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Summary  
 

      The glial cell line-derived neurotrophic factor (GDNF) and Neurturin (NTN) are 

members of the GDNF family of ligands (GFLs) which have been shown to support 

the growth, maintenance and differentiation of both central and peripheral nervous 

systems. Clinical trials evaluating GDNF and NTN based gene therapy for 

Parkinson’s disease are currently underway. These GFLs transduce signal through a 

multi-component receptor complex consisting of GPI anchored GDNF family receptor 

alpha (GFRα) and trans-membrane co-receptors RET (RE arranged during 

Transformation) and/or neural cell adhesion molecule (NCAM). GFRα1 and GFRα2 

have been identified as the preferred receptor of GDNF and NTN respectively. Mice 

lacking GFRα1 and GFRα2 signaling were found to suffer from deficits in various 

neuronal systems, supporting the physiological role of these receptors in neuronal 

functions. Alternative splicing of GFRα, and RET pre-mRNA yields multiple receptor 

isoforms which are widely and differentially expressed in the nervous system. Our 

earlier work has shown that these receptor isoforms have distinct biochemical and 

neuritogenic functions. This thesis details the discoveries of distinct signaling 

pathways involved in the activation of specific proteins, mRNAs and miRNAs through 

combinatorial interactions of GFLs, GFRα and RET receptor isoforms and provides 

novel insights into the diverse functions of GFL systems. 

      In a widely established neuronal model PC12 cells, NTN activation of GFRα2a 

and GFRα2c but not GFRα2b induced biphasic ERK1/2 activation, phosphorylation 

of the major cAMP target CREB and neurite outgrowth. Interestingly, cAMP agonists 

were able to cooperate with GFRα2b to induce neurite outgrowth whereas 

antagonists of cAMP signaling significantly impaired GFRα2a and GFRα2c-mediated 

neurite outgrowth. More specifically, cAMP effector PKA but not Epac was found to 

mediate NTN-induced neurite outgrowth, through transcription and translation-
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dependent activation of late phase ERK1/2. These results not only demonstrated the 

essential role of cAMP-PKA signaling in NTN-induced biphasic ERK1/2 activation 

and neurite outgrowth, but also suggested cAMP-PKA signaling as an underlying 

mechanism contributing to the differential neuritogenic activities of GFRα2 isoforms 

(Chapter 3). 

      In a separate study, we made the novel observation that NTN induced serine727 

phosphorylation of STAT3, a classic transcription factor. Intriguingly, STAT3 

phosphorylation was found to be mediated specifically by receptor isoform GFRα2c 

and RET9, but not the others (Chapter 4). Unexpectedly, NTN induced P-Ser-STAT3 

was localized to the mitochondria but not to the nucleus. Moreover, we found Nerve 

Growth Factor (NGF) too induced mitochondrial but not the canonical nuclear 

localization of STAT3 (Chapter 5). This is in contrary to an earlier report on the 

nuclear functions of NGF induced P-Ser-STAT3. These mitochondrial STAT3 was 

further shown to be intimately involved in NTN and NGF induced neurite outgrowth. 

Collectively, these findings demonstrated the hitherto unrecognized role of specific 

ligands and receptor isoforms in activating STAT3 and the transcription independent 

mechanism whereby the mitochondria localized P-Ser-STAT3 mediates the 

neuritogenic functions of growth factors (Chapter 4 & 5).  

      In addition to signaling through kinases, gene regulation at transcript level is 

known to play a major role in mediating the neurotrophic functions of GFLs and 

others. A pre-requisite to accurate quantification of transcriptomic changes by high 

throughput methods such as real-time qPCR is data normalization using internal 

reference genes. Recently, some routinely used housekeeping genes such as β-actin 

and GAPDH were found to vary significantly across cell types and experimental 

conditions. To identify suitable reference genes during neuronal differentiation 

induced by GDNF and others, a genome-wide analysis was performed. The stability 

of twenty selected candidate genes was systematically evaluated with two 
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independent statistical approaches, geNorm and NormFinder. Interestingly, the 

ribosomal protein genes, RPL19 and RPL29, were identified as the most stable 

reference genes across six different differentiation paradigms. The combination of 

these two novel reference genes, but not the commonly used GAPDH, allows robust 

and accurate normalization of differentially expressed genes during neuronal 

differentiation (Chapter 6). 

      MicroRNA represents a unique class of non-coding genes which have been 

found to play critical roles in many aspects of biology. To investigate the role of 

microRNAs in regulating neuronal differentiation, an integrated quantitative real-time 

PCR based assay system was developed (Chapter 7). Using these assays, we 

demonstrated the involvement of two microRNAs in topological guidance of neurite 

outgrowth on nanostructured surfaces. Furthermore, we investigated the interplay of 

GDNF ligand receptor systems and microRNAs during neuronal differentiation of 

NTera2 neuroprogenitor cells (Chapter 8).   

      The findings in this thesis further highlight the diverse functions of GDNF ligand 

receptor system and provide novel insights into the underlying signaling mechanisms. 

The combinatorial interactions of GFLs, GFRα and RET receptor isoforms provides a 

new paradigm that allows a single ligand to exert a plethora of biological effects.  
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Chapter 1 Introduction 
 

1.1 Motivations of the study  
  

      GFLs, in particular GDNF and NTN, have been shown to support a plethora of 

neuronal functions, including the survival, differentiation and regeneration of both 

neurons and glial cells (1, 2). Because of their potent protective and / or restorative 

effects on midbrain dopaminergic neurons, GDNF and NTN based gene therapies 

are currently in clinical trials for Parkinson’s disease. Despite years of research, the 

molecular mechanisms underlying the diverse functions of GDNF and NTN are only 

beginning to be understood. It is generally accepted that GFLs activate downstream 

signaling by forming a multi-component ligand receptor complex consisting of the 

ligand, a high-affinity GFRα as well as co-receptors RET and/or NCAM (3). Multiple 

alternatively spliced isoforms of these receptors have been identified and are shown 

to be widely expressed in neuronal systems (4, 5). Our group has earlier reported 

that GFRα and RET isoforms have distinct biochemical properties and neuritogenic 

activities, which contribute to the diverse functions of GFLs (5-7).  

      This thesis further explores the emerging view that the combinatorial interactions 

of the multi-component ligand receptor system with multiple receptor isoforms, 

provide a molecular basis for the pleiotropic functions of GFLs. Using multiple cell 

models, we investigated the differential regulations of signaling events, at protein, 

mRNA and microRNA levels, by GFRα1/2 and RET receptor isoforms and examined 

their implications in neuronal differentiation.    
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1.2 Organization of the thesis  
 

      This  thesis  is  organized  into  seven  chapters  (Chapters  3 - 8), according to 

the investigations of  specific  hypothesis  and  the respective findings.  Chapter  3  

reports  that  the distinct neuritogenic  activities  of  GFRα2  isoforms  may  partly  be  

attributed  to  the  differential modulation  of  cAMP-PKA  signaling  pathway,  which  

is  required  for  ligand-induced  neurite outgrowth  through  all  GFRα2  isoforms. 

Chapter 4 reports the novel observation of NTN induced mitochondrial STAT3 

phosphorylation, mediated specifically through receptor isoforms GFRα2c and RET9. 

Extending the work on STAT3, Chapter 5 describes the unexpected discovery that 

NGF induced mitochondrial but not nuclear localization of STAT3, in contrary to 

earlier findings on nuclear functions of NGF induced STAT3. Chapter 6 presents a 

workflow for the identification and validation of stable reference genes that allows 

accurate normalization of transcriptomic changes during neuronal differentiation 

induced by GDNF and others.  Chapter 7 outlines the development and validation of 

high throughput multiplex quantitative assays for the profiling of mature human 

microRNAs. Using these assays, two microRNAs were found to be intimately 

involved in the topological guidance of neurite outgrowth on synthetic nanostructure. 

Lastly, Chapter 8 presents a study that demonstrates the interplay of GFL, GFRα, 

RET receptor isoforms and microRNA in regulating the differentiation and lineage 

specification of NT2 neuroprogenitor cells.  
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Chapter 2 Literature Review 
 

2.1 GDNF family of ligands (GFLs)  
 

      GDNF is the prototype of a family of structurally related molecules that are distant 

members of the TGFβ superfamily. GDNF was first purified from a rat glioma cell-line 

(B49) conditioned media, which was shown to exert potent trophic effect on cultured 

embryonic midbrain dopamine neurons (8). Subsequently, three other members NTN, 

Artemin (ART), and Persephin (PSP) were identified in mammals. NTN was purified 

from conditioned media derived from Chinese hamster ovary cells, which supported 

the survival of cultured superior cervical ganglion sympathetic cells (9). PSP was 

identified through homology-based PCR screening (10), and ART through database 

searches thereafter (11). The four GFLs were found to be conserved across a variety 

of vertebrates but NTN is absent in clawed frog and PSP is absent in the chicken 

genome (12). A recent in-depth search of the human genome (NCBI build 36.3) did 

not suggest the existence of other GFLs.  

      GFLs are encoded by single copy genes and are found to be expressed in many 

regions of the nervous system both during development and in adult stages. 

Functionally, these GFLs were shown to be intimately involved in the development, 

maturation and maintenance of a wide variety of neuronal systems (13-16). Multiple 

transcripts of GDNF (17-23), ART (24) and PSP (25) have been reported, the 

majority of which are alternatively spliced isoforms, encoding the mature forms of the 

GFLs with different N-terminal sequences. The expressions of some of these 

transcripts are tissue selective and can be specifically regulated by external stimuli 

(23, 26), with yet to be characterized mechanisms.  

      GFLs are produced in the form of precursors preproGFLs and further  processed  

by  proteolytic  cleavages,  glycosylation  and disulphide linking to  produce  the  
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mature  form. The four GFLs have little sequence homology but share seven 

conserved cysteine (Cys) residues. The monomeric structure of GFLs is composed 

of two β sheet fingers, a cysteine-knot core motif, and an α-helical wrist region 

(Figure 2.1). Functionally, these GFLs form homodimer before binding to GFRα 

receptors. The crystalized form of GDNF comprises an asymmetric unit of two 

antiparallel covalent homodimers which differ in the relative hinge angle between the 

“wrist” and “finger loops” within their respective monomers (27). While GFLs share a 

similar overall topology, detailed comparison of ART and GDNF homodimers 

revealed differences in the shape and possible flexibility of the elongated homodimer 

(28), which may have important implications in the overall structures of the ligand-

receptor complex.  

 

Figure 2.1 Structures of GDNF-family ligands (GFLs).  A, Schematic representation of a 
homodimeric GFL with intra- and intermolecular disulphide bridges formed between cysteine 
residues designated by ‘C’. B, Sequence alignment of human GFLs. The secondary-structural 
elements within the GFL structures are shown above the sequences by designations for alpha 
helices (coil) and beta strands (arrows). RasMol representation of the GDNF monomer based 
on coordinates described [PDB ID 1AGQ; 51]. This figure is reproduced from Figure 1, Wan 
et al, Neurogenesis, Neurodegeneration and Neuroregeneration 201-243 ISBN: 978-81-308-
0388-3. 



  - 24 - 

      In neurons, GDNF is anterogradely transported in axons and dendrites and is 

implicated in neuronal plasticity (29-33). An important function of GFLs is to serve as 

target-derived innervation factors. GDNF was found to be a target-derived 

neurotrophic factor for nigral dopaminergic neurons and is transported to the neuron 

from the striatum (34, 35). Overexpression of GDNF exclusively in the target regions 

of mesencephalic neurons, particularly in the striatum, resulted in an increased 

number of surviving nigral dopamine neurons (36). In addition, NTN was reported to 

serve as a target-derived innervation factor for postganglionic cholinergic axons (37) 

and in the developing ciliary ganglion neurons (38). Furthermore, GFLs are also 

known to signal in an autocrine manner (39, 40). For instance, GDNF acts as an 

autocrine regulator of neuromuscular junction by promoting the insertion and 

stabilization of postsynaptic acetylcholine receptors (41). 

      Transgenic animal models with the disruption of the GDNF signaling pathway 

have been established. These early studies have failed to provide definitive evidence 

of a physiological neuroprotective role of GDNF in adult life. Homozygous Gdnf 

knockout mice died in the early postnatal period due to kidneys and myenteric plexus 

agenesis. At birth, these Gdnf-/- mice showed normal numbers of catecholaminergic 

neurons in the substantia nigra and locus coeruleus (42-44).  Regional-specific 

knock-out of the co-receptor, RET, in dopaminergic neurons has provided conflicting 

results of the physiological role of this pathway in the maintenance of adult neurons. 

No obvious differences in the morphology or biochemical properties of the 

dopaminergic nigrostriatal neurons in adults of these RET-null mice as compared to 

controls were observed (45). Another report demonstrated that embryonic deletion of 

RET in catecholaminergic neurons resulted in a significant decrease of TH+ 

substantia nigra neurons and striatal nerve terminals (46). With all these studies, the 

possibility of compensatory modifications masking the underlying physiologic effects 

of GDNF in the adult nervous system cannot be ruled out. To circumvent this 
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possibility, a conditional GDNF-null mouse where GDNF expression was markedly 

reduced in adulthood, was generated recently (47). These animals showed 

significant selective and extensive catecholaminergic neuronal death, most notably in 

the locus coeruleus, substantia nigra and Ventral tegmental area. Other neuronal 

systems, e.g, GABAergic and cholinergic pathways, appeared unaffected. These 

mutant mice also demonstrated progressive behavioural motor disturbances, 

consistent with the parallel neurochemical and histological losses. This study 

unequivocally indicated that GDNF is indeed required for the maintenance of 

catecholaminergic neurons in normal adult animals. It will be interesting to know if 

other GFLs and GFRα may have distinct neuroprotective roles in adult neurobiology.  

2.2 GDNF family of receptors (GFRs) and co-receptors 
 

      The homodimeric GFLs activate downstream signaling by forming a multi-

component ligand receptor complex consisting of a preferred high-affinity GDNF 

family receptor alpha (GFRα) and the co-receptor RET (REarranged during 

Transformation) with a proposed stoichiometry of  GFL homodimer-(GFRα)2-(RET)2. 

Each GFL has its cognate receptor. GDNF preferentially binds to GFRα1, NTN to 

GFRα2, ART to GFRα3 and PSP to GFRα4. However, the multi-component receptor 

system shows some degree of promiscuity in their ligand specificities (Figure 2.2) (2, 

48-51). GDNF have been reported to interact and activate GFRα2 and GFRα3 (1), 

whereas NTN and ART were shown to interact with GFRα1.  

      Co-receptor RET was originally identified as an oncogene activated by DNA re-

arrangement in a 3T3 fibroblast cell line transfected with DNA taken from human 

lymphoma cells (52, 53). It encodes for a single-pass transmembrane receptor 

tyrosine kinase (RTK) with a cadherin-related motif and a cysteine-rich extracellular 

domain. Among all known receptor tyrosine kinase, RET is the only one which does 

not bind its ligands directly but requires a co-receptor (GFRα) for activation. In 
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addition to RET, GFLs have also been shown to signal through other co-receptors 

such as neural cell adhesion molecules (NCAM) (3) and more recently, integrin β1 

(54). Intriguingly, GDNF induced differentiation and migration of cortical GABAergic 

neurons was found to be independent of both RET and NCAM, suggesting the 

existence of yet another signaling mechanism(s) (55). 

 

Figure 2.2 GFLs, GFRα and co-receptors interactions. Known interactions between GFLs 
and GFRα receptors are shown here. The arrows indicate the preferred ligand–receptor 
interactions and the broken arrows denote cross-talks of GFLs with non-cognate GFRα. 
Soluble GFRα is thought to be released through cleavage of the glycosyl-phosphotidylinositol 
(GPI) anchor by phospholipase or protease yet to be characterized. GFL signal is transduced 
through interactions of ligand bound GFRα with transmembrane co-receptor RET or NCAM. 
Gas 1 and Lrig interact with RET independent of ligands and regulate GDNF-GFRα-RET 
signaling. 
 

      Recently, distantly related GFRα-like structures have been identified in a number 

of proteins. Based on the conserved pattern of cysteines and other amino acid 

residues, GFRα-like structures are found in Gas1 (growth arrest specific 1) (56, 57) 

and GRAL (GDNF Receptor Alpha Like), a protein found in some regions of the 

central nervous system of unknown function (58). Unlike the GFRα1-4, GRAL and 

Gas1 function independently of GFLs. More interestingly, Gas1, as well as the 

leucine-rich repeats and Ig-like domain protein Lrig1 have been shown to modulate 

RET activity independent of ligand GDNF. Lrig1 sequesters RET from localizing to 
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lipid rafts whereas Gas1 recruits RET to the cholesterol rich microdomain. 

Interactions with the two modulators alter RET phosphorylation and downstream 

signaling including PI3K-AKT and MEK/MAPK activation (59, 60).   

      Structurally, GFRα is organized into three homologous cysteine-rich domains 

with various lengths of C-terminal extensions (2, 61). Domain 2 (D2) is involved in the 

binding of GFLs (50, 62-64) while Domain 3 (D3) provides a stabilizing effect. The N-

terminal D1 was found to be dispensable for ligand binding and is absent in GFRα4 

(2). However, direct chemical cross-linking showed that the residues at the distal end 

of the N-terminus D1 (residues 89-101 of GFRα1) contact RET at multiple sites, 

suggesting that D1 may modulate GFRα and co-receptor interactions (65). In 

addition, the D1 truncated mutant of GFRα1 was shown to be less biologically active 

compared to the full length counterpart, thus providing strong evidence for the 

biological relevance of the N-terminal domains. 

      Both GFRα1 and GFRα3 have been partially crystallized. The crystal structure of 

the D3 of GFRα1 was first determined and used to model the structure of D2, from 

which a partial structure (D2/D3) of GFRα2 was deduced (62). Recently, the 

heterotetrameric complex of GDNF dimer with two GFRα1 (D2 and D3 domains) was 

solved (66). It was found to share a similar but not identical structure with the 

heterotetrameric complex of ART and GFRα3 (64). This is consistent with the 

suggestion that all GFRα share similar structures but differ in the details of their 

ligand and co-receptor binding sites. Although the structure and function of D1 has 

yet to be empirically determined, it is not unreasonable to suggest that this N-terminal 

domain, with distinct sequences in multiple isoforms of GFRα, may play an important 

modulatory role in the interactions of GFRα with the different components of the 

receptor complexes. 

      In the nervous system, GFRα and RET are consistently expressed in neurons / 

regions where GFLs were found to serve as target innervation factors (14, 67-77). 
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RET is usually co-expressed with at least one of the GFRα, but mismatched 

expressions of the two components have been reported in selected brain regions (24, 

67, 71, 74, 75, 77-80). A popular hypothesis is that these GFRα may capture 

diffusible GFLs and activate RET on neighboring cells in trans, in a non-cell-

autonomous fashion (81). However, this mechanism appears to be non-essential for 

organogenesis and nerve regeneration in a transgenic mouse model (82). The 

expressions of RET and GFRα are developmentally regulated, with maximal 

expressions in early postnatal life (67, 83-86), consistent with its role in early 

development of the nervous system.  Alterations in their expressions have also been 

observed in response to physical trauma such as nerve transection (87, 88), 

ischemia (89-92), excitotoxic insult (93-96) and epileptic seizures (75, 96-98), 

suggestive of the protective and restorative roles of GFLs signaling during nerve 

injuries. 

 

2.3 Alternatively spliced isoforms of GDNF receptors  
 

      Alternative splicing is prevalent in many mammalian genomes and serves as a 

robust means of producing functionally diverse proteins from a single gene. In many 

systems, alternative spliced isoforms were shown to have distinct biochemical 

properties and diverse biological functions (99). Recent studies have found 92-94% 

of human genes to be alternatively spliced (100) and identified the central nervous 

system as the organ where the greatest amount of conserved splicing occurs (101).  

      Multiple alternatively spliced isoforms of GFRα1 (73, 102, 103), GFRα2 (104, 105) 

and GFRα4 (61, 106, 107) have been identified. Similarly, alternatively splicing of 

RET (108, 109) and NCAM (110, 111) pre-mRNA have been reported. We have 

since hypothesized that the spliced isoforms of GFRα, RET and NCAM may have 

distinct functions and their combinatorial interactions in specific cellular context could 

generate a myriad of biological responses. In an earlier report, ligand activation of the 
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GFRα2 isoforms was found to differentially regulate ERK and AKT signaling, and the 

expressions of early response genes. In addition, GDNF and NTN induced neurite 

outgrowth through GFRα2a and GFRα2c, but not GFRα2b. When co-expressed, 

activation of GFRα2b inhibited neurite outgrowth induced by the other GFRα2 

isoforms as well as GFRα1a and Retinoic acid, through a RhoA-dependent 

mechanism (6). Likewise, the alternatively spliced isoforms of GFRα1 have been 

shown to exhibit distinct biochemical functions (5, 112). These studies strongly 

supported our hypothesis that GFRα receptor isoforms have distinct biochemical and 

neuritogenic functions. 

      The two major RET isoforms RET9 and RET51 differ at their C-termini (113). 

Developmentally, mice lacking RET9 showed kidney hypodysplasia and defects in 

enteric innervation, whereas mice lacking RET51 develop normally. Conversely, 

RET51 but not RET9 was shown to promote the survival and tubulogenesis of mouse 

inner medullary collecting duct cells (108), suggestive of isoform specific roles in 

embryo development and organogenesis. Structurally, the two RET isoforms share 

16 identical tyrosine residues but RET51 contains two additional tyrosine residues in 

the carboxyl terminal (tyrosine 1090 and 1096). When stimulated by ligands, tyrosine 

1062 in both RET isoforms can associate with Shc, FRS2 and DOK adaptors. 

However, adaptor protein Enigma was found to interact with RET9 but not RET51 

(114). Furthermore, RET9 but not RET51 contains a PDZ domain binding site at its 

extreme C-terminus, responsible for interaction with Shank3, as well as activating 

sustained RAS-ERK1/2 and PI3K-AKT signaling (115). On the other hand, RET51-

specific tyrosine 1096 can compensate for the functional capacity of tyrosine 1062 by 

direct association with GRB2 and downstream signaling pathways. Conversely, the 

presence of tyrosine 1096 also renders RET51 more susceptible to Cbl ubiquitin 

ligase binding and proteasome-dependent degradation (116). Although both RET 

isoforms share identical extracellular GFL and GFRα binding domains, RET9 and 
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RET51 seem to function as independent signaling complex in cultured sympathetic 

neurons and neuronal cell lines (117, 118). 

      The existence of these functionally distinct spliced variants of GDNF family 

ligands and receptors is suggestive of a new paradigm where a limited number of 

ligands and receptors generate pleiotropic effects through differential expression and 

combinatorial interactions of the various components.  

 

2.4 GFL-GFRα-RET signaling and function  
 

      Upon stimulation by GFLs and GFRα, RET undergoes dimerization and trans-

phosphorylation of its intracellular tyrosine residues, a process that is required for the 

complete activation of RET tyrosine kinase domains and downstream signaling. 

Autophosphorylations of RET tyrosine residues 905, 981, 1015, 1062 and 1096 were 

initially thought to recruit specific adaptor molecules GRB7/10 (119, 120), Src (121), 

PLCγ (phospholipase Cγ) (122), Shc (Src-homologous and collagen-like protein) 

(123) and GRB2 (124), respectively. With an increasing number of RET binding 

partners, it is now believed that each phosphotyrosine residue may serve as a 

competitive binding site, resulting in divergent signaling outcomes, in a cell context 

dependent manner.  

      The GFL-GFRα-RET signaling is also regulated by membrane localization of the 

ligand-receptor complex. Lipid rafts are plasma membrane microdomains that are 

enriched in cholesterol, sphingolipids and selected proteins, and have emerged as 

crucial membrane sub-compartments for signal transduction (125). Many signaling 

molecules including GPI-anchored receptors and dual acylated signaling 

intermediates such as Hedgehog and Src-family kinases (SFKs) demonstrate a high 

affinity for lipid rafts. In contrast, inactive RET was found to predominantly localize 

outside lipid raft. Upon stimulation, GFL-GFRα complex is thought to recruit RET into 

the lipid rafts (126), through a mechanism involving RET tyrosine residue Y1062 (81). 
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Localization of active GDNF signaling complex to the rafts is critical for GDNF-

induced neuroblastoma cell differentiation and cerebellar granule neuron survival, 

which are compromised by the disruption of lipid raft signaling by either cholesterol 

depletion or expression of transmembrane GFRα chimera (126).  

      Furthermore, ligand stimulation has been shown to result in the internalization 

and endosomal localization of many RTKs, which is required in some cases for 

prolonged or complete activation of certain signaling pathways (127). GDNF 

stimulation has been shown to result in GFRα1 internalization, both in the presence 

and absence of RET, but with differences in the kinetics of internalization (128). In 

sympathetic and motor neurons, activation and internalization of the GDNF receptor 

complex is required for the retrograde transport of GFLs (29, 129). Membrane bound 

and internalized GDNF receptor complex were also found to result in differential 

signaling activation. For instance, activation of GDNF complex at distal axon led to 

rapid activation of both AKT and ERK1/2, whereas retrogradely transported GDNF 

receptor complex is responsible for activation of AKT but not ERK1/2 in the cell body. 

However, the mechanisms regulating the internalization and selective subcellular 

localizations of GFL-GFRα-RET remain to be elucidated.  

 

2.5 Conclusion 
 

      It is evident that GFLs play important roles in many aspects of neurobiology, 

ranging from cell proliferation, to neuronal differentiation and maturation, as well as 

synaptic functions and neuronal regeneration. The diverse mechanisms underlying 

each of the processes will undoubtedly be highly regulated and likely to be cell 

context dependent. Although the existence of multiple alternatively spliced variants of 

the GFL, GFRα and co-receptors and their combinatorial interaction provides a 

molecular basis that could explain pleiotropic effects of GFLs, our current knowledge 
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of the biosynthesis, processing and regulation of these ligands and receptors is still 

limited. This complexity in GFL signaling is further increased by ligand receptor 

promiscuity, regulation by or cooperation with other signaling molecules, selective 

localization to sub-cellular compartments and the competitive interactions with 

myriads of adaptor molecules. Further investigations of these mechanisms will 

provide greater insights on the relationship between specific cellular processes, their 

regulatory events and the wide plethora of biological responses observed. 

Substantial work is required to address each hypothesis and even more to integrate 

these findings into systems level knowledge that explains how the various signals 

activated by GDNF family ligand receptors are integrated into system networks in 

various cellular contextual frameworks contributing to the phenotypic outcomes. 
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Chapter 3 Cyclic AMP signaling through PKA but not Epac is 
essential for neurturin-induced biphasic ERK1/2 activation 
and neurite outgrowths through GFRα2 isoforms 
 

Section 3.1 Introduction 

      Earlier studies from our group have identified three alternatively spliced isoforms 

of GFRα2. These isoforms GFRα2a, 2b and 2c were subsequently shown to have 

distinct neuritogenic activities. Elucidating the molecular mechanisms underlying their 

distinct functions will provide novel insights into how NTN and GDNF may promote 

neurite outgrowth and identify new dimensions in signaling network interactions. 

      Cyclic AMP (cAMP) is an important second messenger and key regulator of 

neuronal functions such as survival, differentiation, regeneration and neurite 

guidance (130-133). Multiple neurotrophic factors, including GDNF, BDNF and NGF, 

have been reported to regulate intracellular levels of cAMP (134). Elevation of cAMP 

was shown to promote regeneration of injured axons in sciatic nerves (135), spinal 

cord neurons (132, 136, 137) and dorsal root ganglion (138). In particular, GDNF was 

found to elevate cAMP level to a threshold that overcame the inhibitory effect of 

myelin-associated inhibitory factors and induced neurite outgrowth in DRG neurons 

(130). In addition, co-administration of cAMP with neurotrophic factors has been 

shown to synergistically enhance axon regeneration in injured neurons (139). The co-

operation of GDNF and dibutyryl cAMP was further found to aid in the restoration of 

functional motor units by embryonic stem cells in paralyzed adult rat (140). Although 

the mechanism of GDNF-cAMP synergy has yet to be characterized, GFRα2 was 

shown to be highly expressed in the tissues where neurite outgrowth was observed 

(141, 142), suggesting an active role of the receptor / isoforms in mediating the 

functional interactions between GFL and cAMP signaling.            

      The canonical cAMP signaling is mediated through the activation of protein 

kinase A (PKA). Recently, a second downstream effector of cAMP signaling, 
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exchange protein directly activated by cAMP (Epac), was identified (143, 144). Both 

effectors were able to mediate cAMP induced neurite extension in PC12 cells (145, 

146) and axonal regeneration of DRG neurons (138). However, PKA and Epac 

differed in their regulation of ERK1/2 activation (147), which played a central role in 

cAMP mediated neuronal differentiation (148-152). Furthermore, PKA but not Epac 

was found to mediate cAMP-induced neuronal differentiation through CREB 

phosphorylation and transcriptional activation (100, 153-155). In view of these 

findings, elucidating the involvement of specific cAMP downstream effectors could 

provide valuable insights to the mechanism underlying the physiological interactions 

between cAMP and ligand activated GFRα2 isoforms. 

      In this study, we reported an unexpected finding of the role of cAMP signaling as 

an underlying mechanism contributing to the differential neuritogenic activities of 

GFRα2 isoforms. Interestingly, PKA but not Epac was found to be mediated biphasic 

ERK1/2 activation and neurite outgrowth induced by ligand stimulated GFRα2 

isoforms, a hitherto unrecognized mechanism. 

 

Section 3.2 Results 

3.2.1 NTN induced CREB phosphorylation, biphasic ERK1/2 activation and 

neurite outgrowth through selected GFRα isoforms 

      In this study, PC12 cells stably expressing RET9 with either one of the 

alternatively spliced GFRα2 isoform, GFRα2a, GFRα2b and GFRα2c were 

established. The expressions of specific combinations of receptor isoforms were 

validated with real-time PCR (Figure 3.1A). These PC12 clones expressed similar 

levels of GFRα2 isoforms and RET9 and bound radiolabeled GDNF with similar 

affinities (6). The wild-type and PC12 cells carrying vector alone did not express 

either RET or GFRα2 isoforms and were used as controls (Figure 3.1A). Stably 

infected PC12 cells were then stimulated with GDNF, NTN or NGF. Interestingly, 
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while NGF induced extensive neurite extensions in all the PC12 cell lines, GDNF and 

NTN promoted neurite outgrowth only in cells expressing GFRα2a and GFRα2c but 

not GFRα2b (Figure 3.1B and C). This result was consistent with the previous report 

that GFRα2 isoforms mediated differential neuritogenic activities upon ligand 

stimulations (6) and suggested that ligand activation of GFRα2a and GFRα2c may 

regulate distinct signaling pathways as compared to GFRα2b. 

