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Summary 

Fluid-structure interaction (FSI) problems with moving boundaries and largely 

deformable solids are great challenging problems, which exist in vast areas from the 

traditional automobile and airplane industries to the newly developed biomechanics. 

Numerous advanced numerical methods and algorithms including the conventional 

finite element method (FEM) and finite volume method (FVM) have been developed 

for the purpose of accurately tracking the transient deformation of the solid and the 

resultant fluid flow field. Recently, a family of smoothed methods based on the 

smoothed theory in   space has been proposed for solving the pure solid and fluid 

flow problems. Interesting properties such as super convergence, high convergence 

rate and accuracy are observed for these smoothed methods in comparison with the 

conventional ones. Some of these properties have been mathematically proven, 

however, some others are just concluded from various numerical tests. The theoretical 

aspects on why they work so well and how much well they can still be are still not 

clear.  

This thesis gives a further exploration of two typical smoothed methods, i.e. the 

edge-based smoothed finite element method with linear triangular mesh (ES-FEM-T3) 

and gradient smoothing method (GSM), in solving the pure solid and fluid flow 

problems, and for the first time to couple these two together for solving challenging 

FSI problems. Hence, the primary objectives of the present work can be summarized 

into the following three parts: 
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1) Formulate the implicit/explicit ES-FEM-T3 schemes and the first time to 

explore their performances in solving practical engineering problems in solid 

mechanics; 

2) Develop the novel GSM/ALE method to solve the fluid flows over moving 

mesh; 

3) Propose the novel FSI scheme and couple the GSM/ALE with ES-FEM-T3 

for solving FSI problems. 

For the first part of this work, both implicit and explicit ES-FEM-T3 schemes are 

formulated to solve two practical engineering problems, i.e. the implicit ES-FEM-T3 

for the two-dimensional (2D) linear elastic bending stress analysis found in the gear 

tooth during gear transmission and the explicit ES-FEM-T3 for the nonlinear 

deflection of the membrane structure in three-dimensional (3D) space. Numerical 

results show that the ES-FEM-T3 performs much better than the standard FEM-T3 in 

solving both problems, which demonstrates the potential of the ES-FEM-T3 in the 

practical areas. Particularly, i) the implicit ES-FEM-T3 is further implemented into 

the optimization of the novelly designed gear tooth profiles. The optimized 

asymmetric gear tooth profile with pressure angle of 35 20d cα α =  

 is finally 

determined. ii) The nonlinear strain term is particularly added into the explicit ES-

FEM-T3 membrane model after an in-depth discussion of the necessity and difficulty 

of introducing the nonlinear strain term into the analytical expression of the 

membrane deflections. Two factors, i.e. the pressure fluctuations in the experiment 

and boundary constraints in numerical models, are found to illustrate the slight 

differences observed between the numerical and experimental results. 

In the second part of this work, the novel GSM/ALE is proposed to solve the 

incompressible fluid flows over moving mesh, in which the ALE form of Navier-

Stokes equations is discretized with GSM in the spatial domain and a moving mesh 
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source term derived directly from the geometric conservation law (GCL) is 

incorporated into the discrete equations to ensure the recovery of uniform flow by the 

GSM/ALE while the fluid mesh is moving. The gradient smoothing operation is 

utilized based on the carefully designed node/mid-point based gradient smoothing 

domains for approximating the 1st and 2nd order spatial derivatives of the field 

variables at the nodes. The second order Roe flux differencing splitting unwinding 

scheme is adopted to deal with the convective flux to ensure the spatial stability. The 

artificial compressibility formulation is utilized with a dual time stepping approach 

for the accurate time integration. Convergence, accuracy and robustness of the 

proposed GSM/ALE are examined through a series of benchmark tests. Numerical 

results show that the proposed method can preserve the 2nd order accuracy in both 

spatial and temporal domains and can produce reliable results even on extremely 

distorted mesh. Good agreement of calculated results with other numerical and 

experimental results in several examples further demonstrates the robustness of the 

proposed GSM/ALE for solving the problems of fluid flows over moving mesh. 

In consideration of the superior performances of the ES-FEM-T3 and GSM/ALE 

in, respectively, solving the pure solid and fluid flow problems, they are the first time 

coupled together for solving the challenging fluid-deformable solid interaction 

problems. The GSM/ALE is implemented in the fluid domain and the ES-FEM-T3 is 

implemented in the solid domain. The solutions from these two domains are “linked” 

through the carefully formulated FSI coupling conditions on the FSI interface. An 

explicit ES-FEM-T3 scheme is established for solving the transient deformation of the 

solid portion. A flowchart is presented on how to implement the GSM/ALE with ES-

FEM-T3 for solving FSI problems. Through benchmark tests it can be seen that the 

formulated FSI coupling conditions are accurately formulated and correctly 
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implemented in the FSI code. The proposed coupling smoothed method can give 

accurate and convergent solutions for both transient and steady state FSI problems. 

The success of coupling GSM/ALE with ES-FEM-T3 for solving FSI problems 

should be a good start for implementing the family of smoothed methods in solving 

more complex cross-area problems. Numerical innovations created in the solid, fluid 

and FSI formulations could provide further understanding of the characteristics of the 

smoothed methods and fundamentals of the smoothed theory. 
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Nomenclature 

Nele Number of elements in the domain  

Nnode Number of nodes in the domain 

sd
iΩ  Smoothing domain, the superscript “sd” denotes “smoothing domain” 

sd
iΓ  Boundary of the smoothing domain sd

iΩ  

sd
iA  Area of the smoothing domain sd

iΩ  

Nsd Number of smoothing domains 

Nseg Number of segments of the boundary sd
iΓ  

Ngau Number of Gauss points used in each segment of the boundary sd
iΓ  

Nsup Number of nodes supporting a domain 

NI  Shape function corresponding to node I in an element 

nGSD Node-based gradient smoothing domains  

mGSD Midpoint (edge)-based gradient smoothing domains  

nGSD
iA  Area of the nGSD 

mGSD
MA  Area of the mGSD 

n Normal vector of an edge, n=nxi+nyj in 2D space 

t Physical time 

τ  Pseudo time 

( )s⋅  Any physical parameter belonging to the solid domain, subscript “s” 
denote solid 

( )f⋅  Any physical parameter belonging to the fluid domain, subscript “f” 
denotes fluid 

( )n ⋅  Any physical parameter evaluated at time step n, i.e. at time tn 

u Displacement vector, u=uxi+ uyj in 2D space  
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u  First order time derivation of the displacement, i.e. velocity 

u  Second order time derivation of the displacement, i.e. acceleration 

ρ  Density of the media 

v Velocity vector, v=vxi+vyj in 2D space 

vg Velocity of the mesh point, vg=vgxi+vgyj in 2D space 

Vs Contravariant velocity of the fluid, Vs=vn=vxnx+vyny in 2D space 

Vg Contravariant velocity of the mesh, Vg=vgn=vgxnx+vgyny in 2D space 

p Pressure 

σ  Cauchy stress tensor 

cF   Tensor of the convective flux  

cF  Smoothed convective flux  

vF  Tensor of the viscous flux  

vF  Smoothed viscous flux  

pβ  Artificial compressibility 

E Young’s modulus 

v  Poisson’s ratio 

µ  Dynamic viscosity coefficient 

Re Reynolds number 

CD Drag coefficient 

CL Lift coefficient 

St Strouhal shedding frequency 
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Chapter 1  

Introduction 

 

Fluid-structure interactions (FSIs) are frequently encountered in practical areas, 

e.g. from the traditional automobile and airplane industries [1, 2] to the relatively 

newer field of biomechanics [3-6]. In most cases the interactions just occur at the FSI 

interface rather than the whole FSI domain. Thus the fluid and solid can be seen as 

two independent subsystems except for the interaction region at the FSI interface. The 

dynamic response of the structure is stimulated by the periodic or random FSI force 

from the FSI interface partially induced by the vortex shedding of the fluid flow. It is 

this force that gives rise to the solid rotation, deformation, translation or a combined 

mode of these motions. It is also this force that may lead to solid catastrophic failure, 

e.g. fatigue and fracture. Therefore, accurately determining the FSI force and thus the 

dynamic response of the solid immersed in a fluid can be quite essential especially for 

the safety of the solid part. 

Numerical analysis is a powerful tool for solving FSI problems. In the past 

decades, significant advances have been achieved in the development of stable and 

efficient computational methods and coupling algorithms for solving fluid flows with 

structure interactions [7]. Generally, there are two most used coupling algorithms, i.e. 

the weak (or partitioned) [8-10] and strong (or simultaneous) [11-13] coupling 

algorithms. The weak coupling algorithm is much more convenient than the strong 

coupling in several circumstances because it allows for the implementations of 

different numerical methods into the solid and fluid subsystems, respectively, without 

any major changing to the routines of the respective methods. The solutions of these 
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two subsystems are “linked” by the FSI coupling conditions on the FSI interface. 

With this weak coupling algorithm the partial differential equations (PDEs) governing 

the fluid and solid parts can be solved alternately while the FSI coupling conditions 

are applied on the FSI interface during the alternate intervals in the time marching 

process [1].  

Various numerical methods have been proposed to solve the pure fluid and solid 

problems. The most used methods to solve the fluid flows are the finite difference 

method (FDM) and finite volume method (FVM), while the finite element method 

(FEM) is most preferred by solid mechanics researchers. Meshfree methods are 

developed to solve either solid or fluid flow problems. Recently, a family of smoothed 

methods [14, 15] has also been developed over a so-called   space [16, 17] to solve 

the pure solid and fluid flow problems. A series of attractive properties such as super 

convergence, high convergence rate, accuracy and stability have been observed for 

these smoothed methods in comparison with the conventional FDM, FVM, FEM and 

meshfree method. Some of these properties have already been mathematically proven, 

however, some others are just concluded from numerous numerical tests. The 

theoretical aspects on why they work so well and how much well they can still be are 

not so clear. Thus further explorations of the performances of these smoothed 

methods on solving the pure solid and fluid flow problems are still needed. 

Furthermore, a coupling of those valid smoothed methods for solving the challenging 

FSI problems could also be significant, which would give a more broad application to 

the family of smoothed methods.  

In this thesis, it is the intent to explore two typical smoothed methods, i.e. the 

edge-based smoothed finite element method with linear triangular mesh (ES-FEM-T3) 

and gradient smoothing method (GSM), in solving the pure solid and fluid flow 
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problems, respectively, and the first time to couple these two valid smoothed methods 

for solving challenging FSI problems. Numerical innovations created in the solid, 

fluid and FSI formulations should provide further understanding of the characteristics 

of the smoothed methods possible lead to consummating the fundamentals of the 

smoothed theory.  

An overview of the family of smoothed methods is presented in this chapter. 

Since there is a close link between the smoothed and conventional methods, these 

conventional ones are reviewed firstly in Section 1.1. An overview of the smoothed 

methods is then presented in Section 1.2, in which the ES-FEM-T3 and GSM are 

emphasized. Different types of coupling methods are compared in Section 1.3 and the 

arbitrary Lagrangian-Eulerian (ALE) method is finally chosen for the FSI formulation. 

The overall objectives, significances and organization of the present thesis are 

summarized at the end of this chapter. 

1.1 Conventional numerical methods 

1.1.1 An overview 

Classical mathematic models have already been well established in the form of 

partial differential equations (PDEs) for the pure solid and fluid flows problems [14]. 

However, analytical solutions of these PDEs are usually unavailable except for some 

special cases of regular geometrical domains. In order to track the solutions of the 

PDEs for general cases, the numerical tool should be a better choice. Many types of 

numerical methods, including the conventional FDM, FVM, FEM and the meshfree 

method, have been proposed to resolve the PDEs with a proper set of boundary and 

initial conditions. Different numerical methods are proposed according to different 
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principles and hence possess particular advantages and disadvantages in the 

simulation process.  

The FDM being the oldest numerical method among these four conventional 

ones can be possibly traced back to the 18th century by Euler [18, 19]. In the FDM, 

the differential (strong) form of the PDEs are discretized directly based on the Taylor 

series expansion, using single or multiple block structure mesh. A system of algebraic 

equations with a banded matrix of coefficients is then built based on the discretized 

governing equations. Efficient direct or indirect numerical techniques can be used to 

quickly get the solutions of such a system of algebraic equations [20]. Some special 

technologies such as the upwind scheme are introduced into the numerical 

approximations to ensure the spatial stability of the numerical formulation. As only 

the structure mesh is valid for the FDM, it especially works well for problems of 

simple geometries.  

The FVM is a widely used method for solving fluid flow problems. Early well-

documented use of FVM was made by Evans and Harlow [21] and Gentry et al. [22]. 

In late 70’s and early 80’s, it was further applied to structure mesh [23, 24]. By early 

90’s, unstructured FVM had been comprehensively developed [25-27]. The FVM is 

now widely adopted for solving both compressible and incompressible fluid flow 

problems and implemented in well-known commercial CFD packages [28]. In the 

FVM, the integral form of PDEs is discretized on the predefined background volumes 

(meshes). Conservation laws of mass, momentum and energy are enforced on each of 

these finite volumes, which lead to a system of algebraic equations [28]. These 

algebraic equations usually involve fluxes of the conserved variable, and thus the vital 

FVM procedure is how to accurately calculate the fluxes [29]. The resultant solutions 

for the algebraic equations can be stored at the cell centers or nodes. The values of 
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field variables at non-storage locations are obtained using interpolation [30]. 

Comparatively, the FVM is conservative even on coarse mesh [18]. 

The FEM is a robust method and has been developed for static and dynamic, 

linear and nonlinear stress analysis of solids, structures, as well as fluid flows [31-33]. 

It was first used by Courant [34] in 1943 for solving torsion problems, and lately 

named by Clough [35] in 1960 working on the plane stress analysis. Since then, the 

FEM has made remarkable progress. By now it has become perhaps the most 

powerful method for solving practical engineering problems with arbitrary geometries 

and complex boundary conditions due to its flexibility, effectiveness and accuracy 

[14]. In the standard FEM, the Galerkin weak form of PDEs is firstly constructed 

based on the potential energy principle (or the virtual work principle), through which 

the consistency requirement on the field variables is reduced from the 2nd order to the 

1st order that gives a consistent relaxation of these variables. The Galerkin weak form 

is then discretized over the background mesh to get a set of algebraic equations with 

the unknowns stored at the nodes. After properly applying the Dirichlet/Neumann 

boundary conditions, the algebraic equations can be finally solved with usual 

numerical techniques such as the Gauss elimination method and Gauss-Seidel 

iterative method. Accordingly, the standard procedures of solving a problem with the 

FEM can be summarized as i) domain discretization, ii) field variables construction 

via shape functions, and iii) weak formulation to derive the discretized algebraic 

equations system that can be solved using standard routines [14, 15, 31].  

A common ground of these three conventional methods reviewed above is that 

they all rely on the predefined background mesh during the numerical formulation 

process. On the contrary, the meshfree method is free of mesh, or uses easily 

generable mesh in a much more flexible manner [14, 36]. The field functions are 
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approximated locally using a set of nodes scattered within the problem domain as well 

as on the boundaries [14]. Typical meshfree methods are such as the smooth particle 

hydrodynamics (SPH) [37-40], the local point collocation method [41], the finite 

point method [42], the element-free Galerkin (EFG) method [43, 44], the meshless 

local Petrov-Galerkin (MLPG) method [45], the reproducing kernel particle method 

(RKPIM) [46], the point interpolation method (PIM) [16, 17, 47-59], and so forth. A 

survey paper written by Babuška et al. [60] provides the mathematical foundation of 

various meshfree methods. An overview of the theoretical, computational and 

implementation issues related to various meshfree methods can be found in the 

monographs by Liu [19]. By removing the restrictions of using the background mesh, 

the meshfree method is much more flexible and suitable for adaptive analyses. The 

meshfree method has already been successfully applied to solve problems such as the 

cracks, underwater shock, explosion and free surface problems [36, 61, 62], all of 

which the element based methods are not easy to deal with. As the methodology of 

meshfree method is still in a rapid development stage, new meshfree methods and 

techniques are constantly proposed [14].  

These four conventional numerical methods reviewed above can be roughly 

classified into two categories, i.e. the strong form method and weak form method, 

according to different principles of handling the PDEs [14]. The strong form method 

solves the differential form of the PDEs directly. The assumed functions of field 

variables are required to have the 2nd order consistency which is the same order of the 

differentiation in PDEs. The FDM is a typical strong form method. The meshfree 

methods, e.g. the smooth particle hydrodynamics (SPH) [37-40], the local point 

collocation methods [41], and the finite point method [42], may also fall under this 

category. The weak form method, in contrast to the strong form, establishes an 
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alternative weak form (usually in integral form) of the PDEs before discretizing the 

system equations. The assumed functions of field variables only need to satisfy the 

PDEs in an integral (average) sense [14], in which the consistent requirement of the 

assumed functions of filed variables is weakened from the 2nd order to the 1st order. 

The FEM can be classified into this category, where the integral Galerkin weak 

formulation are constructed and a so-called test function is introduced into the integral 

weak form to “absorb” one derivative of the field variables. The FVM that discretizes 

the integral form of the PDEs over the predefined background control volumes may 

also belong to this category. Similarly, the meshfree methods such as the EFG method 

[43, 44], the meshless local Petrov-Galerkin (MLPG) method [45], reproducing kernel 

particle method (RKPIM)[46], the point interpolation method (PIM) [16, 17, 47-59], 

can also be classified into this category. 

Beyond the traditional categories, a family of weakened-weak (W2) form 

methods and weak-form like methods have been recently proposed by Liu et al. [16, 

17, 51, 63, 64] for solving both the solid and fluid flows problems via applying the 

smoothing technique back into the conventional settings, by which the consistency 

requirement of the field variables is further reduced by 1 order comparing with the 

corresponding conventional methods.  

1.1.2 What is the smoothing technique?  

The smoothing technique [65] can be seen as a strain/gradient field local 

reconstruction technique [14, 15]. Fundamental of the smoothing technique is that a 

field variable (or its any order derivations) at a point can be replaced by a weighted 

integral fashion of this field variable (or its any order derivations) over a local 

smoothing domain that contains this point [14, 15, 66].  



 
Chapter 1                                                                                                                                  Introduction 

8 
 

1.1.3 Why to introduce the smoothing technique? 

Different conventional numerical methods have their own advantages for solving 

particular problems. However, they also have unavoidable disadvantages during 

particular simulations.  

For example, the FDM is especially convenient for fluid flows with simple 

geometries. If complex geometries are involved, the FDM may encounter some 

difficulties of generating structure mesh. Although FDM could also be used to solve 

problems with slightly complicated geometry, issues relating to the mapping from the 

physical domain to the computational domain complicate the process of the numerical 

implementations [67, 68]. Similarly, the FVM also has some disadvantages. False 

diffusion usually occurs in the numerical predictions, especially when simple numeric 

is engaged. It is also difficult to develop schemes with higher than 2nd order accuracy 

for multi-dimensional problems [26, 29, 30].  

The standard FEM are quite powerful for many practical problems, however, 

there are still several limitations that are becoming increasingly evident [14, 15]: i) the 

well known “overly stiff” phenomenon, which can have possible consequences of a) 

the so-called “locking” behavior for many problems, b) inaccuracy in stress solutions, 

and c) poor solutions when using a triangular mesh; ii) significant accuracy loss when 

the element mesh is heavily distorted, which is due to the badly conditioned Jacobian 

matrix during the mapping technique used in isoparametric elements; and iii) 

difficulty of generating quality mesh. In 2D space, it is well known that the standard 

FEM model can give more accurate solution with quadrilateral element. However, 

this kind of element is usually not so easily generated for complicated domains. On 

the contrary, the triangular element can be generated efficiently and automatically 
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without manual over-ride. Moreover, only the triangular element can be re-meshed 

fairly automatically. However, the FEM model does not like such element because it 

always gives solutions of very poor accuracy especially in the stress field [15]. Thus 

how to improve the accuracy of the standard FEM with the more convenient 

triangular element is an important issue. 

The meshfree strong form method is very simple and straightforward compared 

with the weak form method. However, instability and poor accuracy issues usually 

occur to the meshfree strong form method due to the factors such as the node 

irregularity, the application of the boundary condition and the selection of the nodes 

for the function approximations [61, 66]. Special techniques are needed to stabilize 

the solutions [41, 61, 69]. Furthermore, the discretized system equations are also 

asymmetric for irregularly distributed meshes, even for problems with symmetric 

operators in the PDEs [66], which complicates the solution process. The meshfree 

weak form method usually gives stable, robust and accurate solutions for solving 

many types of problems [61, 66]. However, a main drawback of this kind of method is 

its high computational cost and complicated formulation procedure due to the use of 

weak form that requires integrations locally or globally [41]. 

In consideration of the disadvantages of the conventional numerical methods, the 

smoothing technique [65] has been employed into these conventional ones considered 

in the hope to resolve or partially resolve the drawbacks of these conventional 

methods. Accordingly, a family of smoothed numerical methods has been proposed 

by Liu et al. [16, 17, 51, 63, 64] with the weakened-weak (W2) or weak-form-like 

formulations of the PDEs for solving both the solid and fluid flows problems:  

i) For the solid mechanics, the W2 formulation is built upon the Galerkin weak 

form of PDEs with the application of the smoothing technique [65] over the 
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smoothing domains constructed on top of the background mesh. In the W2 

formulation, the consistency requirement of the field variables is further reduced 

by 1 order upon the already reduced weak formulation: it enables the assumed 

displacements in 1
h  space [16, 17, 70] and hence discontinuous. The smoothed 

finite element methods (S-FEMs) [15] are the typical smoothed methods, which 

will be further reviewed in Section 1.2.1.  

ii) For the fluid flows, the weak-form like formulation is constructed by applying 

the smoothing technique [65] to approximate the derivatives of the velocities and 

pressures in the strong from of PDEs over a series of local smoothing domains. 

The smoothing operation reduces by 1 order the requirement of consistency on 

the approximated field functions. The gradient smoothing method (GSM) is a 

case of the weak-form like methods. A review of the GSM will be presented in 

Section 1.2.2. 

1.2 Smoothed methods with strain/gradient smoothing operations 

1.2.1 ES-FEM-T3 with strain smoothing operation in solid mechanics 

1.2.1.1 Strain smoothing, generalized smoothing and strain construction operations 

By applying the smoothing technique back into the FEM setting, a family of S-

FEMs is constructed. Correspondingly, the compatible strain in the standard FEM, 

which is a function of the derivatives of the shape functions, is now replaced by the 

smoothed strain in the S-FEMs, which is only a function of the shape functions 

themselves. Accordingly, the surface integration for the compatible strains over the 

whole element is transferred to the line integration for the smoothed strains along the 

boundary of the smoothing domain via the Divergence’s theorem. Simultaneously, the 
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constrained conditions on the shape of integrated domain are removed. In doing so, on 

one hand the computing procedures of the stiffness matrix in the implicit S-FEMs are 

much easier than those in the standard FEM, on the other hand no coordinate 

transformations and mappings are needed in the strain construction process in the S-

FEMs, which enables the use of highly distorted mesh during the calculation. Most 

importantly, superior properties such as the bound property, high convergence rate 

and computational efficiency are achieved by the S-FEMs without increasing any 

effort in both the modeling and computation processes.  

In the S-FEM models, a mesh of elements is still required. It can be created 

exactly in the same manner as in the standard FEM. The smoothing domains are 

constructed on top of these elements in the cell-based, node-based or edge-based 

fashions. Theoretically, any polygonal elements, e.g. the three node triangular (T3), 

four node quadrilateral element (Q4), n-sided polygonal elements in 2D space and 

tetrahedral element (T4), hexahedral elements in 3D space, or hybrid of these 

elements, can be used as the background mesh. If the smoothing technique is 

implemented on the smoothing domains constructed over the T3 or T4 background 

mesh, the assumed displacement field is continuous in the smoothing domains and 

thus it falls into the 1  space [14], which leads to the so-called strain smoothing 

operation and the corresponding Smoothed-Galerkin formulation of the PDEs [16, 17, 

51]. While if the smoothing technique is implemented on the smoothing domains 

constructed over the higher order Q4 [51, 71-74], n-sided polygonal [74] or 

hexahedral background element [47, 48, 50, 52, 75, 76], the assumed displacement 

field will be discontinuous in the smoothing domains and thus it falls into the   

space [14], which leads to the so-called generalized smoothing operation and the 

corresponding Generalized-Smoothed Galerkin formulation of the PDEs [16, 17, 51]. 
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As a continuous field function in a 1
h  space is included in the 1

h  space,  we could 

say that the strain smoothing operation is a special case of  the generalized smoothing 

operation [14].  

Moreover, both the strain and generalized smoothing operations belong to a more 

broad category, i.e. the strain construction category, in which more flexible strain 

construction techniques are allowed to reconstruct the strain field as long as the newly 

constructed strain field satisfies the admissible conditions such as the orthogonal 

condition, norm equivalence condition, strain convergence condition and zero-sum 

condition [14], so as to ensure the stability and convergence of the newly developed 

method. A relative relationship of different smoothing techniques is illustrated in Fig. 

1.1. 

Generalized 
smoothing

Strain/Gradient 
smoothing

Strain construction 
technique

 
Fig. 1.1 Containment relationships of different smoothing techniques 

In practice, the strain smoothing operation is most preferred because of: i) the 

easy generation of the T3 or T4 elements even for complicated domains; ii) the low 

computational efforts due to the small band width of the stiffness matrix; iii) the high 

computational efficiency; and iv) the easy generation of the T3 or T4 elements in the 

adaptive analysis. So the S-FEMs based on the strain smoothing operation over T3 or 
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T4 background meshes are of main concerned in the present thesis. Details of the 

smoothed methods based on generalized smoothing operation or other strain 

construction techniques can be found in  [14]. 

1.2.1.2 S-FEMs with strain smoothing operation 

In 2D space, according to different ways of constructing the smoothing domains 

over the T3 background mesh, there are in total three main types of S-FEM methods, 

i.e. the cell-based smoothed finite element method (CS-FEM-T3), the node-based 

smoothed finite element method (NS-FEM-T3), and the edge-based smoothed finite 

element method (ES-FEM-T3).  

In the CS-FEM-T3 [74], the smoothing domains are the three sub triangular 

elements that nested in the original triangular element, and the smoothed strains are 

calculated based on the three sub triangular elements. Because each of these three sub 

triangular elements has only three supporting nodes, piecewise linear shape functions 

for each of these three triangular smoothing domains are in fact the same. Therefore, 

the smoothed strains in each of the triangular smoothing domains are all the same as 

compatible strain field in the original triangular element. As such, the CS-FEM-T3 

and the FEM-T3 are in fact identical in this circumstance. In the following discussions 

of the performance of the S-FEMs, we thus indentify the CS-FEM-T3 as FEM-T3. 

However, can we still use T3 element to formulate a cell-based smoothed model that 

is different from the FEM-T3 model? The answer is “yes” and very accurate model 

can be formulated, but it requires the use of the general PIM. Interested readers may 

refer to recent work on the cell-based smoothed PIM [77]. 

The NS-FEM-T3 model is another typical model of S-FEMs. The smoothing 

strains in NS-FEM-T3 are calculated based on the node-based smoothing domains 
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that are constructed by simply connecting the centroids of relevant triangles with 

midpoints of influenced cell-edges. These smoothed strains are then substituted into 

the Galerkin weak form of the PDEs to get a system of smoothed algebraic equations. 

By solving these algebraic equations with the same routines as in the standard FEM, 

we can then get the results. The NS-FEM-T3 can give upper-bounded solutions in 

both the energy and displacement norms to the exact solutions [48, 78]. Furthermore, 

it has also natural immunization from volumetric locking, ultra-accuracy, and super-

convergence of the stress solution. The NS-FEM-T3 is stable in the spatial domain. A 

drawback of this method is its temporal instability (spurious non-zero-energy modes 

in free vibration analyses and numerical instability in forced vibration analyses) 

encountered in solving dynamic problems, similar to some meshfree methods [79-81]. 

The temporal instability may due to the “overly soft” behavior resulting from the 

overcorrection to the “overly stiff” behavior of the standard FEM [78]. Special 

attention should be paid during solving the dynamic problems via NS-FEM-T3.   

The ES-FEM-T3 [82] is the third S-FEM model, where the smoothed strains are 

calculated based on the edge-based smoothing domain that i) connects the two 

vortexes of an inner edge and the two centers of the cells corresponding to this edge; 

or ii) connects the two vortexes of an boundary edge and the centroid of the boundary 

element. The smoothed strains are substituted into the Galerkin weak form of the 

PDEs to get a system of smoothed algebraic equations. The ES-FEM-T3 possesses the 

good properties of both spatially and temporally stability, and ultra- accuracy (even 

more accurate than the FEM-Q4). 

A summary of the properties of different S-FEM models is presented in Table 

1.1. 
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Table 1.1 Versions of S-FEMs and their properties in 2D space 

Name Methods for creation Main features/properties 

CS-FEM-T3 

i) Smoothed Galerkin 
ii) Smoothed strain based on 

element or cells created by 
further dividing the elements 

i) Identical with the FEM-T3 

NS-FEM-T3 

i) Smoothed Galerkin 
ii) Smoothed strain based on each 

of the nodes of the mesh by 
connecting portions of the 
surrounding elements sharing 
the node 

i) Linear conforming 
ii) Volumetric locking free 
iii) Upper bound 
iv) Strong super convergence in 

energy norm 
v) Spatially stable, temporally 

instable 

ES-FEM-T3 

i) Smoothed Galerkin 
ii) Smoothed strain based on each 

edges of the mesh by 
connecting portions of the 
surrounding elements sharing 
the edge 

i) Linear conforming 
ii) Ultra-accuracy 
iii) Very efficient 
iv) Strong super convergence in 

displacement/energy norm 
v) Spatially and temporally stable 

1.2.1.3 Superior of ES-FEM-T3 among S-FEMs 

If we consider the computational efficiency (the CPU time needed for solution of 

the same accuracy) of these three methods, it can be found that the ES-FEM-T3 can 

achieve the highest computational efficiency among all these three methods. A 

quantitative comparison of these three methods presented in [83, 84] shows the 

computational efficiency of ES-FEM-T3 is around 20 times than that of NS-FEM-T3 

and around 10 times than that of FEM-T3 according to the displacement norm errors. 

Therefore, the ES-FEM-T3 seems to offer a more excellent platform for solid analysis 

than the other two methods. That is one consideration of choosing the ES-FEM-T3 for 

solving the solid mechanics as well as FSI problems in the present thesis. 

1.2.2 GSM with gradient smoothing operation in fluid mechanics 

Enlightened by the strain smoothing operation in the Galerkin weak form in solid 

mechanics, the smoothing technique is also tentatively implemented to directly solve 

the strong form (differential form) of the PDEs. In this case, all the unknowns of field 
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variables are stored at the vertexes of the background triangular mesh, and the 1st and 

2nd order spatial derivatives of the field variables are directly approximated with the 

smoothing technique in a weighted integral fashion over relevant smoothing domains 

surrounding the point of interest. As the smoothing technique is used to deal with the 

gradient of the velocities and pressures in fluid mechanics, we will denote the 

smoothing technique as “gradient smoothing” here to distinguish from the “strain 

smoothing” operation on the strains in the solid mechanics.  

By using the gradient smoothing operation, the consistency requirement on the 

approximated field functions is properly reduced by 1 order. Therefore, it is much like 

a weak-form like method as that in the standard FEM. The main difference of the 

“weakening” between the gradient smoothing operation for fluid and the strain 

smoothing operation for solid lies in their implementation procedures. The weakening 

for fluid is implemented in the stage of function approximation while that for solid is 

in the stage of creating the system equations. Such a “weakening” formulation can be 

termed as a weak-form like formulation [14]. It is because in using the gradient 

smoothing operation, the proposed scheme performs quite stably. The error of the 

function approximation can also be smeared, which ensures that the error can be 

properly bounded by the interpolation error caused by the function approximation 

using the nodal values for a discretized model [14].  

By implementing the gradient smoothing operation to discretize the Navier-

Stokes equations, the so-called gradient smoothing method (GSM) is proposed [63, 

64]. The GSM has already been implemented to solve both compressible and 

incompressible fluid flows as well as adaptive analysis [30]. Numerical results show 

that the GSM is conservative, conformal, efficient, robust and accurate to the 2nd order 

in the spatial domain. It is also stable for arbitrarily distributed nodes and for 
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problems with finite domains. Besides that, the GSM has some relations to the FDM 

and FVM  [30]. 

 GSM vs. FDM 

1) The spatial derivatives are approximated using Taylor-series expansion in the 

FDM. In the GSM, the gradient smoothing operation is used, which is in fact a 

boundary flux approximation. After the derivatives are approximated, the follow 

on treatment for GSM and FEM are essentially the same. 

2) The standard FDM works well usually for structured meshes. The GSM, however, 

works well also for unstructured mesh with irregular triangular cells and hence 

applicable to domains of arbitrarily complicated geometry. 

3) The FDM can be applied for less regular domains via domain transformation. 

However, there exist problems and limitations with such a transformation, and it 

is far from being efficient for complicated problem domains. On the contrary, in 

the GSM, the governing equations are always discretized directly on the physical 

space. No transformation is needed, and naturally no related complications. 

4) Most FDM schemes are usually not conservative, while all the proposed GSM 

schemes are locally conservative and can be made global conservative with 

proper treatment of the boundary conditions. 

5) When regular mesh is used, and a proper set of GSDs are used, the GSM 

becomes an FDM. Therefore, an FDM can be viewed as a special case of GSM in 

this regard.  

 GSM vs. FVM 

The GSM has many similarities to the FVM and thus many techniques 

implemented in the FVM can be utilized for the GSM procedure. However, they are 

distinct from each other in the following ways. 
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1) The FVM was derived from physical conservation laws with respect to physical 

quantities such as mass, momentum and energy using control volumes. FVM 

works without knowing the strong form PDEs. The GSM was originated from the 

gradient smoothing operation to approximate the directives of any function 

regardless of its physical background. It is a purely mathematical treatment 

applied directly to the strong form PDEs. GSM works only when the strong form 

equations are available. The procedure of GSM is in fact more like the FDM in 

this regard. 

2) The FVM is a typical weak form method based on physical laws, while the GSM 

is more like a strong form method with a weak formulation flavor and is called 

weak-form like method. 

3) The traditional FVM uses directly the original elements/cells as control volumes 

to which the governing equations are discretized. In the GSM, the original cells 

formed by triangulation are used as background cells. All sorts of different 

smoothing domains (nGSD, mGSD and cGSD) are then formed based on these 

background cells, and the strong form PDEs are discretized using these GSDs in 

various ways. 

4) In the GSM formulation, we are not confined to use the Heaviside (piecewise 

constant) smoothing function. When different smoothing functions are used, we 

could have many alternatives. For example, the piecewise linear smoothing 

function has already been explored in the LWGSM [30]. Of course, when the 

smoothing function becomes more sophisticated, the numerical treatments can be 

more complicated which may require special techniques. 
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5) When GSM with Heaviside type smoothing function and proper selected 

smoothing domains are used, the GSM becomes the FVM. In this regards, the 

FVM may be viewed as a special case of GSM.  

Hence, the GSM is an innovative and unique numerical method with its 

distinctive features, and which possesses great potentials for solving fluid flow 

problems. Due to its attractive properties, it is thus further employed for solving the 

fluid-rigid/deformable solid interaction problems in the present thesis.  

1.2.3 Coupling GSM with ES-FEM-T3 for FSI analysis 

From the review above it can be seen that the ES-FEM-T3 and GSM possess 

interesting characteristics and can perform better than the other smoothed and 

conventional methods in solving the pure solid and fluid flow problems, respectively. 

However, no work has been done by now by combining these two attractive smoothed 

methods. Thus the following simple question is raised:  

How will it be if the smoothed methods are combined for FSI analysis, and what 

special characteristics will the combined method exhibit? 

If the combined smoothed method work well for FSI problems, it will certainly 

extend the family of smoothed methods into a much broader area, and the numerical 

innovations developed in the FSI numerical implementations will certainly 

complement and contribute to the fundamentals of the smoothed theory. A coupling 

of the GSM with ES-FEM-T3 is proposed for FSI analysis in the present thesis. The 

methods used to realize the FSI coupling process will be reviewed in the following 

section.  
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1.3 Fluid-structure interactions 

The fluid-structure interaction analysis originates from the traditional industrial 

applications, including the water-dam [85, 86] and water-tank [87-89] interactions 

during the earthquakes, the ship oscillation in the open sea [90, 91] and the pipe line 

vibration containing flowing fluid [92, 93]. In recent years, the fluid-structure 

interaction analysis becomes important in other scientific and engineering fields. 

Typical applications are such as the fluid induced vibration of the structure in 

aeronautical and naval engineering [1, 2], the wind-induced vibration in high-rise 

building or large bridge girder [94, 95], the cyclic response of offshore structure 

exposed to sea current [96] and the deformation of heart valve affected by the blood 

flows during the valve’ s opening and closing processes [3-6].  

One common feature of the FSI interactions is that these interactions just occur 

at the FSI interface rather than the whole FSI domain, where the fluid and solid can be 

seen as two independent subsystems except for the unique interaction occurring at the 

FSI interface. Any efficient and mature methods can be implemented for the fluid and 

solid domains, respectively, and the solutions of these two domains are successively 

exchanged according to the FSI coupling conditions of displacement/velocity 

compatibility and traction equilibrium on the FSI interface [8, 97, 98].  

In a numerical modeling process, the fluid part is most conveniently described 

with an Eulerian description, while a Lagrangian formulation is more appropriate for 

the solid part [9]. However, these two formulations are incompatible which will raise 

difficulties to the successive information exchanges on the FSI interface. Literature 

survey reveals that there are mainly two distinct classes of methods proposed to tackle 

this incompatibility [99]: i) the moving mesh method and ii) the fixed mesh method. 
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1.3.1 Moving mesh method 

The moving mesh method allows the movement of the FSI interface and thus the 

movement of mesh inside the fluid domain. The arbitrary Lagrangian-Eulerian (ALE) 

method is a typical moving mesh method. In using ALE to solve FSI problems, the 

fluid flow is described over the moving fluid mesh with ALE description while the 

solid is described with the Lagrangian description. The compatibility of these two 

descriptions is ensured on the FSI interface in a consistent and accurate manner that 

the nodal displacements/velocities of the fluid mesh on the FSI interface should be 

equal to those of solid particles at the same point. Accordingly, the rest of the mesh 

inside the fluid domain should be updated timely according to the 

velocity/displacement interpolation algorithm [99, 100] or the “pseudo-structure” 

algorithm [101-105]. Because of the freedom of moving the fluid mesh, greater 

distortions of the continuum can be avoid in ALE than would be allowed by a purely 

Lagrangian method and greater resolution than that afforded by purely Eulerian 

approach [106].  

One of the earliest scheme similar with the ALE nature may be found in the 

report by Nor [107] and  Trulio [108] for solving compressible flow problems. Hirt et 

al. [109] firstly proposed the ALE technique with FDM (ICED-ALE) for solving FSI 

problems at different flow speeds. Pracht [110] successfully extended the idea of Hirt 

et al. [109] to 3D case. Besides, the ALE technique was also implemented with FVM 

[111-113], where the ALE form of PDEs governing the fluid flows are discretized 

with the standard FVM and the geometric conservation law (GCL) needs to be 

satisfied by introducing an extra term including the velocities of the mesh in the 

discretized PDEs. Early implementations of the ALE technique with FEM are 



 
Chapter 1                                                                                                                                  Introduction 

22 
 

developed by Donea et al. [114] in 1977, Belytschko et al. [115] in 1978, Bathe et al. 

