
QUALITY-AWARE PERFORMANCE ANALYSIS

FOR MULTIMEDIA MPSoC PLATFORMS

DEEPAK GANGADHARAN

(B.Tech, University of Kerala, India)

A THESIS SUBMITTED FOR

THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2012

Acknowledgments

The PhD years have shaped my thoughts about life and therefore I am glad that I

took the decision to pursue graduate studies. Professionally, the PhD journey has been one

of the most challenging and rewarding journeys of my life. Hence, there are several people

I would like to thank for helping me in this journey.

I would firstly like to thank my first supervisor Prof.Samarjit Chakraborty for

introducing me to the interesting area of System level Performance Analysis. Although he

left NUS 1.5 years into my PhD program, he constantly supported me by giving timely

advice on my research directions. I also thank him for hosting me at TU Munich where

some very important works of this thesis were developed. Secondly, I would like to thank

Prof.Roger Zimmermann for agreeing to supervise me when Prof.Samarjit left. They also

were generous enough to give me complete freedom in etching out the research direction.

I am grateful to my PhD thesis committee members Prof.Tulika Mitra, Prof.Wong

Weng Fai and Prof.Nalini Venkatasubramaniam for providing their valuable inputs to im-

prove the thesis. I thank the School of Computing at NUS for supporting me throughout the

program. This journey would not have been possible but for the collaboration with some

wonderful colleagues. I therefore thank Linh, Haiyang and Balaji for helping me in the

publications that we jointly published.

I would equate the journey of PhD to a roller coaster ride with its ups and downs.

The support from friends and family members cannot be overlooked during such times. I

was fortunate enough to have a good set of friends in Vintu, Suresh, Senthil, Vinitha and

iii

ACKNOWLEDGMENTS

Vijith whenever I needed to relax my mind. Similarly I had some good friends at NUS

(Ankit, Unmesh, Ramkumar, Swaroop, Balaji, Kathy, Vamsi, Malai, Ransi and Mahesh)

with whom I have spent enjoyable moments.

I finally dedicate this thesis to my parents (Mr. G.Gangadharan and Mrs.Sreedevi

Gangadharan) and my sister (Ramya) for having supported me when I decided to take a

plunge into graduate studies. I am indebted to my parents for allowing me to follow my

own career path though it meant that I would stay away from them for a long period of

time.

iv

Contents

Acknowledgments iii

List of Figures x

List of Tables xiv

Abstract xv

List of Publications xvii

1 Introduction 1

1.1 Multimedia MPSoC Platforms . 2

1.2 Classification of MPSoC Performance Analysis Techniques 3

1.2.1 Simulation-based Performance Analysis 4

1.2.2 Formal Methods for MPSoCs . 5

1.2.3 Model-based Performance Analysis . 6

1.3 Resource Dimensioning . 8

1.4 Resource Dimensioning: A Quality-Aware Approach 10

1.5 Thesis Contributions . 12

1.5.1 Quality-Driven Buffer Dimensioning (Chapter 2) 13

v

CONTENTS

1.5.2 Quality-Driven Service Determination (Chapter 3) 14

1.5.3 Quality and Thermal-Aware Multimedia Processing (Chapter 4) 14

1.5.4 Fast Simulation Frameworks for Multimedia MPSoC platforms (Chapter 5) 15

1.6 Mathematical Background . 15

1.7 Summary . 17

2 Quality-Driven Buffer Dimensioning 18

2.1 Related Work . 19

2.2 A Mathematical Framework for Video Quality Driven Buffer Sizing via Frame Drops 20

2.2.1 Buffer Sizing Framework . 22

2.2.2 Partitioning arrival and service curves . 25

2.2.3 Bounds on dropped frames . 28

2.2.4 Worst-case bound on Quality . 35

2.2.5 Case Study (MPEG-2 Decoder) . 37

2.2.5.1 First stage results . 38

2.2.5.2 Second stage results . 45

2.2.5.3 Buffer savings . 48

2.3 Video Quality Driven Buffer Sizing via Prioritized Frame Drops 48

2.3.1 Buffer Dimensioning Framework . 50

2.3.1.1 Problem Formulation . 50

2.3.1.2 Quality-Aware Frame Dropping 51

2.3.1.3 Determination of Bmin j . 52

2.3.2 Quality-Aware Frame Dropping . 53

2.3.3 Minimum Buffer Size Estimation . 56

2.3.4 Experimental Results . 58

2.3.4.1 Evaluation of MV-based frame dropping 58

vi

CONTENTS

2.3.4.2 Minimum Buffer Size Estimation 59

2.4 Summary . 60

3 Quality-Driven Service Determination 61

3.1 Processor Service Determination Framework . 62

3.2 Computing Quality-Driven Service Curves . 64

3.3 Experimental Results . 70

3.3.1 Processor Cycle vs Quality trade-off . 71

3.3.2 Verification of the Processor Cycle Requirements 73

3.4 Summary . 75

4 Quality and Thermal Aware Multimedia Processing 76

4.1 Motivation . 77

4.2 Proposed Framework . 80

4.2.1 Platform Description . 80

4.2.2 Preliminaries . 81

4.2.3 Problem Definition . 83

4.3 Drop Pattern Generation . 84

4.4 Quality and Thermal Aware Idle Time Insertion 85

4.5 Experimental Results . 92

4.5.1 Elimination of idle times . 94

4.5.2 Reduction of idle times with quality . 94

4.5.3 Reduction in delay with varying quality and HIST MAX values 96

4.6 Summary . 98

5 Fast Simulation Frameworks for Multimedia MPSoC platforms 100

5.1 Model-Based Performance Analysis . 101

vii

CONTENTS

5.1.1 Related Work . 102

5.1.2 Overview of our framework . 105

5.1.3 Variability Characterization Curves . 106

5.1.4 MPEG-2 Decoder Workload Model . 109

5.1.4.1 VLD Task . 109

5.1.4.2 MC Task . 110

5.1.4.3 IDCT Task . 111

5.1.4.4 Total Workload . 112

5.1.5 Test Case Classification . 112

5.1.5.1 Experimental Framework . 116

5.1.6 Validation . 120

5.2 Hybrid Simulation for Quality-Driven Performance Analysis 122

5.2.1 Motivational Example . 123

5.2.2 Related Work . 124

5.2.3 Hybrid Simulation-based Quality Assessment Framework - An Overview . 125

5.2.4 Workload Models for Simulation Heavy Tasks 127

5.2.4.1 MC Workload Model . 128

5.2.4.2 IDCT Workload Model . 129

5.2.5 Experimental Study . 129

5.2.5.1 Frame discard strategy . 130

5.2.5.2 PSNR calculation . 131

5.2.5.3 Results and Discussion . 131

5.3 Summary . 134

6 Concluding Remarks 136

6.1 Summary . 136

viii

CONTENTS

6.2 Future Work . 137

6.2.1 Analytical framework for quality-driven buffer dimensioning with frame

priority constraints . 138

6.2.2 Frame size considerations for buffer dimensioning along with motion vector 138

6.2.3 Joint design space exploration of buffer size and processor bandwidth . . . 139

6.2.4 Lowest peak temperature estimation . 139

6.2.5 Parameterized test case classification for fast performance analysis 140

6.2.6 Workload model derivation in the context of microarchitectural features like

cache . 141

Bibliography 142

ix

List of Figures

1.1 GOP decoding order with possible replacements for B frames if dropped. 10

1.2 Quality-Aware Performance Analysis Framework. 12

1.3 System Model for a processing component . 16

2.1 Dual buffer management scheme with drops in less significant frames and buffer

size vs. video quality trade-off results for a benchmark MPEG-2 video susi 080 ([1]). 21

2.2 MPSoC setup with buffer constraints and frame drops 23

2.3 Overview of the Analytical Framework . 23

2.4 System model with infinite and finite buffer for a single PE 26

2.5 Modeling systems with drop due to buffer overflow. 29

2.6 A sequence of PEs with insufficient buffers. 34

2.7 Generation of time interval based drop bound curves (αu
drop) from the upper arrival

(αu) and lower virtual processor service (β l
v) curves. Here Bmax = 90. The three

plots are for clips (a) time 080, (b) susi 080 and (c) orion 2. 39

2.8 Comparison of Analytical and Simulation results of worst-case drop bound for two

buffer capacities. The three plots are for clips (a) time 080, (b) susi 080 and (c)

orion 2. 41

2.9 Worst case quality surface (Qu in dB) for the clips (a) time 080, (b) susi 080 and (c)

orion 2. 42

x

LIST OF FIGURES

2.10 Comparison of analytical and simulation results of worst-case quality (qu) for Bmax1 =

30 for three clips (a) time 080, (b) susi 080 and (c) orion 2. 43

2.11 Variation of worst case quality (qu) with different buffer sizes for the clips (a)

time 080, (b) susi 080 and (c) orion 2. 44

2.12 Worst case quality (qu) with Bmax1 = 30 and (a) Bmax2 = 40, (b) Bmax2 = 120 and (c)

Bmax2 = 200 for the clip time 080. 46

2.13 Worst case quality (qu) with Bmax1 = 30 and (a) Bmax2 = 40, (b) Bmax2 = 120 and (c)

Bmax2 = 200 for the clip orion 2. 47

2.14 Evaluation of buffer savings using frame dropping policy from [2] versus optimal

frame dropping policy from [3] for a benchmark MPEG-2 video susi 080 ([1]). . . 49

2.15 (a) Motion Vector vs Frame Index, (b) Framesize vs Frame Index, and (c) MSE vs

Frame Index for a motion video susi 080. 54

2.16 Comparison of buffer savings for susi 080 . 59

2.17 Comparison of buffer savings for tens 080 . 59

3.1 MPSoC platform setup for a PiP-like application with frame drops showing two

streams with separate buffers, but sharing processing resources. 63

3.2 System model for the shaded portion representing data path for stream a1(t) in Fig. 3.1. 63

3.3 Aggregate service curves with and without frame drops for the clips (a) cact 080

and (b) susi 080. 71

3.4 Processor cycle requirements with and without frame drops for the clips (a) cact 080

and (b) susi 080. 72

3.5 Simulation results for quality in a multiple stream decoding scenario for (a) cact 080

and (b) susi 080. 74

4.1 Illustration of reduction in inserted idle times using frame drops: (a)inserted idle

times without frame drops and (b)inserted idle times with frame drops 79

xi

LIST OF FIGURES

4.2 MPSoC platform using frame drops to reduce idle times under thermal and quality

constraints . 81

4.3 High level schematic diagram of Quality and Thermal-aware Idle time Insertion . . 83

4.4 (a) Lower inserted idle time with Frame drop idle time (with frame drop interval

LFDI) and (b) Inserted idle time with no frame drops (with idle time interval LI). . . 89

4.5 Temperature control without insertion of idle times 93

4.6 12Idle times introduced with Tmax = 80◦ C for video clip (a) susi 080 at 30 dB, (b) susi 080 at 35 dB, (c) f lwr 080 at 30 dB and (d) f lwr 080 at 35 dB. 94

4.7 12Accumulated idle times with Tmax = 80◦ C for video clip (a) susi 080 at 30 dB, (b) susi 080 at 35 dB, (c) f lwr 080 at 30 dB and (d) f lwr 080 at 35 dB. 95

4.8 12Temperature profile (with frame drops and idle time insertions) for (a) f lwr 080 with Tmax = 80◦ C and target quality of 30dB and 35dB for video clips (a) f lwr 080 and (b) susi 080. 97

5.1 Overview of video stream classification using bitstream analysis 105

5.2 MPSoC platform architecture for MPEG-2 decoder 106

5.3 Differential errors δ u (k) and δ l (k) encountered when conservative linear interpo-

lations k× emax and k× emin are used instead of Workload VCCs γu (k) and γ l (k)

respectively for VLD of k consecutive MBs . 108

5.4 Workload versus number of non-zero coefficients for VLD task from simplescalar

simulation of a video clip . 110

5.5 Workload values for different tasks for 50 macroblocks of 5 video clips from Table

5.1: (a) VLD workload using bitstream analysis, (b) VLD workload using sim-

plescalar simulation. 113

5.6 Workload values for different tasks for 50 macroblocks of 5 video clips from Table

5.1: (a) MC workload using bitstream analysis, (b) MC workload using simplescalar

simulation. 114

5.7 Workload values for different tasks for 50 macroblocks of 5 video clips from Table

5.1: (a) IDCT workload using bitstream analysis and (b) IDCT workload using

simplescalar simulation. 115

xii

LIST OF FIGURES

5.8 Variability characteristic curves for 11 video clips (each cluster is marked with the

clip numbers of videos from Table 5.1) used for classification: (a) VLD Upper

workload curve (γu
vld), (b) VLD Lower workload curve (γ l

vld), (c) Upper arrival rate

curve to PE1 (κu
vld), (d) Lower arrival rate curve to PE1 (κ l

vld), (e) IDCT+MC Upper

workload curve (γu
idct) and (f) IDCT+MC Lower workload curve (γ l

idct). 118

5.9 Cluster trees of video clips at the various stages of the architecture (a) Input (b)

Intermediate and (c) Playout . 119

5.10 System simulation times for evaluating the execution times of various tasks in an

MPEG-2 decoder. Simulating the VLD task is less expensive compared to the MC

or IDCT tasks. 124

5.11 Overview of hybrid simulation-based quality assessment 125

5.12 PSNR vs the system resource values f1 and f2 for two test videos (a) PSNR vs f1

for tens 080, (b) PSNR vs f1 for v700 080, (c) PSNR vs f2 for tens 080, (d) PSNR

vs f2 for v700 080, (e) PSNR vs B1 for tens 080, (f) PSNR vs B1 for v700 080, (g)

PSNR vs B2 for tens 080 and (h) PSNR vs B2 for v700 080. 132

5.13 PSNR vs the system resource values B1 and B2 for two test videos (a) PSNR vs B1

for tens 080, (b) PSNR vs B1 for v700 080, (c) PSNR vs B2 for tens 080 and (d)

PSNR vs B2 for v700 080. 133

6.1 Cluster formation based on condition that buffer occupancy deviation Bdev is less

than a threshold Bthr . 140

6.2 Workload model for tasks on PEs taking instruction cache in PE into consideration 141

xiii

List of Tables

2.1 Buffer savings for the three video clips with quality variation 48

2.2 Minimum buffer size (in Megabits) for various prespecified PSNR values with fPE1 =

25MHz . 60

4.1 12PE1 delay for benchmark video clips with varying quality and HIST MAX values . 96

5.1 MPEG-2 video clips used in our experiments [ftp://ftp.tek.com/tv/test/streams/Element/MPEG-

Video/] . 116

5.2 Simulation results for maximum buffer backlogs (in number of MBs) at various

stages in the architecture . 121

5.3 Simulation results for maximum delay (in seconds) for one MB at each PE 122

xiv

Abstract

State-of-the-art embedded devices (e.g. mobile devices) run multiple applications on mul-
tiprocessor system-on-chip (MPSoC) platforms. MPSoC platforms are becoming popular
due to the increasing number and complexity of target applications. Among the target ap-
plications that the embedded devices run, video players are extensively used by the end user
and contribute to a large fraction of the workload. They are used to play both stored and
live videos which are decoded on the MPSoC platform. Decoders are resource intensive
applications requiring large buffer sizes, processor bandwidth and thermal management
techniques to adhere to thermal constraints. These are the primary factors that determine
the cost of the target embedded device. In order to analyze these crucial system resources
early in the design cycle, various system level performance analysis techniques are em-
ployed. Although we focus on video decoding in this thesis, the techniques developed are
general and can be applied to all applications that employ frame-based processing (e.g.
games that are made up of graphics frames).

Although there is a large body of work that discusses system level performance analysis
techniques for multimedia applications mapped to a MPSoC platform in various design
contexts, most of these were not quality loss-aware techniques (quality losses have ear-
lier been considered only in the case of power management). These techniques compute
the platform resource requirements that enable maximum output video quality. However,
multimedia applications can tolerate some data loss without significant deterioration in
the output video quality. This property has not been considered in performance analysis
techniques before, i.e., quality loss-aware performance analysis techniques have not been
studied before. In our work, we present simulation-based and analytical performance anal-
ysis techniques to determine the system resources in a quality-aware manner. The quality-
resource trade-off has been shown to be important in saving vital resources for insignificant
loss in quality. These works are briefly described below.

1. In the first work, we study the impact of video frame drops in buffer-constrained MP-
SoC platforms. In this work, we propose a formal framework to evaluate the buffer
size vs. video quality trade-offs, which in turn will help a system designer to perform
quality driven buffer sizing. In particular, we mathematically characterize the max-
imum numbers of frame drops for various buffer sizes and evaluate how they affect
the worst-case PSNR value of the decoded video.
However, the limitation in the formal framework does not allow a priority scheme to
drop frames. Therefore, we study the impact of a novel prioritized frame dropping

xv

ABSTRACT

scheme in buffer-constrained MPSoC platforms. The frame dropping scheme is cru-
cial here to drop frames appropriately such that the required buffer size is reduced
and target quality requirement is satisfied. Towards this, we propose a simple priori-
tized frame dropping mechanism which reduces the required buffer space more than
existing frame dropping policies.

2. A Picture-in-Picture (PiP) like application where two videos are played simultane-
ously, is efficiently handled in televisions and personal computers by providing max-
imum quality of service to the multiple streams . However, it is a difficult task in
devices with resource constraints. Therefore, we propose a network calculus based
formal framework to help schedule multiple video streams in a PiP application in
the presence of buffer contraints. We obtain considerable reductions in the processor
cycle requirement for multimedia processing by trading with quality.

3. In order to satisfy thermal constraints while running power hungry applications like
video players, dynamic thermal management (DTM) techniques are employed. Most
of the earlier work in reducing peak temperature for multimedia applications relied
on dynamic voltage and frequency scaling (DVFS) and dynamic power management
(DPM) methods while taking care that maximum video quality is achieved. However,
no prior work has exploited frame drops to lower the temperature under fixed quality
constraints. Given the quality constraint, we propose a DPM framework that utilizes
frame drops to dynamically insert low idle times in order to adhere to given peak
temperature constraint.

In addition to the quality-aware performance analysis techniques mentioned earlier, we
also have done some work in the direction of model-based fast performance analysis for
multimedia MPSoC platforms. Here, we present techniques to reduce the simulation time
for simulation-based performance analysis techniques for multimedia MPSoC platforms by
using application workload models and performance models.
In this thesis, we add another dimension to the design stage of system level performance
analysis by using the application quality loss information to perform quality loss-aware
resource dimensioning. We develop quality-aware analytical and simulation based perfor-
mance analysis techniques in order to dimension the critical resources.

xvi

List of Publications

Related to Thesis

1. Published

• Deepak Gangadharan, Samarjit Chakraborty and Roger Zimmermann, ”‘Quality-

Aware Media Scheduling on MPSoC Platforms”’, Accepted in Design Automa-

tion and Test in Europe (DATE), 2013.

• Deepak Gangadharan, Ma Haiyang, Samarjit Chakraborty and Roger Zimmer-

mann, ”‘Video Quality-Driven Buffer Dimensioning in MPSoC Platforms via

Prioritized Frame Drops”’, 29th IEEE International Conference on Computer

Design (ICCD), October 2011.

• Deepak Gangadharan, Linh T. X. Phan, Samarjit Chakraborty, Roger Zimmer-

mann and Insup Lee, ”‘Video Quality Driven Buffer Sizing via Frame Drops”’,

17th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), August 2011.

• Deepak Gangadharan, Samarjit Chakraborty and Roger Zimmermann, ”‘Fast

Hybrid Simulation for Accurate Decoded Video Quality Assessment on MPSoC

Platforms with Resource Constraints”’, 16th Asia and South Pacific Design Au-

tomation Conference (ASP-DAC), January 2011.

• Deepak Gangadharan, Samarjit Chakraborty and Roger Zimmermann, ”‘Fast

xvii

LIST OF PUBLICATIONS

Model-Based Test Case Classification for Performance Analysis of Multimedia

MPSoC Platforms”’, International Conference on Hardware-Software Codesign

and System Synthesis (CODES+ISSS), October 2009.

2. In Preparation

• Deepak Gangadharan, Samarjit Chakraborty and Roger Zimmermann, ”‘Quality-

aware Multimedia Processing on Thermally-Constrained MPSoC Platforms”’,

2012 (Journal).

Chapter 3 is based on published article 1. Chapter 2 is based on the published articles 2

and 3. Chapter 5 is based on published articles 4 and 5.

The article in preparation constitutes Chapter 4.

Other Publications (Not part of the thesis)

• Haiyang Ma, Deepak Gangadharan, Nalini Venkatasubramanian and Roger Zimmer-

mann. Energy-aware complexity adaptation for mobile video calls. ACM Multimedia,

November 2011.

• Balaji Raman, Guillaume Quintin, Wei Tsang Ooi, Deepak Gangadharan, Jerome Mi-

lan and Samarjit Chakraborty. On Buffering with Stochastic Guarantees in Resource-

Constrained Media Players. International Conference on Hardware-Software Code-

sign and System Synthesis (CODES+ISSS), October 2011.

xviii

Chapter 1

Introduction

System-level performance analysis of MPSoC platforms is becoming an increasingly non trivial task

with increase in complexity of these platforms. The increasing complexity is due to the large and

varied set of applications mapped onto the MPSoC platforms. In order to support these applications,

these platforms need to provide adequate resources, which are diverse in nature. The host of non

functional dependencies introduced by processor and bus scheduling also need to be considered in

performance analysis [4]. The non functional dependencies arise due to the nature of interactions

among the various components in the architecture. These dependencies often are the main reasons

for the contradicting performance demands of the target MPSoC platform. Here, the performance

analysis task has to predict the important system parameters namely end-to-end delays and buffer

requirements in the initial stage of the design cycle.

As portable embedded systems are increasingly incorporating MPSoC platforms, a sound system-

level performance analysis is very important in the design cycle of these embedded systems. The

existence of orthogonal product demands are the very reason for the requirement of a robust perfor-

mance analysis process. Although the portable devices need to be designed with adequate resources

to support many applications, the main goal is to reduce the overall cost of the system. The choice

of hardware resource configurations and thermal considerations are the primary factors that affect

cost of such a system. In order to reduce cost, if we cut down on these resources or do not provide

sophisticated cooling solutions, the performance of the system is adversely affected. On the other

hand, higher performance targets also results in increased cost of the system. Therefore, in order

1

CHAPTER 1. INTRODUCTION

to reduce cost, it is sometimes necessary to design the system such that the performance degrades

gracefully, i.e., the deterioration in performance of the system is not perceptible.

Multimedia applications are a suitable choice to explore the tradeoff between resource requirements

(and hence cost) and performance (we look at objective quality here). Therefore, this thesis deals

with performance analysis for multimedia MPSoC platforms, which is briefly discussed in the next

section. Although we present performance analysis for multimedia MPSoC platforms (specifically

running video decoders employed in video players) without considering the presence of other appli-

cations, similar techniques can be extended to analyze the performance of multimedia applications

in the presence of other non multimedia applications. In the next section, we discuss the multimedia

MPSoC platforms, in particular, the variability of the tasks and the workload experienced by them

and how it affects the design.

1.1 Multimedia MPSoC Platforms

In portable embedded systems, the MPSoC platforms primarily process multimedia content in video

players and other similar applications. Such applications require considerable amount of computing

resources (multiple processors interconnected in various topologies) and on-chip buffer resources.

Video conferencing is another important application that is envisaged to be used extensively on

mobile phones. Here, video encoding task needs to be executed on the MPSoC platform, which

is a more resource intensive task in comparison to video decoding. Moreover, with the continuing

evolution of video encoding/decoding standards, programmable platforms are playing an important

role in readily incorporating additions in functionality. On the other hand, dedicated hardware

platforms require unacceptably long design times for the same.

Viper SoC architecture [5] and Eclipse architecture template from Philips [6] are examples of MP-

SoC platforms that provide generic and programmable frameworks to process the wide variety of

multimedia applications. They have been conceptualized to enable the system designers to rapidly

design media processing devices like set-top boxes, high definition television etc. The complexity

of designing these platforms arises from the large variation in the workload experienced by them

for different input video clips. There is a considerable difference between the average to worst-case

2

CHAPTER 1. INTRODUCTION

workloads experienced here. Therefore, if the platform is designed for the worst-case scenario, the

determination of resource requirements results in overestimates for majority of other multimedia

inputs (e.g., video clips), which makes the design of multimedia MPSoC platforms a non trivial

task. In the case of portable devices with MPSoC platforms running multimedia applications, it

is very essential to take the large variation in input workload into consideration in order to derive

appropriate system resources enabling low cost.

Before getting into the performance analysis techniques for specific system parameters, we first

present a broad classification of the existing methodologies in system level performance analysis

of MPSoC platforms. Here, we address the pros and cons of various MPSoC performance analysis

techniques.

1.2 Classification of MPSoC Performance Analysis Techniques

There has been a large body of work dealing with system level performance analysis methodologies

for MPSoC platforms in order to derive the critical system resources. The various methodologies

that exist in literature are:

1. Simulation based methods.

2. Formal methods.

3. Semi-formal methods.

Simulation-based system-level performance analysis is a more widely adopted methodology for

multimedia MPSoC platforms, mainly SystemC based full system simulation or trace-based simu-

lation ([7], [8]). In the context of a video processing application such as an MPEG-2 decoder, these

simulations take a library of test video clips as input. When simulated with this library, the MPSoC

platform is considered to be appropriately designed if it behaves in accordance to all the performance

constraints. It is analogous to the common software functional testing methodology [9]. However,

unlike in the software testing scenario, simulation of MPEG-2 decoder application with the library

of video clips is very expensive with respect to time. As mentioned in an earlier work [10], it may

take tens of hours for the simulation of only a few minutes of video in a decoding application.

3

CHAPTER 1. INTRODUCTION

Therefore, the performance analysis time for such architectures steeply increases with the input li-

brary size. Further, manual identification of uncorrelated test inputs so as to expose the MPSoC

architecture to all possible corner cases is a tedious exercise.

Hence, researchers resorted to a more systematic methodology for MPSoC performance analysis.

Here, they have studied formal techniques ([11], [12]), in which various system components are

modeled mathematically and worst case bounds of performance characteristics are found according

to the model. This methodology eliminates the need for time consuming simulations altogether, but

it has its own overheads in representing an entire system using a mathematical model. Moreover,

formal analysis methods for multimedia MPSoC architectures do not generally take the inherent

correlations among the workloads. It is also highly likely that some specifications of the MPSoC

system are missed out in the models developed using this approach. Most importantly, the worst

case bounds obtained for performance characteristics are very pessimistic. This does not lead to a

very resource efficient MPSoC architecture.

There are some performance analysis methods in the literature which use a combination of both

simulation and analytical methods. These come under the semi-formal methods. These methods

try to use the good aspects of the two methods described above. Certain system components are

simulated (especially which are hard to model) and the rest are analyzed using analytical models

(to reduce the simulation time). However, this adds the burden of employing interfaces among two

components being analyzed using different approaches. Less pessimistic results are also obtained

using such methods when compared to complete formal performance analysis methods [13].

1.2.1 Simulation-based Performance Analysis

This method mainly involves performing extensive SystemC based full system simulation or trace-

based simulation ([7], [8]) in order to estimate the performance metrics. A major difficulty in

conventional simulation-based approach is the difficulty in generating an exhaustive set of test inputs

that exposes the MPSoC architecture to all possible corner cases. This is made more non-trivial with

the complex interactions among the various system components that occur under the influence of

specific test inputs.

Wild et al. [14] propose an approach where the system resource functionalities are captured as

4

CHAPTER 1. INTRODUCTION

sequence of trace primitives. During simulation runtime, these are merged with the system archi-

tecture as transactions. SystemC is used as the modelling language.

Gao et al. [15] present a framework for hybrid simulation which shows a significant speed up when

compared to conventional detailed simulation. It also provides more accurate performance esti-

mation results for components like simple RISCs (Reduced Instruction Set Computers) to DSPs

(Digital Signal Processors) and VLIW (Very Large Instruction Word) machines. The Processing

Elements (PEs) are considered to be one of the above mentioned components and thus can be mod-

elled. They claim a speed improvement of 3× to 5× for a multiprocessor simulation with low errors

in performance estimates.

1.2.2 Formal Methods for MPSoCs

As discussed in Section 1.2, formal methods are used to find the best and worst case values of the

performance parameters. The formal approach based system performance analysis domain works

along two problem domains [11] namely task performance analysis in the form of process execution

time analysis and resource sharing analysis, also known as schedulability analysis. However, we do

not go into its details as it is outside the scope of this report.

In contrast to simulation-based approach, which considers each event individually, the formal anal-

ysis methods abstract each event to event streams and use some simple characteristics of these

event streams to obtain the worst and best case performance parameter bounds [11]. However,

this does not help in the global performance analysis of the system due to the complex nature of

event streams. Hence, a mathematical framework called real-time calculus (RTC) ([16], [17]) was

proposed in order to generalize the event model with upper- and lower-bound arrival curves. A

technique called timed automata was used to model real time events with any level of detail but it

leads to prohibitively large number of states [12].

Most of the work in formal methods for performance analysis of MPSoC architectures have not

considered the workload correlations that exist. This gives very pessimistic results. Hence some

work ([18], [19]) has been performed to develop a model to characterize and capture the existing

workload correlations. These have been developed in conjunction with RTC, but give more tighter

bounds on performance results (like processing delay of some event by a task mapped to a processor)

5

CHAPTER 1. INTRODUCTION

than given by RTC. They use workload correlation curves (WCC) which are formulated using the

RTC framework in order to characterize the workload correlations. The detailed definitions can be

found in [18].

Similarly Jersak et al. [4] have proved that, in the context of MPEG-2 video stream processing,

using system contexts can improve the bounds obtained by performance analysis. This involves cor-

relations between successive computation or communication. They also describe intra event stream

and inter event stream contexts which can individually lead to tighter analysis bounds, although both

these system contexts affect different parameters. Finally it has also been shown that a combination

of these two system contexts can improve the performance analysis bounds further.

A modular performance analysis (MPA) method has been used ([20], [21]) to evaluate an in-car

radio navigation system. The main idea of MPA is to provide a performance model that abstracts the

functionality of a system with RTC into a performance model. As more information of the system

(about the available computation and communication resources and other details) is available, it

gives a more tighter bound on the performance parameters when compared to the RTC only based

performance analysis.

1.2.3 Model-based Performance Analysis

Application specific models like scenarios have been lately used for an efficient performance analy-

sis of the target platform. These approaches may use the good aspects of both the performance anal-

ysis approaches discussed earlier. Gheorghita et al. [22] propose the usage of application scenarios

so as to speed up the design implementation and obtain more accurate estimates of the resource re-

quirements. In contrast to use case scenarios, which provide the functional and timing behaviours,

the application scenarios capture the internal details of the application in terms of the resource re-

quirements necessary to meet the constraints. They further discuss the detection and classification

of these application scenarios depending on the resources. Going forward, they also touch upon

how the application level information can be used for scenario exploitation. This gives us an idea

that it can be adapted into the multimedia MPSoC platform performance verification where the data

dependent metrics are used to classify the video clips.

Raghavan et al. [23] discuss a model-based performance estimation in the context of a mobile de-

6

CHAPTER 1. INTRODUCTION

vice. They use modular and reusable component job models derived from simulation of hardware

system models. The performance characteristics are analyzed by simulating the platform for various

use cases. Those use cases that cause more demand of system resources are considered to be per-

formance critical. An important aspect of this model-based performance estimation is that they lie

in between the less accurate analytical models and detailed simulation-based approaches. Only few

use cases are executed on a system level simulator while multiple parallel use cases are analyzed on

a use case simulator (which takes in a use case model and generates performance metrics in lesser

time). In this model, the resource usage function could be a table with inputs and corresponding

outputs, a regression model or a single program giving an output for each input. The model-based

performance estimation is also quite relevant in the hardware domain where parameters like inter-

connect power consumption are modelled.

In this thesis, we specifically look at low cost resource dimensioning for multimedia MPSoC plat-

forms. In order to design low cost multimedia MPSoC platforms, certain application features of

the multimedia data are exploited. The resulting resource dimensioning frameworks are developed

using RTC tools. Moreover, the RTC performance analysis framework has been adapted to facilitate

the design of low cost multimedia MPSoC platforms. Further, on conducting an extensive literature

review on the state-of-the-art performance analysis methods, we realized that the problems expe-

rienced in the methods described earlier can be solved to a large extent by taking the approach of

model-based performance analysis. To the best of our knowledge, very little work has been done

in this area, especially for multimedia processing on MPSoC platforms. Hence, it is envisaged that

efficient analytical models of the resources on an MPSoC platform can be derived based on the ap-

plication test data. The test inputs can then be categorized into various well defined clusters based

on the similarities that they exhibit within the framework of the resource models developed. Once

the test inputs are clustered, representative inputs can be chosen from each cluster in order to per-

form system simulation. This also gives tighter bounds on the performance parameters along with

reduction in simulation times (as the number of test inputs have now been reduced). Hence, this

requires the need for a classification method of the multimedia streams which in turn need various

resource models based on the complexity of the MPSoC architecture.

Before the contributions of this thesis are mentioned, it is essential to understand the state-of-the-art

7

CHAPTER 1. INTRODUCTION

in resource dimensioning methodologies, which will help emphasize the contributions discussed

later. Therefore, we present the existing work on estimation of three vital resources of a MPSoC

platform namely - buffer, processor cycles and thermal capacity (in terms of peak temperature).

1.3 Resource Dimensioning

Resource dimensioning for multimedia applications has been widely researched in the domain of

multimedia over networks. Here the multimedia data is streamed from the server to the client over

the network. This is implemented using various architectures ([24], [25], [26]) involving the server

and the client. One of the key client parameters that many researchers have studied is the playout

buffer or the jitter buffer size ([27], [28], [29]). The playout buffer size is interlinked with the

minimum playout delay and the corresponding loss in quality [27]. Therefore, a trade-off has been

explored between playout delay and buffer size ([29], [30]). However, given a buffer size and due

to the variable nature of the incoming multimedia stream, adaptive playout techniques ([31]) have

been studied in order to maintain an acceptable level of quality. Playout buffer sizing is all the more

important in the wireless scenario where mobile devices exist with acute resource constraints [27].

Reduction of buffer size by buffer sharing ([32]) has been studied for streaming applications where

multimedia data from different sources need to be streamed in a synchronous manner. In this con-

text, the multiple buffers used for the multiple incoming streams are shared in order to reduce the

overall buffer size. As in multimedia over networks, buffer sizing is a critical task for MPSoC plat-

forms running multimedia applications. Here, there have been numerous efforts to minimize buffer

with contradicting target objectives such as maximum throughput ([33]). Other efforts in buffer

sizing for multimedia MPSoCs with an objective to maximize quality is discussed in Section 2.1.

Although, there have been multiple efforts in buffer sizing, there are not many works that handle

this problem by trading buffer size with a quantified quality loss (This is discussed in detail in the

next section).

Processor time in terms of the number of cycles is another vital resource that is integral to the de-

sired functioning of the multimedia MPSoC platform especially due to the intensive computations

required for certain multimedia tasks. Processor scheduling algorithm is therefore an important

8

CHAPTER 1. INTRODUCTION

decision to efficiently handle multiple tasks. These algorithms are designed with various design ob-

jectives in mind. In [34], scheduling algorithms are discussed to minimize the buffer requirements

for multimedia applications. The authors propose a static priority based scheduling algorithm which

is shown to demonstrate smaller buffer requirements than the other existing scheduling algorithms.

Jason et. al. [35] discuss an integrated scheduling framework to handle both real-time and conven-

tional applications including multimedia with adequate fairness. Hence, in overloaded scenario the

real-time tasks are also degraded gracefully.

