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Summary 

 

At present components for MEMS and bio-MEMS are usually produced using 

semiconductor processing technologies, like photolithography on silicon substrate. In 

addition to their incompatible material properties for extreme applications like 

microsurgery, biotechnology, fluidics or high-temperature environments, these 

processes require special and extremely expensive facilities. Tool-based 

micromachining technologies such as micro-turning, micro-grinding, micro-EDM and 

micro-ECM have many advantages in productivity, efficiency, flexibility and cost 

effectiveness; but the capability of such micromachining around the lower boundary of 

micromachining range below 50µm has not been demonstrated extensively. 

Compound machining, which integrates conventional and non-conventional 

micromachining processes on the same machine tool, has several advantages over a 

single process. But, significant research work has not yet been conducted in exploring 

the capability of compound micromachining due to the unavailability of a suitable 

machining platform for performing several of such machining processes at the state-of-

the-art benchmark. The primary objective of this project is to perform experimental 

study and development of successful micro-EDM based compound micromachining 

processes mostly between 5µm~50µm feature size range. This research work also aims 

to contribute to the fundamental understanding on the process physics of micro-EDM 

process. 

A universal multi-process machine tool capable of performing compound 

micromachining processes has been evaluated using ISO standard evaluation 

techniques and cutting tests which substantiated the capability of the machine tool for 

performing conventional micromachining processes. Through theoretical analysis and 
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experimental evaluation of the micro-EDM process, the need for implementation of 

relaxation circuit (RC) power supply for very small discharge energy has been 

identified.  

The theoretical analysis of micro-EDM process has been performed aiming to develop 

a model for the RLC network of RC type power supply employing micro-EDM plasma 

properties. Analytically it has been demonstrated that the capacitive plasma discharge 

for micro-EDM plasma can be modeled using the resistive component of the plasma. 

Using the proposed model, current waveform and discharge energy have been 

computed and shown to have good agreement with experimentally obtained current 

waveform. The proposed model provided significant insight for realizing changes in 

current waveform, and thus the final process outcome due to changes in process 

parameters, such as, input voltage, capacitance and inductance. 

A new micro-EDM power supply using RC power supply has been developed to 

provide supply of very low discharge energy, down to ~37nJ at 60V supply voltage. 

With improvement in gap control capabilities and implementation of 3D micro-EDM 

milling sequence, a new method for straight electrode machining has been realized. 

These development activities have been based on the theoretical analysis of an RLC 

network, and an array of micromachining of shapes and features around 20µm has 

been demonstrated by micro-EDM milling and micro-EDM die-sinking process.  

The developed platform has been utilized for the exploration of compound 

micromachining, where micro-EDM has a cardinal role due to its capability of 

machining with extremely low cutting force.  Novel machining capabilities have been 

developed and demonstrated for compound machining of micro-slots and micro-shafts 

by combining micro-EDM, micro-turning and micro-milling processes. 
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1 Introduction 

 

A very senior software engineer colleague of the author from a semiconductor 

processing equipment company once commented being disgruntled with some biased 

decisions made by the process engineering team – “the most influential man in 

manufacturing is the process engineer; they are the only one and they are all in all”. 

Though it was commented in a way to vent out frustration on the heated up argument 

on a technical issue that he had with a process engineer in the organization, there is an 

implication in his comment. Albeit manufacturing is not just about process 

engineering, but is multi-disciplinary in nature when dealing with the design, 

implementation, operation, and optimization of the process concerned. An equipment 

with very good mechanical structure and excellent control system void superior 

process capabilities will not be useful. But, at the same time an identified innovative 

process supported by fundamental study and driven by potential industrial application 

will not be realized if a pertinently designed equipment is not available to enable its 

implementation and in-depth study.  

 

The aforementioned case also applies for tool-based compound micromachining 

processes (TCMMP). The process development will be hindered by the machine tool 

employed for machining having a wrong setup or the capability demonstrated at a 

dimensional range is not appropriate. Therefore, it is important to untwine the correct 

question and for TCMMP it should be: whether or not it can provide solutions to 

manufacturing problems otherwise not solved economically or even otherwise not 

possible at all. And the solution has to be at the required dimensional range and 
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supported by underlying physical principles given that a suitable platform exists for 

exploration of various TCMMPs. In particular this is very important to pay attention to 

the term ‘required dimensional range’ as that is expected and therefore, the answers 

should too match to that dimensional range which is often not the case. While 

machining of a 500µm diameter cylindrical rod is not particularly a problem with 

present day available technologies, this becomes a massive challenge when this is tried 

for a 50µm cylindrical rod. Therefore, demonstrations of capability of micromachining 

at upper or mid boundary of the dimensional range for micromachining domain are not 

acceptable as practically the challenges are lying at the lower boundary of 

micromachining domain below ~50µm dimensional range.  

 

In order to answer the question asked above it is also important to provide a very brief 

overview on the nature of challenges for micromachining to happen at the lower 

boundary of micromachining domain. Micromachining is a relatively new arena of 

advanced manufacturing technology and there exists many magnificent process ideas 

for machining of parts and components with micrometer range geometry which are 

considered as the art of micromachining (Corbet et al., 2000; Dornfeld et al., 2006; 

Fang et al., 2006; Masuzawa 2000; Meeusen et al., 2003; Rahman et al., 2006; Schoth 

et al., 2005). At par, there exists enormous difficulties in translating these process 

ideas into profitable manufacturing reality which are the engineering of 

micromachining and demands optimization for a very complex set of mutually 

inversely dependent output parameters. The optimization process requires fragmenting 

the complex set of technical challenges into seemingly simple units following a 

systematic and rigorous approach which loops through the conventional development 

life cycle recurrently but it is not confined in a set of heuristic rules which could be 
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applied in every recurrent cycle. It involves understanding the process requirements, 

setting the criteria for mechanical system, mechanical design, fabrication and assembly 

of the mechanical structure, developing electronic circuits and control systems, 

developing intelligence in the system to control the physics behind the process and 

finally observing and empathizing to what the machine needs when it is not capable of 

controlling the underlying physics of the process.  

 

The aforementioned essentially mean that for TCMMP the challenge is in the effective 

implementation which requires a synergistic development work and successful 

integration of practically four major areas (Figure 1.1) – (a) evaluation and 

characterization of a machining platform to assess suitability for micromachining; (b) 

in-depth understanding of process physics to leverage on the tuning of responsible 

parameters for an expected outcome – in the scope of this thesis it is micro-EDM 

process; (c) development of hardware and software guided by the understanding of 

process physics; and finally (d) exploration of TCMMP technologies on the platform.  

 

The first section of this chapter focuses on the motivation behind this research effort 

followed by objective and the scope of this work.  It concludes with a brief overview 

on the organization of this thesis.  

 

1.1 Motivation 

The drive for miniaturization and fabrication of components with a wide selection of 

materials will allow micro-systems technology to enhance health care, quality of life, 

to attain new technological breakthrough and to coat engineering applications with 

environment friendly and energy saving practices. The pervasive demands of 
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miniaturization across all engineering disciplines have imparted the challenge of 

fabrication of such components to the manufacturing engineers.  In present day, state-

of-the-art fabrication techniques refer to the fabrication of components and parts for 

Micro-Electro-Mechanical Systems (MEMS), sub miniature actuators and sensors, 

components for biomedical devices, high precision equipment, components for 

advanced communication technology, long micro-channels for lab-on-chips, shape 

memory alloy ‘stents’, fluidic graphite channels for fuel cell applications and many 

more (Corbett et al., 2000; Lang 1999; Madou 1997; Weck et al., 1997).  The more 

recent trends indicate that the drive has gone beyond the little earlier challenge of 

precision and minuteness in dimension to a new level where components of same 

precision and even less visible dimensions are produced by machining on tough 

materials at lower cost.  

 

Components for MEMS and most miniature applications are usually produced using 

semiconductor processing technologies, like photolithography on silicon substrate 

(Meeusen et al, 2003; Schoth et al, 2005). Applications related to micro-surgery, 

biotechnology, fluidics or high-temperature environments (Kuo et al., 2003) are 

examples of broad emerging need for fabrication of micro-parts with exquisite 

structure and strength dependent properties, on a par with size dependent properties, in 

which material properties of silicon often do not meet. Micro-structures produced by 

photolithography have the limitations of low aspect ratio and quasi-3D structure 

(Okuyama et al., 1998; Rajurkar et al., 2000). It is possible to fabricate high–aspect-

ratio components with sub-micron structure by LIGA process (from the German: 

Lithographie Galvanformung und Abformung – a combination of lithography, 

electroplating and molding process) using the synchrotron radiation process and 
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focused ion beam machining process. However, present laboratory-scale and industrial 

fabrication techniques using LIGA require special and extremely expensive facilities 

like a synchrotron system and require machining of expensive masks which has 

imposed a hindrance on quick and economical fabrication of micro-parts. Furthermore, 

the dimensional ranges that such processes cover are sometimes not required which is 

illustrated in Figure 1.2. It can be observed from the illustration that tool-based 

micromachining has a unique place for performing micromachining operations at the 

lower boundary of micromachining range (between 5µm~50µm) to bridge the gap 

between mechanical machining, photolithography and LIGA process for dimensional 

range and aspect ratio (Rahman, A., et al., 2005, Rajurkar KP., et al., 2006).  

 

 

 

 

 

• Development of 
hardware and 
improvement of micro-
EDM controller to be 
capable for micro-
machining applications

• Exploration of 
compound 
micromachining 
process  technologies

• Theoretical analysis 
on electrical 
characteristics of 
micro-EDM process

• Evaluation and 
characterization of 
machine tool for 
compound 
micromachining

Machine Tool Process 
Physics

Hardware 
and 

Controller 
Development

Compound 
Micro 

Machining

Figure 1.1 Synergistic research and development areas for successful compound
micromachining. 
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Tool-based micromachining technologies, including micro-turning, micro-grinding, 

micro-EDM and micro-ECM, have many advantages in productivity, efficiency, 

flexibility and cost effectiveness and consequently have been applied to a variety of 

substrates and materials to fabricate micro-structures and transducers in addition to 

etching and LIGA (Fang et al., 2006; Gianchandani et al., 2006; Rahman et al, 2006; 

Schoth et al., 2005; Yu et al., 1998; Zhao et al., 2004). In many applications the 

workpiece is a final product while in other applications it might be the x-ray 

lithography mask or a mold for electroplating to create a micro-structure. Among the 

tool based micromachining techniques, micro-EDM, a non-conventional machining 

process, has been identified as a very promising technology for the machining of 

micro-components due to its non-contact machining capability. It involves almost 

Figure 1.2 Illustration on dimensional range and aspect ratio of several machining
processes. 
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negligible amount of force interaction between the tool and workpiece and is capable 

of machining a wide range of conductive materials irrespective of toughness. The other 

techniques like micro-milling and micro-turning have the advantage of larger material 

removal rate (MRR) as well as the capability to machine non-conductive materials. 

However, despite the fact that their capability for making micro-scale products using 

tool-based micromachining has already been presented earlier, their disadvantages 

include high cost, low throughput and limitation in machining further smaller 

components in the current state of their technology.  

 

A new concept of tool based micromachining is to utilize the complementary strengths 

of different material removal processes (conventional and non-conventional) within 

the same setup, where possible, for the machining of microstructures with high 

dimensional accuracy (Rahman, M., et al., 2007(a)). For example, material removal by 

micro-milling process has many advantages and it is fast as mentioned earlier. But it is 

limited by the lower limit of machinable feature size which is an order of magnitude 

larger compared to micro-EDM due to the presence of larger cutting force. On the 

other hand micro-EDM has the limitation of relatively high tool wear to workpiece 

removal ratio due to high tool wear rate and low machining speed. Moreover, usually 

the electrode for micro-EDM milling is prepared using other EDM based techniques 

like EDG (electro discharge grinding), which is also a slower process. For instance, in 

the machining of a micro plateau shaped structure, the bulk amount of material can be 

removed using conventional micro-milling process followed by micro-EDM milling 

process which can achieve the dimensional accuracy and finer range of feature size, 

and superior surface finish could be generated by applying micro-ECM process after 
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micro-EDM. The electrode too can be manufactured using micro-turning process 

which is also much faster compared to the EDG process.   

 

Perhaps one of the main difficulties in TCMMP is the lack of availability of an 

appropriate machine tool that can be used for multiple tool-based micromachining 

processes and specially to utilize compound form of tool-based micromachining for 

machining of components at required scale. Most machine tools capable of micro-

EDM are not designed to perform other machining processes like turning or milling on 

the same machine in a single setup. Attempts were made to perform TCMMP by 

modifying a machine tool suitable for one process to be adapted for another supportive 

compound process that performs at a less optimal level (e.g. modification of a micro-

EDM machine for micro-milling) and while the capability was demonstrated, its 

potential would need further research to be better exploited for industrial applications. 

Further, such machine tools do not facilitate measurement of fabricated products on-

machine which has the potential to be used as feedback and to compensate tool 

trajectory online. Another constrain is imposed by the precision required for such 

machining which conventional CNC machine tools cannot fulfill. Mechanical and 

thermal deformation, chatter vibration, tooling and its clamping usually constrain the 

making of small, super-precise parts with large, conventional machines. On the 

contrary, ultra-precision machines that provide high degree of motion accuracy are 

extremely expensive, require regular maintenance, and mostly do not include non-

conventional process capabilities like micro-EDM. Moreover, both the ultra precision 

machines and conventional CNC machines occupy considerably large space and their 

power consumption is comparatively much higher relative to the contextual micro-

parts. Furthermore, the present state of clamping techniques and fixturing poses a real 
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challenge on performing different machining processes on different machine tools on a 

micro-sized component. For instance, the commercial high precision clamping collets 

have clamping error of between 5 to 10µm and this can cause up to 50% error for the 

machining of a 20µm diameter micro-shaft which therefore limits the use of using 

multiple machines for TCMMP. Some attempts towards TCMMP have been done by 

developing machine tools or a dedicated process where the setup development 

occupies a considerable amount of effort and investment (Fleischer, J., et al., 2004; 

Morgan, JC., et al., 2006). 

 

Hence, there is a need for a dedicated platform, here-in called as universal multi-

process machine tool (UMMT), which enables multiple machining processes to be 

performed in micromachining domain on a single platform. This would ensure that the 

underlying equipment hardware is capable of providing the multiple-process needs for 

execution and realization of the art of micromachining. Besides making tool-based 

micromachining a feasible option for micromachining needs, in addition to significant 

contribution in accuracy, minimum achievable feature size and surface quality, it 

would also speed up the machining process by saving the re-clamping time and 

relieving from the handling needs during inter-process transfer of such miniaturized 

components. Secondly, research work needs to be undertaken towards the 

understanding of process physics to provide relevant background for modeling, 

measurement, identification of control parameters for precise process control of 

compound micromachining processes. Thirdly, hardware and software systems of the 

equipment guided by the understanding of process physics for performing 

micromachining at the appropriate dimensional range needs to be developed and 

implemented for processing real-time data processing and decision making. This is 



Chapter 1 | Introduction 

10 

particularly so for TCMMP as the quality of the output of a process can be monitored 

for any required correction before passing to the subsequent machining processes. 

Finally, the difficulties of micromachining using available techniques need to be 

understood and suitable compound processes identified to offer processing capabilities 

to overcome the difficulties and the weaknesses of single processes. An integrated 

approach in these areas (shown in the schematics of Figure 1.1) will provide for the 

required platform suitable for TCMMP to be implemented for solving the tool-based 

micromachining problems.  

 

Therefore, efforts have been taken to fundamentally understand the electric properties 

of micro-EDM plasma and the interaction of plasma with the power supply, followed 

by hardware and software development for micro-EDM. On the developed platform 

research work has been conducted as an exploration of technologies to demonstrate the 

capability and potential of TCMMP for industrially-scalable applications.  

 

1.2 Research Objectives 

A big challenge in TCMMP is posed by the availability of a suitable machine tool that 

offers the multi-processing performance, as mentioned earlier. The requirement is 

indeed complex and demanding as the machine is expected to be capable of 

performing the different conventional and non-conventional micromachining processes 

without compromising their single-process performances. A common pitfall in the 

research and development of TCMMP is the use of a machine tool that is industrial 

gold standard for one of the multiple processes needed in the compound process but 

performs below average in one or more of the other multiple processes. A multi-

process micromachining machine tool has been presented by Rahman et al. 2003, 
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which is capable of micromachining micro-components and is suitable for multiple 

processes. Further research and development work on this machine tool is required to 

set new benchmark in machining speed, feature size control, minimum achievable 

feature size and surface finish with focus on the micro-EDM process, as in this 

research micro-EDM process is considered as a major process to be compounded with 

the other tool-based processes. This project essentially targets at the experimental 

study and development of successful micro-EDM based compound micromachining 

mostly between 5µm~50µm feature size range. The research work also aims to 

contribute to the fundamental understanding on the physics of the micro-EDM process. 

The specific goals of this research are summarized below: 

 

• To evaluate the UMMT for suitability of performing multi-process  

micromachining and to assess the performance of the machine tool to be used as a 

setup for implementing and performing various micromachining processes at a 

state-of-the-art level so that different processes could be compounded with much 

less effort.  

• To perform fundamental analysis on the micro-EDM plasma characteristics and the 

interaction of micro-EDM plasma with the power supply. This will allow in-depth 

understanding of the requirement of micro-EDM power supply and the behavior of 

discharged energy to the workpiece at different settings.  

• Design and development on the micro-EDM power supply guided by the 

fundamental analysis to provide superfine and ultra-short spark pulses with 

extremely short charging time for fine surface finish, reduced minimum achievable 

feature size and improved machining time.  
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• Implementation of gap control techniques for faster machining, 3D milling-EDM 

technique implementation and development of EDG based straight electrode 

machining technique. 

• Verification of the process capability of the micro-EDM by performing 

characterization studies, including machining time, tool wear ratio and surface 

roughness, and further substantiation of the capability of micro-EDM setup by 

micromachining of high-aspect-ratio features which will ensure that the equipment 

is suitable for development of novel TCMMPs. 

• Utilizing the setup developed, novel TCMMPs will be explored to demonstrate 

machining of micro-components at the lower boundary of micromachining domain 

in order highlight the true potential of such compound techniques. 

 

1.3 Organization of the Thesis 

This thesis comprises seven chapters. Chapter 1 starts with a prologue to give an 

overview to the nature of the problems, followed by the motivation behind this 

research endeavor, and finally the objective of this research work. This chapter also 

outlines the organization of this dissertation. 

 

Chapter 2 assesses and reviews the literatures on the state-of-the-art micromachining 

technologies for machining and manufacturing of micro-features followed by the 

discussion on the present limitations of tool-based micromachining technologies.  The 

chapter also provides a review on related literatures on TCMMP and highlights the 

advantages of these techniques. It ends with a discussion on the gap of the previous 

research works and the necessity of current work to develop a dedicated platform for 

TCMMP in order to demonstrate the capability of TCMMPs. 
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Chapter 3 starts with describing the UMMT as an experimental setup followed by 

experimental evaluation of UMMT by performing experiments in order to justify the 

required development works in micro-EDM hardware and software for successful 

demonstration of TCMMP.  

 

Chapter 4 provides an in-depth fundamental analysis on micro-EDM electric 

characteristics employing plasma property with an objective to model the electric 

properties of micro-EDM plasma for an RC power supply circuit and to understand the 

role of the three components R, L, and C present in the power supply circuit in order to 

obtain optimal value of these parameters. The first section defines an electric 

equivalent network of micro-EDM plasma and the components of this electric network 

are evaluated in second section of the chapter. The third section provides an analysis of 

the power supply electric network and plasma network and proposes a set of equations 

as a model which is validated in the fourth section of the chapter. The final section 

discusses on the observations made from the current waveform generated by the 

proposed model.  

 

In chapter 5, the design and development of RC power supply is presented based on 

the preceding fundamental analysis and experimental study. The second section of the 

chapter discusses on the implementation of jump based gap control which improves 

the previous gap control technique implemented on the machine. The third section 

presents the implementation of 3D micro-EDM milling technique for machining 3D 

features and shapes. In the fourth section a new technique for machining of straight 

electrode is presented followed by characterization experiments to better understand 
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the developed system which is essential for performing micromachining of complex 

shapes and features using micro-EDM. The final section presents a set of 

micromachining examples to demonstrate the machining capability resulting from the 

development of a suitable UMMT and synergistic combination of complementary 

processes.  

 

Chapter 6 presents the exploration of TCMMP using on-machine fabrication of high-

aspect-ratio microelectrodes that demonstrates a series of combination of processes 

employing ‘micro-EDM + micro-Turning + micro-EDM; for drilling of deep holes and 

fine features. The second section presents a ‘micro-EDM + micro-grinding’ technique 

for machining on glass and ‘micro-EDM + micro-milling’ technique for milling of 

30µm slots on PZT substrate using PCD micro-tools.  

 

Finally this dissertation concludes with the Chapter 7 providing a summary of the 

contributions and ends with suggesting the potential advancement areas for future 

research work.  
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2 State-of-the-art of Micromachining Technologies 

 

 

This chapter assesses and reviews the current science and technology and state-of-the-

art capabilities for machining and manufacturing of micro-features. In the first section 

of this chapter an introduction on currently available and practiced micromachining 

technologies are summarized. The second section focuses on the science as well as the 

present state of tool-based micromachining, such as micro-milling, micro-turning, 

micro-drilling, micro-grinding, micro-EDM, and presents challenges in different 

micromachining technologies. The third section reviews research works done in 

TCMMP, which is comparatively a new direction of research efforts and is getting 

attention only recently as ordinary micromachining techniques face physical limitation 

with shrinking feature size.  

 

2.1 Introduction 

Micromachining is a general term used to indicate a collective form of all the process 

technologies used for machining of microstructures and microsystems. 1 to 500µm has 

been adopted as the formal dimensional range of micromachining by the Scientific 

Technical Committee of the Physical and Chemical Machining Processes of CIRP 

(Masuzawa, T., 2000). Most of the technologies that have been utilized in 

micromachining are existing technologies adapted to operate in micrometer 

dimensions or adopted from microelectronic fabrication processes. Microfabrication 

for industries like aerospace, automotive, precision engineering etc. are mostly done 

using mechanical tool-based micromachining and there have been significant advances 
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in the fabrication techniques, metrology and equipment technology (Chae et al. 2005, 

Dornfield et al. 2006). 

 

However, the past two decades have evidenced tremendous research and development 

specially focused on fabrication techniques for MEMS. MEMS is the integration of 

mechanical elements, sensors, actuators and electronics on a common silicon substrate 

through the utilization of microfabrication technology. The electronic components in a 

MEMS package are mostly fabricated using integrated circuit (IC) fabrication 

processes and the micromechanical components are fabricated using specialized 

technologies unique to silicon micromachining processes that selectively etch away 

parts of the silicon wafer or add new structural layers to form the mechanical and 

electromechanical devices (Xuan et al., 2006). The manufacturing resources for silicon 

ICs are quite impressive, representing decades of research and billions of dollars worth 

of investment in developing manufacturing techniques and equipment and the 

existence of the very sizeable integrated circuit fabrication infrastructure. MEMS 

manufacturing leverages much of this extensive technological base, but has developed 

a distinct set of fabrication technologies which when combined with conventional IC 

manufacturing processes enable MEMS to be realized.  

 

However, as has been mentioned in introduction, the majorities of these methods are 

limited to a few silicon-based materials, essentially planar geometries and therefore 

significant amount of design constraints and thus broad commercialization of MEMS 

based products has been hindered. Advent of miniaturization and new technologies 

have demanded micromachining of any shapes including true 3D structures on almost 

every material such as metals, plastics and semiconductors which are required for the 
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moving parts and guiding structures (Rahman, M., et al., 2007(b)). Micro-mold 

cavities are also required for mass-production of micro-components by injection 

molding and the machining of micro-mold cavities require very precise machining of 

3D structures on hard to machine workpiece materials. There exist other requirements 

such as micro-scale fuel cells, micro-scale pumps and micro-fluidic systems (Liu et al., 

2004; Weck et al., 1997). Over the years, tool-based micromachining methods have 

been applied to address some of the challenges mentioned above on a variety of 

substrates to fabricate microstructures and transducers; and gained additional 

advantage of low setup and manufacturing cost. The workpiece may be a final product 

or mold for LIGA based electroplating to create a microstructure or photomask for X-

ray based lithography (Friedrich et al., 1997; Friedrich et al., 1998; Li, T et al., 2005; 

Maluf, N., 2002; Rahman, A., et al., 2005) or even could be continued from other 

processes like LIGA towards a final product through tool-based micromachining for 

better throughput (Takahata, K., et al., 2002).  

 

2.2 Tool-based Micromachining Technologies  

Through the 1990s, Masuzawa highlighted the need for the development of 

micromachining processes (Masuzawa, T et al., 1997) and drew attention towards the 

need of tool-based micromachining. In his opinion, in precision machining it is 

important to recognize what directly determines the shape of the products in the 

machining process and based on shape specification element (SSE) he categorized the 

micromachining processes into two basic groups one having SSE as the tool and the 

other one having mask as the SSE. He drew attention towards the fact that processes 

having mask as SSE are basically two dimensional in nature and have limitations in 

generating an actual three dimensional shapes. He also emphasized that, even though 
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very small unit removal (UR) requirement for precision engineering is mainly catered 

by mask based micromachining technology which could reach atomic level dimension, 

URs of tool-based micromachining processes are acceptable in many practical 

applications; and they could even be preferred due to their low setup and maintenance 

cost. Through his extraordinary research efforts, tool-based micromachining 

technologies received significant attention and acceptance in the scientific community 

(Masuzawa, T, 2000; Masuzawa, T et al., 1997; Masuzawa, T et al., 1985; Yu, Z. Y., 

et al., 1998). His initial research work in collaboration with Masaki, T.,  (Masaki, T. et 

al., 1990(a); Masaki, T et al., 1990(b); Masaki, T et al., 1989) and Sato, T., (Sato, T et 

al., 1985) from Matsushita Research Institute Tokyo, formed the foundation of 

micromachining with a main focus on micro-EDM process. Table 2.1 shows some of 

Masuzawa's pioneering research work and citation report according to Scopus – 

citation database (as of June 2, 2012) and growing research interest in this area is 

clearly visible through the number of citations received in last five years.  