[116] in 1979, and Hughes et al. [117] in 1981 for solving fluid-structure interactions, 

free surface problems, pressurized bubbles and fluid sloshing and swirling problems. 

The subsequent implementations of the ALE technique in the finite element context 

can be found in [100, 118-120]. Recently, Bathe et al. [7, 8] developed a finite 

element procedure for solving FSI problems for general fluids and provided a series 

of benchmarks for testing newly developed schemes for FSI analysis. In order to 

overcome the spurious spatial oscillations with FEM for solving fluid flows with high 

Peclet numbers, techniques such as the characteristic-Galerkin formulation [121], the 

streamline-upwind/Petrov-Galerkin formulation (SUPG) [122] and the Galerkin/least-

square formulation [123-126] should be further employed.  

Different with the ALE formulation where the governing equations of fluid are 

constructed over mesh on the deformed configuration, another type of moving mesh 

method constructs the governing equations of fluid over the mesh on the undeformed 

configuration [127]. The moved mesh is mapped back to the originally (fixed) mesh 

in each FSI time step. This leads to a time dependent transformation between the 

physical and the computational coordinates [99]. Because of the mesh mapping, the 

structure mesh with certain governing equations can only be utilized. Recently 

developments of this type of moving mesh method can be found in [128, 129]. This 

kind of ALE formulation will not be concerned in the present thesis. 

1.3.2 Fixed mesh method 

In the fixed mesh method, the fluid flow is described with the Eulerian 

description while the solid is described with the Lagrangian description. The moving 

FSI interface is tracked on this set of Eulerian mesh [130]. Different methods, e.g. the 
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immersed boundary (IB) method [131], the fictitious domain method [132], the hybrid 

Cartesian/immersed boundary (HCIB) methods [133-136], the extended immerse 

boundary method (EIBM) [137] and the immersed finite element method [130, 138, 

139], have been proposed to tackle the incompatibility of these two descriptions.  

Among these, the IB method, which is firstly developed by Peskin [131] to solve 

the interactions between the blood flow and the human heart and heart valves, is the 

foundation for the other fixed mesh methods. In the IB method, the solid is treated as 

a set of discrete Lagrangian markers embedded in the Eulerian fluid domain. These 

markers can be treated as force generators in the fluid field and move along with the 

fluid. The interaction between the Lagrangian markers and the fluid variables defined 

on the fixed Eulerian grid is linked by a well-chosen discretized delta function [102, 

140, 141]. It is these forces imposing the kinematic constraints that the velocity at 

each of these solid points is coupled (interpolated) to the fluid velocity at that point. 

By using the IB method, the FSI interface could be tracked automatically without the 

time consuming mesh updating process as in ALE. However, as point out by Zhang et 

al. in [130, 138], a major obstacle of the IB method is its assumption of the fiber-like 

immersed elastic structure, which impedes realistic analysis and modeling of the 

physical deformation of the immersed structure with complicated nonlinear 

constitutive laws and an accurate representation of the finite volume they occupy 

within the fluid domain. Thus Zhang et al. [130, 138] proposed the so-called 

immersed finite element method (IFEM) for solving large deformations of 

incompressible hyper-elastic solid immersed in an incompressible or slightly 

compressible fluid. In the IFEM, the delta functions are used as the shape functions in 

meshfree methods, which may not only provide higher order smoothness on the FSI 

interface but also improve the ability to handle non-uniform fluid grids. Based on the 



 
Chapter 1                                                                                                                                  Introduction 

24 
 

idea of IFEM, the immersed smoothed finite element method (IS-FEM) is most 

recently proposed by Zhang et al. [142],  which analyzes the physical motion and 

deformation of the solids fully immersed inside the fluid domain like IFEM but 

adopts efficient direct forcing technique from IB/HCIB. Furthermore, the artificial 

fluids assumption in IFEM is not required in the proposed immersed S-FEM method. 

1.3.3 Why to choose ALE for FSI analysis? 

The attractiveness of fixed mesh method is their easy handling of FSI problems 

with very complex geometries as well as multiple solid bodies moving in complex 

motions in the fluid domain. The main challenge encountered by the fixed method is 

to maintain the accurate solutions near the FSI interface region [7, 141]. In order to 

accurately resolve the fluid flow near the FSI interface, the solid mesh is suggested to 

be refined as much as possible near the FSI interface region. This operation on the one 

hand helps to improve the accuracy of the fluid flow, on the other hand introduces 

more degree of freedoms leading to more computation time thereby decreasing the 

computational efficiency. Additionally, as pointed out by Su et al. in [141], the 

existing IB techniques are also restricted for FSI problems with small CFL number 

due to the formulation of feedback force and the determinations of the forcing 

locations. How to accurately track the solutions near the FSI interface is still a main 

task for the IB methods. 

In different with the fixed mesh method, accurate solutions can be achieved near 

the FSI interface region by the ALE method due to its avoidance of the interpolations 

of velocities and traction on the FSI interface. The main drawback of the ALE method 

is the time consuming mesh updating process in the fluid domain. Furthermore, if the 

solid undergoes large deformations, the fluid mesh near the FSI interface may be 
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extremely distorted, which will lead to poor or even divergent results for the FSI 

system. In that case, the adaptive re-meshing process is suggested in this extremely 

distorted region. This, however, introduces extra interpolation errors during 

transferring the flow solutions from the old mesh onto the newly generated mesh. 

Thus the adaptive re-meshing procedure need only be invoked when the other 

algorithms of the ALE formulation do not succeed in updating the fluid mesh [7]. 

Beyond that, the so called geometric conservation law (GCL) is also suggested to be 

obeyed [143], which gives further constrains in the ALE formulation. 

In the light of the above discussions, it can be argued that for problems with 

moderately complex interface and medium deformations/movements in the solid 

domain, the ALE method may be a much cheaper and more accurate choice because: i) 

the body-fitted mesh conformed to the FSI interface can be generated, which 

eliminates the force/velocity interpolations across the FSI interface as in the IB 

methods and thus leads to accurate solutions of the tractions and velocities near the 

FSI interface [7]; ii) the adaptive re-meshing process is not needed, which avoids the 

time-consuming mesh regenerations and inaccurate mapping of the flow solutions 

from the existing mesh onto the newly generated mesh. Thus the ALE formulation is 

employed in this thesis by combining with GSM for solving fluid flow problems over 

moving mesh. 

1.4 Objectives and significances of the thesis 

One objective of this thesis is to explore two typical smoothed methods, i.e. the 

ES-FEM-T3 and GSM, in solving the pure solid and fluid flow problems and then 

couple these two valid methods for solving challenging FSI problems. Thus the broad 

outlines of the thesis can be summarized as the following three parts: 
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1) Formulate the implicit/explicit ES-FEM-T3 schemes and explore their 

performances in solving practical engineering problems in solid mechanics; 

2) Develop the novel GSM/ALE method to solve the fluid flows over moving 

mesh; 

3) Propose the novel FSI scheme and couple the GSM/ALE with ES-FEM-T3 

for solving FSI problems. 

The significances of the present study are as follows:  

 Formulate the implicit ES-FEM-T3 for the bending stress analysis of the 

gear tooth during the gear transmission. The transferred concentration load is 

converted to a distributed load near the loading point in the formulation 

process of the implicit ES-FEM-T3 model to avoid the stress singularity at 

that point. Novel asymmetric gear tooth profiles are designed and the 

implicit ES-FEM-T3 is used to optimize the gear tooth profiles in 

consideration of both the stress distributions and the transmission ability of 

the gear pair. Finally the optimized asymmetric gear tooth profile with 

pressure angle 35 20d cα α =    is determined. 

 Demonstrate the necessity of introducing the nonlinear strain term in 

analytically estimating the membrane deflections, and thus construct the 

novel explicit ES-FEM-T3 model including the crucial nonlinear strain term 

for membrane deflection analysis. The local co-rotational coordinate system 

is constructed for correctly estimating the smoothed strains. Explicit time 

integration scheme is used to compute the transient response of the 3D 

spatial membrane structure. And the dynamic relaxation method is employed 

to obtain steady-state solutions. Factors such as pressure fluctuations and 

boundary constraints are found to illustrate the observed differences between 

the numerical and experimental results. 
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 Propose the novel GSM/ALE method for solving the fluid flows over 

moving mesh. The ALE form of Navier-Stokes equations is derived 

according to the Reynolds transport theorem. The GSM is used to spatially 

discretize the governing equations. A moving mesh source term derived 

directly from the GCL is incorporated into the discrete equations to ensure 

the recovery of uniform flow while the mesh is moving. The second order 

Roe flux differencing splitting unwinding scheme is used in the convective 

flux to ensure spatial stability. The artificial compressibility formulation is 

utilized with a dual time stepping approach for the accurate time integration. 

The coefficient of irregularity of the fluid mesh is introduced to demonstrate 

the robustness of the proposed GSM/ALE on extremely distorted mesh.  

 Couple GSM/ALE with ES-FEM-T3 for solving FSI problems, and it is also 

the first time to extend the family of smoothed methods into the cross-

disciplinary problems. The coupling conditions of displacement/velocity 

compatibility and traction equilibrium are carefully formulated and the weak 

coupling algorithm is successfully established to link the GSM/ALE and ES-

FEM-T3 in the fluid and solid subsystems, respectively. The constant 

physical time step is used in the simulation process. The same mesh 

densities of the fluid and solid mesh are set at the FSI interface to make it 

easy to implement the FSI boundary conditions. The sensitivity of either the 

fluid or solid mesh to the FSI results is discussed. Results from several 

benchmark tests show the validity of the novel coupled smoothed methods in 

solving FSI problems.  

The crucial properties of the newly proposed methods, e.g. the accuracy, 

convergence, reliability of efficiency and robustness, are quantitatively checked 
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through numerous of benchmark examples for the pure solid or fluid or FSI problems, 

so as to demonstrate the superior performances of the proposed methods. 

1.5 Organization of the thesis 

The organization of the present thesis is organized as follows. 

Chapter 1 includes background information and research objectives of this study. 

A general review of the conventional as well as novel smoothed numerical methods is 

presented. Comments on the conventional methods indicate the necessity of 

introducing the smoothing technique. Two broad categories of methods, i.e. the fixed 

and moving mesh methods, are reviewed for FSI analysis. After careful 

considerations the ALE method is finally chosen as the candidate for FSI analysis in 

this work. 

Chapter 2 gives the fundamental of the smoothing technique and its 

implementation in the PDEs governing both the solid and fluid mechanics. General 

procedures of the S-FEMs and GSM are summarized. Distinguished features of these 

smoothed methods are presented. 

Chapter 3 constructs both implicit and explicit ES-FEM-T3 for solving two 

practical engineering problems, i.e. the implicit ES-FEM-T3 for a 2D linear elastic 

bending stress problem found in gear tooth during gear transmissions and the explicit 

ES-FEM-T3 for the nonlinear deflections of the membrane structure in 3D space. 

Properties of the proposed methods are carefully checked during solving these two 

practical problems. 

Chapter 4 proposes a novel GSM/ALE method for solving fluid-moving rigid 

body interaction problems. Convergence, accuracy and robustness of the proposed 

method, i.e. GSM/ALE, are examined through a series of benchmark tests. 
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Chapter 5 couples the GSM/ALE and ES-FEM-T3 for the FSI analysis. The FSI 

coupling conditions as well the coupling procedures are presented in details. Both 

transient and steady state benchmarks are tested to verify the validity of the coupled 

smoothed method. 

Chapter 6 concludes the contributions of this thesis and suggests some further 

potential research topics.  

One appendix about the governing equations of the novel asymmetric gear tooth 

profile is attached in the end of this thesis.  
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Chapter 2  

Theories of the strain/gradient smoothing technique 

 

The strain/gradient smoothing technique has been reviewed in the previous 

chapter. By applying the strain/gradient smoothing operation into the FEM and FVM 

settings, a family of smoothed methods, i.e. the S-FEMs for solid mechanics and the 

GSM for fluid mechanics, was proposed. Particularly, the ES-FEM-T3 performs the 

best in accordance with the criterion of computational efficiency (the CPU time 

needed for solution of the same accuracy) among all the S-FEM models. It is thus 

chosen and further explored in solving the solid mechanics in Chapter 3 as well as the 

solid portion in the FSI analysis in Chapter 5 in the present thesis.  

In this chapter, fundamental theories of the smoothing technique implemented in 

both the solid and fluid mechanics are introduced. Theoretical details about the 

smoothing technique are firstly presented in Section 2.1. The implementation of the 

strain smoothing technique into the solid mechanics that leads to the family of S-

FEMs is presented in Section 2.2, together with the discussion of some main 

properties of the S-FEM models. The gradient smoothing technique applied for 

solving the incompressible fluid flows is presented in Section 2.3, together with some 

theoretical aspects during the implementation of GSM. The discussions and 

formulations are given in 2D space. The extension to 3D domain can be more 

complicated in implementation, but it should be trivial technically. 

2.1 Smoothing technique 

Smoothing technique has already been used in numerical simulations for various 

purposes [1-4]. A common ground of the smoothing technique is that the field 
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variable (or its any order derivations) at an arbitrary point can be replaced by a 

weighted integral fashion of this field variable (or its any order derivations) over a 

local smoothing domain containing this point [5, 6]. Accordingly, the surface 

integration of the derivatives of the field variables over the smoothing domain is 

transformed to the line integration of the field variables themselves along the 

boundary of this smoothing domain according to the Gauss Divergence’s theorem, by 

which the consistency requirement on the field variables is reduced  by 1 order [6, 7]. 

Consider an arbitrary field variable u(x) at point xi surrounded by a smoothing 

domain sd
iΩ  bounded by sd

iΓ . The gradient (1st order derivative) of u(x) can be 

approximated in the form of  [8, 9] 

( ) ( ) ( )sd
ˆ ; d

i
i i iu u u w

Ω
∇ ≡ ∇ ≈ ∇ − Ω∫x x x x x

 
or 

( ) ( ) ( )sd
ˆ ; d ,  ,

i
i i

h h

u u w h x y
x xΩ

∂ ∂
= − Ω =

∂ ∂∫x x x x x  

(2.1) 

where ∇  is the gradient operator; ( )ˆ ; iw −x x x  is the weighted function that can be 

chosen in any form as long as it satisfies the essential requirements of  [3, 9] 

( ) ( )sd
ˆ ˆ; 0 and ; d 1

i
i iw w

Ω
− ≥ − Ω =∫x x x x x x . (2.2) 

The subscript “i” and superscript “sd” marked in sd
iΩ  denote, respectively, the 

“ith” discrete smoothing domain (“sd”) in the whole domain Ω  bounded by Γ , as 

shown in  Fig. 2.1. 
T

,x yn n =  n
 
is the unit normal vector of the boundary sd

iΓ . 

If we integrate Eq. (2.1) by parts, we can get 

( ) ( ) ( ) ( ) ( )sd sd
ˆ ˆ; d ; d

i i
i i iu u w u w

Γ Ω
∇ ≈ − Γ − ∇ − Ω∫ ∫x x n x x x x x x x . (2.3) 

As proposed by Liu in [5, 6], a piecewise constant smoothing function is usually 

adopted as the weight function for the purpose of simplicity, i.e. 
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( )
sd sd

sd

1 ,   ˆ ;
0,          

i i
i

i

A
w

 ∈Ω
− = 

∉Ω

x
x x x

x
 (2.4) 

where sd
iA  is the area of the smoothing domain sd

iΩ . 

sd
sdNΩ

...

sd
2Ω

sd
1Ω

...

sd
iΩ

sd
iΓ

ΓΩ

sdNx

x1

x2
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...
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Fig. 2.1 Division of problem domain Ω  into Nsd non-overlapping smoothing domains sd

iΩ . 
The smoothing domain is also used as the basis for integration. 

Substitute Eq. (2.4) back into Eq. (2.3), the second term of Eq. (2.3) will vanish 

because sd
iA  is now constant and not a function of x. That is, 

( ) ( )sdsd

1 d
i

i
i

u u
A Γ

∇ ≈ Γ∫x x n
 

or 

( ) ( )sdsd

1 d ,  ,
i

i h
h i

u n u h x y
x A Γ

∂
= Γ =

∂ ∫x x . 

(2.5) 

Comparing Eq. (2.1) and Eq. (2.5) it can be seen that the integration of the 

( )iu∇ x  over the smoothing domain sd
iΩ  is now transformed to the line integration of 

the product of ( )u x  and n along the boundary sd
iΓ . This transformation can also be 

regarded as a direct implementation of the Gauss divergence theorem on Eq. (2.1) [6, 

10].  

It should be noted that when this transformation is implemented into Eq. (2.3), 

the field variable u(x) should be continuous over the smoothing domain sd
iΩ . 

Otherwise, it will be mathematically invalid. However, as proved by Liu in [7], Eq. 

(2.5) can still work well even for discontinuous u(x) as long as it satisfies the  
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admissible orthogonal, norm equivalence, strain convergence and zero-sum conditions 

during its construction process [6, 7]. This leads to the  space theory and the so-

called weakened weak (W2) foundation [6, 7].  

By using Eq. (2.5) instead of Eq. (2.1), the evaluation of the gradient of u(x) is 

avoided and only u(x) itself is needed. This change on the one hand reduces the 

consistency requirement of u(x) by 1 order which expands the range of choosing u(x) 

especially for discontinuous problems, on the other hand avoids the time consuming 

evaluations of the derivatives of u(x) and thus improve the computational efficiency.  

Analogously, by applying the smoothing operation for approximating the 2nd 

order derivatives of the field variable u(x), the Laplace operator at point xi can be 

readily obtained as [4] 

( ) ( )sdsd

1 d
i

i
i

u u
A Γ

∇ ⋅ ∇ ≈ ⋅∇ Γ   ∫x n x
 

or 

( ) sd

2

sd

1 d ,   , ,
i

i J I
I J i I J

u u un n I J x y
x x A x xΓ

 ∂ ∂ ∂
≈ + Γ = ∂ ∂ ∂ ∂ 

∫x . 

(2.6) 

It could be determined as long as one knows the values of the 1st order 

derivatives of u(x) at the corresponding nodes.  

In order to determine the line integrations of Eqs. (2.5) and (2.6) numerically, the 

Gauss integration rule is usually employed with a minimal number of sample points 

along the boundary segments, as follows 

( ) ( ) ( )sd
1 1

1 seg gauN N

i mn mn mn
m ni

u w u
A = =

 
∇ ≈  

 
∑ ∑x n x x

 

or 

( ) ( ) ( )sd
1 1

1 ,  ,
seg gauN N

k mn h mn mn
m nh i

u w n u h x y
x A = =

 ∂
≈ = ∂  

∑ ∑x x x
 

(2.7) 
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( ) ( ) ( )sd
1 1

1 seg gauN N

i mn mn mn
m ni

u w u
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 
∇ ⋅ ∇ ≈ ⋅∇    

 
∑ ∑x n x x   

or 

( ) ( ) ( ) ( ) ( )
2

sd
1 1

1 ,  , ,
seg gauN N

i mn mn J mn mn I mn
m nI J i I J

u u uw n n I J x y
x x A x x= =

  ∂ ∂ ∂
≈ + =  ∂ ∂ ∂ ∂  

∑ ∑x x x x x  

 
(2.8) 

where Nseg is the number of segments of the boundary sd
iΓ ; Ngau is the number of 

Gauss points used in each segment; xmn is the coordinates of the nth Gaussian point on 

the mth segment; wmn is the corresponding weight at the Gauss point xmn; and n(xmn) is 

the outward unit normal at this Gauss point. 

Hence, spatial derivatives at any point of interest can be numerically 

approximated with the smoothing operation of Eqs. (2.7) and (2.8) over properly 

defined smoothing domains. These spatial derivatives possessing particular physical 

meanings in either solid or fluid mechanics will be implemented to indirectly/directly 

discretize the PDEs for solving solid and fluid flow problems.  

2.2 Strain smoothing for solid mechanics 

In solid mechanics, the compatible strain is expressed as a function of the 1st 

order derivatives of displacement. Smoothing operation described in Eq. (2.7) can be 

directly applied into the compatible strain, getting the smoothed strain. Substituting 

the smoothed strain into the Galerkin weak form of the PDEs, the smoothed Galerkin 

weak form of the PDEs is obtained and a set of algebraic equations is induced. Using 

routinely available linear equation solver, the unique solutions of the displacements 

can be obtained. This family of methods with smoothed strain is exactly the S-FEMs. 

Different S-FEM models are distinguished according to the implementation of 

strain smoothing operation over different types of smoothing domains. These 
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smoothing domains can be cell-based, node-based or edge-based constructed on top of 

the background triangular mesh, corresponding to the CS-FEM-T3 [11-15], NS-FEM-

T3 [16-19] and ES-FEM-T3 [20], respectively.  

Formulations of these S-FEMs are detailed in this section, and the ES-FEM-T3 

would be highlighted. Similar with the standard FEM, the S-FEMs can be used to 

solve any kind of problems, e.g. from the small deformation [20, 21] to large 

deformation problems [22], from the elastic [20, 21] to visco-elastoplastic problems 

[23]. An illustration of the formulation details will be given based on the simplest 

small deformation elastic problem. Strain smoothing operation on other kinds of 

problems can follow exactly the same way.  

2.2.1 Strain smoothing operation  

For an elastic model with the small-displacement assumption, the strain ε  is 

defined as 

d=ε L u  (2.9) 

where 
T

,x yu u =  u is the displacement vector, respectively, in x- and y-directions at 

any point in the domain Ω ; and Ld is a matrix of differential operator in the form of  

,d x y
 ∂ ∂
 ∂ ∂ 

L =

0

0

x

y

y x

 ∂
 
∂ 
 ∂
 ∂ 
 ∂ ∂
 
∂ ∂ 

. (2.10) 

In the standard FEM, this strain ε  can be approximated numerically over the 

element with the compatible strain of  

1

supN

i d I I
I =

= ∑ε L N u  (2.11) 
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where the subscript “i” denotes the ith element in the domain Ω, i=1,2,3,…, Nele where 

Nele is the total number of element in the domain Ω; Nsup is the total number of nodes 

supporting the ith element; NI is the shape function corresponding to node I in this 

element; and Iu is the nodal displacement vector at node I.   

By applying the smoothing operation of Eq. (2.7) into Eq. (2.11), the smoothed 

strain kε  can thus be obtained over a smoothing domain instead of the element as 

 { }sd
sd

T
11 22 12sd

1 d , , 2
k

k

k n I I I I
I SkA Γ
∈

= Γ = = ∑∫ε L N u ε ε ε B u  (2.12) 

where the “bar-hat” here indicates a parameter after being applied the smoothed 

operation; sd
kA  is the area of kth smoothing domain 

sd
kΩ  bounded by sd

kΓ , k=1,2,3,…, 

Nsd where Nsd is the total number of smoothing domains; Ln is the matrix of unit 

outward normal of the boundary sd
kΓ  that can be expressed as 

( )
0

, 0
x

n x y y

y x

n
n n n

n n

 
 =  
  

L ; (2.13) 

sd
kS  is the set of nodes that “supporting” the smoothing domain sd

kΩ . For ES-FEM-T3, 

the edge-based smoothing domains are constructed, as shown in Fig. 2.2. The set of 

supporting nodes is { }sd , , ,kS A B C D=  for the smoothing domain associating with 

inner edge ei and { }sd , ,kS O P Q=  for the boundary edge eb. IB is the smoothed strain-

displacement matrix evaluated as 

  
sdsd

0
1 d 0

k

Ix

I n I Iy
k

Iy Ix

b
b

A
b b

Γ

 
 = Γ =  
  

∫B L N  (2.14) 

with 
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( ) ( )

sdsd

sd
1 1

1 d

1    ,  ,

k

seg gau

Ih kh I
k

N N

mn h mn I mn
m nk

b n N
A

w n N h x y
A

Γ

= =

= Γ

 
= = 

 

∫

∑ ∑ x x
 (2.15) 

For the ES-FEM-T3 model, Nseg is the number of segments of the boundary of 

the edge-based smoothing domain. As shown in Fig. 2.2, 4segN =  (e.g. AE, EC, CF, 

FA) for the inner edge ei and 3segN =  (OP, PI, IO) for the boundary edge eb. Ngau is 

the total number of Gauss point used in the mth segment, and Ngau=1 is enough for ES-

FEM-T3 for the Gauss integration. 

: field nodes : centroid of the triangular 

A
B

C

D

E

F

O

P

QI

Boundary edge 
eb (OP)

(Lines: OP, PI, IO)

(smoothing domain OPI)

sd
iΓ

sd
iΩ

inner edge ei (AC)

(Lines: AE, EC, CF, FA)

(smoothing domain AECF)

sd
iΓ
sd
iΩ

 
Fig. 2.2 Illustration of smoothing domains (shaded area) in ES-FEM-T3 

Remark 2.1: The procedures of constructing the smoothing domains can be 

summarized as  

i) the problem domain Ω  is firstly divided into Nele non-overlapping and 

seamless (NOSL) triangular elements such that 
1

eleN
e
i

i=
Ω = Ω∑  and ,   e e

i j i jφΩ Ω = ∀ ≠ ,

0e
iA > , i=1,2,…,Nele, 0ih > , i=1,2,…,Nele . Such an NOSL element division results in 

a set of Nn nodes and Neg edges 0e
iL > , i=1,2,…,Neg in the entire problem domain Ω .  
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ii) On top of the triangular element mesh, a total of Nsd NOSL smoothing 

domains are constructed such that sd

1

sdN

i
i=

Ω = Ω∑  and sd sd ,   i j i jφΩ Ω = ∀ ≠ . For the 

edge-based smoothing domains as shown in Fig. 2.2, they are created by connecting 

the two vortexes of the edge e
iL  and the center(s) of the cell(s) that relate(s) to this 

edge, where Nsd=Neg  and sd 0iA > , i=1,2,…,Nsd. 

2.2.2 Formulation of the discretized system of equations 

After getting the smoothed strain kε  of Eq. (2.12), the remaining work is to 

replace the compatible strain iε  with the smoothed strain kε  in the Galerkin weak 

form of the PDEs, to get the smoothed Galerkin weak form of the PDEs. Then follow 

the same procedures as in the standard FEM for solving the system equations.  

The smoothed Galerkin weak form of the dynamic equilibrium equations can be 

derived as 

  ( ) ( ) [ ]T T Td d dcδ δ ρ δ ΓΩ Ω Γ
Ω− − − Ω− Γ =∫ ∫ ∫ε u Dε u u b u u u t 0 

 
or 

[ ]sd T T T

1
d d

sdN

k k k k
k

A cδ δ ρ δ ΓΩ Γ
=

− − − Ω− Γ =∑ ∫ ∫ε D ε u b u u u t 0   

(2.16) 

where ( )ε u  is the smoothed strain vector with the entries of kε on each smoothing 

domain; D is the matrix of material constant; δu is the internal displacement vector; b 

is the body force vector; ρ  is the density of the solid; u  and u  are the 1st and 2nd 

order temporal derivatives of the displacement; and Γt is the traction applied on the 

boundary Γ  of the domain Ω . 

From Eq. (2.16) we can observe that in the smoothed Galerkin weak form only 

the assumed displacement but not the derivative of the assumed displacement field is 
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required, which coincides the statement we argued previously that the consistency 

requirement on the assumed displacement function is further weakened from the 

Galerkin weak formulation.  

The resultant discrete form of Eq. (2.16) can be written as 

  + + =Mu Cu Ku f     (2.17) 

where 0
ndN∈u  is the nodal displacement vector in the whole domain; M  is the mass 

matrix with 

  T dρ
Ω

= Ω∫M N N ; (2.18) 

C is the damping matrix with 

  T dc
Ω

= Ω∫C N N  (2.19) 

where c is the damping coefficient; f is the external nodal force vector with 

  T Td d
t

ΓΩ Γ
= − Ω+ Γ∫ ∫f N b N t ; (2.20) 

and  K is the smoothed stiffness matrix with the entries of 

  
sd sd

sd

T T T T T T sd

1 1
d d

k

N N

IJ I J I J I J k
k k

A
Ω Ω

= =

= Ω = Ω =∑ ∑∫ ∫K B DB B DB B DB . (2.21) 

The smoothed stiffness matrix K  is symmetric positive definite (SPD) and 

sparse because its entry, IJK , only needs to be computed when nodes I and J share 

the same smoothing domain. Otherwise, it is zero. Hence, Eq. (2.17) can be solved by 

using standard routines with ease because K is SPD and sparse. After getting the 

nodal displacement, we can then retrieve the smoothed strain field using Eq. (2.12), 

the stress field using the constitutive equation, and finally the solution of the strain 

energy of solid with the integration of the smoothed strain and stress over the entire 

problem domain. 
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The main difference between S-FEMs and FEM can be found from Eq. (2.17) 

that only the stiffness matrix K  is operated with a smoothing operation. The matrixes 

of M , C  and f are constructed exactly the same as in the standard FEM. In other 

words, the S-FEM models change only the stiffness matrix. A comparison of the 

numerical procedures in FEM and S-FEMs is schematically given in Fig. 2.3. 

Geometry generation

Discretization of the problem domain 
with triangular element

Shape function construction based on 
the triangular with propermapping

Evaluation of the compatible strain 
field

Use the Galerkin weak form to 
establish the discrete linear algebraic 

equations

Discretization of the problem domain 
with triangular element

Shape function construction based on 
the triangular 

Construction of the smoothed strain 
with stain smoothing technique

Use the “smoothed Galerkin” weak 
form to establish the discrete linear 

algebraic equations

 

 

 

 

 

 

 

Assembly of global matrix

 

Solutions of the unknown displacements

Computation of stains and stresses by using 
displacements

 

 
FEM S-FEMs

 

Fig. 2.3 Comparison of the formulation procedures in FEM and S-FEMs 

2.2.2.1 Static and dynamic problems 

Different problems can be generated from Eq. (2.17) as long as omitting some 

terms in it [24]. 

1) Static problem 

For static problems, the equation can be obtained by removing the dynamic 

terms in Eq. (2.17) which becomes 

  =Ku f . (2.22) 
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2) Free vibration problem 

For free vibration analysis, we do not consider the damping and the force terms, 

and hence Eq. (2.17) reduce to  

  + =Mu Ku 0  . (2.23) 
A general solution of such an equation can be written as 

  ( )expA i tω=u u  (2.24) 

where t is the physical time; uA is the amplitude of the nodal displacement and ω  is 

the natural frequency that is found from 

  2ω− + =M K 0 . (2.25) 
3) Force vibration problem 

For forced vibration analysis, Eq. (2.17) can be solved with any existing standard 

schemes such as the Newmark method and the Crank-Nicholson method [25]. The 

Rayleigh damping is usually used by linear combining of M and K  for the sake of 

simplicity, as 

  α β= +C M K   (2.26) 

where α and β  are the Rayleigh damping coefficients. 

2.2.2.2 Stability and convergence  

The cell-based, node-based or edge-based smoothing domains utilized for 

approximating the smoothed strains are constructed according to the principles of: i) 

non-overlapping and seamless for the smoothing domains, and ii) at least a minimum 

number of smoothing domains (i.e. min 2sd totalN n=  where ntotal is the total 

(unconstrained) nodal unknowns [10]) used in creating the smoothed models, through 

which all the columns of the smoothed strain matrix are linearly independent [26, 27]. 

Therefore, the first term in Eq. (2.16) will be strictly larger than zero for 1
,0h∈u  , and 
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the corresponding smoothed stiffness matrix K  is SPD. Therefore the S-FEM models 

will be stable as long as the material is stable [26, 27]. 

When the mesh is refined, the dimension of the elements approaches zero ( e
iΩ

0) and thus the dimension of smoothing domains also approaches zero ( sd
kΩ 0). 

Accordingly, the weighed function in Eq. (2.4) approaches the Delta function 

( ( )ˆ ; iw −x x x  ( ); iδ −x x x ). At such a limit, the smoothed strain ε  in Eq. (2.12) 

approaches the compatible strain ε  in Eq. (11), i.e. εε  thus BB  and KK . 

This means that the smoothed Galerkin model approaches the standard Galerkin 

model with the refinement of the mesh. Because the solution of a standard Galerkin 

model has already been proven to converge to the exact solution for a well-posed 

problem, the solution of the smoothed Galerkin model will thus also converge to the 

exact solution of the same problem. Consequently, the solution of Eqs. (2.16) and 

(2.17) is stable and converges to the exact solution when sd
kΩ 0 [6]. Thus the S-

FEMs are convergent. Details about the mathematical proof of the stability and 

convergence of the S-FEM models can be found in [12]. 

2.2.3 Properties of S-FEM models 

Various S-FEM models have distinguished properties, advantages and 

disadvantages. Three important properties of the smoothed models, i.e. convergence 

rate, bound property, computational efficiency, are discussed in this section. A further 

verification of these properties will be done in Chapter 3.  

2.2.3.1 Convergence rate 

Theoretically, for a fully compatible model (e.g. FEM-T3) the convergence rate 

in energy norm should be 1.0, and for a fully equilibrium model the convergence rate 
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in energy norm should be 2.0 [28]. However, the convergence rates of different S-

FEM models are different but fall in the range [ ]1.0,  2.0 , which is perhaps due to  

their hybrid features of compatibility and equilibrium [10] in the S-FEM models. 

Detailed illustrations of the compatibility of the smoothed strain field and the state of 

the stress equilibrium within smoothing domains are presented in [10]. 

2.2.3.2 Bound property 

It is well known that the displacement-based fully compatible FEM provides a 

stiffening effect and gives the lower bound of the exact solution in strain energy in 

elasticity problems. Meanwhile, the S-FEM models possess the softening effect to the 

FEM model and thus give higher solutions in strain energy than the FEM model. 

When the softening effect is used in the ES-FEM-T3, the solution is even closer to the 

exact solution. While when the softening effect is used in the NS-FEM-T3, the 

solution possesses the upper bound of the exact solution in the energy norm. The 

detailed mathematical proofs of the bound property of the S-FEM models can be 

found in [18]. Because of the upper and lower bound properties of the S-FEMs, it 

gives a systematical way to numerically obtain both upper and lower bounds of the 

exact solution to elasticity problems. 

2.2.3.3 Computational efficiency 

The computational efficiency is a much fairer indicator on quantitative 

examination of a numerical method. It is a most important factor for the applicability 

of a numerical method for solving practical engineering problems. A Detailed 

discussion about the computational efficiency of different S-FEM models is given in 

[29, 30]. ES-FEM-T3 can achieve the highest computational efficiency among all the 
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methods: it can achieve around 20 times accuracy than the NS-FEM-T3 and around 

10 times accuracy than the FEM-T3. Therefore, the ES-FEM-T3 offers an excellent 

platform for analyzing the practical engineering problems. That is one reason we 

chose the ES-FEM-T3 in the present thesis. 

2.3 Gradient smoothing for fluid mechanics 

The Navier-Stokes equations are the basic equations governing compressible and 

incompressible flows, in which both the 1st and 2nd order spatial derivatives of the 

field variables (e.g. the velocity, pressure, momentum and energy contain both) are 

found. Numerical methods such as FDM and FVM are usually used to track the 

solutions of the Navier-Stokes equations on a set of structured or unstructured 

background mesh. The GSM, on the other hand, is an innovative numerical method 

belonging to the gradient smoothing family [6], which works well for both 

compressible and  incompressible flows [31, 32]. It directly deals with the differential 

(strong) form of the Navier-Stokes equations as the FDM. However, the spatial 

derivatives of the field variables are not approximated with the Taylor series 

expansion but with the gradient smoothing technique integrating over a set of 

smoothing domains, which is similar with the “integral” FVM. Although the 

background mesh is still needed in GSM, its ability to resist extremely distorted 

meshes is much better than either FDM or FVM [31].  

The fundamental formulation of GSM on fixed mesh is presented in this section. 

Based on this formulation, a novel method of discretizing the ALE form of the 

Navier-Stokes equations with GSM, i.e. GSM/ALE, will be developed in Chapter 4 

for solving fluid-rigid solid interaction problems and in Chapter 5 for solving fluid-

deformable solid interaction problems. As the incompressible fluid flow is main focus 
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of interest in this thesis, the development and discussion of GSM are directed on this 

kind of flow. 

2.3.1 Governing equations 

For an isothermal incompressible Newtonian flow problem, the conservative 

Navier-Stokes equations can be written in the following differential form [33] 

  
( )

( )

2

2

0yx

x x y xyx xx

yy x y yx yy

vv
x y

v p v vv
t x y x y

v pv v v
t x y x y

ρ ρ τρ τ

ρρ ρ τ τ

∂∂
+ =

∂ ∂

∂ + ∂ ∂∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂

∂ +∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂

 (2.27) 

where variables ρ , p, vx and vy denote, respectively, the density, static pressure and 

velocity component in x- and y-directions, v= vxi+vyj; ( ), ,ij i j j iv vτ µ= +  (i,j=x,y) 

denotes the viscous stresses in which µ  is the kinematics viscosity; and t is the 

physical time. 

Accordingly, the generic vector form of Eq. (2.27) can be written as 

  ( )c vt
∂

+∇ ⋅ − =
∂
U F F 0  (2.28) 

where the relevant vectors are in the form of  

  2

2

0 0
,  ,  

x x y

x c x x y v xx xy

y x y y yx yy

v v v
v v p v v
v v v v p

ρ ρ ρ
ρ ρ ρ τ τ
ρ ρ ρ τ τ

     
     = = + =     
     +     

U F F . (2.29) 

Here cF  and vF  are the tensors of the convective and viscous fluxes, respectively.  

One main challenge of numerically solving the incompressible flows comes from 

the weak coupling of the velocity and pressure fields, which has to be accomplished 

in such a way to ensure the divergence of the velocity field [34]. The pressure-based 

method such as the fractional step method [35-39] and the density-based method such 
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as the artificial compressibility method [33, 40, 41] are the two typical methods for 

handling the velocity-pressure coupling in incompressible flows. Particularly, in the 

artificial compressibility method, an artificial compressible term is introduced in the 

continuity equation and the unsteady terms in the momentum equations are retained, 

which lead the system of equations to take on the hyperbolic behavior [34]. Thus, the 

time marching techniques developed for solving hyperbolic system of compressible 

flows can be directly used for solving the incompressible flow problems.  

By adding an artificial compressible term into Eq. (2.27), a total of two temporal 

terms, i.e. the physical temporal term with t and the pseudo temporal term with τ, are 

included in the governing equations, i.e. 

  ( )

( )

2

2

1 0yx

p

x x y xyx x xx

yy y x y yx yy

vvp
x y

v p v vv v
t x y x y

v pv v v v
t x y x y

ρρ
β τ

ρ ρ τρ ρ τ
τ

ρρ ρ ρ τ τ
τ

∂∂∂
+ + =

∂ ∂ ∂

∂ + ∂ ∂∂ ∂ ∂
+ + + = +

∂ ∂ ∂ ∂ ∂ ∂

∂ +∂ ∂ ∂ ∂ ∂
+ + + = +

∂ ∂ ∂ ∂ ∂ ∂

 (2.30) 

where coefficient pβ  is the artificial compressibility, the square root of which can be 

interpreted as the speed of artificial pressure wave with the unit of m/s. During the 

numerical simulation, the value of pβ  should be predefined with special care so as to 

ensure the good convergence of the overall iterative solution procedures. Usually it is 

case-dependent in the range of [ ]0.1,  10 [42]. A higher pβ  will give a higher 

convergence speed, however, this higher pβ  can lead the system to be too stiff and 

unstable in the time marching process [31]. 

