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Abstract

Creating photorealistic 3D digital models from street-view imagery

has many important applications and involves fundamental vision

problems. We investigated the paradox of having similar or repet-

itive structure in the input image data.

In general, prior knowledge of structure regularity helps with the effi-

ciency and quality of image-based-modeling; however, spurious cam-

era geometries due to appearance ambiguity arising from similar struc-

ture can lead to algorithm failure in structure-from-motion, especially

for unordered image collections. In this dissertation, we made a de-

tailed survey on 3D reconstruction methodologies and proposed a

novel objective function based on ‘missing correspondences’ to eval-

uate the optimality of a 3D reconstruction. An efficient algorithm is

designed for optimization.

We also investigated the problem on automatic detection of repetitive

structures in the recovered scene and proposed a method to jointly

analyze images and 3D point clouds to symmetric lattices.

Finally, symmetry is further exploited for a novel camera calibration

method and an interactive 3D modeling system working with a single

input image.
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Chapter 1

Introduction

1.1 Background

In the field of computer vision research, we are interested in methods for ac-

quiring, processing, analysing, and understanding images, and in general, high-

dimensional data from the real world in order to extract semantic information,

e.g. in the forms of decisions. From image analysis, 3D reconstruction, object de-

tection and recognition to scene understanding, it is the ultimate goal of computer

vision researchers to duplicate, if not all, but some of the essential capabilities

of human visual system by electronically perceiving and understanding the real

world environment.

The importance of representation of the scene in computer vision has been

debated over the years. In the early years of computer vision research, the re-

constructing approach, namely, sense-model-plan-act (SMPA) framework was be-

ing criticized as unproductive and impractical (7). The difficulties at that time

mainly came from two aspects. First, it was difficult for the computer algorithms
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to reconstruct or model the scene accurately. Second, the reconstruction process

was slow and unresponsive to changes in the environment. With the advance of

computer technology and vision algorithms, point features can be detected and

matched in sub-pixel accuracy within a fraction of a second (53, 75). A deeper

understanding of various numerical problems and successful implementation of

mathematical tools such as Bundle Adjustment (90) made 3D reconstruction,

once thought as impractical, succeed in various ways. 3D reconstruction can be

optimized in speed to achieve simultaneous localization and mapping (SLAM)

(40, 61) that builds a 3D representation of the environment in real-time while

determining the location with respect to the map in each time instance. Stereo

algorithms can be utilized for depth acquisition for autonomous driving systems,

e.g. Google driverless car. Offline 3D reconstruction can be optimized for accu-

racy (83), whereas the obtained 3D clouds can rival with modern laser scanners

(78). Other than academic interest, vision technology plays an important role in

digital media industry. High quality 3D mesh models are demanded for urban

planning, virtual reality (e.g. Google map 3D), digital heritage, movie and game

production, etc. These newly emerged digital media dramatically change the way

we live and entertain nowadays.

3D reconstruction, or structure-from-motion (SfM), has been studied exten-

sively for more than four decades. Marr and Poggio first proposed the computa-

tional theory and algorithm for stereo vision in the late 70s (55), which inspired

continuous research effort into stereo algorithms which are the foundation of

modern multi-view stereo systems (24). Alternatively, depth information can be

recovered from the distribution of apparent velocities of movement of brightness

patterns in an image, called optical flow in monocular vision system (e.g. a single

2



Figure 1.1: Images are added and processed in a sequential manner in incremental
3D reconstruction.

moving camera) (34). With the development of 2D feature trackers such as (29),

feature based structure and motion analysis became popular and led to the devel-

opment of high performance SLAM systems (14, 40, 61). In the 90’s, Tomasi and

Kanade proposed a factorization framework to solve structure and motion from

video sequence under orthographic projection (88). Numerous extension and gen-

eralization are proposed in the following decades (6, 65, 71, 85). The advance of

view-invariant feature detection and extraction, such as SIFT (53), makes fea-

ture correspondences across images with large view change possible. This robust

matching capability across different views drew attention from researchers to

study camera geometry and SfM for wide baseline stereo and multiple views (30),

which are the building blocks for recent well-known 3D reconstruction systems.

However, most well-known 3D reconstruction systems are based on incremen-

tal approaches, whereby images are added and processed in a sequential manner

Figure 1.1. The image association problem, which is inevitable and error prone

in unstructured data collections (e.g. internet images), is often simplified with

heuristics in these systems. This simplification often leads to catastrophic fail-

ure of the reconstruction in the presence of similar structure and confusing scene

appearance, e.g. Figure 1.2. With careful examination, we, as humans, can usu-

ally tell the difference if there is sufficient non-ambiguous feature or structure in

3
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Figure 1.2: Images of ambiguous building structures. It is difficult to tell whether
these images describe the same building block or different building blocks with
similar appearance.

each image. For instance, different backgrounds and distinctive objects, like the

different red sign boards on top of the building in Figure 1.2, suggest observation

of different object instances.

Although these similar and repetitive structures cause problem for 3D recon-

struction system, they are helpful and much desired for 3D modeling. 3D models

are mesh representation of the 3D world, and they are used for all kinds of 3D

graphics and rendering applications. In computer graphics, software such as Maya

or Google SketchUp are used to create models interactively, images are only used

as reference and texture. Internet 3D platforms such as Google Earth and Mi-

crosoft Virtual Earth also provide ordinary users with tools to model all kinds

of objects on earth. Creating models from scratch is generally time consuming

and labour intensive. Images, on the other hand, provide very useful information

to assist modeling. 3D models can be directly generated from image silhouettes

from multiple calibrated cameras (44), but restricted to small objects with convex

surfaces only. Alternatively, we can create 3D models based on the recovered 3D

point clouds from 3D reconstruction. However, the recovered 3D point clouds

from images are usually sparse and noisy as compared to 3D scanner data, e.g.

4
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Figure 1.3 (d)1, (e) and (f). Assumptions on the scene geometry properties, such

as piece-wise planarity, must be made for efficient modeling (9, 72, 97). The

repetitive and symmetric property often exhibited by man-made objects, such as

buildings (Figure 1.3 (e) and (f)) provide much stronger constraints for modeling.

These properties can be utilized for fast model generation and result in visually

appealing high quality 3D models (58, 60). Naturally, automatic detection of

these symmetry properties is desirable.

2D symmetry detection from a single image is extensively studied in the past.

Methods are developed to detect and categorize rotational symmetry (45, 46, 79),

rigid/deformable lattice (32, 50, 51, 52, 54, 67, 69, 95) and bilateral symmetry

(12) (Figure 1.3 (a), (b)and (c)). Symmetry can also be directly analyzed from

3D point clouds (4, 11, 57, 70). However, for the purpose of detecting symmetry

and regular structure for image-based 3D modeling, all the existing methods

face a fundamental difficulty. In the case of 2D symmetry analysis, the presence

of perspective distortion makes the image texture asymmetric. Affine invariant

features can help with the distortion but fails when there is occlusion, and the

repetitive elements appear different in only a single image (Figure 1.3 (f)). 3D

symmetry analysis, on the other hand, usually requires laser scanned point clouds

which are dense enough for surface normal and curvature computation. Therefore,

we study the symmetry detection problem with multiple images and the recovered

3D point clouds obtained in 3D reconstruction. This joint approach also bridges

the gap between 2D and 3D symmetry analysis.

When it comes to actual 3D modeling, most existing methods focus on piece-

wise planar scenes, since their geometric property is well defined and relatively

1Range data is provided by Stanford University Computer Graphics Laboratory.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: (a), (b) and (c) are examples of bilateral symmetry, rotational sym-
metry and translational symmetry in 2D. (d), (e) and (f) are examples of bilateral
symmetry, rotational symmetry and translational symmetry in 3D. The top figure
of (d) is the point cloud of laser scanned Armadillo and the bottom figure of (d)
is its mesh model. The left figure of (e) is the image of Pisa tower and the right
figure of (e) is the point cloud recovered from 3D reconstruction. Same goes for
the top figure and the bottom figure of (f) respectively.
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easy for automation. Architectures with complex and intricate geometry details

and curved surfaces are often modeled interactively and require significant user

effort. In our study, we show that symmetry property, e.g. rotational or bilateral

symmetry provides very strong geometric constraint on shape and texture, and

is sufficient for creating 3D models with complex geometry from as few as a

single image. The resulting 3D model can have intricate details and is highly

photorealistic.

In summary, the contributions in this thesis consist of the following:

• a detailed survey on 3D reconstruction methodologies

• a novel objective function to evaluate the optimality of a 3D reconstruction

and an efficient method for optimization

• a method to jointly analyze images and 3D point clouds to detect repetitive

structures and symmetric lattices

• a novel single image calibration method based on 3D symmetry

• an interactive 3D modeling system exploiting 3D symmetry

The study presented in this thesis is also reported in the several publications,

(35, 36, 37).

1.2 Thesis overview

The general pipeline of image-based modeling consists of 3D reconstruction, mesh

model generation and rendering. 3D reconstruction is the first and most impor-
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Figure 1.4: 3D reconstruction

tant stage for image-based modeling. In 3D reconstruction, the camera poses and

the 3D scene structure (Figure 1.4) are computed.

The most widely used approach for 3D reconstruction from multiple unstruc-

tured images is to incrementally integrate new local reconstructions to the global

reference frame, i.e. the ordering of the images are required beforehand. Im-

age collections, especially those gathered from the internet, are often unordered.

Therefore, the performance of the incremental approach depends on the order

the images are associated and integrated into the system. We survey different

approaches for 3D reconstruction in Chapter 3 Section 3.1, and discuss their ad-

vantages and limitations in handling image association problem. Basic principles

for 3D reconstruction are described in Chapter 2. We devote Chapter 3 to a new

criteria for evaluating the optimality of a 3D reconstruction, and a novel algo-

rithm for solving the ambiguity in image association and ordering problem. We
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study the behaviour of the new algorithm both theoretically and empirically.

The point clouds obtained from 3D reconstruction are usually sparse and

noisy as compared to 3D scanner data. Geometric constraints such as planarity,

orthogonality, parallelism and symmetry are usually used for surface modeling

(9, 72, 97). The automatic detection of such geometric constraints is therefore

desirable. While the detection of planarity, orthogonality or parallelism can be

obtained from geometric analysis and is relatively straightforward, symmetry

detection involves higher level of understanding of the scene composition. Sym-

metry detection is difficult in general, because the input data is never perfect.

In 2D symmetry detection, texture analysis could suffer from perspective dis-

tortion and occlusion between repetitive objects. Direct analysis on 3D data is

impossible without accurate dense point clouds. In Chapter 4, we try to bridge

the gap between purely image-based symmetry detection and point-clouds based

symmetry detection, and develop an algorithm that works with multiple images

with significant perspective foreshortening effect and sparse point clouds.

While most urban architectures consist of planar surfaces and orthogonal

edges, there are architectures, especially traditional ones that cannot be mod-

eled well with assumptions of piece-wise planar surfaces, e.g. the ancient Chinese

building in Figure 1.1. To make things worse, multiple images may not be always

available. Reconstruction and modeling from image(s) of such architectures is

still possible if we have proper assumptions. The geometric constraints coming

from symmetry alone provide information on the 3D geometry of the object that

is under observation (21, 33, 102). We study the geometric constraints of architec-

tures with bilateral and rotation symmetry under perspective camera projection,

and exploit such constraints for 3D reconstruction and modeling from a single

9



image. The technical details are described in Chapter 5.

Last but not least, we conclude and discuss limitations of the study presented

in this dissertation and issues to be addressed in future research in Chapter 6.

10



Chapter 2

Principles of 3D Reconstruction

2.1 Camera Calibration

2.1.1 Camera Model

Pinhole camera model A camera is a mapping between the 3D world and a

2D image. The simplest camera model is the basic pinhole camera model, which

is also the most commonly used camera model for CCD-like sensors. Figure 2.1

illustrates the central projection of points on to a plane. The center of projec-

tion, called the camera center or optical center, is at the origin of a Euclidean

coordinate system and the image plane is located at z = f . The line from the

camera center and perpendicular to the image plane is called the principal axis

or principal ray of the camera. The intersection of principal axis and the image

plane is called the principal point.

Mathematically, a 3D point can be represented by a homogeneous 4-vector

(X, Y, Z, 1)T , and a 2D image point can be represented by a homogeneous 3-

11



Figure 2.1: Pinhole camera geometry. C is the camera center and o the principal
point. The camera here is placed at the coordinate origin. The image plane is
placed in front of the camera center and its distance to C is the camera focal
length f .

vector (x, y, 1)T . The mapping from a 3D point to a 2D image point by a pinhole

camera is expressed as




X

Y

Z

1




7−→




xZ

yZ

Z




=




f u 0

f v 0

1 0



[R −RC]




X

Y

Z

1




, (2.1)

where x = fX/Z and y = fY/Z, R is the rotation matrix that relates the

camera coordinate frame and the world coordinate frame as illustrated in Fig-

ure 2.2. C corresponds to the world coordinates of the location of the camera
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center. The calibration matrix K is a 3× 3 matrix, and

K =




f u

f v

1



. (2.2)

We denote the homogeneous 4-vector of world point by X, the homogeneous

3-vector of image point by x, and the camera projection matrix by P. Then

Equation (2.1) can be rewritten compactly as

x = PX, (2.3)

where

P = K[R t] = K[R −RC], (2.4)

and we will use this expression throughout the thesis. The parameters contained

in K are called the intrinsic camera parameters and the six degrees of freedom

contained in R and C are called the extrinsic camera parameters.

CCD cameras The ideal pinhole camera assumes that the image coordinates

are Euclidean coordinates having equal scales in both axial directions. In the

case of CCD cameras, it is possible to have non-square pixels. The non-equal

scale factors in each direction can be modeled by representing the focal length of

the camera in terms of pixel dimensions in the x and y dimensions respectively.

Thus, the camera calibration matrix of a CCD camera is
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Figure 2.2: The Euclidean transformation between the world and camera coor-
dinate frames.

K =




fx u

fy v

1



. (2.5)

Skew parameter The skew parameter is introduced to take into account the

non-perpendicular x− and y− axes of the camera. This is, however, very unlikely

to happen for normal CCD cameras. The intrinsic camera matrix with the Skew

papameter is written as

K =




fx s u

fy v

1



. (2.6)

Radial distortion In pinhole camera model, the world point, image point and

optical center are collinear. For real lenses this assumption will not hold. The

deviation observed in normal camera lenses is generally a radial distortion. In
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practice this error grows as the focal length of the lens decreases. The actual

image position after radial distortion (xd, yd) is related to the ideal image position

(x̃, ỹ) by a distortion factor

(xd, yd)
T = L(r̃)(x̃, ỹ)T , (2.7)

where r̃ is the radial distance
√
x̃2 + ỹ2. To correct radial distortion, the following

equations are used,

x̂ = xc + L(r)(x− xc)

ŷ = yc + L(r)(y − yc)
. (2.8)

The term L(r) is given as a Taylor expension L(r) = 1 + κ1r + κ2r
2 + κ3r

3 + ...,

and (xc, yc) is the center for radial distortion, which is usually taken as the same

as the principal point.

2.1.2 Calibration from Homography

Homography is the mapping between different planes. Mathematically, planar

point coordinates are transformed by a 3× 3 matrix H as

x′ = Hx. (2.9)

The matrix H can be written as K[r1 r2 t], where r1 and r2 are the first two

columns of R matrix between the coordinate frame of the plane and the coordi-

nate frame of the camera. A closed form solution of camera intrinsic parameters

can be derived based on the orthogonality constraint between r1 and r2 (101).
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2.1.3 Calibration from Vanishing Points and Lines

The calibration matrix K relates a image coordinate x to the direction d of the

ray defined by x and the camera center, i.e. d = K−1x (30). Hence, the angle

between two rays, with direction d1, d2 corresponding to image points x1, x2

respectively, are given by

cos θ = dT

1d2
√

dT

1d1

√

dT

2d2

=
xT

1
(K−TK−1

)x2
√

xT
1
(K−TK−1

)x1

√

xT
2
(K−TK−1

)x2

. (2.10)

The 3× 3 matrix ω = K−TK−1 is called the image of the absolute conic (The

absolute conic in metric space is given by identity matrix I3×3) (30). It follows

that if two image points x1 and x2 corresponds to orthogonal directions, then

xT
1ωx2 = 0. (2.11)

Under perspective projection, an infinite line is imaged as a line terminating

in a vanishing point. The vanishing point v of the normal direction to a plane is

related to the plane vanishing line as l = ωv. Hence we can also write

lT1ω
∗l2 = 0, (2.12)

where ω
∗ = ω

−1 is called the dual image of the absolute conic (the DIAC).

In general, five pairs of perpendicular lines are needed to solve for the entries

of ω. However, for most cameras we can assume zero-skew and square-aspect

ratio. Hence, given entries of ω, where
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ω =




ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33



, (2.13)

we have ω12 = ω21 = 0, ω11 = ω22. The remaining entries can be determined

from an orthogonal triad of directions. Specifically, the principal point is the

orthocentre of the orthogonal triad of vanishing points.

2.1.4 Calibration from Geometric Primitives

Calibration from metric planes The camera calibration matrix K can be

computed from the image of three squares (on planes which are not parallel, but

which need not be orthogonal) (30). The algorithm is summarized in the following

four steps.

1. For each square compute the homography H that maps its canonical coor-

dinates of the corner points, (0, 0)T , (1, 0)T , (0, 1)T , (1, 1)T , to their imaged

points.

2. Compute the imaged circular points (intersection of the plane with the

absolute conic) as H(1,±i, 0)T .

3. Fit a conic ω to the six imaged circular points.

4. Compute K from ω using the Cholesky factorization.

Calibration from parallepiped A parallelepiped, as shown in Figure 2.3 is

defined by twelve parameters: 3 for orientation, 3 for position, 3 for edge lengths

and 3 for angles between parallelepiped edges.
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Figure 2.3: Parameterization of a parallelepiped. 2li are edge lengths, and θij
are the angles between non-parallel edges.

Given an image of a parallelepiped, the intrinsic characteristics of the camera

and those of the parallelepiped give constraints on the parameter sets of both

entities(93). Camera projection matrix P has 11 degrees of freedom and therefore

five image points and an image direction are sufficient to determine the projection

matrix. The image projection xi is related to canonical 3D coordinates by

xi ∼ K[R t]Λ. (2.14)

The matrix Λ can be written as

Λ =




l1 l2c12 l3c13 0

0 l2s12 l3
c23−c13c12

s12
0

0 0 l3

√
s2
12
−c2

13
s2
12
−(c23−c13c12)2

s2
12

0

0 0 0 1




, (2.15)

with cij = cos θij, sij = sin θij, θij ∈ [0π], li > 0. Let P0 and Λ0 represent

the matrices of the first three lines and columns of P and Λ, then the intrinsic

camera parameters and the parallelepiped’s parameters are related by

18

2/figures/eps/parallelepiped.eps


PT
0K

−TK−1P0 = PT
0ωP0 ∼ ΛT

0Λ0. (2.16)

Prior knowledge on θij , lij or camera intrinsic parameters give rise to linear or

quadratic constraints on the rest of the parameters. As reported in (93), the focal

length estimation is not sensitive to the assumption of location of the principal

point, but degrades quadratically with aspect ratio error.

2.2 3D Reconstruction

2.2.1 Two-View 3D Reconstruction

Camera geometry between two images from different viewpoints is also called

epipolar geometry, which only depends on the cameras’ intrinsic parameters and

relative pose. As shown in Figure 2.4, corresponding image points x and x′ in

view i and i′ are related to each other via the epipolar plane that passes through

3D point X, camera center C and C′. They satisfy the equation given as follows,

x′TFx = 0. (2.17)

The 3 × 3 matrix F can be further decomposed as F = K′−TEK−1, where

E = [t]×R captures the rigid transformation between the two cameras and is of

rank 2 ([t]× is the skew-symmetric matrix of vector t).

The fundamental matrix F can be computed from feature correspondences

alone by solving a linear system given eight pairs of feature correspondences

according to Equation (2.17). The computation for fundamental matrix is degen-

erate when the scene points lie on a ruled quadric or on a plane (30), the latter is
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Figure 2.4: Epipolar geometry.

the common case for reconstructing architectural objects. If the camera intrinsic

parameters are known, Equation (2.17) is reduced to

x̂′TEx̂ = 0, (2.18)

where x̂ is the calibrated image point given by K−1x. E can be computed

robustly from five image correspondences by exploiting the rank 2 property and

orthogonality of the rotation matrix R (62). This five-point algorithm generally

does not suffer from planar degeneracy and is widely used in most well-known 3D

reconstruction systems. 3D points are computed from feature correspondences

and camera parameters via triangulation.

