A and mode B the periods

that the control input ut = 1 and the control input ut = 0 is applied, respectively. For

simplicity, the proof of the Theorem 7.1 is divided into three steps:

• Step 1: Showing that a state in mode A almost surely transits to mode B in a finite

time.

• Step 2: Showing that the system switches between modes A and B in a finite number

of times and the final mode is B.

• Step 3: Showing that when the state is in mode B permanently, it converges to the

final desired state ρd almost surely.

Proposition 7.1 implies that a state in mode A almost surely transits to mode B in a finite

time. Step 1 is complete.

Suppose that at a time instant, the mode changes from A to B. After that time instant,

there are two probabilities as follows:

P1 : the state remains in B permanently.

P2 : the mode changes to A again.

Proposition 7.2 implies that P2 occurs with probability smaller than or equal to (1−p). We

denote the events

En := {the mode switches from B to A in n times},
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7.2 Real-time Deterministic Generation of the Desired Bell State

where n = 1, 2, ... Then, the probability of En satisfies P{En} ≤ (1− p)n. Since

∞∑
n=1

P{En} ≤
∞∑
n=1

(1− p)n =
1− p

p
<∞,

Borel-Cantelli’s Lemma assures that there exist almost surely a finite number of switches

from mode B to mode A. This, together with Step 1, implies that mode B is the final mode.

Step 2 is complete. Combining Step 1 and Step 2, after a finite time, the system is in the

mode B permanently.

Now, we proceed with Step 3. Note that in mode B, the control input ut = 0 is applied.

From Theorem 6.3 in Chapter 6, we conclude that the system trajectory ρt converges almost

surely to one of Bell states.

On the other hand, the control input ut = 0 is applied only when ρt−τ ∈ S≤1−γ/2.

As such, when the state is in mode B permanently, it is in the set S≤1−γ/2 permanently.

Therefore, ρt almost surely converges to one of Bell states in the set S≤1−γ/2.

As all Bell states are mutually orthogonal, there is only one Bell state in the set S≤1−γ/2,

that is ρd. Therefore,

P
{

lim
t→∞

ρt = ρd

}
= 1. (7.4)

Combining three above steps, we conclude that with the time delay control law defined

as in Theorem 7.1, from any initial data, the system trajectory ρt converges to the desired

Bell state ρd almost surely. �
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7.3 Real-time Deterministic Generation of Multipartite En-

tangled States

To facilitate the generation of multipartite entangled states, we first generalize the SWM-

induced quantum state reduction, which was stated for the case of two measured observables

in Chapter 6, to the case of multiple measured observables.

7.3.1 General SWM-Induced Quantum State Reduction

Theorem 7.2. Consider the system with free Hamiltonian H0 under the simultaneous weak

measurements of Hermitian observables A1, A2, ..., and Am that are commutative with each

other and with H0. Then, the filter state almost surely converges to the common set of

eigenspaces of A1, A2, ..., and Am.

Proof. Consider the function

V (ρ) = U1(ρ) + U2(ρ) + ...+ Um(ρ) (7.5)

which is a combination of the variances U1(ρ), U2(ρ), ..., and Um(ρ) of the filtering process

along A1, A2, ..., and Am, respectively:

Ul(ρ) = Tr(A2
l ρ)− Tr2(Alρ), l = 1, ...,m. (7.6)

A straightforward computation (see Section 3, Appendix D) gives the infinitesimal generator

of ρt acting on V (ρ) :

LV (ρt) ≤ −4

m∑
l=1

ηA1ΓA1U
2
1 (ρt) ≤ 0, (7.7)

where L denotes the infinitesimal generator of ρt. Applying stochastic LaSalle theorem (see

e.g. Theorem 2.1 in [63]), we conclude that ρt converges with probability 1 to the set in
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Fig. 7.2: Illustration of the SWM-induced space ΦSWM which is the attractive set of filter
state under the SWMs of commutative observables A1, A2, ..., and Am.

which LV (ρ) = 0. This, together with Eq. (6.54), implies that

P{ lim
t→∞

Ul(ρt) = 0} = 1, ∀l = 1, ..,m. (7.8)

Therefore, the SWMs of commutative observables A1, A2, ..., and Am render the variances

U1(ρ), U2, ..., and Um(ρ) of the filtering process along A1, A2, ..., and Am to 0 almost surely.

Let ΦAl
= {ρ ∈ S : Ul(ρ) = 0}, l = 1, 2, ...,m, which are eigenspaces of Al, l = 1, 2, ...,m.

Then, Eq. (7.8) states that the filter state ρt converges almost surely to the common set
m∩
l=1

ΦAl
of eigenspaces of A1, A2, ..., and Am. �

We define that common set as the simultaneous weak measurement-induced space. An

illustration of the SWM-induced space is given in Fig. 7.2.

7.3.2 Deterministic Generation of the |GHZ⟩ State

It is interesting that the above SWMs and time-delay bang-bang control schemes can be

used as a general mechanism to deterministically generate a large class of multipartite en-

tangled states. For instance, as the stabilizer states [106] are the eigenstates of commutative

observables belonging to the set O, they can be produced by this mechanism. Indeed, since
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each stabilizer state lies in the common set of eigenspaces of some commutative observ-

ables in O, we can utilize the simultaneous weak measurements of these observables to

probabilistically produce that stabilizer state as a consequence of Theorem 7.2. Then, the

deterministic generation of that stabilizer state is obtained by combining the simultaneous

weak measurements with feedback control in the same manner as in Section 7.2. Another

application of the proposed protocol is the Dicke states that are eigenstates of both com-

mutative observables Jz and J2 [107], which are combinations of some observables in O.

In this section, for illustration, we report the deterministic generation of the maxi-

mally entangled three-qubit |GHZ⟩ state, i.e., |GHZ⟩ = 1√
2
(|000⟩ + |111⟩). Consider the

three-qubit systems with free Hamiltonian H0 that commutes with the observables in the

set O. These systems cover a wide range of systems; for example systems of Ising model

and Heisenberg model of which the free Hamiltonian H0 is a linear combination of some

observables in O. Then, Theorem 7.2 is applicable.

Theorem 7.3. Consider the three-qubit system with free Hamiltonian H0 commuting with

observables in O, subjected to the SWMs of three commutative observables B1 = σz1 ⊗ σz2 ⊗

I3, B2 = σz1 ⊗ I2 ⊗ σz3 , and B3 = σx1 ⊗ σx2 ⊗ σx3 , where σ
x,y,z
i and Ii are Pauli operators and

identity operator of the qubit i. Then, from any initial state, the filter state ρt probabilistically

converges to the |GHZ⟩ state.