Pawan et. al. [36] propose a hierarchical scheduler such that CPU bandwidth is allocated to the

various application classes which in turn is partitioned among the sub classes. Wanghong et. al. [37]

present a scheduler that accomodates the objective of energy efficiency while scheduling multimedia

tasks on mobile devices by integrating dynamic voltage scaling along with soft real-time scheduling

policy. There is rarely any scheduling algorithm that tries to allocate processor resources such that

quality degradations are bounded and measurable. In this thesis, we do not present a scheduling

policy, but derive mathematical bounds for the processor cycle requirements to process multimedia

streams in a quality-aware manner.

Lately energy efficiency and thermal issues have become important design aspects in embedded

systems. It is all the more important for mobile devices with limited energy budgets and low

cost cooling solutions. As multimedia applications are one of the dominating loads in such de-

vices, it becomes imperative to design mobile devices to efficiently process these applications in

an energy/thermal-aware manner. In [38], the authors present a frame data computation aware dy-

namic voltage scaling (DVS) technique in order to decode both stored and real-time video clips with

minimum deadline misses. Another work on DVS for MPEG decoding [39] tries to optimize DVS

using two techniques : (1) minimizing delay and drop rate, and (2) using predicted decoding times.

Yeo et. al. [40] propose a hybrid dynamic thermal management (DTM) scheme to increase the

quality while reducing the peak temperature considerably in comparison to the existing methods.

Here, the authors model the application thermal characteristics as a probability distribution of cycle

requirements for decoding each frame. Many such techniques exist in literature that use DVS or

DTM techniques to reduce energy or peak temperature, but most methods do not exploit quantified

data losses to design energy/thermal aware systems as multimedia streams are tolerant to restricted

9

CHAPTER 1. INTRODUCTION

frame losses.

In the next section, we present a quality-aware approach to resource dimensioning, where we use an

objective quality metric to drop data in order to obtain resource savings. Although there are existing

works in literature that look at trading off system parameters with application quality by performing

cross layer adaptations (at application, middleware, OS, network and hardware level) ([41]), this

thesis delves into the mathematical frameworks to analyze trade-offs in the specific context of a

multimedia MPSoC platform.

1.4 Resource Dimensioning: A Quality-Aware Approach

In MPEG-2/MPEG-4 video streams, there are typically three types of frames, namely, I frame (Intra

coded), P frame (Predicted) and B frame (Bidirectionally predicted). I frames are intra coded frames

and are not dependent on other frames in the video stream for decoding. Decoding a P frame

requires the previous I or P frame as the reference frame. Finally, decoding a B frame requires two

reference frames, namely, a forward reference frame (I/P frame) and a backward reference frame

(I/P frame). It is clear from this organization of frames that B frame drops result in lesser amount of

quality degradation in comparison to the I and P frame drops. In this thesis, we use this property to

trade-off quality in a bounded manner with the various resources like buffer size, processor cycles

and thermal capacity required. Although multimedia literature ([42], [43]) advocate the permissible

number of frame drops within a window of displayed frames that result in tolerable loss, quantitative

quality measures are not given. Therefore, we use an objective quality measure to instantaneously

quantify the quality obtained in our frameworks.

Traditionally, video quality has been measured using both objective and subjective metrics. The

I P B B P B B P B B P B B P . . .

1 2 3 4 5 6 7 8

Figure 1.1: GOP decoding order with possible replacements for B frames if dropped.

10

CHAPTER 1. INTRODUCTION

subjective metrics like mean opinion score (MOS) are suitable to adequately capture the quality

in accordance to the viewer perception [44]. However, it is not possible to get an instantaneous

measurement of video quality using subjective metrics because it requires human subjects to view

the video content and rate them based on certain factors. Moreover these measurements have to

be conducted based on certain evaluation conditions ([45]) as given by [46] and [47]. On the

other hand, traditional objective quality metrics like mean squared error (MSE) and peak signal to

noise ratio (PSNR) are instantaneously obtained, but they are not a very accurate estimate of the

user video perception. There are other more accurate objective quality evaluation metrics, but due

to the simplicity in obtaining MSE and PSNR, we use them in our mathematical frameworks for

resource dimensioning. Further, as the videos entering the target system do not have any reference

to evaluate the quality, we use a no reference method whereby the quality deterioration is measured

by substituting the dropped frame slots with concealment frames. We now discuss how the objective

quality metrics are computed.

The maximum deviation among the dropped frames and the possible concealment frames (shown

in Fig. 1.1) are computed in terms of MSE given by

MSEavg =
(MSE r+MSE g+MSE b)

(3×W ×H)
(1.1)

where MSE r/g/b =
Ndrop−1∑

n=0
(MSE r/g/b)n. MSE r/g/b)n is the deviation for red/green/blue pixels

due to a dropped frame. The MSE for red pixel is given by

(MSE r)n =
W−1∑
w=0

H−1∑
h=0

(rd(h,w,n)− rc(h,w,n))
2 (1.2)

where rd is the red pixel intensity of the dropped frame and rc is the red pixel intensity of the

concealment frame (immediately preceding frame that was successfully processed). h, w and n are

the height, width and frame drop number indices. Similar explanations hold true for MSE g and

MSE b. W and H are the horizontal and vertical resolution of each frame in the video. Ndrop is the

number of frames dropped in the sequence. Finally, the PSNR value of a video sequence with frame

drops is expressed as

psnr = 10× log10
(255×255×Ntot)

(MSEavg)
(1.3)

where Ntot is the total number of frames in the video sequence.

11

CHAPTER 1. INTRODUCTION

input
stream

B1 B2

to playout buffer
PE1

{f2

PE
input
stream

B1 B2

to playout buffer
PE1

{f2

PE2

Quality-Aware Performance Analysis

Multimedia MPSoC Platform

,T2}{f1 ,T1}

Buffer Dimensioning
 (Chapter 2)

Service Determination
 (Chapter 3)

Thermal-Aware
Processing

 (Chapter 4)

Fast Simulation

(Chapter 5)
Framework

Framework

interactions

Figure 1.2: Quality-Aware Performance Analysis Framework.

1.5 Thesis Contributions

How do the individual frameworks glue together under a global system level performance

analysis perspective: This thesis introduces novel analytical and simulation frameworks to do

quality-aware performance analysis in order to determine the resource requirements in a quality-

driven manner. To the best of our knowledge, this is the first work that uses an objective quality

metric as part of the performance analysis frameworks to dimension resources while allowing some

quantified quality loss. All individual performance analysis frameworks proposed in this thesis form

building blocks of an integrated larger performance analysis framework as shown in Fig. 1.2. Al-

though the different performance analysis frameworks for specific resource dimensioning discussed

in this thesis consider the other resources to be constant, it is envisaged that a global performance

analysis framework can be built where the proposed blocks (now considering only a single resource

for performance analysis - discussed in Chapters 2, 3 and 4) in this thesis interact (shown by dashed

blue line at the bottom of Fig. 1.2) to give an optimized set of resources for quality objective func-

tion or some multi-objective function including video quality as one objective. Although we show

12

CHAPTER 1. INTRODUCTION

the interaction between buffer dimensioning and service determination frameworks only in Fig. 1.2,

similar interactions could also exist between either of the two frameworks with thermal-aware pro-

cessing framework. The individual performance analysis techniques shown in Fig. 1.2 are also

helped by the fast simulation techniques proposed in this thesis. These simulation techniques are

used to either rapidly find the representative test clips, which would further speed up the analytical

or simulation based performance analysis techniques to analyze the required system resources or to

rapidly obtain the trace data that will be used by the proposed performance analysis techniques. The

detailed contributions represented by the blocks are discussed in corresponding chapters.

1.5.1 Quality-Driven Buffer Dimensioning (Chapter 2)

In the first work, we study the influence of buffer sizing on worst case quality deterioration using a

formal framework. There are two interlinked parts constituting our framework. For a given video

clip, we perform the following operations.

1. Firstly, we derive the maximum number of frame drops (in any frame interval) for any given

buffer size using a Network Calculus ([48]) based mathematical framework.

2. Secondly, we propose a novel method to compute worst case quality values for video clips.

This is further used in conjunction with the maximum number of frame drops derived in the

first part to find the worst case quality values for various buffer sizes.

A system designer does buffer sizing for an extensive library (covering all possible scenarios) of

video clips, whereby sufficient buffer size is chosen so that a quality constraint is satisfied by all

the clips in the library. Our framework can be used in this context. The information obtained from

buffer size vs. quality trade-off curves for each clip can be used to determine the optimal buffer size

for the entire library. In Section 2.2.1, we give an overview of our analytical framework.

In the second work on buffer dimensioning, we use a novel motion vector based frame dropping

mechanism to decrease the required buffer size for a prespecified quality constraint. This motion

vector based frame dropping is also compared with other existing frame dropping policies to show

its effectiveness. Subsequently, a fast iterative strategy is proposed to derive the reduced buffer size

for a target quality.

13

CHAPTER 1. INTRODUCTION

1.5.2 Quality-Driven Service Determination (Chapter 3)

In this chapter, we propose a formal framework to derive the processor cycle requirements for an

incoming video stream in the presence of buffer constraints such that the video display quality satis-

fies the required target quality constraint. This framework will be very helpful to design schedulers

for PiP (Picture in Picture) applications as they involve multiple incoming streams simultaneously

that share processors in the platform. Therefore, a system designer would be able to use the frame-

work to infer whether the multiple streams can be scheduled. Experiments were conducted using

multiple video streams and it was verified that the processor cycle requirements derived using the

framework actually satisfied the target quality constraints of the individual video streams.

1.5.3 Quality and Thermal-Aware Multimedia Processing (Chapter 4)

This is the first framework that combines an application level technique (namely frame drops) with

dynamic thermal management (DTM) policy to process multimedia streams (video frames in this

context) satisfying both quality as well as thermal constraints. It is a combined offline and online

method where some stream information generated offline is used to optimize the idle time introduc-

tion online. The framework consists of two stages.

1. The first stage generates the frame drop pattern that satisfies a prespecified quality constraint.

The quality constraint used in our work is the worst-case PSNR for a given interval of frames.

This is an offline process and the frame drop pattern generated here is passed onto the next

process which is online. The drop pattern is generated for each clip.

2. Once the quality driven frame drop pattern is derived, it is used to compute the idle times

required such that the peak temperature never exceeds the threshold value. The additional

idle times obtained due to frame drops reduces the idle times introduced. We prove this both

theoretically and experimentally. Moreover, we also use a history based approach to optimize

the idle times introduced. This is an online process.

We are able to get significant reductions in idle times and end-to-end delay for a small reduction in

quality using our approach. For a 2 dB reduction in quality, we were able to reduce the PE1 delay

by approximately 2.5173 sec for a benchmark video with a Tmax = 80◦C setting.

14

CHAPTER 1. INTRODUCTION

1.5.4 Fast Simulation Frameworks for Multimedia MPSoC platforms (Chapter 5)

In our first work, we present a fast model-based test case classification methodology in order to

classify video clips in a library to a fixed number of representative sets. A single video clip from

each representative set can then be used to run system level simulations. This considerably reduces

the number of simulations. However, in our work, we attempt to eliminate the simulation time for

the representative clips also by using workload models for the multimedia tasks. The three major

contributions of our first work are

1. A fast estimation of various Variability Characterization Curves (VCCs) of the video clips

due to the use of bitstream analysis (avoids full decoding) for workload estimation.

2. A fine grained approach in choosing the VCCs (for classification) relevant to each stage in

the architecture.

3. A new model for IDCT workload.

In the second work, we introduce a hybrid simulation based performance analysis framework to

study resource trade-offs in the presence of data losses (or frame drops in our case). We use accurate

workload models for some tasks and simulate the other tasks thereby reducing the simulation time

required. Moreover, we are able to compute accurate quality losses (if frame drops are present) for

various resource combinations.

1.6 Mathematical Background

In this Section, we briefly introduce the mathematical background, which forms the basis of per-

formance analysis techniques presented in this thesis. We use the Network Calculus based RTC

framework to analyze the performance of multimedia MPSoC platforms. The RTC framework

properly captures the incoming multimedia data bursts and service provided for the incoming data

to analyze the performance of multimedia MPSoC platforms. RTC defines certain interval based

quantities called arrival curves and service curves in order to capture the variability in the incoming

data and service. We now define these quantities based on a system model as shown in Fig. 1.3.

15

CHAPTER 1. INTRODUCTION

input
stream

B
α

β

PE

Figure 1.3: System Model for a processing component

Definition 1 (Arrival Curve). For a video clip, let a(t) denote the number of frames that arrive in

time interval [0, t). Then, the video clip is said to be bounded by the arrival curve α = [αu,α l] iff

for all arrival patterns a(t):

α
l(∆)≤ a(t +∆)−a(t)≤ α

u(∆) (1.4)

for all ∆≥ 0. In other words, αu(∆) and α l(∆) give the maximum and minimum number of frames

that can arrive over any interval of length ∆ across the length of the video clip.

Definition 2 (Service Curve). Let c(t) denote the number of frames processed by a task mapped

onto a processor in time interval [0, t). Then, the service curve β = [β u,β l] is a service curve of the

processor iff for all service patterns c(t):

β
l(∆)≤ c(t +∆)− c(t)≤ β

u(∆) (1.5)

for all ∆≥ 0. In other words, β u(∆) and β l(∆) denote the upper and lower bounds on the number

of frames processed over any interval of time ∆ across the length of the clip.

Although RTC defines the above quantities in intervals of time, we have used frame intervals in

order to perform some of the analysis in this thesis. Therefore we define frame interval as

Definition 3 (Frame Interval). For a given video clip, a frame interval F is defined as a window

of any F consecutive frames.

This thesis also uses some elementary operations from Network Calculus. These operations are

introduced further. For two functions f and g belonging to the set of monotonic functions

16

CHAPTER 1. INTRODUCTION

The (min,+) convolution ⊗ and deconvolution � operators are defined as:(
f ⊗g

)
(t) = inf

{
f (s)+g(t− s) | 0≤ s≤ t

}
,(

f �g
)
(t) = sup

{
f (t +u)−g(u) | u≥ 0

}
.

Similarly, the (max,+) convolution ⊗ and deconvolution � operators are defined as:

(
f⊗g

)
(t) = sup

{
f (s)+g(t− s) | 0≤ s≤ t

}
,(

f�g
)
(t) = inf

{
f (t +u)−g(u) | u≥ 0

}
.

1.7 Summary

First, we discussed the state-of-the-art performance analysis techniques for MPSoC platforms. The

thesis was then motivated highlighting the aspect that application quality loss-aware performance

analysis adds another dimension to the current performance analysis techniques. We then presented

the overall framework of the thesis briefly describing the various proposed performance analysis

techniques that take the application quality loss into consideration. The main contributions of the

thesis were also mentioned in this chapter.

Overall Structure of the Thesis: Two quality-driven buffer dimensioning methods will be dis-

cussed in detail in Chapter 2. Then, we will present a quality-driven service determination tech-

nique for multiple multimedia streams on MPSoC platforms in Chapter 3. In Chapter 4, a thermal

and quality-aware method for multimedia processing is developed in order to reduce the idle times

inserted to satisfy the peak temperature constraints. All the previously mentioned performance anal-

ysis techniques are further helped by the use of fast simulation techniques, which will be described

in detail in Chapter 5. Finally, we present our conclusions and discuss the possible future works in

Chapter 6.

17

Chapter 2

Quality-Driven Buffer Dimensioning

Video decoders require significant amount of on-chip buffer resources in order to store the incom-

ing/partially processed frames. A large on-chip buffer size increases the cost of the device running

the video decoder. This is because large on-chip buffers are one of the major reasons for increase in

the chip area ([49], [50]) and the power consumed ([51], [52]). Lowering power consumption is

becoming increasingly important, especially in mobile devices, where extended battery life is one of

the main design targets. Therefore, accurate buffer dimensioning in multimedia MPSoC platforms

has attracted lot of research attention. All prior works in buffer sizing ([53], [54]) discounted the

idea of frame losses in favor of maximum output quality. There have also been works on frame

dropping policies ([2], [3]) to maximize output quality in the presence of scarce buffer resources.

However, there has been no work on quality driven buffer dimensioning using efficient frame drop-

ping strategies such that the required buffer size is reduced while satisfying a target output quality.

This work can be appropriately used for multimedia decoders running on MPSoC platforms as these

decoders can tolerate some quality loss without significant deterioration in video perception.

Contributions: In this chapter, two quality-driven buffer dimensioning methods are presented for

multimedia MPSoC platforms. The first one is an analytical framework to derive the worst-case

quality vs buffer size trade-offs via frame drops. Here, the oldest frame is dropped whenever the

buffer is full. It is a non-trivial task to develop analytical frameworks to analyze the quality vs

buffer size trade-offs using prioritized frame drops. Therefore, the second method discussed is a

simulation based strategy for quality-driven buffer dimensioning using a prioritized frame dropping

18

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

strategy

2.1 Related Work

On-chip buffers take up a lot of chip silicon area. This is evident from [49], in which experiments

clearly show the enormous amounts of silicon area increase due to the increase in FIFO size in the

router. In [50], this same concern is demonstrated in the context of on-chip network design for mul-

timedia applications. However, the authors do not drop any incoming packet from the buffer thereby

giving importance to maximum application quality. A buffer sizing algorithm has been discussed in

the context of networks on chip [55], where the authors are concerned about the reduction of buffers

in network interfaces. There are various objective functions that are considered while choosing the

appropriate buffer size. A buffer allocation strategy is proposed in [49] in order to increase the over-

all performance in the context of a networks-on-chip router design. In [56], an appropriate buffer

size is chosen that gives the best power/performance figure.

Buffer dimensioning is an important aspect of designing media players. In the past, there has been

lot of work in this area where several design factors have been taken into consideration while choos-

ing the appropriate buffer size. Most of this work concentrated on studying the playout buffer vs.

quality of service (QoS) tradeoffs. In [57], the authors discussed an optimal allocation of playout

buffer size such that the playout delay is minimized for a given probability of underflow or a given

QoS. Similarly, in [58], the buffer vs. QoS tradeoff is studied for multimedia streaming in a wireless

scenario using a dynamic programming framework. A combined optimal transmission bandwidth

and optimal buffer capacity is considered to support video-on-demand services [59]. Here, playout

buffer overflow and underflow are not tolerated. There are also some other prior works which have

not tolerated any loss as a result of buffer overflow and underflow ([60], [53], [61], [54]). However,

none of these works have considered the tradeoff between buffer and video quality by allowing

some buffer overflows (i.e., with constrained buffer). Here, video quality is not the end-to-end QoS,

but the distortion in the received frames.

There are various frame dropping strategies that have been discussed in literature that try to maxi-

mize the video quality ([2], [3]). Invariably, all these strategies use a prioritization scheme to drop

19

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

the frames in a quality aware manner such that the quality deterioration is minimized. In [2], frame

size is used to prioritize the frames before dropping. In this approach, frames with larger size are

dropped later and frames with smaller size are dropped first. A distortion matrix is introduced in [3]

to compute the priority of frame dropping based on the distortion that frame suffers if lost. As we

drop only the B frames here, we consider the drop oldest policy during a buffer overflow. Similar

schemes like Drop Newest, Drop Random and Drop All are also discussed in [62].

2.2 A Mathematical Framework for Video Quality Driven Buffer Siz-

ing via Frame Drops

In this work, we propose a formal framework to explore the buffer size vs. video quality trade-offs,

which can help a system designer to perform quality driven buffer sizing. Although these trade-offs

can be explored using system simulations, simulation-based techniques are time consuming. The

concepts discussed here, however, can be applied in the context of network- on-chip architectures

where buffer size can be traded off against some quality parameter by dropping the less important

data. In general, it is applicable to all such scenarios where losing some low priority data helps in

saving buffer resources while still maintaining a good content quality. Therefore, it is important to

recognize the least important data in the target application. As our framework bounds the quality

degradation, the video quality does not deteriorate too much. In MPEG-2/MPEG-4 decoder appli-

cations mapped onto MPSoC platforms, B frame drops can be used to trade-off quality for buffer

size. This selective dropping of frames requires a special scheme to differentiate among frames.

In our approach, a simple dual buffer management scheme is used in order to drop only the less

significant frames (B frames). This scheme is shown in Fig. 2.1. The incoming multimedia stream

is split into two distinct streams: the first consists of the less significant frames (B frames) and the

second consists of the more significant ones (I/P frames). These two streams are fed to two distinct

buffers. This partitioning will be explained in detail in Section 2.2.2. The processing element (PE)

needs to be given a side information conveying the order in which the frames are to be processed

(shown as the dotted line from the splitter to the PE in Fig. 2.1). In the setup shown in Fig. 2.1, drops

occur only for B frames and the size of the associated buffer can be traded off with video quality.

20

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

I and P frames

Binf

Bfin

PE
to subsequent PE

…

B frames

SplitterIncoming frames

Frame
drops

Frame ordering
 information

0 100 200 300 400

30

35

40

45

Frame Interval

(W
or

st
 C

as
e)

 P
SN

R
 (i

n
dB

)

B
m

ax
=

30

B
m

ax
=

90

B
m

ax
=

15
0

Acceptable quality

Figure 2.1: Dual buffer management scheme with drops in less significant frames and buffer size
vs. video quality trade-off results for a benchmark MPEG-2 video susi 080 ([1]).

This trade-off (shown in Fig. 2.1) is obtained using a well known video benchmark susi 080 ([1]).

In multimedia literature ([63]), 30 dB is considered to be an acceptable output video quality (shown

as the horizontal line in the trade-off graph in Fig. 2.1). From Fig. 2.1, it can be observed that we

give quality variations for three different buffer sizes over frame intervals.

The worst case quality value for a frame interval F is the minimum quality obtained over any F

consecutive frames across the clip. From Fig. 2.1, it can be observed that if a maximum buffer size

(Bmax) of 30 frames is chosen, then the quality values (in dB) fall below the threshold value of 30

dB for certain frame intervals from 80 to 260. If the target quality constraint is to satisfy the 30 dB

value for all frame intervals, then Bmax = 30 frames will not be sufficient. However, if the target

quality constraint is that the threshold value of 30 dB should be satisfied for any frame interval

greater than 300, then Bmax = 30 frames will be a good choice as the buffer size. We denote buffer

21

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

sizes in number of frames further because video frames consist of variable number of bits. However,

we give an estimate of the minimum buffer savings in megabits (Mbs).

2.2.1 Buffer Sizing Framework

This section presents an overview of our mathematical framework to study the influence of frame

drops on the PSNR of the decoded video under buffer constraints. We use the arrival curves and

service curves from the Network Calculus to model the data streams and the service given by the

resources, respectively, as they can model any arbitrary stream arrival pattern and any arbitrary

resource service pattern. In addition, they can easily capture the data size variability and the pro-

cessing variability exhibited in the multimedia setting we consider here. Before describing our

framework, we introduce the underlying MPSoC platform.

Platform Description: In this work, we find the buffer size vs. worst case quality trade-off for a

video clip on a buffer constrained MPSoC architecture as shown in Fig. 2.2. The terms explained

in the problem definition are marked appropriately alongside the architecture. The architecture con-

sists of two PEs, PE1 and PE2, each with its own offered service curves shown above them. Each PE

is mapped with a set of tasks from the target decoder application. The PEs also each have a buffer in

front of them, shown as B1 and B2, with maximum capacity of B1max and B2max (quantified in num-

ber of frames), respectively. As the buffer sizes are not always adequate, frame drops may occur,

which are characterized as αu
drop1(∆) and αu

drop2(∆). αu
drop1(∆) and αu

drop2(∆) give the upper bounds

on the number of frames dropped in any time interval of length ∆, where ∆ ≥ 0. Although only a

single buffer is shown in front of each PE, each buffer internally has two parts - one part where some

of the least significant contents (B frames) are dropped and the second part where adequate buffer

size is provided and the significant contents (I/P frames) are not dropped. The frame drops occur in

the droppable buffer section and its drop bounds are derived by our framework. Before getting into

the details of our framework, we first define some terminology.

Problem Definition: Given the arrival curve [αu,α l] of the video clip that is to be decoded on a

decoder application mapped onto a MPSoC platform, the service curve [β u,β l], we analytically

explore the trade-off between buffer resource Bmax (measured in number of frames) and the worst

22

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

input
stream

B1

α
β1

B2

to playout buffer
PE1

αdrop2 u αdrop1 u

β2

PE2

Figure 2.2: MPSoC setup with buffer constraints and frame drops

B

PE

drop
u

input
stream

d
ro

p
u

Q
u

q
u

Frame interval

Frame interval

Frame interval No. of frames

dropped (N
o

. o
f f

ra
m

es

 d

ro
p

p
ed

)

(w
o

rs
t

ca
se

 q
u

al
it

y)
(w

o
rs

t
ca

se
 q

u
al

it
y)

Drop bound calculation Quality bound calculation

Figure 2.3: Overview of the Analytical Framework

case quality (quantified in terms of PSNR) of the decoded video.

Once this trade-off is explored for all the clips in the library, the system designer can appropriately

choose the minimal buffer resource required to satisfy an acceptable quality constraint. The overall

analytical framework consists of two stages as shown in Fig. 2.3, namely the Drop bound calcula-

tion stage and the Quality bound calculation stage. These two stages are described briefly next.

Drop bound calculation: The first stage formally derives the worst case frame drop bound αu
drop

for the droppable part of the buffer, with size Bmax. This analysis is based on concepts from network

23

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

calculus. Specifically, it computes the bounds on the number of frames that are processed in an

incoming stream when the arrival curves [αu,α l], service curves [β u,β l] and buffer size Bmax for

a single PE are given. Our computation is based on the idea of a virtual processor controlling the

admission of frames into the buffer such that the buffer effectively acts as one with no drops, i.e.,

once an appropriate number of frames are dropped from the stream, the finite and constrained buffer

will never overflow, thereby emulating an infinite buffer. We also compute the bounds on the service

offered by the virtual processor to the incoming stream. This can be used to compute the worst case

bound on the number of frame drops in any interval of time. However, we convert the time interval

based computation of frame drop bounds into frame interval based bounds αu
dropF(F), where F is

the frame interval window and 1 ≤ F ≤ Ftotal . Here, αu
dropF(F) is the upper bound on the number

of frames dropped in a window of F consecutive frames and Ftotal is the total number of frames in

the clip. The detailed formulation will be shown in Section 2.2.3.

The useful feature of this stage is that it allows the analysis of multiple PEs in pipeline with buffer

constraints to be done compositionally. In other words, one can compute the bounds on the arrival

curve to the next stage. The computed arrival curve can then be used to derive the frame drop

bounds in the next stage. These frame drop bounds computed at various stages (with constrained

buffer resources) can be finally summed up to obtain the overall bound on the frame drops.

Quality Bound Calculation: Once the frame drop bounds are known, we compute a frame interval

based worst-case bound on quality in terms of PSNR. Towards this, a parameter called the worst-

case quality surface, denoted by Qu, is constructed for each video clip. Qu is defined as below.

Definition 4 Worst-case quality surface (Qu). For any frame interval F, the worst-case quality

surface Qu(f ,F), for all 0 ≤ f ≤ F, is the worst-case quality of the video if f frames are dropped

in any window of F consecutive frames.

All dropped frames are replaced by immediately preceding and successfully processed frames called

concealment frames. The amount of quality loss depends on the MSE between the dropped and con-

cealment frames. The resultant quality is measured in terms of PSNR, which in turn depends on the

MSE between the dropped and concealment frames. We find all possible concealment frames for

24

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

a dropped video and analyze which concealment frame results in maximum error or worst quality

degradation.

Bmax vs. quality trade-off: The final goal of the framework is to explore the trade-off between the

maximum buffer capacity Bmax and the quality for each video clip in the library. Once this trade-off

is available for all the clips in the library, the system designer can take a well-informed decision on

the appropriate buffer size. In order to derive this trade-off, we use the frame drop bound αu
dropF

and map it into the worst case quality surface Qu(f ,F) where f is replaced by the value αu
dropF .

Therefore, the quality bound calculation is a mapping from a three dimensional (3D) space to a two

dimensional (2D) space shown as

qu(F) = Qu(αu
drop(F),F) (2.1)

where qu(F) is the worst-case quality bound for the video clip. This mapping is shown in Fig. 2.3,

where the frame drop bounds are shown at the bottom left hand side and the worst-case quality

space is shown on the bottom right hand side. The final worst-case quality bound for a video clip is

shown in the top right hand side of Fig. 2.3.

2.2.2 Partitioning arrival and service curves

In this work, we study the effect of frame drops in the context of a video clip being processed by

the associated decoder application. As we are more interested in studying the effect of frame drops

on quality degradation, we intend to analyze the drop of those frames that least affect the quality

degradation. It has been observed in MPEG-2 or MPEG-4 decoders that B frames are generally the

least significant when compared to I and P frames as the loss of B frames results in least quality

degradation when compared to I and P frames. Moreover, many video clips are encoded with a

IPBBPBBP... frame pattern, where a large percentage of B frames exist. Therefore, we analyze the

effect of only the B-frame drops. If there are videos encoded without B frames, then P frames can

be dropped. In this case, the framework will remain the same. Consequently, the system model for

the platform architecture consists of two kinds of buffers in front of each PE depending on whether

B frame drops are allowed or not. This is shown in Fig. 2.4. If B frame drop is allowed, then we

25

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

I and P input frames

Binf

Bfin
PE

αinf

to subsequent PE
…

B input frames

βinf

αdrop u

αfin βfin

Figure 2.4: System model with infinite and finite buffer for a single PE

have a finite buffer called the B frame buffer (B f in)) and another finite buffer called the IP frame

buffer (Bin f)) that does not have any drop. The buffer size required for an IP frame buffer can be

computed using conventional Network Calculus technique ([48]).

The existence of two buffers makes it necessary to partition the arrival curves and service offered to

the two sets of frames. As illustrated in Fig. 2.4, the original arrival curves of the input stream are

partitioned into αin f = [αu
in f ,α

l
in f] and α f in = [αu

f in,α
l
f in], which correspond to the arrival curves of

the I and P frames together and of the B frames, respectively. Similarly, the service curves offered

by the PE are partitioned into βin f = [β u
in f ,β

l
in f] and β f in = [β u

f in,β
l
f in], which correspond to the

service curves offered to the I and P frames and to the B frames, respectively. As the I and P frames

share the same buffer Bin f with no frame drops, their buffer size can be computed directly from αin f

and βin f using the technique in [48]. On the other hand, the B frames can be dropped; their drop

bound (αu
drop) can be computed using α f in, β f in and B f in.

The algorithm to compute the partitioned arrival curve for B frames is shown as Algorithm 1. The

arrival curves for I and P frames can also be computed in the same manner. However, due to the

existence of partitioned arrival curves and two buffers now, the PE needs to be given information

about what is the order in which the frames are processed. This is generally the order in which the

frames are encoded and sent out in a video stream.

In Algorithm 1, we compute the arrival curves [αu
f in,α

l
f in] for the B frames. Lines 4-12 compute the

arrival times of each B frame (denoted by b arr) in the video clip. Ftotal and B CNT are the total

26

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Algorithm 1 Computing partitioned arrival curve for B frame

Input: f rsize(B CNT) - Size of each frame in bits;
Output: [αu

f in,α
l
f in]

1: b arr (cnt)← 0 for all 0≤ cnt ≤ B CNT , ip arr← 0;
2: btime max(k)← 0, btime min(k)← 0 for all 1≤ k ≤ B CNT
3: —Computing the arrival time of each B frame—
4: for i = 1 to Ftotal do
5: if B f rame then
6: b arr(cnt) = f rsize(i)/RAT E + ip arr
7: ip arr = 0
8: cnt = cnt +1
9: else

10: ip arr = ip arr+ f rsize(i)/RAT E
11: end if
12: end for
13: —Find max and min arrival times for k consecutive B frames—

14: btime max(k) = max
∀i

{ k∑
j=1

b arr(j+ i)
}

, 0≤ i≤ B CNT − k

15: btime min(k) = min
∀i

{ k∑
j=1

b arr(j+ i)
}

, 0≤ i≤ B CNT − k

16: —Find upper and lower arrival curves for B frames—

17: αu
f in(t) =

{
max

{
k−1

}
: btime min(k)< t

min
{

k
}

: btime min(k)≥ t

18: α l
f in(t) =

{
max

{
k−1

}
: btime max(k)< t

min
{

k
}

: btime max(k)≥ t

number of frames and B frames, respectively, in the video clip. The input bit rate of the video clip

is denoted by RAT E. We then find the maximum and minimum arrival times for k consecutive B

frames. This is shown in lines 14-15. Finally, the arrival curves are computed as in lines 17-18. The

upper bound on the B frame arrival curve is obtained from the minimum arrival time required for k

consecutive frames such that they satisfy the condition in line 17. Similarly, the lower bound of B

frame arrival curve is determined by the maximum arrival time required for k consecutive frames.

The service curves [β u
f in,β

l
f in] for B frames are also computed as the arrival curves have been com-

puted. The only difference here is that instead of the arrival times of B frames, we compute the time

required for the execution of the tasks mapped on the PE for each B frame, i.e., b arr is changed to

execution time. Execution time also depends upon the frequency allocated to the PE. Subsequently,

we compute the maximum and minimum execution time required for k consecutive B frames. Fi-

27

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

nally, we compute the service curves in a similar manner as we did for arrival curves. The arrival

and service curves used in the following sections are the partitioned arrival and service curves for B

frames presented here.

2.2.3 Bounds on dropped frames

In this section, we present a method for computing bounds on the number of frames that are dropped

due to an overflow at a buffer. We first present the modeling idea and the basic concepts, and then

present the details of how drop bounds can be obtained.

A single buffer case. Consider an input stream that is processed by a single processing element

(PE). Suppose the input buffer that stores the incoming frames of the stream before being processed

by the PE, has a finite capacity of B frames.If the buffer is full when a frame arrives, the oldest

frame at the head of the buffer will be dropped and the newly arrived frame will be enqueued at the

end of the buffer. We are interested in the maximum bounds on the frames that can be dropped over

any interval of a given length. The system architecture is shown in the top part of Figure 2.5. In the

figure, a1(t) denotes the input arrival pattern of the frame, i.e., a1(t) gives the number of frames that

arrive over the time interval (0, t]. Similarly, a3(t) gives the number of output frames corresponding

to a1(t), respectively, over the interval (0, t].

To model the buffer refresh at the input buffer, we use a virtual processor Pv that serves as an

admission controller, as shown in the bottom part of Figure 2.5. The virtual processor Pv splits

the input stream a1(t) into two disjoint streams: the former, a2(t), contains the frames that will go

through the system, and the latter, a′2(t), contains the frames that will be dropped, such that there

are no overflows at the buffer.

Based on this transformed system, we give the relationship between a1(t) and a2(t), and the bounds

on a3(t), stated by Lemma 2.2.1 and 2.2.2.

In what follows, g∗ denotes the sub-additive closure of g, defined by g∗ = min
{

gn | n≥ 0
}

, where

g0(0) = 0 and g0(t) = +∞ for all t > 0, and gn+1 = gn ⊗ g for all n ∈ N, n≥ 0. Further, I denotes

the linear idempotent operator, i.e.,

Ia1(x)(t) = inf
0≤s≤t

{
x(s)+a1(t)−a1(s)

}
.

28

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

B

PE

β
…input

stream

finite buffer

PE

β
…input

stream

infinite

Pv

virtual processor

a
1
(t) a

2
(t) a

3
(t)

a
2
(t)′dropped

frames

a
1
(t) a

3
(t)

drop modeling

Figure 2.5: Modeling systems with drop due to buffer overflow.

Lemma 2.2.1 Suppose f is the mapping from a2(t) to a3(t), i.e., a3 = f (a2). Then, a2 =
(
Ia1 ◦

(f +B)
)∗
(a1).

Proof Since none of the items in a2 is overwritten, for all t ≥ 0, b(t) = a2(t)− a3(t) ≤ B, or

a2 ≤ a3+B. Let f be the function that maps the input a2 to the output a3, assuming f is monotonic.

Then a3 +B = f (a2)+B = (f +B)(a2).