2.2.2 Multi-View 3D Reconstruction

When there are more images, the reconstruction methods can be classified into

three categories in general, namely,
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• solve for global camera poses and 3D structure at the same time from matrix

factorization of all feature correspondences.

• solve for all camera rotations followed by all camera translations and 3D

structure.

• solve for camera poses and 3D structure incrementally.

The Factorization algorithm

Given feature tracks through the image sequence, one can stack all the feature

correspondences into a big matrix in the following form,

W =




x11 x12 · · · x1m

y11 y12 · · · y1m

x21 x22 · · · x2m

y21 y22 · · · y2m
...

...
. . .

...

xn1 xn2 · · · xnm

yn1 yn2 · · · ynm




. (2.19)

Under orthographic projection1 the data matrix W can be directly decom-

posed as W = P̂Ŝ, where P̂ is a 2n × 2 matrix and Ŝ is a 2 × m matrix, this

is called the Tomasi-Kanade factorization (88). Metric reconstruction can be re-

covered from P̂ and Ŝ by using the orthogonal property of the x− and y− axis of

the camera. Under perspective projection (the pinhole camera model), the data

matrix needs to have the following form to perform factorization (89),

1Refer to (30) for detailed introduction to different camera projection models.
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W =




λ11x11 λ12x12 · · · λ1mx1m

λ11y11 λ12y12 · · · λ1my1m

λ11 λ12 · · · λ1n

λ21x21 λ22x22 · · · λ2mx2m

λ21y21 λ22y22 · · · λ2my2m

λ21 λ22 · · · λ2m

...
...

. . .
...

λn1xn1 λnxn2 · · · λnmxnm

λn1yn1 λn2yn2 · · · λnmynm

λn1 λn · · · λnm




, (2.20)

where λij is called the projective depth of the image point xij in view i. It

is related to the true point depth by an arbitrary scale. The 3n ×m matrix W

in Equation (2.20) can be decomposed as W = PH−1HS, where P consists of

the camera projection matrices for m views in metric frame, S consists of ho-

mogeneous coordinates of the recovered 3D points and H is an arbitrary 4 × 4

projective transformation. The projective depths are usually unknown and need

to be recovered together with the camera matrices and 3D points, this is usually

done in an iterative fashion by alternating between projective depths estimation

and structure-and-motion estimation (65, 85). There are many variations of fac-

torization method that handle missing and outlier entries in W (8, 39, 64).

Two-stage solution

Given pair-wise epipolar geometries, the structure-from-motion problem can be

solved in a two-stage fashion. In the first stage, relative rotations between pair-
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wise cameras are used as constraints to solve for absolute rotation 2 of each

individual camera. Let Ri and Rj denote the absolute rotation of camera i and

j, Rij denote the relative rotation between them, we have

Rj = RiRij . (2.21)

The absolute positions of camera i and j are related to the relative translation

vector tij by

Rj(Ci −Cj) = sijtij, (2.22)

where tij is a unit vector, and sij is an arbitrary scale factor.

In the second stage, Govindu (26) proposed to use a relaxed version of Equa-

tion (2.22) that eliminates sij by using cross product of the two sides in Equa-

tion (2.22) and obtain

[tij ]×Rj(Ci −Cj) = 0. (2.23)

One can thus solve for absolute camera translations using the heading di-

rections between view pairs without solving for the individual scale explicitly.

However, the relaxed version of Equation (2.22) may suffer from degeneracy in

the case where the camera is moving along a single direction, e.g. camera mounted

car moving along a straight street.

2Note that this is not the absolute physical orientation of the camera. We can only recover
metric structure up to a rigid transformation and scaling of the world coordinate frame for any
structure-from-motion algorithm. The same explanation goes for camera translation.
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Kahl (38) reformulated the translation estimation problem as a quasi convex

problem of the form f1(x)2+f2(x)2

λ(x)2
, where f1(x), f2(x) and λ(x)2 are affine functions

with coefficients determined from the entries in absolute camera rotation matrices

Ris’ and vectors of image feature points. L∞ norm is used as error function for

optimization. L∞ norm is however, very sensitive to gross errors in the data.

The translation estimation can be done more robustly and efficiently by careful

outlier analysis and feature reduction on the initial correspondences as described

in (56).

Scale and translation constraints can be established within view triplets based

on pair-wise reconstructions. Sinha et al. (80) leveraged on these constraints

on view triplets sharing common 3D points to derive a linear solution for global

translation estimation. In fact, each pair-wise camera poses differ from the global

camera poses by a scale sij and translation tij after global rotation alignment in

the first stage. Given pair-wise reconstruction between image pair ij and jk, the

following equations can be easily derived,

sjk − sjkij sij = 0

sjktjk = sjkij tij + tjkij ,
(2.24)

where sjkij and tjkij are the scale and translation between pair-wise reconstruc-

tion from image pair ij and jk respectively. Sinha et al. (80) solved a weighted

equation system of Equation (2.24) from the largest connected component of

connected image pairs. This formulation avoid solving 3D points in translation

estimation and can be solved much more efficiently as compared to the approach

described in (38).
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Feature mismatches and erroneous pair-wise epipolar constraints will cause

failure of most batch solutions that are sensitive to gross error. Crandall et al.

(13) used GPS data as additional constraints on the camera poses and proposed

a hybrid global optimization framework that solves a discrete labeling problem

and a nonlinear least square optimization.

Incremental solution

Batch solutions usually require prior knowledge of structured image data, i.e.

known camera intrinsic settings and sequential information. Image data collected

from the internet, which is abundant and ideal for city reconstruction applica-

tions, are usually unstructured. Very little prior knowledge of the camera settings

is known and the photos taken from different sources are not in any particular

order. Therefore, most SfM systems for unordered photo collections are incre-

mental, e.g. (1, 41, 48, 82, 83). An incremental solution usually starts with a

small reconstruction, then grows a few images at a time, triangulate new points,

and does one or more rounds of nonlinear least squares optimization (known as

Bundle Adjustment (90)) to minimize the reprojection error. This process is

repeated until no more images can be added.
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Chapter 3

Unambiguous Multi-view 3D

Reconstruction

3.1 SfM from Unordered Image Collection

3.1.1 Overview

Structure-from-motion (SfM) algorithms estimate both camera poses and 3D

structures of a scene from images. SfM with unordered image sets such as inter-

net images is a challenging task. One needs to first determine how the images are

matched against one another. This image matching problem can be thought of

as a graph estimation problem where we are given a set of vertices corresponding

to the images and we need to discover the set of edges connecting them. Usually,

an edge connects a pair of images if and only if they are looking at the same

part of the scene and have a sufficient number of feature correspondences where

a valid epipolar geometry can be computed. This graph can be called a ‘match
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graph’ or ‘connectivity graph’. Invalid connections between images arising from

incorrectly computed epipolar geometries will cause catastrophic failure for both

incremental solutions and batch solutions. Therefore, it is critical to identify and

remove them.

Erroneous epipolar geometries could arise from: 1) degenerate configuration

in relative pose computation, 2) matching failure due to feature descriptors, or

3) duplicate structures in the scene. In the first two cases, the incorrect epipolar

geometries are often independent and inconsistent from each other, and can be

detected by local geometric consistency verification such as trifocal geometry

verification a mong image triplets (31). When the percentage of the incorrect

epipolar geometries is small, Martinec and Pajdla (56) identified them by checking

the residual in global rotation and translation registration. Alternatively, loop

consistency analysis of camera rotation (99), (18) can be applied. However, when

there are duplicate structures in the scene, they could generate a large set of

incorrect epipolar geometries that are consistent with each other, which makes

the aforementioned motion consistency check fail. Such an example is provided

in Figure 3.1, where multiple images are captured around a cup. In the top of

Figure 3.1, we connect two cameras by a line segment, if an epipolar geometry

can be computed between them. (Note that we do not exhaustively draw all these

line segments to make the illustration clear.) Images of the two different sides

of the cup can match and generate many incorrect epipolar geometries. One of

such image pair is shown in the red rectangle on the left. The green rectangle

on the right shows a correctly matched image pair. The incorrect image pairs

overwhelm the correct ones in number, and as a result, previous methods such as

(83, 99) will generate incorrect results as shown in the bottom row, where all the
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Figure 3.1: The middle of first row shows the true configuration in which multiple
images are captured around a cup. We highlight a pair of correct and incorrect
image matches in the green and red rectangles respectively. The second row are
the reconstructions obtained using (83) and (99) respectively. All cameras are
incorrectly reconstructed on one side of the cup.

cameras are reconstructed on one side of the cup.

This problem was solved in (74) by using image timestamps and ‘missing

correspondences’ in local image neighbourhood. However, image timestamps can

only be applied to sequentially captured data. Missing correspondences analysis

in image triplets was first introduced in (98) to locally identify incorrect image

pairs from a third image. However, as the authors acknowledged in their paper

(74, 98), incorrect pairs may also pass this local verification.

In this study, we argue that the ‘missing correspondences’ suffices to solve the

visual ambiguity when analyzed in a more holistic fashion. Instead of analyzing

locally within a triplet as in (98), we propose a novel objective function that

evaluates the overall quality of a 3D reconstruction by using the missing corre-

spondences. We first demonstrate the global minimum of this objective function is

associated with the correct 3D reconstruction, and then show an efficient method

to optimize this objective function.

Given a set of unordered images, we first construct a match graph based on
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existence of pairwise epipolar geometries, where each vertex is a camera and two

cameras are connected if a valid epipolar geometry with sufficient number of inlier

point correspondences can be computed between them. Each edge is weighted by

the reciprocal of the number of correspondences between its image pairs. A span-

ning tree on the match graph determines a 3D reconstruction. Hence, we search

in the space formed by all spanning trees. We start from the minimum spanning

tree, and iteratively identify possible problematic edges and replace them by fa-

vorable ones to minimize our objective function. The algorithm stops when no

spanning tree with better score can be found. In our algorithm, each iteration

always decreases the non-negative objective function; thus convergence is guar-

anteed. The convergence is also typically fast, because the number of iteration

required is bounded by the number of different 3D reconstructions arising from

those ambiguous epipolar geometries, which is often not too large in real data.

Our main contributions in this study are twofold. First, we design an objective

function that correctly describes the optimality of a reconstruction. Second, we

design an efficient optimization of this objective function, and demonstrate the

superiority of our approach compared to the state-of-the-art.

3.1.2 Related Works

Detection of incorrect epipolar geometries is crucial for SfM algorithms. Existing

methods that detects invalid connectivity between images used can be roughly

categorized into three types or a combination of these types:

• local heuristics

• geometric consistency verification
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• ‘missing correspondence’ cue

Local heuristics are used commonly in typical incremental SfM systems such

as ‘Bundler’ (83) to determine the connectivity and ordering of images. Schaf-

falitzky et al. (77) combined image invariants/covariants and geometric relations

to organize unordered image sets of multiple non-overlapping scenes for image

browsing in 3D. Martinec and Pajdla (56) and Sinha et al. (80) both addressed

this problem implicitly in a global registration framework. The former iteratively

discarded the image pair with the highest residual, while the latter weighted dif-

ferent epipolar constraints using the number of triplet-consistent points. Li et al.

(48) used maximum spanning tree on the match graph to determine the order

of image registration, where match graph edges were weighted by the number of

correspondences. All these methods only work when the percentage of incorrectly

matched image pairs is small.

To handle more incorrect image pairs, both Havlena et al. (31) and Klopschitz

et al. (41) performed reconstruction with submodels obtained from view triplets.

Zach et al. (99) inferred the validity of epipolar geometries by evaluating loop

consistency in the match graph. Govindu (27) adopted a sampling approach

in the spirit of RANSAC to sample spanning trees and select the largest set

of self-consistent epipolar geometries. All these methods implicitly assume that

the erroneous epipolar geometries are statistically independent and inconsistent,

and are relatively few in number as compared to the correct ones. Thus, these

methods fail on data with a large number of incorrect epipolar geometries arising

from duplicate scene structures. Recent work (13) incorporated GPS data as

additional constraint to initialize the SfM problem globally. Epipolar geometries

inconsistent with the global motion were identified as outliers and removed from
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subsequent computation.

Zach et al. (98) first proposed to analyze ‘missing correspondences’ among im-

age triplets to identify wrong image matches. Roberts et al. (74) incorporated this

cue to assist an Expectation-Maximization based estimation of the correctness of

each image pair. However, both of them only analyze missing correspondences

locally, and cannot identify all incorrect epipolar geometries. While Roberts et

al. (74) resorted to image timestamps to solve the problem, their approach is not

applicable to non-sequentially captured images.

Data association problem is also extensively studied in simultaneous localiza-

tion and mapping (SLAM) (3, 25, 73). SLAM algorithms must detect reoccur-

rence of previously observed scenes, and decide whether it is due to loop closure

or duplicate scene structures. Due to the sequential nature of SLAM images, this

decision is much easier to make than the case for unordered images.

3.2 Quantitative Reconstruction Evaluation

3.2.1 Objective function

Intuitively, in a correct reconstruction, a 3D point should have similar appearance

in images where it is visible. An approximate surface normal can be computed for

each 3D point using patch-based stereo (24). We define a SIFT descriptor(53) for

a reconstructed 3D point as the SIFT descriptor of the image feature point in its

most front parallel image (with respect to the normal associated with the point).

If a 3D point is visible in an image, its SIFT descriptor should match with the

SIFT descriptor evaluated at its image projection. Therefore, the validity score
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of a 3D reconstruction can be defined as

ER =
1

m

m∑

p=1

P̂missing(p) =
1

m

m∑

p=1

1

n

n∑

i=1

Pmissing(p, i). (3.1)

where m is the total number of reconstructed 3D points, and n is the total

number of images. P̂missing(p) is the average of Pmissing(p, i) over all images, and

Pmissing(p, i) is the probability that the SIFT descriptor of p does not match with

that of its image projection projp,i in view i. We define

Pmissing(p, i) =





0 if p finds matched image feature in view i

1 if p finds no matched image feature in view i
. (3.2)

In practice, we set the searching window for candidate matching feature points

to 100× 100 centered around projp,i (with image resolution about 1200× 800)1.

Visibility issue needs to be resolved before we project point p into view i for ap-

pearance similarity test, and we will discuss this in more detail in Section 3.2.2.

To account for matching failures and mismatches, we also penalize p being in-

visible in the image i by setting Pmissing(p, i) = ρ (we use ρ = 0.05 in all our

experiments). Hence, the complete definition of Pmissing(p, i) is given as

1We threshold on the angle between two SIFT descriptors to decide if there is a match.
Since the matching ability of SIFT descriptor decreases quickly as the view change gets large,
we use two thresholds: 50◦ if the view change is less than 45◦ (with respect to the reference
view of the 3D point), and 60◦ if the view change is between 45◦ to 60◦.
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(a) (b)

Figure 3.2: Missing correspondence analysis, where ‘missing points’ are marked
in red. Shown is a view of a cup that forms a triplet with the cameras pair
(Caml, Camr) highlighted in red in Figure 3.1. (a) In our formulation, we check
all the reconstructed 3D points in all images. A large amount of ‘missing corre-
spondences’ can be identified for the 3D reconstruction corresponding to a spanning
tree containing (Caml, Camr) as the only erroneous pair; (b) Local triplet analysis
according to (98) fails to identify the incorrect image pair.

Pmissing(p, i) =





0 if p finds matched image feature in view i

1 if p finds no matched image feature in view i

ρ if p is invisible in view i

. (3.3)

For easy reference, we refer projp,i as a ‘consistent’/‘inconsistent’ point re-

spectively when a match can/cannot be found. An example is illustrated in

Figure 3.2 (a), where consistent and inconsistent points are marked in green and

red respectively.

ER evaluates the average likelihood that a reconstructed 3D point is missing

in the images. Ideally, in a correct reconstruction, this probability should be zero.

In real data, it is often a small positive value because of the imperfect feature

registration. In comparison, incorrect 3D reconstruction with erroneous image

matches will result in a large positive ER. Thus, intuitively, the global minimum
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of ER should correspond to a correct 3D reconstruction.

The definition of ER is similar to the ‘missing correspondences’ in (98). The

key difference is that we evaluate ER comprehensively over all reconstructed

points and all images. In comparison, Zach et al. (98) evaluated ‘missing cor-

respondences’ triplet by triplet to identify incorrect image pairs locally. Local

triplet verification cannot identify some incorrect image pairs. For example, the

image in Figure 3.2 (b) forms a triplet with the incorrectly matched image pairs

in the red rectangle in Figure 3.1. These three cameras are marked by red in

Figure 3.1. However, there is little ‘missing correspondences’ in Figure 3.2 (b).

Hence, this triplet will be considered as correct in (98). In comparison, we eval-

uate ER on the complete 3D reconstruction (resulting from a spanning tree with

only one erroneous edge as in the triplet). Many inconsistent points can be iden-

tified in Figure 3.2 (a).

3.2.2 Visibility test

Before computing the probability of projp,i being inconsistent, we need to know

the visibility of point p in view i. A point p is invisible in view i if

• p is out of the field of view of camera i, or

• p is on a surface face away from camera i, or

• p is occluded.

Recall that we can compute patch orientation of point p from image pairs,

so we can use the difference between point patch orientation and its line-of-sight

to determine whether point p is face away from camera i. This is illustrated in
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(a) (b) (c)

Figure 3.3: Visibility test. (a)Point is considered as invisible if the angle between
the surface normal and the line-of-sight is greater than 90◦. (b)Point p is considered
as visible in view i. (c)Point p is considered as invisible in view i.

Figure 3.3 (a). In particular, we denote the angle between the surface orientation

of point p and the its line-of-sight in view i as θn, and p is considered as invisible

in view i if θn is greater than 90◦.

For occlusion detection, we use a simple statistic to determine point p’s vis-

ibility. We compare the depth of all point projections in a 100 × 100 window

centered at projp,i to that of projp,i. In Figure 3.3 (b), we mark point projections

with smaller depths (the different between depths should be larger than frac120

of the depth of point p, assuming 1000 pixel focal length, 1 pixel image noise and

minimum 2 degrees of triangulation angle) as compared to that of projp,i (points

in front of p) as red, and the rest (points behind p) as green. Point p is considered

as occluded in view i if all four regions are populated by points in front of p.

3.2.3 Objective Function Validation

We first validate our objective function in Equation (3.1) with a number of real

data to demonstrate that its global minimum is often associated with the true 3D

reconstruction. For each of the examples in Figure 3.5, Figure 3.6 and Figure 3.7,
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we obtain up to 100 different 3D reconstructions and evaluate the objective func-

tion Equation (3.1) on these results. To obtain these different 3D reconstructions,

we randomly sample spanning trees from the match graph. Each spanning tree

gives a 3D reconstruction of the scene. We further require these 3D reconstruc-

tions to be different from each other (see more details in Section 3.3). Besides

these randomly sampled spanning trees, we also manually specify a spanning tree

with only correct epipolar geometries to obtain the ‘ground truth’ result. We then

evaluate the objective function for each 3D reconstruction. We sort these results

in ascending order and plot them in Figure 3.4 (a). We mark the position of

the ground truth reconstruction by a square. Clearly, among these 100 different

3D reconstructions, the ‘ground truth’ result always leads to the smallest value

of the objective function. This gives a strong indication that the global optimal

of Equation (3.1) is associated with the true configuration. It suggests that we

can obtain the correct solution by searching the space of all spanning trees and

choosing the one with minimum cost.

3.3 Efficient Optimization

Given the objective function, we want to minimize it to seek a correct 3D re-

construction. Starting from epipolar geometries computed between image pairs2,

we perform triplet geometry consistency verification as in (74). We only keep

epipolar geometries that are supported by at least one view triplet. For each

image pair with valid epipolar geometry computed, we further reconstruct 3D

2We apply RANSAC(19) and the five-point algorithm(62) for computation. We consider an
epipolar geometry exists if at least 30 points with reprojection error less than 4 pixels can be
reconstructed.
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Figure 3.4: Objective function evaluation. We check up to 100 different 3D
reconstructions for each example in Figure 3.5, Figure ?? and Figure ??, and plot
the objective function values of these reconstructions in ascending order. The
value for ‘ground truth’ is marked by a square. (a) and (b) show the plotting with
Equation (3.1) and Equation (3.9) respectively.

points with rough orientations from their feature matches (24). The 3D points

are represented by the depth of feature points in both images.

