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SUMMARY 

In this thesis, we develop an efficient computing budget allocation rule to run 

simulation for a single design whose transient mean performance follows a certain 

underlying functional form, which enables us to obtain more accurate estimation of 

design performance by doing regression. A sequential sampling constraint is imposed 

so as to fully utilize the information along the simulation replication. We formulate 

this problem using the Bayesian regression framework and solve it for some simple 

underlying functions under a few common assumptions in the literature of regression 

analysis. In addition, we develop a Single Design Budget Allocation (SDBA) 

Procedure that determines the number of simulation replications and corresponding run 

lengths given a certain computing budget. Numerical experimentation confirms the 

efficiency of the procedure relative to extant approaches. 

Moreover, the problem of selecting the best design among several alternative designs 

based on their transient mean performances has been studied. By applying the Large 

Deviations Theory, we formulate our problem as a global maximization problem, 

which can be decomposed under the condition that the optimal budget allocation for 

each single design is independent of the computing budget allocated to that design. As 

a result, the SDBA+OCBA Procedure has been developed, which has been proved to 

be an efficient computing budget allocation rule that enables us to correctly select the 

best design by consuming much less computing budget than the other existing 

computing budget allocation rules, based on the numerical experimentation results.  
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1. INTRODUCTION 

Many industrial applications have proved that simulation-based optimization is able to 

provide satisfactory solution under the condition that computing budget and time for running 

simulation be abundant. Nevertheless, in reality, the latter condition is hardly met due to the 

constraint of limited computing budget or due to the requirement that the decision-making 

process based on optimization result shall be completed in a restricted time period. The 

computing budget and time required to obtain a satisfactory result might be very significant, 

especially when the number of alternative designs is large, as each design would require 

certain simulation replications in order to achieve a reliable statistical estimation. Several 

researchers have dedicated themselves in searching for an effective and intelligent way of 

allocating limited computing budget so as to achieve a desired optimality level, and the idea 

of Optimal Computing Budget Allocation has emerged to be either maximizing the simulation 

and optimization accuracy, given a limited computing budget, or minimizing the computing 

budget while meeting certain optimality level (Chen and Lee, 2011). 

This thesis provides an OCBA formulation for estimating the transient mean 

performance at the point of interest for a single design. We derive theoretical and numerical 

results that characterize the form of the optimal solution for polynomial regression functions 

up to order three. Polynomial functions represent an important class of regression models 

since they are often used in practice to model non-linear behaviour. Additionally, we provide 

more limited results on the optimal solutions for sinusoidal and logarithmic regression 

functions. The results extend both the simulation and statistical DOE literatures. To apply the 

theory, we propose an algorithm and numerically assess its efficacy on an M/M/1 queuing 

example. The performance of our approach is compared against other extant procedures.  
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Moreover, we develop an efficient computing budget allocation algorithm that can be 

applied to select the best design among several alternative designs. By applying the Bayesian 

regression framework and the Large Deviations Theory, we formulate our Ranking and 

Selection problem as a maximization problem of the convergence rate of the probability of the 

correct selection. We decompose the problem into two sub-problems under certain conditions, 

and the SDBA+OCBA Procedure has been developed when the condition is met. Numerical 

experimentation has confirmed the efficiency of this newly developed SDBA+OCBA 

Procedure. 

The remainder of this thesis will be structured in the follow manner. Chapter 2 

presents some of the work that is related to our problem in the literature, based on which we 

define our problem setting and the goals we would like to achieve in this study. Chapter 3 

shows how we could improve the prediction accuracy of the transient design performance by 

doing regression analysis based on certain assumptions. The SDBA Procedure would be 

presented at the end of the chapter. Chapter 4 presents how we could make use of the SDBA 

Procedure to develop an efficient Ranking and Selection Procedure by using Large Deviation 

Theory. Chapter 5 concludes the whole thesis with a summary of what we have achieved, the 

practical importance and usefulness of our study. Some limitations and future works are also 

discussed at the end of the thesis. 
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2. LITERATURE REVIEW 

Since the very beginning of the idea conception of OCBA, the world has witnessed incredibly 

fast development of OCBA, thanks to many researchers who have been diligently working on 

this topic. With their continual and significant contribution, basic algorithms to effectively 

allocate computing budget have been developed (Chen, 1995) and further improved to enable 

people to select the best design among several alternative designs with a limited computing 

budget (Chen, Lin, Yücesan and Chick, 2000). The OCBA technique has also been extended 

to solve problems with different objectives but of similar nature, and these problems include 

the problem of selecting the optimal subset of top designs (Chen. , He, Fu and Lee, 2008), the 

problem of solving the multi-objective problem by selecting the correct Pareto set with high 

probability(Chen and Lee, 2009; Lee, Chew, Teng and Goldsman, 2010), the problem of 

selecting the best design when samples are correlated (Fu, Hu, Chen and Xiong, 2007), the 

problem of OCBA for constrained optimization (Pujowidianto, Lee, Chen and Yep, 2009), etc. 

The application of OCBA can be found in various domains, such as in product design (Chen, 

Donohue, Yücesan and Lin, 2003), air traffic management (Chen and He, 2005), etc. 

Furthermore, the OCBA technique has been extended to solve large-scale simulation 

optimization problem by integrating it with many optimization search algorithms (He, Lee, 

Chen, Fu and Wasserkrug, 2009; Chew, Lee, Teng and Koh, 2009). Last but not least, the 

OCBA framework has been expanded to solve problems beyond simulation and optimization, 

such as data envelopment analysis, design of experiment  (Hsieh, Chen and Chang, 2007) and 

rare-event simulation (Chen and Lee, 2011). 

Among the diverse extensions of OCBA technique proposed by various researchers, 

the Ranking and Selection Procedure for a linear transient mean performance measure 

developed by (Morrice, Brantley and Chen, 2008) is of particular interest as it incorporates 

the regression analysis in the computing budget allocation and addresses the problem in 



16 

 

which the transient design performances are not constant but follow certain underlying 

function. Simulation outputs are collected at the supporting points, which are used to estimate 

design performances by doing regression. They further generalize the regression approach of 

estimating design performances to the problem in which the underlying function of design 

performance is a polynomial of up to order five (Morrice, Brantley and Chen, 2009). Each 

simulation replication is run up to the point where prediction of transient design performance 

is to be made, and the sequential sampling constraint is imposed and multiple simulation 

output collection is conducted to maximize the information we could use to make prediction. 

They also show that significant variance reduction can be achieved by estimating design 

performance using regression. A heuristic computing budget allocation procedure, which 

would be referred to as the Simple Regression+OCBA Procedure, has been proposed, hoping 

to make advantage of the variance reduction achieved by doing regression. 

In this thesis, we aim at developing an efficient Ranking and Selection Procedure that 

enables us to quickly select the best design among several alternative designs. In order to do 

so, more accurate estimation of the design performances are desired, especially when the 

design performances are transient, thus are difficult to predict. Once we are able to develop a 

more efficient computing budget allocation procedure to estimate transient design 

performances, we could make use of the newly developed procedure to further improve the 

current Simple Regression+OCBA Procedure. 

Analysis of transient behavior is an important simulation problem in, for example, the 

initial transient problem (Law and Kelton, 2000) and sensitivity analysis (Morrice and 

Schruben, 2001). Transient analysis is also important in so-called “terminating simulations” 

(Law and Kelton, 2000) that have finite terminating conditions and never achieve steady state. 

Examples of transient behavior are found in many service systems like hospitals or retail 
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stores that have closing times or clearly defined “rush hour” patterns. They are also found in 

new product development competitions where multiple different prototypes are being 

simulated simultaneously. In this application, the prototype that is able to achieve the best 

specifications (e.g., based on performance, quality, safety, etc.) after a certain amount of 

development time wins. The latter is an example of gap analysis which is found in many other 

applications such as recovery to regular operations after a supply chain disruption and 

optimality gap analysis of heuristics for stochastic optimization (Tanrisever, Morrice and 

Morton, 2012). 

A common practice to estimate the transient mean performance of the design and its 

variance is to run the simulation up to the point where we want to make a prediction, which is 

called the point of interest in this thesis, and calculate the sample mean and sample variance 

by using the simulation outputs collected at that point. Another more sophisticated way is to 

use a regression approach which incorporates all information along the simulation replication 

instead of only at the point of interest. The regression approach is expected to provide more 

accurate estimation since more information is used. For example, Kelton and Law (1983) 

develop a regression-based procedure for the initial transient problem and Morrice and 

Schruben (2001) use a regression approach for transient sensitivity analysis.  