 

Figure 3.1 GDNF and NTN induced neurite outgrowth in PC12 cells expressing 
GFRα2a and GFRα2c but not GFRα2b. (A) Expression levels of RET9 and GFRα2 
isoforms in wild type (WT) and stably infected PC12 cells. PC12 cells were co-
infected with mouse RET9 and GFRα2 isoforms. The expression levels of RET9 and 
GFRα2 isoforms were quantified by real-time PCR and normalized to the expression 
levels of GAPDH. The results were expressed as mean ± S.E.M. (n = 3). (B) Ligand-
induced neurite outgrowth in PC12 cells expressing RET9 and GFRα2 isoforms. 
Cells were treated with GDNF, NTN or NGF (50 ng/ml) for 48 h. Error bars indicate 
mean ± S.D. of quadruplicate measurements. ** p < 0.001, compared with non-
treated cells. (C) Representative graphs of ligand-induced neurite outgrowth of PC12 
cells.  
 

      To elucidate the downstream signaling pathways underlying their differential 

neuritogenic activities, we next investigated NTN-induced phosphorylation of CREB 

and ERK1/2 in PC12-GFRα2 cells over a period of 6 h (Figure 3.2). NTN stimulation 

of GFRα2a and GFRα2c but not GFRα2b induced CREB phosphorylation in a time-

dependent manner (Figure 3.2A and B). Furthermore, NTN induced a biphasic 
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phosphorylation pattern of ERK1/2 in GFRα2a and GFRα2c cells, with an initial rapid 

phase (5 min) followed by a distinct sustained phase for at least up to 6 h (Figure 

3.2A and C). In contrast, activation of ERK1/2 in NTN stimulated GFRα2b cells was 

transient and was dramatically reduced after 5 min (Figure 3.2A and C). These 

findings showed a correlation of the ligand-induced neurite outgrowth with the 

induction of the biphasic and sustained level of ERK1/2 activation of GFRα2a and 

GFRα2c. 

 

Figure 3.2 NTN promoted CREB phosphorylation and biphasic ERK1/2 
activation in PC12 cells expressing GFRα2a and GFRα2c but not GFRα2b. (A) 
Time course of CREB and ERK1/2 phosphorylation induced by NTN. PC12 cells 
expressing GFRα2 isoforms were stimulated with NTN (50 ng/ml) for the indicated 
periods of time. Phosphorylation levels of CREB and ERK1/2 were analysed by 
Western blotting, the bands of expected molecular weights were presented. Blots 
were re-probed with total ERK1/2 antibody, serving as loading control. Fold changes 
of phosphorylation levels of CREB (B) and ERK1/2 (C) were quantified by 
densitometry and presented as Mean ± S.D. (n = 3).  
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3.2.2 Cyclic AMP and Protein Kinase A signaling is involved in NTN-induced 

neurite outgrowth 

       Phosphorylation of CREB is a major biochemical event downstream of cAMP 

signaling pathway (153). Importantly, cAMP signaling was found to be required for 

NGF-induced neurite outgrowth (145) and regulation of ERK1/2 activation (147). 

Since NTN stimulation of GFRα2a or GFRα2c resulted in CREB phosphorylation, we 

postulated that cAMP signaling may be involved in NTN induced biphasic ERK1/2 

activation and neurite outgrowth in these cells. We first examined whether the distinct 

late phase of ERK1/2 activation was critical to GFRα2a and GFRα2c mediated 

neurite outgrowth. PC12-GFRα2a or GFRα2c cells were incubated with MEK inhibitor 

U0126 1 h before (-1 h), together (0 h), 1 h after (1 h) or 3 h (3 h) after NTN 

treatment. As expected, pre-incubation with U0126 (1 h before) dramatically inhibited 

NTN induced neurite outgrowth (Figure 3.3A). Interestingly, inhibition of the late 

phase of ERK1/2 by adding U0126 1 h or 3 h after NTN treatment significantly 

attenuate neurite outgrowth, supporting the notion that the late phase of ERK1/2 

activation was required for NTN induced neurite outgrowth. Moreover, inhibiting 

ERK1/2 activation after 12 h of ligand stimulation failed to impair neurite outgrowth, 

suggestive of a restricted temporal event in the control of neuritogenic signal 

transduction. Interestingly, inhibition of PKA pathway with H89, a competitive inhibitor 

of the ATP site on the PKA catalytic subunit, was found to significantly inhibit NTN-

induced ERK1/2 activation (Figure 3.3B-D) and neurite outgrowth (Figure 3.3E) in 

cells expressing GFRα2a or GFRα2c, suggesting the important role of cAMP 

pathway in mediating NTN signaling.  
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Figure 3.3 NTN-induced biphasic ERK1/2 activation and neurite outgrowth 
through GFRα2a and GFRα2c required cAMP-PKA signaling and de novo 
transcription and translation. (A) Effect of U0126 added at different time points on 
NTN-induced neurite outgrowth. Cells were incubated for 48 h from the time NTN 
were added. Percentage of cells differentiated was presented as Mean ± S.E.M. of at 
least three biological replicates. U0126 added 12 h after (12 h) NTN stimulation has 
no inhibitory effect on neurite outgrowth. ** p < 0.001, compared to NTN treatment 
without U0126. (B) Effect of H89 on NTN-induced ERK1/2 activation. Cells were 
stimulated with NTN (50 ng/ml) in the presence or absence of 10 µM H89 or 10 µM 
U0126 for the indicated periods of time. Phosphorylation levels of ERK1/2 were 
examined by Western blotting, the bands of expected molecular weights were 
presented. Fold changes of ERK1/2 phosphorylation in PC12 expressing GFRα2a 
(C) or GFRα2c (D) were quantified by densitometry and presented as Mean ± S.D. (n 
= 3). * p < 0.05, compared with NTN treatment without H89 at each time point. (E) 
Effect of H89 on NTN-induced neurite outgrowth. Cells were treated with NTN in the 
presence or absence of H89 for 48 h. Percentage of cells differentiated was 
presented as Mean ± S.E.M. of at least three biological replicates. ** p < 0.001, 
compared with NTN treatment without H89.  
 
 
      Since cAMP signaling has been shown to cooperate with GDNF in enhancing 

neuronal functions, we tested whether co-stimulation of NTN with cAMP agonist 

could synergistically induced neurite outgrowth. In PC12-GFRα2a and -GFRα2c 

cells, co-stimulation of NTN and cAMP agonist Forskolin (FK) significantly enhanced 

the rates of neurite outgrowth from 24 h to 72 h, compared to treatment with NTN 

alone (Figure 3.4). Moreover, we were interested to determine if specific downstream 

effector contributed to the cooperation of FK and NTN. The cAMP analogs 2-Me-
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cAMP and 6-Bnz-cAMP, which have been shown to specifically activate Epac and 

PKA respectively in PC12 cells (156), were used as specific agonists in this study. 

Interestingly, 6-Bnz-cAMP but not 2-Me-cAMP was able to enhance NTN-induced 

neurite outgrowth (Figure 3.5A, B), indicating PKA but not Epac to be the 

downstream effector of cAMP in neurite synergy. Both 2-Me-cAMP and 6-Bnz-cAMP 

at 200 µM induced transient ERK1/2 activation at comparable levels (Figure 3.5C), 

indicating that 2-Me-cAMP was biologically active. Collectively, these findings were 

suggestive of the important requisite roles of cAMP-PKA signaling in biphasic and 

sustained ERK1/2 phosphorylation and neurite outgrowth mediated by ligand-

activated GFRα2a and 2c isoforms. 

 

Figure 3.4 Forskolin enhances the rate of NTN induced neurite outgrowth in 
PC12 cells expressing GFRα2a and 2c. (A) Time course of neurite outgrowth 
induced by NTN and FK. PC12 cells were stimulated with NTN (50 ng/ml), FK (10 
µM) or co-stimulated with both NTN and FK for 24 h, 48 h and 72 h. Percentage of 
differentiated cells was presented as Mean S.E.M. of at least three biological 
replicates. (B) Representative graphs of PC12 cells stimulated with NTN and FK for 
24 h.   
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Figure 3.5 PKA but not Epac agonist enhanced NTN-induced neurite outgrowth 
of PC12 cells expressing GFRα2a and GFRα2c. PC12 cells expressing GFRα2a 
(A) or GFRα2c (B) were stimulated with 50 ng/ml NTN alone or together with DMSO, 
200 µM 2-Me-cAMP, 200 µM 6-Bnz-cAMP or 10 µM FK for 48 h. Percentage of cells 
differentiated was presented as Mean ± S.E.M. of at least three biological replicates. 
* p < 0.05 and ** p < 0.001, compared to NTN alone. No differentiated cells were 
observed when stimulated with DMSO, 2-Me-cAMP and 6-Bnz-cAMP alone 
(Control). There is hence no visible bar for these conditions.  (C) 2-Me-cAMP and 6-
Bnz-cAMP induce transient ERK1/2 activation in PC12 cells. Cells were stimulated 
with 200 µM 2-Me-cAMP or 200 µM 6-Bnz-cAMP for indicated periods of time. 
Phosphorylation of ERK1/2 and CREB was examined by Western blotting. Blots were 
re-probed with eIF4E, serving as loading controls. 
 
 

3.2.3 De novo transcription and translation is required for late phase of ERK1/2 

activation and neurite outgrowth  

      Activation of gene transcription and regulation of protein synthesis are pivotal 

events to many of cAMP-mediated physiological processes (157). In PC12 cells 

expressing GFRα2a and 2c, we found that NTN stimulation promoted 

phosphorylation of CREB, an important transcription factor downstream of cAMP 

signaling, suggesting that transcriptional and translational activations may be 

regulated by cAMP signalling in these cells. We therefore examined whether 

activation of gene expressions was involved in NTN-induced sustained ERK1/2 
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activation and neurite outgrowth in PC12 cells expressing GFRα2a and 2c. Small 

molecule inhibitors Actinomycin D (ActD) and Cyclohexamide (Chx) were used to 

inhibit transcription and translation, respectively. ERK1/2 activation at 1 h and 6 h 

after NTN stimulations was significantly inhibited after pre-treatment of ActD or Chx 

(Figure 3.6A-C). Similarly, NTN induced neurite outgrowth was significantly impaired 

by these inhibitors (Figure 3.6D). These results suggested that activation of gene 

expressions and translation were required for both the late phase of ERK1/2 

phosphorylation and neurite outgrowth induced by NTN stimulated GFRα2a and 

GFRα2c.  

 

3.2.4 Cyclic AMP signaling cooperates with NTN to promote biphasic ERK1/2 

activation, pERK1/2 nuclear translocation and neurite outgrowth via GFRα2b 

      Since GFRα2a and GFRα2c but not GFRα2b were able to activate cAMP 

signaling and induce neurite outgrowth, we hypothesized that exogenous activation 

of cAMP signaling may be able to cooperate with ligand-activated GFRα2b to 

promote neurite outgrowth. Indeed, while treatment of PC12 cells with various cAMP 

elevating agents alone (dbcAMP, FK and PACAP) only resulted in short neurite 

extensions, co-treatment of the agonists and GFLs induced extensive neurite 

outgrowth in a dose-response manner in GFRα2b expressing cells (Figure 3.7). 
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Figure 3.6 NTN-induced late phase of ERK1/2 activation and neurite outgrowth 
through GFRα2a and 2c required de novo transcription and translation. (A) 
Effects of ActD and Chx on NTN-induced ERK1/2 activation. Cells were stimulated 
with NTN in the presence or absence of 2 µg/ml ActD or 10 µg/ml Chx for the 
indicated periods of time. ERK1/2 phosphorylation was examined by Western 
blotting. Fold changes of ERK1/2 phosphorylation in PC12 expressing GFRα2a (B) 
or GFRα2c (C) were quantified by densitometry and presented as Mean ± S.D. (n = 
3). * p < 0.05, compared with NTN treatment without inhibitors at each time point. (D) 
Effects of ActD and Chx on NTN-induced neurite outgrowth. Cells were treated with 
NTN in the presence or absence of inhibitors for 24 h. Percentage of cells 
differentiated was presented as Mean ± S.E.M. of at least three biological replicates. 
** p < 0.001, compared with NTN treatment without inhibitors. 
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Figure 3.7 Cyclic AMP elevating agents cooperated with GDNF and NTN to 
induce neurite outgrowth in PC12 cells expressing GFRα2b. (A) Quantification of 
neurite outgrowth induced by various treatments. Cells were stimulated with GDNF or 
NTN (50 ng/ml) in the presence or absence of dbcAMP (100 µM), FK (10 µM) or 
PACAP (100 nM) for 48 h. Percentage of cells differentiated was presented as Mean 
± S.E.M. of at least three biological replicates. ** p < 0.001, compared to dbcAMP, 
FK or PACAP alone. (B) Representative graphs of cells stimulated with GDNF or 
NTN in the presence or absence of FK for 48 h. NGF was used as positive control for 
induction of neurite outgrowth. (C) Dose response in NTN and FK synergy in neurite 
outgrowth.  
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       As ligand-induced neurite outgrowth through GFRα2a and GFRα2c were 

accompanied by biphasic and sustained ERK1/2 activations (Figs. 3.2 and 3.3), we 

investigated if induction of neurite outgrowth by cAMP and NTN signaling through 

GFRα2b would also require a biphasic activation of ERK1/2. In PC12-GFRα2b cells, 

treatment of FK resulted in transient ERK1/2 phosphorylation, similar to the 

observation with NTN stimulations (Figure 3.8A). Co-treatment of cells with FK and 

NTN indeed promoted synergistic activation of ERK1/2 at later time points (Figure 

3.8A) and resulted in a prolonged ERK1/2 phosphorylation profile. The total level of 

ERK1/2 was not significantly increased with FK and NTN stimulations. Furthermore, 

co-treatment of FK and GDNF or NTN, but not each alone, promoted nuclear 

translocation of activated ERK1/2 at 6 h (Figure 3.8B), a process critical for growth 

factor induced transcriptional activation and neuronal differentiation (158). These 

observations suggested the possibility that the late phase of ERK1/2 activation may 

play an essential role in neurite outgrowth induced by FK and NTN through GFRα2b. 

To examine this possibility, we adopted the same experimental approach described 

in Figure 3.3. PC12-GFRα2b cells were incubated with U0126 1 h before (-1 h), 

together (0 h), 1 h after (1 h) or 3 h (3 h) after the co-treatment of NTN and FK 

(Figure 3.8C). Pre-incubation with U0126 (1 h before) completely abolished ERK1/2 

activation over 6 h period, and dramatically inhibited NTN and FK-induced neurite 

outgrowth (Figure 3.8D). U0126 added 1 h or 3 h after co-treatment of NTN and FK 

effectively inhibited ERK1/2 activation at 6 h and significantly blocked neurite 

outgrowth, supporting the notion that the late phase of ERK1/2 activation was also 

required for NTN and FK-induced neurite outgrowth. Similar to NTN activated 

GFRα2a and GFRα2c, inhibiting ERK1/2 activation after 12 h of ligand stimulation 

failed to impair neurite outgrowth, providing further evidence in support of a restricted 

temporal event controlling neuritogenic signal transduction. 
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Figure 3.8 Forskolin cooperated with NTN to promote biphasic ERK1/2 
activation required for pERK1/2 nuclear translocation and neurite outgrowth in 
PC12 cells expressing GFRα2b. (A) Biphasic ERK1/2 activation and (B) nuclear 
translocation of activated ERK1/2 were induced by co-treatment of NTN (50 ng/ml) 
with FK (10 µM). NGF was used as positive control for induction of sustained 
activation and nuclear translocation of ERK1/2. Phosphorylation levels of ERK1/2 
were examined by Western blotting and fold changes over control were semi-
quantified. SOD-1 and PARP-1 served as specific markers for cytoplasmic and 
nuclear proteins, respectively. The bands of expected molecular weights were 
presented. (C) Specific inhibition of late phase ERK1/2 activation. Cells were treated 
with NTN and FK for the indicated periods of time with (U0126) or without (DMSO) 
U0126. U0126 was added 1 h before (-1 h), together (0 h), 1 h after (1 h) or 3 h after 
(3 h) NTN and FK stimulations. (D) Effect of U0126 added at different time points on 
NTN and FK-induced neurite outgrowth. Cells were incubated for 48 h from the time 
NTN and FK were added and the number of cells differentiated was determined. 
Percentage of cells differentiated was presented as Mean ± S.E.M. of at least three 
biological replicates. U0126 added 12 h after (12 h) NTN and FK stimulation has no 
inhibitory effect on neurite outgrowth. * p < 0.05, compared to NTN and FK treatment 
without U0126. 
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3.2.5 Cooperation of cAMP signaling with NTN is mediated by PKA but not 

Epac 

      We similarly investigated the role of specific cAMP effector in mediating the 

cooperation of FK and NTN, using specific Epac and PKA agonist 2-Me-cAMP and 6-

Bnz-cAMP. As postulated, co-treatment of NTN with 50-200 µM of 6-Bnz-cAMP 

significantly promoted neurite outgrowth in PC12-GFRα2b cells in a dose dependent 

manner (Figure 3.9A and B). In contrast, similar treatments with 2-Me-cAMP had little 

effects on neurite outgrowth. In agreement with the neurite outgrowth analyses, FK 

and 6-Bnz-cAMP but not 2-Me-cAMP cooperated with NTN to promote biphasic and 

sustained (up to 6 h) ERK1/2 activation (Figure 3.9C). The specific role of PKA was 

further supported by the observations that PKA inhibitor H89 significantly impaired 

both sustained ERK1/2 activation (Figure 3.9D and E) and neurite outgrowth (Figure 

3.9F). These results demonstrated the involvement of PKA but not Epac in the 

cooperation of cAMP signaling with NTN-GFRα2b signaling to promote neurite 

outgrowth. Similar to GFRα2a and 2c, pre-treatment of ActD or Chx also significantly 

impaired ERK1/2 activation (Figure 3.10A, B) and neurite outgrowth (Figure 3.10C) 

induced by FK and NTN co-treatment of GFRα2b, suggesting the involvement of de 

novo transcription and translation in FK and NTN neurite synergy. 
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Figure 3.9 PKA but not Epac was the cAMP effector for cooperation of FK and NTN in 
PC12 cells expressing GFRα2b. (A) Dose dependent cooperation of 6-Bnz-cAMP but not 2-
Me-cAMP with NTN to induce neurite outgrowth. Cells were co-stimulated with NTN (50 
ng/ml) and the indicated concentrations of FK, 2-Me-cAMP or 6-Bnz-cAMP for 48 h. 
Percentage of cells differentiated was presented as Mean ± S.E.M. of at least three biological 
replicates. * p < 0.05 and ** p < 0.001, compared with NTN treatment alone. (B) 
Representative graphs of cells stimulated with NTN and 200 µM 2-Me-cAMP or 200 µM 6-
Bnz-cAMP. (C) 6-Bnz-cAMP but not 2-Me-cAMP cooperated with NTN to induce biphasic and 
sustained ERK1/2 activation. Cells were stimulated with NTN alone or together with 10 µM 
FK, 200 µM 2-Me-cAMP or 200 µM 6-Bnz-cAMP for the indicated periods of time. 
Phosphorylation levels of ERK1/2 were analysed by Western blotting. (D) Effect of PKA 
inhibitor H89 on biphasic ERK1/2 activation induced by NTN and FK. Cells were co-treated 
with NTN and FK in the presence or absence of 10 µM H89 or 10 µM U0126 for the indicated 
periods of time. ERK1/2 phosphorylation was examined by Western blotting. (E) Fold 
changes of ERK1/2 phosphorylation were quantified by densitometry and presented as Mean 
± S.D. (n = 3). * p < 0.05, compared with NTN and FK treatment without H89. (F) Effect of 
H89 on neurite outgrowth induced by NTN and FK. Cells were co-treated with NTN and FK in 
the presence or absence of H89 for 48 h. Percentage of cells differentiated was presented as 
Mean ± S.E.M. of at least three biological replicates. ** p < 0.001, compared with NTN and FK 
treatment without H89.  
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Figure 3.10 Forskolin and NTN-induced late phase of ERK1/2 activation and 
neurite outgrowth through GFRα2b required de novo transcription and 
translation. (A) Effect of ActD and Chx on NTN and FK-induced ERK1/2 activation. 
Cells were treated with 50 ng/ml NTN and FK (10 µM) in the presence or absence of 
2 µg/ml ActD or 10 µg/ml Chx for the indicated periods of time. (B) Fold changes of 
ERK1/2 phosphorylation levels were quantified by densitometry and presented as 
Mean ± S.D. (n = 3). * p < 0.05, compared with NTN and FK treatment without 
inhibitors at each time point. (C) Effects of ActD and Chx on NTN and FK-induced 
neurite outgrowth. Cells were treated with NTN and FK in the presence or absence of 
inhibitors for 24 h. Percentage of cells differentiated was presented as Mean ± 
S.E.M. of at least three biological replicates. ** p < 0.001, compared with NTN and 
FK treatment without inhibitors. 
 

3.2.6 Cyclic AMP and PKA signaling cooperates with NTN to promote neurite 

outgrowth in BE(2)-C cells 

      We next validated the contribution of cAMP-PKA signaling in NTN-induced 

neurite outgrowth in BE(2)-C, a human neuroblastoma cell line that endogenously 

expresses both GFRα2a and GFRα2b (6). We have previously shown that NTN was 

unable to induce significant neurite outgrowth in these cells, due to the inhibitory 

activity of GFRα2b (6). Similarly, FK, 2-Me-cAMP and 6-Bnz-cAMP also failed to 

promote neurite outgrowth in BE(2)-C cells. Interestingly, co-treatment of NTN with 

FK and 6-Bnz-cAMP but not 2-Me-cAMP resulted in extensive neurite outgrowth in 

BE(2)-C cells (Figure 3.11A and B), which recapitulated the specific cooperative 
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effect of NTN and cAMP-PKA but not Epac pathways in PC12 cells. Furthermore, we 

have previously shown that NTN was able to induce neurite outgrowth in BE(2)-C 

cells through GFRα2a, when GFRα2b was specifically knocked down (6). To 

examine if PKA signaling was involved in NTN-GFRα2a induced neurite outgrowth, 

BE(2)-C cells with GFRα2b knockdown were pre-treated with PKA inhibitors H89 and 

Rp-8-Br-cAMPS before NTN stimulation. As expected, in the absence of PKA 

inhibitors, NTN promoted neurite outgrowth in cells with GFRα2b knockdown (si-

GFRα2b) (Figure 3.11C and D). H89 at even lowered doses resulted in significant 

toxicity in BE(2)-C cells, and hence was excluded from the study. U0126 and the 

other PKA inhibitor Rp-8-Br-cAMP significantly reduced NTN-GFRα2a induced 

neurite outgrowth in GFRα2b knockdown cells (Figure 3.11C and D). These findings 

lend further support to the idea that cAMP-PKA signaling was essential for ligand-

induced neurite outgrowth through GFRα2 isoforms. 

 
Figure 3.11 Cyclic AMP and PKA signaling was required for NTN-induce neurite 
outgrowth in BE(2)-C cells. (A) Quantification of neurite outgrowth induced by NTN, FK and 
cAMP analogs. BE(2)-C cells were treated with 10 µM FK, 200 µM 2-Me-cAMP or 200 µM 6-
Bnz-cAMP in the presence or absence of 50 ng/ml NTN for 96 h. (B) Representative pictures 
of BE(2)-C cells stimulated with NTN, FK and cAMP analogs. (C) Quantification of neurite 
outgrowth induced by NTN in BE(2)-C cells with GFRα2b knockdown. BE(2)-C cells were 
transfected with either control or GFRα2b siRNA and treated with 50 ng/ml NTN in the 
presence or absence or 10 µM U0126 or 200 µM Rp-8-Br-cAMPS for 96 h. (D) 
Representative pictures of control and GFRα2b knockdown BE(2)-C cells stimulated by NTN 
with or without inhibitors. Percentage of cells differentiated was presented as Mean ± S.E.M. 
of at least three biological replicates. ** p < 0.001. 
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Section 3.3 Discussion 

      This study demonstrated the essential role of cAMP-PKA but not cAMP-Epac 

signaling in NTN-induced neurite outgrowth through GFRα2 isoforms (Figure 3.12). 

While ligand activation of GFRα2a and GFRα2c regulated PKA-dependent late 

phase of ERK1/2 activation and neurite outgrowth, ligand activation of GFRα2b 

required the cooperation of PKA agonists to promote neurite outgrowth. The 

functional interaction of NTN and cAMP-PKA signaling in promoting neurite 

outgrowth was mediated by transcription and translation-dependent late phase 

ERK1/2 activation. This synergistic effect of PKA agonist and NTN may extend the 

benefits of the use of NTN in clinical studies (159, 160).  

      Both GDNF and NTN are known to regulate neurite outgrowth through GFRα2 in 

various neuronal systems (6, 161, 162). GFRα2 is alternatively spliced into at least 

three isoforms (104, 105) and are expressed in all parts of the human nervous 

system examined, suggestive of their physiological relevance (6). Recently, we have 

shown that NTN induced similar rapid ERK1/2 activations in neuroblastoma cells 

expressing these GFRα2 isoforms but yet resulted in distinct neuritogenic outcomes 

(6). Consistent with our previous report, ligand stimulations of all three GFRα2 

isoforms in PC12 cells resulted in similar early phase of ERK1/2 activation that 

peaked at 5 min. Interestingly, GFRα2a and GFRα2c (but not GFRα2b), were able to 

mediate phosphorylation of the major cAMP target CREB, a late phase of ERK1/2 

activation (3-6 h) and neurite outgrowth upon ligand stimulations. This is consistent 

with the observations that phosphorylation of CREB and sustained activation of 

ERK1/2 are events necessary for neurite outgrowth in PC12 cells (155, 163), and 

suggested that such distinct signaling activation may underlie the differential 

neuritogenic activities of GFRα2 isoforms.  
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Figure 3.12 A schematic illustration of cAMP-PKA signaling in GFL-induced 
neurite outgrowth through GFRα2 isoforms. Upon GFL (GDNF or NTN) 
stimulations, GFRα2a and GFRα2c promote biphasic and sustained ERK1/2 
activation and neurite outgrowth. The late phase of ERK1/2 activation is dependent 
on cAMP-PKA signaling and de novo gene expression. Ligand-activated GFRα2b 
only induces transient ERK1/2 activation and requires exogenous cAMP-PKA 
signaling to promote the late phase of ERK1/2 activation and neurite extensions.  
 
 
 
 
      Consistent with previous reports, activation of cAMP pathway alone failed to 

induce significant neurite extensions in PC12 cells (148, 151, 164, 165). Interestingly, 

GFRα2a and GFRα2c induced neurite outgrowth in PC12 cells was dependent on 

cAMP signaling and was enhanced by co-treatment of cAMP agonists. More 

importantly, while each pathway on its own failed to induce significant neurite 

outgrowth, the cooperation between cAMP agonists and ligand-activated GFRα2b 

induced extensive neurite outgrowth. This synergy between NTN and cAMP signaling 
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was further validated in BE(2)-C cells, which endogenously express both GFRα2a 

and GFRα2b. Conversely, in BE(2)-C cells with GFRα2b knocked down, NTN-

induced neurite outgrowth through GFRα2a was significantly inhibited by antagonist 

against cAMP signaling. Taken together, these results suggest that the differential 

regulation of cAMP signaling may be the key event underlying the divergent 

neuritogenic effect of GFRα2b compared to GFRα2a and GFRα2c. 

      While the essential role of cAMP signaling in neurite outgrowth is well established, 

the specific involvement of cAMP effectors PKA or Epac is still a subject of debate. 

Using small molecule inhibitors, a number of studies have shown that PKA signaling 

is specifically required for PC12 neurite outgrowth induced by NGF (145, 152, 165), 

secretin (149) and panaxynol (147). In addition, exogenous PKA signaling is able to 

cooperate with non-neuritogenic stimuli (EGF and KCl) to promote neurite outgrowth 

in PC12 cells (151, 154, 164). However, recent evidence suggested that cAMP-

dependent neurite outgrowth in PC12 and DRG neurons can also be mediated by 

Epac (166-168). In this study, we have provided ample evidence that favoured PKA 

but not Epac to be the cAMP downstream effector in promoting neurite outgrowth in 

ligand-activated GFRα2 isoforms. These results not only support the pivotal role of 

cAMP-PKA signaling in neurotrophic factor-induced neurite outgrowth, but also 

suggest PKA as the specific candidate therapeutic target for axonal regeneration 

(134).  

      Sustained activation of ERK1/2 is critical to neurite outgrowth of neuronal cells, 

including PC12 cells (158). The sustained activation is thought to result in nuclear 

translocation of the activated ERK1/2 (152, 163, 169, 170), a process important for 

neuronal differentiation and plasticity (158, 171). Consistent with these reports, NTN-

induced neurite outgrowth through GFRα2 was accompanied by both activation and 

nuclear translocation of the late phase of ERK1/2, which was dependent on both 

PKA and de novo gene expression. Recently, thrombin stimulation of vascular 
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smooth muscle cells was found to exhibit a similar biphasic ERK1/2 phosphorylation 

and the activation of late phase ERK1/2 also required de novo transcription and 

translation (172). Interestingly, we found that cAMP agonist specifically regulated 

CREB activation, c-fos expression and S6 ribosomal protein phosphorylation (data 

not shown), consistent with the roles of PKA in mediating de novo RNA and protein 

synthesis. These findings suggest that cAMP-PKA signaling may contribute to NTN-

mediated neurite outgrowth by promoting de novo gene expression, which is required 

for the late phase of ERK1/2 activation. 

      Structurally, GFRα2 isoforms differ at the extreme N-terminus (D1) (2, 4), which 

was shown to be dispensable for ligand binding. However, a recent study found that 

the distal end of the GFRα1 N-terminus (D1) interacted with RET at multiple sites, 

strongly support its biological relevance (65, 173). It is reasonable to hypothesize that 

the differences in the N-terminus domains in GFRα2 influence the overall 

conformation of the GFL-GFRα2-RET ligand-receptor complex and lead to 

differential activation of RET kinase domains and recruitment of distinct adaptor 

molecules, a possibility currently under investigation.    

      In conclusion, this study demonstrated an essential role of cAMP-PKA signaling 

in NTN-induced neurite outgrowth and suggested this to be an underlying 

mechanism contributing to the differential neuritogenic activities of GFRα2 isoforms. 

