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SUMMARY 

Understanding the behavior of biological systems is a challenging task. 

Computational models can assist us to understand biological systems by 

providing a framework within which their behavior can be explored. 

Constructing the models of these systems enables their behavior to be 

simulated, observed and quantified on a scale. 

 

We constructed a model of endothelial permeability signaling pathway which 

is involved in injury, inflammation, diabetes and cancer. Detailed molecular 

interactions are specific and ordinary differential equations (ODEs) were used 

in our model to capture the time-dependent dynamic behavior of the 

concentration of proteins. All equations for molecular interactions in this study 

were derived based on laws of Mass Action. Our model was validated against 

a number of experimental findings and the observed synergistic effects of low 

concentrations of thrombin and histamine in mediating the activation of MLC. 

It can be used to predict the effects of altered pathway components, collective 

actions of multiple mediators and the potential impact to various diseases. 

 

Another perspective for deciphering the mechanism of endothelial 

permeability and related disease is identifying the gene markers responsible 

for disease initiation. Current microarray data analysis tools provided good 

predictive performance. However, the signatures produced by those tools have  
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been found to be highly unstable with the variation of patient sample size and 

combination. To solve this problem, we developed a novel gene selection 

method based on Support Vector Machines, recursive feature elimination, 

multiple random sampling strategies and multi-step evaluation of gene-ranking 

consistency.  

 

After program implementation, we first use microarray datasets to test. The 

dataset is endothelia permeability related disease - sepsis microarray. The 

expression levels of 18 control and 22 patient samples were used for sepsis 

marker discovery. 20 sets of sepsis gene signatures were generated. 41 gene 

signatures are fairly stable with 69%~93% of all predictor-genes shared by all 

20 signatures sets. The predictive ability of the selected signature shared by all 

of the 20 sets is evaluated by SVM models on an independent dataset collected 

from GEO Database. Unsupervised hierarchical clustering analysis provides 

additional indication of the predictive ability of selected signatures.  

 

Then the other type of high-throughput dataset used for signature selection 

system is breast cancer copy number variation based dataset. Total of 373 

breast cancer samples and 517 normal people samples were used. We first 

calculated the breast cancer and normal people CNV calling by hidden 

Markov model. In this case, the derived 91 breast cancer signatures are found 

to be fairly stable with 80% of the top 50 ranked genes and 65% to 85% of all 

genes in each signature were shared by 20 signature sets. 
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Chapter 1 Introduction 

Endothelial permeability is involved in injury, inflammation, diabetes and 

cancer. Computational models can assist us to understand the mechanism by 

providing a framework within which their behavior can be explored. Besides, 

computational model can be used to predict the effects of altered pathway 

components, collective actions of multiple mediators and the potential impact 

to various diseases. Computational model also can potentially be used to 

identify important disease genes through sensitivity analysis of signaling 

components. Another perspective for deciphering the mechanism of 

endothelial permeability and related disease is identifying the gene markers. 

Thanks to the rapid progress on the research of genomics and genetics, more 

and more high-throughput data is available. The first section (Section 1.1) of 

this chapter gives an overview of endothelial permeability and related disease. 

The second section introduces mathematical modeling of signaling pathways 

(Section 1.2). The following sections of this chapter introduce the disease 

biomarker selection using high throughput data, includes microarray and copy 

number variation datasets (Section 1.3). The motivation of this work and 

outline of the structure of this document are presented in Section 1.4.  
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1.1 Introduction to endothelial permeability and related disease 

1.1.1 Overview of endothelial permeability  

Endothelial permeability is a significant problem in vascular inflammation  

associated with trauma, ischaemia–reperfusion injury, sepsis, adult respiratory 

distress syndrome, diabetes, thrombosis and cancer [1]. The mechanism 

underlying this process is increased paracellular leakage of plasma fluid and 

protein [2]. Inflammatory stimuli such as histamine, thrombin, vascular 

endothelial growth factor (VEGF) and activated neutrophils can cause 

dissociation of cell–cell junctions between endothelial cells as well as 

cytoskeleton contraction, leading to a widened intercellular space that facilitates 

transendothelial flux [3, 4]. Such structural changes initiate with agonist- 

receptor binding, followed by activation of intracellular signalling molecules 

including calcium, protein kinase C (PKC), tyrosine kinases, myosin light 

chain kinase (MLCK), and small Rho-GTPases; these kinases and GTPases 

then phosphorylate or alter the conformation of different subcellular 

components that control cell–cell adhesion, resulting in endothelial 

hypermeability [5]. Targeting key signaling molecules that mediate endothelial 

junction - cytoskeleton dissociation demonstrates a therapeutic potential to 

improve vascular barrier function during inflammatory injury [1]. 
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1.1.2 Molecular mechanism of endothelial permeability 

Endothelial cells lining the inner surface of microvessels form a semipermeable 

barrier that actively participates in blood–tissue exchange of plasma fluid, 

proteins and cells [6] [7]. The maintenance by the endothelium of a 

semi-permeable barrier is particularly important in controlling the passage of 

macromolecules and fluid between the blood and interstitial space [7, 8] .  

Many inflammatory mediators are capable of disrupting the interendothelial 

junction assembly, thereby causing endothelial permeability [9-12]. More 

in-depth molecular analyses suggest that the mechanism underlying 

inflammation-induced endothelial hyperpermeability involves phosphorylation, 

internalisation or degradation of the junctional molecules [13, 14] [15]. In 

addition, the junction - cytoskeleton complex participates in other cellular 

processes including molecular scaffolding, intracellular trafficking, 

transcription and apoptosis that may directly or indirectly alter vascular barrier 

function [16] [17]. 

 

Regardless of the molecular details, however, essentially all permeability 

responses in the vascular endothelium are initiated with receptor occupancy 

followed by a series of intracellular signalling cascades (Figure 1-1) [1], some 

of which are described below. 
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Figure 1-1: Signal transduction in endothelial permeability 

 

 

 

1.1.2.1 Ca2+ release 

In endothelial cells, binding to GPCRs by agonists causes Gαq to switch from a 

GDP-bound to a GTP-bound state, allowing the release of Gαq from the Gβγ 

dimer. The GTP bound Gαq subunit subsequently activates phosphoinositide 

phospholipase PLC-β, which then hydrolyses the lipid precursor 

phosphatidylinositol-4, 5-bisphosphate (PIP2) to yield IP3 and diacylglycerol 

[18-21]. IP3 receptors constitute the most clearly identified Ca2+ channels that 

pump Ca2+ from the ER [22-27]. Most cells have at least one form of IP3 

receptor, and many express all three. Structurally, the IP3 receptor channels are 

tetramers composed of four subunits, IP3-mediated Ca2+ release responses are 

co-operative, indicating that several and perhaps all subunits are required to 
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bind IP3 for the channel to open [28] (Figure1-2). A characteristic feature of 

IP3 receptors is that they are regulated by both IP3 and Ca2+. 

1.1.2.2 PKC activation  

PKC activation occurs when plasma membrane receptors coupled to 

phospholipase C, releasing diacylglycerol. The conventional isoforms, α, βI, 

βII, and γ, are activated by phosphatidylserine, diacylglycerol and Ca2+ 

[29-33]. The unconventional isoforms, δ, ε, η, and θ, require 

phosphatidylserine and diacylglycerol but do not require Ca2+. The ζ and λ 

isoforms are called atypical and require only phosphatidylserine for activation. 

The G-protein activates phospholipase C (PLC), which cleaves 

phosphoinositol-4, 5-bisphosphate (PIP2) into 1, 2-diacylglycerol and 

inositol-1, 4, 5-trisphosphate (IP3). The IP3 interacts with a calcium channel in  

the endoplasmic reticulum (ER), releasing Ca2+ into the cytoplasm. The 

increase in Ca2+ levels activates PKC [34, 35], which translocates to the 

membrane, anchoring to diacylglycerol (DAG) and phosphatidylserine. 
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Figure 1-2: GPCR activation and Ca2+ release.  

 

 

 

External stimulus activates a G-Protein-Coupled Receptor (GPCR), which activates a 

stimulating G-protein. The G-protein activates phospholipase C (PLC), which cleaves 

phosphoinositol-4, 5-bisphosphate (PIP2) into 1, 2-diacylglycerol and inositol-1, 4, 

5-trisphosphate (IP3). The IP3 interacts with a calcium channel in the endoplasmic 

reticulum (ER), releasing Ca2+ into the cytoplasm. The increase in Ca2+ levels activates 

PKC, which translocates to the membrane, anchoring to diacylglycerol (DAG) and 

phosphatidylserine [36] (From Promega signal transduction, Source: Signal 

Transduction Resource, www.promega.com). 

 

1.1.2.3 Rho GTPase activation 

The Rho GTPase cycle is tightly regulated by three groups of proteins. Guanine 

nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP to 

activate the GTPase, GTPase-activating proteins (GAPs) negatively regulate 
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the switch by enhancing its intrinsic GTPase activity and guanine nucleotide 

dissociation inhibitors (GDIs) are thought to block the GTPase cycle by 

sequestering and solubilizing the GDP-bound form [37]. Extracellular signals 

could regulate the switch by modifying any of these proteins, but so far at least, 

they appear to act predominantly through GEFs. Once activated, Rho GTPases 

interact with cellular target proteins (effectors) to generate a downstream 

response (Figure 1-3) [38].  

 

Figure 1-3: The Rho GTPase cycle. 

 

 

Rho GTPases cycle between an inactive GDP-bound form and an active GTP-bound 

form. The cycle is tightly regulated mainly by guanine exchange factors (GEFs), 

GTPase activating proteins (GAPs) and guanine dissociation inhibitors (GDIs) 

[39-44]. In their active form, Rho GTPases can bind to effector molecules such as 

kinases and scaffold proteins [44-49]. 
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1.1.2.4 NO activation 

Cytosolic Ca2+ elevation is a typical initial response of endothelial cells to 

hormonal and chemical signal and to changes in physical parameters, and many 

endothelial functions are dependent on changes in Ca2+ concentration [37]. For 

instance, the activity of endothelial nitric oxide synthase (eNOS) in producing 

nitric oxide in endothelial cells absolutely requires CaM [50] and it appears to 

also require Ca2+ to sustain elevated level of activity [37]. 

 

Nitric oxide plays a critical role in the endothelial cell proliferation, migration, 

and tube formation, as well as increased vascular permeability, hypotension, 

and angiogenesis in vivo [37]. VEGF- and histamine - induced microvascular 

hyperpermeability are both mediated by a signalling cascade triggered by 

receptor binding and transduced by a serial activation of intracellular enzymes, 

including PLC, eNOS, soluble guanylate cyclase (sGC), and protein kinase G 

(PKG). Subsequently, the VEGF-activated NO-PKG pathway was linked to 

ERK1/2-mediated proliferation of cultured endothelial cells via 

phosphorylation and activation of the upstream p42/44 MAPK cascade 

component RAF by PKG [37]. 

 

1.1.3 Endothelia permeability related disease - Sepsis 

The precise regulation of endothelial permeability is essential for maintaining  

circulatory homeostasis and the physiological function of different organs. As a 

result, microvascular barrier dysfunction and endothelial permeability represent 
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crucial events in the development of a variety of disease processes, such as adult 

respiratory distress syndrome (ARDS), ischemia–reperfusion (I–R) injury, 

diabetic vascular complications, and tumor metastasis. Better insight into the 

molecular mechanisms underlying pathogenic conditions related to 

microvascular permeability is required for developing effective therapeutic 

strategies [51-66]. 

 

Sepsis is one of the major causes of mortality in critically ill patients and 

develops as a result of the host response to infection. The endothelium is a 

major target of sepsis-induced events and endothelial cell damage accounts for 

much of the pathology of septic shock [67]. Vascular endothelial cells are 

among the first cells in the body that come into contact with circulating bacterial 

molecules. Endothelial cells possess mechanisms that recognize structural 

patterns of bacterial pathogens and subsequently initiate the expression of 

inflammatory mediators [68-72]. 

 

The cellular response to bacterial toxins normally provides protection against 

microorganism - induced infection critical injury. Under normal conditions, the 

biological activity of sepsis-involved mediators is under the stringent control of 

specific inhibitors. In sepsis this balance is disrupted and the disturbance is 

manifested by profound changes in the relative production of different 

mediators. Therefore the pathogenesis of sepsis can be described as a pro- and  

anti-inflammatory disequilibrium syndrome [73]. 
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If a person has sepsis, they often will have fever. Sometimes, though, the body 

temperature may be normal or even low. Sepsis symptoms and signs are as 

followings: The individual may also have chills and severe shaking; The heart 

may be beating very fast, and breathing may be rapid; Low blood pressure is 

often observed in septic patients; Confusion, disorientation, and agitation may 

be seen as well as dizziness and decreased urination; Some patients who have 

sepsis develop a rash on their skin; The rash may be a reddish discoloration or 

small dark red dots seen throughout the body; Those with sepsis may also 

develop pain in the joints of the wrists, elbows, back, hips, knees, and ankles. 

The prognosis of sepsis depends on age, previous health history, overall health 

status, how quickly the diagnosis is made, and the type of organism causing 

the sepsis. For elderly people with many illnesses or for those whose immune 

system is not working well because of illness or certain medications and sepsis 

is advanced, the death rate may be as high as 80%. On the other hand, for 

healthy people with no prior illness, the death rate may be low, at around 5%. 

The overall death rate from sepsis is approximately 40%. It is important to 

remember that the prognosis also depends on any delay in diagnosis and 

treatment. The earlier the treatment is started, the better the outcome will be. 

 

1.2 Overview of mathematical modelling of signalling pathways 

Biological pathways are the most common pathways which include metabolic 
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pathways and signaling networks of the cell. The metabolic pathways constitute 

the enzymatic reactions where a certain product is formed from a combination 

of substrates under particular kinetic parameters and specific concentration of 

the substrate(s) [74-81]. Signaling networks comprises of the cellular processes 

under different intracellular conditions and in responses to various external 

stimuli. These pathways are studied in greater detail for disease related process 

such as cancer, diabetes, etc [82-88]. The pathways are known in detail because 

of the knowledge obtained from the wide number of interactions between 

various components of the pathway.  

 

The different interacting proteins trigger the cellular process such as that of 

signal transduction where the signals get transduce from extracellular surface to 

the nucleus to activate gene transcription. Specific cells carry out the signaling 

process based on tissue and cell specific gene expression. Hence it is difficult to 

quantify the biological pathways in terms of their biological function in the cell. 

Although much has been known about biological pathways and databases have 

been constructed to store the pathway information, there is always a gap to be 

filled to gain more knowledge about the already known pathways in highly 

detailed manner and expanding their horizons. Using systems biology approach 

scientists have tried to reconstruct pathways using pathway models from the 

information as known from the existing pathways [17]. Reconstruction of  

pathways are carried out using the well known pathways, the different 

components and the interacting partners, the kinetic parameters, the inhibitors 

and the activating factors. Most of the information is obtained either from the 
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pathway database such as KEGG [67] and literature. Pathways maps can be 

described in mathematical terms [89-95]. By describing these pathways in 

mathematical models, it is then possible to perform computer simulations of 

the changes in the responses to changing input. This procedure of predicting 

biological responses through mathematical modeling and simulation is known 

as pathway simulation. Pathway simulation is therefore a quantitative 

prediction of complex biological pathways [96-101]. Pathway simulation will 

allow us to predict or explain complex biological process outcomes that 

cannot be easily foresee or explained with fundamental principles [102-110]. 

For example, Li et al [111] described a model of ERK activity with a crosstalk 

between MEKK1-mediated and EGFR-ERK pathways. The simulation of the 

ERK activity under various conditions, such as differing RhoA and Ras levels, 

displayed ERK activity that are not directly observed. Subsequently new 

hypothesis about the potential drug targets can be generated [112-119]. 

 

Unknown information such as kinetic parameters are obtained using manual 

estimation and prediction using similar proteins such as sequence similarity to 

proteins which share homology with the proteins under study. Parameter 

estimation is significant because it determines how the pathway acts in terms of 

the substrate concentration and the product formation from its respective 

substrates [120-122]. Reconstruction of pathways is followed by pathway  

 

simulation wherein the different kinetic parameters along with the difference 

components of the pathway are input into the simulation software which helps 
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us to understand better about the pathway components and gives us ideas about 

the behavior of the various interactions involved in the pathway. Pathway 

simulation has been an important topic in Systems Biology [90, 123-129]. It 

gives us an overall idea of how the pathways act inside the cell in a quantitative 

manner and this is facilitated by the kinetic parameters used for each reaction of 

the pathway reconstructed.  

 

The complexity of the pathway interactions makes it a hard task to understand 

the behavior of cellular networks. Also as the in vivo experiments are time 

consuming process with minimum time are desirable [130]. Mathematical 

modeling and computer simulation techniques have played an important role in 

understanding the topology and dynamics of such complex networks. Pathway 

simulations have an edge over conventional experimental biology in terms of 

cost, ease and speed.  

 

A pathway simulation can be defined mathematically by differential equations 

defining the law of mass action or Michaelis-Menton Kinetics with formats like 

systems biology mark-up language (SBML), a standard for representing models 

of biochemical and gene-regulatory networks [131, 132]. 

 

1.3 Introduction to high-throughput biomarker selection  

1.3. 1 Introduction to microarray experiments 

Microarray technology, also known as DNA chip, gene ship or biochip, is one 
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of the indispensable tools in monitoring genome wide expression levels of 

genes in a given organism [133, 134]. Microarrays measure gene expression in 

many ways, one of which is to compare expression of a set of genes from cells 

maintained in a particular condition A (such as disease status) with the same 

set of genes from reference cells maintained under conditions B (such as 

normal status).  

 

Figure 1-4 shows a typical procedure of microarray experiments [135, 136]. A 

microarray is a glass substrate surface on which DNA molecules are fixed in 

an orderly manner at specific locations called spots (or features). A microarray 

may contain thousands of spots, and each spot may contain a few million 

copies of identical DNA molecules (probes) that uniquely correspond to a 

gene. The DNA in a spot may either be genomic DNA [137], or synthesized 

oligo-nucleotide strands that correspond to a gene [138-140]. This microarray 

can be made by the experimenters themselves (such as cDNA array) or 

purchased from some suppliers (such as Affymetrix GeneChip). The actual 

microarray experiment starts from the RNA extraction from cells. These RNA 

molecules are reverse transcribed into cDNA, labeled with fluorescent reporter 

molecules, and hybridized to the probes formatted on the microarray slides. At 

this step, any cDNA sequence in the sample will hybridize to specific spots on  

the glass slide containing its complementary sequence. The amount of cDNA 

bound to a spot will be directly proportional to the initial number of RNA 

molecules present for that gene in both samples. Following, an instrument is 

used to read the reporter molecules and create microarray image. In this image, 
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each spot, which corresponds to a gene, has an associated fluorescence value, 

representing the relative expression level of that gene. Then the obtained 

image is processed, transformed and normalized. And the analysis, such as 

differentially expressed gene identification, classification of disease/normal 

status, and pathway analysis, can be conducted. 

 

1.3.2 Statistical analysis of microarray data 

Since microarray contains the expression level of several thousands of genes, 

it requires sophisticated statistical analysis to extract useful information such 

as gene selection. Theoretically, one would compare a group of samples of 

different conditions and identify good candidate genes by analysis of the gene 

expression pattern. However, microarray data contain some noises arising 

from measurement variability and biological differences [73, 141]. The 

gene-gene interaction also affects the gene-expression level. Furthermore, the 

high dimensional microarray data can lead to some mathematical problems 

such as the curse of dimensionality and singularity problems in matrix 

computations, causing data analysis difficult. Therefore choosing a suitable 

statistical method for gene selection is very important. 
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Figure 1-4: Procedure of microarray experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The statistical methods in microarray data analysis can be classified into two 

groups: unsupervised learning methods and supervised learning methods. 

Unsupervised analysis of microarray data aims to group relative genes without 

knowledge of the clinical features of each sample [142]. A commonly-used 
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genes together on the basis of shared expression similarity across different 

conditions, under the assumption that genes are likely to share the same 

function if they exhibit similar expression profiles [143-146]. Hierarchical 

clustering creates phylogenetics trees to reflect higher-order relationship 

between genes with similar expression patterns by either merging smaller 

clusters into larger ones, or by splitting larger clusters into smaller ones. A 

dendogram is constructed, in which the branch lengths among genes also 

reflect the degree of similarity of expression [147, 148]. By cutting the 

dendogram at a desired level, a clustering of the data items into the disjoint 

groups can be obtained. Hierarchical clustering of gene expression profiles in 

rheumatoid synovium identified 121 genes associated with Rheumatoid 

arthritis I and 39 genes associated with Rheumatoid arthritis II [149]. 

Unsupervised methods have some merits such as good implementations 

available online and the possibility of obtaining biological meaningful results, 

but they also possess some limitations. First, unsupervised methods require no 

prior knowledge and are based on the understanding of the whole data set, 

making the clusters difficult to be maintained and analyzed. Second, genes are 

grouped based on the similarity which can be affected by input data with poor 

similarity measures. Third, some of the unsupervised methods require the 

predefinition of one or more user-defined parameters that are hard to be 

estimated (e.g. the number of clusters). Changing these parameters often have 

a strong impact on the final results [150].  

 

In contrast to the unsupervised methods, supervised methods require a priori  
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knowledge of the samples. Supervised methods generate a signature which 

contains genes associated with the clinical response variable. The number of 

significant genes is determined by the choice of significance level. Support 

vector machines (SVM) [151] and artificial neural networks (ANN) [152] are 

two important supervised methods. Both methods can be trained to recognize 

and characterize complex pattern by adjusting the parameters of the models 

fitting the data by a process of error (for example, mis-classification) 

minimization through learning from experience (using training samples). SVM 

separates one class from the other in a set of binary training data with the 

hyperplane that is maximally distant from the training examples. This method 

has been used to rank the genes according to their contribution to defining the 

decision hyperplane, which is according to their importance in classifying the 

samples. Ramaswamy et al. used this method to identify genes related to 

multiple common adult malignancies [153]. ANN consists of a set of layers of 

perceptrons to model the structure and behavior of neutrons in the human 

brain. ANN ranks the genes according to how sensitive the output is with 

respect to each gene’s expression level. Khan et al identified genes expressed 

in rhabdomyosarcoma from such strategy [154].  

  

In classification of microarray datasets, it has been found that supervised 

machine learning methods generally yield better results [155], particularly for 

smaller sample sizes [73]. In particular, SVM consistently shows outstanding 

performance, is less penalized by sample redundancy, and has lower risk for 

over-fitting [156, 157]. Furthermore, some studies demonstrated that  
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SVM-based prediction system was consistently superior to other supervised 

learning methods in microarray data analysis [158-160]. SVM for microarray 

data analysis are used in this study. 

1.3.3 Brief introduction to the Copy Number Variation 

1.3.3.1 Copy Number Variation 

Human populations show extensive polymorphism — both additions and 

deletions — in the number of copies of chromosomal segments, and the 

number of genes in those segments[161]. This is known as copy number 

variation (CNV). A high proportion of the genome, currently estimated at up to 

12%, is subject to copy number variation [162]. Copy number variants (CNVs) 

can arise both meiotically and somatically, as shown by the finding that 

identical twins can have different CNVs and that repeated sequences in 

different organs and tissues from the same individual can vary in copy number 

[163]. Copy number variation seems to be at least as important as SNPs in 

determining the differences between individual humans [164] and seems to be 

a major driving force in evolution, especially in the rapid evolution that has 

occurred, and continues to occur, within the human and great ape lineage 

[165]. Changes in copy number might change the expression levels of genes 

included in the regions of variable copy number, allowing transcription levels 

to be higher or lower than those that can be achieved by control of 

transcription of a single copy per haploid genome. The patterns of CNV are in 

Figure 1-5. 
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Additional copies of genes also provide redundancy that allows some copies to 

evolve new or modified functions or expression patterns while other copies 

maintain the original function. The nonhomologous recombination events that 

underlie changes in copy number also allow generation of new combination of 

exons between different genes by translocation, insertion or deletion [166], so 

that proteins might acquire new domains, and hence new or modified 

activities.  

 

However, much of the variation in copy number is disadvantageous. Change in 

copy number is involved in cancer formation and progression [166, 167], and 

contributes to cancer proneness. In many situations, a change in copy number 

of any one of many specific genes is not well tolerated, and leads to a group of 

pathological conditions known as genomic disorders. Because particular gene 

imbalances are associated with specific clinical syndromes, data on rare 

clinical cases of change in copy number are available and have facilitated the 

study of the chromosomal changes underlying copy number variation 

[168-173].  
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Figure 1-5 : The patterns of Copy-number variation (CNV)  

 

   

(a) Individuals in a population may have different copy numbers on 

homologous chromosomes at CNV loci. (b) Individuals may also have CNVs 

that contain SNPs.  

 

1.3.3.2 Copy number analysis techniques 

The study of chromosomal copy number analysis techniques is important in 

biology primarily because presence of copy number aberrations is known to be 

associated with the development of cancerous tumors. 

 

1.3.3.2.1 Comparative genomic hybridization 

 

Traditionally, the method of comparative genomic hybridization (CGH) [137, 

174] has been used to identify chromosomal copy number aberrations (Figure 

1-6). In CGH, cancerous test chromosomes and normal reference chromosomes 

are each chemically labeled with different colors, and then hybridized to a  
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genome of metaphase chromosomes. By quantifying the relative fluorescence 

intensity, the copy number can be deduced. However, the known disadvantage 

of using this cytogenetic technique for copy number analysis is its limited 

resolution: usually about 10Mb, and 2Mb at best. 

 
Figure 1-6: The procedure of comparative genomic hybridization (CGH) 

 
 

 
 
 

1.3.2.2.2 Copy number analysis with SNP microarrays 

Despite developments in CGH microarray technology and methodology, the use 

of SNP microarrays for determining chromosomal copy number is of interest 

for three principal reasons (Figure 1-7). First, since SNP microarrays are 

already commonly used for SNP genotyping, an effective method of copy 

number analysis for SNP microarrays would enable the microarray assay to 

elucidate chromosomal copy number in addition to SNP genotypes. Second, the 

copy number call resolution in the genome is potentially much greater for SNP 

microarrays than for CGH microarrays since SNP microarrays have so many 
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probes. Third, since SNP microarrays are fundamentally similar to CGH 

microarrays, existing copy number analysis methods for CGH microarrays can 

be adapted for use with SNP microarrays. Thus, SNP microarrays have the 

potential to be useful tools for copy number analysis. 

 

Figure 1-7: Affymetrix Human Genome-Wide 6.0 SNP Arrays. 

 

 

 

These arrays contain over 900,000 SNP and over 900,000 Copy Number 

Variation (CNV) probes to allow researchers to conduct whole genome scans on 

a single array. Probes were chosen from restriction digestion fragments that had 

been size selected as shown in order to reduce target complexity before labeling 

and hybridization. As a result, the probe distribution should not be expected to 

be completely uniform across the entire genome. This is currently the highest 

density genotyping array commercially available. 
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1.3.3 Overview of disease marker selection 

1.3.3.1 Overview of Feature selection  

No matter whether the supervised or unsupervised methods are used, one 

critical problem encountered in both methods is feature selection, which has 

become a crucial challenge of microarray data analysis. The challenge comes 

from the presence of thousands of genes and only a few dozens of samples in 

currently available data. From the mathematical view, thousands of genes are 

thousands of dimensions. Such a large number of dimensions leads microarray 

data analysis to problems such as the curse of dimensionality [175, 176] and 

singularity problems in matrix computations. Therefore, there is a need of 

robust techniques capable of selecting the subsets of genes relevant to a 

particular problem from the entire set of microarray data both for the disease 

classification and for the disease target discovery. 

 

Gene selection from microarray data is to search through the space of gene 

subsets in order to identify the optimal or near-optimal one with respect to the 

performance measure of the classifier. Many gene selection methods have been 

developed, and generally fall into two categories: filter method and wrapper 

method [177]. Figure 1-8 shows how these two methods work.  

 

In brief, the filter method selects genes independent of the learning algorithms 

[178‐180]. It evaluates the goodness of the genes from simple statistics 

computed from the empirical distribution with the class label [181]. Filter 
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method has some pre-defined criteria. Mutual information and statistical testing 

(e.g. T-test and F-test) are two typical examples of filter method [178, 182-187]. 