Table 2.1 Citation report of pioneering research work in tool-based micromachining 

 

 

2.2.1 Micro-milling 

Milling is one of the most universal operations of machining processes. Extensive 

research on physical characteristics of milling process, tool failure analysis as well as 

process planning has been done (Fang, FZ., et al., 2006). In the adoption of the milling 

process for micromachining applications, the amount of UR needs to be reduced 

(Masuzawa et al., 1997). One issue in reducing UR for micro-milling is that 

Title Year of 
Publication

Total 
Citations

Citations in 
last 5 years

Wire Electro-Discharge Grinding for Micro-Machining (Masuzawa - 1985) 1985 250 135
State of the Art of Micromachining (Masuzawa - 2000) 2000 243 183
Micro-EDM for three-dimensional cavities – Development of uniform wear 
method (Yu ZY - 1998) 1998 124 79
Three-Dimensional Micromachining by Machine Tools (Masuzawa - 1997) 1997 113 62
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microcutting occurs in a small region which contains only a few layers of molecules 

and can be discrete in nature rather than continuous, as is assumed in conventional 

continuum mechanics. Molecular dynamics based simulation has been utilized to solve 

this problem and several recent results demonstrate that the microcutting processes are 

capable of reducing the UR to as small as 1nm (Shimada et al., 2001; Shimada et al., 

1993; Ikawa et al., 1992). Recent development in ultraprecision machine tool 

technology provided excellent positioning accuracy as well as repeatability which is a 

significant step forward for successful implementation of micro-milling process in 

industrial applications for small UR. 

 

Unfortunately, even though micro-milling is a scale-down adoption of the milling 

process for micromachining applications and has the theoretical capability of UR as 

small as 1nm, practically there exists significant challenges in realizing micro-milling, 

especially when the diameter of the end-mills are down to 0.1mm or smaller. Owing to 

the comparatively smaller and weaker size of micro-milling cutters and the fact that 

only a tiny portion of the tool involved in cutting at a particular instance of the process, 

tool failure due to tool run-out has been reported as one of the major problems (Bao et 

al., 2000; Fang et al., 2003; Friedrich et al., 1997; Masuzawa 2000; Sato et al., 1989; 

Tansel et al., 1998; Zaman et al., 2006) in micro-milling.  

 

Recent research efforts include design of tool geometry to reduce cutting force in order 

to avoid tool breakage. Figure 2.1 shows some of the tool shapes being researched 

(Fang et al., 2003) and a FEM on relative rigidity demonstrated that the (d) and (e) 

types tools are 12 and 8 times, respectively, more rigid than the conventional (a) type 

tools of 100μm diameter having two-flutes. FEM studies demonstrated that 3 times 

larger cutting force is required for occurring chipping and breakage in (d) and (e) type 
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tools compared to (a) type tools. In micro-end-milling operation, the tool run-out to 

tool diameter ratio becomes very big compared to conventional end-milling operation. 

As a result, only one side of the tool performs the machining operation at any point of 

time while the other edge does not touch the workpiece at all and this generates 

significant amount of directional force variation on the tool. With such a small tool 

dimension, even if the cutting force is as small as few tens of mN, chipping and 

breakage of the tool tip occurs.  

 

Another major concern is the limited availability of micro-milling tools below 50μm 

diameter. Even though commercially 25μm milling tools are available (Chern, GL., et 

al., 2007) at present, high tool cost, unreliable tool life and early tool failure can 

damage the workpiece; thus could be rendered unacceptable for precision applications. 

Schaller et al. 1999, have demonstrated that self made end mills with diameters 

ranging from 35μm to 120μm could be ground to cut microstructure grooves. Another 

rather common custom fabricated micro-milling tool machining process besides 

mechanical method is to employ focused ion beam (FIB) machining technique, as this 

process has gained popularity for machining of very small probe tips for biomedical 

use and micro-scalpels with extremely sharp cutting edges (Friedrich, CR., 2002; 

Friedrich, CR., et al., 1997; Vasile MJ., et al., 1996). It has been demonstrated that FIB 

could be used to shape a variety of cutting tools with diameter from 15μm to 100μm 

with 40nm cutting edge radius using a wide range of tool materials like single crystal 

diamond, tungsten carbide and high speed steel (Adams DP., et al., 2001; Picard, YN., 

et al., 2003). Figure 2.2 (Adams DP., et al., 2001) shows such tools with 2, 4 and 6 

cutting facets fabricated using FIB. Even though, FIB process is capable of fabricating 

very fine custom micro-milling tool – the utilization of FIB technology demands a 
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vacuum background and thus involves more expensive and complicated equipment, 

setup and operating cost. In addition to that, FIB process could not be performed in-

situ and thus it does not eliminate clamping error.  

 

 

 

 

 

 

 

2.2.2 Micro-turning 

The present state of micro-turning process is very similar to conventional turning 

process on a lathe which has been extended to provide better precision and accuracy in 

machining process. Similar to micro-milling process, micro-turning has the capability 

to produce 3D structures on micro-scale (Rahman, A., et al., 2005). There are two 

Figure 2.1 Various types of end-mills in micromachining. (a) Two-flute end-mills, (b)
Δ-type end-mills with a straight body,(c) D-type end-mills with a straight body, (d ) Δ-
type end-mills with a tapered body and (e) D-type end-mills with a tapered body (Fang
F. Z., et al., 2003). 

Figure 2.2 Micro end-mills made by focused ion beam sputtering having 2(a), 4(b),
and 6 (c) cutting edges (Adams DP., et al., 2001). 
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major types of micro-turning – cylindrical shaft turning for machining of micro-pins 

and face turning for machining of microgrooves, that has been reported for 

micromachining applications (Rahman, A., et al., 2005; Gao, W. et al., 2003). Micro-

turning for machining of micro-pins is possible but it is more difficult to realize due to 

the deformation of the fine workpiece which is very similar to the deflection of micro-

endmilling cutter as could be seen in Figure 2.3 (a). However the situation is even 

more critical for micro-turning as often the micro-turning workpiece is much weaker 

than the tool in micro-milling (Masuzawa, 2000) and thus the major drawback of 

micro-turning process is that the machining force influences machining accuracy and 

the limit of machinable size. Significant work has been done to develop different 

cutting paths and schemes to reduce the effect of cutting force on the fine shaft. A 

micropin of around 350μm diameter (Figure 2.3 (b)) with intricate shape and kinks has 

been fabricated (Rahman, A., et al., 2005; Rahman, A., et al., 2006). But, it is very 

difficult to achieve a straight shaft below 100μm diameter and in many cases, the 

workpiece is either broken, or starts to wobble due to excessive radial cutting force on 

the micro-shaft. Figure 2.4 shows one such micro-shaft machined using the 

conventional micro-turning process. The shaft was deformed plastically with very 

rough surface finish from plastic side flow caused by the strain gradient-induced 

strengthening due to the constant radial force during turning at a slower feedrate (Liu. 

K, et al, 2006). When a faster feedrate is applied, the shaft breaks easily as the radial 

force increases to an excessive level. 
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In face turning, research has been conducted for many years on diamond turning and 

this has found wide applications in machining of various components such as micro-

lenses, lens arrays and parts for measurement references, for example, surface encoder 

for multi axis position accuracy measurement (Brinksmeier, E., et al., 2001; Gao, W. et 

al., 2003; Pramanik, A., et al., 2003). Diamond turning has been generally coupled 

with the term ultra precision machining as single point diamond turning is probably 

one of the few processes achieving mirror surface finish.  Finish of less than 10nm and 

form error of less than 1μm can be obtained when machined using an ultraprecision 

Figure 2.3 (a) Workpiece deflection in micro-turning, (b) SEM image of compound
shaped micropin (Rahman, A., et al., 2006). 

Figure 2.4 Plastic flow and rough surface generated during micro-turning of brass. 
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machine tool capable of moving in high accuracy at nanometeric precision (Rahman, 

M, et al., 2007(b)).  It is also possible to fabricate micro-parts using conventional 

ultraprecision turning. After cutting micro-steps on the surface of a plate, micro-parts 

can be cut out by other methods such as WEDM as shown in Figure 2.5 (Masuzawa 

2000; Brinksmeier, E., et al., 2001). Another important area of micro-turning is to 

support micro-grooving and micro-threading needs required for the fabrication of 

micro-fluidic sensors, micro-inductors and micro-actuators. But the major difficulty is 

in availability of such tools. Literature suggests that FIB can be a potential technique 

for machining of such tools (Vasile, MJ., et al., 1999; Adams, DP., et al., 2000), but as 

has been mentioned earlier, these processes require extensive investment and 

maintenance cost.  

 

 

2.2.3 Mechanical Micro-drilling 

Micro-drilling has been widely used in various applications such as PCBs, ink-jet 

printer nozzles in semiconductor industry, orifices for biomedical devices, cooling 

vents for gas turbine blades and diesel fuel injector spray holes. There also exist few 

parallel machining techniques of micro-holes, for instance, micro-EDM, micro-ECM, 

laser ablation in addition to mechanical micro-drilling. Mechanical micro-drilling has 

several advantages over other techniques (Chyan, HC., et al., 1998; Masuzawa 2000). 

Figure 2.5 A micro-lapping tool made by micro-turning (Masuzawa 2000). 



Chapter 2 | Stat- of-the-Art of Micromachining Technologies 

25 

In mechanical micro-drilling the electrical properties of the workpiece do not influence 

the process and therefore, most metal and plastics, including their composites, can be 

machined easily. One typical example is the drilling of holes in PCB which is 

laminated with composite material consisting of copper foils, resin and glass fiber 

cloth (Watanabe, H., et al., 2008). Another advantage is unlike stochastic processes 

such as micro-EDM, machining time in mechanical micro-drilling can be controlled 

easily because the process is stable when an appropriate feedrate per rotation is set. On 

the other hand mechanical micro-drilling faces a lot of challenges as the high-aspect-

ratio micro-drill bits are fairly weak and should be used with care in order to drill holes 

accurately and to prevent drill breakage. The drill point is the most important part of 

the drill which penetrates into the material of the workpiece during the machining 

process. The geometry of the drill tip is such that the normal rake and clearance angles 

and velocity of the cutting edge vary with the distance from the center of the drill. 

Even small variations in the geometry of symmetry errors can have a very strong 

influence on the performance of the drill. For example, if the tip relief angle is too 

small, excessive heat is generated resulting in an increase wear rate. Conversely, too 

large an angle can cause chipping or breaking of the cutting edge. Thus one very 

important requirement for successful micro-drilling is to minimize tool run-out and 

clamping error. Another important requirement is the straightness of the product and 

the axes of the machine tool (Masuzawa, 2000). Machined holes are often inclined 

because the already-machined part of the hole influences on the orientation of the drill. 

In order to avoid inclination, correct positioning is necessary when the drill tip begins 

to cut the workpiece. If the tip position shifts by even a small distance from the target 

center of the hole, the drill bends to follow a certain angle guided by the hole which 

the drill itself produces. Also there are difficulties in machining very hard or brittle 
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materials as the drill bit may break or crack might be generated in the workpiece. The 

above mentioned issues seriously affect the reliability and accuracy of the drilled 

holes. Fang et al., (Fang, F. Z., et al., 2006; Yang, Z., et al., 2002) has reported a 

micro-hole drilling on brass using high speed steel drill with a diameter of 50μm and 

due to the weak tool tip and off-set between the drill center and the rotational center, 

the fabricated hole has a diameter of 85μm which is much bigger than the drill 

diameter.  

 

2.2.4 Micro-grinding 

Grinding has been widely applied for machining pins and grooves with small 

dimensions due to the fact that UR of grinding is small and cutting is realized by the 

interaction of micrometer sized abrasive grains with the micro-grains of workpiece 

surface. With appropriate micro-grinding tools, machining of 2D or 3D micro-cavities 

in a system similar to mechanical- or EDM-milling is feasible and the advantage of 

this process is the capability of machining brittle and non-conductive materials which 

the former processes are not capable of. Another potential advantage micro-grinding 

can have is the ability to produce mirror surface on micro-components. However, in 

the field of micromachining, one of the technological problems in trying to realize 

micro-grinding is the fact that the tool must be made up of an abrasive and a matrix. 

When the tool size is very small, the grain size cannot be ignored, and this leads to 

certain difficulties in forming the precise shape of the grinding tool. Very small grain 

sizes are essential for micromachining and the tool too needs to be small. On the other 

hand, another difficulty is posed by the fact that the cutting force in grinding process is 

considerably high which can easily damage the micro-sized features in 

micromachining. 
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Onikura et al. (2000) proposed ultrasonic vibration grinding to reduce this limitation in 

fabricating micro-cylindrical tools and flat micro-drills of ultra fine grain cemented 

carbides. By adding ultrasonic vibration to the grinding process, they were able to 

produce high-aspect-ratio tools such as an 11μm diameter with a length of 160μm. 

Ohmori et al. (2003), fabricated micro-tools using micro-grinding, and investigated the 

surface quality of the tools since the surface quality is closely related to machining 

performance, part quality, and tool rupture strength. They claimed that surface 

characteristics of the prepared micro-tools were controllable at the nanometer level by 

controlling and optimizing the machining process conditions. They produced a micro-

tool having an extremely precise shape, measuring 2μm in diameter at the tip with an 

extremely large aspect ratio. But, realization of conventional micro-grinding using 

micro-sized tools for machining of micro-features has not been successfully realized so 

far other than with the aid of TCMMP which has been discussed in section 2.3.3.  

 

2.2.5 Micro-EDM 

Micro-EDM is a material removal process employing discharges between a workpiece 

and a micro-scale electrode in a dielectric fluid. Discharges occur when the electric 

field between the electrode and workpiece exceeds a critical value and the dielectric 

breaks down. Either increasing the electric potential or reducing the separation 

distance between the electrode and workpiece may cause the field to exceed the critical 

value. Energy from each discharge melts a microscopic amount of material, which is 

subsequently flushed away after the voltage drops and the discharge collapses (Ho, 

KH., et al., 2003; Alting, L., et al., 2003; Pham, DT., et al., 2004).  

 

Even though micro-EDM is based on the same physical principle of spark erosion it is 

not merely an adoption of EDM process for machining at micron level. There are 
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significant differences in the size of the tool used, machining method of micro-sized 

tools, the power supply of discharge energy, movement resolution of machine tool’s 

axes, gap control, flushing techniques, and also in the processing techniques (Wong, 

2003; Masuzawa, 2000). For example, the terms micro-EDM milling, Wire Electro-

Discharge Grinding (WEDG), repetitive pattern transfer which forms a considerable 

amount of the basis of micro-EDM process but specific to micro-EDM process alone 

and not required for conventional EDM process.   

 

The literature has shown significant contributions to micro-EDM going back 40 years. 

In 1968, Kurafuji and Masuzawa (1968), demonstrated the first application of micro-

EDM. Through the years, micro-EDM has been developed into a versatile tool for 

fabricating a variety of micro-mechanical components, molds for plastic injection 

molding, sensors, micro-pumps, micro-nozzles, micro-grippers (Ansel et al., 2002; 

Kuo et al., 2004; Kuo et al., 2003; Masaki et al., 1990(a); Masuzawa et al., 1994; 

Meeusen et al, 2003; Michel et al., 2000; Yu et al., 1998). Micro-EDM is suitable for 

these and similar applications because of its remarkable advantage of low machining 

force as molten or vaporized material can be removed without direct contact. This 

property provides advantages to both the tool and the workpiece as probable 

deformation by machining force is avoided.  Another very important advantage of the 

micro-EDM process is the capability of repetitive pattern transfer which is illustrated 

in Figure 2.6. The repetitive pattern transfer process, which Masaki et al. (2006) called 

as micro-EDMn, is capable of fabricating very complex micro-structures by series of 

pattern transfer cycles.  
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Current micro-EDM technologies used for manufacturing micro-features can be 

categorized into four major types (Pham, DT., et al., 2004): (a) micro-wire EDM, 

where a wire of diameter down to 0.02mm is used to cut through a conductive 

workpiece, (b) die-sinking micro-EDM, where an electrode with micro-features is 

employed to produce its inverted image in the workpiece, (c) micro-EDM drilling, 

where micro-electrodes of diameters down to 5µm are used to drill micro-holes in the 

workpiece, and (d) micro-EDM milling, where micro-electrodes are employed to 

produce 3D cavities by adopting a movement strategy similar to that in milling. There 

exists another important variant of the micro-EDM process practically very similar to 

of WEDM with apparent grinding-like setup and is known as EDG. Masuzawa et al. 

(1985) was the first to propose a variant of EDG using running wire (WEDG). The 

workpiece electrode is machined by feeding downwards against a traveling sacrificial 

wire. This process has been extended to the use of sacrificial block and sacrificial disk 

for EDG process (Lim, HS., et al., 2003; Alting, L., et al., 2003; Ravi N. et al., 2002) 

and has found extensive applications in tool fabrication (Morgan, CJ., et al., 2006).  

 

(a)

(b) (c)

(d) (e)

Figure 2.6 (a) Procedure of micro-EDMn (b)Multi electrode, 14.3μm dia. Material -
CuW, (c)Micro pin mold, Material - WC (d)Micro taper pin mold, Material -
STAVAX (e) close-up of – (d) (Masaki, T., et al., 2006). 
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Despite the number of publications extolling the improved capabilities of micro-EDM, 

they are still not widely used and industrial acceptance of micro-EDM is considerably 

slow given its immense potential. This is mainly due to the fact that available machine 

tools and process characteristics are still not sufficiently reliable. Until recently, micro-

EDM has tended to be performed using conventional EDM machines modified to 

accommodate the micromachining requirements (Pham, DT., et al., 2004) and due to 

this lack of focused development for micro-EDM process, in addition to its stochastic 

nature, there exist significant number of challenges which are summarized in Figure 

2.7. Among the many problematic areas the major problem is posed by the micro-

EDM process characteristics and the interaction between the power supply and spark 

characteristics as this determines the process parameters. Therefore, most of the micro-

EDM process parameters are obtained by experimental methods and because of the 

stochastic thermal nature of micro-EDM process it is difficult to explain the effects of 

process parameters well (Pham, DT., et al., 2004).  

 

Among the problematic areas, micro-EDM process related issues are inherent to the 

process itself along with the advantages of micro-EDM and thus are practically 

impossible to eliminate with the available technology and process knowledge. High 

electrode wear and low MRR are two such major challenges. Electrode wear, which 

results from each discharge removing some material from the tool electrode, degrades 

the geometric accuracy of machined features.  The relative electrode wear ratio is not 

constant across different workpiece materials and different geometric features. Due to 

this issue, it can be very difficult to provide CAM support for micro-EDM process. 

However, this effect can be minimized when making micro-pockets with the Uniform 

Wear Method, presented by Yu et al. (1998) but this method further compromise the 
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MRR. On the other hand due to rather comparatively larger size of the smallest 

possible UR – even though there is almost no cutting force involved in machining 

there is an early limit to minimally achievable feature size (Kawakami, et al., 2005; 

Kunieda, M. et al., 2005). 

 

 

 

 

 

Figure 2.7 Problematic areas in micro-EDM (adapted from Pham, DT., et al., 2004). 
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2.3 Tool-based Compound Micromachining Processes 

(TCMMP) 

Even though compound micromachining could be traced back to 1985 when 

Masuzawa et al. (1985) first proposed the WEDG process, TCMMP did not receive 

much attention until recently other than in the form of WEDG process and therefore 

TCMMP is considered rather new development in micromachining area. There exist 

many research efforts in compound micromachining where two processes were 

combined to increase production efficiency or production quality (Aspinwall, DK., 

2001; Kitagawa, T., et al., 1990; Jia, ZX., et al., 1997; Koshy, P., et al., 1996) but not 

much research efforts were taken to transfer those ideas into the micromachining 

domain. Compound micromachining is yet to be formally defined by the scientific 

community due the process being rather new and search of databases returns less than 

30 unique articles in total (this is excluding compound process of WEDG followed by 

micro-EDM drilling/micro-EDM milling) 

. For defining the scope of this research work, discussion on TCMMP will be limited 

to processes which are synergism of at least more than one constituent processes where 

all the processes are involved in material removal either at the same time (e.g. electro 

chemical discharge grinding) or sequentially (e.g. micro-EDM followed by laser 

ablation). The material removal requires to be either from the final workpiece or via an 

intermediate workpiece but are performed in a single setup for machining of feature 

size ranging from 1µm~500µm.  

 

2.3.1 Electrode machining for micro-EDM by TCMMP 

The most commonly used TCMMP is the combination of WEDG and micro-EDM 

which has a wide application in machining of fine rods to be used for micro-drilling 
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which was first proposed by Masuzawa et al. (1985). WEDG employs a single wire 

guide to confine the wire tension within the discharge area between the rod to be 

machined and the front edge of the wire and to minimize the wire vibration. Therefore, 

it is possible to electrically grind a micro-sized rod (Masaki, T., et al., 1990(b); 

Masuzawa et al., 1997) with high accuracy, good repeatability and satisfactory 

straightness. Other advantages of WEDG include the ability to machine a rod with a 

large aspect ratio, irrespective of hardness of the material to be machined while 

maintaining the concentricity of the rod. 

 

Lim, HS., et al. (2002) proposed a new compound micromachining technique on a 

specially designed multi-process machine tool whereby they used micro-turning 

process to fabricate very thin microshafts to be used as electrodes as opposed to the 

conventional WEDG technique and performed micro-EDM machining using this 

electrode. Using this technique they reduced the electrode machining time significantly 

facilitating micro-EDM drilling of holes with different diameters. This TCMMP has 

another additional advantage in that it does not require much operator's intervention 

and can mostly be automated due to a lesser likelihood of error compared to WEDG.  

 

Localized electrochemical deposition method is suitable for electrochemical deposition 

in a predetermined and controlled area and was presented as one simple, inexpensive 

and damage-free ways to fabricate complex shape electrodes for micro-EDM process 

by Hunter et al. (1997).  Later on, to further establish the capability of this process El-

Giar (El-Giar et al., 2000; El-Giar et al., 1997) demonstrated the machining of micro-

meter scale copper structures for micromachining applications from different 

substrates in acidic sulfate solutions by the process of LECD. 
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2.3.2 Microcutting tool machining using WEDG 

Using the wire electro-discharge grinding (WEDG) process, successful machining of 

tiny electrodes has been reported (Kawakami, T., et al., 2005). This method was 

extended for machining of tungsten carbide micro-milling tools of diameter as small as 

31μm (Chern, G. L., et al., 2007) as shown in Figure 2.8. The geometry of the 

fabricated micro-tool was designed to carry out a micromachining operation which is 

essentially a combination of micro-milling and grinding processes. The micro-EDMed 

surface of the micro-tool contains numerous tiny craters and asperities, arising from 

the micro-discharges, and these offer tiny cutting edges and can be well suited to 

perform machining operation similar to the grit abrasives on micro-tools in micro-

drilling (Lee DG, et al., 2003). In addition to being cheap, this method has the 

capability to be performed in-situ and thus clamping error could be minimized, while 

there exists much scope to improve repeatability and precision. Figure 2.8(b) shows 

the three thin-walled structure of thickness 80µm, 31µm and 5µm. They observed 

severe deformation on the 5µm wall which they explained that was caused by machine 

tool vibration and lateral bending occurred by cutting forces during the machining 

operation. 

 

Another process was proposed by Fleischer, J., et al. (2004), where they compounded 

WEDG and micro-milling. They demonstrated a promising way to produce micro-

milling tools in tungsten carbide of diameter less than 100µm using WEDG which they 

used for machining micro-slots on brass with the same setup (Figure 2.9). The use of 

WEDG for production of milling tools has several advantages. The geometry can be 

changed quite easily and the potential of scaling down the size of the milling tools is 
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very high. Even though their results were promising there was clear indication, as 

mentioned in their article, towards the need for dedicated compound micromachining 

equipment for performing TCMMPs. They used a commercial micro-EDM machine 

(Panasonic MG-ED72W) which has a record of performing excellently for micro-

EDM process but lacked rigidity and accuracy required of a micro-milling machine, as 

the equipment was not designed to perform micro-milling. 

 

 

WEDG process has been applied for machining of customized micro-drilling tools by 

Egashira, K., et al. (2002). He fabricated a 17μm diameter micro-drill with a D-shaped 

cross-section and cutting edge radius of 0.5μm in 5 minutes and machined 90μm deep 

hole of 22μm diameter on britlle material like monocrystalline silicon. They achieved 

comparatively accurate tool alignment and eliminated run-out since the process of tool 

machining by WEDG as well as the micro-drilling was carried out in-situ using a 

single setup. This study clearly indicated the potential that TCMMPs have in 

fabrication of micro-parts and MEMS components. 

Figure 2.8 (a) Tungsten carbide micro-tool D=100µm, (b) machined micro thin-walled
structure (Chern, G. L., et al., 2007). 

80µm wall 

31µm wall 

5µm wall 

(a) (b) 
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Cheng, X., et al. (2008) developed a unique ultraprecision machine tool for tool 

machining using WEDM and ductile mode micro-milling using the fabricated tool. In 

their research work, in addition to process development, they have clearly highlighted 

the need to develop a dedicated machine tool for performing TCMMP. In their 

developed machine, they employed advanced control system to reduce vibration due to 

high acceleration and deceleration. They also developed a CAM system for the custom 

tool machining on the 6-axis machine tool where tool geometry could be defined to 

generate NC programs automatically and using this system they developed custom-

designed micro-PCD cutters of 1 mm and 200μm in diameter. Using the fabricated 

tools, sophisticated miniature 3D geometric features were produced, which included a 

long 3μm wide curved rib of tungsten carbide with an aspect ratio of 10 was 

successfully machined in ductile mode, achieving the machined surface roughness Ra 

of less than 10nm and peak-to-valley Ry of less than 30nm.  

 

Figure 2.9 Top row shows micro-EDM machined milling tools in tungsten carbide,
diameter 100µm and the bottom row shows machined slots on brass workpiece
(Fleischer, J., et al., 2004). 
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2.3.3 TCMMP for micro-grinding 

Micro-tools made of PCD offer new promise for micromachining hard and brittle 

materials. PCD consists of micrometer-sized diamond grains sintered under high 

temperature and pressure with metallic cobalt (Morgan, JC., et al., 2004). The cobalt 

fills the interstices between the diamond particles and forms an electrically conductive 

network. This conductivity makes PCD suitable for micro-EDM process and this 

provides an opportunity to fabricate micro-size micro-grinding tool. After shaping, the 

surface of a PCD tool contains protruding diamond grains that are randomly 

distributed, which can act as hard and tough cutting edges for micro-grinding. The 

feasibility of micromachining glass and ceramic materials with PCD micro-tools that 

are prepared in a variety of shapes using the non-contact micro-EDM process has been 

proposed by Morgan et el. (2004). The PCD tool contains randomly distributed 

protrusions of diamond with dimensions in the range of few microns that serve as the 

cutting edges for micromachining on glass. They found that in cases where the depth 

of cut was too large, brittle fractures around the edges of the grooves or pockets were 

observed and where the depth of cut was below brittle-to-ductile transition, brittle 

fractures were not apparent and ductile cutting marks were clearly evident on the 

machined surfaces, and PCD tools showed very little wear. During their experiment 

the tool was fabricated on a commercial micro-EDM machine (Panasonic MG-

ED82W) but in order to meet the demand of nanometer level adjustments in the depth 

of cut, they installed an additional nanopositioning stage (Polytee PI Nanocube) on the 

micro-EDM machine.  