We define a match graph, where each camera is a vertex and two cameras

are connected if an valid epipolar geometry can be computed between them. We

assume the graph has only one connected component, though we can process

component by component otherwise. Each edge of the match graph is then asso-

ciated with a weight 1
mij

, mij is the number of reconstructed 3D points between i

and j. We look for a spanning tree of the match graph to minimize our objective

function. We choose the minimum spanning tree to initialize this search, and

compute the 3D reconstruction from it according to (83). Bundle adjustment is

performed to refine the relative camera poses. After this refinement, the initial

objective function is evaluated.

We greedily search for a better spanning tree from a given starting point. We

design a strategy to ensure that the whole process is efficient. First, we notice
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that different spanning trees could lead to the same 3D reconstruction. To avoid

repetitively evaluating equivalent trees, we cache visited 3D reconstructions and

only search trees that lead to different 3D reconstructions. Second, at each step

of the iterative search, we replace only one edge of the spanning tree to move

to a new tree, such that the two successive trees are similar and we can reuse

the computation in 3D reconstruction. Third, we further provide an alternative

definition of the objective function to facilitate its evaluation. In the following,

we will introduce these methods in turn.

3.3.1 3D Reconstruction Caching

Given a spanning tree, we can classify all the epipolar geometries as consistent

or inconsistent with it. We record all consistent epipolar geometries for each

visited spanning tree using a binary array. Given a new tree, if all the epipolar

geometries associated with its edges are consistent with another tree that has

been previously visited, we consider this new tree as redundant and skip it.

In the following, we explain how to decide if an epipolar geometry is consistent

or inconsistent with a given spanning tree. This is essentially similar to the

loop consistency verification in (99). Given a spanning tree, the relative motion

between any two cameras can be derived by chaining the relative motions from

pairwise epipolar geometries along the tree path. Let L = i, l1, l2, l3, · · · , lk, j

represent the vertices on the tree path that connects view i and view j, then we
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have the relationship between relative rotations and absolute rotations,

Rl1 = RiRil1

Rl2 = Rl1Rl1l2

· · ·

Rj = RlkRlkj,

(3.4)

and the relationship between relative camera translation and absolute camera

poses,

Cl1 = RT
il1
(Ci − sil1til1)

Cl2 = RT
l1l2

(Cl1 − sl1l2tl1l2)

· · ·

Cj = RT
lkj
(Clk − slkjtlkj).

(3.5)

Note that sil1 , sl1l2 , · · · , slkj are the baseline lengths between camera pairs

in the registered global camera motion and they cannot be determined from

individual epipolar geometry. We follow (74) to determine baseline lengthes.

Specifically, we form a tree of triplets according to the spanning tree (with each

node representing a triplet and each edge being an edge from the spanning tree

and shared by the two triplets associated with its two nodes) and traverse this

tree of triplets to decide the baselines of child triplets according to that of their

parent. Furthermore, the baseline between each camera pair is computed only

once according to the first visited triplet containing that camera pair.

On the other hand, we can also compute the relative motion between view i
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and view j from their own epipolar geometry, i.e.,

Rj = RiRij

Cj = RT
ij(Ci − sijtij).

(3.6)

Hence, we have two relative motions between camera i, j, namely, (R̂ij, t̂ij, ŝij)

from chaining the epipolar geometries along the tree path, and (Rij, tij, sij) from

the epipolar geometry between view i and view j and the baseline length from

the first rescaled triplet containing view i, j.

We can then determine an epipolar geometry as consistent or inconsistent

according to the agreement between these two relative motions. We compute the

probability of an edge being inconsistent as,

Prob(eij ∈ Sc) = e−βVT

ijΣ
−1Vij , (3.7)

where Sc indicate the set of inconsistent edges, β is a constant (we set β = 0.1),

Σ is the covariance matrix, and Vij = 1/(max(L/L0, 1))
(
r̂ij, t̂ij , ŝij

)T

is the mo-

tion discrepancy vector between camera i, j. r̂ij is the orientation difference of the

two relative rotations (calculated as the average angular difference between the

corresponding rows of the two relative rotation matrices); t̂ij is the orientation

difference between the two relative translations, and ŝij is the baseline length dif-

ference normalized by the average baseline length of immediate adjacent cameras

on the spanning tree. The covariance matrix Σ is computed from motion discrep-

ancy vectors V obtained from geometrically consistent triplets. To account for

drifting effects, we further divide r̂ij, t̂ij and ŝij by L/L0, when L > L0. Here

L is the distance between the two cameras i and j along the spanning tree, L0
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is chosen to be 6 (same as the maximum loop length in (99)). All edges with

Prob (eij ∈ Sc) > 0.5 are considered inconsistent and assigned to Sc.

3.3.2 Incremental Spanning Tree Search

At each step we break one edge eoff from the existing spanning tree, and add

another edge eon to connect the two subtrees Tl and Tr generated by removing

eoff. The relative camera poses within Tl and Tr are unchanged during this

process. Hence, we can reuse the 3D reconstruction in the previous tree. When

searching for the edge eon, we only consider edges whose epipolar geometries are

inconsistent with the previous spanning tree to skip trees leading back to the

same 3D reconstruction.

We can keep the camera poses in Tl unchanged, and use a global transforma-

tion to update cameras in Tr by

[
Ri

new tinew

]
=

[
Ri

old tiold

]



R t

0 s


 . (3.8)

To decide s,R, t, we find graph edges that are consistent with the new span-

ning tree, i.e. Prob(eij ∈ Sc) < 0.4, with one camera in Tl and the other camera

in Tr. R is computed as the average of all relative rotations on these edges. We

use corresponding 3D points reconstructed from Tl and Tr respectively to decide

s and T. At least two points are required for a unique solution. We follow (56) to

select four reliable points on each candidate edge (this is done in the initialization

stage for view pairs). We further check the reprojection error of these 3D points

with the new camera poses. If the error is greater than 20 pixels, we discard the

current eon and search for the next.
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Once the cameras are merged, we update the 3D positions of the reconstructed

feature points. Recall that we have 3D reconstruction between each image pair

during initialization. Given the camera poses, we use the baseline length to fix the

scale of the pairwise reconstructions whose epipolar geometries are consistent with

the new spanning tree. A feature point in an image has its depth reconstructed

from multiple image pairs, each of which gives it a depth value. We sort all

these depth values of each feature point, and choose the middle 20% values to

compute an average depth for each image feature point. This approach to 3D

reconstruction is highly efficient, since we only need to scale some existing pairwise

reconstructions and average their resulted depths.

3.3.3 Fast Objective Function Evaluation

To make the evaluation of Equation (3.1) efficient, we give an alternative objective

function definition as follows

EF =
1∑n

i=1 mi

n∑

i=1

mi∑

p=1

P̂missing(p), (3.9)

where mi is the number of image features from view i with recovered depth

(For computation efficiency, we divide the image into grid of cells with size 50×50

pixels and sample one feature from each cell). This objective function is slightly

different from Equation (3.1). In fact, we can see

n∑

i=1

mi∑

p=1

P̂missing(p) =
m∑

p=1

wpP̂missing(p). (3.10)

Here, wp is the number of image features from which the 3D point p is re-
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constructed. Hence, besides the normalization factor, the difference between EF

and ER is that EF gives larger weights to 3D points associated with more image

features. It is reasonable since these 3D points are more reliable. We also plot

the values of Equation (3.9) in Figure 3.4 (b). The correct 3D reconstruction still

corresponds to the global minimum of Equation (3.9). In fact, we prove the cor-

rect reconstruction should correspond to the global minimum of Equation (3.9)

in Appendix A.

During the search of spanning tree, we need to compute the change in the new

objective function in Equation (3.9) once eoff is removed or once eon is added. To

save computation, we do not compute Equation (3.9) from scratch. When eoff is

removed, the drop in Equation (3.9) is equivalent to

ED = 1
∑n

i=1
mi

∑
i∈Tl

∑mi

p=1
1
n

∑
j∈Tr

(Pmissing(p, j)− ρ)

+ 1
∑n

i=1
mi

∑
j∈Tr

∑mj

p=1
1
n

∑
i∈Tl

(Pmissing(p, i)− ρ).
(3.11)

Intuitively, by removing the edge connecting Tl and Tr, points reconstructed

from one subtree will become invisible in the images of the other subtree. Hence,

we will replace their likelihood of inconsistency by the constant ρ. Further, the

same term Pmissing(p, j) appears in the computation of ED for different tree edges.

We only compute each Pmissing(p, j) once and store its value for better runtime

efficiency.

After the insertion of eon, we compute EI , the increase in Equation (3.9) using

the same expression as for ED. Specifically, we update the probability of a point

reconstructed in Tl (or in Tr) being missing in images in Tr (or in Tl). The energy

of the new spanning tree is now given by

44



Enew = Eold − ED + EI . (3.12)

3.3.4 Iterative search algorithm

To choose the two edges eoff and eon, we sort all edges on the previous spanning

tree according to their drop in Equation (3.9) in descending order. We evaluate

these edges one by one. For each edge, we look for eon from the set of edges that

are inconsistent with the previous spanning tree to link Tl and Tr. Once we find

a pair eoff and eon that lead to a Enew smaller than Eold, we remove eoff and add

eon to swap to a new spanning tree. The iteration stops when no such pair of eoff

and eon with lower energy can be found. We then use all the epipolar geometries

consistent with the final spanning tree to compute the final 3D reconstruction

with bundle adjustment. We summarize our algorithm in Algorithm 1.

Algorithm 1: Optimal spanning tree search.

Initialization:
1) Detect and match SIFT features to compute pairwise EGs. Keep SIFT

features for fast objective function evaluation.
2) Sample a initial spanning tree on the match graph and compute camera

poses with bundle adjustment.

Iterative search:
3) Classify epipolar geometries associated with match graph edges into

consistent/inconsistent set according to the current spanning tree.
4) Sort tree edges according to ED in descending order.
5) Go through sorted tree edges one by one. For each eoff, look for an eon

from the inconsistent set, and evaluate the change of objective function.
6) If the objective function can be reduced, replace eoff by eon to get a new

tree and go to step 3)
7) If no result with lower energy can be found, stop.
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3.4 Experiments and Discussion

3.4.1 Experiments

We experimented on a PC with Intel-Core2 Quad CPU that runs at 2.83GHz

and 4GB RAM. We evaluated our algorithm with eight data sets as shown in

Figure 3.5, Figure 3.6 and Figure 3.7 (final bundle adjustment is performed). In

each row, the first three columns are two of the input images, weight matrix of the

match graph, and binary labeling of the consistent (blue) and inconsistent (red)

epipolar geometries upon convergence respectively. The last three columns are

the visualizations of our results, the results from (99) and (83) respectively. As

can be seen from the figure, (83) failed on all examples. (99) failed on all examples

except the ‘Desk’ example in (d) . In comparison, our method can generate correct

reconstruction among all these examples. Note that we only compare with (99)

and (83) here, since their implementations are publicly available online. In fact,

the examples (a)-(f) are from (74). As reported in (74), their method failed on

(b), (c) and (e) when timestamps information was not used. Figure 3.6 (g) and

Figure 3.7 (h) shows two additional examples with 153 and 150 input images

respectively. Both of them have a large number of repetitive features. The

cameras are incorrectly reconstructed at one side by (99) and (83). In comparison,

our method generated good results on both of them.

We further provide the runtime efficiency for these algorithms in Table 3.1 (for

all the methods we list both the runtime without/with final bundle adjustment,

but exclude the computation of individual epipolar geometries). These examples

are sorted in the same order as in Figure 3.5, Figure 3.6 and Figure 3.7. Though

(99) is faster than our algorithm when the match graph is relatively simple, it
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(a)

(b)

(c)

Figure 3.5: Experiment results on different data sets. For each example, from
left to right in the first row are sample views from image sequence, weighted match
graph, and binary labeling upon convergence; from left to right in the second row
are 3D reconstruction using our algorithm, (99), and Bundler (83).
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(d)

(e)

(f)

Figure 3.6: Experiment results on different data sets (continued from previous
page and continued in the next page). For each example, from left to right in
the first row are sample views from image sequence, weighted match graph, and
binary labeling upon convergence; from left to right in the second row are 3D
reconstruction using our algorithm, (99), and Bundler (83).
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(g)

(h)

Figure 3.7: Experiment results on different data sets (continued from previous
page). For each example, from left to right in the first row are sample views from
image sequence, weighted match graph, and binary labeling upon convergence;
from left to right in the second row are 3D reconstruction using our algorithm,
(99), and Bundler (83).
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Dataset N t1 t2 t3
BOOKS3 19 37/72 919/928 1440/1740
BOXES 25 102/176 15/25 1680/1980
CUP 64 625/826 202/240 2640/3000
DESK 31 92/153 1869/1889 1800/2100
OATS3 23 59/114 1715/1740 1620/1920
HOUSE 19 19/49 6/9 2400/2700
INDOOR 153 1569/2707 369/424 -
FC 150 1792/2533 531/561 -

Table 3.1: Comparison of runtime efficiency. N is the number of input images.
t1, t2 and t3 are runtime (seconds) of our algorithm, (99) and (74) respectively.

often generates incorrect result. The running time of (74) was provided by the

authors and obtained on a PC with a Core 2 Duo 3 GHz processor and 4GB

RAM. They are much slower than our current implementation. The bottleneck

of our algorithm is the evaluation of the objective function. This step could be

easily parallelized to achieve significant speed-up for large scale data.

3.4.2 Discussion

Convergence During the spanning tree search, we begin from the minimum

spanning tree obtained on the weighted match graph. In our experiments, this

minimum spanning tree often contains only a few (1-2) incorrect epipolar ge-

ometries. From such an initial tree, our method converged to the correct 3D

reconstruction after traveling through 2-3 spanning trees. To test the capability

of our greedy search algorithm, we deliberately chose initial spanning trees with

larger number of incorrect epipolar geometries. We did this on the example in

Figure 3.6 (f) by beginning with a randomly sampled spanning tree. We observed

3The duplicate objects in these sequences are created artificially by moving them around.
We remove images with large portion of the duplicate object missing to prevent the discrepancy
that will arise otherwise.
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that the algorithm still found the correct solution after traversing 10-20 spanning

trees starting from an initial one with 5-8 erroneous edges out of 18 in total.

Limitations We noticed mainly two limitations for our algorithm. First, the

greedy search could get stuck at a local minimum. In our algorithm, we implicitly

assume that, given an incorrect spanning tree, one can always find a tree with

a lower score of Equation (3.9) by replacing ONE edge. This is however not

true in general. Such an example is given for the ‘cup’ example in Figure 3.8

(a). Its final spanning tree has two incorrect EGs and cannot be improved by

our algorithm. In other words, our method cannot guarantee to find the global

minimum, though its convergence is guaranteed. Hence, in practice we might

need to start from multiple different initialization, and choose the result with

the minimum score in Equation (3.9). Second, our algorithm will fail on scenes

with duplicate structures but little background features, such as the example in

Figure 3.8 (b). This ‘Temple of Heaven’ example is rotationally symmetric. There

are few ‘background’ points in the image. Hence, we cannot identify ‘missing

correspondences’, and all the cameras are incorrectly reconstructed at one side of

the building by our method.

In conclusion, we propose a method for robust structure-from-motion in scenes

with large number of incorrect epipolar geometries, mainly caused by repetitive

scene structures. We define a non-negative quantitative measure for the quality of

a 3D reconstruction based on the idea of ‘missing correspondences’. We show this

function will attain global minimum for the correct 3D reconstruction. Hence,

we design a greedy iterative algorithm to search for the correct 3D reconstruction

by minimizing this function. For efficient search, we cache visited solutions and
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(a)

(b)

Figure 3.8: Failure cases for our algorithm.

revise the objective function to allow reuse of computation in previous iterations.

The result is an efficient structure-from-motion algorithm that works robustly in

highly ambiguous scenes.

52

3/figures/eps/cup_failLabel.eps
3/figures/eps/cup_ours_fail.eps
3/figures/eps/tiantan.eps
3/figures/eps/tiantan_ours.eps


Chapter 4

Joint Repetitive Structure

Detection

4.1 Symmetry Detection

4.1.1 Overview

Symmetry detection is an extensively studied topic in computer vision. Symme-

try information can be utilized for data completion, refinement or compression in

3D reconstruction and 3D modeling (5, 10, 60, 105). One of the most prominent

symmetry property of architectural objects is the existence of repetitive structure

elements, such as windows and balconies. Other than texture, the regularity of

these structures in digital model is an important criteria on model quality assess-

ment. To detect these repetitive structures automatically is a difficult problem

and many methods are proposed in the literature.

Most existing works focus on detection of planar patterns from a single 2D
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(a) (b)

Figure 4.1: (a) Lattice detected by our method with curved surfaces and non-
planar repetitive elements. (b) Top: the rectified image. The non-planar repetitive
element makes the rectified image asymmetric. Bottom: the reconstructed 3D
points are sparse and noisy.

image. There is a series of works, e.g. (32, 45, 46, 50, 52, 67, 68, 95, 103),

to categorize and detect symmetries. When the repetitive structure lies on a

curved surface, the detection is complicated by the deformation of repetitive

elements and their lattice structure. To handle this problem, Hays et al. (32)

and Park et al. (67) iteratively rectify the surface and detect a lattice structure in

the rectified surface. However, this simultaneous estimation of deformation and

lattice structure leads to complicated optimization. It is also difficult to apply

them to non-planar 3D repetitive elements.

As mentioned before, real buildings often contain 3D repetitive structures

such as balconies and windows. These repetitive structures can lie on curved
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building façades, which makes the detection even harder. Some examples of such

buildings are provided in Figure 4.1. Focusing on these challenging data, we

study repetitive structure detection from multiple images of the same scene. We

employ the SfM algorithm described in Chapter 3 to reconstruct 3D point cloud

from these images. There are two näıve ways for repetitive structure detection

based on our input. First, we might rectify these images and detect repetitive

pattern in the rectified picture with conventional methods. However, as shown

at the top of Figure 4.1 (b), the non-planar repetitive elements (e.g. the red

balconies) could make the rectified image asymmetric. Second, we might apply

3D symmetry detection methods, e.g. (11, 57, 70), to the reconstructed 3D

points. However, our points are too sparse and noisy, as shown at the bottom

of Figure 4.1 (b), to apply these methods, which require local geometric features

such as surface curvature.

Hence, we propose to jointly analyze the reconstructed points and the multi-

view images for repetitive structure detection. We first identify repetitive 3D

points according to their image appearance in multiple views. We use 3D points to

initialize repetitive structure hypotheses and verify them in images. Specifically,

we estimate the underlying surface of these points by assuming that they can

be described by a ruled quadric model, and rectify it to a plane to facilitate the

analysis. Note that after we rectify the curved surface, like in the case of the Rome

Colosseum example, the original rotational symmetry becomes a translational

symmetry. As such, we only consider points that are related by translations

or reflections in the rectified surface. This treatment of rotational symmetries is

more general than that in (70), which estimates a 3D rotation axis and an angular

interval and cannot handle elliptic cylinders like the Rome Colosseum example.
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The detected repetitive structure can help us to enhance the quality of the

reconstructed 3D points, which can benefit image-based modeling works such as

(96, 97).

4.1.2 Related Works

2D Symmetry Detection Most of the symmetry detection algorithms such as

(45, 50, 51, 54, 79, 84, 103, 104) focused on planar patterns. These methods can

be regarded as local or global according to their methodologies. Local approaches

like (51, 54, 79) extract a sparse set of corresponding features and hypothesize

symmetry foci from pair-wise matches. These symmetry foci are then identified

either via some voting schemes in a Hough transform fashion (54, 79) or exhaus-

tive search in the parameter space (51). Global approaches use autocorrelation

(50), the Fourier transform (45), co-occurrence matrices (84), or similarity map

computed in scale space (103, 104) for discovering periodic patterns. All these

methods share a common disadvantage in that both the repetitive elements and

the underlying surface of these elements are assumed to be mostly flat and fronto-

parallel in the image. Hence, they can hardly be applied to general architectural

images taken from arbitrary viewpoints.

When a planar pattern is imaged from a slanted viewpoint, there is significant

foreshortening effect. Cornelius and Loy (12) proposed a method to detect planar

bilateral symmetry under such kind of perspective distortions. Wu et al. (95)

rectified images according to vanishing points to facilitate repetitive structure

detection. It is more challenging when the repetitive pattern lies on a curved

surface, which causes spatially variant deformation. Hays et al. (32) iteratively

56



rectified and estimated the topological lattice. This was further extended in (67)

with the mean-shift belief propagation method to optimize the position of all

lattice grids together. However, these methods require complicated optimization.

