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Abstract

Nanocatalysis, an exciting subfield of nanoscience, is a subject of outmost importance in

present days, due to its great potential in modern manufacture of chemical products, and

also in other fields such as pollution and environment control. Among various kinds of

nanocatalysts, metal clusters supported on a substrate are particularly interesting in the

context of heterogeneous catalysis, for which the interaction between the reactive center

and the underlying substrate plays an essential role in the catalytic performance of sup-

ported clusters. Current research in controlling the catalytic activity of these catalysts

has been focused on tuning the size, dimensionality, charging state of supported metal

clusters, and/or the thickness, morphology, chemical composition of the underlying sub-

strate. Despite the great sophistication achieved by many experimental techniques used

in catalyst studies, it is still difficult, and sometimes impossible, to obtain a precise pic-

ture of the catalysts under operating conditions and the catalyzed reaction mechanisms at

an atomic level, without any theoretical support. In this thesis, quantum mechanical cal-

culations were carried out to illustrate and discuss the subject of nanocatalysis, to show

how some basic concepts in physics, chemistry and material sciences can be employed

to understand and design new catalysts, and to find novel and practical methodologies

to control their catalytic performance.
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Our first proposal was to control the physical and chemical properties of supported gold

nanocatalysts by metal-insulator transition (MIT) in transition metal (TM) oxide sub-

strate. TM oxides are normally insulating with a definite bandgap and MIT in oxides,

an important concept in condensed matter physics, is often discussed outside the field of

catalysis chemistry. For the first time, we showed that MIT in SrTiO3 substrate driven

by Nb-doping has strong effects on the adsorption of metal clusters, leading to a di-

mensionality crossover of the lowest-energy state of the supported Au cluster (from the

3-dimensional structure to a planar one), and at the same time, greatly enhances the

stability and catalytic activity of these clusters. In view of the most recent experimen-

tal progress on initiating MIT in oxides, our findings pave a practical methodology to

control the structural, morphology, electronic and catalytic properties of TM-oxide sup-

ported metal nanoclusters.

Secondly, we proposed to control the stabilization and catalytic capability of graphene-

supported metal nanoclusters by applying mechanical strain in the substrate. Graphene,

a 2D network of conjugated carbon atoms, has excellent mechanical properties that a

tensile strain up to 15% can be introduced in experiments. Our results revealed that

the applied strain can increase the adsorption energies of various kinds of metal clusters

on graphene, which is highly desired for the durability of catalysts in practical applica-

tions. The charging state of those clusters can be efficiently tuned by applying strain in

the graphene substrate and interestingly, with the adsorption of gold clusters, even the

p-type or n-type doping of graphene can be controlled. We also investigated the strain

effects on the catalytic performance of those supported clusters, and results showed that

the reaction barrier for catalyzed CO oxidation can be greatly reduced by strain, thus
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providing new opportunities for the future development of supported metal nanocata-

lysts.

In addition, the effects of defects in graphene on supported nanocatalysts were also

investigated and it was found that defects play an essential role in the anchoring and

activating of supported metal clusters. The simplest single-carbon-vacancy defect was

found to strongly adsorb Au and Pt clusters due to the hybridization of carbon 2p and

Au/Pt 5d orbitals. Compared to the cases of pristine graphene, defective graphene sup-

ported metal clusters have enhanced catalytic activity towards O2 molecule. Further cal-

culations showed that CO oxidation can occur at a very low barrier (< 0.2 eV). Similar

effects are also expected to exist in other types of defects in graphene, such as multiple

carbon vacancies, topological line defects and grain boundaries. Results presented are

helpful to explain and understand the experimentally observed high electrocatalytic ac-

tivity of Pt nanoclusters supported on graphene, owing to the fact that defects are always

inevitable during graphene fabrication.

On the way to search for high-performance nanocatalysts with low-cost, we explored

the use of single metal atom embedded graphene as a possible single-atom nanocatalyst.

The geometrical, electronic and magnetic properties of small gas molecules adsorption

on pristine and various transition-metal embedded graphene have been systematically

investigated and discussed. Our analysis suggested that the reactivity of graphene can

be increased in general by embedding metal elements, and among all the metal atoms

studied, Ti and Au may be the best choices towards molecular O2 activation due to the

largest expansion of O-O bond and charge transfer upon O2 adsorption. By using Au-

embedded graphene as model catalyst system and CO oxidation as a benchmark probe,

we examined the reaction mechanism of CO oxidation to gain a better understanding

vii



of this system. Calculations illustrated that the reaction is most likely to proceed with

Langmuir-Hinshelwood mechanism followed by Eley-Rideal reaction, with a reaction

barrier around 0.3 eV. These findings may shed light on the great potential of using

metal-embedded graphene as a possible single-atom nanocatalyst, as well as in other

fields such as graphene-based gas sensing and spintronics.
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The isovalue is set to 0.02e/Å3. The accumulation (depletion) of elec-

trons is in red (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 (a) The optimized initial state of ER mechanism of CO oxidation cat-

alyzed by Au16@graphene under a tensile strain of 5%: d(O1-O2)=1.41
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an isosurface value of 0.02e/Å3. In the inset, we show the atomic struc-

ture of a single-carbon-vacancy in graphene. . . . . . . . . . . . . . . 78

5.2 LH type of CO oxidation catalyzed by the P1 isomer of Au8 on the de-

fective graphene. (a) The initial state of the reaction: d(O(1)-O(2))=1.41
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O(2))=1.42 Å, d(C-O(2))=3.45 Å. The isosurface of excess (red) and

depleted (blue) electronic charge is also shown here. (b) The transitional
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graphene to O2. There is an excess of 0.087e for O2 adsorbed on pristine

graphene, making O2 acceptor-like. . . . . . . . . . . . . . . . . . . . 99

xxii



6.6 (a-c) PDOS for O2 adsorption on Cu, Ag, Au embedded graphene. Black

dotted curve: O2 in the gas phase; red curve: O2 in the adsorbed state.

Blue curve: d-projected PDOS for Cu, Ag, Au atom respectively. Fermi

energy is set to zero. (d) and (e) show the charge density and 3-dimensional

density difference plots for O2 adsorption on Au-graphene. Charge ac-

cumulation in red and depletion in blue. . . . . . . . . . . . . . . . . . 102

6.7 (a-c) PDOS for CO adsorption on Cu, Ag, Au embedded graphene.

Black dotted curve: CO in the gas phase; red curve: CO in the adsorbed

state. Blue curve: d-projected PDOS for Cu, Ag, Au atom respectively.

Fermi energy is set to zero. (d) and (e) show the charge density and den-

sity difference plots for CO adsorption on Au-graphene. Color scheme

is the same as in Fig. 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8 (a-c) PDOS for NO2 adsorption on Cu, Ag, Au embedded graphene.

Black dotted curve: NO2 in the gas phase; red curve: NO2 in the ad-

sorbed state. Blue curve: d-projected PDOS for Cu, Ag, Au atom re-

spectively. Fermi energy is set to zero. (d) and (e) show the charge den-

sity and density difference plots for NO2 adsorption on Au-graphene.

Color scheme is the same as in Fig. 6.6. . . . . . . . . . . . . . . . . . 106

6.9 (a-c) PDOS for NH3 adsorption on Cu, Ag, Au embedded graphene.

The dz
2 (blue curve) orbital of TM atoms together with the N 2pz orbital

(red curve), lead to a strong hybridization. Fermi energy is set to zero.

(d) and (e) show the charge density and density difference plots for NH3

adsorption on Au-graphene. Color scheme is the same as in Fig. 6.6. . . 108

xxiii



6.10 Schematic energy profile corresponding to local configurations show in

Fig. 11 along the MEP via CO + O2 → OOCO → CO2 + O route. The

energies are given with respect to the reference energy, defined as the

sum of the energies of individual Au-embedded graphene and CO, O2

molecule in the gas phase. . . . . . . . . . . . . . . . . . . . . . . . . 111

6.11 Local configurations of CO oxidation catalyzed by Au-graphene at vari-

ous intermediate states, including the initial state, transition state, metastable

state, and final state along MEP. Both side view (upper panel) and top

view (lower view) are displayed. Color scheme is the same as in Fig. 6.4. 112

xxiv



Chapter 1

Introduction

Human beings are curious to study the unknown. For centuries, scientific and tech-

nological research efforts have been made both to gain fundamental knowledge about

the unknown and to develop an application out of the unknown. For the subjects of

interest which are generally complex, one point of view is often insufficient, and a mul-

tidisciplinary approach will give a more profound understanding. One typical example

is the field of catalysis, which involves the utilization of knowledge from various dis-

ciplines, including physics, chemistry, material science, chemical engineering, among

many others. Heterogeneous catalysts, of which the phase of catalyst differs from that

of the reactants, play an essential role in modern chemical industry, as well as in pol-

lution and environmental control. Metals have been widely used in catalysts on a large

scale for many important processes such as the refining of petroleum, hydrogenation

of fats, and conversion of automobile exhaust. However, metals (often from the tran-

sition series) used are usually expensive and may constitute only around 1 wt% of the

1



Chapter 1. Introduction

catalytic materials. For practical use, they are applied in a finely dispersed form as par-

ticles on a support (carrier), and the majority of the reactions take place at these active

sites. The efficiency of such catalytic process is thus largely determined by the quality

of the catalysts fabricated, such as the surface area of active sites and the stability. With

the advancement of nanoscience and nanotechnology, these metal particles now enter

the “nano” scale, where phenomena length scales become comparable to the size of

the structure. Consequently, novel physical, chemical and electronic properties of these

nanomaterials have been discovered and investigated. In the field of nanocatalysis, the

catalytic performance of metal nanoclusters is often controlled by quantum size effects

owing to the reduced dimensions of these structures, in contrast with the conventional

catalysts at larger sizes. These unique properties of metal nanoparticles that cannot be

extrapolated or deduced through scaling arguments from knowledge of these properties

in the bulk limit, present new opportunities for the search of new catalysts. In the follow-

ing sections, we will review in detail the previous multi- and inter-disciplinary research

work on supported-metal nanoparticles in heterogeneous catalysis.

1.1 Green chemistry–Environmental-friendly catalysis

In a catalytic process, the rate of a chemical reaction is increased by a catalyst without

the consumption of the catalyst itself, as was stated by Berzelius over 150 years ago.

The exploration of catalysis has been developed continuously and led to wide-spread

applications in people’s daily life. Industrial production relies crucially on catalysts,

and catalysis is becoming increasingly important in energy production and pollution
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Figure 1.1: Green chemistry. The ultimate green catalytic oxidation process uses at-

mospheric air as the oxidant and forms water as the only by-product. Reprinted with

permission from Ref.[5]

control.[1] However, in the last decades, it has become obvious that the practice of in-

dustrial chemistry has some strong drawbacks, aside from the desired products. These

are severe environmental “costs”, and affect the sustainable development of human so-

ciety. In recognition of the environmental effects of the chemical industry, many laws

have been passed and implemented all over the world to regulate chemical processes and

products.

The term “Green Chemistry” was coined in the early 1990s by Anastas[2] and col-

leagues of the US Environmental Protrction Agency (EPA). In 1993 the EPA officially

adopted the name ”US Green Chemistry Program” which has served as a focal point
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for activities in United States, and the guiding principle is benign by design of both

products and processes.[3] The essence of green chemistry can be reduced to a work-

ing definition: Green chemistry efficiently utilizes (preferably renewable) raw materials,

eliminates wastes and avoid the use of toxic and/or hazardous reagents and solvents in

the manufacture and application of chemical products (see Fig. 1.1).[4, 5] As green

chemistry is a philosophy that puts forward sustainable concepts, advanced catalysts,

whether heterogeneous/homogeneous catalysts or enzyme are searched for a long time

to address this problem.

In heterogeneous catalysis, in which the phase of the reactants/products (gaseous or liq-

uid) and of the catalyst (usually solid) is different, the ease separation of the reaction

products from the catalyst makes heterogeneous catalyst an advantage over its homo-

geneous counterpart.[7] In the industrial world, heterogeneous catalysis alone has been

estimated to be a prerequisite for more than 20% of all production.[8] In the efforts to

develop a more sustainable chemical industry, there is an urgent need to study and de-

velop more efficient heterogeneous catalysts with supreme activity, selectivity, stability

and with nontoxic nature.

1.2 Supported metals in nanocatalysts

An important group of heterogeneous catalysts is the group of supported metal cata-

lysts, generally containing small metal particles dispersed over a porous substrate. The

substrate, or in industrial terms, the carrier is expected to meet several requirements,

such as exposing a high surface area, exhibiting high mechanical and thermal resistance.
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Transition metal particles, especially the VIII group metals (Fe, Co, Ni, Ru, Rh, Pd,

Os, Ir, and Pt) and noble group metals (Cu, Ag, Au), are of particular importance, as

they catalyze oxidation, (de)hydrogenation, cyclization, isomerization, among other im-

portant reactions.[9, 10] The advantages of having metal particles supported include the

following several aspects: (1) The catalyst is easily and safely handled compared to the

particles in the gas phase. (2) The catalysts may be used in a variety of reactors, and if

used in a liquid medium they may be recovered by filtration. (3) Because metal particles

are well separated from each other, they do not grow in size by sintering when heated

to hight temperature in a reducing atmosphere.[11] (4) The support provides a means

of bringing promoters into close contact with the particles. There are also other advan-

tages specific to particular catalyst systems, which we will not go to details. Here, it is

instructive to show the correlation between exposed (specific) surface area and the size

of the metal particles. Suppose the catalytic active phase (density ρ in kg/m3) consists

of uniform spherical metal particles. The specific area can be estimated as:

Volume of one particle, V = 1/6πd3 (m3)

Weight of one particle, W = 1/6ρπd3 (kg)

Surface area of one particle, SP = πd2 (m2)

Specific surface area, SA = SP /W = πd2/(ρ∗1/6ρπd3) (m2/kg)

It is obvious that smaller particles will have larger specific surface area, or higher dis-

persion, which may result in an enhancement of catalytic activity.

Although the consequences of the smaller size of metal particles in catalysis seem quite

straightforward, in most cases this scenario is more complex than we expected. In fact, at

sufficiently small sizes, which most often lie in the nanoscale regime, the dependence of

the material’s property on size becomes non-scalable, and then small becomes different
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in an essential way, where the physical and chemical properties become emergent in

nature, that is, they can no longer be deduced or extrapolated from those known for larger

sizes when size of the materials is comparable or less than the de Broglie wavelength

of electrons. Gold is an excellent example, which is also one of the most commonly

studied metal nanocatalysts in the last decade. Gold occupies a position at one extreme

of the range of metallic properties, and its legendary chemical inertness is attributable to

the Lanthanide Contraction and the relativistic effect, which becomes significant when

atomic number Z exceeds about 50. When the 1s orbital of Au shrinks, the s orbitals of

higher quantum number have to contract in sympathy in order to maintain orthogonality.

In reality, the 6s orbital shrinks relatively more than the 1s, which also operates on the

p electrons but to a less extent. d and f electrons are hardly affected because they never

come close to the nucleus. This energetic stabilization of the 6s and 5d shells because the

4f electrons do not adequately shield them from the increasing nuclear charge would lead

to the disposition of their orbitals: 5d and 6s electrons are drawn towards the nucleus.

Therefore, gold is much more inert compared to its neighboring metals such as Cu, Ag

and Pt.

While bulk gold is a chemical inert material, interestingly, nanoscaled gold particles

exhibits surprisingly reactivity. Haruta and coworkers’ pioneering work[12] showed the

exceptional catalytic activity of Au nanoparticles of 2-5 nm in diameter deposited on ox-

ides towards CO oxidation at temperature as low as -76 ◦C, close to the coldest ambient

temperature on this planet (-89.2 ◦C at Vostok in Antartica).[12] Since then, there has

been an explosion of interest in Au nanocatalyisis and it leads to the so-called ”Gold-

Rush Era” in heterogeneous catalysis.[13–20] However, up to now, there has been no

common consensus about the origin of such high catalytic activity of nanogold, and it
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is generally accepted that the catalytic activity of Au depends to a large extent on the

size of the Au particles, and other effects, such as the nature of the substrate, and par-

ticle/support interface, charge transfer between metal particles and support, were also

proposed to be of fundamental importance.[21–23] Aside from oxides, many other ma-

terials such as metal carbides, carbon, metal-organic frameworks (MOFs) and even bio-

materials were also studied for supporting metal nanoparticles. In the following, we will

review some of the important materials as supports.

1.2.1 Metal oxides and carbides

In general, metal oxides offer high thermal and chemical stabilities combined with a

well-developed structure and high surface areas (>100 m2g−1), meeting the require-

ment of most applications. Model catalysts, which consist of metal oxide surfaces onto

which metal particles are deposited, have been used in experiments for most of the time.

For instance, the Haruta and coworkers’ discovery of gold nanoparticles that are very

active for CO oxidation were supported on oxides of 3d transition metals of group VIII,

namely, Fe, Co, and Ni.[12] Goodman et al. suggested on the basis of studies involving

a bilayer gold model catalyst supported on TiOX that the thickness, shape, and oxida-

tion state of gold nanoparticles are responsible for the high catalytic activity.[24] For the

oxide support, it is now generally accepted that reducible (active) oxides such as TiO2,

CeO2, or Fe2O3, which have a lower ionic character and a small bandgap, are superior

to nonreducible (inert) oxides such as MgO, Al2O3, or SiO2 that have a marked ionic

character and a wide bandgap, under similar conditions.[25–27] This may be accounted

for by the fact that the interaction between active oxides and supported metal clusters
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is relatively stronger, and the support-mediated oxygen transport, that is, oxygen is re-

leased from the oxidic support which diffuses over the support surface to the edges of

the metal particles, where the CO oxidation reaction happens.

