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Summary 

The cell membrane is a complex structure made up of a diverse array of 

lipids, proteins and carbohydrates. These molecules organize themselves into 

different structures and it has been difficult to visualize these structures since they are 

believed to possess sizes below the optical resolution limit. Hence the development of 

new tools which probe the biophysical properties of cell membranes are necessary. 

Imaging FCS performed using EMCCD cameras and TIRF illumination is one such 

tool which allows the measurement of mobility at a large number of contiguous 

locations on cell membranes of live-cells with millisecond time resolution. In this 

technique, autocorrelation of time traces are performed; fitted to pre-determined 

models and mobility parameters (for instance-diffusion coefficients and velocities) 

are extracted.  

The first chapter is an introduction to the various techniques available for 

studying dynamics of biomolecules in cell-membranes. This is followed by a detailed 

description of spatiotemporal correlation spectroscopy. In the temporal domain, it is 

referred to as fluorescence correlation spectroscopy (FCS) and in the spatial domain; 

it is referred to as image correlation spectroscopy (ICS). The needs for techniques 

which bridge between the aforementioned two techniques are described. Imaging 

FCS is one such technique. The last part is a review on the evolution of Imaging FCS. 

The second chapter is a theoretical introduction to spatiotemporal correlation 

spectroscopy. The fitting models in FCS and ICS are derived. After the theoretical 

description, a detailed description of the instrumentation in imaging FCS is provided. 

The last part of the chapter describes the open-source software which has been 

written to analyze imaging FCS data. 

  The third chapter is a theoretical study to derive a suitable data analysis 

model to extract accurate and precise mobility parameters from Imaging FCS. The 

fitting models were later tested on experimental data. The fitting models yielded 
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reliable estimates of mobility parameters. The second part of this chapter provides 

methods to characterize the heterogeneity of the cell-membrane from Imaging FCS. 

Two different approaches allow us to infer the heterogeneity of membranes from 

Imaging FCS; ΔCCF distributions and diffusion laws.  

The fourth chapter describes the simulations to study the effects of 

experimental parameters on the accuracy and precision of the estimates of mobility 

and heterogeneity from imaging FCS. Simulations demonstrate that the heterogeneity 

caused due to domains as small as 100 nm (below the resolution limit) can be 

resolved by Imaging FCS.  

The fifth chapter describes the applications of imaging FCS which were 

carried out. The technique was used to check whether lipid bilayers can form on 

different surfaces. Mobility and organization of membrane proteins were probed by 

imaging FCS. The last part describes the coupling of Imaging FCS with impedance 

spectroscopy.  

Thus, it is demonstrated that unlike single point FCS which yields only 

mobility, imaging FCS provides not only mobility but also other metrics to 

characterize the heterogeneity of membranes and will prove to be a valuable 

biophysical tool to characterize the dynamics and organization of lipids and proteins 

in a living cell-membrane.  
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1 Introduction 

The cell membrane is one of the most important organelles in a cell. It is a 

complex structure made up of a diverse array of lipids, proteins and carbohydrates. It 

is known that there are at least 500 different lipid species in the cell membrane. One 

third of the genome codes for membrane proteins1. It is made up of two lipid leaflets 

referred to as the outer leaflet and the inner leaflet. Both leaflets differ in their 

composition. Certain lipids (e.g. phosphatidyl serine) are enriched only in the inner 

membrane2. The cell actively maintains the composition of the lipids in the outer and 

inner layers. The appearance of certain lipids in the outer leaflet which are enriched 

only in the inner leaflet is an assay for cell-death3. The cell membrane has a wide 

variety of functions attributed to it. The proteins in the cell membrane serve as 

receptors for ligands which play a role in proliferation, cell-death and infection.  

The most common perception of a cell membrane has been that of a “fluid 

mosaic” model4. In this model, the cell membrane is assumed to be a homogenous 

fluid made up of lipids in which are interspersed the various peripheral and integral 

membrane proteins. The integral membrane proteins span both layers of the 

membrane while the peripheral membrane proteins span only one layer of the 

membrane. The plasma membrane is made up of different lipid classes namely 

sphingolipids, cholesterol and glycerophospholipids. Over the last decade, it has 

become known that the cell membrane of cells, far from being uniform, is highly 

organized yet dynamic, consisting of a multitude of interacting sub domains within 

the lipid membrane. The length scales of these associations on the membrane span a 

wide range of magnitudes ranging from small, nanometer sized cholesterol rich rafts 

to large, micron sized ceramide rich platforms5-7. These highly heterogeneous 

structures exhibit dynamics in the millisecond time scale8. The membrane exhibits a 

range of diffusion coefficients due to the presence of regions of lower mobility called 

“lipid rafts” embedded in a fluid phase of higher mobility. Lipid rafts have been 

reviewed in recent literature6, 9. A definition5 coined at the 2006 keystone symposium 
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on lipid rafts and cell function states, “lipid rafts are small (10‐200 nm), 

heterogeneous, highly dynamic, sterol‐ and sphingolipid‐enriched domains that 

compartmentalize cellular processes.” Reconstituted lipid rafts in model membranes 

have proven to be very useful in understanding the dynamics of these heterogeneous 

structures10.  

The enrichment of sterols and sphingolipids in the cell membrane is 

facilitated by lipid sorting in the trans-golgi network9. This suggests that there is 

lateral segregation of lipids in the transport vesicles as well. Another class of 

microdomains found in the cell are called caveolae which are membrane 

invaginations enriched in a protein called caveolin11-12. The proteins targeted to 

caveolae and lipid rafts were hypothesized to be surrounded by lipid shells12. The 

lipid droplets found in the cell are lipid storage organelles13. They are made up of a 

monolayer covering a core rich in esterified neutral lipids. The structure of lipid 

droplets enables them to localize near the caveolae and hence the lipid droplets play a 

crucial role in the transport of biomolecules to and from the caveolae. 

 Different organelles in the cell have different lipid compositions14. For 

instance, when compared to the plasma membrane, the mitochondrial membranes are 

more abundant in phosphatidyl ethanolamine (PE). In addition to that, mitochondrial 

membranes are enriched in cardiolipin (CL). The conical shape of PE and CL lead to 

a different packing when compared with the bulk of membrane made up of 

cylindrically shaped domains. This leads to lateral segration of PE and CL into 

distinct domains15.  

The improvements in lipidomics over the last decade enables one to 

quantitate the amount of various lipids from a small amount of sample16-17. The 

lipidomic analysis of raft clusters in activated T cell receptor clusters yielded 

quantitative measures of the abundances of various lipids inside and outside the 

rafts18. Visualization in biomolecules is performed by fusing them to fluorescent 

reporters. However, it has been difficult to visualize these structures since they are 
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believed to possess sizes below the optical resolution limit. The resolution of optical 

images is governed by fundamental laws of diffraction. Two point sources which are 

separated by distances less than the point spread function (PSF ~ half the wavelength 

of light ~ 200 nm) cannot be differentiated and hence there arose a need to overcome 

this fundamental limit. Recent advances in microscopy allow imaging beyond this 

limit. Some examples of these so-called super-resolution techniques include 

photoactivation localization microscopy (PALM), stochastic optical reconstruction 

microscopy (STORM), stimulated emission depletion (STED), and structured 

illumination19. Near field scanning optical microscopy (NSOM) has been used to 

image clusters below the resolution limit in the T cell membranes before and after 

stimulation with ligands20. 

 Although fluorescence is considered a standard in biology, it also suffers 

from the disadvantage that in order to observe any biomolecule, it has to be fused 

with a reporter protein. This fusion might lead to a loss in function or the fusion 

might hinder its movement. Hence label free methods are becoming increasingly 

popular to observe biomolecules. One popular approach is based on Raman 

spectroscopy. Certain biomolecules like lipids have a characteristic Raman signal 

which is used to monitor its fate over time21.  

Cells are fixed in order to observe organization of and localization of 

biomolecules. Fixing cells leads to many artifacts. Recently Schnell et al have 

highlighted the disadvantages of immunostaining22. The permeabilization, fixing and 

staining protocols in immunostaining lead to redistribution of various proteins. Hence 

there is a need to perform live-cell imaging of the cell membrane in order to observe 

the molecular dynamics of the lipids and proteins embedded in it. In conventional 

live-cell fluorescence imaging approaches, contrast is given by time-averaged 

intensities. Instead, methods those utilize fluorescence lifetimes, anisotropy, mobility, 

energy transfer, etc., give information about the physical state of molecules in living 

cells and thus promise to provide new insights to biologists. Ideally measurements are 
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performed at a physiological concentration. Experiments conducted using over-

expression of proteins may not represent the real picture of the biomolecules. Hence 

the development of new tools which probe the biophysical properties in live-cell-

membranes at physiological concentrations is necessary. The various fluorescence 

techniques to probe lipid rafts can be grouped into certain categories namely 

photobleaching, energy transfer, tracking and correlation. The different biophysical 

methods to characterize lipid domains have been comprehensively reviewed23-24. 

The two techniques which fall in the photobleaching category include 

fluorescence recovery after photobleaching (FRAP) and fluorescence loss in 

photobleaching (FLIP). These techniques have been successfully employed to 

monitor the dynamics of raft associated molecules25. In the case of FRAP, a high 

power laser is used to selectively photobleach a certain area. The recovery of 

fluorescence in this area by the diffusion of fluorophores from the vicinity is 

monitored over time. The recovery curve is fitted with theoretical models to extract 

diffusion coefficients and get insights into the mobility of the fluorescent molecule. 

The initial studies on raft association of molecules using FRAP led to the notion of 

dynamic partitioning of molecules in and out of raft regions and ruled out the 

possibilities of stable mobile/immobile rafts26. In the case of FLIP, photobleaching is 

performed at a certain area and the fluorescence is monitored at a different area in 

order to probe the trafficking of certain proteins into the bleached area. FLIP is useful 

for monitoring the continuity of organelles in a cell. This technique was used to 

monitor the association of caveolin with microdomains on the cell-membrane11.  

The next set of techniques based on energy-transfer includes FRET27, FRET-

FLIM28 and homo-FRET29. Fluorescence resonance energy transfer (FRET) is based 

on energy transfer between two different fluorescent molecules (referred to as donor 

and acceptor) which are within a distance of 10 nm of each other. FRET is quantified 

by the efficiency of non-radiative energy transfer between the two molecules. The 

efficiency decreases with the 6th power of the distance between the molecules since 



5 
 

the transfer is due to dipole-dipole interactions30. FRET efficiency is an indirect 

measure of the association between two proteins. It was shown using FRET that 

neurokinin-1 receptor exhibited cholesterol sensitive clustering into microdomains31. 

FRET measurements are performed by monitoring the loss in fluorescence of the 

acceptor and the gain in fluorescence of the acceptor upon the excitation of the donor. 

The FRET interaction can be confirmed by photobleaching the acceptor upon which 

there will be a gain in donor fluorescence. 

The combination of FRET with fluorescence life time imaging microscopy 

(FLIM) led to the development of FRET-FLIM32. There is a reduction in the lifetime 

of the donor upon FRET interactions with the acceptors. FRET-FLIM has been 

successfully used to characterize the lipid raft localization of tetanus neurotoxin33. 

FRET measurements are performed using two different molecules, one serving as the 

donor and the other as acceptor. The energy transfer between the same molecules can 

be quantified by monitoring the fluorescence anisotropy referred to as homo-FRET. 

Homo-FRET measurements yield insight about number of molecules in a cluster and 

the size distribution of clusters34. GPI-AP was shown to be arranged into 

microdomains of sizes of 70 nm by cross linking experiments35 and homo-FRET 

measurements36. Later the microdomain hypothesis was revised and homo-FRET 

measurements showed that there are cholesterol dependent nano-clusters of GPI and 

of sizes less than 5 nm37 and hedgehog forms nanometer sized oligomers and 

colocalized with Heparin sulfate proteoglycans38. Further studies by the same group 

led to the elucidation of the mechanisms of formation of these nanoclusters; the nano-

clusters were formed due to activity of cortical actin39.  

he third technique is a tracking based method namely single particle 

tracking40-41 (SPT). SPT is a technique in which the movement of individual 

fluorescent molecules is monitored for a considerable amount of time. The mean 

squared displacement (MSD) of the particle is calculated and diffusion coefficient can 

be extracted from the data.  
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Fig. 1.1: Schematic of techniques to probe lipid rafts.  A) Fluorescence 
Recovery After Photobleaching (FRAP): Here, the sample is photobleached and 
the recovery of fluorescence is monitored in the bleached area to measure the 
dynamics. B) Fluorescence Resonance Energy Transfer (FRET): Energy transfer 
between two different fluorescent molecules (labeled as D  Donor and A 
Acceptor respectively) is measured to yield information about the distance between 
the molecules. C) Single Particle Tracking (SPT): Individual fluorescent molecules are 
tracked for a considerable amount of time to yield information about the mode of 
diffusion exhibited by them. D) Fluorescence Correlation Spectroscopy (FCS): 
Fluctuations in fluorescence are analyzed to yield information about mobility. 

 

Table 1-1: Summary of different techniques used to probe lipid rafts 

Method Name of the technique Information 
Obtained 

Photobleaching FRAP, FLIP Mobility  
Energy transfer FRET, Homo-FRET, FRET-FLIM Distance 
Tracking SPT Mobility and mode of 

diffusion 
Correlation 
a) Temporal 
b) Spatial 
c) Spatiotemporal 

 
a) Confocal FCS, DC-FCCS,  

SW-FCCS, sv-FCS, STED-FCS 
b) ICS,  kICS 
c) Imaging FCS (TIRF-FCS, SPIM-

FCS), RICS, STICS 

Mobility, binding and 
organization 

 

SPT also allows one to distinguish the mode of diffusion exhibited by the 

particle. The three modes of diffusion can be free, sub or super diffusion42. Single 
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particle tracking showed that raft associated proteins exhibited two different diffusing 

regimes (slow and fast), the slower diffusion correlated with the entry into raft 

associated regions43. SPT measurements led to observation of a novel type of 

movement of molecules on the cell membrane referred to as hop diffusion44.  

The last group of techniques discussed here are correlation based methods. 

Fluorescence correlation spectroscopy (FCS) was developed as a technique to 

measure the diffusion coefficients of molecules, to understand flow processes and to 

analyze the kinetics of reacting chemical systems45-49. In FCS, the underlying 

fluctuations arising due to any process are analyzed to determine the properties 

characteristic to that process; for instance, the diffusion coefficient of a molecule or 

the flow rate of molecules can be determined. The fluorescent intensity is temporally 

correlated with itself to yield the autocorrelation function. By fitting the 

autocorrelation function to theoretically derived models, the characteristic constant of 

the fluctuation process can be determined. Typically the experiment is performed in a 

small volume of 10-15 l. Instead of autocorrelation, cross-correlating the fluorescence 

from two different fluorescent probes led to the development of fluorescence cross-

correlation spectroscopy (FCCS). Two different variants are currently in practice. If 

two different laser sources are used to excite the individual fluorophores, it is referred 

to as dual-color FCCS50 (DC-FCCS). If a single excitation source is used, it is 

referred to as single wavelength FCCS51 (SW-FCCS). DC-FCCS has been 

successfully used to monitor the endocytic pathway of cholera toxin52. A combined 

FRET and SW-FCCS study on live-cell membranes led to the identification of 

fraction of the cell surface receptor molecules existing as pre-formed dimers53. The 

same technique was used to probe the next step in the pathway where it indicated the 

existence of a certain level of downstream molecules interacting with the receptor 

without the binding of the ligand54. A detailed review of fluorescence cross-

correlation spectroscopy can be found here55.  
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Originally conceived as a temporal correlation technique, FCS was modified 

to perform correlation in the spatial domain under the name of Image Correlation 

Spectroscopy (ICS)56; reviewed here57. ICS is useful for estimating the number and 

size of aggregates. Modifications in ICS led to the creation of spatio-temporal ICS 

(STICS)58 which has been used to measure protein diffusion and protein flow in 

living cells, but is sensitive to the photophysics of the labeled molecules, such as 

bleaching. The introduction of k space ICS (kICS) overcame this problem, as it was 

not sensitive to bleaching and blinking artifacts59. The main obstacle of the 

aforementioned ICS methods is that they are limited by the imaging rate of the 

microscope. As an alternative, Raster ICS (RICS) was developed to take advantage of 

the pixel/time structure within a raster scanning image, as obtained from confocal 

microscopy, to compute temporal correlations60.  

FCS has been successfully used to probe cell membranes and artificial lipid 

membranes. It has been used to probe the dynamics of lipids and proteins in living 

cell-membranes61-62. The interaction of antimicrobials peptides with lipid membranes 

has been investigated by FCS as well63-65. FCS has been performed in living cells to 

measure the diffusion behavior of membrane-associated molecules at the cell surface, 

and to gain information about segregation of these molecules into liquid ordered and 

liquid disordered states, since these have different characteristic diffusion 

coefficient52, 66-67. Cholesterol and sphingolipids cluster together leading to the 

formation of a liquid-ordered (Lo) phase which exhibits slow lateral diffusion while 

the rest of the membrane made up of phosphoglycerides diffuses faster and referred to 

as the liquid disordered (Ld) phase. The Lo and Ld phase can be distinguished based 

on the diffusion coefficient52, 66-67. Scanning FCS has been successfully used to study 

the slow diffusion of molecules on yeast cell membranes68.  

A variant in FCS namely spot variation FCS (sv-FCS) has been successfully 

used to characterize heterogeneity on cell membranes. Specifically, this technique 

yields insights about the two modes of confinement whether the membrane protein 
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under study is influenced by the actin cytoskeleton exhibiting hop diffusion or forms 

domains in the membrane exhibiting hindered diffusion69. In this technique, the spot 

size where FCS is being performed is varied at each experiment. With increase in 

area, the diffusion time scales linearly with the area in the case of free diffusion and 

when extrapolated to area of size zero, the diffusion time also scales down to zero. 

This is referred to as the FCS diffusion law. In cases, where no free diffusion is 

observed, a non-zero intercept is seen. For raft interactions, the intercept is positive 

while for interactions with the cytoskeleton, the intercept is negative. In a proof of 

principle study on biological systems, this technique was used to show that the 

diffusion of transferrin in the cell-membrane was influenced by the actin network 

while GPI anchored proteins were found in micro domains70. This was successfully 

used to characterize the importance of lipid rafts in Akt signaling pathway where it 

was established that these domains helped in signaling by recruiting Akt after 

accumulation of PIP3 in the membrane71. Studies on the serotonin 1A receptor using 

the same technique revealed that these proteins were influenced by the actin 

cytoskeleton leading to confinement in the membrane72. In a very recent study, sv-

FCS was used to investigate the mechanisms of tolerance in NK cells and it was 

found that confinement of the activating receptors in domains led to tolerance73. A 

summary of the technique and its applications is available here74. A variant of sv-FCS 

was demonstrated wherein diffusion laws were calculated not by varying the size of 

the spot but by performing FCS at various axial positions (z) above and below the cell 

membrane75.  

Another way of looking at heterogeneity in cell membranes in fluctuation 

spectroscopy apart from diffusion laws is through the use of pair correlation functions 

(pCF). When two regions in space are correlated, the function exhibits a maximum 

which is indicative of the time taken to travel the distance between the two regions. 

This can be calculated theoretically from the diffusion equation. In the case, that the 

maximum is at a later time than the calculated value, it is indicative of a barrier to 
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diffusion. Pair-correlations have been successfully used to map barriers in a cell-

membrane76. This method has been successfully used to map diffusion obstacles for a 

membrane marker called DiO and by fusing EGFP to a membrane targeting sequence. 

Apart from studies on cell-membrane, this method has been used to probe nuclear 

architecture and trafficking of molecules through nuclear pores77-79. The previous 

technique performed pair-correlation in the temporal domain. Upon performing the 

same in the spatial domain, the cluster size and distribution of cluster sizes can be 

obtained. This technique has been used on images obtained from super-resolution 

techniques like PALM and scanning electron microscopy (SEM). PC-PALM was 

successfully used to analyze the nanoscale distribution of GPI anchored proteins80 

while PC-SEM was used to study the molecular reorganization of the receptor IgE-

FcεRI upon binding to the antigen81.  

The marriage of super resolution and FCS led to development of STED-FCS. 

STED is a super-resolution technique providing resolution in the order of 20 nm. In 

this technique, the fluorescence from a region greater than 20 nm is suppressed by a 

high power donut-shaped laser beam leading to improved resolution82. The first 

demonstrations of STED-FCS in 2005 showed a five time reduction in the 

measurement volume (25 al) when compared to confocal FCS83. Later this technique, 

proved the existence of trapping of GPI proteins and sphingolipids in <20 nm 

domains in a live-cell membrane unlike phosphoglycerolipids by spot variation 

STED-FCS84. This method has also been used recently to characterize the effects of 

various functional groups and chain lengths of various lipids on the trapping in cell 

membrane85.  

In all methods discussed so far, FCS systems generally use point detectors 

e.g., avalanche photodiodes (APD) or photomultiplier tubes (PMT) as detectors. 

Multiplexed FCS experiments have been performed using 2×2 Complementary Metal 

Oxide Semiconductor (CMOS) array based detection86. More recently, they have 

been performed on a 8×1 SPAD array87. But in many cases, FCS experiments need to 
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be performed on a large area to give an idea of membrane dynamics. EMCCD camera 

based Imaging FCS provides the necessary multiplexing advantage. EMCCD based 

FCS has first been demonstrated in a confocal mode. In this case, the EMCCD is 

mounted in an image plane of the microscope and the pinholes are defined by a 

cluster of pixels of the EMCCD for each laser beam88-89. This method therefore 

theoretically could have been used for up to ~300 confocal volumes. The method was 

extended by Sisan et al. by using a spinning disk microscope to provide the first FCS 

images in which each pixel in the image was correlated90. This method, however, 

requires the non-trivial synchronization of the spinning disk with the acquisition for 

FCS data if molecular processes are to be observed with high temporal resolution. 

EMCCD based detection has also been used in FCS measurements performed using 

multi channel confocal microscopy91-92.  

In earlier work from our group, we used the evanescent wave in Total 

Internal Reflection Fluorescence (TIRF) to study 2D surfaces with a time resolution 

of 4 ms allowing the resolution of lipid and protein dynamics at each pixel of an 

EMCCD camera93 which led to the development of Imaging Total Internal 

Reflection-FCS (ITIR-FCS). The EMCCD camera has a time resolution of ~0.5 ms 

which is sufficient to resolve the dynamics on the cell membrane. Camera based FCS 

provides us the unprecedented advantage of observing the dynamics on a whole cell 

membrane at the same time. Apart from EMCCD cameras, sCMOS cameras have 

been used for Imaging FCS94.  

With the introduction of single plane illumination microscopy (SPIM)95-96 

and critical angle illumination97-98 in FCS, the creation of the observation volumes 

was facilitated by selectively illuminating only a thin layer of the sample which lies 

in the focal plane of the detection objective in a 3D sample. A thin light sheet created 

in SPIM using cylindrical lenses99 provides optical sectioning inside a cell and 

multiplexed FCS measurements can be performed at surfaces away from the cover 
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slide.  ITIR-FCS and SPIM-FCS have already been used to quantitate mobility at 

many contiguous points on living cells using autocorrelation functions. 

To summarize the methods mentioned above, several techniques have a high 

temporal resolution but are limited to measurements of a single or at most a few 

spots. Alternatively, there are a variety of image based spatial correlation techniques, 

but these have poor or anisotropic temporal resolution. ITIR-FCS bridges these 

regimes by providing good isotropic spatial and temporal resolution simultaneously. 

In ITIR-FCS the spatial resolution is diffraction limited as in other FCS techniques 

and the temporal resolution is limited by the frame rate of the imaging device. 

 In this thesis, ITIR-FCS is being extended to ITIR-FCCS enabling one to 

calculate cross-correlations apart from autocorrelations and to extract parameters 

from the same. This thesis has three parts; the first is a theoretical exploration of 

Imaging FCS, followed by a computational study and the last part discussed the 

applications in Imaging FCS.  

After a detailed description of spatiotemporal correlation spectroscopy in the 

second chapter, the third chapter is a theoretical and experimental study to derive a 

suitable data analysis model to extract accurate and precise mobility parameters from 

Imaging FCS. In this work, we derive generalized expressions for cross-correlation 

between any two areas of any size and shape on a CCD chip and for the observation 

volume in Imaging FCS. The fitting models were tested using experiments. The 

fitting models yielded reliable estimates of mobility parameters from experimental 

data. In conventional FCS, calibration experiments are performed to determine the 

point spread function of the microscope using standard fluorescent dyes of known 

diffusion coefficient. The diffusion coefficient of unknown molecules is determined 

based on the PSF obtained from calibration experiments. Imaging FCS is a calibration 

free method which means that the value of PSF can be determined from experiments 

without the need for any external calibration. Hence in the second part of this chapter, 

four different methods to determine the PSF are compared. The major advantage of 
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imaging FCS is multiplexing leading to the observation of many different areas at the 

same time. This helps in understanding heterogeneity in diffusion in the system under 

study. It has been suggested earlier that differences in the forward and backward 

correlations, here termed ΔCCF, could be used to characterize non-equilibrium 

systems or anisotropic translocation100-102. By using ΔCCF values for neighboring 

pixels, we investigate heterogeneity in cell membranes for the first time. Hence, the 

third part of this chapter provides methods to characterize the heterogeneity of the 

cell membrane from Imaging FCS.  

No systematic investigation on the effects of various instrumental factors on 

camera based FCS has been performed so far. Hence the fourth chapter describes the 

simulations to study the effects of experimental parameters on the accuracy and 

precision of the estimates of mobility and heterogeneity from imaging FCS. 

Simulations demonstrate that the heterogeneity caused due to domains as small as 

100 nm (below the optical resolution limit) can be resolved by Imaging FCS.  

The fifth chapter describes the applications of imaging FCS which were 

carried out. The technique was used to check whether lipid bilayers can form on 

different surfaces. It was used to study the effects of antimicrobials and detergents on 

lipid bilayers. Mobility and organization of membrane proteins were probed by 

imaging FCS. The last part describes the coupling of imaging FCS with impedance 

spectroscopy. 

  Unlike single point FCS which yields only mobility, imaging FCS provides 

not only mobility but also other metrics to characterize the heterogeneity of 

membranes and proved to be a valuable biophysical tool to characterize the dynamics 

and organization of lipids and proteins on the membranes of living cells.  
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2 Fluorescence Correlation Spectroscopy: Theory, 
Instrumentation and Data Analysis 

 

Consider a simple system in equilibrium, say, particles diffusing freely in a 

solution. Such free diffusion is referred to as Brownian motion103 after the discoverer 

who first observed such a phenomenon of pollen grains moving in water under the 

microscope. This random molecular motion is due to the collisions of pollen grains 

with water molecules. A formal description of Brownian motion was provided by 

Albert Einstein in 1905104. 

Any system even under thermal equilibrium exhibits fluctuations in the 

distance covered by each particle in a particular time. If, suppose, the system under 

thermal equilibrium is perturbed by an external force, then the system returns to 

equilibrium at a certain characteristic time depending on the process bringing it back 

to equilibrium dissipating the external perturbation. Similarly, for systems in 

equilibrium without any perturbation, spontaneous fluctuations disturb the 

equilibrium locally and these random fluctuations are dissipated at the same 

characteristic time as though it was perturbed by external forces. Hence, in order to 

determine the characteristic time constant, two complementary approaches can be 

performed; disturb the system out of equilibrium and observe how the disturbance is 

dissipated or observe the local fluctuations in equilibrium. Typically, the fluctuations 

are characterized mathematically by correlation functions of the relevant fluctuating 

physical properties. These concepts are well-known in Statistical Mechanics and 

referred to as the fluctuation dissipation theorem105. 