 

Masaki, T., et al. (2007), presented further results in using PCD to accomplish the 

micro-shape grinding of micro-freeform surfaces. They fabricated a spherical PCD 
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tool by EDG with a pin gauge tool electrode made of tungsten carbide that was 

manufactured precisely by controlling its diameter and straightness. Using this 

spherical PCD tool fabricated on-machine they performed a series of micromachining 

of various shapes from flat, concave, convex to freeform machining and achieved 

mirror surface finish on tungsten carbide with surface roughness of 5nm Ra. On 

conventional machining center – ball endmills are used for milling of a variety of 

complex shapes. A ball endmill has a normal hemisphere and therefore four or five 

axis control is necessary to realize the high degree of freeform shaping and convex and 

concave shapes machining. They demonstrated that the micro-EDMed spherical PCD 

tool, which has innumerable cutting edges uniformly located along its entire surface, 

can be used for machining orthogonal micro-freeform shapes on XY and YZ plane 

using a 3 axis machining platform (Figure 2.10(a)). Figure 2.10(b)Figure 2.10 shows 

the concept of freeform machining using the on-machine fabricated spherical PCD tool 

(Figure 2.10(c)) and image of a shaped convex spherical surface on tungsten carbide is 

shown in Figure 2.10(d). In 2009, Chen, ST., et al., proposed another compound study 

for machining of diamond micro-grinding tool by using TCMMP. They presented a 

machining technique of micro-diamond tool which is 100µm in diameter and 

performed precise micro-grinding of miniature dies. They used a compound process 

technology involving WEDG and precision composite electroforming to fabricate 

micro-diamond tools for the micro-grinding of the micro-dies.  

 

2.3.4 Surface improvement using TCMMP 

The surface generated by micro-EDM is relatively rough compared to micro-ECM. On 

the other hand micro-ECM does not provide excellent shape control like micro-EDM. 

There exist few research efforts to improve surface roughness of micro-EDMed hole 



Chapter 2 | Stat- of-the-Art of Micromachining Technologies 

39 

using micro-ECM. T Kurita et al. (2001, 2005, 2006) proposed a machine tool where 

they performed three steps - electrode machining by milling, hole shaping by micro-

EDM, and hole finishing by micro-ECM to improve surface roughness and these steps 

were performed in sequence on the same machine tool. He also proposed micro-EDM 

and micro-ECM-lapping complex process to further enhance the surface roughness 

from 1μm after micro-EDM to 0.06μm Ra after applying micro-ECM lapping.  

 

 

 

 

Hung, JC., et al. (2006) published their study on combining micro-EDM and electro 

polishing to improve surface roughness of micro-holes. During the machining process, 

a tool was fabricated by WEDG directly and using it for micro-EDM of the micro-

Figure 2.10 (a) The concept of machining on XY and YZ plane using a spherical PCD
tool on a 3-axis machine, (b) concept of freeform surface generation, (c)on-machine
fabricated spherical PCD tool and (d) machined sample of a shaped convex spherical
surface on tungsten carbide (Masaki, T., et al., 2007). 

(a) (b) 

(c) (d) 
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hole, followed by electro polishing with the same tool but using a different location of 

the tool that was not used during the micro-EDM process. By the electro polishing 

method, high surface quality hole wall was obtained by applying a suitable electrolytic 

voltage and an appropriate concentration of electrolyte in about 5 minutes of 

machining time. The taper and burrs of the inlet of holes were reduced and the surface 

roughness reduced from 2.11μm Rmax to 0.69μm Rmax after electro polishing. 

 

Masuzawa et al. (1994) proposed a compound process of micro-EDM, micro-ECM 

and electroforming for complex high-aspect-ratio micro-nozzle production (Figure 

2.11) and demonstrated that this compound process can be used to fabricate a wider 

choice of complex shapes, instead of just straight rods, such as tapered and stepped 

shapes at various sections. In their study, they also proposed another TCMMP process, 

wire electrochemical grinding, which does not use any abrasive, as in the normal 

chemical grinding process, but is an electrochemical process with a setup similar to 

WEDG, by simply replacing electric discharge with electrochemical dissolution to 

provide better surface quality.  

 

2.3.5 On-machine micro-assembly after micromachining 

Kuo, CL., et al. (2003) proposed another exciting compound process in which they 

used micro-EDM to fabricate micro-parts followed by laser welding to micro-assemble 

3D metal microstructures in the same setup. To illustrate the micro-assembly strategies 

and procedures, a diverse pin-plate metal microstructure was used and discussed in the 

study. They also demonstrated further machining on top of the 3D metal 

microstructures even after assembly. Using these procedures, diverse patterns, and 
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high-aspect-ratio and high joint strength microstructures can be created precisely, and 

these serve as examples of complex micromachining applications.  

 

 

 

Langen, HH., et al. (1995) introduced a method for machining and assembly of high-

aspect-ratio microparts. Pins with a diameter of 100μm were produced by WEDG and 

connected into a thin plate using ultrasonic vibration for smooth insertion and finally 

ultrasonic bonding. They defined such a pin/plate assembly as a workstation which 

could work as tool workstation or subassembly workstation in a more compound 

assembly process. They used the tool workstation to machine the inside shape of a 

Figure 2.11 Processes involved in the fabrication of micro-nozzle (Masuzawa et al,.
1994)   
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workpiece by reverse micro-EDM to enable it for further assembly purposes and they 

considered the machining of a micro-ion beam emitter as an example.  

 

2.4 Concluding Remarks 

Even though tool-based conventional micromachining processes have several 

advantages over the present day semiconductor machining technologies for 

micromachining, they presently face significant challenges at such miniaturized 

dimensions. One of the main challenges has been posed by the cutting forces involved 

and therefore the full potential of having the theoretical unit removal capability of as 

small as 1 nm found from molecular dynamics simulation (Masuzawa, 2000) could not 

be practically realized. 

 

The micro-EDM process has the advantage of machining with minimal cutting force 

but the main disadvantage is in the UR capability in addition to electrode wear and low 

material removal rate. Even though micro-EDM has always been considered as a 

potential candidate for micromachining applications, available machine tools and 

process characteristics are still not sufficiently effective and efficient to facilitate and 

control unit removal. In particular, the process characteristics are heavily stochastic in 

nature and the interaction between power supply and the spark characteristics has not 

been studied enough to elucidate the process parameter selection process.    

 

A compound process involves a combination of processes of complementary strengths. 

There exist excellent research demonstrations that highlight the potential of compound 

micromachining, but most of them tend to be discrete exploratory work in nature, 

requiring customized machining setup and targeting for one particular application, and 
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hence is probably not suitably developed to serve industry-scale manufacturing needs. 

Therefore, the major difficulty in realizing TCMMP is the lack of machine tools 

capable of such multiple processes. Attempts have been made to perform TCMMPs by 

modifying a machine tool that is suitable for one process but has to be adapted for the 

complementary process which it consequently performs at a mediocre level (e.g. 

modification of a micro-EDM machine for micro-milling or micro-milling machine for 

micro-EDM). While the capability has been demonstrated but its full potential is 

neither realized nor received much industrial acceptance due to the setup being weak 

in providing equitable support to all of the involved processes (Cheng, X., et al., 2008; 

Chern, G. L., et al., 2007; Egashira, K., 2002; Fleischer, J., et al., 2004; Lim, HS., et 

al., 2002; Morgan, JC., et al., 2006). Most of the demonstrations in compound 

micromachining are also not from the lower dimensional scale (between 5µm~50µm 

feature size range) of the micromachining domain.  

 

The above concluding remarks following the literature study point to the need for a 

dedicated platform for performing TCMMPs where compound micromachining could 

be fully realized. The following research plan aims to enable the bridging of the gap 

between discrete exploration of TCMMPs and industrially scalable applications in 

compound micromachining technology: 

 

• An earlier developed UMMT (Rahman, M., et al., 2003) will be the targeted 

machine tool for this research as it has been specially designed for performing 

compound micromachining. It will be evaluated for conventional microcutting and 

for non-conventional micromachining like micro-EDM. Initial focus of this 

research is to provide a platform for tool-based conventional micromachining (like 
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micro-milling, micro-turning, micro-drilling and micro-grinding) and electric 

micromachining using micro-EDM for performing micromachining in the lower 

dimensional range of micromachining domain (between 5µm~50µm feature size 

range). These processes have been selected as it is evident from the literature that 

these processes are of highest potential for compound micromachining.  

• The evaluation methods will be developed with the aim to assess the capability of 

machine tools for compound micromachining in the lower dimensional range of 

micromachining domain. The equipment will be further developed for performing 

at the state-of-the-art benchmark based on the above review.  

• While precision, rigidity and repeatability of machine tool structure are the critical 

factors from the machine tool point of view for conventional micromachining 

processes; non-conventional micromachining processes like micro-EDM require 

advanced process control capability. Therefore, the focus will be given in 

researching on the process physics for understanding the interaction between 

power supply and plasma characteristic which will enable more fundamental 

understanding and assessment of the throughput, quality and minimum achievable 

feature size from micro-EDM process.  

• TCMMPs will be demonstrated on the dedicated UMMT by generating and 

exploring new and novel process ideas and readily executing them. This will have 

the potential to bring a ready platform for exploration of compound 

micromachining ideas compared to the discrete exploration observed in the review 

of literature.  
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3 Performance Evaluation of UMMT 

 

This chapter evaluates the performance of an UMMT developed by Rahman et al. 

(2003), for performing compound micromachining. The objective of the evaluation is 

to ensure that the UMMT is capable of performing in the feature size range of between 

5µm~50µmin the micromachining domain. The first section of this chapter provides a 

brief description of the concept of UMMT. The second section evaluates the machine 

using ISO – 230/1 and 230/2 standards (ISO 230–1, 1996; ISO 230–2, 2006) and 

compares the result with the requirements asserted by the target of performing 

micromachining. The third section evaluates the dynamic performance of the UMMT 

by machining tests. The fourth section evaluates the response time and dynamic 

positioning of the Z-axis which is extremely important for the evaluation of gap 

control performance of the machine tool. The fifth section theoretically analyses the 

requirements of the micro-EDM power supply and evaluates the power supply of the 

UMMT against the requirements. The final section draws a conclusion on the 

capability and potential development areas of the evaluated UMMT to meet the 

requirements of performing micromachining between 5µm~50µm feature size range.  

 

3.1 Design Concept of UMMT 

There is much hardware duplication or commonality between different machine tools 

designed to be used for different processes. Die-sinking EDM and Wire Electric 

Discharge Machining (WEDM) machines can be considered as an example. They have 

a major part of the hardware in common e.g., X and Y axes of the machine, machine 
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bed, EDM power supply unit etc. The few main differences include the absence of a Z 

axis and a spindle unit, and the presence of a wire-running and wire-tension control 

unit in WEDM machine, compared to EDM machine. The UMMT developed at 

National University of Singapore (Rahman et al., 2003) has such units like spindle and 

wire guiding unit as a standard attachment which can be attached to configure the 

machine for a particular process and has the capability to perform non-conventional 

micromachining processes like micro-EDM, WEDM, WEDG in addition to tool-based 

conventional micromachining processes like micro-milling, micro-drilling and micro-

turning on the same machine tool. Figure 3.1 showcases the machine tool with some of 

the processes that it can perform, Figure 3.2(a) shows the close up while configured 

with spindle unit for EDM and Figure 3.2(b) shows the machine tool configured with 

WEDM unit. For conventional machines a spindle unit or a wire guiding unit weighs 

more than few hundred kilograms. For the case of the UMMT that has been developed, 

such units weigh only a few kilograms, thus making universality of machine tool a 

practical and feasible solution for such machines.  

 

Multiple processes on one machine enable significant reduction in investment which 

otherwise requires purchase of different machine tools and also correspondingly much 

more space required for the installation of the machines. Experiments suggest that the 

replacement of attachment requires less than half an hour to configure the machine for 

a different process. Several micromachining techniques, such as micro-EDM, WEDG, 

micro-WEDM, micro-milling, micro-turning and their combination, can be carried out 

using different spindle unit and different attachment on the same machine. 
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Figure 3.2 Machine configured for EDM and WEDM process 

(a) Machine configured
 with spindle for EDM process.

(b) Machine configured with 
wire guide for WEDM process.

Figure 3.1 Showcase of Universal Miniature Machine Tool 

Interchangeable spindle unit

Micro
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3.2 Evaluation of the UMMT 

Evaluation experiments to determine the geometric accuracy, positioning accuracy and 

the repeatability of the UMMT have been conducted after upgrading the machine tool 

system with more rigid structure, better drive system and better servo feedback system. 

The evaluation has been conducted in accordance with ISO – 230/1 and 230/2 standard 

which includes the test code for machine tools. A list of the equipment used for the 

evaluation tests is given in Appendix A. Appendix B contains the details of the 

inspection item, inspection method and measurement results. The results indicate that 

with 3D dynamic compensation of positional accuracy of UMMT could be contained 

to less than 1µm over the full travel for all 3 axes. For the machining on small 

workpieces of ~20mm having feature size between 5µm~50µm, the positioning 

accuracy of the UMMT meets the requirements.  

 

3.3 Dynamic Performance Evaluation from Machining Tests 

The positioning accuracy measurement of the machine tool mentioned in section 3.2 

does not test the machine during machining conditions while under dynamic loading 

(as per the ISO – 230/1 guideline). Fleischer, J., and Masuzawa, T., et al., (2004) 

performed TCMMP using a combination of WEDG and micro-milling. From their 

experimental results they identified that the Panasonic (MG-ED72W) micro-EDM 

lacked the required rigidity for micro-milling operation, even though the equipment is 

reputed to be one of the best-in-class for micro-EDM operation. Hence, Fleischer, J. et 

al., (2004) planned to perform the micro-milling operation on Kugler micro-milling 

machine (a machine well known for excellent performance for micromachining 

operation). Therefore, the UMMT was evaluated by performing cutting tests. For 



Chapter 3 | Performance Evaluation of UMMT 

49 

 

cutting performance tests of the UMMT, machining has been performed using 

comparatively large sized tools (1mm diameter). This allowed evaluating the machine 

under much higher cutting force than the expected cutting force for micromachining 

operation to provide sufficient safety factor. A set of micro-milling and micro-drilling 

tests have been conducted. 3×10 array of holes positioned at 1mm apart were drilled 

on Cu plated epoxy using a 0.5mm drill bit to observe the positioning accuracy of the 

holes. Holes were drilled at a feedrate of 5 mm/min and 2800 rpm spindle rotation 

speed. The workpiece is shown in Figure 3.3 (a) and (b). The UMMT machined the 

holes with an average hole positioning error of less than 0.5µm. Micro-milling test was 

performed using a 0.5mm endmill cutter and 3 circles with an island of 0.5 mm, 1.0 

mm and 1.5 mm were machined on the same workpiece at a feedrate of 10 mm/min, 

20mm/min, 40mm/min, 80mm/min and 160 mm/min to observe the machine tool's 

performance during reversal of motion. The UMMT machined circles with less than 

1.0µm error during reversal of quadrant without any motion reversal compensation 

being employed for up to 40mm/min as could be seen in Figure 3.3(c). Quadrant 

reversal error and tool deflection was observed at 160mm/min as could be seen in 

Figure 3.3(d). It was also observed at 80mm/min feedrate but to a lesser extent 

compared to 160mm/min. Many micro-milling and micro-turning operations are 

generally performed in the range of 1mm/min~60mm/min feedrate (Adams DP., et al., 

2001; Fang F. Z., et al., 2003; Fang, F. Z., et al., 2006; Picard, YN, et al., 2003; 

Rahman, A., et al., 2005; Schaller, T., et al., 1999). Therefore, 160mm/min can be 

considered comparatively higher end of feedrate for micro-milling operations. 

 

Comparing these results with other high end reputed micromachining machine tool 

(e.g., Kugler MICROGANTRY – Micro with positioning error ≤1.5µm), the observed 
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positioning error of ≤0.5µm and error at quadrant reversal of ≤1.0µm can be 

considered satisfactory. Additionally, as one objective of this research work is to 

perform micromachining between 5µm~50µm range and accuracy of present micro-

EDM process technology is 1~2µm (Kawakami, T., et al., 2005; Kunieda, M. et al., 

2005), the performance of this machine tool can be considered suitable for TCMMP 

need. 

 

 

 

 

 

 

 

3.4 Evaluation of the Motion Controller for Gap Control 

Along with the development of a precision mechanical structure, a specialized 

precision motion control system is another major requirement for a UMMT which 

needs to be evaluated. For micromachining, for example for having micro-EDM and 

micro-turning on the same system, the CNC system is expected to provide the function 

of synchronized servo feed control based on real-time monitoring of process control 

(a)
(d)

(c)

(b)

Figure 3.3 (a) Cu Plated PCB workpiece with machined holes (b) close-up of holes, (c)
circle with island at 40 mm/min and (d) circle with island at 160 mm/min. While (c)
does not show any significant error during quadrant reversal, (d) shows quadrant
reversal error. 
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parameters which are sometimes difficult to integrate into the conventional machine 

tool. For example, the accuracy and speed of micro-EDM process depends a great deal 

on the gap control performance of the motion controller (Lim, HS., et al., 2002; Lim, 

HS., et al., 2003). This might be sometimes very difficult to implement with a 

commercially available motion controllers.  

 

Motion required for micro-EDM milling can be another example of special trajectory 

requirement. Due to tool wear, there exist serious issues in micro-EDM milling related 

to tool wear compensation, maintaining the tool shape from side wear while machining 

by only bottom wear, and control of the layer thickness to be machined. Therefore, 

quite a number of motion control strategies as well as wear compensation methods 

have evolved to handle such issues each with its unique advantages in specific 

situations (Bleys, P., et al., 2004; Bleys, P., et al., 2002; Hang, G., et al, 2006; Lim. 

H.S., et al., 2003; Yu, Z. Y., et al., 1998). To cater to all such different algorithms with 

the concern that a little delay in the sampling of the gap voltage can result in breakage 

of the fine electrode used (Kunieda, M. et al, 2005) an open architecture motion 

controller has been adopted which can be programmed at the embedded level to 

provide necessary trajectory control of the machine tool. The controller has a multi-

processor-based design, where programs and scheduling can be developed for real-

time process control accordingly so as to meet the synchronized servo motion required 

for some of the micromachining processes. At the same time, since the motion 

controller was developed jointly by NUS and an NUS venture company (Mikrotools 

Pte Ltd) for the multi-process machine tool, programs and scheduling can be accessed 

and developed to meet the time critical requirements, which is a key development area 
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for micromachining processes. For example, process parameter sampling can be done 

as fast as a 20 KHz rate, while still managing other job schedules. 

 

Practically, the mechanical system performs slower in the order of magnitude 

compared to the maximum speed that the commands could be issued when the 

requirement is reversal of motion or sudden change in speed with high acceleration. 

Fast reversal movement is required for the gap control during micro-EDM process and 

the servo system has been tested to have a rise time of less than 30ms, which is found 

to be sufficient for gap control during micro-EDM process without using a fast linear 

actuator (Imai, Y., et al., 2004; Kunieda, M., et al., 2004; Lim, HS., et al., 2003). 

Figure 3.4(a) shows a plot of reference position and servo response position and 

following error against time. The data was captured at a 2ms sampling rate and motion 

command is issued at 100ms interval to move the Z axis upward by 50µm in every 

step at 80mm/min. The machine responds to the command within 10ms and settled 

within less than 1µm position error within 20ms and eventually reached the target 

within 80ms. Given that, even at lower range of micro-EDM power settings the 

electrode gap is around 1.20µm (Table 4.1) and a common setting of micro-EDM 

feedrate is 2µm/s (Masaki et al., 2010(b)) this response can be considered satisfactory 

for micro-EDM gap control operation. 
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3.5 Theoretical Evaluation of Micro-EDM Power Supply 

While precision, rigidity and repeatability of machine tool structure are important 

factors from machine tools point of view for conventional micromachining processes, 

non-conventional micromachining processes, like micro-EDM, requires advanced 

process control capability in addition to the required performance of machine tool 

structure. For example, to realize precision micromachining one important factor is 

that the UR should be minimal which the volume or the size of the part removed from 

the workpiece by one unit of the removal phenomenon. For example, in mechanical 

operations, the UR consists of the feed pitch and cut depth and length corresponding to 

one chip of material removed (El-Hofy, H., et al., 2002) and in micro-EDM, the UR is 

a crater produced by one pulse of discharge (Masuzawa et al., 2000; Masuzawa et al. 

1997). To minimize the UR in micro-EDM the pulse shape needs to be controlled such 

that less energy is discharged in every pulse as opposed to the mechanical cutting 

Time (200ms/div) 

Figure 3.4 Commanded position (white line), actual position (yellow line) and
following error (red line) vs time to obtain the response and settling time. The scale
along base axis is 200ms/div, along secondary axis is 200µm/div for reference and
actual position; and 10µm/div for following error.  
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processes where the UR consists of depth of cut, feed pitch and the cut length 

corresponding to the chip. Since UR controls the surface roughness, the smallest 

machinable feature size, accuracy of feature control and machining quality, the amount 

of energy released in every spark, determines such output parameters in micro-EDM. 

The UR of micro-EDM is quite big but cutting force is very small. Therefore, for 

micromachining by micro-EDM, it is essential to minimize the spark energy released 

from each spark to achieve smaller UR, which will result in smaller machinable feature 

size and finer surface roughness. But in addition to that, it is also important to maintain 

high machining throughput by increasing the material removal frequency, and in 

micro-EDM the number of sparks over a period of time needs to be increased that can 

vary significantly because of the spark condition.  

 

Given the target of this research project is on micromachining in the range of 

5µm~50µm feature it is important to critically analyze the requirement of the power 

supply by highlighting the relationship of pulse energy and achievable feature size. 

The minimum feature size attainable by a micro-EDM setup coupled to the spark 

energy delivered in every quantum can be estimated by simple knowledge of the every 

crater at the spark energy being employed. It is postulated that feature size is 

unachievable when there is no material left in some places of a machined feature 

because of overlapping of valleys from one surface with the valleys of the adjacent 

surface and therefore, minimum attainable feature size can be estimated from the 

accuracy of the motion control system over the feature size length and a delta amount 

added to two times Rz –  average distance between the highest peak and lowest valley 

formed from the spark energy provided by the power supply settings (Moylan, SP., 

2005). This has been illustrated in Figure 3.5, taking the case of machining a vertical 
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wall as a feature and therefore, milling micro-EDM is required to be performed on 

both sides of the wall. In the schematic, a top view of a wall is shown, which 

experienced micro-EDM on both sides of the wall. When the two rough surfaces 

overlap, as in the second case Figure 3.5(b), the machined structure becomes 

discontinuous because of overlapping of valleys causing formation of holes in the wall, 

resulting in an unsuccessful machining of the feature. From this illustration it can be 

observed that the target crater depth Rz needs to be as small as possible and preferably 

below 2µm to obtain small feature size which requires the micro-EDM power supply 

of the UMMT to be capable to provide this range of fine spark size.  

 

 

 

3.5.1 Types of micro-EDM power supply 

There are two major types of micro-EDM power supply, namely Resistance-

Capacitance (RC) or Relaxation type and Transistor type power supply (Figure 3.6), 

The RC based power supply has found widespread applications in micro-EDM, and is 

Figure 3.5 Schematic showing the simplified estimation of minimum achievable
feature size from crater size of micro-EDM, (a) shows the top view of a case of 
forming a thin wall by micro-EDM milling on both sides of the wall and, (b) shows
failure in machining due to the expected wall thickness being smaller than 2 times of
average crater size (Moylan, SP., 2006). 

Initial Surface 1 Craters formed by Average surface 1 

Average surface 2 

(a) 

(b) 
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somewhat a rebirth after being replaced by transistor type power supply for 

conventional EDM power supply (Han, F., et al., 2004; Hara, S., 2001; Kunieda et al., 

2005; Kunieda et al., 2004; Masahiro et al., 1995; Masaki et al., 1990(a and b); Masaki 

et al. 1989). In transistor type power supply the discharge energy in every spark is 

controlled by the resistance across the circuit and the voltage (V and R in Figure 3.6(a)) 

and UR in transistor type power supply is minimized by increasing the resistance as at 

very low voltage settings (less than 60 V) results in unstable discharges (Masaki et al, 

1990 (a)). Spark energy obtained from a single spark in transistor type power supply is 

given by equation 3.1 (Son et al., 2007).  

 

ond iTVE =          (3.1) 

where, Ed is the discharge energy, V is the applied voltage, i is the discharge current 

and Ton is the pulse on time of the transistor.  

 

In an RC or relaxation-type circuit, discharge pulse duration is dominated by the 

capacitance of the capacitor and the inductance of the wire connecting the capacitor to 

the workpiece and the workpiece to the tool, (Rajurkar et al., 2006; Rajurkar et al., 

2000); and the discharge energy is determined by the used capacitance and applied 

voltage. In the case of typical RC type power supply shown in Figure 3.6(a), the 

repetition of the charging discharging occurs in which capacitor C is charged through 

resistor R and discharged between the electrode and workpiece produces an extremely 

short width pulse discharge. The pulse energy Ed induced in the gap is calculated by 

using the formula of equation 3.2 (Masuzawa, T., et al., 1997; Masaki et al., 1990 (b)), 

assuming that the gap voltage Vg is constant during the discharge.  
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)(2 ggd VVCVE −=         (3.2) 

where, C is the discharge capacitance and  V is the supplied DC voltage. When V=2Vg, 

the discharge energy is the maximum 1/2CV2, which is equal to the energy stored in 

the capacitor. For a more realistic case, the RC type pulse supply will also have stray 

capacitance contributed by the electric feeder, the tool electrode holder and work table, 

and between the tool electrode and workpiece. The stray capacitance contributes in 

parallel to the installed capacitor and equation 3.2 gets modified to the following 

equation:  

 

)()(2 21 ggd VVVCCE −+=
       (3.3)

 

where, C1 is the stray capacitance and C2 is the installed capacitance. This means the 

minimum achievable discharge energy per pulse is determined by the stray capacitance 

when C1 is set to 0, and thus in order to reduce the pulse energy, it is important to 

reduce the stray capacitance between the wire and the workpiece. Stray capacitance 

can be estimated by integrating the area under the voltage and current waveform or by 

extrapolating the capacitance value for discharge current pulse width at stray 

capacitance (Masaki, 2010(a)). 