In the way to search for new catalysts, one may wonder whether metal particles de-

posited on supports other than metal oxides may provide alternative catalysts with dif-

ferent properties. Recently, Illas et al.[28] found that small gold nanoclusters in con-

tact with TiC(001) could cleave both S-O bonds of SO2 at temperature as low as 150

K, making Au/TiC an excellent catalyst for hydrogenation processes. As for com-

pounds, the transition-metal carbides are less ionic than the metal oxides, and some

transition metal carbides can display a chemical behavior which is reminiscent of Pt,

Pd, Ru or Rh and in addition can exhibit important advantages over these bulk metals

in terms of catalytic selectivity and resistance to poisoning during the transformation of

carbon-containing molecules.[29] Systematic studies showed that the surfaces of metal

carbides such as ZrC(001), VC(001), TaC(001) and δ-MoC(001) may be able to ac-

tivate nanogold.[30, 31] Joint experimental and theoretical studies have shown that the

Au/carbide interface exhibits little ionic character,, and there is a substantial polarization

of electrons around Au that significantly affects its chemical properties.[32]

1.2.2 Carbonaceous nanomaterials

Carbon-related materials, such as activated carbon,[33], carbon black,[34] graphite and

graphitized materials,[35, 36] offer great advantages as catalyst supports due to their

abundance and well-defined porosities. Deactivated catalyst metals can also be easily

recovered by simply burning the carbon. Recently, the carbon-based nanomaterials have
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Figure 1.2: Various kinds of carbonaceous nanostructures corresponding to different

hybridization states. Reprinted with permission from Ref.[37].

attracted considerable interest by their unique and tunable properties for identifying and

addressing electronics and environmental challenges. The physical, chemical, and elec-

tronic properties of carbonaceous nanomaterials are strongly coupled to carbon’s struc-

tural conformation, thus, its hybridization states. The ground-state orbital configuration

of carbon’s six electrons is 1s22s22p2. The energy gap between 2s and 2p electron shells

is quite narrow, so one s orbital electron can easily promote to higher energy p orbital

which is empty in ground state. This promotion allows carbon hybridize into a sp, sp2,

or sp3 configuration depending on the neighboring atoms. These mutable hybridizations

account for diverse organic compounds as well as different bulk configurations of carbon

(see Fig. 1.2): Trigonometric sp3 configuration of diamond is thermodynamically favor-

able at high temperature or pressures, while planar sp2 conformation is preferred at lower

heats of formation. In sp2 configuration, monolayer sheet is bound by three σ covalent

bonds and a single π bond, such as in fullerenes,[38] carbon nanotubes (CNTs)[39] and

recently discovered graphene.[40]

Among all kinds of carbon materials, graphene seems to be particularly attractive due to

its unique 2-dimensional honeycomb (2D) structure that leads to unusual electronic and

mechanical properties and may provide an ideal support for metal nanocatalysts.[41, 42]
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Indeed, experiments have shown that graphene-supported transition-metal nanoclusters

may show greatly enhanced reactivity. As an example, Yoo et al.[43] showed by a

well-designed experiment the unusually high catalytic activity of small Pt nanoclusters

supported on graphene, which is a valuable contribution to the graphene-based metal

nanocatalysis. A major obstacle in using graphene as support for metal nanocatalysis

is that graphene itself is chemically inert due to the strong sp2 and π binding between

carbon atoms in the graphene plane, which leads to two major limitations in real appli-

cations. First, because of the weak interaction between graphene and supported metal

clusters, the effects of underlying graphene on reactivity of supported metal clusters are

not expected to be strong so that it is not easy to control the catalytic performance via

tuning the interaction between the reactive centers and the underlying support. Second,

as a series of scanning tunneling miscroscopy (STM)[44, 45] and transmission electron

microscopy[46] studies have reported, due to the weak adsorption of metal clusters on

graphene, those supported clusters are highly mobile. In many cases, they tend to dif-

fuse along the surface and form bigger clusters, leading to eventual catalyst sintering,

which definitely is not wanted for real applications.[47, 48] Therefore, despite its desir-

able properties such as excellent electrical conductivity and structural stability, pristine

graphene is unlikely to be a suitable support unless appropriate strategies can be devised

to stabilize and immobilize supported metal clusters/particles.
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1.2.3 Metal-organic framework and other materials

Metal-organic framework (MOFs) have emerged as a particular class of multifunctional

materials because of their high specific surface area, porosity and chemical tunabil-

ity, which has lead to many applications concerning gas storage, separations, chemical

sensing, drug-release, among many others.[49–51] Recent reports on catalytic studies

on MOFs, especially on MOF supported noble metal nanoparticles, have attracted in-

creasing attention.[52–54] Indeed, the spatial construction of metal ions and organic

linkers in MOFs leads to the rationally designed networks with nanosized channels

and pores that may accommodate metal particles as catalytic centers. Fischer et al.[55]

loaded [Zn4O(bdc)3] (bdc = 1,4-benzene-dicarboxylate; MOF-5 or IRMOF-1) with Pd

nanopartcles to yield Pd@MOF-5 materials, which showed superior activity in olefin

hydrogenolysis. Similarly, Cu@MOF-5 showed surprising activity on methanol syn-

thesis from CO and H2.[56] More recently, MOF-supported gold nanoparticles were

synthesized by using a simple colloid method and it was found that this material can act

as a highly active heterogeneous catalysis for CO oxidation.[57] However, difficulties

arise during fabrication of MOFs with tunable length of linkers, and now it has gener-

ally proven difficult to demonstrate that clusters/nanoparticles are actually encapsulated

within the MOF cavities, as sometimes the metal particle sizes clearly exceeds the di-

mensions of single MOF cavities.[53]

Apart from MOFs, other materials such as zeolites, polymers, biomaterials and biomass

have also been reported as supports for metal nanoparticles. Due to their rather large

and complicated structures, we will not discuss them in detail. Readers may see a recent

review article in this direction.[58].
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1.3 Controlling the performance of nanocatalysts

One of the principal goals of modern research in heterogeneous nanocatalysis to under-

stand the nature of active sites, and to develop new and practical methods to control

the performance of catalysts. The so-called strong metal-support interaction (SMSI) is

often seen as critical to sustain high stability and catalytic activity under demanding

operation conditions (i.e., high temperature, high vapor pressure, etc.), due to the fact

that SMSI has been directly linked to properties of the supported metal particles.[59] It

has been well documented that by manipulating the properties of oxide substrate, the

stability and catalytic performance of supported metal clusters can be largely modified

and controlled.[60–62] In literature, it has been shown that the catalytic activity of sup-

ported metal clusters can be effectively controlled by tuning the interaction between

clusters and the underlying substrate via modifying the size, dimensionality, charging

state of these cluster and/or the thickness, morphology, or chemical composition of the

substrate. So far, scientists from physics, chemistry and material sciences have been

actively devoted in this field and many exciting results have been reported.

The most widely studied case is the presence of defects, such as vacancies, impurities,

interstitials, kinks, steps and grain boundaries in oxide substrate, of which some defects

can be prepared with ease on the surface of reducible oxides such as CeO2 and TiO2.

Anchoring the active metal components to these defects may lead to strong interac-

tion between metal clusters and oxides, which fundamentally determines the dispersion,

morphology, and, therefore the catalytic activity. For example, Chen and Goodman[63]

have described the formation of stable, two-dimensional (2D) Au clusters on a TiO2

substrate with rich oxygen vacancies, which have high catalytic activity compared to
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these clusters deposited on substrate with poor oxygen vacancies. The result was also

demonstrated by theoretical calculations.[64] On nonreducible surfaces, Landman and

coworkers[21] showed that the charging of a Au8 cluster from F-center defects of MgO

support plays a key role in the activating of clusters, as O2 molecule does not bind to Au8

in the gas phase or deposited on pristine MgO (001) surface, it can be greatly activated

on defect-rich MgO surface supported Au clusters. Other defects can be introduced

by post treatment of the oxide surface, such as creation of trapped electrons, (H+)(e−)

centers by exposure to atomic H or H2 under UV light, addition of promotion elements

(alkali metals) and hydroxylation of oxide surfaces.[65–68] The effects of these defects

have also been extensively reported in literature and results have been diverse. Never-

theless, a crucial problem exists in introducing defects to supports, that is, it is rather

difficult to produce such defects in a controllable manner due to their complexity, and

further understanding the electronic structures of these defects as well as their effects on

the performance of catalysts are also needed.

The second commonly used approach is to tune the thickness of the oxide substrate.

Oxide ultrathin films are essential components of several modern technologies, such

as SiO2 films in field effect transistors, ferroelectric ultrathin film capacitors, and so-

lar energy materials.[69–71] Recently, it was theoretically predicted that the adsorption

morphology, binding energies and charging state properties of metal clusters may con-

tinuously change as a function of the thickness of oxide film, which itself supported on

metal surface.[72] Zhang et al.[73] further showed that on a very thin defect-free MgO

film grown on metal surface, supported Au clusters exhibits very high activity for the

oxidation of CO. The enhanced wetting propensity and catalytic activity of these Au

nanoclusters can be visualized in a quantum tunneling picture (see Fig. 1.3), in which
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Figure 1.3: Electron quantum tunneling picture of a two dimensional Au20 island ad-

sorbs on 2-layer MgO film supported on Mo (100) surface, with a coadsorbed O2

molecule. Superimposed is the isosurface of the excess electronic charge illustrating

the activation of the adsorbed molecule through population of the antibonding 2π* or-

bital. Reprinted with permission from Ref.[73]. The possibility of electrons that can

tunnel through MgO barrier will be increased when the thickness of MgO film is re-

duced, leading to an enhancement of catalytic activity for the supported Au clusters.

the electrons tunnel from Mo (100) surface to the clusters when the MgO film thickness

is decreased to 2 layers (thus the tunneling barrier is reduced), and then populated to

the 2π* orbital of O2 molecule. These predictions were later nicely confirmed by STM

experiments, which showed an increased wetting propensity of metal clusters supported

ultrathin oxide film compared to bulk oxides, and intriguing quantum well states were

also observed in these 2D gold clusters on MgO thin films.[74, 75] These results indi-

cate that electron quantum tunneling through ultrathin oxide films may provide vast and

unforeseen opportunities in supported heterogeneous catalysis.
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Chapter 1. Introduction

Some other methods to control the performance of metal nanocatalysts include exter-

nally applying electric or electromagnetic fields,[76] changing the chemical composition

of substrate or using mixed oxides (such as alloyed oxides) as supports.[77, 78] In ad-

ditional, effects of moisture, organic ligand that protects metal clusters during chemical

synthesis were also reported.[79, 80] These results show that the environmental param-

eters during catalyst fabrication could also be taken into consideration when we want to

control the catalytic properties of nanocatalysts.

1.4 Objectives and scope of this thesis

With significant progress has been achieved in the past decades toward the fundamental

understanding of the factors that influence the properties and performance of nanocata-

lysts, much remains to be learned. Research in nanocatalysts by using supported metal

is challenging for several reasons. First, as supported metal clusters or nanoparticles

are hybrid systems that are often not well-defined, it is complicated to obtain a clear

view of the structure of supported metal clusters or nanoparticles under operating condi-

tions. Second, with the current experimental techniques, it is rather difficult to identify

the active sites and reaction mechanism of these catalysts toward specific reactions. So

there is a large “material gap” between experiments and theory regarding the issue of

what really happens in a catalyzed chemical reaction. Last but not least, to find new and

practical ways to control catalysts’ activity and selectivity, and to design new catalysts

remains a long-standing challenge.

The present work is motivated by the following facts:
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1. Although advanced experimental techniques such as STM, TEM could be used to

investigate the structures of metal nanoclusters, the ground-state properties, and

interaction between the clusters and substrate cannot be fully understood without

a theoretical approach.

2. It has been shown that the catalytic activity of metal nanoclusters may be con-

trolled by tuning the thickness of the oxide substrate[72] or applying an electric

field.[76] However, the requirement of an ultrathin film or a rather strong field

makes these approaches impractical in industrial applications.

3. Despite the previous experimental reports in using graphene as support for metal

nanoclusters with enhanced catalytic activity towards CO oxidation, the catalytic

mechanism remains unknown.[43] Moreover, there are few studies on how to con-

trol the physical and chemical properties of metal clusters on graphene substrate.

The main aim of this thesis is to understand and predict the supported metal nanocatal-

ysis by first-principles calculations. State-of-art computer-aided experiments were ap-

plied to probe the geometric and electronic structures of supported metal nanoclusters

as catalysts and to elucidate mechanisms of catalytic reactions. The specific objectives

of this research were to:

1. Investigate structural, physical and chemical properties of metal nanoclusters and

their supports (oxides, carbonaceous nanomaterials, etc.), as well as their hybrid

structures as catalytic systems.

2. Study the interaction between metal nanoclusters and substrate, with special atten-

tion paid to how the structural, morphological, electronic properties of supported
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metal clusters could be influenced by modifying the underlying substrate.

3. Design new catalysts, and find novel and practical methodologies to control their

catalytic performance towards important chemical reactions (for example, CO ox-

idation), with the evaluation of reaction barriers and catalytic mechanisms.

Although experimental methods tend to become more expensive with time, computa-

tional methods become much cheaper as computers become faster. By using this the-

oretical modeling and computational approach, the present study presents a detailed

analysis of the physical and chemical properties of supported metal nanocluster hybrid

systems, which may contribute a better understanding of heterogeneous nanocatalysis

from a theoretical point of view, and may provide new ways to design and control novel,

low-cost supported metal catalysts with high efficiency. In this thesis, metal nanoclus-

ters supported on oxides and carbonaceous nanomaterials such as graphene are chosen

as model systems, and the prototype example of CO oxidation, one of the best-known

heterogeneous reactions,[81] is used to explore the catalytic performance of these sup-

ported metal nanocatalysts. Other chemical reactions such as splitting of H2O, oxidation

of alcohols or olefines are also important, but they have rather complex reaction steps

and hence are beyond the scope of this thesis.

This thesis is organized as following:

In Chap.2, we briefly introduce the theoretical frame work used in this study, which is

the first-principles calculations based on density functional theory (DFT). The method-

ologies to determine the reaction barriers during catalyzed reactions will also to briefly
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discussed. In Chap.3, we explore the effects of metal-insulator trancition in oxide mate-

rials, which is an important concept in condensed matter physics, on the binding, mor-

phology, charging and catalytic properties of supported Au nanoclusters. In Chap.4, we

propose for the first time, the mechanic strain engineered catalytic performance of metal

nanoclusters on graphene, which may also be applicable to other stretchable substrate.

In Chap.5, we investigate the effects of defect, the single carbon vacancy in particular, in

graphene on the stabilization and catalytic activity of metal clusters on graphene support.

In Chap.6, the physical and chemical properties of metal-embedded graphene are stud-

ied in the context of heterogeneous catalysis, and we propose metal-embedded graphene

as a possible novel nanomaterial for single-atom nanocatalyst. Finally, in Chap.7, we

present the summary of this thesis and suggest directions for future work.
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Chapter 2

First-principles methods

Most of low-energy physics, chemistry, biology and material sciences can be explained

by modern quantum theory. It has been demonstrated that the ability of quantum me-

chanics to predict the total energy of a system of electrons and nuclei enable one to

reap a tremendous benefit. The First-principles, or ab initio approach based on density

functional theory (DFT), can provide important quantities such as atomic structures and

bonding energies, and may further provide key information on the electronic structures

of catalysts and chemical reactions during a catalytic process.

2.1 Born-Oppenheimer approximation

Prediction of the structural and electronic properties of a material requires calculations

of the solution of the time-dependent Schrödinger equation of the many-body system.
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However, the complexity of the many-body problem, resulting from the interaction be-

tween an extremely large number of electrons and nucleus (∼1023), makes it impossible

to solve the Schrödinger equations exactly. Therefore, some important approximations

have to be made. The first approximation is the Born-Oppenheimer approximation.[82]

Because the nuclei are much heavier and move much slower than the electrons, we can

“freeze” them at fixed positions and assume the electrons to be in instantaneous equi-

librium with them. This “adiabatic principle” reduces the many body problem to the

solution of the dynamics of the electrons in some frozen-in configuration of the nuclei.

To perform the total energy calculation accurately and efficiently, further approxima-

tions are introduced, including density functional method to model the electron-electron

interaction, psuedopotential to treat electron-ion interation, supercell to model periodic

systems, and iterative scheme to minimize the total energy function. These will be de-

scribed in following sections.

In the Born-Oppenheimer non-relativistic approximation, only the electrons are kept

as players in our many body problem. In this context, the Schrödinger equation of an

isolated N-electron atomic or molecular system is given by

ĤΨ = EΨ (2.1)

where E is the electronic energy, Ψ = Ψ(r1, r2, ..., rN) is the wave function, and Ĥ is

the Hamiltonian operator,

Ĥ =
N∑
i=1

(− h̄2

2m
∇2

i ) +
N∑
i=1

U(ri) + V (r1, r2, ..., rN) (2.2)

in which

U(ri) = −
∑
a

Zae
2

ria
(2.3)
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is the external potential acting on electron i due to nuclei charges Za. And,

V (r1, r2, ..., rN) =
N∑
i<j

e2

|ri − rj|
(2.4)

is the electron-electron repulsion energy.

The Born-Oppenheimer approximation makes it possible to break the wavefunction of a

complicated system into its electronic and nuclear (vibrational, rotational) components.

These two components can be calculated in two less complicated consecutive steps.

However, due to the electron-electron interaction, the equation remains difficult to solve.

2.2 Density functional theory (DFT)

Density functional theory (DFT), developed by Hohenberg-Kohn (1964), Kohn and

Sham (1965),[85, 86] provided a simple method for describing the effects of exchange

and correlation in an electron gas. This is a remarkable theory that allows one to re-

place the complicated N-electron wave function Ψ = Ψ(r1, r2, ..., rN) and the associated

Schrödinger equation by the much simpler electronic density n(r) and its associated cal-

culational scheme. Since its formulation, DFT has used extensively in condensed matter

physcis/chemistry and material sciences. It has become a runaway success, enabling ad-

vances in practical First-Principles calculations.The density functional theory is based

on the following two theorems of Hohenberg-Kohn:

First theorem: There is a one-to-one correspondence between ground-state density n(r)

of a many-electron system (atom, molecule, solid) and the external potential V(r). This
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theorem demonstrates that the ground state electron density can be served as the fun-

damental quantity instead of the wave function. Since n(r) determines the external

potential and the number of electrons, it also determines the Hamiltonian and all other

ground-state electronic properties.

E = E(n(r)) = T [n(r)] + Ene[n(r)] + Eee[n(r)]

=

∫
n(r)Vne(r)dr + FHK [n(r)] + Ecorr[n(r)]

(2.5)

where

FHK [n(r)] = T [n(r)] + Eexc[n(r)] + Ecoul[n(r)] (2.6)

where T [n(r)] is the kinetic energy and Eee[n(r)] is the electron-electron interaction

energy which contains the Coulomb interactions Ecoul[n(r)] given by:

Ecoul[n(r)] =
e2

2

∫ ∫
n(r1)n(r2)

r12
dr1dr2 (2.7)

Second theorem: There is a universal functional of n(r), E( n(r)), which is minimized

by the ground state density n(r). Therefore, the ground-state energy can be found by

varying the electron density n(r) to minimize the energy E(n0(r)), supposed we know

the form of the functional E(n(r)), or at least have a good approximation for it.

However, accurate calculational implementations of the density functional theory are

far from easy to achieve due to the fact that the functional FHK [n(r)] is hard to come

by in explicit form. While the Hohenberg-Kohn theorem rigorously established that

we may use the density alone, as a variable to find the ground-state energy of an N-

electron problem, it does not provide any useful computational scheme. Kohn and Sham

showed that it is possible to replace the many-body problem with an exact equivalent set
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of self-consistent one-electron equations [86, 87]. The Kohn-Sham (KS) total-energy

functional for a set of doubly occupied electronic states Ψi can be written as

E[Ψi] = 2
∑
i

∫
(Ψi[−

h̄2

2m
]∇2Ψi)d

3r +
∫
Vion(r)n(r)d3r

+
e2

2

∫
n(r)n(r′)

r12
d3rd3r′ + Exc[n(r)] + Eion(RI)

(2.8)

where Vion is the static total electron-ion potential, Exc[n(r)] is the exchange-correlation

functional, and Eion is the Coulomb energy associated with interactions among the nu-

clei (or ions) at positions RI .

It is necessary to determine the set of wave functions Ψi that minimizes the Kohn-Sham

total-energy functional. These are given by the self-consistent solutions to the Kohn-

Sham equations:

[(− h̄2

2m
∇2

i ) + Vion(r) + VH(r) + Vxc(r)]Ψi(r) = εi(r)Ψi(r) (2.9)

where Ψi(r) denotes the wave function of electronic state i, εi is the KS eigenvalue, and

VH(r) is the Hartree potential of the electrons given by

VH(r) =
∫

e2n(r′)
|r − r′|

d3r′ (2.10)

The exchange-correlation potential Vxc(r) is given by the functional derivative

Vxc(r) =
δExc(r)
δn(r)

(2.11)

In the KS equations, the effective potential is the KS potential:

VKS(r) = VH(r) + Vxc(r) =
∫

e2n(r′)
|r − r′|

d3r′ +
δExc(r)
δn(r)

(2.12)

The KS equations represent a mapping of the interacting many-electron system onto a

system of noninteracting electrons moving in the KS effective potential due to all the
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other electrons. The KS equations must be solved self-consistently so that the occupied

electronic states generate a charge density that produces the electronic potential that

is used to construct the KS equations. However, the above equations are still in a in-

tractable form because exact expression for the exchange-correlation energy functional

remain unknown.

2.3 LDA and GGA

To solve the problem of unknown exchange-correlation energy functional, Kohn and

Sham proposed the local density approximation (LDA).[86] In LDA, the exchange-

correlaton energy of an electronic system is constructed by assuming that the exchange-

correlation energy per electron at position r in the electron gas, εxc(r), is equal to the

exchange-correlation energy per electron in a homogeneous electron gas that has the

same density as the electron gas at point r. Thus

Exc(r) ≈ ELDA
xc =

∫
n(r)εxc(r)dr (2.13)

and

εxc(r) = εhomxc (n(r)) (2.14)

εhomxc (n(r)) can be further split into exchange and correlation contributions,

εhomxc (n(r)) = εhomx (n(r)) + εhomc (n(r)) (2.15)

A Hartree-Fock description of electron gas leads to a simple form of the exchange energy

functional εhomx (n(r)) ∝ n(r)4/3. A much more accurate exchange-correlation energy

for the homogeneous electron gas as a function of density may be derived from quantum
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Monte Carlo simulations and used to construct exchange-correlation functionals within

the framework of the LDA. The LDA, in principle, ignores corrections to the exchange-

correlation energy at a point r due to the nearby inhomogeneities of the electron density.