Morrice, Brantley and Chen (2008) derive formula to calculate the mean performance 

of design when its transient mean performance follows a linear function, with the simulation 

outputs collected at the supporting points. They further generalize this result to the problem 

when the underlying function is a polynomial of up to order five and the sequential sampling 

constraint is imposed so that information is collected at all observation points along the 

simulation replication up to the point of interest (Morrice, Brantley and Chen, 2009). They 
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show that significant variance reduction can be achieved by using this regression approach, 

which we refer to as the Simple Regression Procedure in this thesis. 

As a matter of fact, our problem is related to the Design of Experiment (DOE) 

literature. In particular, it is related to the c-optimal design problem in which we seek to 

minimize the estimated variance of the mean design performance measure at the point of 

interest, which is a linear combination of the unknown parameters, assuming that the 

underlying function can be expressed as a sum of several feature functions (Atkinson, Donev 

and Tobias, 2007). El-Krunz and Studden (1991) give a Bayesian version of Elfving’s 

theorem regarding the c-optimality criterion with emphasis on the inherent geometry. In the 

case of homogeneous simulation noise over the domain, several results on the local c-optimal 

designs for both linear and nonlinear models have been generated (Haines 1993; Pronzato 

2009) based on the work done by Elfving (1952). However, the problem of c-optimal design 

under the sequential constraint has not been studied. In this thesis, we would present some 

analytical and numerical solutions to this problem when the undelrying function takes certain 

forms.  
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3. SINGLE DESIGN BUDGET ALLOCATION 

3.1. PROBLEM FORMULATION 

3.1.1. Problem Setting 

In this thesis, we would like to improve the Simple Regression Procedure by using the notion 

of Optimal Computing Budget Allocation (OCBA) (Chen and Lee, 2011). We aim at 

improving the estimate accuracy of the transient mean performance of the design at the point 

of interest by running simulation replications to certain run lengths instead of running all of 

them to the point of interest. We assume that the transient mean performance of the single 

design follows a certain underlying function which can be expressed as a sum of several 

univariate one-to-one feature functions. Sequential multiple simulation output collection is 

conducted at all observation points along the simulation replication. We assume that the 

starting points of all simulation replications are fixed at a common point due to practical 

constraints. For example, in an M/M/1 queuing system, in order to estimate the 100
th

 

customer’s waiting time, we need to run simulation from the very first customer. We further 

assume that the simulation budget needed to run the simulation from one observation point to 

the next is constant over the simulation replication and is equal to one unit of simulation 

budget.  As a result, the run length of the simulation replication is equivalent to the number of 

observation points along the simulation replication, and the total computing budget can be 

considered as the total number of the simulation outputs we collect. Therefore, based on the 

aforementioned constraints and assumptions, our problem becomes the problem of 

determining the optimal simulation run lengths for all simulation replications, in order to 

obtain the best (minimum variance) estimate of the design’s mean performance at the point of 

interest by doing regression, subject to limited simulation computing budget.  
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To put the aforementioned assumptions and considerations into mathematical 

expressions, we would like to estimate the expected mean performance of the design at the 

point of interest   , given a total computing budget  . The transient mean performance of the 

design is assumed to follow a certain underlying function which is defined as      

         
   , where      denotes the expected performance of design at observation point  . 

The function       is a univariate one-to-one feature function, which can be any continuous 

function. Without loss of generality, we assume the first feature function to be a constant 

function, i.e.        . Let   be the total number of feature functions comprising the 

underlying function and                represent the unknown parameter vector which 

we want to estimate, whose prior distribution follows a multivariate normal distribution with 

mean   and variance-covariance matrix   . The sampling distribution of   can be determined 

by running the simulation. 

The transient mean performance of the design can be obtained by running the 

simulation, and the relationship between the simulation output and the expected mean 

performance is defined as       , where                          is the vector of 

simulation outputs and       is the simulation output at observation point   . The vector 

                         is the expected mean performance of the design and       is 

the expected mean performance of design at observation point   . Finally, 

                         is the vector of simulation noise which follows a multivariate 

normal distribution        , where   is the variance-covariance matrix. If the data generated 

by the simulation do not follow a normal distribution, then one can always perform macro-

replications as suggested by Goldsman, Nelson and Schmeiser (1991). 

We denote the sampling distribution of the unknown parameter vector as    and the 

sampling distribution of the design performance at observation point   as      . A good 
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estimation of the mean performance of design at the point of interest    implies a small 

estimated variance at   . Therefore, the problem of efficiently allocating computing budget 

for a single design is equivalent to minimizing            , which is the estimated variance 

of the design performance at   . Hence, our problem is actually to find out the optimal 

number of simulation replications we need, as well as to determine their run lengths, in order 

to minimize            .  

We assume that the total computing budget   is allocated to   simulation groups 

            , and each of the simulation groups contains    simulation replications that 

have the same simulation run length   . For a simulation replication of run length   , we have 

   observation points, namely from observation point one to observation point   , and the 

simulation outputs are collected at all these points. Based on the above problem setting, we 

can formulate our computing budget allocation problem in the following form. 

        
 

   
                     

             (3.1) 

          

 

   

    

                           

                         

           

3.1.2. Sampling Distribution of Design Performance 

Let   
 
    

        
         

 
    

  
 
                    be the simulation output 

vector of the     simulation replication in group   . Let                
 
 

 denote the 

     matrix of feature functions for the simulation replications of run length   , where    is a 
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    vector of feature functions at observation point   , and is expressed as    

                        .  

We assume that the vector   
 
 follows a multivariate normal distribution with mean 

    and variance-covariance matrix   .. Based on this assumption, the unknown parameter 

vector   can be estimated by minimizing the squared Mahalanobis length of the residual 

vector                   
 
     

 
  

     
 
     

  
   

 
   . We obtain the generalized 

least squares estimate of   below: 

            
   

    

 

   

 

  

     
   

    
 

  

   

 

   

  

Furthermore, the sampling distribution of the generalized least squares estimate of   can be 

expressed as follows (DeGroot, 2004; Gill, 2008). 

              
   

    

 

   

 

  

     
   

    
 

  

   

 

   

        
   

    

 

   

 

  

  

Since        is a linear combination of   , the sampling distribution of the expected mean 

performance, which is denoted as          , is also a linear combination of      , thus it is also 

normally distributed: 

              
       

   
    

 

   

 

  

     
   

    
 

  

   

 

   

    
       

   
    

 

   

 

  

    (3.2) 

In order to minimize the objective in (3.1), it is always better to exhaust the available 

computing budget (Brantley, Lee, Chen and Chen, 2011). Hence the inequality budget 

constraint in model (3.1) can be replaced by an equality constraint. Therefore the problem of 
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minimizing the estimated variance can be modelled as the following generalized Least 

Squares (GLS) Model.  

Generalized Least Squares (GLS) Model 

        
 

   
                     

   
       

   
    

 

   

 

  

    (3.3) 

          

 

   

    

                           

                         

           

We note that the estimated variance depends on the variance-covariance matrix of the 

simulation noise, as a result, the objective function in the GLS Model could be too complex to 

handle. In order to simplify the problem, we look at two special cases in which the simulation 

outputs are uncorrelated or homogeneous. 

Under the special case that the simulation noise is uncorrelated, the variance-

covariance matrix    is a diagonal matrix, whose inverse is also a diagonal matrix. We denote 

the inverse of    as   , whose diagonal element     is equal to 
 

   
 , and    

  is the noise 

variance at the observation point   . Therefore, under this special case, the sampling 

distribution of the unknown parameter and the transient design performance at the observation 

point    can be expressed as 
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    (3.4) 

In fact, the above expression can be derived by minimizing the weighted least squared 

error terms      
 
     

 
      

 
     

  
   

 
   , with    being the weight matrix. Hence 

when the simulation outputs are uncorrelated, the GLS Model, can be reformulated as the 

following Weighted Least Squares (WLS) Model. 