Zhang et al. (106, 107) exploits the low rank property of image data to rectify

slant textures or unwrap textures on generalized cylindrical surfaces. Proper ini-

tialization is required for correct rectification of the texture. Distraction from

non-repetitive background and severe occlusion could fail the algorithm. Further

more, no lattice structure is recovered here. In comparison, we utilize multi-

ple images and 3D information from multi-view reconstructions for non-planar

repetitive structure detection.

3D Symmetry Detection There are also a number of methods to detect sym-

metry in 3D data. Pauly et al. (70) and Mitra et al. (57) estimated the sym-

metry of dense laser scanned 3D data by analyzing its geometric signatures such

as curvatures and tangent coordinate systems. In comparison, Bokeloh et al. (4)

designed a novel ‘line features’ for symmetry detection. In a recent work, Bokeloh

et al. (5) further applied the detected symmetries for inverse procedure modeling.

Combes et al. (11) computed the symmetry plane of bilateral objects from laser

scanned point clouds. Thrun and Wegbreit (87) searched for symmetries based

on a hierarchical generate-and-test procedure. All these works require dense 3D

point clouds for symmetry detection. Though we reconstruct 3D points from

multi-view images, our data are much sparser and noisier, which makes these

methods unsuitable. By utilizing rich texture information provided by multiple

images, we can overcome the problem of sparse 3D points.
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Symmetry-based Architecture Modeling Our work is also related to meth-

ods that exploit repetitive structures to facilitate architecture modeling. Müller

et al. (59) analyzed the window patterns on a façade plane to generate its detailed

3D model. Korah and Rasmussen (42) detected and removed occluding objects

from images by repetitive pattern analysis to generate clean texture maps. Nan

et al. (60) and Zheng et al. (105) employed interactive methods to identify

repetitive structures in laser scanned points for architecture modeling.

4.2 Joint Repetitive Structure Detection - the

Algorithm

4.2.1 Algorithm Overview

Starting from multiple images of the same scene, we first apply structure-from-

motion algorithm proposed in Chapter 3 and PMVS (47) to obtain a cloud of

3D points. Typically, we get about 50, 000 visible 3D points in each image (of

resolution 1200× 800). An example of this reconstruction is shown in Figure 4.1

(b).

We first identify multiple groups of repetitive 3D points to estimate the un-

derlying curved surface (See Section 4.2.3). We rectify this surface to a plane

to eliminate the geometric deformation of the underlying lattice structure. The

appearance variation of repetitive elements is implicitly handled by the SIFT

feature descriptor which is more robust to variations than the NCC approach in

(32, 67) and by the availability of multiple images from different viewpoints. We

identify a lattice structure for each group of repetitive points, and then cluster
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Figure 4.2: Detected repetitive points. Different groups of repetitive points are
visualized in different colors.

and merge these results and report the most dominant one for each surface (See

Section 4.2.4). Detected repetitive structure might be applied to clean up the

reconstructed point cloud as in (60), which is helpful for image-based modeling

applications (See Section 4.3). Experiments on real data and comparison with

existing work (67) are provided in Section 4.4.

4.2.2 Repetitive Points Identification

We use the SIFT features (53) already extracted for 3D reconstruction to find

repetitive points. We associate each reconstructed 3D point with features in

multiple images where it is reconstructed from. We exhaustively check all pairs

of SIFT descriptors associated with different 3D points. Repetitive points are

identified if the angle between their descriptors is smaller than a threshold θ1 (we

set the threshold empirically as 20 degrees).

We consider the matching of repetitive points as an equivalence relationship.

In other words, if two points both match with a third point, we also consider

these two points as matched repetitive points. At the end of this step, we have

repetitive 3D points in different groups according to their image appearance.
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Some of the detected repetitive points are shown in Figure 4.2. Points from the

same group are marked in the same color.

4.2.3 Structure Estimation

These repetitive points could lie on a curved surface, which causes geometric

deformation of the lattice structure and complicates the detection. We recover

and rectify this surface to facilitate the detection. We assume this surface is either

a plane or a ruled quadric, which is true for most real buildings. The parametric

model for plane is given by n1x + n2y + n3z + d = 0, where (n1, n2, n3)
T is the

normal of the plane. A quadric is denoted by a 4 × 4 matrix Q, and any point

on this quadric must satisfy XTQX = 0.

We apply sequential RANSAC (19) to fit either quadrics or planes to each

group of 3D points. In each pass, we select the model with most inliers. We

summarize our model selection procedure as follows.

1. Apply RANSAC to the nine-point linear algorithm for quadric estimation.

If the total number of points in the group is less than nine or all sampled

points do not pass the degeneracy testing, go to step 3, else go to step 2.

2. The quadric with most inliers is estimated and converted to its canonical

form. We further classify it into ruled quadric, degenerate quadric and

general quadric based on rank estimation. If the quadric is a ruled quadric

we add it to the model candidates, otherwise, go to step 3.

3. Apply RANSAC to the three-point plane estimation algorithm. If the total

number of points is less than six, we exit from the sequential RANSAC for
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the current group of 3D points; otherwise, add the plane with most inliers

to the model candidates.

4. Select the model with more inliers and remove its supporting inlier points

from the next round of model selection. Repeat step 1.

Different point groups (e.g. different corners on the repetitive balconies) often

lie on similar surfaces that differ from each other by a small translation. We

cluster these groups together. Ruled quadrics and planes are clustered separately.

For this clustering, we simply stack all the 16 elements in Q or the normal of

the planes to characterize a group. Two groups are clustered together if their

3D point constellations are close in space and their normalized parametric model

vectors span an angle less than θ2. (We fix it at 2 degrees in our implementation.)

The surface fitting can then be refined from multiple groups. Suppose the

groups g1, g2, · · · , gN are clustered together. We refine the surface S, a ruled

quadric or a plane, by minimizing the following objective function

N∑

i=1

∑

p∈gi

R(p− di,S). (4.1)

Here, R(X,S) is the algebraic distance between a 3D point X to the surface

S. The vector di is a translation in 3D space, which allows the surface of different

groups to differ from each other by a translation. This minimization is solved in

an iterative fashion. In each iteration, we first fix all di to estimate S and then

fix S to estimate di for each group respectively. Both estimations only involve a

linear equation and the whole process converges quickly. We begin this iterative

fitting by letting di equal to zero. Some surface fitting results are illustrated in

Figure 4.3. These surfaces are then rectified to a plane to facilitate the analysis.
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(a) (b)

Figure 4.3: Surface fitted to multiple groups of repetitive 3D points.

4.2.4 Translational Lattice Detection

We first detect the underlying lattice for each group of points. We then consol-

idate these results to choose the most reliable parametric model for all groups

g1, g2, · · · , gN that share the same surface S.

Lattice initialization The 2D lattice structure is characterized by its two basis

vectors. In the rectified surface, we check all pairs of repetitive points within a

group, and compute a translation between each pair. A näıve lattice detection

is to select the highest two local peaks in the histogram of these translations as

the basis vectors. However, its performance is poor because the reconstructed 3D

points are quite sparse and noisy. We treat these local peaks as candidate basis

vectors and verify them according to the images as detailed below. An example

histogram is provided in the first row of Figure 4.4.

Lattice validation To verify a basis vector, we select a 3D point as reference.

Multiple grid points can be predicted on the line passing through the reference

point along the direction of that vector. We compare the SIFT descriptors of
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Figure 4.4: Top row: the histogram of pairwise translations and the detected
lattice from this raw histogram. Bottom row: the image validation score of pairwise
translations and the detected lattice from this score. In both rows, the two selected
lattice basis vectors are circled in red. Note that in the original histogram space,
one of the correct basis vectors has very low vote.

63

4/figures/eps/translation_histogram.eps
4/figures/eps/grid_from_histogram.eps
4/figures/eps/translation_score.eps
4/figures/eps/grid_from_score.eps


Figure 4.5: The red cross is a reference point. Blue and white circles indicate valid
and invalid grid points. The SIFT descriptor of each point is obtain from its own
most fronto-parallel image. The two green cross are the two farthest reconstructed
points on the grid, which help to decide the width of the grid.

these grid points to that of the reference point. If the angle between them is

smaller/larger than 2θ1
1, we consider the grid point is valid/invalid. To handle

appearance variation caused by foreshortening, the SIFT descriptor of a point

is computed in its most fronto-parallel image, which is the one where the line

connecting the camera center and that point is closest to the local orientation of

the curved surface. This is illustrated in Figure 4.5, where the red crosses are

the reference points, blue and white circles are valid and invalid grid points. The

SIFT descriptors of the reference point and the grid points are computed from

different images.

For each basis vector, we exhaustively check all reference points and define

its image validation score as the total number of valid grid points. However, this

score definition can be biased by directions with large number of repetitions, e.g.

the vertical direction in tall building faca̧des. Hence, instead of using the number

of valid grid points, we use the ratio between this number and the total number

1We use a looser threshold than the one in the detection of repetitive 3D points.
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of grid points within a boundary. The sum of this ratio over all reference points is

defined as the image validation score of a basis vector. To decide this boundary,

as illustrated in Figure 4.5, We search for the two farthest reconstructed on-

grid 3D points located on both sides of the reference point in the feature group.

We consider a point to be on-grid if the distance between it and the nearest

grid intersection is smaller than a threshold T1 (10% of the basis vector length).

Starting from these two initial points, we move them away from the reference

point along the line until a significant portion T2 (50% in our experiments) of the

grid points within them are invalid. We then trim all the invalid grid points at

both ends to obtain the grid’s boundary.

After calculating an image validation score for all candidate basis vectors as

shown in the second row of Figure 4.4, we can choose two of them to form the

lattice structure. We sort these vectors in descending order of their lengths, and

analyze them from top to bottom of the queue one by one. A vector with longer

length is discarded if it can be represented as an integer combination of the rest of

the queue. If two vectors are along the same direction, we only keep the one with

higher score. Finally, we select two vectors with highest score from the remaining

ones.

Lattice bundary estimation Once the two basis vectors are selected, we

proceed to generate the lattice grids. The main challenge here is to decide a

precise boundary of the lattice. We start from a 3D point and expand the grid

by one row/column at a time, as shown in Figure 4.6. If the proportion of invalid

points in an expanded row/column exceeds the significance threshold T2, we stop

and try to expand along the other directions. The lattice is finalized once all four
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Figure 4.6: The red cross is a reference 3D point. Blue and white circles indicate
valid and invalid grid points. The grid is extended one row in the top. Only one
of the extended grid points is valid.

Figure 4.7: Clusters of grids of the same structure. The number of grids within a
cluster is shown in the upper-left corner. The right most grid is selected from our
consolidation.

directions cannot be expanded.

Lattice consolidation In real buildings, all the repetitive point groups on the

same curved surface (e.g., different groups of repetitive corners on balconies)

share the same lattice structure. Hence, we can consolidate the detection among

these groups and generate one final result for each surface. We form multiple

clusters of lattice structures. Two lattices are clustered together if the difference

between their translation vectors is smaller than the threshold T1. Among these

clusters, we only keep the one with the largest number of lattices. An example

of this consolidation is shown in Figure 4.7, where the biggest four clusters are

shown. The number of grids in a cluster is shown at the upper-left corner. For

this example, we finally choose the right most cluster.
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4.2.5 Local Reflection Detection

After the lattice detection, we can look for local reflection symmetries on the lat-

tices. Like (95), we only consider reflection symmetries in the ‘vertical’ direction,

which is the direction of one of the two lattice basis vectors. We choose the one

that is closer to the up direction of the input images.

Reflection axis estimation We exhaustively check all the vertical axes in the

rectified surface. All 3D points used to fit this surface are used to vote for the

right axis. For each candidate axis, we compare the SIFT descriptor of a 3D

point with that of its mirrored point according to the axis. This pair of points

is considered as valid if the angle between their SIFT descriptors is smaller than

2θ1. Again, both descriptors are obtained from their most fronto-parallel images.

We build a histogram of the number of valid pairs for all axes. If only a single

dominant peak is found in this histogram (i.e. the second highest peak is lower

than half of the highest one), we choose it as the reflection axis. Otherwise, there

exist multiple valid axes. The horizontal interval between two neighboring axes

should be the same as that between two lattice points (95). Hence, we fold the

original histogram according to this interval, i.e. H̃(k) =
∑i=k+T

i=k H(i), where T

is the interval, and find the strongest peak in the folded histogram to locate all

these axes.

Symmetry boundary estimation For each detected symmetry axis, we set

the boundary of the associated region as the bounding box of its valid point

pairs. In the case of multiple repetitive symmetry axes, we compute a common

boundary for all axes in the ‘vertical’ direction from their valid point pairs. Their
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width in the other direction is the same as the interval between axes.

4.3 Point Clouds Consolidation

Once the repetitive structure is identified, we can use it to enhance the point cloud

like (60) to facilitate image-based modeling. Here, we only apply the translational

symmetry to demonstrate this idea. We extract and align multiple blocks of 3D

points according to the underlying lattice to generate more complete and denser

results. All 3D points projected within a lattice cell form a block. Multiple blocks

are extracted at different cells and aligned according to the lattice periodicity.

We further apply the iterative closest point (ICP) algorithm (2) to refine the

registration. Plane fitting and outlier removal could be applied subsequently.

Figure 4.10 shows some point clouds before and after consolidation.

4.4 Experiments and Discussion

4.4.1 Experiments

We evaluated our method on images of different buildings with 3D non-planar

repetitive elements. Some of the examples are provided in Figure 4.8. We used

about 15 input images for each example2. As a rough average, our 3D reconstruc-

tion algorithm reconstructed about 100,000 points for each example and 50,000

visible points for each image, which is quite sparse compared with the image

resolution, about 1200 × 800 pixels in our experiments. The first two columns

2This is not a guideline on the number of views that should be used. As long as reasonable
reconstruction can be obtained, one can use as few as two views.
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Figure 4.8: Results of repetitive structure detection. (a) and (b) are the left
most and right most views of all input images. The detected repetitive points are
overlaid on the image (the same group of repetitive points are visualized in the
same color). (c) and (d) show the detected lattice and local reflection symmetry
respectively.

Figure 4.9: Lattice structures detected on multiple buildings. The images are
two views from the same data sequence.
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(a) (b)

Figure 4.10: Point clouds before and after consolidation. (a) shows the original
points computed by our implementation of the structure-from-motion algorithm.
(b) shows the consolidated point clouds tiled over the estimated grid. These two
examples corresponding to the buildings in the third row in Figure 4.12 and the
first row in Figure 4.8 respectively.
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of Figure 4.8 show the left most and right most views of each building. The

matched repetitive points are overlaid in these images, where points of the same

color are from the same group. Typically, our program identified about 50 groups

of repetitive points on each example. The detected lattice is shown in (c). For

each example, we provide a few (1-3) different lattice that share the same basis

vectors. In these examples (especially the first three rows), the repetitive elements

are clearly non-planar. Yet our algorithm still correctly identified the lattice. The

detected reflection symmetry is visualized in (d). The reflection axis is shown in

green and the boundary is indicated by a yellow box. Note that our method

works for images with multiple buildings, see Figure 4.9. Furthermore, since we

apply RANSAC sequentially for surface detection within a repetitive point group,

repetitive structure on multiple similar buildings can also be detected, e.g., the

first example in Figure 4.12.

Additional results are reported in Figure 4.12. In these examples, (a) shows

one of the input image with detected repetitive points. (b) is the estimated sur-

faces. To demonstrate the potential in image-based modeling, we further man-

ually create a mesh for one repetitive element according to its consolidated 3D

point cloud3. This mesh is then tiled over the lattice to generate the result shown

in (d).

Comparison with (67) We compared our method with (67) on 16 different

scenes with 373 images in total. We used the code provided by the authors. Some

detection results from both methods are provided in Figure 4.11. It is clear that

(67) tends to fail when the repetitive element resides on a non-planar surface. We

3Note that this element could be automatically generated by applying methods like (9).
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(a) (b) (c)

Figure 4.11: The first row is the lattice detected by our method, and the second
row is that by (67). (a)both methods detected correct lattice. (b)our method de-
tected partial lattice and (67) detected wrong lattice. (c)our method outperformed
(67) in this case.
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consider the detection a failure if a)no lattice is detected. b)wrong basis vectors

are detected. or c)the detected lattice region is less than 30% of the actual one

in the image. We evaluate the performance of both methods by two different

counting rules: 1)use each image as a data sample. 2)use each sequence as a

data sample, and score according to the best result in the sequence. Our method

succeeds in 81 and 100 percent of these images, respectively. In comparison, the

method in (67) can only handle 22 and 75 percent of the data, respectively (Refer

to Appendix B for detailed results). We believe the strength of our method stems

from the joint analysis of multi-view images and the reconstructed 3D points.

Comparison with (103) We further compare our method with (103) on an

algorithmic level, since their algorithm deals mainly with fronto-parallel views

but also detects translation symmetry in the rectified space. Given identified

repeatitive points, Zhao et al. detect the translation bases by locating peaks in the

transformed space using the breadth-first propagation. However, as illustrated in

Figure 4.4, in the case where the transformation space is noisy and incomplete,

the peaks in the raw transformation space coulde be incorrect. Without image

verification of the hypothesized translation bases, which requires recovered 3D

structure of the underlying surface, the detection of the translation bases could

be unstable and erroneous. However, the MRF formulation of lattice generation

proposed in (103) seems to work better with low-repetition patterns.

Point Cloud Consolidation To exemplify the point cloud consolidation, we

provide examples before and after consolidation in Figure 4.10. It is clear that the

original reconstructed points are much sparser with many holes. In comparison,
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Figure 4.12: Additional results. (a) shows one of the input images with detected
repetitive points (the same group of repetitive points are visualized in the same
color). The underlying surface of these feature points is visualized in (b). (c) shows
the estimated lattice. (d) is the 3D model of the surface.

the consolidated results capture the shape detail much better. These examples

correspond to the buildings in the third row in Figure 4.12 and the first row

in Figure 4.8 respectively. Please refer to their pictures to verify the geometric

details.

4.4.2 Discussion

In conclusion, we present a method to detect architecture symmetries from multi-

view images. Our method jointly analyzes these images and a cloud of 3D points

reconstructed from them.

Parametric model fitting We fit quadrics or planes to these 3D points to

initialize repetitive structure detections and verify these initializations according

to images which contain dense color and texture information. The fitting works
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well most of the time, though it confuses shallowly curved surfaces with planes

sometimes. The parametric model fitting approach is also not capable of handling

general curved surface.

Local reflection symmetry In our proposed approach, we only consider local

reflection symmetry that relies on the detection of lattice structures. However,

there are many architectures that exhibit bilateral symmetry in a larger scale or

on their overall shape. In fact, very recent work (10) adopt a similar approach that

uses both image features and their associated 3D points to detect such large scale

symmetry in the point clouds and use these additional information to perform

constrained bundle adjustment for better reconstruction quality. Interestingly,

the image pairs used for symmetry detection are exactly those causing visual am-

biguity in structure-from-motion and classified as outliers in our work described

in Chapter 3.

Other than the two major limitations, our method contains a number of

thresholds, i.e. θ1, θ2, T1, T2, to decide if two SIFT features are similar, and if

two groups are close to each other. However, since we apply them on normalized

data, these parameters are easy to set and they are all fixed in our experiments.

Thus, we conclude that the use of multiple views and joint analysis of 2D and 3D

information make the algorithm capable of handling challenging data.
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Chapter 5

Symmetry Assisted Architecture

Modeling

5.1 Architecture Modeling

5.1.1 Overview

Creating high quality 3D architecture models is important for many applica-

tions including digital heritage, games and movies, etc. In addition to model-

ing softwares (such as Maya, 3DMax and Google SketchUp, etc), image-based

modeling provides an alternative way to produce 3D mesh models. There are

semi-automatic modeling systems, such as (16, 49, 58, 66, 81), which require user

interaction; and also fully automatic modeling system such as (97). Despite the

existence of various tools and systems available for 3D modeling, creating photo-

realistic architecture models efficiently remains a challenging problem in computer

vision and computer graphics. 3D architecture models created from commercial
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(a) ( b)

Figure 5.1: Architecture models created using modeling software and image-
based modeling algorithm. (a) Church model created from 3dMax. (b) A pavilion
modeled using our proposed modeling method. On the left is the single input
image. On the right is the recovered model rendered from the same viewpoint as
the input image.

modeling software often lack natural texture and look artificial, see Figure 5.1

(a). Creating 3D architecture models manually is also labour intensive and time

consuming. Automated image-based model creation can generate photo-realistic

street façades efficiently with little human intervention, but restricted to sim-

ple assumptions of the street layout (densely clustered buildings and little trees)

and building geometry (planar façades). Interactive image-based modeling, on

the other hand has the freedom of modeling complex 3D geometries and bene-

fits from the efficiency of automatic 3D reconstruction techniques, Figure 5.1 (b)

shows such an example created using our proposed modeling method.