The generic vector form of Eq. (2.30) can be written as 

  ( )c vtτ
∂ ∂

+ +∇ ⋅ − =
∂ ∂
Q UP F F 0  (2.31) 
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where the vector Q and matrix P are in the form of  

  
1 0 0

,  0 1 0
0 0 1

pp
u
v

β
ρ
ρ

   
   = =   
      

Q P . (2.32) 

By now, the augmented equations, with respect to pressure (p) and momentum 

components ( xvρ and yvρ ), have exhibited hyperbolic properties according to pseudo 

time. With this augmented sets of governing equations, the time-dependent solutions 

can be obtained efficiently with the help of dual time stepping techniques. When the 

steady-state solutions are considered, those physical temporal terms occurring in the 

respective systems of equations are neglected but the pseudo temporal terms are 

retained only. 

2.3.2 Gradient smoothing operation 

Both the 1st and 2nd order spatial derivatives of the field variables (the velocities 

and pressure) are found in the Navier-Stokes equations of Eq. (2.31). In GSM, the 

gradient smoothing operations proposed in Eqs. (2.5) and (2.6) can be directly used to 

determine the 1st and 2nd order spatial derivatives of the nodal field variables over the 

node-based gradient smoothing domains (nGSDs). Furthermore, the 1st order spatial 

derivatives of the midpoint field variables should be extra evaluated with Eq. (2.5) 

over the midpoint(edge)-based gradient smoothing domains (mGSDs), so as to 

complete the estimation of the corresponding 2nd order derivatives of the nodal field 

variables. After that, these derivatives are substitute into Eq. (2.31) for the 

approximations of the divergences of Fc and Fv. Before implementing the gradient 

smoothing operations in GSM, the constructions of nGSDs and mGSDs should be 

predefined. 
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2.3.2.1 Types of smoothing domains 

In order to construct these smoothing domains, the whole computational domain 

Ω  needs to be firstly divided into Nele (regular or irregular) triangular volumes 

(elements) such that 
1

eleN
e
i

i=
Ω = Ω∑  and ,   e e

i j i jφΩ Ω = ∀ ≠ , the same as in the solid 

mechanics. The nGSDs and mGSDs are then constructed on top of these triangular 

volumes, as illustrated in Fig. 2.4.  

kicn

: field nodes : centroid of the triangular : centroid of the edge 

: nGSD : mGSD

jk+1

jk

ck
mk

i

k km cn
1k kc m−

n

ck-1

jk-1

 
Fig. 2.4 Types of smoothing domains and domain-edge vectors adopted in GSM 

The nGSDs are constructed for the approximation of 1st order derivatives of the 

field variables at a node of interest. It is formed by connecting the centroids of 

relevant triangles with midpoints of influenced cell-edges. And the mGSD is used for 

the calculation of the gradients at the midpoint of a cell-edge of interest and thus 

further for the 2nd order derivatives of the field variables at a node of interest. For the 

element inside the fluid domain, the mGSD is the connection of two vortexes of the 

edge ijk and the two centers of the cells; for the boundary element, the mGSD are just 
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a connection of the two vertexes of the edge ijk and the centroid of the boundary 

element. By virtue of Eqs. (2.5) and (2.6), spatial derivatives at any point of interest 

can be approximated based on the corresponding smoothing domain described above. 

2.3.2.2 Spatial approximations for the field variables 

A total of eight discretization schemes have been proposed in [31] for 

numerically  approximating the line integrations in Eqs. (2.5) and (2.6) according to 

different quadrature (rectangular or trapezoidal) rules. Accuracy, efficiency and 

stability of these schemes have been examined with a benchmark heat conduction 

problem. Finally, the most favorable scheme, i.e. scheme VII with the rectangular 

quadrature rule, was chosen for numerically approximating the line integrations. The 

name of “GSM” used in this thesis is a special representative of this scheme. Details 

of the others schemes can be found in [31] and not repeated here. Below the 

formulation procedures of this scheme VII are presented, which will be the basis of 

the subsequent ALE formulation for fluid-rigid/deformable body interaction analyses 

in Chapters 4 and 5.  

Consider a general parameter UN that can represent the velocity vx or vy or 

pressure p. The 1st and 2nd order spatial derivatives of UN in Eq. (2.30) can be 

approximated with the gradient smoothing operation as follows. 

1) 1st order spatial derivative of UN at the vortexes 

With the gradient smoothing operation of Eq. (2.5) and (2.7) over nGSD, the 1st 

order spatial derivatives of UN at a node i can be approximated as 

( ) ( ) ( )nGSD
1

1 sup

kk

N
x

N N Mi ijij
ki

U S U
x A =

∂
≈ ∆

∂ ∑  (2.33) 

( ) ( ) ( )nGSD
1

1 sup

kk

N
y

N N Mi ijij
ki

U S U
y A =

∂
≈ ∆

∂ ∑  (2.34) 
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where  

      
( ) ( ) ( )

1 11 1ij ij j ij ij jk k k k k kij ij j ij ij jk k k k k kk

x
N M C x M C xM C M Cij

S S n S n
+ −+ −

∆ = ∆ + ∆   

( ) ( ) ( )
1 11 1

ij ij j ij ij jk k k k k kij ij j ij ij jk k k k k k k

y
N M C y M C yM C M Cij

S S n S n
+ −+ −

∆ = ∆ + ∆ .  

Here, jk denotes the kth node surrounding the node i; denotes the mid-point 

of the cell-edge ijk; and represent the centroids of two triangular cells 

connected to the cell-edge ijk; the total number of supporting nodes within the stencil 

of the node i is denoted by Nsup; UN and UM denote the values of the field variables at 

vortexes and mid-points of cell-edges, respectively, where UM  is computed by simple 

interpolation of function values at two end-nodes of the edge ijk, 

( ) ( ) ( ) 2
k k

M N Nij i j
U U U = +  ;  and  correspond to the two components of 

the paired domain-edges;  nx and ny represent the two components of the unit normal 

vector of the domain edge under the Cartesian coordinate system, n=nxi+nyj; and  

nGSD
iA  is the area of the ith nGSD surrounding the node i. 

2) 2nd order spatial derivatives of UN at the vortexes 

With the gradient smoothing operation of Eqs. (2.6) and (2.8) over nGSD, the 2nd 

order derivatives in Laplace operator are approximated in the following fashion 

( ) ( ) ( ) ( ) ( )nGSD
1

1 sup

k kk k

N
x y

N M N M Ni ij ijij ij
ki

U U S U S
A x y=

 ∂ ∂
∇ ⋅ ∇ ≈ ∆ + ∆ ∂ ∂ 

∑ . (2.35) 

It is apparent that the 1st order gradients at the mid-point of edge ijk, i.e. 

( )
k

M ij
U x∂ ∂  and ( )

k
M ij

U y∂ ∂ , should be evaluated to complete the approximation 

of 2nd order derivatives. These two gradients can be approximated with Eqs. (2.33) 

and (2.34) based on the related mGSD associated with the edge ijk. Similarly, the 

geometrical parameters in these two equations, including the areas, domain-edge 

kijM

1k kij jC
+ 1k kij jC

−

x
NS∆ y

NS∆
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vectors and normal vectors of domain edges related to mGSDs, should be 

predetermined and stored for use in the iterative process of solving the algebraic 

equations. Here,  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11

11

11

11

1
2
1                   
2
1                   
2
1                   
2

k k kij jk k

k k kk ij jk k

k kij jk k

k k kk ij jk k

x
M M N Cij i ij jiC

x
M N Cj ij jj C

x
M N Ci ij jiC

x
M N Cj ij jj C

U S U U
x

S U U

S U U

S U U

++

++

+−

−−

∂   ≈ ∆ +  ∂ 

 + ∆ + 

 + ∆ + 

+ ∆ +
( )1 mGSD

1

k
M ij

A+

  

, (2.36) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11

11

11

11

1
2
1                   
2
1                   
2
1                   
2

k k kij jk k

k k kk ij jk k

k kij jk k

k k kk ij jk k

y
M M N Cij i ij jiC

y
M N Cj ij jj C

y
M N Ci ij jiC

y
M N Cj ij jj C

U S U U
y

S U U

S U U

S U U

++

++

+−

−−

∂   ≈ ∆ +  ∂ 

 + ∆ + 

 + ∆ + 

+ ∆ + ( )1 mGSD

1

k
M ij

A+

  

 (2.37) 

where mGSD
MA  represents the area of the mGSD. The relevant domain edge vectors, 

 and , for the mGSD of interest are calculated as  

( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 11

1 11

1 11

1 11

ij kk ij kkij kk

ij kk ij kij k kk

k ij kk k ij kkk ij kk

k ij kk k ij kk ij k kk

x
M iC j x iC jiC j

y
M iC j y iC jiC j

x
M j C j x j C jj C j

y
M j C j y j C jj C j

S S n

S S n

S S n

S S n

+ ++

+ ++

+ ++

+ ++

∆ = ∆

∆ = ∆

∆ = ∆

∆ = ∆

,   

( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 11

1 11

1 11

1 11

ij kk ij kkij kk

ij kk ij kij k kk

ij kk ij kkij kk

ij kk ij kij k kk

x
M iC j x iC jiC j

y
M iC j y iC jiC j

x
M iC j x iC jiC j

y
M iC j y iC jiC j

S S n

S S n

S S n

S S n

− −−

− −−

− −−

− −−

∆ = ∆

∆ = ∆

∆ = ∆

∆ = ∆

.  

The field variable UC at the centroid of the cell is computed by simple 

interpolation of the function values at the related vortexes, in the fashion of 

x
MS∆ y

MS∆
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( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

,  1
3

,  
3

k k

k k

Ni

N N Ni j j
i

C ij j
N N Ni j j

i

U U U
k N

U
U U U

k N

+

+

 + +
≤ <

= 
+ +

=

,  

( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

,  1
3

,  
3

k k

k k

Ni

N N Ni j j
i

C ij j
N N Ni j j

i

U U U
k N

U
U U U

k N

−

−

 + +
≤ <

= 
+ +

=

.  

As shown in Eqs. (2.33)-(2.35), only the values for the field variables and its 

gradients at the mid-points of cell edges are needed in the approximations. As such, 

vectors for a pair of domain edges connected with the cell edge can be lumped 

together, which in turn reduces the storage space for geometrical parameters. 

Furthermore, an edge-based data structure together with the scatter-gather approach is 

adopted, which has proven to be quite efficient during the GSM calculation [31].  

2.3.3 Formulation of the discretized system of equations 

There are both spatial and temporal terms in the Navier-Stokes equations in Eq. 

(2.31). Separate discretizations in the spatial and temporal domains can be 

implemented to achieve different accuracies in these two domains [43]. The gradient 

smoothing operation is implemented into Eq. (2.31) for the spatial discretization, and 

a dual time stepping temporal scheme is implemented into Eq. (2.31) for the temporal 

discretization. 

2.3.3.1 Spatial discretization with gradient smoothing operation 

Substitute Eqs. (2.33)-(2.35) into Eq. (2.31), the divergences of Fc and Fv can be 

written as  
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( )
( )

( )

nGSD nGSD nGSD
1 1

nGSD nGSD nGSD
1

1 1 1 ,  

0
1 1 1

sup sup

k

k

sup

k

k

sN N

ci ci c k x x kij
k ki i i

y y ij

N

vi vi v k x xx y xyij
ki i i

x yx y yy ij

V
S v V n p S

A A A
v V n p

S n n
A A A

n n

βρ
ρ
ρ

τ τ
τ τ

= =

=

  
    ∇ ⋅ ≈ = ∆ = + ∆      +   

 
  ∇ ⋅ ≈ = ∆ = +  
 + 

∑ ∑

∑

F F F

F F F
1

supN

k
k

S
=

 
  ∆ 
 
  

∑

 

(2.38) 

where kS∆  is the length of the kth edge of the ith nGSD; s x x y yV v n v n= ⋅ = +v n  is the 

contravariant velocity of fluid; and (nx) k and (ny)k are the x- and y-components of the 

normal vector n of the kth edge, respectively. 

Correspondingly, the generic vector form of Eq. (2.31) becomes 

  ( )1i i
ci vi

it Aτ
∂ ∂

+ + − =
∂ ∂
Q U F F 0  (2.39) 

with 

  ( )
( )

( )
( )

,  
i i

i x i xi i

y yi i

p
v v

v v

ρ
ρ ρ

ρ ρ

   
   

= =   
   
      

Q U . (2.40) 

In order to ensure the stability of the discrete equations, some special techniques 

should be implied to the fluxes. 

 Smoothed convective flux ( )
k

c ij
F  

One main work of solving the incompressible equations is to deal with the 

convective flux term. It is intrinsic to use the arithmetic average values of the 

conservative variables at the two constitutive nodes, i and jk, for the convective flux at 

the midpoint of the edge. Such a treatment is similar to a central difference operation. 

However, it is only valid for low Reynolds number flows. As Reynolds number 

becomes larger, it breaks down because of the presence of high frequency spurious 
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oscillation associated with the increasingly nonlinear nature of the governing 

equations. Various methods, e.g. the Roe method [44], the Jameson method [45]  and 

the HLLC method [46], were developed to circumvent such a drawback. In the 

present study, the second order Roe flux differencing splitting unwinding scheme 

(Roe2) is employed, and a Riemann problem is solved at the cell interface to evaluate 

the numerical fluxes, which leads to the approximation of the convective flux cF  at 

the midpoint of edge ijk as 

  ( ) ( ) ( ) ( )1
2 k k k kk

L R L R
c c ij c ij Roe ij ijij

 = + + − F F Q F Q A Q Q  (2.41) 

where L and R denote the left and right sides of the nGSD boundary assuming that the 

edge is directed outward with respect to node-dual i, as shown in Fig. 2.5; 
k

L
ijQ  and 

k

R
ijQ  are the conservative variables at the left and right sides of a dual face ijk; RoeA  

corresponds to the absolute eigenvalues of the Roe matrix RoeA , 1
Roe Roe

−=A R Λ R  

in which R and R-1 are the right and left eigenvector matrix of RoeA , respectively, and 

RoeΛ  is a diagonal matrix whose components are the absolute values of the 

eigenvalues. Solutions of the non-singular eigensystems of the Roe’s matrix RoeA  can 

be found in [32, 47] for 2D case.  

i

jk

k

L
ijQ

k

R
ijQ

: centroid of the triangular : centroid of the edge 

: mGSD : field nodes

 

Fig. 2.5 Connection of node i and jk illustrating for the Roe2 scheme 
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The order of the Roe scheme depends on the construction of 
k

L
ijQ  and 

k

R
ijQ . For 

Roe2, the 
k

L
ijQ  and 

k

R
ijQ  are linearly constructed by using the Taylor series expansion  

[48] as  

  

1
2
1
2

k k

k k k k

L
ij i i ij

R
ij j j ij

 = + ∇ ⋅

 = − ∇ ⋅


Q Q Q r

Q Q Q r
 (2.42) 

where 
kijr is the vector from the node i to jk, ( ) ( )k k k kij j i j i j ix x y y= − = − + −r x x i j ;  

i∇Q  and 
kj

∇Q  are the variable gradients at node i and jk, respectively, which can  be 

evaluated according to the gradient smoothing operation of Eqs. (2.33) and (2.34) on 

the nGSD.  

The approximation of the convective flux ciF  at node i can thus be finally 

expressed as 

  ( ) ( )
1

,
sup

k

N

ci c kij
k

S
=

 = ∆
 ∑F Q x F . (2.43) 

 Smoothed viscous flux ( )
k

v ij
F  

To estimate the viscous fluxes at a node, the 2nd order derivatives of velocities in 

the Laplace operator should be approximated, in which the velocity gradients at the 

midpoint of each edge should be further evaluated with the graduate smoothing 

operation over the mGSD. Comparing with the simple linear interpolation of gradients 

at the two constitutive nodes, the gradient smoothing operation can result in a 

favorable compact stencil with positive coefficients at nodes of influence, and can 

also circumvent the checkerboard problem [32].  

The viscous flux vF  at node i can be evaluated in the form of  
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  ( ) ( )
1

,
sup

k

N

vi v kij
k

S
=

 = ∆
 ∑F Q x F  (2.44) 

where ( )
k

v ij
F  is associated with the velocity gradients ( u∇  and v∇ ) at the mid-point 

of edge ijk that are calculated according to Eqs. (2.33) and (2.34). 

Finally, by substituting the discretized forms of Eqs. (2.43) and (2.44)  into Eq. 

(2.39), the semi-discrete form of the Navier-Stokes equations is finally obtained as 

  ( ) ( ) ( )* nGSD, , ,i
i i ci viA

t
∂

= + − =
∂
UR Q x F Q x F Q x 0 . (2.45) 

2.3.3.2 Dual time-stepping temporal discretization 

The dual time stepping approach is adopted for the accurate time integration, in 

which the computation is performed by marching along the physical time with a user 

specified physical time step ( t∆ ). At each physical time level, steady-state solution 

with respect to pseudo time ( τ∆ ) is pursued by using the iterative time marching 

method. That is,  

  ( ) ( )nGSD *d ,
d i i iA
τ

+ =P Q R Q x 0  (2.46) 

where ( )* ,iR Q x  is the semi-discrete equations of Eq. (2.45), named here as the 

unsteady residual at node i. 

The BFD2 is used to discretize the physical time term in the unsteady residual 

( ) ( )( )* , ,i t tR Q x x   as 

  ( ) ( ) ( )
1

* nGSD 3 4, , ,
2

n n
i i i

i i ci viA
t

− − +
= + − = ∆ 

U U UR Q x F Q x F Q x 0  (2.47) 

where Ui is the value at the “k-1” level of 5-stage Runge-Kutta (RK5) method in the 

pseudo time step as illustrated below; and n denotes the nth physical time level. 
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The performance of the dual time stepping method evidently relies on the time 

marching method used in the pseudo time level. In the present study, the RK5 method 

with residual smoothing is used in the pseudo time level [32, 43] for its high 

efficiency of the steady-state solver. The general form for RK5 method with residual 

smoothing applied to Eq.  (2.46) is given as  

  ( )0 0 1 * 1
nGSD

2 ,    =1,...,5
1 3

k k kk
i i i i i

k i

t k
A

α λ
α λ

− − ∆
= − + − +  

Q Q Q R Q  (2.48) 

where ( )CFL 2 tλ τ= ×∆ ∆ ; and kα ( 1α =0.0695, 2α =0.1602, 3α =0.2898, 4α =0.5060, 

5α =1.0) is the optimized coefficients for convergence acceleration to steady state. It 

should be noted that the residual smoothing technique used in the RK5 method can 

significantly stabilize the iterative process during the time marching [32]. As a result, 

relatively larger local pseudo-time steps ( τ∆ ) are allowed, resulting in greater 

acceleration in convergence. This scheme is also stable for high CFL values.  

The dual time stepping scheme is driven by the time integration scheme for the 

pseudo steady-state problem. Once the steady-state in pseudo time is reached, the 

pseudo time derivative vanishes and the solution advances to the next time step, 

which means that the procedure for steady-state solutions is a simplified subset of the 

dual time stepping approach. An illustration of the dual time stepping scheme from 

physical time step tn to tn+1 can be summarized as 

m=1Q=nU 

Loop m=1, mmax 
     0Q=n+1,mU 

   Loop k=1,kmax 

            
( ) ( )1 0 * 1, , 1 1 1, , 1

nGSD

2' , ,
1 3

k n m k n n n m kk

k i

t
A

α λ
α λ

+ + − − + − ∆
= − − +  

R Q R Q U U Q  

             1, , 0 1 'n m k k+ += −Q Q R  
    End Loop 
    If error<tol 
               Break 
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       Else 
               n+1,m+1Q=n+1,m,pQ 
       EndIf 

End Loop 
n+1U= n+1,m+1Q 

where m denotes the mth pseudo time step, and the work is to march to a steady 

solution at the time step “n+1, m+1”; kmax denotes the total stages of RK method, kmax 

=5 presently; tol denotes the tolerant error in the calculation; error denotes the 

numerical error in each pseudo time step defined as 

  ( ) ( )
1 2

1, 1 1, 1,1

1 1

node nodeN N
n m n m n n

i i i i
i i

error + + + +

= =

 
= − − 
 
∑ ∑U U U U  (2.49) 

where n
iU  denotes the predicted value of the field variable at the node i at the nth 

iteration, and Nnode is the total number of nodes in the domain. The value of error is 

monitored during iterations and used to terminate the iterative process. In most 

simulations, in order to exclude the effect owing to the temporal discretization, 

computations are not stopped until this error becomes an extremely small value.  

2.3.4 Theoretical aspects of GSM 

2.3.4.1 Truncation error  

The truncation errors of the gradient smoothing operation for approximating the 

1st and 2nd order spatial derivatives are theoretically derived based on two sets of 

structured meshes [31, 32], i.e. the square mesh and equilateral triangle mesh, as listed 

in Table 2.1. From this table it can be seen that the 2nd order accuracy can be achieved 

by the GSM for approximating both the 1st and 2nd derivations in the spatial domain. 

The orders of these truncation errors will be numerically verified over the 

unstructured meshes in Chapter 4. 
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Table 2.1 Truncation errors in the approximations of the 1st order derivatives and Laplace 
operator 

Operator Shape of mesh Truncation error 

1st order spatial 
derivative 

Square 
( ) ( )

( ) ( )

32
2 3

3

32
2 3

3

6

6

ij
x

ij
y

UhO h O h
x
UhO h O h
y

 ∂
= − +

∂


∂ = − + ∂

 

Equilateral triangle 
( ) ( )

( ) ( )

3 3
2 2 3

3 2

3 3
2 2 3

3 2

1 1
24 8

1 1
24 8

ij ij
x

ij ij
y

U U
O h h O h

x x y

U U
O h h O h

y x y

  ∂ ∂
= − + +   ∂ ∂ ∂  


 ∂ ∂

= − + +   ∂ ∂ ∂ 

 

Laplace operator 

Square ( ) ( )
4 42

2 3
4 412
ij ijU UhO h O h

x y
 ∂ ∂

= − + +  ∂ ∂ 
 

Equilateral triangle ( ) ( )
4 4 42

2 3
4 2 2 42

16
ij ij ijU U UhO h O h

x x y y
 ∂ ∂ ∂

= − + + +  ∂ ∂ ∂ ∂ 
 

2.3.4.2 Boundary conditions 

There are four main classes of boundary conditions encountered in solving the 

fluid flow problems, i.e. solid wall, farfield, inlet/outlet and symmetric boundary 

conditions. In treating these boundary conditions, particular care should be taken as 

any improper implementation may either result in inaccurate simulation of the real 

system or influence the stability and convergence speed of the solution scheme [43]. 

1) Solid wall 

In viscous flows, the non-slip wall conditions are usually used. Since vwx = vwy = 

0, the momentum equations on the wall are not needed to be solved. And the 

convective fluxes on the wall take the same formulation as those in the inviscid flow. 

In the current study, the wall is assumed to be adiabatic. Hence, it is not necessary to 

compute any convective or viscous fluxes at the wall. The residuals of the momentum 

equations should be set to zero, in order to prevent the generation of nonzero velocity 

components at the wall nodes.  
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As indicated by Luo et al. [49], for high accuracy, the pressure on the wall used 

in the calculation of convective fluxes is predicted in the form of  

  1 (5 )
6 kw i jp p p= +  (2.50) 

instead of the arithmetic average. This is also true for predicting the gradients on 

boundaries (except at symmetry or periodic boundaries). The contribution from the 

domain faces at boundaries of an nGSD is calculated as 
1 (5 )

2 6
k

k k

ij
ij i j

S∆  ⋅ +  
n U U . 

2) Farfield  

The farfield boundary conditions are imposed on the external bounds of the 

computational domains. As addressed in [43], the numerical implementation of the 

farfield conditions has to fulfill two basic requirements: i) the truncation of the 

domain should have no notable effects on the flow solution as compared to the infinite 

domain; ii) any outgoing perturbations must not be reflected back into the flow field. 

In order to simplify the computation of the gradient of the field variables along the 

farfield as well as the inlet/outlet boundaries, a set of dummy nodes are added outside 

the physical domain [43], as shown in  Fig. 2.6. After applying the boundary 

conditions to these dummy nodes through an interpolation of the field variables at 

both infinity and boundary nodes, the governing equations at the boundaries can then 

be solved in the same way as that for the inner computational domain. In this case, the 

geometrical quantities corresponding to these dummy nodes, e.g. normal vectors, are 

taken from the corresponding control volume at the boundary [43]. 

The characteristic farfield conditions used here are derived based on the inviscid 

governing equations and vary with the first eigenvalue ( 1λ ) which is equal to the 

contravariant velocity, sV . 
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n
a d b

 

node in the domain 

n

adb

 

dummy node infinity  
a) subsonic inflow boundary b) subsonic outflow boundary 

Fig. 2.6 Definition of farfield boundaries in fluid mechanics 

In the case of sV <0, the fluid will flow into the fluid domain of interest, as shown 

in Fig. 2.6a, and the following inflow conditions are used at the boundary 

  

( ) ( )

( )

( )

0
0

0 0 0
0

0 0 0
0

1
2 2

a b
d a b a b

a d
dx a x p x

p

a d
dy a y p y

p

p pp p p
c

p pv u v c n
c

p pv v v c n
c

β

β
β

β
β

+
= − Θ −Θ −Θ −  

−  = − Θ − + 

−  = − Θ − + 

. (2.51) 

When sV >0, the fluid will flow out of the domain of interest, as shown in Fig. 

2.6b, and the following outflow conditions are imposed at the boundary 

  ( )

( )

0 0 0
0

0 0 0
0

d a

b d
dx b x p x

p

b d
dy b y p y

p

p p
p pv u v c n

c
p pv v v c n

c

β
β

β
β

=
−  = − Θ − + 

−  = − Θ − + 

 
(2.52) 

where the subscripts a, d and b, respectively, denote the flow conditions at infinity, 

dummy and boundary nodes in Fig. 2.6. Reference values for v0x, v0y, c0 and are 

evaluated at the boundary nodes. Details about the derivation of characteristic variable 

boundary conditions can be found in [50]. The farfield boundary conditions as shown 

in Eqs. (2.51) and (2.52) should be updated in each Runge-Kutta iterative loop. 
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3) Inlet/outlet 

For inlet/outlet boundaries, special attention is required. As the artificial 

compressibility method is used for solving incompressible flow in the present study, 

the flow field thus possesses the features of compressible flow until the solution is 

completely converged. Hence, the application of the inlet/outlet boundary conditions 

should follow that of the compressible flow. For subsonic compressible flows, there is 

one out-going characteristic wave and three incoming waves at the inlet, and three 

out-going and one in-coming characteristic waves at the outlet [51, 52]. Typically, at 

the inlet pressure is extrapolated to account for the unique out-going wave, and all 

velocity components are specified with free stream values for the three in-coming 

characteristic waves. At the outlet, all velocity components are extrapolated for the 

three out-going waves and only the pressure is specified as the free stream quantity 

due to the one in-coming wave [52].  

In our GSM implementation, the boundary condition at the inlet is set as 

  
dx ax

dy ay

d b

v v
v v
p p

 =
 =
 =

. (2.53) 

And at the outlet it is set as 

  d ap p= . (2.54) 
4) Symmetry 

On the symmetric plane, all quantities should be extrapolated except the velocity 

component normal to the plane, which is set to zero [52].  Accordingly, the following 

conditions should be satisfied [32] 

  
0

( ) 0
( ) 0

U⋅∇ =
⋅∇ ⋅ =
⋅∇ ⋅ =

n
n t v
n n v

 (2.55) 
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where U denotes a scalar quantity, e.g. pressure or components of the velocity vector; 

n and t denote the unit normal and tangential vectors of the symmetric plane,  

respectively; and v denotes the velocity vector at this plane.  

In applying these four boundary conditions in solving the incompressible flow in 

the present thesis, a corner point, where two or more boundaries meet with each other, 

is split into two points for each boundary condition separately.  

2.3.4.3 Local time 

Since the explicit RK5 method is used for the time integration in the pseudo 

domain, the so-called Courant-Friedrichs-Lewy (CFL) condition should be fulfilled in 

order to stabilize this explicit time integration process [43, 53]. The CFL condition for 

an explicit time integration scheme the local time step should be equal to or smaller 

than the critical time required to transport information across the stencil of the spatial 

discretization scheme [43]. In our calculation of the 2D incompressible fluid flows, 

the local time step iτ∆  at a node, i, of interest over the unstructured mesh can be 

approximated as [32, 43] 

  
( )

si
i

x y i

V
D

τ σ∆ =
Λ +Λ +

 (2.56) 

where ( ) ( )x x x xi i
v c S Λ = +  , ( ) ( )y x y yi i

v c S Λ = +   and 
( )

2
Re

si
i

x y i

VD
S S

=
+

. The 

artificial speeds of sound are evaluated as ( ) ( )1 22
x xi pi

c v β= +  and ( ) ( )1 22
y yi pi

c v β= + . 

The projected areas of the smoothing domain are denoted by ( )x i
S  and ( )y i

S , which 

are defined as ( )
1

1
2

i

k

n
x

x iji
k

S S
=

= ∆∑  and ( )
1

1
2

i

k

n
y

y iji
k

S S
=

= ∆∑ , respectively. 
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Chapter 3  

ES-FEM-T3 for solid mechanics 

 

As one typical smoothed method, the ES-FEM-T3 was found to possess a series 

of  attractive properties such as super convergence, high convergence rate, accuracy 

and computational efficiency, stable in both spatial and temporal domains over the 

standard FEM-T3 and NS-FEM-T3 for solving solid mechanics [1]. This chapter 

extends the ES-FEM-T3 for solving two engineering problems: the 2D linear bending 

stress analysis of the gear tooth existing in the gear transformation and the 3D 

nonlinear membrane deflection analysis involving large deformations and rotations. 

For comparison the standard FEM-T3 models are also established in each case. The 

performances of the ES-FEM-T3 in these two practical areas give us confidence of 

further extending it for solving FSI problems in Chapter 5. 

3.1 Implicit ES-FEM-T3 for 2D linear bending stress analysis  

A typical engineering problem, i.e. the gear transmission problem, is considered 

in this section to study the loading carrying capacity of the gear tooth during the gear 

transmission process whereby the gear tooth withstands a tensile stress at the loaded 

side (drive side) and a compressive stress at the opposite side (coast side). Tooth 

fracture always occurs at the fillet of the loaded side, which is mainly due to the stress 

concentration in this region [2]. Thus an accurate estimate of the stress distributions in 

this region should be quite essential for ensuring the safety of the gear transmission. 

As previously mentioned, the standard FEM-T3 would give an “over-stiff” numerical 

model leading to poor accuracy in the stress field. In that case, the ES-FEM-T3 could 
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be a better choice to accurately estimate the stress distributions in the gear tooth. 

Numerical innovations, e.g. replacing the concentrated transferred force F with a 

linearly distributed pressure around the loading point, are created during the 

formulation process of the implicit ES-FEM-T3 model in order to avoid the stress 

singularity at the loading region. In consideration of the superior performance of the 

ES-FEM-T3 in the stress field, it is further used for the gear profile optimization 

analysis. A series of novel asymmetric involute gears with a larger pressure angle 

20dα ≥   in the drive side and a normal pressure 20cα =   in the coast side is 

designed and the most favorable gear profile is finally determined. 

3.1.1 Formulaiton of implicit ES-FEM-T3 model 

The loading carrying capacity analysis, i.e. bending strength analysis, is a linear 

elastic static analysis. Thus only the static model of implicit ES-FEM-T3 needs be 

constructed, as that in Eq. (2.22). The construction procedures are exactly the same as 

those established in Section 2.2. They will not be repeated and the final discrete 

governing equations are only presented here, as follows 

  =Ku f  (3.1) 

where K  is the smoothed stiffness matrix with its entry of IJK  assembled over the 

edge-based smoothing domains; 0
ndN∈u   is the nodal displacement vector; and f  is 

the external force vector with its entry of the transferred force F generating from the 

contact of two gear teeth during the gear transmission process, as illustrated in Fig. 

3.1. Physical meaning of the parameters labeled in this figure will be detailed later.  

This transferred force F can be further divided into a tangent force Ft and normal 

force Fn as 
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cos
sin

t FM

n FM

F F
F F

α
α

= ×
 = ×

 (3.2) 

where ( )cosM dMF T B r α= × ×  with 9550T P n= ×  where P is the translated power, 

KW, n is the speed of the gear, rpm; B is the width of the gear tooth, B=1 for 2D 

analysis; rM  is the radius of the circle passing point M; and dMα  is the pressure angle 

at the loading point M. 

 
Fig. 3.1 Illustration of the transferred force F in the drive side of a gear tooth during the gear 

transmission process 

It should be noted that this transferred force F is not always constant in one gear 

meshing cycle but follows a jump curve as shown in Fig. 3.2a, because the gear 

undergoes a “two teeth contactsone tooth contacttwo teeth contact” in a whole 

meshing cycle. The transferred force F is shared by two teeth at the “two teeth 

contacts” status. Accordingly, five typical contact points can be found in one meshing 

cycle, as illustrated in Fig. 3.2b. These are 

 the lowest point of two teeth contact (LPDTC)---A   

 the lowest point of one tooth contact (LPSTC)---B 

 the point at the addendum circles during two teeth contact (IPDTC)---C 

 the highest point of one teeth contact (HPSTC)---D 

 the tip of one tooth (TST)---E  
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A B C D E

F

F/2

 
a) Transferred forces at five typical points 

 
b) Illustration of the five typical points in a meshing cycle 

Fig. 3.2 Illustration of the five typical points in a meshing cycle and the corresponding 
transferred forces 

As suggested in [2, 3], the maximum bending stress occurs at the time when the 

gear meshing arrives at point D in one meshing cycle. So in the present study the 

transferred force F obtained at this status is used and assembled into the force vector 

f  for the bending stress analysis. Accordingly, the pressure and load angles at point D 

can be calculated as 

( )arctan tan 2π 1dD ad d zα α ε = − −     (3.3) 

inv invFD dD dD d zα α α α π= + − −  (3.4) 
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where adα  is the pressure angle at the intersection point of the addendum circle and 

the gear tooth profile; dDα  is the pressure angle at point D; dα  is the pressure angle 

of the gear tooth; dε  is the contact ratio in the drive side; and z is the total number of 

gear tooth. By substituting Eqs. (3.3) and (3.4) in Eq. (3.2), the transferred force F and 

thus the force vector f  can be finally obtained. 

3.1.2 Numerical verification of implicit ES-FEM-T3 

A one-tooth model with the pressure angles 20 20d cα α= =   in the drive and 

coast sides, respectively, is created, as shown in Fig. 3.3, to test three key properties 

of the newly proposed ES-FEM-T3, e.g. the accuracy in the stress field, the 

convergence property of the strain energy and the convergence rate of the strain 

energy norm. An implicit ES-FEM-T3 in-house code developed in MATLAB is used. 

For comparison the implicit FEM-T3 code is also created. The materials properties of 

the gear tooth are E=2.16×1011Pa and v=0.3. A triangular mesh with 521 irregular 

nodes, as shown in Fig. 3.4a, is created as the background mesh. As the exact stress is 

not available for this problem, a refined mesh with 10233 irregular nodes, as shown in 

Fig. 3.4b, is also generated for the reference stress. Note that there is a higher node 

density at the fillet in the drive side in order to get more accurate stress distributions at 

this region. This analysis is seen as a plane strain analysis. 

Both Dirichlet and Neumann boundary conditions are applied at the gear tooth, 

as shown in Fig. 3.3. For the Dirichlet boundary, the displacements at the relevant 

nodes are constrained in both x- and y-directions. For Neumann boundary condition, 

the loads of Ft =481551.67N and Fn =162231.99N gotten from Eq. (3.2) are applied at 

point D. In order to avoid the stress singularity, the region near the point D is 
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particularly meshed, as the zoom-in part in Fig. 3.5a. The concentrated load F is 

linearly discretized to the 9 adjacent nodes on a line associated with the point D using 

Gauss integration method, as shown in Fig. 3.5b and Fig. 3.5c. 

 
Fig. 3.3 One-tooth gear model subjecting to Dirichlet and Neumann boundary conditions 

  
a) Mesh with 521 nodes b) Mesh with 10233 nodes 

Fig. 3.4 Generated meshes for the one-tooth gear model 

 
a) Particular mesh near the load point 

 
b) Concentrated load applied at the HPSTC c) Distributed load applied at the 9 points 

associated with HPSTC 
Fig. 3.5 Illustration of the load distribution: from a concentrated load to a distributed load 
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3.1.2.1 Accuracy of the stress field  

The gear tooth usually fails at the fillet on the tensile-stress side [2]. Therefore, it 

is prudent to pay special attention on the stress distributions at this region. Fig. 3.6 

plots the stress contours from the ES-FEM-T3, FEM-T3 and the referential solutions. 

The zoom-in figures in Fig. 3.6 highlight the stress distributions in the two most 

sensitive regions, i.e. the loading region and the stress concentration region. 

Comparing these three contours, it can be seen that the stress distribution from ES-

FEM-T3 are much closer to the referential one than that from the standard FEM-T3 at 

the loading region, which indicates that the ES-FEM-T3 can deal with the 

concentrated load much better than the FEM-T3. 

  
a) Contour of ES-FEM-T3 with 521 nodes b) Contour of FEM-T3 with 521 nodes 

 
 

c) Contour of the referential solutions with 10233 nodes 
Fig. 3.6 Contours of the Von Mises stress from ES-FEM-T3 (521 nodes), FEM-T3 (521 

nodes) and the referential solutions (10233 nodes) 



 
Chapter 3                                                                                                  ES-FEM-T3 for solid mechanics 

84 
 

A further comparison of the exact stress distributions at the fillet in the drive side 

is plotted in Fig. 3.7. From the zoom-in part in this figure it can be seen that the 

resultant stress from ES-FEM-T3 is much closer to the reference than that from the 

standard FEM-T3. A precise comparison of the maximum bending stress in this stress 

concentration region shows that up to 23.67% errors are reduced by the ES-FEM-T3 

on comparing with the FEM-T3. 

 
Fig. 3.7 Comparison of the Von Mises stress distributions at the fillet in the drive side from 

ES-FEM-T3, FEM-T3 and the referential solutions 

3.1.2.2 Convergence of the strain energy 

The strain energy indicator of a whole domain is defined as  

   T T 11 1= d d
2 2exact exact exact exact exacte −

Ω Ω

Ω = Ω∫ ∫σ ε σ D σ  (3.5) 

where σexact is the exact stress vector; εexact is the exact strain vector; and D is the 

material constant matrix. 

Five sets of triangular meshes (321 nodes, 521 nodes, 1102 nodes, 1984 nodes 

and 4225 nodes) are generated for the convergence analysis. As the exact strain 

energy cannot be obtained, the reference strain energy from a refined mesh of 10233 

nodes represents eexact.  
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Table 3.1 lists the strain energies from the present ES-FEM-T3, the FEM-T3 and 

the referential solutions. Fig. 3.8 plots the convergence process of these strain 

energies with the increase of the degree of freedoms (DOFs) for different models. 

From this figure, it can be seen that i) the strain energies of both ES-FEM-T3 and 

FEM-T3 converge to the reference with the increase of the DOFs; and ii) the strain 

energy of ES-FEM-T3 is much closer to the reference than that of FEM-T3. As 

expected, the FEM-T3 exhibits overly-stiff behavior and hence gives the lower bound. 

A softening effect has been introduced into the ES-FEM-T3 because of the use of 

strain smoothing operation, which allows the ES-FEM-T3 to have a very close-to-

exact stiffness: the results are more accurate than those from FEM-T3. 