Weighted Least Squares (WLS) Model 

        
 

   
                     

   
       

     

 

   

 

  

    (3.5) 

          

 

   

    

                           

                         

           

Under the even more special case that the simulation noise is uncorrelated and 

homogeneous, the simulation noises at all observation points follow the same normal 

distribution with mean zero and variance   
 . In practice,   

  is calculated as the unbiased 

estimator of the performance variance of the design. Based on this uncorrelated homogeneous 

simulation noise assumption, the sampling distribution of the unknown parameter and the 

design performance can be written as 
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    (3.6) 

We could obtain the same expression as above by minimizing the least squared error 

terms   
 

  
    

 
     

 
   

 
     

  
   

 
   . Because   

  is a constant, minimizing 

           
  

   
   

       
   

 
    

  
   is equivalent of minimizing 

  
       

   
 
    

  
  , which we will refer to as the Prediction Variance Factor (PVF) 

(Morrice, Brantley and Chen 2009). It is noted that in our thesis, this PVF might be of 

different forms, depending on the types of the feature functions comprising the underlying 

function. Under this uncorrelated and homogeneous noise assumption, the WLS Model can be 

further simplified into a Least Squares (LS) Model below. 

Least Squares (LS) Model 
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Analytical solutions to the GLS Model and the WLS Model might not be available as 

solving these two models require us to have information on the variance-covariance matrix of 

simulation noise, which is usually unavailable. Nevertheless, analytical solutions to the LS 

Model might exist as the objective function is independent of the noise variance. Hereafter, 
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we would solve the LS Model analytically when the underlying function takes certain 

functional form. 

One of the main challenges of solving the LS Model is the excessive complexity of the 

objective function since the objective function could be nonlinear and could be very complex 

depending on the feature functions comprising the underlying functions. Moreover, there is no 

guarantee that the objective function is convex, which might result in multiple local optima. 

In general, when we are dealing with a multimodal objective function, finding the global 

optimum is not trivial. In order to solve the problem, the integer constraints in the initial LS 

Model has been relaxed and the LS Model is reformulated in the following way. 

Relaxed Least Squares (LS) Model 

        
 

   
                     

 

 
   

   
  

  
  

   

 

   

 

  

     (3.8) 

        

 

   

    

                    

                  

           

In the above Relaxed LS model,    is the proportion of computing budget allocated to 

simulation group    in which all the simulation replications have the same run length   , thus 

   
    

 
,          . Furthermore, we assume that the transient design performance 

follows certain simple underlying functions, such as some simple polynomials including 

linear, full quadratic or full cubic polynomials. The Relaxed LS Model is different from the 

traditional c-optimal design model as the sequential constraint is imposed, thus the 

complexity of the problem increases significantly. In the literature of DOE, the simple 
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polynomial models are of particular importance and interest due to their relative ease of 

derivation and wide application. We also provide some optimization results for trigonometric 

and logarithmic feature functions. These problems are solved numerically either using the 

Lipchitz-continuous Global Optimizer (LGO) embedded in AIMMS (Pinter, 1996) or by 

using the computing software such as the Mathematica for a limited number of feature 

functions in order to avoid an excessively complex objective function which cannot be 

handled by the software. 

3.2. SOLUTIONS TO LEAST SQUARES MODEL 

3.2.1. Lower Bound of Objective Function 

We present in Lemma 1 that regardless of the types of the underlying functions the transient 

design performances follow, the objective function in the Relaxed LS Model is always lower 

bounded by 
 

 
. 

 Lemma 1 If the optimal solution to the Relaxed LS Model exists, the objective function is 

lower bounded by 
 

 
. In other words, regardless of the types of the feature functions included 

in the underlying function, the PVF is lower bounded by 
 

 
. 

Proof 

According to El-Krunz and Studden (1991), given a nonzero     vector   and a     

positive definite matrix  , if    is a c-optimal design,      
    

                       , 

where   is the number of parameters we want to estimate,   is the prior variance-covariance 

matrix of the parameter vector  , and   
      is the unity posterior variance-covariance 
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matrix of  .       
 

 
     

 
 

 
 , where   is a     vector such that            for 

all  , with                            .  

In our problem,                            . As the total computing budget 

goes to infinity, 
 

 
      , thus     .  Consequently, when the total computing budget 

goes to infinity, 
 

 
    

       is just the objective function in the Relaxed LS Model, and we 

can conclude that                 
   
                                        , or 

     
    

        , leading to the result that 
 

 
    

       
 

 
.  Therefore, if the optimal 

solutions to the Relaxed LS Model exist, the minimum value the objective function can take is 

 

 
.   

When the objective function in the Relaxed LS Model obtains its minimum value 
 

 
, all 

the   simulation outputs collected along the simulation replication could be considered as   

simulation outputs collected at the point of interest by doing regression analysis.  

Part of our problem is to determine the optimal number of different simulation groups we 

need such that we can achieve the minimum PVF, and this optimal number of simulation 

groups might vary as the types of feature functions comprising the underlying function differ. 

There might also exist multiple optimal solutions, as the objective function could be non-

convex. In the case of multiple optimal solutions, we will focus our study on the optimal 

solutions with the minimum number of different simulation groups  , since simplicity is 

always appreciated when we apply the budget allocation rule. In particular, if for an 

underlying function model, the optimal solution can be obtained with    , meaning that all 

simulation replications have the same run length, the objective function in the Relaxed LS 

Model can be expressed as a univariate function due to the equality budget constraint, with 



29 

 

the variable being either the number of simulation replications or the simulation run length of 

each simulation replication. Therefore, the global minimum of the objective function can be 

obtained numerically by using computing software, regardless of the types of the feature 

functions included in the underlying function.  In the case that the optimal solution cannot be 

obtained with    , when the underlying function takes a certain form, one would need to 

use the LGO Solver to solve the problem numerically. In the following sections, we would 

determine the optimal solutions to the LS Model when the underlying function takes certain 

form. 

3.2.2. Linear Underlying Function 

In the case of linear underlying function, the transient mean performance of the design 

follows a linear function            . Based on Lemma 1, we present Lemma 2 in 

which one analytical solution to the Relaxed LS Model when the underlying function is a 

linear function is obtained. 

Lemma 2 When the underlying function is a linear function, the objective function in the 

Relaxed LS Model obtains its minimum value 
 

 
, when all the simulation replications have the 

same run length     1. 

Proof 

We define          
  as the PVF derived from the linear underlying function with   different 

simulation groups. Hence the objective function in the Relaxed LS Model can be rewritten as 

                                     
 .  
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From Lemma 1, we know that                                      
  

 

 
, resulting in 

that                                  
  

 

 
         

      

 
. Part of our problem is to find 

the minimum   such that the equality holds, thus we would study the problem by first 

considering the simplest case in which all the simulation replications have the same run length. 

When    , we have  

         
          

 

  
  

    
  

               
 

  
  

    
  

         

       

 

 
  

 
 

 
    

 
    

 

             

 

 

  

 

 
 

        

 

 
 

         
    

    

 
 

 

 
 

 
 

 

Therefore, when all the simulation replications have the same run length, the minimum 

         
  we could obtain is  

 

 
, when    

    

 
, or         . According to Lemma 1, 

the PVF for all types of underlying functions is lower bounded by 
 

 
.  In other words,   

           is an optimal solution to the Relaxed LS Model when the underlying function 

is a linear function.   

In practice, based on our problem setting, the simulation run length and the number of 

simulation replications in each simulation group should be integers. By referring to the 

optimal solution obtained when the integer constraint is relaxed, we come up with the 

following computing budget allocation rule to deal with the discrete budget allocation in a 

real life application. 
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SDBA - Linear Underlying Function Based on Lemma 2, When the underlying function 

follows a linear polynomial, we would run as many simulation replications as possible at run 

length         , and we would use the remaining simulation budget to run a single 

simulation replication at run length          , where     
 

  
 , and     is the floor 

function. 

We have tested the above budget allocation rule by doing a simple numerical 

experiment. Suppose that we would like to predict the mean performance of the design at the 

point of interest      . The transient design performance has an underlying function of 

         and the total computing budget   that varies from 1000 to 4000, in increments 

of 1000. The values of the PVF obtained under various budget   are presented in Table 3-1. 

Table 3 - 1 Numerical Experiment for SDBA Rule for Linear Underlying Function 

T xM 
Lower Bound of 

    
 

 
 

PVF Obtained Using 

the SDBA Rule 
l1 l2 N1 N2 

1000 30 0.00100000 0.00100002 59 56 16 1 

2000 30 0.00050000 0.00050001 59 53 33 1 

3000 30 0.00033333 0.00033334 59 50 50 1 

4000 30 0.00025000 0.00025000 59 47 67 1 

From the table we observe that as   increases, the PVF is very close to the lower 

bound. Thus in practice, it would be efficient and convenient to run as many simulation 

replications at run length          as possible, and use the remaining budget to run a 

single simulation at run length          , where     
 

     
 . 