Now returning to the case of pollen grains in solution, the characteristic time 

constant is that of the diffusion coefficient which is a measure of the mobility of the 

molecule. As stated there are two different ways to obtain the same, (i) a destructive 

and (ii) a non-destructive method. The non-destructive method would be counting the 

number of pollen grains in a certain volume and then calculating the fluctuations in 
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the number of pollen grains. These fluctuations would then be analyzed using 

correlation functions to determine the mobility. The second, destructive method is to 

disturb the system out of equilibrium by removing the pollen grains in a certain 

volume and to count the number of pollen grains in the same volume till it reaches 

equilibrium. Based on how fast the perturbation was dissipated, the mobility of the 

pollen grains can be determined. The aforementioned two methods, if performed 

using fluorescent molecules are termed fluorescence correlation spectroscopy (FCS) 

and fluorescence recovery after photobleaching (FRAP) respectively. The rest of this 

chapter is a detailed description of fluorescence correlation spectroscopy. 

The first application of fluctuation spectroscopy was the determination of size 

of polymers by observing the light scattered by them. This was referred to as dynamic 

light scattering (DLS)106. The fluctuations in intensity are recorded. These 

fluctuations vary around the average value of zero and hence are difficult to analyze 

and interpret. A convenient way to analyze them would be to use the autocorrelation 

function of these fluctuations which decays at a rate inversely proportional to the 

mobility. DLS was not capable of monitoring chemical reactions and hence 

fluorescence was used to probe the progress of a reaction. This led to the creation of 

fluorescence correlation spectroscopy to analyze binding reactions. Initially, FCS was 

developed as a complementary technique to DLS where FCS was used for monitoring 

chemical reactions45, 47 and DLS for determination of size and molecular mass. But, 

the sensitivity, selectivity, reduction in background due to Stokes’ shift of 

fluorescence led to the increased usage of FCS over DLS in Chemistry and Biology 

over the years107. 

2.1 Fluorescence correlation spectroscopy  
 

Fluorescence correlation spectroscopy (FCS) is a technique used to study 

diffusion processes, flow processes and chemical kinetics108. In FCS, the underlying 

fluctuations arising due to these processes are analyzed to determine the properties 
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characteristic of that process. By analyzing the fluctuations in fluorescent trace, the 

diffusion coefficient of a molecule or the binding constant of molecules can be 

determined. In FCS, the fluorescent intensity is temporally autocorrelated to yield the 

autocorrelation function. The initial measurements in FCS were plagued by high 

background fluorescence leading to long measurement times since they were being 

performed in large volumes107.  

The initial measurements in FCS had a large number of molecules being 

observed at the same time leading to difficulties in performing experiments. The first 

measurements of FCS using a confocal microscope led to a renaissance in the field109. 

The pinhole in a confocal microscope, effectively blocks out-of-focus fluorescent 

light, thus reducing the background considerably. The pinhole creates an effective 

volume of 10-15 l in which the FCS measurements are made110. The fluctuations in 

this small volume are observed and they are autocorrelated. Molecules diffuse in and 

out of this small volume. The introduction of confocal microscopy in FCS made this 

technique single molecule sensitive.  

 

Fig. 2.1: Processes probed by FCS.  The dimensions of the ellipsoidal confocal 
volume are determined by the diffraction theory of light. It is known from 
diffraction theory that wz>wxy. This discrepancy in resolution among x, y and z 
axes makes the volume ellipsoidal instead of spherical. As seen in B, two 
different processes take the same time to reach the half maximum. The shape 
can be used to determine the process. Flow processes exhibit an exponential 
decay while diffusion processes exhibit a hyperbolic decay.  
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The dimensions of the confocal volume are shown in Fig. 2.1 A. As seen in 

Fig. 2.1 B, the shape of the autocorrelation curve provides information about the type 

of the underlying molecular process causing the fluctuations. The mobility parameters 

shown in the figure for diffusion and flow are discussed later in the theory section.  

Typical correlation curves obtained in FCS are shown in Fig. 2.2 A and B. 

G(τ) is the autocorrelation function of intensity which decays with lagtime τ. A faster 

decay of the autocorrelation function in this case represents a faster diffusion of the 

molecule under observation. The curves are characterized by τD which is the time 

taken for the correlation to decay to half the value of the maximum. The amplitude is 

inversely proportional to the number of particles in the observation volume. Thus 

FCS provides information about mobility and also about the number of particles in 

the small volume.  

 

Fig. 2.2: Determination of mobility and number of particles by FCS. A is a plot of 
representative correlation functions decreasing in mobility from violet to red. A 
decrease in mobility is manifested as a slower decay in the correlation curves. 
The time taken to decay to half the maximum value is shown in all the curves. B 
is a plot of correlation curves with increasing number of particles (violet to red) in 
the observation volume. The amplitude of the correlation drops as the number of 
particles increase as seen in the inset. 

2.1.1 Introduction to autocorrelation 

The autocorrelation  ( )G   is a measure of the self-similarity in time of the intensity 

trace  ( )I t and is given by: 
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Self-similarity between any two mathematical functions can be quantitated by 

calculating the area common under their curves. The mutual area under the curve 

between the intensity trace and the same trace slided by an offset (τ) is quantitated for 

various values of τ in FCS. The fluorescence trace is made up of peaks at random 

positions with each peak corresponding to a fluorescent burst. The curves overlap to a 

larger extent at smaller offsets than when the offsets are larger as seen in Fig. 2.3. At 

smaller offsets, the broadened fluorescent peaks overlap with themselves. At larger 

offsets, the probability that peaks will overlap with other peaks is lower than that at 

smaller offsets. 

 

Fig. 2.3: Autocorrelation is a measure of self-similarity.  The fluorescent trace is 
shown in red, the trace with an offset is shown in blue and the common area under 
the curve is shown in green. At smaller , the peaks overlap with themselves 
producing a very high amount of autocorrelation which is not the case at larger . 
 
2.1.2 Theory of FCS 

FCS is used to probe systems at thermal equilibrium. The statistical 

properties (e.g. mean and variance) do not vary with time for processes at thermal 

equilibrium. Such processes are referred to as stationary processes. A mathematical 

discussion of stationarity is found here111. Assuming stationarity110 in such processes, 

the autocorrelation function (Eq.   2-1) can be redefined as, 
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Fluctuations are defined as deviations from the mean value. Mathematically

( ) ( ) ( )I t I t I t   . Using this definition, Eq. 2-2 can be rewritten as 
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The value of (0) ( )I I   can be determined for various illumination 

profiles. The derivation is performed in 1D first and later can be extended for the 

three dimensions. Let the illumination be characterized by a Gaussian beam

2
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. Here WO is the e-2 radius of the Gaussian beam. The observed 

fluorescent intensity depends on the illumination profile and that of the concentration 

of the fluorophore C. The intensity at position x is related to the instantaneous 

concentration through      , ,I x t q I x C x t dx




   where q is the efficiency of 

detection. The time averaged concentration is given by 

    0 0 2
I t C q I x dx C qI w





    . Using the above definitions, the 

fluctuations at different positions x and x’ can be written as  
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Using Eq. 2-4, Eq. 2-3 can be rewritten as 



20 
 

       

   
2 2

2 2
0 0

2 2 2 2 2
0 0

2

2 2 2 2
0 0

2 2 '
- -

2 2
0

(0) ( ) 2 (0) ( )

( )

2 ,0 ' ', '

2
,0 ', '

x x

w w

I I I I

I t C q I w

q I x C x dx I x C x dx

C q I w

e e C x C x dxdx
C w

     



  



  


 

 

 

 



 



  

 

 

 

 2-5 

 

The value of    , 0 ',C x C x   can be determined by principles of mass 

transfer from position x and x’ in a time of τ. This expression is a measure of 

correlation in concentration between those at lagtime of 0 with those later at a lagtime 

of τ. This is referred to in the literature as the diffusion propagator. 

2.1.2.1 Derivation of diffusion propagator 

The diffusion propagator can be derived based on Fick’s laws of diffusion. 

The first law states that the flux (mass per unit area per unit time (kgm-2s-1) is 

proportional to the concentration gradient along the direction 
C C

J D
x x

        

where the constant of proportionality is defined as the diffusion coefficient (D) of the 

substance. It depends on the viscosity of the medium (η), temperature (T) and the 

radius of the diffusing substance (R) (assuming it to be a sphere) according to the 

Stokes Einstein’s equation
6

Bk T
D

R
 

 
 

 where kB is the Boltzmann’s constant (kB = 

1.38 × 10-23 JK-1). The second law can be derived from the law of conservation of 

mass. The rate of change in concentration is equal to the flux gradient. Combining 

first and second laws, we get;  

2

2

C J C
D

t x x

  
  

  
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In cases, where there is directed movement along with diffusion, the flux 

gradient must be modified by the addition of the flux due to the movement along with 



21 
 

the flux due to the diffusion. The flux is a product of concentration and velocity in the 

case of directed movement  J vC ; 

2

2

C J C C
D v

t x x x

   
   

   
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This yields the generalized advection-diffusion equation (In the literature, this 

is also referred to as convection-diffusion equation). For convenience, the notations 

can be rewritten using the following convention. The temporal and spatial derivatives 

are indicated by subscripts of t and x respectively.  

t xx xC DC vC   2-8 

The partial differential equation can be solved by using Fourier transforms. 

Converting from x space to reciprocal space (kr here); 

       2 2
t r x r r r r rC ik DC ik vC k DC ik vC k D ik v C          2-9 

where C represents the Fourier transform of the concentration function 

(concentration in inverse space). The above simplification can be made by using 

properties of the Fourier transform as stated in Appendix 1. Fourier transformation 

has reduced the partial differential equation into a linear differential equation in time;

     2

0 rk D ik v t
C C e

 
 . In order to complete the derivation, initial conditions need to 

be specified. An instantaneous point source at t=t0 and x=x0 can be modeled using a 

Dirac Delta function112. Hence       
0

00 , 0
2

rik xe
C x x C


  

 


 2

0

2

r rikx k D ik v t
e

C


 

  
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Taking the inverse Fourier transform:  
 20

4

4

x x vt

Dte
C t

Dt

 


 . 

Substituting the above term in Eq.  2-5, we get  
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The details of the integration are provided in Appendix 2. The equation can 

be rewritten in 3 dimensions to yield the final solution of the autocorrelation function. 

 
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Eq. 2-12 calculates the autocorrelation for systems exhibiting diffusion and flow. In 

the case of flow process, D=0 and in the case of diffusion, vx=vy=vz=0. 

 
     

22 2

2 2
-

1
1

2 2

x y z

xy z

v v v

w w

flow
c

G e
C V

  



    
    
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where Vc is the confocal volume and is evaluated below. 
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where k is a measure of the ellipticity of the confocal volume. It is the ratio of axial 

length to the radial width z

xy

w
k

w
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  

 
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where 
2

4
xy

D

w

D
  is defined as diffusion time, the average transit time taken to travel 

the observation volume.  

2.1.2.2 Derivation of observation volume 
 

Substituting τ=0 in Eq. 2-3; 
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We are dealing with dilute solutions at equilibrium; hence the concentrations 

at two different points in space are independent of each other and not correlated to 

each other. Hence the expression    , 0 ', 0C r C r   is equal to  'C r r  .  

 
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   

   

  

   
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where Veff is the effective volume of observation in FCS and N is the number of 

particles in the observation volume. Thus Veff is defined as 

  
2

n1

2
eff nV I r dr

 






    
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It has to be noted that N is the number of particles in the effective observation 

volume and not the particles only in the confocal volume. Particles outside the 

confocal volume as well contribute to the detected fluorescence. Eq. 2-17 shows that 

Veff can be determined by setting τ=0 in the expression for ACF. 

2.2 Image Correlation Spectroscopy (ICS) 

In Image Correlation Spectroscopy56, the images are spatially instead of 

temporally correlated as in FCS. The derivation of the spatial autocorrelation function 

 r   in ICS is similar to FCS except the conspicuous absence of the diffusion 

propagator term. x is the lagspace analogous to lagtime in FCS.  

The autocorrelation is typically calculated using Fourier transforms by means 

of Wiener-Khinchin theorem113. The Wiener-Khinchin theorem states that the power 

spectral density of a wide-sense stationary process is given by the Fourier transform 

of the autocorrelation. The power-spectral density is defined as the product of the 

Fourier transforms of the process and its complex conjugate. The assumptions of the 

Wiener-Khinchin theorem holds good here since the processes we intend to observe 

are strictly stationary. Wide-sense stationarity is a subset of strictly stationary.  

        1 *
x xr F F I x F I x     2-20 

The intensity can be assumed to be a Gaussian function. The Fourier transform of a 

Gaussian function is another Gaussian.  
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The above derivation was carried out in 1D, extended to 2D which is typically 

the case. By fitting to a 2-dimensional correlation function, the value of the PSF-

w0,can be calculated. r0 is the amplitude and like FCS, it is related to the number of 

particles, x and h are lag distances in the x and y directions respectively. r¶ is the 

correlation at longer lag distances.  

2.3 Imaging FCS-Illumination schemes  

The heart of Imaging FCS lies in the illumination scheme to create the small 

observation volume. Fluctuations are difficult to record in a large volume. The 

various ways to create a small observation volume include confocal, two photon, 

TIRF, variable angle TIRF and SPIM. The last three methods (TIRF, variable angle 

TIRF and SPIM) were used in this thesis and are discussed in detail here. In all the 

three cases, the z sectioning is provided by the illumination whereas the x, y 

sectioning is provided by the pixels of the electron multiplying CCD (EMCCD) 

camera in the detection. A detailed description of EMCCDs is provided at Sec. 2.5.3. 

2.3.1 Total Internal Reflection 

Whenever light passes from an optically denser medium to an optically rarer 

medium, it moves away from the normal to surface of separation between the media. 

When the angle of incidence exceeds the critical angle, the entire light gets reflected 

at the interface in the denser medium. This phenomenon, leads to the creation of an 

exponentially decaying wave referred to as the evanescent wave in the optically rarer 

medium providing z sectioning. This is sufficient to illuminate the molecules on the 

cell-membrane as seen in Fig. 2.4 B. The advantage of using this method is that it 

reduces the background noise due to the rest of the cell since only the cell-membrane 

is illuminated. FCS performed using Total Internal Reflection is referred to as TIR-

FCS. A theoretical discussion on TIRF is provided below. 
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2.3.1.1 Theory 

 

Fig. 2.4: Total Internal Reflection: Principles and Instrumentation.  A is a 
schematic of the ITIR/IVA-FCS set up. B is a schematic showing the evanescent 
wave and the super-critical angle illumination in ITIR-FCS. C shows the plane waves 
and their wave fronts for a mathematical description of total internal reflection. A is an 
adaptation from an original figure prepared by Ping Liu from the lab. 

Consider a light wave travelling from an optically denser medium with 

refractive index µ1 (at an angle of θ1 to the normal) to an optically rarer medium with 

refractive index µ2. The rays are refracted at the interface. Let θ2 be the angle of 

refraction. The plane waves are shown in solid lines and the wavefronts are shown in 

dashed lines in Fig. 2.4 C. The geometry from the same suggests that,  

1 2
1 2cos cos

2 2

d d

d d

           
   
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d1 and d2 are distances travelled in medium µ1 and µ2 respectively. Hence they can be 

related to the velocity of light in the media (v1 and v2). The velocity of light in 

individual media can be obtained from the refractive indices of the media. 

1 2 1 2

1 2 1 1 2 2
1 2

sin sin sin sincos cos
2 2

d d v t v t c c
        

    
       
   
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Hence the law of refraction can be stated as 1 1 2 2sin sin    . This is referred as 

Snell’s law. It can be rewritten as 1 1
2 1

2

sin sin
 


  
  

 
. Since, µ1> µ2, θ2 is always 

greater than θ1. Hence the wave always moves away from the normal in the case 

when it is travelling from denser to rarer medium and vice versa. 

Mathematically, the arcsin function (sin-1 x), is defined only for -1≤ x≤ 1. For, 

values of x>1, the function is not defined. Hence 1
1

2

sin 1
 


 . The value of the 

angle of incidence for which θ2=π/2 (sin π/2=1), is referred to as critical angle or 

grazing angle. At the critical angle (θc=
1 2

1

sin



  
 
 

), the refracted ray grazes the 

interface of separation between the two media. For angles greater than the critical 

angle, the refracted ray is imaginary and the entire light gets reflected off the interface 

and this phenomenon is referred to as total internal reflection. Light is an 

electromagnetic radiation and hence at an interface, electrical and magnetic fields 

cannot be discontinuous. This leads to the creation of an exponentially decaying, 

standing wave called evanescent wave extending into the optically rarer medium. The 

penetration depth of the evanescent wave can be derived from the principles of 

electromagnetic theory. Consider the propagating electric field in the rarer medium 

with wave vector
2

k k



  
 


, angular frequency ω. In the 2D case, as seen in Fig. 

2.4 C,  

   2 2.

0 0
x y

i k x k y ti k r t

t t tE E e E e
  

 
   

 
 2-25 

From the laws of trigonometry,  
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Applying Snell’s law ( 2-24) to Eq.  2-26, 
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Eq. 2-27 describes the propagating electric field in the rarer medium for any plane 

wave at an angle of incidence θ1 to the normal. In the case of total internal reflection, 

the term 

2
211 sin
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 is imaginary since 2
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where λ and λ2 are the wavelengths of light in vacuum and the rarer medium 

respectively. In the case of θ1>θc, the electric field propagates in the x direction and is 

non-propagating in the y direction. The depth of penetration of the evanescent wave 

in the y direction can be determined by calculating the intensity from the electric 

field. 
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The penetration depth (dp) is defined as the distance where the intensity of the 

evanescent decays to e-1 times the intensity at the interface and it is given by Eq. 2-30. 

 2 2 2 2 2
1 1 2 24 sin 4

pd
NA
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The term μ1sin(θ1) is referred to as the numerical aperture of the objective of 

the microscope (NA). The numerical aperture is a dimensionless number and is a 

measure of the light gathering ability of the microscopy. It is related to the resolving 

power of the objective. The resolution is derived from the diffraction limit. The 
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resolution is given by the formula
2NA


. Hence, for higher resolution, higher NA 

objectives are beneficial. The value of NA can be increased by increasing μ1 or θ1. The 

maximum value of θ1 is π/2. Hence the maximum value of sin(θ1) is 1. It has to be 

remembered that, with increasing θ1, the objective has to be very close to the sample 

and θ1= π/2 would be a lens of focal length zero which is not possible. Hence, due to 

practical limitations, sin(θ1) is 0.95. So, a NA>1 can never be achieved if the medium 

is air (referred to as dry objective).  

In order to increase the NA, wet objectives are used; a drop of water or oil 

with refractive index of 1.33 and 1.53 respectively is placed over the objective. It has 

to be remembered that the above considerations are from conventional microscopy. In 

the case of TIRF, in order for the penetration depth to be a real number, the NA must 

be greater than the refractive index of the rarer medium. Typically, TIRF imaging is 

performed in a glass-water interface; hence the numerical aperture of the objective 

must be greater than the refractive index of water (1.33). Hence, typically, TIRF is 

performed using an oil immersion objective with 1.45 or higher N.A. The refractive 

index of the oil must match the refractive index of the glass in the objective lens. 

Mismatches in the refractive index will lead to spherical aberration. For a wavelength 

of 514 nm, 1.45 NA, glass-water interface, Eq. 2-30 is evaluated to be 70 nm. 

2.3.2 Variable angle FCS 

Recently, other related illumination schemes with sectioning capability have 

been introduced for imaging and FCS. Variable angle epi-fluorescent Microscopy 

(VAEM)114 and Highly Inclined and Laminated Optical Sheet (HILO) microscopy 

were utilized for imaging of plant cells and single molecule imaging, respectively115-

116.  
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Fig. 2.5: Illumination schemes in camera based FCS.  IVA-FCS is performed just 
by decreasing the angle of incidence to values less than the critical angle leading to 
selective excitation in the bulk sample as seen in A. B is a schematic of SPIM 
illumination where the fluorophores are excited by a diffraction limited light sheet. A 
and B are capable of exciting fluorophores in a physiologically relevant 3D 
environment inside biological samples. C is a set of representative autocorrelations 
from beads diffusing in solution. D was obtained by recording fluctuations of 
fluroscence of beads injected into the bloodstream of a zebrafish embryo. The 
dataset in D was a kind gift from Dr. Shi Xianke from the lab. 

Critical angle illumination based FCS was demonstrated on fluorescent 

beads97. At sub-critical, oblique angles of illumination, the refracted light is just 

above the surface of separation sufficient to illuminate fluorophores away from the 

surface in the bulk sample. The use of sub-critical angles reduces the background 

considerably and provides volume isolation in the bulk suitable to perform FCS. 

Performing FCS in such illumination conditions is referred to as IVA-FCS (Imaging 

Variable Angle-FCS). IVA-FCS does not need any separate add-on apparatus to a 

TIRF microscope. In comparison with ITIR-FCS, IVA-FCS has the advantage of 

increased penetration depth into bulk of the sample away from the surface of 

separation. 
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2.3.3 Single Plane Illumination Microscopy 

In SPIM-FCS, the volume isolation is provided by a diffraction-limited light 

sheet created using a cylindrical lens. Cylindrical lenses focus the light onto a line 

unlike the more commonly used spherical lenses which focus the light onto a single 

point. This facilitates selective illumination of only a thin layer of the sample away 

from the cover slide95 which lies in the focal plane of the detection objective. The 

thickness of the light sheet can be varied by changing the numerical aperture of the 

objective used. Since these techniques only illuminate the parts of the sample which 

are observed95, 99, the background and cross-talk between the detection elements is 

greatly reduced making FCS in an imaging mode possible even on live-cells and 

within living organisms.  

2.4 Imaging FCS-experimental set up  

The measurements were performed using two different objective type TIRF 

microscopes built around inverted microscopes with high NA objectives as shown in 

Fig. 2.4 A. The fluorophores were excited with laser light from a dual color laser 

source after passing through a suitable excitation filter. Light was directed to an 

EMCCD mounted on the left port by a dichroic mirror and emission filter. The details 

of the instrumentation are provided in Table 2-1. A maximum angle of 72.5° was 

achievable using the systems since NA<0.95. The critical angle for the glass-water 

interface is 61.7°. This provides a 10° range to perform TIRF. A description about 

image acquisition is given in Sec. 2.5.3. Spatial and temporal correlations were 

calculated from image stacks acquired by the EMCCD camera. 10000 frames were 

obtained on a suitable ROI with the minimum possible acquisition time of the 

EMCCD camera. 
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Table 2-1: Characteristics of TIRF instruments used in the thesis 

 Set up-I Set up-II 

Microscope Axiovert 200M, Carl Zeiss, 

Singapore 

IX-71, Olympus, Singapore 

Objective Oil, 60X, NA 1.45, TIRFM, 

Olympus, Singapore 

Oil, 100X, NA 1.45, TIRFM, 

Olympus, Singapore 

Laser Dual Calypso, Cobolt, 

Photonitech Pvt Ltd, Singapore, 

λem=491, 532 nm 

Dual color air-cooled ion, 

Spectra-Physics, 185-F02, CA, 

USA, λem= 488, 514 nm 

Dichroic 

mirror 

560DRLP, Omega, Brattleboro, 

VT, USA 

524DRLP, Olympus, Singapore 

Emission 

filter 

595AF60, Omega 524LP, Olympus 

Excitation 

filter 

XL08, Omega FF01-513/17-25 

Semrock, Rochester, NY, USA 

EMCCD Cascade II: 512, Photometrics, 

Tucson, AZ, USA 

Andor iXON 860 

Acquisition 

software 

Metamorph, Universal Imaging 

Corporation, PA, USA 

Andor Solis (Ver: 4.9.30000.0) 

Chip Size 8.2×8.2 mm2 3.1×3.1 mm2 

Pixel size 

 

16×16 μm2 24 x 24 µm2 

Image Plane: 284×284 nm2 Image Plane: 240×240 nm2 

Pixels 512×512 128×128 

Best time 

resolution 

4 ms for 2121 pixels ROI 0.56 ms for 2121 pixels ROI  

Maximum 

angle 

72.5º 72.5º 
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2.5 Imaging FCS-detection 

Detection in Imaging FCS is achieved by the usage of fast and sensitive 

cameras. Two different sensing technologies are available today: CCD and CMOS.  

2.5.1 CCD 

As suggested by the name, the basic principle of charge coupled detector 

(CCD) lies in the charge coupling of neighboring pixel units so that they can be 

transferred and read out serially. There are two parts in a chip, a photoactive region 

and a storage region in order to increase the frame rate of the device. After capturing 

an image, the data is transferred to the storage part by charge coupling.  

Depending on the location of the storage region, the CCDs are classified into 

interline CCD and frame transfer CCD. In an interline CCD, every second column is 

used for storage. The data from active columns is passed on to the storage column 

placed next to it. Every pixel in each of the storage column is read serially later. In a 

frame transfer region, a half of the chip is designated for storage since an entire frame 

is transferred in a single shot. From the storage area, the image is read one column at 

a time. An entire column of data is transferred to readout registers and then each pixel 

in this column is read serially. Once, a particular column is read, the data from the 

next column is read by the readout registers. 

The advantage of using interline or frame transfer CCDs is that the data can 

be read from the storage region while another image can be captured by the active 

pixels. The configuration (active area and a storage area) increases the frame rate 

when compared to full frame CCDs which do not have a specific storage area. 

2.5.2 ICCD  

CCD technology was originally not used for single molecule detection. The 

next variant in CCD technology was intensified CCD (ICCD) camera, in which the 

signal passes through an amplification step using a micro channel plate. The 

incoming photons hit a photocathode where they are converted to electrons. Later, 
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these electrons move through a multi channel plate where multiplication occurs and 

hit a phosphor screen where they are converted to photons again and they strike the 

CCD chip. This technology was not used for single molecule detection because of the 

lower quantum efficiency (QE) that was offered by it. The presence of a photocathode 

reduces the QE in ICCD. Further, this cannot be used for Imaging FCS because of the 

loss in spatial resolution. During the movement in the multi channel plate, secondary 

electrons are created. Hence the electrons from one pixel may create secondary 

electrons in neighboring pixels as well leading to an increase in cross talk and a loss 

in spatial resolution.  

2.5.3 EMCCD 

Unlike a CCD, electron multiplying CCD (EMCCD) cameras have an 

amplification step after the readout step (Fig. 2.8). Amplification happens due to 

impact ionization of electronic charge. Every pixel in each line is read serially after 

letting the signal in each to pass through a multiplication register. A device is single 

molecule sensitive if the photons from single molecules are differentiable from the 

background. This was made possible by the introduction of cooled EMCCDs. 

Cooling the EMCCD to -80°C by thermoelectric pump elements incorporating Peltier 

effect, reduces the thermal noise. The second way to reduce the noise was by the 

incorporation of the electron multiplying step of impact ionization similar to that 

observed in the APD. The third reason for increased sensitivity is back illumination. 