Nevertheless, LDA has proven to be a good approach for the calculation of structures,

vibrational frequencies, elastic moduli and phase stability. On the other hand, several

problems are also encountered with the LDA. For example, LDA underestimates the

band gap of semiconductor and insulator. LDA also tends to overbind (typically by 20-

30%), so the calculated lattice constant is underestimated and the cohesive energy is

overestimated.

A natural extension of the LDA is the generalized gradient approximation (GGA) [88,

89], in which there is an explicit dependence of the exchange-correlation functional on

the gradient of the electron density. The exchange-correlation functional can be written

as:

εxc[n(r)] =
∫
f(n,∇n)d3r, (2.16)

The GGAs proposed by Perdew et al. have been widely used and have proved to be quite

successful in correcting some of the deficiencies of the LDA [88, 89]. For instance, the

GGA improves binding and dissociation energies, especially for systems containing hy-

drogen. Many properties of 3d metals are greatly improved. However, the GGA is far

from ideal, and finding an accurate and universally-applicable Exc remains a great chal-

lenge in DFT. Nowadays, practical Exc functionals are the major approximation made

to DFT: they are not derived from first principles, but are postulated from physically

reasonable assumptions, and their use is justified a posteriori by their success [90].
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2.4 Implementation of DFT

2.4.1 Bloch’s theorem

With the density functional theory, the many electron Schrödinger equation can be

mapped onto the N one-electron Kohn-Sham equations. However, it remains a formidable

task to handle an infinite number of non-interacting electrons in the static potential of an

infinite number of nuclei or ions. Two problems must be solved: a wave function must

be calculated for each of the infinite number of electrons in the system, and the basis

set required to expand each wave function is infinite since each electronic wave function

extends over the entire solid. Fortunately, we can reduce the problems to a finite periodic

systems based on the Bloch’s theorem.

For a system of electron moving in a periodic potential, Bloch’s theorem states that the

corresponding wavefunction of the electron has the form:

Ψk(r + R) = eik·ruk(r), (2.17)

where uk(r) has the same periodicity as the potential. For a crystal lattice potential

satisfies the translation invariance:

uk(r + R) = uk(r), (2.18)

where R is the real space lattice vector. Based on this theorem, the wavefunction of a

single atom in a lattice can be written as the product of the plane wave and the periodic

function uk(r). Moreover, the wavevector k can always be folded into the first Brillouin

zone (1st BZ) in the context of electronic property calculations since the electron energy
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is periodic in the k-space and each k-point outside the 1stBZ cam ne mapped onto a

k-point inside.

Many real systems do not have periodic symmetry along all three dimensions. For in-

stance, a surface system only has periodic symmetry parallel to the surface directions;

a nanocluster/particle or molecule is completely aperiodic. To study these systems, two

schemes are feasible. One is to model the system with a cluster of atoms, so-called

Cluster model, and another is to model a periodic symmetry on the aperiodic dimension,

so-called Supercell method. Periodic supercell is widely used for the surface/interface

system modeling. which is implemented by modeling the surface/interface with period-

ically arranged slabs which are separated by vacuum layers. To minimize the artificial

Coulomb interactions between two neighboring surfaces/interfaces, the vacuum layer

should be thick (typically >10 Å). The thickness of the slabs is dependent on the spe-

cific case, and usually the slab with smaller interlayer spacing should be thicker.

2.4.2 Plane-wave basis sets

Bloch’s theorem states that the electronic wave functions at each k-point can be ex-

panded in terms of a discrete plane-wave basis set:

ψn,k(r) =
∑

G

cn,k+Gexp[i(k + G) · r]., (2.19)

where G are reciprocal lattice vectors. After expansion of the wavefunctions, the Kohn-

Shan equation can be reduced to a secular equation:∑
G′

[
h̄2

2m
|k + G|2δGG′ +V (G − G′)+VH(G − G′)+Vxc(G − G′)]cn,k+G′ = εn,kcn,k+G.

(2.20)
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In principle, an infinite plane-wave basis set is required to expand the electronic wave-

functions. Fortunately, the coefficient cn,k+G for the plane-wave with small kinetic en-

ergy h̄2

2m
|k + G|2 are typically more important than those with large kinetic energy. Thus,

the plane-wave basis set can be truncated to include only plane-waves that have kinetic

energies less than some particular cutoff energy Ecut =
h̄2

2m
|k + Gcut|2. The truncation

of the plane wave basis set at a finite cutoff kinetic energy will lead to an error in the

total energy of the system. However, it is possible to make this error arbitrarily small by

increasing the size of the basis set by allowing a larger energy cutoff.

2.4.3 Brillouin zone sampling

Electronic states are allowed only at a set of k-points determined by the boundary con-

ditions that apply to the bulk solid. The sensity of allowed k-points is proportional to the

volume of the solid. The infinite number of electrons in the solid are accounted for by

an infinite number of k-points, and only a finite number of electronic states are occupied

at each k-point. The Bloch’s theorem changes the problem of calculating an infinite

number of electronic wave functions to one of calculating a finite number of electronic

wave functions at an infinite number of k points. The occupied states at each K point

contribute to the electronic potential in the bulk solid so that an infinite number of cal-

culations are needed to compute this potential. However, because the change in Ψn,k

with k becomes negligible for k-points that are close together, a great simplification is

available by calculating at a finite number of k-points, i.e., k-point sampling. Various

methods have been proposed for the k-points sampling, like the one by Monkhorst-

Pack, Lehmann and Taut, Blochl-Jepsen-Andersen, Methfessel and coworkers, Muller
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and Wilkins, etc. The Monkhorst-Pack[91] is the most widely used scheme, of which

the basic idea is to construct equally spaced k-points (N1×N2×N3) in 1stBZ according

to

k =
n1 + 1/2

N1

b1 +
n2 + 1/2

N2

b2 +
n3 + 1/2

N3

b3, (2.21)

where n1, n2, and n3 = 0,· · ·, Ni-1 (i = 1∼3). Symmetry is used to map equivalent

k-points to each other, which can reduce the total number of k-points significantly gen-

erated by Eq. 2.23. The computed total energy will converge as the density of k points

increases, and the error due to the K-point sampling then approaches zero. In some sys-

tems, such as metal, a dense set of k points is required to determine the Fermi surface

precisely. Sometimes k·p method is used to reduce the computational cost of performing

a very dense k-points sampling.

2.4.4 Pseudopotential method

Although Bloch’s theorem states that the discrete plane waves can be used as the elec-

tronic wave functions, a plane-wave basis set is very poorly suited to the expansion of

electronic wave functions because a very large number of plane waves are needed to

expand the tightly bound core orbitals and to follow the rapid oscillations of the wave

functions of the valence electrons in the core region. An extremely large plane-wave

basis set would be required to perform an all-electron calculation and a vast amount

of computational time would be required, which is even impractical for real large sys-

tems. Thanks to the pseudopotential approximation, it allows the expansion of electronic

wavefunctions with much smaller number of plane wave basis sets.[92–94]

In most cases, the core electrons are not important in describing, for example, the nature
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Figure 2.1: Schematic illustration of all electron (dash line) and pseudopotentials (solid

line) and their corresponding wavefunctions.

of the bonding between atoms in a crystal; only the valence electrons surrounding the

core region contribute to it. The pseudopotential method neglects the core electrons and

strong ionic potential in the calculation, and replaces them by a fixed effective potential

that acts on a set of pseudo wavefunctions rather than the true valence wavefunctions,

as shown in Fig. 2.1.[95] The pseudopotential is introduced in such a way that there are

no radial nodes in the pseudo valence states in the core region while the pseudopotential

and pseudo wavefunctions are identical to the true electron wavefunction and potential

outside a cutoff rc.

One of the most frequently used pesudopotentials in first-principles calculations is the

norm-conserving pseudopotential developed by Bachelet et. al[96]. With norm-conserving

pseudopotentials, inside rc, the pseudo wavefunctions differ from the true wavefunctions

as stated above, but the norm is constrained to be the same as the true valence states:
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∫ rc

0

|ψps
n,k(r)|2dr =

∫ rc

0

|ψn,k(r)|2dr (2.22)

Norm-conserving pseudopotentials are very successful for solids of s, p-bond main

group elements, but they do not show very good results for first-row elements, transi-

tion metals and rare-earth elements due to the highly localized valence orbitals in these

elements, In 1990, Vanderbilt and co-workers proposed another type of pseudopoten-

tial which is named as ultrasoft pseudopotential.[97] In this pesudopotential, the norm-

conservation constraint is removed and the pseudo wavefunctions inside rc are required

to be as soft as possible, which greatly reduces the plane wave cutoff needed in calcu-

lations. In 1994, Blöchl developed the idea of “soft pseudopotential” in Vanderbilt’s

scheme, and proposed the “projector augmented wave” (PAW) method,[98] which has

smaller radii cutoffs (core radii), and also exactly reconstructs the valance wave function

with all nodes in the core region, thus it is widely adopted to calculate systems including

3d and 4f electrons.[99]

2.4.5 Minimization of the Kohn-Sham energy functional

To perform a total energy pseudopotential calculation, it is necessary to find the elec-

tronic states that minimize the KS energy functional. Indirect searching for the self-

consistent KS Hamiltonian can lead to instability because of the discontinuous changes

in KS Hamiltonian from iteration to iteration. These instabilities would be avoided if the

KS energy functional is minimized directly because the KS energy functional normally

has a well-defined energy minimum. It is necessary to find a computational method that

allows direct minimization of the KS functional in a tractable and efficient way.
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The conjugate-gradients (CG) technique provides a simple and effective procedure for

the implementation of such a minimization approach. To locate the energy minimum,

the initial search direction is taken to be the negative of the gradient at the starting point.

A subsequent conjugate direction is then constructed from a linear combination of the

new gradient and the previous direction that minimizes the functional. Although the CG

technique provides an efficient method for locating the minimum of a general functional,

it is important to implement the technique in such a way as to maximize computational

speed and to minimize the memory requirement. A CG method that fulfills these criteria

has been developed by Teter et al [100].

2.5 Transition state determination

In computational chemistry or condensed matter physics, the calculation of transition

rates, such as rates for diffusion or chemical reactions, is an important task. This kind

of calculation requires the investigation of the minimum energy path (MEP) between

the initial and final states. Once the MEP has been mapped out, the saddle point (the

maximum along the potential energy surface) and the activation energy barrier can also

be identified and evaluated (see Fig. 2.2). In such as way, it is possible to obtain accurate

estimates of the transition rates by using a purely statistical approach, namely, transition

state theory (TST).[101, 102]

In recent years, two different approaches to locate transition state have been successfully

used for studying surface reaction: (i) constrained minimization method.[103, 104] and

(ii) nudged elastic band (NEB) method.[105, 106] The idea of the first method is very
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simple: some subset of coordinates in the system of interest is used to define a reaction

progress variable (for instance, through linear interpolation of two end points). This

variable with one degree of freedom is changed stepwise from the initial value to the final

value, and at each step a full minimization is performed over the remaining 3N-1 degree

of freedom. To get a relatively accurate activation barrier, a very dense interpolation near

the the saddle point is needed. In NEB method, a chain of states (images) of the system

is generated between the initial and final states, and all the intermediate images are then

optimized simultaneously to search for the MEP. While the NEB method gives a discrete

representation of MEP, the energy of saddle points needs to be obtained by interpolation.

When the energy barrier is narrow compared with the length of MEP, few images exist

around the saddle point and the interpolation can be inaccurate. An improved NEB

method, called the climbing image NEB (CI-NEB) method was proposed.[107] In CI-

NEB method, the climbing image moves up the potential surface along the elastic band

and down the potential surface perpendicular to the band, and the other images in the

band serve to define the one degree of freedom for which a maximization of energy is

performed. As long as the CI-NEB method converges, the climbing image will converge

to the saddle point, which gives a good approximation of the barrier.

2.6 VASP software package

Vienna Ab-initio Simulation Package (VASP)[108] is developed for performing first-

principles calculations based on DFT using pseudopotentials and a plane wave basis

set. The interaction between ions and electrons is described by ultra-soft Vanderbilt

pseudopotentials (USPP) or by the projector-augmented wave (PAW) method. The basic
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Figure 2.2: Potential-energy curve. The activation energy represents the minimum

amount of energy required to transform reactants into products.

methodology is DFT, but VASP code also allows use of post-DFT corrections such as

hybrid functionals mixing DFT and Hartree-Fock exchange, many-body perturbation

theory (the GW method) and dynamical electronic correlations within the random phase

approximation. Forces and the full stress tensor can be calculated and used to relax

atoms into their instantaneous ground-state. VASP uses efficient matrix diagonalisation

schemes and an efficient Pulay/Broyden charge density mixing. VASP can perform both

the static and molecular dynamics simulations, offering information about total energies,

forces and stresses on an atomic system. VASP can also be used to optimize geometries,

to study the electronic, optical and phonon properties of materials.

Current, both transition state determination methods, i.e., constrained minimization method

and NEB method, have been successfully incorporated and implemented in the VASP

code, which enable its wide usage in theoretical community, especially in the field of

computational design of catalysis.
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Chapter 3

Effects of metal-insulator transition on

supported Au nanocatalysts

3.1 Introduction

Transition-metal (TM) oxides are often semiconducting or insulating with a definite

bandgap despite the fact that the TM compounds normally have partially filled d bands.

Metal-insulator transition (MIT) in TM oxides has been a continuous interest of research

in condensed matter physics due to its importance in both fundamental and technological

sides.[109] Current strategies in making such a transition in oxide materials, whether in

bulk or thin film form, can be realized by several ways: a) Chemical doping to shift the

Fermi energy (EF ) to conduction band or valence band owing to the infusion of charge

carriers, or to directly modulate the bandgap by altering electronic structures;[110, 111]

b) Reducing the ratio between on-site Coulomb interaction (U) and bandwidth of the
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system (W) to close the bandgap, which may be triggered by atomic-scale substitutions

or by application of external parameters such as pressure, heat, electric or magnetic

fields;[112, 113] c) By introducing structural disorder, such as spatial fluctuations in

strong electrostatic potential, to produce so-called Anderson transition even in a system

of non-interacting electrons.[114]

Strontium titanate (SrTiO3), a typical perovskite-type oxide compound and one of the

most widely used ceramic materials, is an excellent example for the study of MIT in ox-

ides. Experiments have shown that it exhibits fascinating variety of electronic properties,

ranging from insulating, semiconducting, metallic to superconducting behavior.[115,

116] Electron-doping in SrTiO3, with dopants such as La or Nb which substitute on

Sr and Ti sites, respectively, is a facile and widely-used technology to achieve such

transitions.[115, 117–122] For instance, experiments have clearly demonstrated that the

Nb/La doping concentration in SrTiO3 can be easily tuned, and the mobility of elec-

trons after MIT can be precisely controlled.[119] Recently, electron mobilities exceed-

ing 30,000 cm2V−1S−1 in La-doped SrTiO3 thin films were observed by Son et al.,[122]

indicating its great potential applications in electronics.

On the other hand, in the emerging field, nanocatalysis, where TM oxides are widely

used as supports or substrates for metal nanoclusters, effects of MIT in TM-oxide sub-

strate on catalytic activity of supported metal clusters have never been discussed. In this

chapter, via first principles methods based on density functional theory (DFT), we inves-

tigated the chemical reaction of CO oxidation catalyzed by TM-oxide supported metal

nanoclusters. Special attention is paid to effects of doping-induced MIT on adsorption

geometry, stabilization and catalytic activity of Au clusters.
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In this work, Au8 clusters supported on SrTiO3 (001) surface are chosen as model

catalysts for CO oxidation. Gold octamers (Au8) are probably the most studied Au

nanocatalysts, [21, 79, 123] due to their stability and unique catalytic activity identified

in experiments.[21, 130, 131] We investigated effects of the Nb-doping induced MIT

in SrTiO3 on the morphology, bonding geometry, and catalytic activity of Au8 clusters

supported on (001) surface of SrTiO3. We found that the MIT has strong effects on ad-

sorption of Au clusters, leading to a dimensionality crossover of the lowest-energy state

of the supported Au cluster (from the 3-dimensional structure to a planar one), and at the

same time, greatly enhances the catalytic activity of supported Au clusters, resulting in

the low barrier of catalyzed CO oxidation. These results open a new avenue for tuning

the catalytic activity of TM-oxide supported metal clusters.

3.2 Computational details

Our calculations were performed using the VASP code based on DFT,[108] with the pro-

jector augmented-wave method and general gradient approximation in Perdew-Burke-

Ernzerhof format.[124] Plane-waves with a kinetic energy cutoff of 400 eV were used as

the basis set. DFT is well known to significantly underestimate the bandgap of TM ox-

ides. We therefore used the GGA+U approach [125] to describe strong electron-electron

interactions between localized Ti d-electrons. It was found that GGA+U calculations

with U=8.5 eV and J=1 eV yield a reasonable bandgap of 3.0 eV for bulk SrTiO3 that

agrees well with the experimental value, 3.2 eV.[126] The SrTiO3 (001) surface was

modeled using a periodic slab with a mirror symmetry consisting of five alternating SrO

and TiO2 layers. We also tested 7 and 9 layers which give similar results. The 4×4
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surface supercell was chosen for Nb doping and Au8 cluster adsorption, and a vacuum

region of at least 20 Å in the direction normal to the surface was adopted. A 5×5×1

Monkhorst-Pack grid for of k-point sampling in the Brillouin zone was employed in

calculations. Reaction barriers were calculated by incorporating the constrained energy

minimization method[103, 104] into VASP. In this method, reaction barriers were cal-

culated in such a way that all degrees of freedom except the reaction coordinate are

allowed to be relaxed. In our calculations, the reaction coordinate is the distance be-

tween the C atom of the CO and the nearest oxygen atom of the oxygen molecule. All

atomic coordinates were fully relaxed until the force is less than 0.01 eV/Å.

3.3 Nb-doping induced metal-insulator transition in SrTiO3

Figure 3.1: (a) Density of states (DOS) for pristine SrTiO3 (001) surfaces (a,b) and Nb-

doped surfaces (c,d). Left panels (a,c) are for SrO-termination and right panels (b,d) for

TiO2-termination.Fermi energy has been set to zero.
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Electronic structures of Nb-doped bulk SrTiO3 have been extensively explored in both

experimental and theoretical work.[127, 128] While, in theoretical studies, more reliable

GGA+U calculations of (001) surfaces of doped SrTiO3 have not been reported before.