It is also noted that in order to achieve smaller PVF, it is better to run the simulations 

at a longer run length than the point of interest. Data collected beyond the point of interest are 

believed to help better define the overall shape of the underlying function as more information 
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would always be helpful due to regression, resulting in a more accurate prediction at the point 

of interest. 

3.2.3. Full Quadratic Underlying Function 

In this case, we assume that the underlying function follows a full quadratic polynomial, 

namely,                
 . From Lemma 1, the minimum PVF we can achieve when 

the underlying function is a full quadratic polynomial is 
 

 
, i.e.:              

 

 
. By doing 

some simple calculation, it can be shown that when    , the minimum PVF we could 

achieve is not 
 

 
, hence the optimal number of simulation groups is at least two. When    , 

if we could find   
 ,   

 ,   
  and   

  that make PVF equal to 
 

 
, we could conclude that     ,   

 , 

  
 ,   

  and   
  is an optimal solution to the LS Model. Otherwise, we can conclude that     . 

In Lemma 3, we present an optimal solution to the Relaxed LS Model when the underlying 

function is a full quadratic polynomial.  

Lemma 3 When the underlying function is a full quadratic polynomial, the objective function 

in the Relaxed LS Model obtains its minimum value 
 

 
, when     ,    

       ,   
  

  ,   
      

   , and   
    

 

  
  , where O(x) is a function such that         

    

 
  

 , where C is a finite number. 

Proof 

When    ,   
       ,      

 

  
   

 

  
 , where   is a constant, by using the big O 

notation, the objective function in the Relaxed LS Model can be expressed as follows: 

 

 
  

  
  

  
  

    
  

  
  

    
  

   
 

 

   

  
        

  

   

  
        

  

. 
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By making   
    ,      

    
 

 
  

  
  

  
  

    
  

  
  

    
  

   
 

 
. Since when     , 

  
       ,   

    ,   
      

    and   
    

 

  
  , the objective function in the 

Relaxed LS Model is equal to 
 

 
, which is the minimum value it could take according to 

Lemma 1, we can conclude that     ,   
       ,   

    ,   
      

   , and 

  
    

 

  
   is an optimal solution to the relaxed LS Model when the underlying function is a 

full quadratic.   

Based on the analytical solution we obtained in the continuous case in Lemma 3, we 

present the following rule that deals with discrete computing budget allocation. 

SDBA Rule - Full Quadratic Underlying Function Based on Lemma 3, when the 

underlying function follows a full quadratic polynomial, we need two and only two simulation 

groups    and   . Group    contains several simulation replications of run length    

     . Group    contains a single simulation replication of run length   , whose value 

depends on the total computing budget and can be determined numerically by using 

computing software. 

We test the efficiency of the above budget allocation rule by doing a numerical 

experiment. The transient design performance has an underlying function of          

   and we would like to predict the design performance at the observation point   , with the 

total computing budget ranging from 1000 to 4000, in increments of 1000. The PVF obtained 

by using the above allocation rule is presented in Table 3-2. These results suggest that our 

computing budget allocation rule is able to give us a satisfactory outcome that is very close to 

the optimal solution. 
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Table 3 - 2 Numerical Experiment for SDBA Rule for Full Quadratic Underlying Function 

T xM 
Lower Bound of 

    
 

 
 

PVF Obtained Using 

the SDBA Rule 
l1 l2 N1 N2 

1000 30 0.00100000 0.00114295 59 174 14 1 

2000 30 0.00050000 0.00054597 59 230 30 1 

3000 30 0.00033333 0.00035545 59 286 46 1 

4000 30 0.00025000 0.00026332 59 283 63 1 

3.2.4. Full Cubic Underlying Function 

In this case the underlying function is assumed to be                
     

 . 

Similar analysis as the full quadratic case has been done for this full cubic case and we 

present in Lemma 4 an optimal solution to the Relaxed LS Model when the underlying 

function is a full cubic polynomial. 

Lemma 4 When the underlying function is a full cubic polynomial, the objective function in 

the Relaxed LS Model obtains its minimum value 
 

 
, when     ,   

       ,   
    , 

  
      

   , and   
    

 

  
  . 

Proof 

When    ,   
       ,      

 

  
   

 

  
 , where   is a constant, the objective function 

in the Relaxed LS Model becomes 

 

 
  

  
  

  
  

    
  

  
  

    
  

   
 

 

    

  
        

  
  

    

  
        

   

 .  

By making   
    ,      

    
 

 
  

  
  

  
  

    
  

  
  

    
  

   
 

 
. Since the objective 

function in the Relaxed LS Model is lower bounded by 
 

 
 according to Lemma 1, we can 
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conclude that     ,   
       ,   

    ,   
      

    and   
    

 

  
   is an 

optimal solution when the underlying function is a full cubic polynomial.   

We present below the budget allocation rule based on the analytical solution obtained 

in Lemma 4. 

SDBA Rule - Full Cubic Underlying Function Based on Lemma 3, when the underlying 

function follows a full cubic polynomial, we need two and only two simulation groups    and 

  . Group    contains several simulation replications of run length         . Group    

contains a single simulation replication of run length   , whose value depends on the total 

computing budget and can be determined numerically by using computing software. 

The efficiency of the above budget allocation rule has been confirmed by doing a 

numerical experiment in which the transient design performance follows the underlying 

function               , and we would like to estimate the transient design 

performance at the observation point      , with the total computing budget varying from 

1000 to 4000, in increments of 1000. The experiment result given in Table 3-3 reveals that 

using the SDBA Procedure is able to give us a close to optimal PVF. 

Table 3 - 3 Numerical Experiment for SDBA Rule for Full Cubic Underlying Function 

T xM 
Lower Bound 

of     
 

 
 

PVF Obtained Using 

the SDBA Rule 
l1 l2 N1 N2 

1000 30 0.00100000 0.00133471 59 292 14 1 

2000 30 0.00050000 0.00059843 59 348 30 1 

3000 30 0.00033333 0.00038198 59 404 46 1 

4000 30 0.00025000 0.00027963 59 460 63 1 

3.2.5. General Underlying Function 

In this section, we look at the numerical solutions to some other simple underlying function 

models, obtained by solving the Relaxed LS Model. Due to the complexity of the objective 
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function, analytical solutions to some of the underlying function models cannot be obtained. 

However, from Lemma 1, we know the minimum PVF we can achieve for all types of 

underlying functions is lower bounded by 
 

 
. We determine the optimal number of simulation 

groups by studying the minimum PVF we achieve as   increases. Starting with    , we 

stop the search for optimal   once the minimum PVF equals 
 

 
. By doing so, the minimum 

number of simulation groups required to achieve the global minimum PVF for various types 

of underlying function are presented in Table 3-4. 

Table 3 - 4 Numerical Solutions for Various Types of Underlying Function 

Underlying Function 
Number of Feature 

Functions 

Optimal Number of 

Simulation Groups 

Optimal Number of 

Decision Variables 

       2 1 2 

        2 1 2 

        2 1 2 

            3 2 4 

                 4 2 4 

           2 1 2 

          
 

  
  2 1 2 

                 3 2 4 

We observe that the number of decision variables we need in order to achieve the 

minimum PVF is at least equal to the number of feature functions in the underlying function. 

The usefulness of this observation is that it enables us to determine the minimum number of 

simulation groups we need in order to achieve the minimum PVF, regardless of the types of 

the component feature functions in the underlying function. An intuitive way to explain the 

results in Table 3-4 is that the number of component feature functions in the underlying 

function is the same as the number of parameters we want to estimate in order to predict the 

mean performance of design at   . The parameter vector                contains   
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parameters and it has     degrees of freedom. In order to estimate this parameter vector, we 

need at least   independent decision variables that give us     degrees of freedom due to 

the equality budget constraint. Therefore, the number of decision variables should not be 

smaller than the number of parameters we want to estimate.  Based on this observation, we 

introduce the following SDBA Procedure for general underlying function. 

SDBA Rule - General Underlying Function When the transient mean performance of 

design follows a certain underlying function consisting of several feature functions, the 

minimum number of simulation groups (K) we need in order to achieve the minimum PVF and 

the number of component feature functions (n) comprising the underlying function are related 

by    
 

 
 , where     is a ceiling function. 

3.3. SDBA PROCEDURE AND NUMERICAL IMPLEMENTATION 

3.3.1. SDBA Procedure 

In this section, we would develop an efficient computing budget allocation algorithm that 

allows us to estimate accurately the transient performance of the design by doing regression, 

based on analytical and numerical results presented in Section 3. In practice, the underlying 

function of the design might be unknown and certain measures need to be taken to determine 

the best underlying function that captures the transient design performances.  