Further, the number of items that pass the admission test at Pv (i.e., not overwritten) over any time

interval (s, t] is no more than the number of original items that enter the system over the same

interval. In other words,

∀ t ≥ 0, ∀0≤ s≤ t : a2(t)−a2(s)≤ a1(t)−a1(s).

Recall that Ia1(a2)(t) = inf
{

a2(s)+a1(t)−a1(s) | 0≤ s≤ t
}

. Then, a2 ≤ Ia1(a2). Hence,

a2 ≤ min
{

a1, Ia1(a2), (f +B)(a2)
}

(2.2)

⇔ a2 ≤ a1 ⊕
(
Ia1⊕ (f +B)

)
(a2). (2.3)

Hence, the input function of the items that actually go through the system is the maximum solution

for Eq. (2.3).

From Theorem 4.3.1 in [48], the inequality h≤ g⊕ f (h) has one unique maximal solution, given by

29

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

h = f ∗(g). Apply this theorem into Eq. (2.3), we obtain

a2 =
(
Ia1⊕ (f +B)

)∗
(a1).

This proves the lemma.

The next lemma further gives the bounds on a3(t) based on the relationship established in Lemma 2.2.1.

Lemma 2.2.2 Consider the system in Figure 2.5. Denote α as the arrival curves of the input stream,

β as the service curves of the PE, and B as the size of the buffer. The output stream of the system is

bounded by the arrival curves α ′ = (αu′ ,α l′), defined by

α
u′ = min

{(
α

u⊗β
u
eff

)
�β

l
eff , β

u
eff

}
,

α
l′ = min

{(
α

l�β
u
eff

)
⊗β

l
eff , β

l
eff

}
.

where

β
u
eff =

(
α

u⊗β
u +B

)∗⊗α
u⊗β

u

β
l
eff =

(
α

l⊗β
l +B

)∗⊗α
u⊗β

l.

Proof Let β u
v = αu⊗ (αu⊗β u +B)∗ and β l

v = αu⊗ (α l⊗β l +B)∗. We will prove that a1⊗β l
v ≤

a2 ≤ a1⊗β u
v .

Indeed, from Lemma 2.2.1, we have a2 =
(
Ia1⊕ (f +B)

)∗
(a1). This implies

a2 =
(
Ia1 ◦ (f +B)

)∗ ◦Ia1(a1).

Since β l is the lower service curve of the PE and a3 = f (a2), we have f (a2) = a3 ≥ a2⊗ β l ,

which can be rewritten as f ≥ Cβ l , or f +B ≥ Cβ l +B. Similarly, α l is the lower arrival curve

of A1 implies that a1(t)− a1(s) ≥ α l(t− s). Thus, Ia1(a2) ≥ α l ⊗ a2, or Ia1 ≥ Cα l . Hence, a2 ≥(
Cα l ⊕ (Cβ l +B)

)∗
(a1), which imply

a2 ≥
(
α

l⊗Cβ l +B
)∗⊗a1

⇔ a2 ≥
(
α

l⊗Cβ l +B
)∗⊗α

u⊗a1

30

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

because f ⊗g≤min
{

f ,g
}

or finally a2 ≥ β l
v⊗a1.

By similar argument, we have f +B≤ Cβ u +B and Ia1 ≤ Cαu . Thus,

a2 ≤
(
Cαu ◦ (Cβ u +B)

)∗ ◦Cαu(a1).

which can be rewritten as

a2 ≤ (αu⊗β
u +B)∗⊗α

u⊗a1.

In other words, a2 ≤ β u
v ⊗a1. Hence,

a1⊗β
l
v ≤ a2 ≤ a1⊗β

u
v

Combine the above with the fact that a2⊗β l ≤ a3 ≤ a2⊗β u, we obtain

a1⊗β
l
v⊗β

l ≤ a3 ≤ a1⊗β
u
v ⊗β

u

or

a1⊗β
l
eff ≤ a3 ≤ a1⊗β

u
eff .

In other words, βeff = (β u
eff ,β

l
eff) is a valid pair of upper and lower service curves that effectively

transform the input a1 to the output a3. The output arrival curves that bound a3 can therefore

computed using standard Network Calculus techniques from α and βeff , which are given by α ′ =

(αu′ ,α l′). This proves the lemma.

Based on the above results, Lemma 2.2.3 gives the bounds on the dropped input frames.

Lemma 2.2.3 Suppose α = (αu,α l) are the arrival curves of an input stream, β = (β u,β l) are the

service curves of the PE, and B is the size of the input buffer. Then, the number of input frames that

can be dropped over any interval of length ∆≥ 0 is upper bounded by αu
drop(∆), defined by

α
u
drop = (αu−β

l
v)⊗ 0

where β l
v

def
= (α l⊗β l +B)∗⊗αu.

31

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Proof Suppose a1(t) is an input arrival pattern modeled by α , and a2(t) and a3(t) are defined as in

Figure 2.5. Denote g = (f +B)(a1). From Lemma 2.2.1,

a2(t) =
((
Ia1 ◦ (f +B)

)∗
(a1)

)
(t)

= inf
n∈N

inf
0≤u2n≤···≤u1≤t

{
a1(t)−a1(u1)+g(u1)−a1(u3)

+g(u3)−·· ·−a1(u2n−1)+g(u2n−1)
}
.

Hence, the number of frames that will be processed by the PE in the interval (0, t], denoted by At(∆)

is given by:

At(∆)
def
= a2(t +∆)−a2(t)≥ a1(t +∆)−a1(t)

+ inf
n∈N

inf
t≤u2n≤···≤u1≤t+∆

{
−a1(u1)+g(u1)

−a1(u3)+g(u3)−·· ·−a1(u2n−1)+g(u2n−1)
}
.

On the other hand, since β l is the lower service curve of the PE and a3 = f (a2), we have f (a2) =

a3 ≥ a2⊗β l , which can be rewritten as f ≥ Cβ l . Thus,

g = (f +B)(a1)≥ (Cβ l +B)(a1) = β
l⊗a1 +B.

32

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

As a result,

At(∆) = a1(t +∆)−a1(t)+ inf
n∈N

inf
t<u2n≤···≤u2≤u1≤t+∆

n∑
i=1

{
−a1(u2i−1)+β

l(u2i−1−u2i)+B+a1(u2i)
}

= a1(t +∆)−a1(t)+ inf
n∈N

inf
t<u2n≤···≤u1≤u0=t+∆

n∑
i=1

{
−a1(u2i−2)+a1(u2i)+a1(u2i−2)

−a1(u2i−1)+β
l(u2i−1−u2i)+B

}
= inf

n∈N
inf

t<u2n≤···≤u1≤u0=t+∆

n∑
i=1

{
a1(u2i−2)−a1(u2i−1)+β

l(u2i−1−u2i)+B
}

≥ inf
n∈N

inf
t<u2n≤···≤u1≤u0=t+∆

n∑
i=1

{
α

l(u2i−2−u2i−1)

+β
l(u2i−1−u2i)+B

}
≥ inf

n∈N
inf

t<u2n≤···≤u1≤u0≤t+∆

n∑
i=1

{
(α l⊗β

l +B)(u2i−2−u2i)
}

≥ (α l⊗β
l +B)∗(t +∆− t)

= (α l⊗β
l +B)∗(∆).

Let β l
v = (α l⊗β l +B)∗⊗αu, then At ≥ β l

v for all t ≥ 0. In addition, a1(t +∆)−a1(t)≤ αu(∆) for

all t ≥ 0 and ∆≥ 0. Hence, the number of dropped frames in the interval (t, t +∆] satisfies

Lt(∆)
def
= a1(t +∆)−a1(t)−At(∆)≤ α

u(∆)−β
l
v(∆)

≤
(
(αu−β

l
v)⊗ 0

)
(∆) = α

u
drop(∆).

In other words, the number of dropped frames over any interval of length ∆ is upper bounded by

αu
drop(∆).

Lemma 2.2.4 Define α , β , B and αdrop as in Lemma 2.2.3. Denote δ u(k)=min{∆≥ 0 |α l(∆)≥ k}

and δ l(k) = min{∆≥ 0 | αu(∆)≥ k} for all k ∈ N. Then, for any given non-negative integer k, the

33

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

insufficient
 buffer

…input
stream

B1

α
β1 βm

B2 Bm

fully processed
output stream

PE1 PEm

α1
′ αm-1′ αm′

insufficient
 buffer

insufficient
 buffer

Figure 2.6: A sequence of PEs with insufficient buffers.

number of frames that can be dropped over any k consecutive input frames is upper bounded by

αu
dropF(k), where

α
u
dropF(k)

def
= min{k,(αu

drop ◦δ
u)(k)}, (2.4)

Proof For any given integer k ≥ 0, the maximum time required for k consecutive input frames to

arrive is

min{∆≥ 0 | α l(∆)≥ k} def
= δ

u(k).

From Lemma 2.2.3, the number of frames that can be dropped over any interval of length δ u(k) is

at most αu
drop(δ

u(k)), i.e., at most
(
αu

drop ◦δ u
)
(k). Thus, the number of frames that can be dropped

over every k consecutive input frames is at most
(
αu

drop ◦ δ u
)
(k). Since there can be no more than

k frames dropped over every k consecutive input frames, the number of frames that can be dropped

over every k consecutive input frames is at most

min{k,
(
α

u
drop ◦δ

u)(k)} def
= α

u
dropF(k).

This proves the lemma.

Multiple buffers case. Consider a system consisting of m PEs (as shown in Fig. 2.6). The input

stream that is processed by a sequence of m PEs, PE1, . . . ,PEm, where the input buffer at PEi has

a finite capacity of Bi (frames). The arrival curves of the input stream and the service curves of

PEi are denoted by α1 and βi, respectively, as illustrated in Figure 2.6. Given such architecture, we

would like to compute the maximum bounds on the total number of frames that are dropped within

the system.

Since the frames that are dropped at the PEs are disjoint, the number of frames that are dropped in

the system is the total number of frames that are dropped at each PE. The maximum number of the

frames that are dropped at PE1 over any interval of a given length ∆, denoted by N1
∆
, is derived using

34

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Lemma 2.2.4. The maximum number of frames Ni
∆

that are dropped over any interval of length ∆ at

each subsequent PEi for all 2≤ i≤ m, can be computed in a compositional manner: first, compute

the output arrival curves α ′i−1 after being processed by PEi−1 by applying Lemma 2.2.2; then,

compute the drop bounds Ni
∆

at PEi using Lemma 2.2.4, with α ′i−1 as the input arrival curves, βi

as the service curves and Bi as the input buffer size. We repeat this process until we reach the last

PE. The maximum number of input frames that are dropped within the system over any interval of

length ∆ is then the summation of all the computed drop bounds, which is given by N1
∆
+ · · ·+Nm

∆
.

2.2.4 Worst-case bound on Quality

In the previous section, we presented how the bounds are computed for dropped frames. In this

section, we use this bound to compute the worst-case quality in terms of PSNR. In order to find the

worst-case quality for a video clip, we need to construct a worst-case quality 3-D space as shown in

Fig.2.3. This is a surface that maps the frame interval based drop bound from the previous section

to a frame interval based quality bound. Let us denote this mapping function as Qu and the frame

interval based quality bound as qu. Then the mapping can be depicted as Qu : αu
dropF→ qu. However,

in order to perform this mapping, the worst-case quality surfaced Qu needs to be constructed. We

construct this surface by taking consecutive frame intervals as windows. For each frame interval in

the entire video, we find the maximum noise error experienced if any number of frames upto the

frame window size is lost. This quantity is architecture independent and depends only on the nature

of the clip. In our case, we slide the frame interval window from 1→ Ntot . Within each frame

interval window F , we find the worst-case PSNR value or the highest MSE value from Equation.1.1

for every value f , such that 0 ≤ f ≤ F . Here f is the number of frames that were dropped in the

frame interval F . Therefore, we construct the worst-case quality surface Qu(f ,F). This procedure

is shown in Algorithm 2.

The MSEmax structure containing the maximum MSE values for B frames is calculated taking all

possible concealment frames into consideration. For example, let us take the order of frames in

group of pictures (GOP) as shown in Fig. 1.1. In particular, for the 4th B frame, there are three

different possible concealment frames. If the 3rd B frame is not dropped, then it will replace the 4th

B frame. If the 3rd B frame is dropped, then the P/I frame will replace 4th B frame in that order.

35

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Algorithm 2 Computing worst-case quality surface for a video clip

Input: MSEmax - Maximum MSE values for B frames if replaced by possible preceding I/P frames.
MSE values for I/P frames are set to 0.

Output: Qu(f ,F) - Worst-case quality surface, f is the number of frames dropped in a frame
interval of F

1: Record the frame indices
2: Sort MSEmax structure in descending order preserving the frame indices→MSEmaxsort

3: Find F values within frame index range i to (i+F − 1) in MSEmaxsort : ∀i,∀F and 1 ≤ i ≤
Ntot −F +1 and 0≤ F ≤ Ntot →MSEmaxF(i,n,F) where 0≤ n≤ F

4: MSEu(f ,F) = max
∀i

{ f∑
n=0

MSEmaxF(i,n,F)
}

5: Qu(f ,F) = 10× log10
(255×255×F)
(MSEu(f ,F))

Since P frames are not dropped in our setting, P frame replaces the 4th B-frame if the 3rd B frame

is lost. Therefore, MSEmax is constructed taking all such possible concealment frames.

Lines 1 and 2 record the indices of the B frame in the GOP decoding order and then sort the frames

in decreasing order of the MSE values in MSEmax structure, while retaining the original indices after

sorting. For each frame interval window F , the frame index ranges from i to i+F − 1 where i is

the variable used for sliding across the video clip. We search for the F frames within this index

range from the sorted MSE structure shown as MSEmaxsort (Line 3). We slide the window across

the entire video clip and find the F frames for each i. These quantities are stored in the structure

MSEmax(i,n,F) where 0 ≤ n ≤ F . The upper bound on MSE is then computed by searching for

the maximum value across all windows of size F and for every drop count f which ranges from

0≤ f ≤ F (Line 4). Once the upper bound MSEu(f ,F) is computed, the worst-case quality surface

Qu(f ,F) can be computed as given in Line 5.

Lemma 2.2.5 A computation of Qu(f ,F) is exponential in the total number of frames in the clip

Ntot i.e. the complexity of computing the worst-case quality surface is O(Ntot ×2Ntot).

Proof For any frame interval window F , where 1 ≤ F ≤ Ntot , the number of iterations required to

check the maximum MSE if f frames were dropped in that frame interval, where 0≤ f ≤ F is given

by
(F

f

)
. Here

(F
f

)
= F!

(F− f)! f ! . For all values of f , the total number of iterations required is
F∑

f=0

(F
f

)
. It

36

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

is well known from concept of combinations that
F∑

f=0

(F
f

)
= 2F . As F ranges from 1 to Ntot , it is easy

to prove that
Ntot∑
F=1

2F = O(2Ntot) using sum of a geometric series. Finally since this frame interval

has to be slid across the entire clip, it needs to be done Ntot times. Hence the total complexity of a

straightforward method is O(Ntot ×2Ntot).

In Algorithm.2, it is seen that the complexity is O(N3
tot). Hence, the scheme we propose to construct

the worst-case quality surface is more efficient.

2.2.5 Case Study (MPEG-2 Decoder)

In this section, we evaluate our proposed analytical framework using an MPEG-2 decoder applica-

tion. In this case study, the MPEG-2 decoder tasks are mapped onto the two PEs in the MPSoC

architecture shown in Fig. 2.2. The tasks mapped are Variable Length Decoding (VLD), Inverse

Quantization (IQ), Motion Compensation (MC) and Inverse Discrete Cosine Transform (IDCT).

VLD and IQ are mapped to PE1 while MC and IDCT are mapped to PE2. According to our setup,

each buffer in Fig. 2.2 is composed of two buffers (as shown in Fig. 2.4) to separate the B frames

from I/P frames. We only analyze the drops for B frames and therefore, we analyze only the B

frame buffer. The buffer used for I/P frames is not analyzed here because it can be done using con-

ventional Network Calculus techniques ([48]). PE1 is allocated a frequency of 40 MHz, whereas

PE2 is allocated a frequency of 100 MHz. The various B frame buffer sizes used in the first stage

are set to be 30 frames, 60 frames, 90 frames, 120 frames and 150 frames. The B frame buffer sizes

used in the second stage are the same as in the first stage. However, the analysis of drops in the

second stage is done by fixing the first stage buffer size to 90.

The cycle requirements for each task on the model of a processor was obtained using the Sim-

pleScalar simulator ([8]). Here, we use a MIPS-like processor model using the Portable instruction

set architecture (PISA). We use three MPEG-2 video clips in our experiments, namely, susi 080,

time 080 and orion 2. The first two videos are taken from [1], where both have a total of 450

frames, i.e., Ntot = 450 with 1320 macroblocks (MBs) in each frame. The first clip is a motion

video and the second one is a still video. The third video, taken from [64], is a combination of

both motion and still frames. It has a total of 1171 frames, i.e., Ntot = 1171 with 1350 MBs in each

37

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

frame. All the three video clips have a bit rate of 8 Mbps.

2.2.5.1 First stage results

The first stage involves computing the drop bounds of the B frame buffer at PE1 (denoted by B f in1),

which is of size Bmax1. The arrival curves at the input of B f in1 are α f in1 = [αu
f in1,α

l
f in1] as computed

in Section 2.2.2. Similarly, the service curves offered to the frames in B f in1 are β f in1 = [β u
f in1,β

l
f in1].

Arrival curve, virtual processor service curve and drop bound (in time intervals): Fig. 2.7

shows the upper arrival curves of the B frames (αu
f in1) and the lower service curve of the virtual

processor (β l
v1) for the three clips (computed using the techniques in Section 2.2.3). The worst case

drop bound, αu
drop1, obtained as a result of Lemma 2.2.3 is also shown in the three plots. In this

experiment, Bmax1 = 90, which is in frames. It can be observed from the plots that, until a certain

time interval, the drop bound is zero. After that interval, however, the drop bound increases. This is

expected because the buffer size of 90 frames is insufficient to avoid buffer overflow. It is also seen

that β l
v1 follows αu

f in1 until the former rises above the buffer size. From there onwards, β l
v1 starts

dropping behind αu
f in1 as frames are dropped. Another interesting observation is that for still video

time 080, β l
v1 is closer to αu

f in1 and hence, the drop bound is lower when compared to clips susi 080

and orion 2. However, it is interesting to notice that the video clip orion 2 has a higher drop bound

value than susi 080. This is because the service required by the frames in orion 2 is higher than the

the service required by the frames in susi 080 as the former has more macroblocks per frame.

Validation of drop bounds (in frame intervals) with simulation: We validate the drop bounds

[αu
dropF1] computed using our analytical framework with the ones obtained by simulation. Here, the

drop bound is in frame intervals and not time intervals. Once αu
drop1 is computed, [αu

dropF1] can be

computed according to Lemma 2.2.4. We show the comparison between simulation and analytical

results for two buffer sizes, Bmax1 = 60 and Bmax1 = 120. It is clear from Fig. 2.8 that the analytical

results emulate the simulation results very closely. Our analytical results are a little pessimistic be-

cause they consider the worst case in all the frame windows, whereas the simulation result depicts

only one continuous run. It is also seen that [αu
dropF1] decreases as the buffer size increases, which

38

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 1000 2000 3000 4000
0

50

100

150

200

250

300

Time Interval (in msec)

N
u

m
b

e
r

o
f

F
ra

m
e
s

®u
fin1

¯l
v1

®u
drop1

(a)

0 5000 10000 15000
0

50

100

150

200

250

300

Time Interval (in msec)

N
u

m
b

e
r

o
f

F
ra

m
e
s

®u
fin1

¯l
v1

®u
drop1

(b)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

300

400

500

600

700

800

Time Interval (in msec)

N
u

m
b

e
r

o
f

F
ra

m
e
s

®u
fin1

¯l
v1

®u
drop1

(c)

Figure 2.7: Generation of time interval based drop bound curves (αu
drop) from the upper arrival (αu)

and lower virtual processor service (β l
v) curves. Here Bmax = 90. The three plots are for clips (a)

time 080, (b) susi 080 and (c) orion 2.

39

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

is expected. It is interesting to note that the difference between simulation and analytical results is

greater in orion 2 than in the other two videos. The reason for this behaviour is that orion 2 is a

larger clip and the variability in the required service is larger. In the case of susi 080 and time 080,

the variability in required service is limited.

Worst-case quality surface: The worst-case quality surface computed using Algorithm 2 is pre-

sented for the three clips in Fig. 2.9. It is observed that the worst-case quality surface is an expo-

nential surface as it represents the PSNR value for various frame drops within a frame interval. In

all the Qu plots shown, the PSNR value is highest when the least number of frames are dropped in

the largest frame interval. The PSNR surface keeps falling from that point as the number of frames

dropped increases and the frame interval decreases. This surface is an architecture independent

feature of the video clips. According to Fig. 2.9, time 080 has the highest Qu values among all the

video clips.

Comparison of qu with simulation results: The comparison of frame interval based worst-case

quality (qu) is presented in Fig. 2.10(a), (b) and (c) for the three clips. The immediate observation

from the plots is that, for orion 2, there is a considerable deviation of the analytical result from the

simulation results in the lower frame intervals. This is because the clip is large and the analytical

model considers the worst case across the entire clip. On the other hand, the simulation based result

is the outcome of one continuous run. Therefore, if the worst case does not occur in the beginning

of the clip, the deviation is large. However, the interesting point is that the curves converge closer

towards the higher frame intervals. Hence, it is useful to use the higher frame intervals to explore the

quality-buffer design space because they help to reduce the overestimation in buffer size required.

However, even if overestimation exists, buffer dimensions can be reduced for a lower tolerable qual-

ity if the zero loss constraint need not be strictly adhered to.

Variation of worst-case quality with buffer size: The variation of qu with buffer size is shown in

Fig. 2.11. As is expected, in Fig. 2.11(a), (b) and (c), qu values increase as the maximum buffer

capacity Bmax1 is increased. We explore the variation for five buffer sizes as shown in Fig. 2.11.

40

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 100 200 300 400 500
0

20

40

60

80

100

Frame Window

N
o

.
o

f
fr

a
m

e
 d

ro
p

s

Analytical Simulation

Bmax1 = 60

Bmax1 = 120

(a)

0 100 200 300 400 500
0

50

100

150

200

Frame Window

N
o

.
o

f
fr

a
m

e
 d

ro
p

s

Analytical Simulation

Bmax1 = 60

Bmax1 = 120

(b)

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

Frame Window

N
o

.
o

f
fr

a
m

e
 d

ro
p

s

Analytical Simulation

Bmax1 = 60

Bmax1 = 120

(c)

Figure 2.8: Comparison of Analytical and Simulation results of worst-case drop bound for two
buffer capacities. The three plots are for clips (a) time 080, (b) susi 080 and (c) orion 2.

41

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Qu

(a)

Qu

(b)

Qu

(c)

Figure 2.9: Worst case quality surface (Qu in dB) for the clips (a) time 080, (b) susi 080 and (c)
orion 2.

42

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 100 200 300 400 500
35

40

45

50

55

60

Analytical

Simulation

Frame Interval

W
o

rs
t-

c
a
s
e
 q

u
a
li
ty

 (
in

 d
B

)

(a)

0 100 200 300 400 500
25

30

35

40

45

50

Analytical

Simulation

Frame Interval

W
o

rs
t-

c
a
s

e
 q

u
a

li
ty

 (
in

 d
B

)

(b)

0 200 400 600 800 1000 1200
25

30

35

40

45

50

55

60

Analytical

Simulation

Frame Interval

W
o

rs
t-

c
a
s
e
 q

u
a
li
ty

 (
in

 d
B

)

(c)

Figure 2.10: Comparison of analytical and simulation results of worst-case quality (qu) for Bmax1 =
30 for three clips (a) time 080, (b) susi 080 and (c) orion 2.

43

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 100 200 300 400
35

40

45

50

55

60

Frame Interval

W
o

rs
t-

c
a
s

e
 Q

u
a

li
ty

 (
in

 d
B

)

B
m

a
x
1

=
 3

0

B
m

a
x
1

=
 6

0

B
m

a
x
1

=
 9

0

B
m

a
x
1

=
 1

2
0

B
m

a
x

1
=

 1
5
0

(a)

0 100 200 300 400
25

30

35

40

45

Frame Interval

W
o

rs
t-

c
a
s

e
 Q

u
a

li
ty

 (
in

 d
B

)

B
m

a
x

1
=

 3
0

B
m

a
x

1
=

 6
0

B
m

a
x

1
=

 9
0

B
m

a
x

1
=

 1
2

0

B
m

a
x

1
=

 1
5

0

(b)

0 200 400 600 800 1000
25

30

35

40

45

Frame Interval

W
o

rs
t-

c
a
s

e
 Q

u
a

li
ty

 (
in

 d
B

)

Bmax1 = 30

Bmax1 = 60

Bmax1 = 90

Bmax1 = 120

Bmax1 = 150

(c)

Figure 2.11: Variation of worst case quality (qu) with different buffer sizes for the clips (a) time 080,
(b) susi 080 and (c) orion 2.

44

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

However, it is interesting to note here that, in all the three curves, the qu value rises infinitely at

some frame interval value. This is because below that frame interval, no frame drop is possible with

the corresponding buffer size and therefore, the quality is maximum. As the first drop happens,

the worst-case quality reduces and assumes a finite value. Another interesting aspect that this work

highlights is shown clearly in Fig. 2.11. In the higher frame intervals, the worst-case quality values

are very close to each other for different buffer sizes. This property could be exploited to reduce

buffer dimensions for a small trade-off in qu. For example in Fig. 2.11(a), if 40− 45dB is an

acceptable value for qu, in a frame interval of 450, then Bmax1 = 90 can be chosen rather than

Bmax1 = 120 in order to reduce the maximum buffer required. For an acceptable qu = 30− 35dB,

it is seen in Fig. 2.11(b) that the least buffer size of 30 can be chosen for a frame interval of 450.

Similar tradeoffs are evident in the third curve as well.

2.2.5.2 Second stage results

The second stage involves processor PE2 and again two buffers. The frequency allocated to PE2

is 100 MHz. Again, we do not consider the I/P frame buffer, but analyze drop bounds for the B

frame buffer only. Therefore, the resource parameter that we include for the analysis of the second

stage is the buffer, labeled by B f in2, which has size Bmax2. The arrival curves at the input of B f in2

are α f in2 = [αu
f in2,α

l
f in2] as computed in Section 2.2.2. Similarly, the service curves offered to the

frames in B f in2 are β f in2 = [β u
f in2,β

l
f in2].

Effect of the second stage B frame buffer: The second stage B frame buffer size Bmax2 is set with

three values of 40, 120 and 200 in the plots. In order to explore the second stage and finally the entire

architecture, we apply the lemmas discussed earlier based on the output bounds obtained from the

first stage. We present the results of this experiment for two clips, time 080 and orion 2. The results

are presented in Fig.2.12 and Fig.2.13. In comparison to the first stage results, it is clearly seen that

the worst-case quality bound increases in the second stage. The magnitude of increase depends on

the capacity of second stage buffer. As the value of Bmax2 increases, the value of qu increases as the

drop bounds reduce. An interesting result observed in Fig.2.13 is that the quality bound does not

vary much even when the buffer capacity is increased from Bmax2 = 40 to Bmax2 = 200.

45

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 100 200 300 400 500
35

40

45

50

55

60

Frame Interval

W
o

rs
t-

c
a
s

e
 Q

u
a

li
ty

 (
in

 d
B

)

(a)

0 100 200 300 400 500
35

40

45

50

55

60

Frame Interval

W
o

rs
t-

c
a
s
e
 Q

u
a
li
ty

 (
in

 d
B

)

(b)

0 100 200 300 400 500
35

40

45

50

55

60

Frame Interval

W
o

rs
t-

c
a
s
e
 Q

u
a
li
ty

 (
in

 d
B

)

(c)

Figure 2.12: Worst case quality (qu) with Bmax1 = 30 and (a) Bmax2 = 40, (b) Bmax2 = 120 and (c)
Bmax2 = 200 for the clip time 080.

46

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 200 400 600 800 1000 1200
25

30

35

40

45

50

Frame Interval

W
o

rs
t-

c
a
s

e
 Q

u
a

li
ty

 (
in

 d
B

)

(a)

0 200 400 600 800 1000 1200
25

30

35

40

45

50

Frame Interval

W
o

rs
t-

c
a
s

e
 Q

u
a

li
ty

 (
in

 d
B

)

(b)

0 200 400 600 800 1000 1200
25

30

35

40

45

50

Frame Interval

W
o

rs
t-

c
a
s
e
 Q

u
a

li
ty

 (
in

 d
B

)

(c)

Figure 2.13: Worst case quality (qu) with Bmax1 = 30 and (a) Bmax2 = 40, (b) Bmax2 = 120 and (c)
Bmax2 = 200 for the clip orion 2.

47

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Table 2.1: Buffer savings for the three video clips with quality variation

Buffer savings clip susi 080 time 080 orion 2

PSNR (in dB)

In Megabits
30 25.88 × 49
35 3.53 5.09 6.16
40 0.15 1.97 1.3

In percentage
30 28.6% × 29.1%
35 3.9% 39.4% 3.6%
40 0.16% 15.5% 0.77%

2.2.5.3 Buffer savings

In this analysis, we highlight the significance of our mathematical framework. The final goal of

the framework was to trade-off buffer size with quality. In the earlier results, we have seen that

as the maximum buffer capacity is reduced, the quality reduces due to frame drops. However, if

the resultant quality after frame drops is within tolerable limits, we can achieve significant savings

in buffer. We present this result in Table 2.1. The savings shown consider drops only in the first

stage. We find the buffer saving using Bit l(Bnd)−Bitu(Bd). Here, Bnd is the buffer size (in frames)

required for no drops and Bd is the buffer size (in frames) which allows drops within the tolerable

quality shown in Table 2.1. Further, Bitu(F) and Bit l(F) are the maximum and minimum number

of bits in F consecutive frames, respectively. It is known from multimedia literature that a PSNR

value of 30-50 dB is an acceptable output quality. Hence, we vary the tolerable quality from 30-40

dB in steps of 5 dB. The × symbol against the clip time 080 indicates that the quality never drops

to 30 dB even if all the B frames are dropped. We can see from Table 2.1 that time 080 shows

more savings in terms of percentage when compared to the other two video clips. This is because

susi 080 and orion 2 require a higher buffer size (in terms of Megabits) without any frame drops.

Therefore, their savings (in percentage) is less.

2.3 Video Quality Driven Buffer Sizing via Prioritized Frame Drops

In this work, we first study the effect of existing quality aware frame dropping policy on the required

buffer size such that a target PSNR value is achieved. Here, we study a frame dropping policy

48

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0

5

10

15

20

25

30

35

40

35 dB 40 dB

Optimal drop
priority [8]

Framesize-based
drop priority [2]

Video Quality

(PSNR in decibel (dB))

B
u

ff
e
r

s
a
v
in

g
s

(i
n

 M
e
g

a
b

it
s
 (

M
b

))

B35diff

B40diff

=

=

9.67 Mb

8.99 Mb

Figure 2.14: Evaluation of buffer savings using frame dropping policy from [2] versus optimal
frame dropping policy from [3] for a benchmark MPEG-2 video susi 080 ([1]).

([2]) which prioritizes frames based on their frame sizes (in bits) i.e., frames are dropped in the

increasing order of their frame sizes. This dropping policy is dynamic as it can be implemented

online when the frames arrive on the MPSoC architecture. In contrast, though [3] provides an

optimal frame dropping policy (as it drops frames in increasing order of distortion caused), it cannot

be implemented online as it requires the complete decoding of the video stream. We conducted

simulations to derive the buffer savings obtained by dropping frames using the frame drop policy

from [2]. The results for the benchmark MPEG-2 video susi 080 ([1]) with target PSNR values 35

dB and 40 dB are presented in Fig. 2.14. The buffer savings obtained are compared with the optimal

frame dropping policy. The difference in buffer savings are shown as B35di f f and B40di f f for PSNR

values 35 dB and 40 dB, respectively. It is observed that these differences are considerably large

values. The buffer savings using frame drop policy in [2] correspond to a drop of 181 and 81 frames

respectively, for PSNR values of 35 and 40 dB. These figures for the optimal framedrop policy

are 242 and 147 frames. In order to reduce the B35di f f and B40di f f values, we propose a simple

prioritized frame dropping policy based on motion vectors, thereby enabling a buffer savings closer

to the optimal. The motion vector based dropping policy can be implemented online. The on-chip

frame buffer sizes, without frame drops, are of the order of 100 Mb ([54]). Therefore, in this context

our savings are quite significant.

Our proposed motion vector based frame dropping policy paves the way for efficiently reducing

49

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

buffer size when the required output quality is known. However, determination of the minimum

buffer size is a time consuming process because it requires many system simulations with various

buffer sizes. Therefore, we further propose an efficient iterative strategy to derive the appropriate

minimum buffer size for a given video stream. A system designer can perform this exercise with

a representative set of video clips in the library (covering all possible characteristics). This is

the current practice for evaluating architectures (which is similar to testing software for functional

correctness using a representative test case suite). The buffer sizes obtained for individual clips can

be used to decide the final buffer size requirement such that any encoded clip adhering to the bounds

on input data bursts, exhibited by the library, will be decoded to achieve the required output quality.

2.3.1 Buffer Dimensioning Framework

The problem is formally defined here before getting into the components of the framework used.

2.3.1.1 Problem Formulation

In this work, we address the problem of buffer dimensioning for MPSoC platforms such that a

target quality constraint is satisfied. Limited buffer sizes result in the loss of macroblocks/frames

constituting an encoded video, which in turn leads to a drop in the quantitative quality level of the

video decoded data received. Hence, given a library of video clips (that covers all types of video test

cases), it is essential for a system designer to quickly find the minimum buffer size for the required

output quantitative quality level, which here is measured in terms of PSNR.

The formal definition of the problem is stated as follows:

Given an exhaustive library of video clips V covering a wide variety of video characteristics, the

operating frequency of the processing elements (PEs) fPEi , where 1≤ i≤NPE (NPE is the number of

PEs in the MPSoC platform), workload values to execute each task in the video decoding application

for all constituent blocks in the multimedia data, the task is to find

Bmin j = max
∀v∈V

(minB j) (2.5)

subject to

min(psnrout)≥ psnrreq (2.6)

50

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Here, psnrout is the PSNR value received at the output of the MPSoC platform, psnrreq is the target

PSNR value that needs to be achieved for the library of clips. Finally, Bmin j is the maximum of the

minimum buffer sizes required for each video clip v ∈ V , at the input to the j-th stage (which as

shown in Eqn. 2.5 is the minimum of all possible buffer values B j) in order to satisfy Eqn. 2.6. To

efficiently solve the above problem, we need a proper quality-aware frame dropping function FD()

and a fast iterative strategy to derive the minimum buffer size B j. Hence, we now highlight the

importance of a quality-aware frame dropping policy in deriving a minimal buffer size satisfying a

target PSNR value.

2.3.1.2 Quality-Aware Frame Dropping

Lemma 2.3.1 Given the operating frequency of the PEs, the task workload values and the video

library, Eqn. 2.5 can be strictly satisfied only if the frame dropping strategy is aware of the relative

importance of the frames (in terms of distortion introduced) in the video stream.

Proof Let us consider that FD1() is a random frame dropping function and FD2() is a frame

dropping function aware of the importance of the frames and its contribution to PSNR, if dropped.

Given the target PSNR value psnrreq and the maximum buffer size Bu f causing no frame drops for

a video clip, let the maximum number of frames dropped by FD1() before it achieves the PSNR

output value of psnrout satisfying Eqn. 2.6 be n1 frames. Let the number of frames dropped by

FD2() for the same case be n2. As FD2() is aware of the relative importance of the frames, it will

drop frames in the increasing order of how they reduce the PSNR output value i.e. frames which

reduce the PSNR output value least will be dropped first, while FD1() does not do this strictly.

