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Summary 

Virtual screening (VS) especially machine learning based VS is increasingly used 

in search for novel lead compounds. It is a capable approach for facilitating hit 

lead compounds discovery. Various software tools have been developed for VS. 

However, conventional VS tools encounter issues such as insufficient coverage of 

compound diversity, high false positive rate and low speed in screening large 

compound libraries. Target selective drugs are developed for enhanced 

and reduced side effects. In-silico methods such as machine learning methods 

been explored for searching target selective ligands such as dopamine receptor 

ligands, but encountered difficulties associated with high subtype similarity and 

ligand structural diversity. In this thesis, we introduced a new two-step support 

vector machines target-binding and selectivity screening method for searching 

dopamine receptor subtype-selective ligands and demonstrated the usefulness of 

the new method in searching subtype selective ligands from large compound 

libraries. It has high subtype selective ligand identification rates as well as 

multi-subtype ligand identification rates. In addition, our method produced low 

false-hit rates in screening large compound libraries. Inhibitor of nuclear factor 

kappa-B (NF-κB) kinase subunit beta (IKKβ) has been a prime target for the 

development of NF-kB signaling inhibitors. In order to reduce the cost and time in 

developing novel IKKβ inhibitors, the machine learning method is used to build a 

prediction and screening model of IKKβ inhibitors. Our results show that support 

vector machine (SVM) based machine learning model has substantial capability in 

identifying IKKβ inhibitors at comparable yield and in many cases substantially 

lower false-hit rate than those of typical VS tools reported in the literatures and 

evaluated in this work. Moreover, it is capable of screening large compound 
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libraries at low false-hit rates. 

Some drugs such as anticancer EGFR tyrosine kinase inhibitors elicit markedly 

different clinical response rates due to differences in drug bypass signaling as well 

as genetic variations of drug target and downstream drug-resistant genes. In this 

thesis, we systematically analyzed expression profiles together with the mutational, 

amplification and expression profiles of EGFR and drug-resistance related genes 

and investigated their usefulness as new sets of biomarkers for response of EGFR 

tyrosine kinase inhibitors. Our result shows that consideration of bypass signaling 

from pathway regulation perspectives appears to be highly useful for deriving 

knowledge-based drug response biomarkers to effectively predict drug responses 

well as for understanding the mechanism of pathway regulation and drug 
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1 Chapter 1 Introduction  

The process of new drugs discovery is normally a costly and time-consuming. The 

average time required for a successful drug development from initial design effort 

to market approval is about 13 years. Cheminformatics and bioinformatics tools 

are increasingly explored in facilitating pharmaceutical research and drug 

development. The thesis contains development of in silico virtual screening for 

potential pharmaceutical agents as well as discovery of biomarker for drug 

response. The introduction chapter includes: (1) Cheminiformatics in drug 

discovery (Section 1.1); (2) Cheminformatics and bioinformatics resources 

(Section 1.2); (3) Virutal screening of pharmaceutical agents (Section 1.3); (4) 

Bioinformatics tools in biomarker identification (Section 1.4); (5) Objectives and 

outlines (Section 1.5) 

 

1.1 Cheminformatics in drug discovery 

 

Traditionally, drug discovery process from idea to market consists of several steps: 

target discovery, lead compound screening, lead optimization, ADMET 

distribution, metabolism, excretion and toxicity) study, preclinical trial evaluation, 

clinical trials, and registration. It is a time-consuming, expensive, difficult, and 

inefficient process with low rate of new therapeutic discovery. The drug process 

takes approximately 10-17 years, $800 million (as per conservative estimates), 

the overall probability of success rate less than 10% [1] (Figure 1-1).  The huge 

R&D investment in implementing new technologies for drug discovery does not 
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guarantee the increase of successful new chemical entities (NCEs). Figure 1-2 

shows the number of new chemical entities (NCEs) in relation to research and 

development (R&D) spending since 1992. 

 

Figure 1-1 Drug discovery and development process (adopted from Ashburn et al. [1] ) 
 
 

 

Figure 1-2 Number of new chemical entities (NCEs) in relation to research and development 
(R&D) spending (1992–2006). Source: Pharmaceutical Research and Manufacturers of America 
and the US Food and Drug Administration[2]. 

 

In order to increase the efficiency and reduce the cost and time of drug discovery, 

new technologies need to be employed in different stages of drug development 
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process. In particularly, earlier stages of drug discovery process, such as drug lead 

identification and optimization, toxicity of compounds estimation, are now greatly 

relying on new methodologies to reduce overall cost. 

In 1990s, advances in the areas like molecular biology, cellular biology and 

genomics greatly help in understanding the molecular and genetic components in 

disease development and critical point in seeking therapeutic intervention. 

Technologies include DNA sequencing, microarray, HTS, combinatory chemistry, 

and high throughput sequencing have been developed. The progress is helpful in 

identifying many new molecular targets (from approximately 500 to more than 

10,000 targets) [3]. In drug discovery, earlier stages, such as drug lead 

identification and optimization, toxicity of compounds estimation, are now greatly 

relying on new methodologies to reduce overall cost. High throughput screening 

(HTS) approaches for discovering potential therapeutic compounds on validated 

targets have been developed[4]. In the HTS process, compounds of diverse 

structure from chemical library are then screened against these validated 

targets[5]. Inspired by the terms genome and genomics after the finish of Human 

Genome Project, technologies such as motabolite profiles analysis and mRNA 

transcripts study that generate a lot of biological and chemistry data have been 

coined with the suffix -ome and –omics. Table 1-1 lists a list of omics approaches 

and the fields they could be applied. The integration and annotation of the 

biological and chemical information to generate new knowledge become the 

major tasks of bioinformatics and cheminformatics. 
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Table 1-1 List of omics approaches and the fields they could be applied. 
 

‐ome 
Fields of study 

(‐omics)  Collection 

Allergenome  Allergenomics  Proteomics of allergens 

Bibliome  Bibliomics  Scientific bibliographic data 

Connectome  Connectomics 
Structural and functional brain connectivity at 
different spatiotemporal scales 

Cytome  Cytomics  Cellular systems of an organism 

Epigenome  Epigenomics  Epigenetic modifications 

Exposome (2005)  Exposomics 
An individual's environmental exposures, including in 
the prenatal environment 

Exposome (2009)    
Composite occupational exposures andoccupational 
health problems 

Exome  Exomics  Exons in a genome 

Genome  Genomics  Genes 

Glycome  Glycomics  Glycans 

Interferome  Interferomics  Interferons 

Interactome  Interactomics  All interactions 

Ionome  Ionomics  Inorganic biomolecules 

Kinome  Kinomics  Kinases 

Lipidome  Lipidomics  Lipids 

Mechanome  Mechanomics  The mechanical systems within an organism 

Metabolome  Metabolomics  Metabolites 

Metagenome  Metagenomics  Genetic material found in an environmental sample 

Metallome  Metallomics  Metals and metalloids 

ORFeome  ORFeomics  Open reading frames (ORFs) 

Organome  Organomics  Organ interactions 

Pharmacogenetics  Pharmacogenetics 
SNPs and their effect 
on pharmacokineticsand pharmacodynamics 

Pharmacogenome  Pharmacogenomics
The effect of changes on the genome on 
pharmacology 

Phenome  Phenomics  Phenotypes 

Physiome  Physiomics  Physiology of an organism 

Proteome  Proteomics  Proteins 

Regulome  Regulomics 
Transcription factors and other molecules involved in 
the regulation of gene expression 

Secretome  Secretomics  Secreted proteins 

Speechome  Speecheomics  Influences on language acquisition 

Transcriptome  Transcriptomics  mRNA transcripts 

 

According to the definition on Wikipedia, Cheminformatics is the use of 

computer and informational techniques, applied to a range of problems in the field 

of chemistry. Similarly, bioinformatics is the application of information 



Chapter 1 Introduction 

   5

technology and computer science to the field of molecular biology. The main 

tasks that informatics handle are: to convert data to information and information to 

knowledge. According to market research firm BCC, the worldwide value of 

bioinformatics is increasing from $1.02 billion in 2002 to $3.0 billion in 2010, at 

an average annual growth rate (AAGR) of 15.8% (Figure 1-3). The use of 

bioinformatics in drug discovery is probably to cut the annual cost by 33%, and 

the time by 30% for developing a new drug. Bioinformatics and cheminformatics 

tools are getting developed which are capable to assemble all the required 

information regarding potential drug targets such as nucleotide and protein 

sequencing, homologue mapping[6, 7], function prediction[8, 9], pathway 

information[10], structural information[11] and disease associations[12], 

chemistry information.  

 

Figure 1-3 Worldwide value of bioinformatics Source: BCC Research[13] 

 

 

1.2 Cheminformatics and bioinformatics resources 
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Currently there are many public bioinformatics databases (Table 1-2) and 

cheminformatics databases (Appendix A Table 1) that provide broad categories of 

medicinal chemicals, biomolecules or literature[14]. Bioinformatics databases 

mainly contain information from research areas including genomics, proteomics, 

metabolomics, microarray gene expression, and phylogenetics. Information 

deposited in biological databases includes gene function, structure, clinical effects 

of mutations as well as similarities of biological sequences and structures. 

Cheminformatics database includes chemical and crystal structures, spectra, 

reactions and syntheses, and thermophysical data. For example, there are several 

known target and drug database including Drug Adverse Reaction Targets (DART), 

Therapeutic Target Database (TTD), Potential Drug Target Database (PDTD), 

PubChem, ChemblDB, BindingDB, DrugBank and etc. 
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Table 1-2 Popular bioinformatics database. 
 

Database Description 

National Center for 
Biotechnology Information 
(NCBI) GenBank, EBI-EMBL, 
DNA Databank of Japan 
(DDBJ) 

Databases with primary genomic 
data (complete genomes, 
plasmids, and protein sequences) 

Swiss-Prot and TrEMBL and 
Protein Information Resource 
(PIR) 

Databases with annotated protein 
sequences  

COG/KOG (Clusters of 
Orthologous groups of 
proteins) and Kyoto 
Encyclopedia of Genes and 
Genomes (KEGG) orthologies 

Databases with results of 
cross-genome comparisons 

 

Pfam and SUPFAM, and 
TIGRFAMs 

 

Databases containing information 
on protein families and protein 
classification 

TIGR Comprehensive Microbial 
Resource (CMR) and Microbial 
Genome Database for 
Comparative Analysis (MBGD) 

Web services for cross-genome 
analysis 

DIP, BIND, InterDom, and 
FusionDB 

Databases on protein–protein 
interactions  

KEGG and PathDB Databases on metabolic and 
regulatory pathways  

Protein Data Bank (PDB) Databases with protein 
three-dimensional (3D) structures 

PEDANT Integrated resources 

 
 

1.3 Virtual screening of pharmaceutical agents 

1.3.1 Structure-based and ligand based virtual screening 
 

Virtual screening (VS) is a computational technique used in lead compounds 

discovery research. It involves rapid in silico screening of large compound 

libraries of chemical structures in order to identify those compounds that most 

likely to interact with a therapeutic target, typically a protein receptor or enzyme 
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[15, 16]. VS has been widely explored for facilitating lead compounds discovery 

[17-20], identifying agents of desirable pharmacokinetic and toxicological 

properties profiling of compounds [21, 22]. There are two main categories of 

screening techniques: structure-based and ligand-based [23]. Figure 1-4 shows the 

general procedure used in SBVS and LBVS.  
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Figure 1-4 General procedure used in SBVS and LBVS (adopted from Rafael V.C. et al[24]). 
 

 

Structure-based virtual screening (SBVS) begins with a 3-D structure of a 

target protein and a collection of the 3-D structures of ligands as the screening 

library. When the 3D structure of a protein target derived either from experimental 

data (X-ray or NMR spectroscopy) or from homology modeling is available, 
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SBVS method is applied. SBVS procedure includes docking and scoring. The 

docking algorithms [25, 26] are designed to evaluate the ligand conformation and 

orientation within the target surface active site. The scoring methods are 

empirically or semi-empirically derived to estimate the binding affinities of the 

ligand and the protein in bound complexes [27]. Docking and scoring algorithms 

are often merged to detect those compounds with highest affinity against a target 

by predicting the binding mode (by docking) and affinity (by scoring). So far, 

more than 60 docking programs and 30 scoring functions have been reported [28, 

29]. The major disadvantage of SBVS is the absence of appropriate scoring 

functions to separate correct and incorrect poses of bound ligands and to identify 

false negative and positive hits. In addition, the challenges encountered by SBVS 

include the appropriate treatment of ionization, tautomerization of ligand and 

protein residues, target/ligand flexibility, choice of force fields, salvation effects, 

dielectric constants, exploration of multiple binding modes and, most importantly, 

the approximations in the scoring functions that lead to false-positives and miss 

true-hits. Moreover, most docking algorithms and scoring functions are tuned 

towards high throughput, which needs a compromise between the speed and 

accuracy of binding mode and energy prediction. Despite the successful drug 

discovery cases, currently there has not been a single docking program that 

outperforms all others with regard to either docking accuracy or hit enrichment. 

The hit enrichment is defined as the fraction of true active compounds in, for 

example, the upper 1% of the ranked VS hit list compared with the average 

fraction of active compounds in the search space. The performance of a docking 

program is difficult to evaluate in advance, and depends on the nature and quality 

of the target structure [28-30]. Despite all optimization efforts, the currently 
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available scoring functions do not provide reliable estimates of free binding 

energies, and are not able to rank-order compounds according to affinity [29, 31]. 

The published comparison of docking programs has been critically reviewed 

[32-34]. 

 

Unlike SBVS, Ligand-based virtual screening (LBVS) does not require the protein 

target 3D structure information. Instead, it takes the structure(s) of one or more 

active compounds as template(s) to identify a new compound library by chemical 

and physical properties of the template compound(s). The application of LBVS 

methods firstly use the digital descriptors of molecular structure, properties, or 

pharmacophore features and then analyze relationships between the training active 

compounds and test unknown compounds. Different descriptors are designed to 

detect connections in molecular physical and chemical properties in order to find 

new hits. Compared with SBVS, LBVS is computationally efficient and is able to 

screen very large databases in short time. As a result, the LBVS methods are often 

applied to sequentially screen large compound libraries before more complex 

experiments are applied. Many types of LBVS methods have been reported with 

literally thousands of different descriptors. These descriptors are derived from the 

2D or 3D distribution of atomic properties of the known compounds, or from the 

existence of specific structural elements such as double bonds. Many methods 

designed for the comparison of the similarity of compounds based on these 

descriptors. Shape comparison [35] and pharmacophore searches are widely used 

and long-established techniques [36, 37]. Other methods employ molecular fields 

to define the similarity of compound structures [38, 39]. When large sets of active 

and inactive compounds are available, machine learning methods, such as 
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artificial neural nets, decision trees, support vector machines and Bayesian 

classifiers, can be used to train predictive VS models that can distinguish active 

from inactive compounds based on their specific physical and chemical features. 

Comprehensive reviews of ligand-based VS have been presented in a number of 

reviews [40, 41]. Appendix A Tables 2, 3, 4 and 5 provide the comparison of 

performances of some frequently applied SBVS and LBVS methods for 

identifying inhibitors, agonists and substrates of proteins of pharmaceutical 

relevance. 

 

1.3.2 Machine learning methods for virtual screening 
 

With the advancement in computational technologies, machine learning methods 

have become increasing useful in the drug discovery. Machine learning methods 

typically include procedures used in the study of computer predictions, 

classifications or analysis of algorithms where the learning process may improve 

automatically through experience. In target discoveries, machine learning 

classification methods have been applied for analyzing microarray data, 

non-invasive images, and mass spectral data to find biomarkers. In drug lead 

identification, machine learning classification methods are used for assess 

potential lead suspects, and for performing ligand based virtual screening to find 

possible hits. In addition machine learning classification methods are used to 

eliminate toxic compounds at very early stage of drug discovery. 

 

The most common machine learning methods are support vector machines (SVM), 

Artificial neural network (ANN), probabilistic neural network (PNN), k nearest 
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neighbor (K-NN), C4.5 decision tree (C4.5DT), linear discriminate analysis (LDA) 

and logistic regression (LR) which have shown good performance in various 

fields. Machine Learning Classification (MLC) methods are increasingly used in 

early drug discovery stage for targets and leads discovery, prediction of 

interactions with ABC-transporters [42], early detection of drug-induced 

idiosyncratic liver toxicity [43], prediction of toxicological properties and adverse 

drug reactions of pharmaceutical agents [44], prediction of P-glycoprotein 

substrates [45, 46], prediction of drug-likeness [47-49]. The motivation for the 

adoption of machine learning classification methods in drug discovery is its 

capability to model complex relationships in biological data. 

 

Comparing with SBVS and other LBVS methods such as QSAR, pharmacophore 

and clustering methods [18, 50-56], machine learning methods are more capable 

of dealing with a more diverse spectrum of compounds and more complex 

structure-activity relationships. The reason is that machine learning methods apply 

complex nonlinear mappings from molecular descriptors to activity classes 

without restriction on structural frameworks, and machine learning method do not 

require prior knowledge of relevant molecular descriptors and functional form of 

structure-activity relationships [57-61]. Additionally, machine learning methods 

can be used to overcome several problems that have obstructed the some 

conventional virtual screening tools [17, 58], which include the extensiveness and 

discreteness natures of the chemical space, the absence of protein target structures 

(only 15% of known proteins have known 3D structures), complexity and 

flexibility of target structures, limited diversity caused by the biased training 

molecules, and difficulties in computing binding affinity and solvation effects.  
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The reported performance of machine learning methods in screening 

pharmacodynamically active compounds from libraries of >25,000 compounds is 

summarized in Table 1-4. These reported studies [62-69] primarily focused on the 

prediction of compounds that inhibit, antagonize, block, agonize, or activate 

specific therapeutic target proteins. The majority of the reported screening tasks 

by machine learning methods are found to demonstrate good performance. The 

yields, hit rates, and enrichment factors of machine learning methods are in the 

range of 50%~94%, 10%~98%, and 30~108 respectively. Table 1-5, Table 1-6 

and Table 1-7 show the tentative comparisons of the reported performances of 

structure-based VS methods and two classes of ligand-based VS methods, 

pharmacophore and clustering. Most of the yields, hit rates, and enrichment 

factors lay in the range of 7%~95%, 1%~32%, and 5~1189 for structure-based, 

11%~76%, ~0.33%, and 3~41 for pharmacophore, and 20%~63%, 2%~10%, and 

6~54 for clustering methods respectively. The general performance of machine 

learning methods appears to be comparable to or in some cases better than the 

reported performances of the conventional VS studies such as pharmacophore and 

clustering methods. In screening extremely-large libraries, the reported yields, 

hit-rates and enrichment factors of machine learning VS tools are in the range of 

55%~81%, 0.2%~0.7% and 110~795 respectively, compared to those of 

62%~95%, 0.65%~35% and 20~1,200 by structure-based VS tools. The reported 

hit-rates of some machine learning VS tools are comparable to those of 

structure-based VS tools in screening libraries of ~98,000 compounds, but their 

enrichment factors are substantially smaller. Therefore, while exhibiting equally 

good yield, in screening extremely-large (≥1 million) and large (130,000~400,000) 
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libraries, the currently developed machine learning VS tools appear to show lower 

hit-rates and, in some cases, lower enrichment factors than the best performing 

structure-based VS tools.  

1.3.3 Virtual screening for subtype-selective pharmaceutic agents 
 
Drugs that selectively modulate protein subtypes are highly useful for achieving 

therapeutic efficacies at reduced side effects [90-93]. For some targets such as 

dopamine receptors, all of the approved drugs are subtype non-selective, and this 

non-selectivity directly contributes to their observed side effects and adversely 

affects their application potential [93]. There is a need for developing subtype 

selective drugs against these targets [92-96]. 

 
Several multi-label machine learning methods have been used for developing 

in-silico tools to predict protein selective compounds within a protein family or 

subfamily. For instance, multi-label support vector machines (ML-SVM), 

multi-label k-nearest-neighbor (ML-kNN) and multi-label counter-propagation 

neural network (ML-CPNN) methods have been used for predicting isoform 

specificity of P450 substrates [97, 98]. Combinatorial support vector machines 

(Combi-SVM) method has been used for identifying dual kinase inhibitors 

selective against single kinase inhibitors of the same kinase pair and inhibitors of 

other kinases [99]. 

Consequently, although these methods have shown good performance in selecting 

ligands of a subtype, they do not always distinguish subtype selective and 

non-selective ligands at good accuracy levels. For instance, the ML-SVM, 

ML-kNN and ML-CPNN methods predict 88%, 64% and 34% isoform selective 

substrates as selective respectively, 99%, 82% and 72% isoform non-selective 
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substrates as non-selective respectively [97]. Combi-SVM identifies 51.9%-96.3% 

single kinase inhibitors as kinase selective with respect to a specific kinase pair 

and 12.2%-57.3% dual kinase inhibitors as dual inhibitors [99]. Therefore, new 

methods need to be explored for better distinguishing subtype selective and 

non-selective ligands. 

 
 

1.4 Bioinformatics tools in biomarker identification 

 
With the advances of biotechnology, the development of molecular biomarkers of 

exposure, toxicity, disease risk, disease status and response to therapy have been 

greatly accelerated. A biomarker is a characteristic that is objectively measure and 

evaluated as an indicators of normal biologic processes, pathogenic processes or 

pharmacological responses to therapeutic or other interventions[100]. Biomarker 

studies are aiming to develop a biomarker classifier that can be utilized for disease 

diagnostics, safety assessment, prognostics and prediction of response for patient 

treatments [101, 102]. Microarray technology, which is capable of providing the 

expression profile information on thousands of genes simultaneously, has become 

a very important component of disease molecular differentiation. The gene 

expression profiles can be applied to identify markers which are closely associated 

with early detection/differentiation of disease, or disease behavior (disease 

progression, response to therapy), and could serve as disease targets for drug 

design [103]. This strategy is widely used in cancer research for the identification 

of cancer markers, and provides new insights into tumorigenesis, tumor 

progression and invasiveness [101, 104-108]. 

The statistical methods in microarray data analysis can be classified into two 
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groups: unsupervised learning methods and supervised learning methods. 

Unsupervised analysis of microarray data aims to group relative genes without 

knowledge of the clinical features of each sample [109]. A commonly used 

unsupervised method is hierarchical clustering method. This method groups genes 

together on the basis of shared expression similarity across different conditions, 

under the assumption that genes are likely to share the same function if they 

exhibit similar expression profiles [110-113]. Hierarchical clustering creates 

phylogenetics trees to reflect higher-order relationship between genes with similar 

expression patterns by either merging smaller clusters into larger ones, or by 

splitting larger clusters into smaller ones. A dendogram is constructed, in which 

the branch lengths among genes also reflect the degree of similarity of expression 

[114, 115]. Unsupervised methods have some merits such as good 

implementations available online and the possibility of obtaining biological 

meaningful results, but they also possess some limitations. First, unsupervised 

methods require no prior knowledge and are based on the understanding of the 

whole data set, making the clusters difficult to be maintained and analyzed. 

Second, genes are grouped based on the similarity that can be affected by input 

data with poor similarity measures. Third, some of the unsupervised methods 

require the predefinition of one or more user-defined parameters that are hard to 

be estimated (e.g. the number of clusters). Changing these parameters often have a 

strong impact on the final results [116].  

In contrast to the unsupervised methods, supervised methods require a priori 

knowledge of the samples. Supervised methods generate a signature that contains 

genes associated with the clinical response variable. The number of significant 

genes is determined by the choice of significance level. SVM [117] and ANN [118] 
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are two important supervised methods. Both methods can be trained to recognize 

and characterize complex pattern by adjusting the parameters of the models fitting 

the data by a process of error (for example, miss-classification) minimization 

through learning from experience (using training samples). SVM separates one 

class from the other in a set of binary training data with the hyperplane that is 

maximally distant from the training examples. This method has been used to rank 

the genes according to their contribution to defining the decision hyperplane, 

which is according to their importance in classifying the samples. Ramaswamy et 

al. used this method to identify genes related to multiple common adult 

malignancies [105]. ANN consists of a set of layers of perceptrons to model the 

structure and behavior of neutrons in the human brain. ANN ranks the genes 

according to how sensitive the output is with respect to each gene’s expression 

level. Khan et al identified genes expressed in rhabdomyosarcoma from such 

strategy [106].  