 

 

 

 

Figure 3.6 Schematic representation of basic circuit diagram of (a) transistor-type and
(b) RC -type power supply. 
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3.5.2 Theoretical evaluation of smallest discharge energy  

• Let us consider our smallest UR is craters with diameter 2µm for micro-EDM, 

which means the smallest volume removal is equal to the volume of a hemisphere 

having diameter 2µm which is the size of the crater formed. Thus UR is given by 

equation 3.4 below:  

3183 10094.2
6

1

2

1
mdVUR

−×=××= π       (3.4) 

 

• Let us consider SUS-304 as the workpiece material with the following thermo 

physical properties (Wong, YS., 2003):  

- density, ρ  = 8000 kg/m3;  

- specific heat capacity, cp  = 500 J/kg ◦C;  

- ambient temperature, T0  = 20 ◦C;  

- melting point temperature, Tm  = 1450 ◦C;  

- boiling or vaporization temperature, Tb  = 3000 ◦C;   

- latent heat of fusion or melting, Lm  = 300 kJ/kg;  

- latent heat of vaporization, Lv  = 6500 kJ/kg;  

 

• Wong et al., 2003 derived the following equation (3.5) and equation (3.6) for 

micro-EDM using the theory of calorimetry 
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Equation (3.5) provides the estimation of minimum energy required to vaporize the 

cathode material per unit volume and equation (3.6) estimates the minimum energy 

required to melt the cathode material per unit volume.  

 

• Using the above equations 3.5 and 3.6 energy for smallest UR can be estimated. If 

all the material removal is by melting of the material then the required energy is 

16.965nJ considering that the shape of the crater is hemisphere. Similarly, if the 

removal action is solely vaporization of material then the required energy is around 

138.86nJ.  

 

• Wong et al. (2003) explained that only a maximum of 20% of material is removed 

by vaporizing the molten metal at low energy settings. At the same time 

considering that in lower energy discharge even though the erosion efficiency is 

much higher than the higher energy erosion efficiency, practically achievable 

maximum erosion efficiency, η, is only around 0.4 (considering a spark gap 

between 1 to 3.5µm) and therefore, the discharge energy per spark needs to be 

below 100nJ. Additionally, multiple continuous spark contributes to the creation of 

a single crater at low energy settings with very fine discharge pulse (Masaki et al., 

2010a) – a simple estimation is that the power supply should have the smallest 

energy settings around 30nJ~50nJ.  

 

3.5.3 Evaluation of micro-EDM power supply of UMMT 

The UMMT is installed with a transistor type power supply with the range of settings 

shown in Table 3.1. With the given parameter ranges of the micro-EDM power supply 

the smallest discharge energy could be obtained at 75V with 100Ω resistor with 
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transistor-on-time set to 1µs. Using equation 3.1 the smallest discharge energy 

provided by the power supply can be estimated to be around 56.25µJ. This energy is 

about 2000 times larger than the energy requirement established in section 3.5.2. 

Figure 3.7 shows the entrance view of a feature machined using a square electrode at 

the smallest energy settings of the transistor-based power supply of the UMMT. It 

shows that the discharge energy is very large and there is a significant amount of re-

solidification of the molten material which is common in long discharge pulse. From 

this it is evident that the micro-EDM power supply of the UMMT requires significant 

modification or replacing the power supply with a RC-based power supply setup with 

a DC source is another choice for performing at the desired range of machining at the 

lower boundary of micromachining domain.  

 

Table 3.1 Parameter settings of the transistor type micro-EDM power supply 

Parameter Settings Range 
Voltage (V) 2 settings – 75V and 150V 
Resistance (Ω) 6.8, 15,33, 100 
Pulse ON time (µs) 1µs ~ 100µs with 1µs increment 
Pulse OFF time (µs) 1µs ~ 100µs with 1µs increment 
 

 

While RC type power supply has the potential to provide extremely high frequency of 

pulse rate with discharge energy as small as provided by the stray capacitance alone, it 

has quite a number of disadvantages compared to transistor type power supply 

(Kunieda, M., et al., 2004; Han, F., et al., 2004). While extremely low discharge 

energy is expected from the power supply during finishing condition, high discharge 

energy and faster machining rate for rough cut is expected.  On RC circuit, discharge 

energy by increase in capacitance value and discharge frequency has inversely 
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proportional relationship. This is mainly due to the reason that when capacitance is 

increased to increase discharge energy the charging up time of capacitor becomes 

higher thus minimizing discharge frequency (as more time is needed for the circuit 

before the next spark can occur). However, for most micro-EDM application the 

material to be removed is generally much smaller compared to the requirement of large 

material removal amount for conventional EDM. Another problem is - uniform surface 

finish is difficult to obtain because the dielectric breakdown can occur at any stage and 

during the capacitor charging up phase if a suitable condition is produced a half 

charged capacitor can discharge as well. This causes variable discharge energy and 

results in different crater size and variable surface roughness (Kunieda, M. et al., 

2005). Thermal damage occurs easily on the workpiece if the dielectric strength is not 

recovered after the previous discharge and the current continues to flow through the 

same plasma channel in the gap without charging the capacitor (Han, F., et al., 2006). 

 

 

 

 

Figure 3.7 Machined hole using square electrode at the lowest energy setting of the
transistor based micro-EDM power supply of the UMMT.  
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On the other hand, the transistor type power supply is widely used in conventional 

EDM where UR can be much higher and provides much higher MRR as there is no 

need to charge any capacitor. The pulse duration and discharge current can arbitrarily 

be changed depending on the machining characteristics required and can provide for 

very uniform pulse shape resulting in much better control of surface roughness. One 

option for modification of the transistor based power supply for lower energy settings 

can be done by employing high speed transistor to reduce pulse ON time which will 

also pave for higher discharge bandwidth by minimizing the OFF time and at the same 

time ensure discharges with equal discharge duration. By using a transistor capable of 

providing 10ns ON/OFF time the lower energy can be reduced by 100 times to 560nJ 

discharge pulse energy. But, this is probably the best achievable improvement as 

increasing the resistor significantly more than 100Ω will reduce the peak current. For 

instance, using a 2kΩ resistor will allow for reduction of pulse discharge energy by 

another 20 fold reducing the discharge energy to the expected range around 28nJ but 

practically this will also reduce the peak current to 37.5mA which may not be even 

sufficient current for breakdown of dielectric and holding the plasma. On the other 

hand with the same amount of discharge energy one with higher peak current and short 

time width will have higher proportion of material removed by vaporization compared 

to a pulse with smaller peak current but larger pulse width which can be explained by 

considering a disk heat source based electro-thermal model (Yeo et al., 2008; 

Dibitonto et al., 1989). Over longer spark duration but with the same amount of energy 

delivered – there is sufficient time for the heat to get conducted and proportion of 

material removal by melting action is higher compared to vaporization. On the other 

hand with very short pulse there is rather less time for heat conduction through 
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workpiece. Due to higher energy density (as the width is smaller, but the energy is 

equal) there is more energy to raise temperature as well as to provide for the extra 

energy needed for latent heat of vaporization, thus increasing the proportion of 

removal by vaporization. Higher proportion of material removal by vaporization is 

preferred r as that will have less solid debris, less re-solidification and smaller crust 

layer. Therefore, the choice remains to use RC-based power supply for extremely 

small discharge with present state of design options using transistor-based micro-EDM 

power supply.  

 

3.6 Conclusion 

From the evaluations of the UMMT performed in this chapter it can be concluded that 

the performance of cutting test, accuracy and rigidity can be considered sufficient for 

performing micromachining at the lower boundary of the micromachining domain. 

This can be concluded by comparing the results with micromachining machine tool 

that are well known for performing micromachining (e.g., Kugler MICROGANTRY - 

Micro) and other micro-EDM machine tool (e.g., Panasonic, Sarix, Agie, Pacific 

Controls) (Moylan, SP., 2006). Additionally, as one objective of this research work is 

to perform micromachining between 5µm~50µm range and accuracy of present micro-

EDM process technology is 1~2µm (Kawakami, T., et al., 2005; Kunieda, M. et al., 

2005), the performance of this machine tool can be considered satisfactory. Definitely, 

there are significant scopes of further improvement by utilizing advanced control 

mechanisms, such as using a piezoelectric translator with short stroke but with quick 

response for improved gap control; and use of hydrostatic/aerostatic linear guideway 

for even better precision and accuracy in motion. But, the primary research work 

required to achieve the objective of this project is in micro-EDM. There is a need for 
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significant improvement on the micro-EDM power supply of the UMMT as the 

smallest discharge energy is too large for performing micromachining and therefore, 

also not suitable for compound micromachining as has been explained earlier. As RC 

power supply is capable of providing small discharge energy, small pulse width and 

sharp peak current in a very simple manner it is preferred over the transistor-based 

power supply. The following chapter will provide a theoretical analysis on the electric 

characteristic of RC-based micro-EDM power supply employing plasma property 

which is necessary for designing RC power supply capable of performing 

micromachining at the lower boundary of micromachining range. 
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4 Analysis of Micro-EDM Electric Characteristics 

Employing Plasma Property 

 

Plasma in EDM process is generated by an electric breakdown in the gap space filled 

with dielectric under a condition when the electric field strength exceeds the dielectric 

strength of the dielectric; and finally this ignition process leads to a subsequent current 

flow that generates an electric discharge. Usually in EDM process a direct current 

(DC) voltage is applied to the electrode system, namely electrode and workpiece, 

consisting of parallel plates of area defined by the common area on both the electrodes 

facing each other across a couple of microns gap. The objective of this theoretical 

analysis is to model the electric properties of micro-EDM plasma for an RC power 

supply circuit with a DC source since it was observed in Chapter 3 that the UMMT 

requires improvement in micro-EDM power supply. The analysis and understanding 

developed through the model proposed in this chapter will considerably leverage the 

design of a power supply fitting the appropriate role of all of the three components 

Resistance (R), Inductance (L) and Capacitance (C). 

 

4.1 Electrical Equivalent Network of micro-EDM Plasma 

The two parallel electrode plates across which the EDM plasma forms is shown in 

Figure 4.1(a) (Lieberman, 2005) where due to a very high electric field strength 

initially a weakly-ionized channel forms which then rapidly grows from one electrode 

to the other and results in primary electron avalanche starting from the cathode. 

Subsequently this forms a streamer as the initiation of a discharge process as could be 
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seen in Figure 4.2 (Descoeudres, 2008, Descoeudres, A., 2006). During the discharge 

process the electrons will have thermal energy of a few eV to bring atoms into excited 

states and from the collision process dielectric molecules gets dissociated which finally 

forms plasma to conduct current with very high current density. Even though the usual 

RC based micro-EDM circuit is powered by a constant DC power supply, the presence 

of the large series resistor limits the current flowing into the channel. Most of the 

power dissipated in the plasma is supplied by the capacitor placed in parallel to the 

plasma and therefore micro-EDM discharge can be compared to the commonly used 

capacitive discharges in plasma engineering (Piel, 2010) as opposed to other type of 

discharge known as inductively coupled plasma discharge where the electric field is 

generated by a time-varying magnetic field of transformer action. 

 

 

 

 

 

Figure 4.1 Parallel Plate Model of micro-EDM Plasma. 

U(t) 

PLASMADielectric 

(a) (b) 
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In capacitive discharge, obviously, the electric field results from surface charges on 

electrodes and charges in dielectric filling up the gap space. Figure 4.1(b) shows the 

homogeneous model of plasma (Lieberman, 2005; Piel, 2010), where the plasma is 

divided into a central quasineutral bulk of thickness b and space charge sheaths of 

width s1 and s2. A current i flows across the discharge plates and the plates are 

separated by a distance d = b+ s1+ s2 and having cross sectional area A. In response to 

the current flow, a discharge plasma forms between the plates, accompanied by a 

voltage v across the plates and a power discharge P into the plasma. Assuming that the 

plasma is in a quasineutral state, it can be considered that almost everywhere the 

electron density and ion density are equal, i.e. ne ≈ n..In this given model it is also 

considered that the sheath regions are much smaller compared to the width of the bulk 

plasma; b >>( s1+ s2 ). According to this model the plasma impedance is defined as 

the ratio of voltage and current for current flow in a capacitor given by equation 4.1 

(Piel, 2010; Rizzoni, 2005). 

bb

b
b CiI

U
Z

ω
1==          (4.1) 

Figure 4.2 Breakdown mechanisms leading to a spark discharge. Propagation of: (a)
the primary electron avalanche; (b) a positive streamer; (c) a negative streamer
(Descoeudres, A., 2006; Raizer, YP., et al., 1991). 
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where, Ub is the voltage across plasma, Ib is the current through the plasma, Cb is the 

capacitance of the plasma, Cb = εbC0; and C0 is the vacuum capacitance of a capacitor 

given by C0 = ε0A/d. ε0 is the dielectric constant of vacuum, εb is the plasma dielectric 

constant which is given by equation 4.2 (Lieberman, 2005). 
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In equation 4.2 ω is the angular frequency of the oscillation of plasma, ωpe electron 

plasma frequency and νm is the effective electron-ion collision frequency for 

momentum transfer. Using the value of Cb and εb, finally the bulk plasma containing 

two parallel electrodes can be represented by a combination of an inductor 

(representing electron inertia) in series with a resistor (representing electron-neutral 

collisions), and a parallel capacitor (representing the electric field in the bulk plasma) 

and could be expressed by equation 4.3 (Piel, 2010).  
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where, C0 is the vacuum capacitance, Lb is the inductance of the bulk plasma given by 

equation 4.4 and Rb is the resistance of the bulk plasma given by equation 4.5.  
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In equation 4.4, electron plasma frequency is denoted as ωpe, which can be evaluated 

using equation 4.6; and vm is the effective electron-ion collision frequency for 

momentum transfer.  
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where, me = mass of electron, ne = electron density in plasma, ε0 = vacuum 

permittivity, and e = charge of electron. Now from the above discussion, the network 

shown in Figure 4.3(a) can be considered as the electric circuit equivalent of plasma 

and can be replaced as the plasma in the electric network of power supply circuit 

shown in Figure 4.3(b). In Figure 4.3(b), Rd is the Resistance of the discharge line 

including the resistance of the cable, L is the inductance of the discharge path, C is the 

capacitance of the installed capacitor including the stray capacitance and R is the 

resistance of the resistor installed after the DC source.   

 

 

 

 

 

 

 

 

 

 

(a) (b) 

PLASMA 
PLASMA 

Figure 4.3 (a) Electrical equivalent circuit of plasma, (b) electrical network of RC
power supply with a DC source having  micro-EDM plasma replaced by the equivalent
circuit. 
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4.2 Evaluation of Electric Components in Plasma 

4.2.1 Evaluation of C0  

C0 is the vacuum capacitance of a parallel plate capacitor with an Area of cross section 

A and a distance between the capacitor d, as shown in equation 4.7.   

d

A
C 00 ε=          (4.7) 

Table 4.1 below shows values of experimentally obtained electrode gap at spark for 

Tungsten electrode and SUS-304 workpiece in Total EDM 3 dielectric oil with a 

simple implementation of RC setup without any gap control and was performed on the 

UMMT proposed by Rahman et al. (Rahman, 2003). Since, the theoretical analysis and 

the experimental works of this thesis is focused on the context of micromachining in 

the lower dimensional range of micromachining domain, practically the maximum 

applied voltage can be 100V~110V and capacitance is 470pF and the electrodes will 

be between 20µm~40µm diameter. From Table 4.1 and above argument a fair 

assumption can be made that the value of d will be between 1.2µm~6µm and the range 

of cross section area A will be a theoretically bounded by the surface area of 

20µm~200µm diameter plate for the range of voltage and capacitance settings.  

 

Figure 4.4(a) shows plot of C0 at different gap distance d and ranging between surface 

area of 20µm~200µm electrode diameter. The maximum obtained value of plasma 

capacitance is only 0.2782pF in the simulation range which is even 20~30 times 

smaller compared to stray capacitance of the system and electrode holder (Masaki, 

2010a). Practically, the value of C0 is even smaller as during the discharge the plasma 

only forms over a small portion of the electrode and not the common cross section on 
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the electrodes facing each other. Descoeudres et al. (2008) reported that the contact 

surface between the plasma and the electrodes can be estimated to be equal from 

measurements of crater diameter, which was ~10μm. Their experiments were 

conducted at a much higher power settings compared to the usual power settings for 

micro-EDM (Masaki, 2010a) where the crater sizes ranges from 2.2µm to 5µm. 

Practically, since the plasma temperature in micro-EDM is extremely high and much 

higher than the boiling temperature of SUS-304, electrode plasma interface diameter 

can never be larger than the crater size as at the interface of plasma and electrode 

definitely erosion of metal will occur rendering the electrode plasma interface diameter 

to be slightly smaller or equal to the crater diameter, r (Descoeudres, 2008). Therefore, 

it can be assumed that the interface diameter is 0.1µm~0.2µm smaller than the crater 

diameter. Figure 4.4(b) shows the plot of C0 at different gap distance d and ranging 

between surface area equaling to the electrode plasma interface diameter of 2µm~5µm 

and this resulted in a capacitance value of 1.7385×10-04 pF making at approximately 

35,000 times smaller than the stray capacitance. Therefore, it can be concluded that C0 

in micro-EDM plasma with the electrode dimension and electrode gap at spark 

mentioned above can be really small and in analyzing the electric interaction with the 

capacitance C0 can be ignored. 

 

Table 4.1 Gap width at different voltage and capacitance 

Voltage (V) Capacitance (pF) Electrode Gap (µm)

60 Stray (11pF) 1.20 

60 470 3.30 

100 Stray (11pF) 3.30 

100 470 5.90 
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(a) 

(b) 

Figure 4.4 (a) Plot of plasma capacitance vs electrode area at different electrode gap;
(b) the effective area contributing to the capacitance is taken as the electrode plasma
interface diameter of 2µm~5µm. 
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4.2.2 Evaluation of Lb  

From the definition of inductor it is known that an inductor will try to resist any 

change in the flow of current. Under an electric field the electrons in plasma gains 

directional kinetic energy and any changes in the flow of current will be resisted by the 

inertia of the particles; therefore, it can be said that the inductance of plasma is the 

ensemble of the inertia of particles and is related to the characteristic frequency at 

which the electrons oscillate among the heavier immobile ions. This electron plasma 

frequency is related to electron density ne and given by equation 4.6. From equation 

4.4, 4.6 and 4.7 we can obtain equation 4.8.  
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Descoeudres et al. (2004, 2008) reported that electron density at the beginning of the 

discharge is 2×1018 cm-3 and electron density reported by Nagahanumaiaha et al. 

(2009) is 3.5×1018 cm-3. For the simulation of inductance value the electron density 

value can be considered to be bounded in a range of 1×1018 cm-3 to 3.5×1018 cm-3. 

Concerning the surface area contributing to the inductance of the plasma is also given 

by the electrode plasma interface diameter and can be estimated to be in between 

2µm~5µm for this analysis, which was mentioned earlier. Figure 4.5(a) shows the plot 

of plasma inductance at varying electrode diameter and electron density of plasma at 

1.2µm electrode gap and Figure 4.5(b) shows the same at 6µm electrode gap. The 

result shows that the plasma inductance value ranges from 0.65pH~67.8pH. Even with 

a power supply circuit configuration with the minimum wire length of 10cm, the 

inductance contributed by the wire is 0.1090µH for tin plated copper stranded AWG20 
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wire (Grover, 2004; Rosa, 1908); which is about 1600 times larger than the inductance 

of this micro-sized plasma and therefore, the inductance of the plasma can also be 

neglected. 

 

 

 

 

 

(b) 

(a) 

Electron Density Electrode-Plasma 

Electron Density Electrode-Plasma 

Figure 4.5 (a) Plot of plasma inductance at various electron density and electrode
plasma interface diameter at 1.2µm electrode gap; (b) and at 6µm electrode gap. 
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4.2.3 Evaluation of Rb  

Equation 4.5 states the value of plasma resistance Rb and combining equation 4.4, 4.5 

and 4.6 we obtain equation 4.9 as the following:  

Aen

dvm

C

v
LvR

e

me

pe

m
bmb 2

0
2

===
ω

       (4.9) 

Now, we know from the definition of resistivity,  
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Therefore, the plasma resistivity can be stated as the following in equation 4.11 
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Where, vm is the effective electron-ion collision frequency in quasineutral plasma.  

The electron-ion collision, vm can be computed from Coulomb force and is given by 

equation 4.12 (Piel, 2010).  
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where, V is the characteristic velocity of a Maxwell-Botzmann distribution and can be 

considered as equal to the mean thermal velocity given by equation 4.13 (Roth, 1995) 
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where, T is the temperature of plasma in Kelvin and Botzmann’s constant is denoted 

by kB. Now, replacing equation 4.13 in equation 4.12 we obtain  
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Now, replacing vm in equation 4.11 we obtain the following for plasma resistivity: 
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This estimation of Coulombic collision was based on the assumption that the 

deflection angle after collision is large; but a more detailed treatment leads to Spitzer 

resistivity given by equation 4.16 (Piel, 2010) 
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where, the correction factor ln(Λ) ≈ ln(λD/bπ/2) = ln(4πND), called the Coulomb 

logarithm that is related to the number of particles ND in a Debye sphere and from our 

assumption ND=1, resulting in ln(Λ) ≈ 2.531, which also shows good agreement to the 

value of ln(Λ) ≈ 2.2 obtained by Descoeudres et al. (2008).  

 

Descoeudres et al. (2008) reported from their observation that the plasma temperature 

reaches 8110K and remains constant throughout the discharge; and Nagahanumaiaha 

(2009), reported that plasma temperature ranges from 5167 K to 7889 K with an 

average plasma temperature of 6170 K. Therefore, we can estimate that the plasma 

temperature remains in a range of 5167K~8110K to compute a possible range of 

plasma resistivity which is shown in Figure 4.6.  

 

Now, again consider that the electrode plasma interface diameter is 2µm~5µm for this 

analysis, as has been mentioned earlier. Figure 4.7(a) shows the computed resistance at 

different plasma temperature at 1.2µm electrode gap and at 6µm electrode gap shown 

in Figure 4.7(b). It can also be assumed that crater diameter ranging around 2.2µm can 

only be obtained at very small energy settings and at those settings the required 

electrode gap is in the range of 1.2~1.5µm. Therefore, in Figure 4.7(a) we can ignore 
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the resistance value shown in higher electrode plasma interface diameter and can only 

focus between 2µm~2.5µm interface diameter based on the earlier assumption that the 

interface diameter is 0.1µm~0.2µm smaller than the observed crater diameter. In this 

range of electrode plasma interface diameter the plasma resistance Rb varies between 

25Ω~80Ω (with mean around 50Ω). Similar arguments can be placed for the case of a 

5µm crater size which can only be obtained at larger capacitance and voltage settings; 

and that will yield a larger electrode gap, like 6µm for spark. At 5µm electrode plasma 

interface diameter and 6µm electrode gap it can be seen from the Figure 4.7(b) that the 

plasma resistance Rb also varies in the range between 30Ω~76Ω (mean ~50Ω). 

Therefore, it can be assumed that micro-EDM plasma resistance remains between 

25Ω~80Ω, with a mean around 50Ω for electrode gap within 1.2µm~6µm and for 

obtained crater diameter between 2.2µm~5µm.  

 

 Figure 4.6 Plasma resistivity at different temperature. 
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Temperature 

(b) 

(a) 

Temperature Electrode-Plasma 

Electrode-Plasma 

Figure 4.7 (a) Plot of plasma resistance at different temperature and electrode plasma
interface diameter at 1.2µm electrode gap; (b) and the same at 6µm electrode gap. 
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4.3 Analysis of the RC Power Supply Electric Network 

Involving Micro-EDM Plasma  

From the evaluation of the equivalent electric network of plasma, the inductive and 

capacitive load of micro-EDM plasma can be essentially ignored and consider only the 

resistive network. From the evaluation of plasma resistivity, ρb, it can be observed that 

the plasma resistivity is only dependent on plasma temperature and not on electron/ion 

density of the plasma. Observation from Descoeudres et al. (2008) and detailed 

theoretical analysis of micro-EDM plasma by Dhanik et al. (2005) indicated that the 

plasma temperature can be considered to remain constant throughout the discharge 

process – and therefore, the resistivity can be considered to remain constant. The 

electrode plasma interface diameter was reported to grow slightly during the discharge 

by Descoeudres et al. (2008) but for very fine short pulse ranging between 20ns~100ns 

– it can be considered that the electrode plasma interface diameter remains constant; 

and from this assumption the plasma can be simplified to a resistive network with 

constant resistance during the discharge. This will allow simplifying the electric 

network shown in Figure 4.3(b) to the network shown in Figure 4.8. 

 

 

 

Figure 4.8 Simplified Electrical Network of Plasma with the Power Supply
Network (RC circuit with a DC source) 
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Let us, consider that the voltage across the capacitor is v, and the current flowing to 

node marked A is i' and the current flowing out from node A to the plasma is i. Now, 

applying Kirchhoff’s voltage law (KVL) in loop 2 we obtain equation 4.17, applying 

KVL in loop 1 we obtain equation 4.18 and applying Kirchhoff’s current law (KCL) in 

node A we obtain equation 4.19.  
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Now, combining equation 4.18 and 4.19 to replace i' we obtain equation 4.20  
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Differentiating equation 20 we arrived to equation 4.21 
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Now, replacing i and di/dt in equation 4.17  
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Rearranging equation 4.22 and dividing both the sides of the equation by LC we obtain 

the following:  
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Now, in equation 4.23 it can be observed that both Rd and Rb come as a summed term. 

The resistance of AWG20 tin plated copper stranded wire is about 34mΩ/m and the 

resistance contributed by tungsten electrode system is around another 20mΩ. 

Therefore, even for a 1 meter long wire with a 32µm electrode in the discharge path 
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will make Rd = 54mΩ; and thus we can consider the Rd +Rb ≈Rb to obtain the 

following:  
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The characteristic equation of the 2nd order differential equation given by equation 

4.24 is given by the equation in 4.25 and the solutions are given by equation 4.26.  
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Now, we have the 3 cases of the solution, namely overdamped for real distinct roots, 

critically damped for real repeated roots and underdamped for complex conjugate 

roots. Investigating the discriminant will allow to analyze the type of solution that is 

required to be computed for some practical values of the circuit element. Let,   R=1kΩ, 

L=0.1090µH; and C=53pF for this investigation which are some of the values reported 

by Masaki et al. (2010a).  

 

By taking the 1st and 2nd derivative of the discriminant with respect to Rb given by 

equation 4.26, equation 4.27 and 4.28 could be obtained 
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By setting equation 4.27 equal to 0 and since equation 4.28 is always positive, we can 

obtain that the minima of the discriminant of equation 4.26 is when Rb = 2Ω and at that 
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value equation 4.26 results in complex conjugate solution 1.8608×1007±j4.1605×1008 

and demonstrates to be an underdamped case. Similarly, for values of Rb computed in 

section 4.2.3 to be between 25Ω~80Ω the solution yields a complex conjugate root. On 

the other hand, when the value of Rb changes to 93Ω the solution turns to and 

overdamped having real distinct root. Moreover, for sweeping the equation between 

wide range of R and L values it is required to obtain all of the 3 solutions of the 

differential equation given by equation 4.24.Solving the underdamped, overdamped 

and critically damped cases of the differential equation given by equation 4.26 the 

following equation for voltage v and current i could be obtained (where, P and Q are 

given by equation 4.29 and 4.30).  
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• Solution of underdamped case 
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• Solution of overdamped case 
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• Solution of critically damped case 
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4.4 Model Validation 

4.4.1 Validation of the model by varying L 

Masaki et al. (2010a) added varying length of wire in the discharge loop to 

experimentally evaluate the effect of varying wire length (and essentially the effect of 

inductance, L) on discharge current waveform.  In their experiment, the authors varied 

the wire length from 0.1m (which is the minimum length required to connect the 

spindle head (tool electrode) to the capacitor) to 15m and experiments were conducted 

at two different capacitance values: stray capacitance and 53pF. In this section, the 

proposed model of micro-EDM electric network defined by the equations 4.31 to 4.36 

(which are the solutions of the differential equation 4.24) involving the plasma 

impedance will be validated using experimental results reported by Masaki et al. 