In the conventional architecture referred to as front illumination, the photo detection 

unit is buried in the silicon chip. This leads to a loss in QE. There is further reduction 

by covering the active area with connection circuitry. In the case of back illumination, 

the light is allowed to fall from the back side by removing some of the bulk silicon in 

which the detection unit is embedded and the circuitry is behind the active area. This 

increases the quantum efficiency (QE) when compared to the front illuminated 

EMCCD. The QE of a front illuminated EMCCD is 50% while that of the back 

illuminated is 95%. 
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Fig. 2.6: Schematic of EMCCD and sCMOS architecture.  The major differences 
between EMCCD and sCMOS in the readout and amplification are evident here. The 
figure is an adaptation of schematics of EMCCD and sCMOS provided here117-118. 

2.5.4 sCMOS 

Scientific CMOS (sCMOS) is based on a complementary metal oxide 

semiconductor (CMOS) architecture. CMOS offers superior frame rates when 

compared to CCD and a very large field of view. Current CMOS can provide up to 4 

Megapixel on a chip. The higher frame rate is possible since the data is read in a 

column parallel arrangement. CMOS sensors suffer from an inherent variability and 

smaller fill factor which is a ratio of the active refractive area of the chip to the total 

area of the chip. Unlike a CCD, the electronic signal obtained after the photon 

impingement are immediately converted to a voltage and amplified individually in 

each pixel. Each pixel is fitted with an individual amplifier and this leads to an 

inherent variability in the signal.  

Apart from that, since each pixel has to be manufactured with an amplifier 

attached to it, the contact area for the photons of the silicon substrate is reduced. Both 

the factors contribute to lower signal to noise ratio. This was modified by the 
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introduction of scientific CMOS (sCMOS) cameras. They are also referred to as 

CCD/CMOS hybrid cameras. The fill factor is resolved by the use of micro lenses 

which focus the light on to the active area of the substrate. The pixels show 

variability since each of them has different amplifiers. This was resolved by the use 

of correlated double sampling (CDS). In CDS, at each step, the value of the pixel is 

set to a predetermined reference value and then the photon impingement is bound to 

occur leading to signal. The value of signal is the difference between the value of the 

reference and readout. In short, apart from differences in manufacturing and 

architecture, sCMOS offers parallel readout while EMCCD offers serial readout and 

as a result, sCMOS offers higher frame rates than EMCCD. In a nutshell, sCMOS 

offers smaller pixel sizes and higher frame rates while EMCCD offers higher 

sensitivity.  

2.5.5 Characterization of noise in EMCCD and sCMOS  

The noise sources can be classified into those which are common to EMCCD 

and sCMOS and those which are not. Shot noise, readout noise, dark noise, and A/D 

conversion noise are common noise sources in EMCCD and sCMOS whereas the 

multiplication step contributes to the noise only in the EMCCD.  

The shot noise present in both cameras is due to inherent statistical 

fluctuations in the amount of photons detected. This can be modeled by a Poisson 

distribution with its mean equal to its variance. Hence the SNR is N . It is 

dependent upon the QE of the detector. As a result, the back illuminated and front 

illuminated devices differ in the shot noise. Even an ideal detector is shot noise 

limited, hence it would be sufficient, if the detector has lower readout and dark noise. 

Any device becomes shot noise limited at very low light levels. The read out noise 

happens due to higher frame rates and higher number of pixels being sampled. This 

can occur at two stages, in the conversion of electrons to a voltage signal or at the 

analog to digital converter. The read out noise can be controlled by increasing the 
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gain in an EMCCD. sCMOS has higher readout noise (injection of unwanted 

electrons to the signal) when compared to EMCCD. 

The dark noise is due to the thermal energy in the detector. This can be 

controlled by cooling the EMCCD. There is another noise in CCD called CIC which 

is clock induced charge or spurious noise. This is due to random single electrons 

generated during the charge coupled transfer. This is present in all CCDs but is 

important only in EMCCD since in conventional CCDs, this would be buried in the 

dark noise due to the absence of cooling. The last source of noise is the multiplicative 

noise. The last step in an EMCCD, the electron multiplication process due to impact 

ionization, is a stochastic process and leads to an inherent noise in the signal. This has 

been mathematically studied119. This is similar to the multiplication noise in an 

avalanche photodiode120-121.  

2.5.5.1 Multiplicative noise in EMCCD 

The excess noise factor119 is defined in EMCCD literature as 
2

2
2 2
out

in

F
M






where M is the mean gain, 2
in and 2

out are the variances of the input and output 

signal respectively. In the case that there is no noise added by the multiplication 

process, the value of F is 1. In reality, the stochastic multiplication leads to the 

addition of noise and hence the value of F needs to be quantitated. Let n  2
n  and m

 2
m  be the mean (variance) number of electrons into and out of a single 

multiplication stage. The gain (g) is defined as m/n. Assuming g is independent of n, 

and applying rules of error propagation, we get 
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the probability of multiplication, α=g-1. The gain can be treated as a binomial 

process. Hence the variance in number of electrons added  2 1added n    . The 

variance of gain can be rewritten using the relation above as
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. Hence the variance at the end of every stage can be rewritten as

   22 21 1m n n        . Let there be N multiplication steps in the EMCCD. 

Let Sin and Sout be the input and output signal respectively. Let the signal be shot noise 

limited. Hence the variance of Sin is equal to the signal itself. The variance at the end 

of every stage can be computed by applying the formula above sequentially.  
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This can be generalized for any value of N. 
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where  1
N

M   . Hence the value of excess noise factor can be rewritten as 
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For high N and M, the value of F2=2. Hence the excess noise factor (F) is quantified 

as 2 . 

2.5.6 Signal to Noise Ratio in imaging systems 

The effective signal to noise ratio (S/N ratio)122 can be computed by taking 

the ratio of the signal to sum of the noise sources in quadrature. The signal is given 

by the expression; S QE M P    where QE is the quantum efficiency, P is the 

number of photons and M is the net EM gain. The effective noise is the sum in 

quadrature of shot noise, read out noise, dark current, clock induced charge and the 

multiplicative noise.  2 2 2 2
r d cicN P F M P P P      . Hence the signal to noise 

ratio can be quantified as 
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The above expression shows that the net EM gain plays a significant role in 

reducing the effects of the readout noise on the overall noise. In the case of sCMOS 

camera, F=M=1 and Pcic=0. The detector characteristics of an EMCCD and a sCMOS 

camera are listed in the next page and the S/N is calculated for both cameras. The S/N 

ratio graph is shown in Fig. 2.8 A. The figure illustrates that for the characteristics 

described in Table 2-2, the EMCCD closely resembles an ideal detector which proves 

that the EMCCD is only shot noise limited. 

Instead, a sCMOS does not perform as efficient as an EMCCD. But, it is to 

be remembered that the sCMOS has smaller pixels than an EMCCD. Hence, the 

difference in S/N ratio could just be attributed to the pixel size. Hence, the SNR of a 

hypothetical EMCCD is plotted with all the characteristics as in Table 2-2 except 

with a pixel size comparable to that sCMOS. Even, in this case, the hypothetical 

EMCCD outperforms sCMOS. Though the SNR plots merge at higher photon counts, 

at photon counts frequently observed in FCS experiments, it is found that EMCCD is 

better. This might mainly be attributed to the lower QE and higher read out noise of 

the sCMOS when compared to the EMCCD.  

Four different cameras were used in the experiments described in this thesis. 

They are Cascade II: 512 and Evolve 512 (Photometrics, Tucson, AZ, USA), Andor 

iXON 860 (ANDOR, Belfast, UK) and Orca Flash 2.8 (Hamamatsu Photonics, 

Hamamatsu city, Japan). 
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Table 2-2: Characteristics of EMCCD and sCMOS cameras plotted in Fig. 2.8 A 

*The illumination time in an EMCCD can be evaluated. Consider a typical frame rate 
of 0.56 ms for a 21×21 region. This includes the frame transfer time and the 
illumination time. As described in the principles of EMCCD operation, the read out is 
performed by reading individual lines. Hence 128×21 pixels need to be read. 
Assuming that the camera is operated at the fastest readout (improves the frame rate 
but increases the readout noise as well) of 10 MHz, it would take 128*21/10^7=0.26 
ms for read out. Hence the illumination time is 0.56-0.26=0.3 ms.  

 EMCCD: Andor iXON 

860123 

sCMOS: Hamamatsu Flash 

Orca 2.8124 

Full Resolution 128×128 1920×1440 

Speed  128×128 513 fps 

64×64 943 fps 

1920×1440 45.4 fps 

1920×80 540 fps 

Pixel Size 24×24 µm 3.6×3.6 µm 

Chip Size 3.1×3.1 mm 6.9×5.2 mm 

QE at 514 nm 0.95 0.65 

EM Gain 1-1000 - 

Analog Gain 10 8 

Readout noise  0.3 e- pixel-1 (EM Gain: 200) 3 e- pixel-1 

Full Well Capacity 800, 000 e- 18000 e- 

Dark Current 0.002 e- pixel-1s-1 0.5 e- pixel-1s-1* (Data from model 

Flash 4.0) 

CIC 0.05 e- pixel-1s-1 - 

Pixels at 500 fps ~16000 ~160000 

Multiplicative Noise 1.4x - 

A/D convertor 16 bit 12 bit 

Max Readout rate 10 MHz Varies with illumination size 

Min illumination 

time 

Cannot be set independently. 

Determined by frame rate*. 

20 μs 
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Fig. 2.7: Representative autocorrelation curves from different cameras.  Four 
different cameras were tested during the course of the project. Representative 
correlation functions from all the cameras show that Imaging FCS can be performed 
using them. A, B and C are lipid bilayers samples probed by Imaging FCS using 
Cascade, Evolve and Andor EMCCD cameras respectively. D is a set of correlation 
curves calculated using images of fluorescent beads captured by Hamamatsu 
sCMOS camera. The inset shows a single autocorrelation in each case. 

 

Fig. 2.8: Comparison of EMCCD and sCMOS cameras. A shows that sCMOS 
outperforms EMCCD in signal to noise ratio. B is a kymograph showing the paths of 
individual beads. C is a single image obtained from a stack captured by sCMOS 
showing the differences in area captured between an EMCCD and sCMOS. Typical 
area captured in EMCCD at the same frame rate is shown in the box. 

 Note the advancement in technology with time. Cascade II: 512 had the best 

time resolution of 4 ms while Evolve has 2 ms. With better time resolution, the 

plateau of autocorrelation can be captured. The improved time resolution between 

Evolve and Andor is only due to the less number of pixels (1/16th) in Andor when 
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compared to Evolve leading to shorter readout time. With better time resolution, the 

plateau of autocorrelation can be captured. As discussed earlier, the current day 

models of sCMOS do not have the best S/N ratio to do correlation and hence the 

autocorrelations obtained from the fluctuations in fluorescence of beads in Fig. 2.7 D 

appears noisy. Due to limited QE, FCS could not be performed with conventional 

fluorophores but could be performed with very bright particles like beads. Though 

SNR is limiting in sCMOS using current day technology, it is bound to improve in 

the years to come. sCMOS provides the unprecedented advantage of multiplexing. 

For the first time, we were able to measure more than 1 million autocorrelations. 

Here, we show that by using a sCMOS camera, we can record 1,152,000 (1920×600) 

autocorrelation functions at 25 fps. A projection of a set of 750 frames from the stack 

displays the diffusion paths made by different beads as in Fig. 2.8 B. Due to very 

large field of view, individual particles can be tracked for a very long time as seen by 

the fluorescent traces. The dramatic improvement in the field of view can be 

understood by observing the white box in Fig. 2.8 C which is a 512x512 region, 

typical of EMCCD based field of view at the same frame rate of sCMOS.  

2.6 Imaging FCS-calculation of correlation functions  

Correlations are performed on a stack of multiple images acquired at different 

time points. Each image is made up of a certain number of pixels and each pixel has 

an associated intensity value. These are typically stored as a *.tiff file. The intensity 

values from the multi-plane tiff file are written into an intensity array of dimensions 

n, wi, li where n is the number of frames, wi is the number of rows in the image and li 

is the number of columns in the image. Each measurement has a background value 

associated which originates from camera, environment and sample related issues. The 

background value can be determined by a background file which was acquired 

without excitation of the fluorophores or the background value can be entered directly 

into software or can be set to the minimum value of the stack being correlated. For a 
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full frame data treatment, the correlation is performed at each pixel and upon 

completion the output consists of wi × li number of correlation curves. Binning is a 

procedure in which intensity in adjacent pixels get added up. In case, binning is 

performed, the output consists of i iw l

bin bin
         

 number of correlations where x    

is the largest integer less than or equal to x. 

2.6.1 Correlation: Types and architecture 

Correlations are performed between pixels which had been acquired at different 

times and/or locations. The acquisition time of the first frame is set to 0t  . The pixels 

in the frame are correlated individually with pixels in another frame that was acquired 

at t  . The difference between the acquisition times of these two frames being 

correlated, τ, is referred to as lag time.  

There are a number of important time scales for the calculation of the 

correlations. First, the frame rate of the camera limits the time resolution, and this 

time per frame is referred to as Δτ. Note that this time includes the illumination of the 

camera as well as the readout time. All other time scales are multiples of this basic 

unit time Δτ. Second, the measurement has to be taken over a certain acquisition time 

tacq. Third, the correlations are calculated for different lagtimes τ (0< τ < tacq). Fourth, 

at different lagtimes τ, the width over which the intensity signal is integrated before 

the correlation is calculated can vary and is referred to as the bin width125-126. 

Currently, there are two correlator architectures: linear and semi-logarithmic. 

2.6.1.1 Linear correlation 

In linear correlation mode, the correlations are calculated at linearly 

increasing lagtimes m    where m ranges from 0 to M-1, if the correlations are 

calculated for M lagtimes. The bin width for each lagtime is kept constant at Δτ. 

Theoretically, the last point of the correlation is the acquisition time (tacq). It is not 

advisable to calculate the correlation till tacq since the number of data points to 

average is very few as the lagtime approaches tacq. To display correlations from 0t 
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to , / 1end end acq endt t t t t       , number of calculations need to be done. Substituting 

typical values, Δτ = 0.5 ms, tend=1.0235 s, 2048 correlations at individual lag times 

need to be performed. For linear correlation, the lagtime is 

  | 0
linear

t
endm m m m 


          
  
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Where   is the set of natural numbers. 

2.6.1.2  Semi-logarithmic correlation 

The semi-logarithmic correlator architecture is used more frequently since 

this architecture covers a larger range of lagtimes than the linear correlator using less 

number of computations. This correlator architecture is based on the multi-tau 

algorithm125. In the most common configuration, the first 16 correlations are at 

linearly increasing lagtimes m    where m ranges from 0 to 15 with a bin width of 

Δτ. The next set of 8 correlations possess linearly spaced lagtimes at intervals of 2Δτ 

beginning with (15+2)Δτ and a bin width of 2Δτ . The next set of 8 correlations 

possess lagtimes at intervals of 4Δτ beginning with (31+4)Δτ and a bin width of 4Δτ. 

This is repeated for bin widths of 8Δτ, 16Δτ, 32Δτ, 64Δτ and 128Δτ. The last 

calculated lag time is at (2048-1)Δτ. Substituting Δτ=0.5 ms, a lag time of 1.0235 s 

can be achieved by just 72 (16+(8-1)×8) correlations. The same lagtime needs 2048 

correlations in the linear configuration. The above example was for the configuration 

of a (16, 8) multi tau correlator but can be directly extended to any (p, q) correlator 

structure. In a (p, q) correlator, the first p correlations are at linearly increasing 

lagtimes m   where m ranges from 0 to p-1 with a bin width of Δτ. The next q 

groups possess p/2 lagtimes with bin width and lagtime intervals which double from 

group to group. In this way a particular lagtime is always the sum of all the bin 

widths of the previous lagtimes. A (p, q) correlator calculates a correlation function at 

h = [p+(q-1)×q/2] number of lagtimes. The minimum number of frames (Frmin), 

needed for a (p,q) correlator is  
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For a (16, 8) correlator, Frmin=2048. Although 2048 frames are sufficient to 

carry out the correlations, it is advised to perform the correlation with higher number 

of frames in order to increase the precision of the calculated correlation. Typically, 

correlations are calculated using 10000 frames. A detailed description of the semi-

logarithmic correlator is available elsewhere108, 126. Thus the lagtime in this 

architecture can be represented by the formula below. 
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There are two ways, by which the correlation can be calculated, using the 

sums of products method or by using Fourier transforms127. Here, the correlations are 

calculated using the former method. The continuous expression for correlation in Eq.    

2-1 is converted to discrete form and implemented in the program as in Eq. 2-38 for 

the linear and the first cycle of the semi-logarithmic architecture. Symmetric 

normalization is performed where each correlation is normalized by only those 

intensity values used in the calculation of the autocorrelation125.  
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In the case of semi-logarithmic architecture, the multi tau algorithm is 

implemented125-126. Stacks which have acquisition times which are integer multiples 

of Δτ are created by summation and the correlations are calculated in these stacks as 
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shown in 2-39. The correlations are calculated for p/2 points at arithmetically 

progressing time intervals at twice (21) the time resolution, Δτ, of the camera. This is 

followed for p/2 points with a time difference of four times (22) the time resolution. 

This is repeated till the time difference has reached 2q-1 times the time resolution.  
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Fig. 2.9: Representative ACFs from different correlator architectures. A and B 
are autocorrelations from linear and semi-logarithmic architecture respectively. A was 
calculated from 2048 channels while B was calculated from 72 channels. Both the set 
of curves resemble each other. Hence, a semi-logarithmic correlator is preferred 
since it provides memory and data-handling advantages over the linear correlator. 

2.7 Imaging FCS-data analysis by ImFCS 

Presently, to the best of our knowledge, no commercially available software 

can read in image stacks and calculate correlations in each pixel of the image stack. 

Hence, an open-source program, ImFCS, was created that allows the user to read-in 

the intensity files from different CCDs, to automatically calculate the temporal 
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autocorrelations and temporal and spatial cross-correlations, to fit all data with a set 

of predefined models and to display images and histograms of all parameters. The 

program, ImFCS, is written in C++ for Windows XP/Vista, and is linked to the 

widely available commercial software IgorPro (WaveMetrics Inc, Lake Oswego, OR, 

USA) to provide a graphical interface for the user. This software is available for 

download at http://staff.science.nus.edu.sg/~chmwt/ImFCS.html. The functionalities 

of the software and a screen shot are shown in Fig. 2.10 and Fig. 2.11 respectively. 

 

Fig. 2.10: Readouts in Imaging FCS.  Imaging FCS is a method to mobility and 
number of particles. It can be determined by fitting temporal autocorrelations or by 
spatiotemporal cross-correlations or by spatial autocorrelations. The organization of 
molecules can be inferred by using diffusion laws and ∆CCF histograms and 
probability plots.  
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Fig. 2.11: Screen shot of ImFCS 
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3 Estimation of mobility, number of particles, PSF and 
heterogeneity by Imaging FCS 

Camera based FCS is characterized by an illumination area which is a 

convolution between the square area of the pixel (a2) and the point spread function 

(PSF). Theoretical expressions incorporating the effect of the PSF on the 

autocorrelation function in camera based FCS is available only for autocorrelation. 

But the usage of EMCCD permits one to perform cross-correlation between any two 

areas. In this work, we derive a generalized expression for cross-correlation between 

any two areas of any size and shape on a CCD chip incorporating the effect of PSF 

and use the same expression to extract diffusion coefficient and velocity parameters 

for 3 different types of transport (diffusion, flow, diffusion and flow). In order to 

quantitate the absolute number of particles contributing to the correlation, the 

effective volume of observation incorporating the effects of PSF needs to be obtained. 

Hence, in the next step, an expression for effective observation volume in camera 

FCS is determined. All the aforementioned expressions are determined first in 2-

dimensions for TIRF based camera FCS and then later extended for 3D SPIM based 

camera FCS. The expressions for cross-correlations are validated using experiments 

later. This is followed by providing guidelines for effective fitting of cross-correlation 

data. Finally, new methods to probe heterogeneity from Imaging FCS data are 

discussed. 

3.1 Materials and Methods 

3.1.1 Reagents 

Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC),1,2-dipalmitoyl-sn-

glycerol-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) ammonium salt 

(Rho-PE), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium 

Salt) (POPG), 1,2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine-N-(Cap Biotinyl) 

Sodium Salt (Biotinyl Cap PE), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) 

and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) were obtained from Avanti 
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Polar lipids (Alabaster, AL). Quantum dot Q21511MP was purchased from 

Molecular Probes, Invitrogen, Singapore (QD-585). Hellmanex was purchased from 

Hellma GmbH & Co, KG (Mullheim, Germany). Avidin was obtained from 

Invitrogen (Singapore).  

3.1.2 Preparation of clean cover slides 

Cover slides were sonicated in hellmanex detergent for 30 minutes. They 

were sonicated in 2 M H2SO4 for 30 minutes. This was followed by sonication in de-

ionized water for 15 minutes twice. They were rinsed and stored in technical ethanol 

and air-dried before use. 

3.1.3 Preparation of Supported Lipid Bilayers (SLB) 

POPC was prepared as stock in CHCl3. Rho-PE (concentration-0.01 mol% to 

the total lipid) was mixed with POPC for measurements. The solvent was subjected to 

vacuum evaporation for 1 hour. Deionized (DI) water was added to make 0.5 mM 

lipid suspension. 500 μl of the suspension was sonicated for 15 minutes to form 

vesicles. 200 μl of the sonicated suspension was dispensed onto a cleaned dry cover 

slide and incubated for 2 hours at 60 ºC for the formation of bilayers. This was 

followed by cooling for 30 minutes. The lipid aggregates above the bilayer were 

washed by replacing the solution 10 times with DI water.  

3.1.4 Preparation and Immobilization of GUVs 

GUVs were prepared and immobilized according to protocols described 

elsewhere128. The protocol is described in brief here. POPG was prepared as stock in 

CHCl3 (5.19 mM). A known amount of POPG was dissolved in CHCl3 to obtain the 

required stock concentration. 0.5 mM POPG was mixed with 5% Biotinyl-cap-PE and 

0.01% Rho-PE and the solvent was subjected to vacuum evaporation for 1 hour. Rho-

PE was added to fluorescently label the Giant Unilamellar Vesicles (GUVs) whereas 

Biotinyl-cap-PE was added to immobilize the GUVs on cover slide by avidin-biotin 

chemistry. PBS was added to make a lipid suspension and the sample was incubated 

at 37 ºC overnight to produce GUVs. Avidin (0.5 mg/ml) was added to the cover slide 
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and dried by heating at 60 ºC. Later, the POPG GUV solution was added to the cover 

slide. Biotinyl-Cap-PE present in the GUVs bound to the avidin on the cover slide, 

thus immobilizing the GUVs. The GUVs thus obtained, which were spread on the 

cover slide as a double bilayer due to the strong avidin-biotin interaction, were used 

for ITIR-FCS. The sizes of GUVs were determined by light microscopy. 

3.1.5 Preparation of supported mixed lipid bilayers 

DLPC and DSPC were prepared as stock in CHCl3. Rho-PE (concentration-

0.01%) was mixed with DLPC/DSPC (1:1 mol/mol) for measurements. The solvent 

was subjected to vacuum evaporation for 1 hour. Deionized (DI) water was added to 

make 0.5 mM lipid suspension. 500 μl of the suspension was sonicated for 15 minutes 

to form vesicles. 200 μl of the sonicated suspension was dispensed onto a cleaned dry 

cover slide and incubated for 2 hours at 60 ºC for the formation of bilayers. This was 

followed by cooling for 30 minutes. The lipid aggregates above the bilayer were 

washed by replacing the solution 10 times with DI water. The transition temperature 

of DLPC and DSPC are -1 and 55 ºC respectively. Hence DLPC forms the liquid 

disordered phase (Ld) and DSPC forms the liquid ordered phase (Lo) at room 

temperature. The fluid phase region in the mixed lipid bilayer is labeled by Rho-PE. 

The measurements are performed at room temperature where they are phase 

separated.  

3.1.6 Diffusion and simulated flow measurements 

Diffusion measurements were performed on lipid bilayers. For the 

measurement of directed movement, further referred to as flow, a QD-585 of 

concentration 1 nM was immobilized onto a cover slide and was air-dried. A Scan IM 

120x100 motorized stage (Marzhauser Wetzlar GmbH & Co.KG, Wetzlar-Steindorf, 

Germany) was used to move the cover slide at a nominal velocity of 10 μm/s or 100 

μm/s (referred to as slow flow or fast flow respectively). For the combination of 

diffusion and directed transport, lipid bilayers were prepared as described above on 
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clean cover slides and the motorized stage was used to move the cover slide at a 

velocity of 10 μm/s. 

3.2 Theory  

Correlations can be calculated for any pixel or combination of pixels on the 

EMCCD chip as in Fig. 3.1. The PSF of a microscope can be approximated as a 

Gaussian Function with center x0 and width w0  

 
 20

2
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2 -
-
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x x

w emw
I x x I e w

NA


   
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where λem is the wavelength of emission and NA is the numerical aperture and w0 is a 

numerical value of PSF to be determined by fitting. The Gaussian functions are 

separable and can be multiplied to express the point spread function in the x-y 

plane129-130. 

     0 0 0 0, , , , ,I x x y y I x x I y y   3-2 

It was suggested that w0=0.42 as the best approximation of the Gaussian to 

the Bessel function of the PSF of a microscope129-132. However, this approximation 

was derived for imaging applications and might have to be adapted depending on the 

application130. In addition, this approximation did not take account of any molecular 

dynamics, noise due to an EMCCD. Due to the noise level for EMCCD cameras, this 

theoretical value cannot be achieved and a value of at least 0.6 is expected133. This is 

because of the noise factor as discussed in Sec. 2.5.5.1. In our case this value, 

underestimates the size of the PSF, especially in the case of particles moving fast 

compared to the acquisition time of the camera. Therefore this value might 

underestimate the cross-talk between neighboring pixels and fitting of this parameter 

is a better approach.  

3.2.1 Derivation of a General Fitting Model for cross-correlation 

The normalized cross-correlation function (CCF) for a stationary system has been 

defined earlier in Sec. 2.1.1 as 
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where F(t) and F’(t) are the fluorescence signals in the two areas to be cross-

correlated. Theoretically, the above expression for G(τ) converges to 1 for long 

correlation times. However, how well the function converges to 1 for long times 

depend on the length of the measurements. Due to the limited number of 

measurement points, the actual values usually vary slightly from 1. Therefore, we 

introduce the fitting parameter G∞ instead of the value 1. This leads in our experience 

to better fits. It is this function we use for fitting all ACF and CCF data. In the 

following we derive the different forms of g(τ) for different shapes of the detection 

areas and for different processes including diffusion and flow.  

 

Fig. 3.1: Schematic representation of the regions on a CCD chip.  These regions 
were used in the calculation of cross-correlation discussed in Sec. 3.2.1. 