No matter whether the supervised or unsupervised methods are used, one critical 

problem encountered in both methods is feature selection, which has become a 

crucial challenge of microarray data analysis. The challenge comes from the 

presence of thousands of genes and only a few dozens of samples in currently 

available data. Therefore, there is a need of robust techniques capable of selecting 

the subsets of genes relevant to a particular problem from the entire set of 

microarray data both for the disease classification and for the disease target 

discovery. Many gene selection methods have been developed, and generally fall 

into two categories: filter method and wrapper method [119]. In brief, the filter 

method selects genes independent of the learning algorithms [120-122]. It 

evaluates the goodness of the genes from simple statistics computed from the 
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empirical distribution with the class label [123]. Wrapper method generates genes 

from the evaluation of a learning algorithm. It is conducted in the space of genes, 

evaluating the goodness of each gene or gene subsets by such criteria as 

cross-validation error rate or accuracy from the validation dataset [124]. Recursive 

feature elimination (RFE) is a good example of the wrapper method for disease 

gene discovery. The RFE method uses the prediction accuracy from SVM to 

determine the goodness of a selected subset. Machine learning methods such as 

SVM-RFE are widely used in analyzing microarray data in order to identify 

biomarkers. However, there are two fundamental problems: One problem is to 

specify the number of genes for differentiating disease and prognosis of patients. 

Another problem in gene discovery is the gene signatures were highly unstable 

and strongly depended on the selection of patients in the training sets. We explore 

a new signature selection method aiming at reducing the chances of erroneous 

elimination of predictor-genes due to the noises contained in microarray dataset. 

Multiple random sampling and gene-ranking consistency evaluation procedures 

will be incorporated into RFE signature selection method. The consistent genes 

obtained from the multiple random sampling method may give us a better 

understanding to the disease initiation, progress and response to treatment. 

 

 

1.5 Objectives and outline 

Overall, there are three objectives for this work: 

1. To develop a novel virtual screening method for prediction of subtype 

selective pharmaceutical agents. 

2. To test subtype selective virtual screening model on prediction of selective 
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ligands of dopamine receptor and to compare with other conventional 

methods. 

3. To develop machine learning based virtual screening method to prediction 

potential IKK beta inhibitors. In addition, to compare the virtual screening 

performances of machine learning methods SVM, k-NN and PNN. 

4. To identify biomarker for predicting response to anticancer EGFR tyrosine 

kinase inhibitors. 

Target selective drugs are developed for enhanced therapeutics and reduced 

side effects. In-silico methods such as machine learning methods have been 

explored for searching target selective ligands such as dopamine receptor ligands, 

but encountered difficulties associated with high subtype similarity and ligand 

structural diversity. The first aim of thesis is to develop a novel virtual screening 

method for prediction of subtype selective pharmaceutical agents. We tested the 

novel method on dopamine receptor subtype selective ligands VS.  

Protein Kinases are important regulators of cell function that constitute one of 

the largest and most functionally diverse gene families. Despite the hundreds of 

kinase inhibitors currently in discovery and pre-clinical phases, the number of 

kinase inhibitors drugs that have been approved remains low by comparison. 

Moreover, some drugs such as anticancer EGFR tyrosine kinase inhibitors elicit 

markedly different clinical response rates due to differences in drug bypass 

signaling as well as genetic variations of drug target and downstream 

drug-resistant genes. In the thesis, we also aimed to develop VS method for 

facilitating IKK beta inhibitors discovery. In addition, we aimed to identify 

biomarker for predicting response to anticancer EGFR tyrosine kinase inhibitors 

by systematically analysis bypassing signaling pathways. 
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This thesis is outlined as follows: 

Chapter 1, an introduction to cheminformatics and bioinformatics is given 

followed by introduction of virtual screening methods. 

 

Chapter 2 describes methods used in this work, including data collection, machine 

learning methods, and virtual screening model validation and performance 

measurements. Finally, techniques for identifying biomarkers by implementing 

feature reduction algorithm are described. 

 

Chapter 3 shows the development of a novel support vector machines approach 

for virtual screening of dopamine receptor subtype-selective ligands. Comparison 

of the performance with multi-label and combinatorial SVM method is also 

described in this chapter. 

 

Chapter 4 is devoted to the use of virtual screening approach in prediction of IKK 

beta inhibitors. SVM based VS model is compared with KNN and PNN based VS 

model in screening large libraries. 

 

Chapter 5 elaborates the analysis of bypass signaling in EGFR pathway and 

profiling of bypass genes for predicting response to anticancer EGFR tyrosine 

kinase inhibitors. 

 

In the end, chapter 6 summarizes overall findings of this work and discusses the 

limitations and suggestions for future study. 
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2 Chapter 2 Methods 

This chapter includes methods of virtual screening: (1) Datasets, including data 

collection and quality analysis (section 2.1); (2) Molecular descriptors 

calculation (section 2.2); (3) Statistical machine learning methods in ligand based 

virtual screening (section 2.3); (4) Statistical machine learning methods model 

evaluations (section 2.4); Moreover, feature reduction methods in biomarker 

identification are also described (section 2.5). 

2.1 Datasets 

2.1.1 Data Collection 

 

Sufficient and high quality data is critical for drug discovery and especially 

essential for in-silico approaches since they rely on the quantity and quality of the 

available data. Massive amount of data about small molecules and their related 

annotation information have been accumulated in scientific literatures and 

cheminiformatics databases. Table 2-1 lists some of the widely known small 

molecule databases. 

 

The datasets used in this work mainly are retrieved from the following two types 

of sources. First, we collected small molecular data from credible journals such as 

Bioorganic & Medicinal Chemistry Letters, Bioorganic & Medicinal Chemistry, 

European Journal of Medicinal Chemistry, European Journal of Organic 

Chemistry and Journal of Medicinal Chemistry, etc. Second, we use 
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cheminformatics databases that contain accurate and reliable data such as 

PubChem and ChEMBL [125]. 

 

Table 2-1 Small molecule databases available online. 

 

Database 

Name 

URL 

BindingDB http://www.bindingdb.org/bind/index.jsp 

MDDR http://www.symyx.com/products/databases/bioactivity/mddr/index.jsp 

PubChem  http://nihroadmap.nih.gov 

ZINC  http://zinc.docking.org/  

ChEMBL http://www.ebi.ac.uk/chembl/  

DrugBank  http://www.drugbank.ca/  

eMolecules  http://www.emolecules.com/  

WOMBAT http://www.sunsetmolecular.com 

 

 

2.1.2 Quality analysis 

 

The reliability of in silico approaches of pharmacological properties classification 

depends on the availability of high quality pharmacological data with low 

experimental errors [126]. Ideally, the measurements of pharmacological data 

properties should be conducted with the same protocol so that there is a common 

ground to compare different compounds with each other. However, some 
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pharmacological properties measurements have been used only for a limited 

number of compounds and most pharmacological properties measurements are 

rarely determined by the same protocol. Thus the collected data consist of 

compound data measured by different protocols and the incorporation of 

additional experimental information. To maintain the data quality, in this work, 

several methods are adopted to ensure that inter-laboratory variations caused by 

different experimental protocols do not significantly affect the quality of the 

training sets. The pharmacological property measurements for data were 

investigated and the ones that contain large variations in experimental protocols 

compared to the majority of the data are filtered. It is estimated that the most 

common range of the pharmacological properties measurements for the 

compounds investigated in more than one source was used to select compounds 

for the different classes [127].  

 

Diversity Index (DI) is employed to evaluate the structural diversity of a collection 

of compounds. It is defined as the average value of the similarity between pairs of 

compounds in a dataset [128], 

 

                  (1) 

where sim(i,j) is a measure of similarity between compounds i and j, D is the dataset 

and |D| is set cardinality (number of elements of the set). The dataset is more 

diverse when DI approaches 0. Tanimoto coeeficient [129] were used to compute 

sim(i,j) in this study, 
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where l is the number of descriptors calculated for the compounds in the datasets, 

and x is the calculated descriptors. The mean maximum tanimoto coefficient of the 

compounds in dataset A and those in dataset B can be used as a representative 

index (RI) to measure the extent to which dataset B is representative of dataset A. 

Dataset B is more representative of dataset A if the RI value between dataset A 

and B is higher. 

 

2.2 Molecular descriptors 

2.2.1 Definition and generation of molecular descriptors 

 

Molecular descriptors have been extensively used in deriving structure-activity 

relationships [130, 131], quantitative structure activity relationships [132, 133], 

and machine learning prediction models for pharmaceutical agents [49, 134-140]. 

A descriptor is “the final result of a logical and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a 

compound into an useful number or the result of some standardized experiment”. 

 

Many programs e.g. PaDEL-descriptor [141], DRAGON [142], Molconn-Z [143], 

MODEL [144], Chemistry Development Kit (CDK) [145, 146], JOELib [147] and 

Xue descriptor set [138], are available to calculate physical and chemical 

descriptors. These methods can be applied to derive >3,000 molecular descriptors 
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[138, 141-147]. These descriptors include constitutional descriptors, topological 

descriptors, RDF descriptors [148], molecular walk counts [149], 3D-MoRSE 

descriptors [150], BCUT descriptors [151], WHIM descriptors [152], Galvez 

topological charge indices and charge descriptors [153], GETAWAY descriptors 

[154], 2D autocorrelations, functional groups, atom-centred descriptors, 

aromaticity indices [155], Randic molecular profiles [156], electrotopological 

state descriptors [157], linear solvation energy relationship descriptors [158], and 

other empirical and molecular properties. However, not all of the available 

descriptors are needed to fully represent the features of a particular class of 

compounds. Contrarily, without appropriate descriptors, the performance of a 

developed ML VS tool may be affected to some degrees. This is caused by the 

noise arising from the high redundancy and overlapping of the available 

descriptors. For example, the Xue descriptor set and 98 1D and 2D descriptors are 

widely used in machine learning based virtual screening models. These 98 

descriptors were selected from the descriptors derived from MODEL program by 

discarding those that were redundant and unrelated to the problem studied here. 

The Xue descriptor set and these 98 descriptors are listed in Table 2-2 and Table 

2-3. 
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Table 2-2 Xue descriptor set 
 

Descriptor Class  Number of 

descriptor in 

class  

Descriptors 

Simple molecular 

properties  

18  Molecular weight, Number of rings, rotatable bonds, 

H-bond donors, and H-bond acceptors, Element counts 

Molecular connectivity 

and shape  

28  Molecular connectivity indices, Valence molecular 

connectivity indices, Molecular shape Kappa indices, 

Kappa alpha indices, flexibility index 

Electro-topological 

state  

97  Electrotopological state indices, and Atom type 

electrotopological state indices, Weiner Index, Centric 

Index, Altenburg Index, Balaban Index, Harary Number, 

Schultz Index, PetitJohn R2 Index, PetitJohn D2 Index, 

Mean Distance Index, PetitJohn I2 Index, Information 

Weiner, Balaban RMSD Index, Graph Distance Index  

Quantum chemical 

properties  

31  Polarizability index, Hydrogen bond acceptor basicity 

(covalent HBAB), Hydrogen bond donor acidity (covalent 

HBDA), Molecular dipole moment, Absolute hardness, 

Softness, Ionization potential, Electron affinity, Chemical 

potential, Electronegativity index, Electrophilicity index, 

Most positive charge on H, C, N, O atoms, Most negative 

charge on H, C, N, O atoms, Most positive and negative 

charge in a molecule, Sum of squares of charges on 

H,C,N,O and all atoms, Mean of positive charges, Mean of 

negative charges, Mean absolute charge, Relative positive 

charge, Relative negative charge  

Geometrical properties 25 Length vectors (longest distance, longest third atom, 4th 

atom), Molecular van der Waals volume, Solvent 

accessible surface area, Molecular surface area, van der 

Waals surface area, Polar molecular surface area, Sum of 

solvent accessible surface areas of positively charged 

atoms, Sum of solvent accessible surface areas of 

negatively charged atoms, Sum of charge weighted solvent 

accessible surface areas of positively charged atoms, Sum 

of charge weighted solvent accessible surface areas of 

negatively charged atoms, Sum of van der Waals surface 

areas of positively charged atoms, Sum of van der Waals 
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surface areas of negatively charged atoms, Sum of charge 

weighted van der Waals surface areas of positively 

charged atoms, Sum of charge weighted van der Waals 

surface areas of negatively charged atoms, Molecular 

rugosity, Molecular globularity, Hydrophilic region, 

Hydrophobic region, Capacity factor, 

Hydrophilic-Hydrophobic balance, Hydrophilic Intery 

Moment, Hydrophobic Intery Moment, Amphiphilic 

Moment 
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Table 2-3 98 molecular descriptors used in this work. 
 

Descriptor Class No of 

Descriptors 

in Class 

Descriptors 

Simple molecular 

properties 

18 Number of C,N,O,P,S, Number of total atoms, Number of  rings, 

Number of bonds, Number of non-H bonds, Molecular weight,, Number 

of rotatable bonds, number of H-bond donors, number of H-bond 

acceptors, Number of 5-member aromatic rings, Number of 6-member 

aromatic rings, Number of N heterocyclic rings, Number of O 

heterocyclic rings, Number of S heterocyclic rings. 

Chemical 

properties 

3 Sanderson electronegativity, Molecular polarizability, ALogp 

Molecular 

Connectivity and 

shape 

35 Schultz molecular topological index, Gutman molecular topological 

index, Wiener index, Harary index, Gravitational topological index, 

Molecular path count of length 1-6, Total path count, Balaban Index J, 

0-2th valence connectivity index, 0-2th order delta chi index, Pogliani 

index, 0-2th Solvation connectivity index, 1-3th order Kier shape index, 

1-3th order Kappa alpha shape index, Kier Molecular Flexibility Index, 

Topological radius, Graph-theoretical shape coefficient, Eccentricity, 

Centralization, Logp from connectivity. 

Electro-topological 

state 

42 Sum of Estate of atom type sCH3, dCH2, ssCH2, dsCH, aaCH, sssCH, 

dssC, aasC, aaaC, sssC, sNH3, sNH2, ssNH2, dNH, ssNH, aaNH, dsN, 

aaN, sssN, ddsN, aOH, sOH, ssO, sSH; Sum of Estate of all heavy 

atoms, all C atoms, all hetero atoms, Sum of Estate of H-bond acceptors, 

Sum of H Estate of atom type HsOH, HdNH, HsSH, HsNH2, HssNH, 

HaaNH, HtCH, HdCH2, HdsCH, HaaCH, HCsats, HCsatu, Havin, Sum 

of H Estate of H-bond donors 

 
 
In this work, the 2D structure of each of the compounds was generated by using 

ChemDraw or downloaded from databases such as PubChem and BindingDB 

[159]. Then they were subsequently converted into 3D structure by using 

CORINA [160]. The 3D structure of each compound was manually inspected to 

ensure the proper chirality of each chiral agent. All salts and elements, such as 

sodium or calcium, were removed prior to descriptor calculation. The optimization 

of generated geometries was conducted without symmetry restrictions. The 3D 
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structures of the compounds then were used to compute the molecular descriptors 

by the in-house programs and scripts. 

 

2.2.2 Scaling of molecular descriptors 

 

Chemical descriptors are normally scaled before they can be employed for 

machine learning. Scaling of chemical descriptors ensures that each of descriptor 

has unbiased contribution in creating the prediction models[161]. Scaling can be 

done by a number of ways e.g auto-scaling, range scaling, Pareto scaling, and 

feature weighting [162, 163]. In this work, range scaling is used to scale the 

chemical descriptor data. Range scaling is done by dividing the difference 

between descriptor value and the minimum value of that descriptor with the range 

of that descriptor:  

݀௜௝
௦௖௔௟௘ௗ ൌ

ௗ೔ೕିௗೕ,೘೔೙

ௗೕ,೘ೌೣିௗೕ,೘೔೙
                                 (3) 

Where ݀௜௝
௦௖௔௟௘ௗ , ݀௜௝ ij

 , d
j,max

 and d
j,min 

are the scale descriptor value of 

compound i, absolute descriptor value of compound i , maximum and minimum  

values of descriptor j respectively. The scaled descriptor value falls in the range of 

0 and 1.  

 
 

2.3 Statistical machine learning methods in ligand based virtual 

screening 
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Machine learning methods employed in this work are SVM, Probabilistic Neural 

Network (PNN), k nearest neighbor (KNN). They are explained below in 

subsequent sub sections. For a comparative study, Tanimoto similarity searching 

method is also introduced. Websites for the freely downloadable codes of some 

methods are given in Table 2-4.  

 

Table 2-4 Websites that contain freely downloadable codes of machine learning methods. 
 

BKD 
Binding Database http://www.bindingdb.org/bind/vsOverview.jsp 

Decision Tree 
PrecisionTree http://www.palisade.com.au/precisiontree/ 
DecisionPro http://www.vanguardsw.com/decisionpro/jdtree.htm 
C4.5 http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html
C5.0 http://www.rulequest.com/download.html 

KNN 
k Nearest 
Neighbor 

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html 

PERL Module for 
KNN 

http://aspn.activestate.com/ASPN/CodeDoc/AI-Categorize/AI/Categorize/kNN.html 

Java class for 
KNN 

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/old/KNN.html 

LDA 
DTREG http://www.dtreg.com/lda.htm 

LR 
Paul Komarek's 
Logistic 
Regression 
Software 

http://komarix.org/ac/lr/lrtrirls 

Web-based logistic 
regression 
calculator 

http://statpages.org/logistic.html 

Neural Network 
BrainMaker http://www.calsci.com/ 
Libneural http://pcrochat.online.fr/webus/tutorial/BPN_tutorial7.html 
fann http://leenissen.dk/fann/ 
NeuralWorks 
Predict 

http://www.neuralware.com/products.jsp 

NeuroShell 
Predictor 

http://www.mbaware.com/neurpred.html 

SVM 
SVM light http://svmlight.joachims.org/ 
LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
mySVM http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html 
BSVM  http://www.csie.ntu.edu.tw/~cjlin/bsvm/ 
SVMTorch http://www.idiap.ch/learning/SVMTorch.html 
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2.3.1 Support vector machines method 

 

The process of training and using a SVM VS model for screening compounds 

based on their molecular descriptors is schematically illustrated in Figure 2-1. 

SVM is based on the structural risk minimization principle of statistical learning 

theory[164, 165], which consistently shows outstanding classification performance, 

is less penalized by sample redundancy, and has lower risk for over-fitting[166, 

167]. In linearly separable cases, SVM constructs a hyper-plane to separate active 

and inactive classes of compounds with a maximum margin. A compound is 

represented by a vector xi composed of its molecular descriptors. The hyper-plane 

is constructed by finding another vector w and a parameter b that minimizes
2

w  

and satisfies the following conditions: 

 1,  for 1i ib y     w x  Class 1 (active)   (4) 

 1,  for 1i ib y     w x  Class 2 (inactive)   (5) 

where yi is the class index, w is a vector normal to the hyperplane, /b w  is the 

perpendicular distance from the hyperplane to the origin and 
2

w  is the Euclidean 

norm of w. Base on w and b, a given vector x can be classified by f(x) =

[( ) ]sign b w x .  A positive or negative f(x) value indicates that the vector x 

belongs to the active or inactive class respectively.  

In nonlinearly separable cases, which frequently occur in classifying compounds 

compounds of diverse structures [168-175], SVM maps the input vectors into a 

higher dimensional feature space by using a kernel function K(xi, xj). We used RBF 
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RBF kernel 
2 2/ 2

( , ) j i

i jK e
  x x

x x which has been extensively used and 

consistently shown better performance than other kernel functions [176-178]. 

Linear SVM can then applied to this feature space based on the following decision 

function: 0

1

( ) ( ( , ) )
l

i i i
i

f sign y K b


 x x x , where the coefficients i
0 and b are 

determined by maximizing the following Langrangian expression: 

1 1 1

1
( , )

2

l l l

i i j i j i j
i i j

y y K  
  

  x x  under the conditions  0i      and     





l

i
ii y

1

0 . A positive or negative f(x) value indicates that the vector x is an 

inhibitor or non-inhibitor respectively. For the SVM model in this study, hard 

margin SVM was used and  was scanned between 0 and 15 for the best performing 

performing model. Software LibSVM[179], an integrated software for support 

vector classification, regression and distribution estimation, was chosen to do the 

machine learning in this work. 
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Figure 2-1 Schematic diagram illustrating the process of the training a prediction model and using 
it for predicting active compounds of a compound class from their structurally-derived properties 
(molecular descriptors) by using support vector machines. A, B, E, F and (hj, pj, vj,…) represents 
such structural and physicochemical properties as hydrophobicity, volume, polarizability, etc. 
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2.3.2 K-nearest neighbor method 

 

K-NN measures the Euclidean distance 
2

iD  x x  between a compound x 

and each individual inhibitor or non-inhibitor xi in the training set[180, 181]. A total 

of k number of vectors nearest to the vector x are used to determine the decision 

function f(x): 

1

ˆ ( ) arg max ( , ( ))
k

v V i
i

f v f


 x x                                    (6) 

where ( , ) 1 if  and ( , ) 0 if a b a b a b a b      , arg max is the maximum of the 

function, V is a finite set of vectors {v1,...,vs} and ˆ ( )f x  is an estimate of f(x). 

Here estimate refers to the class of the majority compound group (i.e. inhibitors or 

non-inhibitors) of the k nearest neighbors. The procedure of k-NN is illustrated in 

Figure 2-2.  
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Figure 2-2 Schematic diagram illustrating the process of the prediction of compounds of a 
particular property from their structure by using a machine learning method – k-nearest neighbors 
(K-NN). A, B: feature vectors of agents with the property; E, F: feature vectors of agents without 
the property; feature vector (hj, pj, vj,…) represents such structural and physicochemical 
properties as hydrophobicity, volume, polarizability, etc. 
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2.3.3 Probabilistic neural network method 

 

Probabilistic Neural Network (PNN) belongs to the neural network methods. It is 

designed for classification through the use of Bayes’ optimal decision rule [127]:

( ) ( )i i i j j jh c f h c fx x , where hi and hj are the prior probabilities, ci and cj are the 

costs of misclassification and fi(x) and fj(x) are the probability density function for 

class i and j respectively. An unclassified vector x is classified into population i if 

the product of all the three terms is greater for class i than for any other class j (not 

equal to i). In most applications, the prior probabilities and costs of 

misclassifications are treated as being equal. The probability density function for 

each class for a univariate case can be estimated by using the Parzen’s 

nonparametric estimator[182], 

           
1

1
( ) ( )

n
i

i

g W
n 


  x x

x                  (7)  

where n is the sample size,  is a scaling parameter which defines the width of the 

bell curve that surrounds each sample point, W(d) is a weight function which has 

its largest value at d = 0 and (x – xi) is the distance between the unknown vector 

and a vector in the training set. The Parzen’s nonparametric estimator was later 

expanded by Cacoullos for the multivariate case. 

          ,1 1,
1

11 1

1
( , , ) ( , , )

n
p p ii

p
ip p

x xx x
g x x W

n   


  


      (8) 

The Gaussian function is frequently used as the weight function because it is well 

behaved, easily calculated and satisfies the conditions required by Parzen’s 

estimator. Thus the probability density function for the multivariate case becomes 
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2

1 1

1
( ) exp( )

pn
j ij

i j j

x x
g

n  

 
    

 
 x                (9)  

The network architectures of PNN are determined by the number of compounds 

and descriptors in the training set. PNN are constituted of four layers, the input 

layer, the pattern layer, the summation layer and the output layer. The input layer 

provides input values to all neurons in the pattern layer and has as many neurons 

as the number of descriptors in the training set. The number of pattern neurons is 

determined by the total number of compounds in the training set. Each pattern 

neuron computes a distance measure between the input and the training case 

represented by that neuron and then subjects the distance measure to the Parzen’s 

nonparametric estimator. The summation layer has a neuron for each class and the 

neurons sum all the pattern neurons’ output corresponding to members of that 

summation neuron’s class to obtain the estimated probability density function for 

that class. Finally, the single neuron in the output layer then estimates the class of 

the unknown vector x by comparing all the probability density function from the 

summation neurons and choosing the class with the highest probability density 

function.  Figure 2-3 illustrates the procedure of PNN method. 
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Figure 2-3 Schematic diagram illustrating the process of the prediction of compounds of a 
particular property from their structure by using a machine learning method –probabilistic neural 
networks (PNN). A, B: feature vectors of agents with the property; E, F: feature vectors of agents 
without the property; feature vector (hj, pj, vj,…) represents such structural and physicochemical 
properties as hydrophobicity, volume, polarizability, etc 
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2.3.4 Tanimoto similarity searching methods 

 

Determining if two compounds are similar to each other or not in a training 

dataset can be conducted by using the Tanimoto coefficient sim(i,j) [129] 

               (10)

 

where l is the number of molecular descriptors. A compound i is considered to be 

similar to a known active j in the active dataset if the corresponding sim(i,j) value 

is greater than a cut-off value. In this work, in computing sim(i,j), the molecular 

descriptor vectors xis were scaled with respect to all of the MDDR. The cut-off 

values for similarity compounds are typically in the range of 0.8 to 0.9 [183, 184]. 