Proof. Similar to the proof of Theorem 6.3 in Chapter 6, we can prove that the unique

common points of ΦBi , i = 1, 2, 3, are:

{1
2
(|000⟩ ± |111⟩)(⟨000| ± ⟨111|),

1

2
(|110⟩ ± |001⟩)(⟨110| ± ⟨001|),

1

2
(|101⟩ ± |010⟩)(⟨101| ± ⟨010|),

1

2
(|011⟩ ± |100⟩)(⟨011| ± ⟨100|)

}
. (7.9)

Therefore, the |GHZ⟩⟨GHZ| is an isolated point in the SWM-induced space ΦSWM =
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∩3
i=1ΦBi . Applying Theorem 7.2, Theorem 7.3 is proved. �

Now, we combine the SWMs of three commutative observables B1, B2, and B3 with the

feedback control to deterministically generate the |GHZ⟩ state. We utilize the following

local control Hamiltonian

H1 = (σz1 + σx1 )⊗ I2 ⊗ I3 + I1 ⊗ σx2 ⊗ I3. (7.10)

This control Hamiltonian can be physically implemented by applying local magnetic fields

along the z−axis and x−axis of qubits 1 and 2, with the strengths are adjusted by the

control input u ∈ R. Under the SWMs of three commutative observables B1, B2, B3 and

the feedback control given by the control Hamiltonian H1 in (7.10), we have the following

filtering equation describing the evolution of filter state, and the stochastic records:

dρ =− i[H0, ρ]dt− i[H1, ρ]udt+
3∑

l=1

ΓBl
D[Bl]ρdt

+

3∑
l=1

√
ηBl

ΓBl
H[Bl]ρdwBl

, (7.11)

dyl =Tr(Blρ)dt+
1

2
√
ηBl

ΓBl

dwBl
, l = 1, 2, 3,

where dwBl
, l = 1, 2, 3, are independent Wiener increments.

It can be seen that the |GHZ⟩⟨GHZ| state is orthogonal with all other points in the

SWM-induced space (7.9) associated with the SWMs of B1, B2, B3. As such, we can uti-

lize the same control design procedure in Section 7.2 to deterministically produce the

|GHZ⟩ state. Let the density matrix ρGHZ = |GHZ⟩⟨GHZ|, the distance DGHZ(ρ) =
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1− Tr(ρρGHZ), and the sets:

SGHZ
α := {ρ ∈ S : DGHZ(ρ) = α},

SGHZ
>α := {ρ ∈ S : α < DGHZ(ρ) ≤ 1},

SGHZ
≥α := {ρ ∈ S : α ≤ DGHZ(ρ) ≤ 1},

SGHZ
<α := {ρ ∈ S : 0 ≤ DGHZ(ρ) < α},

SGHZ
≤α := {ρ ∈ S : 0 ≤ DGHZ(ρ) ≤ α}.

We have the following theorem.

Theorem 7.4. Consider the quantum filter (7.11). Then, with γ < 1/8, from any initial

state, the following time-delay bang-bang control renders the filter state to the |GHZ⟩ state

almost surely:

1. ut = 1, if ρt−τ ∈ SGHZ
≥1−γ/2;

2. ut = 0, if ρt−τ ∈ SGHZ
≤1−γ ;

3. If ρt−τ ∈ ΦGHZ := SGHZ
<1−γ/2 ∩ SGHZ

>1−γ , then ut = 0 if ρt−τ last entered ΦGHZ through

the boundary SGHZ
1−γ , and ut = 1 otherwise.

Proof. Similar to the proof of Theorem 7.1 and omitted here. The unique difference is that

in comparison to Lemma D.1, now with the control law ut = 1, then the average system

trajectory of (7.11) converges to

lim
t→∞

E[ρt] =
1

8
I8,

where I8 is the 8−dimensional identity matrix. As such, in Theorem 7.4, we require that

γ < 1/8, instead of that γ < 1/4 as in Theorem 7.1. �
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7.4 Numerical Illustration

In this section, we numerically demonstrate the efficiency of the SWM-induced quantum

state reduction and time delay bang-bang control in the global stabilization of the desired

Bell state:

ρd = |ϕd⟩⟨ϕd| =
1

2



1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1


. (7.12)

The simulation data: ρδ = ρ0, ∀ − τ ≤ δ ≤ 0. The delayed time: τ = 0.25 and the

control parameter: γ = 0.2. Fig. 7.3 shows the SWM-induced quantum state reduction

of 4 arbitrary sample paths ρt under the proposed control. It can be seen that at some

time period, the system trajectory may tend to one of other Bell states ρa ̸= ρd, showed by

the fact that C(ρ) and D(ρ) tend to 1, but then, the control drives it back to the desired

Bell state ρd. This makes all the sample paths eventually converge to ρd. Fig. 7.4 shows

the averages of concurrence C(ρ) and distance D(ρ) over 100 sample paths. It can be

observed from Fig. 7.4 that Ca(ρ∞) = 1 and Da(ρ∞) = 0, from which we conclude that

the system trajectory ρt almost surely asymptotically converges to the desired Bell state

ρd. This clearly shows the effectiveness of the SWM-induced quantum state reduction and

bang-bang control in the deterministic generation of the desired Bell state.

7.5 Conclusions

We have presented a real-time weak measurement-based feedback control scheme to deter-

ministically generate the Bell states and the maximally entangled three-qubit |GHZ⟩ state.

The concept of SWM-induced quantum state reduction has been generalized for quantum

systems subjected to SWM of multiple observables. We have harnessed the SWM-induced
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Fig. 7.3: SWM-induced quantum state reduction of four arbitrary sample paths under bang-
bang control. (a) Concurrence. (b) Distance from ρt to ρd. (c) Time delay control input
u(ρt−τ ) with τ = 0.25, γ = 0.2. The time is in the units such that ~ = 1.
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Fig. 7.4: SWM-induced quantum state reduction in average over 100 sample paths under
bang-bang control. (a) Average concurrence. (b) Average distance. The time is in the units
such that ~ = 1.
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quantum state reduction to produce maximal entanglement via the stochastic generation

of the Bell states and the |GHZ⟩ state. In addition, the SWM-induced quantum state

reduction has been utilized together with the time delay bang-bang control to determinis-

tically render the filter state from any initial state to the desired Bell state and the |GHZ⟩

state. The computation time of filter state and control input was fully compensated for by

the time-delay control, enabling the proposed measurement-based feedback control to be

implemented in real-time.
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Chapter 8

Conclusions

8.1 Conclusions

The measurement-based feedback control of quantum systems was investigated in this thesis.