Here the cross-correlation is carried out between rectangular regions as 

shown in Fig. 3.1. k, l, m, n, p, q, r, s denote the location of the region of correlation 

on the chip. The fluorescence intensity and its fluctuations in the first area of cross 

correlation can be expressed using the PSF and the surface concentration C as 
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Similarly, the signal and its fluctuations in the second area of correlation can be 

expressed as 
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The time average of the fluorescence signals can be calculated using 3-4 and 3-5. 
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Using, Eqs. 3-6 and  3-7,  3-3 can be rewritten as  
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The expression for autocorrelation is separable and in the x direction, it is 

( ) ( ) ( )x yg g g    3-9 
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where P(x, x’, τ) is the diffusion propagator as stated in Sec. 2.1.2.1. 
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The details of the derivation are given in Appendices 3 and 4. The solution to the 

integral is given in Eq.  3-12 
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For square regions of n×n binning with side length a where a=n×d (where d 

is the side length of a single pixel in object space). If two regions of the same size are 

separated by rx in the x direction and ry in the y direction, the above general expression 

can be simplified by replacing k=0, l=a, m=rx, n=a + rx, p = 0, q=a, r=ry, s=a + ry to 

yield the following form 
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 The above expression is a generalized expression for cross-correlation 

between different areas on the EMCCD chip for diffusion and flow. The expression 

for diffusion can be obtained by setting vx=0.  
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The expression for autocorrelation can be obtained by setting rx=0. 
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The expressions for cross-correlation between two areas for diffusion and 

flow in 2D are provided in Appendices 5 and 6. In two dimensions, the expression for 

autocorrelation can be obtained from Eq. 3-15. 
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The above expression can be modified by the introduction of a dimensionless 

parameter which is a ratio of the pixel size to the sum of the PSF and the mean 

squared displacement during the observation time   p  .  
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3.2.2 Effective Volume in Camera-FCS 

In the following derivations for the effective volume, the integrations are 

performed in 1D and adapted for the 2D case by simple multiplication. As with Eq. 

3-18, the integrals in the calculation of effective volume are also separable when 

expressed in Cartesian co-ordinates. In Imaging FCS, the illumination profile is a 

convolution between the square pixel (WSP(x)) and the point spread function (WPSF(x)) 

which is assumed to be a Gaussian (an approximation of Bessel function)129. Uniform 

illumination is assumed inside the square pixel with size a extending from –a/2 to 

a/2. The pixel is convolved with a Gaussian illumination profile. 
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The effective volume in FCS was defined earlier in Sec. 2.1.2.2. The integrals 

ω1 and ω2 are calculated below. The details of the integration are provided in 

Appendices 7-10. 
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 Using Eqs. 3-20 and  3-21, the effective volume can be evaluated. 

2

2
00

0

Effective dimension in 1D

1
a

w

a

wa
erf

w a
e






          



 
3-22 

2

2
0

2

2

0

0

Effective area in TIRF-F S

1

C  eff
a

w

a
A

wa
erf

w
e

a 




            


 

3-23 

Eq. 3-23 was obtained by extending the expression in Eq. 3-22 in 1D to 2D. 

It can be seen that the effective area can be obtained by setting τ=0 in 3-17 as 

expected from theoretical considerations as stated in Sec. 2.1.2.2. The value of 

diffusion time in Imaging FCS is given by the expression 
4

eff
D

A

D
  . The expression 

of effective area needs to be substituted into the expression for autocorrelation to 

compute the absolute number of molecules contributing to the fluorescence in the 

area being observed. 
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The effective volume in the case of TIRF-FCS can be evaluated by integrating the 

exponential decaying stationary wave in the ‘z’ direction and multiplying it with the 

effective area. 
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Here ‘d’ is the penetration depth of the evanescent wave.The effective ‘z’ dimension 

can be evaluated to be ‘2d’. Hence the observation volume in 3D can be 

parameterized as 
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3.2.3 Fitting models in TIRF-FCS 

The autocorrelation function given by Eq. 3-16 can be rewritten using Eq. 3-23 as 

follows 
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Fig. 3.2: Change in observation volume due to the PSF.  A is a calculation of the 
correlation with and without the contribution of PSF. The calculation of the correlation 
function without PSF was performed by setting w0=0. The increase in observation 
volume is manifested as a slower rate of decay. In B, the non-normalized 
autocorrelation curves indicate the increase in number of particles with the increase
in observation volume.  
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3.2.4 Fitting models in SPIM-FCS 

In the case of SPIM-FCS, evaluation needs to be performed in the z direction 

as well due to presence of finite thickness light sheet in the z direction. Hence the 

integration is performed from -¶ to ¶ and the light sheet is modeled as a Gaussian 

with center m and wz being the e-2 radius. The details of the integration are provided in 

Appendix 11. 
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Hence the autocorrelation function in the z direction can be evaluated as follows.  

A B
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Similar to the case of the 2D TIRF, the observation volume needs to be 

evaluated in order to evaluate the absolute number of particles contributing to the 

fluorescence.  
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Hence effective volume in SPIM-FCS is  
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The autocorrelation in SPIM-FCS (Eq. 3-31) can be rewritten as  
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Fig. 3.3: Schematic representation of Observation volume.  A, B and C are 
observation volumes in confocal, SPIM and TIRF respectively. D is a plot of the 
observation volume drawn to the same scale. 

3.3 Results and Discussion 

The first part describes the various methods to characterize mobility and 

number density from imaging FCS (Sec. 3.3.1) while the second part describes the 

various methods to characterize heterogeneity from Imaging FCS data (Sec. 3.3.2).  

3.3.1 Mobility and Number density from Imaging FCS 

The system and newly derived fitting models for ITIR-FCS were tested using 

supported lipid bilayers and samples with quantum dots fixed to a cover slide. By 

moving these samples with an automated microscope stage we could create 

situations for diffusion, active transport and a combination of the two. 
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3.3.1.1 Calibration of mechanical microscope stage 

 

Fig. 3.4: Calibration of microscope stage. A is a plot of Fourier Transform of one 
pixel of the camera. It shows the frequency to be 1 Hz. B shows the periodic 

autocorrelation function. 
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We decided to calibrate the microscope stage by using a micrometer scale (2 

mm scale in 200 parts) which was moved with a speed of 10 μm/s through the field of 

view. The scale was illuminated using the microscope halogen lamp and wide field 

images were recorded. Since the scale consists of a periodic array of black stripes on 

a transparent background, we first calculated the proper fitting function for the FCS 

measurements (Appendix 12). This calibration was performed since it involves non-

fluorescent samples and hence fluorescence related artifacts in flow can be avoided. 

Since the scale was moved in the x-direction, the data was fitted with rx = ry = vy = 0. 

The retrieved velocity was 9.26 µm/s. This shows that the microscope stage moves as 

expected. 

3.3.1.2 Autocorrelation analysis of flow and diffusion processes  

Autocorrelation functions were computed and fitted to retrieve diffusion 

coefficient (D), velocity of flow (v), convergence value of correlation function at 

longer lag times (G∞) and the e-2 radius of PSF (w0). In this chapter, the computations 

are performed in a 3×3 binned area (852×852 nm2) since it corresponds to the typical 

pinhole size used in confocal FCS. The overall quality of fits using the derived fitting 

models to the autocorrelation of diffusion is very good, as seen in Fig. 3.5 A and D. 

Fitted autocorrelation function (ACF) for data of samples that exhibit only flow show 
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deviations from the data (Fig. 3.5 B and C). There are several reasons for these 

deviations. Firstly, the data in these cases contains higher harmonics as evidenced by 

the regular peaks in the tail of the ACF. We attribute this to the stepping motor of the 

automated microscope stage which does not move over the full distance in one linear 

movement. This is supported by the intensity traces for these measurements (Fig. 3.5 

B and C insets).  

Secondly, these measurements were conducted on air dried samples of 

quantum dots and part of the ACF, in particular at short times, are possibly related to 

photophysical properties of the quantum dots which can exhibit blinking behavior on 

a similar time scale as the timescale of measurement, i.e. milliseconds134. The 

qualitative analysis (from Fig. 3.5 B and C) suggests that for flow processes, the 

fitting is not good. From the quantitative analysis, (Table 3-1), it is seen that, the 

autocorrelation cannot be fitted to determine D, N, v and w0 simultaneously. The 

standard deviation exceeds the mean which might suggest two different things, either 

the value of the parameter is zero or the parameters cannot be fitted independently. 

We know that none of the parameters are expected to have a value of zero, 

hence it is seen that the parameters cannot be determined from a single 

autocorrelation function. The transport coefficients are strongly linked to the PSF. 

The fitting parameters are correlated that it is impossible to fit both of them 

independently. It is referred to as the identifiability problem in curve-fitting. The χ2 

fitting space does not have a minimum which can be reached. Instead the surface is 

flat and a broad range of values can be fitted. The error in the fitted parameter is the 

inverse of the curvature of the χ2 surface. For a flat profile, the curvature is zero and 

hence the error is high. In such cases, a small change in initial parameters leads to 

very drastic differences in the output parameters. The correlation matrix which is a 

normalized version of the covariance matrix can be used to diagnose identifiability 

problems. The diagonal elements are always 1 and any off-diagonal elements greater 

than the value of ±0.99 indicates difficulty in curve-fitting. 
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Fig. 3.5: Autocorrelations of systems exhibiting diffusion and/or flow.  The black 
lines are the fits to the data (gray lines). Lipid diffusing on a supported lipid bilayer 
(diffusion), immobilized quantum dots moved with a velocity of 10 μm/s (slow flow), 
immobilized quantum dots moved with a velocity of 100 μm/s (fast flow) and lipid 
diffusing on a supported lipid bilayer moved with a velocity of 10 μm/s (diffusion and 
flow) are shown in A, B, C and D respectively. The flow data, created by moving a 
microscope stage with a stepping motor at speeds of 10 and 100 μm/s, causes some 
periodic artifacts in the intensity traces (insets) and deviations of the ACFs from their 
theoretically predicted form as seen here.  

 

Table 3-1: Parameters retrieved from autocorrelations 

Correlation type D (μm2/s) v (μm/s) w 

Diffusion 2.9 ± 4.2 - 0.40 ± 0.08 

Slow flow - 10 ± 14 1.94 ± 3.80 

Fast flow - 97 ± 170 2.10 ± 5.00 

Diffusion and flow 3.9 ± 4.5 9 ± 4.8 1.76 ± 1.46 

mean ± standard deviation where the standard deviation is the standard deviation 
associated with the global fitting of the data and not the standard deviation from 
various trials. 
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The covariance matrix in this case is shown in Table 3-2. It is seen that 

generally D and N which measure two different properties in FCS are assumed to 

independent, but due to the presence of PSF, they are inversely related to each other. 

This can also be understood by performing a first order Taylor’s series expansion of 

the autocorrelation function. The details are provided in Appendix 13. 
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As seen from Eq.  3-36 and Table 3-2, an increase in PSF led to an 

increase in D and a decrease in N as seen in Fig. 3.6. Hence it is crucial to 

accurately determine the PSF in order to obtain correct estimates of D and N. 

Further, in the case of diffusion, the PSF cannot be less than the theoretical prediction 

in EMCCD of 0.6 as seen in Table 3-1. Hence, we need to resort to cross-correlation 

to estimate the PSF and the transport properties.  

3.3.1.3 Cross-correlation functions (CCF) for diffusion and flow 

Cross-correlations were performed for systems exhibiting diffusion, flow, and 

a combination of diffusion and flow, on areas of 3×3 binning for reasons described in 

Sec. 3.3.1.2. In the cases where flow is present in the system, the flow direction was 

along the horizontal positive x direction. The dependence of the cross-correlation on 

the relative position of two areas in space was investigated by choosing the central 

pixel and cross-correlating this central pixel with all surrounding pixels in all 

directions. This procedure allowed us to study simultaneously CCFs with different 

angles in respect to the flow. 

In the rest of the thesis, we refer to the CCF between two areas A and B, in 

which B is displaced with respect to A along the positive x- or y-direction, as the 

forward CCF or CCFAB if the correlation has been calculated as <FA(t)FB(t+τ)> and 

as the backward CCF or CCFBA if the correlation has been calculated as 

<FB(t)FA(t+τ)>.  
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Fig. 3.6: An error in PSF leads to an error in D and N.   The errors in D and N are 
of a simulated autocorrelation curve are inversely related. The details of the 
simulation are provided in Sec. 4.1.1.  Table 3-2: ACF Covariance matrix.  This is 
supported by the correlation matrix obtained while fitting an autocorrelation curve 
which shows a positive (negative) correlation between PSF and D (N).

 

Fig. 3.7: Forward and backward cross-correlations of diffusion and flow.  2 
distinct populations are seen only in A and not in the inset since the forward cross-
correlation along the direction of flow exhibit a peak while the cross-correlation 
against the direction of flow does not. The forward and backward cross-correlations in 
diffusion shown in the inset in A do not exhibit any differences since diffusion is a 
random process. Characteristic forward and backward cross-correlations from the 
above two processes are shown in B. The maps in C and D show the values of the 
maxima of the CCF between the center pixel and the surrounding pixels for flow only. 
C (D) represents the values for flow along the horizontal +x (-x) direction.  

This means in our setup, for instance, that forward CCFs along the x direction 

are parallel and backward CCFs along the x direction are anti-parallel to the flow 

direction. The presence of flow can be easily identified in a forward CCF, i.e. the 

CCF along the flow direction, by the appearance of a peak, representing the transition 
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time of a particle from area A to area B. This peak is absent in the backward CCF. In 

the y direction, forward and backward CCFs are not expected to show any peaks since 

they are orthogonal to the flow in our case. For diffusion in an isotropic phase, the 

forward and backward CCFs are symmetric. 

Pseudo-autocorrelations in flow measurements 

To calculate the spatial cross correlation between two binned regions, the 

“cross talk” of the fluorescence intensity originating from one of the binned regions 

and contributing to the fluorescence intensity of the other region must be evaluated. A 

distance of 4 pixels has been suggested for EMCCD based system93. Since, the 

spatiotemporal cross correlations performed here are less than 4 pixels; there arises a 

pseudo-autocorrelation in these calculations. When the distance between the regions 

of separation decreases, the cross talk increases, as a result, there is a higher 

contribution of the pseudo-autocorrelation term to the evaluated cross-correlation 

function. The issue of pseudo-autocorrelation has been tackled by subtracting the 

forward and the backward cross-correlations100, 135-136. The correlation in the direction 

against the flow is a decaying curve which is only due to the pseudo-autocorrelation 

between these two regions. Hence for the analysis of measurements of flowing 

samples in the absence of diffusion, the backward CCF is subtracted from the forward 

CCF. If this analysis is performed for directed transport then the characteristic peak 

for flow in the CCF becomes more symmetric. For all other measurements no 

subtraction is performed since the subtraction removes all information on processes, 

such as diffusion, which contribute equally to the forward and backward CCFs. 

Split integration 

The correlation between two arbitrary areas, each one defined by a group of 

pixels on a CCD, can be expressed as the sum of all possible correlations between the 

two groups of pixels of the two areas. Therefore, the correlation between two areas A 

and B containing m and n pixels in arbitrary arrangement, respectively, is just the sum 

of all possible correlations m×n between all pixels of these two areas. In this case the 
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correlations have to take account of the basic size of a pixel d=284 nm and of the 

distances in x and y direction between the m and n pixels rx,mn and ry,mn.  

, ,
1 1

( ) ( ; , )
m n

AB x ij y ij
i j
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The cross correlations of 3×3 binned regions with overlap, i.e. regions which 

are separated by only one or two pixels can be suitably decomposed to reveal the 

cross- and the autocorrelations. The values recovered from the fit indicate that the 

values recovered from the cross-correlation are closer to the expected value whereas 

the value retrieved from the autocorrelation is not precise and accurate. Only the ACF 

has a higher standard deviation when compared to the mean similar to the data in 

Table 3-1. This analysis suggests that cross-correlation must be performed between 

non-overlapping regions. Since we performed the cross-correlation with 3×3 binning, 

areas have to be shifted by at least 3 pixels to avoid overlap. The above analysis can 

be extended to cross-correlations between regions of any shape and size. In the case 

of non-rectangular regions, the regions must be broken down into its constituent 

rectangular or square regions and the cross-correlation has to be carried down 

between the smaller regions.  

 

Fig. 3.8: Decomposition of correlation into auto-and cross-correlations.  A 
shows the CCF for the full areas. This CCF is calculated between the lines (1, 2, 3) 
and (3, 4, 5). This CCF can be decomposed into CCFs between lines (1, 2, 3) with 
lines (4, 5) in B, the CCF between lines (1, 2) and line (3) in C and the ACF of the 
overlapping line (3) in D. The sum of the correlations in B, C and D result in the 
correlations in graph A for fits (black lines) and data (gray lines). Please note that the 
correlations for the sub regions in B, C and D have all been normalized to the total 

intensity and thus will not individually converge to G =1 at long times, although their 

sum does. 
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Table 3-3: Decomposition of a CCF into its constituent ACF and CCFs  

The standard deviation reported is the standard deviation obtained due to the curve 
fitting and is not the standard deviation due to many trials.  

Table 3-4: Influence of w0 on fitting of CCF  

Type w D (μm2/s) v (μm/s) 

Diffusion 0 4.9 ± 0.5 -- 

0.42 4.6 ± 0.5 -- 

Fitting parameter 2.6 ± 0.1 -- 

Slow Flow 0 -- No convergence 

0.42 -- 9.1 ± 0.3 

Fitting parameter -- 8.9 ± 0.3 

Fast Flow 0 -- No convergence 

0.42 -- 90 ± 7.6 

Fitting parameter -- 94 ± 6.9 

 

Fitting cross-correlation data 

The major difficulty in fitting autocorrelation data was that the simultaneous 

fitting of D, N, v and w0 was not possible. Hence the effect of w0 was first studied on 

the cross-correlation of 3×3 binned non-overlapping CCF. It is seen from Table 3-4 

that flow parameters are not affected by w0 irrespective of whether w was fixed at 

0.42 or as a fitting parameter. But, it is seen that in the case of diffusion, the value of 

the PSF plays an important role in determining the value of D. In the case of cross-

correlation of diffusion, if w is not left as a free parameter, instead fixed at 0 or 0.42, 

Correlation type v (μm/s) w 

Total CCF (Fig. 3.8 A)     10 ± 0.3 2.46 ± 0.18 

Constituent CCF – 1 (Fig. 3.8 B)  9.6 ± 0.2 2.08 ± 0.08 

Constituent CCF – 2 (Fig. 3.8 C)  10 ± 0.4 2.02 ± 0.18 

ACF (Fig. 3.8 D)      13 ± 495 2.06 ± 94.8 
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it cannot fit the raw data properly. This can be seen from the residuals. The fits are 

shown for w0=0 in Fig. 3.9. Similar fits were observed for w=0.42. Hence the 

convergence of w was checked in the next section. 

 

Fig. 3.9: Influence of w0 on fitting of CCF. ACF and CCF along the horizontal of 
3×3 binned regions of lipid diffusing on a 2D lipid bilayer (diffusion) fitted with 
equation in Appendix 6. w0 was fixed at 0 in A whereas it was a fit parameter in B. 
The residuals are plotted below the respective graphs. As seen in the figure, w0 =0 
gives us acceptable fits in the case of 3×3 binned data from a system exhibiting 
diffusion or auto-correlation and overlapping cross-correlation. In the case of w0 as a 
fitting parameter, w  converges to a value of 1.78 ± 0.02 if only the non overlapping 
regions are considered. The gray lines represent the data while the black lines 
represent the fits. 

Convergence of w0 in cross-correlation  

The covariance matrix was used to check whether CCF could be used to 

independently fit parameters. As stated earlier in Sec. 3.3.1.2, for covariances less 

than ±0.99, no identifiability problems are observed. The entries in the covariance 

matrix are less than ±0.99 as seen in Table 3-5. Hence D and PSF are independent to 

each other as expected since they measure two different molecular parameters. The 

chi squared function obtained after curve-fitting exhibits a single minimum for cross-

correlation enabling any non-linear fitting algorithm to successfully fit D, N and PSF 

independently unlike the autocorrelation function. The data presented is that of a 

simulated correlation curve. The details of the simulation are presented in Sec. 4.1.1. 

The simulation was actually performed with D=7 μm2/s and w=1.2. The cross-

correlation function reaches the minimum exactly. Thus these simulated results 

suggest that any fitting program can accurately and precisely determine D and PSF 
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from cross-correlation functions. This is because in the case of cross-correlation, D is 

determined from the position of the peak and the peak position is predominantly 

determined only by D and is independent of PSF. The broadening of the peak is 

influenced by the point spread function. 

Parameters from cross-correlation data 

Non-overlapping cross-correlations were calculated and data were fitted with 

equations in Appendices 5 and 6. The overall quality of fits with 4-6 parameters is 

very good, as seen in Fig. 3.11. 

Velocity 

The retrieved speed obtained from cross-correlation analysis is close to the 

expected value of 10 and 100 μm/s in the cases of slow and fast flow, respectively as 

in Table 3-6. In the case of diffusion and flow, the retrieved value for the velocity is 

not as accurate as the value retrieved for the flow only case. In the case of diffusion 

and flow, the retrieved velocity, show somewhat lower values with higher error than 

when only flow is present, although the values fall into the expected range. This is 

very likely a problem of distinguishing flow and diffusion by a fit and depends on 

which of the two processes dominates. It can also be influenced by the separation 

between the two cross-correlated areas, because of the different time dependence of 

the displacement of diffusion and flow.  

Table 3-5: Covariance matrix of cross-correlation function 

CCF (3x3) D  N  PSF  

D  1  0.01  -0.65  

N  0.01  1  0.06  

PSF  -0.65  0.06  1  

 



73 
 

 

Fig. 3.10: CCF converges to a single minimum in c2
.  The values of D and PSF 

(w=w0λ/NA) were fixed at the indicated values and the fitting was carried out for N 

and G for simulated functions of autocorrelation (ACF) and cross-correlation (CCF). 

(Sec. 4.1.1). The c2 obtained after fitting is plotted above. The positions of the values 
of w0 and D used in the calculation are shown by the arrows. The figure indicates that 
there is a single minimum in c2 in the case of CCF which can be reached by a curve 
fitting program unlike the ACF.  

G  

Systematic deviations in G are expected for samples exhibiting bleaching. 

Here all the values in  are close to the theoretical value of 1 as expected since the 

intensity traces do not show any bleaching as seen in the insets in Fig. 3.5. 

PSF 

Since the PSF of the microscope is finite in size, and on the order of the pixel 

size of our EMCCD, it has to be taken account of in the fitting of the CCFs. When w0 

was used as a fitting parameter, it can be observed that the values obtained for w are 

larger than the expected value of 0.42129-132 as seen in Table 3-6. There are various 

possible reasons for the larger value of w0.  

1. Firstly, the side lobes of the diffraction pattern, in which ~ 10% of the 

emission is found, are still contributing to the pseudo-autocorrelation found 

in the CCFs of neighboring pixels137-139. 

2. Secondly, the samples measured are not ideally fulfilling the z=0 condition 

which was assumed in the derivations up to now. Deviations of the z position 
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would increase cross talk between neighboring pixels due to the changes in 

the emission pattern in the image plane at z=0. 

 

Fig. 3.11: Auto- and cross-correlations of diffusion and/or flow.  The black lines 
are the fits to the data (gray lines). The insets are examples explaining the size and 
displacement of the two areas in the particular correlation functions. All correlations 
were performed on 3×3 binned regions. ACF and CCF along the diffusion, backward 
correlation subtracted CCF (CCFAB - CCFBA) along the horizontal of non overlapping 
regions of slow flow, backward correlation subtracted CCF (CCFAB - CCFBA) along the 
horizontal of non overlapping regions of fast flow and ACF and CCF along the 
horizontal for diffusion and flow are shown in A, B, C and D respectively. 

Table 3-6: Parameters retrieved from cross-correlation functions 

Parameter Diffusion Slow flow Fast flow Diffusion and 

flow 

D [μm2/s] 2.6 ± 0.1 -- -- 1.6 ± 0.9 

v [μm/s] -- 8.9 ± 0.3 94 ± 6.9 8.4 ± 1.5 

G∞ 1.0005 ± 

0.0003 

1.001 ± 

0.0006 

0.9998 ± 

0.0002 

1.0001± 0 

w 1.78 ± 0.02 1.48 ± 0.40 1.92 ± 0.24 2.12 ± 0.78 

 

3. The expression for wo was defined for paraxial optics. But at angles of 

incidence greater than the critical angle, this assumption is invalid and hence 
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the Gaussian expression for non-paraxial optics has to be used which has a 

factor of 0.44 instead of 0.42129-132.  

4. It is known earlier that the finite pixel size contributes to the blurring and 

decreases the localization accuracy140. This effect has been modeled by 

assuming the pixel to be a 2D uniform distribution and molecule can have its 

center anywhere in the field. This contributes to an uncertainty in the 

localization of the molecule. From probability theory, it is known that the 

standard deviation of a uniform distribution is 
12

a
(Appendix 14). The same 

result can also be proved by deriving the variance of the convolved intensity 

distribution derived earlier (Eq. 3-19). The details of the derivation are in the 

Appendix 15. In our case this is evaluated to be 242 nm. 

5. The finite exposure time also contributes to a blurring of the PSF. The effects 

have been quantified in the case of diffusion recently141 and it is equal to 

3
EDt

where tE is the exposure time. In the case of flowing samples, the 

distance travelled during the exposure is vtE and this contributes to the 

blurring. 

6. Finally, the noise added by the EMCCD multiplication process has been 

effectively quantified and described in detail in Sec. 2.5.5.1and hence an 

excess noise factor of 2 needs to used. 

All the individual noise sources have been quantified and added in quadrature. 

The exposure time was calculated to be 3 ms. At 10MHz, to transfer a 512×20 

region, it would take 1 ms. For a time per frame of 4 ms, at 1 ms transfer time, 

the exposure time is 3 ms. The velocity was used at the set velocity of 10 and 100 

μm/min. The D was assumed to 1.5 μm2/s. It is seen here that CCF 3×3 bin 3 

pixels apart yields estimations of PSF which are comparable to the estimated 

value based on theoretical consideration of noise factors as seen in Table 3-7 for 
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all the 4 cases. But it is seen that, the pixellation noise is 3 times of the theoretical 

value of PSF since 3×3 binning is used. Hence, in order to reduce the uncertainty 

in PSF, 2×2 or 1×1 binning needs to be done. From Table 3-4, it is known that 

PSF does not play a very important role to accurately determine the velocity if 

they are cross-correlated at longer distances when compared to the PSF. This is 

not true in diffusion. The solution to diffusion equation as in Sec. 2.1.2.1 shows 

that the number of particles drops as the squared exponential of the distance of 

separation between the cross-correlation regions. Hence, the CCF must be 

performed at non-overlapping regions close to each other. Hence PSF plays the 

most crucial role in diffusion. 

Table 3-7: Uncertainty propagation in PSF 

Error terms Diffusion 

(nm) 

Slow flow 

(nm) 

Fast flow 

(nm) 

Diffusion  

flow (nm) 

Theoretical (nm) 89 89 89 89 

Pixellation noise (nm) 242 242 242 242 

Blurring due to diff (nm) 39 - - 39 

Blurring due to flow (nm) - 30 300 30 

σfinal (nm) 260 260 396 263 

Multiplicative noise (nm) 364 364 554 368 

w0 (nm) 728 728 1108 736 

Calculated w 1.78 1.78 2.6 1.82 

Obtained 1.78 ± 0.02 1.48 ± 0.40 1.92 ± 0.24 2.12 ± 0.78 

% Error 0  17  26  -16  

The calculations were first performed using the PSF given in the references therein 
which used a different convention for the Gaussian as in Appendix 15 and they were 
converted in the last step. The width of both the Gaussians are inter-convertible. The 
width of the Gaussian in  3-1 is two times the width of the Gaussian described in 
appendix 15. 
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Influence of PSF in diffusion 

This raises the question of how dependent the recovered sample properties 

are on the value of w0. Hence to understand the effects of w0 on cross-correlation, the 

data was subjected to binning of 3 different sizes [1, 2, and 3]. Cross-correlations of 

regions separated by 3 pixels along a line were chosen as the tool to understand the 

importance of w0 in diffusion. The diffusion coefficient was fixed and allowed to vary 

from 2 to 4 μm2/s and w0 was fixed and allowed to vary from 0.8 to 1.6 in different 

fitting trials. The goodness of fit can be ascertained by the χ2 value of the fit. A large 

value of χ2 indicates a poor fit of the model to the collected data. A contour plot of the 

value of χ2obtained after fitting was made for all the 3 binned pixel sizes. The contour 

plot clearly reveals that the w0 value converges after fitting (Fig. 3.12). There is a 

clear minimum which is observed in the contour plots.  