Table 3.1 Strain energies gotten from ES-FEM-T3 and FEM-T3 with different DOFs for the 
gear tooth bending analysis 

Case DOF Strain energy of ES-FEM-T3 Strain energy of FEM-T3 
1 642 4.1680 3.9507 
2 1042 4.2037 4.0429 
3 2204 4.2945 4.1925 
4 3968 4.3157 4.2385 
5 8450 4.3459 4.2920 

Reference 20466 4.3591 
 

 

Fig. 3.8 Convergence of the strain energies to the exact solutions for the gear model using both 
ES-FEM-T3 and FEM-T3 
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3.1.2.3 Convergence rate of strain energy norm 

The strain energy error norm indicator is defined as  

( ) 1 2
e exact num exacte e e e= −    (3.6) 

where eexact is the exact strain energy as used in Eq. (3.5); and enum is the numerical 

strain energy.  

The convergence rate in energy error norm, converging with the reducing 

average nodal spacing (h), is plotted in Fig. 3.9. From this figure, it can be seen that a 

higher slope is obtained by the ES-FEM-T3, which indicates that the ES-FEM-T3 

gives a higher convergence rate than the standard FEM-T3. The convergence rate of 

ES-FEM-T3 is 0.99, which is much higher than 0.68 for the FEM-T3. The present ES-

FEM-T3 gives a convergence rate 1.46 times higher than that of the standard FEM-T3. 

We know that the theoretical convergence rate in energy norm for a fully-compatible 

Galerkin model should be 1.0 and for a smoothed model should be between 1.0 and 

2.0. A slightly lower value as found in this calculation should be because of the 

existence of the stress concentration at the fillet. Ever then, the ES-FEM-T3 still 

performs better than the standard FEM-T3. 

 

Fig. 3.9 Convergence rate of the strain energy norms for the gear model using both ES-FEM-
T3 and FEM-T3 
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3.1.3 Implementation of implicit ES-FEM-T3 for gear tooth optimization 

As pointed out by Wang in [2], the crack always occurs at the fillet in the drive 

side due to the high stress concentration in this region. Thus a simple idea arises that 

if we thicken the root in the drive side, could the maximum bending stress in this 

region be decreased and thus the carrying capacity of the modified gear be 

correspondingly improved? If it is “yes”, how thick should it be most suitable? The 

optimization of the gear tooth profiles presented in this section will answer these two 

questions. 

Thickening the root of gear tooth is actually a technique of modifying the gear 

tooth profiles, which leads to a series of so-called asymmetric gears with different 

pressure angles at the drive and coast sides, respectively. By now, several kinds of 

asymmetric gears have been developed based on different principles. Deng et al. [4] 

made a change of the pressure angle in the coast side to increase the bending stiffness 

of the gear tooth. Kapelevich [5] and Kapelevich and Kleiss [6], however, suggested 

using a larger pressure angle in the drive side and a normal pressure angle in the coast 

side. Similarly, with the larger pressure angle in the drive side, Litvin et al. [7, 8] 

proposed a modified geometry of an asymmetric spur gear drive designed as a 

combination of an involute gear and a double crowned pinion. Muni et al. [9] and 

Kumar et al. [10] used a direct gear design method for the optimization of bending 

strength of asymmetric spur gear drives. Xiao et al. [11] used an asymmetric rack 

cutter to generate the gear pair and suggested a suitable pressure angle to be applied in 

the drive side via a series of analyses including the bending stress analysis, vibration 

analysis and thermal conduction analysis. All these researches have put significant 

improvements on the load carrying ability of the gear tooth during gear transmission.  
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In this section, a novel design of the asymmetric gear that applies a larger 

pressure angle in the drive side ( 20dα ≥  ) and a standard pressure angle in the coast 

side ( 20cα =  ) is presented. The optimum profile of the gear tooth is finally 

determined according to the stress distributions at the fillet in the drive side via the 

ES-FEM-T3 analysis.  

3.1.3.1 Governing equations of the gear tooth profile 

A gear tooth profile can be divided into five portions, as illustrated in Fig. 3.10, 

i.e. the involute () and trochoidal () potions in the drive side, the involute () and 

trochoidal () potions in the coast side and the addendum () connecting the two 

involutes. Different portions are governed by different equations, which can be 

derived from the mechanical relationships during the gear cutting process by an 

asymmetric rack cutter. The detailed derivations of the governing equations are given 

in Appendix A. Here these equations are directly employed to generate different 

asymmetric gear tooth models. 

③
①

②
④

⑤

 
Fig. 3.10 Five portions of a gear tooth profile  

3.1.3.2 Optimization of the gear tooth profile 

Five typical asymmetric gear models with pressure angles of dα =20°, 25°, 30°, 

35° and 40°, respectively, in the drive side and a standard pressure angle of cα =20° in 

the coast side are created, as shown in Fig. 3.11b, all of which are cut by the 

corresponding asymmetric rack cutters as shown in Fig. 3.11a. These five models 
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have the module m=5mm and the addendum coefficient * 1ach = . With these five 

models it is our intent to find some potential relationships between the pressure angles 

and the stress distributions at the fillet in the drive side, so as to find the set of 

optimum pressure angles leading to the lowest stress concentration at the fillet region 

for the same gear transmission.  

 
a) Asymmetric rack cutters used for cutting the five typical gear models: curves from the left 
to the right corresponds to the set of pressure angles: 20°/20°, 25°/20°, 30°/20°, 35°/20° and 

40°/20° 

 

 b1) model 
with 20°/20° 

b2) model 
with 25°/20° 

b3) model  
with 30°/20° 

b4) model  
with 35°/20° 

b5) model 
with 40°/20°  

Fig. 3.11 Rack cutters with different pressure angles and the corresponding asymmetric gear 
teeth with a highlighted point at the HPSTC 

The gear tooth is assumed to be linearly elastic with Young’s modulus E=2×

1011Pa and Poisson’s ratio v=0.25 undergoing a transmission with input power 

P=50KW at the rotation velocity n=1000rpm. The transferred forces are different for 

different models and they are all listed in Table 3.2 based on Eq. (3.2). These forces 

are respectively applied at the HPSTC (as highlighted in Fig. 3.11b) of these five 

models. These five gear models are discretized with equivalent number of nodes as 

listed in Table 3.3. Correspondingly, five more sets of refined meshes are generated 

for the reference purpose. The Dirichlet and Neumann boundary conditions used are 

the same as those outlined in Section 3.1.2. 
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Table 3.2 Transferred forces applied at the HPSTC for different asymmetric gear models: N 

Gear model Total force F Tangent force Ft Normal force Fn 
20°/20° 508144.89 481551.68 162231.99 
25°/20° 526862.96 476574.41 224636.17 
30°/20° 551369.51 471014.73 286624.24 
35°/20° 582919.87 465552.06 350794.59 
40°/20° 623331.98 460744.50 419830.04 

 
Table 3.3 Node information of the five asymmetric gear models 

Gear model Node number for comparison Node number for reference 
20°/20° 521 10233 
25°/20° 524 11100 
30°/20° 519 11061 
35°/20° 510 10919 
40°/20° 500 10928 

Fig. 3.12 gives a comparison of the Von Mises stress contours of these five 

asymmetric gear models. Correspondingly, Fig. 3.13 plots the stress distributions at 

the fillet in the drive side for these five models. From these figures it can be seen that 

with different pressure angles in the drive side, the resulting stress fields are different, 

which indicates that modifying the tooth profile do affect the stress distributions in the 

gear tooth. An obvious trend can be found from Fig. 3.13 that with the increase of 

pressure angle in the drive side, the maximum bending stress decreases while the 

location of the fillet moves to the negative direction of the x-axis. The length of fillet 

seems also to become shorter with this trend. 

A precise comparison of these maximum bending stresses is plotted in Fig. 3.14a, 

in which the results from the standard FEM-T3 is also presented. From this figure it 

can be seen that the maximum bending stresses from ES-FEM-T3 are much closer to 

the reference than those from FEM-T3, which again shows that the ES-FEM-T3 could 

give more accurate solutions than the FEM-T3. The reduced errors are respectively 

23.67%, 26.31%, 25.90%, 25.41% and 29.73%. 
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a) 20°/20° 

  
b) 25°/20° c) 30°/20° 

  
d) 35°/20° e) 40°/20° 

Fig. 3.12 Von Mises stress contours from ES-FEM-T3 for the five asymmetric gear models 
with pressure angles of 20°/20°, 25°/20°, 30°/20°, 35°/20°, 40°/20° 

 

 
Fig. 3.13 Stress distributions at the fillet of the drive side of the five asymmetric gear models 

based on ES-FEM-T3 
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a) Trend of the maximum bending stress b) Trend of the average bending stresses in 
the fillet region 

Fig. 3.14  The bending stresses and their average with different pressure angles when the 
force is applied at HPSTC 

From Fig. 3.14a it can be further seen that the maximum bending stress linearly 

decreases with the increase of the pressure angle and approximated by a straight line 

as    

0.877 245.22Max dσ α= − +  (3.7) 

where dα  is the pressure angle at the drive side; σMax is the maximum bending stress 

with the unit MPa. This equation gives the maximum bending stress as a function of 

the pressure angle for the asymmetric gear. 

Fig. 3.14b gives a comparison of the average bending stresses in the fillet (total 

stress/length of the fillet). Different from the purely decreased trend of the maximum 

bending stresses, the averages stresses do not just decrease monotonically but have a 

minimum value at 35dα =  . In this consideration, it seems that the pressure angle in 

the drive side should not be too larger. In order to select the most favorite pressure 

angle in the drive side, we shall consider another important indicator during the gear 

transmission: the contact ratio dε  in the drive side. Theoretically, a larger contact 

ratio will give a smoother transmission with lower noise. From Fig. 3.11b it can be 

seen that with the increase of the pressure angles in the drive side, the top of the gear 
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tooth becomes narrower thereby leading to a smaller contact ratio. This means that 

with the increase of the pressure angle in the drive side, on the one hand the bending 

strength of the gear tooth will be improved, on the other hand the contact ratio then 

becomes smaller leading to an unfavorable transmission condition with higher noise. 

Comprehensive consideration of the maximum stress, average stress and the contact 

ratio, we may proposed that the pressure angle of 35dα =   serves as the optimal 

choice for the drive side, resulting in a low maximum bending stress, the lowest 

average stress and a reasonable contact ratio.  

3.1.4 Some remarks 

ES-FEM-T3 possesses significant advantages than the standard FEM-T3 in 

solving the bending stresses of the gear tooth. Higher accuracy in stress field 

especially in the two most sensitive regions, e.g. the loading and stress concentration 

regions, is achieved by the ES-FEM-T3. Better convergence and higher convergence 

rate of the strain energy error are achieved by the ES-FEM-T3. After implementing 

the ES-FEM-T3 to determine an optimized asymmetric gear, it is found that the 

pressure angle of 35dα = 

 as applied in the drive side of the gear tooth allows 

performing best in terms of both the stress distributions in the fillet and the 

transmission ability. The ES-FEM-T3 is deemed well suited for the bending stress 

analysis of the gear tooth involving both stress concentration in the fillet and 

concentration load at the loading point. Some assumptions are made in the numerical 

calculations, e.g. the 2D simplification. This may lead to differences between the 

numerical and experimental results. Further to check whether the 35dα =  is the most 

suitable pressure angle for the drive side, other considerations like vibration analysis, 

thermal conduction analysis and the contact analysis have to be accounted for.  
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3.2 Explicit ES-FEM-T3 for 3D nonlinear membrane deflection analysis  

In the previous section, the implicit ES-FEM-T3 has been successfully 

implemented in the 2D linear elastic analysis. In this section, the explicit ES-FEM-T3 

is further proposed for solving the more challenging 3D nonlinear spatial membrane 

deflection problem. The implementation details of ES-FEM-T3 in the 3D nonlinear 

analysis are somewhat different from those in the 2D linear plane strain analysis; here, 

it involves large deflections and rotations in the 3D space and thus the gradient 

smoothing operation should be expressed in the 3D Cartesian coordinate system.  

The study of membrane structure in this section has wide applications such as in 

the coverings in architecture, diaphragms in transducers, artificial arteries and organs 

in biomedical prosthesis, radio antennas and optical reflectors in airships [12, 13], due 

to its attractive properties of lightweight, flexibility and highly susceptible to the 

external action [14]. Various issues like excessive stretching, rupturing and tearing of 

the membrane structure may occur if excessive force is applied [15-18]. As such, 

accurate prediction of the membrane stretching becomes important to avoid its 

catastrophic failure.  

Either the analytical or numerical model can be established to predict the 

ballooning shape of the stretched membrane structure. Through carefully examining a 

typical analytical (mechanical) model proposed by Shi et al. in [15] in Section 3.2.1, 

we hope to point out the main challenges in the analytical model and thus the 

motivation to employ numerical approach like ES-FEM-T3 to analyze and study the 

membrane deflections. As a continuous of the work in [19], the formulation of the 

explicit ES-FEM-T3 membrane model is summarized in Section 3.2.2. A verification 

of the proposed explicit ES-FEM-T3 membrane model is done in Section 3.2.3 in 
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predicting the deflections of a square membrane. Results from the experiment, the 

analytical (mechanical) model in [15],  the FEM-T3 membrane model and FEM-T3 

shell model are also obtained for a thorough comparison in this section, so as to arrive 

at the superior performance of the ES-FEM-T3 membrane model for membrane 

deflection analysis. Two factors, i.e. the pressure fluctuations in the experiment and 

the boundary constraints in the numerical models, are checked to illustrate the slight 

differences observed between the numerical and experimental results. 

3.2.1 Why to construct the numerical membrane model with ES-FEM-T3? 

3.2.1.1 Not easy to get analytical solutions  

Theoretically determining the ballooning shape (or deformation) of the 

membranes is usually very challenging. Analytical solutions are only available for 

homogeneous isotropic membrane with very simple geometrics and loading 

conditions, such as circular membrane under axisymmetric loading where the problem 

can degenerate as a one-dimensional (1D) problem [12]. In order to determine the 

ballooning shape of membrane with complex geometries, simplified models are often 

built [20-23]. Shi et al. built two mechanical models to estimate the deformations of 

the square membrane: one is the 2D model with the two opposite edges being 

continuously constrained [23] and the other is the 3D model with all the four vertexes 

being fully constrained [15]. In these two models, the deformed profile of the 

membrane was assumed to be governed by parabolic equations. The requirements of 

the force equilibrium, deformation compatibility and stress-strain relationship should 

be all satisfied during deriving the governing equations. Baskaran et al. [16] 

compared the predicted maximum deflections by this 2D model with experimental 

results and concluded that the 2D model always underestimates the maximum 
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deflections. However, the 3D model has not been examined and verified as yet. As 

this 3D model is a typical one through literature reviews, it is used as a benchmark to 

assess the main difficulties for analytically predicting the membrane deflections, as 

can be seen in that the nonlinear terms present in the strains greatly affect the 

membrane deflections. It is these nonlinear terms preventing the analytical solving of 

the membrane deflections. Thus numerical analysis appears to be the only alternative.  

The mechanical model built by Shi et al. [15] is used to estimate the deflections 

of a square membrane constrained by regularly spaced staples or cap nails under a 

static pressure, as shown in Fig. 3.15. The equation of estimating the deflections is 

derived as 

( ) [ ]2 1
ln 1 0

8
pl vl m n

H HEh
−

+ − − =  (3.8) 

where H is the maximum deflection of the membrane, i.e. deflection at the centre of 

the membrane; l is the edge length of the membrane; h is the thickness of the 

membrane; E and v are the Young’s modulus and Poisson’ ratio of the membrane, 

respectively; p is the static pressure; and m and n are the functions of H and l donated 

as 

2

2

2 41H Hm
l l

= +  (3.9) 

2

2

2 41H Hn
l l

= + +  
(3.10) 

Fig. 3.16a illustrates the experimental setup in [15], and Fig. 3.16b gives the 

simplified model of this experiment. The points E1, E2,… , E8 and D1, D2,…, D8 in 

Fig. 3.16b indicate the tested points in the experiment. A membrane named TyvekTM 

Homewrap with the dimension of 406mm×406mm is chosen in this experiment. The 

thickness of the membrane is h=0.16mm, and the material properties of the membrane 
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are: Young’s modulus E=875MPa and Poisson’s ratio v=0.24. Four sets of static 

pressures, i.e. p=25Pa, 50Pa, 100Pa, 150Pa, are applied perpendicularly on the 

membrane. Both the maximum deflection H and the deflections along the diagonal 

and the edge are detected under these applied pressures.  

0

z

nail×4

y

x p

l

l

 
a) A membrane withstanding static pressure 

z

0
x

y

Cross section

Initial shape

Deformed shape

 
b) The initial and deformed shapes of the membrane 

Fig. 3.15  A square membrane constraining the four vertexes subjects to static pressure 

Test frame (2.4 m×2.4 m)
With TyvekTM Homewrap

Non-contact laser 
displacement sensor

Opening connected to a motor 
controlled fan to create air 

pressure differential

 

 

E1 E2 E8

D1

D2

D8 Edge
l=406mm

Diagonal
Span=575mm

 

a) Experimental setup [15] b) Displacement measurement locations 

Fig. 3.16 Experiment of the membrane deformation in the wall systems 

A comparison of the maximum deflections from the experiment and the 

mechanical model under these four sets of pressures are listed in Table 3.4. And the 

comparisons of the deflections along the diagonal and the edge under a pressure of 

p=100Pa are presented in Table 3.5 and Table 3.6, respectively. Note that the 
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notations of “Shi et al.” in these three tables indicate the results from the mechanical 

model of Eq. (3.8). Comparing the data listed in these three tables, it can be seen that 

although the mechanical model can give approximate solutions in relation to the 

experiment, significant differences still exist between the experimental and predicted 

deflections, especially for the maximum deflections under higher pressures (p=50Pa, 

100Pa and 150Pa) in Table 3.4 and the deflections at the mid-portions of the diagonal 

and edge, i.e. D5-D8 and E5-E8 in Table 3.5 and Table 3.6, respectively. The 

deflections are always underestimated by the mechanical model, which is identical to 

the conclusions drawn from the 2D mechanical model [16, 23].  

Table 3.4 Maximum deflections (H: mm) of the 3D ballooning membrane under four 
sets of pressures: p=25Pa, 50Pa, 100Pa and 150Pa  

Pressure: Pa H: experimental H: Shi et al. 
25 9.2 8.8 
50 17.6 11.2 

100 21.5 14.1 
150 23.8 16.1 

 
Table 3.5 Deflections (mm) of the 3D ballooning membrane along the diagonal under the 

pressure of p=100Pa  

Point: D 1 2 3 4 5 6 7 8 
Experimental  1.6 5.3 9.6 13.7 16.2 20.1 20.4 21.5 

Shi et al.  3.3 6.2 8.6 10.6 12.1 13.2 13.9 14.1 
 

Table 3.6 Deflections (mm) of the 3D ballooning membrane along the edge under the 
pressure of p=100Pa  

Point: E 1 2 3 4 5 6 7 8 
Experimental  0.9 3.6 4.1 6.5 9.3 10.4 11.1 11.7 

Shi et al.  1.7 3.1 4.3 5.3 6.1 6.6 6.9 7.1 

One possible reason that accounts for the large difference of the deflections 

observed between the experiment and the mechanical model could be attributed to the 

strain assumption made in the derivation of the differential equations in [15]. The 

deformation compatibility is required in the derivation of these differential equations, 

in which the strains along the diagonal were obtained as follows: selecting an 
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arbitrary point E located at the diagonal, a line EF paralleling to the x axis in a non-

deformed membrane was assumed to perpendicularly transfer to E'F' in the deformed 

membrane subject to a static pressure, as shown in Fig. 3.17a. Thus the strain at the 

point E along the x- and y-directions can be expressed, respectively, as 

' ' 2

1 1z
x

E F EF u
EF x

ε
− ∂ = = + − ∂ 

 (3.11) 

2' '

1 1z
y

E G EG u
EG y

ε
−  ∂

= = + − ∂ 
 (3.12) 

where uz is the assumed deflection at that arbitrary point E in z-direction. The shear 

strain is equal to zero ( 0xyε = ) at that point because of the symmetric property of the 

deformed membrane. 

It should be noted that the derivations of the strains above are based on the small 

deformation assumption. However, in the previous experiment the membrane can 

undergo large deformations with highly geometric nonlinearity under especially 

higher pressures, as shown in Fig. 3.17b. This would cause the arbitrary line EF no 

longer perpendicularly transfer to E'F'. The displacements of E in both x- and y-

directions (ux and uy) are thus induced, as shown in Fig. 3.17c. In that case the 

nonlinear terms, which are functions of the spatial derivatives of ux and uy, should be 

added into the original strains, i.e. into Eq. (3.11) and Eq.(3.12), as follows 

  


2

1 2

1 1x z
x

term term

u u
x x

ε ∂ ∂ = + + − ∂ ∂ 

 (3.13) 



2

1 2

1 1y z
y

term term

u u
y y

ε
∂  ∂

= + + − ∂ ∂ 

 (3.14) 

where the term 1 is the nonlinear term, and the term 2 is the strain of Eq. (3.11) or 

Eq.(3.12) called linear term here. 
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a) Illustration of the strain derivation in the mechanical model 

 

E
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uy
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b) General profile of membrane undergoing a large 

deformation 
c) Displacements at point E (ux and uy) 
in a large deformation configuration 

Fig. 3.17 Illustration of the strain derivations in both linear and nonlinear forms 

Taking xε  as an example, the calculated linear and nonlinear strains along the 

diagonal are shown in Fig. 3.18, which are obtained base on Eq. (3.11) and Eq. (3.13) 

under the pressure of p=100Pa, respectively. From this figure it can be seen that there 

is a large difference between the linear strain and the nonlinear strain, which is 

apparently due to the adding of the nonlinear term (term 1).  This is the possible 

reason for the underestimations of membrane deflections by the differential equations 

in [15]. If the strains of Eq. (3.11) and Eq. (3.13) are replaced by the strains of Eq. 

(3.12) and Eq. (3.14), the newly predicted membrane deflections by the mechanical 

model should be much closer to the experimental results, and thus the 

underestimations of the deflections can then be avoided. However, the effects of the 

nonlinear strains should be verified. 
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Fig. 3.18 Comparisons of the linear and nonlinear strains under the pressure of p=100MPa 

In the calculation of the nonlinear strain xε , one major problem is encountered, 

i.e. how to theoretically express ux. The term 2 in the nonlinear strain can be obtained 

easily, however, the term 1 cannot be obtained so easy because of the unknown ux 

which is a function of geometry, material properties of the membrane and the external 

applied pressures, etc. In the calculation of the nonlinear strain xε above, the 

distribution of ux can be obtained through a more convenient way, i.e. numerical 

simulation: 

i) Get the ux at the discrete points along the diagonal numerically 

ii) Interpolate these discrete displacements using polynomials, as shown in Fig. 

3.19 

iii) Substitute the approximate ux into Eq. (3.13) to get the nonlinear strain 

However, the order of the approximating polynomial function of ux is up to 10, 

which may cause difficulties to be theoretically analyzed. As such, the numerical 

simulation which deals with the nonlinear term much easier appears better suited to 

simulate the large deformation of the membrane. 
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Fig. 3.19 Numerical results for displacement ux  and their approximations by polynomial 

along the diagonal 

3.2.1.2 ES-FEM-T3 superior to FEM-T3 for membrane deflection analysis 

The standard FEM is frequently used to determine the ballooning shapes of these 

deformed membranes. We has already shown that the standard FEM-T3 can give rise 

to “over-stiff” numerical model and lead to poor accuracy in the stress field. 

Comparatively, the ES-FEM-T3 was found particularly superior in convergence, 

accuracy, computational efficiency and stability using the same mesh. In this study, 

the ES-FEM-T3 is employed for the numerical simulation of the membrane 

deformation, in which the displacement gradient is smoothed using edge-based 

smoothing domains in 3D global Cartesian coordinate system, and the explicit time 

integration and Dynamic Relaxation Method (DRM) are used to obtain the steady-

state solutions of the membrane structure. The novel ES-FEM-T3 membrane model 

was firstly proposed by Zhang et al. in [19]. As a continuation of this work, the ES-

FEM-T3 membrane model is further explored here to check its properties, and 

especially on solving the practical membrane deformation problem in engineering. A 
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summary of the formulation procedure for the ES-FEM-T3 membrane model is 

presented in next section for its implementation in Section 3.2.3. 

3.2.2 Formulation of explicit ES-FEM-T3 membrane model 

3.2.2.1 Co-rotational local coordinate system 

A membrane element can be seen to degenerate from a flat shell element based 

on the Mindlin-Reissner assumption [24, 25], which is actually its membrane part 

without bending stiffness. The external forces (mainly the pressures) are undertaken 

by the membrane structure via its in-plane stretches and out of plane rotations [18].   

Because of the lack of bending stiffness, the displacements throughout the 

thickness of the membrane are the same and thus the thickness h of the membrane is 

constant in the whole deformation process. In this case, the deformations of the 

membrane structure can be described with only the deformations of a plane, e.g. the 

mid-plane, paralleling to the membrane surface. And the elemental stress in the plane 

can be seen as a state of plane stress [18]. However, different from the “real” plane 

stress problem where the deformation occurs in the 2D space, the deformation of the 

mid-plane of the membrane occurs in the 3D space where the nodal displacement in 

this plane has three degree of freedoms. 

If we discretize the mid-plane of the membrane with a set of triangular mesh, as 

shown in Fig. 3.20, the smoothed gradient of the displacement vector u  in the 3D 

space (global Cartesian coordinate system) can be approximated with the ES-FEM-T3 

according to Eqs. (2.5) and (2.7) proposed in Chapter 2 as 

( ) ( ) ( ) ( )sdsd sd
1 1

1 1d
seg gau

k

N N

k mn mn mn
m nk k

w
A AΓ

= =

 
∇ ≈ Γ ≈  

 
∑ ∑∫u x u x n u x n x  

or 

(3.15) 
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( ) ( ) ( ) ( )sd, sd sd
1 1

1 1d ,   , , ,
seg gau

k

N N

i j k i j mn i mn j mn
m nk k

u u n w u n i j x y z
A AΓ

= =

 
≈ Γ ≈ = 

 
∑ ∑∫x x x x . 

The physical meanings of the parameters in Eq. (3.15) are exactly the same as 

those described in Eqs. (2.5) and (2.7). ( )mnu x  is the displacement vector at point xmn 

that can be interpolated using the simplest linear shape function NI(x) of the standard 

T3 element as 

( ) ( )
sd
k

mn I mn I
I S∈

= ∑u x N x u  

or   
( ) ( )

sd

,   = , ,
k

i mn I mn Ii
I S

u N u i x y z
∈

= ∑x x  
(3.16) 

Here, sd
kS  is the group of nodes supporting the smoothing domain sd

kΩ , the same 

as that in Eq. (2.12); and uI is the displacement vector at the node.  

 
Fig. 3.20 Description of edge-based smoothing domain for 3-node spatial triangular 

membrane element degenerated from solid prism element and highlight of an edge-based 
surface smoothing domain for an edge of a linear triangular mesh, and the embedded local co-

rotational coordinate system 

By substituting Eq. (3.16) back into Eq. (3.15), this leads to the formulation of 

the smoothed gradient of displacement field in a smoothing domain in the mid-plane 

as 

( ) ( ) ( )sd
sd sd

sd

1 d
k

k k

k I I I I
I S I SkA Γ
∈ ∈

 
∇ ≈ Γ = ∇ 

 
∑ ∑∫u x N x n u N x u  

or
 

(3.17) 
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( ) ( ) ( )sd
sd sd

, ,sd

1 d ,    , , ,
k

k k

i j k I Ii I j Ii
I S I Sk

u N u u i j x y z
A Γ

∈ ∈

 
≈ Γ = = 

 
∑ ∑∫x x n N x  

where I∇N  is the smoothed derivatives of the shape function in global coordinate. 

It should be noted that the nodal displacement vector uI in Eq. (3.17) includes 

components of both rigid body motions (i.e. translations and rotations) and in-plane 

stretches in the 3D space. As the rigid body motions have no contribution to the strain 

and stress states, they should be eliminated from the displacement vector uI so that the 

remaining part (denoted as ˆ Iu ) can be directly used for calculating the smoothed 

strains, the smoothed stresses and finally the smoothed internal nodal forces to 

balance the equilibrium equations.  

In order to achieve this elimination, the local co-rotational coordinate systems 

attached to each smoothing domain need be predefined. And the corresponding 

transformation matrix T associates with these local co-rotational coordinate systems 

need be constructed. By using this transformation matrix T, any field variables (not 

limited to the displacement vector uI) can be transformed from the global to the local 

co-rotational coordinate systems, so that the smoothed strain and stress can be 

properly evaluated in this local co-rotational coordinate system with ˆ Iu . 

As illustrated in Fig. 3.20, for an inner smoothing domain sd
kΩ  with two 

neighboring membrane elements, i.e. element ele1 and ele2 sharing a common edge k, 

its basis orientation vectors of local co-rotational coordinates { }Tˆ ˆ ˆ ˆ, ,x y z=x  are  

  1 2
1 2 3

1 2

ˆ ˆˆ ˆ ˆ, / ,
ˆ ˆ

s sC A
k k

C A

− ×
= = =

− ×
x x e ee e n n e
x x e e

 (3.18) 

where xI (I=A, B, C, D) is to the global Cartesian coordinates of the four nodes 

supporting sd
kΩ , in which xA is set as the origin of this local co-rotational coordinate 
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system; and sd
kn  denotes the smoothed (averaged) normal vector of the normal vectors 

of the two neighboring elements, i.e. 

( ) ( ) ( ) ( )sd 1 21 2 / 1 2ele ele
k Area ele Area ele Area ele Area ele = + +   n n n  (3.19) 

in which nele1 and nele2 denote the outward surface normal vectors of the T3 

membrane element ele1 and ele2, respectively; and Area(ele1) and Area(ele2) denote 

the areas of the membrane element ele1 and ele2, respectively. 

The transformation matrix T can thus be constructed with the basis orientation 

vectors as 

{ }1 2 3ˆ ˆ ˆ, ,=T e e e . (3.20) 

With the help of the transformation matrix T, the global displacement vector uI 

can be transformed from the global to the local coordinate system as  

ˆ I I=u Tu . (3.21) 
After substituting Eq. (3.21) into Eq. (3.17), the smoothed gradient of the 

displacement field with ES-FEM-T3 in the local co-rotational coordinate system can 

be finally obtained. This smoothed gradient will be used to calculate the smoothed 

internal nodal force ˆ int
If  in the local coordinate system. Then the ˆ int

If  is transformed 

back into the global coordinate system for the force assembly. Details on constructing 

ˆ int
If  can be found in the next section. 

3.2.2.2 Formulation of membrane with explicit ES-FEM-T3 

In solving a membrane problem, its static state should be purchased. However, 

the static solutions of membrane deformation cannot be gotten straightforward due to 

the impending rigid body motions which leads to the stiffness matrix ill conditioned 

or singular [18]. Therefore, the dynamic relaxation technique is adopted [18, 26]. In 
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this technique a pseudo damping force with a positive damping coefficient is added 

into the motion equation resulting in the dissipation of kinetic energy. In the end one 

can obtain the steady state of the deformed membrane and examine the displacement 

and strain energy with the admissible minimum influences of the transient response 

[19]. Similar to the motion equation proposed in Eq. (2.17), the discrete governing 

equation of the membrane deformation with dynamic relaxation technique can be 

written as  

ext int damp= − −Mu f f f    (3.22) 
in which all the variable are evaluated in the global Cartesian coordinate.  

Either the implicit (e.g the Newmark -methodβ ) or explicit methods (e.g. the 

central difference method) can be used for the time integration of Eq. (3.22). Here, we 

choose the central difference explicit time integration method because of its attractive 

feature of avoiding solving large-scale equations [24].  

In the explicit time integration implementation, the time of simulation 0 Et t≤ ≤  

is subdivided into a series of time steps ,  =1  n
TSt n to n∆  where nTS is the total number 

of time steps. Accordingly, Eq. (3.22) at time step n can be expressed as  

( ) ( ) ( )n n ext n n int n n damp n= − −M u f u f u f u     (3.23) 

where M  is the lumped mass matrix that only need to be evaluated once at the initial 

time t=0; nu , n extf and n intf  are the acceleration, external force and smoothed internal 

force vectors, respectively, at time step tn; and n dampf  is the damping force vector 

evaluated as [18] 

n damp nµ=f M u   (3.24) 

where µ  is the damping coefficient and nu  is the velocity vector at time step tn. 
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In our ES-FEM-T3 membrane model, both the mass matrix M  and external 

force vector n extf  are evaluated by the same way as in the standard FEM-T3. Only the 

smoothed internal force vector n intf  is evaluated with the ES-FEM-T3 over the edge-

based smoothing domains. In other words, the ES-FEM-T3 membrane model only 

modifies the formulation of internal force vector, which concurs with the statement 

that “the S-FEM models change only the stiffness matrix.” in Chapter 2. Thus the 

formulation of the smoothed internal force vector n intf  with ES-FEM-T3 only be 

detailed here. 

1) Constructing the smoothed nodal force in local coordinates with ES-FEM-T3  

In the explicit time integration process, the membrane deformation is assumed to 

undergo a series of spatial configurations. The kinetic relationships should be satisfied 

in each spatial configuration, and the kinematic relationships are described with the 

total Lagrangian (TL) formulation [24] which uses only the initial configuration as the 

reference configuration. Accordingly, a kinematic description of the ES-FEM-T3 

membrane model is illustrated in Fig. 3.21.  

At the initial configuration (time t=0), the smoothing domain is denoted by 0 sd
kΩ  

in which the left superscript denotes the time step. The coordinates of its four 

supporting nodes are denotes by ˆ
IX  (e.g. { }sd , , ,kI S A B C D∈ =  as in Fig. 3.20) in the 

local coordinates and XI in global coordinates. The basis vectors 0 ˆ , 1, 2,3i i =e  of this 

local coordinate system are determined by substituting ˆ
IX  into Eq. (3.18). Through 

the motion ( ),f t=x X  the membrane is transformed from the initial configuration 

0Ω  to the current configuration nΩ  at time tn. Consequently, 0 sd
kΩ  is transformed to 
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sdn
kΩ . The coordinates of the nodes supporting sdn

kΩ  are denotes as ˆ Ix  in the local 

coordinates and Ix  in global coordinates. The basis vectors ˆ ,  1, 2,3n
i i =e  at time tn 

are determined by substituting ˆ Ix  into Eq. (3.18). It should be noted that when tn=1 =0, 

ˆ ˆI I=X x and I I=X x . 

 
Fig. 3.21 The kinematics of the ES-FEM-T3 model for spatial membrane structures in the 

total Lagrangian formulation 

The transformation matrices 0T  and n T  corresponding to time t=0 and t=tn can 

be obtained with 0 ˆ ie  and ˆn
ie , respectively, according to Eq. (3.20). With the help of 

these two transformation matrices, coordinates between global and local systems at 

any time can be calculated as  

( )0ˆ
I k I= ⋅X T X X    (3.25) 

( )ˆ n
I k I= ⋅x T x x . (3.26) 

By using these two equations, the rigid body motions (rotations) part of the nodal 

displacement is eliminated, as illustrated in Fig. 3.22. The resultant in-plane nodal 

displacements can then be obtained in the local coordinate system as 

  ( )sd
0

ˆˆ ˆ ; 1, 2n
Ii Ii Ii ku x X I S i= − ∈ =  (3.27) 

where the left subscript in 0 ˆn
Iiu  denotes the time for the reference configuration, i.e. 

the displacement is measured at time t with respect to the reference configuration at 



 
Chapter 3                                                                                                  ES-FEM-T3 for solid mechanics 

110 
 

time 0 (initial configuration). Note that in the TL formulation all the parameters are 

measured referring to the reference configuration, hence the left subscript “0” in these 

parameters will be omitted below for the sake of simplification. For example, 0 ˆn
Iiu  is 

written as ˆn
Iiu . 

2ˆne 0
2ê

0
1ê1ˆne

ˆ
AX

ˆ
BX

ˆ
CX

ˆ
DX

ˆ Bx

ˆ Ax

ˆ Cx

ˆ Dx

 
Fig. 3.22 In-plane deformation in the local coordinate plane 1 2

ˆ ˆX X  after coordinate 
transformation 

By using the displacement vector ˆn
Iiu , the in-plane smooth deformation gradient 

( )ˆn
kF X  is computed so as to measure the in-plane strain ˆn E , as 

( ) ( ) ( )
sd

0
, ,

ˆ ˆˆ ˆ , , ,
k

n n n
ij k i j k ij I j k Ii ij

I S

F u N u i j x yδ δ
∈

= + = + =∑X X X    (3.28) 

where 0
,

ˆ
I jN  are the smoothed derivatives of the smoothed function in 0 sd

LΩ . 

The smoothed Green-Lagrangian membrane strain ˆn E  in the local coordinates 

system can then be calculated as 

( )T1ˆ ˆ ˆ
2

n n n
k = −E F F I . (3.29) 

For most of the nonlinear elastic materials, the second Piola-Kirchhoff (PK2) 

membrane stress ˆn
kS  in local coordinates can be expressed as the function of 

smoothed Green-Lagrangian membrane strain ˆn
kE  as 

ˆ ˆn n
k k=S D E  (3.30) 
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where D is the material response tensor of the isotropic St. Venant-Kirchhoff material 

under the plane stress condition. 

Using the smoothed strain and stress tensors of Eqs. (3.29) and (3.30), the 

smoothed internal force vector ˆn int
kf  corresponding to the kth smoothing domain sdn

kΩ  

in local co-rotational coordinates can be calculated as 

{ }T
0 sdˆ ˆˆn int n n

k k k kA =   
f B S  (3.31) 

where ˆn
k

 
  

B  is the smoothed strain-displacement matrix associated with the 

smoothing domain sdn
kΩ ; and { }ˆn

kS  is the smoothed PK2 stress vector of the 

smoothing domain sdn
kΩ . Assuming the indices of the supporting nodes of the 

smoothing domain sd
kΩ  are I=A, B, C, D as illustrated in Fig. 3.20, the matrices and 

vectors in Eq. (3.31) are  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆn n n n n
k A B C D

   =      
B B X B X B X B X    (3.32) 

( )

0 0 0
,1 1,1 ,1 2,1 ,1

0 0 0
,2 1,2 ,2 2,2 ,2

0 0 1 2
,2 ,1

ˆ ˆ ˆˆ ˆ0
ˆ ˆ ˆ ˆˆ ˆ0

ˆ ˆ

n n
I I I

n n n
I I I I

n n
I I

I I

N u N u N

N u N u N
A AN N

   
   

     = +      
   
   

B X  (3.33) 

0 0
,1 ,2 ,2 ,1

ˆ ˆˆ ˆ ,   =1,2n n n
Ii i I i IA u N u N i= +  (3.34) 

{ } { }11 22 12
ˆ ˆ ˆ ˆn n n n

k k k kS S S=S  (3.35) 

T

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆn int n int n int n int n int n int n int n int n int

k A A B B C C D Df f f f f f f f =   
f . (3.36) 

It should be noted that the edge-based smoothing domain located at the boundary 

of the solution domain only has three supporting nodes. Hence, the size of the above 

equations will be correspondingly reduced. 
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2) Transforming the smoothed nodal force from local to global coordinates 

By using coordinate transformation, the smoothed internal force vector in global 

Cartesian coordinates can be transformed back as  

( ) T

1

ˆ
sdN

n int n n int
k

i=

 =  ∑f T X f . (3.37) 

After substituting Eq. (3.37) in Eq. (3.23), the discrete dynamic equations 

governing the membrane deformations can be finally gotten. In order to find the 

unique solution of Eq. (3.23), boundary conditions, i.e.  