SDBA Procedure 

1. Conduct    initial simulation replications at the run length      and collect simulation 

outputs at all observation points along the simulation replication. 

2. Average the simulation outputs at each observation point across replications. 
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3. Fit a regression model to the replication averages using adjusted   . The model that yield 

the highest    is selected. 

4. Calculate the simulation noise variance using the data collected in Step 1 at each 

observation point across replication and check for normality of the residuals. 

5. If the normality test fails run an additional simulation replication at run length   and go to 

Step 2. Else 

6. Determine the budget allocation strategy by solving the LS Model using the optimization 

solver or by doing numerical search. In the special case that the underlying function is a 

simple polynomial (linear, full quadratic or full cubic), apply the SDBA Rules developed 

in Section 3.3. 

Remarks: 

1. In Step 1, the initial run length of the simulation replications for the pilot runs is set to be 

   in the procedure presented above, which can be considered as a good choice when no 

additional information about the transient design performance is available. Nevertheless, a 

more sophisticated method such as determining the run length by assuming a certain 

underlying function can be applied, which might enable us to identify the best underlying 

function with less computing budget consumed during these pilot runs. 

2. The value of    should be small enough so that most of the computing budget is 

conserved for the simulation runs using the budget allocations scheme determined in Step 

6. However,     needs to be big enough to determine the best underlying function that 

captures the transient design performance, as well as an accurate description of the noise 

variance pattern.  
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In the next two sections, we present two numerical experimentations to test the 

efficiency of introducing run length optimization to the computing budget allocation and how 

we could use the SDBA Procedure to address real life problem. 

3.3.2. Full Quadratic Underlying Function with Homogeneous Noise 

In this numerical experimentation, we would like to test the efficiency of incorporating the 

concept of run length optimization to the determination of the efficient computing budget 

allocation strategy. To do so, we consider the case when the transient mean performance of 

design follows a full quadratic underlying function                             . 

We would like to predict the mean performance of the design at point      , which is 

expected to be 12.2127. The Simple Regression Procedure in which all simulation replications 

run up to the point of interest is used as the comparison procedure. The Simple Sampling 

Procedure in which the design performance is calculated as the sample mean at the point of 

interest is also used as a comparison procedure due to its wide application. We assume 

uncorrelated, homogeneous normal simulation noise along the simulation replication, with 

mean zero and variance one. The least squares formula that is used in the original Simple 

Regression Procedure, is used to calculate the design mean and variance during the simulation 

runs for all procedures. The results from a MATLAB simulation are presented in Figure 3-1. 

The Minimum Variance is the lower bound for the estimated variance calculated by using the 

formula 
  

 

 
, where   

  is the unbiased estimator of the variance of design performance. 
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Figure 3 - 1 Comparison of Estimated Variance Obtained by Using Different Procedures with Full 

Quadratic Underlying Function 

As illustrated in the diagram, given a certain amount of computing budget, using the 

regression procedures enables us to achieve smaller estimated variance than using the Simple 

Sampling Procedure. Moreover, the SDBA Procedure gives a much smaller estimated 

variance, compared to the Simple Regression Procedure. It is also noted that as the computing 

budget increases, we get closer to the minimum variance obtained in the continuous case, 

though our procedure uses a discrete computing budget. We have done similar numerical 

experimentation for the full cubic underlying function, and similar conclusions can be drawn.  

When the underlying function is a full quadratic or full cubic polynomial, Lemma 2 

and Lemma 3 dictate that we run simulation replications at two different run lengths. In 

addition, one of these groups contains a single longer simulation replication. We now explore 

the impact of not using this single longer simulation run group for the SDBA Procedure. In 

Figure 3-2, we present the experiment results for the Simplified SDBA Procedure in which 

only a single simulation run length is used, under the same experiment setting as in Figure 3-1. 
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Figure 3 - 2 Numerical Experimentation Results for Simplified SDBA Procedure for Full Quadratic 

Underlying Function 

Figure 3-2 illustrates the Simplified SDBA Procedure is able to perform much better 

than the Simple Regression Procedure, though its performance is slightly worse than the 

SDBA Procedure with two run lengths, which is expected. In fact, the minimum PVF we get 

with a single run length is about twice the minimum PVF we get by using SDBA Procedure. 

Depending on whether or not this difference in performance is considered practically 

significant one might run all the simulation replications at the same run length due to the 

relative ease of implementation of the Simplified SDBA Procedure. Similar results can be 

obtained for the full cubic underlying function. 

3.3.3. M/M/1 Queue with Heterogeneous Simulation Noise 

It is noted that we assume uncorrelated and homogeneous simulation noise in the SDBA 

Procedure. However, in practice, these assumptions are often violated. In this section, we 

consider an implementation of the SDBA Procedure on a real life problem in which the 

simulation noise is correlated and heterogeneous. 
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The example we use is the M/M/1 queue, which is of practical importance in many 

service systems like hospitals, in which the customer waiting time can be considered as a 

good indicator of system performance. The traffic intensity is set to be 0.9 (mean service rate 

of 1 and mean arrival rate of 0.9), with the system being initialized empty and idle at time 

zero. Suppose we wish to estimate the system waiting time (i.e., waiting time in the queue 

plus service time) of the      customer joining the queue using simulation. The analytical 

value of the mean system waiting time of the 20
th

 customer is known to be approximately 

4.275 (Kelton and Law, 1985). 

By running simulation and studying the average transient customer system waiting 

times during the pilot runs, we find that the logarithm underlying function         

         is a good approximation to the transient customer system waiting time. With a 

budget of 5000 for the pilot runs, this logarithm underlying function gives us           

and the simulation noise follows approximately the normal distribution at all observation 

points. As we can see, the total computing budget consumed during the pilot runs is not very 

significant and yet is able to give us a pretty good estimation of the underlying function. 

It is expected that as the simulation run length increases, the uncertainty in predicting 

the     customer’s system waiting time increases, resulting in a higher simulation noise. In 

fact, the simulation outputs are correlated and the simulation noise variance increases as the 

simulation run length increases. In this study, we present a Modified SDBA Procedure in 

which we approximate the noise variance using certain functional form. Different from the 

original SDBA Procedure in which the optimal run lengths are determined by solving the LS 

Model, in the Modified SDBA Procedure, the optimal run lengths are determined by solving 

the WLS Model by making use of the noise variance function. For example, in this M/M/1 

queue problem, we approximate the noise variance by a linearly increasing function, namely, 
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                , where   and   are real numbers, and    . It is noted that this 

approximation may not be accurate. Nevertheless, it could provide us with a better budget 

allocation scheme than assuming homogeneous simulation noise, as it takes into account the 

fact that the simulation noise increases along the replication.  

A simpler way to get the budget allocation strategy is to apply the SDBA Procedure in 

which we assume uncorrelated and homogeneous noise, and numerically solve the LS. The 

SDBA Rules presented in the earlier part of the thesis might be applied when the underlying 

function follows certain forms. 

In Table 3-5, we present the computing budget allocation strategies obtained by 

solving different models under different assumptions. The Simple Regression and the Simple 

Sampling Procedures are used as comparison procedures. It is noted that the run lengths 

obtained using the Modified SDBA Procedure and the SDBA Procedure are quite close to 

each other.  

Table 3 - 5 Assumptions and Budget Allocation Strategy for Various Procedures and Approaches 

Approach Modified SDBA 

Procedure 

SDBA Procedure Simple 

Regression 

Procedure 

Simple Sampling 

Procedure 

Assumptions Uncorrelated and 

linearly increasing 

noise variance. 

Uncorrelated and 

homogeneous 

noise. 

Uncorrelated and 

homogeneous 

noise. 

N.A. 

Budget 

Allocation 

Strategy 

All the simulation 

replications would 

run up to the 50
th

 

customer entering 

the system. 

All the simulation 

replications would 

run up to the 51
th

 

customer entering 

the system. 

All the simulation 

replications would 

run up to the 20
th

 

customer entering 

the system. 

All the simulation 

replications would 

run up to the 20
th

 

customer entering 

the system. 