The findings on specific roles of PKA but not Epac in promoting biphasic ERK1/2 

activation and neurite outgrowth provided further insights on the molecular 

mechanisms underlying the synergistic effects of cAMP and GDNF signaling in 

neuronal outgrowth. 
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Chapter 4 Specific alternatively spliced isoforms of GFRα2 
and RET mediate Neurturin induced mitochondrial STAT3 
phosphorylation and neurite outgrowth 
 

Section 4.1 Introduction 

      NTN-GFRα2 signaling is crucial for neuronal development. Mice lacking NTN and 

GFRα2 signaling suffer from deficits in target innervations in both sympathetic (174) 

and parasympathetic neurons (175-177). In GFRα2 knockout mouse, NTN 

stimulation failed to initiate axonal outgrowth of DRG neurons, supporting the 

physiological role of GFRα2 in neuronal differentiation (178). Furthermore, NTN has 

also been shown to exert potent protective and / or restorative effects on midbrain 

dopaminergic neurons, thus leading to its clinical trial for Parkinson’s disease (159, 

179). However, the signaling network which mediates the neurotrophic functions of 

NTN-GFRα2 has yet to be fully elucidated. 

      Signal Transducer and Activator of Transcription 3 (STAT3) is a classic 

transcription regulator that mediates a myriad of biological functions in multiple 

cellular systems (180-182). In neuronal systems, STAT3 plays critical roles during 

neural development and mediates the protective and regenerative effects of multiple 

neurotrophic factors upon nerve injuries (180). The canonical pathway of STAT3 

activation involves ligand induced phosphorylation of tyrosine705 residue (P-Tyr-

STAT3), resulting in STAT3 nuclear translocation and activation of target gene 

transcription (183). STAT3 can also be phosphorylated at serine727 (P-Ser-STAT3), 

but its functional significance remains controversial. Serine phosphorylation can 

enhance or suppress the transcriptional activity of tyrosine phosphorylated STAT3 in 

a cell context dependent manner (184-187). More recently, STAT3 has also been 

shown to localize to the mitochondria and exert functions independent of its 

transcriptional activities (188-191).  
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      Multiple reports have observed GFL independent activation of STAT3 by 

oncogenic RET. Depending on the type of mutations, different oncogenic RET (PTC, 

MEN2 or FMTC) were capable of inducing either specific tyrosine phosphorylation or 

dual tyrosine and serine phosphorylation of STAT3 (192, 193). In addition, the 

signaling pathways mediating oncogenic RET induced STAT3 phosphorylation vary 

across cell types. In ARO cells, the intrinsic kinase activity of oncogenic RET alone 

was found to be sufficient to induce STAT3 phosphorylation (194). In other cell 

models, combinations of JAK, Src and MAPK pathways were found to mediate 

STAT3 activation (195). Surprisingly, no report has shown the activation of STAT3 by 

wild type RET in a GFL dependent manner. On the contrary, GDNF was shown to 

suppress activation of STAT3 in models such as spermatogonial stem cells (196).  

       In this study, we tested the hypothesis that STAT3 can be activated by NTN-

GFRα2 signaling and may in turn mediate the neuritogenic functions of NTN. STAT3 

was found to be serine mono-phosphorylated upon NTN stimulation. The 

involvement of specific GFRα2 and RET isoforms in NTN induced P-Ser-STAT3 was 

further investigated in multiple cell models. Moreover, serine but not tyrosine 

dominant negative mutant of STAT3 was found to impair NTN induced neurite 

outgrowth. Interestingly, P-Ser-STAT3 was found to be localized to the mitochondria 

but not the nucleus upon NTN stimulation. The mitochondrial P-Ser-STAT3 was 

further shown to be intimately involved in NTN induced neurite outgrowth. To the best 

of our knowledge, this is the first report that demonstrated a GFL induced 

phosphorylation of serine residue of STAT3 through the activation of wild type GFRα 

and RET receptors. Our findings further illustrated the distinct functions of GFRα2 

and RET isoforms and demonstrated the transcription-independent mechanism 

whereby mitochondria localized STAT3 mediates NTN induced neurite outgrowth. 
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Section 4.2 Result 

4.2.1 NTN induced STAT3 phosphorylation in cortical neuron expressing 

multiple receptor isoforms  

      NTN has been reported to exert neurotrophic effects on cortical neurons (197), 

which express high levels of GFRα2 (6), making these neurons a suitable model to 

investigate NTN function and signaling. Primary cortical neurons from embryonic day 

18 rat were harvested and the transcript expressions of GFRα2 and its co-receptors 

RET and NCAM were quantified with RT-qPCR, using GAPDH as normalizer. All 

three isoforms of GFRα2, GFRα2a, 2b and 2c were expressed at comparable levels 

in the cultured primary cortical neurons (Figure 4.1A). The co-receptor RET9 isoform 

was found to be expressed at slightly higher level than RET51, whereas NCAM 

expression was about ten-fold higher than that of RET9. NTN stimulation of cultured 

primary cortical neurons induced rapid phosphorylation of MAP kinase ERK. More 

interestingly, NTN treatment resulted in serine but not tyrosine phosphorylation of 

STAT3 (Figure 4.1B). These data demonstrated that STAT3 can be activated by GFL 

and may be mediated by distinct combinations of receptor isoforms.  

 

Figure 4.1 NTN induced sustained STAT3 serine727 but not tyrosine705 phosphorylation 
in rat embryonic cortical neurons. A. Total RNA was extracted from E18 rat embryonic 
cortical neurons. The transcript expressions of GFRα2, RET isoform and NCAM were 
quantified by RT-qPCR with standard curves. The expression copy numbers were normalized 
and presented as ratio to internal reference gene GAPDH. B. The isolated cortical neurons 
were cultured in vitro for 72 h before NTN stimulation (100 ng/ml) for up to 3 h. Total cell 

lysates were collected and the protein expression analysed by immunobloting, the bands of 
expected molecular weights were presented.  
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4.2.2 GFRα2c but not 2a or 2b mediated NTN induced STAT3 serine 

phosphorylation in Neuro2A cells 

      To test the hypothesis that NTN induced P-Ser-STAT3 is mediated through 

specific GFRα2 isoforms, Neuro2A cells were engineered to stably expressing either 

GFRα2a, 2b or 2c receptor isoforms (Figure 4.2A). Neuro2A cells endogenously 

express both RET and NCAM at levels comparable to that of primary cortical neurons 

but have negligible levels of GFRα2, making these cells an ideal model to investigate 

GFRα2 isoform function. These engineered Neuro2A cells were stimulated with NTN 

and the phosphorylation of STAT3 were measured. Consistent with the observation 

in primary cortical neurons, NTN did not induce tyrosine phosphorylation of STAT3 

(Figure 4.2B&D). Surprisingly, NTN stimulation of GFRα2c but not 2a or 2b was 

found to induce sustained serine phosphorylation of STAT3 (Figure 4.2B&C), 

suggesting NTN activation of STAT3 was mediated by specific receptor isoform. 

Since STAT3 is known to mediate the neuritogenic function of neurotrophic factors, 

we tested if STAT3 is involved in NTN induced neurite outgrowth. Wild type and 

mutant STAT3 were transiently expressed in Neuro2A-GFRα2c cells using vector 

constructs co-expressing enhanced green florescence protein (eGFP) as a marker 

for gene transfer. STAT3 serine (S727A) but not tyrosine (Y705F) dominant negative 

mutant was found to significantly attenuate NTN induced neurite outgrowth (Figure 

4.2E&F). In addition, expression of the STAT3 serine constitutive active mutant 

(S727E) resulted in a significant enhancement of neurite outgrowth, lending further 

evidence that P-Ser-STAT3 was involved in NTN induced neurite outgrowth.  
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4.2.3 RET but not NCAM mediated STAT3 serine phosphorylation in Neuro2A 

cells  

      Both RET and NCAM have been shown to transduce GFL signal in the presence 

of GFRα receptors. The involvement of these two receptors in NTN induced STAT3 

phosphorylation was subsequently investigated. Neuro2A cells were transiently 

transfected with siRNAs targeting RET or NCAM. Transcript expressions of RET and 

NCAM were profiled and both siRNAs were found to specifically suppress the 

respective target mRNA level by more than 80% within 24 h (Figure 4.3A). 

Transfection of control siRNA resulted in negligible change in RET or NCAM levels. 

N2A-GFRα2c cells transfected with RET or NCAM siRNAs were treated with NTN 

and compared to control siRNA transfected cells. Upon NTN stimulation, sustained 

STAT3 serine phosphorylation was observed in all but RET-siRNA transfected cells 

(Figure 4.3B&C). Similarly, NTN induced ERK phosphorylation was also abolished by 

RET siRNA but not NCAM or control siRNA (Figure 4.3D&E). Furthermore, NTN 

induced neurite outgrowth in N2A-GFRα2c cells was attenuated by RET-siRNA but 

not the others (Figure 4.3F&G). Collectively, these data demonstrated that RET but 

not NCAM is involved in NTN induced STAT3 phosphorylation and neurite outgrowth 

in Neuro2A cells.     
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Figure 4.2 GFRα2c but not 2a or 2b mediated NTN induced STAT3 serine 
phosphorylation in Neuro2A cells. A. Total RNA was extracted from Neuro2A cells 
engineered to stably express different GFRα2 isoforms. The transcript expressions of 
GFRα2a, 2b, 2c, RET9, 51 and NCAM were quantified by RT-qPCR with standard curves. 
The expression copy numbers were normalized and presented as ratio to internal reference 
gene GAPDH. B. Neuro2A-GFRα2a, 2b, 2c cells were stimulated with NTN (50 ng/ml) for up 
to 3 h. Total cell lysates were collected and the protein expression analysed by 
immunobloting. C-D. NTN induced P-Ser-STAT3, P-Tyr-STAT3 were normalized to Pan-
STAT3 and presented as fold change to control cells. E-F. Neuro2A-GFRα2c cells were 
transiently transfected with wild-type and mutant STAT3 and stimulated with NTN to induce 
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neurite outgrowth. More than 60 successfully transfected cells (eGFP expressing) was 
analysed per biological replicate per condition and the number of bearing neurite twice the 
cell body length was scored. Representative images are shown in E and the analysed data in 
F. Significant differences between the percentages of neurite bearing cells in control and 
STAT3 mutant expressing cells were calculated using the paired Student’s t-test. A value of 
p<0.05 was considered significant (**p<0.01; *p< 0.05). 

 

4.2.4 RET9 but not RET51 was responsible for STAT3 serine phosphorylation in 

PC12 cells  

      RET9 and RET51 are two predominant isoforms generated by alternative splicing 

of RET pre-mRNA. We further tested if NTN induced STAT3 phosphorylation was 

mediated by a particular RET isoform, using another well-established neuronal model 

PC12 cells. The rat pheochromocytoma PC12 cells expressed negligible amount of 

both GFRα2 and RET, making it a suitable model to test the combinatorial 

interactions of NTN and its receptor isoforms. PC12 cells were engineered to stably 

express combinations of GFRα2a, 2b or 2c with either RET9 or RET51. The specific 

expressions of the desired receptor isoform combination were confirmed by RT-

qPCR (Figure 4.4A). These cells were then stimulated with NTN and STAT3 

phosphorylation was monitored. Consistent with the observation in Neuro2A cells, 

NTN stimulation of GFRα2a or 2b expressing PC12 cells did not induce significant 

STAT3 phosphorylation (Figure 4.4B). Interestingly, the combinatorial interaction of 

GFRα2c with RET9 but not RET51 resulted in sustained STAT3 serine but not 

tyrosine phosphorylation (Figure 4.4B-D). Collectively, the data from Neuro2A and 

PC12 cells strongly supported the hypothesis that NTN activation of STAT3 was 

mediated by specific combinations of GFRα2 and RET receptor isoforms.   
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Figure 4.3 RET but not NCAM mediated NTN induced STAT3 serine phosphorylation in 
Neuro2A cells. A. Total RNA was extracted from Neuro2A- GFRα2c cells transiently 
transfected with siRNA duplex specific for RET, NCAM or control siRNA. The transcript 
expressions of GFRα2c, RET and NCAM quantified by RT-qPCR with standard curves and 
normalized by GAPDH. The effects of different siRNAs on these three genes are expressed 
as percentage knockdown from control cells. B-G. Neuro2A-GFRα2c transiently transfected 
with different siRNAs were stimulated with NTN (50 ng/ml). NTN induced P-Ser-STAT3 (B-C), 
P-ERK (D-E) and neurite outgrowth (F-G) were analysed. Significant differences between the 
percentages of neurite bearing cells in control and siRNA transfected cells were calculated 
using the paired Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 
0.05). 
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Figure 4.4 RET9 but not RET51 was responsible for NTN induced STAT3 serine 
phosphorylation in PC12 cells. A. Total RNA was extracted from PC12 cells engineered to 
stably express combinations of GFRα2 and RET isoforms. The transcript expressions of 
GFRα2a, 2b, 2c, RET9, 51 were quantified by RT-qPCR with standard curves. The 
expression copy numbers were normalized and presented as ratio to internal reference gene 
GAPDH. Shown here are the expression levels in vector control, GFRα2c-RET9 and GFRα2-
RET51 cells. B. The engineered PC12 cells were stimulated with NTN (50 ng/ml) for up to 3 h. 
Total cell lysates were collected and the protein expression analysed by immunobloting. C-D. 
NTN induced P-Ser-STAT3, P-Tyr-STAT3 were normalized to Pan-STAT3 and presented as 
fold change to control cells.  
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4.2.5 STAT3 serine phosphorylation was regulated by Src and ERK  

      Multiple signaling pathways have been implicated in STAT3 serine 

phosphorylation. We subsequently investigated the involvement of Src, MAPKs (ERK, 

JNK and p38) and PKC in NTN induced STAT3 serine phosphorylation. N2A-

GFRα2c and PC12-GFRα2c-RET9 cells were pretreated with established 

pharmacological inhibitors, and subsequently stimulated with NTN for varying periods 

of time. Interestingly, inhibition of Src (SU6656) and ERK (U0126) but not JNK 

(SP600125), p38 (SB203580) or PKC (Gö6983) was found to significantly attenuate 

NTN induced STAT3 serine phosphorylation, in both Neuro2A (Figure 4.5A&C) and 

PC12 cells (Figure 4.5B&D). Intriguingly, inhibition of Src and ERK but not JNK, p38 

or PKC pathway attenuated NTN induced neurite outgrowth in Neuro2A (Figure 4.5E) 

and PC12 cells (Figure 4.5F). The correlation between the involvements of these 

pathways in NTN induced neurite outgrowth and STAT3 phosphorylation was 

suggestive of the role of STAT3 as a downstream mediator of neurite outgrowth. 

     Unexpectedly, RET9 but not RET51 was found to induce Src Y416 

phosphorylation (Figure 4.6A&B) in PC12 cells. In addition, inhibition of Src 

attenuated RET9 mediated neurite outgrowth but not RET51 (Figure 4.6C&D). These 

data suggested that RET isoform involvement in specific phosphorylation of STAT3 

may be explained by the differential activation of Src by RET9 but not RET51.   
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Figure 4.5 NTN induced STAT3 serine phosphorylation was regulated by Src and ERK. 
Neuro2A and PC12 cells were serum-deprived for 16 h and pre-treated with DMSO (DM, 
0.1%, control), SU6656 (SU, 1 μM), Gӧ6983 (GO, 5 μM), U0126 (U, 10 μM), SP600125 (SP, 
10 μM), and SB203580 (SB, 10 μM) for 1 h before stimulated with 50 ng/ml NTN in the 
presence of respective inhibitors. A-B. Total cell lysates were harvested from control and 
inhibitor treated cells after 10, 30 or 60 min of NTN stimulation and analysed by 
immunobloting, the bands of expected molecular weights were presented. C-D. Quantified P-
Ser-STAT3 immunoblot intensity was normalized to respective Pan-STAT3 intensity. The 
percentage inhibition of NTN induced STAT3 serine phosphorylation by various signaling 
inhibitors was calculated as follows, % inhibition = (P-Ser-STAT3DMSO - P-Ser-STAT3Inhibitor) / 
P-Ser-STAT3DMSO x 100%. E-F. Neuro2A and PC12 cells were stimulated with NTN for 24 
and 48 h respectively in the presence of the inhibitors. The percentages of neurite bearing 
cells (differentiated cells) were counted to analyze the effect of various inhibitors on NTN 
induced neurite outgrowth. Significant differences between the percentages of differentiated 
cells in control and inhibitor treated cells were calculated using the paired Student’s t-test. A 
value of p<0.05 was considered significant (**p<0.01; *p< 0.05). 
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Figure 4.6 Src was involved in the neuritogenic function of RET9 but not RET51. 
A-B. Phosphorylation of Src was analysed in PC12-GFRα2c-RET9 and PC12-
GFRα2-RET51 cells stimulated with 50 ng/ml NTN. P-Src levels were quantified and 
normalized to Pan-Src levels and expressed as fold change of NTN induced cells to 
control cells. The bands of expected molecular weights were presented. C-D. RET9 
and RET51 cells were stimulated with NTN for 48 h in the presence of Src inhibitors 
SU6656. The percentages of neurite bearing cells (differentiated cells) were analysed. 
Significant differences between the percentages of differentiated RET and RET51 
expressing cells were calculated using the paired Student’s t-test. A value of p<0.05 
was considered significant (**p<0.01). 

 

4.2.6 NTN induced P-Ser-STAT3 was undetectable in nucleus 

      STAT3 is known to mediate ligand-receptor signaling through transcriptional 

activation of target genes. Ligand induced STAT3 nuclear translocation and its 

kinetics affects the temporal expressions and functions of the target genes. To test if 

NTN induced STAT3 phosphorylation resulted in its nuclear translocation and target 

gene expression, nuclear and cytosolic fractions were prepared from control and 

NTN stimulated PC12 cells. In addition, IL6, which has been shown to induce rapid 

nuclear translocation of STAT3 in PC12 cells (198), was used as a control. Both NTN 
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and IL6 induced rapid phosphorylation and increased nuclear localization of ERK 

(Figure 4.7A-C). Similarly, phosphorylated STAT3 was detected in nuclear fractions 

within 10 min of IL6 stimulation and was sustained over 6 h (Figure 4.7A, D-F). In 

contrast, phosphorylated STAT3 was not detectable in the nucleus in cells stimulated 

with NTN over the period of 6 h. Likewise, in Neuro2A cells, NTN stimulation was 

found to induce nuclear localization of ERK (Figure 4.8A-C) but not STAT3 (Figure 

4.8A, D-F). Together, the observations suggested that NTN induced STAT3 serine 

phosphorylation did not result in detectable nuclear localization and may mediate 

NTN induced neurite outgrowth through a transcription independent mechanism. 

 

4.2.7 STAT3 was localized to mitochondria and was serine phosphorylated 

upon NTN stimulation  

      As STAT3 has recently been shown to localize to the mitochondria, we tested the 

hypothesis that NTN induced P-Ser-STAT3 may be localized to the mitochondria. 

Cytosolic and mitochondrial fractions were isolated, using a method we have 

previously described, from control and NTN stimulated PC12 and Neuro2A cells. The 

presence of P-Ser-STAT3, as well as total STAT3, in each fraction was analysed by 

immunobloting. Interestingly, NTN stimulation increased the amount of P-Ser-STAT3 

detected in mitochondrial fraction but not total STAT3, in PC12 (Figure 4.9A-C) and 

Neuro2A cells (Figure 4.10A-C). These observations suggested that STAT3 may be 

constitutively present in mitochondria and is serine phosphorylated upon NTN 

stimulation. Consistent with this suggestion is that ERK, which has been shown to 

phosphorylate STAT3 at serine727, was robustly activated in the mitochondria upon 

NTN treatment (Figure 4.9 & 4.10). These observations supported the hypothesis 

that STAT3 may be phosphorylated in mitochondria by activated ERK or other 

kinases. 
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Figure 4.7 NTN did not induce STAT3 nuclear translocation in PC12 cells. PC12-
GFRα2c-RET9 cells were serum-deprived for 16 h and subsequently treated with IL6 (50 
ng/ml) or NTN (50 ng/ml) for 10 min, 30 min and 6 h respectively. Nuclear and cytosolic 
fractions were extracted and analysed by immunobloting (A). The purity of the isolated 
nuclear and cytosolic fractions was verified by immunobloting analysis of nuclear marker 
PARP and cytosolic marker SOD1. Fold changes in nuclear and cytosolic Phospho & Pan-
ERK (B-C) and Phospho and Pan-STAT3 (D-F) were quantified. Nuclear proteins were 

normalized by PARP whereas cytosolic proteins were normalized by SOD1. The bands of 

expected molecular weights were presented. Significant differences in normalized nuclear 
levels of various proteins between control and ligand stimulated samples were calculated 
using the paired Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 
0.05).   
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Figure 4.8 NTN did not induce STAT3 nuclear translocation in Neuro2A cells. Neuro2A-
GFRα2c cells were serum-deprived for 16 h and subsequently treated with NTN (50 ng/ml) for 
10 min, 30 min, 1 h and 6 h respectively. Nuclear and cytosolic fractions were extracted and 
analysed by immunobloting (A). The purity of the isolated nuclear and cytosolic fractions was 
verified by immunobloting analysis of nuclear marker PARP and cytosolic marker SOD1. Fold 
changes in nuclear and cytosolic Phospho & Pan-ERK (B-C) and Phospho and Pan-STAT3 
(D-F) were quantified. Nuclear proteins were normalized by PARP whereas cytosolic proteins 
were normalized by SOD1. Significant differences in normalized nuclear levels of various 
proteins between control and ligand stimulated samples were calculated using the paired 
Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05).   
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      To test if mitochondrial P-Ser-STAT3 signal was due to contamination from the 

cytosol fraction, immunoblot intensity ratios of P-Ser-STAT3 to the cytosolic marker 

SOD1 in mitochondria and cytosol were compared as previously described (190). If 

the detected P-Ser-STAT3 in the mitochondria was due to cytosolic contamination, 

the ratios of P-Ser-STAT3 to SOD1 in both fractions should be similar. In PC12 cells, 

the intensity ratios of P-Ser-STAT3 to SOD1 in the cytosol and mitochondria at 10 

min were 1.5 and 7.6 respectively (Figure 4.9). Similar observation was made in 

Neuro2A cells (Figure 4.10), indicating that mitochondrial P-Ser-STAT3 was not due 

to cytosolic contamination. In addition, the total amount of STAT3 in the mitochondria 

was estimated to be 11% of the cytosolic STAT3 in PC12 cells and 15% in Neuro2A 

cells. The ratio of mitochondrial ERK to cytosolic ERK was 22% in PC12 cells and 24% 

in Neuro2A cells. These data are consistent with earlier reports from both our group 

(190) and others (188, 199), which provided further support of the reliability of the 

isolation method and the approach to the study.   

      The presence of P-Ser-STAT3 in mitochondria was further validated by 

immunocytochemistry. NTN stimulation significantly increased the fluorescent 

intensity of P-Ser-STAT3 and its co-localization with specific mitochondria marker, 

Mito-Tracker, in both PC12 (Co-localization Coefficient = 0.343) and Neuro2A (Co-

localization Coefficient = 0.482) cells (Figure 4.11A&C). Moreover, NTN induced P-

Ser-STAT3 was also found to co-localize with GRIM-19 (Figure 4.11B&D, Co-

localization Coefficient = 0.665 & 0.797 respectively), a known STAT3 binding 

partner and a component of the mitochondrial electron transport complex I (188, 191, 

200). Consistent with the observations in cell lines, NTN induced P-Ser-STAT3 was 

also found to co-localize with MitoTrakcer (Figure 4.11E, Co-localization Coefficient = 

0.543) as well as GRIM-19 (Figure 4.11F, Co-localization Coefficient = 0.576) in 

primary cortical neurons. Furthermore, the co-localization of P-Ser-STAT3 with 
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Figure 4.9 STAT3 was localized to mitochondria and was serine phosphorylated upon 
NTN stimulation of PC12 cells. PC12-GFRα2c-RET9 cells were serum-deprived for 16 h 
and subsequently treated with NTN (50 ng/ml) over 24 h. Mitochondrial and cytosolic fractions 
were extracted at different time points and analysed by immunobloting. The bands of 
expected molecular weights were presented. The purity of the isolated mitochondrial and 
cytosolic fractions was verified by immunobloting analysis of mitochondrial marker VDAC and 
cytosolic maker SOD1. Western blot images were shown in (A) and quantifications in (B-E). 
Mitochondrial proteins were normalized by VDAC whereas cytosolic proteins were normalized 
by SOD1. Significant differences in mitochondrial levels of various proteins between control 
and ligand stimulated samples were calculated using the paired Student’s t-test. A value of 
p<0.05 was considered significant (**p<0.01; *p< 0.05).   
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Figure 4.10 STAT3 was localized to mitochondria and was serine phosphorylated upon 
NTN stimulation of Neuro2A cells. Neuro2A-GFRα2c cells were serum-deprived for 16 h 
and subsequently treated with NTN (50 ng/ml) over 6 h. Mitochondrial and cytosolic fractions 
were extracted at different time points and analysed by immunobloting. The purity of the 
isolated mitochondrial and cytosolic fractions was verified by immunobloting analysis of 
mitochondrial marker VDAC and cytosolic maker SOD1. Western blot images were shown in 
(A) and quantifications in (B-E). Mitochondrial proteins were normalized by VDAC whereas 
cytosolic proteins were normalized by SOD1. Significant differences in mitochondrial levels of 
various proteins between control and ligand stimulated samples were calculated using the 
paired Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05).   
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MitoTracker was observed not only in the cell body but also along the neurites 

(Figure 4.11G). Based on these observations, it is tempting to speculate that NTN 

may regulate local mitochondrial function along neurite and in growth cone through 

mitochondrial localized P-Ser-STAT3. Collectively, the data from subcellular 

fractionation and immunocytochemical staining provided strong evidences that P-

Ser-STAT3 was localized to the mitochondria of neuronal cells upon NTN stimulation.  

  

4.2.8 Mitochondrial STAT3 is an important mediator of NTN induced neurite 

outgrowth 

      To investigate the role of mitochondrial P-Ser-STAT3 in NTN induced neurite 

outgrowth, PC12-GFRα2c-RET9 cells were engineered to stably express 

mitochondria targeting wild type and mutant STAT3 (MTS-STAT3). These MTS-

STAT3 constructs have been used successfully by both our and other groups to 

investigate the functions of mitochondrial STAT3 (188-190). The effect of different 

MTS-STAT3 mutants on NTN induced neurite outgrowth was studied. Remarkably, 

mitochondria targeted serine dominant negative mutant of STAT3 (MTS-STAT3-SA) 

attenuated NTN induced neurite outgrowth (Figure 4.12A-B), while the wild type 

(MTS-STAT3-WT) and tyrosine dominant negative mutant (MTS-STAT3-YF) slightly 

enhanced NTN induced neurite outgrowth. These results demonstrated the active 

role of mitochondrial P-Ser-STAT3 in mediating NTN induced neurite outgrowth. 
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Figure 4.11 P-Ser-STAT3 was co-localized with MitoTracker and GRIM-19. NTN 
stimulated (10 min) PC12, Neuro2A cells and primary cortical neurons were co-
stained for P-Ser-STAT3 & MitoTracker (A,C,E) or P-Ser-STAT3 & GRIM-19 (B,D,F). 
Confocal images of control and NTN stimulated cells of the individual and merged 
channels are shown. Also shown here are the intensity correlations and co-
localization coefficients between P-Ser-STAT3 and MitoTracker or GRIM-19. G. P-
Ser-STAT3 was found to co-localize with MitoTracker not only in the cell body but 
along the neurites in primary cortical neurons. 
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Figure 4.12 Mitochondrial STAT3 was involved in NTN induced neurite 
outgrowth. Control and MTS-STAT3 expressing PC12 clones were serum deprived 
and stimulated with 50 ng/ml NTN for 48 h. The average neurite length per cell was 
quantified using HCA-Vision. A. Fold changes in average neurite length in NTN 
treated cells over control were calculated. Significant differences between control and 
mutant expressing PC12 cells were calculated using the paired Student’s t-test. A 
value of p<0.05 was considered significant (**p<0.01; *p< 0.05). Representative 
images of control and NGF treated cells are shown in B. 

 

Section 4.3 Discussion 

            This study demonstrated the novel functions of alternatively spliced receptor 

isoform GFRα2c and RET9 in mediating NTN induced STAT3 serine phosphorylation. 

Unlike previous studies on oncogenic RET, this is the first report of the activation of 

STAT3 by a GDNF family ligand through GFRα and wild type RET. Unexpectly, P-

Ser-STAT3 was found to localize to the mitochondria instead of the nucleus and 

mediated NTN induced neurite outgrowth independent of its transcriptional activities. 

       Recent study has found 92-94% of human genes to be alternatively spliced (201). 

In many systems, alternative splicing has produced multiple isoforms with distinct 

biochemical properties, thus allowing a single gene to exert a diverse range of 

biological functions (99). Among different tissues, it was found that the greatest 

amount of conserved alternative splicing occurs in the CNS (101). Our group has 
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previously identified three distinct spliced isoforms of GFRα2, the canonical receptor 

for NTN (105). The three isoforms were further shown to mediate differential 

signalling activation and exerted opposing neuritogenic functions. NTN activation of 

GFRα2b inhibited neurite outgrowth whereas GFRα2a and 2c induced neurite 

outgrowth (6). Using exon-overlapping qPCR assays that specifically detect each of 

the isoforms (4), we have shown that all three isoforms are highly expressed in the 

cortex (6), the region of the brain involved in learning complex tasks. This is 

consistent with the observation that GFRα2 knockout mice show significant 

impairment in memory tasks (202). Moreover, NTN has also been shown to provide 

both functional and structural neuroprotection for cortical neurons in mouse model of 

Huntington’s disease (197). However, the signalling mechanisms underlying NTN 

functions in cortical neurons and the roles of different GFRα2 isoforms have yet to be 

thoroughly investigated.   

      In cultured embryonic cortical neurons, NTN stimulation resulted in rapid 

phosphorylation of ERK and STAT3 serine but not tyrosine residue. A classic 

transcription regulator, STAT3 was first discovered as a key mediator of cytokine 

induced inflammation and immunity (181, 182). Later studies have found STAT3 to 

regulate a much wider range of biological processes including neuritogenesis and 

neuroprotection (180). To investigate the mechanism of NTN activation of STAT3 

and its role in NTN function, we engineered two well used neuronal models to 

express different combinations of GFRα2 and RET receptor isoforms. Intriguingly, 

the shortest isoform GFRα2c but not GFRα2a or 2b was able to mediate sustained 

STAT3 serine phosphorylation upon NTN stimulation. GFRα receptor has been 

partially crystallized and is thought to be structurally organized into three distinct 

domains (2, 62, 66). GFRα2c, with exon 2 and 3 deletion (105), differs from the other 

two isoforms in its N terminus domain, which has been shown to be dispensable for 

ligand binding (50). This is consistent with our earlier findings that GFL bound equally 
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well to all three GFRα2 isoforms in Neuro2A cells (6). To explain the distinct 

functions of these isoforms, we postulated that the N-terminal domain may be an 

important determinant of the overall conformation of the GFL-GFRα-RET/NCAM 

complex and the preferential activation of certain downstream signalling pathways. 