( ) 0 , 1 to n
ibc bcg ibc n= =u  (3.38) 

should be subjected, in which ( ) 0n
ibcg =u is the velocity boundary conditions at time 

t, and nbc is the number of the boundary conditions. 

Detailed procedures to solve the equation of motion using dynamic relaxation 

method based on the central difference explicit time integration algorithm are 

summaried in the flowing flowchart.  

Flowchart for explicit time integration of the membrane deformation problem 

(1) Construct the edge-based smoothing domains 0 sd ,   =1, ,k sdk NΩ ⋅⋅⋅   
(2) Initial conditions and initialization of parameters 

(2.1) Set initial conditions 0 ˆ
kS , 0u , 0 =u 0 , t=0 and the counter n=0 

(2.2) Loop over all smoothing domains 0 sd
kΩ to compute the transformation 

matrices ( )0
IT X , the local material coordinates ( )0ˆ

I I I= ⋅X T X X  for 
all supporting nodes of the kth smoothing domain and the smoothed 
derivatives of the shape function ( ) ( )0 0 0

, ,
ˆ

I i I I i IN N= ⋅T X X   
(2.3) Compute the lumped mass matrix M  
(2.4) Call subroutine Cal_Internal_Force  to compute the global nodal force 

vector 0f  where 0 0 0 0ext int damp= − −f f f f   
(2.5) Compute the accelerations 0 1 0−=u M f  

(3) Time update 1n nt t t+ = + ∆ , ( )1 2 1 2n n nt t t+ += +  

(4) First partial update nodal velocities 1 2 2n n nt+ = + ∆ ⋅u u u     
(5) Enforce velocity boundary conditions ( )1 2 0 , 1 to n

ibc bcg ibc n+ = =u   
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(6) Update the nodal displacements  
1 1 2n n nt+ += + ∆ ⋅u u u  

(7) Call subroutine Cal_Internal_Force to compute the internal force vector 1n+ f
using the nodal displacements 

(8) Compute nodal accelerations 1 1 1n n+ − += ⋅u M f   
(9) Second partial update nodal velocities 1 1 2 1 / 2n n nt+ + += + ∆ ⋅u u u    
(10) Check convergence according to Eq. (3.39). If these conditions are satisfied, the 

steady solution is obtained. If NOT, update the counter nn+1 and go to Step 
(3). 

Subroutine Cal_Internal_Force 

(S.1) Initialization 0f , critt∆ = ∞  
(S.2) Compute the global external nodal force n extf  and pseudo damping force n dampf  
(S.3) Loop all smoothing domains sdn

kΩ , 1 , , sdk N= ⋅⋅⋅   
i) Get the current nodal coordinates n

I I I= +x X u  for all supporting nodes 
ii) Compute ˆn

ke  of the local spatial coordinate systems 
iii) Compute coordinate transformation matrix ( )n

IT x   

iv) Compute ( )ˆ n
I I I= ⋅x T x x  for all supporting nodes 

v) Compute ˆˆ ˆn
I I I= −u x X   

vi) Compute the smoothed PK2 stresses { }sdˆn
kS   

vii) Compute n int
kf  according to Eq. (3.31) 

viii) Scatter n int
kf  to the global 

n intf  according to Eq. (3.37) 
ix) n n ext n int n damp= − −f f f f   
x) Compute sd

critt∆ , if sd
crit critt t∆ < ∆  then sd

crit critt t∆ = ∆   
(S.4) End loop over smoothing domains 
(S.5) Time step in next iteration critt tα∆ = ∆  

From this flowchart it can be seen that the explicit time integration can be easily 

implemented and a major part of this integration procedure is the calculation of the 

nodal force as done in the subroutine “Cal_Internal_Force”. There are two essential 

computational aspects that should be pointed out during the explicit time integration. 

i) The stoppage of the iterations 

The admissible error Uε in Eq. (3.39) is defined to determine if the membrane 

structure has reached the steady state. IJε  is suggested to be set very small, e.g. 
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101 10−× , so as to get steady state solutions with the admissible minimal influences of 

the transient responses [19]: 

1

2 2
/n n n

UL L
ε+ − <u u u . (3.39) 

ii) Critical time step 

The explicit time integration algorithm is conditionally stable. If the time step t∆  

exceeds a critical value critt∆ , the solution will grow unboundedly [24]. A stable time 

step for a standard FEM-T3 model with rate-independent materials is given by 

,
max

2 2, min min e
crit crit ee I

I e
e

t t t
c

πα
ω ω

 
∆ = ∆ ∆ = ≤ =  

 


 (3.40) 

where maxω is the maximum frequency of the linearized system; e is the 

characteristic length of the element e, which usually defined as 2 3 3e eArea= ; ce 

is the current wave speed in element e, which is usually set constant for all the 

elements, ( )21ec E υ ρ = −  ; and α is a reduction factor that accounts for the 

destabilizing effects of nonlinearities. As suggested in [24], a good choice for α  is 

between 0.8 and 0.98. 

According to the “soft effect” theory as stated in Chapter 2, an S-FEM model 

(including our ES-FEM-T3) is always softer than the FEM-T3 model, hence using the 

above critical time step in the ES-FEM-T3 should be on the conservative side. 

3.2.3 Implementation of explicit ES-FEM-T3 for 3D membrane deflection 

analysis 

The explicit FEM-T3 membrane and shell models are also established in the 

present study so as to further check the effects of different element types on the 

membrane deflections. In summary, a total of three numerical models are established  
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 Membrane model with ES-FEM-T3, i.e. ES-FEM/Membrane model  

 Membrane model with FEM-T3, i.e. FEM/Membrane model 

 Shell model with FEM-T3, i.e. FEM/Shell model 

The ES-FEM/Membrane and FEM/Membrane models are from the in-house 

code, and the FEM/Shell model is constructed in the commercial software: Abaqus. 

The 3D spatial square membrane deformation problem introduced in Section 3.2.1 is 

calculated with different numerical models and the experimental results are used as a 

benchmark. The material of the membrane is assumed to be linear elastic and the 

material properties are chosen the same as those used in the experiment. The four 

vertexes of the square membrane are totally constrained, i.e. the displacements in x-, 

y- and z-directions are all constrained for the ES-FEM/Membrane model and 

FEM/Membrane model, and only the displacements in x-, y- and z-directions are 

constrained for the FEM/Shell model, as shown in Fig. 3.15b. The pressures of 

p=25Pa, 50Pa, 100Pa, 150Pa are perpendicularly applied on the membrane, 

respectively. 

3.2.3.1 Mesh convergence analysis 

Theoretically the numerical results will converge to the exact ones with the 

increase of the DOFs [27-29]. So the mesh convergence analysis should be carried out 

firstly in order to avoid the effect of DOFs on the final results. In the present analysis 

five sets of meshes are created (507, 963, 2118, 4320 and 7842 DOFs), as shown in 

Fig. 3.23a, in which the latter mesh has a relationship of approximate 2 times DOFs of 

the former. Fig. 3.23b plots the calculated maximum deflections by the ES-

FEM/Membrane model based on these five sets of meshes under different pressures. 

From Fig. 3.23b, it can be seen that the maximum deflections increase with the 
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increase of the DOFs, however, the difference between the two neighboring curves 

becomes smaller, which means that the deflection will become mesh independent 

when the DOFs are large enough. However, more computation time will be consumed 

when more DOFs are used in the simulation. So after considering both the 

computational accuracy and efficiency, the set of mesh with 4320 DOFs is chosen in 

the following analysis. 

     
a. 507 DOFs b. 963 DOFs c. 2118 DOFs d. 4320 DOFs e. 7842 DOFs 

a) Meshes with different DOFs 

 
b) Mesh convergence analysis 

Fig. 3.23 Five sets of meshes and the corresponding mesh convergence analysis based on the 
maximum deflections of the membrane by the ES-FEM/Membrane model 

3.2.3.2 Computational accuracy 

a) Calculated deflections from the numerical models 

The maximum deflections of the membranes from the models of ES-

FEM/Membrane, FEM/Membrane and FEM/Shell under the four sets of static 

pressures are listed in Table 3.7. And the deflections at the points D1, D2,…, D8 along 
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the diagonal and E1, E2,…, E8 along the edge under a typical pressure of p=100MPa 

are listed in Table 3.8 and Table 3.9, respectively. At the same time the deformed 

membranes calculated by the model of ES-FEM/Membrane under different static 

pressures are plotted in Fig. 3.24a. One typical deformed contour plot of the 

membrane under the pressure of p=100Pa is plotted in Fig. 3.24b. Different colors 

used in these figures illustrate different deflection magnitudes of the membrane and 

the legends on the right of these figures give the values corresponding to these colors. 

Note that the shapes of the deformed membrane from the models of FEM/Membrane 

and FEM/Shell are quite similar to that from the model of ES-FEM/Membrane, so 

only the deformed contour plot from the model of ES-FEM/Membrane is plotted here. 

Table 3.7 Maximum deflections (H: mm) of the 3D ballooning membrane under four 
sets of pressures: p=25Pa, 50Pa, 100Pa and 150Pa 

Pressure: Pa 25 50 100 150 
Maximum  

deflection H: 
mm 

ES-FEM/Membrane 13.3 16.8 21.1 24.1 
FEM/Membrane 13.2 16.6 20.9 23.9 

FEM/Shell 13.2 15.7 19.9 22.8 
 

Table 3.8 Numerical deflections (mm) of the 3D ballooning membrane along the 
diagonal under the pressure of p=100Pa  

Point: D 1 2 3 4 5 6 7 8 
ES-FEM/Membrane 4.4 8.6 12.4 15.7 18.2 19.9 20.8 21.1 

FEM/Membrane 4.4 8.7 12.6 15.8 18.1 19.7 20.6 20.9 
FEM/Shell 4.2 8.0 11.6 14.7 17.1 18.7 19.6 19.9 

 
Table 3.9 Numerical deflections (mm) of the 3D ballooning membrane along the edge 

under the pressure of p=100Pa  

Point: E 1 2 3 4 5 6 7 8 
ES-FEM/Membrane 2.9 5.7 8.4 10.8 12.8 14.4 15.5 15.9 

FEM/Membrane 2.8 5.6 8.3 10.7 12.7 14.3 15.3 15.6 
FEM/Shell 2.7 5.3 7.78 10.1 12.0 13.6 14.6 15.0 
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a) Deformed profiles of the membrane under static pressures: p=25Pa, 50Pa, 100Pa and 

150Pa 

 
b) Deformed profile of the membrane under static pressures of p=100Pa 

Fig. 3.24 Membrane deformation based on the ES-FEM/membrane model 

b) Verification of the maximum deflections  

The maximum deflections, which are from the experiment, the mechanical model 

and the numerical models, have already been listed in Table 3.4 and Table 3.7, 

respectively. Fig. 3.25a plots the comparisons of the maximum deflections based on 

these data. An approximate trend of these maximum deflections can be found from 

these curves: i) the maximum deflection nonlinearly increases with the increase of the 

applied pressure; ii) the numerical models can give much closer maximum deflections 

to the experiment than the mechanical model, although there are still some differences; 

iii) there is a jump in the experimental curve from p=25Pa to p=50Pa. 
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a) Comparison of the maximum deflections 

 
b) Comparison of the deflection ratios 

Fig. 3.25 Comparisons of the maximum membrane deflections and the corresponding 
deflection ratios under different pressures 

To provide more clear and fair comparisons for these maximum deflections, the 

deflection ratio is further introduced by dividing the maximum deflections (both from 

the mechanical and numerical models) with those from the experiment. A ratio close 

to 1 indicates that the maximum deflections predicted by the models can correlate 

well with the experimental data. 
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Fig. 3.25b plots the deflection ratios obtained from these models under the four 

sets of pressures. From this figure it can be seen that:  

i) The deflection ratios from the numerical models (models of ES-

FEM/Membrane, FEM/Membrane and FEM/Shell) are all closer to 1 than the 

mechanical model except for the case p=25Pa, which means that after introducing the 

nonlinear strains in the numerical models the calculated maximum deflections are 

much closer to the experiment than those from the mechanical model considering only 

linear strains. This indicates that the nonlinear strain is indeed a key factor to affect 

the accurate prediction of the deflections. As shown in Fig. 3.25b, the ratios from the 

numerical models are all in the range of [ ]0.89,1.01 , however, those from the 

mechanical model are just in the range of [ ]0.63,0.68 . 

ii) For the numerical models, the ES-FEM/Membrane model always gives much 

closer deflections to the experiment than the other two models, and the FEM/Shell 

model always gives the lower bound results. This is mainly due that the ES-

FEM/Membrane model behaves much softer than the standard FEM/Membrane 

model, and the bending property of the shell element makes the FEM/Shell model 

even stiffer than the other two membrane models [19]. It is better to choose the ES-

FEM/Membrane model to estimate the maximum defections of the membrane in a 

numerical analysis. 

iii) There is a jump of the maximum deflection from p=25Pa to p=50Pa in the 

experimental curve as shown in Fig. 3.25a. Comparing the trend of this curve with 

those from the mechanical model and numerical models, we suspect that there may be 

a measurement error in the experiment under the pressure of p=25Pa. 

c) Verification of the deflections along the diagonal and the edge 
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a) Comparison of the deflections along the diagonal 
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b) Comparison of the deflections along the edge 

Fig. 3.26 Comparisons of the membrane deflections along the diagonal and the edge based on 
the mechanical model, numerical models and experiment under the pressure of p=100Pa 

The deflections along the diagonal and the edge are plotted in Fig. 3.26a and Fig. 

3.26b based on the data listed in Table 3.5, Table 3.6, Table 3.8 and Table 3.9, 

respectively. From Fig. 3.26a, it can be seen that the numerical models can give much 

closer curves to the experiment than the mechanical model along the diagonal. It 

again verifies that the use of nonlinear strains in the simulation is so important to 
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correctly predict the deflection. The ES-FEM/Membrane model and FEM/Membrane 

give quite similar deflections, and the FEM/Shell model gives smaller deflections than 

these two models. The reason for this is similar to those mentioned in the discussion 

b). The mechanical model underestimates the deflections along the diagonal. From 

Fig. 3.26b, it can be seen that although the shapes of the deformed curves from the 

numerical models are similar with that from the experiment, the deflections are 

overestimated by these numerical models. The mechanical model still gives 

underestimated results.   

3.2.3.3 Aspects influencing the deflections  

From the comparisons of both the maximum deflections and deflections along 

the diagonal and the edge discussed in the section above, it can be seen that the 

numerical models involving nonlinear strains can give much closer deflection to the 

experiment than the mechanical model with just linear strains. This suggests that the 

strain expressed in nonlinear form is quite essential for the accurate calculation of 

membrane undergoing large deformations. However, there are still some differences 

of the deflections between the numerical and experimental results, especially for the 

deflections along the edge. Several factors may cause the differences, which may be 

from the setting of the experiment or the numerical models. These factors will be 

discussed in the following text.  

a) Effect of the reproducibility on the maximum deflections 

Some pressure fluctuations are inevitable in an experiment because of the 

accuracy of the used sensor or the tightness of the equipment. So the reproducibility 

of the experimental results is important. However, this kind of test was not done in 

[15]. In the experiment by Baskaran et al. [30], the reproducibility test for the 
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membrane deformation under different static pressures was done and it was concluded 

that the deflections are repeatable within an error of ±5%. Here if we also introduce 

an error quantity for the deflection in the experiment of Shi et al. [15] by assuming a 

tolerance of ±5% (see Fig. 3.27). From this figure it can be seen that: 

i) The curves corresponding to both the ES-FEM/Membrane model and 

FEM/Membrane model fall within this error band, which indicates that the 

inaccuracies associated with the numerical models are deemed acceptable, and these 

two numerical models are able to accurately predict the maximum deflections. 

However, if the error band is not considered, the numerical curves will be “beyond” 

the experimental curve. 

ii) Even considering the error band of the experimental measurements, the curves 

corresponding to both the FEM/Shell model and the mechanical model do not lie 

within this band. This shows that these two mentioned models possess much larger 

inaccuracies and may not so suitable to predict the maximum deflections of the 

membrane undergoing large deformations.  

 
Fig. 3.27 Comparisons of the maximum deflections of the membrane under different 

pressures 
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b) Effect of the boundary constraints on the deflections along the diagonal and 
the edge 
 
The boundary constraints in the numerical model and the experiment should be 

set the same, otherwise the calculated results cannot match the experimental results 

very well.  

In the experiment by Shi et al. [15], a special type of nail with a small and fairly 

round edge cap was chosen to avoid the effect of the edge on the tested results, but the 

exact radius of the cap was not mentioned. In the previous simulations, the radius of 

the round edge cap is set to be zero (R=0 as shown in Fig. 3.28), however, some 

differences between the numerical and experimental deflections are found, either 

along the diagonal or along the edge. So the different settings of the radius of the 

round edge cap between the experiment and numerical models may be a factor 

causing these differences. Here a slight change of the radius of the round cap 

(R=4.5mm, 9mm, 18mm) is made to check their effects on the deflections.   

Fig. 3.29a-d and Fig. 3.30a-d plot the calculated deflections by ES-

FEM/Membrane model, the mechanical model and the corresponding experiment 

along the diagonal and the edge, respectively. From these figures, we can see that: 

i) The radius of the round edge cap do affect the deflection of the membrane: 

with the increase of the radius of the cap, the deflection will decrease along both the 

diagonal and edge, which can be attributed to the span of the membrane decreases 

with the increase of the radius of the round edge cap. 

ii) When R=0, the curve of the numerical model can match the experimental one 

well along the diagonal. When R=18mm the curve of the numerical model can match 

the experimental one well along the edge. However, there seems to be no one where 

the curves of the numerical model can simultaneously match the experiment well 
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along both the diagonal and edge. With the increase of the radius, the difference 

between the numerical and experimental deflections increases along the diagonal. 

However, the difference decreases along the edge. If the same difference is chosen 

along the diagonal and the edge, a radius of R=4.8mm can be obtained, as shown in 

Fig. 3.31.  

0

z y

x

R nail×4

p

l

l

 
Fig. 3.28 Constrained membrane with round edge cap of radius R: R=0, 4.5mm, 9mm and 

18mm 
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a) R=0 b) R=4.5mm 
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c) R =9mm d) R =18mm 

Fig. 3.29 Membrane deflections along the diagonal with different R: R=0, 4.5mm, 9mm and 
18mm 
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The boundary constraint is a factor which affects the numerical result, and it 

should be dealt with carefully to minimum the difference between the numerical and 

experimental results. 
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c) R=9mm d) R=18mm 

Fig. 3.30 Membrane deflections along the edge with different R: R=0, 4.5mm, 9mm and 
18mm 

 
Fig. 3.31 Differences of the maximum membrane deflections along the diagonal and edge 
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3.2.4 Some remarks 

The nonlinear simulations for the membrane deformation based on both 

membrane and shell models using the ES-FEM-T3 and FEM-T3 are presented and 

two factors, i.e. pressure fluctuations in the experiment and boundary constraints in 

the numerical models, are carefully checked to determine their influence on the slight 

difference observed between the numerical and experimental results. From the above 

formulations and discussions, we found that:  

i) The 3D mechanical model proposed by Shi et al. [15] always underestimates 

the membrane deflections, whether it is for the maximum deflections or the 

deflections along the diagonal and the edge. One possible reason for this 

underestimation is its linear strain assumption. The 3D mechanical model is only 

effective for the membrane with a small deformation. In order to accurately predict 

the membrane with a larger deformation, the nonlinear term should be added into the 

strain. As the theoretical treatment of the nonlinear term is complex, numerical 

simulation appears to be the viable approach.  

ii) Numerical simulation is a good choice to calculate the membrane with a large 

deformation. The numerical results from the membrane model agree much better with 

the experiment in contrast to the shell model. So the membrane model is the preferred 

model to simulate the membrane’s deformations. 

iii) The ES-FEM/Membrane model can give much closer results to the experiment 

than either the FEM/Membrane model or FEM/Shell model. 

iv) If one would use the experimental data as a benchmark to evaluate the 

numerical results, a reproducibility test is suggested to determine the experimental 
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uncertainty. The boundary constraints should be carefully set in the numerical 

simulations to make sure that they are the same as those in the experiment.  

3.3 Concluding remarks for Chapter 3 

In this chapter, both the linear and nonlinear ES-FEM-T3 models are 

successfully established and implemented for solving two practical engineering 

problems. Not only are the numerical properties of the ES-FEM-T3 confirmed (as 

concluded in [1]) by these simulations, some other conclusions are also drawn. The 

ES-FEM-T3 gives more accurate solution irrespective of the linear elastic bending 

stress analysis or the nonlinear membrane deflection analysis. These findings give us 

confidence to further extend it for solving other more complex FSI problems. A 

detailed procedure of coupling the ES-FEM-T3 with GSM/ALE (detailed sooner) for 

solving FSI problems will be presented in Chapter 5. 
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Chapter 4  

GSM/ALE for incompressible fluid flows over moving mesh 

 

As an important part of the smoothed family, the ES-FEM-T3 has already been 

successfully implemented for solving solid mechanics in the previous chapter. In this 

chapter, another important part of this smoothed family, i.e. the GSM, will be 

explored for solving the fluid flows over moving mesh due to the oscillation of the 

rigid body immersed in it. Accordingly, the novel GSM/ALE, i.e. the implementation 

of GSM into the ALE form of Navier-Stokes equations, is proposed. This newly 

proposed GSM/ALE will be the basis of further solving the fluid-deformable structure 

interaction problems in Chapter 5.  

Different from the GSM for solving fluid flows over fixed mesh [1-3], the 

GSM/ALE is performed over moving mesh in which the velocities of the moving grid 

points are involved. Accurately determining these velocities are quite essential to 

preserve the conservations of mass and momentum on the moving mesh, thus to 

ensure the accuracy of the proposed GSM/ALE. For a general problem the grid 

positioning quantities are usually available as a function of time, particularly in the 

case that the grid movement is governed by the PDEs. The grid velocities are 

approximated by finite difference interpolations of these positioning quantities [4].  

During the determination of the positioning quantities and velocities of the 

moving grid, the so-called geometric conservation law (GCL) is suggested to be 

obeyed. The GCL states that no disturbance should be introduced by any arbitrary 

mesh motion for a uniform flow [5]. Obey the GCL in an ALE formulation: i) can 

increase the accuracy of the solutions [6, 7]; ii) is sufficient for achieving at least 1st-
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order accuracy [8]; and iii) is necessary for preserving the non-linear stability of the 

underlying time-integration scheme [8]. Literature reveals that there are roughly two 

approaches to determine the geometric parameters to enforce the GCL:  

i) By adding an extra term derived directly from the GCL into the discretized 

governing equations [6, 9, 10], the GCL can be satisfied automatically regardless of 

the mesh movement;  

ii) Different intermediate mesh configurations between 1,  n nt t +    are constructed 

and the governing equations are discretized on these mesh configurations [4, 8, 11]. 

For different time integration methods, e.g. the nth order central difference method [4, 

8, 11] and the nth stage Runge-Kutta method [4], the intermediate mesh configurations 

may be chosen at different intervals between 1,  n nt t +   .  

It is argued that the derivation procedure for the first approach does not strictly 

satisfy the strong conservations of mass and momentum in time and may not be 

suitable for rapidly moving strong shock problems [6]. However, for problems 

without rapidly moving strong shocks, the first approach is much more efficient and 

the relevant results are of sufficient accuracy. In the present study, this approach is 

chosen to construct the GSM/ALE for the incompressible fluid flow problems.  

Referring to the time integration of the GSM for solving incompressible fluid 

flows over fixed mesh, the artificial compressibility method is again utilized by the 

GSM/ALE and the dual time stepping approach is employed for the time integration 

of the transient/steady incompressible fluid flows over moving mesh. In comparison 

with the single global time stepping approach, larger physical time step is allowed in 

the properly devised dual time stepping approach, which can help to achieve not only 

fast convergence but also high stability in the solution process. To circumvent the 
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upwinding effect, the second order Roe flux differencing splitting unwinding scheme 

(Roe2) is adopted, and a Riemann problem is solved at the cell interface to evaluate 

the numerical fluxes [12]. 

In this chapter, the general idea of ALE is firstly introduced. Then the detailed 

derivations of the GSM/ALE in both spatial and temporal domains are presented. The 

verifications of the convergence, accuracy and robustness of this newly proposed 

GSM/ALE is demonstrated through solving a series of benchmark tests. Some 

concluding remarks are given in the end of this chapter. 

4.1  ALE formulation based on GSM framework  

4.1.1 A brief on ALE formulation 

As reviewed in Chapter 1, the ALE description is a hybrid technique that 

combines the advantages of both the Lagrangian and Eulerian descriptions while 

minimizing their disadvantages [13]. In the ALE description an extra reference 

configuration that coincides with the moving mesh domain Ω̂  is introduced except 

the material (initial) and spatial configurations. The kinematics of the material 

particles is described referring to this configuration. Thus in formulating the 

continuous media with ALE, a total of two motions, i.e. the mesh and material 

motions, should be described and the kinematic relationships between these two 

motions should be established.  

The descriptions of these two motions can be, respectively, defined as 

( ), tφ=x X  (4.1) 

( )ˆ , tφ=x χ  (4.2) 
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where x is the coordinates in the spatial domain Ω ; X is the material coordinates in 

the initial domain 0Ω ; χ  is the mesh (reference) coordinates in the reference domain 

Ω̂ ; φ ( ), tX  is the kinematic equation that maps the material particle X to the spatial 

point x; and ( )ˆ , tφ χ  is the kinematic equation that maps the mesh point χ  to the 

spatial point x.  

By compositing Eqs. (4.1) and (4.2), the kinematic relationship of position 

quantities of material coordinates X and mesh coordinates χ  can be established at an 

arbitrary time t as  

( ) ( ) ( ) 1ˆ ˆ, , ,t t tφ φ φ φ−= = ⇒ = Ψ =x X X χ χ  (4.3) 

where ( ), tΨ X  describes the movements of the material particles by referring to the 

reference domain Ω̂ . For simplification, at the initial time t=0 the reference domain 

Ω̂  is usually set to be identical with the initial domain 0Ω , i.e. ( ),0 =X Xχ . A clear 

illustration for these relationships is shown in Fig. 4.1. 

( ), tφ X

( )ˆ , tφ χ

( ), tΨ X

Ω̂Referential domain

χ

0ΩMaterial domain

X
ΩSpatial domain

x

 
Fig. 4.1 Mappings between Lagrangian, Eulerian, ALE descriptions 

Analogously, the kinematic relationship of the velocities of the material particles 

and mesh points can be established at an arbitrary time t as  
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( ) ( ) ( ) ( )

( )

ˆ ˆ, , , ,

ˆ ,
                          g

t t t t
t t t

t

φ φ φ
=

φ

∂ ∂ ∂ ∂Ψ
= = +

∂ ∂ ∂ ∂

∂
= + ⋅

∂

X

X X
x v

v w



χ

χ χ
χ

χ
χ

 (4.4) 

where v is the velocity of the material particle; vg is the velocity of the mesh point; 

and w is the velocity of the material particle seen from the referential domain Ω̂ .  

Theoretically, the velocity w can explicitly appear in the ALE form of the 

governing equations. In that case the gradients of the fluid quantities (i.e. ρ  and ρv ) 

should be evaluated according to the reference domain Ω̂ . However, in 

computational mechanics it is usually much more convenient to work in the spatial 

domain Ω  or the material domain 0Ω . Particularly, in fluid mechanics, the 

constitutive relationships are naturally expressed in the spatial domain and the Cauchy 

stress tensor is a natural measure for stress [14]. For this purpose, another velocity 

parameter, i.e. the so-called convective velocity c which is the material particle 

velocity seen from the spatial domain Ω , is introduced to replace w in the ALE form 

of governing equations. In that case, the gradients of the fluid quantities (i.e. ρ  and 

ρv ) are evaluated according to the spatial domain Ω .  

After rewriting Eq. (4.4), the so-called convective velocity c can be easily gotten 

as 

( )ˆ ,
g

tφ∂
= − = ⋅

∂
c v v w

χ
χ

. (4.5) 

It should be noted that the w and c can be identical if and only if the mesh 

motion is purely translational, i.e. ( )ˆ , tφ∂ ∂ = Iχ χ  where I denotes the identity 

tensor [14]. An illustration of different velocities is shown in Fig. 4.2. 



 
Chapter 4                                                    GSM/ALE for incompressible fluid flows over moving mesh 

136 
 

v

Ω

Mesh Point

Material particle

c

vg

 
Fig. 4.2 Illustration of the relationship among the material velocity, mesh velocity and 

convective velocity 

4.1.2 Governing equations in ALE form 

In a general ALE formulation the material and mesh motions do not coincide 

with each other. This will lead to the flux of the field variables across the surface of 

the moving volume. Thus an extra convection term should be added into the 

governing equations to ensure the conservations. As is known in the Eulerian 

description the integral form of the conservation equations can be derived according 

to the Reynolds transport theorem over the fixed mesh [13]. Similarly, the Reynolds 

transport theorem over an arbitrary moving volume can be written as [13, 14] 

( )
( )

( )
( )

( )
( )

 2
 1

,
, d d , dgt t t

term
term

f t
f t V V f t S

t tΩ Ω ∂Ω

∂∂
= + ⋅

∂ ∂∫ ∫ ∫
x

x
x x v n

χ

 (4.6) 

where ( )tΩ  denotes the time varying moving volume; ( ),f tx  denotes an arbitrary 

field variable that can be the density ρ  or momentum component xvρ  and yvρ  

described with the spatial coordinates x; n denotes the unit outward normal of the 

surface ( )t∂Ω  bounding the moving volume ( )tΩ , n=nxi+nyj in 2D; the term 1 in the 

right hand side (RHS) is the local time derivative of the volume integral with time t 
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fixed; and the term 2 represents the relative flux of ( ),f tx  across the surface ( )t∂Ω  

at this fixed time t. 

If we replace the scalar ( ),f tx  in Eq. (4.6) by the fluid density ρ  and 

momentum component xvρ  and yvρ , and replace the spatial time derivative 

( ),f t t∂ ∂x  with the expressions in Eq. (2.27), the ALE integral form of the governing 

equations can be finally obtained as  

( ) ( )( )
d dale

c vt t
V S

t Ω ∂Ω

∂
+ − =

∂ ∫ ∫U F F 0
χ

 (4.7) 

where ale
cF  is in the form of 

=
s g

ale
c x x x x x s x x g

y y y y y s y y g

s a
c c

V V
v pn v pn v V pn v V
v pn v pn v V pn v V

ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

       ⋅ Θ
       = ⋅ + = Θ+ + −       
       ⋅ + Θ+ +       

c n
F c n

c n

F F
 

 
(4.8) 

in which s
cF  is exactly the same as cF defined in Eq. (2.38). An additional superscript 

“s” is added to distinguish it with the extra flux a
cF  that is due to the effect of the 

mesh movement; gV  in a
cF  is the contravariant velocity of mesh movement, i.e. 

g gV = ⋅v n ; and s gV VΘ = − . 

Taking a cell average of the field variables U in Eq. (4.7), i.e. 
( )

1 d
t

V
A Ω

= ∫U U
 

where A stands for the area of the control volume ( )tΩ , it can be rewritten as 

( ) ( )( )
dale

c vt
A S

t ∂Ω

∂
+ − =

∂ ∫U F F 0 . (4.9) 

Comparing Eqs. (2.28) and (4.9) we can see that the main difference between the 

standard Eulerian formulation and the ALE formulation is the introduction of the 
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extra “ALE” flux a
cF  which is a function of the positioning quantities and velocities 

of the moving grid points. Thus the general procedures of solving Eq. (4.7) with GSM 

are similar with those of solving Eq. (2.28) over fixed mesh, except an additional 

effort for evaluating the ALE convective flux a
cF . 

It has already been shown (and will be further shown in Section 4.2) that the 

computation of positioning quantities and velocities of the moving grid points in the 

ALE formulation must be performed in such a way that the ALE numerical scheme 

preserves the state of a uniform flow [5], i.e. obeying the GCL. As reviewed 

previously, there are in the literature mainly two different approaches to deal with the 

temporal term ( )A t∂ ∂U  in Eq. (4.9) to ensure the satisfactory of the GCL by the 

ALE, thus to determine the geometric parameters. 

i)     Temporal term with an expansion 

Since the area of ( )tΩ  and cell average of the field variables U are smooth with 

respect to time [9], the temporal term ( )A t∂ ∂U  can be expanded as 

( )( )
d 0ale

c vt

A A S
t t ∂Ω

∂ ∂
+ + − =

∂ ∂ ∫
UU F F . (4.10) 

For flows with constant density and velocities Eq. (4.10) degenerates to 

( )
( )

d 0gt

A S
t ∂Ω

∂
− ⋅ =

∂ ∫ v n .
 

(4.11) 

Either replacing A
t

∂
∂

in Eq. (4.10) with ( )
( )

dgt

A S
t ∂Ω

∂
= ⋅

∂ ∫ v n
 
[6, 9] or substitute 

Eq. (4.11) directly into the RHS of Eq. (4.10) [10], the GCL can be automatically 

satisfied regardless of the movement of the fluid mesh.  

ii)    Temporal term without an expansion 
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If the temporal term ( )A t∂ ∂U  is discretized directly in time by using either the 

nth order central difference method [4, 8, 11] or the nth stage Runge-Kutta method [4], 

the GCL will be satisfied with the geometric parameters at different intermediate 

configurations between time levels tn and tn+1. For example, if we use the BDF2 to 

discrete the temporal term, it becomes 

( ) ( ) ( ) ( )( )

1 1

,

3 4
d 0

2

n n n
ale
c vt

A A A
S

t

+ −

∂Ω

− +
+ − =

∆ ∫ x

U U U
F F  (4.12) 

For a flow with constant density and velocities Eq. (4.12) degenerates to 

( )
( )

1 1

,

3 4 d 0
2

n n n

gt

A A A S
t

+ −

∂Ω

− +
− ⋅ =

∆ ∫ x
v n  (4.13) 

In order to satisfy the GCL, the first term in Eq. (4.13) should be accurately 

evaluated. Thus evaluations of the second term in Eq. (4.13) and the fluxes in Eq. 

(4.12) are constrained either on a set of intermediate mesh configurations at each time 

interval 1,  n nt t +    and time-averaging of each set of these numerical quantities, or on 

a unique computational mesh configuration in the time interval 1,  n nt t +    by time-

averaging the intermediate mesh configurations themselves, rather than simply 

evaluating them on the mesh configuration tn+1 [4, 8, 11].   

Comparing these two approaches, the first one has less constraint on the 

geometric parameters and is thus more efficient in the calculation process. It is used in 

the present study, which leads to the governing equations in the final form as 

( ) ( )( ),
d d 0ale

g c vt t
A S S

t ∂Ω ∂Ω

∂
+ ⋅ + − =

∂ ∫ ∫x

U U v n F F  (4.14) 

where the second term is called the moving mesh source term [9].  

To numerically solve the ALE form of the incompressible Navier-Stokes 

equations, i.e. Eq. (4.14), the 1st order (convective) and 2nd order (viscous) spatial 
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derivatives of the field variables in it are discretized with the proposed GSM of Eqs. 

(2.33), (2.34) and (2.35), and the physical time derivation is discretized with the 

second-order three-level backward differencing scheme (BDF2). With the help of 

artificial compressibility method, a dual time stepping procedure is constructed in the 

time domain, where the steady state solutions with respect to pseudo time ( τ∆ ) is 

pursued at each physical time interval ( t∆ ) by using the iterative time marching 

method. Details about the spatial and temporal discretizations will be presented in the 

following two sections. 

4.1.3 Spatial discretization of the governing equations with GSM 

4.1.3.1 Convective flux 

The convective fluxes s
cF  and a

cF  are evaluated separately. The evaluation of the 

stationary convective flux s
cF  can follow exactly the same way as that in Eq. (2.41) 

where a Riemann problem is solved at the volume interface in order to avoid the 

unexpected high frequency spurious oscillations due to the high Reynolds number. 

The stationary convective flux at interface ijk can be approximated according to Eq. 

(2.41) as 

( ) ( ) ( ) ( )1
2 k k k kk

s s L s R L R
c c ij c ij Roe ij ijij

 = + + − F F Q F Q A Q Q . (4.15) 

where the physical meanings of the parameters are exactly the same as those in Eq. 

(2.41). The approximation of the stationary convective flux s
cF  at the node i can then 

be expressed as 

( ) ( ) ( )
1

d
sup

kk

N
s s
ci c ijijt

k
S S

∂Ω
=

≈ ∆∑∫ F F  (4.16) 

where Nsup is the total number of supporting nodes surrounding the node i. 
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The grid velocities at mid-point of the edge in the ALE convective flux a
cF  is 

approximated with a central difference scheme 

( )1
2

m L R
g g g= +v v v  (4.17) 

where L
gv  and R

gv  corresponds to the grid velocities at node i and jk, respectively. 

Finally, the total convective flux at the node i can be approximated as 

( )( ) ( ) ( ) ( ) ( )( )
,

1
d , ,

sup

kk

N
s a s a
ci ci c c iijijt

k
S S t t

∂Ω
=

+ ≈ + ∆ =∑∫ x
F F F F C Q x x  (4.18) 

4.1.3.2 Viscous flux 

The evaluation of the viscous flux corresponding to node i also follows exactly 

the same form as in Eq. (2.44),  

( )
( ) ( ) ( ) ( )( )

1
d ,

sup

kk

N

vi v iijijt
k

S S t t
∂Ω

=

≈ ∆ =∑∫ F F D x x  (4.19) 

where ( )
k

v ij
F

 
is associated with the velocity gradients ( xv∇  and yv∇ ) at the mid-point 

of an edge ijk that is calculated according to Eqs. (2.33) and (2.34). 

4.1.3.3 Moving mesh source term 

The moving mesh source term of 
( ),

dgt
S

∂Ω
= ⋅∫ x

S U v n
 
contains the grid 

velocities. It can be integrated along the edge of nGSD corresponding to node i,  

( ) ( )( )
( )

( ) ( )
1

, , d
sup

kk

N

i i g i g ijijt
k

t t S S
∂Ω

=

= ⋅ ≈ ⋅ ∆∑∫S Q x x U v n U v n . (4.20) 

By substituting the discretized forms of Eqs. (4.18), (4.19) and (4.20) back into 

Eq. (4.14), the semi-discrete form of the Navier-Stokes equations can be finally 

obtained as 
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( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

* , ,

                          , , , , ,  .

ale i
i i

i i i

t t A
t
t t t t t t

∂
=

∂
+ + − =

UR Q x x

S Q x x C Q x x D x x 0



  

 (4.21) 

4.1.4 Temporal discretization of the governing equations with dual time stepping 

approach 

By adding a pseudo time term into Eq. (4.14), the ALE form of the governing 

equations with artificial compressibility can be constructed as  

( ) ( ) ( )( )*d , ,
d

ale
i i iA t t

τ
+ =P Q R Q x x 0 . (4.22) 

This equation has the similar form with Eq. (2.46) except the expression of semi-

discrete transient ( ) ( )( )* , ,ale
i t tR Q x x  in which an extra ALE convective flux a

cF  is 

added comparing with ( )* ,iR Q x  in Eq. (2.46). By using the BFD2 to discretize the 

physical time term in the unsteady residual ( ) ( )( )* , ,ale
i t tR Q x x , it becomes  

( )

( ) ( ) ( )

1
* 1 1 1

1 1 1 1 1 1

3 4, ,
2

                              , , , , ,

n n
ale n n n i i i

i i

n n n n n n
i i i

A
t

−
+ + +

+ + + + + +

 − +
=  ∆ 

+ + − =

U U UR Q x x

S Q x x C Q x x D x x 0



  

 (4.23) 

where ( ) ( )( )* , ,ale
i t tR Q x x  is evaluated at time tn+1; Ui is evaluated at the “k-1” level 

of RK5 method in the pseudo time level as illustrated below; and the mesh velocity 

1n
g

+ v  is evaluated with the same way as for the physical time term [6, 9]  

1 1
1 1 3 4

2

n n n
n n

g t

+ −
+ + − +

= =
∆

x x xv x . (4.24) 

Other terms in the unsteady residual can be expressed as 

( ) ( )1

1 1 1 1, , d
n

n n n n
i i g S

+

+ + + +

∂Ω
= ⋅∫ x

S Q x x U v n  (4.25) 

( ) ( ) ( ) ( )( )1

1 1 1 1 1 1 1, , , , , , d
n

n n n n ale n n n
i i c i v i S

+

+ + + + + + +

∂Ω
 − = − ∫ x

C Q x x D x x F U x x F U x   . 