Most of the previous works focus on piecewise planar architecture reconstruc-

tion and modeling from multiple images. Planar structures induce strong shape

constraint and simplify the 3D modeling from point clouds. However, many tra-

ditional and more artistic architectures have intricate geometric structure and

curved roofs, which are highly non-planar and cannot be modeled well by ex-

isting methods, Figure 5.2 (a) shows such an example. Yet, these buildings are
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(a) (b) (c)

Figure 5.2: A traditional Chinese architecture, the Pavilion of Manifest Benev-
olence (also known as TiRen Ge) in the Forbidden City, is modeled from a single
input image. (a) is the input image overlaid with user-drawn strokes. (b) is the
rendering of the recovered model from the same viewpoint as the input image for
validation. (c) shows the rendering from a novel viewpoint.

often landmarks that are particularly worthy of being modeled. Despite the fact

that these buildings cannot be well described by piece-wise planar surfaces, there

often exists strong geometric constraints on the overall building shape, e.g. sym-

metry. In this chapter, we advocate exploiting symmetries for 3D reconstruction

and modeling. To push it to the limit, we study the problem of 3D reconstruction

and modeling from a single image. Single image based modeling is difficult. First,

it is difficult to calibrate the camera (i.e. recovering both intrinsic and extrinsic

camera parameters), which is necessary to relate the image to the 3D model.

Second, a single image often does not provide enough texture information due

to foreshortening and occlusion. 3D modeling from a single image also has its

practical importance since multiple images of the same building are not always

available.

As Magdolna and Hargittai (28) have commented, symmetry is ‘a unifying

concept’ in architecture. A single image of a symmetric building effectively pro-

vides observations from multiple symmetric viewpoints (21, 33, 102). In other

words, shape symmetry effectively upgrades a single input image to multiple im-

ages. To exploit this property, we first propose a method to calibrate the camera
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from a single image according to the presented symmetry. This calibration allows

our system to handle images with completely unknown camera information (e.g.

internet downloaded pictures and archive pictures). Then, a virtual camera is

duplicated at the position symmetric to the real camera, and its observed image

is derived from the input image. A stereo algorithm follows to recover a set of 3D

points from the real and virtual camera pair. After that, the user interactively

organizes the reconstructed 3D points into a high quality mesh model. To keep

the interaction simple, the user only manipulates in the image space to mark out

various architecture components such as walls and roofs, whose shapes and posi-

tions in 3D are automatically computed. Symmetric counterparts of each marked

component are generated automatically to reduce the user interaction. Thanks

to the strong symmetry, the modeling process typically takes less than 5 minutes

of interaction. Lastly, the model is textured according to the single input image.

We use symmetry again to enhance the texture quality at those foreshortened

and occluded regions.

In summary, we proposed a systematic architecture modeling method building

upon the ubiquitous architecture symmetries. We build a novel camera calibra-

tion algorithm (Section 5.2.1), an efficient interactive architecture modeling in-

terface (Section 5.3) and a practical texture enhancement method (Section 5.3.2).

All these components prove architecture modeling can be made very efficient by

making appropriate usage of symmetry-based constraints.

Figure 5.3 shows the pipeline of our system. We first calibrate the camera

from a single image. Then we reconstruct a set of 3D points according to the

calibration and architecture symmetry. Next, the user interactively marks out

structural components such as roofs and walls to build an initial 3D model. The
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Figure 5.3: The modeling pipeline. We first calibrate the camera according to the
user specified frustum vertices and reconstruct a set of 3D points. The architecture
components (i.e. walls and roofs) are then interactively decomposed and modeled.
Shape details can be added if necessary. Lastly, the final model is textured with
the texture enhancement technique described in Section 5.3.2.

user can also add in more geometric detail, such as roof tiles and handrails, or

insert predefined primitives, such as pillars and staircases. At last, the recovered

model is textured according to the input image. Texture synthesis is used to

improve texture quality at the foreshortened and occluded regions.

5.1.2 Related Work

3D reconstruction and architecture modeling have received a lot of research in-

terest, with a large spectrum of modeling systems developed to build realistic 3D

models. Here we only review those works related to symmetry and architecture

modeling. We categorize them according to their methodologies.

3D reconstruction from symmetries It is well known that symmetry pro-

vides additional constraint for 3D reconstruction. Rothwell et al. (76) and Fran-

cois et al.(21) studied the 3D reconstruction of bilaterally symmetric objects.

Zhang and Tsui (102) extended it to handle arbitrary shape by inserting a mirror

into the scene. Hong et al. (33) provided a comprehensive study of reconstruc-

tion from various symmetries. Most of these works focus on bilateral symmetry

and study the resulting multi-view geometric structures such as the special con-
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figurations of the fundamental matrix and epipoles. These works often assume

the camera is pre-calibrated with known focal length and/or pose (position and

orientation) for 3D reconstruction. Although Hong et al. (33) studied the camera

calibration problem from symmetries, their results are limited, e.g. the camera

can be calibrated from the vanishing points of three mutually orthogonal axis of

bilateral symmetry. In comparison, we focus on the application of architecture

modeling and study both bilateral and rotational symmetries. Since we are more

specific about the object to be modeled, we obtained stronger results both on

camera calibration and texture creation, which lead to a complete system for

high quality modeling with a single uncalibrated image.

Procedural architecture modeling Procedural methods build 3D architec-

ture models from rules and shape grammars. They can generate highly detailed

models at the scale of both an individual building and a whole city (58, 66). A

disadvantage of these methods is that it takes expertise for its effective usage. It

is also hard to specify rules to model a particular building.

Interactive architecture modeling Debevec (16) fitted a parametric build-

ing model to the single (or multiple) input image(s) according to the user marked

geometric primitives. High quality results can be achieved. There are also com-

mercial modeling systems like Google SketchUp, where the user sketches freely

to create a 3D building model from scratch or according to an image. The major

limitation of these two systems is the large amount of user interaction involved. In

Google SketchUp, all the shape details have to be sketched manually. As reported

in Debevec’s PhD thesis (15), for the relatively simple Berkeley Campanile exam-
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ple (see Figure 5.14), about one hundred edges need to be manually marked and

corresponded which takes 2 hours. Our method involves much less interaction,

because the 3D information is explicitly recovered before the interactive façade

decomposition and reconstruction. With our system, the user draws less than 20

lines and it takes only 9 minutes (for a novice) to model the Berkeley Campanile

building. Another limitation of the Façade system is that it requires the camera

to be pre-calibrated with known intrinsic parameters. To handle uncalibrated

cameras, the vanishing points of three mutually orthogonal directions need to be

detected from the image (15), which is often impossible (e.g. for buildings in

Figure 5.11–Figure 5.13) and numerical unstable (94). In comparison, our novel

auto-calibration algorithm is more robust and can handle more general data,

which is a critical feature for a desktop modeling toolkit.

Single image based architecture modeling Images provide very useful in-

formation to assist modeling. Even a single image can guide the modeling quite

effectively. Liebowitz et al. (49) created a 3D model by exploiting parallelism and

orthogonality from a single image. Oh et al. (63) manually assigned a depth with

a painting interface to create 3D model. Such a procedure is tedious and labor

intensive. Müller et al. (59) derived shape grammars from a single image of a

façade plane. These single image based methods are limited to simple buildings.

While our method also takes a single image as input, we explicitly reconstruct

3D points from the input image, which helps both to simplify the user interaction

and to model more complicated buildings.
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Multiple images based architecture modeling Multiple images from dif-

ferent viewpoints provide strong geometric constraints on 3D structure. Dick et

al. (17) built statistical model to infer building structure from multiple images.

However, such inference is unreliable for complex buildings. The multi-view stereo

algorithm developed in the computer vision community can generate cloud of 3D

scene points from multiple images, which lead to more robust reconstruction.

Sinha et al. (81) used an unordered collection of pictures to assist interactive

building reconstruction. Xiao et al. (96) took pictures along streets and built 3D

models of the whole street. Pollefeys et al. (72) developed a real-time system for

urban modeling from video data. Our method is inspired by the work of Sinha et

al. (81) and Xiao et al. (96), where reconstructed 3D points can be used to guide

user for efficient interaction. Specifically, if 3D points are reconstructed, tedious

manual correspondence as in (16) can be avoided. The user only needs to mark

out structural components, whose shape and position can then be determined

from the reconstructed 3D points. The availability of multiple images always

yields better 3D reconstruction and modeling results, but we have to resort to

single-view modeling when we only have one image as input.

Aerial images based architecture modeling There are also methods (100)

which used aerial images to reconstruct buildings. Some of them (23) combine

aerial images with ground-level images for the modeling. The focus of these

methods is on how to efficiently model very large set of data. As such, the

quality of each individual building could be sacrificed for modeling efficiency. In

this study, we focus on how to create a high quality model for a single building.

The proposed method combines the strength of both interactive modeling
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and image-based modeling. We take a single image as input and reconstruct

explicit 3D information by leveraging on prevalent architectural symmetry. The

reconstructed 3D information helps us to design a more efficient interface than

previous interactive methods and single image based methods. Compared with

those methods with multiple images, our system is more flexible since it requires

much less data.

5.2 3D Reconstruction by Symmetry

In this section, we describe how to reconstruct the camera pose and a set of

3D points from a single image by exploiting architectural symmetries, including

both bilateral and rotational symmetry. We first calibrate the camera from an

observed pyramid frustum. Then we duplicate a virtual camera according to

the calibration and the observed symmetry. 3D points are computed by stereo

algorithm from the real and virtual cameras.

5.2.1 Symmetry based Camera Calibration

Cameras need to be calibrated for undistorted 3D reconstruction. The calibration

accuracy is important as the image is related to the 3D model according to the

calibration.

The camera can be calibrated from the vanishing points of three mutually

orthogonal directions in a single image (30), which is applied for façade model-

ing in (15). However, many images, e.g. Figures 5.11– 5.13, do not have three

such vanishing points. Furthermore, the vanishing point based approach is of-

ten numerically unstable (94). Naturally embedding the constraints from three
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vanishing points, an parallelepiped in a single image can be used to calibrate

the camera (93, 94). The details of the calibration technique is described in

Chapter 2. This approach is stable and accurate and is applied for architecture

modeling. The parallelepiped, however, is not the most suitable geometric prim-

itive for architecture. A degree of freedom is redundant for architecture since the

horizontal shearing of a parallelepiped is not present in real buildings. On the

other hand, the horizontal size of real buildings often gradually shrink when the

height increase. This feature is common in architectures, as illustrated in Fig-

ure 5.2 and Figures 5.11–5.13, but it cannot be represented by a parallelepiped.

A better geometric primitive is the pyramid frustum, which does not introduce

the redundant degree of freedom and can model real buildings well.

Parametric model of pyramidal frustum A pyramidal frustum is a trun-

cated pyramid as illustrated in Figure 5.4. Here, we use a frustum with a rectan-

gular base as an example for discussion, though our results are valid for frustums

with different bases. We parameterize a pyramid frustum by α, θ, l1, l2, l3, as il-

lustrated in Figure 5.4. α is ≤ 1 and controls the shrinking of the pyramid. If

α = 1, the pyramid frustum degenerates to a right prism, a parallelepiped with

zero horizontal shearing. θ is the angle between the two adjacent horizontal edges

of the frustum base. li, 1 ≤ i ≤ 3, are the three independent lengths of the struc-

ture. For modeling applications, the absolute position and size of the structure is

not important. Hence, without loss of generality, we can let the height l3 = 1 and

consider the origin of the world coordinate system to be at the bottom face of the

frustum, with the z-axis passing through the apex of the pyramid, and the y-axis

parallel to one of the edges. From a single image of a building, part of a pyramid
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Figure 5.4: A pyramid frustum is a truncated pyramid. It shape is defined by 5
parameters. li, 1 ≤ i ≤ 3 defines the length of its edges. α controls the shrinking in
vertical direction. θ is the angle between the two horizontal edges. Blue edges and
red vertices are the parts of a frustum that are often visible in architecture images.

frustum can often be seen (the highlighted vertices and edges in Figure 5.4). The

corresponding points are highlighted in the Figure 5.2 (a).

Pyramid frustum and camera calibration The homogeneous coordinates

of a frustum vertex can be represented as Xi = Λ · X̂
⊤

i , where X̂i = (xi, yi, zi, 1),

and xi, yi ∈ {1,−1}, zi ∈ {0, 1} (see Figure 5.4). Here,

Λ =




l1 l2c 0 0

0 l2s 0 0

0 0 βl3 0

0 0 β − 1 1




(5.1)

where β = 1/α, s = sin θ and c = cos θ. As Λ contains all the shape pa-

rameters of the pyramid frustum, the 3D reconstruction of the frustum amounts

to the estimation of Λ. Frustum vertices are projected into image coordinate

xi = (xi, yi, λi) by the projective transformation P, i.e.

xi ≃ PXi = PΛX̂i = P̂X̂i (5.2)
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where ≃ means equality up to a scale. P = K · [R|t] is the 3× 4 camera matrix,

where K encodes the camera intrinsic parameters, R and t represent relative

rotation and translation between the camera and the world coordinate system. If

six or more frustum vertices can be observed from the image, P̂ can be computed

by a linear algorithm (30).

Camera calibration and 3D reconstruction of the pyramid frustum then amounts

to the factorization of P̂ as

P̂ = K · [R|t] · Λ (5.3)

A general camera intrinsic matrix K contains 5 unknowns. R, t each contains

3 unknowns. Λ has another 4 unknowns (considering l3 = 1), making a total of

15 unknowns. The 12 components of the 3× 4 projective matrix P̂ provide only

11 independent constraints. This factorization is impossible without further as-

sumption about the camera parameters and the scene structure. The assumption

involves the trade-off between the generality of the camera model and the frustum

structures. To model a larger variety of buildings, we assume the simplest camera

model where only the focal length is unknown1. With this simplification, all the

11 unknowns can be computed from the 11 constraints with a general non-linear

optimization method. If further information is known about the architecture

structure as a prior, such as the value of the angle θ or the length ratio between

l1 and l2, we can handle more general camera matrix with unknown pixel aspect

ratio or principal point.

1The other known camera parameters are the principal point, the pixel aspect ratio, and the
camera skew.
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Quadratic initialization A good initialization is critical for the success of

the above non-linear optimization. In this subsection we describe a method to

initialize the estimation by solving a quadratic equation. We observe that

P̂
⊤

K−⊤ ·K−1P̂ =




l21 l1l2c ∗ ∗

l1l2c l22 ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗




. (5.4)

Here, K−⊤ · K−1 = ω is the matrix representing the image of the absolute

conic (see also Chapter 2). Hence, we have the following equations,

p̂⊤

1 ωp̂1 = l21; p̂⊤

1 ωp̂2 = l1l2c; p̂⊤

2 ωp̂2 = l22. (5.5)

Here, p̂1, p̂2 are the first two columns of P̂. Assuming the simplest camera

model, ω depends only on the focal length f . Equation (5.5) provides 3 equations

for 4 unknowns l1, l2, θ, f . From a single image, very often we can either tell the

value of θ or the length ratio of l1 and l2, which reduces one unknowns from

Equation (5.5) and enables the recovery of the other threes. This provides the

initialization of l1, l2, θ, and f . Next, we initialize the other unknowns, i.e. R, t,

and β.

Once f is determined, K is known and we can compute

[R|t]Λ = K−1P̂ = [r1, r2, r3, t]Λ

= [l1r1, l2c2r1 + l2s2r2, βr3 + (β − 1)t, t].
(5.6)

Here, r1, r2, r3 are the three columns of R. Hence, r1 can be obtained by
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normalizing the first column of K−1P̂. r2 is generated by projecting the sec-

ond column to the plane perpendicular to r1, and r3 is simply r1 × r2. t is the

last column of K−1P̂. β can be obtained from the magnitude of the third col-

umn. This gives a complete initialization to the camera calibration and frustum

reconstruction procedure.

Finally, we want to emphasize the importance of the initialization. There is

a well-known (20) focal length and pyramid shrinkage (f − α) ambiguity in an

uncalibrated image, i.e. the same image can be explained as a pyramid (α < 1)

viewed by a camera with a certain focal length, or a prism (α = 1) viewed by

a camera with a different focal length. Hence, directly fitting a parameterized

pyramid frustum and a camera model to the image cannot generate correct result.

Either one has to be fixed in order to uniquely determine the other. Here, we

provide such a technique for general uncalibrated images.

5.2.2 Symmetry-based Stereo

Many architectures exhibit symmetry. The two most common symmetries are

bilateral symmetry and rotational symmetry. Both of them can be represented by

the pyramid frustum as illustrated in Figure 5.5 (a) and (b) respectively. Bilateral

symmetry is characterized by the symmetry plane, i.e. the x-z plane. (Some

buildings exhibit further symmetry across the y-z plane.) Rotational symmetry

is characterized by the rotation axis, i.e. the z-axis. Once the frustum shape,

i.e. Λ, is computed, the type of symmetry can then be automatically determined

from the frustum shape.

From the calibrated camera, we can duplicate another virtual camera accord-

90



(c) (d)

Figure 5.5: Representing architecture symmetry by pyramid frustum. (a) Bi-
lateral symmetry is characterized by the symmetry plane, i.e. x-z plane. (b)
Rotational symmetry is characterized by the rotation axis, i.e. z-axis. With the
calibration of the real camera, a virtual camera can be duplicated according to the
underlying symmetry. (c) Stereo algorithms can be applied to the real and virtual
camera pair to recover a set of 3D points. (d) With a few strokes to delineate the
key parts, the user can build an initial model from these 3D points.
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ing to the underlying symmetry of the building. The virtual camera is generated

by flipping the real camera across the x-z plane in the case of bilateral symmetry,

or by rotating the real camera around the z-axis for an angle π − θ in the case

of rotational symmetry. The observed image from the virtual camera can be de-

rived from the input image. It is the input image with a horizontal flipping in the

case of bilateral symmetry, or is exactly the input image in the case of rotational

symmetry (33). Some previous works (21, 102) demonstrate that stereo algo-

rithms can be applied to the real and virtual camera pair with manually specified

correspondences.

As discussed in Chapter 1, feature detection and matching (53) can be per-

formed automatically to establish correspondences between the real and virtual

image pair. To facilitate matching, we take the frustum’s side face as an initial

estimation of the building façade, which induces a homography between the real

and virtual image (30). We only consider matches consistent with this homog-

raphy. To reduce projective distortion, the image region enclosed in the frustum

side face is further ‘rectified’ by mapping it to a rectangle. Image features are

computed in this ‘rectified’ rectangle. Obtained matches are further propagated

according to the method described in (47). Then all matched features are recon-

structed by triangulation (30), which generates a set of 3D points on the building

façade. An example of this reconstruction is shown in Figure 5.5 (c). More

examples of 3D reconstructions are included in Appendix C.
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5.3 Surface Modeling

After the symmetry-based stereo, we obtain a set of 3D points on the building

façade. Then the user can interactively build a surface model according to these

points and the image information. The user first marks out large architectural

components, such as walls and roofs, with a few strokes. The shapes of these

components are automatically determined from the recovered 3D information. If

further shape details are required, the user can also add roof tiles and handrails

by a few additional strokes. The whole model is then textured according to the

input image. In the input image, part of the model is imaged from a slanted view,

which causes texture distortion. We use texture on fronto-parallel faces to correct

this distortion. Textures on the invisible surfaces are synthesized by taking the

weathering pattern into consideration.

5.3.1 Geometry modeling

Model initialization Multi-view stereo automatically reconstructs a set of

3D points. User interaction often follows to build surface model according to

these points. This leveraging of automatic vision technique together with user

interaction is employed in several previous systems, such as (81, 91, 96). Similarly,

we interactively identify architectural components such as walls and roofs from

the image plane, and then compute their 3D shape and position according to the

reconstructed 3D information. Müller et al. (59) and Xiao et al. (96) propose

an automatic method to partition building façades into rectangular components.

However, these methods cannot handle complex façade data such as those shown

in Figure 5.2 and Figure 5.12. The automatic partition of such complex façade
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Figure 5.6: The user interactively draw a few strokes to build an initial model.
The blue quadrilateral is the user-drawn wall structure. Green strokes are the
user-drawn roof boundaries.

image is out of the scope of this thesis, and we rely on user interaction to mark out

the architectural structures and leave the automatic partition for future research.

We mark out two kinds of structures, namely planar walls and curved roofs.