In Table 3-6, we present results on the prediction of the      customer’s system 

waiting time by running the simulation using different budget allocation strategies listed in 

Table 3-5.  
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Table 3 - 6 Numerical Experimentation Results for M/M/1 Queue Using Various Procedures 

T 

Estimated Mean System Waiting Time of the 20
th

 

Customer 

Estimated Variance of the System Waiting Time of 

the 20
th

 Customer 

Modified 

SDBA  
SDBA 

Simple 

Regression 

Simple 

Sampling 

Modified 

SDBA 
SDBA 

Simple 

Regression 

Simple 

Sampling 

5000 4.31058 4.31615 3.94422 4.26865 0.00273 0.00274 0.00315 0.04996 

10000 4.31587 4.32069 3.93716 4.27065 0.00138 0.00138 0.00158 0.02505 

15000 4.32131 4.32848 3.94233 4.26853 0.00093 0.00093 0.00106 0.01668 

20000 4.32429 4.33705 3.93910 4.27438 0.00070 0.00070 0.00079 0.01250 

25000 4.32624 4.33238 3.94244 4.27471 0.00056 0.00056 0.00063 0.01000 

We have also calculated the simulation bias and the Mean Squared Error (MSE) for 

the various procedures and they are illustrated in Table 3-7 and Table 3-8. As we can see, the 

Modified SDBA Procedure is able to achieve the best performance with the smallest MSE, 

and it also leads us to the conclusion that the approximation of linearly increasing noise 

variance helps enhance the estimation accuracy. The SDBA Procedure in which we assume 

homogeneous noise is slightly worse than the Modified SDBA Procedure, but it outperforms 

the Simple Regression Procedure and the Simple Sampling Procedure. Nevertheless, as the 

total computing budget consumed increases, the Simple Sampling Procedure would expect to 

achieve the smallest MSE as the procedure is unbiased. 

Table 3 - 7 Simulation Bias and MSE for Different Procedures 

T 

Bias MSE 

Modified 

SDBA  
SDBA 

Simple 

Regression 

Simple 

Sampling 

Modified 

SDBA 
SDBA 

Simple 

Regression 

Simple 

Sampling 

5000 -0.03585 -0.04143 0.33050 0.00608 0.00401 0.00445 0.11238 0.04999 

10000 -0.04114 -0.04596 0.33757 0.00407 0.00308 0.00349 0.11553 0.02507 

15000 -0.04658 -0.05376 0.33240 0.00619 0.00310 0.00382 0.11154 0.01672 

20000 -0.04956 -0.06232 0.33562 0.00034 0.00315 0.00458 0.11343 0.01250 

25000 -0.05151 -0.05765 0.33229 0.00001 0.00321 0.00388 0.11105 0.01000 

Table 3 - 8 Ratio of MSE between Various Procedures 

T 

Percentage Improvement MSE  

Modified SDBA 

to Simple 

Sampling 

SDBA to Simple 

Sampling 

Modified SDBA 

to Simple 

Regression 

SDBA to Simple 

Regression 

5000 91.97% 91.09% 96.43% 96.04% 

10000 87.73% 86.07% 97.34% 96.98% 

15000 81.47% 77.17% 97.22% 96.58% 

20000 74.78% 63.34% 97.22% 95.96% 
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25000 67.87% 61.19% 97.11% 96.50% 

In the current SDBA Procedure and the Modified SDBA Procedure, we derive the 

sampling distribution of the design performance by applying the WLS formula. We have 

conducted similar study as the one presented in this section, in which the GLS formula or the 

LS formula have been used in lieu of the WLS formula. The experiment reveals that using the 

WLS formula would introduce the least bias and MSE, as compared to the GLS or the LS 

formula. Its advantage over the LS formula might be explained by the fact that the actual 

variance at various observation points have been used to predict design performance, thus the 

bias in prediction has been reduced. In theory the GLS formula should be favoured as no 

assumption has been made to model the simulation noise. However, applying the GLS 

formula requires estimation of the variance-covariance matrix, which can be often erroneous 

if the amount of data is not sufficient, thus its performance might not be guaranteed.  
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4. MULTIPLE DESIGNS BUDGET ALLOCATION 

4.1. PROBLEM SETTING AND PROBLEM FORMULATION 

4.1.1. Problem Setting 

In this section, we would like to develop an efficient Ranking and Selection Procedure that 

select the best design among several alternative designs based on their transient mean 

performances at certain time or observation point, making use of the SDBA Procedure we 

developed in Chapter 3. 

We assume that the number of designs is finite and we define the design space as 

                 where   is relatively small. The transient mean performance of each 

design is assumed to follow certain underlying function which is a sum of several one-to-one 

feature functions, and it can be expressed as    
                  

   

   
, where    

    denotes 

the expected transient performance of design    at observation point  .      
    is a one 

dimensional one-to-one feature function of design   , which can be either linear or non-linear. 

Without loss of generality, we assume that the first feature function in the underlying function 

of each design is constant, i.e.      
             .     

 is the total number of feature 

functions comprising the underlying function of design   .    
       

      
       

   is the 

unknown parameter vector for design    which we want to estimate, whose sampling 

distribution can be determined by using the simulation outputs. 

The total computing budget, which can be interpreted as the total number of 

simulation outputs we can collect, is distributed to each design to run several simulation 

replications which might not have the same run lengths. For example, suppose that for design 

  ,    
 simulation replications would be conducted and by grouping those simulation 

replications with the same run length together, these    
 simulation replications can be 
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classified into    
 simulation groups that are denoted as      

            
. Each group 

     
 would contain      

 simulation replications of run length      
.  

The transient performance of design could be obtained by running simulation, and the 

relationship between the simulation output and the expected mean design performance is 

defined as              
      

, where               
          

            
       

  
 

 is the 

simulation output vector for the     (             
  simulation replication in group      

, 

and      
     is one simulation output collected from the    simulation replication in group  

     
 at observation point   . The vector      

     
        

          
       

  
 

 is the 

vector of the expected mean design performance for all simulation replications in group      
 

and    
     is the expected mean performance of the design at observation point    for 

design    (             
 . Its value can be computed by using the parameter vector whose 

sampling distribution would be determined after running simulation. Finally,      
 

    
        

          
       

  
 

 is the simulation noise vector for all simulation replications 

in group      
, which follows multivariate normal distribution          

 , where      
 is the 

variance-covariance matrix. 

Our target is to develop an efficient budget allocation rule to select the best design 

among all alternative designs. In other words, we would like to maximize the Probability of 

Correct Selection which would be denoted as P{CS}. Without loss of generality, we assume 

that the design with the minimum expected mean performance at the point of interest would 

be selected as the best design. Suppose that design    is selected as the best design, the P{CS} 

is defined as                                                      
         

        

            , where     
     is the sampling distribution of the mean performance of 
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design    at the point of interest   , and     
     is the sampling distribution of the mean 

performance of the selected best design at   . Hence our problem can be formulated as a 

maximization problem in which we seek to determine the optimal run lengths of all 

simulation replications, which would maximize the probability of correct selection. The 

mathematical model is presented as follows. 

     
   

      
       

             
           

      
(4.1) 

            
      

 

   

   

 

   

    

        
                           

             

      
          

                  
             

4.1.2. Sampling distribution of Design Performance 

In order to obtain the expression for P{CS}, we need to derive the sampling distribution of the 

transient performances of all designs at   . Let      
 denote the      

    
 matrix of the 

feature function matrix for the simulation replications in group      
, and it is expressed as 

     
       

      
            

 
 

, where      
 is a      

 feature function vector at 

simulation run length    for design   , and it is expressed as 

     
       

          
            

     . 

We assume that the vector         follows a multi-variant normal distribution with 

mean      
   

 and covariance matrix      
. In order to simplify the problem, we assume that 

the simulation outputs are uncorrelated and homogeneous and e can derive the sampling 

distribution of the transient performance of design    at   . Let    
be the estimated mean 

performance of the design    at    and let    

  be its estimated variance, we have the 
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following expressions in which      
  is the unbiased estimator of the performance variance of 

design   . 

   
      

             
      

   

   

 

  

        
      

     

   

   

   

  (4.2) 

   

       
      

             
      

   

   

 

  

      (4.3) 

4.1.3. Rate Function and Model Formulation 

Let’s define P{IS} as the probability of incorrect selection, or               

      
                           

      . It is noted that P{IS} and P{CS} have the same 

rate of convergence. 

Let’s denote    
 as the event that     

         
    ,          and    . Hence 

    
                           

      is the union of all    
, i.e.:       

     

                      
             

 
        . Obviously,    

     

 
       , we have 

      

 
              

 ,              , thus       

 
                        

 . 

By applying the Bonferroni inequality (Bratley, Fox and Schrage, 1987; Chick, 1997; Law, 

2007), P{IS} is upper bounded by       
  

                            
 . Therefore, 

the following inequality holds. 