We first carried out GGA+U calculations for both the pristine and Nb-doped SrTiO3

(001) surfaces with SrO or TiO2 termination. In Fig. 3.1, we show the density of states

(DOS) for different cases. To simulate the doped surface with SrO (TiO2) termination,

Ti atoms in the second (third) layer of the surface slab are substituted by Nb atoms with a

doping concentration of 0.52% (0.48%). Our calculations show that the pristine surfaces

are essentially insulating (Figs. 3.1(a) and 3.1(b)), which agrees with previous theoreti-

cal studies[129] but with nearly 0.5 eV larger bandgaps due to the inclusion of the onsite

Hubbard repulsion. With the doping of Nb atoms, as shown in Fig. 3.1(c) and 3.1(d), for

both types of surface terminations, the Fermi level is shifted into the conduction bands,

resulting in the metal-insulator transition. Higher doping concentrations were also stud-

ied, and it is found that in general, higher doping concentrations lead to the further shift

of Fermi level into the conduction band and “more” metallicity. We also performed

standard LDA+GGA (without U) calculations, and results show that the doping-induced

MIT is independent of U term, although with significantly underestimated bandgaps for

the undoped cases. Work function (WF) is an useful physical quantity in evaluating the

reactivity of the surface. We calculated WFs of these surfaces as the difference between

the vacuum level and Fermi level, and found that there is a gradual decrease of WFs

with increasing Nb doping concentrations. For instance, when the doping concentration

increases from 0% to 2.08% (1.92%) for SrO (TiO2)-terminated surface, WF decreases

from 3.8 eV (4.7 eV) to around 1.4 eV (3.3 eV), suggesting the enhanced reactivity of

these SrTiO3 (001) surfaces due to the MIT.
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3.4 MIT-controlled dimensionality crossover of supported

gold nanoclusters

After examining the Nb-doping induced MIT in SrTiO3, we then studied the adsorption

of Au8 clusters on SrTiO3 (001) surfaces. Two isomers of Au8, a three dimensional

(3D) one and another planar (P) one, as shown in Figs. 3.2(a) and 3.2(b), were consid-

ered. Literatures have shown that in the gas phase, Au8 with planar structure is more

table than the 3D one.[123] However, when absorbed on metal oxides, the 3D isomer

is normally the most stable structure,[72, 74, 131] which is attributed to the bonding

and charge transfer effects. We have considered various adsorption sites and configura-

tions in searching for ground-state structures. The most stable (ground-state) adsorption

structures are presented in Figs. 3.2(c-f). Our calculations show that for Au8 clus-

ters adsorbed on pristine surfaces, 3D isomer is always energetically favored over the

planar one, in agreement with literatures. On SrO-terminated surface, the 3D Au8 is ad-

sorbed with three Au atoms binding with O atoms in the surface (see Fig. 3.2 (c)), with

an adsorption energy around 3.07 eV. For the case of TiO2 termination (Fig. 3.2(d)),

the adsorption is weaker with the adsorption energy 1.22 eV. The different adsorption

energies on two surfaces are consistent with their different work functions: The WF of

SrO-terminated surface is 0.9 eV lower than that of the TiO2-terminated one. In compar-

ison, the adsorption energies of the P isomer is much lower than their 3D counterparts,

being 2.56 eV and 0.84 eV for SrO and TiO2 terminations, respectively. When adsorbed

on Nb-doped SrTiO3 surfaces, interestingly, the planar isomer becomes more stable.

Lowest-energy configurations with the doping concentration 2.08% for SrO termination

and 1.96% for TiO2 termination are shown in Figs. 3.2(e) and 3.2(f), respectively. In
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Figure 3.2: Atomic configurations of 3D (a) and P (b) isomers of Au8 clusters in gas

phase. Lowest-energy absorption structures on SrO or TiO2 terminated SrTiO3 (001)

surfaces with or without Nb doping (c-f). Note that for both termination types, without

doping, the 3D isomer is more stable (c,e), and when doped with Nb with the doping

concentration 2.08% for SrO termination and 1.96% for TiO2 termination, the P isomer

is more stable (d,f).
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Figure 3.3: (a) Total energy difference between 3D and P isomers of Au8 clusters ad-

sorbed on SrO (left panel) or TiO2 (right panel) terminated SrTiO3 (001) surfaces under

different Nb doping concentrations. The energy difference is defined as Ep-E3D. (b)

Charge transfer from the surface to the supported cluster as a function of doping con-

centration.
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these cases, all Au atoms are bonded with O atoms in the surface, and the adsorption

energy is higher than their 3D counterparts by 1.1 eV and 0.22 eV for SrO and TiO2

terminations, respectively.

The increase in the doping concentration was found to increase the energy difference

between the planar and 3D structures, indicating the doping enhanced stability of the

planar isomer relative to that of the 3D one. In Fig. 3.3(a), we showed the variation

of the total energy difference between two isomer adsorption, Ep-E3D, as a function of

Nb doping concentration for both of the two surface terminations. For both termination

types, without doping, the 3D one is more stable as suggested by the positive value of

the energy difference. For both terminations, the energy difference becomes negative

with a Nb doping concentration around 0.3%, indicating that the planar isomer becomes

more stable. When the doping concentration further increases from 0.5% to around

1.9%, the absolute value of the energy difference increases from 0.4 eV to more than

1.2 eV for SrO termination, and from 0.1 eV to about 0.4 eV for TiO2 termination. The

variation of the energy difference is consistent with the change of the charge transfer

(analyzed by Bader method[132]) between SrTiO3 and supported Au clusters as shown

in Fig. 3.3(b), from which we can see that when the doping concentration increases, the

charge transfer between the P isomer and SrTiO3 increases significantly faster than that

of the 3D case, resulting in enhanced stability of the supported system with P isomer.

Specifically, for Au8 adsorption on SrO termination, without Nb doping, about 0.95e

(1.0e) is transferred from oxide substrate to the supported metal clusters with 3D (P)

structure. With increasing doping of Nb, charge transfer increases significantly for both

structures and becomes about 1.5e (2.1e) for 3D (P) structure. Similar effects were also

observed on TiO2 termination, of which the charge transfer from SrTiO3 to Au8 is about
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0.1e for both 3D and P cases. When more Nb atoms are doped, charge transfer to the P

structure increases rapidly and reaches 0.9e when the doping concentration is 1.8%, but

for 3D structure, the charge transfer increases just minimally and remains about 0.15e

with increasing dopants.

Table 3.1: Adsorption energies (in eV) of Au8 clusters on SrO or TiO2 terminated

SrTiO3 (001) surfaces under different Nb doping concentrations.

Nb concentration SrO TiO2

3D P 3D P

0% -3.07 -2.56 0% -1.21 -0.84

0.52% -3.16 -3.35 0.48% -1.12 -0.98

1.04% -3.32 -4.15 0.96% -1.17 -1.18

2.08% -3.65 -4.73 1.92% -1.07 -1.29

In Table 3.1, we list the adsorption energies of both 3D and P isomers for different sur-

face terminations and doping concentrations. Here, the adsorption energy Ead is calcu-

lated from, Ead=EAu8/SrTiO3(001)-(EAu8+ESrTiO3(001)), where EAu8/surface, EAu8 and Esurface de-

note the energies of the relaxed Au8-substrate systems, of Au8 clusters in the gas phase,

and of the the clean surfaces, respectively. We can see that the adsorption energies for

both 3D and P structures on SrO termination is larger than on the TiO2 termination, by

around 1.8 eV and 1.7 eV for two structures, due to the different reactivity of the two

terminations. In addition, there is an enhanced stabilization of metal clusters with Nb

doping in general, from 3.07 eV (2.56 eV) to 3.65 eV (4.73 eV) for 3D (P) structure on

SrO termination, and from 0.84 eV to 1.29 eV for P structure on TiO2 termination. Inter-

estingly, the adsorption energy of P isomer on both terminations increases much faster

than the 3D counterparts, thus resulting in a doping induced dimensionality crossover.
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Figure 3.4: Side (upper panels) and top (lower panels) views of isosurfaces of differential

charge density (isovalue=0.02 e/Å3) for lowest-energy states of Au8 clusters adsorbed

on SrO (a, b) and TiO2 (c,d) terminated surfaces. Note that the 3D and P isomer of Au8

cluster correspond to cases with and without Nb doping, respectively. The differential

charge density is calculated by: ∆ρ=ρ(Au8@SrTiO3(001))-(ρAu8+ρSrTiO3(001)). Blue and red

colors indicate electron depletion and accumulation, respectively.

To see more clearly the MIT effects on the electronic structures of SrTiO3 supported

metal clusters, we plot the charge redistribution of the ground-state configurations for

both pristine and Nb-doped surfaces in Fig. 3.4. It clearly shows that the supported

Au clusters are negatively charged, and the charge redistribution mainly occurs at the

contact region for all cases. The bonding between Au clusters and SrTiO3 (001) surfaces

involves d orbitals of Au atoms and 2p orbitals of neighboring O atoms, as shown in the

interfacial region. It is also clear that compared to the case of Au clusters adsorbed on

insulating surfaces (undoped cases), when adsorbed on metallic SrTiO3 surfaces (doped

cases), significantly more electrons are accumulated on Au8 clusters (P configuration

in this case), which is consistent with the Bader charge analysis (Fig. 3.3(b)). Note

that this MIT-induced charge redistribution is different from Au nanoclusters adsorbed
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on MgO/Mo(001) or other thin film systems, for which the charge accumulation of Au

clusters and/or cluster-oxide interfacial region originates from the electron tunneling

through oxide thin film from the underlying metal substrate,[72]; It also differs from

the external electrical field driven charge distribution in oxide-supported metal cluster

systems.[76]

3.5 Effects on the catalytic activity of supported Au clus-

ters

It is widely accepted that the activation of molecular oxygen (O2) is a crucial step

for the aerobic oxidation reaction over gold catalysts, as shown in previous theoreti-

cal studies.[133, 134] The electronic charge transfer from gold nanoclusters to adsorbed

O2 results in the formation of peroxo- and superoxo-like species that are capable for se-

lective oxidation of many chemical substances. Therefore, we then examine how the

doping induced metal-insulator transition affects the O2 adsorption on Au8@SrTiO3

(001) system. Our results show that the adsorption of O2 can be greatly enhanced by

Nb-doping induced metal-insulater transition. Taking TiO2-terminated surface that is

often observed in experiments as an example, without doping, the O2 molecule does not

bind to Au8 clusters supported on the surface, similar to the case of Au8 on pristine MgO

(001) surface, [21, 79] and after doping, O2 binds strongly on the Au cluster, with an

adsorption energy around 0.9 eV under the doping concentration of 1.92%. The effects

of MIT on O2 adsorption can be understood by electronic structures of the adsorbed
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Figure 3.5: Local density of states (LDOS) projected onto the O2 molecule and the

Au8 cluster for O2@Au8@SrTiO3(001) for TiO2-terminated surface without doping (a)

and with Nb doping (1.92% of concentration) (b). Note that for the case without dop-

ing, the O2 molecule is spin polarized. In the inset, the isosurface of charge redis-

tribution is shown. The charge redistribution is calculated by: ∆ρ=ρ(Au8@SrTiO3(001))-

(ρAu8+ρSrTiO3(001)). Blue (red) color indicate electron depletion (accumulation). Fermi

energy is set to zero.

system as plotted in Fig. 3.5. Local density of states (LDOS) projected on the Au clus-

ter and O2 molecule for the case of Au8@SrTiO3 without Nb doping are shown in Fig.

3.5(a). In this case, the Au cluster adsorbed surface is insulating with a bandgap around

2.5 eV . Both HOMO and LUMO orbitals of the O2 molecule (2π∗ orbital of both spin

channels) are deep inside the bandgap, close to the Fermi energy and far away from

the valence and conduction bands of the supported Au cluster. The similar electronic
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structures of O2 compared to that of the molecule in the gas phase, suggests that the

interaction between the molecule and the cluster is very weak. On the other hand, after

doping, the Fermi energy of the surface is shifted into conduction bands, leading to the

metal-insulator transition. As a consequence, the LUMO orbital of O2 molecule (unoc-

cupied 2π∗ of spin-down channel) lies inside the conduction bands of the surface and the

Au cluster also. The strong interaction between the unoccupied 2π∗ orbital of O2 and

Au conduction bands leads to the population of electrons from Au cluster to O2, pulling

the 2π∗ of O2 down below the Fermi energy, as shown in LDOS of Fig. 3.5(b). Note that

in this case, the O2 molecule is not spin-polarized any more, like a peroxo-type struc-

ture. This metal-insulator-transition induced charge transfer can be further confirmed by

the isosurface of charge redistribution plotted in the inset of the figure, from which the

charge transfer from Au to 2π∗ of O2 can be clearly seen. Our calculations show that

nearly 0.9 electrons transferred to O2 in this case. Due to the charge transfer, the O-O

bond is elongated to 1.43 Å from the gas phase value of 1.23 Å.

On the SrTiO3 (001) surface with SrO termination, our calculations show that O2 molecule

can be adsorbed on the Au8 cluster with an adsorption energy of 0.82 eV and O-O bond

around 1.38 Å. With 2.08% of Nb dopant in the surface, the adsorption energy is further

increased to 1.36 eV and O-O bond of O2 molecule is enlarged to 1.52 Å. These results

indicate that the doping induced MIT in SrTiO3 has strong effects on the reactivity of

supported metal clusters towards O2 activation, no matter whether the surface is SrO- or

TiO2-terminated.

The significantly elongated O-O bond suggests the activation of the O2 molecule. We

then calculated the reaction barrier of catalyzed CO oxidation. The full cycle of the

catalyzed CO oxidation has two steps. The first step is the reaction that breaks the O-O
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Figure 3.6: (a) The initial state of LH mechanism of CO oxidation catalyzed by TiO2-

terminated Au8/SrTiO3 (001) surface with Nb doping of 1.92%: d(O1-O2)=1.43 Å, d(C-

O1)=2.74 Å. (b) The transition state: d(O1-O2)=1.51 Å, d(C-O2)=1.80 Å. (c) The final

configuration with the formation and desorption of CO2. (d) The energy profile along

the reaction coordinate.

bond of O2 and forms a CO2 molecule, which is the major rate-limiting step and can

be described as CO+O2 −→ CO2+O. The second step is the oxidation of another CO

molecule that brings away the leftover O atom and restores the catalyst to its original

configuration before the reaction (CO+O −→ CO2). The reaction barrier of the second

step normally is low. Two mechanisms of the reaction were investigated. One is the

Langmuir-Hinshelwood (LH) type of reaction for which the CO molecule is adsorbed

on the surface before the reaction, and the other one is the Eley-Rideal (ER) mechanism

for which the CO molecule approaches the O2 directly from free space. Our calcula-

tions predicted low barriers for both LH and ER reactions. In Fig. 3.6, we show the

energy profile along the reaction coordinate for the first step of LH type of CO oxidation

49



Chapter 3. Effects of metal-insulator transition on supported Au nanocatalysts

Figure 3.7: (a) The initial state of ER mechanism of CO oxidation catalyzed by the

system as shown in Fig. 3.6: d(O1-O2)=1.43 Å, d(C-O1)=2.65 Å. (b) The transition

state: d(O1-O2)=1.50 Å, d(C-O2)=1.90 Å. (c) The final configuration with the formation

and desorption of CO2. (d) The energy profile along the reaction coordinate.

catalyzed by Au8 cluster (P isomer) adsorbed on TiO2-terminated SrTiO3 (001) surface

(with 1.92% of Nb doping). Atomic configurations of initial, transition and final states

are also shown in the figure. The reaction barrier Eb in this case is estimated to be around

0.18 eV. The first step of ER type of reaction catalyzed by the same system is predicted

to have a barrier about 0.2 eV. The atomic configurations for different reaction states and

the energy profile along the coordinate are shown in Fig. 3.7.

Detailed analysis of the second step of the reaction (see Fig. 3.8) shows that the barrier

is low (around 0.1 eV) as expected, indicating that the remaining oxygen atom is indeed

very reactive. We also calculated the reaction barriers for CO oxidation catalyzed by

Au8 cluster on Nb-doped SrO-terminated surface. It is found that the reaction barrier
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Figure 3.8: (a) The initial state of second step of CO oxidation with the remaining O

atom by the system as shown in Fig. 3.6: d(C-O1)=3.28 Å. (b) The transition state:

d(C-O2)=2.0 Å. (c) The final configuration with the formation and desorption of CO2.

(d) The energy profile along the reaction coordinate.

for the first step of CO oxidation for this case is around 0.12 (0.22) eV for the LH (ER)

mechanism (see Figs. 3.9 and 3.10), and for the second step CO+O −→ CO2, a similar

low barrier (∼ 0.1 eV) as on TiO2 termination is predicted.

3.6 Chapter summary

As metal-based heterogeneous catalysis is a subject of multi-disciplinary subject that

calls for knowledge from physics, chemistry and other fields, it would be interesting

and important if we can apply concepts in physics to the design and control materials in

catalysis chemistry. In this work, via ab initio calculations, we demonstrated the effects
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Figure 3.9: (a) The initial state of LH mechanism of CO oxidation catalyzed by SrO-

terminated Au8/SrTiO3 (001) surface with Nb doping of 2.08%: d(O1-O2)=1.52 Å, d(C-

O1)=2.46 Å. (b) The transition state: d(O1-O2)=1.56 Å, d(C-O2)=1.75 Å. (c) The final

configuration with the formation and desorption of CO2. (d) The energy profile along

the reaction coordinate.

of doping induced metal-insulator transition in SrTiO3, which is an important concept in

condensed matter physics, on tuning the physical/chemical properties of supported Au

nanocatalysts, which have never been discussed before.

We found that the Nb-doping induced metal-insulator transition significantly increases

the chemical reactivity of SrTiO3 surface that can be seen from the decrease of work

function of the surface. The increased reactivity of the surface in turn causes the sta-

bilization and dimensionality change of supported Au clusters. This can be understood

as follows: Upon the doping induced MIT in SrTiO3, the interaction between the Au

clusters and the SrTiO3 surface becomes much stronger, and as a result, the planar Au
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Figure 3.10: (a) The initial state of ER mechanism of CO oxidation catalyzed by the

system as shown in Fig. 3.9: d(O1-O2)=1.52 Å, d(C-O1)=2.86 Å. (b) The transition

state: d(O1-O2)=1.53 Å, d(C-O2)=1.90 Å. (c) The final configuration with the formation

and desorption of CO2. (d) The energy profile along the reaction coordinate.

clusters are preferred because of their large interface area. This mechanism is different

from the methods by using an ultrathin film of MgO on an underlying metal substrate

as the support or by placing the adsorbed systems in an electric field with a strength of

the order of 1V/nm. Chemical-doping of oxide substrate may provide a more practical

way to tune the morphology of supported clusters, and thus the mechanical, chemical,

magnetic and thermal properties of these clusters can be also controlled.

The MIT in oxide were also found to greatly enhance catalytic activity of these clusters.

On Au8@SrTiO3 for both SrO and TiO2 terminations, with Nb doping, small reaction

barriers of ∼0.2 eV were predicted for CO oxidation, indicating that this catalyzed reac-

tion can readily happen at room temperature. Underlying the low barrier of CO oxidation
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is the MIT induced interaction between O2 antibonding 2π∗ orbital and Au conduction

bands, which leads to the population of electrons from Au to the antibonding orbital and

the activation of the O2 molecule. In present work we only studied SrTiO3 substrate

with the dopant of Nb, we believe that other oxides exhibiting MIT and using other

dopants would also work. Besides doping, as discussed earlier, there are many other

mechanisms that can also lead to the metal-insulator transition in oxide materials, such

as defects [135], external field [136], and pressure.[137] We believe that the predicted

strong effects of metal-insulator transition on catalytic activity of supported Au clusters

are general (not limited to the doping mechanism), which provides a new methodology

for the control of catalytic performance of TM-oxide supported metal clusters.
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Chapter 4

Strain engineered stabilization and

catalytic activity of metal nanoclusters

on graphene

4.1 Introduction

In metal-based heterogeneous catalysis, strain is often introduced by changing the sur-

face structure or by alloying. The effects of strain are often termed “electronic” and

“geometric” effects.[138] The electronic effects originate from the local electronic struc-

tures of the surface that interact with the molecule reactants, which may be described in

the d-band model.[139, 140] The geometric effect is “the rest”, which is often related

to the coordination number of adsorbate with respect to the surface atoms. The strained

surfaces can be realized experimentally through ion implantation by a noble gas[141], or
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involving evaporation of one metal into another (alloying).[142] For instance, pseudo-

morphic growth of one metal monolayer on the other yield highly strained surfaces.[143]

In this context, Nilekar et al.[144] used a combination of DFT calculations and an array

of experimental techniques including in situ X-ray absorption spectroscopy to synthesize

and test a class of bimetallic and ternary Pt-based alloys for oxygen reduction catalysis,

and they found that strain mediated reactivity of Pt-monolayers on various supporting

metals results in a optimization of oxygen binding energy in a way that the surface fa-

cilitates bond-making and bond-breaking reactions simultaneously. Kibler et al.[145]

tried to tune the reaction rates of formic acid electrooxidation by lateral strain in a Pd

monolayer grown on other metal surfaces. Aside from metal surface, strain effect on

alloy metal nanoparticles were also reported. For instance, Strasser et al. reported the

lattice-strain control of the activity in dealloyed core-shell Pt-Cu bimetallic nanoparti-

cles, which has important applications in fuel cell catalysts.[146] More studies may be

found in this direction (e.g. see Refs.[147–149]) and now lattice strain is regarded as a

promising way to tune the properties of catalysts.