Filter method can be easily understood and implemented, and needs little 

computational time. But the pitfall of this method is that it is based on the 

assumption that genes are not connected to each other, which is not true in real 

biological process.  

 
Wrapper method generates genes from the evaluation of a learning algorithm. It 

is conducted in the space of genes, evaluating the goodness of each gene or gene 

subsets by such criteria as cross-validation error rate or accuracy from the 

validation dataset [188]. The wrapper method is very popular among machine 

learning methods for gene discovery [177, 189, 190]. Although the wrapper 

method needs extensive computational resources and time, it considers the 

gene-gene interaction and its accuracy is normally higher than the filter method 

[177, 189, 190]. Recursive feature elimination (RFE) is a good example of the 

wrapper method for disease gene discovery. The RFE method uses the 

prediction accuracy from SVM to determine the goodness of a selected subset. 

This thesis will employ RFE for disease gene discovery from microarray data.  
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Figure 1-8 : Filter method versus wrapper method for feature selection 

 

 

1.3.3.2 The problems of current marker selection methods 

 

The methodology of SVM and RFE will be discussed in Chapter 2 in details. 

Here, some problems encountered in current marker discovery from microarray 

data analysis are discussed. One problem is to specify the number of genes for 

differentiating disease. The number of derived breast cancer genes and 

leukemia genes ranges from 1 to 200 [183, 191-196]. 50 genes were arbitrarily 

chosen for differentiating acute myeloid leukemia (AML) from acute 

lymphoblastic leukemia (ALL) by Golub et al, since they supposed that 50 

genes might reflect the difference between AML and ALL [183]. In most cases, 

the gene number was decided by the classification performance of different 

gene combinations. The gene combination which produced the highest 

classification accuracy constituted the gene signature. This strategy might 
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produce small sets of genes (one or two genes) that formed accurate classifier 

[194-196]. For example, Slonim et al reported that the classifier consisting of 

one gene (HOXA9) outperformed all of other classifiers consisting of other 

gene combinations for recurrence prediction in AML patients [196]. Li and 

Yang showed that one gene (Zyxin) constituted the best classifiers for 

AML/ALL differentiation [194]. Nevertheless these results were only obtained 

and tested on one dataset. Considering that the number of genes should correlate 

with the disease situation, the selected genes should be large enough to be 

robust against noise and small enough to be readily applied in clinical settings. 

Therefore, it is not appropriate to use the arbitrary gene number. Similarly, to 

use just one dataset to decide the optimal gene number may not be satisfactory, 

because the optimal gene number varies with the different sample sizes and 

sample combinations [141, 197, 198].  

 

Another problem in gene discovery is the gene signatures were highly unstable 

and strongly depended on the selection of patients in the training sets [73, 141, 

154, 183, 199-202] [141, 197, 198], despite the use of sophisticated class 

differentiation and gene selection methods by various groups. The unstable 

signatures were observed in most microarray datasets including breast cancer, 

lung adenocarcinoma, non-Hodgkin lymphoma, acute lymphocytic leukemia, 

acute myeloid leukemia, breast cancer, medulloblastoma, and hepatocellular 

carcinoma [141, 147, 158, 177, 180, 199, 203-206]. While these signatures 

display high predictive accuracies, the highly unstable and patient-dependent 

nature of these signatures diminishes their application potential for diagnosis 
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and prognosis [141]. Moreover, the complex and heterogenic nature of disease 

such as cancer may not be adequately described by the few cancer-related genes 

in some of these signatures. The unstable nature of these signatures and their 

lack of disease-relevant genes also limit their potential for target discovery. The 

instability of derived signatures is likely caused by the noises in the microarray 

data arising from such factors as the precision of measured absolute expression 

levels, capability for detecting low abundance genes, quality of design and 

probes, annotation accuracy and coverage, and biological differences of 

expression profiles [73, 207]. Apart from enhancing the quality of measurement 

and annotation, strategies for improving signature selection have also been 

proposed. These strategies include the use of multiple random validation [141], 

large sample size [208], known mechanisms [209], and robust 

signature-selection methods which is insensitive to noises [73, 210, 211]. 

 

This thesis will explore a new signature selection method aiming at reducing the 

chances of erroneous elimination of predictor-genes due to the noises contained 

in microarray dataset. Multiple random sampling and gene-ranking consistency 

evaluation procedures will be incorporated into RFE signature selection method. 

The consistent genes obtained from the multiple random sampling method may 

give us a better understanding to the disease initiation and progress, and may 

provide potential disease targets. 
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1.4 Objective and outline of this thesis 

The ultimate goal of this thesis is to get the molecular mechanism of 

endothelial permeability and related disease using computational method. In 

order to meet this, this thesis has been divided into three sections, each of 

which deals with one sub-objective. 

 

The first objective is to develop a mathematical model of endothelial 

permeability. Thrombin, VEGF, and histamine are hallmarks of endothelial 

hyper-permeability, which perform their regulatory roles individually and 

collectively under different disease conditions, and with different dynamic 

profiles. Thrombin and VEGF can increase microvascular permeability 

~50,000 times more potently than histamine [212] . Thrombin, VEGF, and 

histamine induce prolonged (1-1.5 hr), intermediate (15-20 min) and transient 

(~5 min) increases of endothelial permeability, respectively. Using the model, 

we can interpret temporal effects and the dynamics of multi-mediator 

regulation. 

 

The second objective is to design bioinformatics tools for endothelial 

permeability disease marker discovery using high-throughput dataset. A 

disease marker discovery system is developed by using gene selection 

strategies from microarray data. This system aims to provide gene signatures 

which should produce good prediction performance for disease differentiation, 

and show a certain level of stability with the variation of sampling method. 
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The strategies include the incorporation of multiple random sampling methods 

and the evaluation of gene-consistency into RFE gene  selection procedure. 

The stable gene signatures may help us understand the mechanism of disease 

initiation and process, and may provide an insight for diagnosing disease, 

predicting disease types, prognosis of the outcome of a specific therapeutic 

strategy, and drug resistance before drug treatment. 

  

The complete outline of this thesis is as follows: 

In chapter 1 an overview of endothelial permeability, related disease and 

molecular mechanism is described and an introduction to mathematics model 

of signaling pathway. Then we have give background to microarray, copy 

number variation and disease biomarker selection.  

 

Chapter 2 methods used in this work are described. In particular, methods for 

pathway simulation, Parameter estimation, Sensitivity analysis, Processing of 

microarray data and copy number variation calling calculation, Support Vector 

Machines, Performance evaluation, Recursive feature elimination, Sampling, 

feature elimination and consistency evaluation are presented in more detail. 

 

Chapter 3, Mathematical Model of Thrombin-, Histamine-and 

VEGF-Mediated signaling in Endothelial Permeability were demonstrated. In 

particular, the simulated effects of PAR-1, Rho GTPase, ROCK, VEGF and 

VEGFR2 over-expression on MLC activation, and the collective modulation 

by thrombin and histamine, enhanced MLC activation by CPI-17 
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over-expression and by synergistic action of thrombin and VEGF at low 

mediator levels was the focus of the study. 

 

Chapter 4, Endothelial permeability related disease-Sepsis biomarker 

selection method from microarray data was described. The new method of 

Consensus Scoring  of Multiple Random Sampling and Gene-Ranking 

Consistency Evaluation method used for identifying of stable 

disease-differentiating signatures was presented. The predictive ability of the 

selected signature shared is evaluated by independent dataset. 

 

Chapter 5, The other type of high-throughput dataset for signature selection 

system – Breast cancer copy number variation based signature selection were 

provided. The procedure of CNV calling calculation was presented. 

Hierarchical clustering analysis and literature search are used to evaluate the 

expression pattern of the identified markers.   

 

Finally, in the last chapter, Chapter 6, major findings and contributions of 

current work to endothelia permeability were discussed. Limitations and 

suggestions for further studies were also rationalized in this chapter.
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Chapter 2 Methodology 

This chapter introduces the methodologies for (1) mathematics model of 

signaling pathway, (2) disease biomarker selection. In section 2.1, Methods for 

mathematics model of signaling pathway was described, includes how to 

develop the model, how to do the parameter estimation and how to do the 

sensitivity analysis. In Section 2.2, 2.3, Processing for microarray data and 

copy number variation were described. Section, 2.4 2.5 present the method 

and strategies used for marker selection from microarray data. 

 

2.1 Methods for mathematics model of signalling pathway 

2.1.1 ODE for model development 

Biological process can be described in mathematical terms in many ways for 

pathway simulations. Many different methods have been utilized to describe the 

various biological processes. For example, ordinary differential equations 

(ODE) [213-217] were used to describe the glycolytic oscillations, difference 

equations were used to model population growth, stochastic equations were 

used for signaling pathways and Boolean networks were used for gene 

expressions [218]. Each method has got its own strength and limitation and 

choosing the method to do pathway simulation often depends on the modeler’s 

familiarity to the method and the availability and limitations of the 

computational power. 



Chapter 2 Methodology 

33 

ODEs and algebraic closed form equations are the most popular methods of 

describing the biological systems. This is because despite the various 

mathematical methods available for describing biological processes, such as 

partial differential equations (PDEs) [219-224], there is a lack of efficient 

solvers for these problems. On the other hand, there are well established 

algorithms solvers to efficiently solve the ODEs, given the limited 

computational power.  

 

ODEs are describes the change in state variable (eg, protein amount or 

concentrations) with respect to one dependent variable (eg, time). The ODEs 

are appropriate to describe the temporal changes of state variables under the 

assumption that other variables, such as space, are constant. The ODEs are 

appropriate in biological processes where the number of molecules involved in 

the reaction is large; the reaction follows well-defined kinetic laws that are often 

zero- or first-order reactions. In most situations, this assumption is valid as in 

most enzymatic reactions, the concentration of the reactants are in large excess 

to the enzymes that catalyze the reaction. 

 

In other situations when other variables are also changing with time, partial 

differential equations are more appropriate. PDEs can account for state variable 

that change temporally and spatially. These equations may be appropriate for 

describing the structural changes in the self-organization biological systems, 

such as in embryonic development.  However, there is a lack of efficient PDE 

solvers and many biological processes are adequately described by ODEs since 
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many of the cellular processes reacts within well-defined cellular spaces. 

 

In another situation, when the number of interacting molecules is small; the 

kinetics of the chemical reaction cannot be assumed to follow a zero- or first 

order reaction. Instead the interaction follows a random process and stochastic 

differential equations (SDEs) [225-228] that accounts for random noise may be 

more suitable. SDEs incorporate the random “white” noise into the differential 

equation and can model the random fluctuation. Many of the numerical solvers 

that were developed to solve ODEs can be modified and used to solve the SDEs. 

Because of the stochastic process, the emphasis is placed on estimating the 

mean and variance of the distribution of the process. There are other more 

time-consuming simulation methods, such as Monte-Carlo sampling, to solve 

ODEs and their uses are limited by the computational power required for large 

simulations. 

 

ODEs are usually appropriate to describe the biological systems and it is the 

most popular approach because of the following advantages: One, ODEs can be 

used to describe many non-linear systems that otherwise have no closed form 

equations. Two, ODEs employs the continuous timescale unlike in the 

difference equations which employs discrete timescale. This allows for 

simulations of biological responses at any time point. Three, there are many 

ODEs solvers readily available to give reasonably good estimates of the 

parameters with various algorithm. Non-linear differential equations cannot be 

solved to give an exact solution and approximate methods through numerical 
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analysis are almost always utilized to estimate the system parameters. Having 

an efficient and accurate solver is important in solving these problems.  

 

Under specific condition such as a rapid reaction compared to the observation 

timescale, it may be appropriate to approximate the intermediate state variable 

to have reached steady-state or equilibrium. The corresponding differential 

equation can be simplified to a closed form algebraic expression to reduce the 

extensive computational requirement to perform numerical analysis of ODEs. 

In many cases, such simplifications may also be justified because the 

underlying biological processes occurs rapidly or have no major impact on the 

temporal relationship with other state variable. There are many methods for 

transforming the ODES into close formed algebraic expression. One example is 

the quasi-steady state as described in [218] 

      

The rate of the change of the S1 as described by ODE is  

 .  

If the reaction of k2 is fast, the rate of change of S1 can be considered constant 

and at steady state. 

 
 

A closed form equation of S1 may be used to increase the efficiency of 

analyzing a complex pathway by reducing the number ODEs required to be 

analyzed numerically. 
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2.1.2 Parameter estimation 

After a model with correct components and connectivity has been constructed, 

the next critical step is determining the values of the parameters such as the rate 

constants and initial conditions. Parameters can be obtained directly, or from 

literature. Even when there is considerable experimental data available, it is 

common for many parameters in a pathway model to remain unmeasured and 

require estimation. 

 

The pathway simulation model often contains many parameters that are usually 

hard to determine accurately in vivo. In fact, some of the model parameters are 

kinetic constants that may not have physiological interpretation and are difficult 

to quantify in in vitro experiments. Nonetheless, there are several methods that 

were routinely utilized to approximate model parameters for pathway 

simulations. 

 

There are, however, many of the kinetic parameters [91, 229] previously 

studied in vitro by careful laboratory experiments. Reported rate constants have 

been published in the scientific literature for many different chemical and 

biological reactions can be used to approximate the model kinetic parameters. 

Initial concentrations of various biological molecule concentrations can also be 

set to the normal ranges reported for various cellular, animal or human species. 

It can be assumed that the biological pathway kinetics follows the same kinetics 

law and the model parameters can be estimated to approximate these reported 

values. Hatakeyama et al [230] and colleagues developed a systems biology 
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model of the mitogen-activated protein kinase (MAPK) and Akt pathways in 

ErbB signaling. The model contains a total of 33 differential equations 

describing the temporal change in the concentrations of the molecules involved 

in the signaling pathways. The model is parameterized by 68 kinetic constants, 

38 of these kinetic constants were estimated and taken directly from the 

published literature. 

 

There are other parameters where the values are not readily available in the 

scientific database. For these parameters, other estimation methods will need to 

be considered. One such method to estimate parameters is to using simulation 

and evaluation algorithm. In the model described above, Hatakeyama et al [230] 

utilized the genetic algorithm to estimate the parameters. The genetic algorithm 

randomly generates a large number of parameter estimates and then randomly 

chooses a set of parameter estimates that has the best fitness. The process is 

repeated with mutations and crossover for a large number of cycles and the 

parameter estimates with the best calculated fitness is then taken as the 

parameter estimates for the pathway simulation. The genetic algorithm allows 

the modeler to estimate the parameter when there is no other information 

available to base the estimation upon. Caution must be observed when using 

such algorithm to estimate parameters. Because these estimates are purely 

mathematical random generation, when experimental or other information are 

available, the parameter estimates needs to be reviewed again.   

 

When experimental data are available, models can be fitted to the data and the 
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parameter can be estimated using regression methods [231]. An important note 

before estimating parameter through regression is that structural identifiability 

is a concern. For large complex pathways, it is possible that some parameters 

are unidentifiable given the incompleteness and uncertainty in the experimental 

data. Figure 2-1 illustrates the identifiability issue by comparing two models 

(models A and B). When the observations are limited and are constrained within 

certain compartments, there are indistinguishable parameters such as k1, 2 and 

K2, 1 in Model A of Figure 2-1 for example. The structural identifiably of a 

parameter can be tested by the sensitivity (discussed in the next section) of the 

parameter to the output. The model is structurally identifiable when the 

parameter has a large sensitivity and the effects of parameters on the output are 

uncorrelated [231]. 

 

For the structurally identifiable model, many are often described using the 

ODEs and an appropriate ODE solver is required. However, because biological 

pathways are often non-linear systems, there are multiple solutions to the 

differential equation and the traditional methods of identifying the zero gradient 

may cause the computer to be stuck at a local minimum [232] (Moles et al, 

2003). Moles et al [232] discussed several global optimization methods that are 

both deterministic (ie. Parameter determined through estimation methods) or 

stochastic (ie.  Parameter determined through random simulations). Some 

methods mentioned included: Adaptive stochastic methods, Clustering methods, 

Evolutionary computation and simulated annealing etc. The optimization 

methods used for estimating the model parameters are often determined by the 
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quality and quantity of the experimental data, the familiarity of the methods by 

the modeler and the availability of the computer software and computational 

power. When data is rich and the model is fairly stable, the deterministic 

methods are appropriate and will the results can usually be determined in a 

fairly reasonable computer runtime. When data are sparse and little, the 

stochastic methods might be suitable, although computer runtime may be 

significantly longer. 

 

Figure 2-1: Unidentifiable model parameters.  

P1 S2

S3 S4

k1,3

k1,2

k2,1
k1,4

P1 S2

S3

k1,3

k1,2 = k2,1A B

 

 
 

Other methods to estimate parameter is to approximate it to known parameters 

of related molecules. Some proteins share sequence homology and have similar 

structural conformation. The binding and interaction of these analog proteins 

can be assumed to be similar. Indeed, Li et al (2001) [233] reported that proteins 

that shares 90% sequence homology exhibits high affinity to a specific epitope 

of the study protein. The rate constants of binding to the study protein by the 

different analog proteins differ by only several folds, assuming that these 

proteins behave similarly. This method of approximating kinetic constants to 

proteins with sequence homology can be applied to protein-protein interaction 
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[233], protein-protein interaction with different substrates or protein-protein 

interaction with the same substrates [234]. However, as always, this method of 

comparing sequence homology and estimating the parameter must be used with 

caution. There are instances where the proteins with sequence similarity do not 

display the same kinetic constant for interaction. For example, Brown and 

colleagues [235] investigated the kinetics of four different species of Parasite 

lactate dehydrogenase (pLDH) with one inhibitor. The group reported that 

although the four species of pLDH shares 90% sequence homology,  have 

similar catalytic residues and have similar crystal structural; the kinetic 

interactions of the these enzymes with the inhibitor display significant different 

characteristics.  

 

There could be instances when the above mentioned methods are not suitable 

for estimating the parameters. For example when there is very little published 

literature for the molecule or when the other methods for approximating the 

parameters are difficult. The parameters can be estimated to an arbitrary value 

which is within reasonable biological ranges. This method is prone to criticism 

but may be a reasonable step to take to enable the simulation which would 

otherwise be unattainable. The parameters could be varied within a range to find 

the best fit of the model to the data. Again, caution must be exercised and not 

make too many assumptions to the too many of the parameters which would 

otherwise invalidate the model. 

 

Whichever method the researcher chooses to estimate the parameter, there will 
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be uncertainties in the parameter values because of it is difficult to accurately 

measure the in vivo biochemical activities. Gutenkuns et al (2007) [236] 

reported that the systems biology model have a “sloppy spectrum of parameter 

sensitivities”. Even with the most ideal experimental data, the optimization of 

parameter estimates can be poor. The authors suggested that when building 

pathways model and estimating parameters, it is essential to check the 

predictive power of the model rather than the accuracy of the parameter 

estimates. 

 

2.1.3 Sensitivity analysis 

The change of output with respect to the change in the parameter is described as 

the sensitivity of the systems. For example when the amount input of the 

pathway changed, the output can be changed in a corresponding amount. 

Mathematically, if the output equals y and the parameter of the interest is x1, the 

sensitivity is the simple derivative of y with respect to x, dy/dx1. A parameter 

with large sensitivity is capable of substantially change the system output given 

a small change in the input. There are several usages of sensitivity analyses. 

Sensitivity analysis can be used to estimate model parameters, assess the 

robustness of the model, make predictions of critical points in a pathway and 

devise experimental condition through optimal design [237]. 

 

There are many methods to perform sensitivity analysis. The more common 

method is a sampling based strategy where the pathway is randomly simulated 

repeatedly with varying input. The input-output relationship can then be further 
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investigated with graphical or statistical analysis. There is also less 

computationally intensive procedure which does not require stochastic 

simulation. This is done by approximating the information matrix through 

mathematical algorithm such as the linear noise approximation [237]. 

Stochastic simulation remains the popular approach to sensitivity analysis and 

the other deterministic approach maybe suitable when significant computation 

limitation becomes an issue. 

 

The time profiles of the output with varying inputs can be graphed to observe 

the trend and magnitude of the output changes with changing inputs. When a 

parameter estimate cannot be determine through literature database search and 

has to set arbitrarily, the sensitivity analysis can be used as a parameter 

estimation method. The parameter input can be varied over a range of values 

and the simulated output can be graphed against experimental observations. 

Visual predictive check can be used to determine which parameter estimate best 

fits the model to the observations. The selection of model parameter can be 

based on the goodness-of-fit of the model predictions to the experimental data. 

This allows the modeler to select the parameter estimates that will otherwise be 

inestimable.   

 

Sensitivity analysis can also be used to test the robustness of a model. There are 

several ways of assessing the robustness of the model, depending on the 

knowledge on the pathway. If a particular interaction is known to be a critical 

control point in the pathway, the sensitivities of the associated model 



Chapter 2 Methodology 

43 

parameters will be large comparatively. Conversely, if a known interaction does 

not influence the pathway significantly, the sensitivities of the parameters will 

be smaller. Otherwise, when a parameter is estimated using sensitivity analysis, 

the sensitivities of the parameter should ideally be small to increase the 

robustness of the model. The robustness of the model is defined as the stability 

of the model over multiple parameters variation. 

 

Additionally, simulations can be performed to determine which parameter has 

significant impact on the output of the system. Different what-if scenarios can 

be simulated by altering different model parameters to investigate the critical 

control points in the pathway. This is a powerful predictive tool for identifying 

potential drug targets and therapeutic interventions to disease pathways.  

 

2.2 Processing of microarray data 

2.2.1 Missing data estimation 

Missing values is a common issue existing in microarray data. The missing 

values arise from experimental errors due to spotting problems (cDNA), dust, 

poor hybridization, inadequate resolution, fabrication errors (e.g. scratch) and 

image corruption [238, 239]. They could also come from the suspicious data 

with low expression (e.g. background is stronger than signal) or censored data 

[240]. Repeating experiments could be a solution but often not be a realistic 

option because of economic reasons or limitations in biological material [160, 

241]. However, many microarray data analysis methods, such as classification, 
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clustering and gene selection methods, require complete data matrix. 

Therefore in many microarray projects, one needs to determine how to 

estimate missing values. Proper missing value estimation can significantly 

improve performance of the analysis methods [242-244]. The simplest way is 

to remove all genes and arrays with missing values, or to replace missing 

values with an arbitrary constant (usually zero), row (gene) average or column 

(array) average. The better approaches had also been proposed such as 

k-nearest neighbors method (KNN) [244], least square methods (LS) [241, 

245], and principal component analysis (PCA) [246, 247]. Among these 

estimation methods, KNN is the most widely used and is also a standard 

method for missing value estimation currently [242, 244, 248].  

 

The KNN-based method for missing value estimation involves selecting k 

neighbor genes with similar expression profiles to the target gene (the gene 

with missing values in one or more arrays), and estimating the missing value 

of the target gene in specific array as the weighted mean of the expression 

levels of the k neighbor genes in this array. A popular KNN-based method is 

KNNimpute [244], which is the only imputation method available in many 

microarray data analysis tools for missing value estimation [249-251]. 

KNNimpute can be downloaded from Stanford Microarray Database [248, 

252]. In this thesis, KNNimpute is employed if the microarray data contains 

missing values. 
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2.2.2 Normalization of microarray data 

The purpose of normalization is to remove systematic variations from the 

expression values, so that biological difference can be easily distinguished and 

the comparison of expression levels across samples can be performed. In 

microarray experiments, all the values are fluorescent intensities, which are 

directly comparable. Therefore the normalization among genes and arrays 

[159] are both possible.  

 

The popular normalization methods for microarray experiments include global 

normalization using all genes on the array, and housekeeping genes 

normalization using constantly expressed housekeeping/invariant genes [136]. 

Since Housekeeping genes are not as constantly expressed as assumed 

previously [253], using housekeeping genes normalization might introduce 

extra potential sources of error. It was further approved that normalization 

using a reduced subset of genes was less statistically robust than the 

normalization using the entire gene set [254]. Currently, a typical 

normalization procedure is (1) normalizing the expression levels of each 

sample to zero-mean and unit variance, and then (2) normalizing the 

expression levels of each gene to zero-mean and unit variance over all the 

samples. This normalization method have been shown to perform well [255, 

256] and is applied in this thesis. 
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2.3 Processing Copy Number Variations  

2.3.1 Overview of CNV calling calculation 

We mainly use integrated hidden Markov model (HMM) algorithm, called 

“PennCNV,” to detect CNVs with high resolution using the Illumina Infinium 

assay [257]. To better reflect the distribution of the intensity data, log R Ratio 

and B Allele Frequency are developed for state transition between different 

copy number states. In addition, PennCNV incorporates the population allele 

frequency for each SNP and the distance between adjacent SNPs. Several 

studies have demonstrated the heritability of CNVs, suggesting that using 

information from related family members can improve the sensitivity for CNV 

detection and accuracy of boundary mapping. The application of PennCNV to 

a large group of individuals demonstrates the feasibility of whole-genome 

fine-mapping of CNVs through high-density SNP genotyping. 

The procedure below (Figure 2-2) [257] outlines how to process raw CEL 

files and generates canonical genotype clusters, then convert signal intensity 

for each sample to LRR/BAF values, then generates CNV calls. For this 

protocol to work, one needs to use at least 100 CEL files to generate a 

reasonably good clustering file. If the user has only a few CEL files, then it is 

necessary to use the default canonical clustering file in the PennCNV-Affy 

package, but in this case the CNV calls may not be reliable. 
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Figure 2-2: Affymetrix CNV calling overview 

 

2.3.2 HMM modelling strategy 

Six-state definition [258] for more precise modeling of CNV events is 

considered (Table 2-1). To exploit all available information for each SNP to 

its full potential, PennCNV incorporates several components together into a 

hidden Markov model (HMM), including the LRR (The log R Ratio), the BAF 

(B Allele Frequency), the distance between neighboring SNPs, and the 

population frequency of the B allele. The LRR is a measure of normalized 

total signal intensity, and the BAF is a measure of normalized allelic intensity 

ratio (Figure 2-3). Both the LRR and BAF values can be displayed and 

exported from BeadStudio given that there is an appropriate clustering file 

with canonical cluster positions for each SNP. The distance between 

neighboring SNPs determines the probability of having a copy number state 
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change between them. Each SNP has two alleles referred to as the A and B 

alleles, thus we use the term “population frequency of B allele” to differentiate 

it from the BAF term that measures allelic intensity ratio. The values for 

population frequency of B allele for all SNPs are compiled from a large set of 

individuals with mixed ethnic backgrounds and of normal phenotypes; the 

likelihood of the copy number genotypes for each copy number state is then 

determined. 

 

Table 2-1: Hidden states, copy numbers and their descriptions 

 

2.3.3 Inference of log R Ratio (LRR) and B Allele Frequency (BAF) 

For each SNP, its two alleles are referred to as the A and B alleles using a set 

of specific naming rules (see http://www.illumina.com/downloads/TopBot_ 

TechNote.pdf). The raw signal intensity values measured for the A and B 

alleles are then subject to a five-step normalization procedure using the signal 

intensity of all SNPs (see Illumina white paper at 

https://icom.illumina.com/icom/software. ilmn). This procedure produces the 

X and Y values for each SNP, representing the experiment-wide normalized 

signal intensity on the A and B alleles, respectively. Two additional measures 
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are then calculated for each SNP, where R = X + Y refers to the total signal 

intensity, and θ = arctan(Y/X)/ (π/2) refers to the relative allelic signal 

intensity ratio.  

 

As a normalized measure of total signal intensity, the log R Ratio (LRR) value 

for each SNP is then calculated as LRR = log2 (Robserved/Rexpected), where 

Rexpected is computed from linear interpolation of canonical genotype 

clusters. The B Allele Frequency (BAF) is a somewhat confusing term that 

actually refers to a normalized measure of relative signal intensity ratio of the 

B and A alleles: 

where θAA, θAB, and θBB are the θ values for three canonical genotype 

clusters generated from a large set of reference samples. The transformation 

from θ to BAF values adjusts for different chemical characteristics of each 

SNP so that values for different SNPs are more comparable to each other.  
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Figure 2-3: An illustration of log R Ratio (LRR) and B Allele Freq (BAF) 

values for the chromosome 15 q-arm of an individual. 