Hence, it is easy to conclude that n2 ≥ n1. If Bu f 1 is the minimum buffer size estimated (as in

Eqn. 2.5) with FD1(), Bu f 2 is the minimum buffer size estimated with FD2() and FSIZE is the

frame size, then the following conditions hold: Bu f 1 ≤ Bu f − n1×FSIZE, Bu f 2 ≤ Bu f − n2×

FSIZE and hence Bu f 1 ≥ Bu f 2. This proves that a good estimate of minimum buffer size (in

macroblocks) satisfying the PSNR requirement can be achieved only with a good frame dropping

strategy. However, if n2 >> n1 (due to quality aware frame dropping of FD2()), we see that

Bu f 1 > Bu f 2 (in bits).

51

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

A state-of-the-art frame dropping method [2] discussed in literature prioritizes frames to be dropped

based on the frame types namely I-type, P-type or B-type (as in the MPEG-2/MPEG-4 decoder con-

text) with frame size based prioritization within frame types. This strategy works well in comparison

to a random frame dropping strategy, but does not take the aspect of motion across frames into con-

sideration. Hence, the PSNR values obtained with the frame size based dropping strategy does not

work particularly well for motion videos when a dropped frame is replaced with the previous pro-

cessed frame which has considerable movement. Therefore, we adopt a frame dropping strategy

whereby motion-vector based frame dropping is employed. The motion-vectors can be easily ob-

tained by parsing the video stream. The output of this stage is the prioritized order in which frames

have to be dropped for a video. The gaps created in buffer with such dropping can be consolidated

with minimal logic.

2.3.1.3 Determination of Bmin j

In the second stage of the framework, we estimate the minimum buffer size required to achieve

a prespecified PSNR value for a library of video clips using the task workloads and frame drop

priorities obtained earlier. This stage employs a fast iterative process in order to determine the

minimum buffer size. The main idea here is to maximize the frame drops subject to the condition

that the prespecified PSNR value is met. As PSNR is dependent on the MSE of the dropped frames

when replaced by the concealment frames, the condition of Eqn. 2.6 is translated from the PSNR

domain into the MSE domain. As MSE is inversely proportional to PSNR, the condition is changed

to max(mseout) ≤ msereq. Let this be the MSE satisfaction criterion. Here, mseout is the MSE

value received at the output. The goal of the entire framework is to achieve a mseout value equal

to the maximum possible MSE value less than or equal to the target MSE value (msereq). MSE is

preferred over PSNR as it is an easier quantity to work with. However, the problem of finding the

minimum buffer size for a library of video clips which satisfies the above mentioned conditions is

time consuming if all the possible buffer sizes are tested. We use a faster iterative approach to find

Bmin j , which will be discussed in detail later.

52

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

2.3.2 Quality-Aware Frame Dropping

In order to improve the quality awareness in assigning priorities to frames during frame drops,

we propose a motion-vector (MV) based prioritization of frames. This is a fast method because

the motion vectors of each frame can be extracted rapidly from the encoded bitstream that is re-

ceived. Moreover, as it takes the motion information into consideration, it takes into account the

quality degradation experienced when a frame is dropped. One of the advantages of this prioriti-

zation method and the one discussed in [2] are that they are easy to compute. Motion vectors and

frame sizes can be extracted from the bitstream quickly when compared to the MSE computation of

dropped frames with all possible concealment frames (frames that replace dropped frames).

1. There are two motion vectors in the MPEG-2/MPEG-4 encoded bitstream - one for the upper

half of the 16× 16 macroblock and the other for the lower half. Each motion vector has a

forward and a backward component. Each of the above four components have a vertical and

a horizontal part. All these quantities are at the MB granularity. We now obtain a consoli-

dated value combining the horizontal and vertical parts for each component. Let the MVs be

denoted by mvl,m,n, where l represents the upper or lower half (takes on the values 0/1 respec-

tively), m represents the forward/backward component (takes on the values 0/1 respectively)

and n denotes the vertical/horizontal parts (takes on the values 0/1 respectively). The four

consolidated values (per MB) combining the horizontal and vertical parts are

mv0,0/1 =
√
(mv0,0/1,0)2 +(mv0,0/1,1)2

mv1,0/1 =
√

(mv1,0/1,0)2 +(mv1,0/1,1)2 (2.7)

The consolidated motion vector components for each frame is computed as summation of MB

level motion vector components as shown below

MVl,m =

FSIZE∑
mbno=1

mvl,m, l ∈ {0,1},m ∈ {0,1} (2.8)

where mbno is the MB number.

2. After obtaining the motion vectors per frame given by Eqn. 2.8, we find the priority of drop-

ping the frames. As in any efficient frame dropping strategy, we drop B-frames first followed

53

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

0 100 200 300 400
0

2

4

6

8

10

12

14

16
x 10

4

Frame Index

M
o

ti
o

n
 V

e
c
to

r

(a)

0 100 200 300 400
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Frame Index

F
ra

m
e
 S

iz
e
 (

in
 b

it
s
)

(b)

0 100 200 300 400
0

200

400

600

800

1000

1200

Frame Index

M
S

E

(c)

Figure 2.15: (a) Motion Vector vs Frame Index, (b) Framesize vs Frame Index, and (c) MSE vs
Frame Index for a motion video susi 080.

54

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

by P-frames and finally I-frames in the case of a buffer overflow. We implement this by cre-

ating three separate lists of priorities, one each for B-frame, P-frame and I-frame denoted by

b priority, p priority and i priority. These lists contain the indexes of the frames arranged

in the order of increasing motion vector values.

3. b priority holds the B-frame priority list. There are two types of B-frames - odd numbered B-

frames and the even numbered B-frames. The even numbered B-frames are always dropped

first when possible as they can then be replaced by the immediate odd numbered B-frame be-

fore it in the temporal sequence. Once all the possible even numbered B-frames are dropped,

the odd numbered B-frames are discarded. Among the odd numbered B-frames, they are pri-

oritized based on the increasing order of the sum of forward components i.e. the comparison

metric is MV0,0 +MV1,0. The comparison metric for the priority computation of even num-

bered B-frames is MV0,0 +MV1,0 +MV prev
0,1 +MV prev

1,1 . If the comparison metric of a frame

is high, it will be dropped later. MV prev are the motion vector components for the previous

frame. For the even numbered B-frames, we need to consider the backward motion compo-

nents of the previous odd numbered B-frame.

4. p priority holds the P-frame priority list. Here it is desirable that all the P-frames in a GOP

are kept together in the list, the last P-frame to be dropped being the one closest to the I-frame

as it acts as a reference frame for a lot of following frames. Among the group of P-frames,

the order is decided by the comparison metric
∑
{MV0,0 +MV1,0}, where the summation is

over the number of P-frames in the GOP.

5. i priority holds the I-frame priority list. It orders the I-frames based on the comparison metric

used for P-frames.

We extracted the MSE information of every frame with its reference frame in some motion and

still videos along with their motion vectors with respect to the reference frame and the frame sizes.

The plots are shown in Fig. 2.15. From the plot for the motion video susi 080, we can see that

the motion vector emulates the MSE behavior much better than framesize. This behavior has also

been observed in MPEG-4 videos. Therefore, we conclude that it is desirable to use a quality-aware

frame dropping mechanism with MV-based prioritization of frames.

55

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

2.3.3 Minimum Buffer Size Estimation

In this section, we propose an iterative procedure to estimate the minimum buffer size required at

each stage of the MPSoC architecture so that a library of video clips satisfies the required target

PSNR value. The input to this stage from the previous stage is an order in which frames should

be dropped. In order to obtain the minimum buffer size, the best strategy is to drop the maximum

number of frames but still satisfy the MSE satisfaction criterion. A straightforward approach of

using brute force method to check all the buffer sizes is not desirable as it is very time consuming

considering the number of clips in the library and the range of buffer sizes used. Therefore, we use

an iterative mechanism to select the minimum buffer size.

In order to obtain the minimum overall buffer size considering all stages, the best strategy is to drop

all the required frames in the first stage. This will not only reduce the buffer size B1, but will also

reduce the number of frames that stage 2 and buffer size B2 have to handle. In order to start the

iterative process of finding the minimum buffer size, we need to find the MSE values for a limited

number of frames which are dropped first according to the drop order until the accumulated MSE

just exceeds the target MSE value msereq. The PSNR value of a video sequence with frame drops is

expressed as in Equation 1.3. The target MSE value can be expressed in terms of the target PSNR

value psnrreq as msereq =
(255×255×Ntot)

10psnrreq/10 .

The minimum buffer size for the first stage can be calculated using Algorithm. 3. The terms used

are:

mse eval - Cumulative MSE value, f rm ind - Index of the frame dropped, mbin no - Arriving MB

number, N prev - Value of the number of frames dropped in the previous iteration, MAX BUFFER

- Buffer size required if there are no frame drops, Bu f1 - Buffer size at stage 1 of the architecture,

Nnew - Number of frames to be dropped (in Step 2), which is computed every iteration until we

achieve the maximum value which does not exceed mse eval and finally start and end variables are

used to speed up the search of the possible number of frame drops. In this algorithm, there are two

steps.

Step 1 (Lines 1-9): Here, we find the maximum number of frame drops (Ndrop) possible given the

priority of frame drops and the msereq value. It is assigned as i− 2 because mse eval > msereq for

(i− 1)-th frame drop. We only consider the B-frame drops here because this itself leads to a large

56

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Algorithm 3 Computing minimum buffer size for a clip in first stage

Input: mse stat() - mse values for a threshold number of frames (Bthr);
Output: Bmin

1 for a given fPE1 and frame discard algorithm
1: N← 0, mse eval← 0 and f rm ind← 0;
2: for i = 1 to Bthr do
3: if mse eval > msereq then
4: Ndrop = i−2
5: break
6: else
7: f rm ind = b priority→ next
8: mse eval = mse eval +mse stat(f rm ind)
9: end if

10: end for
11: N prev← 0, N int ← 0, mse eval← 0, Bu f1← 0, n drop← 0, Nnew← 0, start ← 0, end←

Ndrop
12: Reset list next pointer to start of list
13: repeat
14: N prev = Nnew, Nnew = Ndrop− ((end− start)/2),
15: N int = 0, mse eval← 0, Bu f1← 0, n drop← 0
16: Reset list next pointer to start of list
17: while mbin no≤ Ntot ×FSIZE do
18: if Bu f1 = MAX BUFFER−Nnew×FSIZE then
19: f rm ind = b priority→ next
20: mse eval = mse eval +mse stat(f rm ind)
21: Bu f1 = Bu f1−FSIZE
22: n drop = n drop+1
23: if mse eval > msereq then
24: N int = n drop−1
25: else
26: if mse eval = msereq then
27: N int = n drop
28: end if
29: end if
30: else
31: Bu f1 = Bu f1 +1
32: end if
33: end while
34: if N int = 0 then
35: start = Nnew, end = end
36: else
37: start = start, end = N int
38: end if
39: until (start = end)||(start = end−1)
40: Bmin

1,v = MAX BUFFER−N prev×FSIZE,∀v ∈V

57

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

PSNR drop covering the PSNR ranges we are exploring and hence the Bthr (line 3) is equivalent to

the number of B-frames.

Step 2 (Lines 10-39); Once Ndrop is computed, we can compute Bmin
1,v as shown in line 39 of Al-

gorithm 3. The minimum buffer size Bmin
1,v will be due to frame drops less than or equal to this

maximum number Ndrop computed in (line 4) Step 1. It can be less than Ndrop if certain frames,

with higher priority to be dropped, are already processed and sent to the next stage. This target

number of buffer drops will be computed iteratively. Once the minimum buffer size is computed

for all the clips, the resultant buffer size of stage 1 can be computed as Bmin
1 = max∀v∈V (Bmin

1,v). The

iterative procedure can be run using O(log(Ndrop)) iterations, where Ndrop << Ntot and Ndrop is

independent of the length of the clip, but dependent on nature of the clip and required PSNR value.

In our example, the maximum number of iterations for PSNR = 40dB was 7, which is low.

2.3.4 Experimental Results

In this section, we conduct two sets of experiments to validate our proposals earlier. The first

experiment involves verifying the effect of MV-based frame dropping on buffer size reduction. The

second result gives us the minimum buffer size values for various PSNR values at the first stage of

the MPSoC architecture for the library of video clips we have used here. We use 11 video clips

from [1] - 5 still clips and 6 motion clips. It has been observed that the still clips require lesser

buffer size. Hence, we show the buffer sizes of motion clips only (as they decide minimum buffer

size required) in both experiments. The MPEG-2 decoder source code used was from [65]. In a

shared buffer scenario with multiple cores, the reduction of required buffer size helps in allocating

the free buffer resources to other cores requiring more space.

2.3.4.1 Evaluation of MV-based frame dropping

It is clear from Fig. 2.16 and Fig. 2.17 that MV-based prioritized frame drops help in improving

buffer savings when compared to the framesize based frame drops. As shown in Fig. 2.16, we

achieve 22.89% and 55% more buffer savings over framesize based dropping for PSNR values of

35 dB and 40 dB respectively in susi 080. We also observe from Fig. 2.17 that the additional savings

(over framesize based drop from [2]) in tens 080 is 2.87 times and 5.29 times for PSNR values of

58

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Video Quality

(PSNR in decibel (dB))

B
u

ff
e
r

s
a
v
in

g
s

(i
n

 M
e
g

a
b

it
s
 (

M
b

))

0

5

10

15

20

25

30

35

40

35 dB 40 dB

Optimal drop [8]

Framesize-
based drop [2]
MV-based drop

Figure 2.16: Comparison of buffer savings for susi 080

Video Quality

(PSNR in decibel (dB))

B
u

ff
e

r
s
a

v
in

g
s

(i
n

 M
e

g
a

b
it

s
 (

M
b

))

0

1

2

3

4

5

6

7

8

9

10

30 dB 35 dB

Optimal drop
[8]
Framesize-
based drop [2]
MV-based drop

Figure 2.17: Comparison of buffer savings for tens 080

30 dB and 35 dB respectively.

2.3.4.2 Minimum Buffer Size Estimation

We conducted experiments to find the minimum buffer size required at the first stage of the MPSoC

architecture shown in Fig. 2.2 using the video clips from [1]. The prespecified PSNR values for

which we estimated the minimum buffer values are shown in Table. 2.2. Here we show the buffer

sizes for 3 motion videos which required highest buffer sizes. For the entire library, with a target

PSNR value of 30 dB, we achieved a buffer savings of 3.9 Mbits (Maximum buffer size for the

entire library without drops - Maximum buffer size for PSNR = 30 dB (required for f lwr 080)).

59

CHAPTER 2. QUALITY-DRIVEN BUFFER DIMENSIONING

Table 2.2: Minimum buffer size (in Megabits) for various prespecified PSNR values with fPE1 =
25MHz

clip susi 080 cact 080 flwr 080

PSNR (in dB)
30 × 87.97 95.43
35 68.75 92.77 97.87
40 82.43 95.81 98.75

The × symbol against the clip susi 080 indicates that the quality never drops to 30 dB even if all

the B frames are dropped. Hence, the iterative process can be immediately terminated because the

resultant buffer size will be lesser compared to other video clips.

2.4 Summary

In this chapter, we first study the effects of frame drops in a multiprocessor system-on-chip platform

running video decoder applications. Towards this objective, we propose a novel mathematical model

to compute the worst-case drop bound in a MPSoC architecture with finite buffers. This analytical

model helps in exploring the buffer-quality design space by analyzing the worst-case quality when

frames are dropped. One important aspect of this work is that we can explore the buffer-quality

design space by trading off a significant buffer area for a tolerable loss in quality.

Subsequently we propose a quality-aware framed dropping scheme based on motion vectors that

reduces the buffer size required for a prespecified quality constraint. Further, we also propose a fast

iterative strategy to derive the minimum buffer size required for a target quality output.

60

Chapter 3

Quality-Driven Service Determination

Simultaneous viewing of multiple video streams has recently become a very common feature in

televisions (TVs) and personal computers (PCs). These multiple video streams are either displayed

adjacent to each other (as in the display of programs from multiple channels simultaneously on a

TV or PC) or as a Picture-in-Picture (PiP) where one video stream is displayed on the full screen

while the other is displayed in an inset window. In order to process these multiple streams with max-

imum quality, adequate number of processor cycles need to be provided. There are several works

in literature that analyze multimedia stream processing (e.g., [53], [61] and [54]) with the objective

of achieving maximum quality, i.e., without frame drops. Embedded devices with respource con-

straints (e.g., mobile devices) are currently providing PiP application [66] to allow users to watch

two videos simultaneously. Here, in contrast to TVs and PCs, these devices have acute resource

constraints, which make it difficult to process multiple video streams with maximum quality when

other applications run simultaneously.

In this work, we propose a formal framework to design an appropriate scheduler that services the

multiple incoming streams in a PiP application such that certain quality constraints are satisfied.

This framework will be useful for scheduling multiple multimedia streams in an embedded de-

vice, where some frame drops can be tolerated without significant deterioration in the quality of the

streams. In other words, it will also be possible to quickly determine if the available processor time

will be sufficient to schedule the streams, while adhering to their required quality constraints. Al-

though we illustrate our technique for a PiP application, the work is in general relevant for schedul-

61

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

ing multiple multimedia streams. These might be two video streams or video and audio streams or

video + graphics/games streams.

3.1 Processor Service Determination Framework

This section presents an overview of our mathematical framework to derive the appropriate sched-

uler parameters such that the multiple incoming multimedia streams adhere to their individual target

quality constraints (in terms of PSNR). Our framework uses the arrival and service curve concepts

from Network Calculus to model the data arrival and service given by the resources, respectively.

These arrival and service curves efficiently capture the variability in the data arrival and the pro-

cessing required for the arrived data. We now describe the platform in detail before getting into our

framework.

Platform Description: In this work, we analytically derive the scheduler parameters necessary to

schedule multiple incoming streams on a resource constrained MPSoC architecture as shown in

Fig. 3.1 with acceptable quality deterioration. The architecture consists of two processing elements

(PEs) denoted by PE1 and PE2. Each PE services two individual incoming streams a1(t) and a2(t),

which are cumulative functions that denote the total number of stream objects (such as macroblocks

or frames in a video stream) that arrive over the time interval [0, t]. Moreover, here we assume

that the PEs execute tasks from a video decoder application like MPEG-2. The buffers used by

stream a1(t) have sizes B1, B3 and Ba1 (in number of frames) at the input, intermediate and playout

stages of the setup, respectively. Similarly, the buffers used by stream a2(t) have sizes B2, B4 and

Ba2 (in number of frames) at the input, intermediate and playout stages of the setup, respectively.

y1(t) and y2(t) are the processed stream outputs from PE1 corresponding to inputs a1(t) and a2(t),

respectively. Similarly, z1(t) and z2(t) are the processed stream outputs from PE2 corresponding to

inputs y1(t) and y2(t), respectively. In our setup, y1(t), y2(t), z1(t) and z2(t) are also cumulative

functions. The playout consumption functions for the two streams are denoted as C1(t) and C2(t),

respectively, which are also cumulative functions. We use the same definitions for the terms frame

interval, arrival curve and service curve as given by Definitions 3, 1 and 2 respectively.

In our setup, α1 = [αu
1 ,α

l
1] and α2 = [αu

2 ,α
l
2] are the arrival curves for the two streams at the input

62

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

 B1

B2

PE

α1

β1

αdrop2
u

α2

β2

a1

1
αdrop1

u

PE2

(t)

a2(t)

y1(t)

y2(t)

C1(t)

C2(t)

z1(t)

z2(t)

B3

B4

Ba1

Ba2

setup for one stream

Figure 3.1: MPSoC platform setup for a PiP-like application with frame drops showing two streams
with separate buffers, but sharing processing resources.

Bip1

Bb1
PE

αip1 βip1

αdrop1
u

αb1 βb1

aip1(t)

ab1(t)

1

Bip3

Bb3

PE2

Baip1

Bab1

n x C1(t)

(1-n) x C1(t)

yip1(t)

yb1(t)

zip1(t)

zb1(t)

Figure 3.2: System model for the shaded portion representing data path for stream a1(t) in Fig. 3.1.

stage of the architecture as shown in Fig. 3.1, while β1 = [β u
1 ,β

l
1] and β2 = [β u

2 ,β
l
2] are the service

curves offered to the two streams by PE1.

Problem Definition: Given the arrival curves α1 and α2, corresponding to the two video streams

(a1(t) and a2(t), respectively) in a PiP-like application that are required to be decoded on a

resource-constrained MPSoC platform, the sizes of input buffers (B1 and B2), the sizes of inter-

mediate buffers (B3 and B4), the sizes of playout buffers (Ba1 and Ba2) and the playout consumption

functions (C1(t) and C2(t)), we analytically derive the scheduler parameters of PE1, such that the

two video streams individually satisfy their respective target quality constraints, Qtarget
1 and Qtarget

2

(in PSNR).

The first stage encounters frame drops as shown in Fig. 3.1, where the number of frame drops in any

time interval ∆ is bounded by αu
drop(∆) called Drop Bound. The drop bounds for the two incoming

streams are denoted by αu
drop1(∆) and αu

drop2(∆). In order to analyze the MPSoC platform shown

in Fig. 3.1, where there are frame drops, we cannot directly follow the analysis method presented

63

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

in earlier works (e.g., [53]), which ensure that no buffer overflows and playout buffer does not

underflow. In our analysis with frame drops (or buffer overflows), we use the system model shown

in Fig. 3.2 for the shaded portion in Fig. 3.1. The analysis of the other half is similar to that of the

shaded portion.

The incoming video stream is divided into two parts - a significant part denoted by aip1(t) (no frame

drops) and a less significant part denoted by ab1(t) (with frame drops) in Fig. 3.2. These two parts

combine to form the original stream a1(t), i.e., a1(t) = aip1(t) + ab1(t),∀t ≥ 0. The partitioned

arrival curves corresponding to the two parts are shown as αip1 = [αu
ip1,α

l
ip1] and αb1 = [αu

b1,α
l
b1],

respectively, while the partitioned service curves are βip1 = [β u
ip1,β

l
ip1] and βb1 = [β u

b1,β
l
b1], respec-

tively. As shown in Fig. 3.2, the buffer sizes for the two parts at the three stages of the architecture

are [Bip1,Bip3,Baip1] and [Bb1,Bb3,Bab1], respectively, such that B1 =Bip1+Bb1, B3 =Bip3+Bb3 and

Ba1 = Baip1 +Bab1. The partitioned outputs from PE1 are yip1(t) and yb1(t), while the partitioned

outputs from PE2 are zip1(t) and zb1(t) as shown in Fig. 3.2.

Partitioned Consumption: If the display rate or consumption function at the playout stage for

stream a1(t) is C1(t), then the consumption functions for the partitioned streams are n×C1(t)

and (1− n)×C1(t) (as shown in Fig. 3.2), where n is the fraction corresponding to significant

part. For example, for a frame sequence of IBBPBBPBBPBBI..., n = 1
3 . If the display rate

is 30 frames/second, then the partitioned consumption functions are 10 frames/second and 20

frames/second for I/P frames (significant part) and B frames (less significant part), respectively.

3.2 Computing Quality-Driven Service Curves

The main objective is to find the bounds for the original service curves β1 = [β u
1 ,β

l
1], which is

quality driven. In order to compute these bounds, we first need to find the bounds on the partitioned

service curves βip1 = [β u
ip1,β

l
ip1] (significant part) and βb1 = [β u

b1,β
l
b1] (less significant part).

The computation of service curve for the significant part follows the method presented in [53]. The

64

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

β l
ip1 bound is therefore obtained by ensuring that buffer Bip1 does not overflow, i.e.,

aip1(t)−Bip1 ≤ yip1(t),∀t ≥ 0

⇔ β
l
ip1(t)⊗aip1(t)≥ aip1(t)−Bip1,∀t ≥ 0

⇔ β
l
ip1(t)≥ (aip1(t)−Bip1)�aip1(t),∀t ≥ 0. (3.1)

We can compute the β u
ip1 bound by ensuring that buffer Bip3 does not overflow, i.e.,

yip1(t)≤ zip1(t)+Bip3,∀t ≥ 0 (3.2)

In order to ensure that buffer Baip1 does not underflow, we have

zip1(t)≥ n×C1(t),∀t ≥ 0 (3.3)

From Eq. 3.2 and Eq. 3.3, in order to strictly ensure that Bip3 does not overflow, we can deduce that

yip1(t)≤ n×C1(t)+Bip3,∀t ≥ 0

⇔ β
u
ip1(t)⊗aip1(t)≤ n×C1(t)+Bip3,∀t ≥ 0

⇔ β
u
ip1(t)≤ (n×C1(t)+Bip3)�aip1(t),∀t ≥ 0. (3.4)

Before we compute βb1 = [β u
b1,β

l
b1], let us define some quantities that will be used hereafter in this

chapter.

Definition 5 Worst-case quality surface (Qu). For any frame interval F, the worst-case quality

surface Qu(f ,F), for all 0≤ f ≤ Fb, is the worst-case quality of the video if f frames are dropped

in any window of F consecutive frames. Here, Fb is the total number of less significant frames that

can be dropped and Fb < F.

All dropped frames are replaced by immediately preceding and successfully processed frames called

concealment frames. The amount of quality loss depends on the MSE between the dropped and

concealment frames.

Definition 6 Frame interval based time bound (δ u(F)). Given the original arrival curve before

partitioning α1, the upper bound on time required for arrival of F frames is given by

δ
u(F) = min{∆≥ 0 | α l

1(∆)≥ F}

65

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

Lemma 3.2.1 Given the target quality constraint Qtarget
1 , the worst-case quality surface Qu(f ,F)

and the frame interval based time bound δ u(F), the upper bound on number of frames that can be

dropped in any time interval ∆ is given by

f u(∆) = fmax(F)

where fmax(F) is the maximum number of frames that can be dropped in a frame interval F such

that Qu(fmax(F),F)≥ Qtarget
1 and δ u(F)≤ ∆ < δ u(F +1).

Proof This lemma can be proved by considering two instances of time intervals.

Case I: Let us first consider the straightforward case with time intervals given by ∆ = δ u(F). These

are the lowest time interval values where α l
b1 ≥ F . If fmax(F) is the maximum possible number of

frames that can be dropped in a frame interval F such that the quality constraint is satisfied, i.e.,

Qu(fmax(F),F)≥ Qtarget
1 , then for ∆ = δ u(F), we have f u(∆) = fmax(F).

Case II: Now let us consider the time intervals given by δ u(F) < ∆ < δ u(F + 1). These are the

time intervals when α l
1(∆) > F and α l

1(∆) < F + 1. In these time intervals, the maximum number

of frames that can be dropped should be at most fmax(F) so that the quality constraint is satisfied. If

the number of frame drops exceeds fmax(F), then the quality constraint is violated because α l
1(∆)<

F + 1 and therefore any frame drop fd > fmax(F) will result in Qu(fd ,F) < Qtarget
1 . Then, for

δ u(F)< ∆ < δ u(F +1), we have f u(∆) = fmax(F).

Hence, it is proved that f u(∆) = fmax(F),∀∆≥ 0.

Lemma 3.2.2 Suppose αb1 = (αu
b1,α

l
b1) are the arrival curves of the less significant stream as

shown in Fig. 3.2, βb1 = (β u
b1,β

l
b1) are the service curves for the less significant stream on PE1, and

B is the size of the input buffer. Then, the number of input frames that can be dropped over any

interval of length ∆≥ 0 is upper bounded by αu
drop1(∆), defined by

α
u
drop1 = (αu

b1−β
l
v1)⊗ 0

where β l
v1

def
= (α l

b1⊗β l
b1 +Bb1)

∗⊗αu
b1.

Proof It is proved as in Lemma 2.2.3.

66

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

Lemma 3.2.3 Define αb1, βb1 and αu
drop1 as in Lemma 3.2.2. Also define f u as in Lemma 3.2.1.

Then, for any given time interval ∆≥ 0, in order to satisfy the quality constraint, the lower service

curve (β l
b1) is given by

β
l
b1(∆)≥ ((((((αu

b1− f u)⊗ 0)�α
u
b1)−Bb1)⊗ 0)�α

l
b1)(∆)

Proof Let us start from the expression for drop bound given in Lemma 3.2.2. In order to satisfy the

quality constraint, the following relation needs to be maintained:

α
u
drop1(∆)≤ f u(∆)

⇔ ((αu
b1−β

l
v1)⊗ 0)(∆)≤ f u(∆)

⇔ ((αu
b1− (α l

b1⊗β
l
b1 +Bb1)

∗⊗α
u
b1)⊗ 0)(∆)≤ f u(∆)

⇔ (αu
b1− (α l

b1⊗β
l
b1 +Bb1)⊗α

u
b1)(∆)≤ f u(∆)

(As g⊗ 0≤ h⇒ g≤ h)

⇔ ((αu
b1− f u)⊗ 0)(∆)≤ ((α l

b1⊗β
l
b1 +Bb1)⊗α

u
b1)(∆) (3.5)

The network calculus based transformations can be applied to Eq. 3.5 to derive the lower bound on

β l
b1 given by

β
l
b1(∆)≥ ((((((αu

b1− f u)⊗ 0)�α
u
b1)−Bb1)⊗ 0)�α

l
b1)(∆)

Hence, the lemma is proved.

We can compute the β u
b1 bound by ensuring that buffer Bb3 does not overflow, i.e.,

yb1(t)≤ zb1(t)+Bb3− f u(t),∀t ≥ 0 (3.6)

In order to ensure that buffer Bab1 does not underflow, we have

zb1(t)≥ (1−n)×C1(t),∀t ≥ 0 (3.7)

From Eq. 3.6 and Eq. 3.7, in order to strictly ensure that Bb3 does not overflow, we can deduce that

yb1(t)≤ (1−n)×C1(t)+Bb3− f u(t),∀t ≥ 0

⇔ β
u
b1(t)⊗ab1(t)≤ (1−n)×C1(t)+Bb3− f u(t),∀t ≥ 0

⇔ β
u
b1(t)≤ ((1−n)×C1(t)+Bb3− f u(t))�ab1(t),∀t ≥ 0. (3.8)

67

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

Lemma 3.2.4 From Eq. 3.1, Eq. 3.4, Eq. 3.8 and Lemma 3.2.3, the aggregate service curve [β u
1 ,β

l
1]

for the PE allowing drops can be computed as

β
u
1 ≤max{(β l

ip1 +β
u
b1),(β

u
ip1 +β

l
b1)}

β
l
1 ≥min{β l

nd1,(β
u
ip1 +β

l
b1)}

where β l
nd1 is the lower bound on aggregate service curve with no frame drops.

Proof Let us first consider the lower bound of the aggregate service curve represented by the tuple

[β u
1 ,β

l
1] for the PE allowing frame drops (the first PE in our case from Fig. 3.1). The lower bound β l

1

should atleast service a minimum number of B frames such that the number of B frames dropped do

not violate the quality constraints. This condition can be satisfied if atleast β l
b1 B frames are serviced.

In order to ensure that none of the I/P frames are dropped, it is necessary that an additional β u
ip1

service is provided. This gives the lower bound on the aggregate service required given by {β u
ip1 +

β l
b1}. However, in order to ensure that β l

1 does not exceed the lower bound with no frame drops,

the appropriate lower bound on aggregate service curve with frame drops is β l
1 ≥min{β l

nd1,(β
u
ip1 +

β l
b1)}.

Now let us consider the upper bound of the aggregate service curve for the PE allowing frame drops.

The upper bound of β u
1 can be a straightforward sum of the upper bounds of individual service for

both I/P frames and B frames given by β u
ip1 +β u

b1. However, this is a pessimistic estimate. In order

to not result in buffer overflow at B3, the upper bound can also be such that β u
1 ≤ {β l

ip1 + β u
b1}.

But we need to ensure that β u
1 ≥ β l

1. Therefore, the appropriate β u
1 required is β u

1 ≤ max{(β l
ip1 +

β u
b1),(β

u
ip1 +β l

b1)}.

Hence, the lemma is proved.

However the aggregate service curve can be tuned more accurately if there is an integral relationship

between the number of I/P frames and number of B frames. This is demonstrated in the next lemma.

Lemma 3.2.5 Considering the quantities in Lemma 3.2.4 and Lemma 3.2.1, if there is an integral

relationship between the number of I/P frames and the number of B frames in the stream, i.e., if the

68

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

ratio Number o f B f rames
Number o f I/P f rames is an integral value, the aggregate service curve [β u

1 ,β
l
1] can be computed

as

β
u
1 ≤ {β u

b1 +
β u

b1 + f u

N
}

β
l
1 ≥min{β l

nd1,(β
l
b1 +

β l
b1 + f u

N
)}

where N is the ratio of the number of I/P frames to the number of B frames and β l
nd1 is as defined in

Lemma 3.2.4.

Proof As in Lemma 3.2.4, the lower bound of the aggregate service curve β l
1 has to process atleast

β l
b1 frames to satisfy quality constraints. As the ratio Number o f B f rames

Number o f I/P f rames = N, where N is an integer,

the maximum number of I/P frames that need to be processed in the same time interval are β l
b1+ f u

N .

This is because β l
b1 is the minimum number of B frames to be processed which does not include

the B frames that are dropped. So, in order to find the maximum number of I/P frames, we need to

add the upper bound on number of frames dropped to β l
b1 so as to find the total number of B frames

(Dropped + Processed). The total when divided by N gives the maximum number of I/P frames

processed, given by β l
b1+ f u

N . The sum of β l
b1 and the previous quantity gives one part of the lower

bound. In order to ensure that the lower bound with frame drops does not exceed the lower bound

without frame drops (β l
nd1), we derive the lower bound as β l

1 ≥min{β l
nd1,(β

l
b1 +

β l
b1+ f u

N)}.

The same explanation holds for the upper bound when β l
b1 is substituted with β u

b1.

Although we have found the bounds on the required service in the presence of frame drops such that

a quality constraint is satisfied, the service is currently in terms of the number of frames processed in

any time interval. This has to be converted into bounds on the number of processor cycles provided

in any time interval. Let us now define the tuple [σu,σ l], which denotes the upper and lower bound

on the number of processor cycles provided in a specific time interval ∆. If the maximum number of

cycles required to process k frames is denoted by cmax(k), then the bounds on the required processor

cycles such that an input stream is processed with target quality constraints is given by

σ
u(∆)≤ cmax(β u

1 (∆)),

σ
l(∆)≥ cmax(β l

1(∆)). (3.9)

69

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

Once we find the required number of processor cycles in terms of [σu,σ l], we can allocate the

appropriate amount of processor resources so that the incoming multimedia stream is processed

subject to a target quality constraint. The advantage of this framework is that we could individually

analyze the multimedia stream (stored videos or a representative video clip). The processor cycle

bounds computed can then be used to schedule the decoding of multiple streams. We further validate

the results obtained in the next section.

3.3 Experimental Results

In this section, we validate the formal framework presented in the previous section. The two main

results presented here are:

1. Reduction in the processor cycle requirements obtained as a result of the trade-off with qual-

ity.

2. Verification of the quality obtained in a scenario where multiple streams are processed adher-

ing to their respective required processor cycle bounds derived using the formal framework.

In our experiments, we consider frame drops only in front of PE1. Therefore, we compute the

service required on PE1 for two multimedia streams decoded simultaneously on a MPSoC platform

with buffer and processor resource constraints. In particular, we first find the processor cycle bounds

in accordance to the formal framework presented in Section 3.2 so that target quality constraints for

both the multimedia streams are met. Then, we allocate processor cycles to the two streams such

that the processor cycle bounds are not violated. The processor cycles required for the multimedia

streams on PE2 (without frame drops) can be computed without partitioning the processed stream at

the output of PE1. The procedure is similar to the computation of processor bounds for I/P frames

at PE1. The cycle requirement for each MPEG-2 task is obtained using SimpleScalar sim-profile

simulator for a MIPS-like architecture. The buffer sizes are fixed at Bip1 = Bip2 = 50, Bb1 = Bb2 =

100, Bip3 = Bip4 = 45 and Bb3 = Bb4 = 90.