 

Fig. 3.12: Contour plots of χ2 value of CCFs.  The areas were separated by 3 
pixels for diffusion. The values are plotted against different values of w0 and D for 
binning sizes of 1×1, 2×2 and 3×3 in A, B and C respectively.  Table 3-8: Error in 
PSF from CCF at different binning sizes.  D and w values obtained for the fitted 
curve with the minimum χ2 when the fitting was carried out with D allowed to vary 
from 2 to 4 μm2/s and w allowed to vary from 0.4 to 0.8 for various binning sizes of 
cross-correlation of regions separated by 3 pixels for system undergoing diffusion 
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This analysis reveals that D can be fitted simultaneously in the presence of w0 

in the case of diffusion. As the size of the bin increases from 1 to 3, the expected w 

increases due to increase in localization uncertainty as expected. But it is seen that the 

experimental w does not follow the same trend as the calculated w. At the current 

sensitivity of EMCCD cameras, the SNR is not sufficient to get accurate estimations 

of PSF and hence the diffusion coefficients from CCF are not reliable as well. The 

CCF provides independent estimations of D, N and PSF unlike ACF but the 

estimations are not accurate due to the current day limitations of S/N ratios of the 

cameras. Hence, we need other methods to determine the PSF. Three different 

methods (ACF, ICS, fit free CCF) to find PSF are discussed below. 

Determination of PSF by autocorrelation method 

The autocorrelation doesn’t yield reliable estimates only when all three 

parameters -D, N and PSF are free. But, when one of the values is fixed, they can be 

fitted independently of each other. Specifically, when the PSF is fixed for 1×1, the 

covariance between D and N is -0.9. As stated earlier, for values less than ± 0.99, 

there are no identifiability problems. Hence, upon fixing the PSF to a value, D and N 

can be fitted independently to each other. This raises the question of finding the value 

to fix PSF. Prior to the experiment, since the value of PSF is not known, an iterative 

method can be used.  

The autocorrelation functions at different binned areas needs to be calculated 

(1×1 to 5×5). D is an intrinsic parameter of the particle and hence is independent of 

the binning area used to calculate the D. The data at various bin areas are fitted with 

various values of the PSF. D is an increasing or decreasing function of bin area for 

values of PSF less or greater than the PSF of the system respectively. The reasons for 

this behavior are discussed in detail in Sec. 3.3.1.2. The value of PSF which yields a 

D independent of the bin area is the PSF of the system. The discussion in the next 

chapter (Sec.4.2.1.1) shows that this D is the absolute diffusion coefficient of the 

molecule. This method is shown in Fig. 3.13 A where the PSF was fixed at 2 different 
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values, the theoretical value of 0.42 and the value obtained from CCF as in Table 3-6. 

It is seen that both the values do not yield a constant D with increasing bin size from 

Fig. 3.13 A. Instead, when the PSF was fixed at 0.7, the value of obtained D is 

constant with increasing bin size. Hence a value of 0.7 is the PSF of the system and 

the average D is 1.5 ± 0.6 μm2/s. 

The same method can be implemented differently. For bin areas>>PSF, D is 

independent of PSF. This can be seen from Fig. 3.13 C and D where the detection 

profiles were plotted for 2 different values of a for a fixed w0. In the case where the 

size of the pixel is comparable to the PSF, the detection profile resembles the PSF as 

in C. Instead, it resembles the pixel size when the pixel size is five times that of the 

PSF as in D. Hence D obtained from autocorrelation of such areas is the reliable and 

absolute D since it can be fitted only by the knowledge of the pixel size. This D can 

then be used to determine the PSF from autocorrelation where bin areas are 

comparable to the size of the PSF. The value of D obtained from 5×5 binned data is 

1.5 ± 0.6 μm2/s. This method retrieves a value of 0.7 ± 0.4 for the PSF by fixing the 

D at 1.5 μm2/s for 1×1 binned data. The expected values of PSF incorporating the 

effects of the finite pixel size for various bin sizes were calculated and shown in 

Table 3-8. The value of PSF retrieved by this method (0.7) is close to the expected 

value based on theory of 0.84 (Table 3-8) when compared to CCF which yielded a 

value of 1.44.  

Determination of PSF by Image Correlation method 

Spatial cross-correlation can be performed to estimate the PSF by using ICS 

fitting models (Eq. 2-22). Typically, 20×20 pixel regions are captured in Imaging 

FCS. Such small regions do not yield reliable estimates from ICS which requires 

larger regions. A 32×32 region yields estimates with 10% relative error142. In this 

case, the value obtained is 0.62 ± 0.2 and the fit along with the raw data is shown in 

Fig. 3.13 B. 



80 
 

Determination of PSF by fit-free method 

Cross-correlation functions can be used to estimate the absolute D of the 

molecule without any calibration or without any data fitting. When cross-correlations 

are performed between pixels which are separated by a certain distance, the cross-

correlation function exhibits a peak, which shows the average time it takes for the 

particles to diffuse from the first pixel to the other pixel as seen in Fig. 3.15. For free 

diffusion,  
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 max

2

4 G
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D
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  
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where the pixels being cross-correlated are separated by m pixel units and G()max is 

the value of lagtime at which the cross-correlation function exhibits a maximum. For 

a simulated D of 1 µm2/s, m=2 and 3 yield D of 1.01 ± 0.36 and 0.95 ± 0.30 µm2/s 

respectively. Hence this method yields accurate and absolute D. This D can later be 

used to determine the PSF from autocorrelation of areas where the bin area is 

comparable to the size of PSF.  

This method is the fastest when compared to others since there is no data 

fitting and any automatic peak finding program can be used to obtain the position of 

the peaks. Here, the findpeak function in Igor Pro© was used to identify the peaks 

from the cross-correlation curves. There are two factors contributing to the error in 

this method. Firstly, the peaks must be clearly distinguishable for any peak finding 

function to discriminate it from the rest of the correlation function. The 

distinguishability of the peaks is dependent on the S/N ratio and can possibly lead to 

larger standard deviations for this method. Hence, currently this method is limited to 

simulated data (Sec. 4.1.1). Secondly, the broadening of the peak is dependent upon 

the bin width used to calculate the correlation at and around the peak position. Peaks 

which appear at lagtimes calculated using binwidths much higher than the time 

resolution of the camera cannot be distinguished. The advantages and disadvantage of 
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each of the methods are discussed in Table 3-9. With improvement in sensitivity of 

cameras, CCF based methods would be the best since they are fast and yield estimates 

of D, N and PSF from single fits without the need for any iteration. 

 

Fig. 3.13: PSF determination by autocorrelation and ICS methods. A is a plot of 
the D obtained from 5 different bin sizes with w fixed at 3 different values. At the 
theoretical value of 0.42, the diffusion coefficients increase with bin size. At the value 
obtained from CCF, they decrease with increasing bin size. The value of w which 
yields a constant D was found to be 0.7. B is a plot of the spatial autocorrelation 
function and its fit. The detection profile in TIRF-FCS was plotted for 2 different 
values of a/w by changing the value of a. In C, the value of a/w was set to 1.5 
whereas it was set to 7.5 in D. At higher values, as in D, the profile shown in red 
resembles the pixel shown in blue. Instead, at lower values, the red profile resembles 
the PSF shown in green. Hence, bin areas>>PSF, D is independent of PSF and can 
be determined only by the knowledge of pixel size. 

Table 3-9: Summary of various methods to determine PSF 

Method Value Advantage Disadvantage 
ACF 0.7 Most accurate  It is an iterative process.  
CCF-fitting 1.78 D, N and PSF from single 

fit 
Inaccurate estimates at 
current SNR of cameras 

CCF-findpeak - Fit free Not feasible using the SNR 
of current cameras 

ICS 0.62 Can be done on every image 
in the stack 

Needs more than 20×20 
region for accurate analysis 
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Fig. 3.14: Cross-validation of PSF measurements:   The value of the PSFs 
obtained were cross-checked by imaging 40 nm beads and fitting a 2D Gaussian to 
each of them. The ACF analysis provided a PSF of 320 nm whereas this methods 
provides a PSF of 334 nm indicating that the values obtained from the ACF method 
are quite reliable. 

 

Fig. 3.15: Fit free determination of PSF.  The cross-correlations between different 
pixels yield a peak which provides an estimate of the transit time needed to traverse 
the distance. Using distance-time relationships of free diffusion, accurate D can be 
estimated. This D can be used to estimate the PSF of a system from autocorrelation 
functions. A shows a set of cross-correlation functions for regions 3 pixels apart. B 
shows the peak positions for samples, where the distance between the pixels are 2 
and 3. 
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Diffusion coefficient 

Diffusion in lipid bilayers was modeled by Saffman and Delbrück and they derived 

an expression for the diffusion coefficient143.  
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 with kB = 1.38×10-23 JK-1. The height (h) of a POPC bilayers has been 

measured and is found to be 3.5 nm144. The radius can be determined from the partial 

molecular volume of POPC. Theoretical and experimental studies found the 

molecular volume to be 1.25 nm3 145. Assuming the lipid to be a cylinder, the cross-

sectional area is found to be 0.71 nm2 which shows that the radius (R) is 0.5 nm. The 

viscosity of water146 (μw) at 298 K and at atmospheric pressure is 0.9 mPa s. The 

viscosity (μm) of POPC bilayers147 has been measured to be 0.18 Pa s. Substituting 

these values, the diffusion coefficient is found to be, 6 μm2/s. Since the measurements 

are made on SLBs, it is known that the diffusion is hindered due to the presence of 

the support and the diffusion coefficients are lower by a factor 2148. Hence the 

effective diffusion coefficient predicted from theory is 3 μm2/s. 

The diffusion coefficient has been estimated by two calibration free methods, 

namely z scan FCS148-149 and two-focus FCS (2f FCS)150 to be 2-4 μm2/s. The D has 

been found be 1.8 and 4 μm2/s using FRAP and SPT128. Overall, the value of the 

value of D obtained from autocorrelation (1.5 ± 0.6 μm2/s) is comparable to the 

values obtained from theory and literature. But, it is lower than those measured from 

other techniques. This could be attributed to the limited time resolution of the 

EMCCD (4 ms) used in this measurement. It is shown in a later section (Sec. 5.2.2) 

that with better time resolution (0.5 ms), the obtained D (2.6 ± 1.0 µm2/s) is close to 

the expected value from theory and literature. 
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Number of particles 

The autocorrelation analysis reveals the number density of the particles to be 

50 μm-2. As discussed above, the cross-sectional area is 0.71 nm2, theoretically, in an 

area of 1 μm2, assuming complete coverage by the lipid molecules, the surface will be 

covered by 1.4×106 lipid molecules. The dye to lipid ratio is 0.01% in the 

experiments. Hence the surface will be covered by 0.01×0.01×1.4×106 = 140 dye 

molecules. Hence theoretically, the number density is expected to be 140 μm-2. This 

value is in the same order as that obtained from the experiments of 50 μm-2.  

3.3.1.4 Comparison of CCF versus ACF 

Although autocorrelation analysis can be used to determine the flow and 

diffusion parameters, the direction of flow cannot be determined using 

autocorrelation analysis. Cross-correlations need to be performed in order to 

determine the direction of flow. Hence it is necessary to resort to cross-correlation 

analysis to retrieve flow parameters. In the case of flow, the cross-correlation has to 

be carried out between areas which are more than 3 pixels apart. In this case, the 

distance does not have a very strong influence on the amplitude, in particular when 

the CCF is calculated along the flow direction. At longer distances, the effect of w0 is 

reduced and hence accurate and precise parameters for the velocity can be obtained.  

In the case of diffusion, the effect of w0 is negligible only when cross-

correlations are calculated at longer distances than w0. But, in those cases, the 

amplitude drops considerably. Hence, in diffusion, autocorrelations are the best way 

to obtain diffusion coefficients. These autocorrelations cannot be independently fitted 

for PSF, D and N. The PSF has to be determined first from the autocorrelation and 

then fixed to yield estimates of D and N from autocorrelation.  

It should be noted that the diffusion coefficient as well as the size of the point 

spread function are extracted from the fit directly and a separate calibration is not 

needed for ITIR-FCS. This is an advantage compared to single spot FCS 

measurements, since the measured diffusion coefficients and flow velocities are not 
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dependent on the accurate knowledge of the diffusion coefficient of a standard dye. 

Therefore, ITIR-FCS is a calibration-free method to retrieve the parameters of flow 

and diffusion. This is unlike conventional FCS where the diffusion coefficient is not 

measured directly but is determined over the diffusion time which is dependent on the 

width of the confocal volume. While this section was a detailed discussion on two of 

the estimates from Imaging FCS, mobility and number, the next section is a 

discussion on the third parameter obtained from Imaging FCS-heterogeneity.  

3.3.2 Methods to characterize the heterogeneity from Imaging FCS 

The cell membrane is a complex organization made up of hundreds of lipid 

species and thousands of different proteins. Initially, the cell membrane was assumed 

to be a homogenous sea of lipids in which the proteins were embedded referred to as 

fluid-mosaic model4. Currently, the lipid rafts model states that that certain lipids and 

proteins arrange themselves into domains of various sizes below the optical resolution 

limit bringing in heterogeneity into the structure of the cell membrane5-6. 

Heterogeneity in Imaging FCS can be characterized by two different methods, using 

diffusion laws69 and ΔCCF.  

3.3.2.1 Diffusion law 

The diffusion law states that the average transit time of a tracer molecule 

through circular areas of different sizes scale linearly with the size of the area for free 

diffusion. Theoretically, when extrapolated to an area of size zero, a transit time of 

zero is expected. Any non-zero transit time upon extrapolation is an indication of 

heterogeneity. The diffusion law is obtained by plotting diffusion time against the 

observation area. Specifically, a positive intercept is an indication of domains leading 

to hindered diffusion. This could be explained by the fact that, in the presence of 

domains, while the probe area is on the same size of the domain, the observed 

diffusion coefficient is that inside the domain. Hence, the diffusion time is longer 

than the case when the area of observation is much larger than the domain size, that 

the observed diffusion time is that of the bulk membrane leading to a shorter 
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diffusion time. This non-linearity can be approximated with a line with a positive 

intercept. A negative intercept is indicative of hindered diffusion due to a meshwork. 

The molecule is trapped in individual areas of mesh and cannot cross the borders of 

the mesh freely. As a result, when the observation area is the same area of individual 

mesh entities, the tracer exhibits free diffusion with a shorter diffusion time when 

compared to when the observation area is bigger than the mesh where it exhibits 

hindered diffusion due to the trapping effects of the mesh. As a result, the intercept is 

negative.  

 

Fig. 3.16: Heterogeneity metrics from Imaging FCS.  A is a plot of diffusion laws 
from simulated data. A simulated domain model of cell membrane has a positive 
intercept while a simulated lipid bilayer has an intercept of zero. Details of the 
simulation are in Sec. 4.1. B is a distribution of ∆CCF values from diffusing and 
flowing samples. The average ∆CCF value is zero in the case of diffusing samples 
while flowing samples have a non-zero ∆CCF value. In the case of diffusing samples, 
the cell-membrane has a broader distribution when compared with the distribution 
obtained from a lipid bilayer indicating that the cell-membrane sample is more 
heterogenous when compared with the lipid bilayers.  

The FCS diffusion law has been already successfully demonstrated in z-

scan151-152, super-resolution153-154, and spot variation155 based FCS techniques. In 

ITIR-FCS, these measurements are particularly easy to perform since in an image 

various detection areas can be selected by pixel binning post-acquisition, i.e. the 

grouping of single pixels into larger areas by summing their values. The minimum 

observation area A1, eff which can be acquired in imaging FCS is the single pixel size 

a2 convoluted with the PSF (i.e., A1, eff = a2  PSF), where a is the side length of a 

pixel. For nn binning the observation area An, eff = (na)2  PSF. Pixel binning can 
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be performed even after the measurement and thus a single measurement contains all 

possible detection areas that are multiples of the size of a single pixel. Thus a single 

ITIR-FCS measurement is sufficient for a test of the diffusion law.156  

3.3.2.2 ΔCCF distribution 

Differences in cross-correlation function have been used in a variety of ways 

to characterize systems away from equilibrium. It has been used to measure the 

amount of flux in a chemical reaction101, to perform temporal ordering of events of 

proteins involved in a pathway157 and to separate the different layers of flow in 

turbulent flow158. Here, we use the same metric to characterize the differences in 

diffusion behavior between adjacent pixels and to separate the pixels which show 

pure diffusion from those which don’t. The cross-correlation between adjacent pixels 

is calculated and subtracted from one another, the area under the curve is calculated 

and the distribution of all the values is plotted. In the case of systems exhibiting 

isotropic diffusion, the forward and the backward correlations are identical because 

particles are free to diffuse randomly and follow no particular direction (Fig. 3.7 A 

and B). In such a case, when the forward correlation is subtracted from the backward 

correlation, a flat profile is obtained. For an ideal, free diffusion, such a distribution 

will be a delta function centered at zero. But due to the finite length of the time-series 

data collected, there is an inherent broadening and a distribution centered at zero is 

obtained for free diffusion. The broadening is increased for systems with 

heterogeneity. The width of the distribution serves as a metric for heterogeneity (Fig. 

3.16 B). 

For non-isotropic processes like flow, the correlation in the direction of the 

flow, exhibits a maxima at the time it takes to travel from the first region to the 

second region being correlated. The intensity observed in any pixel is a sum total of 

the intensity of the pixel and the contributions of cross-talk from pixels which are 

separated from each other at distances on the order of the PSF. This cross-talk leads 

to a pseudo-autocorrelation term. Hence, the correlation in the direction against the 
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flow is a decaying curve which is only due to the pseudo-autocorrelation between 

these two regions. Hence, the subtracted correlation profiles are not flat leading to the 

area under the resulting curve being a non-zero number. Thus ΔCCF distribution 

serves as a way to distinguish processes exhibiting directed transport alone or in 

combination with other processes. The reader is referred to Appendix 16 for a 

theoretical treatment of the above phenomenon. 

    
0

AB BACCF CCF CCF d  


    
 3-40 

where   is the maximum lag time 

Hence the ΔCCF approach can in principle be used to map membrane 

dynamics. In order to test this idea, we performed several measurements. First, on 

flattened GUVs the most prominent boundary is the boundary of the vesicle and the 

solution phase, and the CCF images clearly show these boundaries and possibly 

other boundaries on the vesicles (Fig. 3.17). Second, mixed lipid bilayers consisting 

of a liquid ordered and a liquid disordered phase, showed phase boundaries which can 

be detected by CCF images (Fig. 3.18). Third, we performed measurements on live-

cells under different conditions (Fig. 3.19).  

ΔCCF maps of immobilized lipid vesicles  

The original intensity image of the GUV is plotted alongside the CCF 

images with 1×1 and 3×3 binning for comparison (Fig. 3.17). The CCF images 

clearly distinguish the GUV from the external surroundings. The 1×1 binned image 

resembles the original intensity image. It is to be noted that these are flattened GUVs 

on the cover slide and are hence multilamellar. The results presented here will not 

differ based on the lamellarity of the lipid preparations. Values on the labeled GUV 

membrane are similar and the GUV is seen as a smooth surface.  
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Fig. 3.17: Detection of borders by ∆CCF.  Image of a surface immobilized GUV is 
shown in A. The GUV is flat due to the strong interaction between biotinylated lipids 
and surface immobilized avidin. For B and C, we calculated CCFAB-CCFBA along the 
horizontal for neighboring non-overlapping pixels. The results were integrated to 
obtain one single value which we refer to as ∆CCF. The scale used in these graphs 
reaches from the minimum (black) to the maximum (white) values thus obtained. In 
general black values are negative and white values positive. B is a ∆CCF map of 1×1 
binned data for the GUV in A. C is a ∆CCF map of 3×3 binned data for the GUV in A. 
The borders and areas on the vesicle membrane (arrows) can be clearly 
distinguished according to their different diffusion behavior. It should be noted that in 
general the diffusion behavior does not have to be analogous to the intensity image. 
The scale bar represents 3 μm. 

However, outside the vesicle, the CCFs are determined only by noise and 

consequently the CCF fluctuates freely. The boundary of the vesicles can be easily 

detected. The CCF image for 3×3 binning shows clearly the boundary of the GUV. 

The left and the right boundaries appear differently since the transition at the two 

boundaries is not the same due to our definition of the forward and backward CCFs. 

In the left boundary, the correlation of the liquid phase is subtracted from the 

correlation of the lipid phase whereas in the right boundary, the lipid phase is 

subtracted from the liquid phase. Interestingly, there are some more boundaries 

visible within the GUV membrane, albeit not as visible as the vesicle boundary. 

These boundaries, observable as well in the intensity images, may correspond to 

regions with a different diffusion coefficient which were created during vesicle 

immobilization (see arrows in Fig. 3.17). It has to be noted that the GUVs presented 

here are immobilized and spread on surfaces and hence these are multilamellar 

structures. This method will yield borders irrespective of whether the GUVs are 

bilayer or multilayered structures since only systematic deviations in diffusion 

processes are imaged by CCF. 
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ΔCCF images on supported mixed lipid bilayers 

The original intensity image of the phase separated bilayer is plotted 

alongside the CCF images for comparison (Fig. 3.18 A and B). The CCF images 

clearly distinguish the Lo and Ld regions. The bottom region is characterized by 

homogenous values of CCF while the top region is characterized by a broader 

distribution of CCF values. The Lo region appears more granular when compared to 

the Ld region. This is in agreement with the CCF values of GUVs where the labeled 

GUV was characterized by homogenous values while the outside appeared more 

granular. The cross correlations and autocorrelations for this measurement are 

provided in Fig. 3.18 C, D, E and F.  

Characterization of cell membrane organization by ΔCCF  

The distributions of the different lipid classes that make up cell membranes, 

including sphingolipids, cholesterol and glycerophospholipids, are highly 

heterogeneous. The membrane exhibits a range of diffusion coefficients due to the 

presence of regions of lower mobility called “lipid rafts” embedded in a fluid phase 

of higher mobility. Lipid rafts have been reviewed in recent literature6. 

A definition coined at the 2006 Keystone symposium on lipid rafts and cell 

function states, “lipid rafts are small (10‐200 nm), heterogeneous, highly dynamic, 

sterol‐ and sphingolipid‐enriched domains that compartmentalize cellular processes”5. 

MβCD is commonly used to disrupt rafts as it extracts cholesterol from membranes. 

Reducing cholesterol content in cell membranes leads to a mislocalization of raft 

associated proteins, and the loss of raft-like diffusion behavior66, 159-160. For the 

investigation of the cell membrane organization, we used SHSY5Y neuroblastoma 

cells, labeled with the sphingolipid binding domain (SBD) of the amyloid peptide 

Aβ. SBD was recently shown to have a similar diffusion behavior on cell 

membranes as Cholera Toxin B and thus functions as a good raft marker66. 
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Fig. 3.18: Detection of borders between phase separated regions by ∆CCF.  The 
image of a phase separated mixed lipid bilayers is shown in A. Rho-PE preferentially 
labels the Ld phase (bottom part) compared to the Lo phase (top part). ∆CCF image of 
the mixed lipid bilayer in A is shown in B. C and D show the cross-correlation 
functions on the Ld and Lo respectively. The CCFs in the unlabeled Lo are noisier than 
the labeled Ld phase. E and F show the ACFs for the Lo (D = 0.35 ± 0.31 µm2/s) and 
Ld (D = 1.38 ± 1.25 µm2/s) phase respectively.  

The diffusion coefficient can be used as a measure of the fluidity of the 

membrane. Upon addition of MβCD, the average diffusion coefficient of membrane 

bound SBD-TMR (0.7 ± 1.1 m2/s) increases over a time interval of 30 minutes by 

about a factor 2-3 (1.7 ± 1.1 m2/s). Accordingly, the diffusion coefficient histograms 

show a progressive shift towards higher diffusion coefficients (Fig. 3.19 G). This is 

consistent with the expectation that there is an increase in lateral mobility of raft 

related lipids and proteins on the cell membrane after cholesterol removal. In all 

cases, the large standard deviation of the diffusion coefficients indicates strong 
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variations in the diffusion coefficients on the cell membrane, in agreement with the 

partitioning of SBD into different lipid regions66. This interpretation is consistent with 

the dynamic partitioning raft model proposed earlier161-163. These experiments show 

that cholesterol content is important for the raft-like behavior of SBD. Possible 

changes in the large scale organization of the membrane after cholesterol extraction 

were investigated by the means of ΔCCF images and their frequency histograms (Fig. 

3.19 except G). Without MβCD addition, the ΔCCF images of SBD-TMR labeled 

cells are characterized by a high granularity (Fig. 3.19 A-C). There is a sudden 

decrease in granularity for ΔCCF images after incubating the cells with MβCD for 10 

minutes (Fig. 3.19 D). The granularity then gradually increases with time until after 

30 min of incubation, when it reaches a similar range to that of non-treated cells (Fig. 

3.19 F).  

Therefore, while the fluidity of the membrane, as characterized by the 

diffusion coefficient, increases within 30 minutes of MβCD addition due to 

cholesterol removal, the membrane reorganizes and reaches a similar state as non-

treated cells during the same time period, as shown by the ΔCCF distribution. A 

possible explanation for the change in ΔCCF distributions upon drug treatment is the 

change of the membrane equilibrium during drug action. SBD has been shown to be 

internalized by SHSY5Y cells and MβCD treatment disturbed SBD internalization66. 

The normally wide ΔCCF distribution may arise from restriction or direction of SBD 

diffusion due to cytoskeletal confinements164; alternatively, internalization may act as 

a sink for SBD, leading to wider, non-isotropic values of ΔCCF. Internalization 

inhibition, as seen in MβCD treated cells, may result in a disruption of this flux and 

thus narrower distributions. 
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Fig. 3.19: Effect of MβCD on D and ∆CCF of SBD labeled cells. ∆CCF images of 
cells labeled with SBD-TMR. A-C show the images for non-treated control cells. D-F 
show the ∆CCF images for cells treated with MβCD after various times of incubation. 
Images in A-C are very heterogeneous. Upon addition of drugs, the images become 
less granular and the heterogeneity is restored to various degrees after increased 
incubation of the drug as seen in F. The heterogeneity in these images is comparable 
with the heterogeneity as seen in images A-C. G shows the histograms of D at 
various times of incubation with MβCD for SBD-TMR. H and I are ∆CCF histograms 
after various incubation times for SBD-TMR labeled cells without or with treatment 
with MβCD respectively. Gaussian fits to the distribution are indicated in dotted lines. 
The dataset used in the analysis was a kind gift from Dr. Manoj Manna from the lab. 