Several challenging problems in quantum feedback control as presented in Chapter 1 were

addressed.

The first time introduced non-smooth Lyapunov function-like theory for generic stochas-

tic nonlinear systems in Chapter 3 plays a crucial role in the stability analysis and synthesis

of globally stabilizing feedback controls for quantum systems. The continuous Lyapunov-like

theorem and discontinuous Lyapunov-like theorem for stability in probability were instru-

mental in designing nonsmooth controls in Chapter 4. The 1-time switching Lyapunov-like

theorem for stability in probability provided a way to synthesize nonsmooth control with

guaranteed property of short time convergence of the system state. This nice feature was

important in the control of entanglement in Chapter 6.

In Chapter 4, we combined the measurement with feedback control to deterministically

generate the desired quantum states. Applying the continuous Lyapunov-like theorem and
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8.1 Conclusions

the discontinuous Lyapunov-like theorem, switching control and continuous control in sat-

uration form were constructed to deterministically globally stabilize the desired eigenstate

of a class of quantum filters, without knowledge about the initial state.

In Chapter 5, we solved the problem of the real time feedback control of quantum systems

by using the time delay control approach in which the time to compute the filter state and

filter-based control input was fully compensated for by the delay time in the control input. A

new Lyapunov-LaSalle-like theorem for delay-dependent stochastic stability was presented

for a class of time delay stochastic nonlinear systems. Non-smooth time delay control was

then constructed to compensate for the computation time, that is known but arbitrarily

long, while globally stabilizing the quantum filters almost surely.

The next two chapters dealt with the deterministic generation of entanglement, for which

the introduced concept of SWM-(simultaneous-weak-measurement)-induced quantum state

reduction in Chapter 6 played an important role. Applying the SWM-induced quantum

state reduction associated with the commutative observables σz1 ⊗ σz2 and σx1 ⊗ σx2 , we

probabilistically generated the maximally entangled two-qubit Bell states. We then utilized

this concept together with the 1-time switching Lyapunov-like theorem to synthesize the

continuous control to deterministically generate the maximally entangled two-qubit Bell

states from any initial state.

In Chapter 7, the concept of SWM-(simultaneous-weak-measurement)-induced quantum

state reduction was further generalized to enable the generation of multipartite entangled

states such as the maximally entangled three-qubit |GHZ⟩ (Greenberger-Horne-Zeilinger)

state. It was also harnessed together with the time delay bang-bang control to determin-

istically generate the Bell states and the multipartite entangled states such as the |GHZ⟩

state in the real time.
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8.2 Future Research

8.2 Future Research

Though we have solved several important problems in the feedback control of quantum

systems, there are many open questions to be further addressed:

(i) Control of open quantum systems.

The feedback control schemes presented in this thesis are devoted to the closed quan-

tum systems, i.e. the systems isolated from environment. Many questions appear

when the quantum systems are in contact with the environment: How to model the

system-environment interaction? How to deal with the decoherence?

(ii) Control of quantum non-dynamical semigroup.

Most existing control schemes for quantum systems deal with the case when the system

dynamics can be approximated as Markovian quantum dynamical semigroup. For this

type of systems, the well-developed Lyapunov stability theory is an effective tool for

the analysis and control synthesis. For the general quantum systems of non-Markovian

dynamics, we need another tool for the behavioral analysis and control design.

(iii) Control of uncertain quantum systems.

The control schemes in this thesis were presented with the assumption that the system

model is known exactly. In practice, there are unavoidable uncertainties in the system

model and system parameters. This calls for robust control approaches to deal with

the uncertain quantum systems. Some interesting works on this area have appeared;

see [109] for a very good introduction of this direction. The extension of our introduced

theory and methods in this thesis to the stability analysis and control synthesis of

uncertain quantum systems is a promising direction in the future.

(iv) Control of infinite-dimensional quantum systems

The area of control for finite-dimensional quantum systems progresses very fast thanks

to many tools well-developed in control theory literature. For the infinite-dimensional
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8.2 Future Research

quantum systems, some results on the controllability have appeared; see [110] for a

very good overview of this direction. However, the analysis and control design for

infinite-dimensional quantum systems are still much challenging.
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Appendix A

Appendices for Chapter 4

1 Proof of Eqs. (4.6a) and (4.6b)

Under Assumption 4.2, the stochastic master equation (4.2) becomes

dρt =
(
− i[H0, ρt] + LρtL− 1

2
L2ρt −

1

2
ρtL

2
)
dt

− i[H1, ρt]udt

+
√
η
(
Lρt + ρtL− Tr(Lρt + ρtL)ρt

)
dwt (A.1)
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Noting the cyclic property of trace: Tr(AB) = Tr(BA),Tr([A,B]C) = Tr(A[B,C] for all

matrices A,B, and C with suitable dimensions. From (A.1) and Assumption 4.2, we have

dTr(Lρt) = Tr(Ldρt)

= Tr(−i[H0, ρt]L)dt+Tr(−i[H1, ρt]L)udt

+ 2
√
ηTr(L2ρt − LTr(Lρt)ρt)dwt

= Tr(−i[L,H0]ρt)dt+Tr(−i[H1, ρt]L)udt

+ 2
√
η
(
Tr(L2ρt)− Tr2(Lρt)

)
dwt

= Tr(−i[H1, ρt]L)udt+ 2
√
ηU(ρt)dwt (A.2)

This, together with the Itô’s product rule, leads to

dTr2(Lρt) = 2Tr(Lρt)dTr(Lρt) +
(
dTr(Lρt)

)2
= 2Tr(Lρt)Tr(−i[H1, ρt]L)udt

+ 4
√
ηTr(Lρt)U(ρt)dwt + 4ηU(ρt)

2dt (A.3)

Similar to (A.2), we have

dTr(L2ρt) = Tr(−i[H1, ρt]L
2)udt

+ 2
√
ηTr(L3ρt − L2Tr(Lρt)ρt)dwt (A.4)

Combining (A.3) and (A.4), we obtain

dU(ρt) = dTr(L2ρt)− dTr2(Lρt)

= Tr
(
−i[H1, ρt]

(
L2 − 2LTr(Lρt)

))
udt− 4ηU(ρt)

2dt

+ 2
√
η
(
Tr(L3ρt − L2Tr(Lρt)ρt)− 2Tr(Lρt)U(ρt)

)
dwt
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Hence, the infinitesimal generator of U(ρ) along (A.1) is

Lf+gu,σU(ρt) = Tr
(
− i[H1, ρt]

(
L2 − 2LTr(Lρt)

))
u

− 4ηU(ρt)
2 (A.5)

On the other hand, as H0 and ρf are commutative,

dTr(ρtρf ) = Tr(−i[H0, ρt]ρf )dt+Tr(−i[H1, ρt]ρf )udt

+ 2
√
ηTr((L− Tr(Lρt))ρtρf )dwt

= Tr(−i[H1, ρt]ρf )udt

+ 2
√
ηTr((L− Tr(Lρt))ρtρf )dwt

Hence

Lf+gu,σTr(ρtρf ) = Tr(−i[H1, ρt]ρf )u (A.6)

From (A.5) and (A.6), then Eqs. (4.6a)-(4.6b) hold true.