This is supported by recent findings that the N-terminal domain of GFRα1 is 

important for the interactions with co-receptor RET (65) and NCAM (203). Co-

crystallization of the entire GFL-GFRα-RET/NCAM complexes containing different 

isoforms would provide the most direct means of investigating the impact of the 

isoform specific N-terminal domain. This is becoming increasingly feasible with the 

advancement in protein crystallization technologies. As an alternative means, we are 

currently investigating the phosphorylation patterns of co-receptor RET when coupled 

to different GFRα2 isoforms, in an attempt to provide further insights into their distinct 

biochemical properties. Nevertheless, our finding that GFRα2c but not 2a or 2b was 

capable to inducing STAT3 phosphorylation provided further evidence to the distinct 

functions of the GFRα2 receptor isoforms (6, 204).  

      In addition, ligand bound GFRα has been shown to either partner with RET or 

NCAM to transduce its signals. Our group has previously shown that NCAM but not 

RET mediated GFRα1b isoform induced glioma migration (205). In contrast, this 

study found RET but not NCAM to mediate NTN induced STAT3 phosphorylation and 

neurite outgrowth, albeit the significantly higher transcript expression of NCAM in 

Neuro2A cells. These data suggested that the selective partnering of GFRα with its 

co-receptors vary in a cell context dependent manner and is not determined solely by 

the expression levels of different co-receptors. We hypothesized that the spatial 

localization of GFRα, RET and NCAM on the cell membrane may vary across cell 

types and is currently investigating whether their partitions in- and out-side of lipid raft 

may play an important role. Furthermore, the alternatively spliced isoform RET9 but 

not RET51 was found to mediate NTN induced STAT3 phosphorylation. The two 
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RET tyrosine kinase isoforms share 16 identical tyrosine residues but RET51 

contains two additional tyrosine residues in the carboxyl terminal (tyrosine 1090 and 

1096). Mounting evidences have demonstrated the distinct functions of RET9 and 51 

in different cell types. Ret9 but not Ret51 was able to promote tube formation of 

epithelial cells (115). In contrast, Ret51 but not Ret9 was found to promote the 

survival and tubulogenesis of mouse inner medullary collecting duct cells (108), 

suggestive of isoform-specific roles in embryo development and organogenesis. 

Other studies have reported RET9 and 51 to engage distinct adaptor proteins and 

activate different signalling pathways (114, 116, 118). In PC12 cells, NTN activation 

of RET9 but not 51 was found to induce phosphorylation of Src, an important 

signalling intermediate that mediated STAT3 phosphorylation, thus providing a 

plausible explanation for RET9 specific activation of STAT3.            

      To date, the functional significance of STAT3 serine phosphorylation remains 

controversial. It has been shown to either enhance or suppress the transcriptional 

activity of tyrosine phosphorylated STAT3. More recently, we and others have shown 

that serine mono-phosphorylated STAT3 could function independent of its 

transcriptional activities. The observation that NTN induced P-Ser-STAT3 did not 

localize to the nucleus added further evidence to this body of knowledge. Our 

findings that NTN induced P-Ser-STAT3 was localized to the mitochondria in both 

Neuro2A and PC12 cells are in congruence with our earlier report on Nerve Growth 

Factor (NGF) induced mitochondrial STAT3 phosphorylation (190). These new data 

suggested that the involvement of mitochondrial STAT3 in neurite outgrowth is not 

restricted to NGF, but a common mechanism shared by multiple neurotrophic factors. 

It is intriguing that P-Ser-STAT3 was localized to the mitochondria not only in the cell 

body but along the neurites as well. As neurite outgrowth is a dynamic and reversible 

process and is influenced by local mitochondrial dynamics (206-208), it is tempting to 
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speculate that mitochondrial P-Ser-STAT3 may be an important transducer of the 

anterograde and/or retrograde signaling of neurotrophic factors along neurites. 

      To the best of our knowledge, this study marked the first report of the activation 

of STAT3 by a ligand (NTN) activated GFRα and non-oncogenic RET receptor. It is 

further demonstrated that STAT3 serine phosphorylation was mediated specifically 

by receptor isoform GFRα2c and RET9. P-Ser-STAT3 was intimately involved in 

NTN induced neurite outgrowth, in a transcription independent manner, through its 

spatial localization to the mitochondria. Taken together, this study provided novel 

insights into an intriguing role of receptor isoforms in mediating NTN induced 

mitochondrial STAT3 and neurite outgrowth (Figure 4.13). 

 

Figure 4.13 A schematic illustration of NTN activation of mitochondrial P-Ser-
STAT3. NTN stimulation of GFRα2c and RET9 induced STAT3 serine727 
phosphorylation through ERK1/2 and its mitochondrial localization. IL6 stimulation 
induced STAT3 tyrosine705 and serine727 dual phosphorylation and its nuclear 
localization. Mitochondrial P-Ser-STAT3 was found to be intimately involved in NTN 
induced neurite outgrowth.  
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Chapter 5 Mitochondrial localized STAT3 is involved in NGF 
induced neurite outgrowth 
 

Section 5.1 Introduction 

      In literature, STAT3 have been shown to be tyrosine phosphorylated at residue 

705 (P-Tyr-STAT3) by cytokines and growth factors including interleukin 6 (IL6) (198, 

209), epidermal growth factor (EGF) (210, 211), and brain-derived neurotrophic 

factor (BDNF) (212). This results in the homo-dimerization and nuclear translocation 

of STAT3 and the subsequent activation of target gene transcription (183). In addition, 

STAT3 has also been found to be serine mono-phosphorylated upon NGF 

stimulation of PC12 cells, similar to that by NTN. In PC12 cells, NGF induces growth 

arrest and elaboration of neurite outgrowth (213). Interestingly, it was reported that 

NGF induced STAT3 nuclear localization, which in turn mediated the induction of 

cyclin D1 expression and growth arrest of PC12 cells. However, it is not clear 

whether P-Ser-STAT3 is involved in NGF induced neurite outgrowth and whether 

NGF too can induce mitochondrial localization of STAT3, similar to that of NTN. 

      In this chapter, we tested the hypothesis that P-Ser-STAT3 mediates NGF 

induced neurite outgrowth via a transcription-independent mechanism. Serine but not 

tyrosine dominant negative mutant of STAT3 was found to impair NGF induced 

neurite outgrowth. Surprisingly, NGF induced P-Ser-STAT3 was not detected in the 

nucleus, unlike the previous report (212). Instead, P-Ser-STAT3 was found to be 

localized to the mitochondria upon NGF stimulation. Using mitochondria targeted 

mutants, mitochondrial P-Ser-STAT3 was found to regulate NGF induced neurite 

outgrowth and the production of ROS. Taken together, these findings provided novel 

insights into an unconventional, transcription-independent mechanism whereby 

mitochondria localized STAT3 mediates NGF induced neurite outgrowth. 
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Section 5.2 Result 

5.2.1 NGF induced sustained STAT3 serine but not tyrosine phosphorylation  

      NGF induced progressive neurite outgrowth in PC12 cells (Figure 5.1A). Within 

72 h, greater than 50% of cells were found to bear neurite twice the cell body length. 

To gain insights into the involvement of STAT3 in this process, the phosphorylation 

state of STAT3 was investigated upon NGF stimulation. In agreement with previous 

reports (212, 214), STAT3 was rapidly (within 10 min) phosphorylated at serine727 

upon NGF stimulation (Figure 5.1B). The serine727 residue of STAT3 remained 

phosphorylated over a period of 72 h. No significant increase in STAT3 tyrosine705 

phosphorylation was observed in NGF treated PC12 cells over the period of 72 h. A 

concomitant activation of ERK1/2 was also observed (lower panel), consistent with 

the previous reports (215, 216). As a control, IL6 induced both tyrosine and serine 

phosphorylation of STAT3 in PC12 cells.  

      Neurotrophin receptors are expressed in cerebral cortical neuron in vivo (217) 

and in vitro (218). In cortical neuron, BDNF induced a transient phosphorylation of 

STAT3 at tyrosine705 and a sustained phosphorylation at serine727 residue (212). 

Whether NGF may similarly induce the phosphorylation of STAT3 at these sites is 

currently unknown. To address this possibility, primary cortical neurons were treated 

with NGF. Unlike BDNF (212), NGF induced a time dependent serine but not tyrosine 

phosphorylation of STAT3 in primary cortical neurons (Figure 5.1C), extending the 

observations found in PC12.   
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Figure 5.1 NGF induced sustained STAT3 serine727 but not tyrosine705 phosphorylation 
in PC12 and embryonic cortical neurons. PC12 cells were serum-deprived for 16 h and 
subsequently treated with NGF (50 ng/ml) for 72 h. A. NGF induced progressive neurite 
outgrowth in PC12 cells. Percentage of PC12 cells bearing neurite twice the body length 
(differentiated) was quantified after 24, 48 and 72 h of NGF treatment. Representative images 
of control and NGF treated cells are shown for each of the time point. B. Total cell lysates 
were collected over 72 h and analysed by immunobloting and quantified (C). NGF induced 
sustained STAT3 serine but not tyrosine phosphorylation over 72 h, whereas IL6 induced 
both STAT3 serine and tyrosine phosphorylation. D. Rat embryonic cortical neurons were 
isolated and cultured in vitro for 72 h before NGF stimulation (100 ng/ml) for up to 3 h.  Total 
cell lysates were analysed and quantified (E). Significant differences in P-Ser or P-Tyr-STAT3 
levels between ligand stimulated samples and respective controls were calculated using the 
paired Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05). 
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5.2.2 STAT3 serine DN mutant impaired NGF induced neurite outgrowth  

      To test the hypothesis that P-Ser-STAT3 is involved in NGF induced neurite 

outgrowth, wild type and mutant STAT3 were transiently expressed in PC12 cells. All 

STAT3 constructs co-expressed enhanced green florescence protein (eGFP) which 

served as a marker for gene transfer.  STAT3 serine (S727A) but not tyrosine (Y705F) 

dominant negative mutant was found to attenuate NGF induced neurite outgrowth 

significantly (Figure 5.2). In addition, expression of the STAT3 serine constitutive 

active mutant (S727E) resulted in a small but significant enhancement of NGF 

induced neurite outgrowth, lending further evidence that P-Ser-STAT3 was involved 

in neurite outgrowth.  

 

Figure 5.2 STAT3-Ser727Ala dominant negative mutant attenuated NGF induced neurite 
outgrowth in PC12 cells. PC12 cells were transiently infected with different STAT3 mutants 
using a retro-viral vector co-expressing eGFP (pQCXI-eGFP). Mutant expressing cells were 
identified by eGFP expression. Infected PC12 cells were serum deprived for 16 h and treated 
with 50 ng/ml NGF for 48 h. A. Neurite outgrowth from wild type and STAT3 mutants 
expressing PC12 cells was examined. More than 60 eGFP expressing cells were analysed 
per biological replicate per condition and the number of cells bearing at least one neurite 
twice the cell body length was scored. Significant differences between the percentages of 
neurite bearing cells in control and STAT3 mutant expressing cells were calculated using the 
paired Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05). B. 
Representative bright field and florescent images of control and STAT3 mutant expressing 
PC12 cells 48 h after NGF treatment. Arrows in bright field images point to STAT3 mutant 
expressing cells identified by eGFP co-expression.   
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 5.2.3 NGF induced P-Ser-STAT3 was undetectable in nucleus  

      Nuclear localization of STAT3 is known to be essential for the transcriptional 

activation of target genes. The temporal expressions of these target genes are likely 

to be influenced by the kinetics of STAT3 nuclear translocation and the duration of its 

presence in the nucleus. The previous report has briefly demonstrated the presence 

of P-Ser-STAT3 in nucleus (212) but it is not known if the nuclear localization of the 

phosphorylated STAT3 is temporally controlled. To address this, we investigated the 

time course of NGF induced P-Ser-STAT3 nuclear translocation. IL6, which is known 

to induce rapid nuclear translocation of STAT3 in PC12 cells (219), was used as a 

control. Nuclear and cytosolic fractions were prepared from PC12 cells stimulated 

with either IL6 or NGF and subsequently analysed (Figure 5.3A). Both IL6 and NGF 

induced rapid phosphorylation and increased nuclear localization of ERK (Figure 

5.3B). Upon IL6 stimulation, phosphorylated STAT3 was detected in both nuclear 

and cytosolic fractions within 10 min and was sustained over a period of 6 h (Figure 

5.3C). Contrary to the previous report (212), STAT3 was not detectable in the 

nucleus when the cells were stimulated with NGF over a period of 6 h (Figure 5.3C). 

This observation indicated that serine phosphorylation alone did not result in 

detectable nuclear localization of STAT3, suggesting that P-Ser-STAT3 may be 

involved in NGF induced neurite outgrowth through a transcription independent 

mechanism.   
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Figure 5.3 NGF did not induce STAT3 nuclear translocation. PC12 cells were serum-
deprived for 16 h and subsequently treated with NGF (50 ng/ml) or IL6 (50 ng/ml) for 10 min, 
30 min and 6 h respectively. Nuclear and cytosolic fractions were extracted and analysed by 
immunobloting. The purity of the isolated nuclear and cytosolic fractions was verified by 
immunobloting analysis of nuclear marker PARP and cytosolic marker SOD1. The bands of 
expected molecular weights were presented.  Fold changes in nuclear and cytosolic Phospho 
& Pan-ERK (B) and Phospho and Pan-STAT3 (C) were quantified. Nuclear proteins were 
normalized by PARP whereas cytosolic proteins were normalized by SOD1. Significant 
differences in normalized nuclear levels of various proteins between control and ligand 
stimulated samples were calculated using the paired Student’s t-test. A value of p<0.05 was 
considered significant (**p<0.01; *p< 0.05).   
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Figure 5.4 STAT3 was localized to mitochondria and was serine 
phosphorylated upon NGF stimulation. PC12 cells were serum-deprived for 16 h 
and subsequently treated with NGF (50 ng/ml) over 72 h. Mitochondrial and cytosolic 
fractions were extracted at different time points and analysed by immunobloting. The 
purity of the isolated mitochondrial and cytosolic fractions was verified by 
immunobloting analysis of mitochondrial marker VDAC and cytosolic maker SOD1. 
Western blot images were shown in (A) and quantifications in (B, C). Mitochondrial 
proteins were normalized by VDAC whereas cytosolic proteins were normalized by 
SOD1. Significant differences in mitochondrial levels of various proteins between 
control and ligand stimulated samples were calculated using the paired Student’s t-
test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05).   
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5.2.4 STAT3 was localized to mitochondria and was serine phosphorylated 

upon NGF stimulation  

      Recently, P-Ser-STAT3 was shown to be localized in the mitochondria of non-

neuronal cells and regulated cellular functions independent of its transcriptional 

activities (188). We next tested the hypothesis that NGF induced P-Ser-STAT3 may 

similarly be localized to the mitochondria. Mitochondrial and cytosolic fractions were 

isolated from NGF stimulated PC12 cells and total STAT3, as well as P-Ser-STAT3, 

were immunoblotted. Interestingly, P-Ser-STAT3 was detected in the mitochondria 

fraction when the cells were stimulated with NGF as early as 10 min (Figure 5.4 A, B) 

and the presence of P-Ser-STAT3 was detectable over a period of 72 h. 

      To verify that mitochondrial P-Ser-STAT3 signal was not due to a contamination 

from the cytoplasm, immunoblot intensity ratios of P-Ser-STAT3 to the cytosolic 

marker SOD1 in mitochondria and cytosol were compared as previously described 

(188). While the intensity ratio of P-Ser-STAT3 to SOD1 in the cytosol was ~ 1.2 at 

10 min, the ratio of P-Ser-STAT3 to SOD1 in the mitochondria at 10 min was ~ 8. If 

the detected P-Ser-STAT3 in the mitochondria was due to cytosolic contamination, 

the ratio of P-Ser-STAT3 to SOD1 would be ~ 1.   

      Since STAT3 has been shown to shuttle between nucleus and cytosol, STAT3 

may similarly shuttle between mitochondria and cytoplasm. Intriguingly, total 

mitochondrial STAT3 was not increased by NGF stimulation, suggesting that STAT3 

may be constitutively present in mitochondria. This observation suggested an 

intriguing possibility that STAT3 may be directly phosphorylated in the mitochondria 

upon NGF stimulation. Consistent with this suggestion is that ERK, which has been 

shown to phosphorylate STAT3 at serine727, was robustly activated in the 

mitochondria upon NGF treatment (Figure 5.4A, C). These observations supported 

the hypothesis that STAT3 may be phosphorylated in mitochondria by activated ERK 

or other kinases.  
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      It is of interest to note that the total amount of STAT3 in the mitochondria of PC12 

cells was about 13% of cytosolic STAT3, consistent with the earlier report where 

mitochondrial STAT3 amounted to one-tenth of that found in the cytosol in mouse 

liver and heart (188). In addition, the amount of mitochondrial ERK in PC12 cells was 

about 25% of cytosolic ERK, similar to the previous report where the mitochondrial 

and cytosolic ERK account for 15% and 55% of total ERK in Hela cells, respectively 

(220). The agreement between our data and previous reports further supported the 

reliability of our method and provided indication of a possible role of mitochondrial P-

Ser-STAT3 downstream of NGF.   

      Next, we verified the existence of P-Ser-STAT3 in the mitochondria 

immunocytochemically. NGF stimulation significantly increased the florescent 

intensity of P-Ser-STAT3 and the co-localization (Co-localization Coefficient = 0.365) 

with the specific mitochondria marker, Mito-Tracker (Figure 5.5A). Furthermore, NGF 

induced P-Ser-STAT3 was also found to co-localize (Co-localization Coefficient = 

0.933) with GRIM-19 (Figure 5.5B), a known STAT3 binding partner and a 

component of the mitochondrial electron transport complex I (188, 200). To test if the 

mitochondrial localization of STAT3 was restricted to the transformed cell line of 

PC12, we extended the study to rat embryonic cortical neurons. Consistent with the 

observations in PC12 cells, NGF induced P-Ser-STAT3 was also found to co-localize 

with MitoTrakcer (Figure 5.6A, Co-localization Coefficient = 0.463) as well as GRIM-

19 (Figure 5.6B, Co-localization Coefficient = 0.738) in primary cortical neurons. 

More intriguingly, P-Ser-STAT3 was found to co-localize with MitoTracker not only in 

the cell body but also along the neurites (Figure 5.6C). Since local mitochondrial 

function is important for growth cone activity (221), axonal branching (222), and 

synapse formation (223), it is tempting to speculate that NGF may regulate local 

mitochondrial function and neurite outgrowth through mitochondrial localized P-Ser-

STAT3. Taken together, our data from both subcellular fractionation and 
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immunocytochemical staining experiments support the notion that P-Ser-STAT3 was 

localized to the mitochondria of neuronal cells upon NGF stimulation.   

 

 

Figure 5.5 P-Ser-STAT3 was co-localized with MitoTracker and GRIM-19 in 
PC12 cells. NGF stimulated (10min) PC12 cells were co-stained for P-Ser-STAT3 & 
MitoTracker (A) or P-Ser-STAT3 & GRIM-19 (B). Confocal images of control and 
NGF stimulated cells of the individual and merged channels are shown. Also shown 
here are the intensity correlations and co-localization coefficients between P-Ser-
STAT3 and MitoTracker or GRIM-19. 
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Figure 5.6 P-Ser-STAT3 was co-localized with MitoTracker and GRIM-19 in rat 
embryonic cortical neuron. NGF stimulated (10 min) cortical neurons were co-
stained for P-Ser-STAT3 & MitoTracker (A, C) or P-Ser-STAT3 & GRIM-19 (B). 
Confocal images of control and NGF stimulated cells of the individual and merged 
channels are shown. Also shown here are the intensity correlations and co-
localization coefficients between P-Ser-STAT3 and MitoTracker or GRIM-19. 
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5.2.5 STAT3 serine phosphorylation was temporally regulated by MAPKs and 

PKC  

      Previous report showed that inhibition of MEK-ERK pathway alone was 

insufficient to abolish NGF induced P-Ser-STAT3 in PC12 cells (212), suggesting the 

requirement of additional pathways for maximal STAT3 activation. To assess the 

possible involvement of various MAPK pathways (ERK, JNK and p38) and PKC in 

NGF induced STAT3 serine phosphorylation, PC12 cells were pretreated with 

selective pharmacological inhibitors, and subsequently stimulated with NGF for 

varying periods of time. Consistent with previous reports (224, 225), Src was found to 

be a crucial signaling intermediate mediating NGF activation of various MAPK 

pathways. Pre-treatment of PC12 cells with SU6656 substantially reduced NGF 

induced phosphorylation of ERK, JNK and p38. Similarly, SU6656 was able to 

abolish NGF induced STAT3 serine phosphorylation (Figure 5.7). Another Src 

inhibitor PP2 likewise abolished NGF induced P-Ser-STAT3 (data not shown). 

Among the three MAPKs investigated, inhibition of ERK and JNK but not p38 

activation was found to attenuate STAT3 serine phosphorylation (Figure 5.7B). 

Phosphorylation of STAT3 serine727 was also inhibited by the broad spectrum protein 

kinase C inhibitor, Gö6983 (Figure 5.7B). Taken together, the data suggested that 

NGF induced P-Ser-STAT3 was temporally regulated by multiple signaling pathways 

including ERK, JNK and PKC. To test the possibility that ERK and JNK are involved 

in serine phosphorylation of mitochondrial STAT3, mitochondrial fraction was isolated 

from PC12 cells pre-treated with SU6656, U0126 and SP600125. All three inhibitors 

were found to attenuate the phosphorylation of cytosolic and mitochondria STAT3 

(Figure 5.7C), indicating that pathways involving ERK, JNK and Src were indeed 

involved in NGF induced mitochondrial P-Ser-STAT3.     
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Figure 5.7 NGF induced STAT3 serine phosphorylation was temporally 
regulated by multiple kinases. PC12 cells were serum-deprived for 16 h and pre-
treated with DMSO (DM, 0.1%, control), SU6656 (SU, 1 μM), Gӧ6983 (GO, 5 μM), 
U0126 (U, 10 μM), SP600125 (SP, 10 μM), and SB203580 (SB, 10 μM) for 1 h 
before stimulated with 50 ng/ml NGF in the presence of respective inhibitors. A. Total 
cell lysates were harvested from control and inhibitor treated cells after 5, 10, 30 or 
60 min of NGF stimulation and analysed by immunobloting. The bands of expected 
molecular weights were presented. B. Percentage inhibition of NGF induced STAT3 
serine phosphorylation by various signaling inhibitors, % inhibition = (P-Ser-
STAT3DMSO - P-Ser-STAT3Inhibitor) / P-Ser-STAT3DMSO x 100%. Quantified P-Ser-
STAT3 immunoblot intensity was normalized to respective Pan-STAT3 intensity.  C. 
Mitochondrial and cytosolic fractions were extracted from NGF stimulated PC12 cells 
(10 min) pretreated with U0126, SU6656 or SP600125, and immunoblotted. The fold 
changes in normalized P-Ser-STAT3 and P-ERK were quantified and shown below 
the blot. D. The effect of various inhibitors on NGF induced neurite outgrowth was 
quantified in PC12 cells subjected to 48 h of NGF stimulation in the presence of the 
inhibitors. Significant differences between the percentages of differentiated cells in 
control and inhibitor treated PC12 cells were calculated using the paired Student’s t-
test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05).  
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      Intriguingly, inhibition of Src, ERK, JNK and PKC but not p38 pathway was found 

to attenuate NGF induced neurite outgrowth (Figure 5.7D). The correlation between 

the activations of these pathways in NGF induced P-Ser-STAT3 and neurite 

outgrowth was suggestive of STAT3 acting as a downstream effector that contributes 

to neurite outgrowth. 

 

5.2.6 Mitochondrial STAT3 is an important mediator of NGF induced neurite 

outgrowth  

      To investigate the role of mitochondrial P-Ser-STAT3 in NGF induced neurite 

outgrowth, mitochondria targeting wild type and mutant STAT3 (MTS-STAT3) were 

constructed by fusing the mitochondrial targeting sequence of cytochrome c oxidase 

subunit VIII to the N terminus of STAT3. This sequence has been reported to target 

the protein of interest to the inner mitochondrial membrane (226), where 

mitochondrial STAT3 was thought to exert its function. Such MTS-STAT3 constructs 

have been used successfully to investigate the functions of mitochondrial STAT3 in 

respiration (188) and oncogenic transformation (189). Subcellular fractionation of 

PC12 cells stably expressing wild type and mutant MTS-STAT3 showed an over-

expression of STAT3 in the mitochondrial (4-6 fold) but not in the cytosolic fraction 

(Figure 5.8A). NGF induced neurite outgrowth was then studied using these 

constructs. Remarkably, mitochondria targeted serine dominant negative mutant of 

STAT3 (MTS-STAT3-SA) attenuated NGF induced neurite outgrowth (Figure 5.8B, 

C). In contrast, wild type (MTS-STAT3-WT) and tyrosine dominant negative mutant 

(MTS-STAT3-YF) of STAT3 were found to enhance NGF induced neurite outgrowth. 

These results demonstrated the involvement of mitochondrial P-Ser-STAT3 in NGF 

induced neurite outgrowth. 
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5.2.7 NGF stimulated ROS production and the involvement of mitochondrial 

STAT3  

      NGF stimulation has previously been shown to elevate ROS level in PC12 cells, 

contributing to NGF induced neurite outgrowth (227). Recently, it was suggested that 

NGF may modulate ROS level in PC12 cells by regulating mitochondrial functions 

(228). Since mitochondrial P-Ser-STAT3 was reported to modulate mitochondrial 

electron transport activities and the rate of oxygen consumption in non-neuronal cells 

(188), we tested the hypothesis that P-Ser-STAT3 may be involved in NGF regulation 

of ROS level in PC12 cells. Consistent with the previous report (227), an increase in 

total intracellular ROS was observed in PC12 cells when stimulated by NGF (Figure 

5.9A). As expected, pre-incubation of PC12 cells with the antioxidant N-

acetylcysteine (NAC) significantly blocked NGF induced ROS production (Figure 

5.9C) and attenuated NGF induced neurite outgrowth (Figure 5.9B).   

      NGF induced ROS production was then compared in wild type and cells stably 

expressing mitochondria targeted STAT3 mutants. Interestingly, we observed a 

significant reduction in NGF induced ROS production in cells expressing MTS-

STAT3-SA mutant, and an increase in cells expressing MTS-STAT3-WT and YF 

mutants (Figure 5.9C, black bar). The effects of STAT3 mutants on NGF induced 

ROS correlated well with their effects on NGF induced neurite outgrowth (Figure 

5.9C, white bar), indicative of a role of mitochondrial P-Ser-STAT3 in the regulation 

of NGF induced ROS production and neurite outgrowth.  
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Figure 5.8 Mitochondrial STAT3 was involved in NGF induced neurite 
outgrowth. PC12 clones stably expressing mitochondria targeting wild type and 
mutant STAT3 were generated. A. Over-expression of STAT3 in mitochondria was 
verified by analyzing the level of total STAT3 in mitochondria of control and infected 
cells. Mitochondrial STAT3 were normalized by VDAC and cytosolic STAT3 
normalized by SOD1. Fold changes in mitochondrial and cytosolic STAT3 level in 
infected cells over control were calculated. B. Control and MTS-STAT3 expressing 
PC12 clones were serum deprived and stimulated with 50 ng/ml NGF for 48 h. The 
average neurite length per cell was quantified using HCA-Vision. Fold changes in 
average neurite length in NGF treated cells over control were calculated for vector 
control PC12 cells and each of the MTS-STAT3 mutant expressing cells. Significant 
differences between control and mutant expressing PC12 cells were calculated using 
the paired Student’s t-test. A value of p<0.05 was considered significant (**p<0.01; 
*p< 0.05). Representative images of control and NGF treated cells are shown in C. 
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Figure 5.9 NGF induced ROS was partly mediated by mitochondrial STAT3. A. 
To quantify NGF stimulated production of ROS, PC12 cells were preloaded with 
DCFHDA (10 μM) for 10 min and stimulated with NGF (50 ng/ml). The florescent 
intensity of the oxidized product DCF was measured over the next 40 min. B. 
Representative images of control and NGF treated PC12 cells with and without NAC 
pre-treatment (10 mM) are shown in. C. The rate of ROS production in NGF treated 
PC12 cells was calculated using the following formula, ∆DCF/min=(∆DCFNGF,0-30min – 
∆DCFCtrl,0-30min) / 30. The rate of ROS production in PC12 cells stably expressing 
various MTS-STAT3 mutants was compared with that in non-simulated and NAC pre-
treated vector control PC12 cells. Significant differences between the rates of ROS 
production were calculated using the paired Student’s t-test. A value of p<0.05 was 
considered significant (**p<0.01; *p< 0.05). The effect of MTS-STAT3 mutants on 
rate of ROS production (black bar, primary vertical axis) was correlated with the 
effect on NGF induced neurite outgrowth (white bar, secondary vertical axis).  
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Section 5.3 Discussion  

      Originally identified as a key mediator of cytokine induced inflammation and 

immunity, STAT3 has now been shown to regulate a myriad of other biological 

processes. STAT3 is known to be activated by a variety of ligands involved in neurite 

outgrowth (198, 209, 212, 229-232). To date, all literature reports supporting the 

involvement of STAT3 in neurite outgrowth are based on observations of the effects 

of either P-Tyr-STAT3 or P-Tyr/Ser-STAT3 (198, 209, 212). The recent reports of 

NGF activated P-Ser-STAT3 in PC12 cells, did not demonstrate the contribution of 

phosphorylated serine727 STAT3 to neurite outgrowth (212, 214).  This is rather 

surprising, as PC12 cells are commonly used as a model for neuritogenesis induced 

by a variety of agents, including NGF. To the best of our knowledge, this is the first 

report that demonstrated the involvement of P-Ser-STAT3 in neurite outgrowth and 

the unexpected phosphorylation on serine727 residue of STAT3 in mitochondria, 

induced by the neurotrophic factor NGF. 