In both normal and inhibited cases, though, the average of the ΔCCF 

distribution is zero since there is no macroscopic flux in the system. Therefore, 

changes in internalization would result in an altered membrane organization and 

transport patterns at least on the time scales of the drug action until new membrane 

equilibrium is reached. This is consistent with earlier findings that MβCD treatment 
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leads to an overall loss of cholesterol dependent membrane lipid domains, and to a re-

organization of the remaining non-extracted lipids, but does not change the original 

properties of the membrane165. It should be noted that other reports found an indirect 

release of glycerophospholipids166-167. As a result of the disorganization in the 

membrane upon cholesterol removal166 and it has been hypothesized that some 

compensatory changes in membrane lipid composition could occur after cholesterol 

depletion167 which could be an explanation for our findings.  

3.4 Conclusion 

In this work, we introduce ITIR-FCCS as an extension of ITIR-FCS for the 

investigation of transport and diffusion processes in cell membranes. An expression 

for auto- and cross-correlations for areas of any arbitrary shape and size on an 

EMCCD chip was derived, and the resulting ITIR-FCCS calculations were applied to 

molecular systems exhibiting different combinations of flow and diffusion. The 

diffusion coefficients extracted are in good agreement with other reported 

measurements and the measured flow velocities are close to the expected values. The 

method is calibration free since the PSF can be determined from the data itself. We 

studied anisotropic translocation in GUVs and mixed lipid bilayers to demonstrate 

that membrane organization can in principle be studied by determining the difference 

of the forward and backward correlations in so-called CCF images. Furthermore, 

using the CCF approach, we demonstrated that cell membrane organization and 

heterogeneity can be observed by using markers for lipid microdomains. ITIR-FCCS 

gives adequate spatial and temporal resolution to be able to measure membrane 

dynamics in a calibration free manner, and thus presents a powerful biophysical tool 

to provide novel insights into transport phenomena and membrane organization.  
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4 Accuracy and precision of estimates of mobility, number 
and heterogeneity from Imaging FCS 

A variety of theoretical and simulation studies have been performed in FCS to 

understand the effects of various factors in the collection, analysis and the 

interpretation of data. Pioneering work on the statistical accuracy of FCS was 

performed by Koppel168 who proved that the S/N ratio in FCS can be improved by 

increasing the counts per molecule per second (cps) and not the total counts per 

second and is independent of the number of particles168. The above expression was 

later modified to include the effect of lower concentrations169, Gaussian illumination 

profiles and transport processes other than diffusion170. Later, analytical expressions 

were derived which decomposed the error in FCS into two terms, the standard 

deviation and the bias171. The noise has also been experimentally quantified where the 

effects of concentration, intensity and measurement times on the autocorrelation 

function were studied172. Apart from theoretical and experimental studies, the effects 

of fluorophore saturation173, molecular orientation174, total measurement time175, 

membrane curvature176, minimum and maximum lagtime177 on the autocorrelation 

have also been investigated computationally. Simulations have not only been used to 

study the effects of various experimental parameters on the autocorrelation curves, 

but also used to minimize the effects of distortion volume on parameter estimation 

leading to the development of numerical fluorescence correlation spectroscopy 

(NFCS)178-179. There have been simulation studies on the correlation in the spatial 

domain and in which the effects of sampling, background noise and photobleaching 

were investigated142, 180. Simulations have also shed valuable insights for parameter 

extraction from FCS data. Few of the major findings include: the diffusion coefficient 

of the faster diffusing particle must be at least 1.6 times that of the slower one for 

resolution into two different species181, weighted data fit provided more accurate 

estimations of D than non-weighted ones126 and curve-fitting based on an Bayesian 
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approach preferred simpler diffusion models to more complicated models avoiding 

over fitting of the data182-183.  

To the best of our knowledge, no systematic investigation on the effects of 

various instrumental factors on camera based FCS has been performed. Hence this 

chapter is a simulation study, aimed at studying the effects of different parameters on 

the estimates of D and N in imaging FCS and provides guidelines for efficient 

experimental design. The major advantage of imaging FCS is multiplexing leading to 

the observation of many different areas at the same time. This helps in understanding 

heterogeneity in diffusion in the system under study. Heterogeneity in imaging FCS is 

analyzed by calculation of diffusion laws69 (Sec. 3.3.2.1) and ΔCCF functions (Sec. 

3.3.2.2). The last part of the article compares the two methods for quantifying 

heterogeneity. Hence, it is shown here that imaging FCS can provide reliable 

estimates of mobility and concentration and can provide valuable insights into the 

organization of biomolecules in a membrane. 

4.1 Methods 

The codes for the simulations were written in Microsoft Visual Studio 2008© 

(Version 9.0.30729.1 SP). They were run in a high performance work station with 96 

GB RAM and 64 bit Windows© operating system equipped with 12 processors. Data 

analysis were carried out in Igor Pro 6.22A© (Wavemetrics Inc., OR, USA and 

Matlab R2011a© (MathWorks, Natick, MA, USA). The various places where each 

software was used are indicated in the text. 

4.1.1 Free diffusion simulations 

A certain number of particles (Nt) were uniformly distributed in a circle of 

radius (Rs=4 μm) and the particles were allowed to diffuse within the circle. To 

simulate EMCCD based detection, a 20×20 square grid (a=240 nm) resembling the 

pixellated chip was superimposed onto the circular region. The center of the 

pixellated region coincided with the center of the circle. The diameter of the circular 
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region was made longer than the diagonal of the square region. The ran2() function 

was used to generate two random numbers U1 and U2 from the standard uniform 

distribution. ran2() is a “random number generator of L’Ecuyer with Bays-Durham 

shuffle and added safeguards”127. Using these two random numbers, the position 

 0, 0,,i ix y of each particle were determined according to the transformation  
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To simulate diffusion, a random displacement was added to each of the 

particle from its current position in each frame. Two random numbers (z and U3) were 

drawn from a standard normal distribution and a standard uniform distribution using 

gasdev() and ran2() respectively. gasdev() yields normally distributed random 

numbers using uniformly distributed random numbers obtained from ran2() after the 
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where Δτ is the time per frame. Whenever a particle left the region due to 

diffusion, another particle was added at another random position on the periphery of 

the circular region, thus keeping the number concentration of the particles, a constant. 

But, it has to be noted that the number of particles in each pixel varied due to the 

diffusion process being simulated. To simulate the fluorescence emission, a Poisson 

distributed random number was chosen with a mean set as the cps for each molecule 

using the poidev()127. Each photon was distributed across the airy disc for each 

particle. A Gaussian profile was used as an approximation to the Bessel airy disc129. 

Two uniformly distributed random numbers U4 and U5 were obtained from ran2(). 
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The position (xi,,j,k, yi,j,k) of each of the photons were determined and for every photon, 

a unit increment was performed to the existing intensity at that pixel. 
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where └ ┘is the floor function. 

 

Fig. 4.1: Schematic of the simulations.  Random-walk simulations of particles are 
carried out. If a particle moves out of the simulation area, a new particle is added at a 
random position. This is repeated for all the particles. At each position, a Gaussian 
mask is incorporated to simulate the effects of PSF. This leads to the creation of a 
single image. This is repeated for all the images in the stack. 
 
4.1.2 Domain simulations 

Non-overlapping circular domains of radii 100 nm with 50% coverage were 

uniformly distributed in the circular simulation area of Rs=5 µm. The centers of these 

domains were determined in a similar way to Eq. 4-1. These set of simulations were 
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characterized by the probability to exit a domain Pout. A random number from the 

standard uniform distribution was drawn and the particle was permitted to move into 

any domain freely, but move out of the domain only if the drawn random number was 

less than the value set to Pout. The D of the particle inside and outside the domain 

were Din and Dout respectively (Din<Dout). For this set of simulations, the following 

parameters were used: a=280 nm, PSF=250 nm, n=10000, Δτ=5 ms, cps=40 kHz and 

Nt=1000. Δτ was chosen in such a way that Δτ/τD was less than 0.1. Here the range of 

Δτ/τD used was 0.0005-0.05. 

Table 4-1: Parameters used in the simulations 

Parameter  Description 

a Pixel side length of the EMCCD  

Aeff Effective area of observation 

cps Average number of photons emitted per second per molecule 

n Number of frames 

N Number of particles diffusing in the effective area  

Nt Number of particles diffusing in the entire simulation region  

Rs Radius of the simulation region 

T Total measurement time T = n Δτ  

Tmin Minimum total measurement time for a particular error level 

Δτ Time resolution of the EMCCD 

w0 Point spread function  

τ Lagtime 

τmax Last point in the lagtime till which the correlation is calculated 

τD Diffusion time ߬஽ ൌ
஺೐೑೑
ସ஽

 

4.2 Results and discussion 

The results and discussion has two sections. The first section deals with 

dependence of accuracy and precision of the mobility and number density estimates 
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on experimental factors (Sec. 4.2.1) while the second section deals with those of the 

heterogeneity estimates (Sec. 4.2.2).  

4.2.1 Effect of instrumental factors on mobility and number density  

The effects of PSF, maximum lagtime, total measurement time, number of 

frames and cps are studied and discussed below. The values of the parameters were: 

cps=60 kHz, D=1 µm2/s, Nt=900, a=240 nm and they were chosen to match 

experimentally observed values. The a was chosen same as the pixel size of the 

Andor EMCCD camera used in experiments (Table 2-2). The e-2 radius of the PSF 

was chosen to be 320 nm to match it with experimentally measured value from 

autocorrelation based determination of PSF. A value of 0.7 in Table 3-9 corresponds 

to a PSF of ~300 nm.  

4.2.1.1 Effect of Δτ, T and PSF 

Typically, Imaging FCS is performed using 10,000 frames and hence the 

effect of Δτ was studied for the same number of frames. The error versus Δτ shows a 

parabolic profile in Fig. 4.2 A. The fitting was performed using 3-17 for the 

autocorrelation functions. It was shown in Sec. 3.3.1.3 that the value of PSF has to be 

fixed in order to obtain D and N. Hence, the PSF was fixed at the simulated value for 

the analysis below. It should also be noted that, whenever the PSF was fixed at a 

higher or lower value to the simulated PSF, the D decreased or increased with 

increasing bin size respectively and was constant only when it was fixed at the correct 

PSF. This indicates that the diffusion coefficient obtained from this method is 

absolute and only the absolute diffusion coefficient is constant with increasing bin 

size.  

There is a broad range of values of Δτ/τd which yields accurate estimates of D 

(errors within 10%). For values of Δτ>τd/10, the error increases beyond 10%. The 

effect is more drastically seen for N than for D. The value of N is predominantly 

determined by the shorter lagtimes of the correlation curve. The shorter lagtimes are 

extrapolated to τ=0 which yields the value of N.  
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It is quite surprising that the error is high when the values of Δτ/τd are low. It 

is also seen that for a given Δτ and T, the error associated with the estimate of D 

decreases with an increase in D (Fig. 4.2 C). In the simulation described above, 

varying the cps (one order higher or lower) could not yield any appreciable change in 

error (Fig. 4.2 D) indicating that the error associated with D is not due to lower signal 

to noise ratio and we are not limited by the brightness of the molecule at the 

simulated scenario. Instead, varying the PSF value yielded changes in error. The error 

increases with an increase in PSF size (Fig. 4.2 E). At low D or low Δτ, an increase in 

error is observed. The dimensionless parameter, 2
0w D   is the critical parameter 

controlling the precision of the observed estimate of D. This parameter measures the 

ratio between the point spread function and the mean squared displacement (4DΔτ) of 

the particle in the particular frame. The error is lower when the displacement per 

frame is higher than the uncertainty in localization due to the PSF. This has been 

known in the single parameter tracking literature as “reduced localization error”184.  

Hence, ways to increase the precision would be to reduce w0 experimentally or 

increase Δτ,. Care has to be taken in order to not increase Δτ to levels higher than 

those described by the previous inequality (Δτ <τd/10) so that it leads to a loss in 

accuracy. If this is not experimentally feasible, the other way to reduce the error 

would be to increase the total acquisition time (T=nΔτ). This is demonstrated in Fig. 

4.2 F where an increase in T led to an increase in precision of the estimated value. 

This was also observed by Ries et al, where it was observed that due to slow diffusion 

in membranes, longer measurement times and not increased brightness yielded 

accurate correlation curves185. Though, it may be tempting to increase T to higher 

levels to reduce the error to the desired levels, the practical limitation will be the 

photostability of the dye.  
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Fig. 4.2: Dynamic range of time resolution in Imaging FCS.  The errors in D and 
N obtained at various time resolutions for a simulated stack of n=10000, D=1 μm2/s, 
cps=60 kHz and Nt =900 in a circular area of R=4 μm with a EMCCD detection grid of 
20×20 pixels with a=240 nm and PSF of 320 nm. The parameters were chosen as 
close to experiments as possible. The error in A shows a parabolic profile. There is a 
critical Δτ/τD beyond which error starts increasing. At lower Δτ/τD values the error can 
be overcome by increasing n. The grey box indicates 10% error from the simulated 
value. B shows that for a fixed T, PSF, D and cps, it is advisable to use nmax and 
Δτmin. The precision decreases with an increase in Δτ. Upon reaching, Δτ=τD, there is 
a decrease in accuracy and precision. For the same error levels, T increases with an 
increase in Δτ. C shows that there is a decrease in precision of the estimates with a 
decrease in D for the same n and Δτ (Δτ<τD in both the cases) as seen in A. The 
precision cannot be increased by increasing the cps as in D. An increase in PSF 
causes a decrease in precision for the same D, n and Δτ as seen in E. F shows that 
the precision can be increased by increasing the T for the same D, n, PSF and Δτ. 
The critical factor controlling the precision of the estimate is 2

0w D  . 
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A practical suggestion, for cases where photobleaching is limiting, as 

suggested by Fig. 4.2 B, is to acquire the maximum number of images at the lowest 

experimentally accessible Δτ. For a given T, D and PSF, the error increases with 

increasing Δτ and higher number of frames are required for obtaining the same level 

of error.  

The precision of the estimate of D is affected by the size of the pixel in object 

space. The pixel size can be calculated by dividing the physical size of the pixel by 

the magnification of the objective.  The choice of the pixel size is dependent upon 

two different effects.   Firstly, a reduction in the pixel size (a) in object space 

provides better precision because this leads to increased sampling. The effects of 

pixel size on localization error has been quantified earlier and it has been shown that 

the finite pixel size of a leads to a localization error of a2/12186. The error decreases 

with an increase in the ratio between displacement per frame and pixel size. The pixel 

size in object space can be made as small as possible by employing a high 

magnification objective or by choosing array detectors with small physical pixel 

sizes.  The data presented here is in accordance with earlier reports in Raster Image 

Correlation Spectroscopy (RICS) which suggested that spatial oversampling (higher 

than the Nyquist criterion) is required for an accurate estimation of PSF by image 

based correlation techniques187. An optimal pixel size of ~50  nm was suggested for 

RICS. Secondly, in cases where imaging is performed at sub-optimal signal to noise 

ratio, an increase in the pixel size (by software or hardware binning) leads to an 

increase in the signal to noise ratio since this leads to increased photon counts. Hence 

an increase in pixel size leads to an increase in precision of the estimate.  These 

competing effects must be borne in mind while choosing the pixel size. 

The simulations performed here helped us in understanding the uncertainties 

and errors associated with D and N. Generally, distributions in D and N are used to 

characterize the heterogeneity of any sample. The statistical question to be put forth 
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in such a condition is whether the spread in D and N are significantly larger than the 

“inherent width”188.  

There have been many theoretical studies on FCS about optimal Δτ. All these 

papers report optimal Δτ needed in terms of τD. τD was defined as Aeff/4D in the case of 

imaging FCS in Sec. 3.2.2. A parabolic profile for the error versus Δτ has also been 

obtained by Degiorgio et al189 for intensity correlation spectroscopy and by Brenner 

et al for number fluctuation spectroscopy190. The estimate of Δτmax for imaging FCS is 

in the same order of Δτmax for other techniques. For instance, Tchiernak et al177 

reported a Δτmax of 2/3*τD for confocal FCS whereas Kolin et al180 provided a value of 

1/2*τD for TICS. Further, Kolin et al state that for Δτ within the suggested regime, the 

total number of sampled images in the stack determines the precision, similar to the 

data presented here. In the case of Tmin, simulations and experiments in photon 

correlation spectroscopy175 and in rotation correlation spectroscopy188 have yielded a 

value of 100τD. For a D=1 µm2/s, τD ~= 100 ms, hence for Δτ=1ms, 10,000 frames are 

sufficient according to the suggestions above. More number of frames are necessary 

for molecules with D<1 µm2/s as stated earlier. The results are in agreement with 

those reported by Saffarian et al171 that even without shot noise, the S/N ratio is 

strongly dependent upon the finite T of the experiment.  

4.2.1.2 Effect of spatial sampling and total measurement time on PSF 
determination 

 

In the analysis earlier, the effects of PSF were studied on the estimates of D. It was 

assumed in those analyses that the value of PSF was accurately known. But, the PSF 

needs to be determined for each system for accurate determination of D in camera-

based FCS. Three different methods to determine PSF based on autocorrelation, 

cross-correlation and image correlation were discussed earlier (Sec. 3.3.1.3).  The 

effect of experimental parameters (pixel size and total measurement time) on the 

determination of PSF from Imaging FCS is discussed here.  
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Fig. 4.3: Effect of spatial sampling and T on PSF determination.   A) 
Determination of PSF by autocorrelation method B) Effect of pixel sizes on the 
determination of PSF C) Effect of total measurement time on the determination of 
PSF 

The procedure to determine PSF from autocorrelation based method in brief 

is provided below. The autocorrelation functions at different binned areas needs to be 

calculated (1×1 to 5×5). D is an intrinsic parameter of the particle and hence is 

independent of the binning area used to calculate the D. The data at various bin areas 

are fitted with various values of the PSF. D is an increasing (positive slope) or 

decreasing (negative slope) function of bin area for values of PSF less or greater than 

the PSF of the system respectively.  The value of PSF which yields a D independent 

of the bin area is the PSF of the system. As seen in the figure above, the value of PSF 

which yields a slope of zero is the PSF of the system. 

The effects of pixel size on the accuracy of the PSF were studied by 

simulations. The PSF was fixed at 320 nm and the autocorrelation based method was 
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used to determine the PSF. Three different pixel sizes (120, 240 and 480 nm) were 

checked for the accuracy of the PSF obtained. PSF was varied across a wide range of 

values spanning those below and above the simulated PSF. As expected, for PSFs < 

simulated PSF, the slope was positive and vice versa for all the three cases. 

Theoretically, all the three pixel sizes are expected to have a zero crossing on the x-

axis when the error is zero. But the zero crossing, displays a trend. The lines 

asymptotically converge to zero percent error indicating that the finite spatial 

sampling has an effect on the value of the PSF obtained by autocorrelation based 

method. This is in accordance with earlier reports that the finite pixel size of a leads 

to a localization error of a2/12186. 

As the pixel size increases, the accuracy of the PSF obtained decreases. A 

pixel value of 120 nm yields the smallest error of ~15% among the three. The ratio 

between the smallest pixel and the PSF is 37.5%. For accurate PSF determination in 

imaging191 and RICS187, a ratio of at most 17% between the smallest and PSF is 

suggested. This difference might explain the observed error in PSF determination 

here from Imaging FCS. This suggests that spatial oversampling over Nyquist 

criterion is necessary for accurate determination of PSF from Imaging FCS. 

4.2.1.3 Effect of τmax and N 

For proper estimation, at least up to 3 decades of lagtime need to be fitted 

(1000Δτ). The results are summarized as a schematic in Fig. 4.4 B. Although the τmax 

is less than earlier reports (τmax>5000τD for solutions177 in confocal FCS), we find that 

τmax>100τD is sufficient for Imaging FCS in our case. In the case of N, up to 2000 

particles/µm2 yield estimates within 10% error (Fig. 4.4 A). For N>2000 μm-2, there is 

a loss in accuracy due to decrease in amplitude of the correlation functions. The 

dependence of the signal to noise on N has been studied analytically, computationally 

and experimentally and the present findings agree with them that at higher 

concentrations, the S/N is independent of N and depends only on the cps, whereas at 
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lower concentrations it is dependent upon N168-170, 172. In the case when N<1 

particle/µm2, the increase in error due to a decrease in N can be compensated by a 

corresponding increase in cps for a particular error level as suggested by Koppel168.  

 

 

Fig. 4.4: Dependence of accuracy and precision of estimates on N and Δτ.  A 
shows that there is a large dynamic range in N which yields accurate and precise 
estimates of D and N. Generally, Imaging FCS is performed only in this regime. For 
N>2000 μm-2, there is a loss in accuracy due to decrease in amplitude of the 
correlation functions. Fitting guidelines in Imaging FCS are summarized in B. For 
n=10000, the region A, shows the region dominated by error due to insufficient T. In 
the region A, more than 10000 frames are needed to obtain reliable estimates of D 
and N. Further, present day EMCCD cameras cannot reach regimes where Δτ/τD >10-

3. The region B indicates the region where the first point in the correlation curve can 
be (Δτ/τD =10-3-10-1), and depending upon the start of the curve, fitting has to be done 
for at the least 3 orders of τ. The solid black line indicates the position of maximum 
Δτ/τD =0.1) yielding reliable estimates of D and N. The first point of correlation should 
not be in the regions to the right of this line (C and D). The white region (regions B 
and C) show the minimum region required to be fitted to obtain D and N accurately.  

 

4.2.1.4 Guidelines in Performing an Imaging FCS experiment  

The analysis presented in the previous sections enables one to put forth 

guidelines while designing an Imaging FCS experiment.  The goal of any Imaging 

FCS is to provide the most accurate and reliable estimates of mobility and 

concentration.  

1. The first step while designing an Imaging FCS experiment is to find the 

minimum time resolution of the camera (Δτmin).  

2. The first step in the calibration of the microscope is the calculation of the 

pixel size (a) of the EMCCD camera in the object space. The physical pixel 
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size of the EMCCD is provided by the manufacturer. Based on that a can be 

calculated.  

a = physical pixel size/Magnification of the objective used 

3. Calibration of the microscope 

After calculating the pixel size, the next step is the calculation of the PSF of 

the microscope. The PSF can be done in any of the three ways described  

earlier8.  In the case of autocorrelation based calibration, a sample whose 

diffusion coefficient (D) is approximately known and which exhibits free 

diffusion needs to be chosen. To begin with, as a rule of thumb, the diffusion 

time can be calculated by the expression: τd, approx = a2/4D. The measurements 

must be made using a time resolution of the camera which is at least ten times 

faster than that of the above value. This procedure will yield the value of 

PSF. Once PSF and a are known, the effective area (Aeff) of each pixel can be 

estimated.  Thus the system is calibrated. 

4. Choice of parameters 

1. The density of the particles must be in the range of 10-1000 µm-2. 

2. Suitable EM gain has to be used which will not lead to a saturation of the 

pixels in the EMCCD chip. 

3. The choice of pixel size is discussed in detail in the next section. 

5. For an unknown sample, if an approximate D is known, the time resolution 

must be at the least 10 times smaller than the τd (τd = Aeff/4D). At least 10000 

frames need to be taken. In case, the sample does not photobleach, more 

frames are recommended since the error reduces with increase in number of 

frames. In case, even an approximate diffusion coefficient is not known, a 

series of time resolutions has to be tested at 10000 frames such that the 
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average D does not vary with the time resolution. Then the time resolution 

with the lowest error has to be chosen. If the error is same across a variety of 

time resolutions, the lowest time resolution has to be chosen since this 

reduces the amount of illumination on the sample reducing phototoxicity and 

photobleaching. 

6. Then for a given amount of T, images need to be captured at different time 

resolutions (Δτmin, 2Δτmin, 5Δτmin, 10Δτmin). In case, if the sample is shot noise 

limited, the error will decrease until a time resolution (Δτoptimum) where it is no 

longer shot noise limited. If not, the best time resolution will exhibit the 

lowest possible error.  

7. In the next step, the Tmax has to be identified after which the sample starts 

photobleaching.  

8. At this Δτoptimum, Tmax/ Δτoptimum number of frames need to be captured for 

consistent estimates of mobility. 

9. Upon calculation, the fitting has to be done at the least 3 orders of correlation 

time (typically, Δτ to 2000Δτ). 

4.2.2 Effect of instrumental factors on heterogeneity  

Heterogeneity in Imaging FCS can be characterized using diffusion laws 

(Sec. 3.3.2.1) and ΔCCF (Sec. 3.3.2.2). The influence of the experimental parameters 

on the heterogeneity metrics needs to be investigated, before they are applied to study 

heterogeneous systems. Hence, diffusion laws and ΔCCF analysis were performed for 

the same set of data as in Fig. 4.2.  

4.2.2.1 Effect of experimental parameters on diffusion laws 

Various binning were carried out from 1×1 to 5×5. The binned areas 

overlapped with each other. The diffusion law was visualized by plotting Aeff/D vs 

Aeff. Standard error of the mean was used to perform a weighted fit. Typical diffusion 

laws for D=1 and 0.1 μm2/s are shown in Fig. 4.5 A. The slope of the diffusion law is 
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the reciprocal of D. Fig. 4.5 D shows the error in D across the values of Δτ/τD tested. 

The first two points are limited by the number of frames. The error at higher Δτ is not 

as significant as those obtained from autocorrelation. This is because, the D obtained 

in diffusion law is an average from 1×1-5×5 autocorrelations. The higher Δτ values 

do not yield reliable estimates of D in the case of 1×1. Due to an increased τD, the 

higher bins yield accurate estimates of D. Hence on average, the error is reduced in 

the case of the slope when compared to the autocorrelation. Fig. 4.5 E shows the 

intercept values obtained from the diffusion laws. There is a certain range of Δτ/τD 

values which yield intercepts as expected as close to zero. The grey box indicated an 

error of 10 ms here and an error of 10% from the simulated value in the case of D. As 

the case above, the intercepts at smaller Δτ/τD are limited by number of frames and 

hence non-zero intercepts are seen.  

It is observed that the intercepts have a higher error in the case of lower D as 

in Fig. 4.5 G. This can be overcome by increasing the number of frames. As seen in 

Fig. 4.6 A, the intercept progressively decreases and reaches zero with increase in T. 

Generally, positive intercepts indicate the presence of domains in the observation 

area. The positive intercept obtained at lower mobility should not be immediately 

misinterpreted with the confinement in a domain. Suitable biological controls need to 

be done to confirm the statement above.  

4.2.2.2 Effect of experimental parameters on ΔCCF distributions 

Traditionally, ΔCCF is characterized by the second or fourth moments of the 

distribution, standard deviation or kurtosis respectively. Typical ΔCCF distributions 

are shown in Fig. 4.5 B. The present simulation studies suggest that the second 

moment of ΔCCF is affected not only by the heterogeneity of the system but also by 

the mobility of the particles. Slow moving particles have a higher width when 

compared to fast moving particles as in Fig. 4.5 H. While calculating the kurtosis, it is 

inherently assumed here that the ΔCCF distributions are Gaussian. ΔCCF distribution 

of particles undergoing free diffusion is expected to be a normal distribution. For all 
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the other cases, the distribution is not expected to be a Gaussian. Hence the inherent 

assumption while calculating kurtosis is not justified in all the cases. ΔCCF 

distributions are also affected by the Δτ of the data. Increasing Δτ has increasing 

values of standard deviation as in Fig. 4.5 H. With differences in Δτ, different areas of 

the curve are subtracted and hence different standard deviations are obtained. Even 

subtracting the same temporal regions from experiments with different Δτ yield 

different values since the same region has different levels of statistical noise for 

different Δτ. Hence, there arose needs to develop ΔCCF methods which are mobility 

and Δτ independent and assume no prior assumptions of the distribution of the data.  

