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ABSTRACT

Covariance matrix estimation is a very important topic in statistics. The esti-

mate is needed in various aspects of statistics. In this research, we focus on jointly

estimating covariance matrix and precision matrix for grouped data with natural

order via Cholesky decomposition. We treat autoregressive parameters at the same

position in different groups as a set and impose penalty functions with group ef-

fect to these parameters together. A sparse l∞ penalty and a sparse group LASSO

penalty are used in our methods. Both penalties may produce common zeros in the

autoregressive matrices for different groups which reveal the common relationships

of variables between groups. When data structures in different groups are close,

our approaches can do better than separate estimation approaches by providing

more accurate covariance and precision matrix estimates and they are guaranteed

to be positive definite. A coordinate decent algorithm is used in the optimization



Summary vi

procedure and convergence rates have been established in this study. We can prove

that under some regularity conditions, our penalized estimators are consistent. In

the simulation part, we show their good performance by comparing our methods

with the separated estimation methods. An application to classify cattle from two

treatment groups based on their weights is also included.



vii

LIST Of NOTATIONS

A⊗B Kronecker product of two matrices A and B

|A|1 l1 norm of matrix A

Vec(A) The vectorization of matrix A

||A|| The singular value of matrix A which equals the

square root of maximal eigenvalue of AA′

||A||F Frobenius Norm of matrix A which equals
√

trAA′

U(a, b) Uniform distribution on interval (a,b)

I(A) Indicator function on event A

< α, β > Inner product of vectors α and β



viii

List of Tables

Table 4.1 Simulation result when sample size is growing. . . . . . . . . 69

Table 4.2 Simulation result when number of groups is growing while

the autoregressive matrices are identity matrix. . . . . . . . . . . . 71

Table 4.3 Simulation result when number of groups is growing while

autoregressive matrices are randomly generated. . . . . . . . . . . . 72

Table 4.4 Simulation result when data have different degrees of similarity. 74



List of Tables ix

Table 4.5 Simulation result when when autoregressive matrices have

many non zero elements. . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 4.6 Performance of discrimination study for the cattle weight data. 78



x

List of Figures

Figure 3.1 Minimizer of φ2
1 − (a+ b)φ1 + φ2

2 − aφ2 + λ|φ|1 + β||φ||∞. . . 45

Figure 3.2 Contour graph for sparse group LASSO (left) and sparse l∞

LASSO (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.1 Ratio of Frobenius loss and Operator loss in example 1. . . . 70

Figure 4.2 Ratio of Frobenius loss and Operator loss in example 3. . . . 73

Figure 4.3 Trend of weights for the two groups of cattle. . . . . . . . . . 77



1

CHAPTER 1

Introduction

Covariance matrix and precision matrix estimation are very important in statis-

tics. The covariance matrix and its inverse are widely used in statistics such as

discrimination analysis and principle component analysis. In finance, the estima-

tor of the covariance matrix of a collection of assets is required in order to achieve

an optimal portfolio. In Gaussian graphical modeling, a sparse precision matrix

is uniquely corresponding to an undirected graph that represents the conditional

independent relationships of the target variables (see Pearl 2000).

Standard estimators of covariance matrix and precision matrix are the sample
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covariance matrix and its inverse multiples a scale parameter. These two estima-

tors are proved to be unbiased and consistent. Moreover, they are very easy to

calculate. Due to these properties, they are widely used in statistics. In recently

years, alternative estimators of the covariance matrix and the precision matrix have

been proposed due to high dimensional data requirement and also the requirements

for special structures of the variables. These new methods aimed to eliminate the

disadvantages of sample covariance matrix when the dimension is large (see John-

stone 2001 and Bai 1993) and to provide structured and interpretable estimators.

Penalized estimation methods and thresholding methods (Ledoit and Wolf 2004;

Huang et al. 2006; Lan and Fan 2009; Rothman 2008 and so on) have made great

contributions to achieve these goals.

Most researches so far focused on estimating single covariance matrix or preci-

sion matrix. However, in some cases, it is much more valuable to jointly estimate

them if grouped data were observed from similar categories. For instance, we con-

sider gene data that describes different types of the same diseases or observations

of patients from different treatment groups. It is reasonable to assume that data

from different groups share similar structures, and it is obviously a waste of in-

formation if we estimate the covariance matrices separately because the similarity

of data is simply ignored. Meanwhile, it is not feasible to combine the data all

together and estimate a single covariance matrix while treating them as a single
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group. A possible way to employ the information of similarity between different

groups is to jointly estimate the matrices. We can expect that estimation accuracy

may be increased if the joint estimation method is employed. In this research,

in order to achieve the joint estimation objective and keep our estimates positive

definite, grouped penalization approaches based on Cholesky decomposition are

investigated.

In the subsequent sections, background knowledge about Cholesky decomposi-

tion and penalty approaches will be reviewed. These are the key tools in our new

methods. In chapter 2, the development of matrix estimation approaches will be

reviewed.

1.1 Cholesky Decomposition

Using Cholesky decomposition to estimate the covariance and the precision ma-

trix was firstly introduced by Pourahmadi (1999). A joint mean-covariance model

has been proposed to estimate the autoregressive parameters of the covariance

matrix in that approach. After that, this decomposition was widely used in longi-

tudinal study and matrix estimation (see Pourahmadi 2000, Huang 2006, Rothman

2008, Shojaie and Michailidis 2010, Rothman et al. 2010, Leng et al. 2010).
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The Cholesky decomposition illustrates that for every positive definite matrix

Σ, there exists an unique lower triangular matrix R , such that

Σ = RR′, (1.1)

where the diagonal entries of R are all nonnegative. The elements r11, r21, · · · , rp1,

r22, r32, · · · , rpp of matrix R can be obtained consequently. Assume the diagonal

entries of matrix R are σ1, σ2, . . . σp and matrix D is a diagonal matrix

with diagonal entries σ2
1, σ2

2, . . . σ2
p and matrix T = D1/2R−1, then the above

decomposition can be reorganized as the following modified version

TΣT ′ = D. (1.2)

In this modified decomposition, matrix T is a lower triangular matrix with ones

on its diagonal while matrix D is a diagonal matrix. A charming advantage of the

Cholesky decomposition is that the parameters in matrix T is free to constraints

and the only requirement for matrix D is that its diagonal elements are all pos-

itive. Moreover, The modified Cholesky decomposition has a natural statistical

explanation (see Pourahmadi 1999).

Following the argument in Pourahmadi (1999), the elements in matrix T can

be expressed as the successive regression coefficients of variables regressed on their

predecessors and the elements in matrix D can be expressed as the regression

error variances. If we further assume the variables have a multivariate normal
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distribution, the elements in matrix T can be explained as the coefficients of the

best prediction of one variable based on its predecessors.

To be more precise, assume that we have a random vector Y = (y1, y2, · · · , yp)′.

Here Y follows a multivariate normal distribution N(µ,Σ) where we assume µ =

0 for simplicity. We consider the distribution of variable yk conditional on its

predecessors y1, y2, . . . yk−1. This distribution can be easily found in the book of

Anderson (2003)

F (yk|Y(k)) ∼ N(σ
′

(k)Σ
−1
(k)Y(k), σkk − σ

′

(k)Σ
−1
(k)σ(k)). (1.3)

Here, we denote Y(k) = (y1, y2, · · · , yk−1)′, Σ(k) the k− 1 dimensional main subma-

trix of Σ, σ(k) as a vector that contains the first k − 1 elements of the kth column

of matrix Σ and σkk as the kkth element of matrix Σ.

Denote ỹk = E(yk|Y(k)) = σ
′

(k)Σ
−1
(k)Y(k) and ε̃k as the residual term yk − ỹk .

Obviously, ỹ1 = 0 and ε̃1 = y1. Since E(yk|Y(k)) can be treated as the projection

of yk on the σ-field σ(y1, y2, · · · , yk−1), it is straightforward to conclude that ε̃k is

independent with ε̃1, ε̃2, · · · , ε̃k−1.

Denote the kth row of matrix L by L′k in which the first k− 1 elements satisfy

(φk1, φk2, · · · , φk(k−1)) = −σ′(k)Σ
−1
(k), φkk = 1 and φkl = 0 for l > k. This implies

L′kY = ε̂k (k = 1, · · · , p). Write these p equations into matrix form, we have

LY = ε̂, (1.4)
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where ε̂ = (ε̂1, · · · , ε̂p)′. We denote σ2
k = σkk − σ

′

(k)Σ
−1
(k)σ(k). Because ε̂k are inde-

pendent with each other, taking variance on both side of (1.4), we have

LΣL′ = D.

The best prediction of yk based on Y(k) is σ
′

(k)Σ
−1
(k)Y(k), thus elements in the kth

row of T can be explained as the coefficients in the best prediction of yk based on

variables y1, · · · , yk−1 with opposite signs.

If we relax the assumption of multivariate normality of Y , σ
′

(k)Σ
−1
(k)Y(k) is still

the best linear prediction of yk with least square error. Thus the elements in the

kth row of T are the least square regression coefficients of variable yk regressed

on variables y1, · · · , yk−1. This explanation makes the autoregressive parameters

meaningful. It reminds us that we may impose some special structures on the

parameters if we have prior information about the data.

1.2 Penalized Method

In the traditional methods, parameters are estimated based on some meaningful

loss functions L(θ), mostly by minimizing these target loss functions. Likelihood

functions constitute a widely used collection of the loss functions, for instance,

the popular negative log likelihood function of multivariate normal tr(Σ−1S) +
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log |Σ|. Minimizing this negative log likelihood function will lead to the maximum

likelihood estimator of the covariance matrix. In some other applications, the loss

functions can be also chosen as norms, for example, l1 or l2 norm. The widely used

linear regression is an application of the l2 norm loss. Minimizing the squared l2

norm of Y −Xβ leads to a linear model of variable y based on variables x1, x2, .

. . xp with smallest squared fitting error. Here Y is the vector of observations of

variable y and X is the design matrix for the explanatory variables x1, x2, . . . xp.

In these classical estimation approaches, the parameters or covariates are all

included in the model. For example, the standard linear regression model always

contains all the explanatory variables that we have observed. However, as we know,

including many covariates leads to low bias but high prediction variance or say over

fitting. This over fitting phenomenon can be explained in linear regression problems

as follows. The coefficient of determination R2 is always decreasing when one

adds more and more explanatory variables to the model. However, the prediction

variance can be very high. In order to reduce the prediction variance, one can

sacrifice a little bias so as to decrease the prediction variance by making a tradeoff

between them.

A natural idea is to make some special assumption on the data. For instance,

there are a lot of small coefficients or there are a lot of unimportant explanation

variables. Based on this kind of prior information, more adaptive models can be
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proposed to investigate the data.

Penalization methods were introduced as a simple and straightforward way to

achieve this objective. The idea is similar to the AIC and BIC methods. A trade-

off is made between the fitness and the prediction accuracy by adding a penalty

function pλ(θ) to the loss function Lθ and minimizing the new objective function

Lθ + pλ(θ), (1.5)

instead of the original loss function Lθ. In this new method, the loss function

Lθ controls the fitness of the model and pλ(θ) can be used to set a constraint to

the complexity (the number of nonzero parameters included in the model or say

sparsity) or structure of the model.

Penalization approaches also have close relationship with Bayesian method (see

Zhao et al. 2009). Particularly, if we assume the loss function in (1.5) is a log like-

lihood function and the penalty function pλ(θ) is a log prior density function of

parameters θ, then the objective function (1.5) can be explained as the log poste-

rior density function of θ conditional on the observations, for example, the ridge

regression when we choose pλ(θ) = λ||θ||22 is the same as the Bayesian approach

where a multivariate normal prior N(0, 1
2λ
Ip) is imposed to the parameters θ.
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One great advantage of the penalized approaches comparing to Bayesian ap-

proaches is that a more flexible function pλ(θ) can be used to constrain the param-

eters in penalized approaches. However, in Bayesian approaches, a proper prior

density function is needed. A carefully chosen penalty function can make a tradeoff

between the bias and the prediction accuracy. It may also introduce some desired

properties or structures to the model. In order to introduce the penalized methods,

we use the squared l2 norm loss function ||Y − Xβ||22 as an example and denote

the ordinary least square estimator of the coefficients by θols. For simplicity, we

assume XTX = Ip.

Frank and Friedman (1993) introduced the bridge regression method in which

they add a penalty term pλ(θ) = λ||θ||qq to the loss function ||Y −Xθ||22. Instead

of using the ordinary least square method, they minimized the following function

θbridge = argminθ[L(θ) + pλ(θ)] = argminθ[||Y −Xθ||22 + λ||θ||qq].

Here q is a positive constant and λ is the threshold parameter. When q > 1,

bridge regression method shrinks the parameters θ and reduces variability. When

q ≤ 1, bridge regression method provides sparse estimates of the parameter θ.

Particularly, bridge regression is also called LASSO when the constant q is set to 1

(see Tibshirani 1996). When q is set to 2, bridge regression is also known as ridge

regression. Overall, bridge regression provides a more stable model compared to

the ordinary regression method while bias is increased.
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In recent years, especially along with the development of large dimensional

data set, penalty approaches which lead to sparse estimators gained more and

more attention. This is mainly because models from traditional approaches are

relatively complicated since nearly all of the parameters are nonzero. For instance,

the sample covariance matrix which is obtained from gaussian likelihood function

has no zero element in it, which means all variables must be marginally correlated.

All the coefficients in ordinary least square regression method are nonzero means

all variables are important in predicting the target variable. This is confusing and

hard to interpret.

Consequently, investigating simple models that only include the important vari-

ables becomes a popular research area in statistics. Penalizing methods which is

capable to provide sparse estimators have been extensively investigated. They can

efficiently reduce the complexity of the underling model. In Fan and Li (2001),

they listed three desired properties of an ideal penalty function which are

1: Unbiasedness: The resulting estimator should be nearly unbiased and the

large coefficients should be only slightly shrunk in order to guarantee the accuracy.

2: Sparsity: The solution must be sparse that provides a more interpretable

model.

3: Continuity: The solution is continuous with respect to the data in order to
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avoid instability.

It has to be noted that most of the penalty functions can not satisfy all these

three requirements especially convex penalty functions. Convex penalty functions

always shrink small coefficients as well as large coefficients. Nonconvex penalty

functions may meet all these three requirements. However, nonconvex penalties

always lead to computation difficulties and it is hard to find the global minimizer.

A very natural shrinkage approach called hard thresholding method was men-

tioned in the Antoniadis (1997). The solution for the least square linear regression

problem with a hard threshold penalty term is

θ̂hard = θ̂olsI(|θ̂ols| > λ). (1.6)

The corresponding penalty function is

pλ(θ) = λ2 − (|θ| − λ)2I(|θ| < λ). (1.7)

Threshold parameter λ is a positive constant which was chosen by carefully bal-

ancing sparsity and bias. It directly shrinks small coefficients to zero and keep the

large coefficients. However, the solution is not continuous with respect to data.

This makes the resulting model sensitive to the observations.

In Tibshirani (1996), the so called LASSO has been proposed. This method

gives a simple and straightforward way to achieve sparse models in regression
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problems. The penalty function is

pλ(θ) = λ|θ|1, (1.8)

which is a special case of the bridge regression. When q = 1, the bridge regression

method is the same as LASSO.

The LASSO approach is to estimate the coefficients by minimizing the objective

function

||Y −Xθ||22 + λ|θ|1.

Recall that we assumed the design matrix X is orthogonal, then the LASSO esti-

mate has following formula

θ̂lasso = sign(θ̂ols)(|θ̂ols| − λ)+. (1.9)

This formula for orthogonal design case shows some insights of the LASSO

method that this method can shrink small coefficients to zero and provide a sparse

solution. The solution is continuous with respect to data and also continuous with

respect to the threshold parameter λ. The LASSO method performs well when the

coefficients are sparse while the ridge regression method is well performed when

there are a lot of small coefficients. That’s because the ridge regression only shrinks

the coefficients towards zero while the LASSO algorithm is a thresholding approach

which shrinks some coefficients to exact zero.
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Efron et al. (2004) proposed the so called LARS algorithm which is a very

important work and it can cover both LASSO algorithm and Forward Stagewise

selection method. The solution path of LASSO can be obtained efficiently by a

simple modification of LARS. Moreover, The LARS algorithm gives a geometri-

cal explanation and provides researchers with further understanding of LASSO. In

the paper of Rosset et al. (2008), they also proposed the solution path for the

l1 penalized approaches but with more general loss functions. The loss functions

were extended to the class of differentiable and piecewise quadratic functions with

respect to the response variable y and the term xTi θ. These researches made impor-

tant contributions to LASSO since one can efficiently calculate the whole solution

path for different λ.