The user interactively marks out a planar structure in the image. Then its

position is determined according to the enclosed 3D points. Its symmetric coun-

terparts are also automatically generated. Each planar structure should pass

through two additional points, which are the intersection of the two pairs of

edges of the frustum side face. We compare the image orientation of the user

drawn strokes with that of the edges on the calibration frustum to determine

which frustum side face to use as reference. In the left of Figure 5.6, these two

points are illustrated as h and v. h is the vanishing point of the horizontal di-

rection. v can be a finite or infinite point, depending on the parameter α of

the frustum. Similar plane fitting approach is used in (81). These vanishing

points serve the purpose of maintaining architecture shape regularities, such as

the angle between two adjacent wall planes. Of course the user can also choose
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(a)

(b)

Figure 5.7: Correspondences derived from intersection of wall edges. (a) In the
case of rotational symmetry, the virtual correspondences for xb,xc are given by xa,
xd respectively. (b)In the case of bilateral symmetry, the virtual correspondence
for x = (x, y)T is given by f(x) = (w − x, y)T , where w is the image width.

to discard these constraints to have larger modeling flexibility. In Figure 5.6, the

blue quadrilateral is the user-drawn planar structure. With the two constraint

points h, v, one reconstructed 3D point in the enclosed region can uniquely de-

termine a planar structure. If multiple points are available, we apply RANSAC

to obtain a robust fitting. If no reconstructed points are found in the enclosed

region, the user is required to mark out the exact wall boundary (as shown in the

right illustration in Figure 5.6) and the intersection of the four edges are used as

corresponding points observed in the real and virtual images for triangulation.

This is illustrated in Figure 5.7.

Generally, there are not enough reconstructed 3D points on the roof (see
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Figure 5.5 (c) ) to determine its shape and position. The user needs to mark

out roof boundaries in 3D to model the roof. To simplify the user interaction,

we introduce a set of auxiliary planes. The user draws 2D curves within these

planes to decide 3D roof boundaries. Once the roof modeling function is enabled,

multiple blue auxiliary planes are overlaid on the input image as illustrated in

Figure 5.6.2

The user marks out the back edge of the roof, i.e. the solid green curve. Its

3D position is determined by projecting the drawn curve to the auxiliary plane

according to the calibrated pinhole camera. All the symmetric counterparts of this

back edge are generated according to the symmetry automatically. The roof hip,

the beam along the back edge, is modeled by raising the 3D edge for a constant

distance. Then the user draws the front edge, i.e. the dashed green curve in

Figure 5.6. Similarly, its 3D position is obtained by projecting the drawn curve

to the brown auxiliary plane, which is parallel to the z-axis and passing through

the end points of the back edge. The curved roof is interpolated according to these

surrounding edges. More details of the user interaction can be found in Appendix

D. With these strokes to mark out walls and roofs, an initial 3D model of the

building can be obtained as shown in Figure 5.5 (d). Corresponding strokes are

shown in Figure 5.2 (a).

Model refinement Many architectures contain intricate geometric ornaments,

which are hard to reconstruct from stereo triangulation. We describe an efficient

way to model these details. We deal with two types of shape detail here, roof tiles

and carved handrails. In addition, we also have predefined geometric primitives

2The auxiliary planes of bilaterally symmetric buildings are illustrated in Appendix D
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(a) (b)

Figure 5.8: Model refinement. (a) The user marks out the tile shape from a
rectified view of the roof’s front edge. This tile is applied to all roofs. (b) Cut
pattern is automatically extracted. The user can also refine some incorrect line
segments as illustrated in red.

such as spheres, pillars and steps, which can be directly inserted into the building

model. The user can also model revolved surface by specifying the revolving

boundary.

From the initial model, we extract a rectified view of the roof front edge as

shown in Figure 5.8 (a). The user marks out one tile in this rectified view. The

tile’s shape and interval are determined according to these two strokes. The

number of tiles is calculated by dividing the whole front edge length by the tile’s

size and interval. Then the tiling is applied to the whole roof surface. Each tile is

textured by a predefined generic texture. Handrails have intricate cut patterns.

We also extract a rectified view of the handrail as shown in Figure 5.8 (b). We

apply Canny edge detection to extract edge pixels, which are then traced to form

segments. We discard short segments and constrain remaining ones to have a few

predefined directions, such as vertical or horizontal. In Figure 5.8 (b), the green

edges are automatically detected, while the red strokes are user-input to refine

incorrect edges. The user can either add or delete edges. The 3D shape of the

handrail is created from the 2D pattern with a constant depth.
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5.3.2 Texture Enhancement

One inevitable problem in single image modeling is the lack of texture samples.

Some parts of the building are viewed from a slanted view angle or occluded

in the input image. Texturing by back-projecting the image to the 3D model

will cause large texture distortion. This distortion is systematically studied in

(86), where the texture map is segmented and synthesized with consideration of

orientation and scale changes. We also apply synthesis techniques to improve

the texture quality with two novel features. First, we require the final texture to

be consistent with the foreshortened image, which contains partial information

of the underlying texture. Second, we require the synthesized texture to have

consistent weathering patterns.

We enhance texture maps by applying patch based synthesis (43). We first

generate an initial texture map by back projection. This texture map is marked

automatically as regions free of distortion, with distortion, or occluded, by thresh-

olding the ratio between the size of the mesh triangle and that of its image pro-

jection. Larger ratio indicates larger texture distortion. Texture in the distortion

free regions is used as samples to enhance that of other regions. We treat the

enhancement of foreshortened region as a ‘super-resolution’ problem (22). This

enhancement runs by iterations. At each iteration, we overwrite a foreshortened

texture patch by a distortion free patch that is most similar (in the sense of SSD)

to it. This new patch is stitched to the texture map by a graph-cut optimization

as in (43). A result of this super-resolution is shown in Figure 5.9. The tex-

ture in (a) has limited resolution due to foreshortening in the input image. Our

method can enhance it to one with a similar resolution to the fronto-parallel view
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(a) (b)

(c)

(d)

Figure 5.9: Examples of texture enhancement. The texture in (a) has low reso-
lution because of the foreshortening in the input image. This texture is enhanced
to (b) to reduce artifacts. Texture (d) is synthesized according to the sample from
texture (c). Similar weathering pattern is maintained.

(Figure 5.9(b)).

The simplest way to texture the occluded regions is to repeat the same texture

as those of their symmetric counterparts. However, this simple repeating makes

the model look artificial. Instead, we synthesize texture in the occluded regions

according to those textures found in the distortion free region. Another diffi-

culty lies in maintaining consistent weathering patterns. Architecture surfaces

often have strong weathering patterns as shown in Figure 5.11. Wang et al. (92)

propose to extract the surface appearance manifold and weathering degree map

from image samples to generate physically correct result. Here, we seek a simple

solution that yields plausible results. We observe that the weathering degree on
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buildings is generally inversely proportional to the height. Hence, we take the

height as indicative of the weathering degree, which is used to guide the patch-

based synthesis to generate the missing texture. We iteratively copy a patch from

a distortion free region with consistent boundary and similar weathering degree to

the occluded surface. The copied patch is also stitched with graph-cut optimiza-

tion. To maintain semantic texture structures, such as doors and windows, we

first copy them from the symmetric counterpart and keep them uncovered during

synthesis. An example of this synthesis is shown in Figure 5.9 where (c) depicts

the distortion free texture, and (d) depicts the texture synthesized according to

(c).

5.4 Experiments and Discussion

5.4.1 Experiments

We first evaluate our symmetry based 3D reconstruction with a synthetic frustum

image. We manually mark out 6 visible frustum vertices to reconstruct the frus-

tum shape (Alternatively, we can also mark out the frustum edges and compute

the 6 frustum vertices from the edge intersection automatically. This is easier

for user interaction in the cases where frustum vertices cannot be identified ac-

curately, e.g.Figure 5.13). In our experiments, the user clicks often deviate from

the true vertex position by 1.3 pixels (in an image of resolution of 1200x800).

The error of focal length is 4.3% of the true value, and the mean error of vertex

position is 0.1% of the distance between the camera and pyramid frustum cen-

ter. The reconstructed frustum (shown in red wireframe) is verified from a novel
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Figure 5.10: Validation of symmetry based reconstruction on synthetic data. On
the left is the input image (overlaid with user clicked 6 vertices). On the right is
a rendering from a novel viewpoint. The reconstructed shape is overlaid on the
image (drawn as red wireframe).

viewpoint as shown in the right of Figure 5.10. Then we verified the accuracy of

estimated focal length in real photo of Figure 5.1 (b). The true focal length cal-

culated from photos of a checkerboard is 2864.8 pixels (50 mm). In 10 trials, our

estimated focal length varies from 2582.4 pixels to 3069.8 pixels. In comparison,

we also implemented the calibration method discussed in (15) which generates

results varying from 2029.4 pixels to 3968.8 pixels.

We test our method on several examples with different level of complexity.

Our symmetry-based triangulation takes 4-5 minutes on a PC with 2.83GHz

CPU and 4GB memory. With the recovered 3D points, the user draws strokes to

build an initial model (strokes for each example are provided in Appendix D).

We measure the user effort by the interaction time, because the other parts are

automatic. It takes 2 – 10 minutes user interaction to generate a result. We

report the user interaction time and the number of reconstructed 3D points for

each example in the Table 5.1.3

3This interaction time is measured for an experienced user. We also let a novice try our
system. After watching a 10 minutes instruction of the system (with the pavilion example), he
spends 9 minutes in total to model the Berkeley Campanile (5 minutes for the automatic trian-
gulation and 4 minutes for user interaction; no texture synthesis is applied for this example).
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(a) (b) (c)

(d) (e)

Figure 5.11: A pagoda example. (a) is the single input image. (b) is the recovered
model rendered from the same viewpoint as the input image. (c) is the rendering
from a novel viewpoint. (d) and (e) are two different façades at the same height.
The façade in (d) is textured from the input image; the texture in (e) is synthesized
by our method. Our texture synthesis generates more vivid texture than simple
repetition.
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As no ground truth 3D model is available, here we only evaluate the results

visually against the input image. Figure 5.2 shows an example with bilateral sym-

metry (the TiRen Ge in the Forbidden City). Figure 5.2 (a) shows the user-drawn

strokes. The highlighted six points are as the corners of the pyramid frustum.

Feature matching is most effective on this example, with 12,000 3D points re-

covered as shown in Figure 5.5 (c). Figure 5.2 (b) shows the rendering of the

recovered model from the same viewpoint as the input image. A novel viewpoint

rendering is provided in Figure 5.2 (c) for validation. A simple pavilion exam-

ple is shown in Figure 5.1 (b), where the left image is the input image and the

right image shows the model rendered from the same viewpoint for validation. A

ridge on the top is missing, which is caused by the inaccuracy in the interactive

modeling. The roof hip is a little higher than it should be, and thus occludes

part of the second ridge. Figure 5.11 shows an example with multiple floors.

We first model the first floor and apply the modeled result to the other floors

with only one stroke to compute a scaling and vertical translation (please refer

to the supplementary video). This example highlights our texture enhancements.

Figure 5.11 (d) and (e) show two different building façades at the same height;

while the façade in (d) is textured according to the input image, the texture in

(e) is synthesized using our method. Our synthesized texture produces consistent

weathering pattern. Figure 5.12 shows a complex pagoda with rotational sym-

metry. It has highly curved roofs, which are different at each floor. We draw 3

strokes to model each roof (1 additional stroke for the back edge to model the

shrinking of the hip). Furthermore, its handrail has intricate cut patterns. It

takes about 10 minutes of user interaction to model this finely detailed example.

Figure 5.12 (d) shows a close-up view. Further geometrical details are highlighted
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by the wireframe rendering in Figure 5.12 (e).

Our method is also applicable to the modeling of western buildings, as the

various principles invoked in this chapter are generally true for most architectural

forms. The Eiffel Tower in Figure 5.13 and the Berkeley Campanile in Figure 5.14

show two western buildings modeled using our method. We model the curved

surface of the Eiffel Tower according to its curved silhouettes. One of the cut

patterns is modeled in the same way as the handrail. The Berkeley is the easiest

as there is no curved roof and cut patterns. It is modeled with less than 2 minutes

interaction.

5.4.2 Discussion

Architecture modeling has been an active research field for many years. Existing

systems, such as (16, 81, 96), create highly realistic results from multiple images.

In comparison, we seek to provide an alternative solution for architecture mod-

eling when only a single image is available. To achieve this, a novel method is

designed to calibrate the camera and recover 3D scene points from a single image.

The recovered 3D information helps to reduce the amount of user interaction by

avoiding tedious manual correspondence. We also enhance the texture quality

to improve single view modeling. Our method does not require complicated ge-

ometric and photometric image alignments. It can be a standalone toolkit for

artists to create 3D architecture models from online pictures or archive pictures;

or integrated into previous multi-view based systems to provide further shape

constraints.
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(a) (b) (c)

(d) (e)

Figure 5.12: A pagoda with highly curved roof. Each roof is different from the
others. (a) is the single input image. (b) is the recovered model rendered from the
same view as the input image. (c) is the rendering from a novel viewpoint. (d)
shows a close-up view of the building. (e) is the shaded wireframe to highlight the
geometry. (Please zoom in the electronic version.)
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Figure 5.13: The Eiffel Tower example. On the left is the single input image.
On the right is the recovered model rendered from the same viewpoint as the input
image.

Limitations The current method has several limitations. First, like most image

based modeling systems, our method prefers the input images to be free of shadow

effect. Otherwise, shadow could be mistaken as texture and cause artifacts in the

rendered models. Second, in the case that no symmetry is present (though a

rare case), we cannot model the building from a single image. If the building

can be decomposed into multiple symmetric parts, we might still model it part

by part. If multiple images are available, our interactive system for decomposing

and modeling architecture components can still be applied. However, we cannot

reduce the interactions by symmetry. In that case, our method will be a regular

multi-view interactive modeling system like (81). Third, our camera calibration

relies on the quadratic initialization, which requires the principle point to be

close to the image center unless both the length ratios and the frustum angle in

Equation (5.5) are known. Last, large lens distortions could be a problem for our

current single-view camera calibration algorithm.
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Figure 5.14: The Berkeley Campanile example. From left to right, they are: the
single input image, the rendering from the same viewpoint as the input image and
the rendering from a novel viewpoint.

Examples: TiRen Ge pavilion P1 P2 ET BC
# 3D pts (×103): 12 5 7 11 0.5 0.7

IT: (mins) 5 2 2 10 5 2

Table 5.1: Modeling statistics. We show the number of reconstructed 3D points
and the user interaction time for each example in this chapter. Most of our examples
require less than 5 minutes of user interaction. Note: IT = user interaction time,
P1 = the pagoda in Figure 5.11, P2 = the pagoda in Figure 5.12, ET = the Eiffel
Tower, BC = the Berkeley Campanile.
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There are several ways to improve our current system. For example, in the

current system, the roof tile is manually marked out from the rectified view. This

part can be automated by image analysis and shape template matching. Image

processing techniques can also be applied to snap user strokes to image edges to

make the interface more efficient.
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Chapter 6

Conclusion

In this thesis, we studied the paradox relationship between symmetric structure

and image-based modeling.

3D reconstruction from unordered image collection could be ambiguous when

there are duplicate or similar structures in the scene. We proposed to analyze the

3D reconstruction with respect to image content in a holistic fashion. First, we

defined a new appearance based objective function for evaluating the optimality

of a 3D reconstruction. We proved that this function always retain its global

minimum for the correct 3D reconstruction when the appearance similarity eval-

uation error is within tolerance given in Appendix A. The optimization of this

objective function, however, is a challenging problem. We designed an efficient

algorithm to search for the optimal 3D reconstruction among the space of span-

ning trees defined on the image match graph. We used three strategies to speed

up the searching process. Firstly, with careful analysis of the motion consistency

between epipolar geometries, we narrowed down the search space to the number

of inherent ambiguous solutions arising from mismatches. Secondly, intermediate
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reconstruction can be re-used and only local transformation is required to obtain

the global camera poses in each iteration. Lastly, visited 3D reconstruction can

be cached as a binary array representing its associated match graph. Experimen-

tal results showed that our technique outperforms the state-of-the-art algorithms

on highly ambiguous scenes.

Knowledge of symmetry and regularity is useful for subsequent image-based

3D modeling, especially for modeling architectures. Automatic symmetry detec-

tion with existing 2D and 3D symmetry analysis on these type of data, i.e., images

with strong perspective distortion and occlusion or sparse 3D point clouds, is dif-

ficult. Hence, we jointly analyzed the multiple input images and the 3D point

clouds to robustly detect repetitive structures in the recovered scene. Image fea-

ture descriptors associated with reconstructed 3D points are used to help identify

3D points at symmetric positions. These symmetric 3D points are then analyzed

to hypothesize symmetric relationships within the recovered 3D structure. This

joint analysis can handle very challenging data that could fail most conventional

symmetry detection algorithms and bridges the gap between pure image based

2D symmetry analysis and point cloud based 3D symmetry analysis.

Creating 3D architecture models from sparse point clouds is challenging. Most

existing methods make assumption about surface planarity and cannot model

architectures with curved surfaces and intricate details well. Interactive modeling

of architectures with complex geometry is often time consuming. We exploited

two types of symmetry, namely rotational symmetry and bilateral symmetry that

are most commonly observed in architectures for interactive 3D modeling. We

proposed a novel calibration method based on symmetry with a single image,

and designed an interactive modeling system that can model architecture with
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complex geometry and intricate details efficiently. Symmetry property was also

utilized for texture enhancement with a single input image. Therefore, we were

able to create a highly photorealistic architecture model within minutes of user

interaction.

What we have studied are difficult problems in computer vision and image-

based modeling. There are still many issues unaddressed in the limited scope

of this thesis. One of them is the robust 3D reconstruction of city-scale image

collections. The state-of-the-art reconstruction system has already achieved sig-

nificant improvement on the speed of 3D reconstruction computation (1), but the

problem of selecting suitable images and correct image matches is still an open

issue. In order to extend our holistic analysis of the optimality of a reconstruc-

tion to such large-scale data, careful analysis of the match graph is required for

searching the solution space more efficiently. For instance, epipolar geometries

which are consistent with any global camera configuration have no association

ambiguity and should be excluded from the search space. Ambiguities only ex-

ists among epipolar geometries that are classified as inliers or outlier in different

global camera configurations.

Another important issue is that the way the partial reconstructions obtained

from view pairs getting registered and merged is still somewhat ad-hoc for most

well-known systems. In the incremental approach, the number of images that

should be added at a time and the frequency the bundle adjustment should be

performed is adjusted accordingly in different systems. Some systems are opti-

mized for speed, and some are optimized for robustness and accuracy. A global

solution that can solve for initial camera poses and point locations on general

data efficiently and robustly is still missing. Crandall et al. (13) formulated this
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problem as a global solution to a MRF problem, which, however, requires GPS

information and near-planar camera motion.

Symmetry information is helpful for efficient modeling, and could also be

helpful for 3D reconstruction (10). Interestingly, these 3D symmetries can be

identified from image mismatches in the match graph. The problem here is how

to reliably discover such regularities from suboptimal 3D reconstruction and be

utilized to improve the reconstruction accuracy.

Dense reconstruction (i.e. dense point clouds) is usually required for auto-

matic modeling system. While camera geometry and sparse reconstruction has

been well studied, the dense correspondence problem still has many open issues,

e.g. the handling of textureless regions, non-lambertion surfaces, large view point

and lighting changes, etc.

Given a huge amount of unstructured 3D points, it is still a challenging prob-

lem to create high quality 3D models. Semantic understanding of the images and

segmentation in both 2D and 3D space are required to identify points belonging to

trees, ground, buildings and other objects, so that object specific prior and model-

ing techniques could apply. This approach has been successfully demonstrated for

urban street-view images in (97), where the scene is densely dominated by build-

ings and there is nearly no disturbance from moving vehicles and pedestrains.

For cities with heavy occlusion of greenery on the street level, satellite images are

useful for semantic segmentation of the point clouds. Therefore, the registration

of street-view images and satellite images, or in general, ground level images and

2D ground maps are necessary to achieve robust semantic analysis. Such solu-

tion will be useful for both outdoor and indoor applications on reconstruction,

modeling, and navigation in the virtual and the real world.
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I shall conclude the thesis with the statement that 3D reconstruction and

modeling are important computer vision and computer graphics problems, and

the study of higher level object properties such as symmetry benefits both recon-

struction and modeling process. With the maturing of such technologies, different

pieces of low-level and high-level visions are getting integrated into intelligent vi-

sion systems, which changes the way we interact with and live in the physical

world.
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Appendix A

Proof of Global Minimum

The normalization term 1
∑N

i=1
Mi

in Equation 3.9 remains unchanged for different

3D reconstructions. Given a 3D reconstruction, the objective function evaluated

for feature points in image i is

Mi∑

p=1

P̂missing(p) =
1

N

Mi∑

p=1

N∑

j=1

Pmissing(p, j)

=
1

N

N∑

j=1

{
∑

p∈S++

ij

Pmissing(p, j) +
∑

p∈S−−

ij

Pmissing(p, j)

+
∑

p∈S−+

ij

Pmissing(p, j) +
∑

p∈S+−

ij

Pmissing(p, j)}.