     
                

       
     

  (4.4) 

Inequality (4.4) implies that the P{IS} would have the same convergence rate as 

               
                  

         
     .   



50 

 

As     
      

       
    

   follows normal distribution,     
      

      
      

  is 

also normally distributed, and     
      

      
      

          
       

  , where       
 

   
    

 and       

     

     

 . Moreover, according to Glynn and Juneja (2004), the rate 

function of P{IS} is given by      

      
 

        
  

.  

Let’s define      
 as the proportion of total computing budget allocated to the group 

     
, namely      

 
     

     

 
, and        

   
   

 
     . Let’s define    

       

   
   , which 

is the proportion of total computing budget allocated to design   , and we have     

 
     . 

Let’s further define      
 

     

   

, which is the proportion of the computing budget allocated to 

   that has been consumed by group      
, and we have       

   
     . Based on the new 

definition,    

  can be rewritten as 

   

       
      

   
      

     
     

      

   

   

 

  

      
     

 

 
     

   
   

     

     
     

      

   

   

 

  

     

 
     

 

   
 

     
   

     

     
     

      

   

   

 

  

      

Let    
      

      
   

     

     
     

      

   
    

  

     , we have    

  
   

   
 
, and       

  
   

   
 

 
   

   
 
. 

Our initial problem, which is the maximization of the P{CS} or the minimization of 

the P{IS}, can be solved equivalently by maximizing the convergence rate of P{CS} or P{IS}. 

As a result, our problem can be formulated into the following model. 
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(4.5) 

         

 

   

    

       
 

   

   

               

      
       

               

        
     

                         
             

        
                          

             

4.2. PROBLEM SOLUTION 

The complexity of the objective function in model (4.5) could be very significant due to the 

fact that we estimated the design performances by using the regression approach. To simplify 

the problem, we would adopt the decomposition technique to find the optimal solution when 

certain condition is met.  

4.2.1. Condition for Decomposition 

Assume that      

       
       

             
            is one of the optimal solutions to 

model (4.5). It is noted that    

       
      

   
     

 

     
      

      

   
    

  

     
 depends on      

  

and      
 , and it might or might not depend on    

 . If    

  is independent of    

 ,    

  can be 

determined by solving the following optimization problem. 

     
   

    
           

   
  

      

 

  
   

 

   
  

   

 

   
  

 
(4.6) 
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Problem (4.6) is in fact a special case of problem (4.5), in which the values of 

      
       

             
  have been pre-determined to be       

       
             

 . 

Indeed, this problem is almost the same as the problem of determining the optimal computing 

budget allocation rule among multiple designs whose performance variances are fixed, and 

the OCBA Procedure has been developed as a result (Chen, 1995). As a result, model (4.5) 

can be solved by first determining the values of       
       

             
 , followed by 

determining value of     

             using the OCBA Rule.  

When    

  is not independent of    

 , the above problem decomposition cannot be done. 

In the following section, we present in detail how we could decompose the problem when    

  

is independent of     

             and how we determine the value of       
       

    

          . 

4.2.2. Problem Decomposition 

When    
 is independent of    

, we would prove in Lemma 5 that       
       

    

           can be determined by using the SDBA Procedure. 

Lemma 5 If the optimal computing budget allocation for any single design is independent of 

the computing budget allocated to that design, the Ranking and Selection Problem can be 

decomposed into two sub-problems, i.e.: the problem of optimal computing budget allocation 

among multiple designs and the optimal computing budget for a single design, which can be 

solved by applying the OCBA Rule and the SDBA Procedure respectively. 
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Proof 

If we use the SDBA Procedure to estimate the design performances, the values of 

      
       

             
  can be determined by solving the mathematical model below. 

     
   

      
       

             
 
   

  
(4.7) 

           
 

   

   

    

        
     

                         
  

        
                          

  

In problem (4.7), we aim at minimizing    

 , which is equivalent of minimizing 
   

 

   
 
, 

the estimated variance of design   , as    
  is considered as a constant in the problem of 

optimal budget allocation for a single design. Let       
       

             
  be the optimal 

solution to problem (4.7) when    
    

 . If       
       

             
  is independent of 

   

 , meaning that     

  is independent of    

 , we would show that     

       
       

    

         
            is also the optimal solution to problem (4.5).  

As the total amount of computing budget consumed increases, our estimation of the 

transient performances of the designs becomes more accurate and we could consider       

  as 

a constant. Since       
       

             
  minimizes    

              when    
    

 , 

we have    

     

 , resulting in the inequality that  
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The above inequality implies that the convergence rate for each       
     

    
      when     

       
       

             
                

       
       

    

         
            is at least as fast as that when     

       
       

             
   

             

       
       

             
           . Since     

       
       

    

         
            is the optimal solution to problem (4.5),     

       
       

    

         
            is also the optimal solution to problem (4.5).  

    

  is obtained by applying the OCBA Rule with       
       

             
  

      
       

             
 . Since     

       
       

             
            is also an 

optimal solution to problem (4.5), by making       
       

             
        

       
    

          , we could obtain    

  by using the OCBA Rule, and     

       
       

    

         
            would also be an optimal solution to problem (4.5). 

Therefore, problem (4.5) can be solved by first determining the values of 

      
       

             
  using the SDBA Procedure, followed by determining the value of 

    

             using the OCBA Rule with 

      
       

             
        

       
             

 , under the condition that the value 

of       
       

             
  is independent of the amount of computing budget allocated to 

each single design. In other words, when the optimal computing budget allocation for each 

single design is independent of the computing budget allocated to them, the problem of 

maximization of the convergence rate can be decomposed and solved by first determining the 

optimal computing budget allocation strategy for each single design using the SDBA 

Procedure, followed by the optimal computing budget allocation among multiple designs 

using the OCBA Rule.   
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4.3. SDBA+OCBA PROCEDURE AND NUMERICAL IMPLEMENTATION 

4.3.1. SDAB+OCBA Procedure 

In this section we would develop the SDBA+OCBA Procedure to select the best design 

among all the   alternative designs by comparing their estimated mean performances at 

simulation run length   , when the optimal computing budget for a single design is 

independent of the total budget allocated to that design.  

The SDBA Design Screening will be conducted before we apply the SDBA+OCBA 

Procedure to distribute the computing budget among the alternative designs. This is to ensure 

that SDBA Procedure can be applied to the alternative designs without violating the necessary 

assumptions for SDBA Procedure.    simulation budget would be allocated to each design to 

run several simulation replications, and the simulation outputs at all observation points would 

be recorded. As we have seen in Chapter 3, the underlying function of the transient mean 

performance of design would be identified by doing curve fitting based on the recorded 

simulation outputs. Sometimes we might need to approximate the transient mean performance 

of design with certain underlying function. Moreover, the correlation test should be conducted 

on the simulation outputs to test whether the uncorrelated simulation output assumption still 

holds, and the assumption of homogeneous normal simulation noise at all observation points 

would be investigated. We would apply the SDBA Procedure to those designs which pass all 

the tests during the SDBA Design Screening. For the rest designs, we would use statistical 

sampling to estimate their means performances at the point of interest. 

During each round of budget allocation, an incremental computing budget,   in total, 

would be distributed to each design based on OCBA Procedure, and the estimated mean and 

variance for each design would be updated accordingly based on the SDBA Design Screening 

results. The procedure would stop when we have exhausted all available computing budget  . 
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SDBA+OCBA Procedure 

INPUT   ,  ,  ,     

INITIALIZE 

 

   ; 

Perform the SDBA Design Screen for all designs; 

  
    

      
    ; 

   
    

 . 

LOOP WHILE    
  

      DO 

 UPDATE Calculate estimated means and variances of design performances by using 

either the SDBA Procedure or Simple Sampling approach 

 ALLOCATE Increase the computing budget by   and calculate the new budget allocation, 

  
      

        
    according to  

1) 
  

   

  
    

      

    

 

      

    

  

2)   
      

   
 

   

    
      

        

 SIMULATE    
      

      
 ; 

Run simulations by using the SDBA Procedure or Simple Sampling 

Procedure based on the Design Screening result, with computing budget 

        
       for design             ; 

     . 

END OF LOOP  
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4.3.2. Application of SDBA+OCBA Procedure 

According to the SDBA Procedure, when the underlying function of the design transient 

performance consists of only one non-constant feature functions, we could achieve the 

minimum estimated variance by running all the simulation replications at the same run length. 