However, as a convex penalty function, there is also a problem with LASSO.

The LASSO solution for the orthogonal design case which is presented in (1.9)

reminds us that the LASSO algorithm also shrinks the large coefficients. This

effect leads to bias and affects the prediction accuracy.

In order to eliminate the disadvantage of LASSO and try to satisfy the three

conditions mentioned in Fan and Li (2001), in that paper, the authors proposed the

SCAD penalty function which is a nonconvex function. The solution for SCAD is

continuous with respect to data and retains the large coefficients. When the design
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matrix is orthogonal, the SCAD penalized solution is

sign(θ̂ols)(|θ̂ols| − λ)+, |θ̂ols| ≤ 2λ,

{(a− 1)θ̂ols − sign(θ̂ols)aλ}/(a− 2), 2λ ≤ |θ̂ols| ≤ aλ,

θ̂ols, |θ̂ols| ≥ aλ.

The corresponding penalty function is relatively complex, but the first order deriva-

tive of SCAD penalty function has an explicit form

p′λ(θ) = λ{I(|θ| ≤ λ) +
(aλ− |θ|)+

(a− 1)λ
I(|θ| > λ)}. (1.10)

This penalty function can provide sparse estimators of the coefficients by shrink-

ing the small coefficients while the large coefficients remain the same. It can be

treated as a combination of LASSO and hard thresholding method. Fan and Li

(2001) showed that this penalty function satisfies the three requirements which are

previously mentioned and also showed that this penalty has the so called oracle

property which means this penalized method can perform as good as the zero co-

efficients are already known. However, the SCAD penalty function is not convex.

This may lead to computation problem.

Zou (2006) proved that the LASSO algorithm does not satisfy the oracle prop-

erty. Alternatively, he proposed an adaptive LASSO method. Instead of penalizing
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each coefficient equally, the adaptive method penalizes each coefficient with a par-

ticular weight. The penalty function is

pλ(θ) =

p∑
k=1

λwk|θk|. (1.11)

Suppose θ̃ is a root n consistent estimator of the coefficients, for example, the

ordinary least square estimator θ̂ols, then we can choose the weight vector ω as 1/θ̃γ.

In that paper, it was proved that this adaptive penalized estimator is consistent

and enjoys oracle property. But it has to be noted that the weights must be based

on a consistent estimator of the coefficients θ. In the regression case, the natural

root n consistent estimator of θ is not available when the dimension is large. One

have to find another root n consistent estimator to implement the adaptive LASSO.

1.3 Penalties with Group Effect

In Section 1.2, the penalty functions penalize parameters individually. However,

in some applications, one may be interested in penalty functions that have group

effect which penalize the parameters together. With the group effect of the penalty

functions, one may achieve desired structure of the variables, for instance, making

the variables close or shrinking them towards zero together.
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Tibshirani et al. (2005) proposed a fusion LASSO method. This fusion LAS-

SO not only penalizes the coefficients themselves, it also penalizes the successive

differences of the coefficients. The fused LASSO penalty function is

pλ(θ) = λ1

p∑
j=1

|θj|+ λ2

p∑
j=2

|θj − θj−1|. (1.12)

The fused LASSO estimates are obtained as

β̂fusion = argmin||Y −Xθ||22 + λ1

p∑
j=1

|θj|+ λ2

p∑
j=2

|θj − θj−1|. (1.13)

This penalization method shrinks some of the coefficients towards zero and also

shrinks the differences of successive variables towards zero. It provides sparse esti-

mates for the coefficients and make some of the successive coefficients to be exactly

the same. This property is interesting when the effects of the explanatory variables

can be divided into serval levels. A similar pairwise fusion LASSO approach was

proposed in Petry et al. (2011).

In Bondell and Reich (2008), they proposed another penalization method which

is called OSCAR. The penalty function was chosen as a combination of the l1 norm

and a pairwise l∞ norm. The objective function can be presented as

β̂oscar = argminβ||Y −Xθ||22 + λ

p∑
k=1

|θk|+ β
∑
l<k

max(|θl|, |θk|).

The effect of this penalty function is very similar to the above fusion LASSO, but

the order assumption for the variables is not required.
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The so called elastic net was proposed by Zou and Hastie (2005). The elastic

net estimator βen is defined as

β̂en = argminβ||Y −Xβ||22, subject to(1− α)|β|1 + α|β|22 ≤ t.

The penalty term is a convex combination of LASSO penalty and ridge penalty. It

enjoys the sparsity property of LASSO. Moreover, it also benefits from the good

property of ridge regression that the bias is low comparing to LASSO approach

when the true model has many small coefficients. The combination of these two also

tends to have a group effect on variable selection that highly correlated variables

tend to be in or out of the model together.

Some other penalty functions with group effects have been investigated in or-

der to meet some special requirements in multi-ANOVA problems. In the multi-

ANOVA problems, factors can be a combination of measures and may have several

levels. The main goal of multi-ANOVA is often to select the important factors and

to identify the level of importance of variables within the factor. Suppose there are

J factors and the jth factor has coefficients θj which is a pj dimensional vector.

The corresponding design matrix for the jth factor is Xj and the response is Y . In

order to find the estimates of coefficients θj (j=1, 2, . . . J), one can fit a linear

regression model and minimize the objective function

β̂ = argminβ||Y −
J∑
j=1

Xjθj||22. (1.14)
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It is reasonable to assume that some factors are not important in the model

which means that some of the coefficient vectors θj must be 0. Meanwhile, for the

important factors, the variables in the same group may perform differently. Under

this concern, Yuan and Lin (2004) introduced the group LASSO algorithm. They

imposed a penalty term

pλ(β) = λ
J∑
j=1

||θj||(Kj)

to the objective function. Here ||θj||(Kj) = (θTj Kjθj)
1/2 where Kj is a kernel matrix

which was set to pjIj in their paper. One important feature of this group LASSO

is that it can select important factors and set coefficients in unimportant factors to

be all zero. A group LARS algorithm is also investigated in their paper. However,

different from the relationship of LASSO and LARS, group LARS can not reveal

the solution path of group LASSO (the solution path of group LASSO is not

piecewise linear).

In group LASSO, the coefficients within a group will either estimated to be all

zero or non of them is zero. This is not reasonable especially when the variables

have different levels within a group. Bondell and Reich (2009) used a weighted

fusion penalty method to solve this multi-factor ANOVA problem and considered

the levels of the variables within a group. The penalty term is

pλ(θ) = λ

J∑
j=1

∑
1≤l<k≤qj

wklj |θjk − θjl|.
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They try to minimize the penalized objective function

||Y −
J∑
j=1

Xjθj||22 + λ
J∑
j=1

∑
1≤l<k≤qj

wklj |θjk − θjl|,

where the weight wklj was set to (nk + nl)/(pj + 1). The advantage of this penalty

is that it can collapse levels within a group by setting the coefficients to be equal.

Zhao et al. (2008) introduced the so called composite absolute penalty. In their

method, parameters are divided into several groups G1, G2, . . . GK using some

prior knowledge. For each group, they penalize the parameters within the group

with a lγk norm. For the resulting K dimensional vector, it was penalized by an

overall lγ0 norm with power γ0. Their method can be presented by the following

minimization problem

β̂cap = argminθL(Y,X, θ) + pλ(θ),

where the penalty term pλ(θ) equals

K∑
k=1

(||θGk
||γk)γ0 .

In their setting, the overall parameter γ0 was set to 1, and the inner parameters

γk (k=1, 2, . . . K) were chosen according to the requirement of the model. The

overall lγ0 norm will penalize some group norms to exact 0 which performs a group

selection effect and the inner lγk norm will construct some desired structures of the

parameters within the group.
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Zhou et al. (2010) proposed a hierarchical penalty function using a reparame-

terizing technique to construct the common zeros across different groups. In their

approach, the parameters θkj in group k were reparameterized by dkαkj. That is

θkj = dkαkj. The parameters dk and αkj were both penalized by a LASSO type

penalty. The estimates were obtained by minimizing

argmind,α{||Y −
K∑
k=1

dkXkαk||2 + λ

K∑
k=1

dk + β

K∑
k=1

jk∑
j=1

|αkj|}.

The linking parameters dk can be shrunk to zero which makes all the coefficients

θk1, θk2, · · · , θkpk in the kth group equal zero all together. This will perform a

group selection property. Meanwhile, even if the linking parameter dk is not zero,

the parameter αkj may be shrunk to zero. This also makes θkj = 0. So an unique

zero was obtained in the kth group. The consistent property and also the sparsity

property were given in their paper.
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CHAPTER 2

Literature Review

Covariance matrix and precision matrix are very important statistical tools

which have been studied extensively. Standard estimators such as the sample

covariance matrix performs well when the dimension is low. However, as we have

mentioned in Chapter 1, in order to fulfill some special needs, for example, the large

dimensional data requirement and the sparsity requirement, alternative methods

have to be investigated.
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2.1 Direct Thresholding Approaches

The sample covariance matrix estimator S is asymptotically unbiased. Never-

theless, according to the research of Yin (1988) and Bai (1993), the eigenvalues of

sample covariance matrix S tend to be more dispersing than the population eigen-

values. This leads to shrinkage estimation methods that shrink the eigenvalues

of sample covariance matrix. Dey and Srinivasan (1985) proposed an orthogonal

invariant minimax estimator under the Stein’s loss function. According to their

setting, the estimator was chosen as Rφ(L)R′, where R is a matrix constructed by

the eigenvectors of the sample covariance matrices and φ(L) is a diagonal matrix.

Each entry of matrix φ(L) was chosen as a function of the eigenvalues of the sample

covariance matrix. The eigenvectors of this estimator are the same as the sample

covariance matrix but the eigenvalues are shrunken.

Ledoit and Wolf (2003a, 2003b, 2004) have developed a series of work that

focused on combining the sample covariance matrix with a well structured matrix.

Let Σ denote the true covariance matrix and S is the sample covariance matrix.

The idea of their approach is to find an estimator Σ̂ = δF+(1−δ)S that minimizes

the following risk function

min
δ
E||δF + (1− δ)S − Σ||F . (2.1)



2.1 Direct Thresholding Approaches 23

Here δ ranges from 0 to 1 and F is a matrix that has special structure. This

method shrinks the sample covariance matrix S towards the structured matrix F

and makes a tradeoff between estimating bias and prediction variance.

The first work has been done by Ledoit and Wolf (2003a), where they chose

F as a matrix that was computed from a single index model for the stock return

data. In another work of Ledoit and Wolf (2003b), F was chosen as a matrix with

equal off diagonal elements.

The matrix F was chosen to be υI in Ledoit and Wolf (2004). Under this

setting, the resulting estimator is named as Ledoit-Wolf estimator. Because the

minimizer of (2.1) depends on the underlying true covariance matrix Σ, the authors

proposed asymptotic estimators of υ and δ based on the sample covariance matrix.

This work is considered as a benchmark due to the simplicity and convenience of

calculation.

Besides shrinking the eigenvalues, nowadays more and more researchers focused

on estimating sparse covariance matrices that the parameters in the covariance ma-

trix were shrunk. This is because sparse covariance and precision matrices provide

more interpretable structures of the variables. A zero element in the covariance

matrix represents that the corresponding variables are marginally independent and

a zero element in the precision matrix represents the corresponding two variables
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are independent conditional on all the remaining variables. Both independent re-

lationships will simplify the whole structure of the variables. Special interest was

gained by the sparse precision matrix because a sparse precision matrix is unique-

ly corresponding to an undirected graph of the variables if the variables have a

multivariate normal distribution.

Bickel and Levina (2008b) proposed a direct hard thresholding method for

estimating the covariance matrix. The estimator can be simply obtained as

Σ̂λ (σ̂kl = sklI|skl|>λ, k 6= l),

where skl denotes the klth element of the sample covariance matrix S. This method

simply shrinks the small elements in the sample covariance matrix to zero and

achieves a sparse estimator of the covariance matrix. The convergence rate under

operator norm was given on a large class of matrices. El Karoui (2008) indepen-

dently proposed a similar direct thresholding approach and the consistent property

under operator norm was also given.

This direct thresholding method was further investigated by Rothman et al.

(2009). They extended the hard thresholding method to more general methods.

Instead of choosing the klth element σ̂kl as sklI|skl|>λ, they chose

σ̂kl = pλ(skl) (k 6= l).

The threshold function pλ can be extended from hard threshold function to a
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more generalized thresholding operators that satisfy several requirements. The

convergence rate is also given in their paper. These direct thresholding methods

are attractive since there is nearly no computation burden except the computation

of the threshold parameter using cross validation.

These two thresholding methods both employ universal threshold functions and

an adaptive version of the direct thresholding methods was proposed by Cai and

Wu (2011). They argued that the adaptive thresholding estimator Σ̂ of Σ with

klth element σ̂kl = pλkl(skl) would outperform the estimator from the universal

thresholding methods because the sample covariances would have a wide range of

variability. Here, pλkl is a threshold function with parameter λkl which is closely re-

lated to the sample correlation coefficients. An optimal rate of s0(p) log(p/n)(1−q)/2

is achieved by the adaptive estimator.

These thresholding methods have sounding convergence properties which hold

when log(p)/n = o(1). Nevertheless, it has to be noted that these methods can

not guarantee the positive definiteness property of the estimators which is a fun-

damental requirement for covariance matrices.
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2.2 Penalized Approaches

Most of the shrinkage methods were based on covariance matrices. One ex-

planation is that the sample covariance matrix is always available. Shrinking the

sample covariance matrix is easy and straightforward. However, shrinking the pre-

cision matrix is not easy. First of all, the inverse of sample covariance matrix may

not exist at all which will occur when p > n. Even if the dimension p is less

than n, it was shown that the inverse of sample covariance matrix may not be a

good estimator for precision matrix because the estimator is ill-conditioned which

means the estimation error will significantly increase when inverting the sample

covariance matrix (see Ledoit and Wolf 2004).

Although directly shrinking the precision matrix may not be a good choice, al-

ternative methods may also achieve the shrinkage objective, for example, penalized

methods. By carefully choosing the loss function and penalty function, one can

also achieve sparse estimates of covariance matrix and precision matrix.

The first approach that employed the penalized method in estimating a sparse

precision matrix was done by Meinshausen and Buhlmann (2006), where they

regressed each variable on all the rest variables using a LASSO method. The

regression coefficients can be penalized to zero by the l1 penalty term. The ijth and
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jith components of the precision matrix were estimated to be zero if the coefficient

of variable i regressed on variable j or the coefficient of variable j regressed on

variable i equals zero, or both of them are zero. It has to be noted that this

method only focuses on finding the positions of the zero entries in the precision

matrix which reveals the underling gaussian graphical model of the variables but

does not provide an estimator of the precision matrix.

Most of the penalized approaches for estimating matrices are based on the nor-

mal likelihood function. In the work of d’Aspremont et al. (2008), they suggested

a penalized method that imposes a penalty function on the number of nonzero

elements of the precision matrix based on the negative log normal likelihood func-

tion, which made a tradeoff between the complexity of the target matrix and the

estimation bias. This method is similar to the AIC method.

Instead of penalizing the number of nonzero elements in precision matrix, Fried-

man et al. (2008) and Rothman et al. (2008) both proposed a penalized method

that directly penalizes the off diagonal elements of the precision matrix by adding

a l1 penalty to the elements of precision matrix based on negative log normal

likelihood loss function. A very fast computation algorithm called GLASSO was

developed in Friedman et al. (2008) which is based on the work of Friedman et

al. (2007). The convergence rate of the estimator under the Frobenius norm was

firstly given in Rothman et al. (2008).
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Lam and Fan (2009) extended the penalized methods by replacing the l1 penal-

ty with more general penalties such as SCAD. Besides the estimator of precision

matrix, the penalized estimators of covariance matrix, correlation coefficients ma-

trix were also given in that paper. Explicit convergence rate of these estimators

under Frobenius norm were also investigated.

Another interesting approach was done by Cai et al. (2011). In their approach,

a sparse precision matrix is obtained by minimizing the elementwise l1 norm of the

matrix Ω under the constraint

||SΩ− I||∞ < λ.

In their paper, the l1 norm of matrix A (a n×p matrix)is defined as
∑n

i=1

∑p
j=1 |aij|,

the l∞ norm is defined as maxi,j |aij|. The resulting estimator Ω̂ has elements

ω̂ij = ω̂ji = ω̂1
ijI{ω̂ij ≤ ω̂ji}+ ω̂1

jiI{ω̂ij > ω̂ji}

where ω̂ij is the ijth element of the estimator from the above minimization problem.