2.3.5 Combinatorial SVM method 

 

In combinatorial strategy, SVM models for each receptor subtype are separately 

constructed, which are subsequently used for parallel screening against each 

individual subtype to find compounds that only bind to one of the subtypes 

(putative subtype selective ligands) or simultaneously bind to multiple subtypes 

(putative subtype non-selective ligands) [99, 232]. Figure 2-4 shows the process 

of combinatorial SVM method. 

1

2 2

1 1 1

( , )
( ) ( )

l

di dj
d

l l l

di dj di dj
d d d

x x
sim i j

x x x x



  


 


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Figure 2-4 Schematic diagram of combinatorial SVM method. 

2.3.6 Two-step Binary relevance SVM method 

 

Subtype selective ligands were selected by two steps (Figure 2-5). In the first 

step, a high performance SVM model was developed for each receptor subtype to 

select ligands of that subtype regardless of their selectivity towards other 

subtypes. The high performance in selecting ligands of a subtype was achieved by 

using comprehensive sets of known ligands and putative non-ligands of the 

corresponding receptor to train the respective SVM model [206]. In the second 

step, the Binary relevance (BR) method [215] was used for more refined selection 
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of subtype selective ligands from the putative ligands selected in the first step. BR 

is a popular multiple binary classification method that transforms the original 

N-label dataset into N pairs of datasets with samples of each label as positive 

dataset and samples of the other N-1 labels as negative dataset [215]. 

 

Figure 2-5 Schematic diagram of two-step binary relevance SVM method. 

2.4 Statistical machine learning methods model evaluations 

2.4.1 Model validation and parameters optimization 

 

Different Statistical learning methods (SLMs) have types of parameters that must 
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be optimized. In this work SVM is trained by using a Gaussian radian basis kernel 

function that has an adjustable parameter σ. For PNN, the only parameter to be 

optimized is a scaling parameter σ. In KNN, the optimum number of nearest 

neighbors, k, needs to be derived for each training set. Optimization of the 

parameter for each of these SLMs is conducted by scanning the parameter through 

a range of values. The set of parameters that produces the best pharmacological 

property prediction model, which is determined by using cross-validation methods, 

such as 5-fold cross-validation, 10-fold cross-validation or a modeling testing set, 

is used to construct a final prediction model which is then further validated to 

ensure that it is valid and useful for further prediction. One of the usual ways to 

assess or to find the optimum parameters for a model built by machine learning is 

to see its performance either by independent validation set or cross validation. In 

this work, models were validated by using both manually segregated a part of data 

as independent validation set, and also by cross validation. There are various types 

of cross validation commonly used in many statistical studies such as repeated 

random sub-sampling cross validation, k-fold cross validation, and leave one out 

cross validation. In this work, we have applied 5-fold cross validation. For 5-fold 

cross-validation, these compounds are randomly divided into five subsets of equal 

size. Each of these folds contains equal number of positive and negative data, 

thereby rendering it a stratified cross-validation.  Four subsets are selected as the 

training set and the fifth as the validation set. This process is repeated five times 

such that every subset is selected as a validation set once. The SVM models were 

saved in each case and prediction was done for validation data. 
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2.4.2 Performance evaluation methods 

 

Measurements such as sensitivity, specificity and the overall prediction accuracy 

are employed to quantitatively assess the performance of virtual screening models. 

They are defined in terms of true positives TP (pharmaceutical agents possessing a 

specific pharmacological property), true negatives TN (pharmaceutical agents not 

possessing a specific pharmacological property), false positives FP 

(pharmaceutical agents not possessing a specific pharmacological property but 

predicted as agents possessing the specific pharmacological property) and false 

negatives FN (pharmaceutical agents possessing a specific pharmacological 

property but predicted as agents not possessing the specific pharmacological 

property). Sensitivity and specificity are the measurement of prediction accuracy 

for pharmaceutical agents possessing a specific pharmacological property and 

agents not possessing that pharmacological property respectively. The overall 

prediction accuracy (Q) and Matthews correlation coefficient (MCC) [185] are 

used to measure the overall prediction performance. SE, SP, Q and MCC are 

defined as follows: 

                                               (11) 

                                               (12) 

                                               (13) 

                        (14) 

The typical measurements of a model performance in screening large libraries 

include [58] yield (percentage of known positives predicted as virtual hits), 
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hit-rate (percentage of virtual hits that are known positives), false hit-rate 

(percentage of virtual hits that are known negatives) and enrichment factor EF 

(magnitude of hit-rate improvement over random selection): 

 

Yield = SE                                                (15) 

Hit-rate = TP/(TP+FP)                                      (16) 

False hit-rate = FP/(TP+FP)                                  (17) 

Enrichment factor EF = hit-rate / (TP+FN)/(TP+FN+TN+FP)      (18) 

 

2.4.3 Overfiting 

 

Overfitting is a major concern in machine learning classification methods. It 

happens when a model that agrees well with the observed data but has no predictive 

ability, which means it does not have any value to unseen or future data. There are 

two main types of overfitting situations: (1) a model more flexible than it needs to 

be and (2) a model including irrelevant descriptors [186]. An over-fitted 

classification system tends to obtain much higher prediction accuracies in the 

cross-validation sets than in the independent validation sets. Hence frequently used 

method for checking whether a model is overfitted is to compare the prediction 

accuracies in the cross-validation procedure with those found in testing independent 

validation sets [186]. 

 

2.5 Feature reduction methods in biomarker identification 
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2.5.1 Data normalization 

The purpose of normalization is to remove systematic variations from the 

expression values, so that biological difference can be easily distinguished and the 

comparison of expression levels across samples can be performed. In microarray 

experiments, all the values are fluorescent intensities, which are directly 

comparable. Therefore the normalization among genes and arrays [187] are both 

possible.  

The popular normalization methods for microarray experiments include 

global normalization using all genes on the array, and housekeeping genes 

normalization using constantly expressed housekeeping/invariant genes [188]. 

Since housekeeping genes are not as constantly expressed as assumed previously 

[189], using housekeeping genes normalization might introduce extra potential 

sources of error. It was further approved that normalization using a reduced subset 

of genes was less statistically robust than the normalization using the entire gene 

set [190]. Currently, a typical normalization procedure is (1) normalizing the 

expression levels of each sample to zero-mean and unit variance, and then (2) 

normalizing the expression levels of each gene to zero-mean and unit variance 

over all the samples. This normalization method has been shown to perform well 

[191, 192] and is applied in this project. 

 

2.5.2 Recursive features elimination SVM 

 

a. Overview of the gene selection procedure 

A novel gene selection procedure method based on Support Vector Machines 
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classifier, recursive feature elimination, multiple random sampling strategies and 

multi-step evaluation of gene-ranking consistency was established (Figure 2-4): 

(1) After preprocessing the original data, by using random sampling method, a 

large number of training-test sample combinations are generated from the original 

data set. 

(2) The large number of sample combinations is divided into n groups, and 

each group contains 500 sample combinations. 

(3) In each training-test sample combination of each group, SVM and RFE 

are used to classify the samples (SVM classifiers) and rank the genes (RFE gene 

rank criteria). Therefore 500 gene ranking sequences are formed. 

(4) The consistency evaluation can be performed based on the 500 sequences 

and a certain number of genes (for example, k genes) can be eliminated.  

(5) Step (3) and (4) can be iteratively done until no gene can be eliminated.  

(6) The gene subset, which gives us the highest overall accuracies of the 500 

test sample sets, can be selected as gene signatures of this group. By this way, we 

can obtain n gene signatures. 

(7) The stability evaluation of the gene signatures can be performed by 

looking into the overlap gene rate of the n gene signatures. 

Below Recursive feature elimination is introduced first and followed by a 

detailed introduction of the whole feature selection procedure. 
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Figure 2-6 Overview of the gene selection procedure. 
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b. Recursive feature elimination 

During gene selection procedure, the genes ranked according to their 

contribution to the SVM classifiers. The contributions of genes are calculated by 

Recursive feature elimination (RFE) procedure, which sort genes according to a 

gene-ranking function generated from SVM classifier. SVM training process 

needs to find the solution for the optimum problem (also known as objective 

function or cost function) shown in equation: 

           

Under the constraints           and      , i=1,2,…n. 

Where                   , K is the kernel function. 

The gene-ranking function of RFE can be defined as the change in the 

objective function J upon removing a certain gene. When a given feature is 

removed or its weight wk is reduced to zero, the change in the cost function J(k) is 

          

where the change in weight Dwk=wk - 0 corresponds to the removal of feature k.  

Under the assumption that the removal of one feature will not significantly 

influence the values of the change of cost function can be estimated as  

         

Where H is the matrix with elements           , and H(-k) is the matrix 

computed by using the same method as that of matrix H but with its kth 

component removed.  

The change in the cost function indicates the contribution of the feature to the 
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decision function, and serves as an indicator of gene ranking position [193]. 

c. Sampling, feature elimination and consistency evaluation 

In order to present statistical meaning, gene selection is conducted based on 

multiple random sampling. Each random sampling divide all microarray samples 

into a training set which contains half number of samples and an associates test set 

which contains another half number of samples. This sampling method can be 

treated as a special case of the bootstrap technique. Many researchers showed that 

bootstrap-related techniques present more accurate estimation than 

cross-validation on small sample sets [194, 195]. By using this random sampling, 

thousands of training-test sets, each containing a unique combination of samples, 

are generated. These thousands of randomly generated training-test sets are 

randomly divided into several sampling groups, with equal number of training-test 

sets (such as 500 traing-test sets) in each group. Every sampling group is then 

used to derive a signature by RFE-SVM. 

In every training-test sampling group generated by multiple random sampling, 

each training-set (totally 500 training-test sets) is used to train a SVM 

class-differentiation system and the genes are ranked by using Recursive feature 

elimination (RFE), according to the contribution of genes to the SVM classifier. In 

order to derive a gene-ranking criterion consistent for all iterations and all the 500 

training-test sets in this group, a SVM class-differentiation system with a 

universal set of globally optimized parameters, which give the best average 

class-differentiation accuracy over all of the 500 test sets in this group, is applied 

by RFE gene-ranking function at every iteration step and for every training-test 

set. 

To further reduce the chance of erroneous elimination of predictor-genes, 
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additional gene-ranking consistency evaluation steps are implemented on top of 

the normal RFE procedures in each group: 

(1) For every training-set, subsets of genes ranked in the bottom (which give 

least contribution to the SVM classification procedure) with combined score lower 

than the first few top-ranked genes (which give highest contribution to the SVM 

classification procedure) are selected such that collective contribution of these 

genes less likely outweigh top-ranked ones.  

(2) For every training-set, the step (1) selected genes are further evaluated to 

choose those not ranked in the upper 50% in previous iteration so as to ensure that 

these genes are consistently ranked lower.  

(3) A consensus-scoring scheme is applied to step (2) selected genes such that 

only those appearing in most of the 500 testing-sets were eliminated.  

For each sampling group, different SVM parameters are scanned, various 

RFE iteration steps are evaluated to identify the globally optimal SVM parameters 

and RFE iteration steps that give the highest average class-differentiation accuracy 

for the 500 testing-sets. 
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3 Chapter 3 A two-step Target Binding and Selectivity 

Support Vector Machines Approach for Virtual 

Screening of Dopamine Receptor Subtype-Selective 

Ligands 

Summary 

Target selective drugs, such as dopamine receptor (DR) subtype selective ligands, 

are developed for enhanced therapeutics and reduced side effects. In-silico 

methods have been explored for searching DR selective ligands, but encountered 

difficulties associated with high subtype similarity and ligand structural diversity. 

Machine learning methods have shown promising potential in searching target 

selective compounds. Their target selective capability can be further enhanced. In 

this work, we introduced a new two-step support vector machines target-binding 

and selectivity screening method for searching DR subtype-selective ligands, 

which was tested together with three previously-used machine learning methods 

for searching D1, D2, D3 and D4 selective ligands. It correctly identified 

50.6%-88.0% of the 21-408 subtype selective and 71.7%-81.0% of the 39-147 

multi-subtype ligands. Its subtype selective ligand identification rates are 

significantly better than, and its multi-subtype ligand identification rates are 

comparable to the best rates of the previously used methods. Our method 

produced low false-hit rates in screening 13.56M PubChem, 168,016 MDDR and 

657,736 ChEMBLdb compounds. Molecular features important for subtype 
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selectivity were extracted by using the recursive feature elimination feature 

selection method. These features are consistent with literature-reported features. 

Our method showed similar performance in searching estrogen receptor subtype 

selective ligands. Our study demonstrated the usefulness of the two-step target 

binding and selectivity screening method in searching subtype selective ligands 

from large compound libraries. 
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3.1 Introduction 

 

Drugs that selectively modulate protein subtypes are highly useful for achieving 

therapeutic efficacies at reduced side effects [90-93]. For some targets such as 

dopamine receptors, all of the approved drugs are subtype non-selective, and this 

non-selectivity directly contributes to their observed side effects and adversely 

affects their application potential [93]. There is a need for developing subtype 

selective drugs against these targets [92-96]. 

 

The drug-binding domains of some protein subtypes are highly similar to each 

other. For instance, the sequence similarities among the transmembrane regions of 

dopamine receptor subtypes are at high levels of 72%, 73% and 90% between 

D2-like subfamily members D2 and D4, D3 and D4, and D2 and D3 respectively 

[196], and at the levels of 68%, 70% and 66% between dopamin receptor subtypes 

D1 and D2, D1 and D3 and D1 and D4 respectively. Ligand binding selectivity to 

these subtypes is both determined by the structural and physicochemical features 

of the conserved and non-conserved residues [197]. For instance, while D2 

receptor and D3 receptor share high sequence identity in the seven helices regions 

that make up most of the binding sites, different compositions of the loop regions 

affect the contour and topography of the binding pockets and hydrogen bonding 

sites, which enables subtype selective binding [198, 199]. On the other hand, 

D2/D4 selectivity has been suggested to be determined by mutated residues within 

the second, third, and seventh membrane-spanning segments [197]. 
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The high sequence similarity levels make it more difficult to develop dopamine 

receptor subtype-selective drugs. Efforts have been made in exploring in-silico 

methods for searching dopamine receptor subtype-selective drug leads against 

highly similar subtypes. For instance, 3D-QSAR models have been developed for 

D2, D3 and D4 selective ligands respectively, achieving good prediction 

performances with R2 and Q2 values in the ranges of 0.89-0.97 and 0.58-0.84 

respectively [198-201]. A GALAHAD based selective pharmacophore model has 

been constructed for D1/D2 selective agents [202]. CoMFA and CoMSIA models 

have been developed for D2, D3 and D4 selective ligands [203]. 

 

These models have been developed by using 12-163 ligands. Significantly 

higher numbers of dopamine receptor ligands including subtype selective [91, 93] 

and multi-subtype [204, 205] ligands have been reported. These ligands are of 

high structural diversity. The published D1, D2, D3 and D4 ligands are distributed 

in 225, 642, 463 and 433 compound families (Table 3-1) compared to the 90-388 

families covered by the inhibitors of many kinases [99]. These structurally diverse 

ligands are not expected to be fully presented by the existing models trained from 

limited numbers of ligands. More extensive exploration of the available ligands is 

needed for developing more effective in-silico tools for searching 

subtype-selective dopamine receptor ligands. 
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Table 3-1 Datasets of our collected dopamine receptor D1, D2, D3 and D4 ligands, non-ligands 
and putative non-ligands. Dopamine receptor D1, D2, D3 and D4 ligands (Ki <1μM) and 
non-ligands (ki >10μM) were collected as described in method section, and putative non-ligands 
were generated from representative compounds of compound families with no known ligand. 
These datasets were used for training and testing the multi-label machine learning models. 
 
Dopamine 
Receptor 
Subtype 

Training Dataset Independent Testing Dataset 
Positive 
Samples 

Negative Samples 
Positive 
Samples 

Negative 
Samples 

Ligands 
published 

before 2010 
(No of 

chemical 
families 

covered by 
ligands)  

Non-ligands 
published 

before 2010 

Putative 
non-ligands 

Ligands 
published 
since 2010 
(percent of 

ligands 
outside 
training 
chemical 
families) 

Non-ligands 
published 
since 2010 

D1 491 (225) 264 65198 59 (25.42%) 25 

D2 2202 (642) 1577 63687 135 (16.30%) 65 

D3 1355 (463) 631 62927 76 (18.42%) 28 

D4 1486 (433) 526 63272 29 (34.48%) 33 

 

 

Machine learning methods are particularly useful for developing virtual 

screening (VS) models from structurally diverse compounds and for searching 

large chemical libraries [206-208]. The purchasable real chemical libraries have 

been expanded to >1 million compounds [209] and the public chemical databases 

have been expanded at faster paces with PubChem [210], ZINC [211], and 

ChEMBL [212] databases accumulating >30 million compounds, >13 million 

purchasable compounds, and >1 million bioactive compounds respectively. The 

available chemical space defined by these databases may be more extensively 

explored by the use of machine learning methods [213, 214]. 

 

Moreover, several multi-label machine learning methods have been used for 

developing in-silico tools to predict protein selective compounds within a protein 

family or subfamily. For instance, multi-label support vector machines 
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(ML-SVM), multi-label k-nearest-neighbor (ML-kNN) and multi-label 

counter-propagation neural network (ML-CPNN) methods have been used for 

predicting isoform specificity of P450 substrates [97, 98]. Combinatorial support 

vector machines (Combi-SVM) method has been used for identifying dual kinase 

inhibitors selective against single kinase inhibitors of the same kinase pair and 

inhibitors of other kinases [99]. It is of interest to explore some of these methods 

and to evaluate their capability in predicting subtype selective dopamine receptor 

ligands. 

 

These existing methods are based on statistical learning algorithms trained by 

compounds active and inactive against a specific protein or subtype [97-99, 206]. 

In these algorithms, the inactive chemical space can be represented by a large 

number of inactive compounds in a training dataset that typically include 

representative compounds of chemical families or biological classes. In particular 

the inactive training dataset of a subtype is typically too large to further add 

sufficient number of active compounds of other subtypes [97-99, 206]. 

Consequently, although these methods have shown good performance in selecting 

ligands of a subtype, they do not always distinguish subtype selective and 

non-selective ligands at good accuracy levels. For instance, the ML-SVM, 

ML-kNN and ML-CPNN methods predict 34%-89% isoform selective substrates 

as selective and 82%-99% isoform non-selective substrates as non-selective [97]. 

Combi-SVM identifies 51.9%-96.3% single kinase inhibitors as kinase selective 

with respect to a specific kinase pair and 12.2%-57.3% dual kinase inhibitors as 

dual inhibitors [99]. Therefore, new methods need to be explored for better 

distinguishing subtype selective and non-selective ligands.  
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In this work, we introduced a new method, the two-step binary relevance SVM 

(2SBR-SVM) method for improving the ability in distinguishing subtype selective 

and non-selective ligands. Our method adopts a two-step approach, with the first 

step focusing on the identification of putative ligands of a receptor subtype 

regardless of their possible binding to other subtypes, and the second step 

focusing on the further separation of subtype selective and multi-subtype ligands. 

In the first step, a SVM model was developed for each receptor subtype to select 

putative ligands regardless of their possible binding to other subtypes using the 

same method as that described in our earlier studies [206]. In the second step, the 

Binary relevance (BR) method [215] was used for more refined separation of 

subtype selective and multi-subtype ligands. Specifically, the training datasets of 

the multiple receptor subtypes were re-arranged into multiple new training 

datasets, one for each subtype. For a particular subtype, the ligands of that subtype 

were used as positive samples and the ligands of the other subtypes as the negative 

samples to train a SVM model for maximally separating ligands of a subtype with 

those of other subtypes. 

 

Our new method 2SBR-SVM was tested together with three previously-used 

methods Combi-SVM [99] and two methods in the Mulan software package 

[215]: the ML-kNN [97, 216] and Random k-labelset Decision Tree (RAkEL-DT) 

[217, 218] methods. The purpose of these tests was to evaluate the performance of 

the previously used methods, and to determine to what extent our new method can 

improve the performance in selecting dopamine subtype selective ligands. 
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A number of dopamine receptor subtype selective ligands have been 

therapeutically explored. For instance, most currently used dopamine agonists for 

the symptomatic treatment of Parkinson's disease are selective for D2-like 

receptors primarily because drugs acting on both the D1 and D2 receptor families 

tend to additively produce motor complications such as dyskinesia [219]. 

D2-selective drugs have exhibited therapeutic efficacy in animal studies [220] and 

clinical trials [221]. D3-selective drugs have been explored for the treatment of 

schizophrenia and drug addiction [222, 223]. D4-selective ligands have shown 

therapeutic potential against erectile dysfunction [224, 225]. Efforts have also 

been directed to the development of D1-selective [226, 227] ligands against 

Parkinson's disease and other related CNS disorders. Therefore, our tests were 

conducted on D1, D2, D3 and D4 selective and non-selective ligands. 

 

Our VS models were trained from 491-2202 dopamine receptor D1, D2, D3, 

and D4 ligands published before 2010 with all the known subtype selective 

ligands and some known multi-subtype ligands excluded. The reason for the 

exclusion of these subtype selective and multi-subtype ligands from the training 

process is to test to what extent our VS models can identify subtype selective 

ligands without explicit knowledge of the known subtype selective and 

multi-subtype ligands. The prediction performance of these models was evaluated 

by 29-135 known D1, D2, D3 and D4 ligands and 25-65 known non-ligands 

published since 2010 and not in the training datasets. The subtype selectivity of 

these models was tested on the 21-408 known subtype selective ligands and the 

39-147 known multi-subtype ligands not in the training datasets.  

 



Chapter 3 A two-step Target Binding and Selectivity Support Vector Machines Approach for Virtual Screening 
of Dopamine Receptor Subtype-Selective Ligands 

   60

The performance of our new method, 2SBR-SVM, and the method developed in 

our previous studies, Combi-SVM [99], in screening large compound libraries was 

evaluated by 13.56 million PubChem compounds [210], 168,016 MDL Drug Data 

Report (MDDR) database compounds, and 657,736 ChEMBLdb compounds [125] 

which represent general chemical libraries, patented bioactive agents, and 

published bioactive compounds respectively. The capability of 2SBR-SVM in 

identifying subtype selective ligands of other receptors was further evaluated 

against estrogen receptor (ER) ERα and ERβ subtype ligands by using the same 

training and testing procedures as those of the dopamine receptor subtype ligands. 

 

 

3.2 Method 

3.2.1 Datasets 

 

D1, D2, D3 and D4 ligands and non-ligands were collected from comprehensive 

search of literatures [223, 226, 228, 229] and ChEMBLdb database [125] by using 

combinations of keywords: “dopamine”, “D1 receptor”, “D2 receptor”, “D3 

receptor”, “D4 receptor”, “ligand”, “binding”, “binder”, “subtype selective”, and 

“selective ligand”. As the ligands were collected from different sources with their 

binding affinities measured under different assays and conditions, some level of 

variations in binding affinities is expected. Therefore, we tentatively selected 

compounds with binding affinity Ki < 1μM against a dopamine receptor as its 

ligands, and those with binding affinity Ki > 10μM as non-ligands. The 1μM to 

10μM binding affinity gap between ligands and non-ligands was used for reducing 
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the possible influence of experimental binding affinity variations on the 

robustness of developed VS models. Some of the dopamine receptor ligands have 

been explicitly reported to be subtype selective or multi-subtype ligands, which 

can be used for testing the subtype selective capability of our developed VS 

models. Thus for subtypes with ≥20 subtype selective or ≥20 multi-subtype 

ligands, the corresponding ligands were used as independent testing datasets (a 

cut-off of 20 ligands was used to ensure the testing to be statistically meaningful). 