(2010a). Table 4.2 shows the condition used for easy referral. Masaki et al. (2010a) 

only reported the length of the wire used in the experiment and the experimentally 

obtained current waveform. For the computation of the model defined by equation 4.31 

to 4.36, the inductance value of the wire length is required to be computed using 

equation 4.37(Grover, 2004; Rosa, 1908). The computed inductance value is also 

shown in Table 4.2.  
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where, dw is radius of the wire in cm and l is the length of the wire in cm and the 

obtained value of L is in µH. 

Table 4.2 Conditions and setting values for obtaining current waveform of varying L 
(adapted from Masaki et al., 2010a, except the equivalent inductance value which was 
not computed in the original report). 

Item Conditions and Value 

Voltage [V] 60 

Capacitor Capacitance [pF] 6,47+6 

Resistance [kΩ] 1 

Cable length [m] 0.1, 0.5, 1.1, 2, 3.9, 7.6, 15 

Equivalent Inductance [µH] 0.1090, 0.7059, 1.7265, 3.3782, 
7.1084, 14.8663, 31.3811 

Machined depth  [µm] 10 

Dielectric EDM oil (CASTY-LUBE EDS) 

Tool Electrode Tungsten 32µm diameter 

Workpiece Material Stainless steel SUS304 

 

In addition to the minimum wire length of 10cm to configure the discharge circuit, as 

reported by Masaki, 2010a, there is also dead length of wire which has to be added in 

the return path of the current after discharge which contributes to additional 

inductance. Considering the structure of the equipment used by Masaki et al. (2010a) 

((the distance between the connections on the mandrel and XY table is approximately 

20cm) and travel length of both X and Y axes are 5cm it can be considered that a 

minimum of additional 25cm of wire is required to configure the return path of the 

current (this required minimum length was also confirmed from personal 

communication with Masaki et al. (2010a)). Inductance is also contributed by the 

electrode, feeding system and workpiece. Considering a 3cm long 0.300mm diameter 

tool electrode – the contributed inductance should be around 0.0314µH (this is about 

35% of the contribution by 10cm wire). Therefore, it can be assumed that the system 

had additional inductance equivalent to a total of 30cm wire length (0.3929µH) in the 
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return path of the discharge current contributed by the wire in the return path , the tool 

electrode and other component of the feeding system.  

 

In order to validate the proposed model, computer simulation was performed using 

Matlab using the equations 4.31 to 4.36. The program was written to compute the 

determinant equation based on the input R, L and C value to identify the appropriate 

solution case (underdamped, overdamped and critically damped). Simulation was 

performed at 3 different plasma resistance values – taking Rb = 40Ω, 50Ω and 60Ω, 

keeping 50Ω as the mean. The current waveform obtained from the simulation and the 

experimental waveforms of Masaki et al. (2010a) are compared in Figure 4.9. Two 

important parameters of current waveform are the pulse width and peak current, which 

are compared between experimental and simulation results (Figure 4.9). Pulse width is 

defined by the time between the beginning of a discharge to the first zero crossing of 

the current waveform and peak current is defined by the peak value of the current over 

the discharge duration. The experimental current waveform for 0.1m shows smaller 

peak current (300mA) compared to the value obtained from the model (415mA), but 

considering micro-EDM as a stochastic process and the presence of a debris particle in 

gap space might change the conductivity of plasma which may result in quite a 

significant difference in peak current as well as in waveform. Comparing Figure 6(a) 

and Figure 10(a) of Masaki, 2010a, the same can be concluded as at the same setting 

one profile shows a peak at 300mA and the second one shows a peak at 400mA. 

Moreover, usually the peak of the current profile shows a well formed peak as could be 

seen in Figure 10(a) of Masaki et al. (2010a) as opposed to the valley shaped peak that 

could be seen in Figure 6(a) which indicates that the peak value of profile in Figure 

10(a) is more appropriate.  
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Another factor that might have contributed to the little difference is due to the fact that 

the current probe used for performing these experiments was band limited between 1.2 

kHz to 200 MHz (Tektronix Current Probe – Model CT2) which signifies that a very 

sharp movement happening in less than 5ns will display an averaged response in the 

oscilloscope. Therefore, some variation with experimental data is expected but the 

congruency between the overall waveform and the changes observed due to varying L 

demonstrates excellent fit of the theoretical value to the experimental data.  

 

Masaki et al. (2010a) reported that the current waveform generated at 15m wire length 

was not showing clear waveform to measure pulse width and peak current. This 

phenomenon could be explained well using this model if it is assumed that given the 

experimental settings and inter-electrode gap if the steady state current drops below 

30~40mA the discharge stops and Rb becomes an extremely large resistor until the next 

breakdown, whereas if the steady state current remains above 50mA then continuous 

arc discharge takes place – then. This makes a fair assumption based on the fact that in 

plasmas energy is dissipated in inelastic collisions, including the ionization events 

which maintain the plasma, and excitation collisions which lead to photon emission 

that makes the plasma visible; and electron energy is also dissipated in elastic 

collisions with the background neutral dielectric which causes the heat to get 

transferred to the ambience formed by dielectric and electrodes, thus continuous power 

to the plasma is needed to maintain it. Figure 4.11 shows the simulated waveform at 

15m wire length and it can be observed that the slowly varying waveform did not cross 

below 30~40mA at steady state and this caused a continuous power flow to the plasma 

to keep it at arcing condition thus the peak and the pulse width were not identifiable.   
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(a)  Current 
waveform for 
0.1m wire 
length at 53pF 

(b) Current 
waveform for 
0.5m wire 
length at 53pF 

(c) Current 
waveform for 
1.1m wire 
length at 53pF 

(d) Current 
waveform for 
2.0m wire 
length at 53pF 

(e) Current 
waveform for 
3.9m wire 
length at 53pF 

(f) Current 
waveform for 
7.6m wire 
length at 53pF 

Figure 4.9 Showing experimentally obtained (left column) (Masaki, 2010a) and
simulated current waveform at 3 different Rb values (40Ω, 50Ω, 60Ω). Observed
peak current and pulse width values are plotted in Figure 4.10. 
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Figure 4.10 Comparison between experimental and theoretical values for 53pF and
6pF capacitance of (a) discharge peak current at varying wire length and (b) discharge
current pulse width at varying wire length. 
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4.4.2 Validation of the model from discharge energy 

In the case of RC type power supply shown in Figure 4.8, the repetition of the charging 

and discharging occurs in which capacitor C is charged through resistor R and 

discharged between the electrode and workpiece and therefore, the energy deposited in 

the gap from the spark is commonly computed by the energy that can be stored in the 

capacitor which is given by ½CV2 (Masuzawa, 2000; Wong, 2003). But, this 

assumption may not hold true always as the discharge can be from a partially charged 

capacitor and as well as for a small power would be supplied by the main DC source 

through the charging resistor R to the plasma during the discharge. Masaki et al 

(2010a) proposed that discharge energy can be also measured by obtaining both the 

voltage waveform and current waveform and then multiplying the area under both the 

curves (since, power P(t) = V(t)×I(t)).  

Figure 4.11 Shows that the theoretical pulse waveform remains above 50mA which
may cause a continuous arc discharge. 
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The proposed model given by equations 4.31~4.36 has been used to compute the 

discharge energy in a single discharge from the theoretically computed voltage and 

current waveforms. Figure 4.12 compares between the discharge energy obtained from 

the theoretical computation, experimental data of Masaki, 2010a and the discharge 

energy obtained by computing ½CV2. The model shows excellent agreement to both 

the data validating the model. The theoretical model deviates between 4%~7% from 

the ½CV2 method of computation, which is due to the fact that the model accounts for 

the power imparted to the plasma directly from the DC source during the discharge.  

 

 

Comparing to the experimental values, both the values obtained from ½CV2 method 

and values obtained using this proposed model fit nicely at smaller discharge energy; 

but at higher energy both the values are overestimated from the experimentally 

obtained result. This could potentially indicate that the particular discharge captured 

was not from a fully charged capacitor, or it could even deviate from the assumption 

that the electrode plasma interface diameter remains same throughout the discharge – 

which may not be the case for larger pulse width; meaning that the plasma resistance 

was reducing gradually due to the slow expansion of interface diameter and thus less 

heat was deposited in the gap. But, this argument requires further investigation. 
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4.4.3 Validation of the model at lower DC supply voltage and at 

higher discharge energy 

Masaki et al., (2010a) performed experiments to observe the effect of supply voltages 

at 40V and below on peak discharge current. The theoretically computed value by 

using this proposed model at 60V or below did not show good fit to the experimental 

results for values of voltage below 60V as could be seen Figure 4.13 (red line). This 

evaluation was done using Rb=50Ω which has been computed with the assumption that 

the value of electrode plasma interface diameter is 2µm~2.5µm (section 4.2.3). But, 

practically for voltages lower than 60V the assumptions on diameter of electrode 

plasma interface needs to be corrected as the crater size changes significantly at such 

low voltage settings. Masaki, 2010a observed that the crater size became 1.22µm for 

30V input voltage. Therefore, the electrode plasma interface diameter can be 
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Figure 4.12 Comparison between discharge energy computation methods. 
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considered as 1.0µm (as it has been assumed that the electrode plasma interface 

diameter is slightly smaller than the crater size). Using plasma electrode interface 

diameter as 1.0µm, plasma resistance was recomputed to be 165Ω~325Ω (with mean 

around 250Ω) for the model (Figure 4.14). With this corrected assumption, the model 

yielded good agreement with experimental findings at lower voltages (Figure 4.13). 

Using plasma resistance value 250Ω shows better agreement than the computation at 

50Ω which is shown in Figure 4.13 as well.  

 

At the same time, this also needs to be observed that the model predicts a linear 

relationship at different voltages and peak current while the experiment indicates a sort 

of exponential relationship (shown by gray color exponential trendline in Figure 4.13). 

Furthermore, while the calculation based on corrected assumption obtained better fit 

with the experimental observation for lower voltages it deviated from the peak current 

that was observed at 60V. This actually further establishes and validates the theoretical 

analysis that the model is based on the plasma resistance. In the mode value of plasma 

electrode interface diameter is required as an input to the model and is estimated from 

the crater size. Therefore, the value of inter-electrode gap and plasma electrode 

interface diameter (given by the crater diameter) plays a very important role in the 

understanding of micro-EDM energy discharge characteristics and interaction with 

plasma.  

 

The capability of the proposed model was further explored by comparing the 

theoretical result to experimental results published by Mahardiaka et al. (2008) which 

was done at higher voltage and larger capacitance settings. Their experimental 

conditions were: Supply voltage V=110V, C=3300pF, R=1000Ω and during their 
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experiments they used another additional voltage probe (Tektronix P6109B) for taking 

voltage reading which added additional inductance of approximately 0.288µH 

(L=25cm, dw=0.075cm). From the experimental results of Han, F., et al., (2006) it can 

be observed that the crater size obtained from this voltage and capacitor settings is 

about 12µm on tungsten and tungsten carbide workpiece. Using this assumption the 

plasma resistance was recomputed to be between 5Ω~10Ω. Figure 4.15(a) shows the 

experimentally obtained pulse profile and the simulated pulse profile is shown in 

Figure 4.15(b) where good agreement between the pulse width (175ns experimental 

value; simulated 165ns~171ns, mean 168ns) and the pulse peak (experimental value 

4.9A; simulated 4.7A~5.6A, mean 5.1A) can be observed.  
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Figure 4.13 Comparison between experimental and theoretical value of peak current
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Figure 4.14 Plasma Resistance for electrode plasma interface diameter 1µm. 

Figure 4.15 Current Waveform (Mahardika, et al., 2008) and simulated value at
C=3300pF, V=110V. Excellent match of pulse width (175ns experimental value;
simulated 165ns~171ns, mean 168ns) and the pulse peak (experimental value 4.9A;
simulated 4.7A~5.6A, mean 5.1A) can be observed. 
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4.5 Observation on the Current Waveform Generated by the 

Proposed Model 

As the proposed model investigates into the interaction between the micro-EDM 

power supply and micro-EDM plasma it can be used for elucidating the theoretical 

relationship of different circuit parameters and how that may change the energy 

discharged on the workpiece by a spark. In this section the effect of varying R on the 

pulse waveform will be analyzed which will lead to the selection of an appropriate 

value of R for micro-EDM power supply circuit to be developed. Effect of varying 

voltage V, inductance L and capacitance C on current waveform will also be observed 

from the model which will provide sufficient background understanding for selection 

of these parameters during an experiment for desired output. This model can also be 

used for obtaining stray capacitance and inductance of the power supply circuit 

contributed by obtaining a current waveform and then using non-linear curve fitting of 

the current waveform to the mathematical model.  

 

4.5.1 Effect of varying resistor R and selection of R for micro-EDM 

power supply 

Resistor R, shown in Figure 4.8, plays a very critical role in designing the micro-EDM 

RC power supply. The main role of R is to limit the supply of current to the capacitor 

as well as to the plasma contained in the gap immediately after a discharge such that 

after the spark the discharge stops due to the lack of necessary flow of current required 

to maintain the plasma.  This energy is needed to maintain the plasma as there is loss 

from inelastic collisions, ionization events which maintain the plasma, energy 

dissipated in the form electromagnetic radiation loss ranging from visible light to other 
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frequencies of electromagnetic waves including X-rays, and heat transferred to the 

background. Therefore, a large R is preferred from this concern to minimize arcing 

current. On the other hand after one discharge, as soon as the plasma is switched off, 

the best condition is to have the capacitor fully charged for the next discharge. But the 

charging time of the capacitor will be based on the time constant formed by the 

capacitor and the resistor. For a practical settings of micro-EDM experiment, C=100pF 

capacitor, V=60V and R=400Ω, 1kΩ, 2kΩ will have time constant τ = 10ns, 100ns and 

200ns respectively.  Essentially this will result in charging 63% of the capacitor and in 

most part of this period the capacitor is not charged enough to make the spark happen. 

From this perspective smaller settings of R will allow the capacitor to get quickly 

charged. Therefore, due to this contradictory relationship the value of R needs to be 

optimized such that it provides a balance between minimizing charging time and 

reducing the chance of arc.  

 

This is usually done by performing experiments as the fastest machining time 

resembles the optimal setting. In arcing condition the machine requires to perform 

back and forth motion repeatedly to stop the short condition which extends the 

machining time whereas, in slow charging case the machine takes longer time simply 

because of the reduction in spark per second. Experiments were conducted on the 

UMMT using the machining conditions shown in Table 4.3 and the machining time is 

shown in Figure 4.16.  The machining time indicates 1kΩ gave the best machining 

time whereas 400Ω took significantly longer machining time and at 2kΩ the 

machining time was slightly longer than 1kΩ, even though statistically the difference 

was not significant (the same experiment was performed 3 times to obtain 

experimental test-retest repeatability).  
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The above experimental results could be similarly observed for optimizing R for 

micro-EDM RC circuit by computing the waveform profile at R=400Ω ~ 2kΩ using 

this proposed model, as could be seen in Figure 4.17. The current waveform up to 

R=600Ω had no zero crossing and remained above 100mA at 60V supply voltage 

beyond the first 90ns which can be considered as large enough current to maintain the 

plasma. From R=700Ω to R=2kΩ it had zero crossing within the first 60ns which may 

indicate that the power from the plasma was cutoff within this time and thus arcing 

was minimized. Therefore, practically the power supply circuit for micro-EDM should 

be designed with resistance R> 700Ω. At resistance values above 900Ω it can also be 

observed that the negative dip was below 50mA compared to those at 700Ω and 800Ω. 

Given that micro-EDM is a stochastic process with significant amount of process noise 

and presence of debris in the gap space changes the waveform – it can be concluded 

that a value of above 900Ω will provide sufficient safety margin in avoiding 

continuous arcing in the circuit.  

 

Table 4.3 Machining Conditions for WEDM Experiments Varying R. 

Item Conditions and Value 

Setup used WEDM 

Feedrate 2.0µm/s 

Voltage [V] 60 

Capacitor Installed [pF] 100pF  

Resistance [Ω] 400, 1000, 2000 

Estimated Inductance L [µH] 1.9043 

Machined slot size  [mm] 1.0 

Dielectric Total EDM 3 oil 

Tool Electrode Tungsten wire (Agie Charmilles) 
70µm diameter

Workpiece Material Stainless steel SUS304 
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Figure 4.16 Machining time of 1mm slot by WEDM using R=400Ω, 1kΩ and 2kΩ.
The error bars are one SD (n=3). 

Figure 4.17 Current waveform computed theoretically at R=400Ω ~ 2kΩ (C=100pF,
L=1.9043µH, V=60V, Plasma resistance Rb=50Ω). 
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4.5.2 Effect of inductance on the current waveform 

In section 4.4.1 as part of the validation of the model, current waveforms at different 

wire length in order to vary the inductance were generated using this model and was 

compared with the experimental data shown in Figure 4.9. In this section, changes in 

current waveform with varying inductance will be further discussed. It can be observed 

in Figure 4.18 that the peak current changes significantly from 660mA to 530mA and 

the pulse becomes broader from 20ns to 30ns (first zero crossing of current after the 

beginning of a discharge) for a change of inductance from 0.2457µH (l = 0.20m; 

AWG20 wire) to 0.5469µH ((l = 0.40m; AWG20 wire). At L=1.9043µH (l = 1.20m; 

AWG20 wire) the pulse becomes much broader having a width of around 50ns and the 

pulse peak changes to 360mA. But the computed energy under all these three 

waveforms remains the same at around 190nJ. The similar effects of varying 

inductance by varying the length of the wire can also be observed in Figure 4.9. 

Masaki, 2010a, observed that by increasing the wire length, the craters on the surface 

became larger, shallower and flat; and therefore, this can be applied to improve the 

properties of the machined surface. One possible explanation to this can be provided 

assuming that the disk heat source based electro-thermal model is more appropriate at 

very small energy spark compared to the point source head model (Yeo et al., 2008; 

Dibitonto et al., 1989); and therefore, over longer spark duration but with the same 

amount of energy delivered – there is sufficient time for the heat to get conducted and 

material removal by melting action is higher. On the other hand with very short pulse – 

there is rather less time for conduction and due to higher energy density removal by 

evaporation is increased where the heat is lost to the dielectric rather quickly. 

However, this argument requires further investigation. But, this can be stressed from 

the experimental observation that variation in L can be instrumental in changing 
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surface properties of machined workpiece. Larger L increases machining time as the 

pulse gets larger but switching L can be an option where the initial machining is done 

with smaller L value and the finishing can be obtained by larger L value.   

 

 

 

4.5.3 Effect of capacitance C and supply voltage V on the waveform 

Varying capacitance C and V increases the amount of energy stored in the power 

supply (as Ed=½CV2). The effect of C can be observed from the simulation of pulse 

waveform shown in Figure 4.19 with 3 capacitance values of C=50pF, C=100pF and 

C=200pF. Pulse peaks were at 265mA, 345mA and 440mA; and pulse width was 

found to be 37ns, 50ns and 70ns respectively (which are given by the first zero 

crossing of current after the beginning of a discharge). It can be observed from the 

current waveform that both the peak and pulse width changed due to the change in 

capacitance which is similar to the change in inductance L. This is due to the fact the C 

0.2457µH 
0.5469µH 
1.9043µH 

Time (ns) 
Figure 4.18 Current waveform at varying inductance value at 0.2457µH, 0.5469µH
and 1.9043µH (C=100pF, R=1kΩ, V=60V, Plasma Resistance Rb=50Ω) for equal
energy discharged in all 3 profiles around 190nJ. 
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actually changes the impedance and thus modulates the frequency of the waveform and 

at the same time there is higher energy stored which forces the pulse peak to be higher. 

Experimentally this was also observed in the pulse waveform shown in Figure 4.15 

obtained at 110V but a much higher capacitance value which significantly changed the 

pulse width to 165ns~171ns and the pulse peak to 4.7A~5.6A indicating a change in 

both pulse width and peak.  

 

 

 

 

On the contrary, changing the supply voltage V (60V, 80V and 100V) did not change 

the value of pulse width (remained at 50ns) but significant change in the pulse peak 

was observed (345mA, 460mA, 575mA respectively) as could be seen in Figure 4.20. 

This is also to be noted that the energy to be discharged in a pulse changes 

proportionally to the square of the input voltage. Therefore, it can be inferred from the 

earlier discussions in this chapter that higher input voltage will create a deep crater and 

will have increased proportion of removal by vaporization.  Therefore, for rough 

Figure 4.19 Current waveform at varying capacitance (C=50pF, 100pF, 200pF)
(V=60V, R=1kΩ, L=1.9043µH, Plasma Resistance Rb=50Ω). 
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machining higher supply voltage value around 110V~120V is preferred and for final 

finishing cut the voltage needs to be reduced to 60V. 

 

 

 

 

 

4.5.4 Non-linear curve fitting for estimation of stray capacitance and 

inductance  

Stray capacitance determines the amount of minimum energy spark size that a circuit 

is able to provide and therefore it is desired to have the equipment and power supply to 

be designed with minimum stray capacitance. Existing methods for estimation of stray 

capacitance depend on the fact that the discharge current pulse width depends on the 

capacitance which is a rather indirect and inaccurate inference for measurement of 

stray capacitance. Masaki and colleagues (2010a) proposed that the measurement of 

stray capacitance can be performed from actual discharge energy by observing the 

Figure 4.20 Current waveform at varying supply voltage (V=60V, 80V, 100V)
(C=100pF, R=1kΩ, L=1.9043µH, Plasma Resistance Rb=50Ω). 



Chapter 4 | Analysis of Micro-EDM Electric Characteristics 

103 

 

current and voltage waveform and computing their product. This requires a voltage 

probe to be connected to the circuit for simultaneous acquisition of a voltage and a 

current waveform which introduces additional stray capacitance and therefore, 

incurring inaccuracy in its measurement. During the computation of stray capacitance, 

Masaki et al, 2010a, computed the total discharge energy to be 31pF and the system 

was installed with a 10pF capacitor. During the measurement they used a voltage 

probe with 13~17pF capacitance and from this they concluded that the system had a 

stray capacitance between 4~8pF with a mean value of 6pF. This clearly indicates the 

inaccuracy in the measurement of stray capacitance. Another alternative solution for 

stray capacitance measurement is to obtain the current waveform alone (without 

installing a voltage probe) from inductively coupled current probe (inductively couple 

probe does not have any loading or minimal loading effect on the power supply 

network) and then performing non-linear curve fitting of the waveform with this model 

(given by equation 4.31 and 4.32). The green profile in Figure 4.21 shows one such 

plot obtained from the system using only a current probe. As there is sinusoidal 

oscillation in the current waveform, the underdamped case was taken as the solution 

for fitting. Non-linear curve fitting was done to obtain the value of C in the equation 

and the input values were R = 1000Ω; L = 0.5019µH (total 10cm wire for the capacitor 

to tool electrode and 30 cm for workpiece to capacitor in the return path; explained in 

section 4.4.1); Rb = 50Ω, V=60V. The experimentally obtained current waveform 

provided input value for the current at stray capacitance.  

 

The fitting was performed using custom written Matlab program and the non-linear 

fitting was done using Matlab routine lsqcurvefit (lsqcurvefit, R2012a). This routine 

performs non-linear fitting to obtain least square error and finds coefficients x that best 
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fit the equation of the model (equation 4.32) and the optimization is done by 

computing the following equation: 
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where, input data is xdata, and the observed output is ydata; and xdata and ydata are 

vectors of length m and F (x, xdata) is a vector-valued function (equation 4.31 in this 

case). Large scale optimization was used as the fitting option with an initial guess of 

C=50pF. The fitting program returned the value of stray capacitance based on the best 

fitted curve.  

 

The red profile in Figure 4.21 has been obtained from the model of equation 4.32 

computed using the value of stray capacitance, C, obtained from curve fitting. After 18 

iterations of computation the model estimated the stray capacitance to be 6.58pF which 

matches well with the experimentally reported value of 6pF by Masaki et al. (2010a). 

Similar fitting can also be performed for obtaining any other parameters of the 

proposed model. Non-linear curve fitting was performed with another current 

waveform (Figure 4.22) for computing the value of inductance. With an initial guess of 

L=5µH and input values of R = 1000Ω, C=39pF, Rb = 50Ω and V=60Vthe model 

computed the value of L = 0.58936µH (actual L = 0.5776µH).  
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Figure 4.21 Non-linear curve fitting of the current waveform for computing stray
capacitance. For fitting input to the model was R = 1000Ω; L = 0.5019µH; Rb = 50Ω,
V=60V and initial guess of C=50pF. 

Figure 4.22 Non-linear curve fitting of the current waveform for computing the value 
of inductance. R = 1000Ω, C=39pF, Rb = 50Ω, V=60V actual L = 0.5776µH. With an 
initial guess of L=5µH the model computed the value of L = 0.58936µH.  
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4.6 Conclusion 

In this chapter a model of the RLC network of micro-EDM plasma and power supply 

was proposed. For capacitive plasma discharge the plasma can be resolved into 

capacitive, resistive and inductive components. For micro-EDM capacitive and 

inductive component of the plasma can be ignored and the model was proposed using 

the resistive component of the plasma. Circuit equations can then be obtained based 

the equivalent resistive component and the proposed model current waveform and 

discharge energy. The proposed model, when suitably configured and used, has shown 

good agreement with experimental data. Robustness of the model was demonstrated by 

validating it on multiple experimental results reported in the literature. Using the 

proposed model the changes in the waveform due to changes in parameters like input 

voltage, capacitance and inductance were observed which provided significant insight 

to the process physics of micro-EDM process which can be utilized for process 

parameter optimization. Optimization on the resistance R in the charging loop of the 

capacitor was also performed and was compared with experimental results for 

selection of optimum resistance to minimize arcing during machining which is utilized 

for the design of RC relaxation type power supply. This model has also demonstrated 

the capability of calculating inductance and capacitance using non-linear least square 

fitting to the model. It was observed that significant changes in the supply voltage and 

use of large capacitance require the plasma resistance to be recomputed as these 

change the electrode plasma interface diameter significantly. In the following chapter 

the design of a power supply will be presented based on the fundamental of process 

physics elucidated from this model.  
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5 Micro-EDM Setup for Complex Micromachining 

 

 

This chapter focuses on the development of power supply, improvement of machining 

performance by improving gap control, and implementation of 3D-synchronous 

milling EDM for machining true 3D features. The first section of this chapter presents 

the design of a micro-EDM power supply based on the fundamental insights developed 

and observation from the theoretical analysis in chapter 4. The second section 

discusses a new algorithm based on variable feedrate for gap control for the 

improvement of machining time. The third section focuses on the implementation of 

3D micro-EDM milling for machining complex shapes and structures. The fourth 

section presents a new and improved electrode machining technique for machining of 

straight electrodes, which is a combination of existing block EDG process and 3D 

micro-EDM milling process. The fifth section of this chapter presents the experimental 

results of studying electrode wear ratio (EWR), machining time, MRR and spark gap. 