This work is interesting since it provided a penalized method without likeli-

hood function. The method can be implemented by linear programming which is

relatively simple to compute.
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2.3 Methods Based on Ordered Data

Thresholding methods and direct penalization methods mentioned above are all

invariant with respect to the order of variables. Nevertheless, in some applications,

prior information about the order of variables are available. This drives researchers

to investigate new methods that use the prior information.

In some applications, it is reasonable to assume variables that are far away

may be not correlated to each other. Thus the corresponding covariances are zero.

Based on this assumption, a direct banding method was proposed by Bickel and

Levina (2008a). In that paper, the klth element in the sample covariance matrix

was shrunk to zero if and only if |k − l| > Mn. Here, Mn is an integer that was

chosen by cross validation. The convergence rate was given for a large class of

covariance matrices.

In some cases, the variables have a natural order, which means one can fit

them with an autoregressive model. This property reminds us that the modified

Cholesky decomposition can be implemented in estimating covariance matrix. The

modified Cholesky decomposition of a given matrix Σ can be written as Σ =

L−1DL−1′ and the elements in the lower triangle matrix L can be interpreted as

the regression coefficients that one variable regressed on it’s predecessors. Wu and
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Pourahmadi (2003) proposed an estimator which was obtained by regularizing the

first K sub diagonals of the autoregressive matrix L through a smoothing technique

and shrinks the rest elements to zero. Here, K was chosen by an AIC method.

This method provides a K banded estimate for precision matrix.

Huang et al. (2006) proposed a penalizing method that imposes a L1 or L2

penalty to the elements of autoregressive matrix T based on negative log normal

likelihood function and achieved sparse estimate of T . Assumption of this research

is more flexible than the banding approaches. However, it can not guarantee a

sparse estimate of precision matrix or covariance matrix even though a sparse

autoregressive matrix was obtained.

An adaptive banding approach has been proposed by Levina et al. (2006).

A nested LASSO penalty was imposed to the Cholesky factors which leads to

a sparse autoregressive matrix estimate that the banding length for each row of

the autoregressive matrix can be different. This adaptive banding approach can

efficiently introduce sparse precision matrix estimate and enjoy positive definite

property by using Cholesky decomposition. In Rothman et al. (2010), a new

interpretation of modified Cholesky decomposition was proposed, and an adaptive

regularizing approach which is similar to Levina et al. (2006) was proposed. This

method leads to banded inverse autoregressive matrix estimate and also banded

covariance matrix estimate.
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2.4 Motivation and Significance

As described in the review part, numerous methods for estimating covariance

matrix and precision matrix have been proposed along with the development of

penalizing methods and parsimony approaches. All these methods focused on

estimating single covariance matrix or precision matrix. Nevertheless, In some

applications, it is much more valuable to fit a collection of them if multiple groups

of data are observed. This may be especially attractive when data is observed from

different groups that have homologous structures. For example, we can consider

the salary level of men and women in Singapore in the past ten years. The salary

levels for these two groups may be different. Meanwhile, it is possible that both

groups may share some common relationships. For instance, salary level for women

at 2008 may not increase at all while it is possible that the salary level will slightly

increased for men. But in 2000, both salaries of men and women would increase

because the economic condition became better. If the covariance matrices of the

salary level for men and women are estimated separately, then the information of

similarity between both groups may be ignored and accuracy of the estimators is

reduced.

Here is another example. The two graphs below show the relationships of four

variables in two groups.
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In the first group, x1 affects x2, x2 affects x3 and x3 affects x4. In the second

group, the same relationships also exist. Furthermore, in the second graph, some

other unique relationships exist that x1 directly affects x3 and x2 directly affects

x4. In both groups, x1 and x4 are independent condition on x2 and x3. These

independence relationships indicate that the corresponding parameters in both

covariance matrices are all 0. The marginally independence relationships in both

groups may be attractive in inference and model explanation. Revealing this kind

of common zeros is one of the motivations of our work.

Besides the motivation of constructing common relationship between different

groups, more importantly, we are also trying to improve the prediction accuracy. If

prior information indicates that the data from different groups share similar struc-

tures, one can imagine that the estimation accuracy may be improved if we estimate

the covariance matrix and precision matrix by borrowing information from other

groups. Jointly estimating the covariance matrix and it’s inverse must be a pos-

sible way to combine the information together. The joint estimation method may

be valuable especially when the sample size is relatively small and the covariance
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matrices (or say structures) are similar in different groups.

There are several ways to describe the common relationships of variables in two

data groups. For example, variables x and y are marginally independent in both

groups (this relationship can be shown by the common zeros in both covariance

matrices); x and y are independent conditional on all the rest variables in both

groups (it can be presented by common zeros in both precision matrices) or x and

y are not correlated in a autoregressive model which can be presented be common

zeros in both autoregressive matrices. In order to reveal the common relationships

of variables between groups, we have to choose one of the above relations and try

to jointly estimate the corresponding parameters. In this research, we investigate

the third type of relationship by jointly estimating the autoregressive parameters,

and try to improve the prediction accuracy.

Guo et al. (2009) considered the joint estimation technique, in which they joint-

ly estimated the precision matrices using a reparameterize method. A hierarchical

penalty function was added to the negative log likelihood function and a collection

of homologous precision matrices were obtained. This approach is very efficient in

discovering common zeros in precision matrices in different groups and it is also

attractive in revealing the underlying graphical models of the data.

The hierarchical penalty term is equivalent to a nonconvex penalty function
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which makes the computation procedure of the algorithm sensitive to the starting

point, and their approach mainly focused on reveling the underlying graphical

model. Alternatively, we use convex penalty terms and focus on estimating both

the covariance matrix and precision matrix. The new methods were achieved by

imposing penalties with group effect to the Cholesky factors of the data. The

specific objectives of this research include:

1. Propose new methods which consider the similar structures of different

groups.

2. Study both consistent properties of the resulting covariance matrices and

precision matrices and also the sparsity property of the resulting autoregressive

matrices.

3. Compare the performance of the new methods with the existing separated

estimation method. Apply our new methods to real data.

This research may provide better choice for estimating the covariance matrix

and precision matrix when multiple groups of data that have natural order is

analyzed due to the following reasons.

1. The new methods provide more interpretable estimates of matrices for mul-

tiple groups of data. The estimates are guaranteed to be positive definite due to
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the usage of Cholesky decomposition.

2. The estimation accuracy may be increased as the information in different

groups were shared by our joint estimation approaches.

It has to be noted that the joint estimation methods are immature attempt

in analyzing multiple groups of data. There may be some issues to be further

considered. For instance, order of variables are assumed in this research and our

methods work well when the structures of different groups are similar. How to

find the order of variables when the natural order is not available and how to test

the similarity of structures of different groups may need to be further investigated.

However, they are not the central concern of this research.

Besides the work of Guo et al. (2009), recently, Lee et al. (2012), Lee and Liu

(2012) also considered the joint estimation methods based on multicategory da-

ta. Nevertheless, they focused on multiple response regression problems. Another

recent work of Danaher et al. (2012) investigated the joint precision matrix estima-

tion problem using the log normal likelihood function with a sparse fusion LASSO

or sparse group LASSO which is similar to our approach. However, the same as

Guo et al. (2009), the main purpose of the research is to reveal the underling

graphical model. The positive definite property can not be guaranteed.

The content of this thesis is organized as follows:
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In Chapter 1, we have stated some necessary background knowledge related to

our methods.

In Chapter 2, we have reviewed the literature of covariance matrix and precision

matrix estimation.

In Chapter 3, we propose the new joint estimation methods. The computation

issues as well as the theoretical properties are also given.

In Chapter 4, we compare our methods with the separated estimation method

and other well known methods. A real data analysis is also conducted.

In Chapter 5, we do a summarization of our work. Potential future researches

are also discussed.

Proofs of the theories are given in the Appendix part.
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CHAPTER 3

Model Description

In this chapter, we assume the variables have a natural order. This assumption

is reserved for the longitudinal data. On the other side, in the point of view of

graphical modeling, if the relationship of the variables can be presented by a di-

rected acyclic graph without cycles, we can always sort the variables into a specific

order where the new sequence of variables satisfies that the variables afterward-

s only related to the previous variables. In this case, these variables satisfy the

ordered assumption.
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3.1 Penalized Joint Normal Likelihood Function

Assume we have J groups of observations. Y
(j)
i = (y

(j)
i1 , y

(j)
i2 , ... y

(j)
ip )T is an

observation from group j and it is a p dimensional vector. The number of ob-

servations from group j is nj. Assume the observations in each group follow a

multivariate normal distribution which is Y
(j)
i ∼ N(µ

(j)
0 ,Σ

(j)
0 ). For simplicity, we

centralize the observations in each group, which means
∑nj

i=1 y
(j)
ik = 0 for k=1, 2, ...

p and j=1, 2, ... J . The normal assumption is common, even the sample covari-

ance matrix can be treated as the maximum likelihood estimator based on normal

distribution. Assume matrix A(j) = (y
(j)
ik )nj×p is constructed by the observations in

the jth group and S(j) = (A(j))TA(j)/nj, then S(j) is the sample covariance matrix.

We write the modified Cholesky decomposition of the covariance matrix Σ
(j)
0 as

T
(j)
0 Σ

(j)
0 T

(j)
0 = D

(j)
0 , where T

(j)
0 is the autoregressive matrix and D

(j)
0 is a diagonal

matrix. The diagonal elements of T
(j)
0 are all 1 and lower triangular element t

(j)
0kl is

set to -φ
(j)
0kl. Denote the diagonal matrix D

(j)
0 by diag{σ(j)

01 , σ
(j)
02 , . . . σ

(j)
0p }, under

this modified decomposition, we can estimate the Cholesky factors φ
(j)
0kl and the

parameters σ
(j)
0k instead of the covariance matrix itself since once the estimators of

T
(j)
0 and D

(j)
0 are available, the estimators of Σ

(j)
0 and Ω

(j)
0 can be obtained.

In Chapter 1, we stated an explanation of modified Cholesky decomposition
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of covariance matrix. Accordingly, we have the following explanation of modified

Cholesky decomposition for sample covariance matrix. This property was generally

stated in Pourahmadi (1999).

Proposition 3.1. Assume Yi=(yi1, yi2, · · · , yip)′ (i=1, 2, · · · , n) are observed.

Denote S =
∑n

i=1 YiY
′
i /n and the modified Cholesky decomposition of S by TST ′ =

D. Assume the least square regression equation of variable yk regressed on variables

yk−1, yk−2, · · · , y1 is

ŷk =
k−1∑
l=1

φklyl,

then the klth element of matrix T is −φkl (k > l) and the kkth element of matrix

D is
∑n

i=1(yik −
∑k−1

l=1 φklyil)
2/n.

This property can be proved as follows. Denote the regression residual for the

ith observation of the kth regression by ε̂ik, then one can write down the following

equations

ε̂i1 = yi1,

ε̂i2 = yi2 − φ21yi1,

· · · (3.1)

ε̂ip = yip − φp(p−1)yi(p−1) − φp(p−2)yi(p−2) · · · − φp1yi1.

Let ε̂i represent the vector (ε̂i1, ε̂i2, · · · , ε̂ip)′, and write T as a p × p matrix
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with klth element 

− φkl, k > l,

1, k = l,

0, k < l,

then the p equations in (3.1) can be written as

ε̂i = TYi.

This equation leads to

ε̂iε̂
′

i = TYiY
′

i T
′
, i = 1, 2, · · · , n. (3.2)

Sum all these n equations up, we have

n∑
i=1

ε̂iε̂
′

i = T (
n∑
i=1

YiYi)T
′. (3.3)

That is
n∑
i=1

ε̂iε̂
′
i/n = TST ′. (3.4)

T is already a lower triangular matrix. Next we will show that
∑n

i=1 ε̂iε̂
′
i/n is a

diagonal matrix. The kkth element of
∑n

i=1 ε̂iε̂
′
i/n is

∑n
i=1 ε̂

2
ik

n
which equals

n∑
i=1

(yik −
k−1∑
l=1

φklyil)
2/n.

Consider the klth element of
∑n

i=1 ε̂iε̂
′
i/n (k > l), which is

∑n
i=1 ε̂ik ε̂il/n. Denote

ε̂k(yk) as (ε̂1k, ε̂2k, · · · , ε̂nk)′ which is the residual vector of variable yk regressed
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on variables y1, · · · , yk−1, then ε̂k(yk) is orthogonal to the space spanned by obser-

vations of variables y1, · · · , yk−1. Obviously, ε̂l(yl) (l < k) is in this space, which

implies

< ε̂k(yk), ε̂l(yl) >= 0.

Thus
∑n

i=1 ε̂ilε̂ik/n equals zero and the matrix
∑n

i=1 ε̂iε̂
′
i/n is a diagonal matrix.

yk

<yk−1, · · · , y1>

ε̂k(yk)

Assume D is a diagonal matrix and the iith element is ε̂k(yk)
′ε̂k(yk)/n which

equals

∑n
i=1(yik −

∑k−1
l=1 φklyil)

2

n
, then we have

D = TST ′.

By the uniqueness of the modified Cholesky decomposition, we proved this prop-

erty.

Go back to our problem. Consider the regression of y
(j)
k on variables y

(j)
k−1, y

(j)
k−2,

· · · y(j)
1 , we assume the coefficients are φ

(j)
k(k−1), φ

(j)
k(k−2), . . . φ

(1)
k1 . The regression

residual term ε̂
(j)
ik equals y

(j)
ik −

∑k−1
l=1 φkly

(j)
il . Following the above notations, we

have

ε̂
(j)
i = T (j)Y

(j)
i . (3.5)
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ε̂
(j)
i can be treated as an observation of ε(j) where ε(j) follows a normal distri-

bution of N(0, D(j)). The likelihood of ε
(j)
i which is written as a function of the

new parameters T (j) and D(j) is

1√
2π|D(j)|

exp(−Y
(j)′

i T (j)′D(j)−1T (j)Y
(j)
i

2
). (3.6)

If we take log of (3.5), multiply by -2 and omit the constant term, the likelihood

function for the jth group is

lj(T
(j), D(j)) =

nj∑
i=1

(log |D(j)|+ Y
(j)′

i T (j)′D(j)−1T (j)Y
(j)
i ). (3.7)

This loss function (3.7) is based on the unconstrained parameters φ
(j)
kl and σ

(j)
k .

Following(3.5), we can write Y
(j)′

i T (j)′D(j)−1T (j)Y
(j)
i as ε̂

(j)′

i D(j)−1ε̂
(j)
i . So the term

Y
(j)′

i T (j)′D(j)−1T (j)Y
(j)
i in (3.7) is

p∑
k=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

. (3.8)

Recall that matrix D(j)=diag{σ(j)
1 , σ

(j)
2 , · · · , σ(j)

p }. So the transformed log likeli-

hood function for the jth group is

lj(T
(j), D(j)) = nj

p∑
k=1

log(σ
(j)
k ) +

nj∑
i=1

p∑
k=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

. (3.9)

In this study, for simplicity, we assume data from different groups are balanced

which means that numbers of observations from different groups are all the same

and the unbalanced case is almost the same as the balanced case. Assume the
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number of observations in each group is n, then the transformed joint likelihood

function is

l(T,D) =
J∑
j=1

p∑
k=1

n log(σ
(j)
k ) +

J∑
j=1

n∑
i=1

p∑
k=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

. (3.10)

Without any extra information, the empirical estimator for the Cholesky factors

and corresponding variances can be obtained by minimizing (3.10). The resulting

covariance matrix estimators coincide with the standard MLE.

In this study, in order to introduce sparsity to the elements in the autoregressive

matrix T (j) and impose group effect to the Cholesky factors in different groups, we

add a penalty term to the above likelihood function which treats the elements in

the same position as a group and penalize them together. The penalty term can

be chosen as

pλ(φ) =

p∑
k=2

k∑
l=1

gλ(φ
(1)
kl , φ

(2)
kl , ...φ

(J)
kl ). (3.11)

Consequently, the penalized method of jointly estimating the Cholesky factors and

the variance matrices is to minimize the following function

J∑
j=1

p∑
k=1

n log(σ
(j)
k ) +

J∑
j=1

n∑
i=1

p∑
k=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

+

p∑
k=2

k∑
l=1

gλ(φ
(1)
kl , φ

(2)
kl , ...φ

(J)
kl ).

(3.12)

An ideal choice of penalty function gλ(φ) can provide sparse estimates of the
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coefficients φ
(j)
kl . More importantly, we would like to impose some particular struc-

tures to the Cholesky factors based on our prior information about the data. Specif-

ically, if variables y
(j)
k and y

(j)
l are not correlated in any groups, the penalty term

would shrink φ
(1)
kl , φ

(2)
kl , · · · , φ(J)

kl all to zero. If the correlation of y
(j)
k and y

(j)
l are

close in all groups, the penalty term may make φ
(1)
kl , φ

(2)
kl , · · · , φ

(J)
kl close.