 

We assembled 491 D1, 2202 D2, 1355 D3 and 1486 D4 ligands published 

before 2010 and 59 D1, 135 D2, 76 D3 and 29 D4 ligands published since 2010 

with unspecified selectivity toward other subtypes, and 264 D1, 1577 D2, 631 D3 

and 526 D4 non-ligands published before 2010 and 25 D1, 65 D2, 28 D3 and 33 

D4 non-ligands published since 2010 with unspecified selectivity toward other 

subtypes. The collected pre-2010 ligands and non-ligands for each receptor 

subtype were used as positive and negative samples of the training dataset for 

developing VS models for that subtype. The collected non-ligands are insufficient 

to cover the vast non-ligand chemical space. Therefore, putative ligands for each 

receptor subtype were generated from the representative compounds of the 

compound families that contain no known ligand of that subtype by using the 

method described in our earlier studies [206]. A total of 65198 D1, 63687 D2, 

62927 D3 and 63272 D4 putative non-ligands were generated and used in 

combination with known non-ligands as the negative samples of the training 

datasets. The collected post-2010 ligands and non-ligands were used as 

independent testing datasets for evaluating the performance of the developed VS 

models. These datasets are summarized in Table 3-1. 
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The use of pre-2010 and post-2010 compounds as training and testing datasets 

was intended to mimic the case of VS models being developed in 2010 and 

subsequently tested a few years later against newly discovered compounds. In 

view that such training and testing datasets and their developed models may not 

be easily reproduced and comparatively evaluated, we designed alternative 

training and testing datasets by randomly separating all ligands and non-ligands of 

a receptor subtype into approximately 10 compound-sets, with 9 compound-sets 

as a training dataset and the remaining 1 as a testing dataset (these training and 

testing datasets contain similar number of compounds as the corresponding ones 

developed from pre-2010 and post-2010 compounds). There are 10 sets of training 

and testing datasets for each subtype with each of the 10 compound-sets used as a 

testing dataset once, all of which were tested in this work. These alternative 

datasets are summarized in Table 3-2. 
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Table 3-2 Statistics of alternative training and testing datasets for D1, D2, D3 and D4 subtypes, 
and the performance of SVM models developed and tested by these datasets in predicting D1, D2, 
D3 and D4 ligands. SE, SP, Q and C are sensitivity, specificity, overall accuracy and Matthews 
correlation coefficient respectively. 
 

Dopamine 
Receptor 
Subtype 

Alternative 
dataset 

Number of 
ligands/non-ligands in 

alternative training and 
testing dataset 

VS performance on testing dataset 

D1 

SE SP Q C 
1 441/58914 and 50/6546 92.00% 99.89% 99.83% 0.79 
2 443/58914 and 48/6546 81.25% 99.93% 99.80% 0.73 
3 443/58914 and 48/6546 91.66% 99.93% 99.87% 0.84 
4 443/58914 and 48/6546 79.10% 99.95% 99.80% 0.73 
5 443/58914 and 48/6546 89.58% 99.89% 99.81% 0.77 
6 442/58914 and 49/6546 91.84% 99.98% 99.92% 0.9 
7 442/58914 and 49/6546 93.88% 99.90% 99.86% 0.83 
8 442/58914 and 49/6546 91.84% 99.98% 99.92% 0.9 
9 442/58914 and 49/6546 89.80% 99.98% 99.91% 0.88 

10 442/58914 and 49/6546 93.88% 99.92% 99.88% 0.84 
AVE    89.48%  99.94%  99.86%  0.82 

S.D    0.05127 0.00036  0.00048  0.06402

S.E.M    0.01621 0.00011  0.00015  0.02025

D2 

Alternative 
dataset 

Number of 
ligands/non-ligands in 

alternative training and 
testing dataset 

SE SP Q C 

1 2178/58914 and 242/6546 88.84% 99.71% 99.32% 0.81 
2 2178/58914 and 242/6546 94.24% 99.79% 99.59% 0.88 
3 2178/58914 and 242/6546 93.00% 99.74% 99.50% 0.86 
4 2178/58914 and 242/6546 93.42% 99.77% 99.54% 0.87 
5 2178/58914 and 242/6546 91.82% 99.58% 99.33% 0.8 
6 2178/58914 and 242/6546 90.91% 99.74% 99.42% 0.84 
7 2178/58914 and 242/6546 94.21% 99.71% 99.51% 0.86 
8 2178/58914 and 242/6546 89.67% 99.71% 99.35% 0.82 
9 2178/58914 and 242/6546 89.67% 99.68% 99.32% 0.81 

10 2178/58914 and 242/6546 92.56% 99.74% 99.48% 0.86 
AVE    91.83%  99.72%  99.44%  84.10% 

S.D    0.01973 0.00058  0.00101  0.02885

S.E.M    0.00624 0.00018  0.00032  0.00912

D3 

Alternative 
dataset 

Number of 
ligands/non-ligands in 

alternative training and 
testing dataset 

SE SP Q C 

1 1215/57564 and 135/6356 93.33% 99.78% 99.64% 0.83 
2 1215/57564 and 135/6356 92.59% 99.79% 99.65% 0.83 
3 1215/57564 and 135/6356 91.85% 99.79% 99.63% 0.83 
4 1215/57564 and 135/6356 91.11% 99.80% 99.63% 0.82 
5 1215/57564 and 135/6356 91.11% 99.85% 99.68% 0.84 
6 1215/57564 and 135/6356 93.33% 99.85% 99.72% 0.87 
7 1215/57564 and 135/6356 92.59% 99.83% 99.68% 0.85 
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8 1215/57564 and 135/6356 90.37% 99.80% 99.60% 0.81 
9 1215/57564 and 135/6536 94.81% 99.86% 99.75% 0.88 

10 1215/57564 and 135/6536 94.81% 99.88% 99.78% 0.89 
AVE    92.59%  99.82%  99.68%  84.50% 

S.D    0.01521 0.00035  0.00058  0.02677

S.E.M    0.00481 0.00011  0.00018  0.00847

D4 

Alternative 
dataset 

Number of 
ligands/non-ligands in 

alternative training and 
testing dataset 

SE SP Q C 

1 1332/57920 and 148/6380 93.91% 99.62% 99.49% 0.80 
2 1332/57920 and 148/6380 93.24% 99.69% 99.54% 0.81 
3 1332/57920 and 148/6380 91.89% 99.78% 99.60% 0.83 
4 1332/57920 and 148/6480 91.89% 99.74% 99.57% 0.82 
5 1332/57920 and 148/6480 91.89% 99.80% 99.63% 0.84 
6 1332/57920 and 148/6480 92.57% 99.89% 99.72% 0.87 
7 1332/57920 and 148/6480 91.21% 99.91% 99.71% 0.87 
8 1332/57920 and 148/6480 94.59% 99.87% 99.75% 0.89 
9 1332/57920 and 148/6380 89.86% 99.78% 99.55% 0.81 

10 1332/57920 and 148/6380 90% 99.78% 99.56% 0.81 
AVE    92.11%  99.79%  99.61%  83.50% 

S.D    0.01540 0.00090  0.00088  0.03136

S.E.M    0.00487 0.00028  0.00028  0.00992
 

 

Dopamine receptor subtype selective ligands have been discovered and 

evaluated based on the criterion that each ligand binds to a specific subtype with 

at least ~10 fold higher binding affinity (Ki value) than that to another subtype 

[230]. Based on this criterion, we collected 97, 21, and 29 D1 selective ligands 

with > 10 fold higher binding affinity over D2, D3 and D4 respectively, 43, 37 

and 63 D2 selective ligands over D1, D3 and D4 respectively, 48, 99 and 85 D3 

selective ligands over D1, D2 and D4 respectively, and 27, 408 and 207 D4 

selective ligands over D1, D2 and D3 respectively (Table 3-3). These subtype 

selective ligands were used as the positive samples to test subtype selectivity of 

our developed VS models. 

  



Chapter 3 A two-step Target Binding and Selectivity Support Vector Machines Approach for Virtual Screening 
of Dopamine Receptor Subtype-Selective Ligands 

   65

Table 3-3 Datasets of our collected dopamine receptor D1, D2, D3 and D4 selective ligands 
against another subtype. The binding affinity ratio is the experimentally measured binding affinity 
to the second subtype divided by that to the first subtype: (Ki of the second subtype / Ki of the first 
subtype). This dataset was used as positive samples for testing subtype selectivity of our developed 
virtual screening models. 
 

Dopamine 
receptor 
subtype 

Selectivity 
against the 

second 
subtype 

Number of subtype 
selective ligands against 

the second subtype 

Range of 
binding 

affinity ratio 
Mean of binding 

affinity ratio 

D1 D2 97 10-4533 359 
 D3 21 11-559 122 
 D4 29 11-4600 770 

D2 D1 43 10-3707 337 
 D3 37 10-615 66 
 D4 63 10-1851 113 

D3 D1 48 17-38461 3863 
 D2 99 10-6666 259 
 D4 85 10-9111 950 

D4 D1 27 13-4761 1315 
 D2 408 10-10752 2962 
 D3 207 10-51162 1175 

 
 

The binding subtypes of a number of multi-subtype dopamine ligands have been 

explicitly reported [204, 205]. These ligands and their binding subtypes were 

selected based on the criterion that they bind to each subtype with binding affinity 

Ki < 1μM. We collected 4 groups of dual-subtype ligands (147 D1-D2, 4 D1-D3, 

8 D1-D4, and 100 D3-D4 ligands), 2 groups of triple-subtype ligands (39 

D1-D2-D3 and 2 D1-D2-D3 ligands), and 1 group of quadruple-subtype ligands 

(60 D1-D2-D3-D4 ligands). Four of these groups with > 10 ligands were selected 

as negative samples to test the ability of our developed VS models in predicting 

multi-subtype ligands (and thus the ability in separating subtype-selective and 

multi-subtype ligands) (Table 3-4). There are three other groups with high 

numbers of multi-subtype ligands (569 D2-D3, 276 D2-D4 and 402 D2-D3-D4 

ligands). Separation of these groups of multi-subtype ligands from the training 

datasets would significantly compromise the structural diversity of the training 
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datasets. Therefore, these three groups were not removed from the training 

datasets. Inclusion of these groups in the training datasets does not enhance their 

subtype-selective signal. Instead they act as noise that tends to reduce the 

capability of the developed VS models in separating subtype-selective and 

multi-subtype ligands. 

 

Table 3-4 Datasets of our collected dopamine receptor multi-subtype ligands. Four groups of this 
dataset were used as negative samples for testing subtype selectivity of our developed multi-label 
machine learning models. 
 

Ligand Group Binding Subtypes  
Number of 
Ligands of 
Subtypes 

Used as Testing 
Dataset 

Dual Subtype Ligands 

D1 and D2 147 Yes 
D1 and D3 4 No 
D1 and D4 8 No 
D3 and D4 100 Yes 

Triple Subtype 
Ligands 

D1, D2 and D3 39 Yes 
D1, D3 and D4 2 No 

Quadruple Subtype 
Ligands 

D1, D2, D3 and D4 60 Yes 

 

 

ERα and ERβ ligands were collected in the same manner as that of dopamine 

receptor ligands using keyword combinations of “estrogen”, “estrogen receptor”, 

“ER”, “ER alpha”, “ER beta”, “ligand”, “binding”, “binder”, “subtype selective”, 

and “selective ligand”. We collected 1146 ERα and 1234 ERβ ligands (with 

unknown status about their subtype selectivity or multi-subtype binding) and 761 

and 786 ERα and ERβ non-ligands, which together with 64013 and 60603 

putative ERα and ERβ non-ligands (generated by the same procedure as the 

putative dopamine receptor subtype non-ligands) were used for training 

2BR-SVM VS models using the same procedure as that of the alternative dataset 

version of dopamine receptor subtype selective VS models. There are 10 sets of 

randomly assembled training and testing datasets for each estrogen receptor 
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subtype with each of the 10 randomly generated compound-sets used as a testing 

dataset once, all of which were tested in this work. We also collected 40 and 55 

ERα and ERβ selective ligands (with binding affinity ratios in the range of 

10-2055 and 10-1143) and 63 ERα and ERβ multi-target ligands, which were used 

as independent testing datasets for testing the VS models. These datasets are 

summarized in Table 3-5. 
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Table 3-5 Statistics of the randomly assembled training and testing datasets for ERα and ERβ, and 
the performance of SVM models developed and tested by these datasets in predicting ERα and 
ERβ ligands. SE, SP, Q and C are sensitivity, specificity, overall accuracy and Matthews 
correlation coefficient respectively. 
 

Estrogen 
Receptor 
Subtype 

Dataset 

Number of 
ligands/non-ligands in 

alternative training and 
testing dataset 

VS performance on testing dataset 

ER 

  SE SP Q C 
1 1031/58296 and 115/6477 94.78% 99.92% 99.83% 0.90 
2 1031/58296 and 115/6477 96.52% 99.92% 99.86% 0.92 
3 1031/58296 and 115/6477 95.65% 99.90% 99.83% 0.90 
4 1031/58296 and 115/6477 93.04% 99.98% 99.86% 0.92 
5 1031/58296 and 115/6477 95.65% 99.83% 99.75% 0.87 
6 1031/58296 and 115/6477 94.78% 99.86% 99.77% 0.87 
7 1031/58296 and 114/6477 96.49% 99.85% 99.79% 0.88 
8 1032/58295 and 114/6478 95.61% 99.92% 99.85% 0.91 
9 1032/58295 and 114/6478 94.73% 99.92% 99.83% 0.90 
10 1032/58295 and 114/6478 93.86% 99.90% 99.82% 0.89 

AVE   
  
  

95.11% 99.90% 99.82% 0.90 
S.D 0.01102 0.00043 0.00038 0.01838 

S.E.M 0.00349 0.00014 0.00012 0.00581 

ER 

Dataset 

Number of 
ligands/non-ligands in 

alternative training and 
testing dataset 

SE SP Q C 

1 1110/54544 and 124/6060 92.94% 99.84% 99.67% 0.86 
2 1110/54544 and 124/6060 93.55% 99.88% 99.72% 0.89 
3 1110/54544 and 124/6060 93.55% 99.76% 99.61% 0.84 
4 1110/54544 and 124/6060 95.97% 99.80% 99.71% 0.88 
5 1111/54543 and 123/6061 94.31% 99.94% 99.81% 0.91 
6 1111/54543 and 123/6061 96.75% 99.88% 99.81% 0.92 
7 1111/54543 and 123/6061 96.75% 99.84% 99.77% 0.9 
8 1111/54543 and 123/6061 97.56% 99.74% 99.69% 0.88 
9 1111/54544 and 123/6060 94.31% 99.90% 99.77% 0.9 
10 1111/54544 and 123/6060 95.93% 99.88% 99.79% 0.91 

AVE   
  
  

95.16% 99.85% 99.74% 0.89 
S.D 0.01620 0.00063 0.00066 0.02470 

S.E.M 0.00512 0.00020 0.00021 0.00781 
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3.2.2 Molecular representations 

 

The 2D structures of our collected compounds were drawn by using Chemdraw 

or from the ChEMBLdb [125] and Pubchem [210] databases. Each compound was 

represented by 98 molecular descriptors (Table 3-6) computed by using own 

developed MODEL program [231]. These 98 descriptors have been selected in our 

previous studies for developing VS models of a variety of target classes including 

GPCR ligands to screen large chemical libraries such as Pubchem compounds [99, 

206, 232]. Although the structures of the binders of one target or subtype can be 

very different from those of another target or subtype, each binders set plus the 

representatives of the non-binders cover the same chemical space defined by the 

13.56 million Pubchem compounds. Therefore, the same set of molecular 

descriptors was used in this work as well as our previous works [99, 232]. 

 

Table 3-6 List of 98 molecular descriptors computed by using our own developed MODEL 
program. 
 

Descriptor Class No of 

Descriptors 

in Class 

Descriptors 

Simple molecular 

properties 

18 Number of C,N,O,P,S, Number of total atoms, Number 

of  rings, Number of bonds, Number of non-H bonds, 

Molecular weight,, Number of rotatable bonds, number 

of H-bond donors, number of H-bond acceptors, Number 

of 5-member aromatic rings, Number of 6-member 

aromatic rings, Number of N heterocyclic rings, Number 

of O heterocyclic rings, Number of S heterocyclic rings. 

Chemical properties  3 Sanderson electronegativity, Molecular polarizability, 
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aLogp 

Molecular 

Connectivity and 

shape  

35 Schultz molecular topological index, Gutman molecular 

topological index, Wiener index, Harary index, 

Gravitational topological index, Molecular path count of 

length 1-6, Total path count, Balaban Index J, 0-2th 

valence connectivity index, 0-2th order delta chi index, 

Pogliani index, 0-2th Solvation connectivity index, 1-3th 

order Kier shape index, 1-3th order Kappa alpha shape 

index, Kier Molecular Flexibility Index, Topological 

radius, Graph-theoretical shape coefficient, Eccentricity, 

Centralization, Logp from connectivity. 

Electro-topological 

state  

42 Sum of Estate of atom type sCH3, dCH2, ssCH2, dsCH, 

aaCH, sssCH, dssC, aasC, aaaC, sssC, sNH3, sNH2, 

ssNH2, dNH, ssNH, aaNH, dsN, aaN, sssN, ddsN, aOH, 

sOH, ssO, sSH; Sum of Estate of all heavy atoms, all C 

atoms, all hetero atoms, Sum of Estate of H-bond 

acceptors, Sum of H Estate of atom type HsOH, HdNH, 

HsSH, HsNH2, HssNH, HaaNH, HtCH, HdCH2, 

HdsCH, HaaCH, HCsats, HCsatu, Havin, Sum of H 

Estate of H-bond donors 

 
 

 

3.2.3 Support vector machines 

 

SVM is based on the structural risk minimization principle for minimizing both 

training and generalization error [164]. In linearly separable cases, SVM 

constructs a hyper-plane to separate active and inactive classes of compounds with 
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a maximum margin. In nonlinearly separable cases, which frequently occur in 

classifying compounds of diverse structures [99, 206, 232], SVM maps the input 

vectors into a higher dimensional feature space by using the Radial Basis Function 

(RBF) kernel function. This kernel function has been extensively used and 

consistently shown better performance than other kernel functions [176-178]. In 

the high dimensional space, linear SVM can be applied for classifying the active 

and inactive compounds. For the parameters, a hard margin C= 100000 was used 

and σ= 0.4-0.6 were determined from 5 fold cross validation studies. 

 

3.2.4 Combinatorial SVM method 

 

In combinatorial strategy, SVM models for each receptor subtype are separately 

constructed, which are subsequently used for parallel screening against each 

individual subtype to find compounds that only bind to one of the subtypes 

(putative subtype selective ligands) or simultaneously bind to multiple subtypes 

(putative subtype non-selective ligands) [99, 232]. 

 

3.2.5 Two-step Binary relevance SVM method 

 

Subtype selective ligands were selected by two steps. In the first step, a high 

performance SVM model was developed for each receptor subtype to select 

ligands of that subtype regardless of their selectivity towards other subtypes. The 

high performance in selecting ligands of a subtype was achieved by using 

comprehensive sets of known ligands and putative non-ligands of the 
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corresponding receptor to train the respective SVM model [206]. In the second 

step, the Binary relevance (BR) method [215] was used for more refined selection 

of subtype selective ligands from the putative ligands selected in the first step. BR 

is a popular multiple binary classification method that transforms the original 

N-label dataset into N pairs of datasets with samples of each label as positive 

dataset and samples of the other N-1 labels as negative dataset [215]. 

 

3.2.6 Multi-label K nearest neighbor method 

 

ML-kNN implemented in the Mulan software package [215] was used in this 

work. ML-kNN [216] extends traditional kNN method to solve the multi-label 

problem. In the first step, ML-kNN classifies a compound x by linking it to the 

known ligand or non-ligand xi in the training dataset with closest Euclidean 

distance [180]. In the second step, statistical information, i.e. prior and posterior 

probabilities for the frequency of each label within the k nearest neighbors, is 

gained from the label sets of these neighboring ligands. In the third step, 

maximum a posteriori (MAP) principle is used to determine the label set for the 

unknown ligands. The default parameters in Mulan package were used in this 

work. 

 

3.2.7 The random k-labelsets decision tree method 

 

RAkEL-DT implemented in the Mulan software package [215] was used in this 

work. The random k-labelsets (RAkEL) method [217] constructs an ensemble of 
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label powerset (LP) classifiers. LP is a transformation method which considers 

each unique set of labels existed in multi-label training set as new single label. 

Since RAkEL is a transformation-based algorithm and it accepts a single-label 

classifier as a parameter, decision tree C4.5 algorithm was used for this purpose. 

C4.5 decision tree is a branch-test-based classifier [233].  A branch in a decision 

tree corresponds to a group of classes and a leaf represents a specific class. A 

decision node specifies a test to be conducted on a single attribute value, with one 

branch and its subsequent classes as possible outcomes of the test. C4.5 decision 

tree uses recursive partitioning to examine every attribute of the data and to 

subsequently rank them according to their ability to partition the remaining data, 

thereby constructing a decision tree. The default parameters in Mulan package 

were used in this work. 

 

3.2.8 Virtual screening model development, parameter 

determination and performance evaluation 

 

All VS models for each dopamine receptor subtype were trained from the 

training datasets in Table 3-1. The parameters were determined by 5-fold cross 

validation (CV) tests, and the performance of these VS models was evaluated by 

using the independent testing datasets in Table 3-1. In each 5-fold CV test, the 

training dataset was divided into 5 groups of approximately equal number of 

positive samples and equal number of negative samples, with 4 groups used for 

training and 1 group used for testing the model. There are five such sets each with 

one unique group used as a testing set, from which five prediction models can be 
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constructed. VS models were developed at different parameters. The parameters 

with the best overall 5-fold CV performance were selected for developing the final 

VS models.  

In 5-fold cross validation studies, the inhibitor and non-inhibitor prediction 

accuracies are given by sensitivity and specificity respectively. Prediction 

accuracies have also been frequently measured by overall prediction accuracy (Q) 

and Matthews correlation coefficient (C). In the large database screening tests, the 

yield and false-hit rate are given respectively. The detailed performance 

evaluation is described in Chapter 2 (section 2.4). 

 

3.2.9 Determination of similarity level of a compound against 

dopamine receptor ligands in a dataset 

 

The similarity level of a compound i with respect to the ligands of a dataset can 

be determined by using the Tanimoto coefficient sim(i,j): [235]. 
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where xdi represents a molecular fingerprint of compound i (there are 882 

fingerprints calculated from the PaDEL-Descriptors program [141], l is the 

number of molecular fingerprints, j is the index of the ligand in the dataset most 

similar to compound i. The compound i. is assigned into one of the ten similarity 

levels based on its computed sim(i,j) values: 0.9-1, 0.8-0.9, 0.7-0.8, 0.6-0.7, 
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0.5-0.6, 0.4-0.5, 0.3-0.4, 0.2-0.3, 0.1-0.2, and 0-0.1. Compounds are typically 

considered to be highly similar if sim(i,j) is no less than 0.8 or 0.9 [183, 184]. 

 

 

3.2.10 Determination of dopamine receptor subtype selective 
features by feature selection method 

 

Molecular features important for dopamine receptor subtype selective ligands 

were probed by using a feature selection method, recursive feature elimination 

(RFE) method, extensively used in selecting molecular features of compounds of 

specific pharmacodynamic and pharmacokinetic properties [138]. In this approach, 

the level of contribution of individual molecular descriptor to SVM classification 

of ligands of a subtype against ligands of other subtypes was ranked and the 

top-ranked ones were selected based on the evaluation of the variation of the SVM 

objective function J caused by the removal of an individual descriptor [236]. The 

variation DJ(i) due to the removal of a descriptor i is computed by 

2
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  with the weight variation determined by Dwi = wi . In this 

work, Gaussian kernels were used for developing SVM models. In this case, 

αHαHαα )()2/1()2/1()( TT iiDJ  , where H is the matrix with elements y i y j 

exp(-||xi - xj||
 2/(2σ2)), H(-i) is the matrix computed by the same method as matrix 

H but with its i-th component removed, y i is the vector composed of molecular 

descriptors, 1 is an m dimensional identity vector (m is the number of compounds 

in a training dataset), and the component of vector α is kept in the range of 0 ≤ α k 

≤ C. 
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The computational procedure for selecting subtype selective features is as 

follows: For a specific subtype, the corresponding SVM model developed in the 

second step of the 2SBR-SVM method is processed by iteratively evaluating and 

eliminating molecular descriptors at different parameter σ values based on 5-fold 

cross-validation. In the first step, for a fixed σ, the SVM is trained by using the 

complete set of descriptors (feature set). The second step is to compute the 

ranking criterion score DJ(i) for every existing descriptor. All the computed DJ(i) 

is then ranked in descending order. The third step is to remove the m descriptors 

with smallest criterion scores (m=4 in this work). In the fourth step, the SVM is 

retrained by using the remaining molecular descriptors and a new prediction 

accuracy of 5-fold cross-validation is computed. The second to fourth steps are 

repeated for multiple-iterations until all descriptors are removed. For another fixed 

σ, the first to fourth steps are repeated. 