70

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

Time Interval (in msec)

N
o

.
o

f
F

ra
m

e
s

¯l
1

¯l
nd1

¯u
1

¯u
nd1

(a)

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

Time Interval (in msec)

N
o

.
o

f
F

ra
m

e
s

¯l
1

¯l
nd1

¯u
1

¯u
nd1

(b)

Figure 3.3: Aggregate service curves with and without frame drops for the clips (a) cact 080 and
(b) susi 080.

3.3.1 Processor Cycle vs Quality trade-off

We explore this trade-off on PE1 with buffer and processor bandwidth constraints. Here, we first

present the results of processor cycle requirements obtained using the formal framework and com-

pare it against the processor cycle requirements with no frame drops, also obtained using a formal

analysis. In order to compute the processor cycle bounds with no frame drops, we use the method

given in [53]. We use two videos (cact 080 and susi 080 [1]) to demonstrate the trade-off. First,

71

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5
x 10

9

Time interval (in msec)

N
o

.
o

f
c
y
c
le

s
 r

e
q

u
ir

e
d

¾l
1

¾l
nd1

¾u
nd1

¾u
1

(a)

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3
x 10

9

Time interval (in msec)

N
o

.
o

f
c
y
c
le

s
 r

e
q

u
ir

e
d

¾l
1

¾l
nd1

¾u
nd1

¾u
1

(b)

Figure 3.4: Processor cycle requirements with and without frame drops for the clips (a) cact 080
and (b) susi 080.

we present the result for the aggregate service curve [β u
1 ,β

l
1] with frame drops and compare it with

the aggregate service curve [β u
nd1,β

l
nd1] without frame drops in Fig. 3.3. In this experiment, frames

are dropped such that a worst-case quality of 30dB is not violated. It is observed from the graph

that the lower service curves with (β l
1) or without (β l

nd1) frame drops start processing only after an

initial latency during which the buffer is not full and there is no frame drop and therefore no loss in

quality. After that initial latency, both the curves increase at different rates because with a tolerable

72

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

loss constraint, β l
1 need not process all the frames and some frames can be dropped. The reduction

in the upper service curve is also observed for the frame drop case (β u
1) because even though β u

nd1

will not cause buffer overflows in the intermediate stage, due to frame drops in the first stage, the

upper aggregate service curve β u
1 decreases as shown in Fig. 3.3. The observations listed above are

seen for both the video clips used to conduct experiments. However, it is evident from Fig. 3.3(b)

that the reduction in service is more for susi 080 in comparison to cact 080 because the adjacent

frames in susi 080 are more similar in comparison to the adjacent frames in cact 080, which allows

more frames to be dropped for susi 080 with the same target worst-case quality constraint.

We also plot the curves for the processor cycle requirements for each video clip with a worst-case

quality constraint of 30 dB (shown as the tuple [σu
1 ,σ

l
1]) and compare it with the processor cycle

requirements without any quality loss (no frame drops) (shown as the tuple [σu
nd1,σ

l
nd1]) in Fig. 3.4.

The characteristics of the aggregate service curves is reflected in these curves also as the processor

cycle requirements increase with the increase in service requirements.

Significance of the result: This analytical framework allows the flexibility to trade-off processor

bandwidth with application quality in the context of decoding multiple multimedia streams. For

example, keeping all the above buffer sizes the same, it has been observed that for a quality value

of PSNR = 30 dB, the video clip cact 080 gives a maximum processor bandwidth savings of 7196

processor cycles for any analysis interval of 1 ms, which corresponds to a bandwidth savings per-

centage of 21.77%. Similarly, for the video clip susi 080, it has been observed that the maximum

processor bandwidth savings is 49703 processor cycles for any analysis interval of 1 ms, which

corresponds to a bandwidth savings percentage of 48.73%. These results strengthen the case of

this analytical framework, which will be very useful to provision appropriate processor bandwidth

(using any scheduling scheme) such that each stream satisfies its own individual quality constraints.

This further helps in saving the processor bandwidth allocated to one stream so as to serve other

incoming streams.

3.3.2 Verification of the Processor Cycle Requirements

The processor cycle requirement curves with frame drops ([σu
1 ,σ

l
1]) obtained in the previous section

for both the clips is used in this section to run simulations in a multiple video clip decoding scenario,

73

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

100 150 200 250 300 350 400
25

30

35

40

45

50

Frame Interval

W
o

rs
t-

C
a
s
e
 Q

u
a
li
ty

 (
in

 d
B

)

(a)

100 150 200 250 300 350 400
25

30

35

40

45

50

55

Frame Interval

W
o

rs
t-

C
a
s
e
 Q

u
a
li
ty

 (
in

 d
B

)

(b)

Figure 3.5: Simulation results for quality in a multiple stream decoding scenario for (a) cact 080
and (b) susi 080.

which is one of the scenarios that can use this framework. PE1 is assigned a frequency of 500 MHz.

The processing cycles are allocated to the video clips in accordance to the cycle requirement bounds

[σu
1 ,σ

l
1] obtained in the previous section. The processor cycles are also allocated in an as late as

possible (ALAP) manner such that the video clips are processed at the end of every time interval.

This is done in order to ensure that buffer occupancy is the maximum and does not result in quality

reduction below the target worst-case quality of 30 dB. It is observed from Fig. 3.5 that the obtained

74

CHAPTER 3. QUALITY-DRIVEN SERVICE DETERMINATION

quality for both the videos using the processor cycle bounds does not fall below 30 dB, which is

the target for the experiment. On the other hand, it is also seen that susi 080 achieves a quality

much closer to the target worst-case quality of 30 dB, while cact 080 is a little above 30 dB. This is

because the variation in video is much higher for cact 080 and so the cycle requirements obtained

for it are more pessimistic in comparison to those obtained for susi 080.

3.4 Summary

In this chapter, we present a mathematical framework to derive the service requirements for a video

clip given a target quality constraint, which in turn helps to find the processor cycle requirements

for the clips in a time interval. This framework was verified in a multiple video processing setup as

would be found in a PiP-like application where the analytically obtained processor cycle require-

ments helps in processing the videos, while meeting the target quality constraints. Although, this

framework was verified using in a multiple video stream processing scenario, it would be similarly

applicable for processing video+audio or video+graphics/games stream. The experimental results

verify our claim that a quality-driven service dimensioning helps in saving vital processor band-

width for processing multimedia streams. The observed processor bandwidth savings for the video

clips cact 080 and susi 080 were 21.77% and 48.73% respectively. The experimental setup was

also verified to see if the quality constraints were satisfied with the derived quality-driven processor

bandwidths for two video streams scheduled in an ALAP schedule.

There are several possible directions in which this work can be extended. Firstly, it can be extended

to the scenario with other media streams (e.g., audio and graphics) apart from just multiple video

streams where processor bandwidth share is derived for the mix of multimedia streams. This frame-

work can also be extended to take into account the quality-driven buffer dimensioning objective in

conjunction with service dimensioning discussed here to derive a pareto set of buffer and service

values for a target quality constraint.

75

Chapter 4

Quality and Thermal Aware Multimedia

Processing

With technology scaling, there is a steep rise in the power consumption of systems-on-chip (SoCs).

The higher power densities lead to undesirable hot spots (i.e., localized high temperature points)

on chip. As a SoC is subjected to higher temperatures, its reliability is affected adversely. This

has a long term impact on the life of the system as the desired functionality is disturbed over a

period of time. Traditionally, expensive cooling packages were designed for the worst-case peak

temperatures [67]. However, this is not a viable solution for portable devices which run on tight

power and cost budgets. Therefore, researchers in the embedded systems community have widely

accepted Dynamic Thermal Management (DTM) techniques to keep a check on the on-chip peak

temperature.

There are two types of DTM techniques widely employed namely Dynamic Voltage/Frequency

Scaling (DVFS) and Dynamic Power Management (DPM). DVFS has been widely used for power

and energy optimization ([68], [69], [70]), but recently there have been efforts to use DVFS for

thermal optimization. In [71], DVFS is used to minimize peak temperature, where task voltage se-

lection is done at design time with thermal optimization objectives. Similarly some other works take

temperature into consideration while selecting voltage for energy optimization ([72], [73]). How-

ever, the two main issues with DVFS are the requirement of a support for multiple voltage/frequency

settings and the overhead associated with switching from one voltage/frequency to the other. On

76

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

the other hand, DPM consists of operation modes and the system can be put into low power modes

during times with low/no activity [74].

As power hungry multimedia applications are widely executed on portable devices, DTM has been

extensively employed to control the thermal profile of a system running multimedia players. Here,

DTM has been used to control temperature with the help of two strategies namely reactive and

predictive. In reactive DTM algorithms, the temperature is monitored at fixed intervals and re-

sponse mechanisms are invoked if the temperature reaches a trigger value. However, this strategy

requires responses with low time overhead [75]. In contrast, predictive DTM algorithms exploit

the properties of multimedia applications to schedule the appropriate frequency and/or architecture

configuration so that the peak temperature is always under control [75]. In [76], the complexity of a

MPEG-4 video frame is predicted using information from previous group of picture (GOP), which

in turn is used to determine the appropriate frequency setting such that the performance does not

degrade under thermal constraints. However, all the above methods do not tolerate frame drops and

hence some quality loss. All the above methods also use DVFS which has its issues as discussed

earlier.

4.1 Motivation

There exist several works in literature that trade-off quality for keeping the temperature below safe

limits. In [77], the authors present a DTM technique that allows spatiotemporal quality degradation

for MPEG-2 frame decoding. The spatial quality degradation is also referred to as Intra-frame spa-

tial degradation, but does not completely ensure the safe thermal state of operation. On the other

hand, temporal or Inter-frame quality degradation ensures safe thermal state at the cost of more

quality degradation. Therefore, the authors have used one or a combination of these two degrada-

tion mechanisms according to the available slack and the thermal state of the processor. A similar

quality trade-off mechanism is used in another DTM technique that is employed at the group of

pictures (GOP)-level [78]. A DTM mechanism was proposed in [40], where the application charac-

teristics are captured as a probability distribution of the decoding cycle requirement of a frame. This

probability distribution is obtained at runtime by profiling the application. The authors presented

that the peak temperature of the processor running multimedia codecs was lowered compared to the

77

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

state-of-the-art, while reducing the number of frame drops. Although the above mentioned works

trade-off quality for safe thermal profile, they do not obtain the safe thermal profile by mathemati-

cally bounding quality degradation. In [79], a power-aware H.264 encoder-decoder pair is proposed

that enables power savings at the expense of controlled quality reduction. Here, they use prioritized

slice groups within a frame, which, if skipped, lead to varying known quality degradations. How-

ever, in comparison to [79], our work focuses on thermal management. In addition, our Quality of

Service (QoS) measure is a frame interval based quantity which is defined in Section ??. Moreover,

we do not prioritize macroblocks within frames and we simply prioritize dropping of B frames.

In this work, we use DPM to control the peak temperature in the context of video decoder ap-

plications running on MPSoC platform. In the DPM technique that we use, there are active and

idle modes of operation. The system is put into idle mode when there is a necessity to keep the

temperature below the maximum temperature limit. The addition of idle times increases the end-

to-end delay of the system as processing is stalled. Hence, reduction of end-to-end delay is an

important requirement in a DPM method. Recently, a theoretical framework was presented in [74]

to derive the scheduling strategy that minimizes the end-to-end delay (by minimizing the inserted

idle times) under thermal constraints, for a set of tasks mapped onto distributed systems. However,

the work in [74] derives an optimal task schedule in order to minimize the idle times inserted and

does not consider application quality constraints for idle time insertion. Our work is different from

the problem addressed in [74] as we attempt to process the multimedia streams in a quality-aware

manner under thermal constraints. In the case of a video decoder application, it is possible to use

frame drops to reduce the idle times while adhering to a certain quality and peak temperature con-

straint. Therefore, in this work, we present an online DTM policy combined with an application

level technique that uses frame drops to reduce end-to-end delay, under thermal constraints, of a

video decoder application mapped onto a MPSoC platform. Although we use the example of a

video decoder application, the idea is applicable in other multimedia applications also.

As reliability of a system running power hungry video player applications is adversely affected by

increase in temperature, peak temperature has become an important factor in the design of portable

devices. Therefore, thermal management techniques based on DPM insert idle times interspersed

with intervals when processing takes place. In order to keep the peak temperature Tpeak below a

78

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

inserted idle time frame drop idle time

lower inserted idle
times with frame drops

higher inserted idle times
without frame drops

Tmax Tmax

Ti
m

e
 (

in
 s

e
c)

Ti
m

e
 (

in
 s

e
c)

Te
m

p
 (

in
 C

e
ls

iu
s)

Te
m

p
 (

in
 C

e
ls

iu
s)

Frame index Frame index

Frame index Frame index

(a) (b)

Figure 4.1: Illustration of reduction in inserted idle times using frame drops: (a)inserted idle times
without frame drops and (b)inserted idle times with frame drops

threshold value Tmax, idle times (shown as vertical lines) are inserted as shown in Fig. 4.1(a). The

height of the vertical line denotes the value of idle time inserted. It shows a toy example depicting

the idle times inserted before the frame represented by the frame index value. The lower graph

in Fig. 4.1(a) shows the temperature after the processing of each frame when idle times are taken

into consideration. However, addition of idle times increases the end-to-end latency. Therefore,

in Fig. 4.1(b), we depict a possibility that Tpeak can be kept under Tmax and the idle time values

inserted can be reduced if certain frames (shown as dotted vertical lines) are dropped such that the

prespecified quality constraint is satisfied. The height of the dotted vertical line denotes the value of

processing time of dropped frame. Let us now understand the multimedia frame properties so as to

decide a scheme for frame dropping.

The sequence of a typical MPEG-2/MPEG-4 encoded video was explained in Section ??. From the

description, we deduce that it is possible to drop some B frames in a decoder mapped onto a MPSoC

platform such that the video quality does not deteriorate significantly. This property of a video clip

can be used to find a specific frame drop pattern such that a predetermined quality constraint is

satisfied. This frame drop pattern can be used to compute the reduced idle times required as shown

79

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

in Fig. 4.1(b). It is further envisaged that frame drops can be used to completely eliminate insertion

of idle times in certain video clips under thermal constraints. Although this work demonstrates the

effectiveness of the approach in video clips with I,P and B frames, the same technique is applicable

if there are no B frames in the video clip. In such a scenario, we drop P frames instead of B

frames in such an order that the P frame that is not a reference frame is first dropped. However,

this could increase the idle time inserted if the quality losses due to concealment of P frames is

high. This is dependent on how the stream has been coded. On the other hand, if B frames are

used as references in any standard, the frame drops will be decided based on the existing frame

dependencies. In this work, we only consider the case with streams having B frames where B

frames are not reference frames. However, the technique presented here could also be adapted to

the other scenarios mentioned above.

4.2 Proposed Framework

This section presents an overview of our combined offline and online method that employs applica-

tion level technique of frame drops along with DTM to control the peak temperature of the system,

thereby reducing the magnitude of inserted idle times. This in turn enables to reduce the end-to-end

latency of the system. We use a quality constraint to upper bound the number of frames dropped in

a particular window of frames. In addition, we use a thermal model to compute the thermal profile

of the platform. We first describe the underlying MPSoC platform.

4.2.1 Platform Description

In this work, we use frame drops to reduce the value of idle times inserted to adhere to quality

and peak temperature constraints on an MPSoC architecture as shown in Fig. 4.2.The architecture

consists of two PEs, PE1 and PE2, each being serviced at a rate that allows the playback rate to be

satisfied under thermal and quality constraints. Each PE is mapped with a set of tasks from the target

decoder application. The PEs also each have a buffer in front of them, shown as B1 and B2. Both

the buffers are sufficient enough to handle the bursts in incoming data and therefore do not cause

overflow. Frames are dropped in front of the first PE and both the PEs are put into idle mode during

80

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

the processing time slots of dropped frames. This application level technique helps in reducing the

idle times required to keep the peak temperature of the PEs, denoted by Tpeak1 and Tpeak2, below

the allowed maximum temperatures denoted by Tmax1 and Tmax2. Frames are also dropped in such

a manner that the worst case quality for any interval of L frames, denoted by Ql(L) does not fall

below the target quality constraint Qtarget .

4.2.2 Preliminaries

Before presenting a formal problem definition, we introduce the two integral models used in this

framework, namely the QoS model and the thermal model. The QoS model quantifies the quality

provided by the MPSoC platform. The thermal model aids in obtaining the thermal profile of the

platform components, especially the PEs.

QoS model: The QoS model used in this work defines the quality metric as frames are dropped

in order to efficiently control the thermal profile. We use the worst case quality metric denoted by

Ql(f ,L), which is PSNR value of the input stream at the output of the decoder. PSNR value is

computed by calculating the MSE between the dropped frame and the concealment frame or the

frame that replaces the dropped frame (computed as in [80]). There are many possible concealment

frame candidates for a dropped frame as shown in Fig. 1.1. Of all the possible candidates, we

choose the frame that causes maximum distortion or MSE as the concealment frame. Therefore, we

compute the maximum MSE (MSEmax(f ,L)) if f number of frames are dropped in any interval of

L frames across the entire length of the video clip by examining all combinations of f frames. The

Input
stream

B1 B2

PE1 PE2

Frame drops
with idle times
such that
T <= T
 and
Q (F) >= Q

max1peak1

l
target

max1T max2T
To playout

buffer

Figure 4.2: MPSoC platform using frame drops to reduce idle times under thermal and quality
constraints

81

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

worst case quality metric Ql(f ,L) is then computed as

Ql(f ,L) = 10× log10
(255×255×L)
(MSEmax(f ,L))

(4.1)

If Qtarget is the worst quality constraint value that should be satisfied always, then for any frame

interval L, the worst case quality Ql(f ,L) ≥ Qtarget . This constraint places a restriction on the

number of frames that can be dropped in any frame interval. Let us denote this dropped frame set as

D = { fdrop(L)|1 ≤ L ≤ N} where fdrop(L) is the maximum number of frames that can be dropped

in an interval of L frames and fdrop(L) ∈ [1,L]. N is the total number of frames in the video clip. If

fdrop(L) frames are dropped in an interval of L frames, we denote the worst-case quality as Ql(L),

which is shown in Fig. 4.2. The two important aspects associated with the QoS model that we use

are

1. Non propagation of errors due to frame losses beyond the GOP: As only the B frames

are dropped, the concealment frame for each dropped frame belongs to the same GOP as

the dropped B frame. Hence, the errors due to concealment are not propagated beyond the

GOP. In short, the concealment frame of a dropped frame cannot be a frame that belongs to a

completely different scene.

2. Usage of QoS model: The QoS model can be used in two contexts. For stored videos,

we can generate the QoS metric defined in Eqn. 1.3 for the specific videos and use them

online to take appropriate frame drop decisions. On the other hand, if the input video clip is

not a stored video, then the QoS metric is generated using a set of representative clips (can

be called a representative QoS metric) and the incoming video is expected to adhere to the

representative QoS metric. Representative video clips are widely used to design a system

running multimedia applications. However, in this particular work, we generate the QoS

metric for each video clip.

Thermal model: In this work, we use the lumped RC model presented in [70] to compute the

thermal profile of our PEs. If the average power dissipated by the PE over a time t is P Watts, R is

the thermal resistance in ◦C/Watt, C is the thermal capacitance in Joules/◦C, Tamb is the ambient

temperature and Tinit is the initial temperature of the PE, then the temperature of the PE at the end

82

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

QoS model Drop Pattern
Generation

input
stream

Offline Process

Q (f,L)
l

frame drop
pattern

Online Process

Thermal
model

Idle times with frame drops
such that

Q (f,L) >= Q
and

peak temperature <= T

l
target

max

Figure 4.3: High level schematic diagram of Quality and Thermal-aware Idle time Insertion

of time t is given by

T (t) = Ts +(Tinit −Ts)e−
t

RC (4.2)

where Ts is the steady state temperature of the system given by Ts = P×R+ Tamb. We use two

modes of operation of the PE to implement DPM namely the active and idle mode. Therefore,

we denote the steady state temperatures in the active and idle modes as Ta and Ti respectively. For

a proper thermal model, Ta > Ti. The temperature rises towards Ta in the active mode and falls

towards Ti in the idle mode. Let us denote the idle times introduced in the idle mode by the set

I = {tidle(L)|1 ≤ L ≤ N}, where tidle(L) is the magnitude of idle time introduced before the frame

index L.

4.2.3 Problem Definition

Given the input video clip, the QoS model, the thermal model, the target quality contraint Qtarget and

the maximum allowed peak temperature Tmax, compute the dropped frame set D in order to reduce

83

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

the idle times in I.

The two sets D and I are computed using the two stages of the framework. The first stage is an

offline process that first computes the dropped frame set D given Qtarget . D is then used to find the

frame drop pattern in the video clip adhering to quality constraints for all frame intervals. The frame

drop pattern is then used along with the thermal model to compute idle times (or set I) inserted after

the dropped frame such that the temperature does not exceed Tmax until the next dropped frame. This

is an online process. We now explain the two stages namely Drop Pattern Generation and Quality

and Thermal Aware Idle Time Insertion. The high level schematic diagram illustrating the overall

scheme is shown in Fig. 4.3.

4.3 Drop Pattern Generation

The inputs that this stage require are the worst case quality values if f frames are dropped in an

interval of L frames given by Ql(f ,L) and the target quality constraint value Qtarget . This stage is

an offline process and consists of two parts. The first part uses the constraint Ql(f ,L) >= Qtarget

to find out the maximum values of f for each L (which is fdrop(L)) by iterating over all values of

f ∈ [1,L]. However, once we get the maximum number of frames that can be dropped for any frame

interval, we need to find the drop pattern in the decoding order of the frames. This is obtained using

Algorithm.4.

We now explain Algorithm.4. The input to the algorithm is fdrop(L) as discussed earlier. The output

expected from the algorithm is a list of frames that are dropped in accordance to the constraint

Ql(L) >= Qtarget . We use a variable sum seq to keep a record of how many frames have been

dropped in a frame interval. The variables are initialized as shown in Line 1. The algorithm is

iterated over the entire length of the video, i.e., for all the frames 1 to N. We drop only the B frames

and therefore check if the current frame is a B frame (in Line 4). If the current frame corresponding

to index i is a B frame, then we initially assume that it is going to be dropped. This is reflected in

Line 5 and 6 where we assign 1 to sum seq and drop pattern(i), which signifies that the current B

frame is dropped. Then, a sliding window is used in which the window size is increased from 2 to

i. This is implemented using the for loop in Line 7. For each window size, the sum of frame drops

84

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

Algorithm 4 Computing drop pattern

Input: fdrop (L) - Maximum number of frames dropped for any frame interval L satisfying Qtarget ;
Output: drop pattern(1 : N)

1: sum seq← 0, drop pattern(1 : N)← 0;
2: —Computing the Drop pattern—
3: for i = 1 to N do
4: if (B f rame) then
5: sum seq = 1;
6: drop pattern(i) = 1;
7: for j = (i−1) to 1 do
8: sum seq = sum seq+drop pattern(j);
9: if

(
sum seq > fdrop (i− j+1)

)
then

10: drop pattern(i) = 0;
11: break;
12: end if
13: end for
14: end if
15: end for

is counted assuming that the current B frame is dropped. The sum seq value is then compared with

fdrop(i− j + 1), where i− j + 1 is the window size (Line 9). If the sum seq value is greater than

fdrop(i− j + 1) for any j, then the current B frame is not dropped as it violates the target quality

constraint value. In this algorithm, it is possible that fdrop(i− j+ 1) value for small window sizes

can override the fdrop(i− j+1) value for the larger window sizes. This means that even if the larger

window sizes allow many frame drops, the lower number of frame drops allowed in smaller window

sizes do not allow the fdrop(i− j+ 1) value for the larger window sizes to be attained. The speed

of execution of Algorithm.4 depends on the size of the video, but the large execution time for large

clips is acceptable as this algorithm runs offline.

In our experiments, we use the more restricted fdrop(i− j+1) values corresponding to the smaller

window sizes, but the quality metric can be a bit relaxed. This trade-off will enable more frames to

be dropped and therefore higher reductions in idle times that are introduced. The online process of

inserting reduced idle times with frame drops is shown in the next section.

4.4 Quality and Thermal Aware Idle Time Insertion

85

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

Algorithm 5 Computing the quality and thermal aware idle times

Input: drop pattern(1 : N) and γu (l) for 1≤ l ≤ N;
Output: temp(1 : N) and idle time(1 : N)

1: temp(1 : N)← Tinit , idle time(1 : N)← 0,
T idle end← 0 and H← 0;

2: —Computing the idle times—
3: for i = 1 to N do
4: if (drop pattern(i) == 0) then
5: Find the longest active run k from drop pattern(1 : N);
6: if (H == 0) then
7: Compute T idle end using the offline γu (k);
8: else
9: Compute T idle end using the online updated γu (k) as in (4.5);

10: end if
11: Compute idle time(i) as in (4.4);
12: end if
13: if (drop pattern(i) == 0) then
14: if (idle time(i) == 0) then
15: Compute temp(i) as in (4.2) with Ts = Ta, Tinit = Tprev and t = proc cycles(i);
16: else
17: Compute temp(i) as in (4.2) with Ts = Ta, Tinit = T idle end and t = proc cycles(i);
18: end if
19: else
20: Compute temp(i) as in (4.2) with Ts = Ti, Tinit = Tprev and t = proc cycles(i);
21: end if
22: if (H < HIST MAX) then
23: Increment H;
24: end if
25: end for

This stage is an online process and requires inputs from the offline process, i.e., it requires the drop

pattern obtained as discussed in Section 4.3. Once we know the frames that will be dropped, the

entire execution on PEs can be divided into two operation modes. The frames that are not dropped

constitute the active mode of operation and the other frames result in idle operation mode. In the

idle operation mode, some additional idle time is inserted if required. In this section, we present an

online algorithm to derive this idle time such that the peak temperature Tpeak does not exceed the

maximum allowed temperature on the PE, i.e., Tmax.

In the context of frame drops, to compute the appropriate idle times, we find the worst case pro-

cessing time for the longest active run, i.e., the maximum number of consecutive frames that are not

86

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

dropped. The longest active run is computed by considering all the active runs between two dropped

frames. Let the longest active run be denoted by k frames. If W (M) is the workload cycles required

for processing the first M frames, then γu is defined by γu(n) = max
∀M≥0
{W (M + n)−W (M)}. γu(n)

is the maximum number of processor cycles required for processing n consecutive frames. There-

fore, the maximum number of processor cycles required for the longest active run is given by γu(k).

Given γu(k), we can find the safe temperature at which we should start the active mode so that the

temperature does not exceed Tmax. Here, we should also consider the overhead required to perform

this online idle time insertion. Let us denote this overhead cycles as OC. The safe temperature at

the end of the idle period can be denoted as T idle end. This safe temperature can be such that the

temperature at the end of the longest active run be less than or equal to Tmax. Then, we have

Ta +(T idle end−Ta)e−
(γu(k)+OC)×Tp

RC ≤ Tmax

⇔ T idle end ≤ Ta +(Tmax−Ta)e
(γu(k)+OC)×Tp

RC (4.3)

where Tp is the time period. We choose the highest value of T idle end that satisfies the above

constraint.

The idle times introduced are computed based on the extra idle times obtained due to frame drops.

These introduced idle times are appended to the end of the dropped frame. Let the temperature at

the end of the dropped frame be Tprev. Now we compute the introduced idle time (tidle) as

Ti +(Tprev−Ti)e−
tidle
RC ≤ T idle end

⇔ tidle ≥ R×C× log
(Tprev−Ti

T idle end−Ti

)
(4.4)

We choose the lowest value of tidle that satisfies the above inequality.

The computation of T idle end can be made more tighter by deriving a tighter estimate of γu(k).

This is done by using a history based approach. Let the length of the history or the number of

previous frame cycle requirements that is maintained be H. The accumulated processor cycles for

the last H frames is therefore denoted by procH . Then the maximum processor cycles for the longest

active run k is given by

γ
u(k) = min

0≤H≤HIST MAX
(γu(k+H)− procH) (4.5)

87

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

The entire online process is shown as Algorithm.5. First, the longest active run (k) is obtained

from drop pattern(1 : N) (Line 5). Then T idle end is computed based on the available history of

processing cycles (Lines 6-10). Once T idle end is obtained, we compute idle time
(
i
)

in Line 11.

Finally, we compute the temperature of the PE at the end of processing of the current frame (Lines

13-21). History length recorded in H is incremented until its maximum value HIST MAX (Lines

22-23). These H recent history values of frame processor cycles are used to obtain tighter tempera-

ture values. Although the amount of history maintained affects OC introduced in the analysis, it is

envisaged to be insignificant in comparison to the cycle requirements for the active run.

Although, in this work, we insert idle times at the end of each frame drop if required, it is possible

to insert the idle time at any position after the frame drop and before it reaches Tmax. Therefore,

we need to first prove that the frame drops help in reducing the idle time introduced in comparison

to the scenario without frame drops. Inserting idle times affects the end-to-end performance of the

system. Hence, we prove that if a certain set of idle times without frame drops satisfies the display

rate, then the idle times introduced in the same slots in the context of frame drops also satisfies the

display rate.

Before presenting the results, we prove two theorems that validate the usefulness of the quality

aware multimedia processing for adhering to thermal constraints.

Theorem 4.4.1 The value of inserted idle times with frame drops is always less than or equal to the

inserted idle times without frame drops.

Proof Let us consider two scenarios here - one where inserted idle time interval is less than frame

drop interval and the other where inserted idle time interval is greater than frame drop interval. Let

us denote the idle time interval by LI and the frame drop interval by LFDI as shown in Fig. 4.4(b)

and Fig. 4.4(a) respectively. The idle time insertions in the absence of frame drops is shown in

Fig. 4.4(b).

Case I: When LI < LFDI .

The idle times (in the frame drop context) are inserted in the same slot as in the scenario with-

out frame drops. In this scenario every pair of successive inserted idle times denoted by Ii where

i ∈ [1,N], has zero or more frame drops in between them (in the context of frame drops). If there

88

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

inserted idle time (I)

frame drop idle time (FDI)

Ti
m

e
 (

in
 s

e
c)

Ti

m
e

 (
in

 s
e

c)

Frame index

Frame index

I1
I2

I3

I4

I5

I6

FDI1

FDI2
FDI3

FDI4

FDI5

LI LI LI LI LI

(a)

(b)

LFDI LFDI LFDI LFDI

Figure 4.4: (a) Lower inserted idle time with Frame drop idle time (with frame drop interval LFDI)
and (b) Inserted idle time with no frame drops (with idle time interval LI).

are no frame drops, then the value of idle times inserted is similar to the case without frame drops.

However, if there is any frame drop in between any two successive inserted idle times, then the tem-

perature (in the frame drop scenario) at the end of the frame drop slot is lower than the temperature

at the same point, without frame drops. Then by thermal monotonicity property (If at some point of

execution T , one sequence has higher temperature than the other, then at T +∆, the first sequence

will be at a higher temperature given that during ∆ both sequences executed in the same mode of

operation), the temperature just before the next idle time slot is lower for the scenario with frame

drops. Hence, a smaller idle time value is inserted at this point. In Fig. 4.4(a), the first such point is

just before I2.

Case II: When LI > LFDI .

The theorem is valid in this case because there are always more than one frame drops between two

successive inserted idle times and then it follows the argument of Case I.

89

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

Case III: When LI = LFDI

The frame drop idle time is utilized to insert lower idle times.

Hence, the theorem is proved.

Theorem 4.4.2 If a set of inserted idle times satisfies the end-to-end performance of the video or

adheres to the display rate, the set of inserted idle times with frame drops also satisfies display rate.

Proof This proof is directly obtained by using Theorem 4.4.1. As the inserted idle time decreases

with addition of frame drops as shown in Fig. 4.4(a), the end-to-end delay reduces. Therefore, the

display rate is satisfied as it is satisfied in the case of Fig. 4.4(b).

Finally, we theoretically evaluate the use of workload history. As mentioned before, we use the

workload history to dynamically update γu(k). Let us denote γu(k) with or without history as γu
h (k)

and γu
nh(k). Let the idle time introduced at any stage i with or without history be denoted by th

idle,i

and tnh
idle,i respectively. We prove now that using workload history helps in reducing the accumulated

idle time and therefore the delay.

Theorem 4.4.3 Accumulated idle time inserted with γu
h (k) is always lesser than or equal to the

accumulated idle time inserted with γu
nh(k), i.e.,

n∑
i=0

th
idle,i ≤

n∑
i=0

tnh
idle,i.

Proof Let us first denote the temperature at the end of i− th frame drop with and without workload

history as T h
a f d,i and T nh

a f d,i respectively. The safe temperature at the end of the idle time insertion

such that the temperature never exceeds Tmax for an active run γu
h (k) and γu

nh(k) are T idle endh
i and

T idle endnh
i . As γu

h (k)≤ γu
nh(k), substituting these in Eqn. 4.3 gives T idle endh

i ≥ T idle endnh
i .

By ignoring the overhead cycles, the temperatures before the i− th frame drop can be derived as

T h
b f d,i = Ta +(T idle endh

i−1−Ta)e−
ci×Tp

RC

T nh
b f d,i = Ta +(T idle endnh

i−1−Ta)e−
ci×Tp

RC (4.6)

where ci is the actual number of processor cycles required for the active run before the frame drop.

90

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

Now the temperature at the end of the frame drop can be calculated as

T h
a f d,i = Ti +(T h

b f d,i−Ti)e−
cdropi×Tp

RC

T nh
a f d,i = Ti +(T nh

b f d,i−Ti)e−
cdropi×Tp

RC (4.7)

where cdropi is the number of processor cycles required for processing the dropped frame if it was

not dropped. From Eqn. 4.6, Eqn. 4.7 and subtracting T nh
a f d,i from T h

a f d,i, we can deduce that

T h
a f d,i−T nh

a f d,i = (T idle endh
i−1−T idle endnh

i−1)e
− (ci+cdropi)×Tp

RC (4.8)

This shows that the difference in the temperatures (with or without workload history) after the i− th

frame drop is lesser than the difference in temperatures at the end of (i−1)− th idle time. We can

express the temperature at the end of the i− th idle time as

T idle endh
i = Ti +(T h

a f d,i−Ti)e−
thidle,i

RC

T idle endnh
i = Ti +(T nh

a f d,i−Ti)e−
tnh
idle,i
RC (4.9)

From Eqn. 4.9, we can derive the required idle times as

th
idle,i = R×C× log

(T h
a f d,i−Ti

T idle endh
i −Ti

)
tnh
idle,i = R×C× log

(T nh
a f d,i−Ti

T idle endnh
i −Ti

)
(4.10)

The summation of the idle times derived in Eqn. 4.10 is given by

n∑
i=1

th
idle,i = R×C× log

(n∏
i=1

T h
a f d,i−Ti

T idle endh
i −Ti

)
n∑

i=1

tnh
idle,i = R×C× log

(n∏
i=1

T nh
a f d,i−Ti

T idle endnh
i −Ti

)
(4.11)

91

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

With the knowledge that T nh
a f d,1 = T h

a f d,1, the idle time difference is computed as

n∑
i=1

tnh
idle,i−

n∑
i=1

th
idle,i =

R×C× log

(
n∏

i=1

T nh
a f d,i−Ti

T idle endnh
i −Ti

×
n∏

i=1

T idle endh
i −Ti

T h
a f d,i−Ti

)

⇔
n∑

i=1

tnh
idle,i−

n∑
i=1

th
idle,i =

R×C× log

(
T nh

a f d,1−Ti

T h
a f d,1−Ti

×

(n∏
i=2

T nh
a f d,i−Ti

T h
a f d,i−Ti

×
T idle endh

i−1−Ti

T idle endnh
i−1−Ti

)
× T idle endh

n −Ti

T idle endnh
n −Ti

)

⇔
n∑

i=1

tnh
idle,i−

n∑
i=1

th
idle,i =

R×C× log

((n∏
i=2

T nh
a f d,i−Ti

T h
a f d,i−Ti

×
T idle endh

i−1−Ti

T idle endnh
i−1−Ti

)
×

T idle endh
n −Ti

T idle endnh
n −Ti

)
(4.12)

It is known that T idle endh
n ≥T idle endnh

n . From Eqn. 4.8 and the fact that T nh
a f d,i >T idle endnhi−1

and T h
a f d,i > T idle endhi−1 , we can deduce that

T nh
a f d,i−Ti

T h
a f d,i−Ti

≥
T idle endnh

i−1−Ti

T idle endh
i−1−Ti

(4.13)

From Eqn. 4.13 and Eqn. 4.12, we obtain the relation
n∑

i=0

th
idle,i ≤

n∑
i=0

tnh
idle,i.