The experiments will be conducted to understand the machining characteristics of the 

developed setup which is essential for performing complex 3D micromachining 

experiment. The sixth section demonstrates the capability of the micro-EDM setup by 

presenting a wide range of micromachining examples of holes and 3D features 

between 5µm~50µm around the lower boundary of micromachining domain which 

prepares the UMMT for exploration of compound micromachining.  
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5.1 Design of Micro-EDM Power Supply 

 

Stray capacitance determines the amount of minimum energy spark size that a circuit 

is able to provide and therefore it is desired to have the equipment and power supply to 

be designed with minimal stray capacitance. A careful design of the equipment and 

control circuits is needed to shorten the electric feeders, minimize usage of parallel 

metal plates around the discharging circuit that can function as electrodes, and increase 

the distance between unavoidable parallel electrodes in the discharge line and power 

supply unit. The use of a granite base for the machine tool minimizes stray capacitance 

in addition to its other role of vibration damping. UMMT presented in chapter 3 

(Rahman et al., 2003) of this thesis was initially designed with the concern of 

minimizing stray capacitance and therefore, this design effort was solely focused on 

the development of power supply and signal generation for short circuit detection to be 

employed for gap control with the motion controller.  

 

The schematic of the developed circuit is shown in Figure 5.1 and the picture of the 

circuit is shown in Figure 5.2. The value of the resistance R in the charging loop of the 

circuit was selected based on the discussion and experimental results presented in 

section 4.5.1 of this thesis. From the discussion it was concluded that using 1kΩ 

resistor for micro-EDM is an optimized value between minimization of arcing and 

quick capacitor charging time. Based on the discussions in sections 4.4.1 and 4.5.2 it 

was concluded that the circuit will be designed to have minimum L for most general 

purpose application and therefore, the circuit was connected to the Z axis head and Y 

table of the UMMT with the minimum cable length possible. Due to the limitation of 

structure in the setup – the minimum length of the cable required for connecting both 
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the workpiece and electrode to the capacitor is 1.2m and AWG20 diameter copper wire 

was used for the connection. The diameter of the wire cannot be increased significantly 

as at larger diameter the inductance is reduced but this also leads to the increase in 

stray capacitance as the stray capacitance of a wire is proportional to the core diameter 

and thickness of the insulation of the wire. This wire contributed to 1.9043µH 

inductance to the designed circuit.  

 

 

 

 

 

 

 

Figure 5.1 Schematic of the designed micro-EDM power supply circuit. 

Comparator 2 

Comparator 1 
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5.1.1  Comparator logic for feeding, holding and retracting in gap 

control  

The original gap condition monitoring CPU interfaced to the UMMT employed a 

mixed signal microprocessor for EDM condition monitoring. Earlier implementation 

of the circuit was done to continuously sample an averaged form of discharge current 

at a very high frequency using a fast analog-to-digital converter. As practically there is 

no physical switching off in the power supply in RC-based power supply contrary to 

the transistor-based power supply, the pulse frequency is extremely fast in terms of 

tens of nano-seconds in RC-based unit. Additionally the direct measurement using 

ADC may cause quite a bit of loading on the inductance and capacitance on the circuit 

Figure 5.2 (a) Shows the main RC power supply unit; (b) shows the logic unit for feed,
return and hold signalling to the motion controller. 
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due to the long wire needed to feed the signal to the signal processor board. Hence, a 

new design was made which considers three scenarios of gap conditions to be 

discriminated through the use of 2 comparators connected to detect voltage drop across 

a very small resistor R2 (Figure 5.3) placed in the charging loop. The comparators 

(implemented using LM324 operational amplifier) take the scaled down supply voltage 

as a reference input and compares with the voltage drop across the resistor R2 for logic 

output.  The three conditions and the corresponding outputs of the comparators are 

listed in Table 5.1. The advantage of the comparator circuit is that the power supply 

remains isolated from the rest of the circuit and signal cables primarily by means of 

operational amplifiers with high impedance, and since the comparator logic is binary 

in nature the signal feeding lines were further isolated using optocouplers. 

 

Table 5.1 Comparator logic table for feeding, holding and retracting condition 

EDM Condition Comparator 
1 (25% 

threshold) 

Comparator 
2 (50% 

threshold) 
No spark or minimal spark observed and therefore the Z 

axis should continue feeding down 

Low Low 

Spark observed and discharge current crossed the 

primary threshold value and therefore, Z axis should hold 

on to feeding, but retracting is not required 

High Low 

Spark observed and discharge current crossed the 

secondary threshold value and therefore, Z axis should 

retract to clear the short circuit condition. 

High High 

 

It is not expected that a continuous current flows through the resistor R2 unless there is 

a short circuit or a continuous discharge occurring resulting in a current flowing from 

the DC source via R to through the shorted electrodes and returning to ground via R2. 
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This is not acceptable favorable scenario in micro-EDM and therefore, in both of those 

cases the tool electrode needs to retract. The secondary threshold value defines the 

voltage drop across the resistor R2 at which tool electrode requires to be retracted. The 

primary threshold on the other hand indicates the hold condition to signal temporary 

stop of feeding Z axis until the voltage across resistor R2 has dropped below the 

threshold. The detection thresholds selected for primary threshold is approximately 

25% and secondary threshold is approximately 50% of the maximum voltage drop 

across R2 when the circuit is continuously ON over a sampling period (or the primary 

and secondary threshold values are approximately 0.125% and 0.25% of the supply 

voltage respectively). The 25% threshold value for hold condition and 50% threshold 

value for return condition can be approximated from simple calculations using an 

estimate of charging and discharging time of the RC circuit. Let us, consider a case 

where DC supply source is set to 100V. Therefore, through the charging loop, if the 

electrodes are shorted together, voltage drop across R would be 99.5V and across R2 

would be 0.5V which is the case of shorting and this is the maximum voltage drop 

across the resistor R2. If over a period the averaged value across the resistor R2 is 

above 0.125V (25% of 0.5V) then the primary threshold will be set to High to indicate 

that the hold condition has occurred; and similarly, if the voltage across resistor R2 is 

above 0.25V (50% of 0.5V), then the secondary threshold will also get set to High to 

signal retraction of the tool electrode.  

 

The smallest obtainable pulse width for the discharge pulse is around 30ns with only 

stray capacitance (20 pF; the value of the stray capacitance is discussed in section 

5.1.2) and after a discharge the capacitor requires to be charged. During the charging 

cycle, with 1KΩ resistance for the resistor R and 20pF stray capacitance would give a 
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time constant τ = 20ns (given by R×C) and 5 times τ would be 100ns (with varying 

current flow rate over time). The voltage profile across R2 during the charging could 

be seen in Figure 5.3. Now one of the probable fastest discharge scenarios can be 

considered where a discharge occurs followed by only 63% charging of capacitor 

which takes only one τ (20ns) and immediately after that there is another discharge and 

continues in the same manner. This can be considered as the fastest discharge as 

during a charging cycle over the first τ the fastest voltage recovery occurs. While, 

during the first τ – the gap voltage recovers to 63%, over the second τ this only 

recovers another additional 23% of the voltage. Thus for a hypothetical case – this can 

be considered a fastest discharge. In such a scenario the total cycle time is only 50ns, 

30ns for during the discharge when there is no current flowing through R2 and 20ns 

charging when current is flowing through R2 following the profile of Figure 5.3. 

During the second and subsequent discharges, if the discharge follows immediately 

after one τ of charging (63%) then a small amount of current that will still flow 

through R2 even during the discharge in the discharge loop. But, as the objective of 

this calculation is to provide for a rough estimation of the voltage which can be used as 

threshold and given that micro-EDM is a stochastic process and the fastest case may or 

may not happen, the flow of current during the discharging phase can be ignored.   . 

Now the mean voltage over one such cycle is computed to be 0.125V (computed by 

integrating the area under the curve of Figure 5.3 up to one τ to obtain the voltage and 

then divided by 50ns to compute the mean) which is about 25% of the maximum 

voltage drop value (0.5V) and this is set as the primary threshold for the comparator 

signaling hold signal. If a true discharge caused the threshold to reach this value then 

during the hold period the discharge frequency will be reduced as the electrode stops 

approaching towards the workpiece and thus the hold signal will get cleared.  
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On the contrary, if a short circuit or arcing has caused this situation then during the 

hold the arcing may still continue and the voltage drop across the resistor R2 will be 

even higher. Therefore, the secondary threshold needs to be above 25% of the 

maximum voltage drop value in order to determine the return condition and over the 

value above primary threshold (25%) but below secondary threshold will be 

considered as the hold condition. It is desirable to minimize the false positive detection 

to minimize time spent in gap control and also to minimize false negative as arcing 

causes damage to the workpiece. Therefore, a threshold value in the middle of 25% to 

100% (62.5%) can be considered to balance the false positive and false negative. But, 

practically as arcing is less desirable compared to cost of increase in machining time 

by gap control – a 50% threshold was set to fulfill the return condition.  This indicates 

that if the voltage drop across R2 is 0.25V or above (50% of the maximum possible 

Figure 5.3 Voltage profile across resistor R2 during the charging of capacitor C
following a discharge. 
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voltage drop across R2) then this will assert a short circuit condition in the logic output 

and the machine would require retracting the tool electrode.  

 

5.1.2 Discharge current waveform at stray capacitance  

 

It has been mentioned earlier in this chapter that the presence of stray capacitance in 

the circuit is one factor that determines the limit of minimization of the discharge 

energy. Energy minimization is required for machining very fine features and in 

section 3.5.2 of this thesis it has been established that for micromachining in the lower 

dimensional range of micromachining domain the micro-EDM power supply should be 

able to provide pulses with discharge energies around 15nJ~30nJ. In section 3.5.3 of 

this thesis it has also been discussed that the present transistor type micro-EDM power 

supply provides discharge energy around 56.25µJ in its finest setting which lead to this 

development work with a target of obtaining discharge energies around 30nJ~50nJ. 

Figure 5.4 shows a fine spontaneous spark of 30 ns pulse width using stray capacitance 

at 60V supply voltage. The peak current is 200mA as could be seen in the trace. Using 

the micro-EDM power supply model presented in chapter 4 of this thesis and applying 

non-linear curve fitting to the pulse waveform (explained in section 4.5.4) the stray 

capacitance is estimated to be around 20pF~21pF having discharge energy of around 

~37nJ. This can be compared to the requirement of smallest discharge energy 

established in section 3.5.2 which was estimated to be in between 30nJ~50nJ.  

 

The fitting to the waveform is shown in Figure 5.5 which shows good agreement 

between the data fitted to the model and experimental waveform profile (specially, the 

first lobe of the discharge waveform). However, the subsequent ringing after the first 
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lobe shows a comparatively less damped response with higher amplitude of oscillation 

(specially, observable in the second lobe) in the experimentally obtained waveform. 

Even though, the amplitude deviates, the overall pattern and the frequency of 

oscillation match well for the second lobe. This indicates that the capacitive and 

inductive reactance of the model matches well with the experimental setup (as the 

ringing oscillation of underdamped circuit is contributed by the presence of capacitive 

and inductive element in a circuit). The deviation in amplitude can be explained by 

considering the presence of debris in the discharge gap generated after the first lobe of 

discharge which caused the overall resistance of the plasma to be reduced and thus 

allowing larger current to flow through the gap.  

 

 

 

 

 

 

Figure 5.4 Discharge pulse waveform obtained at supply voltage of 60V with stray
capacitance obtained from the new power supply developed for UMMT. The observed
pulse width is around 30ns and pulse peak is 200mA. 
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Experiments were performed to study the crater size on the machined surface and 

machinable feature size using the power supply developed. Figure 5.6(a) shows the 

SEM image of a surface machined using stray capacitance at 60V supply voltage and 

crater sizes around ~2µm can be observed. Figure 5.6(b) shows two 10µm thru slots on 

50µm thick SUS-304 plate with 2.5µm wall separating the slots was machined using 

stray capacitance at 60V. The slots were machined using 3D micro-EDM milling 

which will be explained in details in the following section. Figure 5.6(c) shows 

machined hole using square electrode (120µm length) and also shows fine edges with 

very thin crust layer indicating reduced re-solidification and increase in removal by 

vaporization. This can be compared to Figure 3.7 which shows a similar hole 

machined by a square electrode using the finest energy settings of the transistor-based 

power supply. The improvement in machining performance using micro-EDM is 

Figure 5.5 Non-linear least square curve fitting of the current waveform for computing
stray capacitance. For fitting input to the model was R=1005Ω; L=1.9043µH; plasma
resistance Rb=50Ω, supply voltage V=60V. The initial guess for the stray capacitance
was set to 50pF. 
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evident from the edge of the machined hole. The importance of minimum energy 

settings in obtaining fine features and shapes can be observed in Figure 5.6(d) which 

shows a failed attempt to machine walls and steps of 1µm size. It can be seen that 

overall a pyramid looking structure could be seen but the steps and walls are not 

formed.  

 

As accuracy of present micro-EDM process technology is around 1~2µm (Kawakami, 

T., et al., 2005; Kunieda, M. et al., 2005), thus the above experimental results can be 

considered state-of-the-art for micro-EDM and suitable for fine micromachining (this 

will be further established by performing complex micromachining of high-aspect-

ratio features in section 5.6). Furthermore, with the designed circuit the minimum 

discharge energy requirement of 30nJ~50nJ is achieved (discharge energy of the 

developed setup at stray capacitance ~37nJ). Extensive research in comparing the RC 

power supply designed in this section and the existing transistor power supply on the 

UMMT has been reported by Jahan et al. elsewhere (Jahan, MP., et al., 2009(a); Jahan, 

MP., et al., 2008). Their experimental results clearly substantiated the claim that the 

RC power supply performed significantly better for micro-EDM compared to 

transistor-based power supply as well as this is suitable for performing fine quality 

machining. 
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5.2 Implementation of Jump Distance Based Gap Control 

In micro-EDM electrode gap condition monitoring is critical to successful machining 

and the objective is to maximize the time spent during the process in discharge spark 

and to minimize the time spent during the process in getting the electrodes shorted and 

arcing. One requirement is to identify the condition by observing the discharge current 

which has been implemented in the new power supply hardware proposed and 

discussed in details in section 5.1. The second requirement is to retract the tool 

(a)  (b) 

(c)  (d) 

Figure 5.6 (a) ~ 2µm crater size obtained by machining only with stray capacitance at
60V which resulted ~37nJ discharge energy. (b) Two 10µm thru slots on 50µm thick
SUS-304 plate with 2.5µm wall separating the slots was machined using stray
capacitance at 60V. (c) Machined hole using square electrode shows fine edges with
very thin crust layer indicating reduced re-solidification and increase in removal by
vaporization. (d) A failed attempt to machine walls and steps of 1µm size to indicate
the low energy settings and machinable feature size in micro-EDM.  
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electrode opposite to the feed direction when the hardware detects a retract condition 

and sends the signal to the motion controller. In large die-sinking EDM servo control 

of the gap is usually performed using hydraulic servo system. The UMMT in 

discussion is designed using an advanced numerical control motion controller where 

all 4 axes can be positioned in coordinated manner simultaneously.  

 

In the original implementation of the gap control on the UMMT, the tool electrode was 

retracted opposite to the feed direction using the same feedrate used for feeding the 

electrode for machining. Figure 5.7 shows a simplified form of the decision making 

flowchart for the gap control. Usually micro-EDM is not a fast process having 

maximum feed at few microns per second which is comparatively slow in changing the 

flushing condition. Figure 5.8(a) shows the oscilloscope trace across the electrode gap 

to show machining condition during gap control where the retraction occurs at the 

same feedrate as the feeding of the electrode. It can be seen from the trace that during 

the existing gap control there is slow recovery to machining from a short circuit. 

Significant amount of short circuit/arcing period is observed as there is a large 

continuous block of period where discharge/shorting/arcing process was continuing 

and this is attributed to the feedrate being at 2µm/s. It can also be observed that after 

retraction the following one second there was no spark which indicated that the Z axis 

moved forward at 2µm/s and required one second to approach back to the workpiece 

again.  
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 A jump based gap control was implemented which performs by retracting the 

electrode in the direction opposite to the feed direction at a much higher feedrate and 

for a larger distance which can be considered as a kind of jump motion after detection 

of a retract command (Kunieda, et al., 2005, Masaki, et al., 2010b). This was 

controlled by two input parameters to the controller defined as ‘retract feed’ and 

‘retract distance’. The electrode also approaches the workpiece at higher feedrate and 

requires another two input parameters ‘approach feed’ and ‘approach distance’. In this 

new gap control implementation the short circuit/arcing condition can be eliminated 

very quickly and additionally, it also helps to create a wider gap for efficient flushing 

 

Figure 5.7 Simplified flow chart of the gap control algorithm implemented in the
existing code base of the motion controller. 
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of debris from the gap space. It can be seen in Figure 5.8(b) that the new algorithm 

does not have long period when current flows through the charging resistor. 

Additionally the machining seems to be more homogeneously distributed and does not 

show a long idle period. The decision making for this gap control is implemented 

inside the compute forward motion and compute retract motion segment of the 

flowchart shown in Figure 5.7.   

 

 

 

 

 

 

Experiments were conducted on the UMMT using the RC-based power supply 

described in section 5.1 of this chapter to observe the machining time improvement 

(a) 

(b) 

1 second

1 second

Figure 5.8 Oscilloscope trace across the electrode gap to show machining condition 
during gap control. (a) The conventional gap control originally implemented on the
UMMT suffers slow recovery to machining after retraction and significant amount of
short circuit/arcing period is also observed as the retraction was done at 2µm/s. (b) 
Gap control based on jump algorithm shows quick retraction from short circuit/arcing
and also the recovery to machining was very quick.  



Chapter 5 | Micro-EDM Setup for Complex Micromachining 

123 

 

and changes in electrode wear rate with the new gap control strategy. Table 5.2 shows 

the parameters used for the machining. In Table 4.1 it can be observed that the gap 

width at both 60V supply voltage and 470 pF capacitance as well as 100V supply 

voltage with 11pF is around 3.30µm. Therefore, it can be assumed that at 80V and 

47pF (Table 5.2) the gap width will be less than 4µm. Hence the ‘retract distance’ was 

set to 5µm in order to guarantee that the electrode has been retracted sufficiently to 

break any possibility of short circuit/arcing. ‘Approach distance’ was set to a slightly 

smaller value than the ‘retract distance’ (4.5µm) to ensure some time and distance for 

transition from the jump of the tool electrode to gap condition monitoring (as well as 

to ensure that in case of an overshoot the tool electrode does not initiate short/arcing 

condition again). The ‘retract feed’ and ‘approach feed’ was set to 100µm/s which 

would require approximately 50ms for the retraction to execute. Higher feedrate was 

not used as it was observed in section 3.4 that the machine requires 10ms to respond to 

the motion command and requires about 20ms of settling time. 

 

Holes were bored on 50µm and 100µm SUS-304 plate using tungsten electrode and 

boring of hole was repeated 10 times on each plate for each gap control algorithm. 

Figure 5.9(a) shows the machining time and Figure 5.9(b) shows the wear on the tool 

electrode. Even though machining time using the jump based gap control improvement 

was not considerably faster on 50µm thick SUS-304 plate (80 seconds vs 77 seconds), 

machining time improvement was observed for boring on 100µm thick plate (207 

seconds vs 195 seconds). There was no remarkable difference in observed tool wear 

rate between the two gap control algorithms. As the primary target of this gap control 

was to improve machining time of thru and deep holes/features (as machining time 

was not significantly improved for 50µm deep hole boring), the surface properties of 
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the workpiece surface and tool electrode surface was not investigated. Furthermore, 

from this experiment it is evident that the machining time was improved due to 

reduced arcing. On the other hand it is known that arcing causes surface damage and is 

not desirable (Kunieda, M. et al., 2005) it was perceived that there was no detrimental 

effect on the surfaces of the workpiece and electrode if not improvement. 

Table 5.2 Parameters for comparing machining time with process feed gap control and 
jump based gap control 

Parameter Value 
Retract Feed 100 µm/s 
Retract Distance 5 µm 
Approach Feed 100µm/s 
Approach Distance 4.5 µm 
Machining Feed 2µm/s 
Electrode  Tungsten  
Workpiece SUS-304, 50µm and 100µm thick 
EDM Oil Total EDM 3 dielectric oil 
Supply voltage 80V 
Capacitor 47pF 
Electrode dia ~ 45µm 
Number of holes machined 10 holes for each group 
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Figure 5.9 Comparison of experimental machining time and electrode wear for
machining using process feed rate gap control and jump based gap control on 50µm
and 100µm SUS-304 plate.  
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5.3 Implementation of 3D micro-EDM Milling on UMMT 

Commonly used for traditional mold machining, die-sinking EDM process has found 

wide-spread industrial applications. However, in micro-EDM electrode wear ratio is so 

large that a fine complex shaped electrode cannot be used because the electrode shape 

quickly changes. Moreover, it becomes specially a challenge to fabricate such complex 

electrodes when the feature sizes are below 50µm. These problems can be resolved 

using a simple cylindrical electrode that moves along a designed 3D tool path to 

perform non-contact milling like processing by micro-EDM (Yu, Z. Y., et al., 1998). 

Figure 5.10 illustrates the die-sinking and micro-EDM milling process. There exist 

serious issues in micro-EDM milling related to tool wear compensation and 

maintenance of the tool shape, in addition to control of the layer thickness to be 

machined.  Most reports on micro-EDM milling in literature propose a layer-by-layer 

machining technique (Bleys, P., et al., 2004; Bleys, P., et al., 2002; Hang, G., et al, 

2006; Pham, DT., et al., 2004; Yu, Z. Y., et al., 1998). But, the problem with such 

layer-by-layer machining is that the machining time is significantly longer than die-

sinking (Yu, Z. Y., et al., 1998). Lim et al., (Lim, HS., et al., 2003) proposed a method 

where the X-Y axis moves at a constant speed in one direction and Z axis performs gap 

control given by the equation 5.1 below: 

 

]sgn[ thgZ VVkF −×=        (5.1) 

 

where, FZ is the Z-axis feedrate, Vg the gap voltage between the electrode and 

workpiece and Vth the threshold value for the gap control, and k is a control parameter 

that determines the speed of the micro-EDM gap control. This process is prone to form 
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more side wear than bottom wear and therefore, the electrode shape becomes narrower 

and slot becomes shallower as the process progresses and thus caused the machining 

failure that they observed during their experiments.  

 

 

 

 

 

A new method of micro-EDM milling was proposed by Masaki et al. (2010(b)) which 

has the capability to perform fast machining while maintaining the electrode shape by 

having electrode wear only at the bottom of the electrode. On the UMMT this micro-

EDM milling algorithm was implemented (Figure 5.11). In this implementation Z axis 

is programmed to provide up and down motion for the gap control based on the 

sampled gap voltage status while the X and Y axes are programmed to make linear or 

circular oscillatory motion simultaneously along the contour to be machined. In order 

to function properly the most important configuration parameter is the ratio of the 

feedrate of Z axis for machining and the X-Y axis motion to distribute the sparks over 

the entire area of the contour which will in turn minimize side wear. The electrode 

(a) (b) 

Figure 5.10 Schematic representation of (a) die-sinking micro-EDM, (b) micro-EDM
milling (Jahan, MP., et al., 2011).  
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wear to be distributed at the end of the tool electrode, in order to achieve the ease of 

machining uniformity and the Z-direction compensation of tool wear. Ideally, the X-Y 

feedrate is expected to be as fast as possible. But there is a limit to the feedrate because 

upon motion reversal at very high feedrate there could be higher reversal error from 

driving axis. From the experiment performed in section 3.3 it was discussed that on the 

UMMT quadrant reversal could be observed above 80mm/min feedrate and therefore, 

the practical oscillatory feedrate for X-Y axes is between 30mm/min ~ 60mm/min.  

 

 

 

 

 

Experiments were conducted to study the achievable average surface roughness of the 

implemented micro-EDM milling process and to compare the results with conventional 

die sinking process. Machining was conducted using a 2mm copper tungsten electrode 

and the machining parameters are shown in Table 5.3. Micro-EDM milling 

experiments were performed to machine 10µm deep and 2.8mm long slots with flat 

surfaces were machined by giving 30mm/min XY feedrate. The surface roughness was 

measured using Taylor Hobson surface profiler (Talysurf Model–120) and the results 

Oscillatory motion in 
X-Y plane between 
30~60mm/min 

Gap control 
in Z axis 

Oscillatory motion in 
X-Y plane between 
30~60mm/min 

Gap control 
in Z axis 

Figure 5.11 Schematic of milling-EDM process with oscillatory motion in X-Y plane 
and simultaneous gap control in Z axis. 



Chapter 5 | Micro-EDM Setup for Complex Micromachining 

128 

 

are shown in Figure 5.12. It shows the comparison between die-sinking and EDM 

milling process. It can be observed from the plot that the surface obtained from EDM 

milling provides slightly better surface than the die-sinking process. This could be 

attributed to the improved side flushing condition with the moving electrode in EDM 

milling compared to die-sinking where debris may get trapped which may cause 

arcing.  Further detailed characterization and extensive research on the surface 

properties between die-sinking and EDM milling was performed by Jahan et al., on the 

developed setup (Jahan, MP., et al., 2010, Jahan, MP., et al., 2009(b)). They observed 

traces of surface defects in die-sinking micro-EDM, specially at low voltages due to 

arcing and short circuit condition occurring. This effect was removed by the tool 

movement of micro-EDM milling and thus micro-EDM milling has the capability to 

generate smooth, shiny and defect free surface with lower Ra and Rmax along with 

uniform crater distribution. They also concluded that very low discharge energy can be 

applied more easily in micro-EDM milling without making the machining process 

unstable due to good inherent flushing conditions. Beyond improvement of surface 

roughness, the primary advantage of micro-EDM milling is the capability of 

machining fine features and intricate shapes in 3D using simple cylindrical electrode 

which is easy to prepare compared to the complexity in electrode preparation for die-

sinking operation. In section 5.6 several complex micromachining examples are 

presented to further demonstrate the capability of micro-EDM milling for 

micromachining. 

 

 



Chapter 5 | Micro-EDM Setup for Complex Micromachining 

129 

 

Table 5.3 Machining parameters and conditions for studying surface roughness by 
micro-EDM milling and die sinking. 