 

2.4 Support Vector Machines 

2.4.1 Theory and algorithm 

Support vector machines (SVM) is a relatively new machine learning method 

proposed by Vapnik [151, 259, 260]. It defines a mapping, or a decision 

function, from feature vector space to the class label space. Over the past 

decades, SVM has become a popular supervised learning method in variety 

applications including image classification and object detection [261, 262], text 

categorization [263], prediction of protein solvent accessibility [264], 

microarray data analysis [159, 160, 192, 205], protein fold recognition [265], 

protein secondary structure prediction [266], prediction of protein-protein 
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interaction [267] and protein functional class classification [268].  

 

SVM can be divided into linear and non-linear SVM. Linear SVM directly 

constructs a hyperplane in the feature space to separare positive examples from 

negative examples. On the other hand, non-linear SVM projects both positive 

and negative examples into a higher-dimensional feature space and then 

separates them in that space.  

 

Linear SVM is the simplest form of SVM, in which the data represented as a 

p-dimensional vector (a list of p numbers) can be separated by a p-1 

dimensional hyperplane. On each side of this p-1 hyperplane, two parallel 

hyperplanes can be constructed (Figure 2-4). The separating hyperplane is the 

one that maximizes the distance between these two parallel hyperplanes. Many 

linear hyperplanes (also called classifiers) can separate the data. However, only 

one achieves maximum separation. Under the assumption that the larger the 

margin or distance between these two parallel hyperplanes the better the 

generalization error of the classifier will be [269], the maximum separating 

hyperplane (also known as maximum-margin hyperplane) is clearly of interest 

(Figure 2-5). 

 

Mathematically, supposed the training set is composed of n examples with two 

classes, it could represent as  

)},()...,,((),,{( 2211 nn yxyxyx
,    i=1, 
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2, …, n,                                                   (1)                  

where 
N

i Rx 
 is an N-dimensional real vector and 

}1,1{ iy
 indicates class label.  The separating hyperplane can 

be described by equation:  

0 bxw
                                  

(2) where w=(w1,w2,…, wn)T is a unit vector of n elements and b is a constant, 

and the relative two parallel hyperplanes can be described by equations 

 
Figure 2-4: Margins and hyperplanes 

 

1 bxw
 for 

1iy
               (3)  

       

1 bxw
 for 

1iy
              (4) 

If the training data are linearly separable, we can select those two parallel 
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hyperplanes with no data point between them and try to maximize their distance. 

By using geometry, we find the distance between the two parallel hyperplanes is 

2/|w|. Therefore, to obtain the solution of SVM, |w| should be minimized.  

To exclude data points between the two parallel hyperplanes, we need to ensure 

that for all i either 

1 bxw
 for 

1iy
  or              (5)  

1 bxw
 for 

1iy
          (6) 

It can be rewritten as  

,1)(  bxwy ii
 

ni 1
         (7) 

The problem now is to minimize |w| subject to the above constraint. More 

clearly,  

Minimize 

2

2

1
w

           (8) 

Subject to 
,1)(  bxwy ii

 
ni 1

 

This is a quadratic programming (QP) optimization problem.  

Such optimization problem could be efficiently solved with the introduction of 

lagrangian multiplier ai,  

  )1))(((
2

1
),,(

2
bwxywabwL iiip 

  (9) 

where 
0i

.  

The solution to this QP optimization problem requires that the gradient of   
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L(w,b,α) with respect to w and b vanishes,  

0),,( 

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 and          (10) 
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           (11) 

resulting in the following conditions:  





n

i
iii xyaw

1
 and           (12) 

0
1




n

i
ii ya

             (13) 

By substituting Equations (12) and (13) into Equation (9), the QP problem 

becomes the maximization of the following expression: 
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     (14) 

under the constraints 

0
1




n

i
ii ya

 , 0≤αi≤C, i=1, 2, …, n. C is a penalty 

for training errors for soft-margin SVM and is eual to infinity for hard-margin 

SVM. 

 

The points located on the two optimal margins will have nonzero coefficients αi 

among the solutions to Equation (14), and are called Support Vectors (SV). The 
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bias b0 can be calculated as follows: 
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After determination of support vectors and bias, the decision function that 

separates two classes can be written as:  
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      (16) 

 

When the examples are inseparable by linear SVM, nonlinear SVM can be 

applied, which projects the input data to a higher dimensional feature space by 

using a kernel function K(x,y). The linear SVM procedure is then applied to the 

featrue vectors in this feature space. After the determination of w and b, a given 

vector x can be classified by using  









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 (17)                   

A positive or negative value indicates that the vector x belongs to the posive or 

negative class respectively.  

In equation (17), kernel function K(x,y) represents a legitimate inner product in 

the input space:  

φ(y)φ(x)=y)K(x,                 (18) 

A number of kernel functions have be used in SVM. Examples of the most 

popular ones are:  

Polynomial kernel
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p
jiji xxxxK )1(),( 

         (19)  

Sigmoid kernel  
)tanh(),( cxxxxK jiji  

   (20) 

Radial basis function (RBF) 

22 2/||||),( ij xx
ji exxK 

       (21) 

 

In practice, RBF kernel is the most widely used kernel function due to three 

reasons. First, linear kernel and sigmoid kernel can be treated as special cases of 

RBF kernel since RBF kernel in certain parameters has the same performance 

as the linear kernel [270] or sigmoid kernel [271]. Second, comparing with 

polynomial kernel, RBF kernel has few parameters which influence the 

complexity of model selection. Third, RBF function has less computational cost 

compared with polynomial kernels in which kernel values may go to infinity or 

zero while the degree is large. Based on these reasons, this thesis mainly used 

RBF kernel.  

 

Several specialized algorithms can be used to solve the QP problem of SVM by 

heuristically breaking the problem down into smaller, more-manageable chunks. 

Table 2-2 listed some popular SVM software tools. In our case, we modified the 

source code of libSVM to fit our program requirements. libSVM is a sequential 

minimal optimization (SMO) algorithm[272], which breaks the problem down 

into 2-dimensional sub-problems that may be solved analytically, eliminating 
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the need for a numerical optimization algorithm such as conjugate gradient 

methods. 

 

Figure 2-5 : Architecture of support vector machines  

 

 

Table 2-2 : List of some popular used support vector machines software 
 
Software URL

SVM-Light http://svmlight.joachims.org/

LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

mySVM http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
index.html 

BSVM http://www.csie.ntu.edu.tw/~cjlin/bsvm/

WinSVM http://www.cs.ucl.ac.uk/staff/M.Sewell/winsvm/ 

LS-SVMlab http://www.esat.kuleuven.ac.be/sista/lssvmlab/ 

GIST SVM Server http://svm.sdsc.edu/svm-intro.html
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2.4.2 Performance evaluation 

The performance of SVM can be measured as true positive TP (the number of 

positive examples which are correctly predicted as positive), false negative FN 

(the number of positive examples which are incorrectly predicted as negative), 

true negative TN (the number of negative examples which are correctly 

predicted as negative) and false positive FP (the number of negative examples 

which are incorrectly predicted as positive) (Table 2-3). 

 

The simplest way to evaluate the performance of a classification is overall 

accuracy (Q), which measures the proportion of the total number of the 

correctly predicted examples.  

FPTNFNTP

TNTP
Q





                             (22) 

Another two concepts, sensitivity (SE) and specificity (SP), which measure the 

positive and negative prediction performance respectively, are also frequently 

used in classification.  

FNTP

TP
SE




            (23) 

FPTN

TN
SP




                     (24) 

In some cases such as epidemiology and the evaluation of diagnostic tests [273], 

positive predictive value (PPV, also called precision rate) and negative 

predictive value (NPV) are very important.  
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FPTP

TP
PPV




            (25) 

FNTN

TN
NPV




             (26) 

Table 2-3: Relationships among terms of performance evaluation. 

 
 Condition
 True false

Test 
outcom

e 

Positiv
e 

True positive 
(TP) 

False
positive 

(FP) 

Positive predictive 
value (PPV) 

 
Negativ

e 

False
negative 

(FN) 

True
negative 

(TN) 

Negative predictive 
value (NPV) 

 
↓ 

Sensitivity 
(SE) 

↓
Specificity 

(SP) 
 

 

2.5 Methodology for gene selection  

2.5.1 Overview of the gene selection procedure 

A novel gene selection procedure method based on Support Vector Machines 

classifier, recursive feature elimination, multiple random sampling strategies 

and multi-step evaluation of gene-ranking consisitency was established (Figure 

2-6):  

 

(1) After preprocessing the original data, by using random sampling method, a 

large number of training-test sample combinations are generated from the 

original data set. 
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(2) The large number of sample combinations is divided into n groups, and each 

group contains 500 sample combinations. 

(3) In each training-test sample combination of each group, SVM and RFE are 

used to classify the samples (SVM classifiers) and rank the genes (RFE gene 

rank criteria). Therefore 500 gene ranking sequences are formed. 

 

(4) The consistency evaluation can be performed based on the 500 sequences 

and a certain number of genes (for example, k genes) can be eliminated.  

 

(5) Step (3) and (4) can be iteratively done until no gene can be eliminated.  

 

(6) The gene subset which gives us the highest overall accuracies of the 500 test 

sample sets can be selected as gene signatures of this group. By this way, we can 

obtain n gene signatures.  

 

(7) The stability evaluation of the gene signatures can be performed by 

looking into the overlap gene rate of the n gene signatures. 

 

Below Recursive feature elimination is introduced first and followed by a 

detailed introduction of the whole feature selection procedure. 
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Figure 2-6: Overview of the gene selection procedure 
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2.5.2 Recursive feature elimination 

During gene selection procedure, the genes ranked according to their 

contribution to the SVM classifiers. The contributions of genes are calculated 

by Recursive feature elimination (RFE) procedure, which sort genes according 

to a gene-ranking function generated from SVM classifier. As described in 

Section 2.1, SVM training process needs to find the solution for the optimum 

problem (also known as objective function or cost function) shown in equation 

(14), which can be rewritten as 

1
2

1 TT HJ  
                  (27) 

Under the constraints 
0
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

n

i
ii ya
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, i=1,2,…n. 

Where
),(),( jiji xxKyyjiH 

, K is the kernel function. 

 

The gene-ranking function of RFE can be defined as the change in the objective 

function J upon removing a certain gene. When a given feature is removed or its 

weight wk is reduced to zero, the change in the cost function J(k) is 

2
2

2

)(
2

1
)( k

k

Dw
w

J
kDJ






                (28) 

where the change in weight Dwk=wk - 0 corresponds to the removal of feature 

k.  

 

Under the assumption that the removal of one feature will not significantly 

influence the values of αs, the change of cost function can be estimated as  
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          (29) 

Where H is the matrix with elements
),( jiji xxKyy

, and H (-k) is the matrix 

computed by using the same method as that of matrix H but with its kth 

component removed.  

The change in the cost function indicates the contribution of the feature to the 

decision function, and serves as an indicator of gene ranking position [274].  

 

2.5.3 Sampling, feature elimination and consistency evaluation 

In order to present statistical meaning, gene selection is conducted based on 

multiple random sampling. Each random sampling divide all microarray 

samples into a training set which contains half number of samples and an 

associates test set which contains another half number of samples. This 

sampling method can be treated as a special case of the bootstrap technique. 

Many researchers showed that bootstrap-related techniques present more 

accurate estimation than cross-validation on small sample sets [275, 276]. By 

using this random sampling, thousands of training-test sets, each containing a 

unique combination of samples, are generated. These thousands of randomly 

generated training-test sets are randomly divided into several sampling groups, 

with equal number of training-test sets (such as 500 training-test sets) in each 

group. Every sampling group is then used to derive a signature by RFE-SVM. 

 

In every training-test sampling group generated by multiple random sampling, 

each training-set (totally 500 training-test sets) is used to train a SVM 
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class-differentiation system and the genes are ranked by using Recursive feature  

elimination (RFE), according to the contribution of genes to the SVM classifier. 

In order to derive a gene-ranking criterion consistent for all iterations and all the 

500 training-test sets in this group, a SVM class-differentiation system with a 

universal set of globally optimized parameters, which give the best average 

class-differentiation accuracy over all of the 500 test sets in this group, is 

applied by RFE gene-ranking function at every iteration step and for every 

training-test set. 

 

To further reduce the chance of erroneous elimination of predictor-genes, 

additional gene-ranking consistency evaluation steps are implemented on top of 

the normal RFE procedures in each group: 

 

(1) For every training-set, subsets of genes ranked in the bottom (which give 

least contribution to the SVM classification procedure) with combined score 

lower than the first few top-ranked genes (which give highest contribution to 

the SVM classification procedure) are selected such that collective contribution 

of these genes less likely outweigh top-ranked ones.  

 

(2) For every training-set, the step (1) selected genes are further evaluated to 

choose those not ranked in the upper 50% in previous iteration so as to ensure 

that these genes are consistently ranked lower.  

 

(3) A consensus scoring scheme is applied to step (2) selected genes such that 
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only those appearing in most of the 500 testing-sets were eliminated.  

 

For each sampling group, different SVM parameters are scanned, various RFE 

iteration steps are evaluated to identify the globally optimal SVM parameters 

and RFE iteration steps that give the highest average class-differentiation 

accuracy for the 500 testing-sets.  

The several signatures derived from these sampling-groups are then applied to 

evaluate the stability and performance.
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Chapter 3 Mathematical Model of Thrombin-, 

Histamine-and VEGF-Mediated Signalling in 

Endothelial Permeability 

This chapter describes a mathematical model of thrombin-, histamine-and 

VEGF-Mediated signaling in endothelial permeability. The model was 

validated against experimental data for calcium release and thrombin-, 

histamine-, and VEGF-mediated MLC activation. The simulated effects of 

PAR-1, Rho GTPase, ROCK, VEGF and VEGFR2 over-expression on MLC 

activation, and the collective modulation by thrombin and histamine are 

consistent with experimental findings. Our model was used to predict 

enhanced MLC activation by CPI-17 over-expression and by synergistic action 

of thrombin and VEGF at low mediator levels. These may have impact in 

endothelial permeability and metastasis in cancer patients with blood 

coagulation. The model also can be used to predict the effects of altered 

pathway components, collective actions of multiple mediators and the 

potential impact to various diseases. Similar to the published models of other 

pathways, our model can potentially be used to identify important disease 

genes through sensitivity analysis of signaling components. 

 

3.1 Introduction  

The endothelium is a semi-permeable barrier that regulates the flux of liquid 

and solutes between the blood and surrounding tissues. Endothelial 
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permeability increases paracellular leakage of plasma fluid and proteins to 

surrounding tissues, and intravasation of tissue-released contents to the blood 

in the development of multiple diseases related to injury (such as edema, 

trauma, ischaemia-reperfusion injury, respiratory distress syndrome, and 

thrombosis), inflammation (such as atherosclerosis and sepsis), diabetes, and 

cancer [1, 277-279]. The level of endothelial permeability is regulated 

individually or in combination by multiple mediators, particularly thrombin, 

histamine, and vascular endothelial growth factor (VEGF), under various 

disease conditions [1].  

 

The proinflammatory and vasoactive factors thrombin, generated in 

thrombosis and inflammatory diseases, and histamine, produced in acute 

inflammatory responses to trauma, burns, allergy, and infection, induce 

transient endothelial permeability to link inflammation, tissue injury and 

vascular leakage to cellular responses and symptoms [280-282]. VEGF, 

released in diabetic retinopathy, I-R injury, vasculogenesis, angiogenesis, and 

tumour development and metastasis, causes endothelial permeability to enable 

extravasation of fluids and solutes and intravasation of tumor cells [283-285]. 

These three key mediators stimulate their respective receptors on endothelial 

cells to individually and collectively activate Ca2+, Rho GTPase/ROCK, and 

Myosin light chain kinase (MLCK) signalling pathways that subsequently 

activate myosin light chain (MLC) to induce cytoskeleton contraction in 

endothelial cells and dissociation of cell–cell junctions, resulting in endothelial 

hyper-permeability [1, 286]. 
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Significant progress has been made in understanding the molecular 

mechanism and dynamics of the relevant signalling events [1, 282, 284, 286, 

287] and the roles of different regulators [288, 289]. Nonetheless, some 

puzzles still remain to be elucidated. For instance, it is unclear what 

contributes to the different temporal effects and permeability recovery rates by 

histamine, thrombin, and VEGF mediated signalling, given that they share 

similar signalling cascades in triggering endothelial permeability. Another 

question is how multiple mediators under certain complicated inflammatory 

conditions collectively reduce the effectiveness of antagonizing agents 

directed at individual mediator-mediated signalling [1].  

 

As part of the efforts for solving these puzzles and for quantitative and 

mechanistic study of the relevant signalling events, mathematical models have 

been developed for analyzing the relevant signalling and regulation processes 

[290-295]. In particular, ordinary differential equation (ODE) based 

mathematical models of thrombin, Ca2+-calmodulin (CaM), and Rho activation 

have been developed for investigating the thrombin-mediated activation of 

MLC [293], and Ca2+-CaM, MLCK and Myosin Light chain phosphatase 

(MYCP) on MLC activation [290, 291, 296]. To enable more comprehensive 

analysis of signaling in endothelial permeability, there is a need to develop an 

expanded ODE model that covers the signaling mediated by multiple 

mediators, particularly thrombin, histamine and VEGF.  

 

In this work, we developed a mathematical model that integrates thrombin, 
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histamine, and VEGF mediated signalling in endothelial permeability by 

extending the published ODE models of the thrombin-mediated pathway and 

Ca2+-CaM and MLCK activation of MLC [290, 291, 293, 296]. The 

framework of our integrated mathematical model is illustrated in Figure 3-1 

and the detailed pathway maps of all three signalling components and 

thrombin-, histamine- and VEGF-mediated signalling cascades are given in 

Figure 3-1, Figure 3-2, and Figure 3-3 respectively. Detailed molecular 

interactions and the corresponding kinetic data were obtained from the 

literature, including published simulation models [290, 291, 293, 296], which 

are summarized in Table 3-1. Our model was validated by evaluating whether 

the time course of MLC activation by each individual mediator (thrombin, 

histamine, and VEGF) is in agreement with published experimental and 

computational findings. The sensitivity of our model with respect to 

parameters was analyzed to evaluate its robustness. The validated model was 

then used to study the modulation of other pathway components by each 

individual mediator (thrombin, histamine, and VEGF) [1, 286] and the 

modulation of MLC activation by combination of a pair of key mediators 

thrombin and histamine [297, 298]. Our model was further used to predict the 

regulation of MLC activation by PKC-potentiated inhibitory protein of 17 kDa 

(CPI-17) over-expression and by combination of thrombin and VEGF at low 

mediator levels. The effects of the protein variation of key signalling 

components protease-activated receptor-1 (PAR-1), VEGF, VEGFR2, Rho 

GTPase, and ROCK on MLC activation were also studied. Some of these 

components are significantly elevated in different diseases and have been 
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explored as therapeutic targets for pharmacological intervention of endothelial 

permeability and barrier function in these diseases [295]. 

 

3.2 Thrombin-, Histamine-and VEGF-Mediated Signaling 

Cascades in endothelial permeability mediators 

3.2.1 Thrombin mediated GPCR activation 

Thrombin regulates endothelial permeability, inflammation and other events via 

activation of thrombin receptors such as PAR-1 by proteolytically cleaving the 

N-terminus of these receptors [299]. PAR-1 is the main receptor in the 

regulation of endothelial permeability (Figure 3-1). It interacts with Gq to 

increase the concentration of Ca2+ and activate protein kinase C, inositol 1, 4, 

5-triphosphate and diacylglycerol [37]. It is also linked to G12/13 [300] to 

activate the small G-protein Rho [301]. 
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Figure 3-2: The detailed pathway map of the thrombin-mediated signalling 

component of our integrated pathway simulation model. ROCK (f) and ROCK 

(o) refer to ROCK in folded and open conformation respectively. 
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Figure 3-3: The detailed pathway map of the VEGF-mediated signalling 

component of our integrated pathway simulation model. 
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Figure 3-4:  The detailed pathway map of the histamine-mediated signalling 

component of our integrated pathway simulation model. 
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accumulating evidences that ERK-MLCK-meditated cytoskeletal responses 

contribute to VEGF-elicited microvascular hyperpermeability. Shoemaker et al. 

has examined that MLCK contains multiple MAP kinase consensus 

phosphorylation sites (P-x-S[37]-P) and it can be directly phosphorylated by 

MAP kinase [37]. Evidence presented in by Richard’s experiment demonstrates 

that MLCK, a key regulator of cell motility and contraction, is a substrate for 

MAP kinase [303]. 

 

3.2.3 VEGF mediated ERK activation 

 

VEGF regulates angiogenesis, cancer and microvascular permeability under 

various physiological and pathological conditions by activating 

transmembrane tyrosine kinase receptors VEGFR-2 and Flt-1, which promotes 

mitogenic, chemotactic, and prosurvival signalling and activates 

phospholipase C (PLC), intracellular Ca2+, and various protein kinase C (PKC) 

isoforms. In particular, VEGF activates ERK-1/2 via the Raf-MEK-ERK 

cascade [302]. Accumulative evidences suggest that ERK-MLCK-meditated 

cytoskeletal responses contribute to VEGF-elicited microvascular 

hyperpermeability. For instance, MLCK has been found to contain multiple 

MAP kinase consensus phosphorylation sites (P-x-S[37]-P) that can be 

directly phosphorylated by MAP kinase [37], which is supported by additional 

experimental evidence indicating MLCK as a substrate for MAP kinase [303]. 
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3.2.4 Thrombin, VEGF and Histamine mediated Ca2+ release, PKC 

activation MLC activation 

 

Phosphorylation of regulatory light chain (MLC) of myosin II plays a critical 

role in controlling actomyosin contractility in both smooth muscle and 

nonmuscle cells [304]. MLC phosphorylation is regulated by the balance of 

two enzymatic activities, i.e., Myosin light chain kinase (MLCK) and myosin 

phosphatase (MYCP). MLCK is regulated by Ca2+ /calmodulin and is believed 

to be a major kinase in both smooth muscle and nonmuscle cells. In addition, 

Rho-kinase can directly phosphorylate MLC in vitro [304]. MYCP is a 

holoenzyme composed of three subunits: a catalytic subunit of 38 kDa that 

was identified as protein phosphatase 1 (PP1) catalytic subunit δ-isoform 

(PP1Cδ) [305] and two noncatalytic subunits of 21 and 110–130 kDa [37]. The 

larger one, called myosin phosphatase targeting subunit 1 (MYPT1), binds to 

the catalytic subunit and targets it to MLC, providing substrate specificity [37]. 

Rho-kinase (RhoK) and protein kinase C (PKC) have been proposed to 

mediate the inhibition of smooth muscle MYCP, leading to increased MLC 

phosphorylation in response to various agonists. Phosphorylation of the 

MYPT1 regulatory site (Thr695 in chicken MYPT1) by RhoK induces 

inhibition of MYCP activity [37]. A number of experimental facts suggest that 

CPI-17 (for PKC-potentiated inhibitory protein of 17 kDa) is involved in 

PKC-dependent inhibition of MYCP. CPI-17 is a soluble globular protein 

described as a specific inhibitor for MYCP [37]. 
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3.2.5 Thrombin, VEGF and Histamine mediated MLC activation 

 

MLC of myosin II plays a critical role in controlling actomyosin contractility 

in both smooth muscle and nonmuscle cells [306-308]. MLC phosphorylation 

is regulated by the balance of two enzymatic activities, i.e., MLCK and 

myosin phosphatase (MYCP). MLCK is regulated by Ca2+/calmodulin and is 

believed to be a major kinase in both smooth muscle and nonmuscle cells. In 

addition, Rho-kinase (ROCK) can directly phosphorylate MLC in vitro [304]. 

MYCP is a holoenzyme composed of three subunits: a catalytic subunit of 38 

kDa that was identified as protein phosphatase 1 (PP1) catalytic subunit 

δ-isoform (PP1Cδ) [305] and two noncatalytic subunits of 21 and 110–130 

kDa [309], [310]. The larger one, called myosin phosphatase targeting subunit 

1 (MYPT1), binds to the catalytic subunit and targets it to MLC, providing 

substrate specificity [311]. ROCK and PKC have been proposed to mediate 

the inhibition of smooth muscle MYCP, leading to increased MLC 

phosphorylation in response to various agonists. Phosphorylation of the 

MYPT1 regulatory site (Thr695 in chicken MYPT1) by ROCK induces 

inhibition of MYCP activity [312]. Some experimental findings suggest that 

CPI-17, a soluble globular protein, is involved in PKC-dependent inhibition of 

MYCP and it has thus been considered as a specific inhibitor for MYCP [313]. 

. 



Chapter 3 Mathematical Model of Endothelial Permeability Signalling 

77 

3.3 Methods 

3.3.1 Model Development 

One of the most commonly used approaches to model biological systems is 

that of ODEs. In general, a differential equation can be used to describe the 

chemical reaction rate that depends on the change of participating species over 

time. The temporal dynamic behavior of molecular species in the biological 

signalling pathway network can be captured by a set of coupled ODEs. Our 

pathway model is illustrated in Figure 3-4. Thrombin, VEGF and histamine 

induced MLC activation, as well as Ca2+-dependent and ROCK-dependent 

activation of MLC, were included in the model. The constituent molecular 

interactions, their kinetic constants and molecular concentrations are described 

in detail in Table 3-1. The ODEs for these interactions were derived based on 

mass-action laws with interaction rate constants defined by the forward and 

reverse rate constants Kf and Kb or turnover number Kcat for enzymatic 

reactions derived from published models [37] and other literature. Our 

simulation model contains 200 equations and interactions and 185 distinct 

molecular species, characterized by 319 kinetic parameters and 48 initial 

molecular concentrations. These ODEs were then solved by using the 

Dormand-Prince pair based Ode45 solver of Matlab with the absolute 

tolerance of 1.0E-6 and relative tolerance 0.0010. A Systems Biology Markup 

Language (SBML) version of our model is provided at 

http://bidd.nus.edu.sg/group/Supplement.htm, and uploaded into the 

BioModels [314] and KDBI [315] databases. 
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Figure 3-5:  Framework of integrated pathway simulation model of 

thrombin-, histamine-, and VEGF-mediated MLC activation.  

The components in existing models are highlighted by red, blue, and red + 

blue + green background color for models from reference 15, 16 and 18 

respectively. The protein in the gray box represents output signaling. ROCK (f) 

and ROCK (o) refer to ROCK in folded and open conformation respectively. 
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Table 3-1: List of chemical reactions and related kinetic parameters in model. 

The relevant references from which the parameters obtained are given. Some 

of the kinetics values used in this study are not necessary exactly the same as 

the values given in the cited references but were scaled and optimized in 

10-fold ranges according to the performance and kinetics of current model 

(See Model Optimization and Validation under Materials and Methods section 

in main text for detailed description). 

For those kinetics parameters that are not readily available, parameter values 

from their homologous partners were taken and were subsequently scaled and 

optimized in 10-fold ranges (denoted as “Estimated” in the Table). 

“=” reversible reaction 

“->” enzyme catalytic reaction 
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 3.3.2 Collection and estimation of kinetic parameters 
 
 
The types of parameters used in our model are parameters governing 

protein–protein interactions and catalytic activities. The published simulation 

studies have found that most parameters are robust and moderate changes do 

not significantly alter the overall pathway behavior [290, 291, 293]. Apart 

from the use of the parameters of the published simulation models, additional 

parameters were obtained from the literature based on the widely used 

assumption that parameters measured in vitro and in some cell lines are 

generally applicable in most cases. For those protein-protein interactions 

without available parameters, their parameters were putatively estimated from 

the known parameters of the relevant interacting domain profile pairs [323, 

324] or other interacting protein pairs of similar sequences. As a biological 

network is believed to be robust, and protein-protein binding interactions for 

proteins in similar families that mediate similar types of biochemical reactions 

(such as Ras and Rho) often differ within a 10-fold range, the values of kinetic 

parameters obtained from previous models were optimized within this range. 