4.5 Experimental Results

In this section, we present four experimental results that support our claim that frame drops help in

reducing inserted idle times in a quality and thermal aware multimedia processing setup. In our first

experiment, we show that frame drops can be used to completely eliminate idle time insertions. The

second experiment shows that the magnitude of total idle time insertion decreases with increase in

92

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

0 100 200 300 400 500
50

55

60

65

70

75

80

85

Frame Index

Te
m

pe
ra

tu
re

 (i
n

de
gr

ee
 c

el
si

us
)

Tmax

Temperature without
frame drops and

idle time insertions

Temperature with
only frame drops

Figure 4.5: Temperature control without insertion of idle times

frame drops. The third experiment shows the reduction in end-to-end delay as a result of reduced

idle times in the context of frame drops. Finally, we demonstrate how the introduced idle times are

reduced by maintaining lightweight workload histories. The parameters that we use for the thermal

model (used in our experiments) are from [81]. We set C = 112.2mJoules/◦C, R = 1.83◦C/Watt

and Tp = 1.25 ns as the parameter values for our experiments. We use a PE similar to the one used

in [81]. The OC value used in the experiments is 3000 processor cycles. Additionally, we have

Ta = 90◦C and Ti = 38◦C as the active and idle mode steady state temperatures respectively. The

initial temperature we choose for our experiments is Tinit = 50◦C.

The processor cycles for all the MPEG-2 tasks are obtained using the SimpleScalar simulator [8].

We obtain the processor cycles for a MIPS-like processor model using Portable Instruction Set Ar-

chitecture (PISA). The tasks mapped to PE1 are Variable Length Decoding (VLD), Inverse Quan-

tization (IQ) and Inverse Discrete Cosine Transform (IDCT). Motion Compensation (MC) task is

mapped to PE2. We use 5 video clips (from [1]) in our experiments- susi 080, time 080, cact 080,

f lwr 080 and mobl 080. All the video clips except time 080 are motion videos, whereas time 080

is mostly a still clip. All the results discussed further are obtained for the first stage of the PE. The

advantages observed are compounded in the second stage of the PE. Now we discuss our results in

detail.

93

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

0 100 200 300 400
0

0.05

0.1

0.15

0.2

Frame Index

Id
le

 T
im

e
(in

 s
ec

)

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame Index

Id
le

 T
im

e
(in

 s
ec

)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

Frame Index

Id
le

 T
im

e
(in

 s
ec

)

0 100 200 300 400
0

1

2

3

4

Frame Index

Id
le

 T
im

e
(in

 s
ec

)

(a) (b) (c) (d)

Figure 4.6: Idle times introduced with Tmax = 80◦C for video clip (a) susi 080 at 30 dB, (b) susi 080 at
35 dB, (c) f lwr 080 at 30 dB and (d) f lwr 080 at 35 dB.

4.5.1 Elimination of idle times

We use time 080 video clip in the first experiment. Two sets of simulations are conducted using

this clip. In the first, we apply our quality and thermal aware idle time insertion strategy to keep the

temperature always below Tmax = 80◦C and the quality for any interval above 35 dB. The maximum

workload history used in these experiments is HIST MAX = 24. In the second simulation, we find

the temperature profile for the same clip without introducing any frame drops and additional idle

times. The results are shown in Fig. 4.5.

There are two curves corresponding to the two simulations in Fig. 4.5. The maximum temperature

is marked using the horizontal dotted line at Tmax value. It is observed that the application level

technique of frame drops is sufficient to keep the temperature of PE1 below Tmax. Additional idle

times were not required to control the temperature. On the other hand, it is also seen that without

frame drops and idle time insertions, the temperature profile of PE1 increases above Tmax. This

highlights the advantage that our application level technique of frame drops aids in completely

avoiding idle times for certain video clips. Elimination of extra idle times has a direct effect of

reducing the end-to-end delay at PE1.

4.5.2 Reduction of idle times with quality

In this experiment, we show how the idle times inserted to control temperature are reduced with

increasing number of frame drops or lower quality. Here, we show the results for the clips susi 080

and f lwr 080, but the results are similar for all the other motion clips. In the case of time 080,

there is no reduction in idle time because idle times are not required in the presence of frame

94

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frame Index

A
cc

um
ul

at
ed

 Id
le

 T
im

e
(in

 s
ec

)

0 100 200 300 400
0

0.5

1

1.5

2

Frame Index

A
cc

um
ul

at
ed

 Id
le

 T
im

e
(in

 s
ec

)

0 100 200 300 400
0

0.5

1

1.5

2

Frame Index

A
cc

um
ul

at
ed

 Id
le

 T
im

e
(in

 s
ec

)

0 100 200 300 400
0

1

2

3

4

5

6

7

Frame Index

A
cc

um
ul

at
ed

 Id
le

 T
im

e
(in

 s
ec

)

(a) (b) (c) (d)

Figure 4.7: Accumulated idle times with Tmax = 80◦C for video clip (a) susi 080 at 30 dB, (b) susi 080 at
35 dB, (c) f lwr 080 at 30 dB and (d) f lwr 080 at 35 dB.

drops as discussed earlier. We show the results for susi 080 with two quality values 30 dB and

35 dB in Fig. 4.6(a) and Fig. 4.6(b) respectively. Similarly, the results for f lwr 080 are shown in

Fig. 4.6(c) and Fig. 4.6(d) respectively. The HIST MAX is fixed at 24. It is evident from the plots

that the required idle time for PSNR = 35 dB is higher than that for PSNR = 30 dB even though

the number of dropped frames decreases with increase in quality. The maximum idle time inserted

with PSNR = 35 dB is approximately 1.5× the maximum idle time inserted with PSNR = 30 dB for

susi 080. Similarly, the idle time inserted with PSNR = 35 dB is approximately 3.5× the maximum

idle time inserted with PSNR = 30 dB for f lwr 080. As higher target quality implies lesser number

of possible frame drops, the inserted idle times are increased to adhere to the peak temperature

constraint.

In order to see the effect of reduced idle times with frame drops on end-to-end delay, it is necessary

to observe the accumulated idle times after the end-to-end delay of each frame. The accumulated

idle times for susi 080 are shown with two quality values PSNR = 30 dB and PSNR = 35 dB in

Fig. 4.7(a) and Fig. 4.7(b) respectively, whereas the same results for f lwr 080 is shown in Fig. 4.7(c)

and Fig. 4.7(d). The HIST MAX is fixed at 24. As expected, it is observed from the plots that for

each frame index, the accumulated idle times are greater for PSNR = 35 dB in comparison to those

for PSNR = 30 dB. For susi 080, we see that the maximum accumulated idle time is 553 msec

less for PSNR = 30 dB than the same for PSNR = 35 dB. In the case of f lwr 080, the maximum

accumulated idle time for PSNR = 30 dB is 4.45 sec less than the same for PSNR = 35 dB. This

also gives us the idea that the end-to-end delay reduces with increase in number of frame drops.

By extrapolating this observation, we can also deduce that without frame drops, if idle times are

introduced at intervals larger than the frame drop intervals for PSNR = 30 dB, then the inserted idle

95

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

Table 4.1: PE1 delay for benchmark video clips with varying quality and HIST MAX values

PE1 Delay (in sec) HIST MAX 0 5 10 15 20 25

clip PSNR (in dB)

susi 080
30 1.1108 1.0997 1.0993 1.099 1.0975 1.0975
32 1.2853 1.2793 1.279 1.2788 1.2773 1.2773
35 1.6594 1.654 1.6528 1.6524 1.6508 1.6508

cact 080
30 1.7342 1.728 1.7275 1.7271 1.7265 1.7261
32 2.6078 2.6016 2.6013 2.6012 2.5987 2.5985
35 x x x x x x

f lwr 080
30 1.7372 1.7372 1.7313 1.7309 1.7309 1.7309
32 2.2741 2.2684 2.2605 2.2596 2.2594 2.2594
35 6.3119 6.1816 6.1816 6.1816 6.1816 6.1816

mobl 080
30 1.9024 1.8944 1.8865 1.8862 1.8862 1.8862
32 3.4996 3.4929 3.4881 3.4881 3.4881 3.4873
35 x x x x x x

times and hence delay will be higher.

4.5.3 Reduction in delay with varying quality and HIST MAX values

In this experiment, we present the trade-off between delay at PE1 and quality under thermal con-

straints. The HIST MAX value is also varied across 6 different values 0, 5, 10, 15, 20 and 25. As

shown in the previous result, the idle times inserted are reduced with increasing frame drops. This

leads us to believe that the PE1 delay can also be reduced in a quality aware manner under thermal

constraints. Here, we look at PE1 delay which is one of the major factors affecting the end-to-end

delay. The end-to-end delay value is obtained by measuring the time difference between the frame

appearance at output and input of the platform. The characteristics of PE1 delay are followed by the

end-to-end delay. Therefore, a reduction in PE1 delay also reduces the end-to-end delay. We show

the results for three quality values - PSNR = 30 dB, PSNR = 32 dB and PSNR = 35 dB. We con-

duct this experiment for benchmark video clips - susi 080, cact 080, f lwr 080 and mobl 080. The

maximum allowed temperature is set to Tmax = 80◦C. The PE1 delay values obtained for different

quality values are shown in Table 4.1. The delay values corresponding to PSNR = 35 dB is given

as x for video clips cact 080 and mobl 080 because there cannot be frame drops in these clips for

this target quality.

From Table 4.1, it is clear that there is a considerable reduction in the PE1 delay with a small

96

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

0 100 200 300 400
40

45

50

55

60

65

70

75

80

Frame Index

Te
m

pe
ra

tu
re

 (i
n

de
gr

ee
 c

el
si

us
)

PSNR = 35 dB

PSNR = 30 dB

(a)

0 100 200 300 400 500
50

55

60

65

70

75

80

Frame IndexTe
m

pe
ra

tu
re

 (i
n

de
gr

ee
 c

el
si

us
)

PSNR = 35 dB

PSNR = 30 dB

(b)

Figure 4.8: Temperature profile (with frame drops and idle time insertions) for (a) f lwr 080 with Tmax =
80◦C and target quality of 30dB and 35dB for video clips (a) f lwr 080 and (b) susi 080.

decrease in quality (PSNR = 32 dB to PSNR = 30 dB). This reduction for a HIST MAX = 25 value

is very prominent in mobl 080 (1.6 sec less), f lwr 080 (0.5285 sec less) and cact 080 (0.8724 sec

less). There is a small reduction in susi 080 also. However, this reduction in PE1 delay is even

more prominent when the quality decreases from PSNR = 35 dB to PSNR = 32 dB, i.e., for other

setting remaining the same, f lwr 080 shows a delay reduction of approximately 3.9 sec. Some

video clips exhibit larger reduction in PE1 delay when compared to others because in videos with

large variation, the number of frames that can be dropped for a target quality value is lesser when

97

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

compared to videos with lesser variation. Therefore, the intervals between successive frame drops

is larger in the former. This causes higher idle times to be inserted to control temperature and hence

higher PE1 delay.

We now discuss the effect of using workload history (HIST MAX) on the PE1 delay values. It is

observed from Table 4.1 that with a HIST MAX = 25 (which amounts to an insignificant overhead

of 3000 processor cycles), it is possible to reduce the PE1 in all the video clips in comparison a

scenario without workload history (HIST MAX = 0). We observe a maximum PE1 delay reduction

of 16 msec as the HIST MAX is increased from 0 to 25 for the video clip mobl 080. It can be

attributed to the large variation in γu(k) for an interval of k frames across the entire clip. This

variation can be lowered by maintaining workload history values and dynamically updating γu(k)

online.

We also present the thermal profile of the video clips f lwr 080 and susi 080 for two quality values

with Tmax = 80◦C (Fig. 4.8). The HIST MAX value was fixed at 24. It is observed that the tempera-

ture falls by a larger amount when target quality is PSNR= 35 dB when compared to PSNR= 30 dB

in both the video clips. This is explained by our previous result that the idle times inserted for higher

quality is higher and hence the temperature falls steeply. In addition to that, we clearly observe that

the idle times introduced in video clip f lwr 080 is higher than in susi 080 as we see larger falls in

temperature in f lwr 080.

4.6 Summary

In this work, we present a combined offline and online approach to process multimedia streams in

a quality and thermal aware manner. We utilize an application level technique of frame drops to

enable the insertion of smaller idle times. The frames are dropped under target quality constraints.

The reduced idle times are inserted under quality and peak temperature constraints. The inserted idle

times are made more tighter by recording a workload history. This workload history is used online

and in conjunction with the workload curve obtained offline to estimate the worst-case workload

that would be encountered in the future. Therefore, the pessimism in worst-case workload was

reduced resulting in the reduction of idle times introduced. Our experiments validate the claim that

98

CHAPTER 4. QUALITY AND THERMAL AWARE MULTIMEDIA PROCESSING

inserted idle times and end-to-end delays can be reduced with small quality reductions. From our

benchmark video clips, we obtain a maximum reduction of 1.6 sec in PE1 delay for a small quality

reduction of 2 dB. Moreover, it has also been observed that for still video clips with low scene

variations, it is possible to completely eliminate idle times with acceptable quality losses.

In this chapter, we presented a scheme to insert idle times along with bounded frame drops in a

quality and thermal-aware manner to adhere to a peak temperature constraint. We drop frames such

that it does not violate the quality constraint for any time interval. It would be an interesting future

work to derive the desirable frame drops that minimize the idle times introduced under quality and

thermal constraints.

99

Chapter 5

Fast Simulation Frameworks for

Multimedia MPSoC platforms

In this chapter, we present two simulation frameworks to perform fast performance analysis for

multimedia MPSoC platforms. In the first work, we use analytical models for the multimedia task

workloads to estimate the required processing workloads for the incoming streams. This is then

used to classify the incoming video streams to derive representative workload sets, which are used

to reduce the simulation time by avoiding the simulation of all the video clips in the library.

In the second work, we introduce a hybrid simulation framework in order to accurately predict the

mutlimedia task workloads. The accuracy in prediction helps in computing the data drops at various

stages of the architecture for various system parameter configurations.

The performance analysis techniques described in earlier chapters benefit from the fast simulation

techniques proposed in this chapter. These simulation techniques are used to either rapidly find the

representative test clips, which would further speed up the analytical or simulation based perfor-

mance analysis techniques to analyze the required system resources or to rapidly obtain the trace

data that will be used by the proposed performance analysis techniques.

100

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

5.1 Model-Based Performance Analysis

Simulation-based system performance analysis is a very widely adopted methodology for multimedia-

MPSoC platforms. In the context of a video processing application such as an MPEG-2 decoder,

these simulations take a library of test video clips as input. When simulated with this library, the

MPSoC platform is considered to be appropriately designed if it behaves in accordance to all the

performance constraints. It is analogous to the common software functional testing methodology.

However, unlike in the software testing scenario, the simulation of MPEG-2 decoder application

with the library of video clips is very expensive with respect to time. As mentioned in an earlier

work [10], it may take tens of hours for the simulation of only a few minutes of video in a decoding

application. This is mainly due to the heterogeneous and complex nature of multimedia MPSoC ar-

chitectures like the Eclipse template from Philips [6] and the Viper SoC architecture [5]. Therefore,

the performance analysis time for such architectures steeply increases with the input library size.

In order to reduce the performance analysis time, there have been many efforts in the past [82–84]

to identify representative test inputs. They classify the test inputs into well defined subsets with

minimum correlation. However, many of these works were in the area of microprocessor design

and the test input characteristics used for classification were instructions per cycle (IPC), cache miss

rates, branch misprediction rates etc. A detailed description of the related work will be presented in

the Section 5.1.1.

Performance analysis of multimedia-MPSoC platforms requires a completely different approach

for deriving input characteristics towards the identification of representative workloads. A previ-

ous work [85] introduced a novel concept of VCCs where each video clip was represented using

its VCC. This concept of VCCs was also suggested to be appropriate in [86] for identification of

different application scenarios.

The intuition behind using VCC as the performance model is the hypothesis that video clips with

similar VCCs would exhibit similar maximum buffer backlogs and maximum delays for one mac-

roblock. However, in order to compute the VCCs, we first need to compute the workload values

for each task. A straightforward way to compute these workload values uses time consuming sim-

plescalar simulations. In this work, motivated by a workload model for MPEG-2 decoder tasks

101

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

presented in [87], we propose a fast model-based performance analysis method which integrates

our workload model of the decoder tasks with a performance model (using VCCs) of the MPSoC

architecture, thereby providing a fast and efficient clustering of the video clips. Here, simplescalar

simulations to obtain workload values for each task is completely avoided and bitstream analysis

(incorporating our MPEG-2 workload model) is used instead. Consequently system simulations can

be run with only one video clip from each cluster, thereby considerably reducing the total simula-

tion time. In addition, we also perform fine grained classification of video clips in each stage of the

MPSoC architecture for a MPEG-2 decoder. This provides a way to identify the VCCs relevant to

each stage of the architecture.

5.1.1 Related Work

The concept of representative workloads, in order to reduce the number of test inputs, has been

comprehensively studied in the area of microprocessor design. Some of these have dealt with clas-

sifying program-input pairs based on microarchitecture dependent characteristics [82, 84]. The mi-

croarchitecture dependent program characteristics typically used were instructions per cycle (IPC),

cache miss rates, branch misprediction rates and many other such characteristics. There has been

some work performed to identify representative workloads based on microarchitecture independent

characteristics such as register traffic, working-set size, data stream strides and instruction-level par-

allelism [83]. These are not instruction set architecture (ISA) or compiler independent. However,

in the context of a multimedia MPSoC architecture, the characteristics used in the microprocessor

domain do not capture the variabilities inherent in the test inputs (for example MPEG-2 video clips).

As there are many program input characteristics, they have been classified using Principal Com-

ponent Analysis (PCA) in most of the earlier works. This reduces the correlation among the pro-

gram inputs and thereby resulting in a smaller subset of inputs which have minimum correlation.

Eeckhout et al. [82] suggest the need to select a representative workload for a target domain of a

microprocessor. They mainly propose a method of selecting the benchmarks and input data per

benchmark as representative workloads. Selecting a large number of them prohibitively increases

the simulation time as they are constituted of many instructions. The authors used statistical analysis

techniques like PCA and cluster analysis to extract representative workloads from the entire work-

102

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

load space. It was performed by measuring the similarity in behavior of the programs and finally

establishing the fact that programs which are close in the workload space have similar behavior. To

elaborate on the PCA method, the workloads are initially characterized in a s-dimensional space,

where s represents the number of program characteristics that influence the performance. As s is

too large and as there is some correlation among the s characteristics, the s-dimensional workload

space is reduced to a p-dimensional space such that p << s.

PCA [88] is used to transform the s characteristics X1, X2, . . . , Xs into s principal components Z1, Z2,

. . . , Zs (which are linear combinations of the original variables such that the principal components

are uncorrelated) such that

Zi =
s∑

j=1

ai jX j (5.1)

The transformation exhibits the following properties:

1. Var[Z1]>Var[Z2]> .. . >Var[Zs], which signifies that the information content is the most in

Z1 and the least in Zs.

2. Cov[Zi,Z j] = 0,∀i 6= j, which signifies that principal components do not have any overlaps.

The total variance remains the same after the transformation, but some principal components have

a large variance while some have a small variance. The ones which have smaller variances can be

eliminated without much loss of information. This reduces the workload space into a p-dimensional

space with p principal components. In this p-dimensional space, it is seen that different benchmarks

will be far away from each other while the inputs from a benchmark are clustered together. Strong

clustering indicates that one or a few inputs can be used to represent the cluster, while weak clus-

tering might require the selection of many inputs. This concept led to our intuition that video clips

with similar VCCs and clustered together will exhibit similar performance characteristics.

Cluster analysis is a method to group n program-input pairs depending on the values of s workload

characteristics. This hierarchical clustering algorithm starts by considering each program-input pair

as one cluster. It also has a n× n matrix of the distances at which each program-input pair is

located with respect to the other. Each iteration groups two clusters having the shortest linkage

103

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

distance into a new cluster. This continues until one cluster remains in the end with all the program-

input pairs. Different distance measurements are used in the literature. A dendrogram is used to

graphically represent the linkage distance between two clusters that are grouped together in one

iteration. Another clustering method used is k-means clustering [89].

John et al. [84] propose the characterization of workloads based on application’s intrinsic proper-

ties like memory access behavior, locality, control flow behavior, instruction level parallelism, etc.,

which helps in the formulation of a program behavior model. This can then be used in conjunction

with a processor model for analytical performance modeling. A study of memory reference locality

using some generic metrics was also proposed. The measures used were the inter-reference temporal

density function and the inter-reference spatial density function. The inter-reference temporal den-

sity function f T (x) is the probability of having x unique references between successive references

to the same item. Similarly, the inter-reference spatial density function f S(x) is the probability of

reference to a location x units away between references to the location of origin. According to the

reasons already mentioned, multimedia workload characterization using properties like memory ac-

cess behavior, locality, control flow behavior, instruction level parallelism etc. will not work well

for multimedia MPSoC performance analysis as they do not capture the burstiness and variability

in multimedia workloads.

Characterization of video stream inputs is somewhat different from the workload characterization in

the microprocessor domain. It needs a platform independent approach to identify scenarios across

the media streams. Hamers et al. [90] use such a method for resource prediction in media stream

applications. The approach proposes to use macroblock profiling to group frames with identical

decode complexity from various streams into scenarios. The resources that were predicted for eval-

uation were the decode time, quality of service and energy consumption. However, extraction of

these parameters to group frames takes more time than our method which groups video clips using

VCCs.

104

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

MPEG-2
video clips

Video clips
represented

Step 1 Step 2 Step 3

Workload VCC
represented

in VCC space

Input
library +

Bitstream Analysis

Arrival rate VCC

Hierarchical
+

Workload model
Clustering

oc
k

si
ze

its

)

+ lo
ad

cl

es
)

Performance

m
ac

ro
bl

o
(in

 b
i

macroblock index

+

w
or

kl
(in

 c
yc

macroblock index

model

Figure 5.1: Overview of video stream classification using bitstream analysis

5.1.2 Overview of our framework

A schematic overview of our performance analysis framework is shown in Figure 5.1. Given a

library of video clips, we perform the following steps in order to classify them into clusters

1. We perform bitstream analysis of each clip in accordance with a workload model. This gives

us the execution cycle requirements of each decoder task in an MPEG-2 decoder. Here, we

also extract the arrival rate of the video streams. The arrival rate of video streams can be easily

obtained once the number of bits per macroblock of the stream (from bitstream analysis) and

constant bit rate of the stream are known. The curves of these quantities are shown in Step 1

of Figure 5.1.

2. The two parameters extracted in Step 1 are then used to derive the corresponding VCCs in

accordance to our performance model.

3. These VCCs are first used to transform the video clips into the VCC space. Then a hierarchi-

cal clustering of the video clips is performed based on a distance measurement between the

clips in the VCC space. As a result, it is then possible to use one video clip from each cluster

and perform simulations. The system designer can control the number of required clusters.

105

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

N t k Di lNetwork
Interface

V D

PE1 PE2
B1 B2 B3

Display
InterfaceMPEG‐2 decoder

Network VLD
IQ

IDCT
MC

1 2 3

MPEG-2
encoded

Partially
decoded

Completely
decoded

macroblocks macroblocks macroblocks

Figure 5.2: MPSoC platform architecture for MPEG-2 decoder

The MPSoC platform architecture used for a case study of the MPEG-2 decoder application con-

sists of multiple interconnected processing elements (PEs) as shown in Figure 5.2. The tasks are

split and efficiently allocated to the PEs. The PEs communicate by passing data units or stream

objects between them. PE1 and PE2 are the two programmable processors. It also consists of the

input/network and output interface. After mapping the MPEG-2 decoder application onto the MP-

SoC platform, PE1 performs the Variable Length Decoding (VLD) and Inverse Quantization (IQ)

tasks, while PE2 performs the Inverse Discrete Cosine Transform (IDCT) and Motion Compensa-

tion (MC) tasks. The stream objects on which the PEs operate are macroblocks (MBs). Partially

decoded MBs are sent from PE1 to PE2 through buffer B2 while fully processed MBs are sent out

of PE2 to the output interface through buffer B3.

5.1.3 Variability Characterization Curves

The hypothesis of this work is that video clips with similar VCCs cluster together in the VCC space

and exhibit similar performance characteristics namely worst case buffer backlog and worst case

delay for one MB. There is a strong indication that this is true because VCCs accurately characterize

the data-dependent variability in the (i) execution times and (ii) input-output rates of the multimedia

processing tasks. This process of quantitatively modeling the input stream variability constitutes

our performance model. The burstiness in the arrival of streams can also be characterized using this

method. These factors collectively contribute to the values of the performance characteristics.

VCCs specify the best and the worst case quantities of the variable characteristic with respect to an

input parameter. It can be sequences of consecutive executions of a task or sequences of consecutive

106

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

time intervals of some specified length. A VCC is composed of a tuple [(νu (k) ,ν l (k)], where k is

the input parameter representing the length of a sequence. ν l (k) represents the lower bound on

some characteristic that holds for all subsequences of length k within some larger sequence. νu (k)

is the corresponding upper bound. More specifically, if P(n) denotes the measure of a property for

the first n items in the sequence, then

ν
l (k)≤ P(i+ k)−P(i)≤ ν

u (k) . . .∀i,k≥ 1 (5.2)

Based on the above definition of VCC, a workload VCC [γu (k) ,γ l (k)] can be defined as execution

requirement bounds for a task mapped onto a PE in terms of the number of processor cycles for any

k consecutive MBs. In other words, if W (k) represents the number of processor cycles required by

a task for the first k MBs in the video stream, then we can define for any i

γ
u (k) = max

∀i
{W (i+ k)−W (i)}

γ
l (k) = min

∀i
{W (i+ k)−W (i)}

(5.3)

Similarly, the consumption and production VCCs can be represented by κ = [κu,κ l] and π = [πu,π l]

respectively. [κu (k) ,κ l (k)] are the bounds on the number of activations of a task for any k con-

secutive stream objects. Likewise [πu (k) ,π l (k)] are the bounds on the number of stream objects

produced by k consecutive activations of a task. It is hypothesized that video streams having similar

VCCs will have similar worst/best case behaviors (e.g.: maximum backlogs in buffers).

An important aspect of VCCs that is understood here and which works in its favour, is that it

is a more realistic model that can be used for the estimation of the resource requirements on a

platform. Let us analyze this property of the VCCs. Let us denote the maximum execution cycle

requirement for the execution of a single MB as emax and the minimum execution cycle requirement

for a single MB on the same video clip as emin. We can obtain the worst case execution time denoted

by k× emax and best case execution time k× emin for k consecutive MBs by linear interpolation of

the corresponding execution times for 1 MB. Further, let us denote the upper and lower workload

VCCs of this task for k consecutive MBs to be γu (k) and γ l (k), respectively. It can be proved from

the definition of a VCC that, for k consecutive macroblocks in a video stream

107

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

18 x 108

k × emax

14

16

12
s δu(k)

8

10

cy
cl

es δu(k)

4

6

γu(k)

2

4

k× emin

γ (k)
γl(k)
δl(k)

0 1 2 3 4 5
x 104

0
macroblocks

k × emin

Figure 5.3: Differential errors δ u (k) and δ l (k) encountered when conservative linear interpolations
k× emax and k× emin are used instead of Workload VCCs γu (k) and γ l (k) respectively for VLD of
k consecutive MBs

k× emin ≤ γ
u (k)≤ γ

l (k)≤ k× emax (5.4)

The above equation is shown graphically in Figure 5.3. The differences δ u (k) and δ l (k) shown in

Figure 5.3 are defined as

δ
u (k) = k× emax− γ

u (k)

δ
l (k) = γ

l (k)− k× emin

(5.5)

These differences show how much a worst case estimate and a best case estimate deviate from a

more realistic estimation using VCCs. Hence, the performance model using VCCs does not take the

extreme resource requirements for a task. At the same time, it does not under estimate the resource

requirement for a task as is observed when the linear interpolation of the best case execution time

is used. A more realistic estimate using VCCs makes sure that the MPSoC platform resources are

well utilized. This is Step 2 in our performance analysis framework shown in Figure 5.1.

108

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

5.1.4 MPEG-2 Decoder Workload Model

The major tasks involved in MPEG-2 decoding are VLD, IDCT and MC. The computational work-

load required for other tasks such as IQ is negligible. The MPEG-2 decoder workload model depicts

the computational workload (at MB granularity) required for each of the major tasks in MPEG-2 de-

coding. The workload model was developed for a RISC processor (similar to a MIPS3000) without

any MPEG specific instructions. The MPEG-2 decoder application used for simulations was Test

Model 5 (TM5) [91]. The simulations here refer to the simulations required for one time develop-

ment of the workload model of the decoder tasks that are mapped onto the MPSoC platform and not

simulations to obtain task workload values of every new video clip added to the input library. This

workload model is employed in Step 1 of our performance analysis framework shown in Figure 5.1

to extract workload and arrival rate information.

5.1.4.1 VLD Task

It was experimentally found that the processor workload depends on the length of the Huffman codes

which implied that the workload for VLD depended on the number of non-zero IDCT coefficients.

The simulations showed this relation and in fact established that it was a linear relationship. Hence,

the processor workload for the VLD task at MB granularity is modeled as:

Workloadvld = a×ncoe f f +b (5.6)

where Workloadvld is the estimated number of processor cycles for VLD decoding of the MB, ncoe f f

is the number of non-zero coefficients in the MB and a and b are constants that depend mainly on

the processor architecture. This straight line fitting for VLD workload is supported by a plot of

number of processor cycles required (from simplescalar simulation) versus the number of non-zero

coefficients obtained for a video clip. This is shown in Figure 5.4.

From simulations, the values of a and b for the above mentioned processor were fixed at 140 and

109

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

12000

14000

10000

r c
yc

le
s

6000

8000

f p
ro

ce
ss

or

2000

4000N
o.

 o
f

0 50 100 150 200 250 300
0

2000

Non zero coefficients# Non-zero coefficients

Figure 5.4: Workload versus number of non-zero coefficients for VLD task from simplescalar sim-
ulation of a video clip

3000. The VLD workloads obtained for 50 macroblocks using the workload model based on Equa-

tion(5.6) and simplescalar simulation using the ffmpeg open source decoder code are plotted in

Figures 5.5(a) and 5.5(b). It is observed from the two graphs that although the VLD workload

model was derived by instrumenting a different source code, both graphs are very similar, exhibiting

identical characteristics for VLD processing. This demonstrates the validity of the VLD workload

model.

5.1.4.2 MC Task

MC is another expensive task in MPEG-2 decoding. There are three types of MBs in MPEG-2

bitstream namely I-type (do not require motion compensation), P-type (require only forward motion

compensation) and B-type (require both forward and backward motion compensation). Hence it was

intuitively concluded that P-type MBs require half the number of processor cycles than B-type MBs

while I-type MBs do not consume processor cycles for MC. However, this rough prediction does

not suffice for MC. There are other parameters on which a MC function depends such as

1. Y component’s (in YUV color space) x-dimension is HALF-PIXEL

2. Y component’s y-dimension is HALF-PIXEL

3. U or V component’s x-dimension is HALF-PIXEL

110

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

4. U or V component’s y-dimension is HALF-PIXEL

5. forward or backward motion compensation is required

6. the motion compensation window size is 16x8 or 16x16

Depending on the MB, the MC routine is called with different parameters, each requiring different

workloads. A look-up table (LUT) was built with 64 values of processor workloads as there are

6 parameters. The MC routine may be called different number of times by each MB, which was

also taken into consideration. The MC workloads obtained for 50 macroblocks employing the MC

function described above and simplescalar simulation using the ffmpeg open source decoder code

are plotted in Figures 5.6(a) and 5.6(b). It is observed from the two graphs that both graphs are

very similar exhibiting identical characteristics for MC processing. This demonstrates the validity

of the MC functional model.

5.1.4.3 IDCT Task

We estimate the IDCT workload requirement for each MB in a video clip based on the position of

the IDCT coefficients in the 8x8 block structure in the MB. The MPEG-2 stream that was used to run

the experiments had the 4:1:1 chroma format. This implies that each MB had 6 blocks with 64 IDCT

coefficients each. The workload requirements for these MBs varies with two types of frame formats

namely Intra-Frames and Inter-Frames. The number of non zero IDCT coefficients in significant

positions of the 8x8 block were extracted and then used to estimate the workload requirement for

each block. Here, significant positions are those positions which are the main contributors to the

workload values in the IDCT task. Let the number of non zero IDCT coefficients in the significant

positions be nidct . This value can be negative if the number of zero IDCT coefficients in certain

positions exceed the number of non zero IDCT coefficients in other significant positions. Then the

IDCT workload estimate for each MB can be calculated as

Workloadidct =Wbasis +α×nidct (5.7)

where Wbasis is the base workload value that is the minimum required workload if there is atleast one

111

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

non zero IDCT coefficient in a significant position. It varies depending on whether the frame type is

Intra-Frame or Inter-Frame, the values being 10782 for Intra-Frame MBs and a linear combination

of the values 374, 1863 and 1981 for Inter-Frame MBs. The value of α has been found to be 118.

Hence, we did not require a LUT.

The IDCT workloads obtained for 50 macroblocks using the workload model based on Equa-

tion(5.7) and simplescalar simulation using the ffmpeg open source decoder code are plotted in

Figures 5.7(a) and 5.7(b). It is observed from the two graphs that the IDCT workload model ex-

hibits similar workload requirements as obtained using simulation. This demonstrates the validity

of the IDCT workload model.

Earlier works on IDCT workload modeling were performed for workload-scalable transcoding as

in [92]. The authors use a look up table to predict the workload values for IDCT based on whether

the frame type is Inter-Frame or Intra-Frame and also based on the position of the most important

non-zero IDCT coefficient. As they considered skipped frames also, they required a 3x64 LUT to

predict the workload value. In [93], the number of significant non-zero IDCT coefficients is decided

by an energy threshold.

5.1.4.4 Total Workload

The total workload for MPEG-2 decoding can therefore be obtained by adding up the values pre-

dicted for the VLD, MC and IDCT tasks. These workload values are now used to generate the VCCs

at the various stages in the architecture.

5.1.5 Test Case Classification

We utilize the bitstream analysis method incorporating the workload model described in Section 5.1.4.