Despite these studies, using applied strain in the substrate to tune the performance of

supported metal particles has never been discussed. For supported metal nanocatalysts,

it will be interesting if we can control the properties of supported metal particles by mod-

ifying strain in the underlying support, because once the metal particles are deposited,

it is difficult to directly apply strain in these clusters. In this chapter, we present an

investigation aiming at controlling the stabilization and reactivity of metal nanoclusters

adsorbed on substrate by tuning the mechanical strain of the underlying support. Here,

graphene is chosen as catalyst support, due to the fact that it has excellent mechanical

properties. Experiments have shown that a tensile strain up to 15% can be achieved in
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graphene.[150, 151] Recent studies have shown that a 10% of strain can have significant

effects on electronic or optical properties of graphene, which could lead to exciting new

applications.[152, 153] For instance, Guinea et al. found that a designed strain could

induce strong gauge fields that effectively act as a uniform magnetic field exceeding 10

T.[152] Wang et al.[154] and Wei et al.[155] found that the electric and thermal conduc-

tivity in graphene could be largely controlled by strain engineering.

In the current work, we focus on the effects of strain in graphene on the adsorption

and reactivity of supported metal clusters that has never been discussed before. We

show that a relatively small tensile strain (around 5%) applied in graphene can signif-

icantly enhance the stabilization of different kinds of metal clusters adsorbed on the

graphene sheet and greatly reduce the reaction barrier of CO oxidation catalyzed by

those nanoclusters. These findings may have important applications in the future design

of graphene-based metal nanocatalysts.

4.2 Models and computational details

In this work, five different metal clusters, Pt4, Ag7, Pd9, Al13, and Au16, which are

often chosen in literature[156–158, 162, 163, 196] as examples of metal nanocatalysts,

were considered. In Fig. 4.1, we show a schematic view of different metal clusters

adsorbed on a stretched graphene sheet. The applied strain is defined as ε = ∆a/a0,

where the lattice constants of unstrained and strained supercell equal to a0 and ∆a + a0,

respectively. Among all kinds of isomers of these clusters, we are mainly interested in

those lowest-energy configurations as shown in the figure. The uniform tensile strain is
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Figure 4.1: Schematic view of various metal clusters adsorbed on a stretched graphene

sheet. Arrows show directions of stretching; Inset: The strain is applied uniformly in

graphene along both zigzag and armchair directions.

applied in graphene along both zigzag and armchair directions as shown in the inset of

the figure. We have considered different adsorption geometries and only the most stable

optimized structures are considered and used for the calculation of chemical reaction.

First-principles electronic structure calculations are based on density functional theory

using VASP package.[108] Reaction barriers under different strains were calculated by

incorporating the constrained energy minimization method into VASP.[103, 104] The

theoretical calculations were performed with a plane wave basis (30 Ry for the kinetic
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energy cutoff), a 6x6 k-point sampling of Brillouin zone, and a scalar relativistic ultra-

soft pseudopotential for transition metals.[97] In all calculations, the local spin den-

sity approximation and generalized gradient approximation in Perdew-Burke-Ernzerhof

format[124] was included. A supercell that includes 6x6 unit cells of graphene (72

atoms) with periodical boundary conditions, and a vacuum region of 20 Å in the direc-

tion normal to the graphene plane (Z direction) was employed. In optimizing atomic

structure, the force convergence criterion was set to 0.01 eV/Å.

4.3 Results and discussion

4.3.1 Strain weakening of C-C bonds in graphene

Figure 4.2: Band structures of the pristine graphene for two cases: 0% of strain (left

panel), and 5% of strain (right panel). Red curves are from tight-binding calculations.

In the beginning, it is helpful to look at effects of such mechanical strain on electronic
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properties and chemical reactivity of graphene that may have strong influences on cat-

alytic activity of supported metal clusters. In Fig. 4.2, we show band structures of the

pristine graphene under two different strains on the left panel (0% of strain) and the

right panel (5% of strain) respectively. Black solid curves in the figure are from DFT

calculations. Since the uniform strain as shown in Fig. 4.1 doesn’t break the symmetry

between two sublattices A and B, the graphene under strain is still gapless as we can

see from the figure. The two band structures look similar except that the width of those

bands significantly decreases for the case of 5% of strain. This can be understood by

the fact that the interaction between carbon atoms becomes much weaker under strain.

We are mostly interested in π and π* bands near the Fermi energy which determine the

chemical reactivity of graphene. In order to see strain effects on these two bands more

clearly, we considered a single-orbital (2pz of carbon) nearest-neighbor tight-binding

model as shown below,

Ĥ =
∑
i

ε0(a
†
iai + b†ibi)−

∑
i,j

t(a†ibj + h.c.), (4.1)

where ai†, ai(bi
†, bi) denote the creation and annihilation of one electron in 2pz orbital

on the i’th carbon atom in the sublattice A (B), respectively. The hopping parameter

t represents the coupling strength between 2pz orbitals of two nearest-neighbor carbon

atoms, one in sublattice A and another one in sublattice B. The term ε0 is the onsite

energy of the electron on the 2pz orbital of each carbon atom. These two parameters,

t and ε0, can be fitted by DFT calculations. Red curves in Fig. 2a are from tight-

binding calculations. Due to the neglect of hybridization between the 2pz and other

orbitals, the tight-binding model gives symmetrical π and π* bands with respect to the
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Fermi energy, and these bands agree well with DFT calculations around Dirac points as

expected. In these calculations, the hopping parameter for the case of zero strain is set

to be 2.6 eV, and under the 5% of strain, the hopping term is fitted to be 1.9 eV. The

difference between these two hopping energies, 0.7 eV, is very significant and clearly

suggests that a small strain of 5% in graphene greatly weakens the π binding between

carbon atoms, which may strengthen the interaction between the carbon 2pz orbital and

molecular orbital of adsorbed clusters, and in turn may greatly enhance the chemical

reactivity of graphene.

4.3.2 Stabilization of metal clusters by strain

As the chemical reactivity of graphene can be affected by strain, we then examine the

adsorption of various kinds of metal clusters on graphene and see how the applied strain

can influence the properties of absorbed metal clusters. Without strain, except for Pt4

and Pd9 cluster, other three metal clusters under study are weakly adsorbed on graphene

with adsorption energies around 0.4 eV, 0.2 eV, and 0.3 eV for Ag7, Al13, and Au16,

respectively. The adsorption energy of Pt4 and Pd9 cluster on graphene is calculated to

be 1.3 eV and 1.0 eV. The difference in interaction between graphene and different metal

clusters can be attributed to the intrinsic reactivity of these metal clusters, which is also

found by Tomak et al.[165] Another relevant quantity besides the adsorption energy

is the cluster-graphene adsorption distance that is defined as the distance between the

graphene plane and the atom closest to the plane in the adsorbed cluster. This distance

for the case of 0% of strain is found to be about 2.2 Å, 2.2 Å, 2.6 Å, 3.4 Å, 3.7 Å for Pt4,

Ag7, Pd9, Al13, and Au16 clusters, respectively. The relatively small adsorption energies

61



Chapter 4. Strain engineered stabilization and catalytic activity of metal nanoclusters
on graphene

on graphene, compared to the cohesive energies in their bulk form, indicates that these

clusters are highly mobile on graphene and tend to form bigger clusters. Similar results

were also reported for metal clusters adsorption on other carbon nanomaterials, such as

fullerene[160] and carbon nanotubes (CNTs),[161] for which the adsorption energies

were found to be relatively small on pristine carbon structures, leading to clustering

problems.

In Fig. 4.3, we show changes of cluster-graphene adsorption distances and adsorption

energies for different metal clusters under different uniform strains. In general, for all

metal clusters under study, the cluster-graphene adsorption distance decreases and the

adsorption energy increases with strain. Specifically, the adsorption distances of Al13

and Au16 that have the largest cluster-graphene distance under zero strain, 3.4 Å and 3.7

Å, respectively, drop significantly with applied strain, reaching about 2.3 Å and 2.5 Å

under a strain of 10%. The adsorption distance of Ag7 cluster decreases about 0.2 Å

under 10% of strain and Pt4, Pd9 decreases minimally (∼ 0.1 Å). The shortened distance

between adsorbed clusters and graphene under 10% of strain (< 2.5 Å) suggests that

more chemical bonds may be formed. Moreover, when the strain changes from 0%

to 10%, adsorption energies of all clusters increase by at least 100%. In particular,

adsorption energies increase by about 280%, 250%, 220%, 150%, 140% for Al13, Pt4,

Ag7, Pd9, Au16, respectively. Actually, as we can see from the figure, significant changes

of cluster-graphene adsorption distances and adsorption energies start to occur at small

strain of 5% for all clusters, indicating the significant strain-enhanced stabilization of

these metal clusters on graphene. In Fig. 4.4, we show the detailed atomic configurations

of these metal clusters adsorbed on graphene under the strain of 5%. Compared to

the metal clusters adsorbed on strain-free graphene, it shows that on strained graphene,
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metal clusters can be adsorbed with stronger covalent bonds.

Figure 4.3: Left Panel: The variation of the adsorption distance (d) between the ad-

sorbed cluster and graphene under different strains. Right Panel: The relative change of

adsorption energy of different metal clusters on graphene. E0
ad is the adsorption energy

for zero strain, and △Ead is the change of the adsorption energy under strain relative to

that of zero strain.

4.3.3 Tuning the charging state

The strong effect of strain in graphene on the adsorption of metal clusters implies the

strain-dependent electronic properties of this kind of graphene-based systems. Next,

we study the strain effects on electronic structures and reactivity of metal clusters sup-

ported on graphene. For support-induced reactivity, Au16 may be the most interesting

one among all clusters under study because previous studies have shown that both neu-

tral and negatively charged Au16 clusters are not reactive in vacuum,[163] so it is the

best one to demonstrate effects of the underlying support. To illustrate the strain effects
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Figure 4.4: Local structures for (a) tetrahedral Pt4, (b) pentagonal bipyramid Ag7, (c)

triangular prismatic Pd9, (d) icosahedral Al13 and (e) hollow cage Au16 clusters adsorbed

on a graphene sheet under a strain of 5%. The strain is applied in graphene both along

zig-zag and armchair directions, as shown in the inset of Fig. 4.1.

on electronic properties of Au16@graphene, we plot band structures of this system for

two cases, 0% and 5% of strain, in left and right panels of Fig. 4.5(a), respectively.

For 0% of strain, from the band structure, we can clearly see that in this case, electrons

are transferred from graphene to Au16, resulting in the downward shift of the Fermi

energy from the Dirac point of the pristine graphene. The integration of the differen-

tial charge density above the plane cutting through the middle point of bonds between

Au and graphene (see Fig. 4.5(b)) shows that around 0.2 electrons are transferred from

graphene to Au16, making Au clusters slightly negatively charged, which is in agree-

ment with previous experimental and theoretical works.[164, 165] The enlarged view of

the energy levels of HOMO, HOMO-1, HOMO-2 of the Au16 cluster (flat bands), and

the Fermi level of the whole system is also shown in Fig. 4.5(a). The linear behavior

of the bandstructure around Dirac point resembles that of the pristine graphene, sug-

gesting that the interaction between Au16 and graphene in this case is weak. Note that
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the Dirac point in this case appears at the center of the Brillouin zone due to the band

folding in the supercell. Interestingly, when a 5% of strain is applied, the HOMO level

of Au16 for the case of zero strain is shifted upward to be well above the Fermi level,

leading to significant charge transfer from Au16 to graphene. Indeed, the same charge

analysis shows that about 2.2 electrons in this case populated from the Au cluster to

graphene, resulting in positively charged Au16 clusters on graphene. The drastically dis-

torted graphene band structure indicates the strong strain-induced interaction between

graphene and Au16, which breaks the symmetry between π and π* bands at Dirac point,

leading to a band gap around 0.4 eV. Thus, a small strain of 5% in graphene reverses

the charge transfer between Au clusters and graphene, indicating the effective p-type

or n-type doping of graphene may be efficiently controlled by Au cluster adsorption

with external applied mechanical strain. Compared with other methods related to the

electronic doping of graphene, such as the adsorption of organic molecules with dif-

ferent electron affinities,[166, 167] or the contact of metal surface with different work

functions,[168], mechanical strain proposed here may provide a novel way for efficient

doping of graphene.

In Fig. 4.5(b), we plot the isosurface of differential charge for Au16@graphene under 5%

of strain. In the figure, the red (blue) color denotes the accumulation (depletion) of elec-

trons. Clearly, the strain-induced charge redistribution mainly occurs in the contact re-

gion between the cluster and graphene, originating from the strain-enhanced hybridiza-

tion between carbon 2pz and Au 5d orbitals, which is consistent with our analysis based

on tight-binding calculations that the significantly weakened π binding in graphene may

enhance the interaction between carbon 2pz orbital and adsorbed clusters.
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Figure 4.5: (a) The band structure of Au16@graphene under zero strain (left panel) and

5% of strain (right panel). Inset: Enlarged view of energy levels of HOMO, HOMO-1,

HOMO-2, of Au16, and the Fermi level (dotted line) of the whole system. (b) Isosur-

face of the differential charge for Au16@graphene when the graphene sheet is under a

5% of tensile strain. The differential charge density is calculated by ∆ρ=ρ(Au16@graphene)-

(ρAu16+ρgraphene). (c) Isosurface of charge redistribution for an O2 molecule (in red) ad-

sorbed on Au16@graphene under the 5% of strain. The differential charge in this case is

calculated by ∆ρ=ρ(O2+Au16@graphene)-(ρO2+ρAu16@graphene). The isovalue is set to 0.02e/Å3.

The accumulation (depletion) of electrons is in red (blue).
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4.3.4 Strain engineering catalytic activity

We then probe the catalytic activity of strain-induced positively charged Au16 clusters

on graphene using the chemical reaction of CO oxidation. We first investigate the strain

effects on adsorption of O2 molecule on Au16@graphene. As shown in Table 4.1, at

strains less than 5%, O2 molecule doesn’t bind to any position of Au16. When the strain

changes from 5% to 10%, the adsorption energy of O2 increases from 0.2 to around 0.5

eV. In Fig. 4.5(c), we plot the isosurface of the differential charge after the adsorption

of O2 on Au16@graphene for the case of 5% of tensile strain, from which we can see the

population of electrons from Au16 onto the antibonding 2π* orbital of O2, leading to the

greatly enlarged O-O bond length ( 1.42 Å) compared to its gas-phase value of 1.23 Å,

resulting in the activation of O2 molecule. The Bader charge analysis[132] shows that

about 0.7 electrons transferred to O2 when the strain is 5% or higher (Table 1).

After the adsorption of O2, there is no co-adsorption of CO molecule on neighboring

sites of Au16. We therefore focused on the Eley-Rideal mechanism of CO oxidation,

CO+O2 −→ CO2+O. For small strain (less than 5%), the reaction barrier of the CO

oxidation is about the same as un-catalyzed reaction in vacuum, which is calculated to

be around 3 eV, indicating that no reaction will happen at low temperature when there

is no strain. When the strain is 5% or higher, the reaction barrier of ER mechanism of

catalyzed CO oxidation, Eb, is estimated to be around 0.15 eV (see Table 1), which is

regarded as a very low barrier. In Fig. 4.6, we show the energy profile along the reaction

path and the detailed atomic configurations of the initial state, transition state, and final

state. The low barrier of CO oxidation for strain 5% or higher is due to the strain-induced

charge population onto the antibonding 2π* orbital of O2 as shown in Fig. 4.5(c). The
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Figure 4.6: (a) The optimized initial state of ER mechanism of CO oxidation catalyzed

by Au16@graphene under a tensile strain of 5%: d(O1-O2)=1.41 Å, d(C-O1)=2.85 Å.

(b) The transition state: d(O1-O2)=1.55 Å, d(C-O2)=1.80 Å. d(C-O)=1.18 Å. (c) The

final configuration with the formation and desorption of CO2. (d) The energy profile

along the reaction coordinate.

barrier for the second step of the reaction, CO+O −→ CO2, turns out to be small (< 0.2

eV) for all cases.

Another often-used Au nanocluster, Au8 cluster, is also considered in current study. The

adsorption of Au8 clusters on graphene is a little bit more complicated. Unlike the case

of normally used oxide supports for which Au8 clusters always prefer the 3-dimensional

(3D) structure,[72, 74, 131, 169] when adsorbed on graphene, the planar structure of

Au8 is slightly more stable with a total energy lower than the 3D one by about 0.2 eV,
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Table 4.1: Strain effects on the adsorption of O2 on Au16@graphene and the

reaction barrier of catalyzed CO oxidation. d(O-O) is the O-O bond length of

the oxygen molecule; △Q denotes the charge transferred to O2 after the adsorp-

tion; Ead is the adsorption energy of O2 calculated from E(O2+Au16@graphene)-

(E(O2)+E(Au16@graphene)), and Eb is the calculated reaction barrier of ER type of

CO oxidation catalyzed by Au16@graphene. The reaction barrier under strain 0.0% or

2.5%, 3.1 eV, corresponds to the barrier of uncatalyzed CO oxidation in gas phase.

Strain d(O-O)(Å) △Q(e) Ead (eV) Eb (eV)

0.0% 1.23 0.0 Unbound 3.10

2.5% 1.23 0.0 Unbound 3.10

5.0% 1.41 -0.68 0.20 0.16

7.5% 1.42 -0.68 0.26 0.15

10% 1.42 -0.69 0.46 0.15

Table 4.2: Strain effects on adsorption of 3D Au8 cluster on graphene. Note here the

significant decrease of d(Au-graphene) when the strain varies from 2.5% to 5%.

Strain d(Au8-graphene) (Å) Ead (eV)

0.0% 3.41 0.56

2.5% 3.31 0.57

5.0% 2.88 0.59

7.5% 2.39 0.65

10% 2.32 0.69

similar to the energy difference of these clusters in the gas phase. At room temperature,

3D and planar clusters may co-exist due to the small energy difference. We therefore
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Figure 4.7: LH type of CO oxidation catalyzed by 3D Au8@graphene for the case of

5% strain (a) Initial state: d(O1-O2)=1.41 Å, d(C-O)=1.15 Å, d(C-O2)=3.13 Å. (b)

Transition state of the reaction: d(O1-O2)=1.46 Å, d(C-O)=1.18 Å. d(C-O2)=1.6 Å.

Final state: the formation of CO2. (d) Energy profile along the reaction coordinate.

investigated the strain effects on CO oxidation catalyzed by both 3D and planar Au8

clusters on graphene. For the 3D Au8, similar to Au16, when the uniform tensile strain

increases from 2.5% to 5%, a significant decrease of Au-graphene adsorption distance

d(Au-graphene) occurs (see Table 2). Overall, the distance decreases from 3.4 Å (under

no strain) to around 2.3 Å (under 10% strain). In the mean time, the co-adsorption

energy of O2 and CO molecules changes from around 1 eV to 1.4 eV, and the O-O bond

length increases from 1.26 Å to 1.41 Å. For this case, our calculations show that the

catalyzed CO oxidation prefers the Langmuir-Hinshelwood mechanism. The reaction

barrier of the catalyzed CO oxidation greatly drops from 2.6 eV to less than 0.2 eV

(see Table 3) when the strain varies from 0% to 5%. The optimized structures of the

initial state, the transition state, and the final state and the detailed reaction profile is
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Table 4.3: Strain effects on co-adsorption of O2 and CO molecules, and reaction barrier

of LH type of CO oxidation on 3D Au8@graphene. Note here the significant increase

of O-O bond length and the adsorption energy when the strain varies from 2.5% to 5%.