3.3 Results and discussion 

3.3.1 5-fold cross-validation tests 

 

The results of 5-fold CV tests of the SVM models of D1, D2, D3 and D4 

ligands are shown in Table 3-7. Overall, the sensitivity, specificity, overall 

accuracy and the Matthews correlation coefficients of the best performing SVM 

models are in the range of 87.8%-95.3%, 99.6%-99.9%, 99.3%-99.8%, and 

0.74-0.90 respectively. These results are comparable to those of our earlier studies 

[232], indicating that the SVM models for dopamine receptor subtypes have 

similar prediction capability as those for other target classes. The VS models with 

the best 5-fold CV performance were further tested on independent sets of 
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dopamine receptor ligands and non-ligands published since 2010 and not in the 

training datasets, which are also shown in Table 3-7. The sensitivity, specificity 

and overall accuracy are in the range of 71.2%-89.7%, 61.5%-76.0% and 

71.4%-82.7% respectively. The sensitivity is substantially smaller than that of 

5-fold CV tests. This is because many of the post-2010 ligands in the independent 

datasets are structurally different from those of the pre-2010 ligands in the training 

datasets. As shown in Table 3-1, 16.3%-34.5% of the post-2010 ligands are 

outside the chemical families of pre-2010 ligands in the training datasets. The 

specificity is also significantly smaller than that of the 5-fold CV tests. This is 

partly because many non-ligands have weak (Ki 10-50μM) binding activity and 

may thus be difficult to be separated from the ligands. 
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Table 3-7 Results of 5-fold cross validation (CV) tests of SVM models in predicting D1, D2, D3 and D4 ligands. SE, SP, Q and C are sensitivity, specificity, overall accuracy and 
Matthews correlation coefficient respectively.  
 

Dopamine 
Receptor 
Subtype 

5-fold CV Tests for Parameter Selection Based on the Training 
Datasets in Table 1 

5-fold CV Tests for Performance Evaluation 
Based on the Independent Testing Datasets in 

Table 1 

D1 

Fold 
Number of 

ligands/non-
ligands 

SE SP Q C 

Number 
of 

ligands/
non-liga

nds 

SE SP Q 

1 99/13092 91.92% 99.87% 99.81% 0.77 59/25 71.19% 76.00% 72.62% 
2 99/13093 88.78% 99.91% 99.83% 0.78 59/25 72.88% 72.00% 71.43% 
3 98/13093 88.78% 99.87% 99.79% 0.74 59/25 71.19% 72.00% 71.43% 
4 98/13092 87.76% 99.88% 99.79% 0.74 59/25 71.19% 72.00% 71.43% 
5 97/13093 87.76% 99.92% 99.83% 0.78 59/25 71.19% 72.00% 71.43% 

AVE  89.00% 99.89% 99.81% 0.76  71.53% 72.80% 71.67% 
S.D  0.01710 0.00024 0.0002 0.02049  0.00756 0.01789 0.00532 

S.E.M  0.00765 0.00011 0.00009 0.00917  0.00338 0.008 0.00238 

D2 

Fold 
Number of 

ligands/non-
ligands 

SE SP Q C 

Number 
of 

ligands/
non-liga

nds 

SE SP Q 

1 441/13092 92.74% 99.66% 99.44% 0.83 135/65 86.67% 61.54% 78.50% 
2 441/13092 94.10% 99.70% 99.52% 0.86 135/65 88.15% 63.08% 80.00% 
3 440/13093 93.12% 99.68% 99.47% 0.84 135/65 86.67% 63.08% 79.00% 
4 440/13093 91.82% 99.67% 99.42% 0.82 135/65 85.93% 67.69% 80.00% 
5 440/13092 91.82% 99.58% 99.33% 0.80 135/65 85.93% 61.54% 78.00% 

AVE  92.72% 99.66% 99.44% 0.83  86.67% 63.39% 79.10% 
S.D  0.00960 0.00046 0.00070 0.02236  0.00906 0.02526 0.00894 
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S.E.M  0.00429 0.00021 0.00031 0.01  0.00405 0.01130 0.004 

D3 

Fold 
Number of 

ligands/non-
ligands 

SE SP Q C 

Number 
of 

ligands/
non-liga

nds 

SE SP Q 

1 271/12712 90.77% 99.75% 99.56% 0.80 76/28 86.84% 64.29% 79.81% 
2 271/12712 93.73% 99.79% 99.66% 0.84 76/28 89.47% 67.86% 82.69% 
3 271/12712 92.99% 99.77% 99.63% 0.83 76/28 86.84% 64.29% 79.81% 
4 271/12711 89.67% 99.82% 99.61% 0.82 76/28 84.21% 67.86% 79.81% 
5 271/12711 95.20% 99.88% 99.78% 0.90 76/28 89.47% 64.29% 81.73% 

AVE  92.47% 99.80% 99.65% 0.84  87.37% 65.72% 80.77% 
S.D  0.02238 0.00051 0.00082 0.03768  0.022 0.01955 0.0136 

S.E.M  0.01001 0.00023 0.00037 0.01685  0.00984 0.00875 0.00608 

D4 

Fold 
Number of 

ligands/non-
ligands 

SE SP Q C 

Number 
of 

ligands/
non-liga

nds 

SE SP Q 

1 297/12760 95.29% 99.71% 99.61% 0.84 29/33 89.66% 72.73% 80.65% 
2 297/12760 93.27% 99.76% 99.61% 0.84 29/33 86.21% 63.64% 74.19% 
3 297/12760 94.28% 99.80% 99.67% 0.86 29/33 89.66% 63.64% 75.81% 
4 297/12759 93.94% 99.79% 99.66% 0.85 29/33 86.21% 63.64% 74.19% 
5 297/12759 94.61% 99.76% 99.65% 0.85 29/33 86.21% 63.64% 74.19% 

AVE  94.28% 99.76% 99.64% 0.848  87.59% 65.46% 75.81% 
S.D  0.00752 0.00035 0.00028 0.00837  0.0189 0.04065 0.02794 

S.E.M  0.00337 0.00015 0.00013 0.00374  0.00845 0.01818 0.01249 
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The VS performance of the SVM VS models developed by the 10 sets of 

alternative training and testing datasets is provided in Table 3-2. The sensitivity, 

specificity, overall accuracy and the Matthews correlation coefficients of these 

SVM models in classifying dopamine receptor subtype ligands and non-ligands 

are in the range of 79.1%-94.8%, 99.6%-99.9%, 99.3%-99.9%, and 0.73-0.90 

respectively, which are very similar to those of the SVM models developed by 

pre-2010 and tested by post-2010 compounds. A further analysis of structures of 

the randomly assembled datasets and those of the chronologically assembled 

datasets showed that most of the active and inactive scaffolds are mutually 

represented on both sides because of the significant structural diversity in these 

datasets. Therefore, the VS performance of SVM models developed by 

chronologically assembled datasets can be compared with those models developed 

by using datasets assembled by conventional approach. 

 

 

3.3.2 Applicability domains of the developed SVM VS models 

 

Our SVM VS models for each dopamine receptor subtype were developed by 

using known ligands and non-ligands of the subtype, and the putative non-ligands 

composed of representative compounds of all of the compound families in the 

Pubchem chemical space that contain no known ligand of the subtype. 

Theoretically, these VS models are expected to be applicable in the chemical 

space defined by the known ligands, known non-ligands, and the 13.56M 

Pubchem compounds. If this is true, in addition to good predictive performance on 

the known ligands, these VS models are expected to consistently identify very 
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small percentages of Pubchem compounds as subtype selective ligands regardless 

of their similarity levels to the known ligands. Alternatively, if the applicability 

domain of these models covers limited chemical space around known ligands, 

then the number of identified Pubchem compounds may increase substantially 

beyond the applicability domain (i.e. at lower similarity levels). To determine the 

applicability domain of each SVM VS model, we divided 13.56M PubChem 

compounds into groups of 10 similarity levels with respect the known ligands of 

each receptor subtype (defined in the methods section), and then monitored if the 

number of the SVM identified PubChem compounds significantly increases at 

higher similarity levels. As shown in Table 3-8, the percentages of identified 

Pubchem compounds for all four receptor subtypes (0.0489%-0.0521% for D1, 

0.131%-0.135% for D2, 0.143%-0.147% for D3, and 0.157%-0.160% for D4 

respectively) are consistently small and show little variations at different 

similarity levels. This suggests that the applicability domains of our SVM VS 

models likely cover the chemical space defined by the known ligands, known 

non-ligands and the PubChem compounds. 
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Table 3-8 Numbers of Pubchem compounds at different similarity levels with respect to known ligands of each dopamine receptor subtype, and percent of these compounds 
identified by SVM VS model as subtype selective ligands. 
 

Dopamine 

receptor subtype 
 

Similarity level with respect to known ligands of the subtype defined by Tanimoto similarity score 

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 

D1 

Number of Pubchem compounds 

at the similarity level 
366852 1238930 2210766 3832638 3652430 781974 384551 355589 339499 389378 

Percent of these Pubchem 

compounds identified as subtype 

selective ligand 

0.0499% 0.0489% 0.0498% 0.0521% 0.0509% 0.0493% 0.0486% 0.0515% 0.0510% 0.0507% 

D2 

Number of Pubchem compounds 

at the similarity level 
477873 1111819 1464190 1707149 3026529 2593708 892995 659690 812545 806109 

Percent of these Pubchem 

compounds identified as subtype 

selective ligand 

0.1306% 0.1320% 0.1322% 0.1350% 0.1311% 0.1306% 0.1303% 0.1326% 0.1309% 0.1310% 
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D3 

Number of Pubchem compounds 

at the similarity level 
770711 1497979 2325005 3232481 1718412 896213 664517 662908 812545 650036 

Percent of these Pubchem 

compounds identified as subtype 

selective ligand 

0.1445% 0.1471% 0.1434% 0.1475% 0.1467% 0.1456% 0.1477% 0.1469% 0.1470% 0.1473% 

D4 

Number of Pubchem compounds 

at the similarity level 
947701 1348342 2672549 2548656 2350749 942874 778756 662908 733704 566368 

Percent of these Pubchem 

compounds identified as subtype 

selective ligand 

0.1601% 0.1593% 0.1579% 0.1568% 0.1580% 0.1591% 0.1588% 0.1576% 0.1582% 0.1579% 
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3.3.3 Prediction performance on dopamine receptor subtype 
selective and multi-subtype ligands 

 

The performance of our new method 2SBR-SVM and that of the three 

previously used methods Combi-SVM, ML-kNN and RAkEL-DT in predicting 

dopamine subtype selective ligands was determined as follows: For each set of 

dopamine receptor subtype selective ligands against another subtype, the 

developed VS model of the subtype and that of the second subtype were both used 

to screen these ligands. The percentage of these ligands selected by the first model 

but not by the second model was used to measure the performance of the VS 

models in selecting subtype selective ligands. The relevant results are shown in 

Table 3-9. 

 

Table 3-9 The performance of our new method 2SBR-SVM and that of previously used methods 
Combi-SVM, ML-kNN and RAkEL-DT in predicting dopamine receptor subtype selective 
ligands. 
 

Dopamine 
receptor 
subtype 

Selectivity 
against the 

second 
subtype 

Number of 
subtype 
selective 
ligands 

Percent of subtype selective ligands predicted as subtype 
selective with respect to the second subtype 

Combi-SVM  ML-kNN RAkEL-DT 2SBR-SVM 

D1 

D2 97 13.40% 30.93% 75.26% 86.60% 
D3 21 23.81% 23.81% 47.62% 66.67% 
D4 29 17.24% 58.62% 44.83% 65.52% 

Average  18.15% 37.79% 55.90% 72.93% 

D2 

D1 43 55.81% 62.79% 69.77% 93.02% 
D3 37 16.22% 21.62% 62.16% 81.08% 
D4 63 14.29% 39.68% 30.16% 82.54% 

Average  28.77% 41.36% 54.03% 85.55% 

D3 

D1 48 72.92% 87.50% 85.42% 56.25% 
D2 99 22.22% 26.26% 50.51% 51.52% 
D4 85 17.65% 31.76% 22.35% 50.59% 

Average  37.60% 48.51% 52.76% 52.79% 

D4 

D1 27 74.07% 70.37% 85.19% 82.50% 
D2 408 33.33% 28.43% 57.60% 88.00% 
D3 209 26.79% 24.40% 45.46% 83.73% 

Average  44.73% 41.07% 62.75% 84.74% 
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As shown in Table 3-9, the three previously used methods showed mostly 

moderate and in minority cases good performance in predicting dopamine receptor 

subtype selective ligands. Specifically, 13.4%-23.8%, 14.3%-55.8%, 

17.7%-77.9% and 26.8%-74.1% of the D1, D2, D3 and D4 selective ligands were 

correctly predicted by Combi-SVM as subtype selective ones. ML-kNN showed 

better performance, correctly predicting 23.8%-58.6%, 21.6%-62.8%, 

26.3%-87.5% and 24.4%-70.4% of the D1, D2, D3 and D4 selective ligands as 

subtype selective ones. The RAkEL-DT method achieved the best performance 

among the three methods, correctly predicting 44.8%-75.3%, 30.2%-69.8%, 

22.4%-85.4% and 45.5%-85.2% of the D1, D2, D3 and D4 selective ligands as 

subtype selective ones. On the other hand, our new method 2BR-SVM produced 

significantly improved performance, correctly predicting 66.5%-86.6%, 

81.1%-93.0%, 50.6%-56.3% and 82.5%-88.0% of the D1, D2, D3 and D4 

selective ligands as subtype selective ones. This suggests that our two-step 

strategy with one step focusing on subtype binding and another on selectivity 

works more effectively than the three previously used methods in predicting 

dopamine receptor subtype selective ligands.  

 

The improved subtype selective performance of the 2BR-SVM method arises 

from its more rigorous evaluation of minor structural and physicochemical 

differences of subtype selective ligands. Comparative structural analysis has 

shown that some D2 selective and D3 selective ligands are highly similar in 

structure and interact with their respective subtypes in a very similar binding 

mode with some functional group adopting different orientation at sites of 

non-conserved residues [230]. Such minor differences may not be adequately 
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distinguished by conventional VS models developed by training datasets with 

inadequate representation of ligands of other subtypes, but may be distinguished 

by 2BR-SVM method with additional models developed by training datasets with 

sufficient representation of other subtypes. 

 

The performance in predicting dopamine subtype selective ligands is measured 

not only by the capability in selecting subtype selective ligands, but also on the 

ability in differentiating them from multi-subtype ligands. Good prediction on 

subtype selective ligands needs to be complemented by equally good performance 

in predicting multi-subtype ligands as subtype non-selective ones. This 

performance was determined as follows: For each set of multi-subtype ligands 

(e.g. triple-subtype D1, D2 and D3 ligands), the VS models of all of the 

corresponding subtypes (e.g. D1, D2 and D3) were used to screen the 

multi-subtype ligands in the set. The percentage of these ligands selected by the 

model of more than one subtype was used to measure the performance of the VS 

models in predicting multi-subtype ligands as subtype non-selective ligands. The 

results are shown in Table 3-10. 
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Table 3-10 The performance of our new method 2SBR-SVM and that of previously used methods 
Combi-SVM, ML-kNN and RAkEL-DT in predicting dopamine receptor multi-subtype ligands as 
non-selective ligands. 
 

Ligand Group 
Binding 
subtypes 

Number 
of 

Multi-Sub
type 

Ligands 

Percent of multi-subtype ligands predicted as 
non-selective ligands 

Combi-SV
M 

ML-kNN RAkEL-DT 2SBR-SVM 

Dual Subtype 
Ligands 

D1 and D2 147 68.02% 31.97% 35.37% 76.19% 

D3 and D4 100 83.0% 37.0% 39.0% 81.0% 

Triple Subtype 
Ligands 

D1, D2 and 
D3 

39 76.92% 28.2% 33.33% 71.79% 

Quadruple 
Subtype Ligands 

D1, D2, D3 
and D4 

60 75.42% 36.67% 38.75% 71.67% 

 

 

Of the three previously used methods, Combi-SVM showed the best 

performance in predicting dopamine receptor multi-subtype ligands as subtype 

non-selective ones, correctly predicting 68.0%, 83.0%, 76.9% and 75.4% of the 

D1-D2, D3-D4, D1-D2-D3 and D1-D2-D3-D4 multi-subtype ligands as subtype 

non-selective ones. On the other hand, only 32.0%, 37.0%, 28.2% and 36.7% of 

the D1-D2, D3-D4, D1-D2-D3 and D1-D2-D3-D4 multi-subtype ligands were 

predicted by ML-kNN as subtype non-selective ones, and only 35.4%, 39.0%, 

33.3% and 38.8% of the D1-D2, D3-D4, D1-D2-D3 and D1-D2-D3-D4 

multi-subtype ligands were predicted by RAkEL-DT as subtype non-selective 

ones. Hence, the better performance of ML-kNN and RAkEL-DT over 

Combi-SVM in predicting subtype selective ligands is off-set by the poorer 

performance in predicting multi-subtype ligands as subtype non-selective. Taken 

these two indicators together, Combi-SVM appears to show better overall 

performance in predicting subtype selective and subtype non-selective ligands 

than the ML-kNN and RakEL-DT methods. 
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The performance of our new method 2SBR-SVM in predicting dopamine 

receptor subtype non-selective ligands is similar to that of Combi-SVM, correctly 

predicting 76.2%, 81.0%, 71.8% and 71.7% of the D1-D2, D3-D4, D1-D2-D3 and 

D1-D2-D3-D4 multi-subtype ligands as subtype non-selective ones. Thus, our 

new method maintains the same performance level as that of the best performing 

method of the previously used methods in predicting dopamine receptor subtype 

non-selective ligands. The lack of improvement by our new method in predicting 

dopamine receptor subtype non-selective ligands may be partly due to the quality 

of training datasets. It is noted that three groups of multi-subtype ligands were 

included as positive samples in the training datasets, which likely affect the ability 

of the SVM models in predicting multi-subtype ligands as subtype non-selective 

ones. 

 

 

3.3.4  Virtual screening performance in searching large chemical 

libraries 

 

The virtual screening performance of our new method 2SBR-SVM and our 

previously developed method Combi-SVM was evaluated by using them to screen 

13.56M Pubchem compounds, 168,016 MDDR compounds and 657,736 

ChEMBLdb compounds to determine the numbers of Pubchem, MDDR, and 

ChEMBLdb compounds predicted as D1, D2, D3 and D4 selective ligands, which 

are shown in Table 3-11. For comparison, Table 3-11 also includes the results of 
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SVM (single label) in identifying Pubchem compounds as putative D1, D2, D3 

and D4 ligands regardless of their possible binding with another subtype. In 

screening Pubchem compounds, the number of D1, D2, D3 and D4 selective 

virtual hits identified by 2SBR-SVM and the corresponding virtual hit rate is 650 

and 0.0048%, 1132 and 0.0083%, 1498 and 0.011%, and 1961 and 0.015% 

respectively, which is significantly smaller than those identified by Combi-SVM. 

The number of D1, D2, D3 and D4 selective virtual hits identified by 

Combi-SVM and the corresponding virtual hit rate is 4948 and 0.037%, 10080 

and 0.074%, 6055 and 0.045%, and 9180 and 0.068% respectively. The number of 

virtual hits identified by Combi-SVM is nonetheless substantially smaller than 

that of single label SVM. The number of D1, D2, D3 and D4 selective virtual hits 

identified by single label SVM and the corresponding virtual hit rate is 6798 and 

0.05%, 17786 and 0.13%, 19813 and 0.15%, and 21444 and 0.16% respectively. 

Some of the identified virtual hits are possible subtype selective ligands. 

Therefore the true false hit rates of the tested VS models are likely smaller than 

the computed virtual hit rates. The false hit rates of 2SBR-SVM in screening 

13.56 million Pubchem compounds can then be estimated as ≤0.0048%, 

≤0.0083%, ≤0.011% and ≤0.015% for D1, D2, D3 and D4 selective ligands 

respectively. Therefore, 2SBR-SVM produced very low false hit rates in screening 

large chemical libraries as well as good performance in selecting subtype selective 

ligands. 
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Table 3-11 Virtual screening performance of our new method 2SBR-SVM and that of our 
previously used method Combi-SVM in scanning 168,016 MDDR compounds and 657,736 
ChEMBLdb compounds, and 13.56 million Pubchem compounds. For comparison, the results of 
single label SVM, which identify putative subtype binding ligands regardless of their possible 
binding to another subtype, are also included. 
 

Dopamine 
receptor 
subtype 

Method 

Number and Percent of 
the 13.56M PubChem 

Compounds Identified as 
subtype selective ligands 

Number and Percent 
of the 168,016 

MDDR Compounds 
Identified as subtype 

selective ligands 

Number and Percent 
of the 657,736 

ChemBLdb 
Compounds 

Identified as subtype 
selective ligands 

D1 

SVM (Single 
Label) 

6798(0.0501%) 463(0.28%) 1034(0.16%) 

Combi-SVM 4948(0.0365%) 383(0.23%) 755(0.11%) 
2SBR-SVM 650(0.0048%) 140(0.08%) 355(0.05%) 

D2 

SVM (Single 
Label) 

17786(0.1312%) 1105(0.66%) 3208(0.49%) 

Combi-SVM 10080(0.0743%) 712(0.42%) 2023(0.31%) 
2SBR-SVM 1132(0.0083%) 108(0.06%) 686(0.10%) 

D3 

SVM (Single 
Label) 

19813(0.1461%) 1149(0.68%) 3057(0.46%) 

Combi-SVM 6055(0.0447%) 679(0.40%) 1894(0.29%) 
2SBR-SVM 1498(0.0110%) 156(0.09%) 687(0.10%) 

D4 

SVM (Single 
Label) 

21444(0.1581%) 1160(0.69%) 3489(0.53%) 

Combi-SVM 9186(0.0677%) 790(0.47%) 2579(0.39%) 
2SBR-SVM 1961(0.0145%) 134(0.08%) 907(0.14%) 

 

 

As shown in Table 3-11, in screening MDDR and ChEMBLdb compounds, 

2SBR-SVM as well as Combi-SVM and single label SVM produced reasonably 

low virtual hit rates that are in the range of 0.06%-0.09% and 0.05%-0.14% 

respectively, which are 10 fold higher than those in screening Pubchem 

compounds. MDDR and ChEMBLdb compounds as a collection of bioactive 

agents tend to be structurally closer to the dopamine receptor ligands than many 

Pubchem compounds that consist of high percentage of inactive compounds. 

Therefore, it tends to be more difficult for 2SBR-SVM to distinguish dopamine 

receptor ligands from some of the non-ligands in MDDR and ChEMBLdb 

databases, leading to higher virtual-hit rates. The virtual hit rates of 2SBR-SVM in 

screening MDDR and ChEMBLdb compounds are substantially (2-10 fold) 
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smaller than those of Combi-SVM and single label SVM, which suggests that 

2SBR-SVM is capable of achieving lower false-hit rate in screening bioactive 

compounds than more conventional SVM methods. 

 

Although it is unclear how many true D1, D2, D3 and D4 selective ligands are 

contained in Pubchem database. Some crude estimates can be made. As shown in 

Table 3-1 and Table 3-3, the number of known ligands of a dopamine receptor 

subtype is in the range of 550-2337, and the number of known dopamine receptor 

subtype selective ligands is in the range of 21-408. The known subtype selective 

ligands are approximately 10 fold less in numbers than the known ligands of a 

subtype. While the numbers of the published D1, D2, D3, and D4 ligands 

continuously increase through the years (Figure 3-1), there are signs of significant 

reduction of the growth rates at the level of 2000-3000 ligands. These trends tend 

to project the existence of no more than several thousand undiscovered ligands for 

each dopamine receptor subtype in the chemical space defined by the Pubchem, 

MDDR and ChEMBLdb compounds. Hence, the number of subtype selective 

virtual hits identified by 2SRB-SVM is closer to the estimated upper limit of 

undiscovered dopamine receptor subtype ligands than those of Combi-SVM and 

single label SVM. 
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Figure 3-1 Number of published dopamine receptors D1, D2, D3 and D4 ligands from 1975 to 
present. 