 

The parameters of the protein-pairs not available from previous models were 

obtained by the following procedure: The first step in finding the parameters 

of a specific protein-pair is to search protein-pairs that are both with available 

parameters and with each individual protein similar in sequence with the 

respective protein of the studied protein-pair. If one or more such protein-pairs 

are found, then the average values of the parameters of these protein-pairs are 

used as the initial parameters of the studied protein-pair, which are further 
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optimized in ±10-fold range with respect to experimental data. For instance, 

the parameters for the Rho activation cycle were obtained from the Ras 

activation cycle and were further optimized within a 10-fold range. The cycle 

of optimization and validation was repeated in order to obtain simulated 

results that agreed well with known experimental trends. If no such 

protein-pair is found, we proceed to the second step to search protein-pairs 

that are both with available parameters and with each individual protein 

belonging to the same domain family of the respective protein of the studied 

protein-pair. If one or more such protein-pairs are found, then the average 

values of the parameters of these protein-pairs are used as the initial 

parameters of the studied protein-pair, which are further optimized in ±10-fold 

range with respect to experimental data.  

 

Figure 3-6: Fit to experimental data for Ras activation. 

 
The parameters of RhoGAP and PKC related protein-pairs were determined by 
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the first and second step. The parameters of 14 protein-pairs could not be 

determined by the first and second step due to lack of experimental data and 

relevant protein-pairs with known parameters. These parameters were 

determined by using the trust regions algorithm [325] to fit the simulation 

results to the experimental data of RAS, ERK, MYPT and CPI-17 activation 

curves [37]. Figure 3-5 shows the fitting curve against experimental RAS 

activation data. The level of fitting is based on the least-squares method and 

the fitting process proceeds in iterations until the R-square value is >0.6[326]. 

In each iteration, the parameter values derived from the previous iteration 

were used as the starting parameters for further optimization.  

 

3.3.3 Model Optimization, Validation and Parameter Sensitivity Analysis 

Mathematical models developed by ‘one-set-fits-all’ generic parameters need 

not reproduce quantitative behavior in all systems, but may be able to 

reproduce the behavior or trend for specific systems. For instance, a 

mathematical model developed for a biological pathway from parameters 

obtained experimentally from one cell type can behave slightly different in 

another cell types. Differences in model behavior between cell types can be 

due to the presence or absence of crosstalk (i.e., differences in model topology) 

and variation in effective values of kinetic parameters. Hence, in this study, we 

developed a generic model of the thrombin-, VEGF-, and histamine-MLC 

signaling pathway to investigate the role of these three main mediators in 

regulating MLC activation. The simulated results are represented as 
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trajectories of concentrations of chemical species with respect to time that are 

validated against available experimental data. If the trend or dynamic behavior 

of a particular reactant or product behaves in such a way that is consistent with 

the experimental data, then the model is said to be reasonable and can be used 

to analyze and predict unknown biological phenomena within some difficulty 

to define range of conditions. If the simulation results are not in agreement 

with known experimental facts, then the model has to be revisited to examine 

possible errors, such as incorrect interaction kinetics or values of kinetic 

parameters. Optimized parameters obtained from previous mathematical 

models are not necessarily optimized in a new study as the scope of these 

models can be different. The cycle of optimization and validation are repeated 

in order to obtain simulated results that agree well with known experimental 

trends.  

 

The sensitivity of the simulation results with respect to the optimized and 

other parameters need to be systematically analyzed to determine if the model 

is sufficiently robust to be able to analyze and predict the true dynamic 

behavior of biological networks without the artifact of parameters. Differential 

analysis of parameter sensitivity, also referred to as the direct method, was 

utilized to compute the time-dependent sensitivities of all the species states 

with respect to each parameter values in the model [327]. Complex-step 

derivative approximation [328] was used to calculate numerical derivatives of 

the reactions in the model to achieve near analytical accuracy, robustness and 

easy implementation. We used sensitivity analysis function of Matlab to 
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conduct sensitivity analysis. The sensitivity value of ppMLC with respect to 

all parameters in the model was provided in Additional File and Figure 3-6. 

As shown in Additional File, Figure 3-6, only 14 (4%) kinetic parameters 

including CPI-17, PKC and ROCK related reactions showed some sensitivity 

in affecting the output. The majority of the parameters are insensitive in 

affecting the output. Thus, our model can be considered as sufficiently robust. 

 

Figure 3-7: Parameter sensitivity analysis  

 

3.3.4 Estimation of kinetic parameters 

We estimated the values of unknown parameters in the model when some 

parameters cannot be determined from direct experiments or the literatures. 

Unknown or only roughly known parameters were estimated by minimizing 

the discrepancy between the experiment data and model simulation. These 

parameters were determined by using the trust regions algorithm [325] to fit 
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the simulated to the experimental data of RAS, ERK, MYPT and CPI-17 

activation curves [37]. The level of fitting is based on the least-squares method 

and the fitting process proceeds in iterations until the R-square value is >0.6. 

 

The procedure can be summarized as follows: 

1. Import target experiment data 

2. Simulate the model with the rough parameter values 

3. Compute R-Square value for the simulation and experiment data before 

parameter estimation 

4. Set up the parameters to estimate and the state to match. 

5. Use the current values of parameters in the model as the starting point for 

optimization 

6. Simulating the model with the new estimate parameters and computing 

R-Square value for comparison. 

7. Plot the results 

 

For example, we estimated parameters by fit our simulation results to 

experiment data of Activated Ras [320]. The experiment data, simulation results 

before and after parameter estimation were shown as Figure 3-6. The fitness 

has been improved with R-Square value from 0.4508 to 0.6088. 
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3.4 Results and discussion 

3.4.1 Model validation with experimental studies of the regulation of 

MLC activation, calcium release, and Rho activation by thrombin 

 

Our simulation model was first validated by determining whether the 

simulation results were consistent with experimental observations of MLC 

activation and calcium release by the single mediator thrombin. 

Thrombin-mediated processes were investigated computationally by zeroing 

out the initial concentration of VEGF and histamine. It has been observed that 

MLC activation increases from low initial levels to 39%±2%, 66%±10, 

68%±13%, 64%±13%, and 67±9% of the MLC population at 30s, 60s, 2.5 min, 

15 min, and 30 min after thrombin stimulation, respectively, which 

subsequently drops to 48% at 60 min [329]. The amplitude of MLC activation 

has been found to correlate linearly with the strength of endothelial cell 

contraction [330, 331]. As illustrated in Figure 3-7 (Left), our simulated 

time-dependent MLC activation levels are in fair agreement with this 

observation (the simulation results for the first 20 min are also shown in 

Figure 3-8).  Our simulations showed that the amplitude of MLC activation 

reaches two peaks, the first at ~2.5 min and the main peak at ~30 min, which 

is compared to the observation that the levels of active MLC levels at 2.5 min 

and 30 min are higher than those at 15 min and 60 min [329]. Our analysis 

suggested that these two peaks arise primarily from the Ca2+-dependent and 

Rho GTPase/ROCK-dependent mechanisms, respectively, as described below.   

.  
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Figure 3-8: Simulated time course and experimental data of 

thrombin-mediated MLC activation (left) and calcium release (right).  

 denotes experimentally measured MLC activation at 30s (39%±2), 60s 

(66%±10%), 2.5min (68%±13%). 
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Figure 3-9: Simulated time course and experimental data of 

thrombin-mediated MLC activation in the first 20 min. 

  denotes experimentally measured MLC activation at 30s (39%±2), 60s 

(66%±10%), 2.5min (68%±13%). 

 

 

Elevation in cytosolic Ca2+ concentration ([332]) is a common initial response 

of endothelial cells to various changes such as the exposure to hormonal and 

inflammatory stimuli and variation of physical conditions [333]. Jeng et al. 

[334] have shown that the binding of thrombin and PAR-1 induces rapid 

calcium mobilization and increase of [Ca2+]i, with [Ca2+]i peaking at 30-40 s 

followed by a rapid drop. The simulated calcium release profile in Figure 3-7 

(Right) exhibits a peak concentration at 38 s followed by a rapid decay, 

consistent with Jeng et al’s experiment results. The increased intracellular Ca2+ 

influx is expected to enhance the binding of Ca2+ to CaM, which subsequently 

activates MLCK to phosphorylate the MLC of myosin II. To evaluate which 
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signaling event is primarily responsible for the large transient increase in the 

level of MLC activation (the first peak at ~2.5 min in the left Figure 3-7), we 

systematically varied the strength of protein-protein interactions upstream of 

MLC. As shown in Figure 3-9, the first peak disappears when the 

Ca2+-dependent MLC activation (Reaction 73-86) was switched off, while that 

peak remains largely intact when the ROCK-dependent MLC activation and 

CPI-17-MYPT interactions were switched off (Reactions 57-58, 63-70, 

99-102), Therefore, our analysis suggests that this Ca2+-dependent mechanism 

was primarily responsible for the large transient increase of the levels of MLC 

activation. 

 

Figure 3-10: Simulated time course of thrombin-mediated MLC activation in 

terms of different components.  

The curve ,  and   represents the signaling from the 

complete pathway (Control), the Ca2+-dependent component (with 

ROCK-dependent MLC activation and P-CPI-17-MYPT interaction switched 

off, Reactions 57-58, 63-70, 99-102), and the non- Ca2+-dependent component 

(with Ca2+ -dependent MLC activation switched off, Reactions 71-86) 

respectively.  
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Thrombin induces a prolonged increase of endothelial permeability lasting for 

1-1.5 hr. This prolonged elevated permeability is attributed to the activation of 

the small Rho GTPase and Rho kinase [335, 336]. It has been found that Rho 

GTPase activation can be observed after 2 min and the elevated activation is 

maintained up to 60 min after thrombin stimulation, and the time course of 

Rho GTPase activation correlates well with the time course of MLC activation 

increase by Figure 3-10 is consistent with this observation, which shows that 

the simulated Rho GTPase activation was maintained for 60 min. Rho GTPase 

activation induces MLC activation via both direct and indirect routes. Rho 

GTPase and ROCK directly activate MLC to subsequently induce the 

contraction of the non-muscle cell systems [304, 337]. In the indirect route, 

ROCK inhibits myosin phosphatase activity by phosphorylating the myosin 

binding subunit (MBS) of myosin phosphatase [312], which increases the 

activation level of MLC, actomyosin interaction, stress fiber formation, and 

subsequent endothelial permeability. We studied whether these direct and 
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indirect Rho GTPase -dependent mechanisms are primarily responsible for the 

sustained levels of MLC activation (the main peak at ~30 min in the left 

Figure 3-7) by systematically varying the protein-protein interactions 

upstream of MLC. As shown in Figure 3-11, this peak remains largely intact 

when the Ca2+ -dependent MLC activation and P-CPI-17-MYPT interaction 

(Reaction 57-58, 71-76) were switched off, but disappeared when the 

ROCK-dependent MLC activation (Reactions 63-70, 99-102) were switched 

off. Therefore, our analysis suggests that both the direct and indirect Rho 

GTPase -dependent mechanisms play an important role for the sustained levels 

of MLC activation. 

 

Figure 3-11: Simulated time course and experimental results of 

thrombin-mediated   Rho GTPase activation in units of percentage of initial 

Rho concentration. 
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Figure 3-12: Simulated time course of thrombin-mediated MLC activation in 

terms of different components.  

The curve ,  and   represents the signalling from the 

complete pathway (Control), ROCK-dependent component (with Ca2+ 

-dependent MLC activation and P-CPI-17-MYPT interaction switched off, 

Reactions 57-58, 71-76), and the non- ROCK-dependent component (with 

ROCK-dependent MLC activation switched off, Reactions 63-70, 99-102) 

respectively.  

 

 

3.4.2 Model validation with experimental studies of MLC activation and 

ERK     activation by VEGF 

Our simulation model was also validated by determining whether the 

simulation results are consistent with experimentally observed regulation of 

MLC activation as well as ERK and MLCK activation by another mediator 

VEGF. These VEGF-mediated processes were simulated by using our model 

with thrombin and histamine switched off by setting their initial 

concentrations to zero values. It has been reported that injection of VEGF 
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induces vascular leakage in 5 min, and the leakage peaks in 15-20 min and 

then diminishes after 30 min [338]. As shown in Figure 3-12 (Left), the 

simulated duration of MLC activation is about 30 min with the first peak at 2.5 

min and the main peak at 15 min. The 15 min time range of the main peak of 

MLC activation is consistent with the reported 15-20 min time range for 

VEGF-induced vascular leakage to reach its peak [338]. While we have not 

found an experimental finding to support the true existence of the first peak 

exhibited by our simulation, it is noted that the time of the first peak matches 

the experimentally determined on-set time of VEGF-induced vascular leakage 

[338]. As described in the previous section, the first peak of MLC activation at 

~2.5 min in Figure 3-12 (Left) was induced mainly by Ca2+-dependent 

mechanism. We further investigate which signalling event is primarily 

responsible for the main peak at ~15 min. As shown in Figure 3-13. We found 

that this peak remained when NO-dependent MLC activation was switch off 

(Reactions 179-185) but disappeared when Ras-Raf-ERK-dependent MLC 

activation was switch off (Reactions 152-163). This suggests that the main 

peak is induced by Ras-dependent ERK activation. As shown in Figure 3-12 

(Right), the simulated ERK activation peaks at about 7 min and decays within 

25 min, which is consistent with the observation that the amount of 

phosphorylated ERK-1/2 reaches maximum value at 5-10 min after 

administration of VEGF and decreases back to the control level 30 min 

afterward [37].   
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Figure 3-13: Simulated time course and experimental result of 

VEGF-mediated MLC activation (left) and ERK activation (right)  

 

Thrombin and histamine level set at zero values. The shaded area in the left 

figure indicates the time range in which VEGF-induced vascular leakage 

reaches its peak in experimental studies (Ref 57). The shaded area in the right 

figure indicates the time range in which the amount of ERK-1/2 activation 

reaches maximum value after VEGF administration (Ref 58). The VEGF 

concentrations were set as 0.02 µM. 
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Figure 3-14: Simulated time course of VEGF-mediated MLC activation in 

terms of different components.  

The curve ,  and   represents the signaling from the 

complete pathway (Control), non-ERK-dependent component (with 

Ras-Raf-ERK-dependent MLC activation switched off, Reactions 152-163), 

and the non- NO-dependent component (with NO- dependent MLC activation 

switched off Reactions 179-185) respectively. 

 

3.4.3 Model validation with experimental studies of MLC activation by 

histamine 

The model was further validated by determining whether the simulation results 

are consistent with experimentally observed regulation of MLC activation by 

the third individual mediator histamine. This histamine-mediated process was 

simulated by using our model with thrombin and VEGF switched off by 

setting their initial concentrations to zero values. The simulation results in 

Figure 3-14 indicated that histamine causes a transient increase of MLC 

activation that peaked at 2.5 min, which is consistent with the experimental 
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finding that histamine induces a transient endothelial permeability peaked at 

2-5 min [282]. Further investigation showed that this peak is primarily induced 

by Ca2+-dependent mechanism and the contribution from the NO-dependent 

ERK activation path is very small, as shown in Figure 3-15 by switching off 

each individual path. Moreover, the contribution from the NO-dependent ERK 

activation path is much weaker compared with Ras-dependent ERK activation 

and MLC activation by the individual mediator VEGF.  

 

Figure 3-15:  Simulated time course and experimental result of 

Histamine-mediated MLC activation in units of percentage of initial MLC 

concentration with thrombin and VEGF level set at zero values. The shaded 

area indicates the time range in which histamine has been experimentally found 

to induce a transient endothelial permeability. The histamine concentrations 

were taken as 0.005µM. 
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3.4.4 Comparison of the simulated thrombin-mediated IP3 and Ca2+ 

release with that of an existing model 

The thrombin signalling cascade of our model is very similar to that of Maeda 

et al. that has been developed a computational model of thrombin-regulated 

ROCK pathway [293]. Hence, it is appropriate to compare the simulation 

results of our model with Maeda’s model. In their studies, they measured and 

simulated thrombin-mediated IP3 and Ca2+ release. We therefore compared 

our simulated IP3 and Ca2+ release with their results. As shown in Figure 

3-16, our simulation showed essentially the same transit IP3 release and Ca2+ 

release patterns as those presented in Maeda’s studies.  

 

Figure 3-16: Simulated time course of Histamine-mediated MLC activation in 

terms of different components.  

The curve ,  and   represents the signaling from the 

complete pathway (Control), non- Ca2+-dependent component (with 

Ca2+-dependent MLC activation switched off, Reaction 71-86), and the 

non-NO-dependent component (with NO- dependent MLC activation switched 

off, Reaction 179-185 ) respectively.  
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Figure 3-17: Comparison of simulation result of Ca2+ and IP3 in our model and 

Maeda’s model 
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3.4.5 Simulation of the effects of thrombin receptor PAR-1 

over-expression on thrombin-mediated MLC activation  

 

PAR-1 is the major thrombin-activated receptor involved in platelet 

aggregation, endothelial permeability, and tumor cell migration. Activated 

PAR-1 is coupled via several members of the heterotrimeric G-proteins, 

Gα12/13 and Gαq, to transduce a substantial network of signalling pathways 

[300]. It has been reported that during atherogenesis, PAR-1 expression is 

enhanced in regions of inflammation associated with macrophage influx, 

smooth muscle cell proliferation, and an increase in mesenchymal-like intimal 

cells [339]. It is of interest to quantitatively evaluate the effects of PAR-1 

elevation on thrombin-mediated MLC activation. We further used our model 

to simulate thrombin mediated MLC activation at different PAR-1 levels with 

VEGF and histamine switched off [340]. Our simulation results, in Figure 

3-17, showed that PAR-1 at elevated levels significantly increases the 

amplitude of MLC activation and reduces the time for MLC activation to 

reach the main peak. There is a direct correlation between the level of PAR-1 

expression and the degree of invasiveness of breast carcinoma cell lines [37], 

in which endothelial permeability is one of the prerequisites for cancer 

invasiveness as it facilitates cell transmigration and plasma accumulation in 

the matrix to support new vessel formation [340]. Therefore, this experiment 

indicated that PAR-1 over-expression leads to enhanced endothelial 

hyper-permeability, and our simulation results are in good agreement with this 

experimental finding. 
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Figure 3-18: ppMLC activation at different PAR-1 concentrations 
 

 

 

3.4.6 Simulation of the effects of Rho GTPase and ROCK over-expression on 

thrombin-mediated MLC activation  

 

Rho GTPase and ROCK in endothelial cells have been found to be elevated in 

hypoxia [341]. Over-expression of dominant activated Rho GTPase/ROCK in 

NIH3T3 cells results in an increase of MLC activation [312]. Over-expressed 

ROCK in human brain microvascular endothelial cells has been found to 

induce endothelial permeability and to significantly increase the 

transmigration rate of NCI-H209 cells through the human brain microvascular 

endothelial cells [342]. The effects of elevated Rho GTPase and ROCK on 

thrombin-mediated MLC activation were quantitatively evaluated by using our 

model with VEGF and histamine switched off. As shown in Figure 3-18, an 

increased ROCK level with Rho GTPase at control level significantly 
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enhanced the amplitude of activation of MLC in a dose-dependent manner. 

When ROCK and Rho GTPase levels were simultaneously elevated, the 

amplitude of MLC activation was significantly increased and the time to reach 

the activation peak was reduced. Rho GTPase and ROCK are abundant in 

lymph nodes with metastasis, and the ability to enter either blood or lymphatic 

vasculature is necessary for tumor cells to metastasize to distant sites [343]. 

Furthermore, Rho GTPase and ROCK reportedly are required in both 

endothelial and migrating cells for them to cross the vascular endothelium 

[344, 345]. Thus, by quantifying the effect of Rho GTPase /ROCK, we can 

gain more insight into the mechanism of sustained MLC activation, which 

may aid the search for and evaluation of new therapeutic strategies for the 

prevention and treatment of endothelial hyper-permeability and cancer 

metastasis-related diseases. 

.  
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Figure 3-19: MLC activation at different Rho GTPase (A) and ROCK (B) 

concentrations. 

 

 

 

 

 

 

 

 

3.4.7 Simulation of effects of VEGF and VEGFR2 over-expression on 

VEGF-mediated MLC activation  

 
VEGFR2 is recognized as the principal mediator of physiological and 

pathological effects of VEGF on endothelial cells, which include proliferation, 

migration, survival, and permeability [346]. The expression of VEGF and 

VEGFR2 in endothelial cells has been found to be elevated in oxidative stress 

[347], type 1 leprosy reaction [348], and during diabetes to induce 

microvascular complications, especially diabetic retinopathy [349]. 

Over-expression of VEGF and VEGFR2 has been shown to correlate with 

increased risk of metastatic disease and overall poor prognosis in different 
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carcinomas [350]. Apart from their primary functions in angiogenesis, the 

roles of VEGF and VEGFR2 in metastasis likely involve the regulation of 

endothelial permeability to facilitate cell transmigration and plasma 

accumulation in the matrix in support of new vessel formation [351]. The 

effects of VEGF and VEGFR2 over-expression on VEGF-mediated MLC 

activation were quantitatively evaluated by using our model with thrombin and 

histamine switched off.  

 

As shown in Figure 3-19, the increased amount of VEGFR2 with VEGF at 

control level significantly enhanced MLC activation. For instance, the small 

increase of VEGFR2 concentration from 0.010 to 0.012 µM increased the 

amplitude of the main peak of MLC activation by 15%, suggesting that MLC 

activation was very sensitive to VEGFR2 concentration. When VEGF and 

VGEFR2 levels were simultaneously increased, the amplitude of MLC 

activation was further increased by a significant amount with respect to that 

when only VEGFR2 was over-expressed. This is consistent with the observed 

correlation of VEGF and VEGFR2 over-expression with increased risk of 

metastatic disease and overall poor prognosis in different carcinomas [350]. 
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Figure 3-20:  MLC activation at different VEGF(V) and VEGFR2 (VR) 

concentrations 

 

 

3.4.8 Simulation of synergistic activation of MLC by thrombin and 

histamine  

It has been reported that combination of low concentrations of stimuli of 

thrombin and histamine induces more significantly enhanced endothelial 

permeability than the simple sum of the permeability change induced by each 

mediator alone [352]. The effect of the combination of low concentrations of 

thrombin and histamine on MLC activation was explored by using our model 

with the third mediator VEGF switched off. As illustrated in Figure 3-20, from 

10 min to 50 min after stimulation with combination of 0.0015 µM thrombin 

and 0.0050 µM histamine, the amplitude of MLC activation reached levels 

of >65%, which is greater than the simple sum of <35% and <22% when only 

one individual mediator, thrombin and histamine, respectively, was switched 
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on. Therefore, our simulation results indicated a synergistic effect of histamine 

and thrombin, in agreement with observations [352]. Moreover, the levels of 

MLC activation induced by these low concentrations of thrombin and 

histamine are comparable to (higher than) those induced by individual 

mediator thrombin and histamine at concentrations of 0.0500 µM and 0.005 

µM, respectively, which suggests that the synergistic effect is at a substantial 

level. 

 

Figure 3-21: MLC activation induced by combination of thrombin and 

histamine stimuli. 

 

 

The level of synergistic effect can be more clearly revealed by the comparison 

of the areas under the thrombin and histamine induced MLC activation curve 

with those of thrombin-induced and histamine-induced MLC activation curves 

at different 10 min time intervals in Figure 8, which are provided in Table 3-2. 



Chapter 3 Mathematical Model of Endothelial Permeability Signalling 

112 

In particular, the level of synergistic effect can be reflected by the difference 

between the area under the thrombin and histamine induced curve and the 

simple sum of the areas under the thrombin-induced and histamine-induced 

curves, with positive values corresponding to synergistic effect (better than 

simple sum of thrombin-induced and histamine-induced activation). From 

Table 1, the largest synergistic effect occurs in the 10-20 min, 20-30 min and 

30-40 min time ranges with net area gain of 1.3, 1.8 and 1.5 (corresponding to 

an average of 13%, 18% and 15% more amount of activated MLC with respect 

to that of simple sum of thrombin-induced and histamine-induced activation).  
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Table 3-2: Comparison of the areas with respect to different time ranges in  

Figure 3-20 

 

Comparison of the areas under the thrombin and histamine induced MLC 

activation curve with those of thrombin-induced and histamine-induced MLC 

activation curves with respect to different time ranges in Figure 3-20 

 

 

As shown in Figure 3-20, the synergistic effect at low concentrations of 

thrombin and histamine only occur during the time range from 10 min to 50 

min. Before and after this time range, the level of MLC activation by thrombin 
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+ histamine is less than the simple sum of that by thrombin and histamine 

alone. The less than additive effect during the first 10 min is primarily due to 

the time-dependent behavior of MLC activation by the Ca2+-dependent 

signalling cascade. The transient MLC activation curve by the Ca2+-dependent 

cascade is largely the same for the thrombin, histamine, and thrombin + 

histamine mediated processes (Figure 3-21, Figure 3-22, Figure 3-23 solid 

line). It is thus not difficult to understand that the simple sum of the level of 

MLC activation by thrombin and histamine alone is superficially larger than 

that by thrombin + histamine.  The less than additive effect after 50 min is 

primarily due to the variation of time-dependent behavior of MLC activation 

by the ROCK-dependent signalling cascade. The level of MLC activation 

slowly rises to significant levels without decay in the presence of thrombin 

alone for up to 100 min (Figure 3-21, dotted and dash-dotted line). On the 

other hand, the MLC activation level rises slowly to moderate levels without 

decay in the presence of histamine alone (Figure 3-22). In contrast, the MLC 

activation level quickly rises to high levels and rapidly decays to low levels 

after 50 min in the presence of thrombin + histamine, the signalling strength 

thus becomes less than additive after 50 min (Figure 3-23, dash-dotted line).  
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Figure 3-22: The contribution of Ca2+- dependent, ROCK-dependent and 

CPI-17-dependent signaling cascade to thrombin-mediated MLC activation at 

low concentration of thrombin (0.0015 µM). 

 

 

Figure 3-23: The contribution of Ca2+- dependent, NO-dependent and 

CPI-17-dependent signaling cascade to histamine-mediated MLC activation at 

low concentration of histamine (0.005 µM). 
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Figure 3-24: The contribution of Ca2+- dependent, NO-dependent and 

CPI-17-dependent cascade to thrombin + histamine mediated MLC activation 

at low concentration of thrombin (0.0015 µM) and histamine (0.005 µM). 

 

 

The underling mechanism of the significant synergistic effect during 10-50min 

time period can be elucidated from the perspective of network regulation. MLC 

activation is regulated by at least four signalling cascades Ca2+-dependent, 

CPI-17-dependent, NO-dependent, and ROCK-dependent cascades. As shown 

in Figure 3-21, Figure 3-22, Figure 3-23, The MLC activation curve induced 

by the Ca2+-dependent cascade is roughly the same for the thrombin, histamine 

and thrombin + histamine mediated processes.  The level of MLC activation 

induced by the CPI-17-dependent, NO-dependent cascade in the presence of 

thrombin + histamine is close to the simple sum of that in the presence of 

thrombin and histamine alone. While the MLC activation induced by the 
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ROCK-dependent cascade in the presence of thrombin + histamine is at 

significantly higher levels and shows more transient pattern than that in the 

presence of thrombin and histamine alone. These differences in signaling 

behavior lead to synergistic effect within 10 min to 50 min time range. 

 

The different signaling behavior of the Rho-ROCK signaling stimulated by 

different mediators or mediator combinations primarily arises from the 

dynamics of ROCK activation [322].  The kinase activity of ROCK is off when 

ROCK is intra-molecularly folded. ROCK can be activated only after it is 

unfolded by the binding of Rho GTPase to its Rho-binding domain to disrupt the 

auto-inhibitory interaction, which subsequently allows such proteins as Rho 

GTPase and PKG to activate ROCK at phosphorylation site. Hence, in the 

presence of thrombin + histamine, thrombin-activated Rho GTPase unfolds 

ROCK to allow histamine-activated PKG to activate ROCK thereby enhancing 

the level of ROCK activation in combination with thrombin-mediated Rho 

GTPase activation of ROCK. When stimulated by histamine or VEGF alone, 

ROCK is in the inactive state and does not contribute to MLC activation. When 

stimulated by thrombin alone, ROCK is activated only by Rho GTPase without 

the contribution from PKG, leading to a slower increase and lower peak strength 

of MLC activation than that in the presence of thrombin + histamine. Such an 

integrated communication network is expected to enable fine tuning of the 

strength and duration of MLC activation, thereby enabling fine regulation of 

physiological responses, including synergistic or more complex effects. 