2 Prove that
(
gS(ρ)

2 + 4cηU(ρ)2
)
= 0 iff ρ is an eigenstate of L

As L is diagonal and regular, let L = diag(l1, ..., ln), li ̸= lj , ∀i ̸= j. For each ρ = [ρij ]n×n ∈ S,

we have

U(ρ) = Tr(L2ρ)− Tr(Lρ)2 =
n∑

i=1

l2i ρii −

(
n∑

i=1

liρii

)2
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Since Tr(ρ) =
n∑

i=1
ρii = 1 and ρii ≥ 0,∀i = 1, .., n, as ρ ≥ 0, applying the Cauchy-Schwarz

inequality, we have

n∑
i=1

l2i ρii =

n∑
i=1

l2i ρii

n∑
i=1

ρii ≥
( n∑
i=1

|li|ρii
)2 ≥ ( n∑

i=1

liρii
)2

Then, U(ρ) ≥ 0, ∀ρ ∈ S. As li ̸= lj , ∀i ̸= j, the equality happens iff one of ρii is equal to 1 and

the others are equal to 0, i.e., iff ρ is an eigenstate of L. Therefore, if
(
gS(ρ)

2+4cηU(ρ)2
)
= 0,

then U(ρ) = 0 and thus, ρ is an eigenstate of L. The inverse clause is trivial. �

3 Proof of Lemma 4.2

We choose the solution X self-adjoint and off-diagonal of the form

X =



0 x12 0 · · · 0

x21 0 x23
. . .

...

0 x32 0
. . . 0

...
. . .

. . .
. . . x(n−1)n

0 · · · 0 xn(n−1) 0


(A.7)

For the key Equation (4.10), we only concern with the equations associated with a11, ..., ann :

−i(x12h21 − h12x21) = a11 ̸= 0,

−i(x21h12 − h21x12 + x23h32 − h23x32) = a22 ̸= 0,

... (A.8)

−i(xn(n−1)h(n−1)n − hn(n−1)x(n−1)n) = ann ̸= 0.

As a11 + ... + ann = Tr(A) = Tr(−i[X,H1]) = 0, Equations (A.8) are equivalent to

−i(xi(i+1)h(i+1)i − hi(i+1)x(i+1)i) = a11 + ... + aii, for all i = 1, ..., n − 1. Let hi(i+1) =

ai + ibi, xi(i+1) = xi + iyi,∀i = 1, ..., n − 1. As X and H1 are self-adjoint, it holds that
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h(i+1)i = ai − ibi and x(i+1)i = xi − iyi, ∀i = 1, ..., n− 1. The above equalities are equivalent

to 2(aiyi−bixi) = a11+...+aii, ∀i = 1, ..., n−1. As in Assumption 4.3, H1 is connected, then

for all i = 1, ..., n− 1, or ai ̸= 0 or bi ̸= 0. If ai ̸= 0, we can take xi = 0, yi =
a11 + ...+ aii

2ai
.

If bi ̸= 0, we can take xi = −a11 + ...+ aii
2bi

, yi = 0. Lemma 4.2 is proved. �

4 Proof of Eqs. (4.17), (4.18), and (4.19)

From (A.5) and (A.6), Eq. (4.17) follows accordingly. On the other hand, it follows from

(A.1) and the Itô’s product rule that

dTr(Xρt) = Tr
(
Xf(ρt)

)
dt+Tr(−iX[H1, ρt])udt

+Tr(Xσ(ρt))dwt,

dTr(Aρt) = Tr
(
Af(ρt)

)
dt+Tr(−iA[H1, ρt])udt

+Tr(Aσ(ρt))dwt,

dTr(Aρt)
2 = 2Tr(Aρt)dTr(Aρt) + (dTr(Aρt))

2

= 2Tr(Aρt)Tr(−iA[H1, ρt])udt

+ 2Tr(Aρt)Tr
(
Af(ρt)

)
dt

+Tr(Aσ(ρt))
2dt+ 2Tr(Aρt)Tr(Aσ(ρt))dwt

Hence, the infinitesimal generator of ρt acting on Tr(Xρt) and Tr(Aρt)
2 gives

Lf+gu,σTr(Xρt) = Tr
(
Xf(ρt)

)
+Tr(−iX[H1, ρt])u

= Tr
(
Xf(ρt)

)
+Tr(−i[X,H1]ρt)u

= Tr
(
Xf(ρt)

)
+Tr(Aρt)u (A.9)

Lf+gu,σTr(Aρt)
2 = 2Tr(Aρt)Tr(−iA[H1, ρt])u

+ 2Tr(Aρt)Tr
(
Af(ρt)

)
+Tr(Aσ(ρt))

2 (A.10)
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From (A.5), (A.9), and (A.10), Eqs. (4.18) and (4.19) follow accordingly. �
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Appendix B

Appendices for Chapter 5

1 Proof of Eq. (5.20)

Noting the cyclic property of trace: Tr(AB) = Tr(BA),Tr([A,B]C) = Tr(A[B,C]) for all

matrices A,B, and C with suitable dimensions. From (5.19) and Assumption 5.2, we have

dTr(Lρt) = Tr(Ldρt) (B.1)

= Tr(−i[H0, ρt]L)dt+Tr(−i[H1, ρt]L)utdt

+ 2
√
ηTr(L2ρt − LTr(Lρt)ρt)dwt

= Tr(−i[L,H0]ρt)dt+Tr(−i[H1, ρt]L)utdt

+ 2
√
η
(
Tr(L2ρt)− Tr2(Lρt)

)
dwt

= Tr(−i[H1, ρt]L)utdt+ 2
√
ηU(ρt)dwt,
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This together with the Itô’s product rule leads to

dTr2(Lρt) = 2Tr(Lρt)dTr(Lρt) +
(
dTr(Lρt)

)2
(B.2)