     It is known that P-Tyr-STAT3 and P-Tyr/Ser-STAT3 translocate to the nucleus 

and mediate neurite outgrowth via transcriptional activation (198, 209).  In this study, 

IL6 induced the efficient nuclear localization of P-Tyr/Ser-STAT3 whereas NGF 

induced P-Ser-STAT3 was undetectable in the nucleus even after 6 h of stimulation, 

an observation in contrast to the previous report (212). Instead, NGF was found to 

increase the level of P-Ser-STAT3 in mitochondria with no observable change in the 

total level of mitochondrial STAT3, suggesting the possibility that existing 

mitochondrial STAT3 may be phosphorylated directly by kinases, e.g. ERK 1/2. Such 

hypothesis is supported by our observation that ERK1/2 is robustly activated in 

mitochondria upon NGF stimulation. This is consistent with previous findings that 

ERK1/2 can be activated in mitochondria (197, 233), which in turn phosphorylated 

other mitochondrial proteins such as steroidogenic acute regulatory protein (233).   

However, our data does not rule out the possibility that cytosolic P-Ser-STAT3 may 
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be exchanged with non-phosphorylated mitochondrial STAT3 through a bi-directional 

trafficking mechanism. Yet it remains unclear how STAT3, which lack a putative 

mitochondria targeting sequence, can be translocated into the mitochondria. Binding 

to and translocation along with mitochondria targeting partner/s may yet be another 

possibility for P-Ser-STAT3 to be preferentially localized to the mitochondria. We did 

notice that P-Ser-STAT3 was highly co-localized with GRIM-19, a cytosolic translated 

component of mitochondrial complex I. Whether STAT3–GRIM-19 complex formed in 

the cytosol enabled STAT3 to be translocated to the mitochondria is currently under 

investigation.  

      It is increasingly recognized that mitochondria is not merely a cellular 

powerhouse, but a signaling hub where the bi-directional communication with the 

cytosolic components play an integral role in many physiological processes including 

neuronal survival (234-236). The recent evidence of mitochondria localized P-Ser-

STAT3 enhancing functions of the electron transport chain(188) , the augmentation 

of oxidative phosphorylation and oxygen consumption (189), raised the interesting 

possibility that P-Ser-STAT3 may play a role in neurite outgrowth in PC12 by 

modifying mitochondria functions. Consistent with this hypothesis is that the over-

expression of mitochondria targeted STAT3 serine dominant negative mutant (MTS-

STAT3-SA) was found to attenuate NGF induced neurite outgrowth and the 

generation of ROS, products of the electron transport chain in mitochondria. The 

involvement of ROS in neurite outgrowths have been explored in both primary 

neurons (237) and cell lines (227, 228, 238-241). Several of these studies have 

shown that NGF induced neurite outgrowth in PC12 cells involves elevated ROS 

level (227, 228, 240), which may be modulated through the regulation of 

mitochondrial functions (228). In addition, ROS was recently shown to regulate F-

actin dynamics in Aplysia bag cell neuron growth cone, lending further evidence that 

ROS participates in neuritogenesis (237). Similar to these reports (227, 237-239, 



  - 98 - 

241), ROS in our study was quantified by a broad ROS sensor DCFHDA that does 

not discriminate different species of ROS. To unravel the precise biochemical 

mechanism of ROS in the regulation of neurite outgrowth, it may be necessary to 

take into account the different species of ROS. Whether the effect of mitochondrial P-

Ser-STAT3 on ROS production directly impacts its involvement in neurite outgrowth 

is currently under investigation. Furthermore, it has not escaped our attention that the 

cytosolic P-Ser-STAT3 may also be involved in neurite outgrowth via mechanisms 

yet to be characterized. Nonetheless, our data demonstrated the novel and intriguing 

role of mitochondrial P-Ser-STAT3 in neurite outgrowth.   

      Depending on cell type and stimuli, multiple pathways have been implicated in 

the phosphorylation of serine residue of STAT3 (186, 242, 243). The observation that 

NGF induced serine phosphorylation of STAT3 in PC12 is temporally regulated by 

ERK, JNK and PKC pathways is novel and intriguing. The kinetics of NGF activations 

of these pathways is indicative of a complex network of signaling integrations and 

feedbacks, consistent with earlier report that NGF induced ERK and JNK pathways 

interact closely (224). In addition, NGF activation of ERK was shown to involve PKCε, 

a specific isoform of the PKC family (244). Further studies to elucidate the 

involvement of different PKC isoforms in STAT3 serine phosphorylation as well as 

their interactions with the MAPK pathways may help to delineate the biochemical 

mechanisms underlying the temporal regulation of NGF induced P-Ser-STAT3. 

      In conclusion, this study demonstrated that P-Ser-STAT3 is intimately involved in 

NGF induced neurite outgrowth in PC12 cells. This function is dependent on the 

spatial cellular organization of P-Ser-STAT3 to the mitochondria and is correlated to 

the regulation of ROS production. Distinct signaling mechanisms involving MAPK and 

PKC contribute to the phosphorylation serine727 residue of STAT3. Taken together, 

this and the previous study (chapter4) have provided novel insights into an 
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unconventional, transcription-independent mechanism whereby mitochondria 

localized STAT3 is involved in NGF and NTN induced neurite outgrowth.  
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Chapter 6 Normalization with genes encoding ribosomal 
proteins but not GAPDH provides an accurate quantification 
of gene expressions in neuronal differentiation of PC12 cells 
 

Section 6.1 Introduction 

      During development, neurons make networks of connections with other neurons 

by growing axons and dendrites. These neuronal out-growths are regulated by 

extracellular cues such as GDNF and NGF that signal to cells resulting in phenotypic 

changes. A major challenge is the identification of molecular mechanisms underlying 

this highly complex and interactive network in terms of the functions of genes and 

proteins(245).  

      Currently, transcriptomic methods are widely used as an initial step in unraveling 

the complex signaling mechanisms underlying physiological and pathological 

processes and in neuronal differentiation (246-249). Gene microarray offers a high 

throughput platform for the analysis of the entire transcriptome to identify differentially 

expressed genes. Reverse transcription quantitative real-time PCR (RT-qPCR), with 

a wider dynamic range of quantification and higher assay sensitivity and precision, is 

often used to corroborate microarray findings (250, 251). Regardless of the method 

used, normalization, a critical process of adjusting the expression measurements 

between samples to compensate for various sources of variability in the assay, is 

essential to allow accurate comparisons of the results between different samples and 

conditions (252, 253). Normalization with internal reference gene is used to control 

for technical and biological variations introduced during both sample preparation and 

detection by RT-qPCR (254). It has also been shown to be suitable for the 

normalization of partially degraded RNA samples (255-257).   

      With nearly all normalization methods, the assumption that one or more reference 

genes are constitutively expressed at near-constant levels under all experimental 

conditions is implicit and the expression levels of all other genes in the sample are 
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then scaled to these reference genes accordingly. It is common to use reference 

genes selected from an assumed list of "housekeeping" genes (HKGs) which 

typically include transcripts such as GAPDH and ACTB (253, 254, 258). A number of 

studies have now shown that the expressions of these genes, in some but not all 

experimental conditions, are altered significantly (259-262), thus, making the choice 

of using these HKGs for normalization uncertain without a priori knowledge.  

      A variety of approaches have been employed to enable better selection of 

reference genes.  One approach is the use of statistical algorithms, for example, 

geNorm (258), Best keeper (263), NormFinder (264), Global Pattern Recognition 

(265), and Equivalence tests (266), to evaluate the relative expression stabilities of 

genes from a pool of predefined lists of candidates. While this approach is certainly 

more robust than using the single gene methods, it too is based on potentially 

unfounded assumptions about which genes may be stably expressed in the 

conditions studied. These genes are still required to be pre-selected and 

incorporated into the experimental designs without any a priori evidence to support 

their use.  An alternative and less biased approach is the meta-analysis of large 

scale gene expression profiles to identify stably expressed genes (267-270). A 

selected number of potential references genes can then be validated experimentally 

and the stability of expressions analysed by the above mentioned statistical 

algorithms in defined experimental settings.    

      To date, reference genes validated for neuronal differentiation studies have not 

been reported yet. The present study aims to identify suitable reference genes during 

chemically induced neuronal differentiation of PC12, a cell-line derived from a 

pheochromocytoma of the rat adrenal medulla. Because of its unique cellular 

properties, suitability for genetic and biochemical manipulations, the PC12 cell-line is 

widely regarded as a convenient alternative to endogenous neuronal cells, and 

serves as a commonly used model system for studies on neuronal differentiation 
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(213, 271, 272).  For example, in response to NGF, PC12 cells stop dividing, 

elaborate neuronal processes, are electrically excitable, and have the potential to 

form synapses when co-cultured with muscle cells (273). Here, we measured the 

temporal expression of twenty novel candidate reference genes identified from 

microarray studies and the commonly used HKGs, ACTB and GAPDH, at various 

stages of PC12 differentiation. Based on two independent statistical approaches 

[“pairwise comparison” (258) and “model based variation” (264)], the expressions of 

ribosomal protein genes RPL19 and RPL29 were found to be highly stable 

regardless of pharmacological treatments and stages of differentiation. The 

combination of the two reference genes was sufficient to allow robust and accurate 

normalization of differentiation related genes. 

Section 6.2 Result 

6.2.1 Selection of candidate reference genes from microarray data 

      It has been suggested that suitable reference genes should be expressed in all 

experimental conditions and exhibit low coefficient of variation (CV) in their 

expressions (269, 270, 274, 275). In order to identify such reference genes, we first 

analysed the expression profiles of 21,910 genes in naïve PC12 cells and those 

treated with NGF or GDNF and found 8,568 genes to be expressed in all conditions 

(detection p values < 0.05). We then analysed the top 100 genes with the lowest CV 

(0.8% -1.45%) with two well accepted but different statistical approaches, “pairwise 

comparison” (geNorm) and “model based variation analysis” (NormFinder). The 

“pairwise comparison” approach assumes that a perfect pair of reference genes has 

a constant ratio across all experimental conditions. As such, geNorm evaluates the 

inter-conditional variability of the ratio between each pair of reference genes and 

calculates a gene stability measure M for each candidate (258). However, with this 

method, tightly co-regulated genes will appear to be stable. The second algorithm, 

NormFinder, was employed to safeguard against such a pitfall of misidentifying 



  - 103 - 

expression invariant reference genes. This model-based variance estimation 

approach entails analysis of sample subgroups and calculates the variation of each 

candidate gene individually, based on both intra- and inter-group variation (264). 

While geNorm measures relative stability, NormFinder measures absolute stability by 

decomposing the variance to biological and technical elements. With this method, the 

expressions of co-regulated genes can be distinguished. Despite the differences in 

algorithms and assumptions, both statistical methods were in agreement on the 

identity of the twenty most stable genes (Table 6.1), most of which are novel for the 

purpose of normalization studies. Interestingly, thirteen of these twenty candidate 

reference genes were ribosomal protein genes.  

6.2.2 Real-time PCR validation of novel candidate reference genes 

      As one of the most extensively studied models for neuronal differentiation, PC12 

cells respond to a broad spectrum of pharmacological agents, which trigger a myriad 

of intracellular signaling pathways leading to neuronal differentiation. In order to 

verify the general utility of the 20 selected putative reference genes (Table 6.1) in a 

broader range of experimental conditions, we differentiated PC12 cells with other 

stimuli (Forskolin (276), KCl (154) and ROCK inhibitor Y27632 (277)) in addition to 

NGF and GDNF. GDNF was applied to PC12 cells stably expressing GDNF Family 

Receptor alpha 1a (GFRα1a) and co-receptor RET (either RET9 or RET51 isoforms), 

which are not endogenously expressed at detectable levels in PC12 cells (data not 

shown). The percentage of PC12 cells differentiated by the five chemical stimuli was 

quantified (Figure 6.1A) and the axon-like features of the extended neurite were 

confirmed by immunocytochemical analysis with anti-Neurofilament-200 antibody 

(Figure 6.1B). The extent of neurite outgrowth was highly dependent on the stimuli 

used. NGF and GDNF stimulation induced longer neurite outgrowths than Forskolin, 

KCl or Y27632. Total RNA was collected at 0.5 h, 6 h, 24 h and 72 h from control and 

treated cells for each stimuli, with biological triplicates, that totaled 120 samples.  
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Gene 
symbol Definition Mean geNorm 

Norm
Finder

RPL29  Ribosomal protein L29  14.04 1 1 

RPL10a  Ribosomal protein L10A  12.49 2 2 

LOC292640 Vps20-associated 1 homolog 10.87 3 3 

LOC498143 Similar to ribosomal protein L15  13.71 4 4 

LOC317275 Similar to ribosomal protein L7-like 1 11.88 7 5 

RPS15  Ribosomal protein S15  12.97 5 6 

ARBP  Acidic ribosomal phosphoprotein P0  14.27 6 7 

RPL14  Ribosomal protein L14  13.89 9 8 

EEF1A1  

Eukaryotic translation elongation factor 

1 alpha 1 14.17 8 9 

RPS15A  Ribosomal protein S15a  13.93 10 10 

RPL18  Ribosomal protein L18  13.58 11 11 

REPS1 (P)  

RalBP1 associated Eps domain 

containing protein (predicted) 10.73 12 12 

LOC363720 chromatin modifying protein 2B  10.61 14 13 

CNOT8  

CCR4-NOT transcription complex, 

subunit 8 11.00 15 14 

RTCD1  

RNA terminal phosphate cyclase 

domain 1 10.48 17 15 

RPL19  Ribosomal protein L19  13.74 13 16 

NDUFB6 

(P)  

NADH dehydrogenase (ubiquinone) 1 

beta subcomplex, 6, 10.43 16 17 

RPL9  Ribosomal protein L9 13.74 18 18 

LOC499803 Similar to 40S ribosomal protein S3 13.76 19 19 

RPL3  Ribosomal protein L3  14.03 20 20 

ACTB  Actin, beta 13.85     

GAPDH  
Glyceraldehyde-3-phosphate 
dehydrogenase  12.88     

 

Table 6.1 Selection of candidate reference genes from microarray data. 
Microarray analysis of the expression profiles of 21,910 genes in naïve PC12 cells 
and those treated with NGF or GDNF for 0.5 h and 72 h. Twenty candidate reference 
genes were selected based on pairwise comparison (geNorm) and model based 
variation (NormFinder) analysis of the top 100 genes with the lowest CV.  The log2 
transformed values of the average signal intensities among the 24 arrays were 
shown as Mean. Thirteen of the twenty genes were Ribosomal Protein Genes (Bold). 
Both ACTB and GAPDH were included for comparison but were not among the top 
100 genes recommended by either statistical analysis. 
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      We analysed the expression levels of the aforementioned twenty candidate 

reference genes, two most commonly used HKGs (GAPDH and ACTB), and three 

genes which are well known to be regulated by NGF using RT-qPCR (Figure 6.2). 

The expression levels of the twenty candidate reference genes and the two HKGs 

span three orders of magnitude. These reference genes were expressed at 

comparable levels or lower than the HKGs examined. For accurate determination of 

inter-assay variations and primer efficiencies, flanking regions of the genes (~300bp) 

were amplified by PCR, sub-cloned and the sequences verified. These recombinant 

plasmids were then linearized and served as templates to construct standard curves. 

All the qPCR assays showed high efficiency of amplification (>90%) and low intra- 

and inter-assay variations. All RNA samples showed RQI values of greater than 9, 

indicative of high quality and integrity (data not shown). 

 

Figure 6.1 Neuronal differentiation of PC12 cells. A. Quantification of the 
percentage of PC12 cells bearing neurite of at least one cell body length, after 72 h 
of treatment with NGF (50 ng/ml), GDNF (50 ng/ml), Forskolin (10 µM), KCl (5 mM) 
and ROCK inhibitor Y27632 (25 µM).  GDNF treatment was applied to PC12 cells 
stably expressing GDNF Family Receptor alpha 1a (GFRα1a) and co-receptor RET 
(either RET9 or RET51 isoforms), which were not endogenously expressed at 
detectable level in PC12 cells. All other stimulations were applied to wild type PC12 
cells.  B. Representative images of control and treated PC12 cells immuno-stained 
with anti-Neurofilament 200 antibody.        
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Figure 6.2  Distribution of the expression levels of genes examined.  Box plot 
representation of the expression levels of twenty candidate reference genes (solid line), two 
housekeeping genes (dashed line) and three target genes (dotted line) among the 120 
biological samples.  The expression level of each gene was represented as the absolute copy 
number per unit input total RNA (0.0625µg), quantified by RT-qPCR using linearized plasmid 
standards. 

 

6.2.3 Stabilities of candidate reference genes and common housekeeping 

genes 

      Using both geNorm and NormFinder, we analysed the expression stabilities of 

the twenty candidate reference genes and the two commonly used HKGs across all 

six differentiation conditions. Both statistical approaches recommended the same 

three ribosomal protein genes RPL19, RPL29 and RPL3 as the overall best 

reference genes (Figure 6.3). Pairwise variation analysis by geNorm showed that the 

combination of RPL19 and RPL29 is sufficiently stable (V2/3=0.107, less than the 

recommended cut-off of 0.15), thus excluding the need to incorporate a third 

reference gene RPL3 for normalization of target gene expression. Notably, neither 

GAPDH nor ACTB were recommended. 
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      Further analysis of candidate gene stabilities in each treatment group (Table 6.2A) 

or at specific time point (Table 6.2B) revealed that the stability rankings of candidate 

genes do vary among different subgroups. However, with the exception of RPL29 in 

KCl treated samples, the two genes RPL19 and RPL29 were consistently ranked 

among top 5 in all subgroups. In contrast, the stability rankings of GAPDH and ACTB 

varied considerably among different subgroups and they were ranked among the 

least stable ones within the group of 22 genes in several subgroups. The data 

indicated that the two novel candidate genes RPL19 and RPL29 have higher 

expression stabilities than both GAPDH and ACTB, and may serve as better 

normalizers for gene expression in neuronal differentiation of PC12 cells.   

 

Figure 6.3 Stability analysis of candidate reference genes and housekeeping 
genes. Stability rankings of the twenty candidate reference genes and two most 
commonly used housekeeping genes ACTB and GAPDH, among all 120 biological 
samples, by NormFinder (A) and geNorm (B). A low ‘Stability Value’ or ‘M-value’ 
correlates to higher gene expression stability.  
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Table 6.2 Stability rankings of twenty candidate reference genes, ACTB and 
GAPDH in treatment and time-point subgroups. Stability rankings were 
determined by NormFinder (Italic) and geNorm, for each stimulus (Additional File 2A) 
or time point (Additional File 2B) subgroup. The top two candidate genes (RPL19 and 
RPL29) in overall ranking (Figure 4) were bolded in red and the two HKGs were 
bolded and highlighted in grey. 

   

6.2.4 Comparison of the normalization factors generated by different reference 

gene(s)  

      To account for possible variations introduced during sample preparation and 

measurements, raw expression profiles of target genes were scaled by a 

normalization factor (NF) calculated based on independent measurement of one or 

more internal reference genes. The variation between NFs generated by different 

reference genes is thus directly reflective of the variation in the final target gene 

expression values normalized by different reference genes. We noticed that although 

RPL19 and RPL29 were ranked as the overall best pair of reference genes, they 
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were not necessarily the best pair for each treatment subgroup. To test the 

robustness of these two genes across different treatments, we compared the 

normalization factors calculated based on RPL19 and RPL29 (NFRPL19/RPL29) to that of 

the most stable pair of reference genes (NFtop2) in each treatment subgroup. Similarly, 

we examined the differences between NFtop2 and NFs calculated based on the 

commonly used HKGs, ACTB (NFACTB) or GAPDH (NFGAPDH). The deviations of each 

NF from NFtop2 are represented in Figure 6.4. The NFRPL19/RPL29 values were found to 

least deviate from NFtop2 in NGF, GDNF and KCl subgroups, and had zero deviation 

in Fsk and Y27632 subgroups as RPL19 and RPL29 were ranked top 2. In contrast, 

NFACTB and NFGAPDH differed substantially from NFtop2 in many instances, reflective of 

their varying stabilities across different treatments. 

 

Figure 6.4 Comparison of the normalization factors calculated using different 
reference gene(s). Normalization factors (NFs) calculated with RPL19/RPL29, 
ACTB and GAPDH were compared to that calculated by the top 2 reference genes 
(NFtop2) as recommended by both NormFinder and geNorm, for each stimulus.  The 
percentage deviations of NFRPL19/RPL29; NFACTB ; NFGAPDH from NFtop2 (|NFx-
NFtop2|/NFtop2) were represented by box plot. The 25th percentile to the 75th percentile 
(boxes), and ranges (whiskers) were shown.  
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6.2.5 Effect of different reference genes on the interpretation of target gene 

regulation 

      Next, the possibility that using scaling factors of NFRPL19/29, NFACTB or NFGAPDH 

may substantially alter the interpretation of target gene expression regulation in NGF 

induced neuronal differentiation was investigated. The relative fold changes of EGR1, 

ITGA1 and CRYAB expressions normalized by the three NFs were compared to the 

values normalized by NF of the top 2 genes (NFRPL29/RPL10A). No statistically significant 

differences were observed among NFRPL29/RPL10A, NFRPL19/RPL29, and NFACTB 

normalized values; whereas NFGAPDH normalized fold changes were significantly 

different (Figure 6.5 A-C). In the case of EGR1 and ITGA1, the use of GAPDH as 

reference gene resulted in the underestimation of target genes expressions, leading 

to false negative conclusions when a two-fold cut off was applied (Figure 6.5 A-B). 

On the other hand, normalization by GAPDH resulted in the significant over-

estimation of the down-regulation of CRYAB in NGF treated samples (Figure 6.5C).  

      The clearly different expression profiles of EGR1, ITGA1, and CRYAB when 

normalized to GAPDH raised the possibility that GAPDH expression could be 

regulated over the course of NGF induced differentiation. Normalization of GAPDH 

expression by the NF of the top 2 genes (NFRPL29/RPL10A) and the NFRPL19/RPL29, 

revealed that GAPDH expression was indeed significantly elevated (>2.5 fold at 24 h) 

in NGF-stimulated PC12 cells (Figure 6.6). A more detailed analysis of the kinetics of 

GAPDH expression over time revealed that expression of GAPDH indeed increased 

over a period of 28 h (data not shown). As a result, the use of GAPDH as a single, 

unverified reference gene would invariably lead to erroneous interpretation of target 

gene regulation.        

      Similarly, we investigated the effect of different reference gene(s) on normalized 

target gene expressions in GDNF, Forskolin, KCl and ROCK inhibitor Y27632 treated 

samples. Similar to the case of NGF treatment, with GDNF stimulated PC12-
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GFRα1a/RET9 and PC12-GFRα1a/RET51 cells, normalization by GAPDH resulted in 

the underestimations of GDNF induced upregulation of EGR1 and ITGA1 

expressions; and over-estimated CRYAB down-regulation (Figure 6.7A, B). 

Interestingly, normalization by ACTB was found to overestimate the expression of 

EGR1 and ITGA1 expressions in PC12-GFRα1a/RET51 but not RET9 cells (Figure 

6.7B, 72h), highlighting the subtle differences between GFRα1a/RET9 and 

GFRα1a/RET51 systems.  

      For Forskolin and ROCK inhibitor Y23672 differentiated samples, normalization 

by ACTB consistently led to the over-estimations of target gene expressions (Figure 

6.7C, D). Depending on the time point analysed, normalization by GAPDH was 

shown to result in either underestimations or overestimations of target gene 

expressions (Figure 6.7C, D). In KCl treated samples, no statistical significant 

difference was observed among NFtop2 (RPL19/REPS1), NFRPL19/RPL29, NFACTB and NFGAPDH 

normalized target gene expression, which suggested that all four were acceptable 

reference gene(s) for this particular experimental condition (data not shown).  

      It is thus evident that the stabilities of the two most commonly used HKGs, 

GAPDH and ACTB vary across different experimental conditions during neuronal 

differentiation of PC12 cells. They were acceptable reference genes under some 

conditions but may significantly under- or over-estimate target gene expression under 

others. On the contrary, the two novel candidate reference genes RPL19 and RPL29 

were stably expressed among all conditions analysed and allowed accurate 

normalization of differentially regulated genes during PC12 differentiation. It is worthy 

to note that at early time points (0.5 h and 6 h), the expressions of EGR1, ITGA1 and 

CRYAB did not show any significant differences when scaled with either NFtop2, 

NFRPL19/RPL29, NFACTB or NFGAPDH (data not shown). This is consistent with the 

observation that the expression of GAPDH did not change significantly at the early 

time points (Figure 6.6).  



  - 112 - 

 

Figure 6.5 Fold changes in target gene expressions normalized using different 
reference gene(s).  Fold changes in transcript expressions of Egr-1 (A), Integrin alpha 1, 
ITGA1 (B), Crystallin alpha b, CRYAB (C), in NGF treated samples relative to that of control 
were normalized by (1) geometric mean of RPL10a/RPL29; (2) geometric mean of 
RPL19/RPL29; (3) ACTB or (4) GAPDH. Normalization by GAPDH led to significant 
quantitative underestimations of EGR1 and ITGA1 upregulation and overestimation of 
CRYAB downregulation. Dotted line represents the 2-fold difference between treatment and 
control subjects, a cut off commonly used to distinguish significant changes from insignificant 
ones. Significant differences between fold changes normalized by various reference gene(s) 
were calculated using the paired Student’s t-test. A value of p<0.05 was considered 
significant (**p<0.01; *p< 0.05) 

 

Figure 6.6 Upregulation of GAPDH transcript expression in NGF induced neuronal 
differentiation. Fold changes in transcript expression of GAPDH in NGF treated samples 
relative to that of control were normalized by (1) geometric mean of RPL10a/RPL29; or (2) 
geometric mean of RPL19/RPL29. Dotted line represents the 2-fold difference between 
treatment and control cells.  
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Figure 6.7 Normalized target gene expression regulation in PC12 cells differentiated 
with GDNF, Forskolin and Y27632. Fold changes in transcript expressions of Egr-1 (i), 
Integrin alpha 1, ITGA1 (ii),  and Crystallin alpha b, CRYAB (iii), in GDNF-GFRα1a-RET9 (A), 
GDNF-GFRα1a-RET51 (B), Forskolin (C), Y27632 (D) treated samples relative to that of 
control were normalized by geometric mean of top 2 reference genes in each subgroup; 
geometric mean of RPL19/RPL29; ACTB or GAPDH. Normalization by ACTB resulted in the 
over-estimation of target gene expression. Normalization by GAPDH led to either under- or 
over-estimation of target gene expression. Dotted line represents the 2-fold difference 
between treatment and control subjects, a cut off commonly used to distinguish significant 
changes from insignificant ones. Significant differences between fold changes normalized by 
various reference gene(s) were calculated using the paired Student’s t test. A value of p<0.05 
was considered significant (**p<0.01; *p< 0.05) 
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Section 6.3 Discussion  

      Twenty candidate reference genes that showed little variation but high expression 

in PC12 cells differentiated with NGF and GDNF were first selected from microarray 

datasets using two independent statistical algorithms. Together with two well-studied 

HKGs, the expression stabilities of these candidate reference genes were further 

analysed using RT-qPCR in cells differentiated with other stimuli.  From these studies, 

unexpectedly, RPL19 and RPL29 but not the HKGs, were identified as suitable 

reference genes that can be used for normalization of gene expression in neuronal 

differentiation of PC12 induced by a variety of chemical stimuli.  

      Neuronal differentiation is a process where cells undergo enormous 

morphological changes, over a period of several days. It is accompanied by 

substantial biochemical changes including cell cycle exit (278), changes in 

metabolism (279, 280) and alteration in structural proteins (281, 282). Since the 

commonly used reference genes are mostly structural proteins or enzymes involved 

in metabolism, it is especially important to validate the stabilities of these genes 

during the process of differentiation. Many of these studies investigated gene 

expression changes in PC12 but few have evaluated the suitability of HKGs as 

normalizers in this model. Our microarray analysis revealed that a group of novel 

candidate genes was more stably expressed than commonly used HKGs ACTB and 

GAPDH, suggesting that ACTB and GAPDH may not be ideal reference genes in 

neuronal differentiation of PC12 cells.  

      In an effort to gain an insight into the temporal regulation of genes during 

neuronal differentiation, it is necessary that the reference genes used are stably 

expressed over a period of days. GAPDH and ACTB have been used for 

normalization in more than 90% of previous reports (283), often without proper 

validation of their stabilities. Numerous publications have reported that such HKGs 

can be differentially expressed under various experimental paradigms and are 
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therefore inappropriate for normalization (253, 259, 260). However, there are also 

recent reports that these HKGs are stably expressed and can serve as reference 

genes (261, 262, 284).  Most genes, including GAPDH and ACTB, examined in this 

study were stable at early stages of differentiation (0.5 h or 6 h). However, as 

differentiation proceeded with dramatic morphological changes and concomitant 

biochemical changes, the instability of expressions of GAPDH and many of the 

genes examined was obvious. In the case of GAPDH, this instability issue correlated 

well with the temporal increase of expression level, which peaked at 28 h and was 

sustained over a period of 72 h. While GAPDH may still serve as a reference gene 

for PC12 cells under specific conditions, the validity of using this gene and other less 

stable ones should be experimentally verified. However, the two RP genes (RPL19 

and RPL29) that showed good stability in expression over the period of differentiation 

provided an optimal pair of reference genes for the entire period of and various 

experimental conditions for neuronal differentiation.  

      Among the twenty candidate genes selected, thirteen were ribosomal protein 

genes, suggesting that the family of ribosomal protein genes may become yet 

another source of reference genes. Several recent publications have validated and 

recommended the use of ribosomal protein genes as reference genes (267, 269), 

while others have reported their tissue-dependent variations (285). A plausible 

explanation for such disparity is the large number of ribosomal protein genes present 

in mammalian systems (80 genes in human, mouse and rat genome), which may be 

stably or differentially expressed depending on the tissue type or experimental 

conditions. At present, relatively little is known about these mammalian ribosomal 

proteins, as compared to their bacterial and archael counterparts (286). While 

bacterial ribosomal protein genes exist largely in clusters, the mammalian RP genes 

are dispersed throughout the genome (287). Some have suggested that all of these 

proteins are intimately involved in ribosome production and could be co-regulated. 
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Depletion of a particular ribosomal protein would generally cause a reduction of all 

other ribosomal proteins in the same ribosome sub-unit (288). Other reports have 

shown that some ribosomal protein genes could be regulated independent of others 

(289). Recently, extra-ribosomal functions of some of these proteins have been 

reported (290-293), suggesting that they may be individually regulated. A previous 

study comparing random ESTs from naïve and NGF-treated PC12 cells, reported an 

NGF-promoted decrease in the expressions of RPL19 (294). However, this decrease 

in RPL19 was not observed in other studies using SAGE (295) or microarray (246). 