 

Fig. 4.5: Heterogeneity estimates from Imaging FCS.  Representative diffusion 
laws, ∆CCF distributions and normal probability plots for D=1.0 and 0.1 μm2/s are 
shown in A, B and C respectively. The simulations described in Fig. 4.2 were 
analyzed for heterogeneity. The slope of the diffusion law is inversely proportional to 
the D and the error in D is seen in the figure D. E is a plot of the intercepts obtained 
from diffusion laws. F shows the kstat values of the same set of simulations. The grey 
box shows the mean and one standard deviation of kstat values obtained from 380 
values sampled from a standard normal distribution. F indicates that kstat on the 
average shows the distributions to be normal for simulations of free diffusion. This 
suggests that diffusion laws and ∆CCF distributions can be obtained for the indicated 
Δτ values. G indicates that the intercepts are dependent upon D. This dependence 
can be reduced by increasing the T as discussed in Fig. 4.4. The standard deviation 
of ∆CCF distribution depends upon D of the sample and Δτ of the system as seen in 
H. This can be overcome by using kstat as a metric to characterize the distribution 
which is independent of Δτ as in I.  
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As stated earlier, the ΔCCF values are normally distributed for particles 

undergoing free diffusion. Hence any method which systematically characterizes 

deviations from normal distribution serves to quantitate the heterogeneity in diffusion 

in the system. Hence any given ΔCCF distribution needs to be tested for its normality. 

Here, Lilliefors test192, an adaptation of the Kolmogrov-Smirnov test is used to test 

for the normality of the distribution (Matlab© function lillietest). The Kolmogrov-

Smirnov test compares the current distribution to any distribution whose parameters 

need to be specified prior to the test. Lilliefors test compares the given distribution to 

any distribution using the mean and standard deviation from the data itself. Here, the 

data is compared to a Gaussian distribution. In order to perform this test, the 

cumulative distributions of ΔCCF and that of the Gaussian calculated from the 

ΔCCF’s parameters are calculated. The test statistic is referred to as kstat. kstat is a 

distance measure between the two distributions. For a given ΔCCF value, the 

proportion of values less than the given value is computed for a Gaussian and for the 

observed distribution. The maximum of the absolute difference between the values is 

referred to as kstat  max CCF Gaussian
x

kstat CDF CDF  .  

As the raw data is directly used to perform the test without any histogram 

calculations, it is scale free. For Δτ>0.5 ms, it is seen from Fig. 4.5 I that molecules 

exhibiting different mobility have similar values of kstat. The same figure also shows 

that kstat values from samples simulated with different Δτ have similar values 

indicating that it is Δτ free. The test is non-parametric and makes no inherent 

assumptions about the distribution of the data. Hence the use of normality testing 

over the use of moments of the distribution is recommended to compare the 

heterogeneity between various samples. Similar to the diffusion law, Lilliefors test 

shows deviations from normal distribution in case of samples with low mobility (Fig. 

4.5 I, Δτ=0.5 ms). As the case with diffusion laws, it can be overcome by increasing T 

(Fig. 4.6 B). When comparing diffusion law and normality tests (Fig. 4.6), it is seen 
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that both of them depend on T. But, in the case of samples with lower mobility, the 

diffusion laws need longer T than normality tests to converge to the expected value. 

In the simulated regime, for samples with slower mobility, it is seen that the 

intercepts converge to zero, but even at very large experimentally accessible T, the 

intercepts are higher than those obtained from faster mobility. This is not the case 

with kstat whereas, at lower mobility, with increasing T, the kstat values decrease and 

are comparable to those obtained from faster mobility (Fig. 4.3 and Fig. 4.4).  

 

Fig. 4.6: Dependence of heterogeneity estimates on T. At low D, an increase in T 
leads to a decrease in intercepts (A) and kstat (B). The intercepts show a higher 
dependence on T than kstat.  

 

Fig. 4.7: Dependence of heterogeneity estimates on detection area. A) and B) 
show two different ways to reduce the detection area.  The detection area can be 
reduced by either reducing the PSF or the pixel size. The FCS diffusion laws at two 
different PSFs or pixel sizes are shown in the insets in grey or black corresponding to 
those values with bars filled in grey or black respectively.  
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4.2.2.3 Effect of total measurement time, PSF and pixel size on intercepts in 
the FCS diffusion law 

A reduction in pixel size or the PSF leads to a reduction in the observation 

area thereby reducing the values of Aeff/D and hence the intercepts obtained are 

close to the expected value of zero as in the figure above.  

 There are two factors governing the precision of the FCS diffusion law, the 

distance of the first point on the x-axis from zero and the spacing between the 

points. Both factors stated above are determined by Aeff. The primary factor 

affecting the distance of the first point from zero and the spacing between 

them are PSF and pixel size, respectively.  The figures show that a two times 

reduction in PSF at a given pixel size (a = 240 nm, w0 = 160 and 320 nm) is 

more effective in reducing the intercept than a two times reduction in pixel 

size at a given PSF (a = 120 and 240 nm, w0 = 320 nm). Super resolution 

techniques need to be implemented in order to reduce the PSF to levels below 

the diffraction limit.  

 

Fig. 4.8: ΔCCF distributions for flow. The forward and backward cross-correlations 
for three different pixel positions labeled in red, blue and green are shown in 
continuous and broken lines respectively. The difference between the forward and 
backward cross-correlation along with the distribution is shown as well in the extreme 
right panels. 
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Fig. 4.9: ΔCCF distributions for diffusion. The corresponding functions for diffusion 
are shown here. The same convention as the previous figure is adopted. The 
symmetric ∆CCF distribution is seen here. 

 

Fig. 4.10: ΔCCF distributions for anisotropic diffusion. The corresponding 
functions for anisotropic diffusions are shown here. The same convention as the 
previous figure is adopted. The symmetric ∆CCF distribution is seen here. Unlike, 
free diffusion, the forward and the backward correlations do not overlap with each 
other in all the pixels.  

4.2.3 Heterogeneity estimates from simulations with domains 

After establishing the error limits of the heterogeneity metrics with 

experimental parameters, they were tested on simulations with domains. When the 

ratio of Dout to Din was kept at 100 with a Dout of 10 µm2/s and Pout was systematically 

varied from 5e-5 to 1.0, the average D increases with increase in Pout as expected (Fig. 

4.12 F). The trapping efficiencies of the domains are inversely related to Pout
. With an 

increase in Pout, a decrease in intercept value (τint) was seen.  
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Fig. 4.11: Demonstration of Kolmogrov-Smirnov test. The ΔCCF values for free 
and anisotropic diffusion are plotted here. The corresponding cumulative probability 
function is shown later. The thick lines indicate the theoretical Gaussians in the 
cumulative probability function. The deviations from Gaussian are very evident for 
tanisotropic 

This is expected, since the intercept values are an indicator of the average 

time the molecule spends in the domain. As Pout increases, the trapping time 

decreases and hence the intercept decreases as seen here63. As described in Sec. 

4.2.2.1, intercepts have higher error with a decrease in D. Hence the obtained 

intercepts could be artifacts of the slow mobility of the particles. It has been shown 

earlier that a lower D can give rise to non-zero intercepts in the diffusion law. In 

order to ascertain the fact that the intercepts displayed are those of trapping and not 

mere errors due to the lack of sufficient T, free diffusion corresponding to the average 

D obtained by fitting the autocorrelations from the previous case were simulated. The 

data obtained from such simulations are plotted as points for bilayers in Fig. 4.12 A-

E. It is seen that, the slow mobility in turn contributes to the obtained non-zero 

intercept. But, the trapping increases the intercepts to levels higher than that of slow 

mobility only. The same set of data was also analyzed for heterogeneity using 

normality tests. Similar to the intercepts, the kstat values are affected by T. But the 

trapping increases the kstat values to distinguish it from those which are affected by 

slow diffusion only. For the simulated domain coverage of 50%, the value of Pout at 

max of 1% shows differences in intercepts and kstat values between the simulations 

those of the bilayer and those of the domains. For Pout values greater than 1%, it is 

difficult to distinguish the effects of trapping and slow mobility. The data in Fig. 4.12 
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D and E show that, the ratio of Dout to Din needs to be at least 50 to differentiate the 

effects of trapping and slow mobility in the case of domains of size 100 nm at 

Pout=5e-5. The value is reduced in the case of domains with larger radii. For a 

comparison, the raw data is plotted in the form of histograms and the standard 

deviation of these ΔCCF distributions is plotted in Fig. 4.12 C since all the 

measurements were performed with the same Δτ. Unlike kstat, the standard deviations 

are a monotonically decreasing function with decreasing D in the case of bilayers 

similar to the intercepts from diffusion law and unlike kstat from the normality tests. 

The merits and demerits of both the methods are discussed below. 

Table 4-2 Comparison of methods to quantitate heterogeneity  

Diffusion law ΔCCF-normality test 
Performed by fitting autocorrelation data Performed on raw cross-correlation data 

and hence it is faster since fitting data to 
non-linear models is avoided  

It can differentiate the effects of domains 
and meshwork  

It cannot individually differentiate modes 
of diffusion since only systematic 
differences in normality is measured 

It cannot differentiate flow and diffusion 
processes. 

ΔCCF distributions can differentiate flow 
and diffusion processes by the position of 
the mean. 

The raft partition coefficient* (K)193 
needs to be at least 1000 in order to 
differentiate hindered diffusion due to 
traps from mere slow diffusion. 

The raft partition coefficient (K)193 needs 
to be at least 10000 to differentiate 
hindered diffusion due to traps from 
mere slow diffusion. This indicates that 
the normality tests need stronger trapping 
to confirm the presence of heterogeneity 
when compared to diffusion laws. 

A positive intercept obtained in the case 
of domain in diffusion law. But, a 
positive intercept is observed even with 
particles that diffuse slowly which can be 
avoided by increasing the measurement 
time (T). In the case of 0.1 μm2/s, a 
measurement time of 80 s is needed in 
order to differentiate whether the 
intercept is an artifact of slow diffusion 
or trapping 

An increased kstat value is seen in the 
case of domain in ΔCCF-normality test. 
But, an increased kstat value is observed 
even with particles that diffuse slowly 
which can be avoided by increasing the 
measurement time. In the case of 0.1 
μm2/s, a measurement time of 20 s is 
needed in order to differentiate whether 
the intercept is an artifact of slow 
diffusion or trapping. This suggests that 
the diffusion laws have a higher 
dependence on T than normality tests. 

Provides an estimate of global 
heterogeneity in the system 

Provides an estimate of local 
heterogeneity in the system 

*The partition coefficient193 was defined as out

in out

D
K

D P
 . 
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The table indicates that diffusion laws and both methods have advantages and 
limitations. Since both the metrics (intercept and kstat) can be quantified from the 
same raw data, it is advisable to quantitate both the local and global heterogeneity in 
the system. 

 

Fig. 4.12: Estimation of heterogeneity for simulations with domains. A is a plot 
of the intercepts of diffusion law from Imaging FCS. As the trapping efficiency 
decreases (Pout increases), there is a reduction in the intercept. The autocorrelation 
was performed to yield the average D. Free diffusion simulations of the obtained 
average D were performed. The intercepts from the two sets of simulations are 
compared in A to ascertain that trapping increases the value of intercepts. B is a plot 
of kstat for the same set of data. As above, trapping introduces non-normality leading 
to an increase in kstat than those introduced due to slow mobility. Both the data show 
differences between trapping and slow mobility when Pout<1%. C is a plot of the 
standard deviation of the ∆CCF distributions of the data shown in B. For a Pout=5e-5 
and Dout=10 μm2/s, the intercepts and kstat increase with decreasing levels of Din (D 
ratio = Dout/Din) as seen in figs. D and E respectively. An increase in Pout leads to a 
decrease in trapping efficiently consequently leading to an increase in D as seen in F 
for a fixed ratio of Dout to Din of 100 for the same set of data shown in A-C. 
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4.3  Conclusion 

Simulations were used to ascertain the effects of various instrumental parameters on 

the accuracy and precision of the mobility, number density and heterogeneity 

parameters obtained from Imaging FCS. This helps to estimate the error in the 

estimates beforehand using the chosen parameters. Guidelines are provided for 

efficient experimental design. An accurate expression for the effective area was 

provided leading to the definition of τD. For accurate estimation of D and N, 

Δτ<τD/10. The precision is inversely related to 2
0w D  . In cases, where it is not 

possible to reduce 2
0w D  , an increase in T leads to an increase in precision. For a 

given T, it is advisable to use nmax and Δτmin. The S/N ratio is dependent upon counts 

per molecule per second and not counts per second as already established in FCS168. 

At low N, the decrease in S/N ratio can be compensated by an increase in counts per 

molecule per second. The S/N ratio decreased for high number of particles in the 

observation region. Heterogeneity can be ascertained in Imaging FCS by diffusion 

laws and ΔCCF distributions. Diffusion laws provide an estimate of the global 

heterogeneity of the sample whereas normality tests provide an estimate for the local 

heterogeneity of the sample. It is seen that both methods have merits and demerits. 

Since diffusion laws and ΔCCF-normality tests can be performed from the same raw 

data, it is advisable to quantitate heterogeneity by both methods to obtain a complete 

picture of the heterogeneity of the system being probed. The simulations performed 

here helped in understanding the uncertainties and errors of the estimates from 

Imaging FCS allowing one to put forth the statistical question whether the observed 

spread in D and N is significantly larger than the inherent uncertainty. The 

measurements and simulations in this thesis so far indicate that Imaging FCS 

provides reliable estimates of D, N and heterogeneity of the sample and is a valuable 

biophysical tool to study the same. The next chapter describes various applications of 

Imaging FCS. 
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5 Applications of mobility, number density and heterogeneity estimates 

obtained from Imaging FCS  

The previous chapters discussed the various methods to determine the mobility 

and number density estimates from Imaging FCS along with the accuracy and 

precision of those estimates. The various experimental applications from which 

mobility, number and heterogeneity were determined using Imaging FCS are 

discussed here. The applications are classified into three sections. The first section 

describes a biological application where Imaging FCS was used to probe the 

organization of a membrane protein called EGFR. This is followed by a chemical 

application where Imaging FCS was used to study the formation of bilayers on 

different surfaces and the action of antimicrobials on them. The next instrumental 

application focuses on the coupling of Imaging FCS with impedance spectroscopy.  

5.1 Materials and methods 

The details of the plasmids, the graphene films and the diamond transistors are 

provided in Appendix 17. Melittin and magainin were purchased from Sigma Aldrich 

(Singapore) and were used as received. 

5.1.1 Transfection and Imaging of cell-membrane proteins 

The cells were grown in 35 mm fluorodishes with cover glass bottom 

obtained from World Precision Instruments Inc (Sarosota, FL, USA). Chemical 

transfection using FuGENE©6 (Promega Pte Ltd, Singapore) was performed. 3 μl of 

the transfection reagent was mixed with 1 μg of the plasmid. Imaging was carried out 

in indicator free media. The media composition and growth conditions of the CHO 

cells used are described here53. 

5.1.2 Preparation of lipid bilayers on nanodiamond and graphene 

The protocol to prepare bilayers on glass has been described earlier in Sec. 

3.1.3. The following modifications were made to the original protocol. The lipid 

bilayers were prepared in the similar chambers as in Sec. 5.1.1 instead of cover slides. 

The concentration of Rho-PE was 0.02% for bilayers grown on graphene. The lipid 
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samples on nanodiamond and graphene were subjected to vacuum evaporation for 1 

hour. Prior to lipid addition, the flasks were cleaned in piranha reagent 

(H2O2:H2SO4::3:1). The sonication was performed for 45 minutes and incubated at 60 

ºC for 3 hours. 2-6 ml of the suspension was sonicated for 30-45 minutes to form 

vesicles. Nanodiamond and graphene were fixed over the cover glass bottom in the 

chamber using silicone rubber. It is crucial to soak the CVD graphene sample in 

distilled water for a day prior to deposition of biomimetic membranes for better 

membrane formation. This is to prevent a widespread adsorption of unfused lipid 

vesicles rather than formation of a spatially uniform membrane. The lipid membrane 

must be wetted in buffer solution all the time to prevent disintegration.  

5.2 Results and discussion 

This section discusses three different applications of Imaging FCS. The first 

section describes the use of single molecule sensitive Imaging FCS to probe the 

mobility and heterogeneity of a membrane protein called EGFR on live-cells 

expressing the transfected protein at physiological concentration levels. The second 

application describes the use of Imaging FCS as an assay tool to monitor the 

formation and disruption of lipid bilayers on various surfaces of different 

hydrophobicities. The third application is our approach at combinatorial microscopy 

where we describe the coupling of Imaging FCS with impedance spectroscopy.  

5.2.1 Live-cell imaging of membrane dynamics 

The cell membrane separates the cell from the exterior environment and has a 

multitude of tasks such as transporting nutrients in and metabolic wastes out of cells 

and communicating signals from the cell exterior2. Many diseases are manifestations 

of the constituents of the cell membrane failing to perform their designated tasks and 

membrane proteins are major drug targets194. Imaging FCS can investigate the 

diffusion behavior of membrane proteins and lipids on an entire cell membrane in a 

single measurement. By correlating the data in the different pixels over time, Imaging 

FCS provides diffusion coefficients and concentrations of lipids and proteins in 
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artificial and cell membranes along with the heterogeneity of the sample from a single 

data set. All the investigations of temporal dynamics using Imaging FCS are on a 

scale of the resolution limit since we wanted to investigate membrane organization on 

the smallest accessible level. The spatial information was added by the cross-

correlation of pixel pairs. Here, we study the diffusion and organization of two 

different proteins, PMT and EGFR using Imaging FCS. 

5.2.1.1 EGFR 

EGFR (Epidermal growth factor receptor) is a member of the tyrosine kinase 

family of receptors. The four proteins observed so far have been named ErbB 1-4195. 

ErbB1 is referred to as EGFR. Mutations in EGFR leading to over-expression have 

been implicated in a variety of cancers, for instance, lung cancer196. The clinical 

importance of these mutations can be understood by the amount of research in the 

field; a search in PUBMED for “EGFR + cancer” retrieves 14000 hits.  

EGFR has been shown to reside in membrane microdomains197-201. These 

proteins are found in caveolar and non-caveolar lipid rafts. A specific targeting 

sequence of the protein has been isolated which is responsible for the movement of 

these proteins to lipid rafts202. Generally one-third to one-half of the total population 

of EGFR appears to be localized to lipid rafts203.  

5.2.1.2 PMT 

The plasma membrane targeting sequence from the X-linked retinitis 

pigmentosa protein RP2204 was used as a negative control. The N-terminal sequence 

of the protein responsible for membrane targeting is MGCFFSKRRK. This sequence 

has been conserved across a variety of organisms. Glycine at position 2 is the site for 

myristoylation and cysteine at position 3 is the site for palmitoylation.  

5.2.1.3 Experimental details 

CHO cells were chosen for the experiments in order to avoid artifacts from 

endogenously expressed EGFR proteins (ErB1). Only a very low amount of ErB2 is 

known to be expressed by CHO cells53, 205.  CHO cells are a very good model system 
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to study EGFR dynamics since they have low levels of endogenous expression The 

CHO cells were transfected with the proteins coupled with a fluorescent protein (GFP 

in this case). The fluorescent proteins were cloned into the C terminus of the proteins. 

The functionality of the proteins has already been tested earlier in our lab53. 

5.2.1.4 Mobility of membrane proteins on live-cells  

The diffusion coefficient is a measure of the fluidity of the membrane. The 

previous studies have found the diffusion coefficient of EGFR on the cell membranes 

of CHO cells to be 0.38 ± 0.13 μm2/s53-54. Here it is found to be 0.2 ± 0.1 μm2/s which 

is comparable given the fact that the measurements are performed in the bottom 

membrane accessible by TIRF-FCS which has reduced mobility when compared to 

the upper membrane accessible by confocal FCS. The diffusion is hindered due to the 

presence of the support and the diffusion coefficients are reduced by a factor of 

two148. The large SD of the diffusion coefficients indicates strong variations in the 

diffusion coefficients on the cell membrane, in agreement with the partitioning of 

EGFR into different lipid regions203. Methods to reduce the SD were discussed in 

greater detail in the previous chapter. The mobility of PMT (0.6 ± 0.3 μm2/s) is higher 

than that of EGFR on the cell membrane given the differences in size between both 

proteins.  

The white pixels in Fig. 5.1 C and D indicate curves for which the fits didn’t 

reach convergence. Since, the software ImFCS (Sec. 2.7) written during the project 

provides information from every pixel, the reasons for the non-convergence at those 

pixels can be retrieved. The two regions that are not fitted are characterized by a 

sudden rise in intensity lasting for around 2 seconds during the 40 second acquisition 

period. The intensity rise is twice the average intensity during all the other times. The 

sudden increase in intensity could be attributed to aggregates of fluorescent proteins 

diffusing on the membrane. Such problems can be overcome by implementing 

automatic FCS analysis algorithms in ImFCS for removal of unwanted peaks 
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corrupting the curves206. At certain cases, there are traces which exhibit a loss in 

fluorescence with time. This may be the case where the molecule is immobile on the 

cell membrane and hence the pixels exhibit bleaching. An option to correct for loss 

incurred due to bleaching is available in the software.  

Bleach correction 

One of the most common problems encountered in camera based FCS is the 

irreversible loss in fluorescence intensity during acquisition referred to as bleaching. 

At very high intensity decay rates, the correlation curves are dominated by bleaching 

instead of underlying fluctuations in the system. The easiest way to identify bleaching 

is by visual inspection of intensity trace which shows a gradual loss in fluorescence. 

Bleaching is evident in autocorrelations as well. Autocorrelation curves affected by 

bleaching are characterized by non-convergence of the curves. The fitted value of G∞ 

is not close to the expected theoretical value of one207. Typically, any deviation 

greater than 3% from the value of one is an indication of photobleaching. Upon 

fitting, the diffusion coefficients retrieved for curves affected by bleaching is around 

2 orders of magnitude lower than the expected value. It is necessary to correct the 

affected intensity traces before the calculation of autocorrelation. It is assumed that 

the decay of fluorescence can be modeled by a bi-exponential curve208.  
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Then the raw data at any instant is multiplied by the ratio of F0 (fit parameter 

from Eq. 5-1) to that of the fitted value at the same instant. The corrected data is used 

further for the calculation of correlation. 

5.2.1.5 Number density of membrane proteins on live-cells  

 This technique allows one to obtain the number of particles in each pixel. 

Here, the number density of EGFR was found to be ~160  μm-2. The average diameter 

of CHO-K1 cell is found to be ~13 μm209-211. Assuming the cell to be a hemisphere, 

the total surface area is given by 3πr2 where r is the radius of the hemisphere. The 
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surface area of the cell membrane is calculated to be 400 μm2. Hence the total number 

of receptors in the cell membrane is found to be ~64,000 molecules/cell.    

5.2.1.6 Heterogeneity of membrane proteins on live-cells  

As discussed in Sec. 3.3.2, the heterogeneity in Imaging FCS can be 

determined from diffusion laws and ΔCCF distributions at physiological 

concentrations avoiding artifacts of over-expression induced clustering. The diffusion 

law for EGFR in Fig. 5.1 E shows a positive intercept while an intercept close to 

zero is obtained for PMT indicating that EGFR prefers to partition in to domains 

while PMT does not. The average intercepts from diffusion laws for four different 

measurements clearly confirm the fact that EGFR does partition into rafts. This is 

corroborated by ΔCCF distributions which exhibit a non-normal distribution for 

EGFR but a normal distribution for PMT. For the same set of four measurements 

above, the kstat values agree with the fact that EGFR exhibits hindered diffusion 

while PMT exhibits free diffusion. This is in agreement with data provided in the 

literature that EGFR localizes to microdomains197-201. 

Thus it is established here that this technique allows one to display 

quantitative images of cell dynamics with the contrast being D, N or heterogeneity 

apart from the conventional intensity.  

5.2.2 Imaging FCS-a tool to study membrane formation and disruption  

Supported lipid bilayers (SLBs) are excellent synthetic models to study 

membrane dynamics and the effects of chemical and biological agents on them. The 

physical properties of the bilayers like integrity, continuity and dynamic fluidity serve 

as a read-out of the interaction between the agents and the membrane. Two 

characteristic features indicative of a good lipid bilayer are spatial uniformity and 

lateral mobility211. The spatial uniformity can be probed using fluorescence imaging. 

FCS serves as a sensitive optical detection method for lateral mobility.  



126 
 

 

Fig. 5.1: Membrane dynamics probed by Imaging FCS.  The lower membrane of 
cells grown on a cover-slide is imaged by a TIRF microscope. The autocorrelation 
curves of EGFR and PMT are shown in A and B. These curves are fitted to 
predefined models and the analysis yields the diffusion coefficient (D) of the particle 
and the number of particles (N) in each pixel of the image. The results are plotted as 
heat maps. This technique allows one to display quantitative images of cell dynamics 
with the contrast being D and N apart from the conventional intensity (Figs. C and D). 
E and F show the diffusion law and ∆CCF distribution respectively of EGFR and 
PMT. The insets in E and F show the average value of intercept and kstat from 
diffusion law and ∆CCF distribution respectively for PMT and EGFR. It is evident that 
both the metrics clearly classify EGFR as a domain associated protein and PMT as a 
protein exhibiting free diffusion. 

The advantage of using FCS in this study is that the diffusion coefficient 

obtained as a readout from FCS is a direct measure of the roughness of the surface. 

The length scales probed by FCS provide a measure of nanoscopic uniformity while 

FRAP could only provide uniformity at longer length scales. Hence it is advantageous 

to use FCS to characterize lipid bilayers on different surfaces. FCS has already been 

used to probe the formation of lipid bilayers on nanodiamond212.  
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Fig. 5.2: Supported lipid bilayers on graphene.  ACFs of membranes on glass and 
graphene are shown in A and B. The figures show all 441 correlation curves captured 
in a 21 × 21 pixel region of interest on the EMCCD camera. The labeling ratio of Rho-
PE/POPC was 0.01% for glass and 0.02% for graphene; the sample was excited with 
2 mW at a wavelength of 514 nm; the recording time was 5.6 s for 10000 frames. All 
data were fitted with Eq. 3-17. The intensity images of the bilayers which quantify 
spatial uniformity are shown in C. The diffusion coefficient images which quantify 
mobility are shown in D.  

In order to measure fluidity by ITIR-FCS, the substrate must be optically 

transparent and has a high refractive index (higher than that of water in order to 

obtain TIR (explained in Sec. 2.3.1). Since, ITIR-FCS measures membrane fluidity at 

many points simultaneously, it can be used as a probe for spatial uniformity as well. 

Another advantage of using ITIR-FCS to characterize the bilayers on surfaces is that 

it is a surface sensitive technique and avoids background noise due to the 

contributions from the bulk liquid away from the interface. Here, ITIR-FCS has been 

used to show that continuous lipid bilayers (above the optical resolution limit) can be 

formed on graphene films. 

The D of POPC membranes on graphene and glass were found to be 2.0 ± 0.8 

µm2/s and 2.6 ± 1.0 µm2/s respectively. The obtained D for glass is closer to the 
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Saffman-Delbrück model143 since these measurements have been performed with a 

faster camera with a time resolution of 0.5 ms. The lipid mobilities of membranes on 

graphene is close to that of glass (Fig. 5.2 A, B and D), which is surprising in view of 

the hydrophobic character of graphene213.  