Network models have suggested that partial inhibition of a surprisingly small 
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number of targets can be more efficient than the complete inhibition of a single 

target [353]. Experimental and simulation studies of synergistic effects of 

thrombin and histamine on endothelial monolayer permeability may provide 

useful information for developing multi-target drugs against endothelial 

permeability and related diseases [353]. 

 

3.4.9 Prediction of the collective regulation of MLC activation by 

thrombin and VEGF 

      Our simulation model was further used to study the collective regulation of 

MLC activation by thrombin and VEGF, with a particular focus on whether or 

not thrombin and VEGF synergistically activate MLC in certain time ranges. 

Systemic activation of blood coagulation is often present in cancer patients, 

and thrombin generated during thrombosis can augment malignant phenotypes 

by activating tumor cell adhesion to platelets and endothelial cells, enhancing 

tumor cell growth and metastasis, and stimulating tumor cell angiogenesis 

[277]. Moreover, thrombin promotes VEGF secretion and platelet activation, 

thus causing a mutual stimulation between endothelial cells and cancer cells 

[354, 355]. Therefore, the collective effect of thrombin and VEGF on MLC 

activation and subsequently endothelial hyperpermability may have substantial 

influence on the tumor growth and metastasis process in cancer patients with 

blood coagulation near and at the tumor sites [356].  

 

As shown in Figure 3-24, from 15 min to 30 min after stimulation with 
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combination of 0.002 µM thrombin and 0.010 µM VEGF, the amplitude of 

MLC activation reached levels of >62%, which is greater than the simple sum of 

<32% and <28% when only one individual mediator, thrombin and VEGF, 

respectively, was switched on. Therefore, our simulation results indicated a 

synergistic effect of histamine and VEGF on MLC activation.  The level of 

synergistic effect can be reflected by the difference between the area under the 

thrombin and VEGF induced curve and the simple sum of the areas under the 

thrombin-induced and VEGF-induced curves in Figure 3-24, which are shown 

in Table 3-3. From Table 3-3, the largest synergistic effect occurs in the 20-30 

min time range with net area gain of 1.8 corresponding to an average of 18% 

more amount of activated MLC with respect to simple sum of thrombin-induced 

and VEGF-induced activation. The high level MLC activation by thrombin and 

VEGF likely has significant impact on the promotion of cancer metastasis in 

the cancer patients with blood coagulation near and at the tumor sites. These 

patients may be more effectively treated by combinations of drugs targeting 

the VEGF and thrombin signalling pathways [356]. 

 

 

 

 

 



Chapter 3 Mathematical Model of Endothelial Permeability Signalling 

120 

Figure 3-25 : MLC activation induced by the combination of thrombin and 

VEGF stimuli. 
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Table 3-3: Comparison of the areas with respect to different time ranges in 

Figure 9 

Comparison of the areas under the thrombin and VEGF induced MLC activation curve 

with those of thrombin-induced and VEGF-induced MLC activation curves with 

respect to different time ranges in Figure 9 
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3.4.10 Prediction of the effect of CPI-17 over-expression on MLC 

activation in the presence of lower concentration of thrombin, 

histamine and VEGF 

 

CPI-17 inhibits MYCP to hinder its dephosphorylation of MLC, leading to 

increased MLC activation [357]. Altered CPI-17 level is associated with 

smooth muscle-related diseases, such as intestinal bowel disease [358], asthma 

[359], pulmonary hypertension [360] and diabetic dysfunction of smooth 

muscle [361]. It is of interest to evaluate the effect of CPI-17 over-expression 

on MLC activation, particularly at lower level of thrombin, histamine and 

VEGF.  In this work, CPI-17 over-expression was simulated by 5-fold 

increase of its level from 0.08μM to 0.4μM [362].  Each of the thrombin-, 

histamine- and VEGF- mediated processes was simulated by setting the 

concentration of thrombin, histamine and VEGF set at lower value of 0.0015 

µM, 0.005 µM and 0.01 µM respectively with the other two mediators 

switched off by setting their initial concentrations to zero values. As shown in 

Figure 3-24, CPI-17 over-expression significantly strengthened and prolonged 

MLC activation to the levels higher than those at normal CPI-17 level and 

normal concentration of thrombin, histamine and VEGF respectively [363].  
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Figure 3-26: Prediction of the effect of CPI-17 over-expression on MLC 

activation at low concentration of stimuli. 

Solid and doted lines correspond to the activation by default (CPI-17 = 0.08 

µM) and elevated (CPI-17 = 0.4 µM) concentration of CPI-17. Blue line refers 

to thrombin stimuli, green line refers to histamine stimuli, and red line refers to 

VEGF stimuli respectively.  

 

 

3.5 Conclusion remarks 

Thrombin, VEGF, and histamine are hallmarks of endothelial 

hyper-permeability, which perform their regulatory roles individually and 

collectively under different disease conditions, and with different dynamic 

profiles. Thrombin and VEGF can increase microvascular permeability ~50,000 

times more potently than histamine [212] . Thrombin, VEGF, and histamine 



Chapter 3 Mathematical Model of Endothelial Permeability Signalling 

124 

induce prolonged (1-1.5 hr), intermediate (15-20 min) and transient (~5 min) 

increases of endothelial permeability, respectively. An integrated simulation 

model that includes the signalling of all these hallmark mediators enables more 

comprehensive analysis of the signalling processes involved in different disease 

processes and regulated by different combinations of these mediators. 

 

Based on published models of relevant signalling, we developed an integrated 

mathematical model including the signalling pathways of all three of these 

mediators. Simulation results from our model were consistent with available 

experimental data of signalling mediated by both individual mediators and 

combinations of two mediators, and could be used to interpret the sustained and 

transient phases of MLC activation. Our model was able to predict the effects of 

altered pathway components and synergistic combination of multiple mediators, 

some of which are consistent with experimental findings [352]. Similar to the 

published models of other pathways, our model can potentially be used to 

identify important disease genes through sensitivity analysis of signalling 

components [37]. Our model may also be extended to emphasize other 

components to facilitate further investigation of the effects of different 

mediators, cascades, and cross-talk on endothelial permeability and related 

diseases. 
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Chapter 4 Sepsis Biomarker selection 

This chapter describes endothelial permeability related disease-Sepsis 

biomarker selection method using microarray data. The Consensus Scoring of 

Multiple Random Sampling and Gene-Ranking Consistency Evaluation 

method were used for identifying of stable disease-differentiating signatures. 

20 sets of sepsis gene signatures were generated. 41 gene signatures are fairly 

stable with 69%~93% of all predictor-genes shared by all 20 signatures sets. 

The predictive ability of the selected signature shared by all of the 20 sets is 

evaluated by SVM models on an independent dataset collected from GEO 

Database (GSE28750). The overall accuracy for the 41 predictor-genes was 

93.26%. The accuracies for all predictor-genes were in the range of 

92.97~94.57%. These results suggest that the selected signatures using our 

system can perform well in classification of drug sensitivity. 

 

4.1 Introduction 

In complex biological systems, in order to understand and explain the 

mechanisms of various biological processes and their various disease states, it 

becomes increasingly important to model the various markers for both the 

healthy state and the disease state in order to enable prompt, accurate and timely 

diagnosis as well as an appropriate intervention to treat the disease state if it is 

present.  

 

Sepsis is a leading cause of death in critically ill patients despite the use of 
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modern antibiotics and resuscitation therapies [364] .The septic response is an 

extremely complex chain of events involving inflammatory and 

anti-inflammatory processes, humoral and cellular reactions and circulatory 

abnormalities [365]. The diagnosis of sepsis and evaluation of its severity is 

complicated by the highly variable and non-specific nature of the signs and 

symptoms of sepsis [366]. However, the early diagnosis and stratification of the 

severity of sepsis is very important, increasing the possibility of starting timely 

and specific treatment [367]. 

 

Disease signatures can have an important place in this process because they can 

indicate the presence or absence or severity of sepsis [368] and can differentiate 

bacterial from viral and fungal infection, and systemic sepsis from local 

infection. Other potential uses of biomarkers include roles in prognostication, 

guiding antibiotic therapy, evaluating the response to therapy and recovery from 

sepsis. The simple and direct way to identify disease signatures is through 

analyzing the change of expression level across a series of samples. There are 

around 25,000 genes in human genome [369]. Therefore, Microarray becomes 

a very important tool for disease gene discovery because microarray can 

measure the gene expression profiles of tens of thousands of genes at one time. 

By discovering the differences in gene expression between normal and disease 

tissues, we can focus on the genes with different expressions and those genes 

that might be activated or inactivated in association with a particular disease.  

 

In this chapter, we explored a new gene selection method aiming at reducing 

the chances of erroneous elimination of predictor-genes. We employed the 

recursive feature selection method based on a model built from support vector 
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machines to identify novel molecular signatures with respect to the 

interactions among genes. Derived from the consensus scoring of multiple 

random sampling and the evaluation of gene-ranking consistency embedded in 

the recursive feature selection system, totally 41 genes were selected after 20 

times of experiments. The gene signatures are fairly stable with 69%~93% of 

all predictor-genes shared by all 20 signatures. To test the prediction of 

selected signature, the derived signatures were evaluated by independent 

dataset (GSE28750) which contains 20 sepsis samples and 10 normal people. 

The differential expression and function analysis of the identified marker 

genes implies that the selected genes should play important roles in sepsis 

initiation and progress. For accurate disease diagnosis and proper treatment 

selection, it is very important to identify the gene markers responsible for 

disease initiation. Moreover, the discovery of the markers responsible for 

disease progress is critical because such markers can be used to identify 

disease stages, subtypes and prognosis effect in an accurate manner. As such, 

proper treatment regime can be applied and the survivability of the patients 

can be ultimately extended [370].  

 

4.2 Materials and methods  

4.2.1 Sepsis microarray datasets  

 

Two independent data sets of sepsis (GSE13904 and GSE28750) were used 

for sepsis gene discovery and for validating the effect of our selected genes.  

 

The dataset of GSE13904 contained the expression levels of 18 control and 22 

patients. This dataset was obtained by using the Affymetrix Human Genome 
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U133 Plus 2.0 Array [140]. This array completes covered of the Human 

Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 

transcripts. All probe sets represented on the GeneChip Human Genome U133 

Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0 

Array. The sequences from which these probe sets were derived were selected 

from GenBank®, dbEST, and RefSeq. The sequence clusters were created 

from the UniGene database (Build 133, April 20, 2001) and then refined by 

analysis and comparison with a number of other publicly available databases, 

including the Washington University EST trace repository and the University 

of California, Santa Cruz Golden-Path human genome database (April 2001 

release). 

 

In addition, there are 9,921 new probe sets representing approximately 6,500 

new genes. These gene sequences were selected from GenBank, dbEST, and 

RefSeq. Sequence clusters were created from the UniGene database (Build 

159, January 25, 2003) and refined by analysis and comparison with a number 

of other publicly available databases, including the Washington University 

EST trace repository and the NCBI human genome assembly (Build 31). 

 

In order to evaluate the performance of selected genes, the other dataset 

GSE28750 contains 10 normal people and 20 sepsis patients were used. The 

platform for this dataset is Affymetrix Human Genome U133 Plus 2.0 Array. 

Sepsis patients were recruited if they met the 1992 Consensus Statement 

criteria and had clinical evidence of systemic infection based on microbiology 

diagnoses (n=27). Participants in the post-surgical (PS) group were recruited 

pre-operatively and blood samples collected within 24 hours following surgery 
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(n=38). Healthy controls (HC) included hospital staff with no known 

concurrent illnesses (n=20). Each participant had minimally 5ml of PAXgene 

blood collected for leucocyte RNA isolation and gene expression analyses.  

 

4.2.2 Gene selection procedure 

By using repeated random sampling [141], 10,000 training-testing sets were 

generated. These 10,000 randomly generated training-testing sets were 

randomly placed into 20 sampling groups, and each group contains 500 

training-testing sets. 

 

Each of the 20 sampling groups was used to derive a signature. In the 500 

training-testing sets in every sampling group, each training-set was used to 

select genes by RFE based on SVM system. For all iterations and testing-sets, 

SVM system employed a set of globally modified parameters which gave the 

best average class-differentiation accuracy over the 500 testing-sets. 

 

On every sampling group, three gene-ranking consistency evaluation steps 

were implemented on top of the normal RFE procedures in all sampling 

groups: 

 

For every training-set, subsets of genes ranked in the bottom 10% (if no gene 

was selected in current iteration, this percentage was gradually increased to the 

bottom 40%) with combined score lower than the first top-ranked gene were 

selected such that collective contribution of these genes less likely outweighed 

higher-ranked ones.  

 



Chapter 4 Sepsis Biomarker selection 

130 

For every training-set, the step (1) selected genes was further evaluated to 

choose those not ranked in the upper 50% in previous iteration so as to ensure 

that these genes were consistently ranked lower.  

 

A consensus scoring scheme was applied to step (2) selected genes such that 

only those appearing in >90% (if no gene was selected in current iteration, this 

percentage was gradually reduced to 60%) of the 500 training-sets were 

eliminated.  

4.2.3 Performance evaluation of signatures 

The predictive capability and robustness of gene signatures was evaluated by 

using several microarray data analysis methods on independent microarray 

datasets. The microarray data analysis methods included hierarchical 

clustering and SVM.  

 

By using hierarchical clustering analysis, the performance of gene signatures 

was analyzed. As a popular unsupervised method, hierarchical clustering 

analysis groups genes and samples which have similar expression in the 

microarray data. Typically, the analysis begins with each gene/sample 

considered as a separate cluster. They are successively merged until one large 

cluster comprising the whole dataset is achieved. Later, these clusters are 

displayed in the form of a branching tree diagram, which can be broken into 

distinct clusters by cutting across the tree at a particular height. Hierarchical 

cluster analysis was carried out using the selected signatures by the software 

from Eisen et al [148, 371]. The results from hierarchical clustering were 

displayed by TreeView, which was also provided by Eisen et al [148, 371].  
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In SVM evaluation system, 500 random-generated training-test set were 

generated. The performance of the gene signatures was evaluated by overall 

accuracies Q (Equation 2-22) from the associated 500 test sets of the 500 

SVM classification systems.  

 

4.3 Results and discussion 

4.3.1 System of the disease marker selection 

The aim of this study was to identify the important gene signatures with regard 

to the intrinsic complex interactions of genes in sepsis disease initiation. 

Moreover, considering the noise in the microarray data arising from 

measurement variability and biological differences, the selected important 

gene signatures should be stable with regarding to such kind of variations. 

Based on the above concerns, recursive feature elimination method based on 

SVM was used to identify the different signatures from the multiple random 

combinations of samples. 20 sets of survival marker signatures were obtained 

by using RFE-SVM from 500 training-testing datasets with random sampling 

methods. SVM classifiers and hierarchical cluster analysis were used to 

evaluate the prediction system constructed from selected signatures (Figure 

4-1).  
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Figure 4-1: The system of sepsis genes derivation and sepsis differentiation 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

4.3.2 Consistency analysis of the identified disease markers 

The consistency level of the 20 derived signatures was estimated from the 

percentage of predictor-genes shared by them. 41 genes were shared by all of 

20 signatures (Table 4-1) in which the number of disease genes ranged from 

45 to 65 indicating that 63%~91% of all genes in each signature were shared 

by 20 signatures (Table 4-2).. Comparing to 20 sets of signatures derived from 

the same dataset of 40 samples by other groups, our selected signatures are 

stable.  

 

There are two aspects explaining why our selected gene signatures possess better 

stability. First, a SVM class-differentiation system with a universal set of 

Microarray data (2000 genes, 40 samples)

Disease gene 
signature 1  

Disease gene 
signature 2 

… Disease gene 
signature 20 

Genes shared by all of the twenty signatures 

SVM prediction system
Hierarchical cluster analysis 

Evaluation on the independent dataset 
collected from GEO 
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globally optimized parameters, which gave the best average 

class-differentiation accuracy over the 500 testing-sets, was used to derive 

RFE gene-ranking function at every iteration step and for every testing-set. As 

such, the effect from the parameter-dependence of conventional gene selection 

can be reduced dramatically. In earlier studies using RFE or other wrapper 

methods for selecting signatures, non-predictor-genes have been eliminated in 

multiple iterations, and at every iteration step a different class-differentiation 

system, characterized by a different set of optimized parameters, has been 

constructed [156, 274]. As gene-elimination is parameter-dependent, these 

selected predictor-genes are likely path-dependent and heavily influenced by 

sampling method, composition, order of gene evaluation, computational 

algorithm and parameters. These characteristics partly explain the highly 

unstable and patient-dependent characteristics of the previously-derived 

signatures [147]. Second, an additional gene-ranking consistency evaluation 

was performed on top of the normal RFE procedure to reduce the variations of 

erroneous eliminations of predictor-genes. 

 

The optimal SVM parameters for the 20 sample-sets were in a narrow range of 

17~18 and the highest average accuracies were 89.72%~93.63% for sepsis 

patients and 99.30%~91.78% for normal people respectively (Table 4-3). At 

these parameters, the accuracies for the individual testing-sets ranged from 

89.79~93.31% for sepsis patients and 99.30%~99.78% for normal people. 

Further deviation from these optimal parameters had relatively small effect on 

prediction accuracy and composition of predictor-genes. The relatively small 

variations of optimal SVM parameters and prediction accuracies across the 20 

sampling-sets suggests that the performance of the SVM class-differentiation 
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systems constructed by using globally optimized parameters and RFE iteration 

steps are fairly stable across different sampling combinations. 

 

Table 4-1 : List of sepsis biomarkers shared by all 20 groups, 15groups and 10 
groups.  

 

Official 
Name 

Full Name Other name Summary

List of sepsis biomarkers shared by all 20 groups 

ACE angiotensin I 
converting 
enzyme 
(peptidyl-dipeptid
ase A) 1 

DCP; ICH; ACE1; 
DCP1; CD143; 
MVCD3 

This gene encodes an enzyme 
involved in catalyzing the 
conversion of angiotensin I into a 
physiologically active peptide 
angiotensin II. Angiotensin II is a 
potent vasopressor and 
aldosterone-stimulating peptide that 
controls blood pressure and 
fluid-electrolyte balance. This 
enzyme plays a key role in the 
renin-angiotensin system. Many 
studies have associated the presence 
or absence of a 287 bp Alu repeat 
element in this gene with the levels 
of circulating enzyme or 
cardiovascular pathophysiologies. 

ADAMTS13 ADAM 
metallopeptidase 
with 
thrombospondin 
type 1 motif 

13; TTP; VWFCP; 
C9orf8; vWF-CP; 
ADAM-TS; 
ADAM-TS13; 
ADAMTS-13 

This gene encodes a member of the 
ADAMTS (a disintegrin and 
metalloproteinase with 
thrombospondin motif) protein 
family. Members of the family share 
several distinct protein modules, 
including a propeptide region, a 
metalloproteinase domain, a 
disintegrin-like domain, and a 
thrombospondin type 1 (TS) motif. 
Individual members of this family 
differ in the number of C-terminal 
TS motifs, and some have unique 
C-terminal domains 

CALCA calcitonin-related 
polypeptide alpha 

CT; KC; CGRP; 
CALC1; CGRP1; 
CGRP-I 

This gene encodes the peptide 
hormones calcitonin, calcitonin 
gene-related peptide and katacalcin 
by tissue-specific alternative RNA 
splicing of the gene transcripts and 
cleavage of inactive precursor 
proteins. Calcitonin is involved in 
calcium regulation and acts to 
regulate phosphorus metabolism. 
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CCR 3 chemokine (C-C 
motif) receptor 3 

chemokine (C-C 
motif) receptor  

The protein encoded by this gene is a 
receptor for C-C type chemokines. It 
belongs to family 1 of the G 
protein-coupled receptors. This 
receptor binds and responds to a 
variety of chemokines, including 
eotaxin (CCL11), eotaxin-3 
(CCL26), MCP-3 (CCL7), MCP-4 
(CCL13), and RANTES (CCL5).  

CD10 membrane 
metallo-endopepti
dase 

NEP; SFE; 
CALLA 

This gene encodes a common acute 
lymphocytic leukemia antigen that is 
an important cell surface marker in 
the diagnosis of human acute 
lymphocytic leukemia (ALL). This 
protein is present on leukemic cells 
of pre-B phenotype, which represent 
85% of cases of ALL. This protein is 
not restricted to leukemic cells, 
however, and is found on a variety of 
normal tissues. It is a glycoprotein 
that is particularly abundant in 
kidney, where it is present on the 
brush border of proximal tubules and 
on glomerular epithelium.  

CD14 CD14 
molecule 

The protein encoded by this gene is a 
surface antigen that is preferentially 
expressed on 
monocytes/macrophages. It 
cooperates with other proteins to 
mediate the innate immune response 
to bacterial lipopolysaccharide. 
Alternative splicing results in 
multiple transcript variants encoding 
the same protein 

CNP 2',3'-cyclic 
nucleotide 3' 
phosphodiesterase 

CNP1

CRP C-reactive 
protein, 
pentraxin-related  

PTX1 The protein encoded by this gene 
belongs to the pentaxin family. It is 
involved in several host defense 
related functions based on its ability 
to recognize foreign pathogens and 
damaged cells of the host and to 
initiate their elimination by 
interacting with humoral and cellular 
effector systems in the blood. 
Consequently, the level of this 
protein in plasma increases greatly 
during acute phase response to tissue 
injury, infection, or other 
inflammatory stimuli 

CRTh2 chemoattractant 
receptor-homolog
ous molecule 
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expressed on TH2 
cells 

ESR esterase 5 
regulator 

FLT1 fms-related 
tyrosine kinase 1 

FLT; FLT-1; 
VEGFR1; 
VEGFR-1 

This gene encodes a member of the 
vascular endothelial growth factor 
receptor (VEGFR) family. VEGFR 
family members are receptor 
tyrosine kinases (RTKs) which 
contain an extracellular 
ligand-binding region with seven 
immunoglobulin (Ig)-like domains, a 
transmembrane segment, and a 
tyrosine kinase (TK) domain within 
the cytoplasmic domain.  

flt-1 Protein FLT-1 

GAS6 growth 
arrest-specific 6 

AXSF; AXLLG This gene product is a 
gamma-carboxyglutamic acid 
(Gla)-containing protein thought to 
be involved in the stimulation of cell 
proliferation, and may play a role in 
thrombosis. Alternatively spliced 
transcript variants encoding different 
isoforms have been found for this 
gene 

GFAP glial fibrillary 
acidic protein 

This gene encodes one of the major 
intermediate filament proteins of 
mature astrocytes. It is used as a 
marker to distinguish astrocytes from 
other glial cells during development. 
Mutations in this gene cause 
Alexander disease, a rare disorder of 
astrocytes in the central nervous 
system. Alternative splicing results 
in multiple transcript variants 
encoding distinct isoforms 

HMGB-1 high mobility 
group box 1 

HMG1; HMG3; 
SBP-1 

ICAM1 intercellular 
adhesion molecule 
1 

BB2; CD54; P3.58 This gene encodes a cell surface 
glycoprotein which is typically 
expressed on endothelial cells and 
cells of the immune system. It binds 
to integrins of type CD11a / CD18, 
or CD11b / CD18 and is also 
exploited by Rhinovirus as a receptor

IL-1 interleukin 1 
complex 

IL-2 interleukin 2 cytokine produced by T-cells in 
response to antigen or mitogen 
stimulation  

IL-4 interleukin 4 interleukin 4 Th2-type cytokine; may be involved 
in inflammatory response in 
eosinophils  
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IL6 interleukin 6 ILg6; Ifnb2 a cytokine involved in development 
and possibly in neurodegenerative 
processes  

IL-6 interleukin 6 ILg6; Ifnb2 a cytokine involved in development 
and possibly in neurodegenerative 
processes  

IL6ST interleukin 6 
signal transducer  

CD130; GP130; 
CDW130; IL-6RB 

The protein encoded by this gene is a 
signal transducer shared by many 
cytokines, including interleukin 6 
(IL6), ciliary neurotrophic factor 
(CNTF), leukemia inhibitory factor 
(LIF), and oncostatin M (OSM). This 
protein functions as a part of the 
cytokine receptor complex. The 
activation of this protein is 
dependent upon the binding of 
cytokines to their receptors. 

IL-8 interleukin 8 

LAMB1 laminin, beta 1 CLM Laminins, a family of extracellular 
matrix glycoproteins, are the major 
noncollagenous constituent of 
basement membranes. They have 
been implicated in a wide variety of 
biological processes including cell 
adhesion, differentiation, migration, 
signaling, neurite outgrowth and 
metastasis. Laminins are composed 
of 3 non identical chains: laminin 
alpha, beta and gamma (formerly A, 
B1, and B2, respectively) and they 
form a cruciform structure consisting 
of 3 short arms, each formed by a 
different chain, and a long arm 
composed of all 3 chains 

LBP lipopolysaccharid
e binding protein 

BPIFD2 The protein encoded by this gene is 
involved in the acute-phase 
immunologic response to 
gram-negative bacterial infections. 
Gram-negative bacteria contain a 
glycolipid, lipopolysaccharide 
(LPS), on their outer cell wall. 
Together with bactericidal 
permeability-increasing protein 
(BPI), the encoded protein binds LPS 
and interacts with the CD14 receptor, 
probably playing a role in regulating 
LPS-dependent monocyte responses. 
Studies in mice suggest that the 
encoded protein is necessary for the 
rapid acute-phase response to LPS 
but not for the clearance of LPS from 
circulation 

LBP lipopolysaccharid BPIFD2 The protein encoded by this gene is 
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e binding protein involved in the acute-phase 
immunologic response to 
gram-negative bacterial infections. 
Gram-negative bacteria contain a 
glycolipid, lipopolysaccharide 
(LPS), on their outer cell wall. 
Together with bactericidal 
permeability-increasing protein 
(BPI), the encoded protein binds LPS 
and interacts with the CD14 receptor, 
probably playing a role in regulating 
LPS-dependent monocyte responses 

MIF macrophage 
migration 
inhibitory factor 
(glycosylation-inh
ibiting factor) 

GIF; GLIF; MMIF This gene encodes a lymphokine 
involved in cell-mediated immunity, 
immunoregulation, and 
inflammation. It plays a role in the 
regulation of macrophage function in 
host defense through the suppression 
of anti-inflammatory effects of 
glucocorticoids. 

NAMPT nicotinamide 
phosphoribosyltra
nsferase 

VF; PBEF; 
PBEF1; 
VISFATIN; 
1110035O14Rik 

This gene encodes a protein that 
catalyzes the condensation of 
nicotinamide with 
5-phosphoribosyl-1-pyrophosphate 
to yield nicotinamide 
mononucleotide, one step in the 
biosynthesis of nicotinamide adenine 
dinucleotide. The protein belongs to 
the nicotinic acid 
phosphoribosyltransferase 
(NAPRTase) family and is thought 
to be involved in many important 
biological processes, including 
metabolism, stress response and 
aging. This gene has a pseudogene 
on chromosome 10 

NPPB natriuretic peptide 
B 

BNP This gene is a member of the 
natriuretic peptide family and 
encodes a secreted protein which 
functions as a cardiac hormone. The 
protein undergoes two cleavage 
events, one within the cell and a 
second after secretion into the blood. 
The protein's biological actions 
include natriuresis, diuresis, 
vasorelaxation, inhibition of renin 
and aldosterone secretion, and a key 
role in cardiovascular homeostasis. 
A high concentration of this protein 
in the bloodstream is indicative of 
heart failure. Mutations in this gene 
have been associated with 
postmenopausal osteoporosis 

PDGFRA platelet-derived platelet-derived This gene encodes a cell surface 
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growth factor 
receptor, alpha 
polypeptide 

growth factor 
receptor, alpha 
polypeptide 

tyrosine kinase receptor for members 
of the platelet-derived growth factor 
family. These growth factors are 
mitogens for cells of mesenchymal 
origin. The identity of the growth 
factor bound to a receptor monomer 
determines whether the functional 
receptor is a homodimer or a 
heterodimer, composed of both 
platelet-derived growth factor 
receptor alpha and beta polypeptides. 
Studies suggest that this gene plays a 
role in organ development, wound 
healing, and tumor progression.  