Similar to the latter studies, we too did not observe changes in RPL19 transcripts 

with NGF-treated PC12. Moreover, the SAGE study but not the microarray analysis 

reported a significant decrease in RPL29 expression. Using both microarray and RT-

qPCR, we have also shown that RPL29 was unchanged when the cells were 

differentiated.  The reasons for these discrepancies are unclear and may be due to 

the differences in methods used. We have shown here by quantitative real-time PCR 

that some ribosomal protein genes, RPL19 and RPL29, are highly stably expressed 

and are thus suitable reference genes, whereas others like RPL9 and RPL18 can 

vary significantly during differentiation.  

      Unlike some studies that attempted to identify ideal reference genes through 

meta-analysis of many publically available microarray data which includes a diverse 

range of tissue types and experimental conditions, this study was designed to 

specifically identify a set of suitable reference genes for PC12 cells undergoing 

neuronal differentiation. We have performed both the microarray analysis and RT-

qPCR validation on biological samples prepared with the same techniques and 

reagents, thus minimizing variations introduced by differences in sample preparation 

methods and assay platforms. We have also systematically evaluated the effect of 

the use of NFs of inappropriate reference gene(s) on the expression changes of the 

target genes and the erroneous results they resulted in. Thus, with neuronal 
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differentiation of PC12 cells, scaling with the geometric means of the expressions of 

RPL19 and RPL29 is recommended for the accurate normalization of gene 

expression.   

      Twenty novel candidate reference genes were identified and their expression 

stabilities were analysed and compared to that of commonly used HKGs ACTB and 

GAPDH. Through this systematic study that included both microarray analysis and 

RT-qPCR, we have found two ribosomal protein genes RPL19, and RPL29 to be 

stably expressed during neuronal differentiation of PC12 cells, induced by five 

different chemical stimuli, over 72 h. The combination of these two novel reference 

genes allowed robust and accurate normalization of differentially expressed genes, 

regardless of stimuli and stages of differentiation. In contrast, the use of an 

inappropriate reference gene like GAPDH led to significant erroneous estimation of 

differentially expressed genes.  
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Chapter 7 Integration of an optimized RT-qPCR assay system 
for accurate quantifications of microRNAs 
 

Section 7.1 Introduction 
 

      MicroRNAs represent a unique class of small non-coding RNAs (~22 nucleotides) 

that act as important post-transcriptional regulators of gene expression. The miRNA 

machinery has been found to regulate almost every aspect of physiological and 

pathological processes investigated so far. In neuronal systems, miRNAs were found 

to modulate various stages of nervous systems development, including neurogenesis, 

patterning, subtype specification and neuronal activities (296). For instance, miR-

124a is predominantly expressed in differentiating and mature neurons (297), and 

was found to suppress the expression of a large number of non-neuronal transcripts. 

Our group was the first to report the regulation of miRNA precursors by GDNF and 

NTN activated GFRα2 in human neuroblastoma BE(2)-C cells (298). It is thus logical 

to postulate that miRNAs may in turn mediate the functions of GFLs. The differential 

regulations of miRNAs may provide yet another mechanism that contributes the 

distinct functions of GFRα and RET receptor isoforms. 

      Functionally, mammalian miRNAs interact with target mRNAs via partially 

complementary base pairing, and result predominantly in the degradation of the 

target mRNAs (299). Computational, as well as large-scale transcriptomic and 

proteomic analyses have revealed that each miRNA can potentially regulate 

hundreds of mRNAs (300). Conversely, each mRNA can theoretically be targeted by 

many miRNAs. The complexity and promiscuity of such interactions contributes to 

the distinct functions of single or networks of miRNAs in specific cellular contexts. 

Possibly as a result of this unique mechanism, miRNAs are often tightly regulated 

and act as a fine-tuner that modulates gene expression at a rather subtle scale.  
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      An essential pre-requisite to understanding miRNA functions is the accurate 

quantification of their expressions. Currently, mature miRNAs can be detected by 

either direct (e.g. fluorescent, colorimetric and electrical based methods) or indirect 

methods such as northern blot, microarray and RT-qPCR. Among these, RT-qPCR 

remains to be the most sensitive and efficient means to quantify miRNA expressions. 

To date, a total of 1921 unique mature human miRNAs have been identified 

(miRBase release 18, Nov 2011), making them one of the largest classes of 

regulators. Because of their small size and sequence similarities, designing 

quantitative assays that simultaneous allow sensitive detection and specific 

discrimination of these miRNAs pose a major challenge to the research community. 

Our group has recently proposed a novel, stem-loop mediated RT-qPCR based 

method that allows rapid and robust quantification of miRNAs in cultured cells (301). 

Based on the principle of this method, we have further optimized the assay designs 

and developed an integrated system for reliable, high-throughput and multiplexed 

detection of mature miRNAs.        

 

Section 7.2 Result and Discussion 

7.2.1 Assay Design Workflow and Single-plex assay performance 

      For SMRT-qPCR based miRNA detection, the target miRNA is bound and 

reverse transcribed by a miRNA specific RT oligonucleotide that adopts a stable 

stem-loop secondary structure during RT. The resultant cDNA is then amplified by a 

tagged forward primer (Pf) and a hemi-nested reverse primer (Pr), where 3’ 

nucleotides extend beyond the RT oligos (Figure 7.1). Each of the three oligos (RT, 

Pf and Pr) contains a 3’ sequence specific to the target miRNA (MSS). The MSSs 

need to be optimally designed to collectively achieve maximal discrimination between 

target miRNA and the homologous miRNAs, without sacrificing individual assay 

performance. With close to 2000 annotated mature miRNA now listed in Sanger 
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miRBase (Release 18, Nov 2011), it is imperative to develop an efficient in silico 

assay design algorithm that replaces the laborsome manual assay design method. A 

semi-automated algorithm has since been developed in collaboration with MiRXES 

unit of the Bioprocessing Technology Institute (ASTAR), using a proprietary 

mathematical relationship that models the specificity of cross-hybridization between 

oligonucleotide based on the principles of thermodynamics. These new assays are 

termed mSMRT-qPCR assays. 

 

Figure 7.1 Schematics for SMRT-qPCR based miRNA detection. RT, reverse 
transcription primer, Pf, forward primer; Pr, reverse primer. This figure is reproduced 
from Fig 1, Wan et al, RNA 2010 16: 1436-1445  

 

     The new assay design workflow can be broadly separately into two steps (Figure 

7.2): 1) Selection of MSS for Pf, Pr and RT. For each target miRNA, all possible 

combinations of Pf, Pr and RT MSS are generated and their performance indicators 

including discrimination against homologous miRNAs, PCR amplification efficiency 
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and primer dimer score are calculated. Several in silico filters based on empirical 

determinations are applied to shortlist up to 50 best combinations for further manual 

selection.   

2) Optimization of stem-loop and tags sequences. Once the MSSs are selected, an 

optimal stem-loop sequence is calculated for the RT oligo. In addition, a 5’ tag 

sequence is added to the Pf MSS sequence (typically around 12 nt) to increases its 

Tm for efficient PCR amplification. The stem-loop and tag sequences are optimized 

to minimize unfavourable secondary structures as well as primer-primer interactions.  

 

 

Figure 7.2 Semi-automated mSMRT-qPCR assay design algorithm and 
workflow  
      The performance of the mSMRT-qPCR single-plex assay was first evaluated 

using serial dilutions of synthetic DNA and RNA templates of hsa-miR-30c. 

Quantification of the DNA templates tests the amplification efficiency of the Pf and Pr 

oligos, whereas detection of the RNA templates evaluates the performance of the 

complete RT-PCR process. In both cases, the assay exhibited excellent linearity and 

wide dynamic range (7 orders of magnitude) and was able to detect as few as 100 

copies (subzeptomoles) per reaction (Figure 7.3).  
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Figure 7.3. Performance of hsa-miR-30c mSMRT-qPCR assay. Synthetic cDNA 
and RNA of hsa-miR-30c (108 to 100 copies) were quantified by mSMRT-qPCR 
assays. Amplification curves (left) and standard curves plotted as Ct versus Log 
(right plot; input template per PCR reaction).  
  

Subsequently, the performances of mSMRT-qPCR assays in detecting five 

randomly selected miRNAs were compared with miRNA assays from three leading 

commercial suppliers (ABI, Exiqon & Qiagen). All five mSMRT-qPCR assays showed 

comparable dynamic ranges (7 logs) and efficiencies (close to 100%) to commercial 

assays (Figure 7.4). However, it was noted that all five mSMRT-qPCR assays were 

able to detect synthetic miRNA templates with Ct values closer to the theoretical Ct 

(Ct of 11-12 for 107 copies of DNA template on Biorad CFX96 instrument), whereas 

assays from ABI, Qiagen and Exiqon exhibited significant delays (up to 8 cycles). 

The superior and consistent performances indicated that mSMRT-qPCR miRNA 

assays should outperform existing commercial assays as a platform technology for 

the quantification of miRNA. 
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Figure 7.4 Comparison of mSMRT-qPCR miRNA assay performances with 
leading commercial assays. Left panel compares the performance of mSMRT-
qPCR assays with the commercial assays in terms of Ct value, assay efficiency, 
sensitivity and dynamic range. Shown on the right panel are representative 
amplification curves of hsa-miR-500a of mSMRT-qPCR, ABI, Qiagen and Exiqon 
assays 
 

7.2.2 Discrimination of let-7 family homologs 

      The ability of mSMRT-qPCR assays in discriminating highly homologous miRNA 

sequences was next investigated using the let-7 family of miRNAs. Several of nine 

let-7 family members (let-7a and let-7c, let-7a and let-7f, let-7b and let-7c, let-7b and 

let-7f) differ by a single nucleotide (Figure 7.5 B), making this family an excellent 

model to test assay discrimination. Specific assays for each let-7 miRNA were 
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designed. Each assay was used to detect all nine synthetic let-7 miRNAs (108 copies 

per RT) and the relative detection was compared. Depending on the positions of 

mismatch, discrimination of homologous family members is achieved either by RT 

primer, Pf primer or a combination of the two. All of the nine let-7 assays showed 

excellent discrimination against homologous miRNAs with less than 2% non-specific 

detection, except for let-7b assay with 2.2% relative detection against let-7c (Figure 

7.5 A). For let-7 members that differ by 2 nucleotides or more, these assays were 

able to specifically detect the target miRNA with 0.1% or less cross-target 

amplification. These results demonstrate the robust design and performance of the 

mSMRT-qPCR assay in discriminating highly homologous miRNAs at levels 

comparable to leading commercial suppliers (302). 

 

 

Figure 7.5 Discrimination of let-7 family homologs. A. Relative detection of target and 
eight other let-7 family homologs by each let-7 miRNA assays. B. Sequence alignment of nine 
let-7 family miRNAs. Several of the family members differ by a single nucleotide. C & D.  
Representative amplification curves of let-7a assay (C) and let-7g assay and (D) of the nine 
let-7 family miRNAs.  
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7.2.3 Evaluation of multiplex assay performance and pre-amplification bias 

      With the emerging view that miRNAs function as a network to collectively 

modulate target gene expression, it is often necessary to profile a large number of 

miRNAs on scarce samples. To reduce sample requirement, two technical 

approaches are applied. The first is to perform multiplex RT reactions and the second 

is to amplify the amount of starting targets (RNA or cDNA) using a process called 

pre-amplification. In this section, we compared the performances of single-plex 

assays with that of multiplex assays reactions with or without cDNA pre-amplification. 

One hundred miRNAs associated with various processes of neuronal differentiation 

were curated from literature and used to evaluate multiplex assay performance. In 

silico analysis using the assay design algorithm (Section 7.2.1) has predicted minimal 

cross-over and mis-priming among these 100 assays. 

      The performance of multiplex assays was first evaluated with total human RNA 

(Ambion). The median ∆Ct multiplex - single-plex value of -0.19 with 1st and 3rd quadrants ∆Ct 

values of -0.73 and 0.40 were observed, suggesting that multiplex assays do not 

significantly over- or under-estimate miRNA expressions. To evaluate the dynamic 

range of the multiplex method, total human RNA was diluted from 100 ng to 10 pg 

and subjected to single-plex or multiplex RT-qPCR. Figure 7.6 illustrates the 

correlation between total RNA input and the relative abundance of different miRNAs. 

The data are presented as correlation scatter plots with the Ct values for 100 ng RNA 

on the X-axis and the Ct values for 100 ng to 10 pg RNA templates on the Y-axis. If 

the relative efficiencies of determining miRNA concentration were maintained 

throughout the dilution series, the slopes of lines representing different dilutions of 

RNA should be or approach 1. The calculated slopes for the lines through the 100 ng 

to 10 pg dilution plots were very close to 1 for both single-plex and multiplex assay 

workflow. These data indicated that multiplex miRNA assay to 100-plex level should 

provide accurate relative miRNA abundance profiles even with low input RNA 

amount.  
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Figure 7.6 Evaluation of multiplex assay performance with total human RNA. A. 

Comparison of single-plex assay and 100-plex multiplex assay Ct values. Correlation 

scatter plots of the single-plex (B) and multiplex (C) Ct values for different miRNAs in 

total human RNA with 10-fold decrements in amounts. Analysis of the correlation 

scatter plots are shown in D. 

 

 

 The cDNA pre-amplification step was necessary to generate sufficient material 

from each multiplex RT reaction to allow single-plex qPCR quantifications of tens to 

hundreds of miRNAs. However, the presence of multiple qPCR primer pairs could 

potentially mis-prime non-target cDNAs, reduce assay efficiency and bias relative 

miRNA expression levels in the original samples. An in-depth analysis of the potential 

bias of a pre-amplification step was performed by comparing the miRNA expression 

profiles obtained with and without pre-amplification. For pre-amplification reactions, 

the cDNA products from the multiplex RT reactions were pre-amplified for 10 cycles 

(1000 fold theoretical amplification) and subsequently diluted 1000-fold. Assuming 
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the amplification efficiency was or close to 100%, the diluted pre-amplified samples 

would contain similar amount of cDNA as those without pre-amplification. A median 

∆Ct pre-amp - multiplex of 0.24 and median ∆Ct pre-amp - single-plex of 0.04 were observed 

(Figure 7.7 A & B). Furthermore, the correlation scatter plots between different 

dilutions of RNAs undergone pre-amp assays had slopes close to 1, indicating good 

assay dynamic range (Figure 7.7 C). Real-time qPCR amplifications of three 

representative miRNAs hsa-miR-21, 103 & 518 quantified through single-plex and 

multiplex assay formats with or without cDNA pre-amplification were shown in Figure 

7.8. 

      Taken together, these results indicated that the mSMRT-qPCR assay multiplex 

workflow with cDNA pre-amplification can provide accurate quantifications of miRNA 

expressions even with very low amount of input RNA. 

 

 
Figure 7.7 Evaluation of cDNA pre-amplification efficiency and bias with total 

human RNA. A & B. Comparison of pre-amplification assays vs multiplex and single-

plex assay Ct values. C. Correlation scatter plots of the pre-amplification assay Ct 

values for different miRNAs in total human RNA with 10-fold decrements in amounts. 
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Figure 7.8 qPCR amplification curves of three representative microRNAs 
quantified by Single-plex, Multiplex and Pre-amp assays.  
 

7.2.4 Application of multiplex assays in identification of miRNAs involved in 

topological guidance of neurite outgrowth 

      The correct formation of neuronal circuitry during development or upon nerve 

injury requires a combinations of chemical (secreted growth factors, hormones) and 

physical cues to guide the outgrowth and patterning of axons and dendrites from the 

cell soma and integrate them into a functional network. While chemo-attractants and 

repellents of neurite outgrowth have been extensively studied, the roles of the 

physical cues such as the micro- or nano-scale topologies of the local extracellular 

environments in directional neurite guidance are less well understood. We and others 

have previously reported that synthetic nano-structures are capable of directing 

neurite outgrowth of cultured neuronal cells (303). A number of mechanisms have 

been suggested to mediate topological guidance of neurite outgrowth, including 

MEK/ERK and PKA dependent inhibition of focal adhesion maturation (304). Since 

miRNAs have been found to mediate neurite outgrowth and branching, we 
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hypothesized that they may similarly be involved in the topological guidance of 

neurite outgrowth. 

      To investigate this hypothesis, groove like nano-structures was fabricated on 

polyimide substrate using nano-imprinting (Figure 7.9 A-B). When cultured PC12 

cells were chemically induced to differentiate on such nano-structure, the neurites 

were found to extend in a direction parallel to the grooves. This is in contrast to 

randomized neurite outgrowth when the same cells were seeded on planar polyimide 

or conventional polystyrene cell culture substrate (Figure 7.9 C). We next measured 

the expressions of 32 neuronal miRNAs known to be involved in neurite outgrowth 

and morphology using multiplex mSMRT-qPCR assays. Of the nine miRNAs 

expressed, miR-221 and miR-222 were found to be differentially regulated on nano-

structured surface when compared to planar surface, suggestive of their involvement 

in topological neurite guidance (Figure 7.10 A). To test the hypothesis that down-

regulation of miR-221 and miR-222 was required for neurite guidance, PC12 cells 

were transfected with synthetic RNA mimics of miR-221 and miR-222 and induced to 

differentiate on nano-grooved substrate. Real-time qPCR quantification of their 

expression levels showed that miR-221 and miR-222 expressions were elevated by 

approximately 800 fold upon transfection in all conditions (Figure 7.10 B-C). It is 

concurrently observed that neurite outgrowth from cells transfected with miR-221 and 

-222 mimics were significantly less orderly when compared to that of the mock 

transfection control cells (Figure 7.10 D). The neurite outgrowth was tracked and 

their alignment to the nano-grooves were analysed by Fast Fourier Transform, a well-

accepted method for the analysis of pattern regularities on spatial images (305). The 

sharp and oriented frequency pattern is reflective of the highly aligned neurite 

outgrowth in control cells, whereas a spherical and randomized signal spread is 

indicative of the less orderly neurite outgrowth in miR-221 and miR-222 mimic 

transfected cells (Figure 7.10 D). These data indicated that expressions of miR-221 
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and miR-222 mimics disrupted directed neurite outgrowth and provided strong 

evidence of their involvement in nano-groove mediated topological neurite guidance. 

 

 

Figure 7.9 Topological guidance of NGF induced neurite outgrowth in PC12 
cells. A. Schematic illustration of the fabrication of nano-grooved polyimide substrate 
by nano-imprinting using Si nanogroove substrate as the master. B. SEM image of 
the nano-grooved polyimide. (A & B are reproduced from Fig 2, Zhu et al, Nanoscale, 
2011, 3, 2723–2729). C. PC12 cells were seeded on planar poly-styrene, planar 
polyimide and nano-grooved polyimide substrate and induced to differentiate with 
100 ng / ml NGF for 72 h. The direction of neurite outgrowth was analysed. 
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Figure 7.10 Identification of miRNAs involved in topological guidance of 
neurite outgrowth. A. 32 neuronal miRNAs were profiled using multiplex mSMRT-
qPCR and the expressions are normalized to that of reference gene U6. Shown here 
are the fold change in NGF stimulated cells over control cells on three difference 
polystyrene (PS), planar polyimide (Planar) and nano-grooved (Groove) polyimide 
substrates. RNA mimics of miR-221 (B) and miR-222 (C) were transfected into PC12 
cells, the expressions of the two miRNAs in control and transfected cells on different 
surfaces were measured. D. Alignment of neurite to groove nanostructures was 
compared in control and miR-221, -222 transfected cells. The alignment was further 
analysed by Fast Fourier Transform and an alignment score was calculated.    
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Section 7.3 Conclusion  
 

      In summary, we have developed an integrated miRNA quantification system 

based on the principle of SMRT-qPCR. By incorporating a mathematical relationship 

that determines the hybridization specificity among oligonucleotides, the assay 

design workflow is now semi-automated and the decision making process has 

become more objective. These assays allow sensitive detection of target miRNA with 

minimal non-specific cross-over to highly homologous sequences. In addition, it is 

shown that multiplexing (100-plex) at RT stage and the subsequent cDNA pre-

amplification did not reduce assay efficiency or skew the expression of target 

miRNAs even with minute amount of input RNA (10 pg). Collectively, these data 

provided strong evidences that mSMRT-qPCR miRNA assays allow accurate, 

sensitive and specific quantification of target miRNAs to the range of sub-zeptomoles. 

Using these assays, we have identified two miRNAs miR-221 and miR-222 which are 

intimately involved in the topological guidance of NGF induced neurite outgrowth.         
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Chapter 8 Interplay of GFL, GFRα and microRNA in neuronal 
differentiation of NTera2 cells 
 

Section 8.1 Introduction 
 

      Neurodegenerative diseases and injury related neuro-disorders are becoming 

increasingly prevalent in an aging population. Neural stem/progenitor cells 

(NSC/NPC) hold great potential for cell replacement therapies because of their 

distinctive capacity to both self-renew and differentiation into a wide range of 

specialized neuronal/glial cell types. Neuronal differentiation and lineage specification 

of NSC/NPC is a tightly controlled process driven by temporal regulations of cell 

surface receptors and transcriptional regulators, including the class of non-coding 

RNAs, microRNAs (miRNAs). GDNF has been shown to promote the survival and 

differentiation of NSC/NPC into multiple lineages including DA neurons and motor 

neurons (306). However, the precise mechanisms of GDNF function during these 

processes and the involvement of specific GDNF receptor isoforms (GFRα, RET or 

NCAM) are poorly understood. In addition, it remains to be tested if other GFLs (e.g. 

NTN) function similarly during NSC/NPC differentiation as ligand specificity of GFLs 

has been previously reported both in vivo and in vitro. Furthermore, whether GFLs 

could synergize with other ligands or signaling pathways such as retinoic acid to 

enhance survival and differentiation of NSC/NPC awaits further investigation. 

Understanding 1) the temporal regulations of various GDNF receptor isoforms during 

neuronal lineage specifications induced by multiple stimuli, and 2) the temporal and 

spatial activation of signaling network upon GFL stimulation will shed novel insights 

on the roles of GFLs and receptor systems in NSC/NPC differentiation. 

      MicroRNAs are increasingly recognized as an important class of regulator for 

neuronal differentiation (307, 308), acting in conjunction with other cellular regulators 

such as transcription factors, signaling cascades as well as epigenetic effectors. 
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Clusters of miRNAs have been reported to play opposing functions such as the 

maintenance of stem cell pluripotency and induction of differentiation. These miRNAs 

are temporally regulated and are often part of a complex feedback loop involving 

signaling molecules, transcription factors and miRNAs (309). In addition, several 

miRNAs have been shown to directly regulate the expressions of target receptor 

tyrosine kinases in cancer models (310, 311). It is thus tempting to hypothesize that 

GFRα and RET/NCAM isoforms expressions during NSC/NPC differentiation may 

similarly be controlled by miRNAs. GFL stimulation of the up-regulated receptor 

isoforms could in turn result in signaling activation and regulate miRNA expressions 

to further enhance NSC/NPC survival and differentiation into specific neuronal 

lineages.   

      The use of NSC/NPC as in vitro models for developmental and 

neurodegenerative studies and their eventual therapeutic applications has been 

greatly hampered by the inability of existing methods to efficiently differentiate these 

stem cells into a homogenous population of neuronal cells of a specific lineage. One 

of the key drawbacks in the existing methods may be the use of common exogenous 

factors to differentiate NSC/NPCs into different lineages, e.g. FGF, SHH, BDNF etc 

(312). Compare to the temporal application of combinations of exogenous factors that 

activate a myriad of signaling pathways, the manipulation of cell intrinsic 

transcriptional regulators such as TFs and miRNAs may allow a more precise and 

controlled differentiation of NSC/NPCs. For instance, it was reported that the 

expression of miR-294 induced a more homogeneous population of iPS colonies 

compared to its inducer cMyc (313). More recently, miR-93 and its family members 

were found to directly target TGF-b receptor II to enhance iPSC generation (314). 

However, the pre-requisite for such paradigm is the identification of unique sets of 

miRNAs responsible for the differentiation and maintenance of specific neuronal 

lineages. Since GDNF has been shown to efficiently promote differentiation of 
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NSC/NPC into DA or motor neurons, it is plausible to hypothesize that GDNF 

regulated miRNAs may serve as drivers of neuronal differentiation. To this end, the 

comprehensive profiling of miRNA expressions at different stages after GDNF 

induction will not only allow better characterization of such developmental processes, 

but also provide valuable insights into potential tools / methods for efficient 

manipulation of NSC / NPC for research and therapeutic applications.   

      NTera2, a human embryonal carcinoma cell line, has been shown to share 

similar genetic & epigenetic profiles as human embryonic stem cells. It has been 

used extensively as a surrogate of pluripotent ESC, to model the multistep transition 

from the undifferentiated neuro-progenitor state to terminally differentiated neurons 

(315). Like ESC, NT2 are capable of differentiating into multiple neuronal cell types 

(316), in a stimulus dependent manner. Retinoic acid treatment of NT2 in high 

density suspension culture has been shown to provide a highly reproducible model of 

neuronal differentiation (317). RA stimulated NT2 cells undergo distinct phases of 

precursor expansion, lineage commitment, and terminal differentiation into neurons 

and glial cells (318). Analysis has shown that, during this process, networks of 

neuronal genes were regulated with a temporal and spatial pattern characteristic of 

the neurogenesis of neuroepithelial precursors in vivo (319). Both GFRα1 and 

GFRα2 are expressed in NT2 cells and their expressions were regulated during NT2 

differentiation induced by PA6 feeder layer (315) and neuro-steroid 22R-

hydroxycholesterol, respectively (320). Furthermore, GDNF stimulation of NT2 cells 

were found to up-regulate p27kip1 expression and inhibit proliferation (321), 

suggestive of the intimate involvement of GDNF in NT2 differentiation.    

      In this chapter, we tested the hypothesis that GFRα and co-receptor RET and 

NCAM isoforms are differentially regulated during RA induced NT2 differentiation. 

These receptors in turn activate distinct signaling networks including miRNAs, in 

response to autocrine or exogenous GFL stimulation. Understanding the interplay 
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between GFLs, their receptor isoforms and miRNAs could provide novel insights into 

the regulatory mechanisms involved in driving NT2 differentiation and fine-tuning the 

lineage identity of the differentiated neurons. 

Section 8.2 Result 
 

8.2.1 Retinoic acid induced neuronal differentiation of NTera 2 neuroprogenitor 
cells 
 

      NT2 cells were induced to differentiate in high density suspension culture with 

concomitant RA treatment as previously reported. Over a period of 28 days, control 

NT2 cells continued to expand whereas RA treated cells ceased to proliferate and 

formed aggregate colonies with a surface cell density distinct from that of control 

cells (Figure 8.1A). When NT2 cells were transferred to adherent culture after 7 days 

in suspension culture, RA treated cells formed elaborate neurite outgrowth and adopt 

neuronal morphology over time, whereas control cells retained an epithelial-like 

morphology and continued to proliferate (Figure 8.1B). Quantification of the transcript 

expression of neuronal marker β-tubulin III showed a prominent and sustained up-

regulation upon RA treatment in both suspension and adherent culture (Figure 8.1C).    

        Similarly, the transcript expressions of a series of neuronal lineage markers 

were quantified by real-time qPCR during RA induced NT2 differentiation. Among 

eight DA marker genes expressed, all but Otx2 were found to be significantly up-

regulated upon RA stimulation, with distinct temporal profiles (Figure 8.2A). These 

data are consistent with earlier report where RA induced down-regulation of forebrain 

DA markers (Otx2 etc) and up-regulation of midbrain DA marker (En2 etc) in NT2 

cells (317). Furthermore, it was observed that marker genes of other neuronal 

lineages (5-HT, glutamatergic) were concurrently up-regulated, suggesting that RA 

treatment resulted in a heterogeneous population of neuronal cells of multiple 

neuronal lineages. Collectively, these data demonstrated that RA treatment was 
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capable of triggering neuronal commitment of NT2 cells and their differentiation into 

multiple neuronal cell types, making it a suitable model to investigate the 

mechanisms underlying neuronal differentiation and lineage specification.     

 

 

 

Figure 8.1 Retinoic acid induced differentiation of NT2 cells. Suspension culture of NT2 
cells were incubated in growth media (DMEM + 10% FBS) or in growth media with 10 µM all-
trans Retinoic acid (RA) over a period of 28 days. A. Representative images of control and 
RA treated NT2 cells in aggregation. B. Aggregated NT2 cells after 7 days in suspension 
culture were dispersed and cultured as adherent culture in control and RA containing media 
over 21 days. Neurite sprouting was observed in RA stimulated NT2 cells. C. Transcript level 
of neuronal marker β-tubulin III were quantified and normalized to reference gene GAPDH. 
The fold change in expression in RA treated NT2 over control cells are presented. All samples 
were analysed in biological triplicates with technical duplicates.  
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Figure 8.2 Relative mRNA expressions of neuronal lineage marker genes in 
control and Retinoic acid treated NT2. The expressions of 8 DA marker genes and 
3 other neuronal lineage markers genes were quantified in control and RA treated 
NT2 cells over 28 days and normalized to that of reference gene GAPDH. The fold 
change in the expressions of these genes in RA treated NT2 over control cells are 
presented (A, B). All samples were analysed in biological triplicates with technical 
duplicates. The functions of these genes are summarized in C. 
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8.2.2 Regulation of GDNF family ligand and receptors during RA induced NT2 
differentiation 
 

            We next investigated the regulation of GFRα and co-receptors RET and 

NCAM during RA induced NT2 differentiation. Interestingly, total GFRα1, GFRα2 and 

NCAM were found to be up-regulated whereas total RET was initially down-regulated 

before gradually returning to control level (Figure 8.3A). Moreover, GFRα1, GFRα2 

and NCAM showed distinct temporal profiles. Total GFRα1 and NCAM levels peaked 

within 6 days of RA stimulation and were sustained throughout 28 days of treatment. 

In contrast, total GFRα2 expression gradually increased and reached its highest level 

only after 21 days. The distinct regulation of these receptors was suggestive of their 

possible temporal involvements during RA induced neuronal differentiation. Among 

the receptors, total GFRα1 level was 5-10 folds higher than that of GFRα2 

throughout 28 days of RA treatment. Co-receptor wise, NCAM expression was 

initially lower than RET in native NT2 cells but became the predominantly expressed 

co-receptor upon RA treatment (Figure 8.3A). The differential expressions of the two 

GFRα receptors and the co-receptors may result in temporal activation of distinct 

downstream signaling pathways during different stages of differentiation. 