Strain d(O-O)(Å) Ead (eV) Eb (eV)

0.0% 1.25 -1.04 2.85

2.5% 1.26 -1.03 2.60

5.0% 1.41 -1.37 0.19

7.5% 1.40 -1.41 0.26

10% 1.40 -1.43 0.22

demonstrated in Fig. 4.7. For planar Au8, the strong adsorption of O2 occurs when the

strain reaches 10%, and no co-adsorption of CO is found after the adsorption of O2. The

reaction barrier of ER type of catalyzed reaction under 10% of strain is estimated to be

0.12 eV.

4.4 Chapter summary

In this chapter, we demonstrate by first-principles investigation a novel method of con-

trolling the stabilization and catalytic activity of metal nanoclusters supported on graphene

via tuning the mechanical strain in graphene. Our calculations found that an applied

strain in graphene can decrease the adsorption distance and greatly increase the adsorp-

tion energies of different metal clusters under study by at least 100% at a strain of 10%,

suggesting highly enhanced stabilization of these metal clusters on graphene, which is
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highly desired in real applications of metal nanocatalysts. By using tight-binding cal-

culations together with DFT, we found that the origin of this enhanced stability is the

greatly weakened π binding in graphene that increases the interaction between carbon

2pz orbital and adsorbed metal clusters.

By analyzing the electronic structures, we found that the charging state of the supported

metal clusters can be tuned on graphene substrate. Interestingly, with the adsorption of

Au clusters, the p-type or n-type doping of graphene can be efficiently controlled by

applying a mechanical strain in graphene, opening up a new method to modify the prop-

erties of graphene for electronic applications. As a stretchable thin film, in graphene,

the strain-induced reversal of charge transfer may lead to other applications, such as

strain engineered hydrogen storage on metal-decorated graphene,[170] or strain-tunable

magnetism if supported clusters or molecules are magnetic,[171, 172] which is of fun-

damental importance to design new hydrogen storage media and spintronic devices.

Furthermore, by using Au16 and Au8 clusters adsorbed on graphene as model catalysts

for chemical reaction of CO oxidation, we found that a 5% of strain can decrease the

reaction barrier of CO2 formation from around 3 eV to less than 0.2 eV. Underlying the

enhanced enhanced catalytic capability is attributed to the strain-induced charge transfer

from the Au@graphene interfacial region to antibonding 2π* orbital of the adsorbed O2

molecule, leading to the activation of O-O bond. Experimentally, strain in graphene can

be introduced by stretching the soft substrate (such as polydimethylsiloxane, PDMS)

on which graphene is supported, or by nanoindentation with the help of atomic force

microscope.[150, 151] Compared with intrinsic lattice strain in metal catalysts, which

may be introduced by doping with noble gas atoms or by metal alloying, this externally

applied strain is of great interest in a sense that it can reversibly control the performance
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of metal nanocatalysts. We expect these novel results to provide new opportunities in

the future design and applications of graphene-based supported metal nanocatalysts, as

well as the further development of mechano-chemistry[173, 174] for which the focus is

the interplay between the mechanical force and chemical reactions.
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Chapter 5

Defects in graphene towards supported

metal nanocatalysts

5.1 Introduction

Due to the imperfection of material production processes, impurities and defects are

always present in crystals. Such structural imperfections have a strong influence on

the electronic, optical, thermal and mechanical properties of solids. Actually, many

of the characteristics of technologically important materials such as the conductance

of semiconductors, the mechanical strength and ductility of metals, and the chemical

reactivity of oxides are governed by defects.[175]

Defects in bulk crystals have been extensively studied for many years. Two dimen-

sional crystal structures, however, have been considered only recently. Since the first
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isolation of single-layer graphene by mechanical exfoliation,[40] there has been a surge

of research pertaining to its unique properties and potential applications for the next-

generation electronic devices, especially after large-scale synthesis methods like chemi-

cal vapor-deposition[150, 176] and epitaxial growth.[177, 178] The properties of graphene

were expected to be outstanding, and many theoretically predicted properties have now

been confirmed in experiments.[188] Some of these properties can only be observed at

extremely low defect concentration, which is possible because of the high formation

energies of point defects in graphene, Nevertheless, like in any other bulk materials,

structural defects do exist in graphene and can dramatically alter its properties. Defects

can also be deliberately introduced into graphene by irradiation or chemical treatment.

In monolayer graphene, defects can be rather complex due to the fact that the sp2-

hybridized carbon atoms can arrange themselves into a variety of different polygons,

not only hexagons, to different structures. The nonhexagonal rings may also intro-

duce curvature in the sheet or leave it flat when certain symmetry rules are satisfied

by the polygon arrangement. These properties does not appear in other 3D bulk crys-

tals. Point defects such as single or multiple carbon vacancies, interstitial atoms and

Stone-Wales defects, are zero-dimensional, whereas dislocations of carbon atoms are

one-dimensional lines of defects. Grain boundaries or stacking faults extend in two di-

mensions. Several experimental studies have shown the occurrence of either native or

physically introduced defects in graphene, and images of defective graphene with atomic

resolution have been obtained by using transmission electron microscopy (TEM)[189–

192] or scanning tunneling microscopy (STM).[193, 194]

In this chapter, we studied the effect of defects in graphene on the catalytic performance

of supported metal clusters. We have considered both Au and Pt nanoclusters supported
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on pristine (defect-free) and defective graphene, and investigated their stability and cat-

alytic activity towards CO oxidation. Our findings demonstrate that the single-carbon-

vacancy defect in graphene, which has been observed in experiments,[195] plays an

essential role in stabilization and activation of supported metal clusters. These results

may also be extended to other kinds of defects in graphene.

For structural optimization and electronic structure calculations, the first principles method

based on DFT was employed via the computational package VASP.[108] The reaction

barrier of catalyzed CO oxidation was calculated by incorporating the constrained en-

ergy minimization method into VASP. DFT calculations were performed with a plane

wave basis with a cutoff energy of 400 eV, a 6x6 K-points sampling of Brillouin zone,

and a scalar relativistic ultra-soft pseudopotential for Au and Pt.[97] In all calculations,

the generalized gradient approximation in Perdew-Burke-Ernzerhof format[124] was in-

cluded. A supercell that includes 6x6 unit cells of graphene in graphene plane, and a

vacuum region of 20 Å in the direction normal to graphene plane (Z direction) was

adopted. In optimizing atomic structures, the force convergence criterion was set to 0.01

eV/Å.

5.2 Results and discussion

5.2.1 Anchoring of metal clusters by a single carbon vacancy

In this study, Au8 and Pt4 clusters supported on graphene were chosen to be model

catalysts of the chemical reaction of CO oxidation. For Au octamer, the two isomers
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including one planar structure (P2) and a 3D one as discussed in Chapter 4, as well as

another planar structure (P1), which was found to be slightly more stable than P2 in the

gas phase,[123] were considered. The structures for P1, P2 and 3D are shown in Figs.

5.1(a), (b) and (c), respectively. As discussed in the previous chapter, when adsorbed

on metal oxide materials, Au8 clusters prefer to take the form of the 3D structure as

shown in Fig. 5.1(c). In contrast, when adsorbed on pristine (defect-free) graphene,

our calculations found that two planar structures as shown in Figs. 5.1(a-b) are nearly

degenerate, and slightly more stable than the 3D one by about 0.4 eV. Actually, the

energy difference of the three systems is closely related to the energy of these clusters

in the gas phase, as calculations show that in the gas phase, P clusters are slightly more

stable than the 3D one by around 0.4 eV. At room temperature, they may co-exist. We

therefore considered all these three Au8 clusters as catalysts for chemical reaction. For

Pt4 clusters, here we consider the commonly used 3D tetrahedral structure, because

of the fact that in experiment,[43] Pt subnanoclusters which contain only a few atoms

supported on graphene sheet, were found to have high electrocatalytic activity, and in

another experiment,[156] size-preselected Pt4 clusters stabilized on high-surface-area

supports were found to be 40-100 times more active for the oxidative dehydrogenation

of propane than conventional platinum and vanadia catalysts.

Various kinds of adsorption configurations of these metal clusters were calculated and

compared before analyzing their electronic structures. When the underlying graphene

sheet is defect free, the adsorption energies for three configurations of Au8 clusters were

found to be 0.71 eV (P1), 0.65 eV (P2), and 0.52 eV (3D), and the cluster-graphene

adsorption distance were found to be around 3.8 Å for the two planar structures (P1, P2)

and 3.5 Å for the 3D structure. The adsorption energies were also found to be fairly
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insensitive to adsorption sites, particular for the two planar structures, indicating that

these clusters can diffuse pretty easily on graphene. For Pt4 cluster, as also discussed

in Chapter 4, there is a quite strong interaction between the cluster and graphene with

an adsorption energy of 1.4 eV and adsorption length 2.2 Å. However, this adsorption

energy is still much smaller than the cohesive energy of Pt in the bulk form (∼ 5.84

eV[175]), which implies that bigger Pt crystals will form on pristine graphene during

cluster deposition.

Figure 5.1: (a-c) Three most stable isomers of Au8 clusters in gas phase (Au in yellow):

(a) P1, (b) P2, and (c) 3D. (d) Pt4 cluster (dark blue) in gas phase. (e-h) Configurations

for Au and Pt clusters adsorbed on defective graphene (C in grey). Superimposed we

show an isosurface of the excess electronic charge (red) and depleted electronic charge

(blue), with an isosurface value of 0.02e/Å3. In the inset, we show the atomic structure

of a single-carbon-vacancy in graphene.

We then introduced a single-carbon-vacancy defect in a 6×6 supercell of graphene,

which corresponds to a defect concentration of about 1.39% (as shown in the inset of Fig.

5.1), and focused our study on this simplest defect towards the adsorption of Au8 and Pt4

clusters on top of it. When a single vacancy is generated by removing one carbon atom
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from graphene sheet, a partial relaxation of the defective graphene sheet is observed,

with two of the three unsaturated carbon atoms at vacancy “shrink” to its two neighbor-

ing carbon atoms, resulting in a shorter optimized C-C bond (by about 0.5 Å) compared

with pristine graphene. Our calculations show that this single vacancy has strong effect

on the binding on adsorbed metal clusters. It is found that the nearest Au-C bond dis-

tances are between 2.05 Å to 2.1 Å for three Au8 isomers, and the adsorption energies

increase to 1.56 eV, 1,52 eV, 1.51 eV for P1, P2 and 3D isomer, respectively. In these

relaxed structures, one of the Au atom is located directly on top of the carbon vacancy,

rendering a larger adsorption energy compared to the cases of pristine graphene.(see

Fig. 5.1(e-g)) The most stable configuration of the supported Pt4 cluster consists of one

atom interacting with the carbon vacancy (Pt-C bond distances about 1.98 Å) and an-

other atom adsorbed on top a carbon atom near the vacancy, leading to a high adsorption

energy of 7.7 eV. The origin of this greatly enhanced binding is the strong interaction

between the carbon-vacancy defect in graphene and the adsorbed metal clusters origi-

nating from the defect-enhanced hybridization of carbon 2p and Au/Pt 5d orbital, which

can be seen from the isosurface of charge redistribution shown in Figs. 5.1 (e-h). For

Au8 clusters, the significant charge redistribution only happens in the interfacial region

between the defect in graphene and the adsorbed clusters, and for case of Pt4 cluster,

the defect drastically change the electronic structure of the whole cluster, leading to the

surprisingly high adsorption energy (7.7 eV).
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5.2.2 Activation of metal clusters

Next we turned to investigate the catalytic activity of these clusters. When the underlying

graphene sheet is defect free, our calculations showed that the O2 molecule doesn’t

bind to the Au8 cluster adsorbed on the graphene regardless of its geometry (planar or

3D), just like the case of pristine MgO (001) surface supported Au8 clusters[21, 79] as

discussed in the previous chapter, indicating that Au8 clusters are not catalytically active

for O2 for this case. Therefore, the reaction barrier of CO oxidation in this case is the

gas-phase value 3.1 eV (DFT calculation). For the case of Pt4 cluster, the O2 molecule

binds to the Pt4 cluster adsorbed on defect-free graphene with a binding energy of 0.9

eV and the O-O bond length of 1.39 Å. We then investigated two types of reactions

of CO oxidation catalyzed by Pt4@graphene: the Langmuir-Hinshelwood type, and the

Eley-Rideal type. The reaction barrier of the catalyzed CO oxidation was estimated by

our calculations to be around 0.5 eV for both LH and ER types of reactions.

In light of the inactivity of Au8 clusters and the relatively low reactivity (high barrier) of

Pt4 clusters on defect-free graphene which is against the experimental observations,[43]

we studied the catalytic activity of Au8 and Pt4 clusters adsorbed graphene with defects.

As the significant defect-induced changes of electronic structures of Au/Pt clusters are

expected to have great effects on the adsorption of the O2 molecule on clusters, and in

turn to drastically influence the catalyzed reaction of CO oxidation.

After the carbon vacancy is introduced, the O2 molecule strongly binds to all three types

of Au8 clusters with the adsorption energy 1.34 eV for P1, 1.26 eV for P2, and 1.18 eV

for 3D structure, respectively. The adsorption energy of O2 on the Pt4 cluster changes
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Figure 5.2: LH type of CO oxidation catalyzed by the P1 isomer of Au8 on the defective

graphene. (a) The initial state of the reaction: d(O(1)-O(2))=1.41 Å, d(C-O(2))=2.81 Å.

The isosurface of excess (red) and depleted (blue) electronic charge is also shown here.

(b) The transitional state: d(C-O(2))=1.65 Å, d(O(1)-O(2))=1.50 Å. (c) The final state

of forming CO2. (d) The energy profile along the reaction coordinate d(C-O(2)).

from 0.90 eV to 1.92 eV after the defect is introduced. When adsorbed on Au8 (Pt4) clus-

ters on defective graphene, the O-O bond of the O2 molecule is significantly elongated

compared to its gas-phase value (1.23 Å). In particular, the O-O bond length, d(O-O),

is around 1.41 Å for all three types of Au8 clusters, and 1.44 Å for the Pt4 cluster. As

shown in Figs. 5.1(h) and 5.5(a), there is a dramatic structural change of Pt4 cluster

upon O2 adsorption. This structural fluxionality is often observed in small metal clus-

ters and may account for their unique physical and chemical properties.[179, 180] The

great elongation of the O-O bond is due to electrons populated to the anti-bonding 2π*
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Figure 5.3: LH type of CO oxidation catalyzed by the P2 isomer of Au8 on the defective

graphene. (a) The initial state of the reaction: d(O(1)-O(2))=1.42 Å, d(C-O(2))=3.26 Å.

The isosurface of excess (red) and depleted (blue) electronic charge is also shown here.

(b) The transitional state: d(C-O(2))=1.60 Å, d(O(1)-O(2))=1.48 Å. (c) The final state

of forming CO2. (d) The energy profile along the reaction coordinate d(C-O(2)).

orbital of the O2 molecule mainly from the metal cluster for the case of Au8 and from

both the metal cluster and the interfacial region for the case of Pt4, as we can see from

the Figs. 5.2(a), Fig. 5.3(a), and Fig. 5.4(a). The Bader charge population analysis[132]

showed that about 0.7 (0.9) electrons are transferred to the O2 molecule for the case of

Au8 (Pt4) clusters.

Next we studied both LH and ER types of CO oxidations catalyzed by Au8 or Pt4 clusters

pinned on graphene by a single-carbon-vacancy defect. In Fig. 5.2, the LH mechanism
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Figure 5.4: (a-c) LH type of CO oxidation catalyzed by the 3D isomer of Au8 on the

defective graphene. (a) The initial state of the reaction: d(O(1)-O(2))=1.42 Å, d(C-

O(2))=3.45 Å. The isosurface of excess (red) and depleted (blue) electronic charge is

also shown here. (b) The transitional state: d(C-O(2))=1.60 Å, d(O(1)-O(2))=1.46 Å.

(c) The final state of forming CO2. (d) The energy profile along the reaction coordinate

d(C-O(2)).

of reaction catalyzed by the planar Au8 cluster (P1) was shown. With the binding of

O2 molecule, the co-adsorption of CO molecule on the peripheral Au atom as shown

in the figure yielded the adsorption energy around 1.2 eV. The atomic structures of the

initial state, transition state, final state of the reaction, and the energy profile along the

reaction coordinate are shown in Figs. 5.2(a-d), respectively. The reaction barrier was

estimated to be 0.1 eV. The LH reaction catalyzed by the other planar structure of Au8

(P2) was calculated to be 0.18 eV, and the atomic structures of different reaction states
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Figure 5.5: LH type of CO oxidation catalyzed by the Pt4 on the defective graphene.

(a) The initial state of the reaction: d(O(1)-O(2))=1.45 Å, d(C-O(2))=3.25 Å. The iso-

surface of excess (red) and depleted (blue) electronic charge is also shown here. (b)

The transitional state: d(C-O(2))=1.80 Å, d(O(1)-O(2))=1.47 Å. (c) The final state of

forming CO2. (d) The energy profile along the reaction coordinate d(C-O(2)).

with the energy profile along the reaction coordinate are shown in Figs. 5.3. The details

of the LH reaction catalyzed by the 3D Au8 clusters are shown in Fig. 5.4. In this

case, the adsorption energy of the CO molecule after the binding of the O2 is 1.1 eV,

and the reaction barrier was calculated to be 0.2 eV. In Fig. 5.5, we showed the initial

state, transition state, final state, and the energy profile of the LH reaction catalyzed by

the Pt4 cluster. In this case, the reaction barrier was estimated to be 0.13 eV. We also

considered the ER mechanism of the CO oxidation catalyzed by Au8 or Pt4 clusters on

defective graphene. Reaction barriers of ER type of CO oxidations were calculated to be
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0.26 eV, 0.23 eV, 0.22 eV, and 0.16 eV, for P1-Au8, P2-Au8, 3D-Au8, and Pt4 clusters,

respectively, indicating that CO oxidation can readily happen at room temperature.

5.2.3 Correlating with other kinds of defects in graphene

As discussed in the Introduction, defects in graphene can be diverse, ranging from zero-

dimensional to one-dimensional and two-dimensional defects. Even for zero-dimensional

vacancies in graphene, they can be missing of a single carbon atom, or missing of two,

three and more carbon vacancies. One key question we may ask is whether these kinds

of defects can have the similar effects as the single-carbon vacancy as we presented

before. In this sense, recently, Wang et al.[195] used high-energy atom/ion bombard-

ment to create defects, and vacancies including monovacancy, bivacancy and trivacancy

have been clearly observed by using high-resolution transmission electron microscope

(HRTEM). As shown in Fig. 5.5, the images of HRTEM (Figs. 5.5(a-c)) match very

well with the atomic models (Figs. 5.5(d-f)) for different types of vacancies. Just like

single-carbon-vacancy defect, vacancies with two or three carbon atom missing can also

provide dangling bonds for the adsorption of metal clusters by forming strong carbon-

metal covalent bonds. It is obvious that with more dangling bonds as in the case of

multiple vacancies, transition metal clusters may be more strongly anchored through

carbon 2p and metal d orbital bonding. Therefore, a high stability and catalytic activity

of these supported metal nanoclusters can be expected.

In graphene, particularly in the presence of defects, carbon atoms can reconstruct them-

selves into other polygons during annealing, leading to a lower total energy.[181] For

instance, graphene with bivacancy may reconstruct into a V2(5-8-5) defect with two
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Figure 5.6: HRTEM images of (a) a monovacancy, (b) a bivacancy, and (c) a triva-

cancy. Scale bar: 1 nm. (d-f) are the atomic model for the three different vacancy types.

Reprinted with permission from Ref.[195]

pentagons and one octagons, instead of four hexagons, and no dangling bond is present

in this V2(5-8-5) defect. Actually, bivacancy defect may also transform into an arrange-

ment of three pentagons and three heptagons V2(555-777), as well as V2(5555-6-7777)

defect. So how does these reconstructed defects affect the adsorption and catalytic of

support metal clusters? Recently, Cretu et al.[182] used electron microscopy combined

with DFT to show that there is a strain field around these reconstructed point defects

(such as 555-777 defect). It was found that this strain field around the defects reaches

far into the unperturbed hexagonal network (see Fig. 5.6) and adsorbed metal atoms

or clusters have a high affinity to this nonperfect regions.[183] Moreover, metal atoms

could be bonded on these reconstructed defects with energies of the order of 2 eV, and

the interaction between these reconstructed defects and metal clusters was found to be
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originated from an interplay of the strain in atomic network and electronic adsorption ef-

fects. As we have discussed in Chapter 4, strain has strong effect on the stabilization and

catalytic properties of supported metal nanoclusters, so we conclude that these recon-

structed defects without dangling bonds will also be beneficial for graphene-supported

metal nanocatalysts.