PF4 platelet factor 4 PF-4; CXCL4;
SCYB4 

This gene encodes a member of the 
CXC chemokine family. This 
chemokine is released from the alpha 
granules of activated platelets in the 
form of a homotetramer which has 
high affinity for heparin and is 
involved in platelet aggregation. 
This protein is chemotactic for 
numerous other cell type and also 
functions as an inhibitor of 
hematopoiesis, angiogenesis and 
T-cell function. 

SAA1 serum amyloid A1 SAA; PIG4; 
SAA2; TP53I4 

This gene encodes a member of the 
serum amyloid A family of 
apolipoproteins. The encoded 
protein is a major acute phase protein 
that is highly expressed in response 
to inflammation and tissue injury. 
This protein also plays an important 
role in HDL metabolism and 
cholesterol homeostasis. High levels 
of this protein are associated with 
chronic inflammatory diseases 
including atherosclerosis, 
rheumatoid arthritis, Alzheimer's 
disease and Crohn's disease 

SPP1 secreted 
phosphoprotein 1 

OPN; BNSP; 
BSPI; ETA-1 

The protein encoded by this gene is 
involved in the attachment of 
osteoclasts to the mineralized bone 
matrix. The encoded protein is 
secreted and binds hydroxyapatite 
with high affinity. The osteoclast 
vitronectin receptor is found in the 
cell membrane and may be involved 
in the binding to this protein. This 
protein is also a cytokine that 
upregulates expression of 
interferon-gamma and 
interleukin-12. Several transcript 
variants encoding different isoforms 
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have been found for this gene. 

TLR2 toll-like receptor 2 TIL4; CD282 The protein encoded by this gene is a 
member of the Toll-like receptor 
(TLR) family which plays a 
fundamental role in pathogen 
recognition and activation of innate 
immunity. TLRs are highly 
conserved from Drosophila to 
humans and share structural and 
functional similarities. They 
recognize pathogen-associated 
molecular patterns (PAMPs) that are 
expressed on infectious agents, and 
mediate the production of cytokines 
necessary for the development of 
effective immunity. 

TLR4 toll-like receptor 4 TOLL; CD284; 
TLR-4; ARMD10 

The protein encoded by this gene is a 
member of the Toll-like receptor 
(TLR) family which plays a 
fundamental role in pathogen 
recognition and activation of innate 
immunity. TLRs are highly 
conserved from Drosophila to 
humans and share structural and 
functional similarities. They 
recognize pathogen-associated 
molecular patterns that are expressed 
on infectious agents, and mediate the 
production of cytokines necessary 
for the development of effective 
immunity.  

TNF-α tumour necrosis 
factor alpha-like 

TREM-1 triggering receptor 
expressed on 
myeloid cells 1 

TRPV1 transient receptor 
potential cation 
channel, 
subfamily V, 
member 1 

VR1 Capsaicin, the main pungent 
ingredient in hot chili peppers, elicits 
a sensation of burning pain by 
selectively activating sensory 
neurons that convey information 
about noxious stimuli to the central 
nervous system. The protein encoded 
by this gene is a receptor for 
capsaicin and is a non-selective 
cation channel that is structurally 
related to members of the TRP 
family of ion channels.  

VCAM-1 vascular cell 
adhesion molecule 
1 

CD106; 
INCAM-100 

This gene is a member of the Ig 
superfamily and encodes a cell 
surface sialoglycoprotein expressed 
by cytokine-activated endothelium. 
This type I membrane protein 



Chapter 4 Sepsis Biomarker selection 

141 

mediates leukocyte-endothelial cell 
adhesion and signal transduction, 
and may play a role in the 
development of artherosclerosis and 
rheumatoid arthritis.  

VEGFA vascular 
endothelial 
growth factor A 

VPF; VEGF; 
MVCD1 

This gene is a member of the 
PDGF/VEGF growth factor family 
and encodes a protein that is often 
found as a disulfide linked 
homodimer. This protein is a 
glycosylated mitogen that 
specifically acts on endothelial cells 
and has various effects, including 
mediating increased vascular 
permeability, inducing angiogenesis, 
vasculogenesis and endothelial cell 
growth, promoting cell migration, 
and inhibiting apoptosis. Elevated 
levels of this protein is linked to 
POEMS syndrome, also known as 
Crow-Fukase syndrome. 

VIP vasoactive 
intestinal peptide 

PHM27 The protein encoded by this gene 
belongs to the glucagon family. It 
stimulates myocardial contractility, 
causes vasodilation, increases 
glycogenolysis, lowers arterial blood 
pressure and relaxes the smooth 
muscle of trachea, stomach and gall 
bladder. Alternative splicing occurs 
at this locus and two transcript 
variants encoding distinct isoforms 
have been identified 

List of other 7 genes shared in 15 groups

PRKACA 
Protein kinase, 
cAMP-dependent, 
catalytic, alpha 

MGC102831, 
MGC48865, 
PKACA 

This protein is a signaling molecule 
important for a variety of cellular 
functions 

CCL14 
chemokine (C-C 
motif) ligand 14 

CC-1, CC-3, 
CKb1, HCC-1, 
HCC-3, MCIF, 
NCC-2, NCC2, 
SCYA14, SCYL2, 
SY14 

Chemokines play an important role 
in leukocyte mobilization, 
hematopoiesis, and angiogenesis. 
Tissue-specific expression of 
particular chemokines also 
influences tumor growth and 
metastasis [372] 

PECAM1 
platelet/endothelia
l cell adhesion 
molecule 

CD31, PECAM-1 

This protein participates in adhesive 
and/or signaling phenomena 
required for the motility and 
organization of endothelial cells 
[373] 

KRT8 

Keratin 8, 
cytokeratin 8; 
keratin, type II 
cytoskeletal 8 

CARD2, CK8, 
CYK8, K2C8, K8, 
KO 

This protein alters the epidermal cell 
differentiation, favors the neoplastic 
transformation of cells, and is 
ultimately responsible of the 
invasive behavior of transformed 
epidermal cells leading of 
conversion of benign to malignant 
tumors [374] 
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S100A11 
S100 calcium 
binding protein 
A11 (calgizzarin) 

MLN70, S100C   

MUC2 Mucin 2 MLP 

MUC2 expression was regulated in 
human colon cancer cells at the level 
of transcription via AP-1 activation 
[375]. Reduction of MUC2 
expression may be associated with 
the occurrence and progression of 
colorectal carcinomas [376] 

IL1R2 Interleukin 1 
receptor, type II 

CD121b, IL1RB, 
MGC47725 . 

List of other 4 genes shared in 15 groups 

GSTM4 
glutathione 
S-transferase M4 

GSTM4-4, GTM4, 
MGC131945, 
MGC9247 

A T2517C polymorphism in the 
GSTM4 gene is associated with risk 
of developing lung cancer [377] 

GUCA2B 
Guanylate cyclase 
activator 2B 
(uroguanylin) 

GCAP-II, UGN 

This protein synthesizes cGMP, 
which concentration of human colon 
tumors was higher than that of the 
surrounding mucosa [378] 

HNRPA1 

heterogeneous 
nuclear 
ribonucleoprotein 
A1 

HNRNPA1, 
MGC102835 

This protein may contribute to 
maintenance of telomere repeats in 
cancer cells with enhanced cell 
proliferation and the quantitative 
alteration of this protein could 
facilitate colon epithelial cell 
transformation through 
transcriptional and translational 
perturbation [379] 

HSP90AB1 

Heat shock 
protein 90kDa 
alpha (cytosolic), 
class B member 1 

D6S182, 
FLJ26984, 
HSP90-BETA, 
HSP90B, HSPC2, 
HSPCB 

This protein is important for 
signaling by types I and II interferons 
[380] 
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Table 4-2: Statistics of the selected sepsis genes from sepsis microarray 

dataset by class-differentiation systems constructed from 20 different 

sampling-sets each composed of 500 training-testing sets generated by random 

sampling.  
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Table 4-3: Overall accuracies of 500 training-test sets on the optimal SVM 

parameters 

 
Sampling 

set 
Overall performance in 500 training dataset

Spesis Normal people Q 
TP FN SE TN FP SP

1 2182 205 91.41% 8959 54 99.40% 97.73% 
2 2127 233 90.13% 9001 39 99.57% 97.61% 
3 2129 242 89.79% 8984 45 99.50% 97.48% 
4 2138 211 91.02% 9007 44 99.51% 97.76% 
5 2160 181 92.27% 9039 20 99.78% 98.24% 
6 2165 165 92.92% 9021 49 99.46% 98.12% 
7 2130 185 92.01% 9037 48 99.47% 97.96% 
8 2150 231 90.30% 8993 26 99.71% 97.75% 
9 2159 168 92.78% 9040 33 99.64% 98.24% 

10 2120 243 89.72% 9004 33 99.63% 97.58% 
11 2158 219 90.79% 8987 36 99.60% 97.76% 
12 2176 148 93.63% 9042 34 99.63% 98.40% 
13 2189 179 92.44% 8993 39 99.57% 98.09% 
14 2147 198 91.56% 8992 63 99.30% 97.71% 
15 2135 200 91.43% 9010 55 99.39% 97.76% 
16 2158 206 91.29% 8997 39 99.57% 97.85% 
17 2219 165 93.08% 8961 55 99.39% 98.07% 
18 2147 192 91.79% 9024 37 99.59% 97.99% 
19 2163 155 93.31% 9054 28 99.69% 98.39% 
20 2158 180 92.30% 8999 63 99.30% 97.87% 

 

4.3.3 The function of the identified sepsis markers  

Sepsis can be defined as a general- cellular and humoral pathways with the 

generation of proized inflammatory response of the entire organism and and 

anti-inflammatory mediators. These mediators include often manifests itself as 

the systemic inflammatory re- cytokines, coagulation factors, adhesion 

molecules, sponse syndrome (SIRS). The pathogenesis of sepsis is a result of a 

complex network of events.  
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Coagulation, complement, contact system activation, inflammation, and 

apoptosis are all involved in the sepsis process. The detail functions of these 

biomarkers in the Table 4-1. C-reactive protein (CRP) is widely used as a 

marker of acute inflammation and one of the more studied sepsis biomarkers. 

It is produced by the liver in response to interleukin (IL)-6 generated during 

the inflammatory response to cellular injury. CRP is thought to assist in 

complement binding to foreign and damaged cells. The interleukins have been 

logical targets of sepsis biomarker investigations related to their role in 

inflammation and sepsis. Interleukin-6 (IL-6) is a pro-inflammatory cytokine 

that is produced in response to infection and other conditions of inflammation 

[8, 11]. IL-6 is an integral part of the cytokine activation cascade [10]. IL-6 is 

found to inhibit tumor necrosis factor-alpha and interleukin-1 but activate 

interleukin-1 receptor antagonist and interleukin-10. Interleukin-8 (IL-8) is an 

inflammatory cytokine that is released from monocytes, endothelial cells, and 

neutrophils in response to IL-1 and TNF-α. IL-8 responds by activating T cells, 

neutrophils and basophils [29]. Increases in circulating IL-8 are seen early in 

the infectious course. Interleukin-8 (IL-8) is an inflammatory cytokine that is 

released from monocytes, endothelial cells, and neutrophils in response to IL-1. 

IL-8 responds by activating T cells, neutrophils and basophils [29]. Increases 

in circulating IL-8 are seen early in the infectious course.  tumor necrosis 

factor-alpha (TNF-α), a pro-inflammatory cytokine that is known to mediate 

inflammatory conditions including sepsis [35]. It is produced by dendritic cells, 

activated T cells and monocytes, macrophages, Langerhans cells, 

keratinocytes, fibroblasts, and astrocytes in response to cellular insult [35, 36]. 

Acting as one of the primary agents in initiating the cellular response to sepsis, 

TNF-α regulates the body’s immune response by influencing production of a 
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variety of cells including prothymocytes and thymocytes. In addition, TNF-α 

activates macrophages and NK cells in the cytotoxic cascade [27, 35]. 

 

Because of biological differences and complex nature of cancers, a signature 

applicable for many patients is expected to include a substantial percentage of 

these spesis-related genes, together with some of their interacting-partners and 

consequence-genes [381]. Moreover, because of measurement variability, a 

certain number of irrelevant genes may be inevitably included in a signature. 

Therefore, it is not surprising that the number of selected predictor-genes in 

our signatures ranged from 45 to 65. Moreover, it is probably unrealistic to 

assume that only a few genes stand out from the thousands of gene with 

sufficient clarity allowing target selection [382], which is a very important 

application of gene selection from microarray analysis. 

 

4.3.4 The predictive performance of identified signatures in disease 

differentiation 

 

To further evaluate the predictive capability of our selected signatures sets, we 

collected the gene expression profiles from GSE28750 dataset (from GEO 

database) which contains 10 normal people and 20 sepsis patients were used. 

Sepsis patients were recruited if they met the 1992 Consensus Statement 

criteria and had clinical evidence of systemic infection based on microbiology 

diagnoses (n=27). Participants in the post-surgical (PS) group were recruited 

pre-operatively and blood samples collected within 24 hours following surgery 

(n=38). Healthy controls (HC) included hospital staff with no known 

concurrent illnesses (n=20). The predictive capability of our selected 

signatures was evaluated by using the SVM classification system and 500 
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randomly-generated training-test sets generated from this dataset. The 

performance was evaluated using the associated test set and are shown in 

Table 4-4. The overall accuracy for the 83 predictor-genes was 93.26%. The 

accuracies for all predictor-genes were in the range of 92.97~94.57%. These 

results suggest that the selected signatures using our system can perform well 

in classification of drug sensitivity. 

 

Table 4-4: Average sepsis prediction accuracy and standard deviation of 500 

SVM class-differentiation systems constructed by 30 samples from GSE28750 

dataset. The results were obtained from the overall accuracies of 500 test sets 

TP: True positive, FN: False negative, SE: Sensitivity. 
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4.4 Conlcuding Remarks 

 

This chapter described a system for marker discovery. The system was 

designed to overcome the unstable signatures from different combination of 

samples and different classification method. Multiple random sampling 

method and consistency evaluation strategy were incorporated into the normal 

RFE gene selection procedure. The system was tested on colon cancer marker 

discovery. The results show that our selected markers could present both better 

stability and higher predictive performance on different microarray datasets 

than other signatures. 41 gene signatures are fairly stable with 69%~93% of all 

predictor-genes shared by all 20 signatures sets. These gene signatures 

includes inflammation factor such as CRP, cytokine/chemokine biomarkers, 

IL-6, IL-8 and tumor necrosis factor-alpha (TNF-α). The predictive ability of 

the selected signature shared by all of the 20 sets is evaluated by SVM models 

on an independent dataset collected from GEO Database. Unsupervised 

hierarchical clustering analysis provides additional indication of the predictive 

ability of selected signatures.  
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Chapter 5 Breast cancer biomarker selection based on   

Copy number variation 

This chapter introduces signature selection with other source of 

high-throughput dataset – Breast cancer copy number variation (CNV) based 

signature selection. Total of 373 breast cancer samples and 517 normal people 

samples were used. We first calculated the breast cancer and normal people 

CNV calling by hidden Markov model.  Then the strategies include the 

incorporation of multiple random sampling methods and the evaluation of 

gene-consistency into RFE gene selection procedure was used for gene 

signature selection. The predictive ability of these signatures are evaluated by 

SVM models, and unsupervised hierarchical clustering analysis. Hierarchical 

clustering analysis and literature search are used to evaluate the pattern of the 

identified markers.  

5.1 Introduction 

Human populations show extensive polymorphism — both additions and 

deletions — in the number of copies of chromosomal segments, and the 

number of genes in those segments [161] [383]. This is known as copy number 

variation (CNV). A high proportion of the genome, currently estimated at up 

to 12%, is subject to copy number variation [384]. We defined a CNV as a 

DNA segment that is 1 kb or larger and present at variable copy number in 
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comparison with a reference genome [385]. A CNV can be simple in structure, 

such as tandem duplication, or may involve complex gains or losses of 

homologous sequences at multiple sites in the genome. 

CNV arise from genomic rearrangements, primarily owing to deletion, 

duplication, insertion, and unbalanced translocation events. CNV seems to be 

a major driving force in evolution, especially in the rapid evolution that has 

occurred, and continues to occur, within the human and great ape lineage 

[386-388]. However, much of the variation in copy number is disadvantageous. 

Change in copy number is involved in cancer formation and progression [166] 

and contributes to cancer proneness. In many situations, a change in copy 

number of any one of many specific genes is not well tolerated, and leads to a 

group of pathological conditions known as genomic disorders [389].  

 

Breast cancer is the most common cause of cancer-related death among 

women worldwide ([390]. It is the leading cause of cancer mortality with 

around 411,000 annual deaths worldwide [391]. Like other solid cancers, 

breast cancer presents genomic instability. The current concept is that 

frequently occurring regions of DNA amplification commonly harbor 

oncogenes, whereas regions of recurrent deletion harbor tumor suppressor 

genes. Classical cytogenetic methods have been used to detect such copy 

number changes in tumors [174], which have deepened our understanding of 

the genomic hallmarks of breast cancer [392].     

Genome-wide CNV in breast cancer have been profiled using a number of 

BAC clone- or cDNA-based array comparative genomic hybridization (CGH) 
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technologies [393]. These surveys revealed genomic regions with copy 

number gains, such as 8q11, 1q21, 17q11, and 11q13, as well as genomic 

segments that are frequently deleted, including regions that harbor known 

tumor suppressors such as CDKN2A and PTEN. Often, the amplified genomic 

regions were examined. To identify the ‘‘driver genes,’’ those genes that, when 

amplified, provide selective growth advantage for cancer cells. However, the 

resolutions of the previous array platforms, noise effect, and wrong algorithm 

were usually inadequate in defining the fine boundaries of DNA CNV or in 

pinpointing the genes under the most selective pressure. Because of these 

limitations, prior biological knowledge was heavily used to infer causal genes 

in amplified regions. Consequently, many known or putative oncogenes were 

credited as the driver genes, while some potentially novel cancer-driving genes 

may have been overlooked.  

 

In this chapter, we explored gene selection method based on breast cancer 

copy number variation. Total of 373 breast cancer samples and 517 normal 

people samples were used. We first calculated the breast cancer and normal 

people CNV calling by hidden Markov model. Then the strategies include the 

incorporation of multiple random sampling methods and the evaluation of 

gene-consistency into RFE gene selection procedure was used for gene 

signature selection. 91 genes were selected after 20 times of experiments. The 

gene signatures are fairly stable with 80% of top-50 and 69%~93% of all 

predictor-genes shared by all 20 signatures. These shared predictor-genes 

include 48 cancer-related and 16 cancer-implicated genes, as well as 50% of 
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the previously-derived predictor-genes.  

5.2 Materials and methods 

5.2.1 Breast cancer and normal people CNV datasets 

We mainly used SNP array for calculating CNV calling. For breast cancer 

datasets, we choose GSE 16619, GSE9154, GSE7545, GSE11977 and 

GSE11976 datasets (Table 5-1). The total number sample is 373. The main 

platform for these datasets is Affymetrix Mapping 250K Nsp SNP Array, 

Affymetrix Mapping 250K Sty2 SNP Array, Affymetrix Genome-Wide Human 

SNP 5.0 Array. The GeneChip® Human Mapping 500K Array Set provides 

consistently high coverage across different populations. It is comprised of two 

arrays, each capable of genotyping on average 250,000 SNPs (approximately 

262,000 for Nsp arrays and 238,000 for Sty arrays). The SNP Array 5.0 is a 

single microarray featuring all single nucleotide polymorphisms (SNPs) from 

the original two-chip Mapping 500K Array Set, as well as 420,000 additional 

non-polymorphic probes that can measure other genetic differences, such as 

copy number variation. SNPs on the array are present on 200 to 1,100 base 

pair (bp) Nsp I or Sty I digested fragments in the human genome, and are 

amplified using the fifth generation of the Whole-genome Sampling Assay 

(WGSA). 

 

The normal people datasets is from GSE16904, GSE17094, GSE16985, 

GSE16896 and GSE16894. The total number of normal people sample is 517 

(Table 5-1). Two independent data sets of sepsis (GSE13904 and GSE28750) 
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were used for sepsis gene discovery and for validating the effect of our 

selected genes. The main platform is Illumina Human1M-Duov3 DNA 

Analysis BeadChip (Human1M-Duov3_B). Over one million markers to 

interrogate human genetic variation using single nucleotide polymorphisms 

(SNPs) and copy number variation (CNV) probes. 

 

Table 5-1: Breast cancer and normal people CNV dataset used in biomarker 

selection 

 

 

5.2.2 CNV calling calculation 

Step 1. Generate the signal intensity data based on raw CEL files  
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The goal of the first step is to generate the cross-marker normalized signal 

intensity data from an Affymetrix genotyping project to a text file, so that it 

can be analyzed subsequently by the PennCNV software [394]. This step has 3 

substeps. A flowchart outlining the procedure for CNV calling from 

genotyping data is shown in Figure 5-1. 

Suppose all the files from a genotyping project is stored in a directory called 

gw6/. Under this directory, there are several sub-directories: a CEL/ directory 

that stores the raw CEL files for each genotyped sample, a lib/ directory that 

stores library and annotation files provided by Affymetrix and by 

PennCNV-Affy,. We will try to write output files to the apt/ directory. 

We need to download the PennCNV software from 

http://www.openbioinformatics. org/penncnv/download/penncnv.latest.tar.gz 

and uncompress the file. 

Next download the PennCNV-Affy programs and library files from 

http://www. openbioinformatics.org/penncnv/download/gw6.tar.gz and 

uncompress the file. These files are required for signal pre-processing and also 

for CNV calling. There will be a lib/ directory that contains some 

PennCNV-specific library files for genome-wide 6.0 array; in addition, the 

library files for the genome-wide 5.0 arrays and Mapping 500K arrays are in 

the libgw5/ and gw6/lib500k/ directories, respectively.  
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Next download the Affymetrix Power Tools (APT) software package from 

http://www. affymetrix.com/support/developer/powertools/index.affx. We 

need to log into the website to download the software. 

Substep 1.1 Generate genotyping calls from CEL files  

This step uses the apt-probeset-genotype program in Affymetrix Power Tools 

(APT) to generate genotyping calls from the raw CEL files using the Birdseed 

algorithm (for genome-wide 6.0 array) or BRLMM-P (for genome-wide 5.0 

array) algorithm. Note that the genotyping calling requires lots of CEL files.  

(a) Genome-wide 6.0 array 

Before performing this step, we need to download the library files for the 

genome-wide 6.0 array from 

http://www.affymetrix.com/Auth/support/downloads/ 

library_files/genomewidesnp6_libraryfile.zip, and save the decompressed files 

to the lib/ directory. Several files in this directory, including a CDF file and a 

Birdseed model file, will be used in the genotype calling step. 

$ apt-probeset-genotype -c lib/GenomeWideSNP_6.cdf -a birdseed 
--read-models-birdseed lib/GenomeWideSNP_6.birdseed.models 
--special-snps lib/GenomeWideSNP_6.specialSNPs --out-dir apt --cel-files 
listfile 

The above command generates genotyping calls using all CEL files specified 

in the listfile, and generates several output files in the apt/ directory. The 

listfile contains a list of CEL file names, with one name per line, and with the 

first line being “cel_files”. The output files for this command include 
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birdseed.confidences.txt, birdseed.report.txt and birdseed.calls.txt. In addition, 

a birdseed.report.txt file is generated, that will be helpful to infer sample 

gender to generate a sexfile (see Substep 1.3 below).  

Figure 5-1:  A flowchart outlining the procedure for CNV calling from 

genotyping data. 

 

 

 (b) Genome-wide 5.0 array 

For genome-wide 5.0 arrays, the command line is slightly different. First 

download the CDF and model files for GW5 array from 

http://www.affymetrix.com/Auth/support/downloads/library_files/genomewid

esnp5_libraryfile_rev1.zip and 
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http://www.affymetrix.com/Auth/support/downloads/library 

_files/GenomeWideSNP_5.r2.zip. Then save decompressed files to the lib/ 

directory. There are several CDF files but we will need to use the 

GenomeWideSNP_5.Full.r2.cdf file. The genotype calling can be done using a 

command like this: 

$ apt-probeset-genotype -c lib/GenomeWideSNP_5.Full.r2.cdf --chrX-snps 
lib/GenomeWideSNP_5.Full.chrx --read-models-brlmmp 
lib/GenomeWideSNP_5.models -a brlmm-p --out-dir apt --cel-files listfile 

(c) Mapping 500K array 

For Mapping 500K array set with Nsp and Sty arrays, the genotype calling and 

signal extraction need to be done separately for each array. The command for 

genotype calling should use brlmm (instead of brlmm-p) as the algorithm (this 

is the default algorithm). In addition, there is no need to specify the 

--read-models-brlmmp argument as shown above for Affy 5.0 arrays.  

$apt-probeset-genotype -c 
lib/CD_Mapping250K_Nsp_rev4/Full/Mapping250K_Nsp/LibFiles/Mapping250K_
Nsp.cdf --chrX-snps 
lib/affy500k/CD_Mapping250K_Nsp_rev4/Full/Mapping250K_Nsp/LibFiles/Map
ping250K_Nsp.chrx --out-dir apt_nsp/ --cel-files list.nsp 

As mentioned in the note above, if the program takes forever to run (during 

"computing prior" step), try to analyze only 500 samples and write the prior to 

a file (via --write-prior argument), then reanalyze the entire sample using 

--read-priors-brlmm argument to expedite the process.  

Subsetp 1.2 Allele-specific signal extraction from CEL files  
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This step uses the Affymetrix Power Tools software to extract allele-specific 

signal values from the raw CEL files. Here “allele-specific” refers to the fact 

that for each SNP, we have a signal measure for the A allele and a separate 

signal measure for the B allele.  

(a) Genome-wide 6.0 array 

$ apt-probeset-summarize --cdf-file lib/GenomeWideSNP_6.cdf --analysis 
quant-norm.sketch=50000,pm-only,med-polish,expr.genotype=true 
--target-sketch lib/hapmap.quant-norm.normalization-target.txt 
--out-dir apt --cel-files listfile 

The above command read signal intensity values for PM probes in all the CEL 

files specified in listfile, apply quantile normalization to the values, apply 

median polish on the data, then generates signal intensity values for A and B 

allele for each SNP. The file hapmap.quant-norm.normalization-target.txt is 

provided in the PennCNV-Affy package: it is generated using all HapMap 

samples, as a reference quantile distribution to use in the normalization 

process, so that the quantile normalization procedures for different genotyping 

projects are more comparable to each other. 

(b) Genome-wide 5.0 array 

For genome-wide 5.0 arrays, the target-sketch can be found in the libgw5/ 

directory. An example command is given below: 

$ apt-probeset-summarize --cdf-file lib/GenomeWideSNP_5.Full.r2.cdf 
--analysis 
quant-norm.sketch=50000,pm-only,med-polish,expr.genotype=true 
--target-sketch libgw5/agre.quant-norm.normalization-target.txt 
--out-dir apt --cel-files listfile 
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(c) Mapping 500K array 

The signal extraction needs to be done for each array type separately. The 

pm-only option need to be used in --analysis argument since Mapping 500K 

array contains both PM and MM probes for each probe set. 

$apt-probeset-summarize --cdf-file 
lib/affy500k/CD_Mapping250K_Nsp_rev4/Full/Mapping250K_Nsp/LibFiles/Map
ping250K_Nsp.cdf --out-dir apt_nsp/ --cel-files list.nsp -a 
quant-norm.sketch=50000,pm-only,med-polish,expr.genotype=true 
--target-sketch lib/hapmap.nsp.quant-norm.normalization-target.txt 

Substep 1.3 Generate canonical genotype clustering file  

This step generates a file that contains the parameters for the canonical 

clustering information for each SNP or CNV marker, such that this file can be 

used later on to calculate LRR and BAF values. 

If the user has only a few dozen CEL files, then it is unlikely that a clustering 

file can be generated successfully and accurately. 

(a) Genome-wide 6.0 array 

To generate canonical genotype clusters, use the generate_affy_geno_cluster.pl 

program in the downloaded PennCNV-Affy package (see gw6/bin/ directory). 