In addition to the workload values, we also extracted macroblock sizes (in bits) of the encoded bit-

stream (in order to obtain arrival rate information) by just parsing through the frame structure of the

video clips. The VCCs obtained from these two quantities are used to perform classification of the

MPEG-2 clips shown in Table 5.1. This turns out to be a faster design methodology from a system

112

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

2 5
x 104 VLD Workload (Bitstream analysis)

2

2.5

Clip 4

1.5

2 Clip 4

Cli 8

1

cy
cl

es

Clip 8
Clip 5

Clip 1

0.5

0 10 20 30 40 50
0

macroblock number

(a)

7000
VLD Workload (Simplescalar simulation)

6000

7000

4000

5000 Clip 4

3000

4000

cy
cl

es Clip 8

Clip 5
Clip 1

2000

Clip 1

0 10 20 30 40 50
0

1000

macroblock number

(b)

Figure 5.5: Workload values for different tasks for 50 macroblocks of 5 video clips from Table 5.1:
(a) VLD workload using bitstream analysis, (b) VLD workload using simplescalar simulation.

designer’s perspective compared to simplescalar simulation as the time required for classification

using bitstream analysis is much lower. The metrics used for performance analysis of the MPSoC

architecture are worst case buffer backlog and worst case delay for one MB.

To classify two streams based on a single variability, a dissimilarity measure is used. The dissimilar-

ity between two VCCs for each of the points k = 1,2, . . .n is found using the City Block metric [94].

The pairwise dissimilarity between two streams i and j, with respect to a VCC of type r, is then

113

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

15000
MC workload (Bitstream analysis)

15000

Clip 4

Clip 8

10000

Clip 4

cy
cl

es
Clip 5

5000

0 10 20 30 40 50
0

Clip 1

macroblock number

(a)
10000

MC workload (Simplescalar simulation)

8000

9000

10000

Clip 8

6000

7000

8000

Clip 4

4000

5000

cy
cl

es

2000

3000 Clip 5

0 10 20 30 40 50
0

1000 Clip 1

macroblock number

(b)

Figure 5.6: Workload values for different tasks for 50 macroblocks of 5 video clips from Table 5.1:
(a) MC workload using bitstream analysis, (b) MC workload using simplescalar simulation.

computed using

dri j =
n∑

k=1

ωr (k)
∣∣Θri (k)−Θr j (k)

∣∣ (5.8)

where Θri (k) represents a VCC of type r associated with the ith stream and ωr (k) = 1/k are

weights to normalize the differences
∣∣Θri (k)−Θr j (k)

∣∣ over the length k of the analysis interval.

With more VCCs, the pairwise dissimilarity between the streams for each VCC is calculated using

Equation(5.8). This is combined to form the overall pairwise dissimilarity measure between two

streams i and j with respect to VCCs of type r = 1,2, . . . p as

114

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

16000
IDCT workload (Bitstream analysis)

14000

16000

Clip 4
Clip 5

10000

12000 Clip 8

6000

8000
cy

cl
es

4000

6000

0 10 20 30 40 50
0

2000

Clip 1

macroblock number

(a)

16000
IDCT workload (Simplescalar simulation)

14000

16000
Clip 4

Clip 8

Clip 5

10000

12000
Clip 5

6000

8000

cy
cl

es

4000

6000

0 10 20 30 40 50
0

2000

Clip 1

macroblock number

(b)

Figure 5.7: Workload values for different tasks for 50 macroblocks of 5 video clips from Table 5.1:
(a) IDCT workload using bitstream analysis and (b) IDCT workload using simplescalar simulation.

di j =

p∑
r=1

dri j (5.9)

The overall pairwise dissimilarity measure is obtained by giving equal weightage for each VCC.

The complete linkage algorithm is used to classify the streams based on the dissimilarity measure

computed in Equation(5.9). This is Step 3 of our performance analysis framework shown in Fig-

ure 5.1. A dendrogram of the hierarchical cluster tree is then obtained as a result of the classification.

Next, we discuss the experimental framework that is used to validate the claim that the bitstream

115

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

Table 5.1: MPEG-2 video clips used in our experiments
[ftp://ftp.tek.com/tv/test/streams/Element/MPEG-Video/]

clip video clip video
number clip number clip

1 100b 080.m2v 7 pulb 080.m2v
2 bbc3 080.m2v 8 susi 080.m2v
3 cact 080.m2v 9 tens 080.m2v
4 flwr 080.m2v 10 time 080.m2v
5 mobl 080.m2v 11 v700 080.m2v
6 mulb 080.m2v

analysis approach actually results in proper identification of representative workloads for a MPSoC

platform.

5.1.5.1 Experimental Framework

Here, the concepts discussed in Sections 5.1.3, 5.1.4 and 5.1.5 are integrated and applied to the

different stages of the multiprocessor architecture as shown in Figure 5.2.

The video stream is first parsed to extract the required characteristics, namely workload requirement

per macroblock and bit sizes of each macroblock. For this, we use TM5 as our decoder source

code in order to implement the workload model for the VLD+IQ and IDCT+MC tasks. The code

to compute the workload values of different task sets mapped to each PE was inserted into the

appropriate modules of TM5. The bit sizes per macroblock are also computed by keeping track

of the count of bits as the procedure for decoding a macroblock is entered. The executable is then

run for each of the clips used in the test set. It is interesting to note here that a certain group of

clips exhibits higher variation in output workload values in comparison to other groups. A similar

observation was also made for the number of bits per macroblock. This led us to the intuition that

VCC curves obtained from these values can be used to classify the videos as it characterizes the

bursty nature of video data and the accompanying variation in the workload requirements.

Once the bitstream analysis is performed, the next task in the process of classification is the gen-

eration of the VCCs. In this step, we produce the workload VCCs as described in Section 5.1.3,

but there is a variation in the idea of what VCC curves to generate. As we already obtained the

workload values for the tasks VLD+IQ and IDCT+MC by bitstream analysis, we generate separate

workload VCCs for these sets of tasks denoted by [γu
vld,γ

l
vld] and [γu

idct,γ
l
idct], respectively. In addition

116

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

to these, we also obtain a VCC from the bits per macroblock statistics. As the input bit rate of the

video clips is constant at 8 Mbps, we compute the input arrival rate of each macroblock, which is

then used for the generation of the macroblock arrival rate VCC denoted by [κu
vld,κ

l
vld]. In this setup,

we perform classification at three stages of the MPSoC architecture depicted in Figure 5.2.

Input Stage: Firstly, classification of the video streams is performed at the input stage of the ar-

chitecture which consists of the input processing element PE1 and the input buffer B1. The VCCs

[γu
vld,γ

l
vld] and [κu

vld,κ
l
vld] are used for the input stage classification as they are the decisive parame-

ters that control the input side architecture with the former characterizing the workload variability

possible in PE1 and the latter signifying the degree of input burstiness that PE1 can experience. The

trace of γu
vld and γ l

vld curves for the earlier listed 8 Mbps video clips are shown in Figures 5.8(a)

and 5.8(b), respectively. Similarly the κu
vld and κ l

vld curves are shown in Figures 5.8(c) and 5.8(d),

respectively. The dendrogram of the cluster tree obtained as a result of the classification exercise

performed at the input stage is shown in Figure 5.9(a).

Intermediate Stage: The second stage of classification takes both the processing elements PE1 and

PE2 into consideration along with the intermediate buffer B2. The three parameters that determine

the classification at this stage are the two workload VCCs [γu
vld,γ

l
vld], [γ

u
idct,γ

l
idct] and the arrival rate

VCC of the VLD decoded frames represented by [κu
vld,κ

l
vld]. The traces of the γu

idct and γ l
idct curves

are shown in Figures 5.8(e) and 5.8(f), respectively. The dendrogram of the cluster tree obtained as

a result of the classification exercise performed at the intermediate stage is shown in Figure 5.9(b).

Playout Stage: The third stage of classification is performed at the playout stage of the MPEG-2

decoder MPSoC architecture. As is evident now from the architecture, the parameter playing the

sole role in architecture specification at this stage is the [γu
idct,γ

l
idct] VCC.

Observations: It is clearly evident from the obtained VCC curves and dendrograms that the VCCs

obtained as a result of bitstream analysis of the MPEG-2 clips provide the basic clustering into

motion and still videos. The classification is specific to the different stages in the architecture which

117

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

4 x 108

Clip
numbers

3

3.5 3-5, 8-9
2

numbers

2.5

3

s

1 5

2

cy
cl

es

1, 6-7,
10 11

1

1.5 10-11

0

0.5

0 1 2 3 4 5
x 104

0

macroblocks

3.5 x 108 Clip
numbers

3
3-5, 8-9

2

2.5

s

2

1.5

2

cy
cl

es

1, 6-7,
10-11

1

0

0

0.5

0 1 2 3 4 5
x 104

0

macroblocks

(a) (b)

14 x 108
Clip
numbers

12 2-5, 8-9

numbers

8

10

rv
al

6

8

m
e

in
te

r

6 11

4

tim 6, 11

0

2 1, 7, 10

0 1 2 3 4 5
x 104

0

macroblocks

12 x 108
Clip
numbers

10
2-5, 8-9

numbers

8

rv
al

,

6

m
e

in
te

r

4tim 6, 11

0

2
1, 7, 10

0 1 2 3 4 5
x 104

0

macroblocks

(c) (d)

8 x 108 Clip
numbers

6

7 3-5, 8-9

5

6

s 2

3

4

cy
cl

es

2

3

1, 6-7,
10-11

0

1

0 1 2 3 4 5
x 104

0

macroblocks

8 x 108
Clip
numbers

6

7
3-5, 8-9

numbers

5

6

s

3

4

cy
cl

es

2

2

3

1, 6-7,
10-11

0

1
10 11

0 1 2 3 4 5
x 104

0

macroblocks

(e) (f)

Figure 5.8: Variability characteristic curves for 11 video clips (each cluster is marked with the clip
numbers of videos from Table 5.1) used for classification: (a) VLD Upper workload curve (γu

vld), (b)
VLD Lower workload curve (γ l

vld), (c) Upper arrival rate curve to PE1 (κu
vld), (d) Lower arrival rate

curve to PE1 (κ l
vld), (e) IDCT+MC Upper workload curve (γu

idct) and (f) IDCT+MC Lower workload
curve (γ l

idct).

118

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

x 109

2.5
StillMotion

videos
2

ta
nc

e

Small Medium

Large
linkage
distance

videosvideos

1

1.5

ag
e

di
st Small

linkage
distance

Medium
linkage
distance

0.5

1
lin

ka

4 8 5 3 9 2 1 7 10 6 11
0

0.5

 4 8 5 3 9 2 1 7 10 6 11
videos

(a)
x 109

3

3.5

2.5

3

ta
nc

e

1.5

2

ag
e

di
s

1

5

lin
ka

4 9 5 3 8 2 1 7 10 6 11
0

0.5

 4 9 5 3 8 2 1 7 10 6 11
videos

(b)
x 108

10

8

ta
nc

e

4

6

ag
e

di
st

2

4

lin
ka

1 6 10 7 11 2 3 8 4 9 5
0

2

 1 6 10 7 11 2 3 8 4 9 5
videos

(c)
Figure 5.9: Cluster trees of video clips at the various stages of the architecture (a) Input (b) Inter-
mediate and (c) Playout

119

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

is a more fine grained approach than performing it for the entire architecture. This gives a more

accurate classification of the video clips as different combinations of VCCs play a decisive role in

the determination of the architecture specifications at various stages. Next we discuss the setup and

procedure to validate the claim that bitstream analysis based generation of VCCs actually aids in

classification of workloads.

5.1.6 Validation

The integral architectural parameters of the MPSoC platform shown in Figure 5.2 are the processor

frequencies and the sizes of various buffers, namely the input buffer, the intermediate buffer and the

playout buffer. In the current step, we fix a particular frequency pair corresponding to the two PEs.

This selection is currently not based on any analytical framework as we are not concerned about

any playout buffer underruns in this experiment. Here, we are more concerned about the various

buffer occupancies and try to establish the claim that similar videos that are nearer to each other in

the cluster trees shown in Figures 5.9(a), 5.9(b) and 5.9(c) also exhibit similar buffer occupancies.

This claim can be emphasized even more by showing that the pair of video clips which are closer

than others exhibit less difference in their maximum buffer occupancies than other pairs. This

provides strong evidence for the validity of the bitstream based classification of video clips. The

maximum buffer size required for each video clip is computed using the equation

Bu fi = (Bu fi−1 +1) . . .∀i
(
τarri < τproci−1

)
Bu fi = (Bu fi−1−1) . . .∀i

(
τarri > τproci−1

)
Bu fi = Bu fi−1∀i

(
τarri = τproci−1

)
Bu f f erbacklog = max

∀i
(Bu fi)

(5.10)

where i = 2,3, . . . ,N (N is the last macroblock number in the video stream) as τproc0 is not defined

and τproc1 is the time instant at which the 1st MB is processed, Bu fi is the buffer backlog when

the (i) th macroblock is inserted into the system, Bu f0 = 0, τarri is the arrival time of the (i) th mac-

roblock, τproci−1 is the time when (i−1) th macroblock is processed completely and Bu f f erbacklog

is the maximum backlog in the input buffer. The interpretation of the above equation is straightfor-

ward. The buffer occupancy keeps increasing as new MBs enter the particular stage of the architec-

120

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

Table 5.2: Simulation results for maximum buffer backlogs (in number of MBs) at various stages in
the architecture

videos B1 videos B2 videos B3

1 186886 1 339229 1 571560
4 247738 4 135798 4 472560
7 215236 7 374037 5 480480
8 259071 8 186373 6 571560
10 155674 9 167807 10 571560

ture and it reduces as they are completely processed by the PE and sent to the next stage. The worst

case delay for one MB can be computed using the equation

Delay = max
∀i

(
max

(
τproci−1 ,τarri

)
+ τmbcyci− τarri

)
(5.11)

where τmbcyci is the processor cycle time required for (i) th macroblock. The expression of worst

case delay for 1 MB given by Equation(5.11) takes the following two cases into consideration

1. All the previous MBs have been processed before or when the new MB arrives in which case

the delay for the arriving MB is τmbcyci .

2. If previous MBs have still not been processed while a new MB arrives, then the processing of

the new MB can start only after all the MBs ahead in the buffer are processed.

In order to check the above mentioned validity, we have simulated the multiprocessor architecture

using a SystemC simulator with the workload cycles obtained from simplescalar simulation (sim-

safe configuration). The PE1 frequency was fixed at 40 MHz while the PE2 frequency was fixed

at 200 MHz. The results obtained are very much in support of the idea we started with and are

presented in Table 5.2.

It is immediately observed from the results that the motion and still videos that form separate clusters

also give similar buffer occupancies in their respective clusters. However, more importantly we can

observe that some pairs of video clips which have smaller linkage distances in the cluster trees

exhibit similar buffer occupancies. In the case of B1, videos 4 and 8 have very similar maximum

backlogs when compared to videos 1 and 7, the difference in maximum backlogs being 11333 and

28350, respectively. For B2, videos 4 and 9 exhibit the most similar backlog difference (32009)

121

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

Table 5.3: Simulation results for maximum delay (in seconds) for one MB at each PE

videos DPE1 videos DPE2

1 0.848 1 3.535
4 10.639 4 7.849
7 0.7698 7 3.598
8 11.5 8 11.952
10 0.289 9 9.939

compared to videos 4 and 8 (50575) and videos 1 and 7 (34808). Videos 1 and 6 are more similar

in the playout stage compared to 4 and 5 which is also evident from the cluster tree of the playout

stage.

The similar worst case delays for one MB among video clips from the same cluster are also evident

from the simulation results for the maximum delays for one macroblock shown in Table 5.3. In the

case of PE1, it is seen that videos 1 and 7 have similar maximum delays while videos 4 and 8 are

closer to each other in their maximum delays. It is also seen that video clip 10 is much closer in

maximum delay to video clips 1 and 7 than video clips 4 and 8. This behavior is also seen in PE2.

5.2 Hybrid Simulation for Quality-Driven Performance Analysis

Multimedia decoders are widely used in state-of-the-art mobile devices. These devices are usually

small in size and are designed with limited system resources (buffer capacity, processor’s clock

frequency, etc.) in order to adhere to some system design constraints such as optimum power and

cost. Downsizing the system resource capacity has a direct effect on the quality of the decoded

video. However, it is often a plausible scenario that the application using the decoded video is

designed to tolerate a certain amount of quality degradation. Reduction in system resources is also

motivated by trade-offs in system design constraints. Therefore, it becomes an important task for a

system designer to narrow down on the optimal resource values (from the available resource options)

so that the desired output video quality is achieved.

The conventional method to select the optimal system resources, given the required output quality,

starts by first running system simulations where encoded video clips (from a large input test library)

are processed by the tasks in a decoder. Here, the decoder tasks mapped onto a model of the

multiprocessor system-on-chip (MPSoC) platform, are simulated in a system simulator (like the

122

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

SimpleScalar instruction set simulator [8]) in order to find the execution requirements of each task

for the specific input video. The execution cycles obtained for each task are then used for the

complete system analysis with varying input resource values (buffer and frequency). The optimal

configuration which provides the desired video quality is then selected for the decoding function.

This clearly is an inefficient exercise as these system simulations require long run times. It becomes

worse when there are a large number of video clips in the input library. The example described next

will substantiate the inefficiency of a conventional system simulation-based method.

5.2.1 Motivational Example

We ran simulations of five standard video clips having different characteristics (e.g., 100b 080,

which is a still video, and susi 080, which is a motion video clip, both 8 Mbps, 15 second clips from

a standard benchmark [1]) to find the execution cycle requirements of each task in the MPEG-2 de-

coder at the macroblock (MB) granularity. We used high bitrate video clips as portable devices are

increasingly becoming more powerful. The quality of our results will be similar for low bitrate clips

with appropriate scaling down of resources. These simulations were run using the sim-profile con-

figuration of SimpleScalar. The MPEG-2 decoder source code used for task profiling was from [65].

The results are shown in Fig.5.10. Though, we work with an MPEG-2 decoder, due to similarity in

some of the tasks, our work is applicable to other decoders as well.

According to the results shown in Fig.5.10, it was observed that most of the time in system simula-

tion was required to profile the Motion Compensation (MC) and Inverse Discrete Cosine Transform

(IDCT) tasks. We ran the simulations for a number of motion videos and still videos. The results

shown in Fig.5.10 more or less represent the kind of execution requirements observed in each mo-

tion or still video. The simulation with profiling enabled for all tasks required 27 mins 10 secs for

100b 080 and 39 mins 40 secs for susi 080. On the other hand, simulation with profiling enabled

only for the VLD task required 3 mins 54 secs for 100b 080 and 8 mins 33 secs for susi 080. Hence,

the simulation of MPEG-2 decoder with profiling enabled for VLD only is nearly 5 times faster for

motion videos and 8 times faster for still videos in comparison to simulation with profiling enabled

for all the major tasks.

These results motivated us to consider a hybrid simulation approach for system simulation such

123

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

0

5

10

15

20

25

30

35

40

45

100b_080 time_080 mulb_080 susi_080 tens_080

VLD+MC+IDCT

Only VLD

S
im

u
la

ti
o

n
 T

im
e

(i
n

 m
in

s)

Figure 5.10: System simulation times for evaluating the execution times of various tasks in an
MPEG-2 decoder. Simulating the VLD task is less expensive compared to the MC or IDCT tasks.

that the execution requirements of simulation heavy tasks in the decoder can be estimated using

analytical models (which we will further refer to as the workload model). Accuracy (described in

Section 5.2.4 in terms of a frame drop deviation condition) is an important requirement in our ap-

proach because the end goal of the framework is to quantitatively estimate the quality degradations

experienced.

5.2.2 Related Work

There are not many works in the embedded systems domain which have delved into studying the

behavior of decoded video quality in the context of constrained resources, especially in a MPSoC

setup. Yanhong et. al. [95] investigated trade-offs between quality of MPEG-4 decoded video

and processor frequency. However, this work used expensive simplescalar simulations to find the

processor workload values. A recent work [96] proposed an end-to-end video quality prediction

framework taking into account the packet loss in a network transmission scenario, but an accurate

PSNR value estimation is not obtained.

Decoder workload prediction model is the most important component of our framework. There are

few works ([97]- [92]) which discuss workload prediction models for MPEG-2 and later decoders,

but these workload prediction models are not accurate enough for our framework. Frame discard

124

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

Processor Model

Decoder application

Task 1

Task 2

Task 3

Light Heavy

Training set clips for
task differentiation

and workload
model derivation

Test clips for
(simulation of
light tasks only

+
workload model

equipped bitstream
analysis)

Workload model
+

Bitstream analysis

Task
Differentiation

+
Hybrid

Simulation

(exectask1, exectask2, exectask3)

Frame
discard
strategy

MPSoC platform details
(number of processing elements)

System resource values
(Frequency + Buffer values)

PSNR
calculator

Quality
Assessment

qualityout

Figure 5.11: Overview of hybrid simulation-based quality assessment

algorithm is an integral part of the quality assessment framework. There has been lot of prior work (

[2]- [98]) with many advanced algorithms in this area. Here, in the context of constrained resources,

frames are dropped according to their relative importance in the group of pictures. However, in this

work, we use a very basic frame dropping strategy.

5.2.3 Hybrid Simulation-based Quality Assessment Framework - An Overview

A schematic overview of our hybrid simulation-based quality assessment framework is shown in

Fig.5.11. Given a library of encoded video clips, and the available capacity of system resources

the overall task of the framework is to estimate the quality degradation experienced. An evident

bottleneck in achieving this task is the huge amounts of time required in the simulation of certain

tasks in the decoder. Therefore, the main steps for a fast quality assessment are as follows

1. The first step of our framework is task differentiation, i.e., the tasks in the decoder appli-

cation are simulated in simplescalar with a few video clips from the training set to identify

simulation heavy and light tasks. The task differentiation is done based on the fraction of total

simulation time taken for each task. The video clips in the training set are also used to derive

a workload model for each task. If the workload model is not accurate for a task, then that

125

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

task is simulated. If {tk,∀k} are the tasks in the application, where 1≤ k ≤ NT and NT is the

total number of tasks, the condition to find light tasks is Tk ≤ Fth×Ttot , where Tk is the time

taken for the simulation of task tk, Fth is a threshold fraction and Ttot is the total simulation

time taken for the training video clip.

2. The next step is the process of hybrid simulation. Here, the execution requirements of

heavy tasks from first step are estimated using bitstream analysis of the decoder application.

This approach extracts important decoder parameters which are then used for estimating the

execution requirements. The parameter extraction is done in the compressed domain and

hence is fast. In the context of MC task, an accurate workload model was derived by tuning

the model using simulation results with the training set clips. On the other hand, the IDCT

task was made accurate by taking into account the algorithm implementation details. The

output from this stage are task execution requirements exectaski, where i represents the task

index. The light tasks are simulated in simplescalar. In the MPEG-2 decoder context, the three

major task execution requirements are exectask1 = execV LD, exectask2 = execMC and exectask3 =

execIDCT .

3. The final step is the process of quality assessment. This includes a high level analysis of the

system functioning with details of decoder task mappings on the underlying MPSoC platform.

The details of the MPSoC platform include the number of processing elements (PEs) used,

PE frequencies, buffer capacities and how the tasks are mapped onto the PEs. These inputs

are then used by a frame discard algorithm to detect the frames dropped. Once the frame drop

indices are obtained, the PSNR denoted by qualityout can be calculated.

The MPSoC platform architecture used for our case study of the MPEG-2 decoder application con-

sists of multiple interconnected processing elements (PEs) as shown in Fig.2.2. The PEs communi-

cate by passing data units or stream objects between them. PE1 and PE2 are the two programmable

processors. It also consists of the input/network and output interface. In the base mapping strategy,

for MPEG-2 decoder application on the MPSoC platform, PE1 performs the VLD task, while PE2

performs the IDCT and MC tasks. The stream objects on which the PEs operate are macroblocks

(MBs). The input encoded MBs are stored in the input buffer (Bu f1) with size B1. Partially decoded

MBs are sent from PE1 to PE2 through buffer Bu f2 with size B2 while fully processed MBs are sent

126

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

out of PE2 to the output interface through buffer Bu f3 with size B3. f1 and f2 are the frequencies of

the PEs 1 and 2 respectively. We study the quality degradations due to MB drops in Bu f1 and Bu f2

when their respective sizes are exceeded for various combinations of f1, f2, B1 and B2. In the next

section, we will discuss the task workload models for all the important tasks in MPEG-2 decoder

and demonstrate their usefulness for some simulation heavy tasks like MC and IDCT.

5.2.4 Workload Models for Simulation Heavy Tasks

In this section, the two simulation heavy tasks (MC and IDCT) of MPEG-2 decoder and their cor-

responding workload models will be discussed. We use accurate workload models as estimation of

quality degradation is the final goal. These task workload models compute the task execution re-

quirements (at MB granularity). The task workload models were developed for Portable ISA (PISA)

which is a MIPS like ISA. The MPEG-2 decoder source code used in the training phase for one time

development of the workload models has been taken from [65].

It is difficult to get an accurate VLD task workload model, but as VLD task takes less simulation

time, execV LD was found using simplescalar simulations. Accuracy in workload estimation for

a task is measured in terms of a Frame Drop Deviation (FDD) condition every time a buffer

overflow condition occurs. FDD is defined as the difference in the frame indexes dropped (at each

buffer overflow condition) between the scenario where the task workload values used are model-

based and the real scenario where the workload values are Simplescalar simulation-based. The

condition that needs to be satisfied is FDD = 0. The instantaneous composition of the buffer in

both the scenarios are bsim (t) = r f 1 +B botsim,∀t and bmodel (t) = s f 2 +B botmodel,∀t. where r f 1

denotes that there are r number of MBs of (f 1)-th frame in the top of the buffer and 0 ≤ r <

FSIZE. A similar interpretation holds for s f 2. FSIZE denotes the number of MBs in one frame.

B botsim and B botmodel are the remaining number of MBs at the bottom of the buffer for the two

scenarios. Hence, according to the FDD condition, the following expression should hold for an

accurate estimation of frame drops using the workload model: FDD = 0⇒ | f 1− f 2|= 0⇒ f 1 =

f 2.

127

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

Algorithm 6 Computing Execution Requirement LUT for MC Workload model

Input: Training set video clips vi where 1 ≤ i ≤ n, and n is the cardinality of the training set,
execution requirement values of all MBs in vi for each call (indexed by j where 1 ≤ j ≤ 4) to
MC denoted by execi j and parameter values for the same denoted by parmi j;

Output: execMC (parm) for all 1≤ parm≤ 64
1: execMC (parm)← 0 for all 1≤ parm≤ 64;
2: for i = 1 to n do
3: for j = 1 to 4 do
4: parm = parmi j

5: if parm 6= 0 and execMC (parm)< execi j then
6: execMC (parm) = execi j

7: end if
8: end for
9: end for

5.2.4.1 MC Workload Model

There are three types of MBs in MPEG-2 bitstream namely I-type (do not require MC), P-type

(require only forward MC) and B-type (require both forward and backward MC). The parameters

we extract from the MPEG-2 bitstream for MC function workload model are (1) Y component’s

x-dimension is HALF-PIXEL, (2) Y component’s y-dimension is HALF-PIXEL, (3) U or V com-

ponent’s x-dimension is HALF-PIXEL, (4) U or V component’s y-dimension is HALF-PIXEL, (5)

forward or backward motion compensation is required and (6) the motion compensation window

size is 16x8 or 16x16. Based on the type of MB, the MC routine is called with different parameters,

each requiring different workloads. A look-up table (LUT) was constructed with 64 values of pro-

cessor workloads corresponding to 6 parameters. The MC routine may be called different number

of times by each MB, which was also taken into consideration. In the case of MPEG-4, a similar

idea is followed and we use 3 LUTs as there are more parameters to be considered. The algorithm

to construct the LUT is shown as Algorithm 6.

Here, all the training video clips are simulated to find the execution requirements execi j for each

call to MC with the parameter values denoted by parmi j. Finally, the worst case execution values

from the training set are stored for each parameter value as execMC. For the test video clips, execMC

values are used.

128

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

5.2.4.2 IDCT Workload Model

The IDCT workload requirement is primarily related to the number and position of non zero IDCT

coefficients in the 8x8 block structure of MB. In our case, the MPEG-2 streams had 6 such blocks

as the chroma format was 4:1:1. The training set was used to simulate and find out the execution

values for all possible combinations of strings consisting of non zero IDCT coefficients. However,

this is not sufficient to make the IDCT estimation accurate adhering to the FDD condition. In

fast IDCT implementations, certain shortcut conditions are checked where fewer instructions are

traversed when any of the columns in the blocks are found to be entirely zero coefficients. In our

IDCT workload model, we also take care of such fast implementations. Taking all these factors into

consideration, the MB IDCT workload model that we have come up with for the portable ISA is

execi = basisi +α× (n addi−n subi)−β × scnti,∀i

execidct =
∑6

i=1 execi

(5.12)

Here, execi is the execution requirement for a single block i in the MB. basisi is the base execution

value for that block which takes on a value of 1965, 1852, 708 or 595 (from training set) based

on the string of non-zero IDCT coefficients. From training set simulations, we found α = 113 and

β = 143. n addi and n subi denote the number of coefficients added and subtracted respectively

to determine the effective number of significant non-zero IDCT coefficients for one block. scnti

represents the number of fast bypasses encountered in a block for the fast IDCT implementations.

We do not explain the IDCT workload model for MPEG-4 here, but it is exactly similar to the one

discussed for MPEG-2 with changes in only the model parameter values. The final execution value

is obtained by summing the values for all blocks. For test clips, n addi, n subi, scnti and basisi are

found by a fast bitstream analysis.

5.2.5 Experimental Study

In the previous sections, we discussed the workload models for simulation heavy tasks and the

hybrid simulation approach. Once the execution requirements are obtained for each of the tasks in

the decoder, the MPSoC platform architecture shown in Fig.2.2 can be studied in terms of quality

degradations of the input video. For this, we fix the system resources f1, f2, B1 and B2 with the

129

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

mapping of tasks as shown in Fig.2.2. In order to measure the quality degradation, we need a frame

discard strategy which decides when the MBs and in turn frames are dropped and how the system

starts accepting the subsequent frames.

5.2.5.1 Frame discard strategy

We use a simple frame discard strategy where an entire frame is dropped if one MB from that frame

is dropped. In our experiments, we assume that only B1 and B2 are insufficient resources. The

playout buffer is not considered here as it will essentially exhibit similar properties. At the display

side, the dropped frames are substituted by the previous frame that was accepted. Some of the

important aspects of the frame discard scheme are discussed below:

1. If an I-frame is dropped, then the entire set of frames following it in the group of pictures

(GOP) is dropped as the decoder will not be able to interpret these frames which require

the I-frame for decoding. Hence the number of frames dropped will be a minimum of GOP

length. In our experiments, the GOP length was 14.

2. If a P-frame is dropped, then the number of frames dropped as a result of dependence on the

P-frame is decided by the position of the P-frame in the GOP. In our experiments, where the

sequence of frames was IPBBPBBPBBIBBP..., the minimum number of frames dropped after

dropping a P-frame was 10, 7 or 4.

3. If a B-frame is dropped, there is no other frame dropped subsequently provided there is

enough space in the buffer.

4. A frame is dropped if any of its MBs overflows the buffer (i.e. Bu f1 > B1 for stage 1, the

similar condition holds true for stage 2) or it is dependent on a previous dropped frame. The

buffer starts accepting frames only when there is enough room for an entire frame in the

buffer.

130

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

5.2.5.2 PSNR calculation

The PSNR of the output video is calculated using a difference based scheme as we do not have the

original video. Noise is represented by the MSE between the actual pixel values of the dropped

frame and the pixel value of the last accepted frame that substitutes the dropped frame. Let us

denote the MSE in R, G and B domains as MSE r, MSE g and MSE b. Then, the PSNR value of a

video sequence with frame drops is expressed as

psnr = 10× log10
(255×255)

(MSE r+MSE g+MSE b)
(3×Ntot×W×H)

(5.13)

(MSE r)n =
∑W−1

w=0
∑H−1

h=0 (rd(h,w,n)− rc(h,w,n))
2, MSE r =

∑Ndrop−1
n=0 (MSE r)n,rd is the red pixel

intensity of the dropped frame and rc is the red pixel intensity of the concealment frame. h, w and

n are the height, width and frame drop number indices. Similar explanation holds true for MSE g

and MSE b. W and H are the horizontal and vertical resolution of each frame in the video. Ntot is

the total number of frames in the video sequence and Ndrop is the number of frames dropped in the

sequence. From [1], the training set clips were 100b 080, bbc3 080, pulb 080 and susi 080 and the

test set clips were cact 080, f lwr 080, mobl 080, mulb 080, tens 080, time 080 and v700 080 .

5.2.5.3 Results and Discussion

We estimated the quality degradations for varying values of f1, f2, B1 and B2 taking the task execu-

tion values obtained from hybrid simulation, frame discard strategy and system resource values into

consideration for system simulation. The piece of code to calculate this was plugged into the C code

of the MPEG-2 decoder. Our quality assessment framework was used to understand various inter-

esting properties of the MPSoC platform discussed earlier. Here, we show some interesting results

for two task mappings basemap (as shown in Fig.2.2) and newmap (VLD and MC mapped to PE1

and IDCT mapped to PE2), highlighting few important trade-off aspects of the MPSoC platform for

a decoder application.

Estimation Accuracy: Before we get into detailed trade-off aspects, we would like to emphasize

that all the PSNR values obtained and plotted on the graph were also verified using real simulations.

For every test clip, we estimated PSNR values with 1500 resource combinations. In the case of

131

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

0
2
4
6
8

10
12
14
16
18
20

basemap

newmap

P
SN

R
 (

in
 d

B
)

PE1 frequency (f1 in MHz)

62
62.5

63
63.5

64
64.5

65
65.5

66
66.5

67

basemap

newmap

P
SN

R
 (

in
 d

B
)

PE1 frequency (f1 in MHz)

(a) (b)

14,8

15

15,2

15,4

15,6

15,8

16 basemap

newmap

P
SN

R
 (

in
 d

B
)

PE2 frequency (f2 in MHz)

64

64,2

64,4

64,6

64,8

65

65,2

basemap

newmap

P
SN

R
 (

in
 d

B
)

PE2 frequency (f2 in MHz)

(c) (d)

Figure 5.12: PSNR vs the system resource values f1 and f2 for two test videos (a) PSNR vs f1 for
tens 080, (b) PSNR vs f1 for v700 080, (c) PSNR vs f2 for tens 080, (d) PSNR vs f2 for v700 080,
(e) PSNR vs B1 for tens 080, (f) PSNR vs B1 for v700 080, (g) PSNR vs B2 for tens 080 and (h)
PSNR vs B2 for v700 080.

motion video clips for basemap, the values were accurate for more than 98% of the resource com-

binations and the deviations in PSNR estimates for the other 2% cases were less than ±0.3%. On

the other hand, in the case of still video clips for basemap, the estimated PSNR values were 100%

accurate. The small variation in motion video clips is due to their dynamic nature which results in a

small drift from the hybrid simulation estimate. For newmap, we get nearly 100% PSNR estimation

accuracy emphasizing that the method works irrespective of task mapping.

PSNR vs System Resource tradeoff: The detailed PSNR vs f1 trade-off is shown in Fig.5.12(a)

and Fig.5.12(b) for the clips tens 080 and v700 080 respectively. In this case f2 = 100 MHz, B1 =

175000 MBs and B2 = 100000 MBs. It is interesting to note that irrespective of the task mappings,

132

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

14,4
14,6
14,8

15
15,2
15,4
15,6
15,8

16
16,2
16,4
16,6

basemap

newmap

PS
N

R
(in

 d
B)

Buffer 1 (B1) size (x𝟏𝟏𝟑 macroblocks)

63

63,5

64

64,5

65

65,5

66

66,5

basemap

newmap

PS
N

R
(in

 d
B)

Buffer 1 (B1) size (x𝟏𝟏𝟑 macroblocks)

(a) (b)

14,6

14,8

15

15,2

15,4

15,6

15,8

16

16,2
basemap

newmap

PS
N

R
(in

 d
B)

Buffer 2 (B2) size (x𝟏𝟏𝟑 macroblocks)

64,2

64,4

64,6

64,8

65

65,2

65,4

basemap

newmap PS
N

R
(in

 d
B)

Buffer 2 (B2) size (x𝟏𝟏𝟑 macroblocks)

(c) (d)

Figure 5.13: PSNR vs the system resource values B1 and B2 for two test videos (a) PSNR vs B1
for tens 080, (b) PSNR vs B1 for v700 080, (c) PSNR vs B2 for tens 080 and (d) PSNR vs B2 for
v700 080.

there are some f1 values for which the PSNR value is high after which it drops due to forwarding

of more partially processed frames to Bu f2 and causing overflow. At low values of f1, Bu f1 is

the bottleneck and hence results in low PSNR. We therefore arrive at the intuition that there is a

particular f1 value for each set of other fixed resources when PSNR hits the highest value for both

basemap and newmap task mapping strategies.