Parameter Value 
Voltage (V) 140,130,120,110,100 
Capacitance (pF) 110 
Resistance (Ω) 1000 
Dielectric Total EDM 3 dielectric oil 
Tool Electrode Cu-W (2mm)  
Workpiece Tungsten carbide 
Machined Depth 10µm 
X-Y motion 2mm (X), 2mm (Y), 30mm/min 
 

 

 

 

5.4 Straight electrode machining for micro-EDM 

The non-contact nature of EDM makes it possible to use a very long and thin electrode 

for machining tough die material. But electrode wear has to be compensated by 

changing to a fresh electrode, or by preparing a longer electrode right at the beginning. 

Another alternative is to fabricate the electrode in-situ for further machining. It is not 

Figure 5.12 Comparison of surface roughness between die-sinking and EDM milling
process using Cu-W electrode.  
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recommended to change the micro-electrode during machining, because it incurs 

inaccuracy due to the change in setup or re-clamping of the micro-electrode.  

 

From an electrode thicker than the required diameter, a cylindrical electrode can be 

fabricated by the EDG process using a sacrificial electrode (Masuzawa, T., 2000). 

Different setup and trajectory control of the sacrificial electrode can be used in this 

process (Fleischer et al., 2004; Kurita et al., 2005), such as using a ‘stationary block’, 

‘rotating disk’, ‘wire EDG (WEDG)’, etc. Schematics of these processes are shown in   

Figure 5.13. In stationary block EDG (BEDG) setup shown in Figure 5.13(a) due to 

dimensional change in the sacrificial electrode, the diameter of the tool electrode 

fabricated is usually unpredictable, but provides a smooth surface. The use of a 

rotating disk involves a rather complicated setup although it provides good shape 

accuracy (Figure 5.13(b)). The WEDG process (Figure 5.13(c)) has the capability of 

producing extremely slender rods with good aspect ratio and has received wide 

industrial acceptance due to the prospect of automation. The advantage of the block 

electrode method is mainly in its capability to fabricate electrodes that are not 

cylindrical in shape (for example, triangular or square electrode), in addition to being 

economical with lower operating cost (Ravi N. et al., 2002). Another important factor 

is that the diameter precision of commercially available brass wire commonly used for 

WEDG has a diameter precision of ±1µm (Masaki, T., et al., 2007), which is added to 

the inaccuracy of micro-EDM process (Kawakami, T., et al., 2005) and therefore in 

some cases the surface finishing efficiency was not found to be as high as rotating disk 

method (Lim, HS., et al., 2003). 
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A new process has been developed to combine the advantages of two electrode 

machining techniques, BEDG process for being economical and simple and for its 

capability to produce non-cylindrical shape, and ‘rotating disk’ for providing a smooth 

surface. In this process, the tool electrode to be prepared is programmed to perform 

micro-EDM milling process described in section 5.3 to perform moving sacrificial 

block -EDG (MBEDG). While the tool electrode (Z-axis) controls the spark gap at the 

top surface of the sacrificial block, a to-and-fro relative translational motion between 

the block electrode and tool electrode is provided along the longitudinal axis of the 

block electrode (schematic shown in Figure 5.14). There is erosion on the moving 

block by electric discharges during machining. However, the erosion is distributed 

uniformly over a larger area of the block electrode. Most of the sparks are between the 

gap layer of the top surface of the block electrode and the un-machined part of the tool 

electrode and there are hardly sparks from the side of the tool. This creates electrodes 

with a very smooth surface, very good shape accuracy and the fabricated electrodes are 

not tapered. However, the length of the electrode produced is always slightly smaller 

(a) (b) (c) 

Figure 5.13 On-machine electrode fabrication processes using sacrificial electrode (a)
stationary sacrificial block-EDG (BEDG), (b) rotating sacrificial block EDG, (c) wire-
EDG (WEDG) (Lim, HS., et al., 2003). 
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than the target length due to grooves created on the surface of the block electrode. 

Taking into consideration the machined area between the tool electrode and the 

sacrificial electrode, the difference between the target length and the actual length is 

almost negligible. Figure 5.15 shows two shafts fabricated by BEDG and MBEDG 

process where black arrowhead shows the tapered section of the shaft produced by 

BEDG and white arrowheads show the straight section produced by MBEDG process. 

Figure 5.16 shows the erosion marks formed on the tungsten carbide block from 

BEDG and MBEDG processes. The erosion marks created on the block by the BEDG 

process (shown in black arrowheads) shows tapered shape of the formed electrode 

compared to the flat grooves created by the MBEDG process (shown inverted and 

indicated with white arrowheads). 

 

 

 

 

 

 

Z

X-Y

(a) (b) 

Figure 5.14 Concept of MBEDG process for on-machine tool fabrication. Linear to
and fro motion along X-Y axes are performed at 30 mm/min ~ 60 mm/min and Z
direction performs gap control (a), and (b) illustrates step created on the block and
straight shaft generated. 
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Figure 5.15 Shows shafts fabricated using BEDG process (a) and moving BEDG
process (b). Black arrowhead shows the tapered section of the shaft produced by
BEDG and white arrowheads show the straight section produced by MBEDG. 

Figure 5.16 Erosion mark created on the tungsten carbide blocks used for BEDG
(black arrowheads) and MBEDG process (shown inverted and indicated with white
arrowheads). 
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5.5 Experimental Study of Machining Speed and Tool Wear 

For performing micromachining of complex shapes and structures it is necessary to 

characterize the output parameters like electrode wear ratio (EWR), machining time, 

material removal rate (MRR) and spark gap in order to be able to compensate for 

electrode wear and compute expected machining time. Experiments were conducted to 

study these machining parameters by drilling holes of varying electrode diameters into 

50µm thick SUS-304 plate using tungsten and copper-tungsten electrodes. Details of 

machining conditions are shown in Table 5.4 and experimental results are shown in 

Figure 5.17. As at 60 V and stray capacitance the discharge energy is considerably low 

(~37nJ), for machining of most of the 3D features in section 5.6, 80V supply voltage 

and 47pF capacitance (150nJ discharge energy) have been used). Machining was 

performed using RC-based power supply described in section 5.1 with jump-based gap 

control described in section 5.2. Electrodes were fabricated on-machine starting with 

0.5mm tungsten electrode which was formed using the MBEDG process described in 

section 5.4. Three different diameters of tungsten electrode (15.5µm, 33.5µm and 

42µm) were compared to provide a range of electrode diameters (from 15µm to 40µm) 

that will be used in performing complex micromachining in section 5.6.  Additionally 

machining was also performed using Cu-W electrode which is another commonly used 

electrode material in micro-EDM. Hole drilling was repeated for 10 times in every 

experimental group to observe variation and repeatability; as statistically significant 

results are specially important given that micro-EDM is a stochastic process. For 

drilling holes on 50µm thick plate, an additional 70µm depth was fed into the hole 

making the total feeding depth to 120µm. This depth was selected based on initial 

observation on electrode wear being less than 10µm and thus adding an additional 
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60µm would ensure that a straight electrode portion forms the hole finally to make a 

straight hole. In the statistical results the first hole was excluded as the machining 

results of the first hole have shown significant variation MRR and EWR which could 

be potentially due to the fact that the electrode tip was comparatively smaller in 

diameter.  

 

Table 5.4 Machining conditions to study machining time, MRR, EWR and spark gap. 

Parameter Value 
Supply Voltage 80V 
Capacitance 47pF 
Workpiece  SUS-304, 50µm thick 
Electrode Materials W (dia 15.5µm ,33.5 µm, 42µm), Cu-W 

(dia 44.5µm) 
Machining Feed 2µm/s 
EDM Oil Total EDM 3 dielectric oil 
Gap control  Jump-based (retract feed - 100µm/s, 

retract distance 5µm, approach feed – 
100µm/s and approach distance – 4.5µm) 

Electrode Machining MBEDG 
Number of holes machined 9 holes for each group 
 

 

The mean values of machining time, MRR, spark gap and EWR are shown in Figure 

5.17 where the error bar indicates one SD. For micro-EDM with electrode diameter 

smaller than 50µm it was observed that the machining time did not vary with change in 

diameter. This resulted in the change in MRR which is potentially misleading as the 

supplied machining energy was same. This could be due to the fact that with increased 

surface area the probability of spark increased which led to the increase in MRR. 

Variation of EWR for tungsten electrode was with ±2µm which indicates that with 

electrode wear compensation the accuracy of a machined feature may vary ±2µm 

within one SD. The shape of the electrode was tapered at the bottom of the electrode 
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due to erosion similar to the observation of Kao et al., (2006). But except the electrode 

tip the remaining portion that was fed to ensure straight hole machining did not show 

considerable sign of erosion.  Considerable variation in EWR was observed in results 

for machining with Cu-W electrode (±4µm) which could be due to the higher tool wear 

of Cu-W which also caused this variation.  

 

 

 

 

5.6 Complex Micromachining Using Micro-EDM  

Experiments were conducted to explore the capability of the developed system for 

performing complex micromachining of shapes and features below 50µm dimensional 

range. The machining conditions for the machining are shown in Table 5.4 and 
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Figure 5.17 Experimental results for studying (a) machining time, (b) MRR, (c) spark
gap, (d) EWR.  
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appropriate diameter tungsten tool electrode was fabricated  using MBEDG processes. 

Figure 5.18 and 5.19 show several micro-EDM samples machined. Tool electrodes, as 

small as 4μm in diameter, have been fabricated using BEDG process. This electrode 

was then used for boring holes into 50μm thick SUS-304 plate. Four holes of diameter 

6.5μm, 8.5μm, 10.5μm and 12.5μm have been machined as shown in Figure 5.18(a). 

Figure 5.18(b) shows the close-up of 8.5μm hole and Figure 5.18(c) shows the 6.5μm 

picture placed next to that showing a red blood cell (Figure 5.18 (d)) for comparison. 

While machining of electrodes with 4μm diameter is a bit complex and requires careful 

observation under on-machine scope as well as multiple passes using MBEDG and 

BEDG process, this shows the capability of micro-EDM process in fabricating shapes 

at the lower boundary of micromachining domain. It has been mentioned earlier in 

section 5.1 that the smallest available discharge energy from the developed setup is 

~37nJ which, creates a crater of around ~2µm diameter on stainless steel and therefore, 

this could probably mean the smallest machinable dimension with this setup. 

Machining of each hole took about 2 minutes to fabricate using machining conditions 

in Table 5.4 with supply voltage 60V and 33pF capacitor. Figure 5.18(e) shows holes 

of 10μm diameter on 50μm thick SUS-304 plate forming 'N' – the initial of 'NUS' 

where each hole was machined in 2 minutes with supply voltage 60V and 33pF 

capacitor. Figure 5.18(f) shows another array of micro-holes of around 15μm diameter 

machined using larger spark energy at 100V and 220pF to machine them in ~75 

seconds. Figure 5.18(g) shows a simple 35μm deep square trench (25μm wide) 

machined by micro-EDM milling and a center hole of 25μm diameter drilled by micro-

EDM drilling using the sane ekectrode. The hole is separated from the slot with a 5μm 

wall in 18 minutes. Complex shapes with multiple steps and many layers were also 

machined to form 3 dimensional structures using micro-EDM milling process. Figure 
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5.18(h) shows a small pyramid machined using micro-EDM milling process (L: 25μm, 

W: 25μm, H - 35μm at the top). Each step was machined layer-by-layer to 7μm wide 

and 7μm deep using an electrode having 15μm diameter and machining took about 150 

minutes with 80V and with 33pF capacitance leaving the other machining conditions 

similar to Table 5.4. Figure 5.19(a) shows ‘NUS’ (55µm wide and 10µm deep) written 

by micro-EDM milling process on SUS-304 and machining time was about 25 

minutes. Figure 5.19(b) shows the image of a profiled capillary (nozzles) in a spinneret 

plate for spinning synthetic fibers from a molten or dissolved polymer which has 

practical industrial application in spinning industry. This spinneret plate with 12μm 

slot width was machined using an electrode of 8.5μm diameter and machining time 

was around 90 minutes. Sample on Figure 5.19(c) shows 2 slots (L: 250μm, W: 

28.5μm) machined where each slot took 30 minutes to fabricate. Figure 5.19(d) shows 

adjacent slots of 10μm wide on 50μm thick SUS-304 plate with 2.5μm wall separating 

them. This shows the minimum achievable feature size as has been mentioned earlier. 

Figure 5.19(e) shows a central hole with radially distributed slots being machined 

using similar techniques (L: 100μm, W: 50μm) in 90 minutes which can be used as 

forming electrode by micro-EDMn (Masaki, T., et al., 2006) for micro-cavity in micro-

fluidic applications. Figure 5.19(f) and close-up in Figure 5.19(g) shows a slot (L: 

1000μm, W: 37μm) machined on a hypodermic needle of 200μm thick wall on 

stainless steel by WEDM process using 30μm tungsten wire for biomedical 

applications. Figure 5.19 (h) shows a miniature clover shape machined in 50 minutes 

using an 8μm electrode. 
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(a) (b) 

(c) (d) 

(f) (e) 

(h) (g) 

Figure 5.18 Microfabrication by micro-EDM drilling and micro-EDM milling using
electrodes fabricated on-machine by BEDG/MBEDG process (1).  

(a) 
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Figure 5.19 Microfabrication by micro-EDM drilling and micro-EDM milling using
electrodes fabricated on-machine by BEDG/MBEDG process (2). 
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5.7 Conclusion 

In this chapter the design of an RC relaxation type micro-EDM power supply has been 

presented. At stray capacitance the smallest available discharge energy ~37nJ at 60V 

was observed and the stray capacitance was determined to be 20pF~21pF by fitting to 

the experimentally obtained waveform using the model presented in chapter 4. A jump 

based gap control was implemented and compared with the earlier implementation of 

gap control using the process feedrate. Experimental machining time studies 

demonstrated slight improvement of machining time when boring holes on 50µm thick 

stainless steel plate, but considerable timing improvement was observed for boring 

holes on 100µm thick plate; and no considerable difference was observed in electrode 

wear. A 3D micro-EDM milling process was adopted and used, where simultaneous 

gap control along Z axis and oscillatory motion along X-Y axes are programmed to 

make linear or circular oscillatory motion simultaneously along the contour to be 

machined representing the shape of the feature (either a linear slot of circular arc). 

With the 3D micro-EDM milling process, improvement of surface roughness was 

observed compared to direct die-sinking process. Using the 3D micro-EDM milling 

process, a new electrode machining process capable of making straight electrodes was 

proposed (MBEDG). Experimental studies were then conducted to characterize the 

machining time, MRR, spark gap and EWR for micromachining of complex shapes 

and features of between 5µm~50µm to be machined. Complex micromachining 

features are presented to demonstrate the capability of the improved UMMT for 

performing in the lower dimensional range of micromachining domain. The 

development and studies are necessary for exploration of compound micromachining 

processes presented in Chapter 6.  
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6 Compound Micromachining on UMMT 

 

This chapter focuses on the exploration of compound micromachining on the 

developed UMMT to demonstrate its potential for performing micromachining tasks 

that are impossible or difficult to achieve using a single process or serially employed 

processes (using separate setups or machines). The first is a compound 

micromachining concept where conventional turning tool is in-situ modified using 

micro-EDM followed by using the modified tool for micro-turning to enable 

machining of micro-shaft. An application of the micro-shaft is next presented.  This 

involves its use as a tool electrode for performing micro-EDM drilling operation 

which, being an extension of the earlier compound machining is basically a 3-step 

compound micromachining (micro-EDM + micro-turning + micro-EDM). This process 

was experimentally compared with tungsten electrode fabricated using 

BEDG/MBEDG processes for drilling holes. A third compound micromachining 

concept is presented using PCD micro-tools shaped in-situ by micro-EDM for micro-

grinding and micro-milling.  

 

6.1 Compound Micro-EDM + Micro-turning Process 

Micro-turning has the capability to produce 3D structures on micro-scale. The major 

drawback of the micro-turning process is that the cutting force influences machining 

accuracy and the limit of machinable size (Rahman, M., et al., 2003; Rahman, M., 

2001). Significant work has been done to develop different cutting paths and schemes 

to reduce the effect of cutting force on the fine shaft (Rahman, A., 2006; Rahman, A., 
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2005). A micro-pin of ~350µm diameter with intricate shape and kinks has been 

fabricated. But, it is very difficult to achieve a straight shaft below 100µm diameter 

and, in many cases, the tool is either broken, or starts to wobble due to excessive radial 

cutting force on the micro-shaft as shown in Figure 2.4. In the following a precise tool-

setting technique will be presented followed by ultra-sharp tool machining by micro-

EDM and finally the cutting scheme of micro-turning process will be presented for 

machining of micro-shafts around 20µm diameter.   

 

 

6.1.1 Precise tool-setting technique for micro-turning 

 

To achieve controllable and repeatable dimensions by micro-turning, it is necessary 

that the tool setting be accurate in the range of 2μm. Just a 5μm error in tool setting 

along the X direction causes the diameter to be unpredictable by 10μm, which is about 

50% for the case of a 20μm diameter target shaft rendering it unacceptable. Such an 

error is not impossible as commonly tool-setting is performed using tool scope and 

visual inspection. A precise tool setting technique has been developed to overcome this 

problem. A rough tool setting is performed first from visual alignment and using tool 

scope mounted on the UMMT. Using this rough tool setting, three steps of different 

diameters are turned from the initial cylindrical shaft. In every step, the Y position of 

the tool is also changed to obtain a different diameter; preferably the shift should be 

done to keep the clearance angle. The following equations can be solved to find X0 and 

Y0 which are the initial X and Y direction tool setting errors: 

 

 



Chapter 6 | Compound Micromachining on UMMT 

144 

 

 

2

0
2 RX =          (6.1) 

2
1

22 R)(Y)(X =+++ 00 YX        (6.2) 

2
2

2
1

2
1 R)B(Y)A(X =+++++ 00 YX      (6.3) 

2
3

2
2

2
2 R)B(Y)A(X =+++++ 00 YX      (6.4) 

 

Equation (6.4) is used for the validation one of the quadratic roots as tool position 

along the Y axis is symmetrical and provides two roots. Figure 6.1 shows the 

geometrical relationship between the tool position and the actual turned diameter. For 

the first step, the turned diameter is R1 instead of expected diameter R0. The expected 

tool position is P0(X, Y) and the actual tool position is P1(X+X0, Y+Y0), where X0 and 

Y0 are the tool setting errors. For the second step, X+A1 is the expected tool position 

along X axis and B1 is the expected tool position along the Y axis, as Y = 0. But, the 

actual tool position is P2(X+X0+A1, Y+Y0+B1) and the turned diameter differs due to 

the errors in tool centering. Similarly, for the third step, X+A2 are the expected tool 

position along X axis and B2 is the expected tool position along the Y axis, where the 

actual tool position is P3(X X0+A2, Y+Y0+B2). In this calculation method, however, the 

error incurred from spindle runout, clamping error of workpiece as well as straightness 

have not been considered. Therefore in each iteration there exists slight deviation from 

the previous tool center; however the value converges within 2μm after 3 iterations of 

centering as could be seen in Figure 6.2. The new iterative calculation method is vastly 

more accurate and efficient and this method of tool centering can be automated for 

industrial applications.  
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Figure 6.2 Convergence of tool-setting offset and turned diameter error can be
observed within 3 iterations. 
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Figure 6.1 Geometrical relationship between tool position and turned diameter 
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6.1.2 Ultra sharp micro-turning tool machining by micro-EDM 

 

Commercially available PCD inserts, designed for light finishing cut, have a relatively 

large tool nose radius e.g., 100μm (Figure 6.3(a)). This tool nose resolves the cutting 

force on the shaft into two components, namely Fx and Fy, as can be seen in Figure 

6.3(b). The Fy component of the cutting force does the actual cutting while the Fx 

component causes deflection of the micro-shaft. A commercially available PCD insert 

can be modified to achieve a very sharp cutting edge, such as to reduce the Fx 

component of the cutting force significantly which is illustrated in Figure 6.3(c). Using 

this process it is possible to achieve a straight shaft of a much smaller diameter. An 

approach has been developed to produce an ultra sharp edged tool from the 

commercially available PCD insert using micro-EDM in-situ. A rotating sacrificial 

electrode is mounted on the spindle and used to perform micro-EDM on the PCD tool 

edge to produce the very sharp-edge. This is illustrated in Figure 6.4. Table 6.1 shows 

the parameters that have been used during the machining of the tool tip. Figure 6.5(a) 

and (b) shows the commercially available PCD insert and the modified PCD tool. The 

modified PCD tool has less than a 5μm tool nose radius.  
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Table 6.1 Parameters for in-situ modification of turning insert 

Cutting 
Conditions 

Capacitance 
(pF) 

Voltage(V) Spindle (rpm) Machined 
Depth (µm) 

Roughing 4700 120 1000 100 
Finishing 100 80 1000 5 

 

 

 

 

 

 

(a) (b) (c) 

Figure 6.3  (a) Tool geometry of a commercially available PCD insert for finishing
light cut, (b) turning with commercial tool, (c) turning with on-machine fabricated
sharp tool. 

Figure 6.4 Image on the left illustrates the EDG process on the tool tip and the image
on the right illustrates modified PCD tool after EDG process. 
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6.1.3 Machining scheme for fine shafts 

The aforementioned tool machining process provides a very sharp tool nose but at the 

same time the tool tip becomes very weak. Therefore, during the actual machining two 

cutting tools were used. One of them was a commercially available PCD insert for 

rough machining to remove the bulk of the material and the second one was the PCD 

insert modified in-situ by micro-EDM for the final pass to form the micro-shaft. At the 

beginning of this machining process a PCD insert needs to be modified to form sharp 

cutting edge. Tool-setting was performed on both the PCD inserts mounted at different 

locations using the tool-setting technique mentioned in section 6.1.1. The cutting path 

is also very important, as during the machining process of the micro-shaft it is 

important that the already fabricated portion of the micro-shaft does not experience 

any cutting force. Figure 6.6 shows the schematic diagram of the sequential formation 

of the micro-shaft. Commercial PCD tool was used during step 2 and step 3 of the 

(a) (b) 

Figure 6.5 (a) commercial PCD tool, (b) and in-situ modified PCD tool by micro-EDM
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machining process where bulk material was removed by turning. In these stages a 

stronger tool was required for faster machining and since the diameter of the thinnest 

part of the shaft in this stage was around 0.5mm, the higher radial direction cutting 

force was not critical to cause deformation to the shaft. In step 4 and step 5, the in-situ 

modified PCD tool was used which was mounted at a different location. During step 4, 

the final machining of the micro-shaft was performed in a single pass reducing the 

diameter from 0.5mm to the expected diameter (around 20µm~10µm). In this stage the 

sharp tool only removed materials from the stronger base with 0.5mm diameter and the 

slender fine shaft did not withstand any cutting force. During step 5, a taper at the base 

of the fine shaft was machined to clear away any uncut chip from the base of micro-

shaft. 

 

This has extended the possibility of micro-turning for machining at a much lower 

dimensional range which is otherwise not possible. Using this technique 2mm long 

micro-shafts with a diameter as small as 20μm have been machined. The machining 

process for a 2.0mm long shaft takes less than 2 minutes. Figure 6.7(a) shows a 

graphite shaft of 0.5mm long and 19μm in diameter that is similarly produced and has 

been compared to a human hair at the same magnification and scaling as that of the 

micro-shaft of Figure 6.7(a) for comparison (Figure 6.7(b)). Figure 6.7(c) shows 11μm 

diameter brass micro-probe with 80μm tip length and Figure 6.7(d) shows another 

brass micro-shaft of 14μm diameter and 250μm long. The success in this machining 

arises from the fact that the experiment was performed on a carefully designed UMMT 

which provides for excellent rigidity and the micro-EDM power supply is capable of 

providing fine spark discharges for forming very sharp tool nose with nose radius of 

around 5µm. 
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Figure 6.6 Different stages of microshaft fabrication process using the ultra sharp tool.

Step 1: 
Base material, diameter 4 mm or 6 mm. 
 

Step 2 - Taper Formation:  
Tool: Commercial PCD 
Depth of Cut: 0.1 mm 
Feedrate: 80 mm/min 
Tip Dia: 0.50 mm 
Spindle: 2000 rpm. 

Step 3 – Pencil Shape Formation:  
Tool: Commercial PCD 
Depth of Cut: 0.1 mm 
Feedrate: 80 mm/min 
Tip Dia: 0.50 mm 
Spindle: 2000 rpm. 

Step 4 – Final Shaft Formation:  
Tool: In-situ modified PCD 
Depth of Cut: Single pass for desired dia 
Feedrate: 1~5 mm/min 
Tip/Shaft Dia: 10µm ~ 50µm 
Spindle: 2000 rpm. 

Step 5 – Taper Base of Microshaft 
Tool: Modified PCD 
Feedrate: 1~5 mm/min 
Tip Dia: 0.50 mm 
Spindle: 2000 rpm. 
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6.2 Compound Micro-turning + Micro-EDM Process 

6.2.1 Micro-EDM with electrode fabricated by micro-turning 

The electrode machining processes discussed in section 5.4 are very difficult for 

automation and are error-prone. In most of the cases, an operator is required to monitor 

the machining process and to perform necessary compensation for the error. Moreover, 

the electrode machining process can take even close to an hour. Another factor is that 

when holes with different dimensions are required, the tool electrode machining 

Figure 6.7 (a) 19μm graphite electrode of 0.5mm length fabricated by micro-turning
process, (b) SEM image of a human hair for comparison with the shaft of - (a) (same
magnification and scaling), (c) 11μm diameter and 80μm long brass microprobe by
micro-turning (little bent by accidental touch during measurement), (d) 14μm diameter
and 250μm long brass microshaft by micro-turning.  

 

(a) (b)

(c) (d)
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becomes the bottleneck of the entire machining process. Potentially, the proposed 

method of compound process for micro-turning can be used for machining very fine 

micro-shaft which can then be used as electrodes for micro-EDM; and this practically 

eliminates the disadvantages of the aforementioned electrode machining processes 

using sacrificial electrodes.  

 

Figure 6.8 illustrates the concept of the micro-turning-EDM compound machining 

(Lim, HS., et al., 2002). An electrode of required dimensions is first fabricated by 

micro-turning prior to performing micro-EDM. Using this compound machining, re-

fixturing and clamping error can be avoided and deflection of electrode can be 

minimized; consequently the accuracy of machining can be improved. Figure 6.9 

shows a 22µm brass shaft fabricated by micro-turning process using in-situ fabricated 

ultra sharp tool mentioned in section 6.1 followed by micro-EDM drilling about 10 

holes on stainless steel plate. Electrode wear from EDM process is observable at the 

tip of the electrode. 