= 2Tr(Lρt)Tr(−i[H1, ρt]L)utdt

+ 4
√
ηTr(Lρt)U(ρt)dwt + 4ηU2(ρt)dt

Similar to (B.1), we have

dTr(L2ρt) = Tr(−i[H1, ρt]L
2)utdt+ 2

√
ηTr(L3ρt − L2Tr(Lρt)ρt)dwt (B.3)

Combining (B.2) and (B.3), we obtain

dU(ρt) = Tr
(
−i[H1, ρt]

(
L2 − 2LTr(Lρt)

))
utdt− 4ηU2(ρt)dt (B.4)

+ 2
√
ηTr(L3ρt − L2Tr(Lρt)ρt)dwt − 4

√
ηTr(Lρt)U(ρt)dwt

Hence, the infinitesimal operator of ρt acting on U(ρ) gives

Lf+gu,σU(ρt) = Tr
(
− i[H1, ρt]

(
L2 − 2LTr(Lρt)

))
ut − 4ηU2(ρt). (B.5)

On the other hand, it follows from Assumptions 5.1 and 5.2 and the cyclic property of trace

that

dTr(ρtρf ) = Tr(−i[H0, ρt]ρf )dt+Tr(−i[H1, ρt]ρf )utdt (B.6)

+ 2
√
ηTr((L− Tr(Lρt))ρtρf )dwt

= Tr(−i[H1, ρt]ρf )utdt+ 2
√
ηTr((L− Tr(Lρt))ρtρf )dwt

Hence, the infinitesimal operator of ρt acting on Tr(ρρf ) gives

Lf+gu,σTr(ρtρf ) = Tr(−i[H1, ρt]ρf )ut (B.7)
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From (B.5) and (B.7), the infinitesimal operator of ρt acting on V (ρ) gives

Lf+gu,σV (ρt) = Tr
(
−i[H1, ρt]

(
c(L2 − 2LTr(Lρt))− ρf

))
ut − 4cηU2(ρt). (B.8)

�

2 Proof of Proposition 5.1

We utilize the approach for the proofs of Lemma 4.6 in [57] and Lemma 4.7 in [69].

Lemma B.1. With the control law ut = 1, we have

lim
t→∞

E[ρt] =
1

n
In.

Proof. Let ρ̄t = E[ρt]. As ut = 1, it follows from (5.19) that the evolution of ρ̄t is given

by

dρ̄t
dt

= −i[H0, ρ̄t]−
1

2
[L, [L, ρ̄t]]− i[H1, ρ̄t] (B.9)

Consider the Lyapunov function candidate defined on S :

W (ρ) = Tr
(
(ρ− 1

n
In)

2
)
= Tr(ρ2)− 1

n
(B.10)

By the cyclic property of trace, the derivative of W (ρ̄t) along the trajectory of (B.9) is

dW (ρ̄t)

dt
= −2Tr(i[H0, ρ̄t]ρ̄t)− Tr([L, [L, ρ̄t]]ρ̄t)− 2Tr(i[H1, ρ̄t]ρ̄t) (B.11)

= −2Tr(iH0[ρ̄t, ρ̄t])− Tr([L, ρ̄t]
∗[L, ρ̄t])− 2Tr(iH1[ρ̄t, ρ̄t])

= −
∣∣[L, ρ̄t]∣∣2 ≤ 0,

where | · | is the Frobenius norm.
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Applying the deterministic LaSalle theorem [111], from (B.11), ρ̄t converges to the

largest invariant setM contained in the set
{
ρ ∈ S :

∣∣[L, ρ]∣∣ = 0
}
.As such, for any trajectory

ρ̄Mt of (B.9) in M, we have
∣∣[L, ρ̄Mt ]

∣∣ = 0, and thus, [L, ρ̄Mt ] = 0. As in Assumption 5.2,

L is diagonal and regular, this leads to ρ̄Mt is diagonal. Hence, [H0, ρ̄
M
t ] = 0 and dρ̄Mt

is diagonal. By (B.9), it follows that [H1, ρ̄
M
t ] is also diagonal. Since in Assumption 5.3,

H1 = [hij ]n×n is connected, i.e., hi(i+1) ̸= 0, ∀i = 1, .., n− 1, it must hold that ρ̄Mt = aIn for

some constant a. As Tr(ρ̄Mt ) = 1, it follows that ρ̄Mt =
1

n
In. Therefore, M = { 1

n
In}. Hence

lim
t→∞

E[ρt] = lim
t→∞

ρ̄t =
1

n
In. (B.12)

�

Lemma B.2. With the control law ut = 1, there exists T <∞ such that

E[V (ρt)] < MV − γ, ∀t ≥ T ,∀ρ0 ∈ S. (B.13)

Proof. Due to the continuity of V (ρt) [57] and (B.12), we have

lim
t→∞

E[V (ρt)] = V
(
lim
t→∞

E[ρt]
)
= V (

1

n
In) = 1− 1

n
+ cU(

1

n
In). (B.14)

As such, with ϵ =MV − γ − (1− 1

n
+ cU( 1nIn)) > 0, (ϵ > 0 because of (5.27)), there exists

T > 0 such that
∣∣∣E[V (ρt)]−

(
1− 1

n + cU( 1nIn)
)∣∣∣ < ϵ,∀t ≥ T. Consequently, for all t ≥ T,

E[V (ρt)] <
(
1− 1

n
+ cU(

1

n
In)
)
+ ϵ =MV − γ. (B.15)

Define T (ρ0) = inf{T : E[V (ρt)] < MV − γ, ∀t ≥ T} and T = sup
ρ0∈S

T (ρ0). Due to the

continuity of E[V (ρt)] and thus, the continuity of T (ρ0) with respect to the initial state [57],

it must hold that T < ∞. It follows from the definition of T (ρ0) that (B.13) holds. The

proof of Lemma B.2 is completed. �
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Now, we prove the statement of Proposition 5.1. Let τρ0(S>MV −γ) be the first exit time

from the set S>MV −γ of a solution ρt beginning at ρ0.We need to show that τρ0(S>MV −γ) <

∞ almost surely. Applying Lemma 4.3, pp.111 in [112], we have

E[τρ0(S>MV −γ)] ≤
2T

1− sup
ξ∈S

P{τξ(S>MV −γ) > 2T}
. (B.16)

We will show that sup
ξ∈S

P{τξ(S>MV −γ) > 2T} < 1. Suppose that

sup
ξ∈S

P{τξ(S>MV −γ) > 2T} = 1. (B.17)

Obviously, P{τξ(S>MV −γ) > 2T} < 1 for all ξ ∈ S≤MV −γ . From (B.17), for each ϵ > 0,

there exists ξϵ ∈ S>MV −γ such that P{τξϵ(S>MV −γ) > 2T} > 1− ϵ. Hence, with ρ0 = ξϵ, we

have

E[V (ρt)] > (MV − γ)P{τξϵ(S>MV −γ) > 2T} > (1− ϵ)(MV − γ), ∀0 ≤ t ≤ 2T .