 
 

3.3.5 Dopamine receptor subtype selective features 

 

The molecular descriptors important for distinguishing the ligands of every 

dopamine receptor subtype and the ligands of other subtypes were determined by 

using the feature selection method [138] outlined in the method section, which are 

provided in Table 3-12. The top-ranked D1 selective descriptors are number of O 

atoms, sum of Estate of atom type dssC, ssO and ssNH, graph-theoretical shape 

coefficient, and sum of H Estate of atom type HsNH2. These descriptors are 

consistent with the D1 selective features derived from a pharmacophoric model 

that includes positive nitrogens (linked to ssNH, HsNH2), hydrogen bond acceptor 
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(linked to O, ssO) and donor (linked to ssNH, HsNH2) [202]. The top-ranked D2 

selective descriptors are number of H-bond acceptor, sum of H Estate of atom 

types HaaNH and HCsats, and sum of Estate of atom type dssC, aasC and aaNH.  

These are consistent with a CoMSIA based analysis that suggests that D2 

selectivity is determined by hydrogen bond acceptor (linked to H-bond acceptor) 

and donor (linked to HaaNH), hydrophobic (linked to HCsats, dssC, aasC), and 

electrostatic (linked to HaaNH, aaNH) factors [198]. These are also consistent 

with the conclusion from a pharmacophoric model that two hydrogen acceptors or 

one hydrogen acceptor plus one donor are critically important for D2 selectivity of 

some ligands [202]. 

 

Table 3-12 Top-ranked molecular descriptors for distinguishing dopamine receptor subtype D1, 
D2, D3 or D4 selective ligands selected by RFE feature selection method. 
 
Dopamine 

receptor 

subtype 

Top-ranked molecular descriptors for distinguishing subtype selective 

ligands and ligands of other subtypes 

D1 

Number of O atoms, Sum of Estate of atom type dssC, Sum of Estate of atom 

type ssO, Sum of Estate of atom type ssNH, Graph-theoretical shape 

coefficient, Sum of H Estate of atom type HsNH2 

D2 

Number of H-bond acceptor, Sum of H Estate of atom type HaaNH, Sum of 

H Estate of atom type HCsats, Sum of Estate of atom type dssC, Sum of 

Estate of atom type aasC, Sum of Estate of atom type aaNH 

D3 

Sum of Estate of atom type dsCH, Sum of H Estate of atom type HsOH, Sum 

of H Estate of atom type HCsats, Sum of Estate of atom type aaaC, Sum of 

Estate of atom type sOH, Number of H-bond donnor 

D4 

Molecular path count of length 2, Sum of Estate of atom type ssCH2, 3th 

order Kier shape index, Topological radius, Sum of Estate of atom type aasC, 

Kier Molecular Flexibility Index 
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The top-ranked D3 selective descriptors are sum of Estate of atom type dsCH, 

aaaC and sOH, sum of H Estate of atom type HsOH and HCsats, and number of 

H-bond donor. These are consistent with the conclusions from several CoMSIA 

models that correlate D3 selectivity with specific hydrogen bond donor (linked to 

H-bond donor, sOH, HsOH), hydrophobic (linked to dsCH, aaaC), and 

electrostatic (linked to sOH, HsOH) factors [198, 203]. Moreover, a study of a D3 

selective ligand further shows that hydrogen bonding from a hydroxyl group is 

important for conferring D3 selectivity [198]. The top-ranked D4 selective 

descriptors are molecular path count of length 2, sum of Estate of atom type 

ssCH2 and aasC, 3th order Kier shape index, topological radius, and Kier 

molecular flexibility index. These are consistent with a report that D4 selectivity 

is strongly influenced by the geometry and orientation of specific chemical groups 

(linked to molecular path count of length 2, 3th order Kier shape index, 

topological radius, and Kier molecular flexibility index) [197]. The consistency of 

our selected molecular descriptors and the literature-reported features for D1, D2, 

D3, and D4 selectivity suggests that the subtype selective molecular descriptors 

selected by our feature selection method may be potentially useful for facilitating 

the design or search of dopamine subtype selective ligands. 

 

3.3.6 Virtual screening performance of the two-step binary 

relevance SVM method in searching estrogen receptor 

subtype selective ligands 
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The VS performance of the SVM models for each ER subtype developed by the 

10 sets of randomly assembled training and testing datasets is provided in 

Supplementary Table S2. The sensitivity, specificity, overall accuracy and the 

Matthews correlation coefficients of these SVM models in classifying ER subtype 

ligands and non-ligands are in the range of 92.9%-97.6%, 99.7%-99.9%, 

99.7%-99.9%, and 0.84-0.92 respectively, which are very similar to those of the 

dopamine receptor subtype. Moreover, as shown in Table 3-13 and 3-14, the 

performance of 2SBR-SVM in identifying ERα selective ligands (85.0%), ERβ 

selective ligands (80.0%), ERα and ERβ multi-subtype ligands (69.8%), and in 

screening Pubchem, MDDR and ChEMBLdb compounds (virtual hit rates 

0.0094%-0.0104%, 0.056%-0.064%, and 0.033%-0.034%) is at very similar levels 

as those of the dopamine receptor subtype. Therefore, our 2BR-SVM method is 

likely applicable to different receptor-ligand systems. 
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Table 3-13 The performance of our new method 2SBR-SVM and that of previously used methods 
Combi-SVM, ML-kNN and RAkEL-DT in predicting estrogen receptor subtype selective and 
multi-subtype ligands. 
 

Type of estrogen 
receptor ligands 

Number of 
ligands 

Percent of these ligands correctly identified by 
method 

Combi-SVM 
 

ML-kNN 
RAkEL-DT 2SBR-SVM 

ER selective 
ligands 

40 
55.00% 40.00% 52.50% 85.00% 

ER selective 
ligands 

55 
60.00% 54.55% 58.18% 80.00% 

ER and ER 
multi-subtype 

ligands 
63 63.49% 44.44% 49.20% 69.84% 

 

Table 3-14 Virtual screening performance of our new method 2SBR-SVM and that of our 
previously used method Combi-SVM in scanning 13.56 million Pubchem compounds, 168,016 
MDDR compounds and 657,736 ChEMBLdb compounds. For comparison, the results of single 
label SVM, which identify putative subtype binding ligands regardless of their possible binding to 
another subtypes, are also included.  
 

Estrogen 
receptor 
subtype 

Method 

Number and Percent of 
the 13.56M PubChem 
Compounds Identified 

as subtype selective 
ligands 

Number and Percent of 
the 168,016 MDDR 

Compounds Identified 
as subtype selective 

ligands 

Number and Percent of 
the 657,736 ChemBL 
Compounds Identified 

as subtype selective 
ligands 

ERalpha 

SVM (Single 
Label) 

19508(0.1439%) 1395(0.8303%) 2689(0.4088%) 

Combi-SVM 9570(0.0706%) 1075(0.6398%) 1931(0.2936%) 
2SBR-SVM 1279(0.0094%) 107(0.0637%) 221(0.0336%) 

ERbeta 

SVM (Single 
Label) 

20067(0.1480%) 1167(0.6946%) 3017(0.4587%) 

Combi-SVM 10756(0.0793%) 768(0.4571%) 1562(0.2375%) 
2SBR-SVM 1364(0.0101%) 94(0.0559%) 215(0.0327%) 

 

 
 

3.4 Conclusion 

Virtual screening methods have been increasingly explored for facilitating the 

discovery of target selective drugs for enhanced therapeutics and reduced side 

effects. Our study further suggested that the two-step target binding and selectivity 

support vector machines virtual screening tools developed from protein subtype 
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ligands with unspecified subtype selectivity are capable of identifying protein 

subtype selective ligands at good yields, subtype selectivity and low false-hit rates 

in screening large chemical libraries. Our method may be combined with other 

virtual screening methods [37, 237-242] to facilitate more effective and efficient 

search of novel subtype selective drug leads from larger chemical libraries. The 

capability of virtual screening tools can be further enhanced by the incorporation 

of the knowledge of existing and newly discovered subtype selective [91, 93] and 

multi-subtype [204, 205] ligands, and by the further improvement of virtual 

screening algorithms and parameters [206, 243-248]. 
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4 Chapter 4 Virtual Screening Prediction of IKK beta 

Inhibitors from Large Compound Libraries by 

Support Vector Machines 

Summary 

The activation of the nuclear factor kappa B (NF-κB) signaling pathway which 

converge on a serine/threonine kinase plays a key role in the activation of NF-κB: 

the I kappa B kinase β (IKKβ). Therefore, IKKβ is considered an interesting target 

for combating inflammation and cancer. However, virtual screening study of 

potential IKKβ has not been used in large libraries. In this chapter, machine 

learning based virtual screening models were built to predict the potential IKKβ 

inhibitors. 

 

4.1 Introduction 

The cytotoxicity of chemotherapeutic agents is attributed to apoptosis. 

Acquired resistance to the effect of chemotherapy has become a serious 

impediment to effective cancer therapy. The cytotoxic treatments of cancer share a 

common that their activation of the transcription factor nuclear factor-κB, which 

regulates cell survival. Activation of the NF-κB signaling pathway by various 

stimuli, of which tumor necrosis factor-α (TNF-α) is probably the most 

extensively studied, induces the transcription of proinflammatory target genes via 

the activation of a complex intracellular signaling cascade, involving among 

others TNF receptor-associated factors (TRAFs) 2, 5, and 6, I kappa B kinases 
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(IKKs), and inhibitory κB proteins (IκB). The phosphorylation and degradation of 

IkB have received significant attention as key steps for the regulation of NF-kB 

complexes [249]. IKKβ forming the IKK complex together with IKKα and the 

regulatory domain NEMO (IKKγ) is primarily contributing to the phosphorylation 

of the inhibitor of NF-κB protein, IκB-α, at residues Ser32 and Ser36.[250] As 

inhibition of IKK-β is disabling NF-κB activation, the development of small 

molecule IKKβ inhibitors as potential anti-inflammatory and chemosensitizing 

agents is promising. IKK beta has been a prime target for the development of 

NF-kB signaling inhibitors [251-253]. In this work, the machine learning method 

SVM, k-NN and PNN are used to build prediction and virtual screening models of 

IKKβ inhibitors. There VS performances are compared in screening large 

libraries. 

4.2 Methods 

4.2.1 Data collection of IKK beta inhibitors 

A total of 907 of IKK beta inhibitors were collected from literatures and 

Chembldb (http://www.ebi.ac.uk/chembldb/index.php) and BindingDB 

(http://www.bindingdb.org/bind/index.jsp ).The inhibitors were deposited in sdf 

format files which contain the 3D structures and chemical properties. 

Small number of non-inhibitors has been reported. In order or improve the 

overall representative of non-inhibitors, putative non-inhibitors were generated by 

using our method of generating putative inactive compounds [206, 254]. This 

method requires no knowledge of known inactive and active compounds of other 

target classes, which enables more expanded coverage of the “non-inhibitor” 

chemical space. Although the yet to be discovered inhibitors are likely distributed 
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in some of these noninhibitor families, a substantial percentage of these inhibitors 

are expected to be identified as inhibitors rather than non-inhibitors, even though 

representatives of their families are putatively assigned as non-inhibitors[206]. 

The 13.56M PubChem and 168K MDDR compounds were grouped into 8 423 

compound families by clustering them in the chemical space defined by their 

molecular descriptors [255, 256]. 

The collected IKK beta inhibitors were clustered into 331 families. Because 

of the extensive efforts in searching kinase inhibitors from known compound 

libraries, the number of undiscovered IKK beta inhibitor families in PubChem and 

MDDR databases is expected to be relatively small, most likely no more than 

several hundred families. The ratio of the discovered and undiscovered inhibitor 

families (hundreds) and the families that contain no known inhibitor of each 

kinase (8 423 based on the current versions of PubChem and MDDR) is expected 

to be <15%. Therefore, a putative noninhibitor training data set can be generated 

by extracting a few representative compounds from each of those families that 

contain no known inhibitor, with a maximum possible “wrong” classification rate 

of <15%, even when all of the undiscovered inhibitors are misplaced into the 

noninhibitor class. The noise level generated by up to 15% wrong negative family 

representation is expected to be substantially smaller than that of the maximum 50% 

false-negative noise level tolerated by SVM[169]. Based on earlier studies [206, 

254] and this work, it is expected that a substantial percentage of the undiscovered 

inhibitors in the putative noninhibitor families can be classified as inhibitor 

despite that their family representatives are placed into the noninhibitor training 

sets. 
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4.2.2 Molecular Descriptors  

Molecular descriptors are quantitative representations of structural and 

physicochemical features of molecules, which have been extensively used in 

deriving structure-activity relationships[257, 258], quantitative structure activity 

relationships[259, 260], and VS tools[173, 174, 261-265]. All of the 98 1D and 2D 

descriptors available from our software[266] were used in this work so as to 

optimally represent the chemical space covered by the 13.56M PubChem and 

168K MDDR compounds. These descriptors and the relevant references are given 

in Table 2, which include 18 descriptors in the class of simple molecular 

properties, three descriptors in the class of chemical properties, 42 descriptors in 

the class of electro-topological state, and 35 descriptors in the class of molecular 

connectivity and shape. Descriptors in the first three classes are non-redundant. 

Some descriptors in the fourth class have some degree of overlap in describing the 

topological features in spite of their differences in mathematical expression. These 

descriptors include the Schultz molecular topological index, the Gutman 

molecular topological index, the Wiener index, the Harary index, and the 

gravitational topological index. The partial overlap in the topological descriptors 

is not expected to be a serious problem for SVM classification because SVM is 

less penalized by descriptor redundancy[166, 167]. 

4.2.3 Support Vector Machines (SVM)  

SVM, illustrated in Figure 1, is a supervised ML method based on the 

structural risk minimization principle for minimizing both training and 

generalization error [164]. There are linear and nonlinear SVMs. In linearly 

separable cases, SVM constructs a hyper-plane to separate active and inactive 
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classes of compounds with a maximum margin. A compound is represented by a 

vector xi composed of its molecular descriptors. The hyper-plane is constructed by 

finding another vector w and a parameter b that minimizes
2

w  and satisfies the 

following conditions: 

 1,  for 1i ib y     w x  Class 1 (active)   (1) 

 1,  for 1i ib y     w x  Class 2 (inactive)   (2) 

where yi is the class index, w is a vector normal to the hyperplane, /b w  is 

the perpendicular distance from the hyperplane to the origin and 
2

w  is the 

Euclidean norm of w. Base on w and b, a given vector x can be classified by f(x) =

[( ) ]sign b w x .  A positive or negative f(x) value indicates that the vector x 

belongs to the active or inactive class respectively.  

In nonlinearly separable cases, which frequently occur in classifying 

compounds of diverse structures[168-175], SVM maps the input vectors into a 

higher dimensional feature space by using a kernel function K(xi, xj). We used 

RBF kernel  
2 2/ 2

( , ) j i

i jK e
  x x

x x which has been extensively used and 

consistently shown better performance than other kernel functions[176-178]. 

Linear SVM can then applied to this feature space based on the following decision 

function: 0

1

( ) ( ( , ) )
l

i i i
i

f sign y K b


 x x x , where the coefficients i
0 and b are 

determined by maximizing the following Langrangian expression: 

1 1 1

1
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2

l l l

i i j i j i j
i i j

y y K  
  

  x x  under the conditions  0i   and   





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i
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1
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A positive or negative f(x) value indicates that the vector x is an inhibitor or 

non-inhibitor respectively.  

In developing our SVM VS tool, a hard margin c=100,000 was used, and the  

values were found to be 1.4. In 5-fold cross validation studies, the inhibitor and 

non-inhibitor prediction accuracies are given by sensitivity and specificity 

respectively. Prediction accuracies have also been frequently measured by overall 

prediction accuracy (Q) and Matthews correlation coefficient (C). In the large 

database screening tests, the yield and false-hit rate are given respectively. The 

detailed performance evaluation is described in Chapter 2 (section 2.4). 

K-NN and PNN methods are described in Chapter 2 (section 2.3). 

4.3 Results 

4.3.1 Performance of SVM identification of IKK beta inhibitors 

based on 5-fold cross validation test 

The 5-fold cross validation test results of SVM in identifying IKK beta 

inhibitors and putative non-inhibitors are given in Table 4-1. The accuracies for 

predicting inhibitors and non-inhibitors are 84.07%~94.48% and 99.92%~99.98% 

respectively. The overall prediction accuracy Q and Matthews correlation 

coefficient C are 99.58%~99.88% and 0.796~0.911 respectively. 
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Table 4-1 Performance of support vector machines for identifying IKK beta inhibitors and 
non-inhibitors evaluated by 5-fold cross validation study 
 

Cross 
-Validati
on 

IKK beta inhibitors IKK beta non-inhibitors   

Q (%) 

 

 C 

Number of 
training/ 
testing 
inhibitors 

TP FN SE(%) Number of 
training/ 

testing 
non-inhibitors 

TN FP SP(%)   

1 689/181 168 13 92.82% 51782/12946 12943 3 99.98% 99.88% 0.911 

2 688/182 
153 

29 84.07% 51784/12947 12941 6 99.98% 99.58% 0.796 

3 690/182 165 17 90.66% 51780/12947 12937 10 99.92% 99.79% 0.853 

4 692/181 171 10 94.48% 51782/12947 12936 11 99.92% 99.84% 0.886 

5 692/181 166 15 91.71% 51784/12947 12937 10 99.92% 99.81% 0.863 

average    90.75%    99.94% 99.78% 0.862 

 

 

4.3.2 Virtual screening performance of SVM in searching IKKb 

inhibitors from large compound libraries 

SVM VS tool for searching IKKβ inhibitors from large were developed by 

using IKKβ kinases reported before 2009 as described in the methods section. The 

VS performance of SVM in identifying IKKβ inhibitors reported since 2009 and 

in searching MDDR and PubChem databases is summarised in Table 4-2. The 

yield in searching IKKβ inhibitors reported since 2009 is 66.96%, which is 

comparable to the reported 57.86%~71.4% yields of various VS tools[240]. 

Significantly lower virtual-hit rates and thus false-hit rates were found in 

screening large libraries of 168K MDDR and 13.56M PubChem compounds. The 
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numbers of virtual-hits and virtual-hit rates in screening 168K MDDR compounds 

are 262 and 0.16% respectively. The numbers of virtual-hits and virtual-hit rates 

in screening 13.56M PubChem compounds are 7513 and 0.06% respectively. 
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Table 4-2 Virtual screening performance of support vector machines for identifying IKK beta inhibitors from large compound libraries. 

 

Method Inhibitors in Training 

Set 

Inhibitors in Testing Set Virtual screening performance 

 Number 

of 

Inhibitors 

Number of 

Chemical 

Families 

Covered by 

Inhibitors 

Number 

of 

Inhibitors 

Number 

of 

Chemical 

Families 

Covered 

by 

Inhibitors 

Percent 

of 

Inhibitors 

in 

Chemical 

Families 

Covered 

by 

Inhibitors 

in 

Training 

Set 

Yield  Number and 

Percent of 

13.56M 

PubChem 

Compounds 

Identified as 

Inhibitors 

Number and 

Percent of the 

168K MDDR 

Compounds 

Identified as 

Inhibitors 

Support Vector 

Machines 

729  251 112 77 15.58% 66.96% 7513 (0.06%) 262 (0.16%) 

Tarnimoto Similarity 27.67%  97,675(0.72%) 4,042(2.45%) 

K Nearest Neighbour 57.86% 79,855(0.58%) 1,702(1.0%) 

Probabilistic Neural 

Network 

71.40% 84,567(0.62%) 1,821(1.08%) 
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4.3.3  Comparison of Performance of SVM-based and other VS 

methods 

To evaluate the level of performance of SVM and whether the performance is 

due to the SVM classification models or to the molecular descriptors used, SVM 

results were compared with those of three other VS methods based on the same 

molecular descriptors, training dataset of IKK beta inhibitors reported before 

2009, and the testing dataset of IKK beta inhibitors reported since 2009, 168K 

MDDR and 13.56M PubChem compounds. The three other VS methods include 

two similarity-based methods, Tanimoto-based similarity searching and kNN 

methods, and an alternative machine learning method PNN. As shown in Table 

4-2, the yield of the Tanimoto-based similarity searching, kNN and PNN methods 

are 27.67%, 57.86%, and 71.4% respectively. Compared to these results, the yield 

of SVM is smaller than PNN but higher than other two similarity-based VS 

methods. These suggest that SVM performance is due primarily to the SVM 

classification models rather than the molecular descriptors used. The false-hit rate 

of SVM method are 0.06% to 0.16% for PubChem and MDDR libraries, which 

are considerably small than other methods. Our results are consistent with the 

report that SVM shows mostly good performances both on classification and 

regression tasks, but other classification and regression methods proved to be very 

competitive[267]. 

4.4 Conclusion Remarks 
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 SVM shows substantial capability in identifying IKK beta inhibitors at 

comparable yield and in many cases substantially lower false-hit rate than those of 

typical VS tools reported in the literatures and evaluated in this work. It is capable 

of searching large compound libraries at sizes comparable to the 13.56M 

PubChem and 168K MDDR compounds at low false-hit rates. Because of their 

high computing speed and generalization capability for covering highly diverse 

spectrum compounds, SVM can be potentially explored to develop useful VS 

tools for facilitating the discovery of IKK beta inhibitors and other active 

compounds. 



Chapter 5 Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response 
to anticancer EGFR tyrosine kinase inhibitors 

   109

5 Chapter 5 Analysis of bypass signaling in EGFR 

pathway and profiling of bypass genes for predicting 

response to anticancer EGFR tyrosine kinase inhibitors 

Summary 

Some drugs such as anticancer EGFR tyrosine kinase inhibitors elicit markedly 

different clinical response rates due to differences in drug bypass signaling as well 

as genetic variations of drug target and downstream drug-resistant genes. The 

profiles of these bypass signaling are expected to be useful for improved drug 

response prediction, which have not been systematically explored. In this work, 

we searched and analyzed 16 literature-reported EGFR tyrosine kinase inhibitor 

bypass signaling routes in EGFR pathway, which include 5 compensatory routes 

of EGFR transactivation by another receptor, and 11 alternative routes activated 

by another receptor. These 16 routes are reportedly regulated by 11 bypass genes. 

Their expression profiles together with the mutational, amplification and 

expression profiles of EGFR and 4 downstream drug-resistant genes were used as 

new sets of biomarkers for identifying 53 NSCLC cell-lines sensitive or resistant 

to EGFR tyrosine kinase inhibitors gefitinib, erlotinib, and lapatinib. The 

collective profiles of all 16 genes distinguish sensitive and resistant cell-lines are 

better than those of individual genes and the combined EGFR and downstream 

drug resistant genes, and their derived cell-line response rates are consistent with 

the reported clinical response rates of the three drugs. The usefulness of cell-line 

data for drug response studies was further analyzed by comparing the expression 
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profiles of EGFR and bypass genes in NSCLC cell-lines and patient samples, and 

by using a machine learning feature selection method for selecting drug response 

biomarkers. Our study suggested that the profiles of drug bypass signaling are 

highly useful for improved drug response prediction. 

 

5.1 Introduction 

 

The highly successful anticancer kinase inhibitor drugs typically elicit markedly 

different anticancer clinical response rates [268, 269]. For instance, the reported 

clinical response rates of EGFR tyrosine kinase inhibitors (EGFR-I) gefitinib and 

erlotinib are 19.9% and 8.9% respectively for the treatment of non-small cell lung 

cancer (NSCLC) [268, 269]. These differences have been linked to activating 

mutations, amplification and over expression of EGFR [269-272], and such genetic 

variations of EGFR downstream drug-resistant genes as activating mutations of 

RAS, BRAF, PIK3CA and AKT [269, 273-275], and loss-of-function of PTEN 

(including PTEN loss and inactivating mutations) [276-278]. The genetic and 

expression profiles of EGFR and downstream drug-resistant genes have been 

individually and collectively explored as biomarkers for predicting clinical 

response to EGFR-I [279-284]. Apart from these genes, drug response can also be 

significantly altered by compensatory, alternative and redundant signaling that 

bypass drug actions [282, 285]. Understanding the mechanism of these bypass 

signaling events is useful not only for discovering multi-target drugs and drug 

combinations[286-290] but also for discovering new biomarkers that in 

combination with existing biomarkers improves drug response prediction [282, 

285, 290, 291]. 
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Drug response biomarkers besides drug target and downstream drug-resistant 

genes can be derived by profiling the expression patterns of thousands of genes 

[292-294] and proteins [295]. While genome-scale gene and protein expression 

profiling is capable of predicting disease [104, 106, 296] and treatment [297] 

outcomes at high accuracy levels, data noise and other factors may in some cases 

affect the stability of derived biomarkers and the quality of identified disease or 

drug response genes [298-302]. Therefore, biomarker discovery from systems 

perspective of drug response signaling is expected to complement existing 

biomarker discovery methods by correlating drug response to the collective profiles 

of the drug target, downstream resistant genes, and bypass signaling. 