Figure 5.7: Atomic structures of a reconstructed single vacancy (a), bivacancy with 5-

8-5 reconstruction (b), 555-777 reconstruction (c) and 5555-6-7777 reconstruction. The

bonds are colored according to an increase (blue) or decrease (red) in the bond length

(in picometers). It is evident that the strain fields exist for at least 2 nm away from the

defect. Reprinted with permission from Ref.[183]

Other defects such as topological line defects, grain boundaries or stacking faults, were

also studied in literature. For instance, one dimensional extended line defect in graphene

was found to be a metallic wire,[184] and on this metallic wire, metal atoms were found

87



Chapter 5. Defects in graphene towards supported metal nanocatalysts

to have strong hybridization between d orbitals of metal atoms and pz orbital of carbon,

resulting in an enhanced adsorption energy and charge transfer.[185] Grain boundaries

with different dangling bond density were found to have interesting chemical reactivity

compared to pristine graphene,[186, 187] suggesting that metal clusters can also interact

strongly with these defects.

These results show that our discussion based on single-carbon vacancy can be extended

to different kinds of defects, which are also expected to have strong influence on stability

and catalytic activity of supported metal nanocatalysis.

5.3 Chapter summary

In summary, we present in this chapter a detailed study on the effect of defects in

graphene on the catalytic performance of supported metal nanoclusters by first prin-

ciples calculations based on DFT. Compared to the case of pristine graphene, the sim-

plest single-carbon-vacancy defect in graphene was found to enhance the adsorption and

stabilization of supported Au8 and Pt4 clusters. Specifically, the adsorption energies in-

crease from 0.71 eV, 0.65 eV and 0.52 eV (on pristine graphene) to 1.56 eV, 1.52 eV

and 1.51 eV for Au8 P1, P2 and 3D insomers. For Pt4 cluster, the significant electronic

structure change of the system initiated by the carbon vacancy leads to a high adsorption

energy of 7.7 eV. The anchoring of those clusters were found to be the defect-induced

hybridization of carbon 2p and Au/Pt 5d orbitals around the defect region.

Results also show that on pristine graphene, supported three isomers of Au8 under study

are inactive for CO oxidation, and Pt4 cluster have a relatively high barrier for this
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reaction. On graphene with a single carbon vacancy, all these metal clusters were found

to have a lower barrier (∼ 0.2 eV) for CO oxidation. The origin of this lower barrier

reaction is due to the defect-induced charge transfer to the antibonding 2π* orbital of

O2 molecule from metal cluster for the case of Au8 and from the metal cluster and

the interfacial region for the case of Pt4, leading to an activation of O-O bond in O2

molecule.

Conclusions on the stability and catalytic activity of supported metal clusters drawn

from the study of a single carbon vacancy may be extended to other types of defects,

such as multiple carbon vacancies, Stone-Wales type reconstructed defects, topological

line and grain boundary defects. In addition, based on the results of the previous chapter,

local strain created by the defect may also be beneficial to catalysis. Experimentally,

because defects are inevitable in the synthesis and preparation of graphene sheets, results

presented in this work may be useful in explaining recent experiments, and helpful for

the future design of graphene-supported metal nanocatalysts.
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Chapter 6

Metal-embedded graphene: A possible

single-atom nanocatalyst

6.1 Introduction

In supported metal catalysts, metals are finely dispersed on a support with a high sur-

face area for the maximum exposure of catalytic active components. The size of metal

particles is therefore one of the most important factors that decide the performance of

a catalyst. Recent experimental and theoretical work showed that subnanometer clus-

ters, which include just a few atoms, have better catalytic activity and/or selectivity

that larger metal nanoparticles.[43, 156, 196] As catalytic active sites usually consti-

tute just low-coordination, unsaturated atoms, downsizing the metal particles to single

atoms is highly desirable for practical applications. However, this is hampered for two
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reasons. First, the fabrication of such single-atom catalyst is a significant challenge be-

cause single atoms are typically unstable, as they are too mobile and easy to sinter under

operational reaction conditions. Also, it remains unclear whether such single atoms are

catalytical active or have better performance than their cluster counterpart because of

the non-scalable physical/chemical properties at this nanoscaled region.

Recently, single-metal-atom-embedded graphene structures have been fabricated, and

different elements (Au, Pt, Co, and In) have been successfully doped in the single-

atom form in graphene.[46, 195] Therefore, the diffusion of single metal atoms in the

graphene plane can be controlled. Substitution of single metal atom in monolayer

graphene can be achieved by a two-step process: create vacancies by high energy atom/ion

bombardment, and then fill these vacancies with desired metal dopants.[195] These

metal-embedded graphene structures are very stable and have been clearly observed by

an aberration-corrected and monochromated transmission electron microscope (TEM).[195]

In this context, Krasheninnikov et al.[197] investigated different transition-metal-atom-

embedded graphene structures by using density functional theory and they found that

the electronic and magnetic properties of these systems are determined by the strong

bonding (binding energy up to 7 eV) between single transition metal atom and the neigh-

boring carbon atoms. Therefore, the chemically inert graphene may be transformed to a

very active catalyst with single-atom catalytic active site through the interaction of the

metal atom and the carbon vacancy.

In this chapter, we present a systematic investigation on geometrical and electronic struc-

tures of graphene embedded by various transition metal elements, including Sc, Ti, V,

Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pt, Au, and the adsorption of small gas molecules

(O2, CO, NO2 and NH3) on these metal-embedded graphene. The adsorption structures,
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Figure 6.1: Schematic view of a single gas molecule (NH3) adsorption on pristine

graphene (a) and TM-graphene (b). T: top site, B: bridge site, H: hollow site, M: tran-

sition metal atom (Au). Carbon atom in grey, H in white, N in blue and Au atom in

yellow.

adsorption energies, charge transfer and magnetic properties of the adsorbed systems

were extensively explored. Our calculations explicitly suggest that among all transi-

tion metals under study, Ti and Au are best choices for the applications of oxidation

catalysis. By using Au-embedded graphene as a model system, we studied its catalytic

activity towards CO oxidation. Our calculations suggest that Au-embedded graphene is

an excellent candidate for single-atom heterogeneous catalyst, which has a great poten-

tial to reduce the high cost of commercial noble-metal catalysts in industry. Detailed

analysis of the electronic structures and magnetic properties of these metal-embedded

graphene systems may also be useful for future design of graphene-based gas sensors

and spintronic devices.

In Fig. 6.1, we show schematic views of a gas molecule adsorbed on the pristine

graphene and a molecule on the transition-metal-embedded graphene (TM-graphene).
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For the case of pristine graphene, three possible adsorption sites were considered: hol-

low site (H) at the center of a carbon hexagon, bridge site (B) in the middle of C-C

bond, and top site (T) on the top of a carbon atom (Fig. 6.1(a)). For TM-graphene,

the molecule is initially placed on top of the metal atom which substitutes a carbon

(Fig. 6.1(b)). Different molecular orientations were considered and calculated to find

the most stable adsorption configuration that has the lowest total energy and the highest

adsorption energy. The adsorption energy, Ead, is defined as

Ead = Emolecule + Egraphene − Emolecule@graphene (6.1)

where Emolecule, Egraphene, and Emolecule@graphene denote the energies of the isolated gas

molecule, graphene (or TM-graphene) substrate, and the combined molecule-graphene

system, respectively.

For the structural optimization and electronic structure calculations, the first principles

method based on DFT was employed via the computational package VASP,[108] with

the exchange and correlation energy included through a generalized gradient approx-

imation in PBE format[124]. Projected augmented-wave potentials[98] are employed

to describe the ion-electron interaction. A plane-wave basis set with a cut-off energy

of 400 eV and Γ-point sampling of the Brillouin zone is used in structure optimization.

The mesh of K space is increased to 6×6×1 to obtain accurate energies, electronic struc-

tures, and magnetic properties. A supercell that includes 6x6 unit cells of graphene in

graphene plane, and a vacuum region of 20 Å in the direction normal to graphene plane

(Z direction) was adopted. In optimizing atomic structures, the force convergence cri-

terion was set to 0.02 eV/Å. The calculation of reaction barriers towards CO oxidation
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was done with DMol3 package,[198, 199] with DFT semicore pseudopotentials (DSPPs)

and a double numerical basis set. The minimum-energy pathway for elementary steps

was computed using the nudged elastic band method.[106]

6.2 Results and discussion

6.2.1 Metal-embedded graphene: Structures and properties

As a preliminary test, we optimized the atomic geometries of these small gas molecules

within a 16×17×18 Å3 box by using aforementioned DFT method. Our calculations

produced the bond lengths, 1.144 Å, 1.234 Å, 1.214 Å, and 1.024 Å, for CO, O2, NO2,

and NH3 molecules, respectively. The bond angles of NO2, and NH3, denoted by Φ(O-

N-O) and Φ(H-N-H), were estimated to be 133.7◦ and 106.3◦, respectively. All these

results are in good agreement with previously published results.[200–202]

Before we study the adsorption of gas molecules, it is helpful to look at first the phys-

ical properties of metal-embedded graphene itself. Figure 6.2(a) shows the optimized

configuration of graphene embedded with a typical transition metal, Au. The optimized

structures for graphene embedded with other metal elements have similar structures.

As the metal atom is much larger than carbon, the metal atom extrudes outwards from

the graphene surface. The height, d, defined as the distance between the Au atom and

the graphene plane, is calculated to be 1.87 Å, with the Au-C bond length 2.07 Å, in
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Figure 6.2: (a) Optimized structures for a typical transition metal (Au) embedded

graphene, with d the height of TM atom above graphene base plane. (b) and (c) show the

side view and top view of charge redistribution plot for Au-embedded graphene. Charge

accumulation in red and depletion in blue.

good agreement with previous simulations.[197] It is found that the charge redistribu-

tion mainly happens around the Au-C bonds as expected, as shown in the charge redis-

tribution plot in Figs. 6.2(b) and (c), indicating the formation of strong covalent bonds.

Here, the charge redistribution, △ρ, is defined as

△ρ = ρTM−graphene − (ρTM + ρgraphene) (6.2)

where ρTM−graphene, ρTM , ρgraphene represent the charge densities of the TM-graphene

system, the isolated metal atom, and the graphene sheet, respectively. Our calculations

show that in this system, Au is positively charged.

In Fig. 6.3, we show the total and local density of states (DOS) for Cu, Ag and Au
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embedded graphene. For all cases, the symmetry between spin-up and spin-down chan-

nels are broken (see Figs 6.3(a-c)), leading to a magnetic moment of 1.14 µB, 1.12 µB,

and 1.00 µB per unit cell for Cu, Ag, Au embedded graphene respectively. As we can

see from Figs 6.3(d-f), magnetic moments originate from the depletion of spin-down

electrons of both d orbital of the metal atom and p orbital of neighboring carbon atoms.

As a result, the high density of spin-polarized states is localized around the Fermi level.

These localized states are important to gas molecule adsorption and activate reactants to

lower the reaction barrier, as we shall discuss later.

6.2.2 Metal-embedded graphene towards small gas molecule adsorp-

tion

In this section, we will examine the adsorption of small gas molecules on both pristine

and metal embedded graphene. In Fig. 6.4, we show the most stable adsorption configu-

rations of O2, CO, NO2 and NH3 on pristine (Figs. 6.4(a), (c), (e), (g)) and Au-embedded

graphene (Figs. 6.4(b), (d), (f), (h)), respectively. Note that the most stable configura-

tions presented here were determined by choosing the lowest-energy one among vari-

ous adsorption sites and molecular orientations. It is found that on pristine graphene,

molecules interact rather weak with the substrate in general, and on metal-embedded

graphene, all gas molecules form strong bonds with the embedded atom, with a much

shorter adsorption lengths. In following sections, we present in detail the geometrical

and electronic properties of the adsorption of these gas molecules in the order of O2,

CO, NO2 and NH3.
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Figure 6.3: (a-c) Spin-polarized total density of states for Cu, Ag and Au embedded

grahene. (d-f) Partial density of states projected on s (black curve), d(red curve) orbital

of metal atoms and 2p (blue curve) of neighboring carbon atoms for the three cases.

Fermi energy is set to zero.
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Figure 6.4: Optimized configurations for O2, CO, NO2 and NH3 adsorbed on pristine

graphene (left side: (a), (c), (e), (g) and TM-graphene (right side: (b), (d), (f), (h)).Note

that various configurations have been considered and we only present here the most

stable configurations. Carbon atom in grey, H in white, N in blue, O in red and Au atom

in yellow.

O2 adsorption

On pristine graphene, O2 is adsorbed on the hollow (H) site with O-O bond perpendic-

ular to the graphene surface, as shown in Fig. 4(a). The adsorption energy is calculated

to be less than 0.1 eV. After adsorption, O-O bond length remains almost the same as
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Figure 6.5: (a) O2 bond length d(O-O) after adsorption on various TM-embedded

graphene. Note that O2 in the gas phase d(O-O)=1.234 Å, adsorbed on pristine graphene

d(O-O)=1.235 Å. (b) Charge transfer from TM-graphene to O2. There is an excess of

0.087e for O2 adsorbed on pristine graphene, making O2 acceptor-like.

in the gas phase (1.24 Å), and the adsorption length of O2 on pristine graphene (de-

fined as the shortest molecule-substrate distance) is estimated to be 3.7 Å. The Bader

charge population analysis[132] shows that less than 0.1e was transferred from the pris-

tine graphene to O2 molecule, indicating a weak physisorption. On metal-embedded

graphene, in all cases, O2 molecule is adsorbed with O-O bond lying nearly parallel to

the graphene plane (see Fig. 6.4(b)), with greatly increased adsorption energies above 1

eV, and significantly decreased adsorption lengths around 2 Å.

In Fig. 6.5, we show the O-O bond length, d(O-O), and charge transfer for O2 adsorbed

on 13 different TM-graphene. Generally, there is a large expansion of O-O bond as

shown in Fig. 6.5(a). Judging from this figure, Ti and Au embedded graphene are

two most reactive ones in terms of O2 adsorption among all TM-graphene, for both of

which the O-O bond of O2 molecule is enlarged to above 1.44 Å, increased over 0.2 Å

compared to that of O2 in the gas phase. The charge transfer between TM-graphene and
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Table 6.1: O2 adsorption on pristine and Cu, Ag, Cu embedded graphene: the adsorption

length (d), adsorption energy (Ead), bond length of O2 after adsorption (d(O1-O2)),

charge transfer from the substrate to O2 (∆Q) and magnetic moment of the total system

(M).

Configuration d(Å) Ead(eV) d(O1-O2)(Å) △Q(e) M(µB)

O2 on graphene 3.65 0.031 1.235 0.087 2.00

O2 on Cu-graphene 1.92 1.59 1.37 0.63 0.83

O2 on Ag-graphene 2.15 1.25 1.35 0.51 0.94

O2 on Au-graphene 2.07 1.52 1.44 0.91 0.45

O2 (as shown in Fig. 6.5(b)) shows a similar trend. It can be seen from Fig. 6.5(b) that

more than 0.9e transferred from the Ti or Au-graphene to the adsorbed O2 molecule,

causing the significant elongation of d(O-O) in these two cases. The great enlargement

of d(O-O) indicates significant weakening of the O-O bond, and is highly desirable

for chemical reactions such as CO oxidation or oxygen reduction reactions, for which

the breaking or weakening of O2 bond is often regarded as the rate-limiting step.[21,

73, 203] On the other hand, Ag-embedded graphene shows the least reactivity for O2

adsorption, with O-O bond length around 1.35 Å and 0.5e charge transfer, while metals

such as Cu show reactivity in between. Apart from the characteristics of chemisorption,

the magnetic moment of TM-graphene system is also varied upon O2 adsorption. In

Table 6.1, we listed in detail calculated results of adsorption length, O-O bond length,

adsorption energy, charge transfer, and the magnetic moments of O2 adsorbed on Cu,

Ag and Au embedded graphene.

To further understand the bond expansion of O2 on TM-graphene, we plot the partial
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density of states (PDOS) of the O2 molecule adsorption on Cu, Ag, Au mebedded

graphene, in Fig. 6.6(a), (b) and (c), respectively. For O2 molecule in the gas phase,

the LUMO is the spin-down antibonding 2π* orbital. Upon adsorption, electrons pop-

ulated to initially empty spin-down antibonding 2π*, leading to enlarged O-O bond

length. Comparing this figure to Table 6.1, we can see the trend that the more electrons

populated to the antibonding 2π* orbital (higher filling rate of the PDOS peak), the

more the O-O bond will be expanded. The charge redistribution plot in Fig. 6(d) clearly

shows that electrons populated to the anti-bonding 2π* orbital of the O2 molecule are

mainly from the metal atom, suggesting the strong effects of the embedded metal atom

on chemical reactivity of graphene.

CO adsorption

For CO, NO2 and NH3 molecules, we only study their adsorption on Cu, Ag and Au

embedded graphene, as these three elements represent typical 3d, 4d and 5d transition

metals, respectively. The most stable adsorption site for CO on pristine graphene is at the

hollow (H) site, with the CO lying nearly parallel to the graphene surface. The adsorp-

tion energy is estimated to be 0.017 eV, and the molecule-substrate distance is found to

be about 3.6 Å (physisorption). On TM-graphene, CO is adsorbed with C atom bonded

to metal atom in the substrate. Our calculations show that there is a large increase of ad-

sorption energy (to around 2 eV) and charge transfer (> 0.1e), with a significant decrease

of molecule-substrate distance to around 2 Å.(see Table 6.2) Surprisingly, upon adsorp-

tion of nonmagnetic CO molecule, the magnetic moment of TM-embedded graphene is

enhanced from 1 µB (without adsorption) to about 3 µB.
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Figure 6.6: (a-c) PDOS for O2 adsorption on Cu, Ag, Au embedded graphene. Black

dotted curve: O2 in the gas phase; red curve: O2 in the adsorbed state. Blue curve: d-

projected PDOS for Cu, Ag, Au atom respectively. Fermi energy is set to zero. (d) and

(e) show the charge density and 3-dimensional density difference plots for O2 adsorption

on Au-graphene. Charge accumulation in red and depletion in blue.
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Figure 6.7: (a-c) PDOS for CO adsorption on Cu, Ag, Au embedded graphene. Black

dotted curve: CO in the gas phase; red curve: CO in the adsorbed state. Blue curve:

d-projected PDOS for Cu, Ag, Au atom respectively. Fermi energy is set to zero. (d)

and (e) show the charge density and density difference plots for CO adsorption on Au-

graphene. Color scheme is the same as in Fig. 6.6.
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Table 6.2: CO adsorption on pristine and Cu, Ag, Cu embedded graphene: the adsorp-

tion length (d), adsorption energy (Ead), bond length of C-O after adsorption (d(C-O)),

charge transfer from the substrate to CO (∆Q) and magnetic moment of the total system

(M).

Configuration d(Å) Ead(eV) d(C-O)(Å) △Q(e) M(µB)

CO on graphene 3.60 0.017 1.144 -0.001 0

CO on Cu-graphene 1.83 1.30 1.161 0.129 2.89

CO on Ag-graphene 2.01 1.01 1.157 0.151 2.94

CO on Au-graphene 1.98 1.37 1.166 0.140 3.00

To understand the enhanced adsorption of CO, we plot the PDOS of CO molecule and

the charge redistribution for CO adsorbed on Cu, Ag, Ag embedded graphene in Fig. 6.7.

As it shows, upon adsorption, the occupied 5σ orbital (HOMO) of the CO is broadened,

shifted far below Fermi level, and strongly hybridize with localized d-orbital of TM

atom. The empty antibonding orbital 2 π* (LUMO) of the CO in the gas phase is also

pulled closer to the Fermi level and partially occupied due to the back-donation of d

electrons, resulting in slightly increase in the C-O bond length. This can also be seen

from the charge density and charge redistribution plots, as shown in Figs. 6.7(d) and(e).