Taking ϵ→ 0, there exists ξ∞ ∈ S≥MV −γ such that with ρ0 = ξ∞,

E[V (ρt)] ≥MV − γ, ∀0 ≤ t ≤ 2T (B.18)

which is a contradiction with (B.13). Therefore, sup
ξ∈S

P{τξ(S>MV −γ) > 2T} < 1. It follows

from (B.16) that E[τρ0(S>MV −γ)] < ∞ and thus, τρ0(S>MV −γ) < ∞ almost surely. The

proof of Proposition 5.1 is completed. �
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3 Proof of Proposition 5.2

From (5.28b), we have

τ max
ρ∈S

W1(ρ) = τ
M

M̄
max
ρ∈S

U2(ρ) < γ/2. (B.19)

Hence, p = 1−
MV − γ + τ max

ρ∈S
W1(ρ)

MV − γ/2
> 0. As the nonlinear control input ut = uS(ρt−τ ) ≤

U2(ρt−τ )/M̄ is applied, the inequality (5.24) holds. Similar to (5.10), we have

E[V (ρt)] ≤ V (ρ0) + τ sup
−τ≤θ≤0

W1(ρθ), ∀t ≥ 0 (B.20)

Since V (ρ0) ≤MV − γ, it follows that

E[V (ρt)] ≤ V (ρ0) + τ max
ρ∈S

W1(ρ) ≤MV − γ + τ max
ρ∈S

W1(ρ), ∀t ≥ 0. (B.21)

By this and Chebyshev’s inequality, we obtain

P{sup
t≥0

V (ρt) ≥MV − γ/2} ≤
MV − γ + τ max

ρ∈S
W1(ρ)

MV − γ/2
= 1− p. (B.22)

Therefore, P{sup
t≥0

V (ρt) < MV −γ/2} ≥ p, i.e., the system trajectory ρt remains in S<MV −γ/2

with probability larger or equal to p. Proposition 5.2 is proved. �
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Appendix C

Appendices for Chapter 6

1 Proof of Eq. (6.6)

In the standard basis {|0⟩, |1⟩}, we have

σxi =

 0 1

1 0

 , σyi =

 0 −i

i 0

 , σzi =

 1 0

0 −1

 ,

H0 = 2J



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


, A =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


.

We note the cyclic property of trace: Tr(AB) = Tr(BA),Tr([A,B]C) = Tr(A[B,C]) for all

matrices A,B, and C with suitable dimensions. From (6.5), the self-adjointness of A, and
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the commutativity of H0 and A, it holds that

dTr(Aρt) = Tr(Adρt)

= Tr(−iA[H0, ρt])dt+ ΓATr(AD[A]ρt)

+
√
ηAΓATr(AH[A]ρt)dwt

= +2
√
ηAΓA

(
Tr(A2ρt)− Tr2(Aρt)

)
dwt

= 2
√
ηAΓAU(ρt)dwt (C.1)

This, together with the Itô’s product rule, yields

dTr2(Aρt) = 2Tr(Aρt)dTr(Aρt) +
(
dTr(Aρt)

)2
= 4
√
ηAΓATr(Aρt)U(ρt)dwt + 4ηAΓAU(ρt)

2dt (C.2)

Similar to (C.1), we have

dTr(A2ρt) = 2
√
ηAΓATr(A

3ρt −A2Tr(Aρt)ρt)dwt (C.3)

Combining (C.2) and (C.3), we obtain

dU(ρt) = dTr(A2ρt)− dTr2(Aρt)

= 2
√
ηAΓATr(A

3ρt −A2Tr(Aρt)ρt)dwt

− 4
√
ηAΓATr(Aρt)U(ρt)dwt − 4ηAΓAU(ρt)

2dt, (C.4)

from which (6.6) follows. �
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2 Proof of Eq. (6.15)

By the self-adjointness of A1, A2 and the commutativity of A1, A2, and H0, it holds that

dTr(A1ρt) = Tr(−iA1[H0, ρ])dt

+ ΓA1Tr(A1D[A1]ρ)dt+
√
ηA1ΓA1Tr(A1H[A1]ρ)dwA1

+ ΓA2Tr(A1D[A2]ρ)dt+
√
ηA2ΓA2Tr(A1H[A2]ρ)dwA2

= 2
√
ηA1ΓA1(Tr(A

2
1ρt)− Tr2(A1ρt))dwA1

+ 2
√
ηA2ΓA2(Tr(A1A2ρt)− Tr(A1ρt)Tr(A2ρt))dwA2

= 2
√
ηA1ΓA1U1(ρt)dwA1 + 2

√
ηA2ΓA2U12(ρt)dwA2 (C.5)

This, together with the Itô’s product rule, leads to

dTr2(A1ρt) = 2Tr(A1ρt)dTr(A1ρt) + (dTr(A1ρt))
2

= 4ηA1ΓA1U
2
1 (ρt)dt+ 4ηA2ΓA2U

2
12(ρt)dt

+ 4
√
ηA1ΓA1Tr(A1ρt)U1(ρt)dwA1

+ 4
√
ηA2ΓA2Tr(A1ρt)U12(ρt)dwA2 (C.6)

Similarly,

dTr(A2
i ρt) =

√
ηA1ΓA1Tr(A

2
iH[A1]ρ)dwA1

+
√
ηA2ΓA2Tr(A

2
iH[A2]ρ)dwA2 , i = 1, 2 (C.7a)

dTr2(A2ρt) = 4ηA2ΓA2U
2
2 (ρt)dt+ 4ηA1ΓA1U

2
12(ρt)dt

+ 4
√
ηA2ΓA2Tr(A2ρt)U2(ρt)dwA2

+ 4
√
ηA1ΓA1Tr(A2ρt)U12(ρt)dwA1 (C.7b)
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Therefore, the infinitesimal generator associated with (6.12) acting on V (ρ) is

LV (ρt) = LTr(A2
1ρt)− LTr2(A1ρt) + LTr(A2

2ρt)− LTr2(A2ρt)

= −4ηA1ΓA1U
2
1 (ρt)− 4ηA2ΓA2U

2
2 (ρt)

− 4(ηA1ΓA1 + ηA2ΓA2)U
2
12(ρt). (C.8)

Eq. (6.15) is proved. �
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Appendix D

Appendices for Chapter 7

1 Proof of Proposition 7.1

For simplicity, we divide the proof of Proposition 7.1 into the following lemmas to make it

easy to follow.