3.2 IL-JMEC Method

The first choice of gλ(φ) is a combination of l1 penalty function and l∞ penalty

function. It can be roughly presented by λ|φ|1 + β|φ|∞. This penalty has a nice

property that it shrinks the J dimensional coefficient vector φ to some small sub-

space of RJ . In these subspaces, the coefficient vector φ will be encountered either

of following:

1. Some coefficients will be exactly zero.

2. Some coefficients will be identical.

This shrinkage procedure is presented in figure (3.1). This figure shows how

the minimizer of φ2
1− (a+ b)φ1 +φ2

2− aφ2 +λ|φ|1 +β||φ||∞ changes when different

λ and β are employed where we assume a > 0 and b > 0.
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φ2

β

φ1

Figure 3.1 Minimizer of φ2
1 − (a+ b)φ1 + φ2

2 − aφ2 + λ|φ|1 + β||φ||∞.

1. The thick line in the figure shows that when the threshold parameter λ for

the LASSO part is big enough (λ > φ1 + φ2), the coefficients are all estimated to

be zero no matter what the threshold parameter β is.

2. The dashed line shows that when the threshold parameter λ is moderately

large, the small coefficient φ2 is always estimated to be zero while the larger coef-

ficient φ1 is shrunk by both l1 and l∞ term and finally goes to zero along with the

increasing of threshold parameter β.

3. The dotted line is the solution of (φ1, φ2) when λ is smaller than a. When β

increases, (φ1, φ2) will firstly hit the surface φ1 = φ2, and then is shrunk to zero.

In view of the effect of this combined penalty term, we can choose the following

penalty function to impose group effect to parameters φ
(1)
kl , · · · , φ

(J)
kl ,

gλ,β(φ) = λ

J∑
j=1

|φ(j)
kl |+ βmax{|φ(1)

kl |, ...|φ
(J)
kl |}. (3.13)
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Thus the resulting penalized likelihood function l(T,D) for the reparameterized

coefficients φ
(j)
kl and σ

(j)
k is

lλ,β(T,D) =
J∑
j=1

p∑
k=1

n log(σ
(j)
k ) +

J∑
j=1

n∑
i=1

p∑
k=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

+ λ
∑
k>l

J∑
j=1

|φ(j)
kl |+ β

∑
k>l

J
max
j=1
{|φ1

kl|, |φ
(2)
kl |, ...|φ

(J)
kl |}.

(3.14)

We call this method Infinity LASSO-Joint Matrix Estimation Approach via C-

holesky Decomposition (IL-JMEC).

The objective function (3.14) is complicated, but a good news is that the min-

imization problem can be divided into p sub minimization problems and each of

them can be solved iteratively.

3.3 GL-JMEC Method

Another choice of the penalty function is a combination of LASSO and group

LASSO. As described in Yuan and Lin (2004), the group LASSO penalty can

efficiently shrink a group of variables to zero. Nevertheless, it has to be noted

that the group LASSO always performs an all in and all out strategy. Directly

applying group LASSO in our joint estimation method can not reveal the unique

relationship in some specific groups. Alternatively, we can combine the group

LASSO penalty with the LASSO penalty together, and impose this joint penalty
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to the autoregressive coefficients. The goal that reveals the common zeros and

unique zeros may be achieved by the following joint penalty term

pλ,β(φ) = λ

J∑
j=1

∑
l<k

|φ(j)
kl |+ β

∑
l<k

√√√√ J∑
j=1

φ
(j)2
kl . (3.15)

This joint penalty function was also investigated in Friedman et al. (2010).

Applying this penalty to our study, the penalized likelihood function becomes

lλ,β(T,D) =
J∑
j=1

p∑
k=1

n log(σ
(j)
k ) +

J∑
j=1

n∑
i=1

p∑
k=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

+ λ
J∑
j=1

∑
k>l

|φ(j)
kl |+ β

∑
k>l

√√√√ J∑
j=1

φ
(j)2
kl .

(3.16)

We call this sparse Group LASSO-Joint Matrix Estimation Approach Via Cholesky

Decomposition(GL-JMEC).

The insight of sparse property of the sparse group LASSO can be examined by

the following simple example. A different procedure which leads to the same result

was investigated in Friedman et al. (2010). We consider the following penalized

regression problem which minimizes the objective function

1

2
||Y −Xφ||22 + λ|φ|+ β||φ||2. (3.17)

LetC = XTY represents the correlation coefficients vector of variables x1, x2, · · ·xp

and y. The ith element of C is ci. We write vector φ as rµ where r = ||φ||2 and

µ = φ/r. Let S be a p dimensional vector. The ith element si equals the sign of φ,



3.3 GL-JMEC Method 48

then we have |φ| = φTS = rµTS . The objective function (3.17) can be written as

1

2
φTXTXφ− φTXTY + λφTS + βr

=
1

2
r2µTXTXµ− rµTC + λrµTS + βr

=r[
1

2
rµTXTXµ− µT (C − λS) + β]. (3.18)

Here we omitted the constant term 1
2
Y TY . Denote

wi =


ci − sign(ci)λ, |ci| > λ,

0, |ci| ≤ λ.

Let W = (w1, w2, · · · , wp)′. It is easy to prove that

µT (C − λS) ≤ µTW, (3.19)

for arbitrary vector µ where S is a function of µ. Consequently, we have the

following property of the sparse group LASSO:

Proposition 3.2. φ=0 is the minimizer of (3.17) if and only if β ≥ ||W ||2.

This property can be proved as follows. When β ≥ ||W ||2, by (3.19), we know

β − µT (C − λS) ≥ β − µTW.

Recall that ||µ||2 = 1, we have µTW ≤ ||W ||2 ≤ β. Thus

r[
1

2
rµTXTXµ− µT (C − λS) + β] ≥ r[

1

2
rµTXTXµ+ β − µTW ] ≥ 0.
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This shows that the minimal value of (3.18) is greater or equal to 0. However,

0 can be obtained when r = 0 which is equivalent to φ = 0. Thus φ = 0 is the

minimizer of (3.18). This gives us the sufficient condition.

In order to prove the necessary part, it suffices to show that when ||W ||2 > β,

the minimal value is not achieved when φ = 0, which is equivalent to show that

the minimal value of (3.18) is less than 0. Instead of directly finding the minimal

value of (3.18), we will find a particular value of φ such that (3.18) is less than 0.

We choose µ̂ = W/||W ||2. When |ci| > λ, si = sign(µ̂i) = sign(ci−sign(ci)λ) =

sign(ci) which leads to wi(ci − siλ) = wi(ci − sign(ci)λ) = w2
i . When |ci| ≤ λ, we

have wi = 0 which also leads to wi(ci− sign(ci)λ) = 0 = w2
i . Thus W T (C −λS) =

W TW , which implies

r[
1

2
rµ̂TXTXµ̂− µ̂T (C − λS) + β]

=r[
1

2
rµ̂TXTXµ̂−W T (C − λS)/||W ||2 + β]

=r[
1

2
rµ̂TXTXµ̂−W TW/||W ||2 + β]

=r[
1

2
rµ̂TXTXµ̂− ||W ||2 + β].

Recall that ||W ||2 > β, we can choose r small enough such that 1
2
rµ̂TXTXµ̂

is dominated by ||W ||2 − β, then we have found a nonzero φ = rµ̂ such that

1
2
φTXTXφ− φTXTY + λφTS + βr < 0. This proved the necessary part.
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This rule will be used in the computation part. By using this property, com-

putation procedure of GL-JMEC can be simplified.

We present the contour graphs of the sparse infinity LASSO and sparse group

LASSO as follows.

Figure 3.2 Contour graph for sparse group LASSO (left) and sparse l∞ LASSO

(right).

In this figure, solid line represents the contour curve of Lasso penalty, dashed

line represents the contour curve of sparse group penalty and dotted line represents

the contour curve of group LASSO penalty. In the right graph, solid line also

represents the contour curve of LASSO penalty, dashed line represents the contour

of sparse l∞ penalty and dotted line represents the contour curve of l∞ penalty.
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3.4 Computation Issue

The likelihood function (3.14) can be split into J disjoint functions. Denote

T(k) as the collection of coefficients in the kth row of T (1), · · · , T (J) and σ(k) as the

collection of σ
(1)
k , · · · , σ(J)

k . Denote

fk(T(k), σ(k)) =
J∑
j=1

n log(σ
(j)
k ) +

J∑
j=1

n∑
i=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl y

(j)
il )2

σ
(j)
k

+
k−1∑
l=1

gλ(φ
(1)
k1 , · · · , φ

(J)
kl ),

(3.20)

then we can write lλ,γ(T,D) as
∑p

k=1 fk(T(k), σ(k)). Minimizing lλ,γ(T,D) is equiv-

alent to minimizing fk(T(k), σ(k)) (k = 1, 2, · · · , p) separately.

When k = 1, the function fk(T(k), σ(k)) degenerates to
J∑
j=1

n log(σ
(j)
1 )+

J∑
j=1

n∑
i=1

(y
(j)
i1 )2

σ
(j)
1

.

the minimal value is achieved when σ
(j)
1 = 1/n

∑n
i=1(y

(j)
i1 )2.

When k ≥ 2, minimizing (3.20) can be done through an iterative procedure.

Assume the resulting estimates of the coefficients from the tth iteration are φ
(j)
kl (t)

and σ
(j)
k (t). In the (t+ 1)th iteration, φ and σ can be updated through a two step

procedure as follows:

Step 1. For fixed φ
(j)
kl which equals φ

(j)
kl (t), minimizing

∑J
j=1 n log(σ

(j)
k ) +

J∑
j=1

n∑
i=1

(y
(j)
ik −

∑k−1
l=1 φ

(j)
kl (t)y

(j)
il )2

σ
(j)
k

with respect to σ
(j)
k . The variance term σ

(j)
k can be
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directly updated by

σ
(j)
k (t+ 1) =

∑n
i=1(y

(j)
ik −

∑k−1
l=1 φ

(j)
kl (t)y

(j)
il )2

n
.

Step 2. Fix σ
(j)
k = σ

(j)
k (t+ 1), φ

(j)
kl can be updated by minimizing the objective

function
J∑
j=1

1/σ
(j)
k (t+ 1)

n∑
i=1

(y
(j)
ik −

k−1∑
l=1

φ
(j)
kl y

(j)
il )2

+
k−1∑
l=1

gλ(φ
(1)
kl , · · · , φ

(J)
kl ).

(3.21)

Minimizing (3.21) is our main concern. A group coordinate optimization pro-

cedure which was mentioned in Friedman et al. (2007) is used in our work. The

idea of this method is to update a single or a group of variables while all the others

are fixed. The initial value φ̂
(j)
kl is set to the tth update of φ

(j)
kl in the minimization

procedure of (3.20). That is φ̂
(j)
kl = φ

(j)
kl (t) (l = 1, 2, . . . , k − 1, j = 1, 2, · · · , J).

For fixed 1 ≤ l0 ≤ k − 1, we would like to update a group of parameters φ
(j)
kl0

(j = 1, 2, · · · , J) while all other parameters are fixed by minimizing the following

function:
J∑
j=1

cj||R(j)
l0

(r)− φ(j)
kl0
Y

(j)
∗l0 ||

2
2 + gλ(φ

(1)
kl0
, · · · , φ(J)

kl0
). (3.22)

Here cj = 1/σ
(j)
k (t + 1) is always fixed in this sub iteration procedure. Y

(j)
∗l0 is

the vector of observations for the l0th variable in jth group. That is Y
(j)
∗l0 =

(y
(j)
1l0
, · · · , y(j)

nl0
)T . The vector R

(j)
l0

(r) is an n dimensional vector in which the ith

element equals y
(j)
ik −

∑
l 6=l0 φ̂

(j)
kl y

(j)
il .
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So far, the minimization problem can be simplified to minimize (3.22). Opti-

mization procedures for IL-JMEC and GL-JMEC are slightly different. So we will

state these two procedures separately.

IL-JMEC : In this method, the penalty function gλ(φ
(1)
kl0
, · · · , φ(J)

kl0
) = λ

∑J
j=1 |φ

(j)
kl0
|+

βmax{φ(1)
kl0
, · · · , φ(J)

kl0
}. The explicit minimizer of (3.22) can be found (see Wu and

Lange 2008). If we simplify the function (3.22), the minimization problem is e-

quivalent to solve

argminθ

J∑
j=1

(ajθ
2
j − bjθj) + λ

J∑
j=1

|θj|+ β|θ|∞. (3.23)

Here aj = cj||Y (j)
∗l0 ||

2
2, bj = 2cj < Y

(j)
∗l0 , R

(j)
l0

(r) > and θj = φ
(j)
kl0

. Since aj is positive,

the minimizer θ of (3.23) must satisfy that θj has the same sign as bj. Thus (3.23)

can be written as

argminθ

J∑
j=1

[ajθ
2
j − (|bj| − λ)|θj|] + β|θ|∞, (sign(θj) = sign(bj)), (3.24)

which is the same as minimizing
∑J

j=1[ajθ
2
j − (|bj| − λ)+|θj|] + β|θ|∞. Assume

(|bj| − λ)+/aj are sorted in descending order and integer u (1 ≤ u ≤ J) is the first

integer that satisfies

∑u
j=1(|bj| − λ)+ − β∑u

j=1 aj
>

(|bu+1| − λ)+

au+1

(denote
(|bJ+1| − λ)+

aJ+1

=

0), then the minimizer of (3.23) is

θ̂j =


sign(bj)

∑u
j=1(|bj| − λ)+ − β

2
∑u

j=1 aj
, 1 ≤ j ≤ u,

sign(bj)
(|bj| − λ)+

2aj
, u < j ≤ J,
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when this u exists. Otherwise, the minimizer θ̂ is 0.

The estimates of φ̂
(j)
kl0

(j = 1, 2, · · · , J) are updated by θ̂. Repeat this procedure

for l0 = 1, 2, · · · , k−1, 1, · · · until convergence. Iteration will stop when the l1 norm

of the difference of two successive updates is less than 10−4 (We call two updates

are successive if one is obtained by coordinately updating every element in the

other one). It has to be noted that the function (3.21) is convex. So function

(3.21) is always decreasing with each update. By iteratively updating Tk and σk,

we can achieve the minimizer of (3.20) which is also the minimizer of (3.14).

GL-JEMC: In this case, the penalty function gλ(φ
(1)
kl0
, · · · , φ(J)

kl0
) = λ

∑J
j=1 |φ

(j)
kl0
|+

β
√∑J

j=1 φ
(j)
kl0

. The same as the previous situation, function (3.22) can be also sim-

plified as

argminθ

J∑
j=1

(ajθ
2
j − bjθj) + λ

J∑
j=1

|θj|+ β||θ||2, (3.25)

where aj = cj||Y (j)
∗l0 ||

2
2, bj = 2cj < Y

(j)
∗l0 , R

(j)
l0

(r) > and θj = φ
(j)
kl0

. Unlike the IL-

GEMC method, (3.25) has no explicit solution. However, the minimizer θ̂ of (3.25)

can be quickly found by the following iteration method:

Assume wj = bj − sign(bj)λ if λ < |bj| and wj = 0 if λ ≥ |bj| for j = 1, · · · , J .

We can check if
√∑

w2
j > β.

If
√∑

w2
j > β is true, θ̂j are all zero. This is based on proposition 3.2.
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If
√∑

w2
j > β fails, an iterative approach is employed to minimize (3.25). The

initial value θ̂j(0) was set to φ
(j)
kl0

(t) . In the (r + 1)th iteration, according to Zou

and Li (2008), the term
√∑

θ2
j can be approximated by local linear approximation

∑
θ2
j

2
√∑

θ̂2
j (r)

+
1

2

√∑
θ̂2
j (r). (3.26)

Substitute the term
√∑

θ2
j in (3.25) with (3.26), we can update θ̂j(r + 1) by

wj

2aj + β/
√∑

θ̂j(r)2

.

Repeat this procedure until convergence. It has to be noted that this iteration pro-

cedure is very fast. Assume the minimizer of (3.25) is θ̂, then φ
(j)
kl0

(j = 1, · · · , J) are

updated by θ̂. Repeat this for l0 = 1, 2, · · · , k− 1, 1, 2, · · · until convergence. Sim-

ilar to IL-JEMC, iteration will stop when the l1 norm difference of two successive

updates is smaller than 10−4.