Furthermore, it is not unreasonable to suggest that these receptors may be 

selectively expressed in different populations of NT2 cells and exert distinct functions 

in driving neuronal differentiation and lineage commitment. 
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Figure 8.3 Regulation of GFRα, RET and NCAM during RA induced NT2 
differentiation. The mRNA expressions of total GFRα, RET, NCAM and selected 
isoforms were quantified in control and RA treated NT2 cells over 28 days and 
normalized to GAPDH (B, D, F). The fold change in the expression of these receptors 
in RA treated NT2 over control cells are presented in A, C and E. All samples were 
analysed in biological triplicates with technical duplicates. 

 

       Since GFRα receptor isoforms have been found to have distinct biochemical and 

neuritogenic functions (6, 7), we next investigated whether these isoforms may be 

differentially regulated. Surprisingly, while total GFRα1 and GFRα1b up-regulation 

plateaued 3 days after RA stimulation, GFRα1a expression continued to increase till 

day 24, to a level 1000-fold higher than that in undifferentiated NT2 cells (Figure 

8.3C). Prior to RA treatment, GFRα1b was the predominant isoform with an 

expression level more than 10-fold higher than that of GFRα1a. However, the levels 
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of the two isoforms became comparable after 18 days of RA treatment (Figure 8.3D). 

More interestingly, while the levels of total RET and isoform RET51 were down-

regulated from day 6 to day 24, RET9 expression was found to be up-regulated in the 

same time course (Figure 8.3E). RET9, being the lesser expressed isoforms prior to 

RA treatment, became the predominantly expressed isoform at day 21 (Figure 8.3F). 

These data demonstrated that in addition to the broad regulation of GFRα and co-

receptor transcript expressions, RA stimulation also induced distinct regulations of 

the isoform splicing.         

 

8.2.3 GFLs stimulation differentially regulates neuronal differentiation of NT2 
cells 
 

      To test whether GFL signaling can regulate neuronal differentiation of NT2, 6-day 

RA treated NT2 cells were stimulated with GFLs or combinations of RA and GFLs 

and the expressions of selected receptors and neuronal markers were compared with 

NT2 cells treated with RA only (Figure 8.4A). Six-day RA pre-treated NT2 cells were 

selected as they expressed the highest levels of GFRα1, NCAM and RET9 and 

significantly lower level of GFRα2 (40 fold less than GFRα1). These cells allowed the 

investigation of GFRα1 signaling with minimal complication by the presence of 

GFRα2. The effects of exogenous application of GFLs on GFRα and co-receptors 

were first examined (Figure 8.4B).  GFL signaling was found to exert a more 

significant effect on the expression of RET than the rest (Figure 8.4C). Addition of 

GFLs, alone or in combination of RA, induced up-regulation of total as well as 

isoform expressions of RET, suggesting the existence of an auto feedback loop. 

Addition of GFLs did not alter the expressions of GFRα1 or its isoforms. In contrast, 

when these RA pre-treated cells were incubated with GFLs alone, GFRα1 

expressions were significantly down-regulated, suggesting that RA signaling was 

essential for the up-regulation and maintenance of GFRα1 expression (Figure 8.4D). 
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      We further investigated the effects of GFLs in regulating the expressions of DA 

marker transcripts (Figure 8.4E). Co-stimulation of GFLs with RA exerted little 

additional effect on the eight RA regulated genes. However, when these RA pre-

treated cells were incubated with GFLs alone, all eight DA marker genes were found 

to be differentially regulated compared to cells which were continually treated with 

RA. In particular, a switch from RA to GFL signaling was found to significantly up-

regulate GIRK (Figure 8.4F) and Otx expressions and down-regulate that of AADC 

(Figure 8.4G). Interestingly, GDNF and NTN were also found to induce differential 

regulations of EN1 and DAT, indicating ligand specificity in GFL regulation of DA 

marker genes. Taken together, these data suggested that GFLs were capable of 

regulating neuronal differentiation of NT2 cells and exert ligand specific effects on 

gene expression regulation. It is tempting to speculate that during development, RA 

and GFL signaling may play temporal roles in the induction and regulation of 

neurogenesis.   
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Figure 8.4 Differential regulations of GFL receptors and DA marker genes by 
GDNF and NTN. A. Schematics of the experiment. RA pre-treated NT2 cells (6 days) 
were subsequently stimulated with RA, RA + GDNF, RA + NTN, GDNF or NTN alone 
for 2 to 6 days. B. the effect of different ligand treatments on GFL receptor 
expressions over time were quantified and normalized to GAPDH. The fold changes 
in these genes over RA treated cells after 6 days are summarized in the table. C & D. 
illustrated the fold changes in total GFRa1 and RET level over 6 days of ligand 
treatment. E. Similarly, the effect of different ligand treatments on DA marker genes 
were quantified the fold changes were calculated. The fold changes in two marker 
genes GIRK and AADC over time are shown in F & G respectively. All samples were 
analysed in biological triplicates with technical duplicates. Up-regulated miRNAs 
were highlighted in blue and down-regulated ones in red. Significant differences 
between treatments were calculated using the paired Student’s t-test. A value of 
p<0.05 was considered significant (**p<0.01; *p< 0.05) 
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8.2.4 Regulation of miRNA by RA and GFLs during NT2 differentiation 
 

            MicroRNAs have been shown to regulate various processes in neuronal 

differentiation. A list of 52 miRNAs reported to be associated with neuronal 

differentiation was compiled from database searches and literature curation 

(publications listed in PUBMED up to Nov 2011). Real-time qPCR assays were 

designed for these 52 miRNAs and their single-plex and multiplex performances 

were validated with both synthetic miRNA template and total human RNAs (Chapter 

7). The expressions of these miRNAs during RA induced neuronal differentiation 

were profiled. Forty nine of these miRNAs were expressed in NT2 cells and their 

expression levels varied over 4 orders of magnitude (Figure 8.5). 

 

Figure 8.5 Boxplot representation of the expression levels of miRNAs 
examined. The expression levels (Ct values) of 49 miRNAs among control and 
ligand treated NT2 cells were presented in box plot.  

 

      As illustrated in Chapter 6, the use of stable reference genes is a pre-requisite to 

accurate profiling of transcriptomic changes. We have previously shown that 

commonly used housekeeping genes (GAPDH) or small RNAs (U6) were not stable 

during neuronal differentiation and led to over- or under-estimation of gene and 

miRNA expressions (322-325). To date, only one report has investigated the 

expressions of miRNAs in NT2 cells using microarray and a median centering based 



  - 146 - 

global normalization strategy (326). For accurate normalization of the qPCR profiling 

results, it is thus imperative to identify and validate reference genes that are stably 

expressed throughout the course of NT2 differentiation, regardless of the stimuli used. 

To this end, seventeen of the forty nine miRNAs that exhibited low coefficient of 

variation (CV < 5%) during NT2 differentiation were selected as candidate reference 

genes. The stability of these candidate miRNAs were analysed by two statistical 

algorithms geNorm and NormFinder. The two algorithms consistently ranked miR-

128, miR-24, miR-139-5p and miR-93 as the four most stable candidate miRNAs 

(Figure 8.6). Since geNorm and NormFinder were based on distinct statistical models 

and assumptions, an agreement between the two algorithms provided strong 

evidence of the stability of these four miRNAs and their suitability as reference genes. 

The geometric means of the four reference miRNAs were calculated and applied to 

normalize the expressions of the remaining miRNAs. 

miRNA 
NormFinder 

Stability Value
geNorm  
M-Value Mean STDEV CV 

miR-128 0.050 0.813 27.0 0.9 3.4% 
miR-24 0.056 0.847 24.6 1.0 4.1% 
miR-139-5p 0.057 0.808 27.6 1.0 3.6% 
miR-93  0.073 0.802 24.3 0.9 3.7% 
miR-296-3p 0.079 0.872 29.8 0.8 2.8% 
miR-143 0.083 1.188 32.7 1.2 3.7% 
miR-134 0.086 0.917 32.1 0.7 2.3% 
miR-15b 0.093 0.941 24.0 1.1 4.7% 
miR-491-5p 0.094 0.874 28.1 0.8 2.9% 
miR-451 0.125 1.018 32.5 0.9 2.7% 
miR-494 0.156 1.255 33.1 1.1 3.4% 
miR-21 0.156 0.944 23.5 1.1 4.6% 
miR-124 0.162 1.066 28.6 1.0 3.4% 
miR-7 0.164 1.08 25.2 1.2 4.6% 
miR-138 0.189 1.199 26.4 1.2 4.7% 
let-7d 0.211 1.553 30.9 1.5 4.9% 
let-7b 0.221 1.413 34.1 1.3 3.9% 

 

Figure 8.6 Stability analysis of candidate miRNA reference genes. Seventeen 
miRNAs with CV < 5% were selected as candidate reference genes. The stability of 
these miRNAs in ligand induced NT2 differentiation was analysed and ranked by two 
statistical algorithms NormFinder and geNorm. A lower ‘Stability Value’ or “M-Value” 
correlates to higher expression stability. The top four candidate miRNAs with the 
highest stability value or M-value are highlighted in red.  
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      Among the remaining 45 miRNAs, 41 were found to have their expressions 

altered by 2 fold or more, with 29 up-regulated miRNAs and 12 down-regulated ones. 

Interestingly, these miRNAs were shown to have distinct temporal profiles during the 

course of RA induced differentiation (Figure 8.7A-B). For instance, miR-219-5p was 

immediately and robustly up-regulated upon RA treatment but gradually returned to a 

level slightly above control after 25 days. In contrast, the expression of let-7b 

increased only after 15 days. Among the down-regulated miRNAs, miR-367 

expression was immediately and robustly down-regulated (>100 fold) throughout the 

course of differentiation. MicroRNA-222 on the other hand, showed a transient up-

regulation in its expression before being down-regulated. Furthermore, members of 

the same miRNA family were found to be co-regulated. Members of let-7, miR-302 

and miR-181 family shared similar temporal profiles with some variations in their 

relative fold changes at each time point. 

      Since GFL signaling was shown to differentially regulate DA marker genes, we 

hypothesized that GFL stimulation may also result in miRNA regulation distinct from 

RA treatment. Seventeen miRNAs were found to be differentially regulated when RA 

pre-treated NT2 cells were switched from RA treatment to GFLs or combinations of 

GFLs and RA (Figure 8.8). Surprisingly, a group of miRNAs including let-7 family 

members, miR-9, miR-137 and miR-335 were found to be up-regulated when 

stimulated with GFLs alone but were down-regulated when stimulated with GFLs and 

RA. Another 10 miRNAs were shown to be down-regulated upon GFLs treatment 

regardless of the presence of RA. These results showed that GFLs were capable of 

triggering differential miRNA regulation in neuronal differentiation of NT2 cells. In 

addition, GFLs signaling can also act in conjunction with RA signaling to induce 

opposing miRNA expression changes in a miRNA specific manner. Together, these 

data highlighted the diverse functions of GFL signaling but the underlying mechanism 

remains to be investigated.   
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Figure 8.7 Regulation of neuronal miRNAs during RA induced NT2 differentiation. The 
expressions of neuronal miRNAs were quantified in control and RA treated NT2 cells over 32 
days and normalized to the geometric means of three validated reference gene miR-128, 
miR-24 and miR-139-5p. A & B showed distinct up- and down-regulations of selected miRNAs, 
respectively. Retinoic acid regulations of various members of let-7 family, miR-181 family and 
miR-302 family were shown in C-E. All samples were analysed in biological triplicates with 
technical duplicates. All samples were analysed in biological triplicates with technical 
duplicates. 
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Figure 8.8 Differential regulations of miRNAs by GDNF and NTN. RA pre-treated NT2 
cells (6 days) were subsequently stimulated with RA, RA + GDNF, RA + NTN, GDNF or NTN 
alone for 6 days. The expressions of neuronal miRNAs were quantified and normalized to the 
geometric means of three validated reference gene miR-128, miR-24 and miR-139-5p. The 
fold changes of miRNAs in cells treated with RA+GFL or GFL alone over that in RA treated 
cells were summarized in the table. All samples were analysed in biological triplicates with 
technical duplicates. Up-regulated miRNAs were highlighted in blue and down-regulated ones 
in red. Significant differences between treatments were calculated using the paired Student’s 
t-test. A value of p<0.05 was considered significant (**p<0.01; *p< 0.05) 

    

Section 8.3 Discussion  
 

            In this study, we established human NTera 2 cells as a model to investigate 

the regulations and functions of GFRα and co-receptor isoforms in differentiation and 

maturation of neural progenitor cells into lineage specific neurons. Both GFRα1 and 

GFRα2, as well as the co-receptors RET and NCAM were endogenously expressed 

in NT2 cells and were differentially regulated by RA treatment, with distinct temporal 

profiles. More interestingly, RA stimulation induced distinct regulations of GFRα1 and 

RET isoforms, making NT2 a suitable model to investigate the mechanisms 

regulating alternative splicing of receptor isoforms. GFL signaling mediated by one or 

more receptor isoforms, in turn regulated the expressions of DA marker genes and 

miRNAs.  

      NT2 cell line is a well characterized “surrogate” stem cell model for the study of 

neurogenesis in vitro. Comparing to hESC, NT2 cells can be easily and rapidly 

propagated, without feeder cells or defined media. Nonetheless, NT2 cells were 
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found to share highly similar genetic and epigenetic profiles with hESC and the ability 

to generate cells from all three germ layers. NT2 cells have been extensively used to 

study cell cycle regulation, neuronal differentiation and lineage specification including 

that of DA and motor neurons (327-329). Despite dozen of studies on NT2 

differentiation into DA neurons, little is known about the involvement and functions of 

GFLs, which are known to have potent neurotrophic effects on DA neurons and are 

undergoing clinical trials for Parkinson’s disease. Although GDNF has been shown to 

inhibit NT2 proliferation through RET mediated p27 up-regulation (321), it is not 

known if GDNF and NTN are involved in other aspects of NT2 differentiation and if 

specific GFRα receptors or isoforms are involved.   

      To this end, we selected retinoic acid treatment in high density suspension 

culture as our initial model of differentiation. Comparing to other differentiation 

paradigms including feeder cells, feeder layer conditioned media, or defined media 

with multiple growth factors, the RA protocol offers a simple but highly efficient and 

reproducible model of neuronal differentiation. Importantly, the use of RA, a well-

established transcriptional regulator, as the sole inducer of differentiation reduced the 

signaling complexity that may complicate the investigation of GFL signaling.  

      We first examined the expressions of GFRα and co-receptors during the course 

of RA induced NT2 differentiation. Unlike the qualitative evidences from earlier 

publications (315, 320), the total and isoform specific expressions of these receptors 

were quantitatively measured using qPCR assays capable of discriminating isoforms 

by several orders of magnitude. Using these assays, we made a number of novel 

observations on the transcriptional regulation of GFRα and the co-receptors. All four 

genes examined, GFRα1, GFRα2, RET and NCAM, were robustly regulated upon 

RA treatment, with distinct temporal profiles, suggestive of their stage dependent 

functions during the course of NT2 differentiation. Moreover, we observed differential 

regulation of receptor isoforms. GFRα1a showed a more sustained up-regulation 
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than GFRα1b, with a fold change 2 orders of magnitude higher than GFRα1b. More 

intriguingly, the two RET isoforms were found to be regulated with opposing trends. 

Total RET and RET51 were robustly down-regulated while RET9 was selectively up-

regulated during the same time course.  

      Furthermore, we noted a gradual change in the relative expressions of the four 

receptors and their isoforms. NCAM had a lower expression than RET in 

undifferentiated NT2 cells, but became the predominantly expressed co-receptor 

upon RA stimulation. GFRα1a expression was twenty fold lower than GFRα1b in 

undifferentiated NT2 cells but reached a level comparable to GFRα1b 18 days after 

RA treatment. It is not clear if the changes in the relative expressions will alter the 

partnering of GFRα with RET and NCAM and the formation of the ligand-receptor 

complex. There is currently no consensus on whether GFRα interacts with RET and 

NCAM in a selective or competitive manner. To this end, the gradual change in 

relative expressions of these receptors in RA treated NT2 could provide a suitable 

model to examine the interactions of GFRα with the co-receptors. We are also aware 

that RA treatment of NT2 cells results in a heterogeneous population of neurons and 

glial cells. The four genes (GFRα1, GFRα2, RET and NCAM) may be selectively 

expressed on different types of cells. 

      Exogenous application of GFLs after RA treatment was found to regulate the 

expressions of DA marker genes and miRNAs. Interestingly, a switch to GFL 

signaling after 6 days of RA treatment upregulated the expression of Nurr1, a 

transcription factor required for the acquisition of midbrain dopaminergic (mDA) 

phenotype, including the expressions of DA genes such as TH, VMAT2 and DAT 

(330, 331). These data suggested that temporal applications of RA and GFLs may 

increase the lineage commitment towards mDA neurons after RA induction of 

neuronal differentiation. The choice of adding GFLs after 6 days of RA treatment was 

made based on knowledge of their receptor expressions. A more thorough 
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investigation is currently underway to examine the temporal functions of GFLs in the 

presence of distinct profiles of GFRα1, GFRα2 and co-receptors during RA induced 

NT2 differentiation. In addition to gaining a better understanding of GFL signaling, the 

data will also be useful in designing a more focused differentiation paradigm in 

driving DA differentiation of neuro-precursor cells.  

      The expressions of numerous miRNAs were investigated during RA induced NT2 

differentiation and upon addition of GFLs. Instead of carrying out a large scale, 

genome wide profiling of miRNA expressions using sequencing or microarray, we 

chose to quantify a more focused panel of curated miRNAs known to be associated 

with neuronal differentiation in various cell models. The aim is to better understand 

the roles of these neuronal miRNAs instead of embarking on another cataloging 

effort. As a result, 41 of the 52 curated miRNAs were found to be robustly regulated 

during NT2 differentiation. For accurate quantifications of such expression changes, 

a suitable panel of reference miRNAs stably expressed throughout the course of NT2 

differentiation was validated, using two independent statistical approaches. After 

normalization, we made a series of interesting observations on the distinct temporal 

regulations of neuronal miRNAs (family). The functions of these miRNAs at different 

stages of NT2 differentiation and their regulations of the expressions of neuronal 

marker genes as well as GFRα and co-receptors are currently being investigated. 

We hypothesize that some of these miRNAs may act as key drivers of neuronal 

differentiation and lineage commitment. These miRNAs may be used, either alone or 

in combinations with ligands and other cell intrinsic regulators, to provide a more 

precise and controlled process of lineage specific neuronal differentiation. 

      In summary, this chapter detailed a preliminary study on the regulations and 

functions of GFL signaling and miRNAs in neuronal differentiation of NT2 cells. RA 

treatment of NT2 cells was established as a suitable model to investigate the 

interplay between GFL, GFRα and miRNAs in neuronal differentiation. We have 
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made a series of novel observations that allowed the proposal and investigation of 

many new hypotheses. Further studies will not only shed insights into the 

mechanisms underlying the diverse functions of GFLs and their receptor isoforms, 

but provide a new paradigm where ligand, receptor and miRNA act in synergy to 

drive and regulate neurogenesis.  
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Chapter 9 Conclusion and Future Studies 
 

9.1 Conclusion 
 

      This thesis investigated the hypotheses that combinatorial interactions of GFL, 

GFRα and co-receptor isoforms contribute to the diverse functions of GFL systems 

through activations of distinct signaling pathways involving proteins, mRNAs and 

miRNAs. GFRα2a and GFRα2c but not GFRα2b were found to induce biphasic 

ERK1/2 activation and neurite outgrowth. Inhibition of cAMP-PKA signaling 

significantly impaired GFRα2a and GFRα2c mediated late phase ERK1/2 and neurite 

outgrowth. Conversely, cAMP agonists synergized with GFRα2b to activate late 

phase ERK1/2 and induce neurite outgrowth. Collectively, these data demonstrated 

the essential role of cAMP-PKA signaling in GFL function and suggested it as an 

underlying mechanism contributing to the differential neuritogenic activities of GFRα2 

isoforms. In a separate study, GFRα2c but not GFRα2a or GFRα2b was found to 

induce serine727 phosphorylation of STAT3 in cultured neuronal cells and primary 

cortical neurons. With respect to co-receptors, STAT3 activation was mediated 

specifically by RET9 but not RET51 or NCAM. Unexpectedly, NTN induced 

phosphorylated STAT3 was localized to the mitochondria, instead of the nucleus. 

Mitochondrial P-Ser-STAT3 was further shown to mediate the neuritogenic functions 

of NTN via a transcription independent mechanism. Together with earlier publications 

from our group, we have now demonstrated that each of the GFRα2 isoforms has 

distinct functions and induces differential signaling activation. These data provided 

further evidence to support the emerging view that combinatorial interactions of GFL, 

GFRα and co-receptor isoforms provide a new paradigm that allows a single ligand 

to exert a plethora of biological effects. It is intriguing to note that NGF through TrkA 

similarly induced serine727 phosphorylation of STAT3 and enhancing mitochondria 
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localization, suggestive of a hitherto unrecognized mechanism of some growth 

factors involved in neurite outgrowths.   

      A substantial portion of this thesis was dedicated to the development and 

validation of methods and tools essential for the investigation of transcriptomic 

changes. Selection and validation of reference genes is a crucial but often 

overlooked process during qPCR based transcriptomic profiling. Our group has 

repeatedly shown, in multiple cell models from mammalian cells to bacteria that 

commonly used housekeeping genes can vary significantly and lead to false 

interpretations of target gene expression. In this thesis, we have presented a 

validated workflow for the identification and validation of stable reference genes, 

which allowed accurate quantifications of mRNA and miRNA expression changes 

during neuronal differentiation. Furthermore, we have developed and optimized an 

integrated system for reliable and high-throughput multiplex detection of mature 

miRNAs, based on the stem-loop RT-qPCR method that our group has previously 

reported. These new assays are able to quantify target miRNAs at sub-zeptomole 

range and have excellent discrimination against highly homologous miRNA 

sequences. A comparison with leading commercial reagents showed that these 

assays have comparable if not more superior performances. Using these assays, two 

miRNAs miR-221 and miR-222 were found to be intimately involved in topological 

guidance of neurite outgrowth. 

      Equipped with the knowledge of GFRα isoform function and a validated 

transcriptomic profiling workflow, we investigated the regulations and functions of 

GFRα and co-receptor isoforms during RA induced NT2 differentiation. We made a 

series of novel observations on the distinct and temporal regulations of GFRα and 

co-receptor isoform expression. Exogenous applications of GFLs were further shown 

to regulate the expressions of DA marker genes and miRNAs.  
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      Taken together, the work presented in this thesis has provided novel insights into 

the mechanisms underlying the diverse functions of GDNF family of ligands and 

receptor isoforms. More importantly, our findings and analyses have allowed the 

proposal of new hypotheses, the investigation of which will continue to advance our 

understanding of the molecular and cellular functions of GFLs and their receptor 

isoforms, and how a single ligand-receptor system could exert a plethora of functions 

in neurogenesis and beyond.  

 

Figure 9.1 A schematic diagram summarizing the main findings in this thesis. 
This thesis can be broadly divided into two main sections: 1) the investigation of GFL 
and receptor mediated protein level signaling (Chapter 3-5), and 2) the development 
of genomic analyses tools and the investigation of transcriptomic regulation involving 
and induced by GFL and receptor complex (Chapter 6-8).  
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9.2 Future Studies 
 

9.2.1 Crystal structure of ligand receptor complex & phosphorylation pattern of 
co-receptors 
 

      It is now clear that GFRα receptor isoforms have distinct properties and the 

combinatorial interactions of GFRα and co-receptor isoforms could mediate diverse 

functions of GDNF and NTN. However, it remains to be understood how these GFRα 

isoforms induce differential signaling activation, through the same co-receptor. 

Structurally, GFRα1 and GFRα2 isoforms differ at the extreme N-terminus (D1 or 

D1/D2), which was shown to be dispensable for ligand binding. Interestingly, a recent 

study found that residues 89-101 at the distal end of the N-terminus (D1) of GFRα1 

interacted with RET at multiple sites, strongly support its biological relevance. We 

hypothesize that the differences in the N-terminus domains in GFRα1 and GFRα2 

influence the overall conformation of the GFL-GFRα-RET/NCAM ligand-receptor 

complex and lead to differential activation of RET/NCAM kinase domains. However, 

to date, only partial structure of GFRα1 (D2 & 3) has been crystallized. It will be 

valuable to determine the structures of full-length GFRα1 and GFRα2 isoforms, 

preferably in the heterotetrameric complex form with GFLs and co-receptors.     

      The activation of RET and NCAM kinase domains is the first step in transducing 

the signal of GFLs and GFRα isoforms. We hypothesize that GFRα isoforms activate 

distinct signaling networks by differential phosphorylation of RET and NCAM kinase 

domain residues and subsequent recruitment of specific adaptor molecules. To this 

end, the analyses of RET and NCAM phosphorylation patterns, when bound by 

different GFRα isoforms, will provide useful information in deciphering the 

mechanisms involved in downstream signaling events. Recent advance in high 

throughput analyses of phospho-residues in large membrane receptors has 
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suggested mass spectrometry as a suitable technology in determining co-receptor 

phosphorylation patterns. 

 

9.2.2 Role of GFL and GFRα in regulation of mitochondrial function and the impact 
on neurodegenerative diseases 
 

      Our findings on NTN induced STAT3 phosphorylation and its mitochondrial 

localization suggested a unique signaling network involving GFL, receptor isoforms 

and mitochondria. While we have established Src as the mechanism underlying 

RET9 specific STAT3 phosphorylation, the activation STAT3 by GFRα2c but not 

GFRα2a remains to be explained. Preliminary data has suggested that although 

GFRα2a and GFRα2c activate many similar signaling pathways, they differ in the 

temporal requirement in ligand stimulation. A transient stimulation of GFRα2a (1h) by 

GFLs was sufficient to induce neurite outgrowth, but a prolonged stimulation (12-24h) 

of GFRα2c is required to achieve the same phenotype (unpublished data). Further 

investigation of the temporal activation of various adaptor molecules and the 

magnitude of activation by GFRα2 isoforms may provide valuable insights into the 

selective activation of STAT3 by GFRα2c.  

      More importantly, these data have established a link between GFLs and 

mitochondrial function. Mitochondrial abnormalities have been reported in multiple 

neurodegenerative diseases, including Parkinson's, Alzheimer's, and Huntington's 

diseases. Much evidence has suggested the involvement of mitochondrial 

dysfunction and oxidative stress in the pathogenesis of these disorders. Recently, 

mitochondrial STAT3 have been shown to modulate the functions of the electron 

transport chain and oxidative respiration. It is plausible to investigate if the activation 

of mitochondrial STAT3 is one of the mechanisms mediating the protective and 

restorative effects of GFLs on DA neurons in PD. In addition, it is also of great 
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interest to investigate if GFLs and receptor isoforms can regulate the functions of 

other mitochondrial proteins.  

 

9.2.3 Regulation and function of GFRα and co-receptor isoforms in neurogenesis 
 

      GFRα and co-receptor isoforms were found to be robustly regulated during the 

course of NT2 differentiation. Ligand stimulation of these receptors in turn regulated 

the expressions of neuronal genes and miRNAs. The next step is to understand the 

mechanisms underlying the distinct regulation of receptor expression and isoform 

splicing. The immediate candidates include RA regulated transcription factors and 

miRNAs. In addition, the distinct temporal profiles of different GFRα and co-receptor 

isoforms are suggestive of their roles at different phases of neuronal differentiation 

and lineage commitment. Further investigations will provide novel insights of their 

stage dependent functions. Moreover, as RA induction of NT2 differentiation 

generates a heterogeneous population of neurons and glial cells, it should be 

investigated if GFRα and co-receptor isoforms are selectively expressed on different 

types of cells. To examine their spatial localization, it is imperative to develop and 

optimize new antibodies or in situ hybridization probes which allow sensitive and 

specific detection of each isoform in cells and tissues.    

 

9.2.4 Functions of miRNA in GFL signaling and neurogenesis 
 

      It is now well accepted that miRNAs play important regulatory roles during 

neurogenesis. Our group was the first to investigate the regulation of both precursor 

and mature miRNAs by GFLs. With an optimized mSMRT-qPCR miRNA assay 

system, large numbers of annotated and novel miRNAs can be efficiently and 

accurately profiled. For instance, several dozens of miRNAs were found to be 

regulated by RA or GFLs in NT2 cells, some of which displayed distinct temporal 
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profiles that correlated with the regulation of DA and receptor transcript expressions. 

The reciprocal relationship between the regulated miRNAs and mRNAs can be 

investigated through in silico target prediction and empirical functional studies using 

siRNA or shRNA based mimic and inhibitors of target miRNAs. Knowledge of the 

regulations and functions of these miRNAs will allow the development of novel 

differentiation protocols driven by combinations of miRNAs, transcription factors and 

ligand.  
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Chapter 10 Materials and Methods   
 

10.1 Ligands and Chemicals 
 

Human recombinant GDNF, NTN, mouse recombinant NGF and IL6 were purchased 

from Peprotech (Rocky Hill, NJ). The following chemicals were purchased from 

Sigma Aldrich (Saint Louis, MO): Polybrene, Forskolin (FK), Dibutyryl cyclic AMP 

(dbcAMP), Pituitary adenylate cyclase-activating peptide (PACAP), H89, Actinomycin 

D (ActD) and Cyclohexamide (Chx). MEK inhibitor U0126 was from Promega 

(Madison, WI). 8-p-chlorophenylthio-2'-O-methyl-cAMP (2-Me-cAMP), N6-Benzoyl-

cAMP (6-Bnz-cAMP) and Rp-8-Br-cAMPS were from Biolog (Bremen, Germany). 

Antibiotics G418 and hygromycin B were from PAA (Austria) and Invitrogen 

(Carlsbad, CA), respectively. Primary antibodies against Phospho-CREB (#9191, 

MW: 43 kDa), Phospho-STAT3-ser727 (#9134, MW: 86 kDa), Pan-STAT3 (#9132, 

MW: 79 & 86 kDa), Phospho-ERK1/2 (#9101, MW: 42, 44), Pan-ERK1/2 (#9102, MW: 

42, 44), PARP (#9542, MW: 89, 116), VDAC (#4866, MW: 32 kDa) were purchased 

from Cell Signaling Technologies (Danvers, MA). Antibodies against phospho-

STAT3-tyr705 (sc-8059, Santa Cruz, MW: 79 & 86 kDa) and SOD1 (sc-11407, Santa 

Cruz, MW: 23 kDa) were purchased from Santa Cruz. Antibody against Flag-tag 

(F1804) was purchased from Sigma Aldrich. Secondary antibodies conjugated with 

horseradish peroxidase (HRP) were from Pierce (Rockford, IL). 