Lemma D.1. With the control law ut = 1, then the expectation of ρt converges to 1/4I4,

i.e.,

lim
t→∞

E[ρt] =
1

4
I4, (D.1)

where I4 is the 4−dimensional identity matrix.

Before proving this lemma, we recall the well-known LaSalle’s theorem (see Theorem 4.4,

page 128 [62]). This theorem provides us a powerful tool to prove the asymptotic stability

of a system if there exists a positive definite function whose derivative is semi-negative

definite.

Theorem D.1. (LaSalle’s theorem) Consider the autonomous system ẋ = f(x) where

f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. Let Φ ⊂ D be a
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compact set that is positively invariant with respect to this system. Let V : D → R+ be a

continuously differentiable function such that V̇ (x) ≤ 0 in Φ. Let E be the set of all points

in Φ where V̇ (x) = 0. Let M be the largest invariant set in E. Then every solution starting

in Φ approaches M as t→ ∞.

Proof of Lemma D.1. Let ρ̄t = E[ρt]. As ut = 1, it follows from (7.2) that the evolution of

ρ̄t is given by

˙̄ρt = −i[H0 +H1, ρ̄t] +

2∑
l=1

ΓAl
D[Al]ρ̄t (D.2)

Consider the following function defined on S :

W (ρ) = Tr
(
(ρ− 1

4
I4)2

)
= Tr(ρ2)− 1

4
(D.3)

By the cyclic property of trace and the self-adjointness of A1, A2, the derivative of W (ρ̄t)

along the solution of (D.2) is

Ẇ (ρ̄t) = −2Tr(i[H0 +H1, ρ̄t]ρ̄t)−
2∑

l=1

Tr([Al[Al, ρ̄t]]ρ̄t)

= −
2∑

l=1

Tr([Al, ρ̄t]
†[Al, ρ̄t])

= −
2∑

l=1

∣∣[Al, ρ̄t]
∣∣2 ≤ 0, (D.4)

where | · | is the Frobenius norm. Hence, W (ρ̄t) is decreasing along the solution of (D.2).

Applying the LaSalle’s Theorem D.1, from Eq. (D.4), ρ̄t converges to the largest invariant

set M contained in the set in which Ẇ (ρ) = 0, i.e., in the set
{
ρ ∈ S : [A1, ρ] = [A2, ρ] = 0

}
.

We will prove that M = {1/4I}, from which Lemma D.1 is proved. Indeed, for any

trajectory ρ̄Mt of (D.2) in M, we have [A1, ρ̄
M
t ] = [A2, ρ̄

M
t ] = 0. From these equations, ρ̄Mt
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must have the form

ρ̄Mt =



a 0 0 d

0 b c 0

0 c b 0

d 0 0 a


, a, b, c, d ∈ R, (D.5)

which we call the X−form. Then, ˙̄ρMt also has the X−form, and [H0, ρ̄
M
t ] = D[A1]ρ̄

M
t =

D[A2]ρ̄
M
t = 0. These, along with Eq. (D.2), imply that [H1, ρ̄

M
t ] also has the X−form. We

have

H1 = (σx1 + iσy1)⊗ I2/2 =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


Hence

[H1, ρ̄
M
t ] =



0 c b− a 0

d 0 0 a− b

0 0 0 −c

0 0 −d 0


As such, if [H1, ρ̄

M
t ] has the X−form, it must hold that a = b = 1/4, c = d = 0. Therefore,

ρ̄Mt = 1/4I4 and M = {1/4I}. Lemma D.1 is proved. �

Lemma D.2. With γ < 1/4 and the control law ut = 1, there exists T <∞ such that

E[D(ρt)] < 1− γ, ∀t ≥ T , ∀ρ0 ∈ S. (D.6)
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Proof. Due to the continuity of D(ρt) and Lemma D.1, we have

lim
t→∞

E[D(ρt)] = D
(
lim
t→∞

E[ρt]
)
= D(

1

4
I4) = 1− 1

4
. (D.7)

As such, with ϵ = 1− γ− (1− 1/4) = 1/4− γ > 0, there exists T > 0 such that
∣∣E[D(ρt)]−

(1− 1/4)
∣∣ < ϵ,∀t ≥ T. Consequently, for all t ≥ T,

E[D(ρt)] < (1− 1

4
) + ϵ = 1− γ. (D.8)

Define T (ρ0) = inf{T : E[D(ρt)] < 1−γ, ∀t ≥ T} and T = sup
ρ0∈S

T (ρ0). Due to the continuity

of E[D(ρt)] and thus, the continuity of T (ρ0) with respect to the initial state [57], it must

hold that T < ∞. It follows from the definition of T (ρ0) that Eq. (D.6) holds true. The

proof of Lemma D.2 is completed. �

Proof of Proposition 7.1. Now, we proceed with the proof of Proposition 7.1. By Lemma

D.2, we will prove that from any initial state ρ0, there is almost surely a finite time such

that at that time D(ρt) ≤ 1−γ. Let τρ0(S>1−γ) be the first exit time from the set S>1−γ of

a solution ρt beginning at ρ0. We need to show that τρ0(S>1−γ) <∞ almost surely. Notice

that the solution of (7.2) is a Markov process. We recall the following lemma from [112]

(Lemma 4.3, page 111 [112]):

Lemma D.3. Let xt be a Markov process evolving on the space E and let τx0(S) be the first

exit time from an open set S ⊂ E. Then, for all t ≥ 0, x0 ∈ E, we have

E[τx0(S)] ≤
t

1− sup
x0∈E

P{τx0(S) > t}
. (D.9)

Here we stated the lemma in a simpler form than one in [112] to reduce the unnecessary

complexity. Lemma D.3 is very effective to prove the finiteness of the exit time. Applying

159



Lemma D.3, we have

E[τρ0(S>1−γ)] ≤
2T

1− sup
ξ∈S

P{τξ(S>1−γ) > 2T}
. (D.10)

We will show that sup
ξ∈S

P{τξ(S>1−γ) > 2T} < 1. Suppose that

sup
ξ∈S

P{τξ(S>1−γ) > 2T} = 1. (D.11)

Obviously, P{τξ(S>1−γ) > 2T} < 1 for all ξ ∈ S≤1−γ . From (D.11), for each ϵ > 0, there

exists ξϵ ∈ S>1−γ such that P{τξϵ(S>1−γ) > 2T} > 1− ϵ. Hence, with ρ0 = ξϵ, we have