Here, we exchange the sequence of the two summation and partition the feature

points in image i into four sets, S++
ij , S−−

ij , S−+
ij and S

+−

ij according to their eval-

uation in each image j. The first plus/minus sign denotes the feature point is

actual visible/invisible in the image j. The second plus/minus indicates it is de-

tected as matched/missing according to our feature matching criteria. Different
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3D reconstructions give different partition of the image features. In the ground

truth reconstruction, points in S
+−

ij (or S
−+
ij ) should go to S

++
ij (or S

−−

ij ). Both

S
+−

ij and S
−+
ij become empty. Hence, moving from any 3D reconstruction to the

ground truth, the change in the objective function (evaluated in the image i) is

∆i =
1

N

N∑

j=1

{
∑

p∈S−+

ij

(α− Pmissing(p, j))

+
∑

p∈S+−

ij

(
P ′

missing(p, j)− α
)
}.

where P ′
missing(p, j) is evaluated with the ground truth reconstruction. Therefore,

the inequality ∆i < 0 will hold, as long as

P̃ ′
+−

missing < α < P̃−+
missing.

Here, P̃ ′
+−

missing and P̃−+
missing are the average of P

′
missing(p, j) and Pmissing(p, j) over

all images and over the two sets S+−

ij and S
−+
ij respectively. Typically, P̃ ′

+−

missing is

close to 0, while P̃−+
missing is close to the average percent of non-repetitive ‘back-

ground points’ in the image i. Hence, with an appropriate α the global minimum

of Equation (3.9) is associated with the ground truth. However, when there is

no non-repetitive ‘background points’ (i.e. P̃−+
missing = 0, as the case in Figure 3.8

(b)), no suitable α can be found and our method will fail.
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Appendix B

Lattice Detection Comparison

We report the detailed comparion of repetitive structure detection results with

(67) here. The following tables give comparison between two methods. Successful

repetitive structure detection is indicated by blue box; and red box otherwise.

For each column pair, we list the lattice detection results obtained using (67) on

the left, and the one obtained using our joint analysis on the right.
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Table B.1: Lattice detection comparison with (67) on data 1.

Table B.2: Lattice detection comparison with (67) on data 5.
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Table B.3: Lattice detection comparison with (67) on data 2.
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9_backmatter/figure/eps/appendix_b/2/dl/0015.eps
9_backmatter/figure/eps/appendix_b/2/msd/0015.eps
9_backmatter/figure/eps/appendix_b/2/dl/0016.eps
9_backmatter/figure/eps/appendix_b/2/msd/0016.eps
9_backmatter/figure/eps/appendix_b/2/dl/0017.eps
9_backmatter/figure/eps/appendix_b/2/msd/0017.eps
9_backmatter/figure/eps/appendix_b/2/dl/0018.eps
9_backmatter/figure/eps/appendix_b/2/msd/0018.eps
9_backmatter/figure/eps/appendix_b/2/dl/0019.eps
9_backmatter/figure/eps/appendix_b/2/msd/0019.eps
9_backmatter/figure/eps/appendix_b/2/dl/0020.eps
9_backmatter/figure/eps/appendix_b/2/msd/0020.eps


Table B.4: Lattice detection comparison with (67) on data 3.
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9_backmatter/figure/eps/appendix_b/3/dl/0000.eps
9_backmatter/figure/eps/appendix_b/3/msd/0000.eps
9_backmatter/figure/eps/appendix_b/3/dl/0001.eps
9_backmatter/figure/eps/appendix_b/3/msd/0001.eps
9_backmatter/figure/eps/appendix_b/3/dl/0002.eps
9_backmatter/figure/eps/appendix_b/3/msd/0002.eps
9_backmatter/figure/eps/appendix_b/3/dl/0003.eps
9_backmatter/figure/eps/appendix_b/3/msd/0003.eps
9_backmatter/figure/eps/appendix_b/3/dl/0005.eps
9_backmatter/figure/eps/appendix_b/3/msd/0005.eps
9_backmatter/figure/eps/appendix_b/3/dl/0008.eps
9_backmatter/figure/eps/appendix_b/3/msd/0008.eps
9_backmatter/figure/eps/appendix_b/3/dl/0004.eps
9_backmatter/figure/eps/appendix_b/3/msd/0004.eps
9_backmatter/figure/eps/appendix_b/3/dl/0006.eps
9_backmatter/figure/eps/appendix_b/3/msd/0006.eps
9_backmatter/figure/eps/appendix_b/3/dl/0007.eps
9_backmatter/figure/eps/appendix_b/3/msd/0007.eps
9_backmatter/figure/eps/appendix_b/4/dl/0000.eps
9_backmatter/figure/eps/appendix_b/4/msd/0000.eps
9_backmatter/figure/eps/appendix_b/4/dl/0001.eps
9_backmatter/figure/eps/appendix_b/4/msd/0001.eps
9_backmatter/figure/eps/appendix_b/4/dl/0002.eps
9_backmatter/figure/eps/appendix_b/4/msd/0002.eps
9_backmatter/figure/eps/appendix_b/4/dl/0003.eps
9_backmatter/figure/eps/appendix_b/4/msd/0003.eps
9_backmatter/figure/eps/appendix_b/4/dl/0004.eps
9_backmatter/figure/eps/appendix_b/4/msd/0004.eps
9_backmatter/figure/eps/appendix_b/4/dl/0005.eps
9_backmatter/figure/eps/appendix_b/4/msd/0005.eps
9_backmatter/figure/eps/appendix_b/4/dl/0006.eps
9_backmatter/figure/eps/appendix_b/4/msd/0006.eps
9_backmatter/figure/eps/appendix_b/4/dl/0007.eps
9_backmatter/figure/eps/appendix_b/4/msd/0007.eps
9_backmatter/figure/eps/appendix_b/4/dl/0008.eps
9_backmatter/figure/eps/appendix_b/4/msd/0008.eps
9_backmatter/figure/eps/appendix_b/4/dl/0009.eps
9_backmatter/figure/eps/appendix_b/4/msd/0009.eps
9_backmatter/figure/eps/appendix_b/4/dl/0010.eps
9_backmatter/figure/eps/appendix_b/4/msd/0010.eps
9_backmatter/figure/eps/appendix_b/4/dl/0011.eps
9_backmatter/figure/eps/appendix_b/4/msd/0011.eps
9_backmatter/figure/eps/appendix_b/4/dl/0012.eps
9_backmatter/figure/eps/appendix_b/4/msd/0012.eps
9_backmatter/figure/eps/appendix_b/4/dl/0013.eps
9_backmatter/figure/eps/appendix_b/4/msd/0013.eps
9_backmatter/figure/eps/appendix_b/4/dl/0014.eps
9_backmatter/figure/eps/appendix_b/4/msd/0014.eps
9_backmatter/figure/eps/appendix_b/4/dl/0015.eps
9_backmatter/figure/eps/appendix_b/4/msd/0015.eps
9_backmatter/figure/eps/appendix_b/4/dl/0016.eps
9_backmatter/figure/eps/appendix_b/4/msd/0016.eps
9_backmatter/figure/eps/appendix_b/4/dl/0017.eps
9_backmatter/figure/eps/appendix_b/4/msd/0017.eps


Table B.6: Lattice detection comparison with (67) on data 6 (continued on the
next page).
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9_backmatter/figure/eps/appendix_b/6/dl/0000.eps
9_backmatter/figure/eps/appendix_b/6/msd/0000.eps
9_backmatter/figure/eps/appendix_b/6/dl/0001.eps
9_backmatter/figure/eps/appendix_b/6/msd/0001.eps
9_backmatter/figure/eps/appendix_b/6/dl/0002.eps
9_backmatter/figure/eps/appendix_b/6/msd/0002.eps
9_backmatter/figure/eps/appendix_b/6/dl/0003.eps
9_backmatter/figure/eps/appendix_b/6/msd/0003.eps
9_backmatter/figure/eps/appendix_b/6/dl/0004.eps
9_backmatter/figure/eps/appendix_b/6/msd/0004.eps
9_backmatter/figure/eps/appendix_b/6/dl/0005.eps
9_backmatter/figure/eps/appendix_b/6/msd/0005.eps
9_backmatter/figure/eps/appendix_b/6/dl/0006.eps
9_backmatter/figure/eps/appendix_b/6/msd/0006.eps
9_backmatter/figure/eps/appendix_b/6/dl/0007.eps
9_backmatter/figure/eps/appendix_b/6/msd/0007.eps
9_backmatter/figure/eps/appendix_b/6/dl/0008.eps
9_backmatter/figure/eps/appendix_b/6/msd/0008.eps
9_backmatter/figure/eps/appendix_b/6/dl/0009.eps
9_backmatter/figure/eps/appendix_b/6/msd/0009.eps
9_backmatter/figure/eps/appendix_b/6/dl/0010.eps
9_backmatter/figure/eps/appendix_b/6/msd/0010.eps
9_backmatter/figure/eps/appendix_b/6/dl/0011.eps
9_backmatter/figure/eps/appendix_b/6/msd/0011.eps
9_backmatter/figure/eps/appendix_b/6/dl/0012.eps
9_backmatter/figure/eps/appendix_b/6/msd/0012.eps
9_backmatter/figure/eps/appendix_b/6/dl/0013.eps
9_backmatter/figure/eps/appendix_b/6/msd/0013.eps
9_backmatter/figure/eps/appendix_b/6/dl/0014.eps
9_backmatter/figure/eps/appendix_b/6/msd/0014.eps
9_backmatter/figure/eps/appendix_b/6/dl/0015.eps
9_backmatter/figure/eps/appendix_b/6/msd/0015.eps
9_backmatter/figure/eps/appendix_b/6/dl/0016.eps
9_backmatter/figure/eps/appendix_b/6/msd/0016.eps
9_backmatter/figure/eps/appendix_b/6/dl/0017.eps
9_backmatter/figure/eps/appendix_b/6/msd/0017.eps
9_backmatter/figure/eps/appendix_b/6/dl/0018.eps
9_backmatter/figure/eps/appendix_b/6/msd/0018.eps
9_backmatter/figure/eps/appendix_b/6/dl/0019.eps
9_backmatter/figure/eps/appendix_b/6/msd/0019.eps
9_backmatter/figure/eps/appendix_b/6/dl/0020.eps
9_backmatter/figure/eps/appendix_b/6/msd/0020.eps
9_backmatter/figure/eps/appendix_b/6/dl/0021.eps
9_backmatter/figure/eps/appendix_b/6/msd/0021.eps
9_backmatter/figure/eps/appendix_b/6/dl/0022.eps
9_backmatter/figure/eps/appendix_b/6/msd/0022.eps
9_backmatter/figure/eps/appendix_b/6/dl/0023.eps
9_backmatter/figure/eps/appendix_b/6/msd/0023.eps
9_backmatter/figure/eps/appendix_b/6/dl/0024.eps
9_backmatter/figure/eps/appendix_b/6/msd/0024.eps
9_backmatter/figure/eps/appendix_b/6/dl/0025.eps
9_backmatter/figure/eps/appendix_b/6/msd/0025.eps
9_backmatter/figure/eps/appendix_b/6/dl/0026.eps
9_backmatter/figure/eps/appendix_b/6/msd/0026.eps
9_backmatter/figure/eps/appendix_b/6/dl/0027.eps
9_backmatter/figure/eps/appendix_b/6/msd/0027.eps
9_backmatter/figure/eps/appendix_b/6/dl/0028.eps
9_backmatter/figure/eps/appendix_b/6/msd/0028.eps
9_backmatter/figure/eps/appendix_b/6/dl/0029.eps
9_backmatter/figure/eps/appendix_b/6/msd/0029.eps
9_backmatter/figure/eps/appendix_b/6/dl/0030.eps
9_backmatter/figure/eps/appendix_b/6/msd/0030.eps
9_backmatter/figure/eps/appendix_b/6/dl/0031.eps
9_backmatter/figure/eps/appendix_b/6/msd/0031.eps
9_backmatter/figure/eps/appendix_b/6/dl/0032.eps
9_backmatter/figure/eps/appendix_b/6/msd/0032.eps
9_backmatter/figure/eps/appendix_b/6/dl/0033.eps
9_backmatter/figure/eps/appendix_b/6/msd/0033.eps
9_backmatter/figure/eps/appendix_b/6/dl/0034.eps
9_backmatter/figure/eps/appendix_b/6/msd/0034.eps
9_backmatter/figure/eps/appendix_b/6/dl/0035.eps
9_backmatter/figure/eps/appendix_b/6/msd/0035.eps


Table B.7: Lattice detection comparison with (67) on data 6 (continued from
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9_backmatter/figure/eps/appendix_b/6/dl/0036.eps
9_backmatter/figure/eps/appendix_b/6/msd/0036.eps
9_backmatter/figure/eps/appendix_b/6/dl/0037.eps
9_backmatter/figure/eps/appendix_b/6/msd/0037.eps
9_backmatter/figure/eps/appendix_b/6/dl/0038.eps
9_backmatter/figure/eps/appendix_b/6/msd/0038.eps
9_backmatter/figure/eps/appendix_b/6/dl/0039.eps
9_backmatter/figure/eps/appendix_b/6/msd/0039.eps
9_backmatter/figure/eps/appendix_b/6/dl/0040.eps
9_backmatter/figure/eps/appendix_b/6/msd/0040.eps
9_backmatter/figure/eps/appendix_b/6/dl/0041.eps
9_backmatter/figure/eps/appendix_b/6/msd/0041.eps
9_backmatter/figure/eps/appendix_b/6/dl/0042.eps
9_backmatter/figure/eps/appendix_b/6/msd/0042.eps
9_backmatter/figure/eps/appendix_b/6/dl/0043.eps
9_backmatter/figure/eps/appendix_b/6/msd/0043.eps
9_backmatter/figure/eps/appendix_b/6/dl/0044.eps
9_backmatter/figure/eps/appendix_b/6/msd/0044.eps
9_backmatter/figure/eps/appendix_b/6/dl/0045.eps
9_backmatter/figure/eps/appendix_b/6/msd/0045.eps
9_backmatter/figure/eps/appendix_b/6/dl/0046.eps
9_backmatter/figure/eps/appendix_b/6/msd/0046.eps
9_backmatter/figure/eps/appendix_b/6/dl/0047.eps
9_backmatter/figure/eps/appendix_b/6/msd/0047.eps
9_backmatter/figure/eps/appendix_b/6/dl/0048.eps
9_backmatter/figure/eps/appendix_b/6/msd/0048.eps
9_backmatter/figure/eps/appendix_b/6/dl/0049.eps
9_backmatter/figure/eps/appendix_b/6/msd/0049.eps
9_backmatter/figure/eps/appendix_b/6/dl/0050.eps
9_backmatter/figure/eps/appendix_b/6/msd/0050.eps
9_backmatter/figure/eps/appendix_b/6/dl/0051.eps
9_backmatter/figure/eps/appendix_b/6/msd/0051.eps
9_backmatter/figure/eps/appendix_b/6/dl/0052.eps
9_backmatter/figure/eps/appendix_b/6/msd/0052.eps
9_backmatter/figure/eps/appendix_b/6/dl/0053.eps
9_backmatter/figure/eps/appendix_b/6/msd/0053.eps
9_backmatter/figure/eps/appendix_b/6/dl/0054.eps
9_backmatter/figure/eps/appendix_b/6/msd/0054.eps
9_backmatter/figure/eps/appendix_b/6/dl/0055.eps
9_backmatter/figure/eps/appendix_b/6/msd/0055.eps
9_backmatter/figure/eps/appendix_b/6/dl/0056.eps
9_backmatter/figure/eps/appendix_b/6/msd/0056.eps
9_backmatter/figure/eps/appendix_b/6/dl/0057.eps
9_backmatter/figure/eps/appendix_b/6/msd/0057.eps
9_backmatter/figure/eps/appendix_b/6/dl/0058.eps
9_backmatter/figure/eps/appendix_b/6/msd/0058.eps
9_backmatter/figure/eps/appendix_b/6/dl/0059.eps
9_backmatter/figure/eps/appendix_b/6/msd/0059.eps
9_backmatter/figure/eps/appendix_b/6/dl/0060.eps
9_backmatter/figure/eps/appendix_b/6/msd/0060.eps
9_backmatter/figure/eps/appendix_b/6/dl/0062.eps
9_backmatter/figure/eps/appendix_b/6/msd/0062.eps
9_backmatter/figure/eps/appendix_b/6/dl/0063.eps
9_backmatter/figure/eps/appendix_b/6/msd/0063.eps
9_backmatter/figure/eps/appendix_b/6/dl/0072.eps
9_backmatter/figure/eps/appendix_b/6/msd/0072.eps
9_backmatter/figure/eps/appendix_b/6/dl/0061.eps
9_backmatter/figure/eps/appendix_b/6/msd/0061.eps
9_backmatter/figure/eps/appendix_b/6/dl/0065.eps
9_backmatter/figure/eps/appendix_b/6/msd/0065.eps


Table B.8: Lattice detection comparison with (67) on data 6 (continued from
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9_backmatter/figure/eps/appendix_b/6/dl/0066.eps
9_backmatter/figure/eps/appendix_b/6/msd/0066.eps
9_backmatter/figure/eps/appendix_b/6/dl/0067.eps
9_backmatter/figure/eps/appendix_b/6/msd/0067.eps
9_backmatter/figure/eps/appendix_b/6/dl/0068.eps
9_backmatter/figure/eps/appendix_b/6/msd/0068.eps
9_backmatter/figure/eps/appendix_b/6/dl/0069.eps
9_backmatter/figure/eps/appendix_b/6/msd/0069.eps
9_backmatter/figure/eps/appendix_b/6/dl/0070.eps
9_backmatter/figure/eps/appendix_b/6/msd/0070.eps
9_backmatter/figure/eps/appendix_b/6/dl/0071.eps
9_backmatter/figure/eps/appendix_b/6/msd/0071.eps
9_backmatter/figure/eps/appendix_b/6/dl/0064.eps
9_backmatter/figure/eps/appendix_b/6/msd/0064.eps
9_backmatter/figure/eps/appendix_b/6/dl/0073.eps
9_backmatter/figure/eps/appendix_b/6/msd/0073.eps
9_backmatter/figure/eps/appendix_b/6/dl/0086.eps
9_backmatter/figure/eps/appendix_b/6/msd/0086.eps
9_backmatter/figure/eps/appendix_b/6/dl/0075.eps
9_backmatter/figure/eps/appendix_b/6/msd/0075.eps
9_backmatter/figure/eps/appendix_b/6/dl/0076.eps
9_backmatter/figure/eps/appendix_b/6/msd/0076.eps
9_backmatter/figure/eps/appendix_b/6/dl/0077.eps
9_backmatter/figure/eps/appendix_b/6/msd/0077.eps
9_backmatter/figure/eps/appendix_b/6/dl/0078.eps
9_backmatter/figure/eps/appendix_b/6/msd/0078.eps
9_backmatter/figure/eps/appendix_b/6/dl/0079.eps
9_backmatter/figure/eps/appendix_b/6/msd/0079.eps
9_backmatter/figure/eps/appendix_b/6/dl/0080.eps
9_backmatter/figure/eps/appendix_b/6/msd/0080.eps
9_backmatter/figure/eps/appendix_b/6/dl/0081.eps
9_backmatter/figure/eps/appendix_b/6/msd/0081.eps
9_backmatter/figure/eps/appendix_b/6/dl/0082.eps
9_backmatter/figure/eps/appendix_b/6/msd/0082.eps
9_backmatter/figure/eps/appendix_b/6/dl/0083.eps
9_backmatter/figure/eps/appendix_b/6/msd/0083.eps
9_backmatter/figure/eps/appendix_b/6/dl/0084.eps
9_backmatter/figure/eps/appendix_b/6/msd/0084.eps
9_backmatter/figure/eps/appendix_b/6/dl/0085.eps
9_backmatter/figure/eps/appendix_b/6/msd/0085.eps
9_backmatter/figure/eps/appendix_b/6/dl/0074.eps
9_backmatter/figure/eps/appendix_b/6/msd/0074.eps
9_backmatter/figure/eps/appendix_b/6/dl/0136.eps
9_backmatter/figure/eps/appendix_b/6/msd/0136.eps
9_backmatter/figure/eps/appendix_b/6/dl/0088.eps
9_backmatter/figure/eps/appendix_b/6/msd/0088.eps
9_backmatter/figure/eps/appendix_b/6/dl/0089.eps
9_backmatter/figure/eps/appendix_b/6/msd/0089.eps
9_backmatter/figure/eps/appendix_b/6/dl/0090.eps
9_backmatter/figure/eps/appendix_b/6/msd/0090.eps
9_backmatter/figure/eps/appendix_b/6/dl/0091.eps
9_backmatter/figure/eps/appendix_b/6/msd/0091.eps
9_backmatter/figure/eps/appendix_b/6/dl/0092.eps
9_backmatter/figure/eps/appendix_b/6/msd/0092.eps
9_backmatter/figure/eps/appendix_b/6/dl/0093.eps
9_backmatter/figure/eps/appendix_b/6/msd/0093.eps
9_backmatter/figure/eps/appendix_b/6/dl/0094.eps
9_backmatter/figure/eps/appendix_b/6/msd/0094.eps
9_backmatter/figure/eps/appendix_b/6/dl/0095.eps
9_backmatter/figure/eps/appendix_b/6/msd/0095.eps