So far we have updated φ
(j)
kl while σ

(j)
k are fixed. The objective function

fk(T(k), σ(k)) is always decreasing when we update φ
(j)
kl and σ

(j)
k iteratively fol-

lowing Step 1 and Step 2. The minimizing procedure will be terminated within

finite steps.

The threshold parameters were obtained by cross validation method. In this

study, we use the 5-fold cross validation approach. The observations are divided

into 5 subsets. For a given combination of λ and β, let T
(j)
−u(λ, β) and D

(j)
−u(λ, β)
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denote the estimates from our joint estimation methods based on all the obser-

vations besides the uth subset. We apply these estimates on the uth subset and

evaluate the performance based on the following loss function

l(λ, β) =
J∑
j=1

∑
u

n log |D(j)
−u(λ, β)|+ tr(T

(j)′

−u (λ, β)D
(j)−1
−u (λ, β)T

(j)
−u(λ, β)S(j)

u ).

The threshold parameters λ and β are chosen so as to minimize l(λ, β).

3.5 Main Results

We state some notations first. Denote the Frobenius norm of matrix A by

||A||F =
√

trAA′. The singular values of matrix A are denoted as the square

root of the eigenvalues of matrix AA′. Assume matrix AA′ is a p × p matrix, we

denote the square root of eigenvalues of matrix AA′ by sp(A), sp−1(A), · · · s1(A)

and assume they have an increasing order. Then the operator norm of matrix A

is defined as s1(A) which is denoted by ||A||. The true covariance matrices and

precision matrices are denoted as Σ
(j)
0 and Ω

(j)
0 while the estimates are denoted as

Σ(j) and Ω(j). In this part, we will assume the matrices are growing along with the

sample size n and also the dimension p.

Let Zj = {(k, l) : k > l, φ
(j)
0kl 6= 0} which is the collection of nonzero points

in the lower triangular part of matrix L
(j)
0 . We write Z = ∪Jj=1Zj and let the
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cardinality of Zj equals sj and the cardinality of ∪Jj=1Zj equals s.

In order to achieve the consistent property of minimizer of (3.14) and (3.16),

we have to make a basic assumption that there exists a constant c > 1 such that

the singular values of the covariance matrices are bounded. That is

1/c < sp(Σ
(j)
0 ) ≤ s1(Σ

(j)
0 ) < c (j = 1, 2, · · · , J). (3.27)

This assumption is common. In Rothman (2008), Lam and Fan (2009), Guo et al.

(2011). They all made the same assumption. This assumption makes inverting the

covariance matrices meaningful when the dimension and sample size are growing.

The following theorem gives the convergence rate of our estimates based on the

Frobenius norm.

Theorem 3.1. Assume the threshold parameters λ and β satisfy λ+β = O(log(p)/n).

T (j) and D(j) (j = 1, · · · , J) are minimizers of the penalized likelihood function

Lλ,β(T,D) in (3.16) and (3.14). Assume s and p satisfy (s + p) log(p)/n = o(1),

then we have following consistent properties

J∑
j=1

||T (j)
0 − T (j)||F = Op(

√
s log(p)/n), (3.28)

J∑
j=1

||D(j)
0 −D(j)||F = Op(

√
p log(p)/n). (3.29)

This theorem shows the consistent properties of the estimates of the autore-

gressive matrices and also the corresponding variance matrices. It is close to the
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Theorem 9 in Lam and Fan (2009). Based on the consistent properties of the

Cholesky factors and variance matrices, the consistent properties of the result-

ing covariance matrices and precision matrices can be obtained by the following

theorem.

Theorem 3.2. Assume all the conditions in Theorem 3.1 hold. T (j) and D(j)

(j = 1, 2, . . . J) are the minimizer of (3.14) or (3.16). Let Ω(j) = T (j)′D(j)−1T (j)

and Σ(j) = T (j)−1D(j)T (j)−1′, then we have the following properties

J∑
j=1

||Ω(j) − Ω
(j)
0 ||F = Op(

√
(s+ p) log(p)/n), (3.30)

J∑
j=1

||Σ(j) − Σ
(j)
0 ||F = Op(

√
(s+ p) log(p)/n). (3.31)

The convergence rates for covariance matrices and precision matrices are the

same. It has to be noted that, the direct thresholding or shrinking methods usu-

ally provide either consistent properties of the covariances matrices or precision

matrices. However, they hardly provide both of them because one can not even

guarantee the other exists. In this research, with the advantage of the Cholesky

decomposition, both consistent rates of the resulting covariance matrices and pre-

cision matrices are given.

The last theorem illustrates sparsity of the autoregressive matrices. Due to the

singular property of LASSO type penalties, we can prove the following result.
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Theorem 3.3. Suppose all conditions in Theorem 3.1 hold. Moreover, we as-

sume
∑J

j=1 ||T (j)− T (j)
0 || = Op(ζn) and

∑J
j=1 ||D(j)−D(j)

0 || = Op(ηn) which satisfy√
log p/n+

√
ζn +
√
ηn = Op(λ), then with probability tending to 1, the minimizers

of (3.14) or (3.16) satisfy φ
(j)
kl = 0 ((k, l) ∈ Zc

j , 1 ≤ j ≤ J).

From the above theorem, we know that the consistent properties of the esti-

mates from both joint estimation methods are identical. According to the proof,

this attributes to the convex property of the penalty functions. It has to be noted

that the consistent properties of this penalized approach are related to the rate

of the sum of the two threshold parameters λ + β. On the other hand, only the

threshold parameter λ controls the sparsity of the resulting estimates.
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CHAPTER 4

Simulation Results

4.1 Simulation Settings

In this chapter, we compare our approaches with the method mentioned in

Huang et al. (2006). In that paper, they proposed a penalized likelihood method

based on the Cholesky decomposition. A LASSO penalty term was imposed to

the Cholesky factors in their research. Cholesky decomposition is employed in

our methods as well as the method in Huang et al. (2006), which makes these

approaches comparable. Meanwhile, the estimates proposed by Ledoit and Wolf

(2004) are also simulated as a benchmark work. Besides these approaches, the
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results of the empirical estimators are also presented.

Since the Cholesky factors and corresponding variance parameters are obtained

in this research, both the covariance matrices and precision matrices can be ob-

tained directly. By Theorem 3.2, we proved that the precision matrices and covari-

ance matrices resulted from our methods have the same convergence rates under

Frobenius norm. So we only focus on the prediction accuracy of precision matrices.

Another reason is that we mainly compare our joint estimation approaches with

the method mentioned in Huang et al. (2006). In both approaches, It is more

straightforward to obtain the precision matrix estimates.

Two loss functions are used to measure the prediction accuracy of the estima-

tors. The first one is Frobenius loss which is defined as

FL =
J∑
j=1

||Ω(j) − Ω
(j)
0 ||2F/p.

This loss will provide us with the information of the elementwise closeness of esti-

mators and the true matrices.

The other loss is called Operator loss which can be calculated as

OP =
J∑
j=1

||Ω(j)
0 − Ω

(j)
0 ||.

This loss roughly gives us some information about the closeness of the whole struc-

ture of the estimates and the true matrices.
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4.2 Simulation with Respect to Different Data

Sets

Example 1: In this study, 4 data sets are generated with sample size 70, 100,

200, 400 respectively. The structures of these four data sets are the same while the

sample sizes vary. There are two groups in each data set. For the first group, data

are generated from an AR(1) model. Each variable is only related to it’s previous

neighbor. The structure of data in the second group follows an AR(2) model. Each

variable is affected by its previous two neighbors.

The autoregressive matrices L1 and L2 are accordingly set as follows

1 0 0 0 ... 0

−0.5 1 0 0 ... 0

0 −0.5 1 0 ... 0

... ... ... ... ...

0 0 ... 0 −0.5 1


and



1 0 0 0 ... 0

−0.5 1 0 0 ... 0

−0.5 −0.5 1 0 ... 0

... ... ... ... ...

0 0 ... −0.5 −0.5 1



The diagonal entries of variance matrix D1 and D2 are independently drawn

from distribution U(0, 1) + 1. The covariance matrices for these two groups are set

to L−1
1 D1L

−1′

1 and L−1
2 D2L

−1′

2 correspondingly. The dimensions are all set to 50.

Simulation results are shown in Table 4.1. The ratios of Frobenius loss in different
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methods as well as the ratios of Operator loss are presented in Figure 4.1. Trend

of the ratios when the sample size increases can be found in this graph.

Example 2: In this example, the purpose is to simulate the performance of the

new methods when the group size is growing. In order to keep consistency, the

structures of all groups are set to the same and every variable in each group is

independently generated, which means the autoregressive matrices are all identity

matrix Ip.

Four data sets are simulated in this example. They have group size 2, 3, 5 and

10 accordingly. In the first data set, the diagonal entries in the variance matrices

are all generated from distribution U(0, 1) + 0.1 independently. In the second data

set, diagonal entries are generated from distribution U(0, 1) + 0.3. In the third

and fourth data set, the diagonal entries in the variance matrices are generated

from U(0, 1) + 0.4 and U(0, 1) + 0.5 accordingly. Dimensions are all set to 50 while

numbers of observations are all set to 100. Simulation of each data set is conducted

100 times. The average Frobenius loss and Operator loss are presented in Table

4.2.

Example 3: In this simulation study, randomly generated sparse autoregressive

matrices are employed. There are four data sets in this simulation study. Similar to

the previous example, the group size is growing for these four data sets. They have
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group size 2, 3, 5, 10 accordingly. In each data set, the autoregressive matrices in

different groups are set to the same. They are generated as follows: We randomly

select p positions in the lower part of an identity matrix. The values at these

positions are drawn from an uniform distribution −U(0, 0.5) independently. The

rest positions are set to 0 except the diagonal entries. Under this setting, the

number of nonzero positions equals to the dimension p in each group.

The diagonal entries of matrices D1, D2 and D3 are independently generated

from distribution U(0, 1) + 1. Dimensions are all set to 50 while the sample sizes

are all set to 100. The simulation results are listed in Table 4.3. The ratios of the

Frobenius loss between joint estimation methods and separated estimation method

as well as the ratios of Operator loss are presented in Figure 4.2.

Example 4: In the fourth simulation study, we exam the performance of the new

methods when the data have different degrees of similarity. Three data sets are

simulated. In each data set, there are three groups. The data set is generated as

follows: We denote by set P the collection of the positions in the lower triangular

part of a p × p matrix. Four disjoint subsets with size k are randomly selected

from P. They are denoted by P0, P1, P2 and P3. Denote by l1, l2 and l3 three

identity matrices.

Group 1: Setting the values at positions in P0 ∪P1 of l1 to -0.5.

Group 2: Setting the values at positions in P0 ∪P2 of l2 to -0.5.
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Group 3: Setting the values at positions in P0 ∪P3 of l3 to -0.5.

Thus, each of these three matrices has 2k nonzero elements except the diagonal

entries. For each pair of them, there are 2k positions at which they have different

values.

Denote by D1 a diagonal matrix. The diagonal entries of D1 are independently

generated from U(0, 0.5) + 0.5. Diagonal matrices D2 and D3 are generated the

same as D1. So the covariance matrices for these three groups are obtained by

Σ1 = T−1
1 D1T

−1′

1 , Σ2 = T−1
2 D2T

−1′

2 , Σ3 = T−1
3 D3T

−1′

3 .

For the first data set, the integer k is chosen as 30. For the second data set,

the integer k is chosen as 50. For the third data set, the integer k is chosen as 100.

Dimensions for all groups are set to 50 and the sample sizes are all set to 100. The

simulation results are shown in Table 4.4.

Example 5: The purpose of the last simulation is to compare the performance

when the autoregressive matrices have many small elements. Two data sets are

simulated and each of them has two groups. In each data set, the autoregressive

matrices are chosen to be the same. The ijth element in the lower part of the

autoregressive matrices in both groups are chosen to be ρi−j. In the first data set,

the parameter ρ equals 0.2. In the second group, ρ equals 0.5 which leads to a less
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sparse autoregressive matrix. The iith elements of the variance matrices in both

groups follow distribution U(0, 1) + 0.5. Dimensions of variables are all set to 50

and the sample sizes are all 100. Both Operator loss and Frobenius loss of the

estimators are given in Table 4.5.

Through all these 5 data sets, we know the performance of our new methods

is at least the same as the separated estimation method in Huang et al. (2006).

All the simulation results outperform the empirical method and Ledoit and Wolf’s

method (Ledoit and Wolf 2004).

In Table 4.1, it is clear that the Ledoit-Wolf’s method and the empirical method

are not comparable to the penalized approach. This mainly attributes to the un-

derlining sparse structure of the data. The joint estimation methods with sparse

group LASSO and sparse l∞ LASSO penalty both outperform the separated es-

timation method. The ratios of Frobenius loss and Operator loss between joint

estimation methods and separated estimation method were shown in Figure 4.1.

As shown in this graph, the ratios roughly have increasing trend and approach 1

when the sample size is growing. This reminds us that the joint estimation meth-

ods do perform well when the sample size is relatively small. Information from

other groups is borrowed and the estimation accuracy is improved by our joint

estimation methods. When the sample size is large, performance between the join-

t estimation methods and separated estimation method becomes less significant.
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This result is also expected. All the penalized methods performs almost the same

in this circumstance.

In Table 4.2, Frobenius loss and Operator loss are very similar between different

penalizing methods. There is no much difference between the numbers of common

zeros neither (in the worst scenario that J = 10, 98% of common zeros have been

identified). This may result from the fact that the autoregressive matrices are

complete sparse. The LASSO penalty is already capable to recover the structure of

the data. Meanwhile, our joint estimation methods are also capable to identify the

structure with very little improvement. Check the detailed computation results,

we find that the threshold parameter corresponding to the joint penalty part is

close to 0, which means β is close to 0. This reminds us that, in this completely

sparse case, the separated estimation method is good enough and performs similar

to our joint estimation methods.

In example 3, the performance of the new methods when the group size is

growing is tested. The numbers of common zeros that are estimated from the joint

estimation methods are relatively stable compared to the number of common zeros

from separated estimation method when the sample size is growing. As shown in

Figure 4.2, the ratios of Frobenius loss and Operator loss between joint estima-

tion methods and separated estimation method are always bellow 1. Meanwhile,

there exists a clear trend that along with the growing of group size, the ratios
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are decreasing. This shows that the joint estimation methods can actually borrow

information from other groups. When the number of groups is big, we do obtain

more information from the other groups and increase the prediction accuracy by

applying the joint estimation methods.

In example 4, autoregressive matrices are randomly generated. The degree of

similarity between groups varies for these three data sets. Through Table 4.4, it is

clear that, the joint methods always outperform the separated method for different

degrees of similarity. According to the simulation result of example 5, our joint

estimation methods also outperform the separated estimation method when the

autoregressive matrices have many small elements.
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GL-JMEC IL-JMEC SEP LW SAM

fe 0.539(0.117) 0.476(0.107) 0.635(0.136) 1.639(0.236) 17.336(5.655)

n=70 op 3.083(0.882) 3.053(0.830) 3.562(1.031) 4.377(0.221) 28.629(6.167)

cz 976(26.9) 978(20.1) 930(14.7)

fe 0.346(0.048) 0.315(0.051) 0.393(0.067) 1.334(0.079) 6.415(0.930)

n=100 op 2.433(0.4849) 2.446(0.5029) 2.799(0.646) 3.658(0.154) 14.296(1.693)

cz 965(34.8) 944(21) 888(34.9)

fe 0.163(0.018) 0.134(0.018) 0.175(0.020) 0.865(0.037) 1.512(0.110)

n=200 op 1.519(0.214) 1.387(0.223) 1.680(0.280) 3.347(0.123) 5.721(0.411)

cz 918(21.7) 947(29.0) 783(53.3)

fe 0.078(0.007) 0.064(0.006) 0.076(0.006) 0.431(0.021) 0.642(0.052)

n=400 op 1.019(0.096) 0.929(0.103) 1.009(0.109) 2.275(0.123) 3.300(0.301)

cz 890(23.5) 954(23.6) 721(57.1)

Table 4.1 Simulation result when sample size is growing.

Here fe means Frebenius loss, op means Operator loss and cz means common zeros in

different groups. GL-JMEC means joint estimation method with sparse group LASSO

penalty and IL-JMEC means joint estimation method with sparse l∞ penalty. SEP

represents the separated estimation method with l1 penalty term. LW represents Ledoit

and Wolf’s method while SAM is the empirical method. The rest tables follow the same

notations.
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Figure 4.1 Ratio of Frobenius loss and Operator loss in example 1.