$ generate_affy_geno_cluster.pl birdseed.calls.txt 
birdseed.confidences.txt 
quant-norm.pm-only.med-polish.expr.summary.txt 
-locfile ../lib/affygw6.hg18.pfb -sexfile file_sex -out gw6.genocluster 

The affygw6.hg18.pfb file is provided in PennCNV-Affy package, which 

contains the annotated marker positions in hg18 (NCBI 36) human genome 
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assembly. The file_sex file is a two-column file that annotates the sex 

information for each CEL file, one file per line, and each line contains the file 

name and the sex separated by tab. The file_sex file is important for chrX 

markers and chrY markers, such that only females are used for constructing 

canonical clusters for chrX markers and that only males are used for 

constructing canonical clusters for chrY markers.  

For example, the first 10 lines of a file_sex file are below: 

10918.CEL male 
10924.CEL male 
11321_2.CEL female 
10998.CEL female 
11039.CEL female 
11345.CEL female 
10909.CEL female 
11035.CEL female 
11569_2.CEL female 

Alternatively, one can use 1 to specify male and 2 to specify female in the 

sexfile. If the sex information for some CEL file is not known, you do not 

need to include them in the sexfile.  

If the --sexfile argument is not provided, then chrX and chrY markers will not 

be processed and the resulting cluster file is only suitable for autosome CNV 

detection! 

For a typical modern computer, the command should take several hours to 

process files generated from 1000-2000 CEL files. 

(b) Genome-wide 5.0 array 
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An example command is given below: 

$ generate_affy_geno_cluster.pl brlmm-p.calls.txt 
brlmm-p.confidences.txt quant-norm.pm-only.med-polish.expr.summary.txt 
-locfile ../libgw5/affygw5.hg18.pfb -sexfile file_sex -out 
gw5.genocluster 

(c) Mapping 500K array 

Similar command as genome-wide arrays should be used for Nsp and Sty 
array separately. 

$ generate_affy_geno_cluster.pl ../apt_nsp/brlmm.calls.txt ../apt_nsp/
brlmm.confidences.txt ../apt_nsp/quant-norm.pm-only.med-polish.expr.su
mmary.txt -locfile lib/affy500k.hg18.pfb -sexfile file_sex -out 
nsp.genocluster 

Substep 1.4 LRR and BAF calculation 

This step use the allele-specific signal intensity measures generated from the 

last step to calculate the Log R Ratio (LRR) values and the B Allele Frequency 

(BAF) 

values for each marker in each individual. The normalize_affy_geno_cluster.pl 

program in the downloaded PennCNV-Affy package (see gw6/bin/ directory) 

is used: 

$ normalize_affy_geno_cluster.pl gw6.genocluster 
quant-norm.pm-only.med-polish.expr.summary.txt 
-locfile ../lib/affygw6.hg18.pfb -out gw6.lrr_baf.txt 

The above command generates LRR and BAF values using the summary file 

generated in last step, and using a cluster file called gw6.genocluster generated 

in the last step. The location file specifies the chromosome position of each 
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SNP or CN probe, and this information is printed in the output files as well to 

facilitate future data processing. 

For a typical modern computer, the command should take several hours to 

process files generated from 1000-2000 CEL files. A new tab-delimited file 

called gw6.lrr_baf.txt will be generated that contains one SNP per line and one 

sample per two columns (LRR column and BAF column). 

If we do not have sufficient number of CEL files for the above substep 1.1 and 

1.3, then you can alternatively use the default canonical clustering file 

provided in the PennCNV-Affy package. Right now several files are provided: 

hapmap.genocluster for GW6 arrays, agre.genocluster for GW5 arrays, and 

affy500k.nsp.genocluster/affy500k.sty.genocluster for Mapping 500K arrays. 

The results won’t be optimal and are probably highly unreliable (the QC 

measures during PennCNV calling can give some clue on the signal-to-noise 

ratio of the resulting signal intensity files) 

5.2.3 CNV annotation 

5.2.3.1 Scan genomic regions against annotated genes 

Functionality of the scan_region.pl program is to scan regions against 

annotated genes or exons. For example, suppose there is a list of copy number 

variation (CNV) regions, and we can use the program to specifically pick out 

those gene-disrupting CNVs as well as exonic CNVs. Another example is to 

map SNPs in a given array to either an overlapping gene (if the SNP is located 
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within the gene) or its closest gene (if the SNP is located in intergenic 

regions). 

For this analysis, we need to download gene annotations from UCSC Genome 

Browser. Two types of annotations are widely used: RefGene and UCSC Gene. 

The former is well annotated but may miss some genuine transcripts, yet the 

later consists of many computationally predicted genes and is more 

comprehensive. Note that despite the names, both annotations are "transcript" 

annotations, rather than real "gene" annotations. (In contrast, the Ensembl does 

provide gene annotations, in addition to transcript annotations.)  

5.2.4 Breast cancer gene selection procedure 

By using repeated random sampling [141], 10,000 training-testing sets were 

generated, each constituted a training set which contains 373 samples and an 

associates test set which contains the other 517 samples from normal people 

dataset [147]. These 10,000 randomly generated training-testing sets were 

randomly placed into 20 sampling groups, and each group contains 500 

training-testing sets. 

 

Each of the 20 sampling groups was used to derive a signature. In the 500 

training-testing sets in every sampling group, each training-set was used to 

select genes by RFE based on SVM system. For all iterations and testing-sets, 

SVM system employed a set of globally modified parameters which gave the 

best average class-differentiation accuracy over the 500 testing-sets. 
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On every sampling group, three gene-ranking consistency evaluation steps 

were implemented on top of the normal RFE procedures in all sampling 

groups: 

 

(1) For every training-set, subsets of genes ranked in the bottom 10% (if no 

gene was selected in current iteration, this percentage was gradually 

increased to the bottom 40%) with combined score lower than the first 

top-ranked gene were selected such that collective contribution of these 

genes less likely outweighed higher-ranked ones.  

(2) For every training-set, the step (1) selected genes was further evaluated to 

choose those not ranked in the upper 50% in previous iteration so as to 

ensure that these genes were consistently ranked lower.  

(3) A consensus scoring scheme was applied to step (2) selected genes such 

that only those appearing in >90% (if no gene was selected in current 

iteration, this percentage was gradually reduced to 60%) of the 500 

training-sets were eliminated.  

5.2.5 Performance evaluation of signatures 

 

By using hierarchical clustering analysis, the performance of gene signatures 

was analyzed. As a popular unsupervised method, hierarchical clustering 

analysis groups genes and samples which have similar expression in the 

microarray data. Typically, the analysis begins with each gene/sample 

considered as a separate cluster. They are successively merged until one large 

cluster comprising the whole dataset is achieved. Later, these clusters are 
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displayed in the form of a branching tree diagram, which can be broken into 

distinct clusters by cutting across the tree at a particular height. Hierarchical 

cluster analysis was carried out using the selected signatures by the software 

from Eisen et al [148, 371]. The results from hierarchical clustering were 

displayed by TreeView, which was also provided by Eisen et al [148, 371].  

 

In SVM evaluation system, 500 random-generated training-test set were 

generated. The performance of the gene signatures was evaluated by overall 

accuracies Q (Equation 2-22) from the associated 500 test sets of the 500 

SVM classification systems.  

5.3 Results and discussion 

5.3.1 CNV calls 

The raw CEL files were used to generate canonical genotype clusters. The 

result converts signal intensity for each sample to LRR/BAF values, and then 

generates CNV calls. For the annotation of CNV callings, Human RefGene 

annotations (NCBI36 build) were used. The format of CNV calls is below 

(Table 5-2). 
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Table 5-2: Format of CNV calls 

 

 

5.3.2 Statistics of the selected predictor genes from Breast cancer dataset 

 The stability levels of the 20 derived signatures can be estimated from the 

percentage of predictor genes shared by all 20 signatures. From Table 5-3, 

80% of the top 50 ranked genes and 65% to 85% of all genes in each signature 

were shared by 20 signatures. This suggests that our selected signatures are 

fairly stable. One reason is that a SVM class differentiation system with a 

universal set of globally optimized variables, which gave the best average 

class differentiation accuracy over the 500 test sets, was used to derive RFE 

gene ranking function at every iteration step and for every test set. In earlier 

studies using RFE or other wrapper methods for selecting signatures, 

non-predictor genes have been eliminated in multiple iterations, and at every 

iteration step a different class differentiation system, characterized by a 

different set of optimized variables, has been constructed. As gene elimination 
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is variable dependent, these selected predictor genes are likely path dependent 

and heavily influenced by sampling method, composition, order of gene 

evaluation, computational algorithm, and variables. These characteristics 

partly explain the highly unstable and patient-dependent characteristics of the 

previously derived signatures. Another reason is that an additional 

gene-ranking consistency evaluation is done on top of the normal RFE 

procedure to reduce the change of erroneous elimination of predictor genes. 

 

5.3.3 The function of the identified breast cancer markers  

It is now well known that cancer is caused and driven by mutations in DNA 

that change the signal pathways which normally operate to regulate 

proliferation and death in normal cell. The activation of oncogene (drive 

excessive proliferation of cells) and inactivation of tumor suppressor genes 

(lose the inhibitory effect which is crucial to prevent inappropriate growth) 

change the normal signal pathway and hence leads to various well-defined 

phenotypic traits of cancer in Figure 5-4 [395, 396]. These traits include 

proliferation, inappropriate survival, immortalization, invasion, angiogenesis 

and metastasis [395, 396]. Considering such complexity of tumorigenesis, the 

number of cancer genes in the signatures should not be very few. It was 

reported that there are 291 known cancer genes [381], 15 cancer-associated 

pathways [397], and 34 angiogenesis genes [398, 399]. Because of biological 

differences and complex nature of cancers, a signature applicable for many 

patients is expected to include a substantial percentage of these cancer-related 
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genes, together with some of their interacting-partners and consequence-genes 

[381]. Moreover, because of measurement variability, a certain number of 

irrelevant genes may be inevitably included in a signature. Therefore, it is not 

surprising that the number of selected predictor-genes in our signatures ranged 

from 112 to 157. Moreover, it is probably unrealistic to assume that only a few 

genes stand out from the thousands of gene with sufficient clarity allowing 

target selection [382], which is a very important application of gene selection 

from copy number variation analysis. 

 

Table 5-3: Statistics of the selected predictor genes from Breast cancer dataset 
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The selected 91 predictor-genes shared by all 20 signatures shown in Table 

5-4; Table 5-6. The cancer-related genes and cancer-pathways were taken 

from recent publications [381, 397-401] . Breast cancer is the most common 

cancer in women, comprising 23% of all female cancers, and it ranks second in 

overall cancer incidence when both sexes are considered. There were an estimated 

1.15 million patients diagnosed with breast cancer worldwide in 2002[390]. Like 

other solid cancers, breast cancer presents genomic instability. The current concept is 

that frequently occurring regions of DNA amplification commonly harbor oncogenes, 

whereas regions of recurrent deletion harbor tumor suppressor genes. 

 

Figure 5-2: Classes of genes involved in oncogenic transformation 

 

The frequent aberration regions were as follows: gains in 2p25.3–q37.3, 3q11.2–

13.13, 3q21.1–29, 4p16.2–q35.1, and 8q11.21–q24.3, whereas losses in 1p36.31

Activation of 
oncogenes 

Deactivation of tumor 
suppressor genes 

Inactivation 
of DNA 
repair genes 

Genes that support 
oncogenic pathway 

Stimulation of oncogenic signaling pathway 

Cancer formation
 Unrestricted proliferation 
 Inappropriate survival 
 Evasion from apoptosis 
 Immortalization 
 Angiogenesis 
 Invasion and metastasis 
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–33, 3p21.31–21.1, 9q33.3–q34.3, 14q23.2–32.33, 15q11.2–26.3, 16p11.2–

q12.1, 17p13.3–q21.32, 17q25.1–25.3, 19p13.3–q13.43, 22q11.23–13.33, and 

Xp22.2–q21.1 [392]. 

 

Amplifications involving chromosomes 8p (RAB11FIP1, FGFR1), 11q 

(CCND1) and 17q (ERBB2) are among the most common high level copy 

number aberrations in breast tumors. Amplification of 8p and 11q are most 

often observed in estrogen receptor positive tumors, while amplification of 

17q (ERBB2) occurs in both estrogen receptor positive and negative tumors. 

Poor prognosis is associated with the presence of these amplicons in breast 

cancer. Thus, overexpressed genes within amplicons are attractive targets for 

therapy, as exemplified by the targeted use of herceptin to treat patients with 

tumors with ERBB2 amplification. Co-amplification of 8p12 and 11q13 is 

frequent. Amplification of 8p12 and 11q13 frequently occur together 

suggesting possible interactions between the genes in these two amplicons 

(Table 5-5). Indeed, it has been reported previously that FGFR1 (at 8p12) is 

up-regulated by increased expression of CCND1 (at 11q13) in fibroblasts, and 

occurs via CCND1 mediated activation of the pRB/E2F pathway. 

5.3.4 Hierarchical clustering analysis of samples  

 

The screened 91 predictor-genes show differential copy number enrichment 

pattern between normal samples (517 samples) and tumor samples (373 

samples). We performed unsupervised 2D hierarchical clustering analysis of 

the 91 genes with 11 well annotated samples (6 breast cancer samples and 5 
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normal samples) to visualize the expression patterns of these 91 genes. The 

clustering shows clear differential enrichment pattern between the sample 

groups (Figure 5-3).  

 

Figure 5-3: Hierarchical clustering analysis of copy number enrichment 

patterns of 91 genes in breast cancer samples and normal samples. (Red for 

higher relative enrichment level, blue for lower relative enrichment level and 

white for medium enrichment level) 
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Table 5-4: List of predictor genes of breast cancer data set shared by all 20 

signatures 

 
 
Table 5-5 : Distribution of the selected predictor gene on chromosome (gene 

number >10) 
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Table 5-6 : List of function of breast cancer signatures. 

 
Gene Name Gene description Gene aliases

MAPK10 mitogen-activated 
protein kinase 10 

JNK3; JNK3A; 
PRKM10; SAPK1b; 
p493F12; p54bSAPK 

The protein encoded by this 
gene is a member of the MAP 
kinase family. MAP kinases 
act as an integration point for 
multiple biochemical signals, 
and are involved in a wide 
variety of cellular processes 
such as proliferation, 
differentiation, transcription 
regulation and development. 

EGFR epidermal growth 
factor receptor 

ERBB; HER1; 
mENA; ERBB1; 
PIG61 

The protein encoded by this 
gene is a transmembrane 
glycoprotein that is a member 
of the protein kinase 
superfamily. This protein is a 
receptor for members of the 
epidermal growth factor 
family. 

FGF19 fibroblast growth 
factor 19 

The protein encoded by this 
gene is a member of the 
fibroblast growth factor (FGF) 
family. FGF family members 
possess broad mitogenic and 
cell survival activities, and are 
involved in a variety of 
biological processes including 
embryonic development cell 
growth, morphogenesis, tissue 
repair, tumor growth and 
invasion. 

FGF4 fibroblast growth 
factor 4 

HST; KFGF; HST-1; 
HSTF1; K-FGF; 
HBGF-4 

The protein encoded by this 
gene is a member of the 
fibroblast growth factor (FGF) 
family. FGF family members 
possess broad mitogenic and 
cell survival activities and are 
involved in a variety of 
biological processes including 
embryonic development, cell 
growth, morphogenesis, tissue 
repair, tumor growth and 
invasion. 

FGFR2 fibroblast growth 
factor receptor 2 

BEK; JWS; BBDS; 
CEK3; CFD1; ECT1; 
KGFR; TK14; TK25; 
BFR-1; CD332; 
K-SAM 

The protein encoded by this 
gene is a member of the 
fibroblast growth factor 
receptor family, where amino 
acid sequence is highly 
conserved between members 
and throughout evolution. 
FGFR family members differ 
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from one another in their 
ligand affinities and tissue 
distribution. 

FGFR1 fibroblast growth 
factor receptor 1 

CEK; FLG; OGD; 
FLT2; KAL2; 
BFGFR; CD331; 
FGFBR; FLT-2; 
HBGFR; N-SAM; 
FGFR-1; bFGF-R-1 

The protein encoded by this 
gene is a member of the 
fibroblast growth factor 
receptor (FGFR) family, 
where amino acid sequence is 
highly conserved between 
members and throughout 
evolution. FGFR family 
members differ from one 
another in their ligand 
affinities and tissue 
distribution. 

ERBB2 v-erb-b2 
erythroblastic 
leukemia viral 
oncogene homolog 
2 

NEU; NGL; HER2; 
TKR1; CD340; 
HER-2; MLN 19; 
HER-2/neu 

This gene encodes a member 
of the epidermal growth factor 
(EGF) receptor family of 
receptor tyrosine kinases. This 
protein has no ligand binding 
domain of its own and 
therefore cannot bind growth 
factors. However, it does bind 
tightly to other ligand-bound 
EGF receptor family members 
to form a heterodimer, 
stabilizing ligand binding and 
enhancing kinase-mediated 
activation of downstream 
signalling pathways, such as 
those involving 
mitogen-activated protein 
kinase and 
phosphatidylinositol-3 kinase. 

AKT2 v-akt murine 
thymoma viral 
oncogene homolog 
2 

PKBB; PRKBB; 
HIHGHH; 
PKBBETA; 
RAC-BETA 

This gene is a putative 
oncogene encoding a protein 
belonging to a subfamily of 
serine/threonine kinases 
containing SH2-like (Src 
homology 2-like) domains. 
The gene was shown to be 
amplified and overexpressed 
in 2 of 8 ovarian carcinoma 
cell lines and 2 of 15 primary 
ovarian tumors. 

CCND2 cyclin D2 KIAK0002 The protein encoded by this 
gene belongs to the highly 
conserved cyclin family, 
whose members are 
characterized by a dramatic 
periodicity in protein 
abundance through the cell 
cycle. Cyclins function as 
regulators of CDK kinases. 

CCND1 cyclin D1 BCL1;PRAD1; 
U21B31; D11S287E 

The protein encoded by this 
gene belongs to the highly 
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conserved cyclin family, 
whose members are 
characterized by a dramatic 
periodicity in protein 
abundance throughout the cell 
cycle. Cyclins function as 
regulators of CDK kinases.  

CDKN2A cyclin-dependent 
kinase inhibitor 
2A 

ARF; MLM; P14; 
P16; P19; CMM2; 
INK4; MTS1; TP16; 
CDK4I; CDKN2; 
INK4A; MTS-1; 
P14ARF; P19ARF; 
P16INK4; 
P16INK4A;  

This gene generates several 
transcript variants which differ 
in their first exons. At least 
three alternatively spliced 
variants encoding distinct 
proteins have been reported, 
two of which encode 
structurally related isoforms 
known to function as 
inhibitors of CDK4 kinase. 

PIK3CA phosphoinositide-
3-kinase 

PI3K; p110-alpha Phosphatidylinositol 3-kinase 
is composed of an 85 kDa 
regulatory subunit and a 110 
kDa catalytic subunit. The 
protein encoded by this gene 
represents the catalytic 
subunit, which uses ATP to 
phosphorylate PtdIns, 
PtdIns4P and PtdIns(4,5)P2. 
This gene has been found to 
be oncogenic and has been 
implicated in cervical cancers. 

AKT1 v-akt murine 
thymoma viral 
oncogene homolog 
1 

AKT; PKB; RAC; 
PRKBA; 
PKB-ALPHA; 
RAC-ALPHA 

The serine-threonine protein 
kinase encoded by the AKT1 
gene is catalytically inactive in 
serum-starved primary and 
immortalized fibroblasts. 
AKT1 and the related AKT2 
are activated by 
platelet-derived growth factor. 
The activation is rapid and 
specific, and it is abrogated by 
mutations in the pleckstrin 
homology domain of AKT1. 

CCNE1 cyclin E1 CCNE The protein encoded by this 
gene belongs to the highly 
conserved cyclin family, 
whose members are 
characterized by a dramatic 
periodicity in protein 
abundance through the cell 
cycle. Cyclins function as 
regulators of CDK kinases. 
Different cyclins exhibit 
distinct expression and 
degradation patterns which 
contribute to the temporal 
coordination of each mitotic 
event. 
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TP53 tumor protein p53 P53; LFS1; TRP53 This gene encodes tumor 
protein p53, which responds to 
diverse cellular stresses to 
regulate target genes that 
induce cell cycle arrest, 
apoptosis, senescence, DNA 
repair, or changes in 
metabolism. p53 protein is 
expressed at low level in 
normal cells and at a high 
level in a variety of 
transformed cell lines, where 
it's believed to contribute to 
transformation and 
malignancy 

PTEN phosphatase and 
tensin homolog 

BZS; DEC; GLM2; 
MHAM; TEP1; 
MMAC1; PTEN1; 
10q23del 

This gene was identified as a 
tumor suppressor that is 
mutated in a large number of 
cancers at high frequency. The 
protein encoded this gene is a 
phosphatidylinositol-3,4,5-tris
phosphate 3-phosphatase. 

BRCA1 breast cancer 1 IRIS; PSCP; BRCAI; 
BRCC1; PNCA4; 
RNF53; BROVCA1; 
PPP1R53 

This gene encodes a nuclear 
phosphoprotein that plays a 
role in maintaining genomic 
stability, and it also acts as a 
tumor suppressor. The 
encoded protein combines 
with other tumor suppressors, 
DNA damage sensors, and 
signal transducers to form a 
large multi-subunit protein 
complex known as the 
BRCA1-associated genome 
surveillance complex (BASC). 

BRCA2 breast cancer 2 FAD; FACD; FAD1; 
GLM3; BRCC2; 
FANCB; FANCD; 
PNCA2; FANCD1; 
BROVCA2 

Inherited mutations in BRCA1 
and this gene, BRCA2, confer 
increased lifetime risk of 
developing breast or ovarian 
cancer. Both BRCA1 and 
BRCA2 are involved in 
maintenance of genome 
stability, specifically the 
homologous recombination 
pathway for double-strand 
DNA repair 

TFAR19 programmed cell 
death 5 

TFAR19 This gene encodes a protein 
that is upregulated during 
apoptosis where it translocates 
rapidly from the cytoplasm to 
the nucleus. The encoded 
protein may be an important 
regulator of K(lysine) 
acetyltransferase 5 (a protein 
involved in transcription, 
DNA damage response and 
cell cycle control) by 
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inhibiting its 
proteasome-dependent 
degradation. 

BCL2L2 BCL2-like 2 BCLW; BCL-W; 
PPP1R51; BCL2-L-2 

This gene encodes a member 
of the BCL-2 protein family. 
The proteins of this family 
form hetero- or homodimers 
and act as anti- and 
pro-apoptotic regulators. 
Expression of this gene in 
cells has been shown to 
contribute to reduced cell 
apoptosis under cytotoxic 
conditions. Studies of the 
related gene in mice indicated 
a role in the survival of NGF- 
and BDNF-dependent neurons 

IGF1R ulin-like growth 
factor 1 receptor 

IGFR; CD221; 
IGFIR; JTK13 

This receptor binds 
insulin-like growth factor with 
a high affinity. It has tyrosine 
kinase activity. The 
insulin-like growth factor I 
receptor plays a critical role in 
transformation events. 
Cleavage of the precursor 
generates alpha and beta 
subunits. 

BAG4 BCL2-associated 
athanogene 4 

SODD; BAG-4 The protein encoded by this 
gene is a member of the 
BAG1-related protein family. 
BAG1 is an anti-apoptotic 
protein that functions through 
interactions with a variety of 
cell apoptosis and growth 
related proteins including 
BCL-2, Raf-protein kinase, 
steroid hormone receptors, 
growth factor receptors and 
members of the heat shock 
protein 70 kDa family 

FADD Fas 
(TNFRSF6)-associ
ated via death 
domain 

GIG3; MORT1 The protein encoded by this 
gene is an adaptor molecule 
that interacts with various cell 
surface receptors and mediates 
cell apoptotic signals. Through 
its C-terminal death domain, 
this protein can be recruited 
by TNFRSF6/Fas-receptor, 
tumor necrosis factor receptor, 
TNFRSF25, and 
TNFSF10/TRAIL-receptor, 
and thus it participates in the 
death signaling initiated by 
these receptors 

TAF3 TAF3 RNA 
polymerase II, 

TAF140; TAFII140; 
TAFII-140 

The highly conserved RNA 
polymerase II transcription 
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TATA box binding 
protein 
(TBP)-associated 
factor 

factor TFIID (see TAF1; MIM 
313650) comprises the TATA 
box-binding protein (TBP; 
MIM 600075) and a set of 
TBP-associated factors 
(TAFs), including TAF3. TAFs 
contribute to promoter 
recognition and selectivity and 
act as antiapoptotic factors 

MDM2 Mdm2, p53 E3 
ubiquitin protein 
ligase homolog 
(mouse) 

HDMX; hdm2; 
ACTFS 

This gene is a target gene of 
the transcription factor tumor 
protein p53. The encoded 
protein is a nuclear 
phosphoprotein that binds and 
inhibits transactivation by 
tumor protein p53, as part of 
an autoregulatory negative 
feedback loop. 
Overexpression of this gene 
can result in excessive 
inactivation of tumor protein 
p53, diminishing its tumor 
suppressor function 

CTHRC1 collagen triple 
helix repeat 
containing1 

This locus encodes a protein 
that may play a role in the 
cellular response to arterial 
injury through involvement in 
vascular remodeling. 
Mutations at this locus have 
been associated with Barrett 
esophagus and esophageal 
adenocarcinoma 

ASPH aspartate 
beta-hydroxylase 

AAH; BAH; HAAH; 
JCTN; junctin; 
CASQ2BP1 

This gene is thought to play an 
important role in calcium 
homeostasis. The gene is 
expressed from two promoters 
and undergoes extensive 
alternative splicing. The 
encoded set of proteins share 
varying amounts of overlap 
near their N-termini but have 
substantial variations in their 
C-terminal domains resulting 
in distinct functional 
properties. 

CTTN cortactin EMS1 This gene is overexpressed in 
breast cancer and squamous 
cell carcinomas of the head 
and neck. The encoded protein 
is localized in the cytoplasm 
and in areas of the 
cell-substratum contacts 

PPFIA1 protein tyrosine 
phosphatase 

LIP1; LIP.1; LIPRIN The protein encoded by this 
gene is a member of the LAR 
protein-tyrosine 
phosphatase-interacting 
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protein (liprin) family. Liprins 
interact with members of LAR 
family of transmembrane 
protein tyrosine phosphatases, 
which are known to be 
important for axon guidance 
and mammary gland 
development 

CDH26 cadherin 26 VR20 Cadherins are a family of 
adhesion molecules that 
mediate Ca2+-dependent 
cell-cell adhesion in all solid 
tissues and modulate a wide 
variety of processes, including 
cell polarization and 
migration. Cadherin domains 
occur as repeats in the 
extracellular region and are 
thought to contribute to the 
sorting of heterogeneous cell 
types and the maintenance of 
orderly structures such as 
epithelium 

TBL1XR1 transducin 
(beta)-like 1 
X-linked receptor 
1 

C21; DC42; IRA1; 
TBLR1 

The protein encoded by this 
gene has sequence similarity 
with members of the WD40 
repeat-containing protein 
family. The WD40 group is a 
large family of proteins, which 
appear to have a regulatory 
function 

PAK1 protein 
(Cdc42/Rac)-activ
ated kinase 1 

PAKalpha This gene encodes a family 
member of serine/threonine 
p21-activating kinases, known 
as PAK proteins. These 
proteins are critical effectors 
that link RhoGTPases to 
cytoskeleton reorganization 
and nuclear signaling, and 
they serve as targets for the 
small GTP binding proteins 
Cdc42 and Rac 

C8orf76 chromosome 8 
open reading 
frame 76 

C17ORF37 migration and 
invasion enhancer 
1 

C35; ORB3; XTP4; 
RDX12; C17orf37 

PPM1D protein 
phosphatase, 
Mg2+/Mn2+ 
dependent 

WIP1; PP2C-DELTA The protein encoded by this 
gene is a member of the PP2C 
family of Ser/Thr protein 
phosphatases. PP2C family 
members are known to be 
negative regulators of cell 
stress response pathways. The 
expression of this gene is 
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induced in a p53-dependent 
manner in response to various 
environmental stresses 

CDH4 cadherin 4, type 1, 
R-cadherin 

CAD4; RCAD This gene is a classical 
cadherin from the cadherin 
superfamily. The encoded 
protein is a calcium-dependent 
cell-cell adhesion glycoprotein 
comprised of five extracellular 
cadherin repeats, a 
transmembrane region and a 
highly conserved cytoplasmic 
tail.  