The average intensity images of the bilayers on glass and graphene are shown 

in Fig. 5.2 C. The spatial uniformity of membranes atop graphene and glass is evident 

in Fig. 5.2 D in which the diffusion coefficient images show relatively constant 

membrane diffusivity. Such findings provide new insights into the compatibility of 

graphene with biomimetic membrane fluidity. The diffusion coefficients are in 

agreement with the values reported in literature using other methods, e.g. z-scan FCS 

and 2-focus FCS128, 148-150. As expected, G∞ is close to unity in all cases indicating that 

there is no photobleaching. Although any conventional imaging technique would 

have provided the intensity image (Fig. 5.2 C), only ITIR-FCS can provide the 

diffusion coefficient image where physical properties (here roughness) can be used as 

a contrast measure. The good lateral mobility of biomimetic membrane on graphene 

suggests that a trapped water layer may exist between the graphene and biomimetic 

membrane. 

The ability to form lipid bilayers makes graphene an ideal candidate as a 

biosensor for testing the action of biological and chemical agents that disrupt the 

membranes of bacteria. It is known that the composition of eukaryotic and bacterial 

cell membranes are different214. Bacterial cell membranes are enriched in negatively 

charged lipids and hence supported lipid bilayers which contain such lipids, for 

instance POPG are considered good mimics of bacterial membranes212, 214. Hence 

graphene surfaces were tested for possibility of formation of POPC-POPG 

membranes. 

POPC and POPG molecules are zwitterionic and negatively charged 

respectively. POPC:POPG bilayers are very similar in their structural properties 

including thickness and global order as the acyl chains for POPC and POPG are the 
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same215. However, a significant decrease in D was observed for 33 mol % of POPG 

lipids (1.1± 0.5 µm2/s) when compared to only POPC bilayers on graphene. However, 

the lower D can be attributed to the increase in local viscosity due to extensive 

hydrogen bonding216.  

Here, ITIR-FCS has been used to show that continuous lipid bilayers can be 

formed on graphene. Regardless of the types of graphene film used, supported lipid 

bilayers can be successfully formed on them. This shows that graphene with its high 

electrical conductivity and optical transparency allows the possibility of fabricating a 

dual-mode optical and electrical detection system. 

 

Fig. 5.3: Mimics of bacterial membrane grown on graphene.  The entire set of 
autocorrelation curves in grey and the fits in black are shown for Rho-PE labeled 
POPC:POPG (2:1) bilayers grown on graphene made using two different methods, 
CVD and spin-coat respectively are shown in A and B. The insets show the 
corresponding D images drawn on the same scale as Fig. 5.2. The images are darker 
than those in Fig. 5.2 indicating the reduction in diffusion coefficient. 

5.2.2.1 Action of antimicrobials probed by Imaging FCS 

The action of antimicrobials on lipid bilayers can be studied in real time 

using Imaging FCS and hence the same technique was used to elucidate the 

mechanism of action of magainin 2 and melittin on membranes. Upon insertion into 

the membrane, the antimicrobials lead to a change in the fluidity of the membrane 

leading to a change in the diffusion coefficient of the membrane. 

Magainin 2 is a 23-residue cationic peptide extracted from the skin of the 

African frog Xenopus laevis217-218. It adopts a primarily α-helical structure upon 

binding to negatively charged membranes by electrostatic attraction. Magainin 2 has 
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two binding states in a membrane; a surface state at low peptide concentration in 

which it adsorbs parallel to the membrane surface and a transmembrane pore-forming 

state at high peptide concentration219-220. The mechanism of peptide-induced 

membrane perforation has been a subject of much debate. There is increasing 

experimental evidence of membrane thinning as a precursor stage to pore 

formation219, 221-226.  

Here, membrane thinning can be observed from Imaging FCS as well. 

Membrane thinning and bilayer disruption leads to a loss of fluorescent lipids from 

the supported lipid bilayer. Hence, the number of particles decreases upon the 

addition of the peptide as seen in the histogram of number of particles after the 

addition of magainin (Fig. 5.4 B). The second evidence of membrane thinning is from 

the fact that the diffusion coefficient of 2:1 POPC:POPG bilayers decreases upon 

incubation with the peptide. Diffusion in the lower leaflet is slower than the upper 

leaflet due to the attachment to the substrate. The reduction in D is also attributed to 

the fact that these peptides create pores in the membranes and the presence of such 

barriers to diffusion leads to a reduction in D. Hence the D decreases upon incubation 

with the peptide (Fig. 5.4 A).  

Melittin is an antimicrobial peptide obtained from bee venom. Both magainin 

and melittin disrupt membranes in a similar fashion227. Corroborating the statement 

above is the fact that a reduction of D and N was also observed upon incubation with 

melittin (Fig. 5.4 E and F).  

A decreased D after the addition of anti-microbial peptides to supported lipid 

bilayers has been observed earlier as well228. The addition of cryptdin-4 led to a 3 

times reduction in the D of supported phospholipid bilayers229. Melittin and magainin 

led to a decrease of 60% in the diffusion coefficient upon binding to lipid 

membranes230. Earlier reports have also shown the significant loss of lipids upon 

melittin addition by complementary techniques like ellipsometry231. Thus Imaging 

FCS was used in the successful demonstration of both the lowering in diffusion 



131 
 

coefficient and number density due to the addition of antimicrobials simultaneously 

for the first time. 

The detection system for the optical set up is an EMCCD camera. The best 

EMCCD cameras offer a time resolution of 0.5 ms which is sufficient to resolve 

events on the membrane before and after peptide addition. But, the dynamics of the 

peptide in the bulk solution prior to the incorporation into the membrane cannot be 

resolved by this tool. They can be overcome by cameras with higher time resolution. 

The time resolution of the cameras is increasing at an unprecedented rate and it is 

widely believed that newer EMCCD camera models will be in the market with better 

time resolution very soon to probe solution dynamics.  

Here, the membrane thinning effect can be clearly observed from the AFM 

and epifluorescence images when 1 µM Magainin 2 was added to the negatively 

charged POPC/POPG membranes. Increasing peptide concentration results in 

membrane thinning, where a change in lipid thickness from ~ 51 nm (Fig. 5.4 C) to 

~ 31 nm (Fig. 5.4 D) was detected. 

5.2.3 Combined electrical and optical detection 

The physical properties of the bilayers which serve as a read out of the 

interaction between the membrane disturbing agents and the lipid membranes can be 

readily quantified by a variety of techniques. The previous section demonstrated the 

usage of FCS and AFM. Apart from these two, they can be monitored by other 

fluorescence techniques like FRET, FRAP, FLIM or by scanning techniques like 

Scanning Probe Microscopy (SPM) or electrical techniques like impedance 

spectroscopy. A combination of the aforementioned techniques is used in order to 

completely understand the mechanism of activity of the agents on membranes since 

each technique measures a unique aspect of the reaction.  
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Fig. 5.4: Action of melittin and magainin probed by Imaging FCS. A and B show 
the reduction in D and N with time upon addition of magainin. The two sets of 
autocorrelations shown in the inset A are normalized for the number density and 
hence reveal the differences in diffusion behavior. The raw autocorrelations in inset B 
differ in the amplitude indicating a difference in the number of particles. C and D are 
AFM images of membrane before and addition of magainin-2 peptides respectively. A 
membrane thickness of 4-5 nm was obtained in C. Widespread membrane thinning 
effect where membrane thickness reduced to 2-3 nm and membrane disruption are 
evident in D. The Inset in D shows the epi-fluorescence image in which adsorption of 
peptides (represented by bright spots) was clearly observed at the periphery of the 
membranes. These bright spots are speculated to be due to the onset of membrane 
thinning in which adsorbed peptides push apart the lipid head groups on the top 
leaflet, causing these fluorescent lipids to be dislodged from the surface. Similar 
effects to A and B are observed upon melittin addition shown in E and F respectively. 
G is a schematic representation of the anti-microbial peptide action. Cationic peptides 
(ovals) bind to intact membrane. They push apart lipid head groups, resulting in 
membrane thinning effect. At higher concentration of peptides, there is a loss of the 
upper leaflet leading to a reduction in D, N and thickness.  
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Simultaneous measurement of the various properties by the different 

techniques can yield novel insights into the problem which cannot be solved by 

performing the measurements separately since the measured parameters at any time-

point have a one-to-one correspondence to each other during synchronous sensing. 

Such combinatorial tools have been already constructed and demonstrated. A 

combined AFM/TIRFM for order parameter measurements and AFM/FCS for raft 

studies have been demonstrated232-233. A detailed review of such tools is provided 

here234.  

In this context, we introduce simultaneous optical detection by ITIR-FCS and 

electrical detection of the field-effect to elucidate the changes in fluidity and integrity 

of membranes induced by membrane disrupting agents. Single molecule sensitive 

ITIR-FCS enables the accurate determination of mobility of the bilayers and the 

space charge effect of semiconductors showing field effect response is an efficient 

way of probing the integrity of the bilayer. In the case of the chosen two techniques, 

the diffusion coefficient is used as a read out in ITIR-FCS. The reduction in diffusion 

coefficient of lipids diffusing on the membrane may be due to imperfections in 

bilayer or the aggregates in the bilayer or due to creation of pores after insertion of 

antimicrobial peptides (discussed in Sec. 5.2.2.1). This discrepancy can be solved by 

integrating this setup with a field-effect transistor (FET) configuration which shows a 

change in current if pores or imperfections in the bilayer were present. Hence these 

two techniques can be used in synergy for better understanding of membrane 

processes. We demonstrate the system by studying the action of melittin on 

phospholipid bilayers. 

Conventionally, imaging is performed on fused silica, glass or mica. But 

these substrates are not electrically conductive and hence cannot be used for 

simultaneous optical and electrical detection212. On the other hand, materials used in 

electrical detection like indium tin oxide or gold are limited by their transparency and 

hence cannot be used for optical sensing212. The use of optically transparent and 
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electrically active nanocrystalline diamond with microscopic smoothness and 

sufficient hydrophilicity with proper surface treatment amenable to forming high 

quality biomimetic membranes led to the synergistic coupling of both the optical and 

electrical methods.  

5.2.3.1 Principle of electrical detection of membrane dynamics 

Electrical detection typically involves a FET which consists of a pair of 

source and drain regions bearing a conductive channel in between. Such source and 

drain contacts can be deposited onto the electrically active substrate via thermal or 

electron-beam lithography. A dielectric layer (usually aqueous electrolyte) is 

sandwiched in between a conductive gate and the conductive channel. The gate 

electrode serves to modulate the channel conductivity of the underlying 

semiconductor and could decrease or increase the current passing through the channel 

by varying the applied electric field. The p-type hole accumulation layer in intrinsic 

nanocrystalline diamond is used as the semiconductor here. The chemical/biological 

entity can potentially modulate the surface potential of the active channel and hence 

the change in channel conductivity can be correlated to their interaction. Such surface 

charge transfer process allows elucidation of mechanistic changes induced by 

chemical and biological agents to membranes. 

5.2.3.2 Demonstration of simultaneous optical and electrical detection 

A 2:1 POPC:POPG bilayer was prepared on a nanocrystalline diamond based 

sensor. Combined electrical and optical detection of the action of melittin on the 

bilayer was performed. A reduction in the diffusion coefficient is observed 

concomitant with a corresponding increase in the drain-source current as in Fig. 5.5. 

A detailed discussion of reduction of the diffusion coefficient upon melittin addition 

is described in Sec. 5.2.2.1. When the diamond surface is passivated by a lipid 

bilayer, negatively charged ions in the solution are prevented from reaching it. This 

results in a low drain-source current. However, upon addition of melittin, membrane 

disruption occurred, allowing negatively charged ions in the solution to interact with 
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the diamond surface, bring forth an increase in hole concentration by electrostatic 

interaction. In general, it is seen that with an increase in the extent of disruption of the 

lipid bilayer, the drain-source current of diamond correspondingly increases. 

However, at too high a concentration of cationic peptide, the drain-source current 

decreased due to electrostatic repulsion between cationic melittin and the hole 

accumulation layer in diamond.  

It is also seen that at 0.5 μM melittin, the number of particles in the bilayers 

decreases, D stays constant and there is an increase in current. This suggests that at 

0.5 μM, the peptides cause thinning and some perforations in the bilayers leading to 

increase in current and a loss in fluorescent particles. At 1 μM, the porosity increases 

leading to a reduction in D, increase in current and a higher degree of reduction in N. 

However, as the concentration increases beyond 1 μM, a decrease in drain-source 

current, coupled with a dramatic decrease in diffusion and number of fluorescent 

molecules are observed (See Sec. 5.2.2.1). This could be attributed to a membrane 

surface saturation of cationic peptide, extensive peptide-induced membrane 

agglomeration and direct contact between cationic peptides and the diamond surface. 

It was concluded in the previous section that after membrane thinning, an 

imperfect monolayer of lipids is left on the substrate based on AFM and Imaging 

FCS. The electrical measurements suggest a passivation of the surface by melittin or 

possibly even direct contact between melittin and diamond surface could reduce the 

hole concentration of diamond. Hence, it is known that the height observed in the 

AFM in Sec. 5.2.2.1 is an average of the monolayer and that of the peptide bound to 

the surface. The above interpretation would not have been possible if the 

measurements had been made individually. The correlation in the results between the 

optical and electrical measurement helps in the elucidation of the action mechanism 

of melittin on bilayers and its concentration dependence. 
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Fig. 5.5: Simultaneous electrical and optical detection.  A is a schematic of the 
set up showing the presence of the source and drain electrodes along with the 
optically transparent and electrically active substrate. B is a plot of the drain source 
current at various peptide concentrations. C and D show the reduction in D and N 
upon peptide addition respectively. The entire set of autocorrelation curves is shown 
in grey along with the fits in black before and after addition of the peptide in E and F 
respectively.  

It would have been ideal if the force, optical and electrical measurements 

would have been performed from a single sample. But in the current set-up, force 

measurements could not be coupled and hence only coupled optical and electrical 

measurements are reported here. The tool described here is a unique combination of 

different methods thus reducing the need for preparing the sample many times and 

provides novel insights into the investigated problem since two different physical 

properties namely membrane fluidity and continuity was monitored synchronously. 
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The tool developed here serves three purposes, as a screening device to isolate 

prospective antimicrobial candidates from a huge repertoire or for in-depth studies of 

mechanism or to determine the dosage for the chosen peptides.  

5.3 Conclusion 

Two different applications were discussed in this chapter. The first 

application showed the ability of the technique to display quantitative images of cell 

mobility and heterogeneity. Thus, this technique holds great promise as a single 

molecule sensitive tool to probe real-time membrane organization and dynamics in 

live-cells. The second application described the usage of this technique to study the 

action of antimicrobial peptides on different surfaces. The latest public health 

problem is antibiotics resistance to commercial generic antibiotic drugs. Hence 

antimicrobial peptides are seen as a potential treatment for bacterial infections since 

bacteria cannot develop resistance to these peptides as these peptides do not target a 

specific protein but act on the entire negatively charged membrane as a whole. Hence 

it is imperative to develop tools to properly quantify the peptide action on 

membranes. Simultaneous optical and electrical detection is an ideal tool that can be 

used for screening studies of antimicrobials on membranes. 
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6 Conclusion 

Over the years, various technologies have revolutionized biological research. 

The ability to culture cells outside an organism was one of the major breakthroughs 

and led to in vitro235 experimentation. This was later improved when in situ236 

experiments provided spatial information. Improvements in labeling technologies led 

to the development of in vivo measurements. The next improvement came with the 

introduction of ex vivo measurements on tissues from biological samples which 

bridged the gap between in vitro and in vivo measurements. The improvements in 

animal cell culture went hand in hand with the introduction of in planta experiments 

in the field of plant biology. The advances in data processing and computation led to 

a new era in biology referred to as in silico237 biology. Each method of 

experimentation provides different insights into the same problem. The last two 

decades have seen a tremendous increase in the development of single molecule 

sensitive techniques in biological research which are collectively referred to as in 

singulo238-240 methods. 

 Current research suggests that fixing cells leads to artifacts. Hence there is a 

need to study biological processes in live-cells. Further, in non-single molecule 

sensitive technique, the signal to noise ratio is increased by increasing the number of 

biomolecules, as a result, over-expression is performed. This thesis describes one 

such technique studying an ensemble of biomolecules in live-cell membrane at 

physiological concentrations using single molecule sensitive cameras called Imaging 

Total Internal Reflection FCS. ITIR-FCS is a technique which has been shown to 

quantitate mobility at many contiguous points on a cell membrane using 

autocorrelation functions. 

In this thesis, ITIR-FCS was extended to ITIR-FCCS enabling one to 

calculate cross-correlations and to extract parameters from the same. Proof of 

principle ITIR-FCCS measurements were demonstrated on molecular systems 
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exhibiting different combinations of flow and diffusion (Sec. 3.3.1). The estimates of 

mobility and concentration were close to the expected value. The method is 

calibration free since the PSF can be determined from the data itself. Four different 

methods were discussed to calculate the PSF.  

The ability to calculate cross-correlation enabled one to study heterogeneity 

in diffusion in GUVs and mixed lipid bilayers (Sec. 3.3.2). The heterogeneity was 

determined by computing the difference of the forward and backward correlations 

leading to the creation of CCF distributions. After measurements in artificial lipid 

bilayers stated above, the CCF imaging was used to probe the cell membrane 

organization and heterogeneity of a lipid microdomain marker called SBD. Apart 

from CCF, heterogeneity can also be ascertained in Imaging FCS by diffusion laws 

(Sec. 3.3.2.1). Diffusion laws provide an estimate of the global heterogeneity of the 

sample whereas normality tests provide an estimate for the local heterogeneity of the 

sample.  

After experimental Imaging FCS studies to probe mobility, concentration and 

heterogeneity, simulations were used to ascertain the effects of various instrumental 

parameters on the accuracy and precision of the same (Sec. 4.2). This enabled one to 

compute the error in the estimates beforehand using the chosen parameters. In a 

nutshell, it was found that the accuracy of D and N was dependent on Δτ and that the 

precision was inversely related to 2
0w D  .  

Currently it is seen that the heterogeneity in Imaging FCS is estimated 

using diffusion laws and CCF images. Barriers have been detected using pair-

correlation functions. Put together, pair correlation, diffusion law and CCF, all these 

are quite good at understanding the heterogeneity of the system. 

The advent of sCMOS, which provide a wider field of view, opens up 

unprecedented opportunities in Imaging FCS. The data can be obtained from multiple 

cells at the same time. More than million correlations can be calculated from a single 



140 
 

measurement. The smaller pixel sizes have an advantage in estimating the 

heterogeneity. Currently while calculating diffusion laws, the areas for which the 

calculations are performed are ~ 0.05, 0.25, 0.5, 1, 1.5 μm2. Smaller pixel size would 

lead to better diffusion laws. In spite of a pixel size of ~ 50 nm, the first few binnings 

(upto 5×5), will be diffraction limited. In the current scenario, the first point is at 0.05 

while the next point is at 0.25 μm2
. But with a pixel size of 50 nm, in between 0.05 

and 0.25 μm2, we can get 5 more points by performing 6-9 binning. As well, the 

biologically relevant length scales are close to the diffraction limit and hence 

determining diffusion laws with smaller pixel sizes close to the diffraction limit will 

provide more accurate estimations in the case of diffusion law.  

Various applications of Imaging FCS were demonstrated in the last chapter. 

The first application demonstrated the usage of single molecule sensitive Imaging 

FCS to probe the dynamics and organization of a membrane protein at physiological 

concentrations (Sec. 5.2.1). The rest of the applications discussed in the chapter 

probed the mobility of lipids. Imaging FCS was used to study the formation of lipid 

bilayers on a variety of surfaces like nanodiamond and graphene (Sec. 5.2.2). The 

major advantage of using such surfaces is that these electrically conducting and 

optically active surfaces enable one to simultaneously probe the existence of the 

bilayer by electrical and optical means. This was demonstrated in the study of action 

of an anti-microbial called magainin 2 on bilayer surfaces.  

This thesis showed proof of principle measurements coupling impedance 

measurements and FCS (Sec. 5.2.3). AFM could also be combined so that the 

underlying method can be probed by three different tools at the same time. The 

addition of polarizing optics would enable one to calculate order parameters as well. 

Recently, proof of principle experiments combining FCS and anisotropy 

measurements was demonstrated241. Hence, in the near future, from the same sample, 

mobility, concentration, heterogeneity, surface roughness, conductivity and order 

parameters can be determined.  
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  Apart from determining number from autocorrelation analysis, the number can also 

be determined if the algorithms from number and brightness analysis are 

implemented in Imaging FCS. The brightness serves to quantitate the oligomeric state 

of the biomolecule. The advantage of implementing number and brightness analysis 

is that, it is performed on single images from the stack. As a result, at least the 

number of particles and brightness can be estimated in spite of photobleaching in 

samples. 

This entire thesis discussed only autocorrelations and spatiotemporal cross-

correlation. Implementing a two-color cross-correlation system will help in 

understanding the interactions of biomolecules. Currently, this technique enables one 

to obtain mobility, concentration and heterogeneity maps. With the implementation of 

two-color correlation, interaction maps will be possible to be obtained. Thus this 

technique will be a value addition to the arsenal of tools available today to study 

protein-protein interactions since it will yield information about interaction at 

physiological concentrations in live-cells.  

  The current day cameras have time resolution in the sub millisecond regime. 

Faster cameras will enable one to probe the dynamics of cytoplasmic molecules 

which diffuse at a rate faster than those attached to the membrane. The advent of 

faster cameras would also enable one to do Photon Counting Histogram (PCH). As a 

result, the concentration can be determined from three different methods, 

autocorrelation, N&B and PCH while the oligomerization can be determined from 

N&B and PCH. Hence, it is seen that this technique is a full data analysis package 

that can be used to extract a variety of meaningful biological information upon 

suitable statistical techniques using a single data set. 

With faster cameras, superior memory capabilities, data is being generated in 

Imaging FCS at a rapid pace; hence there is a great need to develop automated data 

analysis tools. Automated fitting procedures need to be implemented. For example 

Bayesian analysis or artificial neural networks can be implemented to choose between 
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fitting models for instance, one particle, two particles or three particles fits. Currently, 

no hardware correlators are available either standalone or attached to an EMCCD. 

Hence on-chip data analysis can be done by performing the calculations in a PCI-card 

instead of performing it using the software offline.  

  ITIR-FCS gives adequate spatial and temporal resolution to be able to 

measure membrane dynamics in a calibration free manner, and thus presents a 

powerful biophysical tool to provide novel insights into transport phenomena and 

membrane organization. Thus, this technique holds great promise as a single 

molecule sensitive tool to probe real-time membrane organization and dynamics in 

live-cells. The introduction of SPIM-FCS enables one to perform measurements in 

the cytoplasm as well. With automated data-analysis and liquid handling methods, 

this technique has great potential to be used as an automated screening technique to 

assay for interactions in live-cells in the pharmaceutical industry. 
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Appendix 
 

Unless otherwise stated, the integrals are evaluated in mathematica.  

1. Fourier transforms in the derivation of diffusion propagator and ICS 
 

 

 
2. Derivation of autocorrelation function in FCS 
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3. Formulae used in derivation for autocorrelation in Imaging FCS 
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4. Autocorrelation in Imaging FCS 

 
Using the formulae in Appendix 3, the integrals below are evaluated. 
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5. Cross-Correlation of flow in Imaging FCS 
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6. Cross-Correlation of diffusion in Imaging FCS 
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7. Integral w1 in the calculation of observation volume 
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8. Integral w2 in the calculation of observation volume 
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9. Integral used in Appendix 8 
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10. Integral used in Appendix 8 
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11. Autocorrelation in SPIM-FCS 
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12. Cross-correlation in Periodic processes 
 
The propagator for flow is given by 
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The propagator for flow processes with a periodic signal is provided by 
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where d is the periodicity. The fitting function for cross correlation of flow 
processes was derived earlier. (Appendix 5). Hence by analogy, the fitting 
function for the cross correlation of periodic flow process is  
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13. Taylor’s series expansion of autocorrelation 
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14. Mean and variance of uniform distribution 
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15. Mean and variance of intensity distribution in Imaging FCS 
 

Let the uniform distribution and normal distribution be defined as below. 
Note a change in the expressions. This was done in order to make sure that 
the expressions conform to the rules of probability density functions that the 
area under the curve is 1. 
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The probability density of the convolved distribution can be evaluated in 
Mathematica using the command 
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From the properties of a PDF, we know that the area under the PDF is 1. This 
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16. Theoretical discussion of ΔCCF distribution 
 
The expression for the cross-correlation function for diffusion separated by rx 
along the x-axis can be obtained from Appendix 6 by setting vx = vy = ry = 0 
and is an even function in rx. ΔCCF which is defined as the differences 
between the forward and the backward correlation, in this case, is ( , )CCF xG r   - 

( , )CCF xG r  . This expression, evaluates to zero on an average.  
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This is not the case when the system exhibits flow where the function is not 
an even function in rx as seen from the equation below. By setting D = ry = 0, 
Appendix 5 is modified as  
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17. Materials and Methods 

The plasmids of EGFR-GFP and PMT-GFP were obtained from Dr. Ichiro 

Maruyama’s lab (OIST, Okinawa, Japan). They were recloned by Dr. Ping 

Liu and Ms. Ma Xiaoxiao from the lab. The sequences of the plasmids along 

with the construction steps can be found here53. Optically transparent 

diamond samples, fabricated diamond transistors and functional graphene 

samples were kind gifts from Ms. Priscilla Ang (The Graphene Research 

Centre, NUS). The details of the fabrication of diamond transistor are 

provided here212. Chemically processed graphene films were prepared either 

by spin-coating or drop-casting. Graphene grown by CVD was also employed 

in this study. The detailed protocols to prepare graphene samples are 

provided elsewhere242-243.  

18. The results have been partly published in 

 
a) Guo, L., J. Y. Har, J. Sankaran, Y. M. Hong, B. Kannan, and T. 

Wohland. 2008. Molecular diffusion measurement in lipid Bilayers over 

wide concentration ranges: A comparative study. Chemphyschem 9:721-

728. 

 

b) Sankaran, J., M. Manna, L. Guo, R. Kraut, and T. Wohland. 2009. 

Diffusion, Transport, and Cell Membrane Organization Investigated by 

Imaging Fluorescence Cross-Correlation Spectroscopy. Biophysical 

Journal 97:2630-2639. 

 

c) Wohland, T., X. Shi, J. Sankaran, and E. H. K. Stelzer. 2010. Single 

Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS) 

probes inhomogeneous three-dimensional environments. Opt. Express 

18:10627-10641. 



183 
 

 

d) Ang, P. K., M. Jaiswal, C. H. Y. X. Lim, Y. Wang, J. Sankaran, A. Li, C. 

T. Lim, T. Wohland, O. z. Barbaros, and K. P. Loh. 2010. A 

Bioelectronic Platform Using a Graphene−Lipid Bilayer Interface. ACS 

Nano 4:7387-7394. 

 

e) Sankaran, J., X. K. Shi, L. Y. Ho, E. H. K. Stelzer, and T. Wohland. 

2010. ImFCS: A software for Imaging FCS data analysis and 

visualization. Optics Express 18:25468-25481. 

 

f) Bag, N., J. Sankaran, A. Paul, R. S. Kraut, and T. Wohland. 2012. 

Calibration and Limits of Camera-Based Fluorescence Correlation 

Spectroscopy: A Supported Lipid Bilayer Study. Chemphyschem 

21:201200032. 

 

 