Table B.9: Lattice detection comparison with (67) on data 6 (continued from
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9_backmatter/figure/eps/appendix_b/6/dl/0096.eps
9_backmatter/figure/eps/appendix_b/6/msd/0096.eps
9_backmatter/figure/eps/appendix_b/6/dl/0097.eps
9_backmatter/figure/eps/appendix_b/6/msd/0097.eps
9_backmatter/figure/eps/appendix_b/6/dl/0098.eps
9_backmatter/figure/eps/appendix_b/6/msd/0098.eps
9_backmatter/figure/eps/appendix_b/6/dl/0099.eps
9_backmatter/figure/eps/appendix_b/6/msd/0099.eps
9_backmatter/figure/eps/appendix_b/6/dl/0100.eps
9_backmatter/figure/eps/appendix_b/6/msd/0100.eps
9_backmatter/figure/eps/appendix_b/6/dl/0010.eps
9_backmatter/figure/eps/appendix_b/6/msd/0101.eps
9_backmatter/figure/eps/appendix_b/6/dl/0102.eps
9_backmatter/figure/eps/appendix_b/6/msd/0102.eps
9_backmatter/figure/eps/appendix_b/6/dl/0103.eps
9_backmatter/figure/eps/appendix_b/6/msd/0103.eps
9_backmatter/figure/eps/appendix_b/6/dl/0104.eps
9_backmatter/figure/eps/appendix_b/6/msd/0104.eps
9_backmatter/figure/eps/appendix_b/6/dl/0105.eps
9_backmatter/figure/eps/appendix_b/6/msd/0105.eps
9_backmatter/figure/eps/appendix_b/6/dl/0106.eps
9_backmatter/figure/eps/appendix_b/6/msd/0106.eps
9_backmatter/figure/eps/appendix_b/6/dl/0107.eps
9_backmatter/figure/eps/appendix_b/6/msd/0107.eps
9_backmatter/figure/eps/appendix_b/6/dl/0108.eps
9_backmatter/figure/eps/appendix_b/6/msd/0108.eps
9_backmatter/figure/eps/appendix_b/6/dl/0109.eps
9_backmatter/figure/eps/appendix_b/6/msd/0109.eps
9_backmatter/figure/eps/appendix_b/6/dl/0110.eps
9_backmatter/figure/eps/appendix_b/6/msd/0110.eps
9_backmatter/figure/eps/appendix_b/6/dl/0111.eps
9_backmatter/figure/eps/appendix_b/6/msd/0111.eps
9_backmatter/figure/eps/appendix_b/6/dl/0112.eps
9_backmatter/figure/eps/appendix_b/6/msd/0112.eps
9_backmatter/figure/eps/appendix_b/6/dl/0113.eps
9_backmatter/figure/eps/appendix_b/6/msd/0113.eps
9_backmatter/figure/eps/appendix_b/6/dl/0114.eps
9_backmatter/figure/eps/appendix_b/6/msd/0114.eps
9_backmatter/figure/eps/appendix_b/6/dl/0115.eps
9_backmatter/figure/eps/appendix_b/6/msd/0115.eps
9_backmatter/figure/eps/appendix_b/6/dl/0116.eps
9_backmatter/figure/eps/appendix_b/6/msd/0116.eps
9_backmatter/figure/eps/appendix_b/6/dl/0117.eps
9_backmatter/figure/eps/appendix_b/6/msd/0117.eps
9_backmatter/figure/eps/appendix_b/6/dl/0118.eps
9_backmatter/figure/eps/appendix_b/6/msd/0118.eps
9_backmatter/figure/eps/appendix_b/6/dl/0119.eps
9_backmatter/figure/eps/appendix_b/6/msd/0119.eps
9_backmatter/figure/eps/appendix_b/6/dl/0120.eps
9_backmatter/figure/eps/appendix_b/6/msd/0120.eps
9_backmatter/figure/eps/appendix_b/6/dl/0121.eps
9_backmatter/figure/eps/appendix_b/6/msd/0121.eps
9_backmatter/figure/eps/appendix_b/6/dl/0122.eps
9_backmatter/figure/eps/appendix_b/6/msd/0122.eps
9_backmatter/figure/eps/appendix_b/6/dl/0123.eps
9_backmatter/figure/eps/appendix_b/6/msd/0123.eps
9_backmatter/figure/eps/appendix_b/6/dl/0124.eps
9_backmatter/figure/eps/appendix_b/6/msd/0124.eps
9_backmatter/figure/eps/appendix_b/6/dl/0125.eps
9_backmatter/figure/eps/appendix_b/6/msd/0125.eps


Table B.10: Lattice detection comparison with (67) on data 6 (continued from
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9_backmatter/figure/eps/appendix_b/6/dl/0126.eps
9_backmatter/figure/eps/appendix_b/6/msd/0126.eps
9_backmatter/figure/eps/appendix_b/6/dl/0127.eps
9_backmatter/figure/eps/appendix_b/6/msd/0127.eps
9_backmatter/figure/eps/appendix_b/6/dl/0128.eps
9_backmatter/figure/eps/appendix_b/6/msd/0128.eps
9_backmatter/figure/eps/appendix_b/6/dl/0129.eps
9_backmatter/figure/eps/appendix_b/6/msd/0129.eps
9_backmatter/figure/eps/appendix_b/6/dl/0130.eps
9_backmatter/figure/eps/appendix_b/6/msd/0130.eps
9_backmatter/figure/eps/appendix_b/6/dl/0131.eps
9_backmatter/figure/eps/appendix_b/6/msd/0131.eps
9_backmatter/figure/eps/appendix_b/6/dl/0132.eps
9_backmatter/figure/eps/appendix_b/6/msd/0132.eps
9_backmatter/figure/eps/appendix_b/6/dl/0133.eps
9_backmatter/figure/eps/appendix_b/6/msd/0133.eps
9_backmatter/figure/eps/appendix_b/6/dl/0134.eps
9_backmatter/figure/eps/appendix_b/6/msd/0134.eps
9_backmatter/figure/eps/appendix_b/6/dl/0087.eps
9_backmatter/figure/eps/appendix_b/6/msd/0087.eps
9_backmatter/figure/eps/appendix_b/6/dl/0135.eps
9_backmatter/figure/eps/appendix_b/6/msd/0135.eps
9_backmatter/figure/eps/appendix_b/6/dl/0137.eps
9_backmatter/figure/eps/appendix_b/6/msd/0137.eps
9_backmatter/figure/eps/appendix_b/6/dl/0138.eps
9_backmatter/figure/eps/appendix_b/6/msd/0138.eps


Table B.11: Lattice detection comparison with (67) on data 7.
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9_backmatter/figure/eps/appendix_b/7/dl/0000.eps
9_backmatter/figure/eps/appendix_b/7/msd/0000.eps
9_backmatter/figure/eps/appendix_b/7/dl/0001.eps
9_backmatter/figure/eps/appendix_b/7/msd/0001.eps
9_backmatter/figure/eps/appendix_b/7/dl/0002.eps
9_backmatter/figure/eps/appendix_b/7/msd/0002.eps
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Table B.12: Lattice detection comparison with (67) on data 8.

Table B.13: Lattice detection comparison with (67) on data 13.
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Table B.14: Lattice detection comparison with (67) on data 9.

Table B.15: Lattice detection comparison with (67) on data 15.
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Table B.16: Lattice detection comparison with (67) on data 10.
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Table B.17: Lattice detection comparison with (67) on data 11.

Table B.18: Lattice detection comparison with (67) on data 12.
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Table B.19: Lattice detection comparison with (67) on data 14.
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Appendix C

Symmetry-based Stereo

The following figure shows the reconstructed 3D points from symmetry-based

stereo. Each reconstructed 3D point is viewed as a patch with normal determined

according to the frustum faces.

133



(a)

(b) (c)

(d) (e)

Figure C.1: Reconstructed 3D points from symmetry-based stereo. (a) The
Pavilion example. (b) and (c) are two pagoda examples. (d) and (e) are results
obtained for Berkeley Campanile and Eiffel Tower, reconstructed 3D points are rel-
atively few for these two examples. This could be explained by matching failure on
the textureless façade of Berkeley Campanile and bad correspondences between the
rectified views of the curved façade of Eiffel Tower (which violates the homography
transformation assumption between frustum faces).
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Appendix D

Modeling Interface

To assist efficient architecture modeling from a single image, we designed a pro-

totype user interface that convert simple user clicks and strokes to 3D shapes.

An overview of the interface is shown in Figure D.1

The user first need to click on the six frustum vertices to calibrate the camera.

As shown in Figure D.2 (a), the frustum vertices are marked out as yellow and the

calibrated camera parameters are shown in display area on the bottom left of the

figure. With the camera parameters computed, virtual camera can be inserted

at its symmetric position to enable stereo matching. Figure D.2 (b) shows the

recovered 3D points on the pavilion.

The user starts modeling by marking out the wall planes as shown in Fig-

ure D.3.

To model the roof, the user marks out the roof silhouettes in the auxiliary

planes in the image (Figure D.6 and Figure D.7), which are computed according

to the frustum parameters recovered from camera calibration and the user strokes

provided on the fly. The generated model is shown in Figure D.5.
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Figure D.1: Overview of the user interface.

More details can be added to refine the model. For examples, the user can

mark out the tiling pattern on the rectified frontal view of the roof (Figure D.8),

insert pillars at symmetric positions (Figure D.9) and add revolved object to the

roof top (Figure D.10).

For buildings with multiple floors, the user can save the interaction by creating

one reference floor as before and duplicate the rest by one stroke indicating the

height for each floor on the image, see Figure D.12.

Similar auxiliary planes are also used for modeling architectures exhibiting

bilateral symmetry, see Figure D.11. The orientation of these auxiliary planes

can be adjusted by sliding a parameter bar to fit different architectures.

One addtional stroke is required for modeling roof of bilaterally symmetric

architectures, since one cannot model all four sides of the roof by marking out

just one side Figure D.13.

We summarize in Figure D.14 the user strokes used to create some of the
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(a)

(b)

Figure D.2: (a) The user calibrates the camera with a single image interactively.
(b) Reconstructed 3D points from stereo matching between the real view and the
virtual view.

137

9_backmatter/figure/eps/InterfaceCalibration.eps
9_backmatter/figure/eps/InterfacePavilionStereo.eps


(a)

(b)

(c)

Figure D.3: The user models the wall planes by marking out the wall region. (a)
and (b) show the user strokes used to create mesh object in Figure D.4.
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Figure D.4: The wall model is created from the user strokes shown in Figure D.3.

Figure D.5: Roof model from the user strokes.
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(a)

(b)

Figure D.6: The user marks out the roof silhouettes in the auxiliary planes as
shown in (a) and (b).
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(a)

(b)

Figure D.7: The height of the roof beams can be adjusted by changing the
corresponding parameters as shown in (c) and (d).
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(a)

(b)

Figure D.8: (a) Apply tiling to the roof surface by marking out the tile pattern.
(b) Refined roof model.
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(a)

(b)

Figure D.9: (a) Insert pillars at symmetric positions by specifying the height and
diameter of the pillars. (b) Pavilion model with inserted pillars.
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(a)

(b)

Figure D.10: (a) Insert revolved object by marking the object silhouette. (b)
Pavilion model with revolved object.
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(a)

(b)

Figure D.11: (a) Auxiliary planes computed from frustum parameters. (b) User
adjusted auxiliary planes for this particular building.
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(a) (b)

(c) (d)

Figure D.12: (a) User strokes for creating the reference floor. (b) Floor model
and reconstructed 3D points from stereo matching. (c) User strokes for floor dupli-
cation. (d) Multiple floor models obtained by translating and resizing the reference
floor according to the user strokes in (c).
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(a) (b)

(c) (d)

Figure D.13: (a), (b) and (c) are user strokes for creating the roof model in (d).
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(a) (b)

(c) (d)

Figure D.14: (a) User strokes for creating pavilion model in Figure 5.1. (b) User
strokes for creating pagoda model in Figure 5.11. (c) User strokes for creating
pagoda model in Figure 5.12. (d) User strokes for creating pavilion model in
Figure 5.2.

representitive 3D architecture models reported in Chapter 5.

148

9_backmatter/figure/eps/InterfacePavilionStrokes.eps
9_backmatter/figure/eps/InterfacePagoda1Strokes.eps
9_backmatter/figure/eps/InterfacePagoda2Strokes.eps
9_backmatter/figure/eps/InterfaceFCStrokes.eps


Bibliography

[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building

rome in a day. In Proc. ICCV, 2009. 25, 111

[2] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE

Trans. Pattern Anal. Mach. Intell., 14(2):239–256, 1992. 68

[3] C. Bibby and I. Reid. Simultaneous localisation and mapping in dynamic

environments (SLAMIDE) with reversible data association. In Proc. of

Robotics Sci. and Syst., 2007. 32

[4] M. Bokeloh, A. Berner, M. Wand, H.-P. Seidel, and A. Schilling. Symmetry

detection using feature lines. Computer Graphics Forum, 28, 2009. 5, 57

[5] M. Bokeloh, M. Wand, and H.-P. Seidel. A connection between partial

symmetry and inverse procedural modeling. ACM Trans. on Graph. (Proc.

of SIGGRAPH), 29, 2010. 53, 57

[6] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3d shape

from image streams. In Proc. CVPR, volume 2, pages 690–696, 2000. 3

[7] R. Brooks. Intelligence without representation. Artificial Intelligence,

47:139–159, 1991. 1

[8] A. M. Buchanan and A. W. Fitzgibbon. Damped newton algorithms for

matrix factorization with missing data. In Proc. CVPR, pages 316–322,

149



2005. 22

[9] A. L. Chauve, P. Labatut, and J. P. Pons. Robust piecewise-planar 3d

reconstruction and completion from large-scale unstructured point data. In

Proc. CVPR, 2010. 5, 9, 71

[10] A. Cohen, C. Zach, S. Sinha, and M. Pollefeys. Discovering and exploiting

3d symmetries in structure from motion. In Proc. CVPR, 2012. 53, 75, 112

[11] B. Combes, R. Hennessy, J. Waddington, N. Roberts, and S. Prima. Au-

tomatic symmetry plane estimation of bilateral objects in point clouds. In

Proc. CVPR, 2008. 5, 55, 57

[12] H. Cornelius and G. Loy. Detecting bilateral symmetry in perspective. In

Proc. of CVPR Workshop, 2006. 5, 56

[13] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher. Discrete-

continuous optimization for large-scale structure from motion. In Proc.

CVPR, 2011. 25, 31, 111

[14] A. J. Davison. Real-time simultaneous localisation and mapping with a

single camera. In Proc. ICCV (2), pages 1403–1410, 2003. 3

[15] P. Debevec. Modeling and Rendering Architecture from Photographs. Uni-

versity of California at Berkeley, Computer Science Division, Berkeyly CA,

1996. 82, 83, 85, 101

[16] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture

from photographs: a hybrid geometry and image-based approach. In Proc.

ACM SIGGRAPH, 1996. 77, 82, 84, 104

[17] A. R. Dick, P. H. S. Torr, and R. Cipolla. Modelling and interpretation

of architecture from several images. Int. J. Comput. Vision, 60:111–134,

2004. 84

150



[18] O. Enqvist, F. Kahl, and C. Olsson. Non-sequential structure from motion.

In Proc. ICCV Workshops, pages 264–271, 2011. 28

[19] Fischler, A. Martin, and R. C. Bolles. Random sample consensus: A

paradigm for model fitting with applications to image analysis and au-

tomated cartograph. Commun. ACM, 24(6):381–395, 1981. 37, 60

[20] A. W. Fitzgibbon, G. Cross, and A. Zisserman. Automatric 3d model

construction for turn-table sequences. In In Proc. of SMILE Workshop on

Structure from Multiple Images in Large Scale Environments, pages 155–

170, 1998. 90

[21] A. Francois, G. Medioni, and R. Waupotitsch. Reconstructing mirror sym-

metric scenes from a single view using 2-view stereo geometry. In In Proc.

of ICPR, 2002. 9, 79, 81, 92

[22] W. Freeman, E. Pasztor, and O. Carmichael. Learning low-level vision. Int.

J. Comput. Vision, 2000. 98

[23] C. Früh and A. Zakhor. Constructing 3d city models by merging ground-

based and airborne views. In Proc. CVPR, 2003. 84

[24] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stere-

opsis. IEEE Trans. Pattern Anal. Mach. Intell., 32:1362–1376, 2010. 2, 32,

38

[25] A. Gil, O. Reinoso, O. Mozos, C. Stachnissi, and W. Burgard. Improving

data association in vision-based slam. In Proc. IROS, pages 2076–2081,

2006. 32

[26] V. Govindu. Combining two-view constraints for motion estimation. In

Proc. CVPR, pages 218–225, 2001. 23

[27] V. Govindu. Robustness in motion averaging. In Proc. ACCV, pages 457–

151



466, 2006. 31

[28] I. Hargittai and M. Hargittai. Symmetry: A Unifying Concept. Shelter

Publications, 1994. 79

[29] C. Harris and M. Stephens. A combined corner and edge detector. In Proc.

Alvey Vision Conference, pages 147–151, 1988. 3

[30] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004. 3, 16, 17, 19,

21, 85, 88, 92

[31] M. Havlena, A. Torii, J. Knopp, and T. Pajdla. Randomized structure from

motion based on atomic 3d models from camera triplets. In Proc. CVPR,

pages 2874–2881, 2009. 28, 31

[32] J. Hays, M. Leordeanu, A. A. Efros, and Y. Liu. Discovering texture regu-

larity as a higher-order correspondence problem. In Proc. ECCV, 2006. 5,

54, 56, 58

[33] W. Hong, A. Yang, K. Huang, and Y. Ma. On symmetry and multiple-view

geometry: Structure, pose, and calibration from a single image. Int. J.

Comput. Vision, pages 241–265, 2004. 9, 79, 81, 82, 92

[34] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial

Intelligence, 17:185–203, 1981. 3

[35] N. Jiang, P. Tan, and L.-F. Cheong. Symmetric architecture modeling with

a single image. ACM Trans. on Graph. (Proc. of SIGGRAPH Asia), 28(5),

2009. 7

[36] N. Jiang, P. Tan, and L.-F. Cheong. Multi-view repetitive structure detec-

tion. In Proc. ICCV, pages 535–542, 2011. 7

[37] N. Jiang, P. Tan, and L.-F. Cheong. Seeing double without confusion:

152



Structure-from-motion in highly ambiguous scenes. In Proc. CVPR, pages

1458–1465, 2012. 7

[38] F. Kahl. Multiple view geometry and the l-infinity norm. In Proc. ICCV,

2005. 24

[39] Q. Ke and T. Kanade. Robust l” norm factorization in the presence of

outliers and missing data by alternative convex programming. In In Proc.

CVPR - Volume 1, pages 739–746, 2005. 22

[40] G. Klein and D. Murray. Parallel tracking and mapping for small ar

workspaces. In Proc. International Symposium on Mixed and Augmented

Reality, pages 1–10, 2007. 2, 3

[41] M. Klopschitz, A. Irschara, G. Reitmayr, and D. Schmalstieg. Robust

incremental structure from motion. In Proc. 3DPVT, 2010. 25, 31

[42] T. Korah and C. Rasmussen. Analysis of building textures for reconstruct-
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