Solid line represents the ratios of the losses between GL-JMEC method and SEP

method while dotted line represents the ratios of the losses between IL-JMEC

method and SEP method. Circle represents the ratios of Frobenius loss between

joint estimation methods and separated estimation method while star represents

the ratios of Operator loss between joint estimation methods and separated esti-

mation method. The rest figures follow the same notations.
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GL-JMEC IL-JMEC SEP LW SAM

fe 0.416(0.169) 0.417(0.169) 0.434(0.182) 6.267(0.160) 14.335(2.480)

J=2 op 3.676(1.174) 3.680(1.176) 3.796(1.224) 12.259(0.130) 22.168(3.119)

cz 1222(3.2) 1221(6.4) 1220(8.2)

fe 0.187(0.042) 0.188(0.043) 0.187(0.042) 0.999(0.021) 7.567(0.758)

J=3 op 2.526(0.465) 2.536(0.470) 2.521(0.474) 4.639(0.081) 19.141(1.766)

cz 1219(11.8) 1214(17.9) 1217(13.3)

fe 0.218(0.033) 0.219(0.034) 0.222(0.033) 1.099(0.018) 8.608(0.637)

J=5 op 3.345(0.468) 3.352(0.472) 3.374(0.468) 5.7362(0.077) 25.939(1.713)

cz 1219(8.5) 1212(16.0) 1212(13.2)

fe 0.316(0.033) 0.317(0.034) 0.324(0.034) 1.067(0.010) 14.4547(0.889)

J=10 op 5.602(0.565) 5.614(0.571) 5.709(0.582) 8.959(0.084) 47.5414(2.599)

cz 1215(16.3) 1208(29.7) 1200(16.6)

Table 4.2 Simulation result when number of groups is growing while the autore-

gressive matrices are identity matrix.
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GL-JMEC IL-JMEC SEP LW SAM

fe 0.254(0.041) 0.237(0.040) 0.369(0.064) 0.642(0.022) 3.648(0.429)

J=2 op 2.321(0.459) 2.273(0.479) 2.872(0.551) 3.345(0.074) 11.030(1.440)

cz 1075(34.8) 1037(18.3) 948(22.8)

fe 0.288(0.031) 0.267(0.032) 0.446(0.049) 0.986(0.023) 5.116(0.603)

J=3 op 2.813(0.340) 2.718(0.334) 3.525(0.450) 5.140(0.079) 15.757(1.597)

cz 1051(32.4) 985(25.8) 879(15.6)

fe 0.484(0.048) 0.447(0.046) 0.908(0.089) 1.620(0.030) 8.355(0.732)

J=5 op 4.748(0.507) 4.648(0.510) 6.776(0.701) 8.921(0.102) 25.719(2.148)

cz 918(18.9) 903(28.9) 670(32.4)

fe 0.855(0.052) 0.762(0.054) 1.742(0.085) 3.042(0.037) 16.901(1.210)

J=10 op 8.417(0.579) 8.103(0.580) 13.133(0.682) 16.116(0.117) 52.539(3.518)

cz 802(34.2) 757(25.7) 447(21.1)

Table 4.3 Simulation result when number of groups is growing while autoregres-

sive matrices are randomly generated.
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Figure 4.2 Ratio of Frobenius loss and Operator loss in example 3.
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GL-JMEC IL-JMEC SEP LW SAM

fe 0.678(0.104) 0.675(0.099) 0.745(0.107) 1.846(0.038) 9.010(0.995)

k=30 op 4.396(0.732) 4.411(0.680) 4.676(0.791) 8.003(0.176) 21.078(2.144)

cz 958(43.3) 958(66.3) 891(20.0)

fe 1.162(0.167) 1.132(0.157) 1.225(0.139) 3.046(0.166) 10.678(1.289)

k=50 op 5.677(1.036) 5.620(0.994) 5.859(0.782) 10.064(0.572) 22.873(2.492)

cz 809(18.8) 811(20.6) 830(16.2)

fe 2.851(0.293) 2.661(0.301) 3.306(0.438) 5.693(0.216) 17.795(2.599)

k=100 op 9.748(1.175) 9.323(1.286) 10.775(1.639) 11.946(0.582) 30.541(3.874)

cz 653(32.1) 613(14.1) 492(71.4)

Table 4.4 Simulation result when data have different degrees of similarity.
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GL-JMEC IL-JMEC SEP LW SAM

fe 0.201(0.030) 0.194(0.031) 0.240(0.035) 0.395(0.027) 3.231(0.091)

ρ=0.2 op 1.808(0.416) 1.814(0.422) 1.818(0.444) 2.145(0.071) 10.219(1.364)

cz 1060(42.5) 1049(23.7) 1096(80.7)

fe 0.385(0.061) 0.381(0.062) 0.664(0.098) 1.426(0.253) 4.506(0.742)

ρ=0.5 op 2.738(0.469) 2.765(0.468) 3.714(0.624) 4.292(0.664) 11.971(1.816)

cz 895(14.1) 878(16.3) 763(25.6)

Table 4.5 Simulation result when when autoregressive matrices have many non

zero elements.
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4.3 A Real Data Set Analysis

Kenward (1987) reported an experiment about the weights of cattle in a farm.

The cattle will probably be infected by roundworm which were developed from

eggs on the pasture. Once a cattle was infected by roundworm, its resistance to

diseases was lowered and this would affect its growth. In order to study the effect

of two treatments on the weight of cattle, 60 cattle were randomly assigned to

two groups with treatments A and B. In each group, there were 30 cattle. Their

weights were recorded in order to study the effects of the treatments. The weights

are observed 11 times in 133 days. The first 10 records were measured every 14

days and the last record was measured 7 days later. So we have 60 × 11 records

with no missing data.

This data set was investigated extensively (see Kenward 1987; Pourahmadi

1999; Pourahmadi, 2000; Pan and Mackenzie 2003; Wu and Pourahmadi 2003).

The covariance matrices are separately estimated using various methods. If one

looks at the graph of weights which is presented in Figure 4.3 (solid lines represent

the cattle from group A while dashed lines represent group B). It is clear that there

exist two time periods. In the first period, these two groups are hardly identifiable.

In the second time period. The trends of group A and group B vary. Group A still

has an upward trend while group B may have a downward trend. This reminds
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us that using the joint estimation approach, one may increase estimation accuracy

because of the similarity of both groups in the first period. We calculate the

precision matrices for both groups using different methods. In order to evaluate

the performance of estimators, a discrimination study is conducted for this data

set.

Figure 4.3 Trend of weights for the two groups of cattle.

Following T. D. Anderson (2003), we choose two discrimination functions to

classify these two balanced groups. The first approach is likelihood procedure.
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GL-JMEC IL-JMEC SEP LW SAM

LDM(sd) 8.7(0.67) 7.7(0.45) 7.2(1.34) 7.5(1.65) 6.6(1.95)

QDM(sd) 8.7(0.45) 7.6(0.40) 7.4(1.61) 7.3(1.37) 6.9(1.78)

Table 4.6 Performance of discrimination study for the cattle weight data.

The second is the quadratic method. The corresponding score functions are

LDM : δj = −n+ 1

2
log(1 + (x− µ̂j)′Σ̂(−1)

j (x− µ̂j)) +
1

2
log |Σ̂−1

j |,

QDM : δj = −(x− µ̂j)′Σ̂−1
j (x− µ̂j) + log |Σ̂−1

j |.

Here µ̂1 and µ̂2 are the estimated mean vectors for the first and second group.

In each group, 25 observations are randomly selected as training data and the rest

5 are treated as testing data. An observation x is classified into the ith group

if i = arg maxj δj. This procedure is repeated 10 times and the number of true

predictions are recorded and the average numbers of true predictions are presented

in Table 4.6.

Following our analysis setting, the testing data set has size 10. Through the

likelihood ratio method, the GL-JMEC approach can predict 8.7 positive true

observations and the IL-JMEC approach can predict 7.7 positive true observations.

meanwhile, Ledoit and Wolf’s estimators (see Ledoit and Wolf 2004), separated l1
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regularized estimators and sample covariance matrices can predict 7.5, 7.2, 6.6

true observations accordingly. The sample covariance matrices are inappropriate

when one classifies these observations since the average true prediction number is

close to 5 even when we randomly classify the 10 testing observations. However,

according to our simulation, the number of true classified observations by using

sample covariance matrices is not far from the mean value 5. Nevertheless, the joint

estimation method with group LASSO penalty term (GL-JMEC) can identify 8.7

positive true observations. This result is significantly better than others and quite

attractive in this discrimination study. Moreover, the variances of numbers of true

predictions for our two joint estimation approaches are much smaller than the rest

three methods. This reminds us that the joint estimation approach is much more

stable than the separated estimation methods.

The autoregressive matrices that estimated from the IL-JMEC approach is

presented as follows.

1.000 0 0 0 0 0 0 0 0 0 0

−0.806 1.000 0 0 0 0 0 0 0 0 0

−0.049
(
−0.901
−0.961

)
1.000 0 0 0 0 0 0 0 0

0 0 −0.969 1.000 0 0 0 0 0 0 0

0 0 0 −0.985 1.000 0 0 0 0 0 0

0 0 0 −0.267 −0.782 1.000 0 0 0 0 0

0 0 0 0 0 −0.934 1.000 0 0 0 0

0 0 0 0
(
−0.025
0.025

)
−0.497 −0.460 1.000 0 0 0

0 0 0 0
(

0.012
−0.012

)
0 −0.226 −0.815 1.000 0 0

0 0 0 0 0 0 0
(
−0.041

0

)
−0.971 1.000 0

0 0 0 0 0
(

0.029
−0.029

)
0 0 −0.015 −0.961 1.000
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The value at top is the estimated parameters for the first group and the value at

bottom is the parameters for the second group. This also applies to the following

matrices which are the autoregressive matrices that are estimated from the GL-

JMEC approach.

1.000 0 0 0 0 0 0 0 0 0 0(
−0.857
−0.800

)
1.000 0 0 0 0 0 0 0 0 0(

−0.032
−0.051

) (
−0.864
−1.011

)
1.000 0 0 0 0 0 0 0 0

0
(
−0.011
−0.013

) (
−0.925
−1.015

)
1.000 0 0 0 0 0 0 0

0 0
(
−0.003
−0.002

) (
−1.033
−0.956

)
1.000 0 0 0 0 0 0

0 0 0
(
−0.238
−0.272

) (
−0.788
−0.787

)
1.000 0 0 0 0 0

0 0 0 0 0
(
−0.925
−0.942

)
1.000 0 0 0 0

0 0 0
(
−0.021
−0.078

)
0

(
−0.536
−0.394

) (
−0.461
−0.459

)
1.000 0 0 0

0 0 0 0
(

0.064
−0.146

) (
−0.003
−0.131

) (
−0.239
−0.098

) (
−0.852
−0.685

)
1.000 0 0

0 0 0 0 0 0 0
(
−0.057
−0.029

) (
−0.982
−0.847

)
1.000 0

0 0 0 0 0
(

0.025
−0.007

)
0 0

(
−0.086
−0.018

) (
−0.891
−1.038

)
1.000

The autoregressive matrices which are obtained from the separated estimation

method in Huang et al.(2006) with l1 penalty are as follows

1.000 0 0 0 0 0 0 0 0 0 0(
−0.905
−0.8001

)
1.000 0 0 0 0 0 0 0 0 0(

−0.010
−0.072

) (
−0.892
−0.998

)
1.000 0 0 0 0 0 0 0 0(

0
0.1232

) (
−0.004
−0.1387

) (
−0.943
−1.011

)
1.000 0 0 0 0 0 0 0(

0
−0.015

)
0

(
−0.039

0

) (
−1.016
−0.9504

)
1.000 0 0 0 0 0 0

0 0 0
(

−0.236
−0.2855

) (
−0.801
−0.776

)
1.000 0 0 0 0 0

0
(
0.010

0

)
0 0 0 −0.943 1.000 0 0 0 0

0 0 0
(

0
−0.216

) (
−0.045

0

) (
−0.553
−0.223

) (
−0.434
−0.513

)
1.000 0 0 0(

−0.036
0

) (
0.010

0

) (
0

0.010

) (
0.165

0

) (
0

−0.0726

) (
0

−0.388

) (
−0.298

0

) (
−0.858
−0.601

)
1.000 0 0

0 0 0 0 0
(

0
−0.192

)
0

(
−0.148

0

) (
−0.908
−0.699

)
1.000 0(

−0.020
0

)
0 0

(
0

0.129

)
0

(
0.130

0

)
0 0

(
−0.230

0

) (
−0.833
−1.064

)
1.000
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The estimates from IL-JMEC and GL-JMEC remind us that the underlying

structures for both groups are close to an AR(2) model. When the observation

time of two records are far away, these autoregressive matrix estimates show that

the corresponding autoregressive parameters are 0, which coincides with our ex-

perience. At the other side, the autoregressive matrices estimated form separated

estimation approach are relatively noisy. It fails to reveal the underling structure.
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CHAPTER 5

Conclusion

This study investigated the joint covariance matrix estimation methods based

on multiple groups of ordered data. The reparameterizing technique of modified

Cholesky decomposition was used in this research. Penalty functions with group

effect were imposed to the Cholesky factors based on log normal likelihood function.

The penalty functions were chosen to be sparse group LASSO, and sparse l∞

LASSO which may perform group selection effect. Consistent properties of the

resulting estimates from both approaches were explored. The simulation results

showed that the joint estimation methods outperform the separated estimation

methods and achieved smaller prediction error.
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The simulation results in Chapter 4 showed that both joint estimation methods

and also the separated penalized estimation method outperform the empirical esti-

mation method when the true covariance matrices are sparse. This may attribute

to the denoise function of the penalizing approaches. When the autoregressive

matrices are totally sparse which means they are all identity matrices, the simu-

lation results showed that our new joint estimation methods perform almost the

same as the separated estimation method. All the penalizing methods including

the separated estimation method and our joint estimation methods achieved the

true structure of the autoregressive matrices. So the differences between them are

not significant.

The joint approaches perform better when the autoregressive matrices of d-

ifferent groups have homogeneous structures. Both Operator loss and Frobenius

loss for the joint approaches are smaller than the losses from separated approach.

The idea of borrowing information from other groups is achieved through the joint

estimation approaches. This is very attractive when one analyzes multiple groups

data with homogeneous structures. As we expected, more true common zeros in

the autoregressive matrices were generated in the joint approaches according to

our simulation results. Common links in different groups are revealed by our new

methods.



84

An application of our new methods on a real data set was conducted. The re-

sults of classification study of the cattle data set which was mentioned in Kenward

(1987) showed that the sparse group LASSO approach has the best classification

accuracy which is significantly better than the empirical approach and the separat-

ed estimation approach. This study illustrates the power of our new methods when

we handle multiple groups of data. Our approaches can efficiently shrink a group

of parameters towards zeros if the true parameters are all zero. This effect can

make the homogeneous parts close which in turns emphasizes the inhomogeneous

parts.

It has to be noted that the whole procedure is based on multiple groups data

which have a natural order. This assumption is needed when we apply the Cholesky

decomposition which guarantees the positive definiteness of the resulting covari-

ance matrices and precision matrices. If the order assumption fails, the Cholesky

decomposition is statistically meaningless and the performance of the joint estima-

tion methods can not be guaranteed. Moreover, this study did not consider the

procedure that tests the homogeneity of the autoregressive parameters in different

groups. The homogeneity assumption is only based on our prior information about

the data. Nevertheless, most of the time, prior information is sufficient enough for

us to identify whether homogeneity assumption is valid.
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Joint estimation of covariance matrices and precision matrices need to be fur-

ther investigated since multiple groups data are common. In this study, the sparse

l∞ LASSO and sparse group LASSO are used. In order to further reduce bias, one

can try the adapted version of these penalties.

In this study, the convergence rate is obtained by constraining the number of

nonzero elements. It is possible that the result can be improved by constraining the

structure of the underlying autoregressive matrices like Bickle and Levina (2008a)

or Cai and Liu (2011) did. The convergence property of the estimates can be

further investigated.
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APPENDIX A

Appendix

A.1 Three Lemmas

In this chapter, we denote si(A) the ith singular value of matrix A. s1(A),

s2(A), . . . sp(A) are in a descending order. Before we prove the theorems, we

state some lemmas first.

Lemma A.1. Let A and B be two matrices with order p× n and n×m. For any

i, j ≥ 0, we have

si+j+1(AB) ≤ si+1(A)sj+1(B),
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and

sp(A)||B||F ≤ ||AB||F ≤ s1(A)||B||F ≤ ||A||F ||B||F .

Especially if B is an identity matrix, we have

sp(A) ≤ ||A||F/p ≤ s1(A) ≤ ||A||F .

The proof can be found in Bai and Silverstein (2010).