 (4.26) 
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The RK5 method with residual smoothing is used in the pseudo time level [3, 15] 

for its high efficiency of the steady-state solver. The general form for RK5 method 

with residual smoothing applied to Eq. (4.22) can be derived as 

( )10 0 * 1
1

2 ,    =1,...,5
1 3

kk ale kk
i i i i in

k i

t k
A

α λ
α λ

− −
+

 ∆
= − + − +  

Q Q Q R Q  (4.27) 

where ( )CFL 2 tλ τ= ×∆ ∆ ; and kα ( 1α =0.0695, 2α =0.1602, 3α =0.2898, 4α =0.5060, 

5α =1.0)  is the optimized coefficients for convergence acceleration to steady state.  

According to this dual time stepping integration, a summary of the computational 

procedures with GSM for solving both steady-state and transient fluid flows is listed 

in the following flowchart. 

Flowchart for solving the incompressible flows with GSM/ALE 
(1) Construct the nGSD and mGSD 
(2) Initial geometry quantities and flied variables 

(2.1) Calculate the initial quantities in Eqs. (2.33)-(2.35)  
(2.2) Initial the flow field, -1U=0U=0  
(2.3) Initial physical time, n=0 and t0=0 

(3) Apply the boundary conditions 
(4) Solver for transient and steady flows 

(4.1) For transient flow, call subroutine Transient_solver 
(4.2) For steady flow, call subroutine Steady_solver 

Subroutine Transient_solver  
(4.1.1) Update the positions and velocities of the moving mesh, n+1x, n+1vg 
(4.1.2) Update the geometry quantities, n+1A and quantities in Eqs. (2.42)-(2.44) 
(4.1.3) Update the moving mesh source terms, 

( )1

1 1 1 d
n

n n n
i i g S

+

+ + +

∂Ω
= ⋅∫ x

S U v n  

(4.1.4) Initial the pseudo time counter, m=1 
(4.1.5) Transfer ( )1,n m nf+ =Q U  

(4.1.6) Transfer 1,0 1,n n m+ +=Q Q  
(4.1.7) Loop over RK steps k=1, 5 

                
( ) ( ) 1, , 11,0 * 1, , 1 1

1

2' , ,
1 3

n m kk n ale n m k n nk
n

k

t
A

α λ
α λ

+ −+ + − −
+

∆ = − − +  
R Q R Q U U Q

 

                

1, , 0 '
n m k k+

= −Q Q R

                 

 
End loop k 

(4.1.8) Update 1, 1 1, ,5n m n m+ + +=Q Q , ( )1 1 1, 1n n mf+ − + +=U Q  
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(4.1.9) Apply the boundary conditions to 1m+ U  
(4.1.10) If error_transient < tol 

                Break the loop over pseudo time, go to step (4.1.11)   
        Else  
                Update counter mm+1 and go to step (4.1.6)  
        End If 

(4.1.11) Update counter nn+1 and go to step (4.1.1) 

Subroutine Steady_solver 
(4.2.1)     Initial the pseudo time counter, m=0 
(4.2.2)     Update the positions and velocities of the moving mesh, m+1x, m+1vg 
(4.2.3)     Update the geometry quantities, m+1A and quantities in Eqs. (2.42)-(2.44) 
(4.2.4)     Update the moving mesh source terms, 

( )1

1 1 1 d
m

m m m
i i g S

+

+ + +

∂Ω
= ⋅∫ x

S U v n  

(4.2.5)      Transfer ( )m mf=Q U  

(4.2.6)      Transfer 0 m=Q Q  
(4.2.7)      Loop over RK steps k=1, 5 

                
( ) ( )0 * , 1 1 , 1

1

2' , ,
1 3

k ale m k m m m kk
m

k

t
A

α λ
α λ

− − −
+

∆ = − − +  
R Q R Q U U Q

 

                

, 0 'm k k= −Q Q R

                 

 
End loop k 

(4.2.8)     Update 1 ,5m m+ =Q Q ,  ( )1 1 1m mf+ − +=U Q   

(4.2.9)     Apply the boundary conditions to 1m+ U  
(4.2.10)   If error_steady< tol 

                Steady state is gotten, break the loop m 
        Else  

Update counter mm+1 and go  to step (4.2.2)  
        End If 

where tol donates the tolerant error in the calculation and error_transient donates the 

numerical error in each pseudo time step defined the same as Eq. (2.49), and 

error_steady is defined as 

( ) ( )11 1

1 1
_

node nodeN N mm m
i i i i

i i
error steady

++

= =

= − −∑ ∑U U U U . (4.28) 

As is pointed out in Chapter 2, the transient solutions of the fluid flows can be 

obtained efficiently with the help of dual time stepping technique with the 

Transient_solver. However, if only the steady-state solution is required, those 

physical temporal terms occurring in the respective systems of equations are 
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neglected but the pseudo time terms are still retained, as in the subroutine 

Steady_solver, in which the RK 5 method is then used for the time integration. 

4.2 Verification of GSM/ALE 

A set of flow problems involving moving meshes/boundaries has been 

considered to demonstrate the validity and performance of the proposed GSM/ALE. 

The recovery of uniform flow is firstly considered to verify that the GSM/ALE obeys 

the GCL regardless of the moving of the mesh. The Poisson’s problems which have 

analytical solutions are then presented to show the spatial/temporal convergence 

properties of the proposed GSM/ALE. The effect of the mesh distortion on the 

solution is also discussed to verify the robustness of the GSM/ALE on extremely 

distorted meshes. Benchmarks examples of lid-driven cavity flows and flow passed a 

stationary/cross-line/in-line oscillating cylinders are finally tested to demonstrate the 

global applicability of the proposed GSM/ALE. The results from the GSM on fixed 

mesh are calculated in some cases for purpose of comparison. 

4.2.1 Recovery of uniform flow 

The uniform flow in a square with randomly moving mesh in the domain is 

carried out to verify that the proposed GSM/ALE can preserve the uniform state of 

flow irrespective of the mesh movement, i.e. conforming to the GCL [16-18]. 

Configuration of the problem is shown in Fig. 4.3a. The grid inner domain is driven 

harmonically with a non-dimensional frequency and given as 

0

0

x

y

x x A a
y y A a
= +

 = +
. (4.29) 
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Here x0 and y0 are the initial coordinates of the grid in the square; a controls the 

movement of the mesh where ( ) ( ) ( )0 0sin 2 sin 2 sin 2x ya ft x l y lπ π π= × × , in which f 

is the frequency of the mesh movement, lx and ly are the length of the square’s edge in 

x- and y-directions, respectively; Ax and Ay are the amplitude of the mesh movement 

in x- and y-directions, respectively; and t is the physical time, t n t= ∆ where n denotes 

the nth time step. 

Parameters of the grid deformation are taken as follows: Ax= Ay=0.1, and the 

physical time interval is 0.01t s∆ = . A set of frequencies, i.e. f=0.5, f=1, f=2 and f=5, 

are selected to verify the independence of the solutions on the grid velocities.  
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a) Boundary condition b) Initial velocity contour and mesh 

Fig. 4.3 Illustration of a uniform flow passing a square 

  
a) f=1 b) f=5 

Fig. 4.4 Velocity contours and mesh configurations of two selected cases in the problem of a 
uniform flow passing a square 
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The initial mesh/velocity vector contour is shown in Fig. 4.3b. Two selected 

instant mesh configurations together with the calculated velocity vectors are plotted in 

Fig. 4.4, corresponding to f=1 and f=5, respectively. From these two figures it can be 

seen that the calculated velocities are constant in space and the uniform velocity field 

has been recovered by GSM/ALE, regardless of the velocity of mesh movement.  

A quantitative comparison of the calculated results under these frequencies is 

presented based on the L2 relative error norm given in Eq. (4.30) which measures the 

difference of the numerical and analytical results at every nodal point, 

( )
1 2

2 2

1 1

ˆ ˆ
node nodeN N

i i i
i i

error
= =

 
= − 
 
∑ ∑U U U . (4.30) 

Here iU and ˆ
iU are the numerical and analytical results at node i, respectively. 

 
Fig. 4.5 Comparison of the L2 relative error norms of the calculated solutions under different f 

for the uniform flow problem 

Fig. 4.5 compares the numerical errors under these frequencies. From this figure 

it can be seen that these errors are extremely small and quite close to each other, 

which verifies that the proposed GSM/ALE satisfies the GCL regardless of the mesh 

movement and it can recover the uniform flow to a machine tolerance. 
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4.2.2 Poisson’s problem 

Poisson’s equation governs many physical problems, such as heat conduction 

problems with sources sinks. In this section numerical tests for 2D Poisson’s equation 

in a square computational domain, as shown in Fig. 4.6, are conducted to check the 

accuracy, spatial/temporal convergences and robustness in response to cell irregularity 

in the present GSM/ALE.  

x

y

0

Dirichlet boundary:
U = analytical solution

(1,0)

(1,1)(0,1)

 
Fig. 4.6 Illustration of the Poisson problem 

The governing equation under investigation takes the following form 

( ) ( )
2 2

2 2 , , ,   0 1,  0 1U U U f x y t x y
t x y

∂ ∂ ∂
= + − ≤ ≤ ≤ ≤

∂ ∂ ∂
 (4.31) 

where U is a scalar variable with any reasonable physical meanings; f(x,y,t) is the 

source term of the corresponding governing equation. The steady-state solutions of U 

is calculated by adopting the pseudo-transient approach. 

Two Poisson problems with variations in source and boundary conditions are 

studied here. For the first Poisson problem, the source and initial conditions are 

prescribed as 

( ) ( )
( ) ( )

, , 13exp 2 3
,    0 1,  0 1   

, ,0 0
f x y t x y

x y
U x y
= − +  ≤ ≤ ≤ ≤= 

. (4.32) 

As plotted in Fig. 4.7a, the analytical solution to this problem is given as 

( ) ( ) ( ), exp 2 3 ,    0 1,  0 1   U x y x y x y= − + ≤ ≤ ≤ ≤ . (4.33) 
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For the second Poisson problem, the source, initial conditions and analytical 

solution are given as 

( )
( ) ( )

, , sin( )sin( )
,    0 1,  0 1   

, ,0 0
f x y t x y

x y
U x y

π π=  ≤ ≤ ≤ ≤= 
 (4.34) 

( ) ( )2

1, sin( )sin( ),    0 1,  0 1   
2

U x y x y x yπ π
π

= − ≤ ≤ ≤ ≤ . (4.35) 

The contour plot of the analytical solution to the second problem is shown in Fig. 

4.7b. 

  
a) The first Poisson problem b) The second Poisson problem 

Fig. 4.7 Contour plots of the exact solutions of the two Poisson problems 

In a numerical calculation, the analytical solution given in either Eq. (4.33) or Eq. 

(4.35), is directly applied on the four edges of the square domain with the Dirichlet 

boundary conditions.  

Spatial convergence of the present GSM/ALE is firstly conducted by using three 

sets of uniform triangular meshes of 30×30, 45×45 and 60×60. These meshes are 

artificially driven to deform according to Eq. (4.29) in the calculation. Parameters of 

the grid deformation are taken as follows: Ax= Ay=0.05, 0.0005t s∆ =  and f=1. The L2 

relative error norm defined in Eq. (4.30) is used to measure the difference between the 

numerical and exact solutions. 
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a) Spatial convergence b) Temporal convergence 

Fig. 4.8 Convergence rates of  the GSM/ALE in both spatial and temporal domains for the 
two Poisson problems 

Fig. 4.8a plots the grid-convergence property of the present GSM/ALE. The 

solid and dashed lines indicate the first and second order accuracy slopes, respectively. 

From this figure, we can see that the L2 relative error norms for both the first and 

second Poisson problems decrease asymptotically with 2h∆  in a manner supporting 

the expected second-order spatial accuracy of the present method, which is consistent 

with the truncation error analyses of the GSM on a fixed mesh [3].  

The time step refinement study is then presented to evaluate the temporal 

convergence of the GSM/ALE. The mesh of 60×60 is used, and mesh movement 

parameters are Ax= Ay=0.05 and f=0.1. A series of successively refined time-steps ( t∆

=0.1s, 0.075s, 0.05s and 0.025s) are selected for the time refinement study. The L2 

relative error norms corresponding to each time steps are computed at the time 

0.4t s= when the field is still unsteady. 

Fig. 4.8b shows the decay of the error as the time step is refined. The solid and 

dashed lines indicate the first and second order time accuracy slopes, respectively. 

Again a second order temporal accuracy of the present GSM/ALE is achieved for 

both the first and second Poisson problems. It is consistent with the second order 

accuracy of the BFD2 on fixed meshes [3, 9]. 
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a) The first Poisson problem b) The second Poisson problem 

Fig. 4.9 Comparisons of the numerical and analytical solutions along the vertical line across 
the center of the computational domain for the two Poisson problems 

To further examine the calculated steady state solutions by GSM/ALE, 

comparisons with the analytical solutions along the vertical line across the geometric 

center of the domain are presented for both the first and second Poisson problems, as 

shown in Fig. 4.9. From this figure we can clearly see that the numerical solutions 

match very well with the analytical solutions, which indicates that the present 

GSM/ALE can give accurate results.  

In the previous study [3, 19], it was found that the GSM on fixed mesh is 

remarkably robust and insensitive to cell irregularity which is attributed to the 

consistent use of smoothing techniques. In the present study the robustness of the 

present GSM/ALE to the irregularity of the cells is discussed to illustrate that the 

present GSM/ALE can also give accurate results even with very large mesh distortion. 

This is important because in the FSI problems especially where there are large 

deformations in solid domain the mesh condition is highly non-uniform. A method 

that can give accurate and stable results on those extremely distorted meshes will 

avoid or minimize the time consuming re-meshing process and the corresponding less 

accurate numeral interpolation procedure.  
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To indicate the distortions of the mesh, the coefficient of irregularity for all 

triangular cells in the computational domain,γ , is defined as [3, 20] 

( ) ( ) ( )2 2 2

2 2 2
1

eleN
i i i i i i

ele
i i i i

a b b c c a
N

a b c
γ

=

 − + − + −
=  

+ +  
∑  (4.36) 

where ai, bi and ci denote the lengths of  the cell edges of a triangular cell, respectively; 

and Nele stands for the total number of cells in the overall domain. A higher 

irregularity number means a worse (distorted) mesh condition. 

Ax and Ay in Eq. (4.29) controls the amplitude of the mesh movement, thus the 

irregularity of the mesh. A series of Ax and Ay (Ax= Ay=0.025, 0.05, 0.075 and 0.1) are 

chosen here to deform the mesh. The corresponding maximum mesh deformations are 

shown in Fig. 4.10. The stretching and skewing of the mesh become significant with 

the increase of the amplitude. Contours of the calculated results based on these 

meshes are plotted in Fig. 4.11 and Fig. 4.12. From these two figures we can find that 

there is no significant difference among the contours for each problem, which 

indicates that the present GSM/ALE can give reasonable steady state solutions 

regardless of mesh distortion.  

Table 4.1  L2 relative error norms of the computed results under different mesh irregularities 
for the first/second Poisson problems 

 Irregularity 

 0.0887 0.0979 0.1160 0.1499 
First Problem 2.0520e-4 4.0076e-4 5.9985e-4 8.2594e-4 

Second Problem 2.5557e-4 3.2436e-4 4.1677e-4 4.5501e-4 
 
To quantify the effect of mesh distortion on the calculated results, the L2 relative 

error norms of the numerical solutions based on different distorted meshes are listed 

in Table 4.1. From this table we can conclude that: 

i) The L2 relative error norms of the solutions on these highly distorted and 

rapidly moving meshes are of the same order and remain fairly small.  
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a) γ=0.0887 b) γ=0.0980 c) γ=0.1160 d) γ=0.1494 
Fig. 4.10 Mesh of 30×30 with different irregularities for the two Poisson problems 

    
a) γ=0.0887 b) γ=0.0980 c) γ=0.1160 d) γ=0.1494 

Fig. 4.11 Contour plots of the steady results for the first Poisson problem based on mesh of           
30×30 with different irregularities 

    
a) γ=0.0887 b) γ=0.0980 c) γ=0.1160 d) γ=0.1494 

Fig. 4.12 Contour plots of the steady results for the second Poisson problem based on mesh of      
30×30 with different irregularities 

ii) With the increase of the irregularity, the L2 relative error norm increases 

slightly, implying that the irregularity can affect the accuracy of the numerical 

solutions. Of course this effect is reasonable and limited in the calculations, and is 

also observed on the numerical calculations with fixed meshes in [3]. It thus suggests 

that the condition of element must not be extremely distorted, otherwise the re-

meshing process is better suited to ensure a more accurate solution. Anyway, the 

GSM/ALE can still ensure reasonable accuracy in the presence of much distorted 

mesh.  
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iii) With the increase of the irregularity, a smaller time step is suggested to be 

used in the time integration process to ensure the stability and convergence of the 

calculation. This is because the critical time step in an explicit method is proportional 

to the characteristic length of an element. As the mesh becomes more and more 

distorted, the characteristic length of the quite distorted element becomes smaller, 

thus a smaller time step should be chosen to ensure the stability of the calculation.  

iv) The CFL is important to ensure the stability of the numerical results. In the 

present CFL=0.2 is chosen for the case of γ=0.0887, 0.0980, 0.1160 and CFL=0.1 for 

γ=0.1494. 

4.2.3 Lid-driven cavity flow 

The lid-driven cavity flow is a benchmark problem designed to evaluate the 

behavior of the algorithms that deal with incompressible viscous flows [21-23]. The 

purpose of testing this problem in this subsection is to verify that the present 

GSM/ALE can give steady-state flows in the midst of arbitrarily mesh movement 

during the calculation.  
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Fig. 4.13 Illustration of the lid-driven cavity problem 
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a) Initial coarse grid (nnode=3618) b) Initial fine grid (nnode=8151) 

Fig. 4.14 Meshes used in the lid-driven cavity problem 

Fig. 4.13 shows the geometric layout of the lid-driven cavity with the dimension 

of [0,1]×[0,1]. Incompressible viscous fluid is confined within a squared cavity in 

which only the upper edge is allowed to tangentially slide at a prescribed velocity 

(vx=1 in this test). Meanwhile, non-slip conditions (vx=vy=0) are applied to the rest of 

the walls. Reference pressure is prescribed to be zero at the bottom left corner. Two 

sets of meshes are studied: the coarser mesh is used for lower Reynolds number flows 

(Re<1000), while the finer grid is adopted for larger Reynolds number flows 

(Re≥1000) where the more steeper boundary layers near walls are essentially required 

to be resolved by employment of finer grids, as shown in Fig. 4.14. The meshes inside 

the domain are driven to deform according to Eq. (4.29), the same as those in 

Subsections 4.1 and 4.2. 

As a Hopf bifurcation will appear for larger Reynolds numbers (usually the 

critical Re =10000), Reynolds numbers below this critical value, i.e. Re=10, 100, 1000, 

5000, are selected in this study to ensure a steady solution. In this test, CFL>10 is 

used. A much lower CFL (especially lower than 1) appears to induce unstable 

solutions.  
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a) Re=100 b) Re=400 c) Re=1000 c) Re=5000 

Fig. 4.15 Plots of streamlines for various Reynolds numbers of the lid-driven cavity problem 

Numerical results by GSM/ALE on the streamfunctions for various Reynolds 

numbers are shown in Fig. 4.15. As is well known, the details about the vertical flow 

structures depend highly on Reynolds numbers. For cases of Re≤1, the flow is almost 

symmetric with respect to the central vertical line. As the Reynolds number increases, 

the position of the central vortex moves towards the top right corner before it returns 

again to the centre of the cavity at higher Reynolds numbers. The bottom right and 

left vortices begin to develop at low Reynolds numbers, and continuously increase in 

scale and shift their position, as Reynolds number increases. A secondary vortex is 

developed near the top left corner at Re=5000 approximately. All the above 

phenomena are well re-captured by the proposed GSM/ALE solver, as shown in Fig. 

4.15.  

The steady velocity components vx and vy along the vertical and horizontal lines 

through geometric center of cavity are plotted in Fig. 4.16 and Fig. 4.17, respectively, 

in which the results from GSM/ALE are compared with those from the GSM on fixed 

mesh as well as other references. From these figures it can be seen that the curves of 

GSM/ALE and GSM are extremely close to each other and both are close to the 

references. The wall boundary layer becomes thinner with the increase of Re, and the 

near-linearity of these velocity profiles in the central core of the cavity is indicative of 

the uniform vorticity region that develops here at large Re  [21]. A slight difference of 
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the curves between the GSM/ALE and GSM at Re=5000 should be due to the 

deformation of the mesh, as discussed in Section 4.2. 

  
a) Re=100 b) Re=400 

  
c) Re=1000 d) Re=5000 

Fig. 4.16 Comparison of profiles of vx along vertical line through geometric center of the 
cavity 

  
a) Re=100 b) Re=400 

  
c) Re=1000 d) Re=5000 

Fig. 4.17 Comparison of profiles of vy along horizontal line through geometric center of the 
cavity 
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4.2.4 Flow past a cylinder 

The rigid cylinder immersed in a uniform flow stream has been widely studied as 

a benchmark problem, in which the cylinder can be either fixed in space or forced 

cross-line/in-line oscillations with respect to the free stream direction. For a fixed 

cylinder, there is no interaction between the fluid and solid. However, for the forced 

cross-line/in-line oscillation cylinders, a nonlinear interaction will occur as the 

cylinder oscillation frequency approaches the vortex shedding frequency. The 

Strouhal shedding frequency (St for a fixed cylinder) will be suppressed and the 

vortex sheds according to the cylinder oscillation frequency over a range of flow 

velocities. If the cylinder oscillation frequency is near twice the St, both the drag and 

lift coefficients will increase greatly, called the phasing-locking phenomenon [24-26].  

In the present section, both the stationary and cross-line/in-line oscillation 

cylinders immersed in a uniform flow are studied to verify that the current GSM/ALE 

can give correct steady-state and transient solutions with grid movement during the 

calculation. Experimental and other numerical results are sourced for comparison to 

the present calculation. 

4.2.4.1 Flow past a stationary cylinder 

The uniform flow ( 1xv ∞ = , 0yv ∞ = ) past a stationary cylinder of radius r=0.5 is 

firstly studied, as shown in Fig. 4.18a. Characteristic based farfield boundary 

conditions are imposed at the external boundary of the computational domain (R=15r), 

and non-slip wall boundary conditions are imposed onto the surface of the cylinder. 

Initially, the independent variables in the fluid domain are set to be vx=1, vy=0 and 

p=0.  
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Farfield

Non-slip wall
vx=1
vy=0

 

Original meshMoved mesh

 
a) Geometry b) Original/moved unstructure meshes 

Fig. 4.18 Illustration of the uniform flow over a stationary/cross-line/in-line oscillating 
cylinder 

A set of unstructured triangular meshes (10079, 14152, 29770 and 38321 nodes) 

with a higher grid density near the surface of the cylinder are generated. To derive 

these meshes in the fluid domain, the excitation function similar with Eq. (4.29) is 

imposed, 

0

0

x

y

x x A a
y y A a
= +

 = +
. (4.37) 

The physical interpretation of the parameters in Eq.(4.37) are exactly the same as 

those in Eq. (4.29) except that ( )sin 2ioa l ft Rπ= , in which lio is the distance of the 

arbitrary point i to the origin o, R is the radius of the outward circle. The parameter 

values of Ax=Ay=0.2, f=10 and t∆ =0.01s are used in the calculation. It is found that 

the solutions converge on the mesh of 29770 and 38321 nodes with almost identical 

solutions. Thus in the following simulations, the set of mesh of 29770 nodes is used. 

One configuration of this deformed mesh is plotted in Fig. 4.18b. 

During the simulation the drag/lift coefficients and the Strouhal number are used 

as a criterion to judge the performance of the numerical method,  

20.5
D

D
x

FC
v Dρ ∞

=  (4.38) 
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20.5
L

L
x

FC
v Dρ ∞

=  (4.39) 

where ρ is the density of the fluid; D is the characteristic length of the cylinder; xv ∞  

is the farfield velocity of the fluid for the stationary cylinder case; and FD and FL are 

the drag and lift force, respectively, which arise from two sources, i.e. the shear stress 

ijτ  and the pressure p distribution along the surface of the body,  

( )
1 1

wall wallN N
ji

i i ij jk
k k j i

k

vvF f p n l
x x

δ µ
= =

   ∂∂ = = − + +    ∂ ∂     
∑ ∑ . (4.40) 

Parameter fi is the surface force component in xi direction; i, j=1 or 2 denotes the 

direction of x or y, corresponding to FD and FL, respectively; nj is the direction cosine 

of n in xj direction; Nwall denotes the total number of elements on the wall; and lk is the 

length of the kth edge.  

When the flow becomes oscillatory, the originally stationary vortices behind the 

cylinder start moving downstream and shed alternatively with frequency fo. The 

Strouhal number (St) is the dimensionless frequency of vortex shedding, defined as 

o
t

x

f DS
v ∞

=  (4.41) 

where fo is the frequency of vortex shedding, which is obtained from the 

dimensionless time period To during vortices shedding,  fo=1/To . 

As is well known, the uniform flow with a fixed cylinder is characterized by the 

Reynolds number. In general, as Re≤40, there is a steady state solution in which two 

symmetrical eddies develop behind the cylinder. As the Reynolds number increases 

further, the flow becomes unstable and a periodic vortex shedding, known as Von 

Karman Vortex Street, forms behind the cylinder. Both phenomena resulting from 

varied Reynolds number have been simulated in the current study. 
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i)      Steady state flow 

The steady state flow with Re=30 is studied in this subsection. Fig. 4.19 shows 

the evolution of eddies behind the cylinder in term of streamlines by both GSM and 

GSM/ALE. As schematically illustrated in Fig. 4.19a, the reattachment length (S), 

which is measured from the right end point of the cylinder to the reattachment point 

where the two eddies end is monitored, and the normalized attachment lengths by the 

diameter of the cylinder are summarized in Table 4.2. In comparison with the 

experiment data by Teneda [27], numerical results with domain decomposition 

method from Huang et al [28] and the numerical results from the GSM on fixed mesh, 

it is clear that the GSM/ALE gives the same results as the GSM and matches quite 

well with the references. Comparing the drag and lift coefficients, as plotted in Fig. 

4.20, we can see that constant drag and lift coefficients (CD=1.72 and CL=0) are 

obtained for the steady flow and these coincide with those from GSM, which confirms 

that the present GSM/ALE can give accurate results regardless of mesh movement.  

D S

 

 

 
a) Streamline from GSM b) Streamline from GSM/ALE 
Fig. 4.19 The streamlines of the flow over a stationary cylinder at Re=30 

 
Table 4.2  Comparisons of the predicted reattachment length ratios S/D at Re=30 of a 

stationary cylinder  in uniform flow 

Re Present GSM [3] Exp [27] DDM [28] 
30 1.5 1.5 1.49 1.27 
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Fig. 4.20 Variation of drag and lift coefficients (CD and CL) with time in the case of uniform 
flow over a stationary cylinder at Re=30 

ii)     Time-dependent flow 

The setting of time-dependent flow is the same as that in the last section except 

at hither Re=150. Key parameters depicting the vortex shedding change, i.e. the lift 

and drag coefficients and the Strouhal number, are calculated. Fig. 4.21 plots the time 

history of the drag and lift coefficients. The oscillating behavior of the time-

dependent flow is related to the vortex shedding change. The lift coefficient settles to 

a regular sinusoidal function after the onset of wake instability leads to vortex 

shedding, as shown in the enlarged part of Fig. 4.21. Table 4.3 lists a detailed 

comparison of these three parameters with the reference data. From these comparisons, 

it is clear that the calculated three parameters by GSM/ALE are the same as those by 

the GSM, and they match quite well with the references. The GSM/ALE can give the 

correct transient results for this unsteady flow problem.  
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Fig. 4.21 Variation of drag and lift coefficients (CD and CL) with time in the case of uniform 
flow over a stationary cylinder at Re=150 

 
Table 4.3  Comparisons of the predicted CD, CL and St at Re=150 in the case of a stationary 

cylinder  in a uniform flow 

 Present GSM 
[3] 

Lin 
[29] 

Kallinderis 
and Ahn 

[30] 

Belov 
[31] 

Relf 
(exp) 
[32] 

CD 1.28±0.02 1.28±0.02 1.380±0.027 1.166±0.023 1.168±0.025 1.33 
CL ±0.45 ±0.45 ±0.561 ±0.477 ±0.486 - 
St 0.18 0.18 0.19 0.18 0.18 - 

4.2.4.2 Cross-line oscillating cylinder in a free stream  

The uniform flow past a circular cylinder oscillating in the direction normal to 

the incoming flow is a classical test [18, 25], as shown in Fig. 4.22. Transverse 

oscillation of the cylinder in y direction is defined as 

2 cos 2e e
c m t t

o o

f fv A S S t
f f

π π
    

=     
    

 (4.42) 

where vc is the transverse velocity; Am is the amplitude of the transverse, /m mA a D= ; 

St is the Strouhal number, /t oS f D U∞= ; ef  is the frequency of oscillating cylinder 

and fo is the natural shedding frequency the same as illustrated in the previous 

subsection; and t is the physical time.  
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vx=1, vy=0

 

Fig. 4.22 Illustration of the cross-line oscillation of the cylinder in a uniform flow 

Parameters governing this flow is chosen as follows: the Reynolds number is 

fixed at Re=185 and the Strouhal number is taken as St=0.19, similar with those in [18, 

25]. Amplitude of the transverse (Am) is set to be 0.2. Three different frequency ratios, 

i.e. fe/fo=0.9,1.0,1.1, are chosen to examine the dynamic response of the flow 

problems. The physical time interval of 0.01t s∆ =  is used to march in the temporal 

domain. Since the flow is unsteady, the calculation will not be terminated until 

obvious transients died out and then for a time roughly equivalent to the time required 

for steady state in the lock-in cases. The wake characteristics generated by the 

cylinder are compared with the numerical results in [18, 25] through time series 

analysis and examination of instantaneous streamline and vorticity patterns.   

Fig. 4.23 shows the time history of drag/lift coefficients at different frequency 

ratios. From this figure it is found that fairly regular drag/lift coefficients are 

generated once vortex shedding is established. For the value of fe/fo=0.9 and 1.0, the 

drag/lift coefficients exhibit sine/cosine behaviors. For the value of fe/fo=1.1, the 

drag/lift coefficients exhibit regular signs of the influence of a higher harmonic. A 

comparison of the peak lift coefficient, and the peak and average drag coefficient 

under different frequency ratio are presented in Table 4.4. From this table it can be 

seen that the calculated values by the GSM/ALE can match those from the references 

quite well. The slight differences among these values may be due to different 
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parameter settings in the problem, e.g. different number of nodes, densities of the 

mesh and different time intervals used in the time integration.  

 
a) fe/fo=0.9 

  
b) fe/fo=1.0 c) fe/fo=1.1 

Fig. 4.23 Time history of the drag and lift coefficients (CD and CL) at different frequency 
ratios at Re=185 with Am =0.2 in the case of the cross-line oscillation of the cylinder in a 

uniform flow 
Table 4.4  Comparisons of the predicted CD, CL at Re=185 in the case of a cross-line 

oscillating cylinder in uniform flow 

fe/fo 
Coefficient of lift peak 

value  Coefficient of drag (mean/maximum/minimum) 

Present [18] [25]  Present [18] [25] 
0.9 0.278 0.242 0.247  1.33/1.45/1.21 1.34/1.44/1.25 1.31/1.47/1.20 
1.0 0.592 0.590 0.585  1.49/1.72/1.26 1.51/1.68/1.30 1.51/1.70/1.29 
1.1 1.438 1.449 1.450  1.36/1.65/1.12 1.45/1.71/1.104 -/1.71/1.10 

Fig. 4.24 shows the instantaneous streamlines when the oscillating cylinder is at 

the topmost position of the oscillation cycle. From this figure it can be seen that for 

fe/fo =0.9 and 1.0, the general form of the streamline patterns are almost the same. 

However, for fe/fo =1.1 two saddle points are found in the form of closed streamlines 

which indicates a concentration of vorticity around the center of the closed 
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streamlines. These phenomenon is captured well by the present GSM/ALE which are 

similar with those described in [18, 25]. 

 
a) fe/fo=0.9 

 
b) fe/fo=1.0 

 
c) fe/fo=1.1 

Fig. 4.24 Instantaneous streamline patterns at different frequency ratios at Re=185 with Am 
=0.2 when the cylinder is at the topmost position in the case of the cross-line oscillation of 

the cylinder in a uniform flow 

The instantaneous vorticity contours corresponding to the top position of the 

oscillation cycle are shown in Fig. 4.25. The vortices in the wake are also well 

captured by the present GSM/ALE. With the increase of fe/fo, it is found: i) the length 

of the elongated upper vortex decreases and diminishes in strength; ii) the lower 

vortex becomes the dominant vortex; iii) more vorticities are formed on the lower 

portion of the cylinder surface, and the base vorticity of opposite sense interacts with 

the vorticity in the upper shear layer to constraint the roll up in the wake [18].  
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a) fe/fo=0.9 

 
b) fe/fo=1.0 

 
c) fe/fo=1.1 

Fig. 4.25 Instantaneous vorticity contours at different frequency ratios at Re=185 with Am 
=0.2 when the cylinder is at the topmost position in the case of the cross-line oscillation of 
the cylinder in a uniform flow: dotted and solid lines denote, respectively, the negative and 

positive contours 

4.2.4.3 In-line oscillating cylinder in a free stream  

In order to further explore the capability of the present GSM/ALE in computing 

moving boundary flows, a series of simulations are conducted for the case of in-line 

oscillating cylinder in a uniform stream at Re=100. The calculation domain and the 

boundary conditions are exactly the same as those for the cross-line oscillating 

cylinder problem, except that the cylinder is forced to oscillate parallel to the free 

stream by setting the horizontal velocity of the cylinder as 

( )2 cos 2in e m ev f A f tπ π= . (4.43) 

Here, Am is the amplitude of the oscillation (Am=0.14D as that in [24]); fe is the 

oscillation frequency of the cylinder, and fe =2fo, i.e. two times of the natural vortex 



 
Chapter 4                                                    GSM/ALE for incompressible fluid flows over moving mesh 

168 
 

shedding frequency fo of the fixed cylinder flow. The CFL number is about 10 in the 

present calculation.  

Accordingly, the lock-in should occur at an oscillation frequency about twice the 

shedding frequency [24]. In this calculation, the natural vortex shedding frequency is      

fo =0.165 which is comparable to the references as listed in Table 4.5. 

Table 4.5  Comparisons of shedding frequency at Re=100 in the case of a in-line oscillating 
cylinder (fe/fo=0) in a uniform flow 

 Present Lai et al.   
[33] 

Liu et al.  
[34] 

Lima et al. 
[35] 

Williamson 
(Exp) [36] 

fo 0.165 0.165 0.164 0.160 0.166 

Fig. 4.26 plots the drag and lift coefficients during the lock-in. From this figure it 

can be seen that the drag and lift coefficients are characterized by periodic oscillations 

about a mean value and zero, respectively. The frequency of lift coefficient under fe/fo 

=2 is the same as that under fe/fo =0, which is half of that of the drag coefficient. Table 

4.6 compares the computed drag and lift coefficients with those from references. 

From this table we can see that the values from the present GSM/ALE are compatible 

with those from the references. A slightly lower estimation of the mean drag 

coefficient is predicted by the present GSM/ALE, either for fe/fo=0 or for fe/fo=2. 

However, the maximum lift coefficient matches quite well with the references. From 

the table, we can also see that during the lock-in the computed lift amplitude is 

approximately three times than that obtained from a fixed cylinder at the same Re, and 

there is an obvious increase in mean drag over the rigid-cylinder value. This is 

consistent with the results from previous experiments and numerical studies, 

demonstrating that the present method can capture the important flow characteristics 

very well for this in-line oscillating problem.  
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Fig. 4.26 Time history of drag and lift coefficients (CD and CL) at Re=100 with Am =0.14D for 

stationary (fe/fo=0) and  in-line oscillating (fe/fo=0) circular cylinder in a uniform flow 
 

Table 4.6  Comparisons of the predicted CD, CL at Re=100 in the case of a in-line oscillating 
cylinder (fe/fo=0 and fe/fo=2) in a uniform flow 

 Present Liao et al. [26] Hurlbut et al. 
[24] Calhoun [37] 

fe/fo 0 2 0 2 0 2 0 2 
CD-mean 1.30 1.61 1.36 1.71 1.41 1.68 1.33 - 
CL-max 0.32 0.94 0.34 0.95 0.31 0.95 0.30 - 

Examination of the vortex patterns is referred in the instantaneous vorticity 

contours over two oscillation periods of the cylinder as shown in Fig. 4.27. From this 

figure it can be seen that the wake is captured by the cylinder oscillation. The lock-in 

effect can be observed by the vortex patterns over two period of drag coefficient 

oscillation. Here “T” is the period of oscillation of the cylinder (the drag coefficient), 

and the period of the lift coefficient is 2T. Due to the lock-in effect, the contours 

indicate an essentially periodic behavior with a period equal to that of the enforced 

oscillations. 

To further check that the ability of the present GSM/ALE to deal with the large 

movement of the solid, a series of the amplitude of the oscillation Am, i.e. Am=0.14D, 

0.20D, 0.30D, 0.35D, 0.40D and 0.50D, is chosen. The oscillation frequency of the 

cylinder fc is still kept at  fe=2fo.  
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a) T/4 e) 5T/4 

  
b) T/2 f) 3T/2 

  
c) 3T/4 g) 7T/4 

  
d) T h) 2T 

Fig. 4.27 Instantaneous vorticity contours near oscillating cylinder at Re=100: dotted and 
solid lines denote, respectively, the negative and positive contours 

Fig. 4.28 plots the time history of the drag and lift coefficients with different Am. 

From this figure, we can see that: i) the time period of the drag/lift coefficients relates 

to the oscillation frequency of the cylinder fe. ii) With the increase of the Am, the 

maximum of drag coefficient becomes larger, which implies that a larger Am will 

induce a larger drag force. iii) The maximum of lift coefficient, however, does not 

increase monotonically. It increases with the increase of Am from 0.14D to 0.30D. 
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Then this value will become smaller with the increase of Am. When the Am =0.50D, 

the maximum of lift coefficient becomes extremely small, and it is comparable with 

that at Am =0.40D. This trend may be illustrated by the shedding of the vortex with 

different Am.   