 

10.2 Cloning and Vector Construction 
 

Construction of retroviral vectors containing wild type and mutant STAT3 - 

Modified pXJ-40 vectors containing cDNAs for wild type and three mutant forms of 

STAT3a (Ser727Ala, Ser727Glu, Tyr705Phe) were kindly provided by Dr Cao 

Xinming (Institute of Molecular and Cellular Biology, Singapore). These wild type and 
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mutant STAT3a constructs were sub-cloned into a modified murine retroviral pQCXI 

vector (Clontech, Mountain View, CA) that harbors an eGFP-coding sequence under 

the control of an internal ribosomal entry site (pQCXI-eGFP). To create mitochondria 

targeted STAT3 constructs, the mitochondrial targeting sequence (MTS, from 

cytochrome c oxidase subunit VIII) was first cloned by polymerase chain reaction 

(PCR). The MTS sequence was fused to the 5’ of wild type and mutant STAT3a by 

assembly PCR and subcloned into the retroviral pQCXI-P vector containing 

puromycin resistance gene as selection marker. 

 

10.3 Cell Culture 
 

Culture of neuronal cell lines - The murine neuroblastoma cell line Neuro2A cells 

(American Type Culture Collection; catalog # CCL-131), human neuroblastoma 

BE(2)-C (ATCC catalog # CRL-2268) and human embryonal carcinoma NTERA-2 

cl.D1 cells (ATCC catalog # CRL-1973) were grown in DMEM (Sigma, St. Louis, MO) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS; Sigma), 100 

units/ml penicillin (Pan Biotech, Germany) and 100 μg/ml streptomycin (Pan Biotech), 

at 37°C in a humidified atmosphere with 5% CO2. The rat pheochromocytoma cell 

line PC12 cells (American Type Culture Collection; catalog # CRL-1721) were grown 

in DMEM (Sigma, St. Louis, MO) supplemented 10% heat-inactivated FBS, 5% 

Horse Serum (HS, Hyclone, Logan, UT), 100 units/ml penicillin and 100 μg/ml 

streptomycin.  

Primary Culture - Rat primary cortical neurons were isolated from embryonic day 18 

(E18) rat embryos, as described previously [29]. Briefly, the cortices were dissected 

and dissociated in Hank’s balanced salt solution (Sigma), and plated on poly-D-lysine 

(Sigma) coated culture plates in Minimal essential medium (MEM, Sigma) 

supplemented with glucose (0.6% wt/vol, Sigma) and 10% FBS. After 24 h, MEM 
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was replaced by Neurobasal medium (Invitrogen, Carlsbad, CA) containing B27 

supplement (Invitrogen), 2 mM glutamine (Invitrogen), 100 units/ml penicillin and 100 

μg/ml streptomycin and continued to culture for 48 h at 37 °C in a humidified 

atmosphere with 5% CO2. On DIV 3 (3 days in vitro), primary cortical neurons were 

washed once with Neurobasal medium without B27 and kept in the same medium for 

3 h before stimulated with 100 ng/ml NTN. All procedures were performed according 

to the guidelines issued by the National University of Singapore Institutional Animal 

Care & Use Committee (IACUC). This study was approved under a broader project 

titled “Mechanism elucidation and application of global Transcriptional Machinery 

Engineering (gTME) to the modulation of the isoprenoid pathway for biosynthesis of 

pharmaceutical” and given the animal work permits (072/09). 

Transient Transfection of Neuro2A Cells - The wild-type and mutant STAT3 – 

eGFP co-expression constructs were transiently transfected into Neuro2A cells using 

Transfectin (BioRad) at a ratio of 8 µl Transfectin to 4 µg cDNA per 100,000 cells. 

Neuro2A cells were incubated with the transfection mixture for 12 h and allowed to 

recover for 24 h in complete medium before experimentation. Successfully 

transfected cells were identified through eGFP expression. For knockdown 

experiments, small interfering RNA (siRNA) duplexes for murine RET (sc-36405) and 

NCAM (sc-36017) were purchased from Santa Cruz. Briefly, subconfluent cells (50–

80%) were transfected with siRNA duplexes (40 nM) using Transfectin (Bio-Rad) for 

24 h. Cells were serum deprived for 12 – 16 h before stimulation with 50 ng/ml NTN 

to induce signaling activation and neurite outgrowth.   

Stable Transfection of Neuro2A and retroviral Infection of PC12 Cells – The 

establishment of Neuro2A cells stably expressing GFRα2 isoforms has been 

described previously [12]. Retroviral vector pQCXIN (Clontech, Palo Alto, CA) 

carrying neomycin resistance gene was used to clone the open reading frames 

(ORFs) of mouse GFRα2a (GenBank accession number: AF079108), GFRα2b 
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(GenBank accession number: AF079107) and GFRα2c (GenBank accession number: 

AF002701). Retroviral vector pQCXIH (Clontech) carrying hygromycin B resistance 

gene was used to clone mouse ORF of RET9 (GenBank accession number: 

AY326397) and RET51 (GenBank accession number: AF209436). Retroviral pQCXI-

P vector carrying puromycin resistance gene was used to clone MTS-STAT3 

constructs. Plat-E cells were transfected with these retroviral vectors using FuGene 6 

(Roche, Germany). Active retroviruses were collected from supernatants and used to 

infect PC12 cells in the presence of 8 µg/ml of polybrene. PC12 cells were first 

infected with combinations of pQCXIN and pQCXIH vectors and selected over 2 

month in complete medium supplemented with 0.4 mg/ml G418 and 0.1 mg/ml 

hygromycin B. The selected PC12 cells were then infected with retroviruses carrying 

different MTS-STAT3 mutants and further selected over 2 months with 2 μg/ml 

Puromycin (Sigma). These engineered PC12 cells were shown to stably overexpress 

wild type and mutant MTS-STAT3 in the mitochondrial but not in the cytosolic fraction.  

Knockdown of GFRα2b in BE(2)-C Cells - Small interfering RNA (siRNA) duplexes 

(Invitrogen) with target sequence: TCTTCTTCTTTCTAGGTGAGGA were used to 

specifically knockdown GFRα2b in BE(2)-C cells as previously described [12]. Briefly, 

subconfluent cells (50–80%) were transfected with siRNA duplexes (20 nM) using 

Transfectin (Bio-Rad) for 24 h. Cells were pre-treated with 10 µM U0126 or 200 µM 

Rp-8-Br-cAMPS for 1 h before stimulation with 50 ng/ml NTN. 

Differentiation and assessment of neurite outgrowth – Neuro2A cells were 

seeded on 12-well cell culture plates (NUNC, Finland) in DMEM supplemented with 

10% FBS overnight. Upon attachment, the cells were serum deprived (DMEM 

supplemented with 1% FBS) for 12-16 h. Control and transfected cells were then 

treated with 50 ng/ml NTN for 24 h to induce neurite outgrowth. For transient STAT3 

mutant expression experiments, infected cells were identified by eGFP expression 

and those eGFP positive cells bearing at least one neurite with the length equivalent 
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to two cell-body length were scored. More than 60 eGFP positive cells from three 

biological replicates were counted. Stably infected PC12 cells were seeded on poly-

D-lysine coated 12-well cell culture plates overnight in DMEM supplemented with 10% 

FBS and 5% HS. Upon attachment, the cells were serum starved (DMEM 

supplemented with 0.5% FBS and 0.25%HS) for 12 - 16 h. The cells were then 

treated with 50 ng/ml NTN for 24 - 72 h to induce neurite outgrowth. For inhibitor 

studies in both cells, serum deprived cells were pre-treated with selected 

pharmacological inhibitors for 1 h before NTN stimulation. After 24 to 72 h, the cells 

bearing at least one neurite with the length equivalent to two cell-body length were 

scored. More than 300 cells from three biological replicates were counted to obtain 

the mean and standard deviation. Significance differences between stimulated and 

control samples were calculated using Students t-test. A value of p < 0.05 was 

considered significant. For studies of mitochondria targeted STAT3 mutants, NTN 

induced neurite outgrowth in PC12 clones stably expressing different mutants were 

analysed using HCA-Vision (CSIRO, AU). Briefly, control and NTN treated PC12 

cells were fixed with 4% paraformaldehyde (PFA; BDH Laboratory, UK). The cell 

bodies and neurites were stained with Imperial Stain (Pierce) and the nuclei with 1 

μg/ml Hoescht 33342 (Sigma). All images of control and NTN treated cells were 

acquired with identical imaging parameters using a Zeiss Axio Observer Z1 Inverted 

Microscope (Carl Zeiss, Germany). The images were batch analysed using HCA-

Vision through a 3-step analysis including Neuron Body Detection, Neurite Detection 

and Neurite Analysis, with identical parameters. Significant differences in neurite 

outgrowth between wild type and STAT3 mutant expressing PC12 cells were 

calculated using the paired Student’s t-test. A value of p<0.05 was considered 

significant (**p<0.01; *p< 0.05). 

Ligand stimulation and inhibitor studies – For cAMP study (chapter 3), PC12 and 

BE(2)-C cells were initially seeded in growth medium for 24-48 h, and serum was 
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depleted (0.5% FBS) for another 16 h. Cells were then stimulated with individual or 

combinations of the following chemicals: 50 ng/ml GDNF, NTN or NGF, 10 µM 

Forskolin (FK), 100 µM dbcAMP, 100 nM PACAP, 50 µM, 100 µM or 200 µM of 2-

Me-cAMP or 6-Bnz-cAMP in serum-depleted DMEM for 48 h or 96 h for PC12 or 

BE(2)-C cells, respectively. For inhibitor studies, cells were pre-treated for 1 h with 

the following chemicals before ligand stimulations: 10 µM U0126, 10 µM H89, 200 

µM Rp-8-Br-cAMPS, 2 µg/ml ActD or 10 µg/ml Chx. Cells were then incubated with 

inhibitors and ligands for 24 h, 48 h or 96 h for neurite outgrowth analyses. To inhibit 

ERK1/2 activation at different time points after ligand stimulations, PC12 cells were 

treated with ligands (NTN and/or FK) for 0, 1 or 3 h followed by co-treatment with 

ligands and 10 µM U0126 for 48 h. For STAT3 study (chapter 4 & 5): Neuro2A and 

PC12 cells were first serum starved in DMEM with 1/20 of original serum content (0.5% 

FBS for Neuro2A and 0.25% HS, 0.5% FBS for PC12) for 12 – 16 h. Cells were pre-

treated with U0126 (Promega), SP600125 (Tocris, Bristol, UK), SB203580 (Tocris), 

PP2 (Tocris), SU6656 (Sigma), or Gö6983 (Sigma) for 1 h before ligand stimulation 

(50 ng/ml of NTN or IL6) in the presence of these inhibitors. 

Measurement of intracellular reactive oxygen species - PC12 cells were seeded 

overnight in Poly-D-Lysine coated 96-well plate (NUNC) and serum-starved in DMEM 

lacking phenol red (Sigma) supplemented with 0.25% HS and 0.5% FBS for 12–16 h. 

Prior to NGF stimulation, cells were loaded with 5 μg/ml 2’,7’-dichlorofluorescein 

diacetate (DCFHDA, Sigma) for 10 min at 37 °C in the dark and washed once with 

DMEM lacking phenol red. The DCF fluorescence intensity upon NGF stimulation 

was measured by a SpectraMax GerminiXS spectrometer (Molecular Device, 

Sunnyvale, CA) with an excitation wavelength of 485 nm and emission wavelength of 

525 nm, over the period of 40 min. 
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10.4 Analysis of gene expression (mRNA & miRNA) 
 

RNA Extraction and Reverse Transcription - Total RNA from primary neurons or 

cultured cells was isolated using TRI-Reagent (Sigma) according to manufacturer’s 

instruction. The integrity of isolated total RNA was validated by denaturing agarose 

gel electrophoresis and the concentration measured by Nanodrop 2000 (Thermo 

Scientific). For transcriptomic profiling of mRNA, 2 µg of total RNA were reverse 

transcribed using ImPromII reverse transcriptase (Promega) and 0.5 µg random 

hexamer for 60 min at 42°C according to manufacturer’s instruction. The reaction 

was terminated by heating at 70°C for 5 min. For transcriptomic profiling of miRNA, 

up to 100 ng of total RNA were reverse transcribed using ImPromII reverse 

transcriptase (Promega) and 100 nM of single-plex or multiplex stem-looped RT 

oligos for 30 min at 42°C followed by heat inactivation at 70°C for 5 min. 

Primers and qPCR - Real-time qPCR using SYBR Green I was performed on the 

CFX96 (Biorad, Hercules, CA) in a total volume of 25 µl in 1× XtensaMix-SGTM 

(BioWORKS, Singapore), containing 2.5 mM MgCl2, 200 nM of primers and 0.5 U of 

KlearTaq DNA polymerase (KBiosciences, UK). Real-time qPCR for mRNA was 

carried out after an initial denaturation for 10 min at 95°C followed by 40 cycles of 30 

s denaturation at 95°C, 30 s annealing at 60°C and 30 s extension at 72°C. Real-

time qPCR for microRNA was carried out with an initial denaturation for 10 min at 

95°C followed by 40 cycles of 10 s denaturation at 95°C and 30 s annealing and 

extension at 60°C. Melt curve analyses were performed at the end of reaction to 

verify the identity of the products. The threshold cycles (Ct) were calculated using the 

CFX manager v1.6 (Biorad). All real-time PCR quantification was carried out 

simultaneously with linearized plasmid standards and non-template controls.  

Primer Design and Plasmid Standards for mRNA - The Genbank accession for 

each target gene was retrieved from the Illumina microarray probe set and compared 
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to the NCBI RefSeq database (Release 16; http://www.ncbi.nlm.nih.gov). Transcript 

splicing sites were retrieved from Ensembl (http://www.ensembl.org). Where more 

than one transcript matched the probe, the sequences were aligned and the primers 

were designed to amplify the consensus region. Vector NTI Advance 10 was used to 

design two sets of primers for each target gene. The first set of primers generates an 

amplicon of ~300 bp and is used as a template for RT-qPCR of the targeted gene. 

The template was subcloned into pGEMT-easy (Promega) vector as previously 

described [54]. The second set of primers was used for RT-qPCR and was designed 

to amplify a ~100 bp region within the ~300 bp template. Both primer sets were exon 

spanning to avoid amplification from genomic sequences. Where possible, primers 

for RT-qPCR were designed to target the same exons used in the Illumina 

Expression BeadChip.  All primer sequences were evaluated for possible false 

priming to known rat sequences using the NCBI BLAST tool 

(http://blast.ncbi.nlm.nih.gov/). All products generated after amplifications were 

verified by gel-electrophoresis and DNA sequencing. 

Assays for mature miRNA - The designs of mSMRT-qPCR microRNA assays are 

properties of Exploit Technologies Private Limited (Biopolis, Singapore). The 

research use of these assays is governed by the End User License Agreement. 

Examples of mSMRT-qPCR assay are as follows: 

microRNA Stem-loop RT Primer qPCR Primer Pair 

hsa-miR-221 AGAGGTTTGCCTCTGAAACCCAGC Pf: TCCCTCCCAGCTACATTGTCT 
Pr: GCCTCTGAAACCCAGCA 

hsa-miR-222 CGTGCTTCCGCACGACCCAGTA Pf: ACACAAGGAACCAGCTACATCTG
Pr: CGCACGACCCAGTAGC 

hsa-miR-335 GACCCAGGCGGGTCACATTTTTCGT Pf: ATCACACCTCCGTCAAGAGCAA
Pr: CAGGCGGGTCACATTTTTCGTT 

 

Gene expression stability analysis - Gene expression stability was analysed using 

two publicly available software tools, geNorm (http://medgen.ugent.be/ genorm/) and 

NormFinder (http://www.mdl.dk/), according to authors’ instruction. 
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List of qPCR primers for mRNA 

Gene  Species Forward Primer  Reverse Primer 
 
GDNF family 

GDNF mmu,rno TGAAGTTATGGGATGTCGTGG TTGGAGTCACTGGTCAGCG 

GFRα1a mmu,rno CATATCAGATGTTTTCCAGCA TGGT(A/G)CAGGGGGTGATGTAGG 

GFRα1b mmu,rno CAGTCCCGTTCATATCAGTGGA TGGT(A/G)CAGGGGGTGATGTAGG 

GFRα1-GPI mmu,rno GCCAGCCAGAGTCAAGGTCT GCCAATCAGTCCCGAGTAGG 

GFRα2a mmu GCCTCTTCTTCTTTTTAGACGAA TGTCGTTCAGGTTGCAGGCCT 

GFRα2b mmu GCCTCTTCTTCTTTTTAGGTGAG TGTCGTTCAGGTTGCAGGCCT 

GFRα2c mmu GCCTCTTCTTCTTTTTAGGGACA TGTCGTTCAGGTTGCAGGCCT 

GFRα2-GPI mmu,rno TGTCATCACCACCTGCACATC AGGCCAAGGTCA(C/G)CATCAGG 

RET9 mmu,rno CCCCTGGTGGACTGTAACA GTAAATGCATGTGAAATTCTACC 

RET51 mmu,rno CCCCTGGTGGACTGTAACA TCGGCTCTCGTGAGTGGTA 

RET-TK2 mmu,rno TCAATCAGAGCCTGGACCATA GGAGGAAGA(C/T)GGTGAGCA 

NCAM mmu,rno TGTCAAGTGGCAGGAGATGC GGCGTTGTAGATGGTGAGGGT 

GDNF hsa TCACTGACTTGGGTCTGGG TCAAAGGCGATGGGTCTGC 

GFRα1a hsa CATATCAGATGTTTTTCAGCAAGTGGA CAGACATCGTTGGACACGCT 

GFRα1b hsa TGGTCCCATTCATATCAGTGGA CAGACATCGTTGGACACGCT 

GFRα2-GPI hsa CAGTGACAGTACCAGCTTGGG AAGGCCTGTTTCAGCATCAG 

RET9 hsa GGATTGAAAACAAACTCTATGGTAGA AGGAAGGATAGTGCARAGGGGAC 

RET51 hsa AAACAAACTCTATGGCATGTCAGAC CGCTGAGGGTGAAAGCATC 

NCAM hsa CAGCAGCGGATCTCAGTGGT CATCACACACAATCACGGCA 

 
Neuronal Markers 

VMAT hsa TGGATTCGTCAATGATGCCT CAGAAGGACCTATAGCATACCC 

TH hsa GTGCTAAACCTGCTCTTCTC GCTTCAAACGTCTCAAACAC 

AADC hsa CAATCTCTTAGAAGTCGGTCCT AATCTGCAAACTCCACTCCA 

Msx1 hsa AGACGCAGGTGAAGATATGG ATCTTCAGCTTCTCCAGCTC 

En1 hsa GCCAAGATCAAGAAAGCCAC TACTCGCTCTCGTCTTTGTC 

EN2 hsa CCGGCGTGGGTCTACTGTA GGCCGCTTGTCCTCTTTGTT 

Girk2 hsa CATGATTGAGTGAAGCCACC AGGACGTTAGTCATGGATTCTG 

Otx2 hsa GTACCCAGACATCTTCATGC GATTCTTAAACCATACCTGCACC 

Mash1 hsa TCTTCGCCCGAACTGATGC CAAAGCCCAGGTTGACCAACT 

Pet1 hsa CACGGCGAGTTCAAGCTCA TTGCCATGCACCTTGCTCA 

Gata2 hsa GCAACCCCTACTATGCCAACC CAGTGGCGTCTTGGAGAAG 

SERT hsa ATTTTTGGGGGAATCCCGCTC GCAGATGGCATAACCAATCCCT 

HB9 hsa TGCCTAAGATGCCCGACTT AGCTGCTGGCTGGTGAAG 

Islet1 hsa AAGGACAAGAAGCGAAGCAT TTCCTGTCATCCCCTGGATA 

Olig2 hsa AGCTCCTCAAATCGCATCC ATAGTCGTCGCAGCTTTCG 

VGLUT1 hsa TTTTCTGGGGCTACATTGTCAC ACTCCGTTCTAAGGGTGGGG 

VGLUT2 hsa TCATCACTCAGATTCCGGGAG CACACCCTCAACAAGTCCCTG 

GAPDH hsa AAACCTGCCAAATATGATGAC ACCTGGTGCTCAGTGTAG 
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Candidate reference genes 

RPL29  mmu, rno ACAGAAATGGCATCAAGAAACCC TCTTGTTGTGCTTCTTGGCAAA 

RPL10a  mmu, rno GGTGGCCAAAGTGGATGAGG CATCGGTCATCTTCACGTGG 

LOC292640 mmu, rno GTCCACAGACTGTCCCAGCCAT AGCCCGAGCAAAGTCCTCTG 

LOC498143 mmu, rno ACCAGCTGAAATTTGCCCGA GTGGAATCTTCACCAACCCA 

LOC317275 mmu, rno CCGTCATGCTACCAAGAATAGAGTG TCTAGTTGAGCTGCCGGATGAG 

RPS15  mmu, rno TTCACCTACCGTGGCGTGGA TGAGTGCTGCTTCCTCCGCA 

ARBP  mmu, rno GGTCCTGGCTTTGTCTGTGG CAGCCGCAAATGCAGATGGA 

RPL14  mmu, rno GCCAAGATGACAGATTTTGATCG GAGAGCAGCTCTCTGGAGTTTCTTC 

EEF1A1  mmu, rno GATGCTGCCATTGTTGACAT TGTCTGCCTCATGTCACGAA 

RPS15A  mmu, rno TCAACAACGCGGAGAAGAGG  CACCAATGTAGCCATGCTTCATC 

RPL18  mmu, rno AAGGGCCGAGAGGTGTACCGACACT TCGAACTTCCGGCCCTTGGA 

REPS1 mmu, rno ACGCAATAAGGAGACCAACA TCCAGTTGAACTTCCAGGGA 

LOC363720 mmu, rno AAAGCCAGGACATCGTGAATCA AGCAGATGGCAAACTTCTGGC 

CNOT8  mmu, rno CCCTTCTGGAATCAACACGT GAACTGCAGCCCTGAGTTGG 

RTCD1  mmu, rno ACGGGACCAGTCACACTCCA GGCATCTTCCTCCTCTTCTG 

RPL19  mmu, rno ACCTGGATGCGAAGGATGAG ACCTTCAGGTACAGGCTGTG 

NDUFB6 mmu, rno CTGGAGCGATTCTGGAATAACTTTT GGTATGATCACATGGGAAACAGTGA 

RPL9  mmu, rno TATCAGGAAGTTTTTGGATGGCATC TCAGGATCTTGTTTCTGAAGCTAGG 

LOC499803 mmu, rno CCTGGGACCCAAGCGGTAAGAT ATGGGGGTGGTGGGCAAGAT 

RPL3  mmu, rno TGGGCAAGATGAGATGATTGACGTC GGGTCTTTCGGGGCAGCTTCTTT 

ACTB  mmu, rno GCTATGAGCTGCCTGACGGT GTTTCATGGATGCCACAGGA 

GAPDH  mmu, rno ACCACGAGAAATATGACAACTCCC CCAAAGTTGTCATGGATGACC 

EGR1  mmu, rno AAGGGGAGCCGAGCGAACAA GATAACTTGTCTCCACCAGCGCC 

ITGA1  mmu, rno GTCTGAGGTTCTCAAAAGAGGCAC TCACTTGACTCAGGTCGGAAGG 

CRYAB  mmu, rno TGCGGGCACCTAGCTGGATT CCTCTGGAGAGAAGTGCTTCACG 

 

RNA Purification and cDNA Preparation for microarray - Total RNA from PC12 

cells was prepared using TRIzol reagent (Invitrogen, CA) according to manufacturer’s 

instruction. Total RNA was collected from samples in quadruplicate at each treatment 

time point and the integrity of the RNA validated by denaturing agarose gel 

electrophoresis and using the StdSens analysis chip on the Experion Automated 

Electrophoresis System (BioRad, CA) according to manufacturer’s instructions. The 

Experion Automated Electrophoresis System assigns a RQI to each RNA 

electropherogram which ranges from 10 (intact RNA) to 1 (completely degraded 

RNA). RNA concentration was quantified using a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific, Wilmington, DE), and the 260/280 and 
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260/230 ratios were examined for protein and solvent contamination.  Five 

micrograms of total RNA were reverse transcribed in a total volume of 20 µl 

containing 400 U of ImpromII and 0.5 µg of random hexamer (Promega, Madison, WI) 

for 60 min at 42°C according to the manufacturer’s instructions. The reaction was 

terminated by heating at 70°C for 5 min, and the cDNA was diluted 1:20 for 

quantitative real-time PCR.  

Microarray - PC12 cells were seeded on 25cm2 flask in complete medium and 

subsequently incubated for 12 h in serum free DMEM. The cells were then treated 

with GDNF (50 ng/ml) or NGF (50 ng/ml) for 0.5 h or 72 h in duplicates. Total RNA 

was isolated, quantified and integrity verified before it was amplified using Ambion 

Illumina RNA Amplification kit (Ambion, TX, USA). Briefly, total RNA (500 ng) was 

reverse transcribed by ArrayScript in the presence of T7 Oligo(dT) primer. Second 

strand of the cDNA was synthesized by DNA polymerase at 16°C for 2 h. The cDNA 

was purified and in vitro transcribed with T7 RNA polymerase and biotin-NTPs. 

Biotin-labeled cRNA samples were purified and quantified by ND-1000 

spectrophotometer (NanoDrop, Fisher Thermo, DE, USA). Each cRNA (750 ng) was 

hybridized to RatRef-12 Expression BeadChip (Illumina, San Diego, CA, USA) 

containing 22,523 probes for a total of 21,910 rat genes selected primarily from the 

NCBI RefSeq database (Release 16) according to instruction provided by 

Experienced User Card (11286340 Rev A, Illumina). After hybridization, washing and 

blocking, the BeadChip was incubated with Streptavidin-Cy3 solution (Amersham 

Biosciences, Piscataway, NJ, USA). Fluorescent signals were obtained from scans 

on the high resolution Illumina BeadArray reader, using a two-channel, 0.8 μm 

resolution confocal laser scanner. The Illumina BeadStudio software (Version 2.0) 

was used to extract fluorescence intensities and the raw fluorescent data was 

background subtracted and used for analysis. Background is defined as the average 

signal intensity estimated from the negative control bead types. Outliers are removed 
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using the median absolute deviation method. Detection p-values produced by the 

BeadStudio software were corrected for multiple hypothesis testing. 

 

10.5 Analysis of protein expression 
 

Western blot analysis - Primary cortical neurons or cultured neuronal cells were 

washed once with PBS and subsequently lysed in lysis buffer containing 2% (w/v) 

SDS. Protein concentrations were quantified using the microBCA assay (Pierce, 

Rockford, IL). The protein samples were separated by SDS-PAGE gel and incubated 

with respective primary antibodies over night at 4°C and subsequently with 

corresponding secondary antibodies for 2 h at 37°C. The protein bands were 

developed with Immobilon Western Chemilum HRP Substrate (Millipore, Billerica, MA) 

on ChemiDoc XRS system (Biorad). The band intensities were quantified with 

Quantity One 1-D Analysis software v4 (Biorad). 

Preparation of nuclear and cytosolic extracts - The nuclear and cytosolic extracts 

were prepared using NE-PER® Nuclear and Cytoplasmic Extraction Reagents 

(Pierce), according to manufacturer’s instruction. Briefly, PC12 and Neuro2A cells 

were washed twice with ice-cold PBS and harvested by gentle scraping. Cells were 

pelleted by centrifugation at 500 x g for 5 min, resuspended in ice cold CER I and 

incubated on ice for 10 min. The cells were then lysed by addition of ice cold CER II 

and centrifuged for 5 min at 16,000 x g to separate the cytosolic fraction (supernatant) 

from the nucleus (pellet). The pellet was resuspended in ice cold NER and incubated 

on ice for 40 min with occasional vortexing (15 s after every 10 min of incubation). 

The nuclear extracts (supernatant) were separated from the debris by centrifugation 

at 16,000g for 10 min.  

Preparation of mitochondrial and cytosolic extracts – Mitochondrial and cytosolic 

extracts were prepared from PC12 and Neuro2A cells using differential centrifugation, 
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as previously described [29]. Briefly, the cells were washed twice with ice-cold 

phosphate buffer saline (PBS) and harvested by gentle scraping. Cells were pelleted 

by centrifugation at 500 x g for 5 min and resuspended in ice cold mitochondria 

extraction buffer (50 mM HEPES pH 7.4, 68 mM sucrose, 200 mM D-mannitol, 50 

mM KCl, 2 mM MgCl2, 5 mM EDTA, 10 μg/ml aprotinin, 2 μg/ml pepstatin A, 10 

μg/ml leupeptin, 50 mM NaF, 0.5 mM sodium vanadate, 20 mM glycerol phosphate) 

and incubated on ice for 15 min to allow swelling. The cells were dounce 

homogenized with 60 strokes. The unbroken cells and nuclei were removed by 

centrifugation at 800 x g for 10 min at 4°C.  The supernatants were further 

centrifuged at 10,000 x g for 30 min at 4°C to obtain the crude mitochondrial fraction. 

The resulting supernatants were collected as the cytosolic extracts and the crude 

mitochondrial pellet was washed once with extraction buffer and collected by 

centrifugation at 10,000 x g for 30 min at 4°C.  

Immunocytochemistry - Control and NTN treated Neuro2A, PC12 Cells and rat 

embryonic cortical neurons were fixed with 4% paraformaldehyde in PBS for 15 min 

at 37°C, subsequently permeabilized in 0.5% Triton-X100 / PBS and blocked with 

normal goat serum (1:10; Dako, Glostrup, Denmark) in 0.5% Triton X-100 / PBS for 

45 min at 37°C. The cells were then incubated with primary antibodies against 

Phospho-STAT3-ser727 (CST #9134, 1:100 dilution) or GRIM-19 (Invitrogen 

#438900, 1:100 dilution) in 0.3% Triton X-100 / 1% BSA / PBS overnight at 4°C and 

washed three times in PBS. Subsequently, the cells were incubated with goat anti-

rabbit or goat anti-mouse fluorescent secondary antibody (Alexa Fluor 488 / 596; 

Invitrogen, CA) diluted 1:400 in 0.3% Triton X-100 / 1% BSA / PBS for 2h at 37°C. 

The cells were washed three times in PBS and mounted. For Mitotracker labeling, 

live Neuro2A or PC12 cells were pre-incubated with 200 nM MitoTracker® Red 

CMXRos (Invitrogen M7512) for 10 min before NTN stimulation. Image acquisition 

was performed using the Zeiss LSM710 with Axio Observer.Z1 confocal microscope 
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equipped with fluorescence detection (Oberkochen, Germany). Images of control and 

NTN stimulated samples were taken with identical laser and optical settings. 

Colocalization coefficients between P-Ser-STAT3 and MitoTracker or P-Ser-STAT3 

and GRIM-19 were analysed with Zeiss ZEN software (v2010). 
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