One of the successfully used experimental strategies for drug response 

mechanism investigations and biomarker discovery involves the comparative 

analysis of drug-resistant and drug-sensitive cancer-derived cell-line models [303], 

which has been used for implicating the compensatory PI3K/Akt/mTor activation 

as a mechanism of acquired resistance to imatinib in chronic myeloid leukemia 

(CML) [304], MET amplification as a mechanism of acquired resistance to EGFR-I 

therapy in NSCLC [305], and CRAF overexpression as a potential mechanism of 

acquired resistance to BRAF inhibitor therapy in melanomas [306]. 

Drug resistance related genetic mutations[307-310], chromosomal changes 

[311], gene expression [312-318], gene amplification [319, 320], and combinations 

of these profiles [321-324] have been actively explored as drug response 

biomarkers. Some of the identified biomarkers are related to the genes that regulate 

drug bypass signalling [293, 312, 319, 320, 325, 326]. These studies demonstrate 

the effectiveness of collective analysis of genetic and proteomic profiles of the drug 

targets and bypass signaling in predicting drug response. Moreover, some of the 
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relevant studies are based on cell-line models [312, 314, 319, 326], suggesting that 

cell-line models have some level of usefulness in facilitating drug response studies. 

In predicting drug response, the presence of known drug resistance mutations is 

used for indicating drug resistance [307, 309, 310]. Drug response can also be 

predicted from the expression profiles of the genes involved in the drug response 

regulations [312, 319, 320, 325, 326], with the up-regulation of the genes 

promoting drug bypass signalling [325, 326] and down-regulation of the genes 

[325] against drug actions [327] used for suggesting drug resistance. Previously 

unknown drug response biomarkers can be predicted from gene expression profiles 

by using the principal components analysis feature selection method [312], 

weighted voting classification feature selection method [314], hierarchical 

clustering feature selection method [313], differentially expressed genes 

method,[315, 328] and machine learning feature selection methods [295, 316]. The 

amplification of genes involved in drug bypass signalling is also linked to drug 

resistance. 

While cell-lines have been widely used for drug response studies [312, 314, 319, 

326] as well as in basic and translational biomedical research and drug discovery 

campaigns [303, 329, 330], the limited number of cell-lines may not adequately 

capture the heterogeneous nature of real tumors [303]. The genome instability [331, 

332], plasticity [333], and microenvironment [334, 335] of cell-lines may differ 

significantly from those of real tumors, which likely affect the quality of drug 

response studies [334]. For instance, the potency of trastuzumab has been found to 

change significantly when tumor cells are grown in 2D culture or 3D matrix [336] 

and when cells are plated on different extracellular matrices [337]. 

In this work, we searched and analysed literature reported compensatory, 
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alternative and redundant signaling pathways that have been experimentally found 

to contribute to the resistance of EGFR-I, and identified the corresponding bypass 

genes experimentally confirmed to play key roles in regulating these bypass 

signaling. The level of contribution of each bypass signaling pathway against 

EGFR-I is determined by the genetic and expression profiles of the corresponding 

bypass genes [338]. These profiles differ from individual to individual and thus are 

expected to contribute to the individual variations in drug response. To determine 

the level of usefulness of the profiles of the reported bypass genes in drug response 

prediction, we retrospectively analysed the expression profiles of 11 bypass genes 

(HER2, HER3, IGF1R, c-MET, PDGFR, FGFR, VEGFR2, Integrin β1, MDGI , 

IL-6 and Cox2) together with the mutational, amplification and gene expression 

profiles of EGFR and 4 downstream drug-resistant genes (RAS, BRAF, PIK3CA, 

and PTEN) in 53 NSCLC cell-lines sensitive or resistant to EGFR-I gefitinib, 

erlotinib, and lapatinib (Table 5-1 and 5-2). The presence of drug resistance 

mutations [307, 309, 310], PTEN loss of function [339], enhanced accumulation of 

internalized EGFR [340], and up-regulation [325, 326] and amplification of the 

bypass genes were used for predicting a cell-line to be resistant to an EGFR-I. The 

drug response prediction performance of the collective profiles of the 16 genes in 

these cell-lines is compared to those of individual profiles and the combined 

profiles of EGFR and 4 downstream drug-resistant genes. The overall cell-line 

response rates of the 3 drugs were also compared with the reported clinical response 

rates in NSCLC patients to determine to what extent cell-line derived response rates 

agree with the clinical response rates.  
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Table 5-1 The bypass genes, regulated bypass signaling or regulatory genes, and the relevant bypass mechanisms in the treatment of NSCLC. 
 

Bypass Gene Regulated Bypass Signaling Bypass Mechanism 

HER2 

Compensatory signaling via EGFR-HER2 
transactivation, and subsequent activation of RAS and 
AKT pathways 

EGFR inhibition upregulated HER2 and induced compensatory 
EGFR-HER2 heterodimerisation to promote alternative signaling [341, 
342] 

Alternative signaling via HER2-HER3 and 
HER2-HER4 transactivation, and subsequent 
activation of RAS and AKT pathways 

EGFR inhibition upregulated HER2 and induced HER2-HER3, 
HER2-HER4 heterodimerisation to promote alternative signaling[341, 
342] 

HER3 

Compensatory signaling via EGFR-HER3 
transactivation, and subsequent activation of ATK 
pathway 

EGFR inhibition elevated HER3 and subsequently induced 
compensatory transactivation of HER3 signaling [285] 

Alternative signaling via HER2-HER3 transactivation, 
and subsequent activation of RAS and ATK pathways 

EGFR inhibition upregulated HER2 and induced HER2-HER3 
heterodimerisation to promote alternative signaling[342, 343] 

Alternative signaling via HER3 autophosphorylation, 
and subsequent activation of ATK pathway 

HER3 may autophosphorylate to produce weak kinase activity that may 
contribute to the resistance of EGFR inhibitor[344] 

Alternative signaling via PDGFR-HER3 
transactivation, and subsequent activation of RAS and 
ATK pathway 

EGFR inhibition countered by PDGFR transactivation of HER3 
signaling[286] 

IGF1R 

Compensatory signaling via EGFR-IGF1R 
transactivation, and subsequent activation of RAS and 
ATK pathway 

EGFR inhibition upregulated IGF1R and induced EGFR-IGF1R 
heterodimerization and activation of IGFR signaling[345] 

Alternative signaling via IGF1R activation, and 
subsequent activation of RAS and ATK pathway 

EGFR inhibition reduced IGF-binding protein IGFBP-3 and IGFBP-4 to 
derepresses IGFIR signaling[346] 

c-MET 
Compensatory signaling via EGFR-MET 
transactivation, and subsequent activation of RAS and 

EGFR inhibition countered by focal amplification of MET that physically 
interacts with EGFR to promote transactivation[286, 347], Met activation 
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ATK pathway in NSCLC is associated with de novo resistance to EGFR inhibitors and 
the development of metastasis[348] 

Alternative signaling via MET-HER3 transactivation, 
and subsequent activation of RAS and AkT pathways 

EGFR inhibition countered by focal amplification of MET that 
transactivates HER3 to drive HER3-dependent activation of PI3K[305] 

Alternative signaling via MET-HER2 transactivation, 
and subsequent activation of RAS and AkT pathways 

EGFR inhibition countered by focal amplification of MET that physically 
interacts with HER2 to promote alternative signaling[286, 347] 

Alternative signaling via HGF-induced MET 
activation, which subsequently activate MAPK and 
AKT pathways independent of EGFR and HER3 

HGF-induced MET activation re-stimulated the MAPK and AKT 
pathways independent of EGFR and HER3 and restored cell 
proliferation, which is a novel mechanism of cetuximab resistance in 
CRC. Inhibition of the HGF-MET pathway may improve response to 
EGFR inhibitors in CRC[349]  

PDGFR 

Alternative signaling via PDGFR-HER3 
transactivation, and subsequent activation of RAS and 
AkT pathways 

EGFR inhibition countered by PDGFR transactivation of HER3 
signaling[286] 

Alternative signaling via PDGFR autophosphorylation, 
and subsequent activation of RAS and AkT pathways 

PDGF, PDGFR are expressed in certain NSCLC cell-lines, EGFR 
inhibition induced PDGFR autophosphorylation[350] 

FGFR 

Alternative signaling via FGF-FGFR autocrine 
pathway, and subsequent activation of RAS and AkT 
pathways 

FGFR contributed to EGFR inhibitor resistance via alternative 
signaling[350], an FGF-FGFR autocrine pathway dominates in some 
NSCLC cell-lines to promote the switch to FGFR signaling[351] 

VEGFR2 

Alternative signaling via VEGFR2 pathway, and 
subsequent activation of RAS and AkT pathways 

EGFR inhibition shifts tumor population towards a less EGFR-dependent 
and more VEGF-dependent phynotype, combined blockade of VEGFR 
and EGFR pathways can abrogate resistance to EGFR inhibitors[352] 

Integrin β1 

Compensatory signaling via EGFR-Integrin beta1 
transactivation, and subsequent activation of RAS and 
AkT pathways 

Integrin beta1 over-expression associates with resistance to gefitinib in 
NSCLC (21053345), it associates with EGFR, c-SRC and P130 to 
activate  EGFR[353, 354] 
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Alternative signaling via integrin beta1 recruitment of 
FAK and a PP2-sensitive kinase to activate AkT 
pathway 

Integrin β1 over-expression associates with resistance to gefitinib in 
NSCLC[355], it activates AkT pathway by recruiting either FAK or an 
upstream PP2-sensitive non SRC tyrosine kinase to activate PI3K[356] 

MDGI  

Compensatory signaling via enhanced accumulation of 
internalized EGFR, and enhanced activation of RAS 
and AkT pathways 

MDGI regulated EGFR subcellular localization, MDGI over-expression 
increased intracellular accumulation of EGFR and may be a biomarker 
for responsiveness to anti-EGFR antibody therapy[340] 

IL-6 

Alternative signaling via IL-6 activation of MEK and  
JAK/STAT 

IL-6 is upregulated in Erlotinib-resistant cells and required for their 
survival, and the up-regulation is mediated by TGF-β signaling, IL-6 
activated gp130/JAK/STAT pathway to decrease sensitivity to 
erlotinib[357], EGFR can activate JAK/STAT via Mek, elevated IL can 
activate JAK/STAT and Mek to substitute EGFR activation of Mek and 
STAT[358] 

Cox2 

Alternative signaling by PGE2 mediated activation of 
PKC-MEK-ERK pathway and Gβγ-PI3K pathway 

Cox2 over-expression caused resistance to Gefitinib and Erlotinib 
inhibition of Erk[359], Cox2 activated Erk via PGE2–EP 
receptors-PKC-Ras-Mek, Cox2 activated PI3K via PGE2-EP 
receptors-Gβγ-PI3K, Cox2 also activated EGFR via PGE2-EP receptors 
– Src – TGFα –EGFR and PGE2-EP receptors – 
Amphelegulin-EGFR[360] 
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Table 5-2 The downstream genes, regulated bypass signaling or regulatory genes, and the relevant bypass mechanisms in the treatment of NSCLC. 
 
 

Drug Resistant 
Downstream 

Gene 
Bypass Signaling Resistance Mechanism 

KRAS 

Compensatory signaling via EGFR-independent 
activation of KRAS  
 

KRAS activating mutation mediated EGFR-independent signaling and 
contributed to EGFR inhibitor resistance[361, 362] 

PTEN 

Compensatory signaling via enhanced activation of 
AKT pathway to reduce the level of dependence on 
EGFR 

PTEN loss or inactivating mutation contributed to EGFR inhibitor 
resistance by activation of Akt and EGFR[278, 280], PTEN-associated 
resistance to EGFR inhibitors is phenocopied by expression of dominant 
negative Cbl and can be overcome by more complete EGFR 
inhibition[363] 
 

PIK3CA 
Compensatory signaling via EGFR-independent 
activation of AKT pathway 

PIK3CA activating mutation mediated EGFR-independent AKT 
signaling and contributed to EGFR inhibitor resistance[275] 

AKT 
AKT activating mutation mediated EGFR-independent AKT signaling 
and could lead to resistance against EGFR inhibitor[274] 
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For non-EGFR addicted tumor cells, the addicted oncogene is the main signaling 

rather than EGFR-I bypass signaling, and the appropriate therapeutic approach is to 

target the addicted oncogene instead of EGFR [364]. In this work, these non-EGFR 

addicted tumor cells were not distinguished from the EGFR addicted cells because 

they are nonetheless resistant to EGFR tyrosine kinase inhibitors. Large percentage 

of NSCLC patients contains wild-type EGFR [270, 365]. Although lung cancer 

patients with wild-type EGFR are less sensitive to the EGFR-Is [366], some 

EGFR-Is such as erlotinib has been approved as a second/third-line drug for 

unselected NSCLC based on clinical trial results [367]. Hence, cell-lines with 

wild-type EGFR were included in this study. 

Gefitinib and erlotinib are EGFR-Is approved for lung and pancreatic cancers, 

and lapatinib is a multi-target EGFR and HER2 inhibitor approved for breast cancer 

and tested for lung, prostate and liver cancers [271, 288, 368-370]. These drugs 

were evaluated because of their clinical relevance, knowledge of drug-resistance 

mechanisms, and availability of drug response, genetic and gene expression data for 

statistically significant number of cell-lines. The specific genetic data include drug 

sensitizing mutations and copy number variations in EGFR, activating mutations in 

RAS, BRAF, PIK3CA and inactivating mutations in PTEN directly contributing to 

EGFR-I resistance in significant percentage of patients (>2%) [271]. The gene 

expression data include microarray gene expression data of EGFR, PTEN, and 11 

bypass genes directly contributing to EGFR-I resistance [285]. 

To evaluate the relevance and limitations of cell-line data for drug response 

studies, we compared the distribution of the known drug resistant mutations and the 

up-regulated EGFR and bypass genes in our studied NSCLC cell-lines and those in 
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the real NSCLC patient samples to determine to what extent the cell-line profiles 

are close to those of real patients. Moreover, the usefulness of cell-line data was 

further tested by using our support vector machines feature selection method [301] 

to select EGFR-I response biomarkers and compare them with the known bypass 

genes and the published EGFR-I response biomarkers derived from NSCLC patient 

samples [371] and cell-lines [293, 328] by using the differential expression method 

(genes with the most differential expression in drug resistant and sensitive samples 

are selected as biomarkers). 

 

 

5.2 METHODS 

5.2.1 EGFR pathway and drug bypass signaling data collection 

and analysis 

We searched the literatures to find experimentally determined bypass signaling and 

the corresponding bypass genes in response to EGFR inhibition by using keyword 

combinations of “EGFR”, “inhibitor”, “resistance”, “resistant”, “bypass”, 

“insensitive”, “sensitivity”, and “mechanism”. Table 5-1 and 5-2 summarizes the 

11 bypass-genes, 4 downstream drug resistance genes and the regulator of 

enhanced accumulation of internalized EGFR, the corresponding bypass and 

resistance mechanisms. The map of the major signaling pathways of EGFR and 

downstream effectors relevant to cancers [341, 372-374] was shown in Figure 5-1. 

Keyword combinations of “EGFR”, “pathway”, “signaling” were used to search the 

literatures that describe the pathway map, and the keyword combinations of protein 

name, alternative name, “interaction/interacting”, “binding/bind”, 



Chapter 5 Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response 
to anticancer EGFR tyrosine kinase inhibitors 

   120

“regulation/regulated” were used to search relevant protein-protein interactions and 

regulations from Pubmed [375]. We further searched from the literatures for the 

activating and resistant mutations of EGFR [271, 376, 377] and downstream drug 

resistant genes [339, 376, 378-380]. The amino acid sequences of EGFR and 4 

downstream drug-resistant genes were from the Swissprot database of UniprotKB 

[381]. 

 

5.2.2 NSCLC cell-lines with EGFR tyrosine kinase inhibitor 
sensitivity data 

 

We identified from literatures [373, 382, 383] NSCLC cell-lines with available 

sensitivity data for gefitinib, erlotinib, and lapatinib (Table 5-3 and 5-4). Overall, 

46 NSCLC cell-lines with sensitivity data for one or more drugs were collected. A 

cell-line was considered to be sensitive to a drug if the drug inhibits it at 

IC50≤1µM,[384] otherwise it was considered as resistant to the drug. The genetic 

and microarray gene expression data for 53 NSCLC cell-lines were obtained from 

the published literatures, and COSMIC [385] and GEO [386] databases. We further 

identified from GEO database the microarray gene expression data for 6 lung 

cell-lines of healthy people respectively. The relevant data and literature sources for 

these cell-lines are summarized in the Table 5-5. These expression data were 

processed by using RMA normalization method [387]. 
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Table 5-3 Clinicopathological features of NSCLC cell-lines used in this study. The available gene expression data, EGFR amplification status, and drug sensitivity data for 
gefitinib, erlotinib, and lapatinib are included together with the relevant references. 
 

Cell-line 
Histological 
Type 

Histological 
Subtype * 

Source * 
Gene Expression
Sample ID at GEO
Database([388] 

EGFR 
Amplification 
(gene copy
number >3)[280]

EGFR 
Amplification 
(gene copy
number >4)
[280] 

Mutated 
Gene/Genes[389, 
390] 

Sensitivity Data 

Gefitinib[391, 
392] 

Erlotinib[280, 
392] 

Lapatinib[2
80] 

A427 NSCLC NS PT NA   KRAS  R R 

A549 NSCLC NS PT GSM108799   KRAS R R R 

Calu1 NSCLC EC PE GSM108801   KRAS R R R 

Calu3 NSCLC AD PE GSM108803    S  S 

Calu6 NSCLC APC PT GSM108805   KRAS R R R 

Colo699 NSCLC AD PF NA Y    R R 

DV90 NSCLC AD PE NA   KRAS  R R 

EKVX NSCLC AD PT NA     R R 

H1155 NSCLC LCC PT NA NA NA KRAS,PTEN R R  

H1299 NSCLC LCC LN GSM108807   NRAS R R R 

H1355 NSCLC AD PT GSM108809   KRAS, BRAF R R R 

H1395 NSCLC AD PT GSM108811   BRAF R R R 

H1437 NSCLC AD PT GSM108813    R R R 

H1563 NSCLC AD PT NA   PIK3CA  R R 

H1568 NSCLC AD PT NA Y Y   R R 

H157 NSCLC SQ PT GSM108815   KRAS,PTEN R R R 

H1648 NSCLC AD LN GSM108817    R R S 

H1650 NSCLC AD PE GSM108819 Y  EGFR R R R 

H1666 NSCLC AD PE GSM108821   BRAF R R S 
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H1734 NSCLC AD PT NA Y  KRAS  R R 

H1755 NSCLC AD Live NA   BRAF  R R 

H1770 NSCLC NE LN GSM108825    R R  

H1781 NSCLC AD PE NA   ERBB2 R R R 

H1792 NSCLC AD PE GSM171848 Y  KRAS  R R 

H1819 NSCLC AD LN GSM108827 Y   R R S 

H1838 NSCLC AD PT NA Y Y   R R 

H1915 NSCLC SCC Brain NA     R R 

H1944 NSCLC AD ST NA   KRAS  R R 

H1975 NSCLC AD PT GSM108829 Y  EGFR R R R 

H1993 NSCLC AD LN GSM108831    R R R 

H2009 NSCLC AD LN GSM108833   KRAS R R R 

H2030 NSCLC AD LN NA   KRAS  R R 

H2052 NSCLC MT PE GSM171854     R R 

H2077 NSCLC AD PT NA     R R 

H2087 NSCLC AD LN GSM108835   BRAF, NRAS R R R 

H2110 NSCLC NS PE NA     R R 

H2122 NSCLC AD PE GSM108837   KRAS R R R 

H2126 NSCLC LCC PE GSM108839    R R R 

H2172 NSCLC NS PT NA     R R 

H2228 NSCLC AD PT NA     R R 

H23 NSCLC AD PT GSM171868   KRAS, PTEN  R R 

H2347 NSCLC AD PT GSM108841   NRAS R R R 

H2444 NSCLC NS PT NA Y  KRAS  R R 

H28 NSCLC MT PE GSM171870     R R 
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H2882 NSCLC NS PT GSM108843    R R R 

H2887 NSCLC NS PT GSM108845   KRAS R R R 

H3122 NSCLC AD PT GSM171874     R R 

H322 NSCLC AD PT GSM171876 Y   R R R 

H322M NSCLC AD PT NA     R S 

H3255 NSCLC AD PT GSM108847 Y Y EGFR S S S 

H358 NSCLC AD PT GSM108849   KRAS R R R 

H441 NSCLC AD PT GSM108851   KRAS R R R 

H460 NSCLC LCC PE GSM108853   
KRAS, 

PIK3CA 
R R R 

H520 NSCLC SQ PT NA    R R R 

H522 NSCLC AD PT NA Y    R R 

H596 NSCLC AD PT NA Y  PIK3CA  R R 

H647 NSCLC ADSQ PE NA   KRAS  R R 

H661 NSCLC LC LN GSM171884     R R 

H820 NSCLC AD LN GSM108855 Y  EGFR R R R 

HCC1171 NSCLC NS PT GSM108857   KRAS R R R 

HCC1195 NSCLC ADSQ PT GSM108859 Y  NRAS R R R 

HCC1359 NSCLC SGC PT GSM108861    R R R 

HCC15 NSCLC SQ PT GSM108863   NRAS R R R 

HCC1833 NSCLC AD PT GSM171898     R R 

HCC193 NSCLC AD PT GSM108865 Y   R R R 

HCC2279 NSCLC AD PT GSM108867 Y Y EGFR S S R 

HCC2429 NSCLC NS PT GSM171900     R R 

HCC2450 NSCLC SQ PT GSM171902   PIK3CA  R R 

HCC2935 NSCLC AD PE GSM108869   EGFR S S S 
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HCC364 NSCLC AD PT NA   BRAF  R R 

HCC366 NSCLC ADSQ PT GSM108871    R R R 

HCC4006 NSCLC AD PE GSM108873 Y Y EGFR S S S 

HCC44 NSCLC AD PT GSM108875   KRAS R R R 

HCC461 NSCLC AD PT GSM108877   KRAS R R R 

HCC515 NSCLC AD PT GSM108879   KRAS R R R 

HCC78 NSCLC AD PE GSM108881    R R R 

HCC827 NSCLC AD PT GSM108883 Y Y EGFR S S S 

HCC95 NSCLC SQ PE GSM108885    R R R 

HOP62 NSCLC AD PT NA   KRAS  R R 

HOP92 NSCLC AD PT NA Y    R R 

LCLC103H NSCLC LCC PE NA     R R 

LCLC97TM NSCLC LCC PT NA   KRAS  R R 

LouNH91 NSCLC SQ PT NA Y  EGFR  R R 

PC9 NSCLC AD PT NA Y  EGFR S S R 

SKLU1 NSCLC AD PT NA   KRAS  R R 

* Determined from the ATCC (http://www.atcc.org) and DSMZ (http://www.dsmz.de) websites, and references therein. 
Abbreviations: AD, lung adenocarcinoma; APC, anaplastic carcinoma; EC, epidermoid carcinoma; LCC, large cell lung cancer; LN, lymph node; MT, mesothelioma; NA: not 
available; NE, neuroendocrine neoplasm; NS, not specified; NSCLC: non-small cell lung cancer; PE, pleural effusion; PF, pleural fluid; PT, primary tumor; R, resistant; S, 
sensitive ; SCC, small-cell carcinoma; SGC: spindle and giant cell carcinoma; ST, soft tissue; Y, gene amplified 
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Table 5-4 Sensitivity data of NSCLC cell-lines treated with gefitinib, erlotinib, and lapatinib. 
 