  

a) CD b) CL 
Fig. 4.28 Time history of drag and lift coefficients (CD and CL) at Re=100 for a in-line 

oscillating (fe/fo=2) circular cylinder in a uniform flow at various Am, Am=0.14D, 0.20D, 
0.30D, 0.35D, 0.40D and 0.50D 

Vortex contours with different Am are plotted in Fig. 4.29. These contours 

correspond to the time instant t=T/4 in one typical period cycle. From this figure, we 

can see that the ratio of positive and negative contours behind the cylinder becomes 

larger with the increase of Am from 0.14D to 0.30D, which suggests that asymmetry of 

the positive and negative contours becomes larger. After that the positive and negative 

contours behind the cylinder become more and more symmetric, with Am from 0.35D 

to 0.50D. As is known, the lift coefficient is direct proportion to the lift force. When 

the vortex contour becomes more symmetric, the difference of the positive and 

negative tractions becomes smaller. As the lift force comes from the integration of the 

surface traction, it and thus the lift coefficient will become smaller. 



 
Chapter 4                                                    GSM/ALE for incompressible fluid flows over moving mesh 

172 
 

x0

y

Am=0.14D

Am=0.20D

Am=0.30D

Am=0.35D

Am=0.40D

Am=0.50D

 
Fig. 4.29 Instantaneous vorticity contours near the oscillating cylinder at Re=100 with 

different Am at t=T/4 in a period: dotted and solid lines denote, respectively, the negative and 
positive contours 
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4.3 Concluding remarks for Chapter 4 

The GSM/ALE is successfully formulated for solving the fluid-rigid structure 

interaction problems. The uniform flow is automatically preserved irrespective of the 

mesh movement by adding an extra moving mesh source term derived from the GCL. 

The 2nd order accuracies are achieved in both spatial and temporal domains, which are 

the same as those in GSM on fixed mesh. Robustness of GSM/ALE to distorted 

meshes is discussed. Overall, our finding shows that the GSM/ALE can give accurate 

and stable results on extremely distorted meshes. However, a smaller time step should 

be chosen on those meshes to ensure the stability of the scheme. The corresponding 

numerical errors also become larger with the increase of the irregularity. So it is 

suggested that should irregularity become extreme, a re-meshing is still needed to 

ensure more accurate result. The proposed GSM/ALE has been applied to solve 

several benchmark problems and yields good agreement with referenced 

computational and experimental results, hence further indicating the viable use of the 

proposed method. During the calculation of the in-line oscillation of a cylinder in a 

free stream, an interesting phenomenon is found that the drag coefficient becomes 

larger with the increase of the maximum oscillation of the cylinder. However, the lift 

coefficient does not purely increase. When the maximum oscillation exceeds a critical 

value, the lift coefficient will decrease with the increase of the maximum oscillation, 

and the corresponding vortex behind the cylinder will then become more and more 

symmetric.  
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Chapter 5  

Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure 

interactions 

 

The fluid-rigid body interaction problems have been successfully solved via 

GSM/ALE in the previous chapter. In these cases the interaction between the fluid 

flow and rigid body is only one-way, i.e. the movement of the rigid body only affects 

the fluid flow but the dynamic force due to the viscous fluid flow does not affect the 

predefined movement of the rigid body. In this chapter, the solid body will be dealt as 

a deformable media, e.g. beam, shell/plate or structure, and thus the interactions 

between the fluid and solid become two-way, i.e. the deformation of the solid will 

affect the fluid flow and in return the dynamic force from the viscous fluid flow will 

also feed back to the deformation of the solid body. In order to successfully achieve 

the two-way interaction, the displacement/velocity compatibility and traction 

equilibrium need to be exactly satisfied at the FSI interface.  

The weak coupling scheme is employed in the present study to enable the fluid 

and solid potions can be solved separately with different numerical methods. In the 

calculation, the conditions of displacement/velocity compatibility and traction 

equilibrium should be successively applied on the FSI interface to “link” these two 

portions. For the fluid portion, the GSM/ALE established in the previous chapter can 

be directly used with only minor modifications. For the solid portion, the explicit time 

integration ES-FEM-T3 will be used to describe its transient deformations. It should 

be noted that the formulation procedure of the transient deformation of the solid with 

ES-FEM-T3 in this FSI analysis is somewhat similar with that in Chapter 3 in the 
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description of the dynamics of the nonlinear membrane structures except for the 

coordinates transformation part since no rigid body motion (rotation or translation) is 

considered in the deformation of the solid body in the present FSI analysis. Thus 

detailed procedures of constructing the kind of explicit time integration ES-FEM-T3 

will be presented in this chapter. An illustration of the weak coupling scheme is 

shown in Fig. 5.1.  

 
Fig. 5.1 Illustration of the weak coupling GSM/ALE with ES-FEM-T3 for solving FSI 

problems 

The outline of this chapter is as follows. In order to give a clear description and 

easy illustration of the coupling scheme, the governing equations of both fluid and 

solid are firstly recalled and written as a system of equations together with the 

coupling conditions in Section 5.1. The formulation on solving the transient 

deformation of the solid portion with ES-FEM-T3 is presented in Section 5.2. A 

summary of implementing the GSM/ALE with ES-FEM-T3 for an FSI analysis is 

illustrated in Section 5.3. Three benchmarks are tested to verify the proposed coupling 

smoothed methods in Section 5.4. And some concluding remarks are drawn in Section 

5.5.  

Fluid solver:
GSM/ALE

Fluid solution

Solid solver:
ES-FEM-T3

Solid solution

Convergence

Traction 
equilibrium 

Displacement/velocity 
compatibility 

No

Yes

Stop

Start
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5.1 Governing equations of fluid flows with structural interactions 

Consider a FSI system with a deformable solid body fully immersed in a 2D 

incompressible viscous fluid flow, as illustrated in Fig. 5.2. The fluid and solid 

domains are denoted as fΩ and sΩ  and bounded by fΓ and sΓ , respectively. The 

interaction interface between fΩ and sΩ  is denoted by fsiΓ . The fluid boundary fΓ  in 

this FSI system is composed by f fD fN fsiΓ = Γ Γ Γ   and the solid boundary is by 

s sD sN fsiΓ = Γ Γ Γ  . Here the superscript “D” denotes Dirichlet boundary condition 

while superscript “N” denotes Neumann boundary condition applicable to both fluid 

and solid portions. Note that these boundaries should have no overlaps with each 

other. The other superscripts “f”, “s” and “fsi” marked in these notations indicate the 

“fluid”, “solid” and “fluid-structure interaction”, respectively. These same 

superscripts will be further used to denote the variables below to indicate if a variable 

belongs to the fluid domain, solid domain or FSI interface. Because of the 

deformation of the solid, fΩ  and sΩ  are both time-dependent that leads to the 

transient movement of the FSI interface fsiΓ . 

Solid node
Fluid node

Solid 
domain

Fluid domain

fDΓ

fNΓ
fsiΓ

sDΓ

sNΓ

fΩ

sΩ

 
Fig. 5.2 Illustration of a FSI system 
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Theoretically in a FSI system: i) the fluid and solid domains can be discretized 

by two different sets of meshes with completely different element types and ii) the 

fluid and solid mesh nodes on the FSI interface fsiΓ  need not coincide with each other 

[1]. In the present study, we only use the simplest linear triangular element in both the 

fluid and solid domains, and the densities of the fluid and solid mesh nodes on the FSI 

interface are set to be the same, as illustrated in the enlarged part in Fig. 5.2. So that 

the fluid and solid nodes coincide with each other on the FSI interface, which greatly 

facilitate the applications of the coupling conditions of displacement compatibility 

and traction equilibrium. For the case where the fluid and solid mesh nodes do not 

coincide with each other on the FSI interface, interpolations of the 

displacements/velocities and tractions should be done with the help of shape functions 

of the solid element along the FSI interface [2-5], and even more some special 

techniques, e.g. constructing a reference FSI interface fsi
rΓ , need to be introduced 

beyond the FSI interface to ensure the stability and accuracy of the interpolation in 

solving the FSI system [6-9]. 

In the present FSI analysis, the fluid flow is assumed to be incompressible or 

slight compressible and the solid is assumed to be fully-incompressible/nearly-

incompressible or compressible and undergoing only a small volume change. As both 

the fluid and solid portions are continuums, equations governing these two mediums 

should have the same form. Although the governing equations of the individual fluid 

and solid portions have been independently presented in the previous chapters, they 

are rewritten here as one system with the coupling boundary conditions on the FSI 

interface, as shown in Eq. (5.1). For the sake of simplicity, the boundary conditions of 

velocities and tractions unrelated to the FSI interface are omitted in Eq. (5.1). Details 
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of applying the relevant boundary conditions can be found in the corresponding parts 

in the previous two chapters. The combined governing equations are: 

f
f f f

f

f

s
s s s

m,fsi s,fsi f,fsi m,fsi s,fsi

s,fsi s,fsi f,fsi f,fsi

Fluid :
D div
D

0

      ,     , ,Solid :
D div
D

FSI coupling conditions :
,  

i
ij i

i

j

i
ij i

i i i i i

j ji j ji

v g
t

v
x

i j x y

v g
t

u u v v v
n n

ρ σ ρ

ρ σ ρ

σ σ



 = +

∂ =
∂


=

 = +




= = =
 = −

 (5.1) 

where ρ , vi, ijσ  and gi, denote the density, components of velocity, Cauchy stress 

tensor and body force, respectively; t is the physical time; s,fsi
jn  and f,fsi

jn  are the 

outward normal of fsiΓ  as seen from the solid and fluid domains, respectively, which 

have the same amplitudes but opposite signs, as illustrated in Fig. 5.3; “x” and “y” 

denotes the two directions of a 2D Cartesian coordinate system; and the derivative 

D Div t  denotes the material derivation of the velocity vi.  

The expansions of D Div t  are different according to different descriptions, e.g. 

the Lagrangian, Eulerian or ALE descriptions, which requires particular numerical 

method for solving the expanded system equations. In practice the fluid is usually 

described with Eulerian description while the solid is described with Lagrangian 

description. In order to couple the fluid and solid in an FSI analysis, the ALE 

description is usually used.  
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5.1.1 For the fluid portion 

As reviewed in Chapter 1, when the fluid flow is described with Eulerian 

description, the convection of momentum across the edge of the fluid mesh occurs 

and the velocity f
iv  is a function of both time-dependent Eulerian coordinates x and 

time t. In that case, the material derivative of the fluid velocities fD Div t  should be 

fully expanded as 

f f
f f

,
D
D

i i
j i j

v v v v
t t

∂
= +

∂
. (5.2) 

Especially, when the material derivative of the fluid velocity is fully expanded 

over the moving mesh instead of the Eulerian mesh, it becomes [3, 5] 

( )
f f

f m f
,

D
D

i i
j j i j

v v v v v
t t

∂
= + −

∂
 (5.3) 

where ( ) t∂ ⋅ ∂  is the transient term at the mesh position considered; m
jv  is the mesh 

velocity (the superscript “m” indicates the “mesh”) and f
jv  is the actual fluid particle 

velocity at that mesh point. In the solution process, m
jv  should be prescribed according 

to the mesh updating algorithm [5].  

After substituting Eq. (5.3) back into the first equation of Eq. (5.1), the resultant 

equation can then be used to derive the ALE form of the governing equations as 

presented in Chapter 4, which will be finally solved with GSM/ALE in the fluid 

domain in an FSI analysis. Detailed formulation procedures of GSM/ALE have 

already been established in Chapter 4 and will not be repeated in this chapter.  

5.1.2 For the solid portion 

If the momentum conservation equation of the solid in Eq. (5.1) is described with 

Lagrangian description, the velocity s
iv  is thus a function of time-independent 
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Lagrangian coordinates X and time t. So the material derivative of the solid velocities 

sD Div t  becomes a partial derivative of  s
iv  [10], i.e.  

s sD
D

i iv v
t t

∂
=
∂

. (5.4) 

After substituting Eq. (5.4) into the third equation of Eq. (5.1), the resultant 

equation will be numerically solved with the explicit time integration ES-FEM-T3 to 

obtain the deformation of the solid portion. Detailed formulation procedures of the 

explicit ES-FEM-T3 will be presented below in Section 5.2. 

5.1.3 For the FSI coupling conditions 

In the weak coupling scheme, the fluid and solid domains are solved separately, 

and the information of displacement/velocity and traction on the FSI interface are 

successively transferred to these two domains during the time intervals according to 

the conditions of displacement/velocity compatibility and traction equilibrium on the 

FSI interface [2, 4, 5]. An illustration of the displacement/velocity and FSI force 

existing on the FSI interface is presented in Fig. 5.3. These conditions must be 

imposed carefully and efficiently in the numerical implementation. 

ns

nf
fΩ

sΩ

fsiΓ

FSI force

Displacement
/velocity

 
Fig. 5.3  Illustration of weak coupling: the dash arrows indicate FSI force mapping, the solid 

arrows indicate displacement/velocity mapping and n denotes the outward normal 



 
Chapter 5                   Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions 

184 
 

5.1.3.1 Displacement/velocity compatibility 

Displacement/velocity compatibility requires that: i) the FSI interface should 

exactly follow the deformation of the solid portion, i.e. m,fsi s,fsi
i iu u=  on fsiΓ  at each 

time step, so that there is no gaps or overlaps between the solid and fluid domains 

near the FSI interface; and ii) the velocities of the fluid particle and fluid mesh node 

on fsiΓ  should be equal to the velocity of the solid node at the same point, i.e. 

f,fsi m,fsi s,fsi
i i iv v v= =  on fsiΓ  at each time step, so as to ensure the non-slip condition on 

the FSI interface. The accelerations of the mesh and solid nodes usually need not be 

the same at the same point on the FSI interface [1]. As a summary, the 

implementation orders of applying the displacement/velocity compatibility condition 

are i) solidfluid mesh and ii) solidfluid particle,  

 Solve the solid problem to get the displacements and velocities of the nodes 

at the FSI interface 

 Update the nodal coordinates/velocities of the fluid mesh on the FSI 

interface according to the nodal displacements/velocities of the solid at the 

same point on the FSI interface 

 Update the nodal fluid velocities on the FSI interface according to the nodal  

velocities of the solid at the same point on the FSI interface  

After determining the nodal coordinates and velocities of the fluid mesh on the 

FSI interface, these values inside the fluid domain should also be updated timely 

according to different mesh updating algorithms, e.g. simple velocity/displacement 

interpolation algorithm [11-14] and “pseudo-structure” algorithm [15-20],  so as to 

ensure the accuracy of the fluid mesh inside the fluid domain. 
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5.1.3.2 Traction equilibrium 

The condition of traction equilibrium is proposed to ensure the “consistency” in 

the stress transfer (or stress balance) between the fluid and solid portions, i.e. solid 

traction s,fsi s,fsi s,fsi
i j jit n σ=  at an arbitrary node on the FSI interface fsiΓ  should be equal 

to the opposite of the fluid traction f,fsi f,fsi f,fsi
i j jit n σ=  at the same point. This transferred 

traction will be further integrated along the solid interface in the current configuration 

to get the external nodal force on the solid portion, as follows 

( ) ( ) ( ) ( )fsi

s,fsi f s,fsi s,fsi s s,fsi s s,fsi s

1
, d

gau

IJ

N

Ii I j ji I n j n ji n n
n

f p N n N n wσ σ
Γ

=

= Γ ≈ ∑∫v x x x  (5.5) 

where the subscripts “I” and “J” denote the two connected nodal points I and J on the 

FSI interface, as shown in Fig. 5.4; IN , s,fsi
jn , s,fsi

jiσ  and wn are the shape function, 

components of the outward normal and Cauchy stress and the weight at the Gauss 

point s
nx  on the segment fsi

IJΓ , respectively. 

 
Fig. 5.4  Illustration of the FSI force 

The Cauchy stress s,fsi
jiσ  at s

nx  can be further interpolated with the Cauchy 

stresses at the two vertices I and J of fsi
IJΓ  that are directly obtained from the viscous 

fluid portion as 

( ) ( ) ( )s,fsi s s s,fsi s s,fsi
ji n I n Iji J n JjiN Nσ σ σ= +x x x . (5.6) 

Substitute Eq. (5.6) into Eq. (5.5), we can finally get 
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s,fsi s,fsis,fsi 2

s,fsi s,fsis,fsi 2
1

gauN
j IjiIi I I J

n
n j JjiJi J I J

nf N N N
w

nf N N N
σ
σ=

    
=     

      
∑

 

or 

s s,fsi

1
t

gauN

IJ IJ IJ n
n

w
=

= ∑f N . 

(5.7) 

The nodal force in Eq. (5.7), which contains all the components and conditions 

of a fully coupled, steady-state or transient analysis of the FSI system, will be 

implemented as part of the external force on the solid portion during its explicit 

dynamic analysis. 

As pointed out in [4], in contrast to the above description of applying the 

conditions, the solid stress boundary conditions can be imposed on the fluid element 

while the fluid velocity boundary conditions on the solid. However, this approach 

may be unstable for a general fluid-structure interaction analysis; any small error in 

the displacement imposed on the structure by the fluid velocities may result in a large 

error in the calculated traction imposed on the fluid. As such, this kind of coupling 

conditions is not recommended. 

To fulfill the weak coupling scheme with the smoothed methods, the numerical 

procedures for solving the uncoupled fluid and solid should be firstly established. As 

the GSM/ALE derived in the previous chapter can be directly used for solving the 

fluid portion without any major modification, the description on the derivation of 

GSM/ALE is not repeated here. Only the numerical procedures for solving the 

individual solid portion with the explicit time integration ES-FEM-T3 are presented in 

some details in this chapter. 
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5.2 Explicit dynamics analysis for nonlinear solid using ES-FEM-T3  

The central difference explicit time integration scheme using the total 

Lagrangian (TL) formulation is employed to describe the transient deformation of the 

solid, in which the ES-FEM-T3 is used to construct the smoothed strain field. As the 

TL formulation uses only the initial configuration as the reference configuration, the 

Cauchy stress s
ijσ  in the third equation of Eq. (5.1) should instead be given by the 

nominal stress s
ijP  expressed in terms of the area in the reference (non deformed) 

configuration.  

If we let s s
i iv u=   where s

iu  denotes the displacement and the dot over s
iu  denotes 

the time derivation of 
s
iu , the momentum balance of solid in the third equation of Eq. 

(5.1) can thus be rewritten as [10] 

s
s s s

s
ji

i i
j

P
u g

X
ρ ρ

∂
= +
∂

 .
  

(5.8) 

It is subjected to the boundary conditions 

s s sD

s s s sN

on 
on 

i i

j ji i

v v
n tσ
 = Γ
 = Γ




 (5.9) 

with the initial conditions 

s 0 s s 0 s sD
0 0

s 0 s sN
0

,     on 
                 on 

0

i i i i

ji ji

v v a a
P P
t

 = = Γ
 = Γ
 =

 

  (5.10) 

and FSI coupling conditions 

s,fsi s,fsi f,fsi f,fsi
j ji j jin nσ σ= −  on fsiΓ . (5.11) 

Here, 0 s
0 iv , 0 s

0 ia  and 0 s
0  jiP are the initial velocity, acceleration and normal stress, 

where the marked wavy line indicates that these parameters are predefined and the 
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additional left superscript and subscript introduced in these parameters indicates the 

time steps: the left superscript denotes the time for the current configuration, and the 

left subscript denotes the time for the reference configuration. In the TL formulation 

all the parameters are written referring to the reference configuration, hence the left 

subscript will be omitted in the following text. For example, s
0
n E  is the Green strain 

tensor evaluated at time step “n” measured with respect to the reference configuration 

at time “0” (initial configuration) and it will be simplified as sn E .  

5.2.1 Semi-discretization with ES-FEM-T3 in spatial domain 

After implementing the smoothing operation with ES-FEM-T3 in the spatial 

domain, the semi-discretization of Eq. (5.8) can be finally written as  

s s s,ext s,int
IJij Jj Ii IiM u f f= −   (5.12) 

where s
IJijM  is the entry of the lumped mass matrix; s,ext

Iif  is the external force that 

contains the body force, initial traction and the FSI interaction force; and s,int
Iif  is the 

smoothed internal force vector, where the bar over it denotes that it has been 

implemented  with a smoothing operation.  

One may note that only the internal force s,int
Iif  in Eq. (5.12) is “affected” by the 

smoothing operation. The mass matrix and the external force have no “bars” over 

them and thus they are constructed exactly following the same way as in the standard 

FEM [10]. This process is similar to the illustrations in Chapter 2 for the implicit 

smoothed models that “the S-FEM models change only the stiffness matrix”, although 

no stiffness matrix is needed to be constructed in the present explicit formulation. 

Thus only details of constructing this smoothed internal force vector with ES-FEM-
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T3 will be specified in the text below. The way to construct the mass matrix and 

external force can be found in [10]. 

5.2.1.1 Expressions of smoothed strain and stress   

Through the motion ( )s s ,f t=x X  the solid body moves from the initial 

configuration 0 sΩ  at the time t=0 to the current configuration snΩ  at the time t, 

where Xs and xs are the material and spatial coordinates of the solid particles, 

respectively. Assume that the initial configuration 0 sΩ  is discretized with s
nodeN  

nodes and s
eleN  linear triangular elements. A set of Nsd non-overlapping edge-based 

smoothing domains is then constructed over these elements following the way 

described in Remark 2.1. The displacement sn
iu  at an arbitrary point inside the solid 

domain can be interpolated with the corresponding nodal displacements using the 

shape functions, i.e.   

s,sd

s 0 s s ,    ,
isd

n n
i I Ii

I S

u N u i x y
∈

= =∑  (5.13) 

where 0 s
IN  is the FEM shape function corresponding to the supporting node I (e.g. 

{ }s,sd , , ,isdI S A B C D∈ =  as in Fig. 2.2) evaluated at the initial configuration; and sn
Iiu  

is the nodal displacement at node I and is evaluated with the equation,  

sn
Ii Ii Iiu x X= − . (5.14) 

From Eq. (5.13) we can see that the interpolations of the displacements in the 

ES-FEM-T3 and FEM-T3 are exactly the same. The difference between these two 

methods will appear in the following steps on how to estimate the gradient of the 

displacement field, the deformation gradient, the Green strain tensor, the PK2 stress 

and finally the internal nodal force.  
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As is known, in the standard FEM-T3 the gradient of the displacement field is 

constructed based on the background triangular mesh. Similarly, in the ES-FEM-T3 

the smoothed gradient of the displacement field is constructed based on the newly 

constructed edge-based smoothing domains. Accordingly, one can get the smoothed 

gradient of the displacement field by referring Eq. 2.7 over the smoothing domain as  

( )

( ) ( )

( )

0 sd
s,sd

s,sd

s,sd

s 0 s s 0 sd s
, 0 sd

0 s s 0 sd s s
0 sd

1 1

0 s s s
,

1

1     

     

isd
isd

seg gau

isd

isd

n n
i j I j Ii

I S isd

N N
n

I mn j mn mn Ii
m nI S isd

n
I j isd Ii

I S

u N n u
A

N n w u
A

N u

Γ
∈

= =∈

∈

 
=  

 

  
=       

=

∑ ∫

∑ ∑ ∑

∑

X

X X

X

 (5.15) 

where 0 sd
isdA  is the area of the isdth (isd=1~Nsd) smoothing domain 0 sd

isdΩ  bounded by

0 sd
isdΓ ; 0 sd

jn  is the outward surface normal of the boundary 
0 sd

isdΓ ; Nseg is the total 

number of segments of 
0 sd

isdΓ : Nseg=3 for smoothing domains at the boundary of  0 sΩ  

and Nseg=4 for the smoothing domains inside 
0 sΩ ; Ngau is the total number of Gauss 

points; and 0 s
,I jN  is the smoothed derivatives of the shape function corresponding to 

the supporting node I. Note that in the TL formulation the smoothed derivatives of 

shape function used in the ES-FEM-T3 only need to be calculated once at the initial 

stage. 

By using 0 s
,I jN  the smoothed gradient of the displacement field n

ijF  can be 

evaluated as 

( ) ( )
s,sd

s s s 0 s s s
, ,

isd

n n n
ij isd i j ij I j isd Ii ij

I S

F u N uδ δ
∈

= + = +∑X X .
 

(5.16) 

This smoothed deformation gradient sn
ijF  is then used as the primary strain 

measure to calculate the smoothed Green strain sn
ijE , i.e.  
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( ) ( )s s s s1
2

n n n
ij isd ki kj ijE F F δ= −X . (5.17) 

For the St. Venant-Kirchhoff elastic material, the PK2 stress sn
ijS  can be 

expressed as a function of the smoothed Green strain sn
ijE  as  

( )s s s ,    , , , ,n n
ij isd ijkl klS D E i j k l x y= =X  (5.18) 

where Dijkl is the material response tensor under the plane strain condition. 

5.2.1.2 Expression of smoothed internal force vector  

Utilizing the smoothed strain and stress derived above, the total (smoothed) 

strain energy ( )int snΠ u  of the solid at the time step n can be formulated as 

( ) ( ){ } ( ){ }0 s

Tint s s s s s 0 s

1

1 1d
2 2

sdN
n n n n n

ij ij isd isd isd isd isd
isd

S E A
Ω

=

Π = Ω ≈ ∑∫u S X E X  (5.19) 

where { }sn
isdS and { }sn

isdE are the Voigt form of sn
isdS and sn

isdE : 

{ } { }Ts s s s
11 22 12, ,n n n n

isd isd isd isdS S S=S , { } { }Ts s s s
11 22 12, ,n n n n

isd isd isd isd=E E E E ; and 0 s
isdA  is the 

area of the isdth smoothing domain at the initial configuration. 

The smoothed internal force vector s,intn
isdf  corresponding to the isdth smoothing 

domain 0 s
isdΩ  can thus be calculated as 

{ } { }0 s

T Ts,int s s s s 0 sd
isd

n n n n n
isd isd isd isd isd isdA

Ω
   = Ω ≈   ∫f B S B S  (5.20) 

where sn
isd  B  is the smoothed strain-displacement matrix associated with the 

smoothing domain 0 s
isdΩ . Assuming the indices of the supporting nodes of the 

smoothing domain 0 s
isdΩ  are I=A, B, C, D , as illustrated in Fig. 2.2, the matrices and 

vectors in Eq. (5.20) can then be expressed as 

( ) ( ) ( ) ( )s s s s s s s s sn n n n n
isd A isd B isd C isd D isd

   =   B B X B X B X B X  (5.21) 
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( )
0 s s 0 s s 0 s

,1 1,1 ,1 2,1 ,1
s s 0 s s 0 s s 0 s

,2 1,2 ,2 2,2 ,2
0 s 0 s s s

,2 ,1 1 2

0
0

n n
I I I

n n n
I isd I I I

n n
I I I I

N u N u N
N u N u N

N N A A

   
     = +    
      

B X  (5.22) 

s s 0 s s 0 s
,1 ,2 ,2 ,1,   =1,2n n n

Ii i I i IA u N u N i= +  (5.23) 
Ts,int s,int s,int s,int s,int s,int s,int s,int s,int

1 2 1 2 1 2 1 2
n n n n n n n n n

isd A A B B C C D Df f f f f f f f =  f . (5.24) 

The components of s,intn
isdf  in Eq. (5.24) are the integrated internal nodal forces at 

the node I (I=A, B, C, D) in the x- or y-directions (1,2=x,y). It should be noted that the 

edge-based smoothing domains allocated proscribed at the boundaries of the solution 

domain 0 s
isdΩ  only have three supporting nodes. Hence, the size of the above 

equations will be correspondingly reduced. 

Substituting Eq. (5.20) into Eq. (5.12), we can then get the semi-discretization 

governing equation with ES-FEM-T3. By integrating the semi-discretization 

governing equation in the time domain, the transient responses of the nonlinear solid 

can be finally achieved. 

5.2.2 Explicit time integration with central difference scheme in temporal 

domain 

The central difference explicit time integration scheme is used to integrate the 

semi-discretization governing equation. This scheme has already been well developed 

in [10]. It follows the standard procedures to integrate Eq. (5.12). Here we only 

summarize the general procedure for this explicit dynamics analysis in the following 

flowchart 5.1. On details about the central difference explicit time integration scheme, 

one can refer to  [10]. 

Flowchart 5.1: Explicit dynamic analysis for nonlinear solid with ES-FEM-T3 

(1) Construct the edge-based smoothing domains 0 s
isdΩ , isd=1~Nsd 

(2) Initial conditions and initialization of parameters 
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(2.1) Set initial conditions 0 s
Iiv , 0 s

Iia , 0 s
jiP , t=0 and the counter n=0; get 0 s,ext

Iif  

(2.2) Loop over all smoothing domains 0 s
isdΩ  to compute the smoothed 

derivatives of the shape function 0 s
,I jN  

(2.3) Compute the lumped mass matrix s
IJijM  

(2.4) Call subroutine Cal_Internal_Force  to compute the global nodal force 
vector 0 s,int

Iif  

(2.5) Compute the accelerations ( )0 s 0 s,ext 0 s,int s
Jj Ii Ii IJija f f M= −    

(3) Call the subroutine Solid_ExDyna (n, t∆ , 0 sd
isdA , 0 s

,I jN , s
IJijM , 0 s

Iiv , 0 s
Iia , 0 s

jiP )
 
to 

obtain 1n s
Iiu+ , 1n s

Iiv+ , 1n s
Iia+  

(4) Update the variables: 1n s n s
Ii Iiu u+= , 1n s n s

Ii Iiv v+= , 1n s n s
Ii Iia a+=  and n=n+1; go to step 

(3) 
 

Subroutine Solid_ExDyna 
(S.1) Time update tn+1=tn+ t∆ , tn+1/2=(tn+ tn+1)/2 
(S.2) First partial update nodal velocities 1/2 s 1/2 s s 2n n n

Ii Ii Iiv v t a+ += + ∆ ⋅  
(S.3) Enforce velocity boundary conditions ( )1/2 s 0n

ibc Iig v+ = , ibc=1~nbc 

(S.4) Enforce force boundary conditions to get the external force 1 s,extn
Iif+   

(S.5) Update the nodal displacements 
1 s s 1/2 sn n n

Ii Ii Iiu u t v+ += + ∆ ⋅  
(S.6) Call subroutine Cal_Internal_Force to compute the internal force vector 

1 s,intn
Iif+ using the updated nodal displacements 1 sn

Iiu+  

(S.7) Compute  nodal accelerations ( )1 s 1 s,ext 1 s,int sn n n
Jj Ii Ii IJija f f M+ + += −   

(S.8) Second partial update nodal velocities 1 s 1/2 s 1 s 2n n n
Ii Ii Iiv v t a+ + += + ∆ ⋅  

Subroutine Cal_Internal_Force 
(C.1) Initialization  1 s,int 0n

Iif+ = , critt∆ = ∞  
(C.2) Loop all smoothing domains sn

isdΩ , isd=1~Nsd 

i) Compute the smoothed PK2 stresses { }1 sn
isd

+ S  

ii) Compute 1 s,intn
Iif+  according to Eq. (5.20) 

iii) Compute s
critt∆ , if s

crit critt t∆ < ∆  then s
crit critt t∆ = ∆  

(C.3) End loop over smoothing domains 
(C.4) Time step in next iteration critt tα∆ = ∆  

5.3 Solution procedures of FSI with GSM/ALE-ES-FEM-T3 

By now the smoothed methods for solving the individual fluid and solid 

subsystems, i.e GSM/ALE for fluid and ES-FEM-T3 for solid, have been established. 
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To complete the FSI analysis, the unrelated solutions from these two smoothed 

methods should be “linked” with the coupling conditions on the FSI interface as 

discussed in Section 5.1.3. This section gives an illustration on how to implement the 

GSM/ALE and ES-FEM-T3 in the solution process in one typical time marching 

cycle, i.e. from time step n to its next time step n+1. The nodal values in both the fluid 

and solid domains at time step n, i.e. fn
Iiv , fn

Ip , sn
Iiu , sn

Iiv , sn
Iia  and s,fsin

Iif , are 

assumed to be known. The purpose is to find those nodal values at time step n+1. 

Note that at initial time step (n=1) all these variables are given by initial conditions. 

Generally, one typical time marching cycle can be artificially divided into four 

successive steps, as illustrated in Fig. 5.5. The boundary conditions of the fluid and 

solid unrelated to the fluid-structure interaction are not marked in this figure and 

assumed to be satisfied by default. 

snΩ

Step 1:
Solve solid

Step 2:
Solid→Mesh:

Step 3:
Solve fluid

Step 4:
Fluid→Solid

s s s, ,n n n
Ii Ii Iiu v a

1 s 1 s 1 s, ,n n n
Ii Ii Iiu v a+ + +

1 m 1 m,n n
Ii Iiv x+ +

f s,n n
Ii Iv p

1 f,fsi 1 s,fsin n
Ii Iiv v+ +=

1 f 1 s,n n
Ii Iv p+ +

1 m,fsi 1 s,fsin n
Ii Iiu u+ +=

1 m,fsi 1 s,fsin n
Ii Iiv v+ +=

2 s,fsin
Iif+

1 s,fsin
Iif+

1 s,fsin
Iif+

1 sn+ Ω

1 fn+ Ω

2 f,fsin
Iif+

 
Fig. 5.5 Illustration of the time integration in one typical time marching cycle for the FSI 

analysis with GSM/ALE-ES-FEM-T3 

Step 1: Solve for the solid portion by applying the updated FSI force 

Firstly, we start the FSI analysis by solving the transient responses of the 

nonlinear solid with the algorithm proposed in Section 5.2. As the FSI traction 
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equilibrium condition can be explicitly evaluated based on f,fsi
,

n
Ii jv , f,fsin

Ip  at time step n, 

the FSI force 1 s,fsin
Iif+

 evaluated according to Eq. (5.7) will be applied as a part entry 

of the external force 1 s,extn
Iif+  on the solid during its dynamic analysis. If we omit the 

body force gi, initial traction s
it  but consider just the FSI force 1 s,fsin

Iif+ , the external 

force will be 1 s,ext 1 s,fsin n
Ii Iif f+ += . After applying this updated external nodal force and 

the predefined Dirichlet (displacement/velocity) boundary conditions, the solid can be 

solved by calling the subroutine Solid_ExDyna in Flowchart 5.1. The outputs arising 

from solving the solid portion are the variables 1 sn
Iiu+  and 1 sn

Iiv+  in the solid domain 

1 sn+ Ω  at the time step n+1. 1 s,fsin
Iiu+  and 1 s,fsin

Iiv+  on the updated FSI interface 1 fsin+ Γ  will 

be the separate output for the purpose of applying the displacement/velocity 

compatibility condition to the mesh and fluid portion in Steps 2 and 3. 

Step 2: Update the fluid mesh by applying the FSI displacement/velocity 

condition 

The nodal displacements/velocities of the fluid mesh on the FSI interface should 

be equal to those of the solid particles at the same point, i.e. 1 m,fsi 1 s,fsin n
Ii Iiu u+ += , 

1 m,fsi 1 s,fsin n
Ii Iiv v+ +=  as those in Eq. (5.1). At the same time, the mesh inside the fluid 

domain should also be updated accordingly so as to ensure the compatibility of mesh 

inside the fluid domain. As previously proposed, the fluid mesh can be updated with 

the simple velocity/displacement interpolation algorithm [11-14] or the “pseudo-

structure” algorithm. In the present study, we chose the simpler velocity/displacement 

interpolation algorithm for the fluid mesh updating. The outcome of updating the fluid 
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mesh is to get the new fluid mesh positions, 1 mn
Iix+ , and the corresponding mesh 

velocities, 1 mn
Iiv+ .  

Step 3: Solve the fluid portion by applying the FSI velocity condition 

In order to ensure the non-slip boundary condition for the fluid at the FSI 

interface, the velocities of the fluid particles are set to be equal to the velocities of the 

solid particles at the same point, i.e. 1 f,fsi 1 s,fsin n
Ii Iiv v+ +=  on 1 fsin+ Γ . Then the fluid portion 

is solved via GSM/ALE. The output of the fluid portion are 1 fn
Iiv+  and 1 fn

Ip+

 in the 

time step n+1. 1 f,fsi
,

n
Ii jv+  and 1 f,fsin

Ip+  on 1 fsin+ Γ  are output separately for the calculation of 

the FSI force in Step 4. 

Step 4: Updating  of the FSI force for next time step 

According to the traction equilibrium condition, the FSI force at time step n+2 is 

evaluated according to Eq. (5.7) by using the parameters 1 f,fsi
,

n
Ii jv+  and 1 f,fsin

Ip+  on 1 fsin+ Γ . 

This newly evaluated force will be applied to the solid portion in Step 1 for the next 

time cycle (i.e. from time step n+1 to n+2). 

A flowchart of this weak coupling algorithm with smoothed method is 

summarized as follows. 

Flowchart 5.2: Weak coupling of GSM/ALE with ES-FEM-T3 for FSI analysis 
(1) Initialization for the fluid domain 

(1.1) Discretize the fluid domain 0 fΩ  and construct the nGSD and mGSD 
(1.2) Initialize the flow field, -1U=0U=0 

(2) Initialization for the solid domain 
(2.1) Discretize the solid domain 0 sΩ  and constructed the edge-based 

smoothing domains 0 s
isdΩ , isd=1~Nsd 

(2.2) Loop over all smoothing domains 0 s
isdΩ  to compute the smoothed 

derivatives of the shape function 0 s
,I jN  

(2.3) Set the initial solid conditions 0 s
Iiv , 0 s

Iia , 0 s
jiP ; get 0 s,ext

Iif  
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(2.4) Compute the lumped mass matrix s
IJijM  

(3) Initialization for the coupling conditions 
(3.1) Find the connection relationships “node_FSI” between the fluid nodes 

and solid nodes on the FSI interface 
(3.2) Initialize the coupling equations, 0 s,fsi 0Iif =  

(4) Initialize the step counter n=0 and the physical time tn=0=0 
(5) Call the subroutine Solid_ExDyna (n, t∆ , 0 sd

isdA , 0 s
,I jN , s

IJijM , 0 s
Iiv , 0 s

Iia , 0 s
jiP , 

s,fsin
Iif )

 
to obtain the 1n s

Iiu+ , 1n s
Iiv+ , 1n s

Iia+  
(6) Update the mesh inner the fluid domain to obtain mesh velocities 1 mn

Iiv+  and 
updated mesh position 1 mn

Iix+   
(7) Update the quantities in Eqs. (2.42)-(2.44) and set the velocities of the fluid 

particles on the FSI interface be equal to those of the solid particles on the same 
point, 1 f,fsi 1 s,fsin n

Ii Iiv v+ +=  
(8) Use GSM/ALE (n, t∆ , variables in Step (7)) to get 1 fn

Iiv+  and 
1 fn

Ip+ , and the 
1 f,fsi

,
n

Ii jv+  and 1 f,fsin
Ip+  on FSI interface 1 fsin+ Γ  

(9) Calculate the FSI force 1 s,fsin
Iif+  with Eq. (5.7) 

(10) Update the variables: f 1 fn n
Ii Iiv v+= , f 1 fn n

I Ip p+= , s 1 sn n
Ii Iiu u+= , s 1 sn n

Ii Iiv v+= , 
s 1 sn n
Ii Iia a+= , s,fsi 1 s,fsin n

Ii Iif f+= , n=n+1 and tn+1=tn+ t∆ ;  
(11)  Stop criteria of the calculation 

(11.1) For transient analysis, go to step (5) until get the total simulation time 
ttotal;  

(11.2) For steady analysis, if the steady error is little or equal to the critical error, 
i.e. error_steady<tol, stop the looping; otherwise, go to step (5) 

The error_steady above is defined as 

( ) ( )1 f f 1 f 0 f_ n n n
Ii Ii Ii Ii

I I
error steady v v v v+ += − −∑ ∑ . (5.25) 

In the calculation, explicit time integrations are employed in both the fluid and 

solid domains, which indicate that the calculations for both fluid and solid portions 

are only conditionally stable. As such, the time step t∆  used in the whole weak 

coupling process should be chosen carefully. How to determine the suitable or critical 

time steps s
critt∆ ( s s

critt t∆ ≤ ∆ ) and f
critt∆  ( f f

critt t∆ ≤ ∆ ) for the solid and fluid domains has 

already been discussed in the previous chapters. The critical time step critt∆  in this 

weak coupling process is thus determined by ( )s fmin ,crit crit critt t t∆ = ∆ ∆ . In this work, a 
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constant time step t∆  is used and it is constrained by critt t∆ ≤ ∆ . In practice, s
critt∆  is 

usually smaller than f
critt∆ . So the constant time step t∆  only needs to satisfy

s
critt t∆ ≤ ∆ . 