The imbalance of spin-up and spin-down electrons of CO molecule at the Fermi level

results in an enhancement of magnetic moment.

NO2 adsorption

The adsorption of triangular-shaped NO2 molecule is a little bit more complicated than

O2 or CO. Three molecular orientations were initially considered, i.e. binding of NO2
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Table 6.3: NO2 adsorption on pristine and Cu, Ag, Cu embedded graphene: the adsorp-

tion length (d), adsorption energy (Ead), bond length of NO2 (d(N-O)) and bond angle

(Φ(O-N-O)), charge transfer from the substrate to NO2 (∆Q) and magnetic moment of

the total system (M).

Configuration d(Å) Ead(eV) d(N-O)(Å) Φ(O-N-O)(deg) △Q(e) M(µB)

NO2 on graphene 3.89 0.182 1.214 133.7 0.182 0.88

NO2 on Cu-graphene 2.06 2.12 1.284 110.6 0.639 1.94

NO2 on Ag-graphene 2.27 2.01 1.279 112.8 0.619 0.23

NO2 on Au-graphene 2.24 2.29 1.283 111.5 0.565 0.04

via a nitrogen atom (nitro configuration), via an oxygen atom (nitrite configuration)

and via both oxygen atoms (cycloaddition configuration). On pristine graphene, it is

found that NO2 is bound by cycloaddition configuration on the bridge site (see Fig.

6.4(e)), with a moderate adsorption energy of 0.18 eV and an acceptor-like feature (NO2

gains about 0.2e), in agreement with Ref [204]. On TM-graphene, the cyloaddition

configuration is again preferred, with an adsorption energy about 2 eV, as shown in

Fig. 6.4(f), followed by nitro configuration with a weaker adsorption about 1.8 eV

(the configurations are not shown here). The preferred adsorption configuration can

be readily understood as the cycloaddition geometry favors the interaction between the

electron-rich oxygen atoms and the carbon atoms in pristine graphene or TM atoms in

metal-embedded graphene.

In Table 6.3, we show the detailed results for structure, adsorption energy, charge trans-

fer and magnetic moment of NO2 adsorption on Cu, Ag and Au embedded graphene.
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Figure 6.8: (a-c) PDOS for NO2 adsorption on Cu, Ag, Au embedded graphene. Black

dotted curve: NO2 in the gas phase; red curve: NO2 in the adsorbed state. Blue curve:

d-projected PDOS for Cu, Ag, Au atom respectively. Fermi energy is set to zero. (d)

and (e) show the charge density and density difference plots for NO2 adsorption on Au-

graphene. Color scheme is the same as in Fig. 6.6.
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Compared to the case of pristine graphene, we can see that upon adsorption on TM-

graphene, the bond length d(N-O) and bond angle Φ(O-N-O) of NO2 changes signifi-

cantly due to the large charge transfer from substrate to the molecule (∼ 0.6e). Figure 6.8

shows the electronic structures: both spin-up 6a1 component (HOMO) and spin-down

6a1 component (LUMO) are shifted closer to the Fermi level due to the interaction of

the molecular orbital and d-orbital of TM atoms. The filling of LUMO (6a1,↓) induces

an increase of the N-O bond length, which is also demonstrated in charge transfer plot

in Fig. 6.8(e). Besides the activation of NO2 molecule, the magnetic properties of TM-

graphene system also changes significantly. The magnetic moment of NO2 adsorption

on Cu-graphene is calculated to be about 2 µB; for Ag or Au-graphene, the magnetic

mement decreases drastically and nearly diminishes (0.23 µB, 0.04 µB), indicating that

the magnetic properties of TM-graphene can be efficiently tuned by NO2 adsorption.

NH3 adsorption

The lowest-energy configurations for NH3 adsorption on pristine and TM-graphene are

shown in Fig. 6.4(g) and (h), respectively. On TM-graphene, NH3 is bound by the nitro-

gen atom and the underlying metal atom, which is consistent with the generally accepted

idea that the chemical bonding in NH3/metal system can be related to the occupied ni-

trogen lone-pair orbital interacting with the metal valence bands.[206] Compared with

CO, O2 and NO2, the atomic structure of NH3, such as the N-H bond length d(N-H) and

bond angle Φ(H-N-H), is nearly unchanged after adsorption and the adsorption energies

are moderate on TM-graphene (see Table 6.4), implying that the desorption of NH3 from

NM-graphene can be readily achieved by annealing or short UV irradiation,[205] which

is an essential quality for efficient gas sensors.
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Figure 6.9: (a-c) PDOS for NH3 adsorption on Cu, Ag, Au embedded graphene. The

dz
2 (blue curve) orbital of TM atoms together with the N 2pz orbital (red curve), lead to

a strong hybridization. Fermi energy is set to zero. (d) and (e) show the charge density

and density difference plots for NH3 adsorption on Au-graphene. Color scheme is the

same as in Fig. 6.6.
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Table 6.4: NH3 adsorption on pristine and Cu, Ag, Cu embedded graphene: the adsorp-

tion length (d), adsorption energy (Ead), bond length of NH3 (d(N-H)) and bond angle

(Φ(H-N-H)), charge transfer from the substrate to NH3 (∆Q) and magnetic moment of

the total system (M).

Configuration d(Å) Ead(eV) d(N-H)(Å) Φ(H-N-H)(deg) △Q(e) M(µB)

NH3 on graphene 3.66 0.029 1.024 106.3 -0.008 0

NH3 on Cu-graphene 2.07 1.03 1.024 107.4 0.646 1.03

NH3 on Ag-graphene 2.26 0.94 1.024 107.4 0.568 1.00

NH3 on Au-graphene 2.26 0.79 1.024 107.8 0.562 1.00

Next we discuss the electronic properties and adsorption mechanism for NH3 on TM-

graphene. The Schönfies notation for the occupied molecular orbitals of free NH3 is

(1a1)(2a1)(1e1)(3a1). The 3a1 orbital has little hydrogen character and is known as ni-

trogen 2pz lone-pair orbital of ammonia. So here the orbital of interest is in fact the

N 2pz orbital. By carefully examining components of TM metal d orbital, it is found

that the hybridization mainly happens between N 2pz and Metal dz
2. As shown in Figs.

6.9(a-c), there is a strong hybridization between N pz state and metal dz
2 state. A double

peak structure of the density of states can clearly be identified, which indicates that the

interaction of ammonia lone-pair orbital with the dz
2 orbital of TM atoms lead to lo-

cal bonding and antibonding states. The charge density and density redistribution plots

(Figs. 6.9(d-e)) clearly show that electrons are transferred from metal-graphene interfa-

cial region to N-metal bond, resulting in enhanced adsorption. This bonding mechanism

suggests that by embedding graphene with appropriate metal atoms, it may have im-

proved sensing ability for NH3, compared to pristine graphene.
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6.2.3 Au-embedded graphene towards CO oxidation

In light of the enhanced reactivity of graphene embedded with metal atoms, particularly

Ti- and Au-embedded graphene towards O2 activation, we studied the chemical reac-

tion of CO oxidation catalyzed by Au-embedded graphene. It is found that Langmuir-

Hinshelwood mechanism is more energetically favorable in reaction barrier than Eley-

Rideal mechanism. We considered the LH reaction CO + O2 → OOCO → CO2 + O as a

starting point, followed by ER type of reaction CO + O → CO2. To search for the mini-

mum energy pathway for the CO oxidation, we considered the most stable coadsorption

configuration, in which the adsorbed CO molecule is tilted to the graphene plane while

O2 is parallel to the plane as initial state. The final state consists of a CO2 molecule

physisorbed on Au-graphene system with a chemisorbed atomic O atom on the catalyst.

A total of 30 image structures were inserted between the IS and FS, and the calculated

MEP profile is showed in Fig. 6.10. The energies are schematically plotted with respect

to the reference energy, defined as the sum of the energies of individual Au-embedded

graphene and CO, O2 molecule in the gas phase.

The optimized structures for CO oxidation on Au-graphhene at each state along the MEP

are displayed in Fig. 6.11. Once CO and O2 are coadsorbed on Au-graphene system,

one of the oxygen atoms (O1) in the O2 molecule starts to approach the carbon atom of

CO to reach the transition state. The O-O bond length of adsorbed O2 molecule (d(O1-

O2)) is elongated to 1.45 Å, while the distance between Au atom and carbon atom of CO

decreases about 0.1 Å in an endothermic process.(see Table 6.5) The activation barrier

for this step os extimated to be 0.31 eV, and a peroxo-type O2-O1-C-O complex is form

over Au atom. Passing over TS, the peroxo-type complex is maitained until a metastable
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Figure 6.10: Schematic energy profile corresponding to local configurations show in Fig.

11 along the MEP via CO + O2 → OOCO → CO2 + O route. The energies are given

with respect to the reference energy, defined as the sum of the energies of individual

Au-embedded graphene and CO, O2 molecule in the gas phase.
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Figure 6.11: Local configurations of CO oxidation catalyzed by Au-graphene at various

intermediate states, including the initial state, transition state, metastable state, and final

state along MEP. Both side view (upper panel) and top view (lower view) are displayed.

Color scheme is the same as in Fig. 6.4.

state is reached and O-O bond length in the O2-O1-C-O is expanded to 1.50 Å. After

MS without an energy barrier, a CO2 molecule is formed, leaving an atomic O adsorbed

on the Au atom embedded in graphene, The CO2 molecule can be easily desorbed at

room temperature due to the weak interaction between CO2 and Au-graphene (∼ 0.1

eV).

After the first CO2 molecule was formed, we checked whether an incoming CO could

react with the remaining atomic O (CO + O → CO2) is conceivable through ER mech-

anism. It was found that a relatively small energy barrier of 0.18 eV, about half of the

barrier for the first step (CO + O2 → CO2 + O) is needed to activate this reaction, due

to the high activity of the atomic O atom. On the basis of the above discussion, we
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Table 6.5: Structural parameters for intermediate states along the MEP for the CO

oxidation on Au-graphene: CO + O2 → OOCO → CO2 + O. IS, TS, MS and FS are

displayed in Fig. 6.11.

Intermediate State IS TS MS FS

d(C-O)(Å) 1.139 1.172 1.207 1.178

d(C-Au)(Å) 2.231 2.147 2.148 4.063

d(C-O1)(Å) 2.755 1.694 1.355 1.173

d(O1-O2)(Å) 1.388 1.449 1.501 3.374

d(O2-Au)(Å) 2.175 2.144 2.081 1.849

Φ(O-C-O1)(deg) 117.2 121.0 122.8 180.0

conclude that CO oxidation can readily happen on Au-graphene at room temperature,

which may be characterized as a two-step process: the LH mechanism initiates the first

step (CO + O2 → CO2 + O) followed by ER reaction of the second step (CO + O →

CO2).

6.3 Chapter summary

In summary, in this chapter, via first principles calculations, we propose the use of metal-

embedded graphene as a possible single-atom nanocatalyst with high performance.

We first investigated the structural and electronic structures of typical metal atom em-

bedded graphene. Then, the adsorption of small gas molecules (O2, CO, NO2 and NH3)

on pristine graphene and graphene embedded by various transition metal elements were
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systematically studied and discussed. Our calculations found that in general, the chemi-

cal reactivity of graphene can be significantly enhanced by the embedding of transition

metals, leading to activation of adsorbed gas molecules, suggesting the great potential

of this material for future applications. Among all kinds of transition metal elements,

our study clearly shows that Ti and Au are best in improving the chemical reactivity of

graphene towards O2 activation.

By using Au-embedded graphene as model catalytic system and CO oxidation as a

benchmark, we explored the reaction mechanism of CO oxidation. Results show that

CO oxidation is likely to proceed with LH mechanism at the starting point with a low

barrier of 0.31 eV, followed by the ER reaction with a much smaller energy barrier (0.18

eV), indicating that this reaction may occur at room temperature. The high catalytic

activity of Au-graphene is attributed to the interaction of d orbitals of Au atom and the

antibonding 2π* orbital of O2, in which electrons from Au-graphene populated to ini-

tially empty antibonding 2π* of adsorbed O2, leading to an enlarged of O-O bond. The

proposed method transform inert graphene to a highly active material for single-atom

catalyst, opening a new avenue to fabricate low-cost catalysts based on carbon. Detailed

analysis of electronic structure and magnetic properties of these systems may be also

useful in graphene-based gas sensing and spintronics.
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Conclusion remarks

To summarize, this thesis aimed to explore and understand supported metal nanocatal-

ysis at an atomic scale by using theoretical approaches. The structural, electronic and

catalytic properties of metal clusters deposited on oxides and carbonaceous nonmateri-

als were studied within the framework of density functional theory, in order to obtain

a deep understanding of the catalytic mechanism. Novel and practical methodologies

have been proposed to design new catalysts and control their catalytic performance.

First, we investigated the chemical reaction of CO oxidation catalyzed by transition

metal oxide supported gold nanoclusters, and special attention was paid to the effects

of metal-insulator transition on the adsorption, stabilization and catalytic activity of Au

clusters. It is found that the Nb-doping induced MIT in SrTiO3 substrate causes a di-

mensionality crossover of supported Au nanoclusters (three dimensional structure to two

dimensional one), and at the same time, greatly enhances the stability and catalytic ac-

tivity of these clusters. Underlying the predicted high catalytic activity of Au clusters
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towards CO oxidation (reaction barrier ∼ 0.2 eV) is the MIT induced interaction be-

tween O2 antibonding 2 π* orbital and Au conduction bands, leading to the population

of electrons from Au to the antibonding orbital and chemical activation of O2 molecule.

Compared to other techniques such as tuning the thickness of the oxide substrate or

applying an electric field, controlling MIT in oxide is of fundamental importance in

physics and more practical in industrial implementation due to the mature technology in

chemical doping. The present results may provide some insights into the fundamental

properties of oxides and oxide-supported metal clusters, and we encourage experimental

research in this direction.

Second, motivated by recent advancement in synthesis and characterization of two-

dimensional graphene sheet, we studied graphene supported metal particles as nanocat-

alysts. Graphene itself is chemically inert due to the strong sp2 and π binding between

carbon atoms in the graphene plane. Consequently, the supported metal clusters are

highly mobile and tend to form bigger clusters, which is not wanted for real applications.

Also, it is not possible to control the performance of catalytic activity through the under-

lying substrate due to the weak interaction. In current study, we propose to control the

stabilization and catalytic activity of metal nanoclusters supported on graphene via tun-

ing the mechanical strain in graphene. It is showed that a relatively modest tensile strain

(10%) applied in graphene greatly increases the adsorption energies of various kinds of

metal clusters under study by at least 100%, suggesting the strain-induced stabilization.

By using Au16 and Au8 clusters on graphene as model catalysts for CO oxidation, it is

found that the charge transfer between Au clusters and graphene can be efficiently tuned

by strain, and reduces the reaction barrier of catalyzed CO oxidation from around 3.0

eV to less than 0.2 eV. This is the first report on using mechanical strain to control the
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performance of heterogeneous nanocatalysts, and it also paves the way for the further

development of mechano-chemistry, for which the focus is the interplay between the

mechanical force and chemical reactions.

In addition, we studied CO oxidation catalyzed by Au8 or Pt4 clusters on graphene with

defects. The simplest single-carbon-vacancy defect in graphene is found to play an es-

sential role in anchoring the supported metal clusters and activating the O2 molecule.

The anchoring of the metal clusters is attributed to the strong interaction between the

carbon-vacancy defect in graphene and the adsorbed metal clusters originating from the

defect-induced hybridization of carbon 2p and Au/Pt 5d orbitals. Moreover, supported

metal clusters are catalytic active towards O2 due to electrons populated the anti-bonding

2π* orbital of the molecule mainly from metal clusters and the metal/graphene interfa-

cial region. Since the carbon-vacancy defect is inevitable in the experimental prepa-

ration of graphene sheets, results presented here may be useful in explaining recent

experiments pertaining the enhanced electrocatalytic activity of Pt subnanoclusters in

graphene surface,[43] and also valuable for the understanding of the defective graphene

supported metal systems.

Finally, we have explored the adsorption of small gas molecules (O2, CO, NO2 and NH3)

on pristine and various transition-metal-embedded graphene to see whether the embed-

ded metal may increase the chemical reactivity of graphene. The most stable adsorption

geometry, energy, charge transfer, and magnetic moment of these molecules on graphene

embedded with different transition metal elements are thoroughly discussed. Our cal-

culations suggest that embedded transition metal elements in general can significantly

enhance the interactions between gas molecules and graphene, and for applications of

graphene-based catalysis, Ti and Au may be the best choices among all transition metal
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elements. By using Au-graphene as model catalyst system and CO oxidation as a bench-

mark probe, we have studied the catalytic mechanism of this system. It is found that

the first step of catalyzed CO oxidation is most likely to proceed with the Langmuir-

Hinshelwood reaction (CO + O2 → OOCO → CO2 + O), and the energy barrier is 0.31

eV. The second step of the oxidation would be the Eley-Rideal reaction (CO + CO2 +

O) with a much smaller energy barrier (0.18 eV). The activity of Au-graphene may be

attributed to the electronic resonance among electronic states of CO, O2, and the Au

atom, particularly, among the d states of the Au atom and the antibonding 2π* states

of CO and O2. The small loading of metal atoms, together with the high activity ren-

der metal-embedded graphene a novel single-atom heterogeneous catalyst towards CO

oxidation. The proposed method transforms inert graphene to a highly active material,

opening a new avenue to fabricate singe-atom nanocatalysts based mainly on carbon,

which is of great significance from both scientific and technological point of view.

My research only focuses on the theoretical predictions. More experiments are needed

to verify the theoretical results. It should also be noted that our predictions on supported

metal nanocatalysts are based on ideal systems, thus external environment parameters

such as pressure, moisture and light are excluded from our simulations. Moreover, re-

garding to the experimentally synthesized graphene, defects, curvature or strain may

coexist in the system, so they may affect the properties of graphene simultaneously. Fur-

ther research should be attempted to simulate the real experimental conditions to gain

a deeper understanding of these systems. A direct extension of this work is to investi-

gate the use of graphene derivatives, such as graphene oxide or hydrogenated graphene

(graphane), as supports for metal nanocatalysts, because of their different physical and
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chemical properties compared to pristine graphene. Currently the research of graphene-

supported metal nanocatalysis is just at the beginning stage, more research work should

be done before we can put graphene-based nanocatalysts into industrial applications.

In the long term, research will be conducted in the following several aspects: 1) Study

complex metal clusters as nanocatalysts. Bimetallic nanoparticles, metal alloys and

core-shell nanostructures will be investigated in detail as these materials show physical

and chemical properties different from their monometallic counterparts. Another impor-

tant direction is to investigate the catalytic properties of ligand-protected metal nanopar-

ticles. As the present work mainly focuses on bare metal clusters that are prepared by

physical methods (such as sputtering, physical vapor deposition, etc.), the structural and

electronic properties of metal nanoparticles that are synthesized by wet chemical meth-

ods remain unknown. We will explore the effects of ligand that are commonly present

during chemical synthesis, on the physical and chemical properties properties of metal

nanoclusters. In particular, we will study the catalytic properties of thiolated Au clus-

ters and their derivatives, nanostructures that are constructed by using these nanoclusters

as building blocks, as well as ligand-protected metal cluster deposited on oxide as hy-

brid systems. 2) Investigate other typical materials as catalyst supports. In the present

study, only oxides and graphene are chosen as model catalyst supports, and other im-

portant materials such as metal carbides, nitrides, MOF and biomaterials which have

been mentioned in the Introduction part, have not been systematically studied. Future

work will be extended to these materials and investigate their applications in catalysis.

3) Explore new experimental techniques to control the catalytic performance of nanocat-

alysts. These methods include but are not limited to charging, ligand-exchanging, heat,

pressure and electric/magnetic field. We expect results presented in this thesis and the
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proposed research to shed light in the future design of novel materials with versatile

functionalities in heterogeneous catalysis.
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