Lemma A.2. Assume a sequence of positive definite matrices Σn have correspond-

ing Cholesky decompositions

TnΣnT
′
n = Dn,

and the singular values of matrices Σn are bounded which means there exist c1 and

c2 such that 0 < c1 < sp(Σn) < s1(Σ) < c2 < ∞, then there exist constants d1, d2

such that

d1 < sp(Tn) ≤ s1(Tn) < d2,

and

d1 < sp(Dn) ≤ s1(Dn) < d2.

Proof : For an arbitrary matrix in the sequence Σn, say Σ, assume it has

decomposition

Σ = RR′, (A.1)

where R is a lower triangular matrix with ijth element rij (i ≥ j) or 0 (i > j)

where we assume rii > 0. Using simple algebra, we have σii =
∑

i≤j r
2
ij where σii
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is the ith diagonal element of matrix Σ. This implies

r2
ii ≤ σii.

Denote ei a p dimensional vector with the ith element equals 1 and the others

equal 0, then we have

r2
ii ≤ σii = eTi Σei ≤ s1(Σ) ≤ c2, (A.2)

for i=1, 2, · · · , p. Set D=diag{r2
11, r2

22, · · · , r2
pp}, then it can be induced from (A.2)

that s1(D) ≤ c2.

By (A.1) we have the following decomposition

D
1
2R−1ΣR

′−1D
1
2 = D.

Denote T = D
1
2R−1, then matrix T is a lower triangular matrix with 1 on its

diagonal. Rewriting the above equation, it becomes TΣT ′=D. This is exactly

the modified Cholesky decomposition. Take determinant on both sides, we have

|TΣT | = |D| which induces

s1(D)s2(D)...sp(D) = s1(Σ)s2(Σ)...sp(Σ).

We already proved that s1(D) ≤ c2. Therefore

spp(Σ) ≤
p∏
i=1

si(Σ) =

p∏
i=1

si(D) ≤ cp−1
2 sp(D),
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which implies sp(D) ≥ cp1
cp−1

2

. Denote d1 =
cp1
cp−1

2

and d2 = c2, we have

0 < d1 ≤ sp(D) ≤ s1(D) ≤ d2 <∞. (A.3)

By Lemma 1 we have

sp(D) = sp(TΣT ′) ≤ sp(T )s1(Σ)sp(T
′).

Thus, sp(T ) ≥
√
sp(D)/s1(Σ) ≥

√
d1/c2. Recall that TΣT ′ = D, this induces

Σ = T−1DT−1′ . Apply Lemma 1 again, we have

sp(Σ) = sp(T
−1DT−1′) ≤ s2

p(T
−1)s1(D) = 1/s2

1(T )s1(D).

Consequently, we can bound s1(T ) from above by
√
s1(D)/sp(Σ) =

√
d2/c2.

Choosing d1 small enough and d2 big enough, the following inequality hold,

d1 ≤ sp(T ) ≤ s1(T ) ≤ d2. (A.4)

Combine (A.3) and (A.4), we proved Lemma 2. This Lemma shows that the

singular values of the corresponding autoregressive matrix and the variance matrix

are all bounded once the singular values of the covariance matrix are bounded.

Next we restate a lemma which was given in Lam and Fan (2009).

Lemma A.3. Let S be the sample covariance matrix of observations which are

drawn from distribution N(0,Σ0). Let A and B be two p×p matrices which satisfy
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||A|| = Op(1) and ||B|| = Op(1). Assume matrix S, Σ0, A and B are growing with

dimension p while p/n→ c ∈ [0, 1), then we have

max
i,j
|(A(S − Σ0)B)i,j| = Op(

√
log(p)/n).

A.2 Proof of Theorems

Proof of Theorem 3.1: The proof is enlighten by the proof in Rothman et al.

(2008). LetD represent set {D(1), D(2), · · · , D(J)} and T represent {T (1), T (2), · · · , T (J)}

where D(j) are diagonal matrices and T (j) are lower triangular matrices with one

on their diagonal. Denote

Q(D,T ) =
J∑
j=1

(log |D(j)|+ tr(T
′(j)D−1T (j)Sj)) +

∑
r<s

gλ,β(φ(1)
rs , · · · , φ(J)

rs ).

LetG(∆D,∆T )=Q(D0+∆D, T0+∆T )−Q(D0, T0). Denote AU1 = {∆T :
∑J

j=1 ||∆
(j)
T ||2F ≤

U2
1 s log(p)/n} and BU2 = {∆D :

∑J
j=1 ||∆

(j)
D ||2F ≤ U2

2p log(p)/n}. We will prove

that for every ∆T ∈ ∂AU1 and ∆D ∈ ∂BU2 , probability P(G(∆T ,∆D) > 0)

is tending to 1 for sufficiently large U1 and U2. Here ∂AU1 and ∂BU2 repre-

sent the boundary of AU1 and BU2 . Because G(∆T ,∆D) will achieve 0 when

∆T = 0 and ∆D = 0, we know the minimal point of G(∆D,∆T ) is achieved

when ∆T ∈ AU1 and ∆D ∈ BU2 . That is
∑J

j=1 ||∆
(j)
T ||2F = Op(s log(p)/n) and∑J

j=1 ||∆
(j)
D ||2F = Op(p log(p)/n).
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Assume
∑J

j=1 ||∆
(j)
T ||2F = U2

1 s log(p)/n,
∑J

j=1 ||∆
(j)
D ||2F = U2

2p log(p)/n. Ac-

cording to the assumption, we know there exists a constant d such that 0 <

1/d ≤ sp(Σ
(j)
0 ) ≤ s1(Σ

(j)
0 ) ≤ d < ∞. By Lemma 2, without losing any gen-

erality, we can also assume 0 < 1/d ≤ sp(T
(j)
0 ) ≤ s1(T

(j)
0 ) ≤ d < ∞ and

0 < d ≤ sp(D
(j)
0 ) ≤ s1(D

(j)
0 ) ≤ d <∞.

Denote E(j) = D(j)−1, E
(j)
0 = D

(j)−1
0 and ∆

(j)
E = E(j) − E

(j)
0 . Recall that

the singular values of diagonal matrices D(j) and D
(j)
0 are bounded, therefore the

diagonal matrices E
(j)
0 also satisfies the inequality 1/d ≤ sp(E

(j)
0 ) ≤ s1(E

(j)
0 ) ≤

d. Due to the constraint
∑J

j=1 ||∆
(j)
D ||2F = U2

2p log(p)/n, it is straightforward

to conclude that 1/d2U2
2p log(p)/n ≤

∑J
j=1 ||∆

(j)
E ||2F ≤ d2U2

2p log(p)/n. Expand

log |D(j)
0 | − log |D(j)|= log |E(j)

0 + ∆
(j)
E | − log |E(j)

0 | into integration form using Tay-

lor’s expansion, we have

log |D(j)
0 | − log |D(j)|

= log |E(j)
0 + ∆

(j)
E | − log |E(j)

0 |

=tr∆
(j)
E D

(j)
0 − (Vec∆

(j)
E )T

∫ 1

0

(1− υ)E(j)−1
υ ⊗ E(j)−1

υ dυ(Vec∆
(j)
E ),

where E
(j)
υ = E

(j)
0 + υ∆

(j)
E . Using this decomposition, we can divide G(∆T ,∆D)

into several parts.

G(∆T ,∆D)

=−
J∑
j=1

tr∆
(j)
E D

(j)
0 +

J∑
j=1

(Vec∆
(j)
E )T

∫ 1

0

(1− υ)E−1
υ ⊗ E−1

υ dυ(Vec∆
(j)
E )
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+
J∑
j=1

(trT (j)′D(j)−1T (j)S − trT
(j)′

0 D
(j)−1
0 T

(j)
0 S)

+
∑
r>s

(gλ,β(φ(1)
rs , · · · , φ(J)

rs )− gλ,β(φ
(1)
0rs, · · · , φ

(J)
0rs))

=
J∑
j=1

(Vec∆
(j)
E )T

∫ 1

0

(1− υ)E−1
υ ⊗ E−1

υ dυ(Vec∆
(j)
E )

−
J∑
j=1

tr∆
(j)
E D

(j)
0 +

J∑
j=1

tr(T (j)′D(j)−1T (j)S − trT (j)′D
(j)−1
0 T (j)S)

+
J∑
j=1

(trT (j)′D
(j)−1
0 T (j)S − trT

(j)′

0 D
(j)−1
0 T

(j)
0 S)

+
∑
r>s

(gλ,β(φ(1)
rs , · · · , φ(J)

rs )− gλ,β(φ
(1)
0rs, · · · , φ

(J)
0rs))

=
J∑
j=1

(Vec∆
(j)
E )T

∫ 1

0

(1− υ)E−1
υ ⊗ E−1

υ dυVec∆
(j)
E

+
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )[T (j)(S(j) − Σ

(j)
0 )T (j)′ ]

+
J∑
j=1

trD
(j)−1
0 (T (j)S(j)T (j)′ − T (j)

0 S(j)T
(j)′

0 )

+
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )(T (j)Σ

(j)
0 T (j)′ −D(j)

0 )

+
∑
rs∈Zc

(gλ,β(φ(1)
rs , · · · , φ(J)

rs )− gλ,β(φ
(1)
0rs, · · · , φ

(J)
0rs))

+
∑
rs∈Z

(gλ,β(φ(1)
rs , · · · , φ(J)

rs )− gλ,β(φ
(1)
0rs, · · · , φ

(J)
0rs)).

Thus according to our two estimation methods, the function Q(∆T ,∆D) can be

divided into M1 +M2 +M3 + I1 + I2 or M1 +M2 +M3 +G1 +G2. Here

M1 =
J∑
j=1

(Vec∆
(j)
E )T

∫ 1

0

(1− υ)E(j)−1
υ ⊗ E(j)−1

υ dυVec∆
(j)
E ,
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M2 =
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )[T (j)(S(j) − Σ

(j)
0 )T (j)′ ],

M3 =
J∑
j=1

trD
(j)−1
0 (T (j)S(j)T (j)′ − T (j)

0 S(j)T
(j)′

0 )

+
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )(T (j)Σ

(j)
0 T (j)′ −D(j)

0 ),

I1 =β
∑
rs∈Zc

MaxJj=1|t(j)rs |+ λ
∑
rs∈Zc

J∑
j=1

|t(j)rs |,

I2 =β
∑
rs∈Z

(MaxJj=1|t(j)rs | −MaxJj=1|t
(j)
0rs|) + λ

∑
rs∈Z

J∑
j=1

(|t(j)rs | − |t
(j)
0rs|),

G1 =β
∑
rs∈Zc

√∑
j=1

t
(j)2
rs + λ

∑
rs∈Zc

J∑
j=1

|t(j)rs |,

G2 =β
∑
rs∈Z

(

√∑
j=1

t
(j)2
rs −

√∑
j=1

t
(j)2
0rs ) + λ

∑
rs∈Z

J∑
j=1

(|t(j)rs | − |t
(j)
0rs|).

We consider these terms separately. For the first term,

M1 =
J∑
j=1

(Vec∆
(j)
E )T

∫ 1

0

(1− υ)E(j)−1
υ ⊗ E(j)−1

υ dυ(Vec∆
(j)
E ).

Recall that E
(j)
υ = E

(j)
0 + υ∆

(j)
E , using the inequality of the operator norm, we

have ||E(j)
υ || ≤ ||E(j)

0 || + υ||∆(j)
E ||. By Lemma 1, we have ||∆(j)

E || ≤ ||∆
(j)
E ||F =

O(
√
p log(p)/n) = o(1), thus ||E(j)

υ || ≤ ||E(j)
0 ||+ o(1) ≤ 2||E(j)

0 || ≤ 2d. Therefore,

M1 =
J∑
j=1

∫ 1

0

(1− υ)(Vec∆
(j)
E )TE−1

υ ⊗ E−1
υ (Vec∆

(j)
E )dυ

≥
J∑
j=1

||Vec∆
(j)
E ||

2
2

∫ 1

0

(1− υ)smin(E−1
υ ⊗ E−1

υ )dυ

≥
J∑
j=1

||∆(j)
E ||

2
F

∫ 1

0

(1− υ)s2
min(E−1

υ )dυ
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=
J∑
j=1

||∆(j)
E ||

2
F

∫ 1

0

(1− υ)1/s2
max(Eυ)dυ

≥ 1/8d2

J∑
j=1

||∆(j)
E ||

2
F .

As we have mentioned at the beginning of this proof, ||∆(j)
E ||2F ≥ 1/d2||∆(j)

D ||2F ,

therefore M1 ≥ 1/8d4||∆(j)
D ||2F .

Bounding the term M2 is relatively easy. Recall that ||T (j)
0 || = O(1) and

||∆(j)
T || = o(1), by Lemma 3 we know, for arbitrary ε there exist V2 which only re-

lated to ε and n such that p(max |(T (j)
0 (S(j)−Σ

(j)
0 )T

(j)′

0 )rs| > V2

√
log(p)/n) < ε/4.

Use Lemma 3 again, we know there exists C such that p(max |( ∆
(j)
T

||∆(j)
T ||

(S(j) −

Σ
(j)
0 )T

(j)′

0 )rs| > C
√

log(p)/n) < ε/4 which implies

p(max |(∆(j)
T (S(j) − Σ

(j)
0 )T

(j)′

0 )rs| > C||∆(j)
T ||

√
log(p)/n) < ε/4.

When n sufficiently large such that C||∆(j)
T || < V2, we have

p(max |(∆(j)
T (S(j) − Σ

(j)
0 )T

(j)′

0 )rs| > V2

√
log(p)/n) < ε/4.

The same

p(max |(T (j)
0 ∆

(j)
T (S(j) − Σ

(j)
0 )∆

(j)′

0 )rs| > V2

√
log(p)/n) < ε/4,

and

p(max |(∆(j)
0 ∆

(j)
T (S(j) − Σ

(j)
0 )∆

(j)′

0 )rs| > V2

√
log(p)/n) < ε/4.
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Combine all these four together, we know p(max |(T (j)(S(j)−Σ
(j)
0 )T (j)′)rs| > V2

√
log(p)/n) <

ε. So with probability greater than 1− ε, we have

|M2| =|
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )[T (j)(S(j) − Σ

(j)
0 )T (j)′ ]|

≤
J∑
j=1

max |(T (j)(S(j) − Σ
(j)
0 )T (j)′)rs||D(j)−1 −D(j)−1

0 |1

≤V2

√
log(p)/n

J∑
j=1

|D(j) −D(j)
0 |1

≤V2 log(p)/n

√√√√pJ
J∑
j=1

||∆D||2F

The term M3 is relatively complicated. We can rewrite M3 as

J∑
j=1

trD
(j)−1
0 (T (j)S(j)T (j)′ − T (j)

0 S(j)T
(j)′

0 )

+
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )(T (j)Σ

(j)
0 T (j)′ −D(j)

0 )

=
J∑
j=1

trD
(j)−1
0 [T (j)(S(j) − Σ

(j)
0 )T (j)′ − T (j)

0 (S(j) − Σ
(j)
0 )T

(j)′

0 ]

+
J∑
j=1

trD
(j)−1
0 (T (j)Σ

(j)
0 T (j)′ − T (j)

0 Σ
(j)
0 T

(j)′

0 )

+
J∑
j=1

tr(D(j)−1 −D(j)−1
0 )(T (j)Σ

(j)
0 T (j)′ −D(j)

0 )

=
J∑
j=1

trD
(j)−1
0 [T (j)(S(j) − Σ

(j)
0 )T (j)′ − T (j)

0 (S(j) − Σ
(j)
0 )T

(j)′

0 ]

+
J∑
j=1

trD(j)−1(T (j)Σ
(j)
0 T (j)′ − T (j)

0 Σ
(j)
0 T

(j)′

0 )

=
J∑
j=1

trD
(j)−1
0 [∆

(j)
T (S(j) − Σ

(j)
0 )T

(j)′

0 + T
(j)
0 (S(j) − Σ

(j)
0 )∆

(j)′

T + ∆
(j)
T (S(j) − Σ

(j)
0 )∆

(j)′

T ]
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+
J∑
j=1

trD(j)−1(∆
(j)
T Σ

(j)
0 T

(j)′

0 + T
(j)
0 Σ

(j)
0 ∆

(j)′

T + ∆
(j)
T Σ

(j)
0 ∆

(j)
T ).

Thus M3 can be decomposed into L1 + L2, where L1 equals

J∑
j=1

trD
(j)−1
0 [∆

(j)
T (S(j) − Σ

(j)
0 )T

(j)′

0 + T
(j)
0 (S(j) − Σ

(j)
0 )∆

(j)′

T + ∆
(j)
T (S(j) − Σ

(j)
0 )∆

(j)′

T ]

and L2 equals

J∑
j=1

trD(j)−1(∆
(j)
T Σ

(j)
0 T

(j)′

0 + T
(j)
0 Σ

(j)
0 ∆

(j)′

T + ∆
(j)
T Σ

(j)
0 ∆

(j)
T ).