The PSNR vs f2 trade-off for the two test videos is shown in Fig.5.12(c) and Fig.5.12(d). The other

fixed resource values are f1 = 20 MHz, B1 = 175000 MBs and B2 = 100000 MBs. As f2 increases,

the PSNR should also increase and eventually stabilize as the drops in Bu f2 decrease, which is

seen in basemap for the clip v700 080. However, the PSNR for clip tens 080 is constant for both

basemap and newmap because the increase of f2 becomes redundant when the maximum number

133

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

of frame drops have already occurred. In this case, the lowest possible f2 value can be chosen. This

trend is also seen in the case of newmap for the clip v700 080.

It is observed from the PSNR vs B1 curves in Figs.5.13(a)-(d) that the expected trend is followed

whereby the PSNR value increases with increasing B1 value for both mappings. However, in the

basemap case for v700 080, this trend is not always true as the frames dropped due to increase of

buffer sizes result in high MSE values which in turn lead to lower PSNR values. The fixed resource

settings for Figs.5.13(a)-(d) are f1 = 20 MHz, f2 = 100 MHz and B2 = 100000 MBs.

In the case of PSNR vs B2 curve, the trend is similar to the PSNR vs f2 curve. It is easily understood

that the reasoning behind the behavior is also the same. The fixed resource values for curves in

Figs.5.13(c)-(d) are f1 = 20 MHz, f2 = 100 MHz and B1 = 150000 MBs. An interesting observation

from Figs.5.12(a)-(d) and Figs.5.13(a)-(d) is that the effect of f1 and B1 on the PSNR values of the

same clip have significant difference when compared to f2 and B2 for the various fixed resource

settings we employed. Hence, optimum values must be selected from the trade-off curves. It is also

observed that basemap is a better mapping strategy in most of the cases when compared to newmap.

Central focus: Although we have discussed many interesting PSNR vs [f1, f2,B1,B2] trade-off as-

pects in this section, it is essential to emphasize that the main focus of this work was to devise a

hybrid simulation strategy in order to enable the system designers to rapidly arrive at quantitative

estimates of quality degradations for video clips decoded by a multimedia decoder mapped onto a

MPSoC platform with resource constraints. This framework will also be very useful in comprehen-

sively understanding the existing non-trivial influences of system resources on quantitative quality

degradations, which could be further exploited to estimate optimal points in the resource space for

desired quality. However, we do not consider it extensively here.

5.3 Summary

In the first work, we have presented a fast and efficient model-based test case classification method-

ology for performance analysis of multimedia MPSoC platforms. Our method completely elimi-

nates the time consuming simulations required to cluster the library of video clips. It also gives the

system designer control over the selection of the number of representative video clips. We have

134

CHAPTER 5. FAST SIMULATION FRAMEWORKS FOR MULTIMEDIA MPSOC
PLATFORMS

validated our method in the context of a MPEG-2 decoder application running on a MPSoC archi-

tecture with two PEs. The performance metrics analyzed to prove the validity of the method were

worst case buffer backlog and worst case delay for one macroblock. The methodology discussed in

this work is also envisaged to work well if the tasks are mapped separately to different processors.

In the second work, we discussed a fast hybrid simulation-based quantitative quality estimation

framework for decoded video on a MPSoC platform with limited resources. It partitions the tasks

of the decoder into simulation heavy and light tasks based on the ease of deriving task workload

models. The execution cycle requirements of the simulation heavy tasks are derived using accurate

workload models and the light tasks are simulated. This enables in accurate assessment of quality

degradations. This framework is efficient and of immense use to a system designer in analyzing the

various PSNR vs resource trade-off characteristics.

The model-based test case classification methodology can be extended to parameterized classifica-

tion where the maximum number of classes or clusters required can be found by using tolerance

constraints for buffer size for video clips within clusters. The model can also be extended to reflect

the effects of microarchitectural features like cache etc on the workload of multimedia streams.

135

Chapter 6

Concluding Remarks

The summary of the thesis is first presented in this chapter and then some of the possible future

works are discussed.

6.1 Summary

This thesis focused on system level performance analysis techniques for multimedia MPSoC plat-

forms using a quality-aware approach. Real-Time Calculus (RTC) has been widely used for perfor-

mance analysis of hard real-time systems. It is a deterministic performance analysis method that

provides hard upper and lower bounds for the performance parameters. RTC uses interval-based

representations to model both event streams (arrival curves) and resources (service curves). These

curves are then used to evaluate the system performance using certain operations. The techniques

presented here add on to the body of work on RTC based performance analysis techniques for em-

bedded systems. It incorporates multimedia specific characteristics for resource dimensioning prob-

lems and workload estimations, which help in considerable reductions in resource requirements and

simulation times for performance analysis.

On-chip buffer sizes are an important design goal in multimedia MPSoC architectures due to their

contribution to the overall chip area. Therefore, two buffer dimensioning methodologies were pre-

sented first that reduce buffer requirements by trading off with quality of the video played at the

output. This is a very important technique for multimedia streams because they can tolerate some

136

CHAPTER 6. CONCLUDING REMARKS

frame losses without affecting the video perception. In the first method, a mathematical framework

was presented to study the trade-off between buffer size and objective quality in terms of PSNR.

However, this framework did not take into consideration the priority among the frames that were

dropped, which did not help to achieve more buffer reductions. In the second method, a simulation

based framework was proposed which prioritizes the dropping of frames in order to design smaller

buffer sizes for target output video quality in comparison to the mathematical framework mentioned

above. However, the simulation framework requires more time for deriving the appropriate buffer

size.

Processor bandwidth share is another important system parameter. A mathematical framework was

presented in order to derive the processor cycle requirements for decoding video clips with bounded

frame drops for MPSoC platforms with buffer constraints. The bounds on the processor cycle

requirements obtained was used to schedule the processing multiple MPEG-2 videos such that both

the decoded video clips satisfied a target quality constraint. This setup is useful for a PiP application.

Thermal capacity has become an important design concern lately. There are many works that try

to achieve a reduction in the peak temperature subject to various design objectives. In this thesis,

the concept of bounded frame drops was used to reduce the latency or end-to-end delay in video

display while adhering to the peak temperature constraint. It was observed that for acceptable

quality outputs, the latency can be reduced considerably.

Finally, two fast simulation based frameworks were used to utilize the multimedia stream character-

istics to estimate the workload required for the various tasks in MPEG-2/MPEG-4 decoding. First,

this was used to quickly classify the video clip library into representative sets, which allow the use

of representative videos from each set in order to bring down the simulation time. In the second

framework, the workload estimation was used to derive a hybrid simulation strategy, which was

used to accurately compute the quality degradations in MPSoC platforms with resource constraints.

6.2 Future Work

The future works that are discussed here build upon the performance analysis techniques presented

in this thesis.

137

CHAPTER 6. CONCLUDING REMARKS

6.2.1 Analytical framework for quality-driven buffer dimensioning with frame pri-

ority constraints

The mathematical framework presented in Chapter 2 to perform quality-driven buffer dimensioning

for MPSoC platforms did not consider the inherent quality information in the frames. For example,

within the B frames, dropping certain B frames results in larger distortion in comparison to certain

other B frames. However, the current analytical framework drops the frames using the drop oldest

frame scheme. The frame drop priority information can be used while computing the bounds on the

number of frame drops. This is expected to reduce the buffer size estimations further.

The analytical framework proposed in Section 2.2 developed the interval based parameters of RTC

such as delay, service bounds etc based on the assumption that the oldest frame in the buffer is

dropped if the buffer overflow condition occurs. However, this strategy would drop the frames

without taking into consideration the distortion caused by the dropping of that particular frame.

The higher the distortion caused by the dropped frame, the lesser the number of frames that can

be dropped further as the quality constraint has to be satisfied. Hence, it would be interesting

to incorporate the priority based drop in the analytical framework and redefine the quantities like

delay, service bounds etc.

6.2.2 Frame size considerations for buffer dimensioning along with motion vector

The simulation framework presented in Chapter 2 for quality-driven buffer dimensioning uses mo-

tion vectors only to drop maximum number of frames and thereby reduce buffer occupancy. How-

ever, in order to actually see buffer size reduction in bits, we also have to consider the frame sizes

as there is a large variability in the sizes of frames. This would result in a knapsack like problem

where the cumulative quality degradation by dropping frames cannot exceed a target value and the

dropped frame sizes have to be maximized.

This problem can be defined as an optimization problem where the two objectives are to keep

the quality losses below a prespecified quality constraint Qtarget and the cumulative frame size of

the dropped frames should be maximized. We intend to solve this problem using an ILP solution

strategy. Here, we would select the frames to be dropped using motion vector based prioritization.

138

CHAPTER 6. CONCLUDING REMARKS

Let us call these frames as drop candidates. However, the final set of dropped frames will be decided

from the drop candidates by searching for the appropriate set that maximizes the cumulative size of

the dropped frames.

6.2.3 Joint design space exploration of buffer size and processor bandwidth

In this thesis, the mathematical frameworks that we present derive the resource requirements by

keeping the other resource requirements at a constant value. We trade-off each resource with quality

while keeping the other resources constant. However, it is an interesting problem to derive the pareto

curve for buffer size and processor cycle given the target quality constraint. There are a huge number

of configuration choices for these two system parameters. This framework will help the designer to

choose the resource combination with the largest possible resource savings.

The two extremes of buffer size and processor bandwidth resource set satisfying a quality constraint

are obtained using the two analytical frameworks described in Chapter 2 and Chapter 3. In between

these two extreme configuration sets that greedily optimize only one of the two resources, there is

a large design space that needs to be explored in order to obtain an optimized configuration set that

satisfies some objective function like power consumption etc. Here the two extremes might not be

the best candidate configuration set.

6.2.4 Lowest peak temperature estimation

For a system designer, given the available resources and the quality constraints that have to be met

at the output (i.e. allowing some frame drops), it will be helpful to find the frame drop patterns that

will lead to lowest peak temperature. It will be challenging to explore this problem in a multiple

PEs scenario because the frame drops on one PE have to take into account that the temperature

reductions are also optimized on the succeeding PEs.

This problem is quite challenging due to the inherent variability in the multimedia stream process-

ing. In order to gain maximum advantage from frame drops, it is required to find the critical section

of the frame sequence that would lead to the an overall maximum rise in temperature across both

the PEs.

139

CHAPTER 6. CONCLUDING REMARKS

6.2.5 Parameterized test case classification for fast performance analysis

clip 1

clip 2

clip 3

clip 4

clip 5

clip 6

Architecture to be

evaluated

1 4

36

52

Simulate all video

clips

(a)

Architecture to be

evaluated

Simulate one clip

from each cluster

(b)

Bdev· Bthr

Figure 6.1: Cluster formation based on condition that buffer occupancy deviation Bdev is less than a
threshold Bthr

In the completed work on test case classification [99], we do not have a systematic method of

choosing the number of clusters into which the library of video clips must be classified for a target

multimedia MPSoC platform. It was left to the system designer to choose the appropriate number

of clusters based on his/her understanding of the target system. However, it is a better approach

to classify test video clips based on some parameters set apriori by the system designer. Here,

specifically we would like to explore test video classification based on the maximum tolerance in

deviation of performance parameters such as buffer/end-to-end delay within a cluster as shown in

Fig.6.1. This would automatically help the system designer to find out how many clusters will be

required and hence the number of representative test clips.

This work will also involve in performing a fine-grained test case classification where the test video

clips will be fragmented and the fragments of the video clips will be classified based on the tech-

nique described earlier. The fragments can be a single video frame or a group of pictures (GOP).

140

CHAPTER 6. CONCLUDING REMARKS

B1

PE1 (f1)

VLD
+
IQ

PE2 (f2)

B2 MC
+

IDCT

B3

From
network
interface

To output
interface

Encoded
macroblocks

Partially decoded
macroblocks

PEs with instruction cache

Figure 6.2: Workload model for tasks on PEs taking instruction cache in PE into consideration

6.2.6 Workload model derivation in the context of microarchitectural features like

cache

The MPSoC platform that was used in [99] to evaluate our model-based performance analysis

method consisted of a simple architecture consisting of two PEs. However, the state-of-the-art

in MPSoCs include microarchitectural features like cache Fig.6.2. The usage of instruction cache

brings down the execution cycle requirements of a PE if temporal locality is present in the sequence

of instructions executed. This will affect the workload model that we currently use for a MPEG-2

decoder as we will get more tighter execution cycle requirements. Hence, there arises a need to

develop a model to integrate the differences in the architecture experienced due to the introduction

of these microarchitectural features. Moreover, it will be interesting to see if decoding video clips

in a cluster require similar instruction cache sizes for a particular cache hit ratio as we have proved

for various buffer sizes in the architecture that hold data.

141

Bibliography

[1] “Mpeg-2 benchmark videos,” ftp://ftp.tek.com/tv/test/streams/Element/MPEG-Video/625/.

[2] D. Isovic and G. Fohler, “Quality aware mpeg-2 stream adaptation in resource constrained

systems,” in 16th Euromicro Conference on Real-Time Systems (ECRTS), 2004, pp. 23–32.

[3] W. Tu, W. Kellerer, and E. Steinbach, “Rate-distortion optimized video frame dropping on

active network nodes,” in Packet Video Workshop, 2004.

[4] M. Jersak, R. Henia, and R. Ernst, “Context-aware performance analysis for efficient em-

bedded system design,” in 7th Design, Automation and Test in Europe (DATE), 2004, pp.

1046–1051.

[5] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor soc for advanced set-top box

and digital tv systems,” IEEE Design & Test of Computers, vol. 18, no. 5, pp. 21–31, 2001.

[6] M. J. Rutten, J. T. J. van Eijndhoven, E. G. T. Jaspers, P. van der Wolf, O. P. Gangwal, A. Tim-

mer, and E. J. D. Pol, “A heterogeneous multiprocessor architecture for flexible media pro-

cessing,” IEEE Design & Test of Computers, vol. 19, no. 4, pp. 39–50, 2002.

[7] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for evaluating and

synthesizing multimedia and communicatons systems,” in 30th ACM/IEEE International Sym-

posium on Microarchitecture, 1997, pp. 330–335.

[8] T. M. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for computer system

modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67, 2002.

142

ftp://ftp.tek.com/tv/test/streams/Element/MPEG-Video/625/

BIBLIOGRAPHY

[9] A. A. Omar and F. A. Mohammed, “A survey of software functional testing methods,” ACM

SIGSOFT Software Engineering Notes, vol. 16, no. 2, pp. 75–82, 1991.

[10] G. Varatkar and R. Marculescu, “On-chip traffic modeling and synthesis for mpeg-2 video

applications,” IEEE Transactions on Very Large Scale Integration Systems, vol. 12, no. 1, pp.

108–119, 2004.

[11] K. Richter, M. Jersak, and R. Ernst, “A formal approach to mpsoc performance verification,”

IEEE Computer, vol. 36, no. 4, pp. 60–67, 2003.

[12] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol. 126,

no. 2, pp. 183–235, 1994.

[13] F. E. B. Ophelders, S. Chakraborty, and H. Corporaal, “Intra-and inter-processor hybrid perfor-

mance modeling for mpsoc architectures,” in International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2008.

[14] T. Wild, A. Herkersdorf, and R. Ohlendorf, “Performance evaluation for system-on-chip ar-

chitectures using trace-based transaction level simulation,” in 9th Design, Automation and Test

in Europe (DATE), 2006, pp. 248–253.

[15] L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr, “Multiprocessor perfor-

mance estimation using hybrid simulation,” in 45th Design Automation Conference, 2008, pp.

325–330.

[16] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for scheduling hard real-time

systems,” in IEEE International Symposium on Circuits and Systems, 2000, pp. 101–104.

[17] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework for analysing system prop-

erties in platform-based embedded system designs,” in 6th Design, Automation and Test in

Europe (DATE), 2003, pp. 190–195.

[18] E. Wandeler and L. Thiele, “Workload correlations in multi-processor hard real-time systems,”

Journal of Computer and System Sciences, vol. 73, no. 2, pp. 207–224, 2007.

143

BIBLIOGRAPHY

[19] ——, “Characterizing workload correlations in multi processor hard real-time systems,” in

11th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2005,

pp. 46–55.

[20] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architecture evaluation using

modular performance analysis: a case study,” International Journal on Software Tools for

Technology Transfer (STTT), vol. 8, no. 6, pp. 649–667, 2006.

[21] E. Wandeler and L. Thiele, “Abstracting functionality for modular performance analysis of

hard real-time systems,” in Asia South Pacific Design Automation Conference (ASP-DAC),

2005, pp. 697–702.

[22] S. V. Gheorghita, T. Basten, and H. Corporaal, “An overview of application scenario usage

in streaming-oriented embedded system design,” Eindhoven University of Technology, Tech

Report, no. esr-2006-03, 2006.

[23] G. Raghavan, A. Salomaki, and R. Lencevicius.

[24] A. D. Popescu, “Media streaming in peer-to-peer overlay networks.”

[25] M. M. Hefeeda, B. K. Bhargava, and D. K. Y. Yau, “A hybrid architecture for cost-effective

on-demand media streaming,” Computer Networks, vol. 44, no. 3, pp. 353–382, 2004.

[26] H. Yin, C. Lin, F. Qiu, X. Liu, and D. Wu, “Truststream: a novel secure and scalable media

streaming architecture,” in 13th ACM International Conference on Multimedia, 2005, pp. 295–

298.

[27] H. Jenkac, T. Stockhammer, and G. Kuhn, “Streaming media in variable bit-rate environ-

ments,” in Packet Video Workshop, 2003.

[28] L. Ying, R. Srikant, and S. Shakkottai, “The asymptotic behavior of minimum buffer size re-

quirements in large p2p streaming networks,” in Information Theory and Applications Work-

shop, 2010, pp. 1–6.

[29] G. Liang and B. Liang, “Effect of delay and buffering on jitter-free streaming over random vbr

channels,” IEEE Transactions on Multimedia, vol. 10, no. 6, pp. 1128–1141, 2008.

144

BIBLIOGRAPHY

[30] M. Narbutt and L. Murphy, “Voip playout buffer adjustment using adaptive estimation of net-

work delays.”

[31] K. Fujimoto, S. Ata, and M. Murata, “Adaptive playout buffer algorithm for enhancing per-

ceived quality of streaming applications,” in IEEE Global Telecommunications Conference

(GLOBECOM), vol. 3, 2002, pp. 2451–2457.

[32] N. Sarshar and X. Wu, “Buffer size reduction through buffer sharing for streaming applica-

tions,” in IEEE International Conference on Multimedia and Expo (ICME), vol. 3, 2004, pp.

1635–1638.

[33] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer requirements and through-

put constraints for synchronous dataflow graphs,” Eindhoven University of Technology, Tech

Report, no. esr-2006-01, 2006.

[34] S. Rampal, D. P. Agrawal, and D. S. Reeves, “Processor scheduling algorithms for minimizing

bu er requirements in multimedia applications,” 1994.

[35] J. Nieh and M. S. Lam, “Integrated processor scheduling for multimedia,” in Network and

Operating Systems Support for Digital Audio and Video, 1995, pp. 202–205.

[36] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical cpu scheduler for multimedia operating

systems,” ACM SIGOPS Operating Systems Review, vol. 30, pp. 107–121, 1996.

[37] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multimedia applications,”

ACM Transactions on Computer Systems (TOCS), vol. 24, no. 3, pp. 292–331, 2006.

[38] B. Lee, E. Nurvitadhi, R. Dixit, C. Yu, and M. Kim, “Dynamic voltage scaling techniques for

power efficient video decoding,” Journal of Systems Architecture, vol. 51, no. 10, pp. 633–652,

2005.

[39] D. Son, C. Yu, and H. N. Kim, “Dynamic voltage scaling on mpeg decoding,” in 8th Interna-

tional Conference on Parallel and Distributed Systems (ICPADS), 2001, pp. 633–640.

[40] I. Yeo and E. J. Kim, “Hybrid dynamic thermal management based on statistical characteristics

145

BIBLIOGRAPHY

of multimedia applications,” in 13th International Symposium on Low Power Electronics and

Design, 2008, pp. 321–326.

[41] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian, “Dynamo: A cross-layer

framework for end-to-end qos and energy optimization in mobile handheld devices,” IEEE

Journal on Selected Areas in Communications, vol. 25, no. 4, pp. 722–737, 2007.

[42] R. T. Apteker, J. A. Fisher, V. S. Kisimov, and H. Neishlos, “Video acceptability and frame

rate,” IEEE Multimedia, vol. 2, no. 3, pp. 32–40, 1995.

[43] D. Wijesekera, J. Srivastava, A. Nerode, and M. Foresti, “Experimental evaluation of loss

perception in continuous media,” Multimedia systems, vol. 7, no. 6, pp. 486–499, 1999.

[44] I. Recommendation, “500-11, methodology for the subjective assessment of the quality of

television pictures,” International Telecommunication Union, Geneva, Switzerland, 2002.

[45] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective video quality assess-

ment methods: A classification, review, and performance comparison,” IEEE Transactions on

Broadcasting, vol. 57, no. 99, pp. 165–182, 2011.

[46] P. ITU-T RECOMMENDATION, “Subjective video quality assessment methods for multime-

dia applications,” 1995.

[47] “Subjective video quality assessment [online],” http://www.acceptv.com.

[48] J. Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deterministic Queuing Systems

for the Internet. Springer, 2001, vol. LNCS 2050.

[49] J. Hu, U. Y. Ogras, and R. Marculescu, “System-level buffer allocation for application-specific

networks-on-chip router design,” IEEE Transaction on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 25, no. 12, pp. 2919–2933, 2006.

[50] G. Varatkar and R. Marculescu, “Traffic analysis for on-chip networks design of multimedia

applications,” in 39th Design Automation Conference (DAC), 2002, pp. 795–800.

146

http://www.acceptv.com

BIBLIOGRAPHY

[51] P. Jamieson, W. Luk, S. J. E. Wilton, and G. Constantinides, “An energy and power con-

sumption analysis of fpga routing architectures,” in International Conference on Field-

Programmable Technology, 2009, pp. 324–327.

[52] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router microarchitectures in on-

chip networks,” in 36th Annual IEEE/ACM International Symposium on Microarchitecture,

2003, pp. 105–116.

[53] A. Maxiaguine, S. Kunzli, L. Thiele, and S. Chakraborty, “Evaluating schedulers for multi-

media processing on buffer-constrained soc platforms,” IEEE Design & Test of Computers,

vol. 21, no. 5, pp. 368–377, 2004.

[54] B. Raman, S. Chakraborty, O. W. Tsang, and S. Dutta, “Reducing data-memory footprint

of multimedia applications by delay redistribution,” in 44th Design Automation Conference

(DAC), 2007, pp. 738–743.

[55] M. Coenen, S. Murali, A. Radulescu, K. Goossens, and G. D. Micheli, “A buffer-sizing algo-

rithm for networks on chip using tdma and credit-based end-to-end flow control,” in 4th Inter-

national Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),

2006, pp. 130–135.

[56] A. Nandi and R. Marculescu, “System-level power-performance analysis for embedded sys-

tems design,” in 38th Design Automation Conference (DAC), 2001, pp. 599–604.

[57] M. Kalman, E. G. Steinbach, and B. Girod, “System-level buffer allocation for application-

specific networks-on-chip router design,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 14, no. 6, pp. 841–851, 2004.

[58] A. Dua and N. Bambos, “Buffer management for wireless media streaming,” in GLOBECOM,

2007, pp. 5226–5230.

[59] L. Zhang and H. Fu, “Dynamic bandwidth allocation and buffer dimensioning for supporting

video-on-demand services in virtual private networks,” Computer Communications, vol. 23,

no. 14-14, pp. 1410–1424, 2000.

147

BIBLIOGRAPHY

[60] A. Maxiaguine, S. Kunzli, S. Chakraborty, and L. Thiele, “Rate analysis for streaming ap-

plications with on-chip buffer constraints,” in 9th Asia and South Pacific Design Automation

Conference (ASP-DAC), 2004, pp. 131–136.

[61] A. Maxiaguine, S. Chakraborty, and L. Thiele, “Dvs for buffer-constrained architectures with

predictable qos-energy tradeoffs,” in 3rd International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2005, pp. 111–116.

[62] J. Ray and P. Koopman, “Data management mechanisms for embedded system gateways,” in

DSN, 2009, pp. 175–184.

[63] A. Vishwanath, P. Dutta, M. Chetlu, P. Gupta, S. Kalyanaraman, and A. Ghosh, “Perspec-

tives on quality of experience for video streaming over wimax,” ACM SIGMOBILE Mobile

Computing and Communications Review, vol. 13, no. 4, pp. 15–25, 2010.

[64] “Hubblesource mpeg benchmark videos,” http://hubblesource.stsci.edu/sources/video/clips/

index 2.php.

[65] “Mpeg-2 decoder source code,” http://www.mpeg.org/MPEG/video/

mssg-free-mpeg-software.html.

[66] “Samsung brings pip to mobile phones,” http://gizmodo.com/252919/

samsung-brings-pip-to-mobile-phones.

[67] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan,

“Temperature-aware microarchitecture: Modeling and implementation,” ACM Transactions

on Architecture and Code Optimization (TACO), vol. 1, no. 1, pp. 94–125, 2004.

[68] R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage aware dynamic voltage scaling for real-

time embedded systems,” in Design Automation Conference (DAC), 2004, pp. 275–280.

[69] S. M. Martin, K. Flautner, T. N. Mudge, and D. Blaauw, “Combined dynamic voltage scaling

and adaptive body biasing for lower power microprocessors under dynamic workloads,” in

IEEE/ACM International Conference on Computer-aided Design (ICCAD), 2002, pp. 721–

725.

148

http://hubblesource.stsci.edu/sources/video/clips/index_2.php
http://hubblesource.stsci.edu/sources/video/clips/index_2.php
http://www.mpeg.org/MPEG/video/mssg-free-mpeg-software.html
http://www.mpeg.org/MPEG/video/mssg-free-mpeg-software.html
http://gizmodo.com/252919/samsung-brings-pip-to-mobile-phones
http://gizmodo.com/252919/samsung-brings-pip-to-mobile-phones

BIBLIOGRAPHY

[70] K. Skadron, “Hybrid architectural dynamic thermal management,” in Design Automation &

Test in Europe (DATE), 2004, pp. 10–15.

[71] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs energy optimization for

dvfs-enabled processors in embedded systems,” in 8th International Symposium on Quality of

Electronic Design (ISQED), 2007, pp. 204–209.

[72] M. Bao, A. Andrei, P. Eles, and Z. Peng, “Temperature-aware idle time distribution for energy

optimization with dynamic voltage scaling,” in Design Automation & Test in Europe (DATE),

2010, pp. 21–26.

[73] ——, “On-line thermal aware dynamic voltage scaling for energy optimization with fre-

quency/temperature dependency consideration,” in Design Automation Conference (DAC),

2009, pp. 490–495.

[74] P. Kumar and L. Thiele, “End-to-end delay minimization in thermally constrained distributed

systems,” in 23rd Euromicro Conference on Real-Time Systems (ECRTS), 2011, pp. 81–91.

[75] J. Srinivasan and S. V. Adve, “Predictive dynamic thermal management for multimedia appli-

cations,” in 17th Annual International Conference on Supercomputing (ICS), 2003, pp. 109–

120.

[76] I. Yeo, H. K. Lee, E. J. Kim, and K. H. Yum, “Effective dynamic thermal management for

mpeg-4 decoding,” in 25th International Conference on Computer Design (ICCD), 2007, pp.

623–628.

[77] W. Lee, K. Patel, and M. Pedram, “Dynamic thermal management for mpeg-2 decoding,” in

11th International Symposium on Low Power Electronics and Design (ISLPED), 2006, pp.

316–321.

[78] ——, “Gop-level dynamic thermal management in mpeg-2 decoding,” IEEE Transactions on

Very Large Scale Integration Systems (TVLSI), vol. 16, no. 6, pp. 662–672, 2008.

[79] M. A. Baker, V. Parameswaran, K. S. Chatha, and B. Li, “Power reduction via macroblock

prioritization for power aware h. 264 video applications,” in 6th IEEE/ACM/IFIP International

149

BIBLIOGRAPHY

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2008, pp.

261–266.

[80] D. Gangadharan, H. Ma, S. Chakraborty, and R. Zimmermann, “Video quality-driven buffer

dimensioning in mpsoc platforms via prioritized frame drops,” in 29th International Confer-

ence on Computer Design (ICCD), 2011, pp. 247–252.

[81] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and voltage scaling,” in

IEEE/ACM International Conference on Computer-aided Design (ICCAD), 2008.

[82] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Workload design: Selecting rep-

resentative program-input pairs,” in International Conference on Parallel Architectures and

Compilation Techniques, 2002, pp. 83–94.

[83] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload characterization,” IEEE

Micro, vol. 27, no. 3, pp. 63–72, 2007.

[84] L. K. John, P. Vasudevan, and J. Sabarinathan, “Workload characterization: Motivation, goals

and methodology,” in International Workshop on Workload Characterization: Methodology

and Case Studies, 1999, pp. 3–14.

[85] A. Maxiaguine, L. Yanhong, S. Chakraborty, and O. W. Tsang, “Identifying representative

workloads in designing mpsoc platforms for media processing,” in 2nd Workshop on Embed-

ded Systems for Real-Time Multimedia (ESTImedia), 2004, pp. 41–46.

[86] S. V. Gheorghita, T. Basten, and H. Corporaal, “Scenario selection and prediction for dvs-

aware scheduling of multimedia applications,” Journal of Signal Processing Systems, vol. 50,

no. 2, pp. 137–161, 2008.

[87] H. Yicheng, S. Chakraborty, and W. Ye, “Using offline bitstream analysis for power-aware

video decoding in portable devices,” in 13th ACM International Conference on Multimedia,

2005, pp. 299–302.

[88] I. T. Jolliffe, Principal component analysis. Springer New York, 2002.

150

BIBLIOGRAPHY

[89] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring benchmark similarity using

inherent program characteristics,” IEEE Transactions on Computers, vol. 55, no. 6, pp. 769–

782, 2006.

[90] J. Hamers and L. Eeckhout, “Resource prediction for media stream decoding,” in 10th Design,

Automation and Test in Europe (DATE), 2007, pp. 594–599.

[91] http://www.tns.lcs.mit.edu/manuals/mpeg2/.

[92] H. Yicheng, V. A. Tran, and W. Ye, “A workload prediction model for decoding mpeg video

and its application to workload-scalable transcoding,” in 15th International Conference on

Multimedia (MM), 2007, pp. 952–961.

[93] W. Pan and A. Ortega, “Complexity-scalable transform coding using variable complexity al-

gorithms,” in Data Compression Conference, 2000.

[94] A. D. Gordon, Classification. Chapman & Hall/CRC, 1999.

[95] L. Yanhong, S. Chakraborty, O. W. Tsang, A. Gupta, and S. Mohan, “Workload characteri-

zation and cost-quality tradeoffs in mpeg-4 decoding on resource-constrained devices,” in 3rd

IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia), 2005.

[96] H. Koumaras, C. H. Lin, C. K. Shieh, and A. Kourtis, “A framework for end-to-end video qual-

ity prediction of mpeg video,” Journal of Visual Communication and Image Representation,

vol. 21, no. 2, pp. 139–154, 2010.

[97] M. Roitzsch and M. Pohlack, “Principles for the prediction of video decoding times applied to

mpeg-1/2 and mpeg-4 part 2 video,” in 27th IEEE International Real-Time Systems Symposium

(RTSS), 2006.

[98] D. Isovic, G. Fohler, and L. Steffens, “Timing constraints of mpeg-2 decoding for high quality

video: misconceptions and realistic assumptions,” in 15th Euromicro Conference on Real-Time

Systems (ECRTS), 2003, pp. 73–82.

[99] D. Gangadharan, S. Chakraborty, and R. Zimmermann, “Fast model-based test case classifica-

tion for performance analysis of multimedia mpsoc platforms,” in 7th IEEE/ACM International

151

BIBLIOGRAPHY

Conference on Hardware/software codesign and System Synthesis (CODES+ISSS), 2009, pp.

413–422.

152

	root 1
	img-Y16143246-0001
	root
	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	List of Publications
	Introduction
	Multimedia MPSoC Platforms
	Classification of MPSoC Performance Analysis Techniques
	Simulation-based Performance Analysis
	Formal Methods for MPSoCs
	Model-based Performance Analysis

	Resource Dimensioning
	Resource Dimensioning: A Quality-Aware Approach
	Thesis Contributions
	Quality-Driven Buffer Dimensioning (Chapter 2)
	Quality-Driven Service Determination (Chapter 3)
	Quality and Thermal-Aware Multimedia Processing (Chapter 4)
	Fast Simulation Frameworks for Multimedia MPSoC platforms (Chapter 5)

	Mathematical Background
	Summary

	Quality-Driven Buffer Dimensioning
	Related Work
	A Mathematical Framework for Video Quality Driven Buffer Sizing via Frame Drops
	Buffer Sizing Framework
	Partitioning arrival and service curves
	Bounds on dropped frames
	Worst-case bound on Quality
	Case Study (MPEG-2 Decoder)
	First stage results
	Second stage results
	Buffer savings

	Video Quality Driven Buffer Sizing via Prioritized Frame Drops
	Buffer Dimensioning Framework
	Problem Formulation
	Quality-Aware Frame Dropping
	Determination of Bminj

	Quality-Aware Frame Dropping
	Minimum Buffer Size Estimation
	Experimental Results
	Evaluation of MV-based frame dropping
	Minimum Buffer Size Estimation

	Summary

	Quality-Driven Service Determination
	Processor Service Determination Framework
	Computing Quality-Driven Service Curves
	Experimental Results
	Processor Cycle vs Quality trade-off
	Verification of the Processor Cycle Requirements

	Summary

	Quality and Thermal Aware Multimedia Processing
	Motivation
	Proposed Framework
	Platform Description
	Preliminaries
	Problem Definition

	Drop Pattern Generation
	Quality and Thermal Aware Idle Time Insertion
	Experimental Results
	Elimination of idle times
	Reduction of idle times with quality
	Reduction in delay with varying quality and HIST_MAX values

	Summary

	Fast Simulation Frameworks for Multimedia MPSoC platforms
	Model-Based Performance Analysis
	Related Work
	Overview of our framework
	Variability Characterization Curves
	MPEG-2 Decoder Workload Model
	VLD Task
	MC Task
	IDCT Task
	Total Workload

	Test Case Classification
	Experimental Framework

	Validation

	Hybrid Simulation for Quality-Driven Performance Analysis
	Motivational Example
	Related Work
	Hybrid Simulation-based Quality Assessment Framework - An Overview
	Workload Models for Simulation Heavy Tasks
	MC Workload Model
	IDCT Workload Model

	Experimental Study
	Frame discard strategy
	PSNR calculation
	Results and Discussion

	Summary

	Concluding Remarks
	Summary
	Future Work
	Analytical framework for quality-driven buffer dimensioning with frame priority constraints
	Frame size considerations for buffer dimensioning along with motion vector
	Joint design space exploration of buffer size and processor bandwidth
	Lowest peak temperature estimation
	Parameterized test case classification for fast performance analysis
	Workload model derivation in the context of microarchitectural features like cache

	Bibliography