In this special case when all the simulation replications have the same run length, expression 

(4.3) can be simplified as 

   

  
     

 

   
 

     
  

 

     
     

       

  

      (4.8) 

The study on the optimal computing budget allocation suggests that the estimated 

variance in expression (4.8) can be minimized when      
 takes some value at which we 

achieve a balance between the impact of increasing the number of simulation replications and 

the impact of running simulation at a longer run length. Both tactics would result in variance 

reduction but cannot be achieved at the same time due to the budget constraint. In other words, 

when   is sufficiently large, the optimal run length      
  would take some finite value that is 

independent of  , which leads us to the conclusion that if the transient performances of all 

designs follow certain underlying functions that consist of only one non-constant feature 

functions, the SDBA+OCBA Procedure could be applied to optimally allocate computing 

budget among all these designs, in order to select the best design by using the least computing 

budget. 

4.3.3. Ranking and Selection of the Best M/M/1 Queuing System 

In this section, we present a numerical experimentation of the SDBA+OCBA Procedure in 

which the efficiency of the procedure has been examined in comparison with the other 

existing Ranking and Selection procedures. The original OCBA Procedure in which the mean 
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and variance of the performance of design is calculated as sample mean and sample variance 

would be used as the comparison method. The heuristic procedure proposed by Morrice, 

Brantley and Chen (2009) would also be used as a comparison procedure, which would be 

referred to as the Simple Regression+OCBA Procedure, in which the computing budget 

would be allocated among all designs according to OCBA Procedure, and the budget 

allocated to each design would be used to run several simulations until to the point of interest 

and simulation outputs would be collected along the simulation replications and used to 

estimate the design performance by doing regression. 

In this experiment, we have five M/M/1 queuing systems having the following traffic 

intensities: 0.9, 0.95, 1, 1,05 and 1.1. We would like to select the queuing system that has the 

shortest system waiting time (waiting time in the queue + service time) for the 20
th

 customer 

joining the queue. All five queuing systems are initially empty with the servers being idle. 

The customer system waiting time is generated by running the simulation in MATLAB. The 

logarithm underlying function of the form             has been used to approximate the 

transient system waiting time of the     customers joining the queue. The weighted least 

squares formula has been used to compute the design performances due to heteroscedasticity. 

Moreover, the optimal run length for each single design is determined by assuming linearly 

increasing simulation noises along the simulation replication, since in practice, as the 

simulation run length increases, the uncertainty in prediction decreases, leading to a higher 

simulation noise at a longer run length. In Figure 4-1, we compare the efficiency of the 

aforementioned procedures on the selection of the best M/M/1 queuing system under the 

above experiment setting.  
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Figure 4 - 1 Comparisons of the performances of various computing budget allocation rule on the 

selection of the best M/M/1 queuing system 

The experiment results reveal that the performance of the OCBA Procedure can be 

improved by incorporating the regression approach which is able to provide more accurate 

estimation of design performances. Moreover, the SDBA+OCBA Procedure outperforms the 

other two procedures and enables us to achieve the same probability of correction by using far 

less computing budget. 

4.3.4. Ranking and Selection of the Best Full Quadratic Design 

The SDBA Procedure suggests that when the underlying function of the design performance 

follows a full quadratic polynomial, in order to obtain the minimum variance, we need to run 

simulations at two different run lengths. Nevertheless, we would run most simulation 

replications at the first run length and we would run a single simulation replication at the 

second run length. Numerical experimentation has shown that the Simplified SDBA 

Procedure in which all simulation replications have the same run length, is able to provide us 

with very good estimation of design performances, though slightly worse than the SDBA 
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Procedure. In practice, the Simplified SDBA Procedure is much easier to implement. 

Moreover, since all the simulation replications have the same run length, the SDBA+OCBA 

Procedure could be used to select the best design among several alternative designs whose 

transient performances follow full quadratic polynomials. 

In this section, we apply the SDBA+OCBA Procedure to select the best design among 

five alternative designs whose transient performances follow full quadratic polynomials. 

Since we would use the Simplified SDBA Procedure to allocate computing budget and 

estimate design performances, we would refer to this procedure as Simplified SDBA+OCBA 

Procedure. Again the original OCBA Procedure and the Simple Regression+OCBA Procedure 

are used as the comparison procedures. Moreover, we would also investigate the efficiency of 

the Heuristic SDBA+OCBA Procedure in which the computing budget allocation among 

multiple designs is done by using the OCBA rule, while the computing budget allocation for a 

single design is done by applying SDBA Procedure without simplification.  

In Figure 4-2, we present the results we obtained by running the simulation in 

MATLAB using the four different procedures. The probabilities of correct selection after each 

round of budget allocation have been calculated for all the four procedures. 
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Figure 4 - 2 Comparisons of the performances of various computing budget allocation rule on the 

selection of the best design with full quadratic underlying function 

Similar to the result we obtained in the first experiment, incorporating the regression 

approach to estimate the design performances would result in a higher probability of correct 

selection, and introducing the procedure of minimizing the estimated variance by doing 

regression could further increase the probability of correct selection.  

Moreover, the Heuristic SDBA+OCBA Procedure is able to performance even better 

than the Simplified SDBA+OCBA Procedure. This is because the estimation of design 

performances by using the Heuristic SDBA+OCBA Procedure is better than the estimation by 

using the Simplified SDBA+OCBA Procedure, resulting in a higher convergence rate of the 

objective function. Moreover, as presented in the Single Design study, as the total computing 

budget allocated to design    increases,    

  would be very close to its lower bound, which is 

the constant one. Though    

  would never be equal to one, its value is so close to one that it is 

almost a constant in problem (4.5) regardless of the value of    
, resulting in that the fact that 

even though the optimal budget allocation strategy for design    is not independent of    
, 
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model (4.6) could be a good approximation of model (4.5), hence the Heuristic 

SDBA+OCBA Procedure could give us a result that is close to optimal. 

Nevertheless, in practice, the extra effort required to compute the second run length in 

the Heuristic SDBA+OCBA Procedure might be quite significant, thus the Simplified 

SDBA+OCBA Procedure might still be the first choice due to its ease of implementation and 

high efficiency. 
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5. CONCLUSION AND FUTURE WORK 

5.1. Summary and Contributions 

In this thesis, we have studied the problem of efficient computing budget allocation by using 

regression. In the first part of this study, we have looked into the problem of optimal 

computing budget allocation for a single design whose transient mean performance follows 

certain underlying function. The problem has been formulated as a global optimization 

problem based on the Bayesian Regression Framework. Numerical solutions to the problem 

have been obtained by using optimization solvers, and several observations have been made, 

based on which, the Single Design Budget Allocation (SDBA) Procedure has been developed. 

The numerical experimentation confirms the high efficiency of the SDBA Procedure, in 

comparison with the other budget allocation rules. In the second part of the thesis, we have 

looked into the problem of optimal computing budget allocation among several alternative 

designs by using regression, when the transient mean performances of designs follow certain 

underlying function. When the optimal computing budget allocation for a single design is 

independent of the computing budget allocated to that design, by approximating the 

probability of correct selection and by using the Large Deviation Theory, we have proved that 

the problem of maximizing the probability of correct selection can be decomposed into two 

sub-problems that could be solved by using the OCBA Procedure and the SDBA Procedure. 

As a result, the SDBA+OCBA procedure has been developed and based on the numerical 

experimentation, it has been proved to be an efficient ranking and Selection Procedure which 

enables us to select the best design among several alternative designs by using very little 

computing budget as compared to the other existing procedures. 
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5.2. Limitations and Future Work 

We formulate and solve our problems based on certain assumptions which might not hold in 

real life application. Though a certain approach has been proposed to handle 

heteroscedasticity when we apply the SDBA Procedure, more work is needed on this issue. 

Additionally, the assumption of uncorrelated simulation output might not hold in real life 

applications. Further study is required to justify the performance of the SDBA Procedure 

when the simulation outputs are correlated. Additionally, the problem of correlated simulation 

noise might be addressed by using certain regression model such as AR Model and more 

work is needed to investigate how we could incorporate the AR model into the SDBA 

Procedure.  

Moreover, based on our study during the development of the SDBA+OCBA Procedure, the 

problem of maximizing the probability of correct selection can be done only when the budget 

allocation strategy for a single design is independent of the total budget allocated to that 

design. In practice, this condition is often violated thus the efficiency of the SDBA+OCBA 

Procedure might not be guaranteed. One can try to solve the original maximization problem 

numerically and observe if certain patterns exist in the solutions when the underlying 

functions of the designs follow certain functional forms.  
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