GPR116 G protein-coupled 
receptor 116 

KPG_001

CLNS1A chloride channel, 
nucleotide-sensitiv
e, 1A 

CLCI; ICln; CLNS1B This gene encodes a protein 
that functions in multiple 
regulatory pathways. The 
encoded protein complexes 
with numerous cytosolic 
proteins and performs diverse 
functions including regulation 
of small nuclear 
ribonucleoprotein 
biosynthesis, platelet 
activation and cytoskeletal 
organization 

PPP1R3D protein 
phosphatase 1, 
regulatory subunit 
3D 

PPP1R6 Phosphorylation of serine and 
threonine residues in proteins 
is a crucial step in the 
regulation of many cellular 
functions ranging from 
hormonal regulation to cell 
division and even short-term 
memory. The level of 
phosphorylation is controlled 
by the opposing actions of 
protein kinases and protein 
phosphatases. Protein 
phosphatase 1 (PP1) is 1 of 4 
major 
serine/threonine-specific 
protein phosphatases which 
have been identified in 
eukaryotic cells. 

RASA2 GAP1M GAP1M The protein encoded by this 
gene is member of the GAP1 
family of GTPase-activating 
proteins. The gene product 
stimulates the GTPase activity 
of normal RAS p21 but not its 
oncogenic counterpart. Acting 
as a suppressor of RAS 
function, the protein enhances 
the weak intrinsic GTPase 
activity of RAS proteins 
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resulting in the inactive 
GDP-bound form of RAS, 
thereby allowing control of 
cellular proliferation and 
differentiation. This particular 
family member has a 
perinuclear localization and is 
an inositol 
1,3,4,5-tetrakisphosphate-bind
ing protein 

KRAS v-Ki-ras2 Kirsten 
rat sarcoma viral 
oncogene homolog 

NS; NS3; KRAS1; 
KRAS2; RASK2; 
KI-RAS; C-K-RAS; 
K-RAS2A; 
K-RAS2B; 
K-RAS4A; 
K-RAS4B 

This gene, a Kirsten ras 
oncogene homolog from the 
mammalian ras gene family, 
encodes a protein that is a 
member of the small GTPase 
superfamily. A single amino 
acid substitution is responsible 
for an activating mutation. 
The transforming protein that 
results is implicated in various 
malignancies, including lung 
adenocarcinoma, mucinous 
adenoma, ductal carcinoma of 
the pancreas and colorectal 
carcinoma. Alternative 
splicing leads to variants 
encoding two isoforms that 
differ in the C-terminal region 

RAB11FIP1 RAB11 family 
interacting protein 
1 (class I) 

RCP; NOEL1A;
rab11-FIP1 

Proteins of the large Rab 
GTPase family (see RAB1A; 
MIM 179508) have regulatory 
roles in the formation, 
targeting, and fusion of 
intracellular transport vesicles. 
RAB11FIP1 is one of many 
proteins that interact with and 
regulate Rab GTPases 

MDC1 mediator of 
DNA-damage 
checkpoint 1 

NFBD1 The protein encoded by this 
gene contains an N-terminal 
forkhead domain, two BRCA1 
C-terminal (BRCT) motifs and 
a central domain with 13 
repetitions of an 
approximately 41-amino acid 
sequence. The encoded protein 
is required to activate the 
intra-S phase and G2/M phase 
cell cycle checkpoints in 
response to DNA damage 

MYST3 MYST histone 
acetyltransferase 

MOZ; KAT6A; 
Zfp220; 
1500036M03; 
9930021N24Rik 

MSH3 DUP; MRP1 DUP; MRP1 The protein encoded by this 
gene forms a heterodimer with 
MSH2 to form MutS beta, part 
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of the post-replicative DNA 
mismatch repair system. MutS 
beta initiates mismatch repair 
by binding to a mismatch and 
then forming a complex with 
MutL alpha heterodimer. This 
gene contains a polymorphic 9 
bp tandem repeat sequence in 
the first exon. 

MLH1 mutL homolog 1, 
colon cancer, 
nonpolyposis type 
2 

FCC2; COCA2; 
HNPCC; hMLH1; 
HNPCC2 

This gene was identified as a 
locus frequently mutated in 
hereditary nonpolyposis colon 
cancer (HNPCC). It is a 
human homolog of the E. coli 
DNA mismatch repair gene 
mutL, consistent with the 
characteristic alterations in 
microsatellite sequences 
(RER+phenotype) found in 
HNPCC. Alternative splicing 
results in multiple transcript 
variants encoding distinct 
isoforms. Additional transcript 
variants have been described, 
but their full-length natures 
have not been determined 

HDAC2 histone 
deacetylase 2 

HD2; RPD3; YAF1 This gene product belongs to 
the histone deacetylase family. 
Histone deacetylases act via 
the formation of large 
multiprotein complexes, and 
are responsible for the 
deacetylation of lysine 
residues at the N-terminal 
regions of core histones (H2A, 
H2B, H3 and H4). This 
protein forms transcriptional 
repressor complexes by 
associating with many 
different proteins, including 
YY1, a mammalian 
zinc-finger transcription 
factor. Thus, it plays an 
important role in 
transcriptional regulation, cell 
cycle progression and 
developmental events 

RAD51 RAD51 homolog 
(S. cerevisiae) 

RECA; BRCC5; 
MRMV2; HRAD51; 
RAD51A; HsRad51; 
HsT16930 

The protein encoded by this 
gene is a member of the 
RAD51 protein family. 
RAD51 family members are 
highly similar to bacterial 
RecA and Saccharomyces 
cerevisiae Rad51, and are 
known to be involved in the 
homologous recombination 
and repair of DNA. This 
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protein can interact with the 
ssDNA-binding protein RPA 
and RAD52, and it is thought 
to play roles in homologous 
pairing and strand transfer of 
DNA. This protein is also 
found to interact with BRCA1 
and BRCA2, which may be 
important for the cellular 
response to DNA damage 

MLH3 mutL homolog 3 
(E. coli) 

HNPCC7 This gene is a member of the 
MutL-homolog (MLH) family 
of DNA mismatch repair 
(MMR) genes. MLH genes are 
implicated in maintaining 
genomic integrity during DNA 
replication and after meiotic 
recombination. The protein 
encoded by this gene 
functions as a heterodimer 
with other family members. 

HIST1H2BH histone cluster 1, 
H2bh 

H2B/j; H2BFJ Histones are basic nuclear 
proteins that are responsible 
for the nucleosome structure 
of the chromosomal fiber in 
eukaryotes. Two molecules of 
each of the four core histones 
(H2A, H2B, H3, and H4) form 
an octamer, around which 
approximately 146 bp of DNA 
is wrapped in repeating units, 
called nucleosomes. The 
linker histone, H1, interacts 
with linker DNA between 
nucleosomes and functions in 
the compaction of chromatin 
into higher order structures 

PFAS phosphoribosylfor
mylglycinamidine 
synthase 

PURL; FGAMS; 
FGARAT 

Purines are necessary for 
many cellular processes, 
including DNA replication, 
transcription, and energy 
metabolism. Ten enzymatic 
steps are required to 
synthesize inosine 
monophosphate (IMP) in the 
de novo pathway of purine 
biosynthesis. The enzyme 
encoded by this gene catalyzes 
the fourth step of IMP 
biosynthesis 

TLK2 tousled-like kinase 
2 

PKU-ALPHA The Tousled-like kinases, first 
described in Arabidopsis, are 
nuclear serine/threonine 
kinases that are potentially 
involved in the regulation of 
chromatin assembly 
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DNASE1 deoxyribonuclease 
I 

DNL1; DRNI This gene encodes a member 
of the DNase family. This 
protein is stored in the 
zymogen granules of the 
nuclear envelope and 
functions by cleaving DNA in 
an endonucleolytic manner. At 
least six autosomal 
codominant alleles have been 
characterized, DNASE1*1 
through DNASE1*6, and the 
sequence of DNASE1*2 
represented in this record. 
Mutations in this gene have 
been associated with systemic 
lupus erythematosus (SLE), an 
autoimmune disease 

E2F3 E2F transcription 
factor 3 

E2F-3 The protein encoded by this 
gene is a member of the E2F 
family of transcription factors. 
The E2F family plays a crucial 
role in the control of cell cycle 
and action of tumor 
suppressor proteins and is also 
a target of the transforming 
proteins of small DNA tumor 
viruses. The E2F proteins 
contain several evolutionally 
conserved domains found in 
most members of the family. 
These domains include a DNA 
binding domain, a 
dimerization domain which 
determines interaction with 
the differentiation regulated 
transcription factor proteins 
(DP), a transactivation domain 
enriched in acidic amino 
acids, and a tumor suppressor 
protein association domain 
which is embedded within the 
transactivation domain. 

INTS2 integrator complex 
subunit 2 

INT2; KIAA1287 INTS2 is a subunit of the 
Integrator complex, which 
associates with the C-terminal 
domain of RNA polymerase II 
large subunit (POLR2A; MIM 
180660) and mediates 3-prime 
end processing of small 
nuclear RNAs U1 

INTS4 integrator complex 
subunit 4 

INT4; MST093 INTS4 is a subunit of the 
Integrator complex, which 
associates with the C-terminal 
domain of RNA polymerase II 
large subunit (POLR2A; MIM 
180660) and mediates 3-prime 
end processing of small 
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nuclear RNAs U1 (RNU1; 
MIM 180680) and U2 (RNU2; 
MIM 180690) 

PROSC proline synthetase 
co-transcribed 
homolog 
(bacterial) 

RPL19 ribosomal protein 
L19 

L19 Ribosomes, the organelles that 
catalyze protein synthesis, 
consist of a small 40S subunit 
and a large 60S subunit. 
Together these subunits are 
composed of 4 RNA species 
and approximately 80 
structurally distinct proteins. 
This gene encodes a ribosomal 
protein that is a component of 
the 60S subunit. The protein 
belongs to the L19E family of 
ribosomal proteins. It is 
located in the cytoplasm 

MRPL9 mitochondrial 
ribosomal protein 
L9 

L9mt Mammalian mitochondrial 
ribosomal proteins are 
encoded by nuclear genes and 
help in protein synthesis 
within the mitochondrion. 
Mitochondrial ribosomes 
(mitoribosomes) consist of a 
small 28S subunit and a large 
39S subunit. They have an 
estimated 75% protein to 
rRNA composition compared 
to prokaryotic ribosomes, 
where this ratio is reversed. 
Another difference between 
mammalian mitoribosomes 
and prokaryotic ribosomes is 
that the latter contain a 5S 
rRNA. 

BRD4 bromodomain 
containing 4 

CAP; MCAP; 
HUNK1; HUNKI 

The protein encoded by this 
gene is homologous to the 
murine protein MCAP, which 
associates with chromosomes 
during mitosis, and to the 
human RING3 protein, a 
serine/threonine kinase. Each 
of these proteins contains two 
bromodomains, a conserved 
sequence motif which may be 
involved in chromatin 
targeting 

FOXA1 forkhead box A1 HNF3A; TCF3A This gene encodes a member 
of the forkhead class of 
DNA-binding proteins. These 
hepatocyte nuclear factors are 
transcriptional activators for 
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liver-specific transcripts such 
as albumin and transthyretin, 
and they also interact with 
chromatin. Similar family 
members in mice have roles in 
the regulation of metabolism 
and in the differentiation of 
the pancreas and liver 

SPFH2 ER lipid raft 
associated 2 

NET32;SPG18; 
C8orf2; Erlin-2 

This gene encodes a member 
of the SPFH 
domain-containing family of 
lipid raft-associated proteins. 
The encoded protein is 
localized to lipid rafts of the 
endoplasmic reticulum and 
plays a critical role in inositol 
1,4,5-trisphosphate (IP3) 
signaling by mediating 
ER-associated degradation of 
activated IP3 receptors. 
Mutations in this gene are a 
cause of spastic paraplegia-18 
(SPG18). Alternatively spliced 
transcript variants encoding 
multiple isoforms have been 
observed for this gene. 

GATA3 GATA binding 
protein 3 

HDR; HDRS This gene encodes a protein 
which belongs to the GATA 
family of transcription factors. 
The protein contains two 
GATA-type zinc fingers and is 
an important regulator of 
T-cell development and plays 
an important role in 
endothelial cell biology. 
Defects in this gene are the 
cause of hypoparathyroidism 
with sensorineural deafness 
and renal dysplasia 

ALG8 asparagine-linked 
glycosylation 8, 
alpha-1,3-glucosyl
transferase 
homolog 

CDG1H This gene encodes a member 
of the ALG6/ALG8 
glucosyltransferase family. 
The encoded protein catalyzes 
the addition of the second 
glucose residue to the 
lipid-linked oligosaccharide 
precursor for N-linked 
glycosylation of proteins. 
Mutations in this gene have 
been associated with 
congenital disorder of 
glycosylation type Ih 
(CDG-Ih). Alternatively 
spliced transcript variants 
encoding different isoforms 
have been identified 

NGFR nerve growth CD271; p75NTR; Nerve growth factor receptor 
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factor receptor TNFRSF16; 
p75(NTR); 
Gp80-LNGFR 

contains an extracellular 
domain containing four 
40-amino acid repeats with 6 
cysteine residues at conserved 
positions followed by a 
serine/threonine-rich region, a 
single transmembrane domain, 
and a 155-amino acid 
cytoplasmic domain. The 
cysteine-rich region contains 
the nerve growth factor 
binding domain 

TAF4 TAF4 RNA 
polymerase II, 
TATA box binding 
protein 
(TBP)-associated 
factor, 135kDa 

TAF2C; TAF4A; 
TAF2C1; TAFII130; 
TAFII135 

Initiation of transcription by 
RNA polymerase II requires 
the activities of more than 70 
polypeptides. The protein that 
coordinates these activities is 
transcription factor IID 
(TFIID), which binds to the 
core promoter to position the 
polymerase properly, serves as 
the scaffold for assembly of 
the remainder of the 
transcription complex, and 
acts as a channel for 
regulatory signals. TFIID is 
composed of the 
TATA-binding protein (TBP) 
and a group of evolutionarily 
conserved proteins known as 
TBP-associated factors or 
TAFs. 

KIF26B kinesin family 
member 26B 

MNX1 motor neuron and 
pancreas 
homeobox1 

HB9; HLXB9; 
SCRA1; HOXHB9 

This gene encodes a nuclear 
protein, which contains a 
homeobox domain and is a 
transcription factor. Mutations 
in this gene result in Currarino 
syndrome, an autosomic 
dominant congenital 
malformation. Alternatively 
spliced transcript variants 
encoding different isoforms 
have been found for this gene 

CAPN9 calpain 9 GC36; nCL-4
 

Calpains are ubiquitous, 
well-conserved family of 
calcium-dependent, cysteine 
proteases. The calpain proteins 
are heterodimers consisting of 
an invariant small subunit and 
variable large subunits. The 
large subunit possesses a 
cysteine protease domain, and 
both subunits possess 
calcium-binding domains. 
Calpains have been implicated 
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in neurodegenerative 
processes, as their activation 
can be triggered by calcium 
influx and oxidative stress. 

CDR2L cerebellar 
degeneration-relat
ed protein 2-like 

FANCA Fanconi anemia,
complementation 
group A 

FA; FA1; FAA; FAH; 
FA-H; FACA; 
FANCH 

The Fanconi anemia 
complementation group 
(FANC) currently includes 
FANCA, FANCB, FANCC, 
FANCD1 (also called 
BRCA2), FANCD2, FANCE, 
FANCF, FANCG, FANCI, 
FANCJ (also called BRIP1), 
FANCL, FANCM and 
FANCN (also called PALB2). 
The previously defined group 
FANCH is the same as 
FANCA. Fanconi anemia is a 
genetically heterogeneous 
recessive disorder 
characterized by cytogenetic 
instability, hypersensitivity to 
DNA crosslinking agents, 
increased chromosomal 
breakage, and defective DNA 
repair. The members of the 
Fanconi anemia 
complementation group do not 
share sequence similarity; they 
are related by their assembly 
into a common nuclear protein 
complex. 

OR8G1 olfactory receptor, 
family 8, 
subfamily G, 
member 1 

OR8G1P; TPCR25; 
HSTPCR25 

Olfactory receptors interact 
with odorant molecules in the 
nose, to initiate a neuronal 
response that triggers the 
perception of a smell. The 
olfactory receptor proteins are 
members of a large family of 
G-protein-coupled receptors 
(GPCR) arising from single 
coding-exon genes. Olfactory 
receptors share a 
7-transmembrane domain 
structure with many 
neurotransmitter and hormone 
receptors and are responsible 
for the recognition and G 
protein-mediated transduction 
of odorant signals 

ARFGAP3 ADP-ribosylation 
factor GTPase 
activating protein 
3 

ARFGAP1 The protein encoded by this 
gene is a GTPase-activating 
protein (GAP) that associates 
with the Golgi apparatus and 
regulates the early secretory 
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pathway of proteins. The 
encoded protein promotes 
hydrolysis of 
ADP-ribosylation factor 1 
(ARF1)-bound GTP, which is 
required for the dissociation of 
coat proteins from 
Golgi-derived membranes and 
vesicles. Dissociation of the 
coat proteins is a prerequisite 
for the fusion of these vesicles 
with target compartments. 

PERLD1 per1-like domain 
containing 1 

STARD3 CAB1; es64; 
MLN64 

CAB1; es64; MLN64 This gene encodes a member 
of a subfamily of lipid 
trafficking proteins that are 
characterized by a C-terminal 
steroidogenic acute regulatory 
domain and an N-terminal 
metastatic lymph node 64 
domain. The encoded protein 
localizes to the membranes of 
late endosomes and may be 
involved in exporting 
cholesterol. Alternative 
splicing results in multiple 
transcript variants 

GRB7 growth factor 
receptor-bound 
protein 7 

The product of this gene 
belongs to a small family of 
adapter proteins that are 
known to interact with a 
number of receptor tyrosine 
kinases and signaling 
molecules. This gene encodes 
a growth factor 
receptor-binding protein that 
interacts with epidermal 
growth factor receptor 
(EGFR) and ephrin receptors. 
The protein plays a role in the 
integrin signaling pathway and 
cell migration by binding with 
focal adhesion kinase (FAK). 
Several transcript variants 
encoding two different 
isoforms have been found for 
this gene 

JUND jun D 
proto-oncogene 

AP-1 The protein encoded by this 
intronless gene is a member of 
the JUN family, and a 
functional component of the 
AP1 transcription factor 
complex. It has been proposed 
to protect cells from 
p53-dependent senescence and 
apoptosis. Alternate 
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translation initiation site usage 
results in the production of 
different isoforms 

CRP C-reactive protein, 
pentraxin-related 

PTX1 The protein encoded by this 
gene belongs to the pentaxin 
family. It is involved in 
several host defense related 
functions based on its ability 
to recognize foreign pathogens 
and damaged cells of the host 
and to initiate their 
elimination by interacting with 
humoral and cellular effector 
systems in the blood. 
Consequently, the level of this 
protein in plasma increases 
greatly during acute phase 
response to tissue injury, 
infection, or other 
inflammatory stimuli 

HTR3B 5-hydroxytryptami
ne (serotonin) 
receptor 3B, 
ionotropic 

5-HT3B The product of this gene 
belongs to the ligand-gated 
ion channel receptor 
superfamily. This gene 
encodes subunit B of the type 
3 receptor for 
5-hydroxytryptamine 
(serotonin), a biogenic 
hormone that functions as a 
neurotransmitter, a hormone, 
and a mitogen. This receptor 
causes fast, depolarizing 
responses in neurons after 
activation. It is not functional 
as a homomeric complex, but 
a pentaheteromeric complex 
with subunit A (HTR3A) 
displays the full functional 
features of this receptor 

FBXO43 F-box protein 43 EMI2; ERP1; FBX43 Members of the F-box protein 
family, such as FBXO43, are 
characterized by an 
approximately 40-amino acid 
F-box motif. SCF complexes, 
formed by SKP1 (MIM 
601434), cullin (see CUL1; 
MIM 603134), and F-box 
proteins, act as 
protein-ubiquitin ligases. 

ARFGAP3 ADP-ribosylation 
factor GTPase 
activating protein 
3 

ARFGAP1 The protein encoded by this 
gene is a GTPase-activating 
protein (GAP) that associates 
with the Golgi apparatus and 
regulates the early secretory 
pathway of proteins. The 
encoded protein promotes 
hydrolysis of 
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ADP-ribosylation factor 1 
(ARF1)-bound GTP, which is 
required for the dissociation of 
coat proteins from 
Golgi-derived membranes and 
vesicles. Dissociation of the 
coat proteins is a prerequisite 
for the fusion of these vesicles 
with target compartments. 

 
 
 
 

5.4 Concluding Remarks 
 
 

In this chapter, the comprehensive gene selection system was further evaluated 

on the selection of cancer biomarker based on Copy number varation. By way 

of multiple random sampling, 91 genes were selected by all of twenty sets of 

breast cancer marker signatures. The derived 91 breast cancer signatures are 

found to be fairly stable with 80% of the top 50 ranked genes and 65% to 85% 

of all genes in each signature were shared by 20 signature sets. One reason is 

that a SVM class differentiation system with a universal set of globally 

optimized variables, which gave the best average class differentiation accuracy 

over the 500 test sets, was used to derive RFE gene ranking function at every 

iteration step and for every test set. The biomarker contains cell proliferation 

genes, like MAPK10, EGFR, tumor suppressor gene, apoptosis gene, 

tumorgenesis gene, cytoskeleton gene. Amplifications involving chromosomes 

8p, 11q, and 17q are among the most common high level copy number 

aberrations in breast cancer tumors. Poor prognosis is associated with the 

presence of these amplicons in breast cancer. Co-amplification of 8p12 and 

11q13 is frequent. Amplification of 8p12 and 11q13 frequently occur together 
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suggesting possible interactions between the genes in these two amplicons. 

For example, it has been reported previously that FGFR1 (at 8p12) is 

up-regulated by increased expression of CCND1 (at 11q13) in fibroblasts, and 

occurs via CCND1 mediated activation of the pRB/E2F pathway.These 21 

markers were then used to develop PNN and SVM prediction models to 

predict prognosis for lung adenocarcinoma patients from different datasets. 

The survivability analysis by hierarchical clustering analysis and 

Kaplan-Meier survival analysis further suggested that the derived signatures 

from our system could provide better performance when comparing with other 

signatures. Most of the selected genes have been experimentally proved that 

high expression of the genes is relevant to adverse survivability of patients. 12 

markers, including 5 known targets and 7 novel targets, were successfully 

predicted as therapeutic targets by using a therapeutic target prediction system.  
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Chapter 6 Concluding Remarks 

6.1 Finding and merits 

Thrombin, VEGF, and histamine are hallmarks of endothelial 

hyper-permeability, which perform their regulatory roles individually and 

collectively under different disease conditions, and with different dynamic 

profiles. Thrombin and VEGF can increase microvascular permeability 

~50,000 times more potently than histamine [212] . Thrombin, VEGF, and 

histamine induce prolonged (1-1.5 hr), intermediate (15-20 min) and transient 

(~5 min) increases of endothelial permeability, respectively. An integrated 

simulation model that includes the signalling of all these hallmark mediators 

enables more comprehensive analysis of the signalling processes involved in 

different disease processes and regulated by different combinations of these 

mediators. Based on published models of relevant signaling, we developed an 

integrated mathematical model including the signaling pathways of all three of 

these mediators. Simulation results from our model were consistent with 

available experimental data of signaling mediated by both individual 

mediators and combinations of two mediators, and could be used to interpret 

the sustained and transient phases of MLC activation.  

 

After building the mathematical model of endothelial permeability, to further 

explore the molecular mechanism of endothelial permeability, we developed a 
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robust computational system for gene signature using high-throughput datasets. 

A popular and accurate machine learning method, support vector machines, 

was applied to classify the samples. Recursive feature selection incorporating 

with multiple random sampling method and gene consistency evaluation 

strategies was used in gene selection procedure. The use of consensus scoring 

for multiple random sampling and evaluation of gene-ranking consistency 

seem to have impressive capability in avoiding erroneous elimination of 

predictor-genes due to such noise as measurement variability and biological 

differences. This system was used to select sepsis markers based on gene 

expression level. Then the system was expanded to the other type 

high-throughput data, breast cancer copy number variations dataset. For both 

cases, the markers were consistent with the variation of the samples, and 

present good predictive performances. The first case (endothelia permeability 

related disease sepsis) which contained the expression levels of 18 control and 

22 patients were used for sepsis marker discovery. 20 sets of sepsis gene 

signatures were generated. 41 gene signatures are fairly stable with 69%~93% 

of all predictor-genes shared by all 20 signatures sets. For the second case 

(breast cancer copy number variation datasets), total of 373 breast cancer 

samples and 517 normal people samples were used, the derived 91 breast 

cancer marker signature are found to be fairly stable with 80% of the top 50 

ranked genes and 65% to 85% of all genes in each signature were shared by 20 

signatures.  

 

In summary, the integrated endothelial permeability model was able to predict 
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the effects of altered pathway components and synergistic combination of 

multiple mediators, some of which are consistent with experimental findings 

[352]. Similar to the published models of other pathways, our model can 

potentially be used to identify important disease genes through sensitivity 

analysis of signalling components [402]. Our model may also be extended to 

emphasize other components to facilitate further investigation of the effects of 

different mediators, cascades, and cross-talk on endothelial permeability and 

related diseases. For both cases (sepsis biomarker selection and copy number 

variation based biomarker selection), the biomarker results suggest that our 

system can derive stable and good predictive marker signatures. Since the cost 

for high-throughput experiments is very high, the sample size is much smaller 

than what is required for a satisfactory diagnosis and prognosis of a certain 

disease such as cancer. In such situations, our system is particular useful to get 

real important markers for disease initiation, diagnosis, patient survival 

prediction and therapeutic target discovery. The use of consensus scoring for 

multiple random sampling and evaluation of gene-ranking consistency seem to 

have impressive capability in avoiding erroneous elimination of 

predictor-genes due to such noise as measurement variability and biological 

differences. 

6.2 Limitations and suggestions for future study 

A major function of the endothelial cell (EC) is to serve as a barrier to fluid 

and solute flux across the blood vessel wall. Breakdown of this barrier leads to 
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increased permeability and the development of edema. This process has been 

implicated in cancer metastasis, angiogenesis, ischaemic heart disease, 

inflammation, trauma, sepsis, and many other pathological conditions [1]. Due 

to the data limitation, we just construct the model of endothelial permeability 

model. Further, based on the model of endothelial permeability, we will 

construct the model of inflammation, sepsis and other disease (depended on 

the data available). Then we can observe how the endothelial permeability 

leads to these diseases. 

 

Another aspect of this work was a robust computational system for gene 

signature derivation was developed. We mainly used the microarray and copy 

number variation (SNP data) to test the implementation. For the microarray 

dataset, further improvement in measurement quality, annotation accuracy and 

coverage, and signature-selection will enable the derivation of more accurate 

signatures for facilitating biomarker and target discovery. The currently 

available platforms for microarray data are different. Therefore if we could 

synchronize the platform and provide more samples, we could further improve 

the accuracy of our system and reduce the computational time. The gene 

ontology information also could be integrated into the system and the selected 

genes would be given a biological meaning directly. While for the platform of 

copy number variation, we mainly used the Penncnv software which based on 

hidden Markova model to calculate CNV calling. For further work, other 

algorithm of CNV calculation should be used as a comparison.  
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Furthermore, combined analysis of DNA copy number and gene expression 

microarrays and mutation of the same or similar tumor samples has revealed a 

major and direct effect of allelic imbalance on gene expression. We will 

continue to identity the biomarker by integration of gene amplification, 

expression and mutation. We wish to find which individual copy number 

changes affect gene expression levels and mutation within the same 

chromosomal region. Integrated analysis of both copy number variation, gene 

expression and mutation data could give additional information about the role 

of copy number alterations in the development of cancer.
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