Since T
(j)
0 Σ

(j)
0 T

(j)′

0 = D
(j)
0 , we know Σ

(j)
0 T

(j)′

0 = T
(j)−1
0 D

(j)
0 is a lower trian-

gle matrix, therefore Σ
(j)
0 T

(j)′

0 D(j)−1 is also a lower triangle matrix. As we al-

ready know that ∆
(j)
T is also a lower triangle matrix in which the diagonal entries

are all zero, thus trD(j)−1∆
(j)
T Σ

(j)
0 T

(0)′

0 = 0. With the same argument we have

tr∆
(j)−1
D T

(0)
0 Σ

(j)
0 ∆

(j)′

T = 0. So

L2 =
J∑
j=1

trD(j)−1∆
(j)
T Σ

(j)
0 ∆

(j)′

T =
J∑
j=1

Vec(∆
(j)
T )TΣ

(j)
0 ⊗D(j)−1Vec(∆

(j)
T ).

Since ||∆(j)
D ||F = ||D(j) − D(j)

0 ||F = O(
√
p log(p)/n) = o(1), ||∆(j)

D || ≤ ||∆
(j)
D ||F =

o(1), we know ||D(j)|| ≤ ||D(j)
0 || + ||∆

(j)
D || = ||D(j)

0 || + o(1) ≤ 2d, therefore L2 =∑J
j=1 Vec(∆

(j)
T )TΣ

(j)
0 ⊗ D(j)−1Vec(∆

(j)
T ) ≥

∑J
j=1 ||∆

(j)
T ||2F smin(Σ

(j)
0 )smin(D(j)−1) ≥

1/2d2
∑J

j=1 ||∆
(j)
T ||2F .

Let us go back to L1. Using the Theorem (5.11) in Bai and Silverstein (2010),

we know ||S(j) − Σ
(j)
0 || = op(1), therefore

∑J
j=1 trD

(j)−1
0 ∆

(j)
T (S(j) − Σ

(j)
0 )∆

(j)′

T =
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∑J
j=1 Vec(∆

(j)
T )TD

(j)−1
0 ⊗ (S(j) − Σ

(j)
0 )Vec(∆

(j)
T ) ≤ op(1)

∑J
j=1 ||∆

(j)
T ||2F . This part

will be dominated by the positive term L2. Since ||D(j)
0 || = O(1) and ||T (j)

0 || =

O(1), applying Lemma A.3 again, for ε, we can find V1 such that p(|((S(j) −

Σ
(j)
0 )T

(j)
0 D

(j)−1
0 )rs| > V1 log(p)/n) < ε. This implies that with probability greater

than 1− ε

|
J∑
j=1

trD
(j)−1
0 (∆

(j)
T (S(j) − Σ

(j)
0 )T

(j)
0 + T

(j)
0 (S(j) − Σ

(j)
0 )∆

(j)′

T )|

≤
J∑
j=1

|∆(j)
T |1(max |((S(j) − Σ

(j)
0 )T

(j)′

0 D
(j)−1
0 )rs|+ max |(D(j)−1

0 T
(j)
0 (S(j) − Σ

(j)
0 ))rs|)

≤2V1

√
log(p)/n

J∑
j=1

|∆(j)
T |1

=2V1

√
log(p)/n

∑
rs∈Zc

J∑
j=1

|t(j)rs |+ 2V1

√
log(p)/n

∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|

≤2V1

√
log(p)/n

∑
rs∈Zc

J∑
j=1

|t(j)rs |+ 2V1

√
log(p)/n

√
s

√√√√ J∑
j=1

||∆(j)
T ||2F .

Recall that L1 > 1/2d2
∑J

j=1 ||∆
(j)
T ||2F , we can induce from the above inequality

that

L1 − |L2| >1/2d2

J∑
j=1

||∆(j)
T ||

2
F − 2V1

√
log(p)/n

∑
rs∈Zc

J∑
j=1

|t(j)rs |

− 2V1

√
log(p)/n

√
s

√√√√ J∑
j=1

||∆(j)
T ||F .

Next, consider I1+I2 and G1+G2. It has to be noted that the term I1 is positive,

I1 = β
∑

rs∈Zc maxJj=1 |t
(j)
rs |+ λ

∑
rs∈Zc

∑J
j=1 |t

(j)
rs | ≥ (β

J
+ λ)

∑
rs∈Zc

∑J
j=1 |t

(j)
rs |.
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The termG1 is also positive. G1 = β
∑

rs∈Zc

√∑
j=1 t

(j)2
rs +λ

∑
rs∈Zc

∑J
j=1 |t

(j)
rs | ≥

β
∑

rs∈Zc

√
(
∑J

j=1 |t
(j)
rs |)2/J + λ

∑
rs∈Zc

∑J
j=1 |t

(j)
rs | ≥ (β

J
+ λ)

∑
rs∈Zc

∑J
j=1 |t

(J)
rs |.

At the other side, the term

|I2| = |β
∑
rs∈Z

(
J

max
j=1
|t(j)rs | −

J
max
j=1
|t(j)0rs|) + λ

∑
rs∈Z

J∑
j=1

(|t(j)rs | − |t
(j)
0rs|)|

≤ β
∑
rs∈Z

| J
max
j=1
|t(j)rs | −

J
max
j=1
|t(j)0rs||+ λ

∑
rs∈Z

J∑
j=1

||t(j)rs | − |t
(j)
0rs||

≤ β
∑
rs∈Z

J
max
j=1
|t(j)rs − t

(j)
0rs|+ λ

∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|

≤ (λ+ β)
∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|

≤ (λ+ β)
√
s

√√√√ J∑
j=1

||∆(j)
T ||2F .

The upper bound for term G2 can be similarly obtained.

|G2| =|β
∑
rs∈Z

(

√∑
j=1

t
(j)2
rs −

√∑
j=1

t
(j)2
0rs ) + λ

∑
rs∈Z

J∑
j=1

(|t(j)rs | − |t
(j)
0rs|)|

≤β
∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|

|t(j)rs + t
(j)
0rs|√∑

j=1 t
(j)2
rs +

√∑
j=1 t

(j)2
0rs

+ λ
∑
rs∈Z

J∑
j=1

||t(j)rs | − |t
(j)
0rs||

≤β
∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|+ λ

∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|

≤(λ+ β)
∑
rs∈Z

J∑
j=1

|t(j)rs − t
(j)
0rs|

≤(λ+ β)
√
s

√√√√ J∑
j=1

||∆(j)
T ||2F .
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Recall that M1 ≥ 0, L2 ≥ 0, I1 ≥ 0 and G1 ≥ 0. Combine all the above 5 terms

together, with probability greater than 1− 2ε, we have

|G(∆T ,∆D)|

≥M1 + I1(G1) + L2 − |L1| − |M2| − |I2|(|G2|)

≥1/8d4

J∑
j=1

||∆(j)
D ||

2
F + (

β

J
+ λ)

∑
rs∈Zc

J∑
j=1

|t(j)rs |+ 1/2d2

J∑
j=1

||∆(j)
T ||

2
F

− V2

√
log(p)/n

√√√√pJ

J∑
j=1

||∆D||2F − (λ+ β)
√
s

√√√√ J∑
j=1

||∆(j)
T ||2F

− V1

√
log(p)/n

∑
rs∈Zc

J∑
j=1

|t(j)rs | − V1

√
log(p)/n

√
s

√√√√ J∑
j=1

||∆(j)
T ||2F

=
U2

2

8d4
p log(p)/n+ (

β

J
+ λ)

∑
rs∈Zc

J∑
j=1

|t(j)rs |+
U2

1

2d2
s log(p)/n

− V2U2

√
Jp log(p)/n− (λ+ β)s

√
log(p)/n

− V1

√
log(p)/n

∑
rs∈Zc

J∑
j=1

|t(j)rs | − V1U1s log(p)/n

≥U2p log(p)(
U2

8d4
− V2

√
J) +

∑
rs∈Zc

J∑
j=1

|t(j)rs |(β/J + λ− V1

√
log(p)/n)

+ U1s log(p)/n(
U1

2d2
− λ+ β√

log(p)/n
− V1).

Here V1 and V2 are only related to n and ε. Assume λ + β = K(log(p)/n) where

K > JV1 and choose U2 > 8d4V1

√
J , U1 > 2d2(K+V1), then we have G(∆T ,∆D) >

0.

So far, we have proved that G(∆T ,∆D) > 0 with probability 1 − 2ε when U1
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and U2 big enough. This establishes the theorem.

Proof of Theorem 3.2: Assume Ω = T ′D−1T and Ω0 = T ′0D
−1
0 T0 with ||∆T ||2F =

||T−T0||2F = op(1), ||∆D||2F = ||D−D0||2F = op(1). Further assume that sp(Ω0) and

s1(Ω0) are bounded. Using Lemma A.2, we have ||T0|| = O(1) and ||D0|| = O(1)

. In this proof, we bound ||Ω− Ω0||2F by a combination of ||∆T ||2F and ||∆D||2F as

follows,

||Ω− Ω0||2F = ||T ′D−1T − T ′0D−1
0 T0||2F

= ||(∆′T + T ′0)D−1(∆T + T0)− T0
′D−1

0 T0||2F

≤ 4[||∆′TD−1T0||2F + ||T ′0D−1∆T ||2F

+||∆′TD−1∆T ||2F + ||T ′0(D−1 −D−1
0 )T0||2F ].

We bound these four terms separately. By Lemma A.1 we have

||∆′TD(j)−1T0||2F ≤ ||T0||2||∆
′

TD
−1||2F ≤ ||T0||2||D−1||2||∆′T ||2F .

Because ||D−D0||2F = op(1) and ||D0|| = O(1), we have ||D|| = ||D0 +D−D0|| ≤

||D0|| + ||D − D0|| ≤ ||D0|| + ||D − D0||F = Op(1). Along with ||T0|| = O(1),

we have ||T0||2||D−1||2||∆′T ||2F = Op(||∆′T ||2F ). Using the same argument, we have

||T ′0D−1∆T ||2F = Op(||∆′T ||2F ).
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For the second term,

||∆′TD−1∆T ||2F ≤ ||∆T ||2||D−1||2||∆T ||2F

≤ ||∆T ||2F ||D−1||2||∆T ||2F

= op(||∆T ||2F ).

As to the third term,

||T ′0(D−1 −D−1
0 )T0||2F ≤ ||T ′0||2||(D−1 −D−1

0 )T0||2F

≤ ||T ′0||2||T0||2||D−1 −D−1
0 ||2F

= Op(||D −D0||2F ).

By the assumptions of Theorem 3.1, we know the singular values of Σ
(j)
0 are bound-

ed. This induces the property that the corresponding autoregressive matrix T
(j)
0

and variance matrix D
(j)
0 satisfy ||T (j)

0 || = O(1) and ||D(j)
0 || = O(1). Recall that∑J

j=1 ||T (j) − T (j)
0 ||2F = Op(s log(p)/n) and

∑J
j=1 ||D(j) −D(j)

0 ||2F = Op(p log(p)/n),

following the above argument, we have

||Ω(j) − Ω
(j)
0 ||2F = Op(||∆(j)

T ||
2
F ) + Op(||∆(j)

D ||
2
F ) = Op((s+ p) log(p)/n).

Consequently, we have

J∑
j=1

||Ω(j) − Ω
(j)
0 ||F = Op(

√
(s+ p) log(p)/n).

The same argument also applies to the covariance matrices. Thus, the following
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property also holds

J∑
j=1

||Σ(j) − Σ
(j)
0 ||F = Op(

√
(s+ p) log(p)/n).

This gives Theorem 3.2.

Prove of Theorem 3.3: For parameters φ
(j)
kl , where (k, l) ∈ Zc

j and K > l,

we want to prove φ
(j)
kl = 0. There are two cases, in the first case (k, l) 6∈ ∩Jj=1Z

c
j ,

which means not all the parameters φ
(1)
0kl, φ

(2)
0kl, · · · , φ

(J)
0kl are zero. Assume 0 =

|φ(1)
0kl| = |φ(2)

0kl| = . . . ≤ |φ(J)
0kl | and |φ(j+1)

0kl | is the first element that not equals 0.

We consider a small space that contains (φ
(1)
0kl, φ

(2)
0kl . . . φ

(J)
0kl) and suppose (φ

(1)
kl ,

φ
(2)
kl , . . . φ

(J)
kl ) is in this space which satisfies |φ(1)

kl | ≤ |φ
(2)
kl | ≤ · · · ≤ |φ

(J)
kl |. Taking

the derivative of the objective function with respect to φ
(j)
kl at 0, we have

∂Q

∂φ
(j)
kl

=
J∑
j=1

2(S(j)T (j′)D(j)−1)lk + λsign(φ
(j)
kl ).

The term (S(j)T (j′)D(j)−1)lk can be divided into 4 terms K1, K2, K3, K4, where

K1 =
J∑
j=1

((S(j) − Σ
(j)
0 )T (j)′D(j)−1)lk,

K2 =
J∑
j=1

(Σ
(j)
0 (T (j)′ − T (j)′

0 )D(j)−1)lk,

K3 =
J∑
j=1

(Σ
(j)
0 T

(j)′

0 (D(j) −D(j)−1
0 ))lk,

K4 =
J∑
j=1

(Σ
(j)
0 T

(j)′

0 D
(j)−1
0 )lk.
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For the term K4, K4 = (T
(j)−1
0 )lk, we know that T

(j)−1
0 is a lower triangle matrix.

Therefore its lkth element equals 0. So we only need to consider the rest 3 terms.

As we have already proved, |T (j)′ | = Op(1) and |D(j)−1| = Op(1). By Lemma

A.3, we know termK1 have order maxrs |((S(j)−Σ
(j)
0 )T (j)′D(j)−1)rs| = Op(

√
log(p)/n).

It can be concluded from lemma A.1 that |K2| = |
∑J

j=1(Σ
(j)
0 (T (j)′−T (j)′

0 )D(j)−1)lk| ≤∑J
j=1 ||Σ

(j)
0 T (j)′−T (j)′

0 D(j)−1|| ≤
∑J

j=1 ||Σ
(j)
0 ||||T (j)′−T (j)′

0 ||||D(j)−1||. Since ||Σ(j)
0 || =

Op(1) and ||D(j)−1|| = Op(1), we have |K2| ≤ Op(
∑J

j=1 ||T (j)′ − T (j)′

0 ||).

Following the same procedure, we can prove that the termK3 ≤ Op(
∑J

j=1 ||D(j)−

D
(j)−1
0 ||). According to our assumption that

∑J
j=1 ||T (j)′ − T

(j)′

0 || = Op(ζn) and∑J
j=1 ||D(j)′ − D

(j)′

0 || = Op(ηn), we know the term
∑J

j=1 2(S(j)T (j′)D(j)−1)lk has

rate log(p)/n+ ζn + ηn. According to our assumption, log(p)/n+ ζn + ηn = Op(λ),

so
∑J

j=1 2(S(j)T (j′)D(j)−1)lk is dominated by λ. Thus the sign of the derivative is the

same as the sign of parameter φ
(j)
kl , which will lead to the conclusion that φ

(j)
kl = 0.

Due to the assumption |φ(1)
kl | ≤ |φ

(2)
kl | ≤ . . . ≤ |φ(J)

kl |, we have φ
(1)
kl = φ

(2)
kl = . . .

= φ
(j)
kl = 0 and |φ(j+1)

kl | = |φ(j+2)
kl | = . . . = |φ(J)

kl | > 0 with probability tending to

1.

The second case is (k, l) ∈ ∩Jj=1Z
c
j where 0 = φ

(1)
0kl = φ

(2)
0kl = . . . = φ

(J)
0kl .

Similarly, assume {φ(1)
kl , φ

(2)
kl . . . , φ

(J)
0kl} falls in a small space containing the

original point of RJ space. Without losing any generality, we assume these J
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parameters have an ascending order. Taking the derivative of Q with respect to

φ
(J)
kl , we have

∂Q

∂φ
(J)
kl

=
J∑
j=1

2(S(J)T (J ′)D(J)−1)lk + (β + λ)sign(φ
(J)
kl ).

As we have already proved,
∑J

j=1 2(S(J)T (J ′)D(J)−1)lk will be dominated by β,

certainly it will be dominated by β + λ, which tells us that Q will achieve its

minimum when φ
(J)
kl equals 0. So, with probability tending to 1, φ

(1)
kl = φ

(2)
kl =

· · · = φ
(J)
kl = 0.
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