5.4 Verification of the coupled GSM/ALE-ES-FEM-T3 

Three benchmarks are tested in the present section to demonstrate the validity 

and performance of the weak coupling GSM/ALE with ES-FEM-T3 for solving FSI 

problems. The application of displacement/velocity compatibility has already been 

verified in the previous chapter during using the GSM/ALE to solve for fluid-rigid 

solid interaction problems. In this section, the application of the other coupling 

condition, i.e. the traction equilibrium, will be further verified firstly in this section 

through a benchmark of the vibration of a circular cylinder in a quiescent flow. The 

consideration of implementing this verification is that accurately applying the FSI 

force on the FSI interface is the basis of correctly and accurately predicting the 

deformation of the solid and thus the solution of the fluid-deformable solid interaction 

system. Next, a flexible flag flapping in a fluid tunnel is tested to verify that the 

coupled smoothed method in solving the transient FSI problems. Finally a beam 

deforming in a fluid tunnel is used to confirm that the proposed coupled smoothed 

method can give accurate and stable steady solutions in the FSI analysis. Numerical 

results from published literature are chosen as the benchmark for the comparisons.  

5.4.1 Vibration of a circular cylinder in a quiescent fluid 

5.4.1.1 Problem description 

The vibration of a circular cylinder in a viscous fluid is illustrated in Fig. 5.6. 

When the cylinder vibrates in the viscous fluid, the presence of the fluid gives rise to 
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a FSI interaction force that will influence the vibration of the cylinder. This example 

was originally studied by Chen et al. in [21] in the form of a cylindrical rod vibrating 

in a viscous fluid enclosed by a rigid, concentric cylindrical shell. A closed form 

solutions for the added mass and damping coefficients were obtained and verified by 

comparing with the experimental data in their study. Subsequently, Nomura and 

Hughes [12] simplified this model into a cylinder-spring system where the stiffness of 

the elastic spring was specially designed to make the natural frequency of this 

cylinder-spring system coincide with that of the cantilever rod. The displacement 

history of the cylinder, the added mass and damping coefficients were compared with 

the analytical solutions in [21] to verify their ALE finite element solution procedure.  

We reprise this example here to verify the implementation of our FSI coupling 

conditions in the form of proposed weak coupling smoothed method via comparison 

of the calculated displacement damping history of the cylinder and the added mass 

coefficient with the reference in [12, 21]. It should be noted that in this FSI problem 

the cylinder is still assumed as a rigid body. However, this fluid-rigid cylinder 

interaction is totally different from those discussed in the previous chapter: the 

vibration history of the rigid cylinder here is not prescribed but decays with time due 

to the effect of the FSI force existed via in Eq. (5.7). 

The parameters of the cylinder are r=0.635cm and m=3.408g. It is attached to the 

outer boundary of the fluid domain with a horizontal elastic spring of stiffness 

k=34611.3g/s2. The radius of the fluid domain is set to be 5 times larger than that of 

the cylinder, i.e. R=5r. Two types of fluid are put into the fluid domain, i.e. 

Case 1: the fluid is air, airρ =1.18×10-3g/cm3 and fµ =1.82×10-4g/(cm ⋅ s) 

Case 2: the fluid is mineral oil, mineralρ =0.935g/cm3 and fµ =0.41g/(cm ⋅ s). 
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Initially, the fluid is at rest and the cylinder is released with an initial 

displacement a=0.02r and zero initial velocity 0 sv =0. Because no gravity is 

considered and the fluid domain is symmetric, the cylinder will only vibrate in the 

horizontal direction after the release. Accordingly, the mesh in the fluid domain is 

updated by using the displacement/velocity interpolation procedures [11-14]. The 

pressure condition, i.e., p=0, is applied at point A as a referential pressure. 

 
Fig. 5.6 Illustration of the vibration of a single circular cylinder immersed in a quiescent fluid 

The fluid flow is solved with the developed GSM/ALE, and the vibration of the 

cylinder governed by Eq. (5.26) is solved with the Newmark method [22].  

s s s s,extma cv ku f+ + =  (5.26) 
where as, vs and us are the acceleration, velocity and displacement of the cylinder in 

the horizontal direction; and s,extf  is the external force that is assumed to be zero in 

the present study; the drag force (or say the FSI force in Eq. (5.7)) which acts 

opposing the cylinder motion is used as the damping force during the vibration of the 

cylinder. The interaction conditions proposed in Section 5.1.3 are applied on the FSI 

interface during the time marching process. 



 
Chapter 5                   Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions 

201 
 

5.4.1.2 Quantitative comparison 

The convergence property of the fluid-cylinder interaction is firstly studied based 

on four sets of unstructured fluid mesh (770, 1529, 3162 and 5961 nodes, respectively) 

as shown in Fig. 5.7a; here each mesh has approximately 2 times nodes than the 

previous one. Because the fluid domain is symmetric, only the upper part of the fluid 

mesh is plotted here. Fig. 5.7b plots the displacement history of the cylinder immersed 

in the mineral oil with different meshes. From the zoom-in part of this figure, it can be 

seen that with the increase of the mesh nodes, the difference between the two 

neighboring curves becomes smaller, which means that the calculation becomes 

increasingly less dependent on the mesh. By considering the computational efficiency 

and accuracy, the set of mesh with 3162 nodes is thus chosen in the following analysis. 

Based on this set of mesh, the velocity and pressure contours at a time instant t=0.6s is 

plotted in Fig. 5.8. 

    
a. 770 nodes b. 1529 nodes c. 3162 nodes d. 5961 nodes 

a) fluid mesh with different nodes 

 
b) mesh convergence analysis 

Fig. 5.7 Convergence study of the displacement field of the cylinder with different mesh 
densities 
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a)  vx 

 
b) vy 

 
c) p 

Fig. 5.8 Contour plots of the flow field of mineral oil at time t=0.6s 

From Fig. 5.7b we can further observed that the vibration of the cylinder will 

decay with the increase of time, which is mainly due to the drag of the viscous fluid. 

Comparisons of the displacement history of the cylinder with the reference data from 

[12] are shown in Fig. 5.9. From this figure it can be seen that i) good agreement of 

predicted displacement by the our coupled smoothed method is achieved indicating 

the viable application of the FSI force condition in the assembled codes; ii) the 

vibration of the cylinder decays much faster in the mineral oil, which is in agreement 

with the higher dynamic viscosity of the mineral oil than air; and iii) there is almost 
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no decay of the vibration when the cylinder is immersed in the air, which may be 

attributed to the extremely low dynamic viscosity of the air. Further comparisons of 

the displacement history of the cylinder vibrating in the air and vibrating without any 

damping are presented in Fig. 5.10. From this figure we can see that the two 

displacement curves match quite well with each other, which indicates that the fluid 

with extremely low dynamic viscosity has quite small effect on the vibration of the 

cylinder. 

 
Fig. 5.9 Displacement field of the vibration of a circular cylinder in a quiescent fluid 

 

 
Fig. 5.10 Displacement field of the vibration of a circular cylinder in the air and without any 

damping (or say in vacuum) 

The added mass coefficient was analytically derived by Chen et al. in [21] 

2fsi

natural

T 1
Tm

mC
M

  
= −  

   
 (5.27) 
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where m and M are the mass of cylinder and the fluid filled in the equivalent volume 

of the cylinder, respectively; Tfsi and Tnatural are the cycle of the coupled system and 

the cylinder free vibration in space, respectively. 

In the present study, we have m=3.408g, 

Mair= air 2rρ π =0.0015g (5.28) 

Mmineral= mineral 2rρ π =1.184g (5.29) 

naturalT = 2 k mπ =0.06235s (5.30) 

, and Tfsi can be drawn from the displacement history in Fig. 5.9, i.e. Tfsi, air= 0.06238s 

and  Tfsi, mineral=0.0763s.  

By using these data, the added mass coefficient corresponding to the mineral oil 

is mineral
mC =1.432. The reference value of the added mass coefficient is ref,mineral

mC =1.590 

in [12, 21]. Comparing the calculated value with the reference, we can see that our 

calculated results are quite close to these referential ones, which once more indicates 

the correction of applying the FSI force condition in the FSI code and the accuracy of 

our proposed coupled smoothed method. 

Furthermore, the calculated and reference values of the added mass coefficient 

corresponding to the air are air
mC = 2.186 and ref,air

mC =1.647, respectively. It can be 

found that there are some differences between these two values, and the differences 

was also observed by Nomura and Hughes in [12]. It is may because the displaced 

mass of air is very small due to its small density, and so even a small numerical error 

may significantly affect the  evaluation of the coefficients  [12]. 

5.4.2 Flow past a cylinder with a flexible flag 

5.4.2.1 Problem description 
In this section, the FSI force will be applied on a deformable solid. The 

benchmark FSI problem is that of a flexible flag at the downstream side of an 
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upstream cylindrical pole which serves to verify of the proposed coupling smoothed 

method can give an accurate transient solution of a “real” FSI problem.  

As illustrated in Fig. 5.11 [23, 24], the fluid domain is assumed to be a 2D 

channel with the parameters given as: L=2.5m and H=0.41m. The geometry 

parameters of the rigid cylinder and the flexible flag are given as: r=0.05m, l=0.35m, 

a=0.1 and h=0.02m. If we set the origin of the coordinate system at the lower left 

corner of the fluid domain, the center of the rigid cylinder is located at (0.2m, 0.2m). 

At the top and bottom edge of the fluid domain, the non-slip wall boundary condition 

is assumed. 

L

Hr

c
h

l

A Non-slip Wall Outlet
Inlet

x

ya

 
Fig. 5.11 Illustration of fluid flow past a cylinder with a flexible flag 

The inflow velocity ( )fv t  is prescribed at the left edge of the fluid domain with 

the following parabolic streamwise velocity profile 

( )
( )

f
1 cos 2

2.0s
2

2.0s

t
v tv t

v t

π−
<= 

 ≥






 (5.31) 

where ( ) 2
mean6v v y H y H= − in which vmean is the mean inflow velocity when the 

inflow is steady after about t=2.0s.  

The calculation starts at the rest state of the fluid and solid. The boundary 

conditions for fluid and solid are prescribed as follows: 

V.B.C. for fluid: ( )f f
1

nv v t=  , f
2 0nv =  at 0x = ; f 0n

iv =  (i=1,2)  at y=0 and y=H 
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P.B.C. for fluid: fn p =0 at x=L 

V.B.C. for solid: s 0n
iv =  (i=1,2)  if  ( ) ( )2 2 2

1 2x c x c r− + − = . 

Parameters of the fluid and solid materials are listed in Table 5.1[23]. 

Table 5.1  Physical parameters utilized in FSI problem of fluid flow passing a cylinder with a 
flexible flag 

Fluid  Solid 
fρ  fµ  vmean Re  sρ  sµ  sυ  

103kg/m3 kg/(ms) m/s   103kg/m3 106kg/(ms2)  
1 1 3 200  1 2.0 0.4 

where sµ  is the shear modulus of solid, ( )s s s0.5 1Eµ υ= + . 

5.4.2.2 Quantitative comparison 

With the parameters given above, the flag oscillates with time leading to a 

periodically oscillating fluid flow with regular vortex pattern. The displacement of 

point A(0.6m,0.2m) on the right tip of the flag and the cycle of the oscillation of the 

flag are the two main quantities used for comparison with the reference. Three sets of 

meshes are employed, i.e. mesh set 1 (or in short MS(1)), 3476 nodes for the fluid and 

427 nodes for the solid; MS(2), 5113 nodes for the fluid and 1111 nodes for the solid; 

and MS(3) 7371 nodes for the fluid and 2057 nodes for the solid. As will be noted 

below, the solution of the FSI system is stable using the finer mesh MS(3) and thus 

used for comparison.  

In the FSI analysis with Re=200, the system settles into a large-amplitude self-

excited oscillation following the initial transient quiescent period. The oscillating flag 

produces a regular vortex pattern that is advected along the channel, as shown in Fig. 

5.12, where four typical snapshots of the pressure contour together with the 

streamlines are plotted. The vertical tip displacement history of s
yu  at point A is 

plotted in Fig. 5.13. This displacement range of tip A is s
yu ≈0.001±0.0344m, which is 
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fairly comparable with the reference solution s
yu ≈0.00148±0.03438m [23-25]. 

Furthermore, the cycle of the oscillation of the flag is T=0.198s, which also agrees 

well with the value T=0.19s calculated in [25].  Both of the comparisons demonstrate 

that our coupling smoothed method can give accurate and stable transient solution in 

an FSI analysis. 

 
a) T/4 

 
b) T/2 

 
c) 3T/4 

 
d) T 

Fig. 5.12 Snapshots of the fluid pressure contours and streamlines for the problem of fluid 
flow past a cylinder with a flexible flag 

 
Fig. 5.13 History of displacement component of the point A for the problem of fluid flow past 

a cylinder with a flexible flag 
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5.4.3 Beam in a fluid tunnel  

5.4.3.1 Problem description  

In this example, a beam immersed in a fluid tunnel is analyzed, as illustrated in 

Fig. 5.14. The beam will undergo a large deformation driven by viscous fluid flow 

and become steady only after a certain period of oscillations. This kind of problem 

can be usually found in biomechanics, e.g. the opening and closing behavior of aortic 

heart valves involving intricate delicate interaction between the blood flow and heart-

valve leaflet [26].  

 
a) Geometry of the FSI system 

 
b) Mesh of the FSI system: MS(1) 

Fig. 5.14 Problem setting and mesh of a beam in a fluid tunnel 

Geometric parameters of the fluid tunnel are: L=4cm and H=2cm. The beam is 

fixed in the middle of the tunnel with its geometric parameters: a=0.025cm and 

b=0.8cm. Gravity is not considered in the present calculation. Non-slip wall boundary 

condition is assigned at the bottom edge of the fluid domain and symmetric boundary 
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condition is assumed at the top edge of the fluid domain. The FSI coupling conditions 

are applied at the fluid-beam interface. The inlet boundary condition at the left edge 

of the fluid domain is defined as  

( ) ( )
( )
( )

f 2
1

f
1
f
2

1.5 2 0 1.0cm

1.5 1.0cm 2.0cm
0

v t y y y

v t y
v t

 = − + ≤ <
 = ≤ ≤
 =







 (5.32) 

and at the right edge of the tunnel the reference pressure at the corner point is set to be 

zero. The fluid properties are chosen as: fρ =1g/cm3 and fµ =0.1g/(cm ⋅ s). The solid 

material is chosen as Saint Venant-Kirchhoff material and two types of material 

properties are chosen, i.e. 

Case 1: sρ =7.8g/cm3, Es=106g/(cm ⋅ s2) and sv =0.3 

Case 2: sρ =7.8g/cm3, Es=1011g/(cm ⋅ s2)  and sv =0.3 

In both cases, the fluid and solid are at rest at t=0 and the FSI system will arrive 

at the steady state, which is determined by the criterion 

( ) ( )1 f f 1 f 0 f 610n n n
Ii Ii Ii Ii

I I
v v v v+ + −− − ≤∑ ∑ .

 
(5.33) 

After getting the steady state the FSI force applied on the deformed beam are in 

balance with the internal force. 

Three sets of irregular meshes are created as follows: MS(1), 1152 nodes for the 

fluid and 155 nodes for the solid; MS(2), 1945 nodes for the fluid and 205 nodes for 

the solid; and MS(3), 3856 nodes for the fluid and 305 nodes for the solid. Different 

meshes are established to verify the convergence properties and thus the stability of 

the proposed smoothed methods. A typical mesh set of MS(1) is plotted in Fig. 5.14b. 
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5.4.3.2 Quantitative comparison: Case 1 

In Case 1, the beam undergoes large deformation due to the relative “softness” 

(low Young’s modulus) of the solid material. Fig. 5.15 plots the time histories of x-

component of the velocity and deflection measured at the tip A based on different 

meshes. From this figure it can be seen that i) after a certain period of time the 

velocity approaches to zero and the deflection stabilizes at a constant value, which 

indicates that the final steady state of the beam has been successfully captured in the 

present calculation; ii) the solutions of either velocity or deflection using different 

meshes agree very well with each other although there are minor differences among 

these curves which are attributed to the deployed meshes.  

  
a) the tip velocity s

xv   b) the tip displacement s
xu  

Fig. 5.15 Solutions of a beam in a fluid tunnel (Case 1 solved with MS(3)) 

Fig. 5.16 plots the contours of the velocity component in the x-direction and the 

pressure p at some typical time instants during the time marching process. From the 

zoom-in parts of these figures, it can be seen that there are oscillations in the pressure 

field near the tip zone of the beam. This observed phenomenon is mainly due to the 

singularity of the velocity gradient resulting from the sharp corner of the beam end. In 

the farfield zone of the fluid domain the singularity of the velocity gradient vanishes 

and thus the oscillation of pressure disappears in these distance zones. No oscillations 
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are observed in the velocity field in the whole fluid domain, as shown in the zoom-in 

parts in Fig. 5.16a. 

  

  

  

  
a) velocity f

xv   b) pressure fp  

Fig. 5.16 Snapshots of the contours: a) velocity f
xv , and b) fp  (Case 1 solved with MS(3)) for 

the problem of a beam in a fluid tunnel 

The solutions of the velocity and deflection are mesh-dependent. With the 

refinement of the meshes in both the fluid and solid domains, the solutions 

convergence to the “exact” ones. However, the meshes in different domains may have 

different “contributions” to the rate of convergence. An examination of the individual 
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effect of the fluid and solid meshes to the final solutions is presented here. To aid in 

the examination, one extra mesh set, i.e. EMS with 1285 nodes in the fluid domain 

and 205 nodes in the solid domain, is created by referring to as MS(1) and MS(2): we 

define the fluid mesh of EMS are (almost) the same as that in MS(1) but with a 

change of the solid mesh on comparing with MS(1), while the solid mesh of EMS are 

the same as that in MS(2) while has a change of the fluid mesh on comparing with 

MS(2). The intent for this arrangement is to ascertain the effect of the solid mesh on 

the final solutions while keeping the fluid mesh unchanged when using MS(1) and 

EMS, and separating to check the effect of the fluid mesh on the final solutions while 

keeping the solid mesh unchanged when using EMS and MS(2).  

The time histories of x-component of the velocity and deflection measured at the 

tip A based on MS(1), MS(2) and EMS are plotted in Fig. 5.17a and Fig. 5.17b,  

respectively. From these two figures it can be easily found that the distributions based 

on EMS and MS(2) are much closer to one another as compared to those based on 

MS(1) and EMS. The finding suggests that by changing only the solid mesh while 

keeping the fluid mesh unchanged has much more obvious effect on the final 

solutions than that only changing the fluid mesh but keeping the solid mesh 

unchanged. This implication is that in the FSI analysis it is better or perhaps 

imperative the solid mesh be more refined at least in comparison to the fluid mesh in 

the event that the total number of mesh nodes in the whole domain remains the same. 

However, as pointed out previously, with the increase of the DOFs in the solid 

domain, the critical length of mesh edge, le, will become shorter. This would in turn 

affect the critical time step in the solid domain ( s
crit et l∆ ∝ ) and thus the whole FSI 

analysis with the explicit time integration process. Thus there must be a balance 
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regarding the effect of the solid mesh on the converged solution and the critical time 

step for time marching.   

 
a) s

xv  

 
b) s

xu  

Fig. 5.17 Illustration of the mesh effects on the convergence of the solutions for the problem 
of a beam in a fluid tunnel 

Furthermore, if the solid material is chosen even “softer”, the solid beam will 

deform extremely large, which may distort the solid mesh especially near the beam 

region, as shown in Fig. 5.18, where the Young’s modulus of the beam is set to be 

( )s 5 210 g cm sE = ⋅ . Although it can still work because we have already checked the 

robust of our GSM/ALE on extremely distorted mesh, the accuracy of the calculation 

should be at least affected by the distorted mesh. Thus for the problem with large 

mesh distortion, extra technique such as adaptive analysis should be used in the mesh 

updating process in order to ensure the quantity of the fluid mesh. In my research 
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group, some studies on the adaptive analysis have already been done in both solid and 

fluid mechanics [27, 28]. Further study of implementing these techniques to FSI 

analysis will be done in the next step. 

 
Fig. 5.18 Mesh distortions at extremely large deflections with the Es=105g/(cms2) for the 

beam 

5.4.3.3 Quantitative comparison: Case 2 

In Case 2, the Young’s modulus of the beam is 106 order’s lower than that in 

Case 1, which enforces the critical time step of the FSI analysis (that is mainly 

determined by the critical time step of the solid, s s1critt E∆ ∝ ) to be 1/103 of that in 

Case 1 on using the same fluid and solid meshes. As such, the appropriate time step 

needs to be chosen for Case 2. In the present calculation, the time step used is in the 

order of 10-8s. Because of the high stiffness of the beam, it will deform extremely 

small in the viscous fluid which is fairly similar in behavior to that of a rigid body. 

The contour plot of the x-component of velocity and the pressure in fluid domain are, 

respectively, shown in Fig. 5.19a and 5.19b based on MS(3). From these two figures 

we can again observe the oscillation of the pressure near the tip region of the beam as 

a result of the sharp corner. However, no pressure oscillation is observed in the 

farfield region. Moreover, there is an absence of oscillation observed for the velocity 

field since there is no singularity encountered in the calculation of the velocity field. 
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a) the tip velocity f

xv  b) pressure fp  

Fig. 5.19 Snapshots of the contours (Case 2 solved with MS(3)) for the problem of a beam in 
a fluid tunnel 

In the present FSI analysis, only one constant t∆  is employed for both the fluid 

and solid domains. This procedure on the one hand make it easy to couple the 

physical solution of the fluid and solid at every time step, on the other hand it is quite 
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restrictive in terms of the critical time step in the solid domain; the critical time step 

s
critt∆  for the solid portion becomes extremely small when the Young’s modulus of the 

solid is very high, leading to a very small time step for the whole FSI analysis. As 

pointed out in [25], one possible way to reduce the total computation time is to set 

s f
crit critt t t∆ < ∆ < ∆  and f st t m t∆ = ∆ = ∆ . That is, in one real time step from n to n+1, the 

coupling smoothed method solves the fluid portion for one physical time step from t 

to ft t+ ∆ , and takes m (pseudo) solid time steps in the solid domain. This kind of time 

integration process will avoid the solving for the fluid portion when the solid 

undergoes deformation in the mth internal solid time steps. However, this dual time 

stepping scheme may also bring about some other issues, e.g. the accuracy of the fluid 

solutions near the FSI interface region. This is because the solid may undergo quite 

large deformation after the mth time integration process leading possibly to (relatively) 

large volume change of the fluid mesh near the FSI interface. Detailed examination of 

this kind of time integration process will be addressed in a future study. 

Both cases produce stable vortex in the downwind side of the beam in the steady 

state as shown by the streamline plots in Fig. 5.20. 

  
a) Case 1 b) Case 2 

Fig. 5.20 Streamlines at the steady state of a) Case 1 and b) Case 2 for the problem of a beam 
in a fluid tunnel 
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5.5 Concluding remarks for Chapter 5 

In this chapter, a weak coupling scheme of the smoothed methods, i.e. coupling 

of the GSM/ALE with ES-FEM-T3, has been successfully established for solving 

fluid-deformable solid interaction problems. GSM/ALE is implemented in the fluid 

domain and the newly developed explicit time integration ES-FEM-T3 is 

implemented in the solid domain. In order to link the GSM/ALE and ES-FEM-T3, the 

FSI coupling conditions are carefully formulated and successively applied on the FSI 

interface in the time marching process.  

The accuracy of the formulation and application of these coupling conditions are 

verified through the benchmark of the free vibration of a cylinder in a quiescent fluid. 

Reasonable agreement of the displacement and added mass coefficient of the cylinder 

with the references are obtained. From the benchmark of the flow past a cylinder with 

a flexible flag, it is observed our coupled smoothed method can give accurate solution 

in the transient FSI problems. From the benchmark of a beam in a fluid tunnel where 

the solid beam is assume to be either extremely flexible or near-rigid, it is clear that 

our coupled smoothed method can give accurate and stable steady solutions in the 

steady FSI problems.  

Through the mesh sensitivity analysis discussed in this benchmark, we may also 

draw the conclusion that the whole FSI system is more sensitive to the changing in the 

solid mesh as compared to the fluid mesh. Thus it is suggested that for the solid 

portion a more refined mesh may be considered. In the calculation for the case where 

the beam is extremely soft, the fluid mesh becomes highly distorted, especially near 

the FSI interface region. Although our GSM/ALE can still work reasonably in the 

fluid domain using this extremely distorted mesh, the overall accuracy of the FSI 

solution may still be affected. Thus in order to ensure the required accuracy, adaptive 



 
Chapter 5                   Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions 

218 
 

meshing of the fluid meshes is suggested for extreme cases; this is the subject of our 

future work. 
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Chapter 6  

Conclusions and recommendations 

 

As a continuation of the smoothed theory, this thesis explores the coupling of 

two typical smoothed methods, i.e. coupling the GSM with ES-FEM-T3, for solving 

the challenging FSI problems. Novel numerical schemes, i.e. the implicit/explicit ES-

FEM-T3 and GSM/ALE, are firstly formulated for solving the uncoupled 

linear/nonlinear solid deformation and fluid flow with moving mesh, respectively. 

Properties of these two schemes, e.g. accuracy, convergence and stability, are 

quantitatively checked through numerous benchmark tests to demonstrate their 

validities. Due to the viable performance of these two schemes in solving particular 

solid and fluid flow problems, a coupling of GSM/ALE with ES-FEM-T3 is next 

constructed to solve the FSI problems. Numerical innovations ensued and distinct 

features are observed during the formulation and verification processes of these 

schemes, both of which are combined to enable further understanding of the 

characteristics of smoothed models and fundamentals of the smoothed theory. In this 

chapter, specific contributions and findings during the development of these schemes 

are summarized and potential further work associated with the present study is also 

suggested. 
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6.1 Conclusions 

 
(1) The implicit ES-FEM-T3 for 2D linear bending stress analysis  

The implicit ES-FEM-T3 method is possibly the first time to be implemented 

into a practical engineering problem, i.e. analyze the stress distributions in the gear 

tooth during the gear transmissions. A numerical operation of converting the 

concentrated transferred load to the distributed load is taken to avoid the stress 

singularity at the loading point. A more accurate stress field is obtained by the 

implicit ES-FEM-T3 than the standard FEM-T3. Thus it is further used in the 

optimizations of the gear tooth profiles. The governing equations of the gear tooth 

profiles are derived and five typical gear tooth models with pressure angles d cα α =

20 20  , 25 20  , 30 20  , 35 20  , 40 20 

 are tested. Finally the optimized 

asymmetric gear tooth profile with pressure angle 35 20d cα α =    is found 

considering both the stress distributions in the drive side of the gear tooth and the 

transmission ability of the gear pair. 

 

(2) The explicit ES-FEM-T3 membrane model for 3D nonlinear membrane 

structure deformation analysis 

The necessity and difficulty of introducing the nonlinear strain term into the 

analytical expressions of the membrane deflections are firstly demonstrated. This is 

followed by formulating the explicit ES-FEM-T3 membrane model, which can easily 

incorporate the crucial nonlinear strain term, in which the edge-based strain smoothing 

is performed in the global Cartesian coordinate system and then transformed to the local 

co-rotational coordinate system for further calculation. Explicit time integration scheme is 

used to compute the transient response of the 3D spatial membrane structure. The 
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dynamic relaxation method is employed to obtain the steady-state solutions of the 

membrane structure. Numerical results show that accuracy of the estimated membrane 

deflections is greatly improved by the explicit ES-FEM-T3 membrane model 

compared with the mechanical, FEM-T3 membrane and FEM-T3 shell models. 

Further examination of the explicit ES-FEM-T3 membrane model reveals that two 

main factors, i.e. the pressure fluctuations in the experiment and boundary constraints 

in numerical models, are found to attribute to the slight differences observed between 

the numerical and experimental results. 

 

(3) The novel GSM/ALE method for the fluid flows over moving mesh.  

The ALE form of Navior-Stokes equations are discretized with GSM in the 

spatial domain. The recovery of uniform flow is ensured through the introduction of 

the moving mesh source term derived directly from the geometric conservation law. 

The spatial stability is ensured through the implementation of the second order Roe 

flux differencing splitting unwinding scheme in the convective flux. The artificial 

compressibility formulation is utilized with a dual time stepping approach for the 

accurate time integration. Through the benchmark tests it can be seen that the 

proposed GSM/ALE method is accurate, stable and fairly robust to extremely 

distorted mesh for solving fluid-rigid body interaction problems. It can also achieve 

the 2nd order accuracies in both spatial and temporal domains. 

 

(4) Coupling GSM/ALE with ES-FEM-T3 for FSI analysis 

In consideration of the effective performance of the GSM/ALE and ES-FEM-T3 

in solving for the pure fluid and solid problems, respectively, the novel weak coupling 

smoothed method, i.e. coupling of GSM/ALE with ES-FEM-T3, is proposed to solve 
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the fluid-deformable solid interaction problem. The GSM/ALE is implemented in the 

fluid domain and a newly developed explicit time integration ES-FEM-T3 is 

implemented in the solid domain. The FSI coupling conditions are implemented on 

the FSI interface to “link” these two smoothed methods so as to conform to the 

dynamics of FSI. Through the tests of three benchmarks, it is found that the proposed 

FSI coupling conditions are accurately formulated and correctly implemented in the 

FSI code. And the proposed coupling smoothed method can give accurate, convergent, 

stable and robust solution for both transient and steady-state FSI problems. The 

proposed coupling smoothed methods are also robust to extremely distorted mesh. 

Furthermore, the FSI system is more sensitive to the changing in the solid mesh as 

compared to the fluid mesh. Thus it is suggested that for the solid portion a more 

refined mesh may be considered. 
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6.2 Recommendations for further work 

 
Based on the work presented in the thesis, the following topics may be 

considered worthwhile for further exploration in future: 

(1) As pointed out in the present research, the mesh condition can become 

indeed very distorted when the solid part undergoes extremely large 

deformations. Adaptive analysis of the dynamic mesh is a straightforward 

way to reassure the good quantities of the fluid mesh. The adaptive GSM 

with isotropic grids has already been developed for solving compressible 

flow problems previously. A formulation of the adaptive GSM/ALE should 

be effective and practical for solving FSI problems in the further work.  

(2) The fluid-thin structure interaction exists in several engineering 

applications, e.g. the fluid-cell interaction in biomechanics and the wind-

membrane interaction in the large-span structures. However, they are not so 

easy to be simulated due to the absence of bending momentum in the thin 

structure. The present ES-FEM-T3 has been found to work very well for 

solving the membrane deformation. Thus an extension of coupling 

GSM/ALE with ES-FEM-T3 for solving the fluid-thin structure interactions 

can be further studied in the future work. 

(3) It is needed to extend the present coupling code into 3D space so that the 

code can be extensively applied for the real-life problems, which will in 

turn definitely generalize and promote the gradient smoothing methods. 

(4) Develop the coupling scheme of GSM/ALE with ES-FEM-T3 for 

compressible fluid-deformable solid interaction analysis. The initial work 

of developing the compressible GSM solver and GSM/ALE solver has 
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already been done and more verification would be done to confirm the 

validity of the proposed solver in the future. 
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Appendix A 

Governing equations of the asymmetric gear tooth profile 

 

A kind of asymmetric gear tooth is novelly designed. An optimization process is 

presented in Chapter 3 to find the optimized set of gear tooth pressure angles to 

ensure that the optimized asymmetric gear can perform the best in consideration of 

both the stress distributions in the drive side of the gear tooth and the transformation 

ability of the gear pair. The governing equations of the five portions of the 

asymmetric tooth, i.e. the trochoidal and involute potions in the drive side, the 

trochoid and involute potions in the coast side and the addendum connecting the two 

involutes, as illustrated in Fig. 3.10, are driven as follows. 

 Governing equations of the involutes: portions ① and ③  

Set the center of the gear as the origin of the coordinate system, and the 

connection of origin and mid-point of tooth thickness in pinch circle as the y axis, as 

shown in Fig. A.1a, the involute coordinate (xM, yM) of an arbitrary point M in the 

drive side of the tooth (portion ①) can be expressed as 

   
( )
( )

sin inv inv

cos inv inv

M M Md d q

M M Md d q

x r

y r

α α α

α α α

 = − −


= − −
 (A.1) 

where rM  is the radius of the circle passing through point M; 

( )cos 2cosM d Mdr mz α α= , z is the total number of the gear teeth, Mdα  is the pressure 

angle at point M, [ ],Md ld adα α α∈ ,  adα  is the pressure angle of the addendum circle in 

the drive side, ( )*cos 2ad d cz z hα α= + , ldα  is the lower bound of  
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a) Involute portions of the gear tooth profile 

 
b) Trochoidal fillets of the gear tooth profile: the left one illustrates the drive side and the 

right one illustrates the coast side 

Fig. A.1 Illustrations of the asymmetric gear tooth profile 

the pressure angle in the drive side, ( )( )*arctan tan 2 sin cosld d c d dh zα α α α= − ; 

inv tanMd Md Mdα α α= − , so as the inv dα ; and ( )2q zα π= . 

The involute coordinate (xN, yN) of an arbitrary point N in the coast side of the 

tooth (portion ③) can be expressed as 

   
( )
( )

sin inv inv

cos inv inv

N N Nc c q

N N Nc c q

x r

y r

α α α

α α α

 = − − −


= − −
 (A.2) 

where rN is the radius of the circle passing through point N; 

( )cos 2cosN c Ncr mz α α= , Ncα  is the pressure angle at point N, [ ],Nc lc acα α α∈ , acα  

is the pressure angle of the addendum circle in the coast side, ( )*cos 2ac c cz z hα α= + , 
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lcα  is the lower bound of the pressure angle in the coast side, 

( )*arctan tan 2 sin coslc c c c ch zα α α α = −  ; ( )inv tanNc Nc Ncα α α= − , so as the inv cα ; 

( )2q zα π= . 

 Governing equations of the trochoid: portions ② and ④ 

Based on Fig. A.1b, the fillet coordinate (xW, yW) of an arbitrary point W in the 

drive side of the tooth (portion ②) can be expressed as 

   
( ) ( )
( ) ( )

sin sin cos
cos sin sin

W d Wd Wd d

W d Wd Wd d

x r a
y r a

ϕ α ρ α ϕ
ϕ α ρ α ϕ

= − + + −
 = − + −

 (A.3) 

where r is the radius of pinch circle, r=mz/2; Wdα  is the pressure angle at point W, 

[ ], 2Wd dα α π∈ ; dϕ  is the angle between the y axis and the vertical line of the pinch 

line in the drive side, ( )cotd Wd da b rϕ α= − with *4 tan cosd d d db m mhπ α ρ α= + +  

and * *
c ca h m c m ρ= + − . 

The coordinates (xV, yV) of an arbitrary point V in the coast side of the tooth 

(portion ④) can be expressed as follows: 

   
( ) ( )
( ) ( )

sin sin cos
cos sin sin

V c Vc Vc c

V c Vc Vc c

x r a
y r a

ϕ α ρ α ϕ
ϕ α ρ α ϕ

= − + −
 = − + −

 (A.4) 

where Vcα  is the pressure angle at point V, [ ], 2Vc cα α π∈ ; cϕ  is the angle between 

the y axis and the norm of the pinch line in the coast side, ( )cotc Vc ca b rϕ α= − with

*4 tan cosc c c cb m mhπ α ρ α= + +  and * *
c ca h m c m ρ= + − . 

 Governing equations of the addendum: portion ⑤ 

The addendum is an arc with its center as the center of the gear. It is used to 

connect the two involutes of portions ① and ③. 
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Different portions of the asymmetric gear tooth profile are mechanically cut out 

by different portions of a specially designed asymmetric rack cuter, as illustrated in 

Fig. A.2a. In this rack cutter, a standard pressure angle  cα  is applied in the coast side, 

a modified pressure angle dα  is applied in the drive side and one tip with radius ρ  is 

designed to connect the curves in the drive and coast side. The parameters which are 

not clarified in Eqs. (A.1)-(A.4) could be totally found in the illustrations of the rack 

cutter here. It should be noted that the profile of the specially designed rack cutter 

here is somewhat similar with that in [1] but adopts a set of totally different 

parameters comparing with that in [1]. 

Parameters of the specially designed rack cutter labeled in Fig. A.2 are: module 

m, coast side pressure angle cα , drive side pressure angle dα , coast side addendum 

coefficient *
ch , drive side addendum coefficient *

dh , coast side bottom clearance 

coefficient *
cc , drive side bottom clearance coefficient *

dc , and the radius of the tip ρ . 

Among these parameters, m, cα , dα and *
ch  are the four design constants for a rack 

cutter design. The other parameters can be directly or indirectly derived from these 

four constants based on some mechanical relationships. In details, the radius of the tip 

ρ  can be derived as  

   ( )*2 (tan tan ) cos sec sin tanc c d c d c dm h mρ π α α α α α α = − × × + − − ×  . (B.5) 

The coast and drive side bottom clearance coefficient *
cc  and *

dc  can be, 

respectively, expressed as  

   * (1 sin )c cc mρ α= × − , * (1 sin )d dc mρ α= × − . (B.6) 

And the drive side addendum coefficient *
dh  is 

   * * * *
d c c dh h c c= + −  . (B.7) 
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A much clear mechanical relationship among these parameters is labeled in Fig. 

A.2b. 

 
a) General profile of the asymmetric rack cutter 

 
b) Detailed relationship among the parameters 

Fig. A.2 Profile of the specially designed rack cutter with one fillet in the tip 

The straight-line parts of the rack cutter are used to generate the involute profiles 

(portions ① and ③ in Fig. A.1a) and the fillet parts of the rack cutter are used to 

generate the trochoidal fillet profiles (portions ② and ④ in Fig. A.1a) during the gear 

generation process. Accordingly, a simulation of generating one typical asymmetric 

gear through a gear generation process are presented in Fig. A.3a and a gear pair cut 

out according to this cutting process is plotted in Fig. A.3b. For gears with different 

radiuses (different tooth numbers), the same rack cutter can still be used. As long as 
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changing the relative movement speeds between the rack cutter and the blank gear in 

a cutting process, asymmetric gear with any tooth numbers can be cut out.  

⑤

①

②

③

④

  

a) Simulation of the gear generation process for 
one typical gear tooth 

b) Virtual model of an asymmetric gear 
pair 

Fig. A.3 Gear generation process for the virtual asymmetric gear model by using the specially 
designed ractter cutter 
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