E[D(ρt)] > (1− γ)P{τξϵ(S>1−γ) > 2T} > (1− ϵ)(1− γ)

for all 0 ≤ t ≤ 2T . Taking ϵ→ 0, there exists ξ∞ ∈ S≥1−γ such that with ρ0 = ξ∞,

E[D(ρt)] ≥ 1− γ, ∀0 ≤ t ≤ 2T (D.12)

which is a contradiction with (D.6). Therefore, sup
ξ∈S

P{τξ(S>1−γ) > 2T} < 1. It follows

from Eq. (D.10) that E[τρ0(S>1−γ)] < ∞ and thus, τρ0(S>1−γ) < ∞ a. s. The proof of

Proposition 7.1 is completed. �

2 Proof of Proposition 7.2

Since ρd is commutative with H0, A1, and A2, it can be checked that LD(ρt) = 0 when

ut = 0. This, together with Dynkin’s formula, leads to E[D(ρt)] = D(ρ0), ∀t ≥ 0. As

ρ0 ∈ S≤1−γ , it follows that E[D(ρt)] = D(ρ0) ≤ 1 − γ, ∀t ≥ 0. By this and Chebyshev’s
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inequality, we obtain

P{sup
t≥0

D(ρt) ≥ 1− γ/2} ≤ E[D(ρt)]

1− γ/2
≤ 1− γ

1− γ/2
= 1− p.

Therefore, P{sup
t≥0

D(ρt) < 1 − γ/2} ≥ p, i.e., the system trajectory ρt remains in S<1−γ/2

with probability larger or equal to p. Proposition 7.2 is proved. �

3 Proof of Eq. (7.7)

By the self-adjointness of A1, A2, ..., Am and the commutativity of A1, A2, ..., Am, and H0,

it holds that

dTr(A1ρt) = Tr(−iA1[H0, ρ])dt

+ ΓA1Tr(A1D[A1]ρ)dt+
√
ηA1ΓA1Tr(A1H[A1]ρ)dwA1

+

m∑
l=2

(
ΓAl

Tr(A1D[Al]ρ)dt+
√
ηAl

ΓAl
Tr(A1H[Al]ρ)dwAl

)
= 2
√
ηA1ΓA1(Tr(A

2
1ρt)− Tr2(A1ρt))dwA1

+ 2
m∑
l=2

(√
ηAl

ΓAl
(Tr(A1Alρt)− Tr(A1ρt)Tr(Alρt))dwAl

)
= 2
√
ηA1ΓA1U1(ρt)dwA1 + 2

m∑
l=2

√
ηAl

ΓAl
U1l(ρt)dwAl
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where U1l(ρ) := Tr(A1Alρ) − Tr(A1ρ)Tr(Alρ) with l = 2, ...,m. This, along with Itô’s

product rule, leads to

dTr2(A1ρt) = 2Tr(A1ρt)dTr(A1ρt) + (dTr(A1ρt))
2

= 4ηA1ΓA1U
2
1 (ρt)dt+ 4

m∑
l=2

ηAl
ΓAl

U2
1l(ρt)dt

+ 4
√
ηA1ΓA1Tr(A1ρt)U1(ρt)dwA1

+ 4
m∑
l=2

√
ηAl

ΓAl
Tr(A1ρt)U1l(ρt)dwAl

(D.13)

Similarly,

dTr(A2
kρt) =

m∑
l=1

√
ηAl

ΓAl
Tr(A2

kH[Al]ρ)dwAl
, k = 1, ...,m

dTr2(Akρt) = 4ηAk
ΓAk

U2
k (ρt)dt+ 4

m∑
l ̸=k

ηAl
ΓAl

U2
kl(ρt)dt

+ 4
√
ηAk

ΓAk
Tr(Akρt)Uk(ρt)dwAk

+ 4

m∑
l ̸=k

√
ηAl

ΓAl
Tr(Akρt)Ukl(ρt)dwAl

Therefore, infinitesimal generator of ρt acting on V (ρ) is

LV (ρt) =

m∑
l=1

(
LTr(A2

l ρt)− LTr2(Alρt)
)

= −4
m∑
l=1

ηAl
ΓAl

U2
l (ρt)

− 4
m∑
i<j

(ηAiΓAi + ηAjΓAj )U
2
ij(ρt), (D.15)

by which Eq. (7.7) holds true.

162



Bibliography

Bibliography

[1] A. Butkovskii and Y. Samoilenko, “Control of quantum systems,” Automat. Rem.

Control, vol. 40, pp. 485–502, and 629–645, 1979.

[2] V. P. Belavkin, “On the theory of controlling observable quantum systems,” Automa-

tion and Remote Control, vol. 44, pp. 178–188, 1983.

[3] G. M. Huang, T. J. Tarn, and J. W. Clark, “On the controllability of quantum-

mechanical systems,” J. Math. Phys., vol. 24, pp. 2608–2618, 1983.

[4] A. Peirce, M. Dahleh, and H. Rabitz, “Optimal control of quantum mechanical sys-

tems: Existence, numerical approximations, and applications,” Phys. Rev. A,, vol. 37,

p. 4950, 1988.

[5] C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past,

present and future,” New Journal of Physics, vol. 12, p. 075008, 2010.

[6] D. Dong and I. R. Petersen, “Quantum control theory and applications: A survey,”

IET Control Theory & Applications, vol. 4, pp. 2651–2671, 2010.

[7] D. D’Alessandro, Introduction to Quantum Control and Dynamics. ser. Applied

Mathematics & Nonlinear Science. Chapman & Hall/CRC, 2007.

[8] S. Lloyd and L. Viola, “Engineering quantum dynamics,” Phys. Rev. A, vol. 65, p.

010101, 2001.

163



Bibliography

[9] F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state

engineering driven by dissipation,” Nature Physics, vol. 5, pp. 633–636, 2009.

[10] S. G. Schirmer and X. Wang, “Stabilizing open quantum systems by Markovian reser-

voir engineering,” Phys. Rev. A, vol. 81, p. 062306, 2010.

[11] J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum reservoir engineering with laser

cooled trapped ions,” Phys. Rev. Lett., vol. 77, p. 4728, 1996.

[12] M. Dahleh, A. Peirce, H. Rabitz, and V. Ramakrishna, “Control of molecular motion,”

Proceedings of the IEEE, vol. 84, pp. 7–15, 1996.

[13] W. Zhu and H. Rabitz, “A rapid monotonically convergent iteration algorithm for

quantum optimal control over the expectation value of a positive definite operator,”

Journal of Chemical Physics, vol. 109, pp. 385–391, 1998.

[14] U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin, and H.-R. Jauslin, “Optimal control
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