 

This process shows much improvement on the machining time compared to the in-situ 

tool electrode machining processes described in section 5.4, which takes hours to 

fabricate as mentioned earlier. Moreover, this compound process does not require 

much operator’s intervention and can mostly be automated due to less likelihood of 

error. When different diameters of electrode are required for micro-EDM process, 

micro-turning can significantly reduce the electrode machining time as compared to 

the conventional sacrificial electrode machining methods.  
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Figure 6.9 A 22µm brass electrode fabricated by micro-turning process and used for
machining 10 micro holes on stainless steel plate. 

Figure 6.8 Compound process using electrode fabricated by micro-turning (left) for
micro-EDM process (right) in the same setup. 
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6.2.2 Comparison of repeatability and controllability of electrode 

fabricated by micro-turning and WEDG 

 

Experiments were conducted to study the repeatability, controllability and electrode 

wear of the developed micro-turning process and to find out the wear ratio for using 

the micro-turned brass electrode to machine on 50µm thick SUS-304 workpiece. The 

purpose of this study is to compare electrode machining by micro-turning to 

commonly used WEDG process and whether micro-turning can be a viable option for 

electrode machining in industrial applications. In the first set of experiments 30 holes 

were machined using electrodes fabricated by micro-turning and WEDG process. The 

material of the micro-turned electrode is brass and that made by WEDG is tungsten.  In 

WEDG process a single fabricated tungsten electrode (350µm long) was sufficient for 

boring all 30 holes, but for the micro-turning process the brass electrode had to be re-

dressed by micro-turning 3 times due to high electrode wear. It could be observed from 

the result of Figure 6.10(a) that the holes fabricated using micro-turning process had a 

roundness error of 3.5µm compared to 2.3µm roundness error from WEDG process. 

The error bar reflects one SD. The second of experiment was performed to study the 

diameter controllability of the two electrode machining processes, micro-turning and 

WEDG. In this experiment, the hole machining was repeated 10 times with each of the 

three different electrode diameters (50µm, 60µm and 70µm). Machining of each hole 

started with preparation of a fresh electrode by micro-turning (thus 30 fresh electrodes 

were prepared) followed by micro-EDM drilling into 50µm SUS-304 plate. For the 

WEDG process the electrode was fabricated once for each diameter starting from 

0.5mm diameter and then machining to the required diameter by WEDG process (thus 

3 electrodes with 3 target diameters were machined). In WEDG instead of preparing 
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30 fresh electrodes only 3 electrodes were machined, as that would be a practical 

comparison due to low tool wear of W compared to the high tool wear of the brass 

electrodes (which requires more frequent machining of brass electrodes). Variance of 

the machined hole diameters by the turning process found from the experiments is 

3.4μm compared to the variance of 1.3µm observed from WEDG process, shown in 

Figure 6.10(b).  

 

The results suggest that holes machined using brass electrode fabricated by micro-

turning are less accurate than those by the tungsten electrode fabricated by WEDG. 

The degradation in accuracy is mainly caused by the high wear rate of the brass 

electrode which results in more debris formation from discharge sparks in the electrode 

gap space and thus causes uncontrolled arcing. Electrode wear ratio of the holes 

machined was compared and it can be observed from Figure 6.10(c) that the electrode 

wear ratio of brass electrode (65%) was significantly higher compared to the tungsten 

electrode (9%) machined by WEDG. Thus brass electrode is not suitable for 

machining of complex 3D shapes by micro-EDM milling demonstrated in section 5.6.  

 

However, brass electrode can be suitable for micro-EDM hole drilling process if the 

expected accuracy can be compromised. Using a 1.0 mm long and 50 µm diameter 

electrode it is possible to drill about 20 holes on a 50µm SUS plate. This issue of 

extremely high electrode wear could be overcome by selecting an electrode with low 

wear, for example Cu-W or graphite, which will also improve the machining accuracy 

in turn. The wear ratio of Cu-W was observed to be around 11%~12% (Figure 5.17) 

which indicates that micro-turning can be a viable option even for 3D micro-EDM 

milling of complex features if Cu-W or graphite electrodes are used. In the processes 
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compared, the main advantage of the micro-turning based process is the significant 

reduction in electrode machining time (even considering that the micro-turned 

electrodes had to be prepared 3 times which took only 6 minutes compared to around 

30 minutes of electrode machining time for WEDG process) as well as the capability 

of automation when different electrode diameter is required for machining holes and 

slots of different dimension. 

 

6.3 Micro-grinding and Micro-milling using PCD Tool 

Micro-tools made of PCD offer new promise for micromachining of hard and brittle 

materials. PCD consists of micrometer-sized diamond grains sintered under high 

temperature and pressure with metallic cobalt and the cobalt fills the interstices 

between the diamond particles and forms an electrically conductive network adequate 

for micro-EDM (Kozak J., et al., 1994, Liu, YH., et al., 1997). After shaping, the 

surface of a PCD tool contains protruding diamond grains that are randomly 

distributed, which act as hard and tough cutting edges for micromachining. The first 

demonstration of the micro-EDM shaped PCD tools in machining tungsten carbide, 

electroless plated nickel and silicon was performed by Wada et al. (Wada, T., et al., 

2002). The feasibility of ductile mode micromachining of brittle glass materials with 

PCD micro-tools that are prepared in a variety of shapes using non-contact micro-

EDM process was demonstrated by Morgan et el. (2004).  
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Figure 6.10 Comparison between machining with electrode fabricated by micro-
turning and electrode fabricated by WEDG process; (a) repeatability of micro hole
boring process, (b) controllability of micro hole boring process and (c) comparison of
electrode wear ratio. 
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6.3.1 Compound micro-grinding with PCD tool fabricated by Micro-

EDM 

 

Difficulty in micro-grinding process is the machining of the grinding tool and the 

accuracy of the ground feature size. For example, while fabricating a 50µm slot on 

glass, it is difficult to find such tool which can be used for grinding. In the feasibility 

study of Morgan et al., 2004, a PCD bonded tool was fabricated using WEDG/BEDG 

process to provide cylindrical cutting edge. As the tool was fabricated on the same 

machine, there was no error involved due to re-clamping of the tool. It not only 

improved the accuracy of the machined slot, but also eliminated the wobbling of the 

grinding tool and thereby reduces the cutting force on the micro-sized tool.  

 

During the experiments performed by Morgan et al. (2004) the tool was fabricated on a 

commercial micro-EDM machine (Panasonic MG-ED82W). But, the cutting 

experiments were conducted on the three axis micro-EDM machine that has an 

additional nanopositioning stage (Polytee PI Nanocube) to provide for fine positioning 

and depth of cut. A micro-milling machine has the fine control capability and the 

rigidity required but such capability was not incorporated in the micro-EDM machine 

that they used.  Therefore, to further demonstrate the capability of the UMMT as a 

ready platform for compound micromachining and to explore the feasibility of 

performing micro-grinding on the UMMT, experiments have been conducted on the 

UMMT for shaping PCD micro-tools for micro-grinding.  

 

The PCD micro-tool was shaped using the MBEDG process mentioned in section 5.4. 

Figure 6.11 shows the cylindrical PCD bonded tool at each machining step starting 
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from 1.0mm diameter to finally 30µm diameter for machining of slots on glass. Using 

larger discharge energy during micro-EDM creates larger craters on the PCD tool and 

using smaller energy during EDM creates smaller craters. The size of the crater can be 

compared to the grit size. Bigger craters remove material faster at the expense of 

surface roughness, while smaller craters give a slower material removal rate and 

provide a better surface finish. Table 6.2 shows the machining conditions for forming 

the PCD micro-tools. The observed peak-to-valley height on the surface of the formed 

tool was 8.28µm for the parameters used for rough shaping of the tool (Morgan et al., 

2004). During the final pass of the tool shaping supply voltage was set to 80V and 

110pF capacitor was installed to obtain an average peak-to-valley height of 3.71µm 

which can be considered as the grit size on the surface of grinding wheel used for very 

fine grinding operation (grit size #4000). Using micro-tools fabricated using the 

process mentioned above, micro-grinding was performed on BK-7 glass. Figure 

6.12(a) shows ‘NUS’ written using micro-grinding process with a 150µm diameter 

PCD micro-tool and the depth of the slots were 50µm. The depth of cut in every feed 

for the grinding was 1µm with 20µm/s feedrate. Figure 6.12(b), (c) and (d) shows the 

magnified view of such a surface machined. The surface roughness was measured to 

be 0.0339µm using Taylor-Hobson surface profiler (Figure 6.13). Fabricated slot 

shows very smooth surface which is comparable to the surface obtained from ductile 

mode cutting of glass in macro scale.  
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Table 6.2 Machining conditions for PCD micro-tools machining. 

Cutting Conditions Capacitance (pF) Voltage(V) Spindle (rpm) 
Rough Shaping 3300 110 2500 
Fine Shaping 110 80 2500 

 

Figure 6.11 Different stages of a micro-grinding tool in-situ fabrication process by
MBEDG process. Step 1 reduces the 1.0mm PCD tool to 500µm, followed by
reduction to 150µm and finally ~30µm diameter straight PCD micro tool is formed in
step 4. 

Step 1 Step 2 

Step 4 Step 3 
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6.3.2 Compound micro-milling with PCD tool  

Compared to the micro-grinding process mentioned in section 6.3.1 where cutting is 

realized by means of the interaction of micrometer sized abrasive grains of PCD tool 

with the micro-grains of workpiece surface; in micro-milling cutting operation is 

performed by defined cutting edge on the tool (e.g., face milling where the cutting 

edges are located at the face of the cutter and in peripheral milling the cutting edges 

are located on the circumference of the milling cutter) (Grote, KH., and Antosson, 

EK., 2009). In this experiment a D shaped milling tool was machined in-situ using the 

(b) 450X 

(c) 1000X (d) 3500X 

(a)  

Figure 6.12 (a) ‘NUS’ (slot width 150 µm x depth 50 µm) machined on BK-7 glass by
micro-grinding, (b) surface at 450X magnification, (c) surface at 1000X magnification
and (d) smooth surface shown at 3500X magnification. 
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PCD tool shaping technique described in section 6.3.1 for micro-milling of fine slots. 

The tool shaping was performed as the steps shown in Figure 6.11 to fabricate a 

cylindrical tool of 32~34µm diameter. After the fine shaping of the tool, another pass 

of MBEDG was performed on the tool without any spindle rotation with an offset of 

7µm to form a D-shape that enables the PCD to operate as a milling tool in-situ. 

Micro-milling experiment was then conducted on a PZT substrate coated with Ag 

(Figure 6.14). The depth of cut used for the micro-milling in every pass was 2µm with 

spindle speed 2500rpm and the feedrate was varied at 8mm/min, 20mm/min, 

40mm/min, 60mm/min, 80mm/min and 100mm/min. Each 15µm deep by 5mm width 

slot was repeated 3 times at the same feedrate with 100µm slot pitch. Figure 6.15(a) 

shows a slot machined at 8mm/min feedrate and the cutter mark was observable, but 

for machining at 60mm/min and above feedrate, the silver layer was plastically pushed 

instead of machining, as could be seen in Figure 6.15(b). This could probably be due to 

the presence of a single cutting edge on the in-situ fabricated milling cutter where the 

feed per revolution was considerably higher above 60mm/.min. Thus the thrust force 

on the silver workpiece, when the cutting edge was not engaged, was considerably 

higher than the maximum cutting force the silver layer could withstand. This 

successfully demonstrated the capability of performing micro-milling using in-situ 

fabricated milling tool for micromachining of features between 20µm to 50µm on the 

UMMT.  
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Figure 6.14 15µm deep and 35µm wide slots machined by micro-milling using PCD
micro tool on PZT substrate coated with Ag.  

Figure 6.13 Surface Roughness (Ra) 0.0339µm of the micro ground slot observed from
Taylor-Hobson surface profiler.  
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Using this technique demonstrated in section 6.3, further detailed study on 

micromachining of various brittle and difficult-to-cut glasses and cutting tools with 

different geometries were conducted by Perveen et al. (2012a, 2012b) using the same 

setup. They concluded that the micro-EDM parameters have significant influence on 

the surface roughness and performance of the fabricated PCD tool during glass 

micromachining. They also concluded that better surface roughness could be achieved 

by forming the tool with very low discharge energy. During the machining of PCD 

tool using micro-EDM, lower discharge energy produces smooth surface on the PCD 

tool. This generates smaller chips on the glass surface during micro-grinding and 

eventually generates better surface finish. Thus the improvement on the micro-EDM 

setup and availability of very low discharge energy was extremely instrumental for 

advanced application of compound micromachining. 

 

 

(a) (b) 

Figure 6.15 Close up view of the slots machined with PCD micro tools. (a) slot
machined at 8mm/min feedrate, (b) slot machined at 60mm/min feedrate.  
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6.4 Conclusion 

In this chapter different tool-based compound micromachining techniques have been 

explored and the suitability and effectiveness of the UMMT to serve as a platform for 

compound micromachining were demonstrated. Micro-turning for machining of micro-

shaft as small as 10µm was performed using a PCD turning insert modified by 

performing micro-EDM to fabricate an ultra sharp tool nose. Using this technique 

further compound process has been demonstrated by performing micro-EDM drilling. 

The experiment was repeated and statistical results indicate electrode machining by 

micro-turning can be a feasible industrial alternative to commonly used WEDG 

process where the electrodes can be fabricated much faster. Micro-grinding and micro-

milling was also performed using cylindrical PCD tool modified using micro-EDM. 

The obtainable surface roughness from micro-grinding and demonstrated dimensional 

range for performing micro-milling indicates high potential for industrial applications 

of compound micromachining.  
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7 Conclusions and Future Work 

 

7.1 Conclusions 

The focus of the research work presented in this thesis is on the development and study 

of micro-EDM based tool-based compound micromachining (TCMMP) using a 

specially developed universal multi-process machine tool (UMMT).  This also 

involved the preparation of the UMMT as a ready platform for industrial applications 

of TCMMP. The primary objective of this project is to demonstrate micromachining 

capabilities for machining of shapes and features in the lower dimensional range of 

between 5µm ~ 50µm in micromachining domain. The research work also aims to 

contribute to the fundamental understanding of the process physics of micro-EDM 

process and interaction of micro-EDM plasma with micro-EDM power supply.  

Following are some of the important contributions and conclusions that can be drawn 

from this research work:  

 

TCMMP concept on UMMT: The concept of compound micromachining is a new 

area of significant research interest that is practically a step forward from multi-

process micromachining on a single platform. Even though there exists enormous 

industrial demand for compound micromachining to meet the requirements of 

MEMS/Bio-MEMS industry, there has not been much successful demonstration of the 

machining capability below 100µm feature size prior to this research work. The 

research work presented in this thesis is first of its kind to the best knowledge of author 

that demonstrated a holistic approach in developing micro-EDM based compound 
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micromachining starting with identifying the required criteria and evaluating the 

machine tool for performing micromachining at the stated dimensional range; through 

theoretical analysis and development stages; and finally demonstrating the capabilities 

of multiple compound micromachining processes. This contribution is a significant 

step forward in the field of compound micromachining. 

 

Evaluation of UMMT: An earlier developed UMMT was evaluated for performing 

TCMMPs around the lower dimensional bound of micromachining range for 

machining of 5µm~50µm features. The research work contributed to the theoretical 

analysis of required discharge energy to be 30nJ~50nJ for 2µm hemispheric crater and 

indicated that an RC power supply is more appropriate for such small discharge energy 

range. 

 

Analysis of Micro-EDM Electric Characteristics: A model for the RLC network of 

RC power supply was proposed employing micro-EDM plasma properties. This 

proposed model bridges a crucial gap in the present theoretical understanding on the 

interaction of micro-EDM plasma with different circuit elements as well as micro-

EDM power supply. It also provides significant insight for realizing changes in current 

waveform due to changes in process parameters, such as, input voltage, capacitance 

and inductance and the resistance R. Furthermore, by employing this proposed model 

the determination of inductance and stray capacitance using non-linear least square 

fitting was demonstrated. This theoretical analysis is novel and unique as per the 

existing literature and a significant leap forward for micro-EDM technology. 
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Micro-EDM Setup for Complex Micromachining: An RC relaxation type micro-

EDM power supply was developed which is capable of providing discharge energy as 

small as ~37nJ. A jump based gap control strategy was implemented which showed 

less erratic machining and improved machining time. 3D micro-EDM milling process 

was implemented on the UMMT and a new electrode machining process capable of 

making straight electrodes was proposed (MBEDG). This holistic development work 

resulted in the successful demonstration of micromachining of feature size as small as 

3µm ~ 5µm using micro-EDM process which has not been demonstrated earlier. This 

marked contribution will enable new industrial micromachining processes to be 

proposed using tool-based micromachining techniques. 

 

Compound Micromachining based on Micro-EDM and Micro-turning Process: A 

new TCMMP for machining of ultra sharp tool for micro-turning was developed where 

the radial force has been removed considerably. This TCMMP resulted in successful 

machining of micro-shafts as small as 11µm in diameter by micro-turning. This 

proposed technique is a significant contribution to the concept of TCMMP that has 

extended the promise of micro-turning for machining at a much lower dimensional 

range which is otherwise not possible.  

 

Compound Micromachining based on Micro-turning and Micro-EDM Process: 

Experiments were conducted to establish the possibility of using micro-turning as the 

electrode machining process for micro-EDM. This process demonstrated the potential 

of reducing the electrode machining time to 2 minutes compared to more than 30 

minutes of machining time using sacrificial electrode method by WEDG. This resulted 
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in the successful development of another compound process having much promise and 

potential. 

 

Compound Micromachining based on Micro-EDM and Micro-grinding/Micro-

milling: Exploration of TCMMP included machining of micro-slots with excellent 

surface roughness on glass and micro-milling of 35µm micro-slots on PZT substrate 

for MEMS application using a D-shaped PCD tool. In these processes, the concept of 

in situ micro-milling and micro-grinding tool fabrication employing TCMMP was 

demonstrated and further substantiated the promise of TCMMP for micromachining 

between 5µm~50µm dimensional range. 

 

Overall, the research work significantly contributed to the demonstration of the 

potential of TCMMPs for micromachining applications. These processes can be used 

for machining of components for MEMS, micro-molds, micro-fluidic channels, micro-

probes and patterns in glass substrates for lab-on-chip devices or biomedical arrays and 

such machining can be performed around the lower dimensional bound of 

micromachining range.  

 

7.2 Recommendations for the Future Work 

1. The exploration of micro-EDM based TCMMP opens up an entirely new research 

field using the UMMT as an example of platform suitable for such operations. 

Implementation of micro-ECM process on the UMMT and exploration of micro-

ECM based TCMMP in combination with micro-EDM process will potentially 

make the platform even more universal.  The advantage of high machining speed 

and smooth surface generation capability of micro-ECM can be leveraged for 
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exploration of compound micromachining processes tailored for specific 

manufacturing need.  

2. It was observed from the proposed model of micro-EDM power supply that the 

assumption of electrode plasma interface diameter is very crucial input parameter 

for the model and requires to be recomputed for different discharge energy range. 

Further development on the proposed model integrating the electrode plasma 

interface diameter will allow the model to obtain electrode plasma interface 

diameter based on discharge energy setting alone and will serve as a unified model 

for power supply network employing plasma properties.  

3. Presence of inductance in the power supply network has been observed to 

minimize the peak height and increase pulse width of the current waveform which 

results in shallower and flatter craters and improves surface roughness. Developing 

a circuit with switchable inductance will allow improvement of surface roughness 

during the finishing operation of very fine micro-features and thin-walled 

structures.  

4.  Further research work can be done on the proposed micro-turning process to 

understand the cutting force on the ultra sharp tool edge and to study rake angle, 

clearance angle and relief angle formation on-machine using simple carbide block 

grinding in addition to using PCD tool. Exploration in micro-turning of Cu and 

graphite for machining of micro-electrode and performing complex 3D 

micromachining is an area with immense research potential. Machining of complex 

micro-milling tools and performing micro-milling on SUS-304 will substantially 

increase the material removal rate that can be obtained from micro-EDM. 

5. For machining of complex fine-featured micro-parts, the tool compensation and 

tool path generation becomes more complex. It is recommended to focus the 
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research activity towards the development of CAM system for generation of tool 

path, selection of appropriate process parameters, e.g., voltage, capacitance and 

integration of automated tool wear compensation which is essential for industrially 

scalable applications of TCMMPs   
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 S/N Instrument Manufacturer Model Specifications

1 Digital Micrometer 293-761-30

2 Dial Indicator

3 Digital Indicator

4

5 Engineering Square Helios

6

7 Length: 200 mm, Grade: 0, 

8 Granite Angle Block

9

10

11 LASER Interferometer Hewlett Packard

12

13

Mitutoyo 

Range: 0-25mm, Resolution: 0.001mm, 
Accuracy: +/- 0.001mm, Quantizing Error: 1 

count

Mitutoyo 2109S-10

Resolution: 0.001mm , Range: 1mm , 
Accuracy: 3 micron, Measuring force: 1.5 

Newton or less, 

Mitutoyo ID-F125 / 543-551-1

Range: 0-25mm, Resolution: 
0.001mm/0.01mm, Accuracy: +/-0.003mm, 

Quantizing Error: 1 count, 

Data Collection and 
Processor Mitutoyo (DP-1VR)  

Can be used with any Mitutoyo digital 
instrument for printing data 

EIM0076/MT81

Granite Straight 
Block/Parallel Blocks TRU-Stone Technologies

Grade: laboratory grade AA (.000025” per 6”), 
305mm X 50mm X 25mm

Stainless Steel Straight 
Block

Tsugami Corporation, 
Japan PTW / 02044

TRU-Stone Technologies
Grade: laboratory grade AA (.000025” per 6”), 

230mm X 150 mm X 75 mm

Slip Gauges

KGM Grid Encoder Heidenhain KGM-182 Range: φ 230mm, Accuracy Grade: ±2µm

5519B Laser Head
He-Ne Laser, Beam Dia: 6 mm, Wavelength 

Accuracy: ±0.1 ppm, 

SEM Jeol Ltd JSM-5500 Maximum Magnification 50,000X

Digital Optical 
Microscope Keyence VH-Z450 Maximum Magnification 3,000X
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Appendix B – Performance Evaluation Details 

 

B.1 Straightness of X Axis: 

Travel Length: 200mm  

Measuring Instrument: Dial Indicator and Granite Straight Block 

Measurement Setup: Figure B.1 (a) 

Measurement Results: X dz: 2 μm; X dy : 1 μm 

 

B.2 Straightness of Y Axis: 

Travel Length: 100mm  

Measuring Instrument: Dial Indicator and Granite Straight Block 

Measurement Setup: Figure B.1 (b) 

Measurement Results: Y dx: 1 μm; Y dz : 2 μm 

 

B.3 Straightness of Z Axis: 

Travel Length: 100mm  

Measuring Instrument: Dial Indicator and Granite Straight Block 

Measurement Setup: Figure B.1 (c) 

Measurement Results: Z dx: 1 μm; Z dy : 2 μm 

 

B.4 Squareness of X-Y axis: 

Travel Length: 200mm  

Measuring Instrument: Dial Indicator and Granite Angle Block 

Measurement Setup: Figure B.1 (d) 
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Measurement Results: 1 μm 

 

B.5 Squareness of Y-Z axis: 

Travel Length: 100mm  

Measuring Instrument: Dial Indicator and Granite Angle Block 

Measurement Setup: Figure B.1 (e) 

Measurement Results: 4 μm 

 

B.6 Squareness of X-Z axis: 

Travel Length: 100mm  

Measuring Instrument: Dial Indicator and Granite Angle Block 

Measurement Setup: Figure B.1 (f) 

Measurement Results: 3 μm 

 

B.7 Radial runout in Spindle taper: 

Measuring Instrument: Dial Indicator  

Measurement Setup: Figure B.2 (a) 

Measurement Results: 2 μm 

 

B.8 Spindle axis straightness in X direction 

Measured Length: 30mm  

Measuring Instrument: Dial Indicator  

Measurement Setup: Figure B.2 (b) 

Measurement Results: 4 μm 
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B.9 Spindle axis straightness in Y direction 

Measured Length: 30mm  

Measuring Instrument: Dial Indicator  

(a) Straightness of X-axis (b) Straightness of Y-axis 

(c) Straightness of Z-axis (d) Squareness of X-Y axis 

(e) Squareness of Y-Z axis (f) Squareness of Z-X axis 

Figure B. 1 Showing the setup used for measure straightness and squareness of the
UMMT 



Appendix B – Performance Evaluation Details 

187 

 

Measurement Setup: Figure B.2 (c) 

Measurement Results: 4 μm 

 

 

 

 

B.10 Accuracy and Repeatability of X axis 

Measured length: 200 mm 

No of target position: 21 

No of total data run: 6 

Travel mode: Bidirectional 

(a) Radial runout in spindle taper (b) Spindle axis straightness in X 
direction 

(c) Spindle axis straightness in Y 
direction 

Figure B. 2 Showing the setup used for measuring spindle runout and spindle axis
straightness of the UMMT 



Appendix B – Performance Evaluation Details 

188 

 

Ave air temp: 23.72 ̊C 

Ave air pressure: 758.81 mm Hg 

Measurement equipment: Laser Interferometer 

Compensation table used: Table B.1 

Measurement setup and results: Figure B.3 

 

B.11 Accuracy and Repeatability of Y axis 

Measured length: 100 mm 

No of target position: 11 

No of total data run: 6 

Travel mode: Bidirectional 

Ave air temp: 24.01 ̊C 

Ave air pressure: 759.37 mm Hg 

Measurement equipment: Laser Interferometer 

Compensation table used: Table B.2 

Measurement setup and results: Figure B.4 

 

B.12 Accuracy and Repeatability of Y axis 

Measured length: 100 mm 

No of target position: 11 

No of total data run: 6 

Travel mode: Bidirectional 

Ave air temp: 23.44 ̊C 

Ave air pressure: 757.57 mm Hg 

Measurement equipment: Laser Interferometer 
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Compensation table used: Table B.3 

Measurement setup and results: Figure B.5 

 

 

 

 

 

 

 

 

 

 

 

Table B. 1 Compensation table for X-axis 

Table B. 2 Compensation table for Y-axis 

Table B. 3 Compensation table for Z-axis 
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(a) X axis accuracy and repeatability measurement setup 

(b) X axis accuracy and repeatability measurement result 
(without compensation) 

(c) X axis accuracy and repeatability measurement result 
(with compensation) 

Figure B. 3   X-axis accuracy and reputability measurement 
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(c) Y axis accuracy and repeatability measurement result 
(with compensation) 

(b) Y axis accuracy and repeatability measurement result 
(without compensation) 

(c) Y axis accuracy and repeatability measurement result 
(with compensation)

(a) Y axis accuracy and repeatability measurement setup 

Figure B. 4   Y-axis accuracy and reputability measurement 
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(a) Z axis accuracy and repeatability measurement setup 

(b) Z axis accuracy and repeatability measurement result 
(without compensation) 

(c) Z axis accuracy and repeatability measurement result 
(with compensation)

Figure B. 5   Z-axis accuracy and reputability measurement 