NSCLC 
Cell-line 

Sensitivity of 
Cell-line to 
Gefitinib 

Inhibition # 

Reported Potency (IC50) of 
Gefitinib Inhibition (µM) 

Sensitivity of 
Cell-line to 
Erlotinib 

Inhibition # 

Reported Potency (IC50/ED50) of
Erlotinib Inhibition (µM) 

Sensitivity of 
Cell-line to 

Lapatinib Inhibition
# 

Reported Potency (ED50) of 
Lapatinib Inhibition (µM) 

Ref [392] Ref [391] Ref [392] Ref [280] Ref [280] 

A427    R  1.24 R 9.4406 

A549 R 25  R 60 10 R 10 

Calu1 R  41 R  10 R 10 

Calu3 S 0.78  - 1.29 0.7 S 0.1679 

Calu6 R  34 R  9.65 R 2.7542 

Colo699    R  4.26 R 5.8884 

DV90    R  3.95 R 1.4125 

EKVX    R  10 R 10 

H1155 R 183  R 8.63    

H1299 R 26.4  R 41.9 10 R 10 

H1355 R 325  R 27 3.31 R 5.6885 

H1395 R 71  R 10.5 5.05 R 6.6834 

H1437 R 62  R 12.5 10 R 10 

H1563    R  10 R 10 

H1568    R  1.08 R 2.541 

H157 R 115  R 128 10 R 10 

H1648 R 36.7  R 34 7.77 S 0.9441 

H1650 R 11.7  R 15 2.13 R 3.8905 

H1666 R 180  R 13 3.31 S 0.5957 

H1734    R  3.79 R 4.3652 

H1755    R  7.5 R 10 
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H1770 R 160  R 111 10   

H1781 R 19  R 44 2.54 R 2.9174 

H1792    R  10 R 10 

H1819 R 19  R 6.3 3.92 S 0.7328 

H1838    R  3.47 R 10 

H1915    R  10 R 10 

H1944    R  1.83 R 10 

H1975 R 25  R 33 10 R 10 

H1993 R 17.9  R 5.2 8.06 R 4.3152 

H2009 R 33.2  R 25.8 10 R 10 

H2030    R  4.95 R 5.0119 

H2052    R  8.98 R 10 

H2077    R  10 R 10 

H2087 R 18.4  R 9.9 10 R 10 

H2110    R  4.5 R 2.7861 

H2122 R 35  R 76.8 10 R 10 

H2126 R 21.4  R 13 10 R 10 

H2172    R  10 R 8.9125 

H2228    R  10 R 10 

H23    R  10 R 5.6234 

H2347 R 60  R 5.2 10 R 5.9566 

H2444    R  4.22 R 7.6736 

H28    R  10 R 1.6032 

H2882 R 19.2  R 66 10 R 5.1286 

H2887 R 110  R 101 10 R 10 

H3122    R  10 R 10 
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H322 R 120  R 56 2.21 R 2.4831 

H322M    R  1.29 S 0.4416 

H3255 S 0.089  S 0.129 0.02 S 0.309 

H358 R 12.5  R 6.2 1.11 R 1.6032 

H441 R 15.7  R 7.1 3.61 R 10 

H460 R 16.9  R 72 10 R 3.3113 

H520 R 13.6  R  10 R 6.8391 

H522    R  5.83 R 8.7096 

H596    R  1.2 R 10 

H647    R  10 R 10 

H661    R  10 R 10 

H820 R 3  R 7.1 10 R 10 

HCC1171 R 127  R 160 10 R 10 

HCC1195 R 27.6  R 175 10 NA  

HCC1359 R 65  R 88 10 R 10 

HCC15 R 52  R 100 10 R 10 

HCC1833    R  10 R 2.6915 

HCC193 R 21.1  R 20.5 10 R 1.7378 

HCC2279 S 0.0479  S 0.093 0.01 R 10 

HCC2429    R  10 R 5.9566 

HCC2450    R  10 R 10 

HCC2935 S 0.11  S 0.163 0.07 S 0.2344 

HCC364    R  4.19 R 10 

HCC366 R 30  R 11 0.99 R 10 

HCC4006 S 0.23  S 0.124 0.04 S 0.537 

HCC44 R 57.8  R 28 10 R 10 
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HCC461 R 13.9  R 16 9.04 R 10 

HCC515 R 120  R 154 1.85 R 9.5499 

HCC78 R 81  R 21.2 10 R 4.1687 

HCC827 S 0.04  S 0.0388 0.02 S 0.7943 

HCC95 R 24  R 18.4 10 R 3.2359 

HOP62    R  10 R 5.4325 

HOP92    R  10 R 10 

LCLC103H    R  10 R 10 

LCLC97TM    R  5.26 R 7.3282 

LouNH91    R  3.05 R 5.1286 

PC9 S 0.0309  S  0.02 R 1.4962 

SKLU1    R  10 R 10 
* A cell-line with IC50≤ 1 µmol/L for gefitinib, erlotinib, and lapatinib was considered to be sensitive (S) to a given drug[384],  otherwise it was considered as resistant (R) to the 
drug. - : cell-line with inconsistent sensitivity data, which is not included in this study.   
 

  



Chapter 5 Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response to anticancer EGFR tyrosine kinase inhibitors 

   129 

Table 5-5 6 normal Cell-lines from the lung bronchial epithelial tissues obtained from GEO database. 
 

Gene Expression 
Sample ID of Normal 

Cell-line at GEO 
Database 

Cell-lines Source of Cell-lines Reference 

GSM427196 NHBE Normal human bronchial epithelial cells 

Ref  [393] 

GSM427197 NHBE Normal human bronchial epithelial cells 

GSM427198 BEAS-2B Immortalized bronchial epithelial cells 

GSM427199 BEAS-2B Immortalized bronchial epithelial cells 

GSM427200 1799 Immortalized lung epithelial cells 

GSM427201 1799 Immortalized lung epithelial cells 
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5.2.3 Genetic and expression profiling of bypass genes for 
predicting drug sensitivity of NSCLC cell-lines 

 

The clinical efficacy of gefitinib, erlotinib, and lapatinib against NSCLC are mostly 

due to their inhibition of the main target EGFR [271, 288]. Resistance to EGFR 

tyrosine kinase inhibitors primarily arises from resistant mutations and 

amplification of EGFR, activating mutations of down-stream signaling genes and 

loss of function of down-stream negative regulators, and compensatory, alternative 

and redundant signaling genes frequently up-regulated or amplified in resistant 

patients [285, 305]. Efflux-pumps, primarily responsible for the resistance of 

chemotherapy drugs [394], are not expected to significantly contribute to the 

resistance of the evaluated drugs because these drugs are either efflux-pump 

inhibitors [383, 395, 396]. 

We retrospectively evaluated the capability of the individual and combinations of 

the genetic and expression profiles of the main target, downstream drug resistance 

genes, and bypass genes in Table 5-1 and 5-2 for predicting the sensitivity of the 53 

NSCLC cell-lines to gefitinib (6 sensitive, 38 resistant), erlotinib (7 sensitive, 46 

resistant), and lapatinib (8 sensitive, 40 resistant). We evaluated 14 mutation-based, 

amplification-based, expression-based, and combination methods by calculating 

the percentages of correctly predicted sensitive and resistant cell-lines. Due to 

inadequate copy number data, the amplification-based methods exclude the profiles 

of the bypass and downstream genes, some of which are known to directly 

contribute to EGFR tyrosine kinase inhibitor resistance [305]. Nonetheless, copy 

number variation significantly influences gene expression, with 62% of amplified 

genes showing moderately or highly elevated expression [397]. Thus the effects of 
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amplification of bypass genes are expected to be partially reflected by the 

expression profiles. 

In mutation-based method M1, a NSCLC cell-line is predicted as sensitive to a 

drug if EGFR contains no resistance mutation against the given drug [269] and the 

drug inhibits EGFR at IC50 ≤ 500nM[384] (a stricter condition of IC50 ≤ 100nM 

gives the same results in all studied cases), otherwise it is predicted as 

drug-resistant. In mutation-based method M2, a NSCLC cell-line is predicted as 

sensitive to a drug if the drug inhibits EGFR at IC50 ≤ 500nM,[384] EGFR contains 

no resistance mutation against the given drug [269], and the un-inhibited KRAS has 

no activating mutation [362]. In mutation-based method M3, a NSCLC cell-line is 

predicted as sensitive to a drug if: (I) the drug inhibits EGFR at IC50≤500nM[384] 

and EGFR in NSCLC cell-line has no resistance mutation against the given drug 

[269], (II) the un-inhibited KRAS, NRAS, BRAF, PIK3CA in NSCLC cell-line 

[271] has no activating mutation, (III) there is no PTEN loss or PTEN inactivating 

mutation in NSCLC [271] cell-line. 

The mutation profiles of the relevant genes in each cell-line were generated by 

comparative sequence analysis with respect to the reported sensitizing, activating or 

inactivating mutations, which are summarized in Table 5-6 and 5-7. PTEN loss was 

assumed to occur if its microarray gene expression level is ≤ 1/5 of the median level 

of PTEN in the normal tissue cell-lines [398], based on the comparison of the 

western-blot staining of a PTEN-deficient cell-line ZR-75-1 with that of a 

PTEN-normal cancer cell-line MCF-7 [399] (variation of this cut-off from 0 to 1/3 

of the median level gives the same results in all studied cases). 
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Table 5-6 Drug related sensitizing/resistant mutations of EGFR and cancer related activating mutations of EGFR, PIK3CA, RAS, and BRAF, and inactivation mutations of 
PTEN. 
 

Disease Type of Mutation 

Percentage of 85 NSCLC 
Cell-lines or 40 Breast 

Cancer Cell-lines with This 
Type of Mutation 

Specific Mutations (Number of NSCLC or  Breast 
Cancer Cell-lines with This Mutation)  

NSCLC 

Gefitinib , erlotinib , and lapatinib sensitizing 
mutation of EGFR[271] 

11.7% 
E746_A750del (4) / E746_A750del, T751A(1) /  
E746_T751del, I ins(1)  /  L747_E749del, A750P(1) /  
L747_S752del, P753S(1) / L858R(2) 

Gefitinib , erlotinib , and lapatinib resistant 
mutation of EGFR[271] 

2.4% T790M (2) 

Gefitinib and erlotinib resistant mutation of 
HER2[400] 

1.2% G776VC (1) 

Activating mutation of KRAS[378] 32.9% 
G12A (1)  /  G12C (9) /  G12D (3) / G12R (1) / G12S (1) 
/  G12V (4) /  G13C (2) /  G13D (4) /  Q61H (2) /  
Q61K (1)  

Activating mutation of NRAS[378] 5.9% Q61K (3) /  Q61L (1) /  Q61R (1) 

Activating mutation of BRAF [376] 7.1% G466V(1) /  G469A(3) /  L597V(1) /  V600E(1) 

Activating mutation PIK3CA [379, 380] 4.7% E542K (1) /  E545K (2) /   H1047R(1) 

Inactivating mutation PTEN[339] 4.7% H61R(1) /  G251C(1) / R233*(2)  

 
, 
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Table 5-7 Cancer related and drug related specific mutations in 85 NSCLC cell-lines. 
  

Cell-lines Disease Mutated Gene[389, 390] Type of Mutation  
Mutation Details 

Amino Acid Nucleotide 

A427 NSCLC KRAS Activating mutation G12D 35G>A 

A549 NSCLC KRAS Activating mutation G12S 34G>A 

Calu1 NSCLC KRAS Activating mutation G12C 34G>T 

Calu3 NSCLC ND    

Calu6 NSCLC KRAS Activating mutation Q61K 181C>A 

Colo699 NSCLC ND *    

DV90 NSCLC KRAS Activating mutation G13D 38G>A 

EKVX NSCLC ND    

H1155 NSCLC KRAS Activating mutation Q61H 183A>T 

H1155 NSCLC PTEN Inactivating mutation R233* 697C>T 

H1299 NSCLC NRAS Activating mutation Q61K 181C>A 

H1355 NSCLC KRAS Activating mutation G13C 37G>T 

H1355 NSCLC BRAF Activating mutation G469A 1406G>C 

H1395 NSCLC BRAF Activating mutation G469A 1406G>C 

H1437 NSCLC ND    

H1563 NSCLC PIK3CA* Activating mutation E542K 1624G>A 

H1568 NSCLC ND    

H157 NSCLC KRAS Activating mutation G12R 34G>C 

H157 NSCLC PTEN Inactivating mutation G251C 751G>T 

H157 NSCLC PTEN Inactivating mutation H61R 182A>G 

H1648 NSCLC ND    

H1650 NSCLC EGFR EGFR sensitizing mutation E746_A750del 2235_2249del15 

H1666 NSCLC BRAF Activating mutation G466V 1397G>T 
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H1734 NSCLC KRAS Activating mutation G13C 37G>T 

H1755 NSCLC BRAF Activating mutation G469A 1406G>C 

H1770 NSCLC ND    

H1781 NSCLC ERBB2* 
gefitinib and erlotinib resistant 

mutation 
G776VC  

H1792 NSCLC KRAS Activating mutation G12C 34G>T 

H1819 NSCLC ND    

H1838 NSCLC ND     

H1915 NSCLC ND*    

H1944 NSCLC KRAS* Activating mutation G13D 38G>A 

H1975 NSCLC EGFR EGFR-I sensitizing mutation  L858R 2573T>G 

H1975 NSCLC EGFR EGFR-I resistant mutation T790M 2369C>T 

H1993 NSCLC ND    

H2009 NSCLC KRAS Activating mutation G12A 35G>C 

H2030 NSCLC KRAS Activating mutation G12C 34G>T 

H2052 NSCLC ND    

H2077 NSCLC ND*    

H2087 NSCLC BRAF Activating mutation L597V 1789C>G 

H2087 NSCLC NRAS Activating mutation Q61K 181C>A 

H2110 NSCLC ND    

H2122 NSCLC KRAS Activating mutation G12C 34G>T 

H2126 NSCLC ND    

H2172 NSCLC ND*    

H2228 NSCLC ND    

H23 NSCLC KRAS Activating mutation G12C 34G>T 

H23 NSCLC PTEN Inactivating mutation R233* 697C>T 

H2347 NSCLC NRAS Activating mutation Q61R 182A>G 
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H2444 NSCLC KRAS* Activating mutation G12V  

H28 NSCLC ND    

H2882 NSCLC ND    

H2887 NSCLC KRAS* Activating mutation G12V  

H3122 NSCLC ND    

H322 NSCLC ND    

H3255 NSCLC EGFR EGFR-I sensitizing mutation L858R 34G>T 

H358 NSCLC KRAS Activating mutation G12C 34G>T 

H441 NSCLC KRAS Activating mutation G12V 35G>T 

H460 NSCLC PIK3CA Activating mutation E545K 1633G>A 

H460 NSCLC KRAS Activating mutation Q61H 183A>T 

H520 NSCLC ND    

H522 NSCLC ND    

H596 NSCLC PIK3CA Activating mutation E545K 1633G>A 

H647 NSCLC KRAS Activating mutation G13D 38G>A 

H661 NSCLC ND    

H820 NSCLC EGFR* EGFR-I sensitizing mutation E746_T751del, I ins  

H820 NSCLC EGFR* EGFR-I resistant mutation T790M 2369C>T 

HCC1171 NSCLC KRAS* Activating mutation G12C  

HCC1195 NSCLC NRAS* Activating mutation Q61L  

HCC1359 NSCLC ND*    

HCC15 NSCLC NRAS* Activating mutation Q61K  

HCC1833 NSCLC ND*    

HCC193 NSCLC ND*    

HCC2279 NSCLC EGFR* EGFR-I sensitizing mutation E746_A750del 2235_2249del15 

HCC2429 NSCLC ND*    
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HCC2450 NSCLC PIK3CK* Activating mutation H1047R 3140A>G 

HCC2935 NSCLC EGFR* EGFR-I sensitizing mutation E746_A750del, T751A  

HCC364 NSCLC BRAF Activating mutation V600E 1799T>A 

HCC366 NSCLC ND*    

HCC4006 NSCLC EGFR* EGFR-I sensitizing mutation L747_E749del, A750P  

HCC44 NSCLC KRAS* Activating mutation G12C  

HCC461 NSCLC KRAS* Activating mutation G12D  

HCC515 NSCLC KRAS* Activating mutation G13D  

HCC78 NSCLC ND*    

HCC827 NSCLC EGFR* EGFR-I sensitizing mutation E746_A750del 2235_2249del15 

HCC95 NSCLC ND*    

HOP62 NSCLC KRAS Activating mutation G12C 34G>T 

HOP92 NSCLC ND    

LCLC103H NSCLC ND    

LCLC97TM NSCLC KRAS Activating mutation G12V 35G>T 

LouNH91 NSCLC EGFR* EGFR-I sensitizing mutation L747_S752del, P753S  

PC9 NSCLC EGFR* EGFR-I sensitizing mutation E746_A750del 2235_2249del15 

SKLU1 NSCLC KRAS* Activating mutation G12D 35G>A 
* Mutation was only reported in Ref [390]; # PIK3CA mutation of JIMT-1  was reported by Ref  [401]                  

Abbreviations:   ND, no sensitizing/resistant/activating mutation was detected according to COSMIC database and Ref 4 
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In amplification-based method A1, a NSCLC cell-line is predicted as sensitive to 

a drug if EGFR in the respective cell-line is amplified [142, 402] and inhibited by 

the drug at IC50 ≤ 500nM [384]. A gene in a cell-line is considered amplified if its 

copy number is ≥ 3 [403]. Copy numbers of the evaluated genes in the studied 

cell-lines were from literatures [403]. 

In expression-based method E1, a NSCLC cell-line is predicted as sensitive to a 

drug if EGFR in the respective cell-line is over-expressed [269] and inhibited by the 

drug at IC50≤500nM [384]. The expression-based method E2 differs from method 

E1 by an additional condition: all un-inhibited bypass genes in a cell-line are not 

over-expressed. Bypass genes are frequently up-regulated or amplified in resistant 

patients [285, 305, 359], which likely enable the promotion of drug-resistant 

signaling at significant levels. A gene in cancer cell-lines was assumed to be 

over-expressed if its microarray gene expression level is ≥ 2-fold higher than the 

lowest level of the same gene in the corresponding healthy tissue cell-lines [404]. 

 

5.2.4 Collection of the mutation, ammplification and expression 

data of NSCLC patients. 

 

37-753 NSCLC patient samples with mutation and amplification data [361, 405, 406] and 

45 NSCLC patient samples with expression data [407] were collected from the literatures 

and Gene Expression Omnibus (GEO) database. Specifically, EGFR somatic mutation data 

were from the reported study of 58 lung cancer patients from Japan and 61 lung cancer 

patients from the US [270]. KRAS mutation data were from a reported study of 753 

NSCLC patients [361] in which KRAS mutations have been identified by either 

allele-specific realtime PCR or codon amplification followed by direct sequencing. The 
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amplification data were from a reported study of 37 NSCLC patients responded clinically 

to either gefitinib or erlotinib and undergone repeat biopsy and comparative molecular 

analysis [405]. The gene expression data of 45 NSCLC patients were from the GEO 

database entry GSE18842 with 45 tumor samples and their paired normal tissue samples 

analyzed by using the Human Genome U133 Plus 2.0 chip from Affymetrix [407].  

 

5.2.5 Feature selection method 

 

All cell-line data contain the measurements for 22,215 gene probes, The data were 

subject to the standard preprocessing procedure [408]. The dataset was randomly 

divided into a training set and an associated testing set of roughly 4:1 ratio. By 

using repeated random sampling [298], 10,000 training-testing sets, each 

containing a unique combination of samples (sensitive samples in some 

combinations are not unique because of the few number of samples), were 

generated. These 10,000 training-testing sets were randomly placed into 20 

sampling groups; each group contains 500 training-testing sets. Every sampling 

group was then used to derive a set of biomarkers based on consensus scoring and 

evaluation of gene-ranking consistency of the corresponding 500 training and 500 

testing sets. The 20 different signatures derived from these sampling groups were 

compared to test the level of stability of selected biomarker genes. 

 

SVM, a supervised machine learning method, was used for training a class 

differentiation system [300, 408, 409]. In classification of microarray datasets, it 

has been found that supervised machine learning methods generally yield better 

results [410], particularly for smaller sample sizes [300], and SVM consistently 
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shows outstanding performance, is less penalized by sample redundancy, and has 

lower risk for over-fitting [409, 411]. Biomarker genes of each testing-set were 

selected by using SVM recursive feature elimination (RFE-SVM), which is a 

wrapper method that selects biomarkers by eliminating non-contributing genes 

according to a gene-ranking function [119]. Wrapper methods generally perform 

better than other feature-selection methods [119]. RFE-SVM is the best performing 

wrapper method and has thus been more widely used in cancer microarray analysis 

[408, 411]. 

 

To further reduce the chance of erroneous elimination of biomarkers due to 

noises in microarray data, additional gene-ranking consistency evaluation steps 

were implemented on top of the normal RFE procedures. In step 1, for every 

testing-set, subsets of genes ranked in the bottom 10% (if no gene was selected in 

current iteration, this percentage was gradually increased to the bottom 40%) with 

combined score lower than the first few top-ranked genes were selected such that 

collective contribution of these genes was less likely outweigh higher-ranked ones. 

In step 2, for every testing-set, the step-1 selected genes was further evaluated to 

choose those not ranked in the upper 50% in previous iteration so as to ensure that 

these genes are consistently ranked lower. In step 3, a consensus scoring scheme 

was applied to step-2 selected genes such that only those appearing in >90% (if no 

gene was selected in current iteration, this percentage was gradually reduced to 

60%) of the 500 testing-sets were eliminated. 

 

 

For each sampling-set, different SVM parameters were scanned, various RFE 
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iteration steps were evaluated to identify the globally optimal SVM parameters and 

RFE iteration steps that give the highest average class-differentiation accuracy for 

the 500 testing-sets. The 20 different signatures derived from these sampling-sets 

were then compared to test the level of stability of selected predictor-genes. 
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5.3 Result and Discussion 

5.3.1 EGFR tyrosine kinase inhibitor bypass signaling in EGFR 

pathway 

The map of EGFR pathway and downstream effectors relevant to cancers is shown 

in Figure 5-1. Overall, 16 bypass signaling routes with 11 bypass genes together 

with 7 additional bypass signaling routes mediated by the genetic variations of 

EGFR and 4  

 
Figure 5-1 The major signaling pathways of the EGFR and downstream effectors relevant to 
cancers. Modified after Yarden and Sliwkowsk et al (2001),[372] Hynes and Lane (2005),[373] 
Citri and Yarden (2006),[341] and Normanno et al (2006).[374] Binding of specific ligands (e.g. 
EGF, heparin-binding EGF, TGF-α) may generate homodimeric complexes resulting in 
conformational changes in the intracellular EGFR kinase domain, which lead to 
autophosphorylation and activation. Consequently, signaling molecules, including growth factor 
receptor-bound protein-2 (Grb-2), Shc and IRS-1 are recruited to the plasma membrane. Activation 
of several signaling cascades is triggered predominately by the RAS-to-MAPK and the PI3K/Akt 
pathways, resulting in enhanced tumour growth, survival, invasion and metastasis. Certain 
mutations in the tyrosine kinase domain may render EGFR constitutively active without their 
ligands. For cancers with these EGFR activating mutations, the EGFR ligands EGF or TGF-α is 
unimportant. 
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downstream drug resistance genes and by enhanced accumulation of internalized 

EGFR were identified based on the reported experimental evidences that link the 

specific mutation, amplification, over-expression, or deficiency of each of the 11 

bypass-genes, 4 downstream drug resistance genes and EGFR to the resistance of 

an EGFR tyrosine kinase inhibitor [305, 382]. These are summarized in Table 5-1 

and 5-2. The bypass signaling events in response to EGFR-I can be divided into 

three classes. The first class, shown in Figure 5-2, involves downstream 

EGFR-independent signaling via genetic variations of EGFR and downstream drug 

resistant genes, which have been explored as EGFR-I biomarkers [279-284]. The 

specific downstream EGFR-independent signaling mechanisms include EGFR 

mutations resistant to an EGFR-I (D1) [271, 376, 377], activating mutations in Raf 

(D2), Ras (D3), PI3K (D5), and AKT (D6),[376, 378-380] PTEN loss of function 

(D4) [339], and enhanced accumulation of internalized EGFR by MDGI (D7) [340]. 

In Figure 5-2, proteins known to carry drug resistant mutations or activating 

mutations are in darker color and red label. PTEN loss of function is represented by 

dashed elliptic plate with blank background. Drug resistance mutations in EGFR 

cause resistance to EGFR-I by such mechanisms as steric impediment of EGFR-I 

and the increase of ATP affinity to enhance its competitiveness against competitive 

EGFR-I [377, 412]. While loss-of-function of PTEN can be induced by both PTEN 

loss[277] and PTEN inactivating mutations [276], PTEN loss occurs significantly 

more frequently than PTEN inactivating mutations in NSCLC patients [413]. 

Moreover, PTEN loss alone is not a sufficiently good biomarker for NSCLC [413], 

indicating the need for collective consideration of multiple bypass mechanisms in 

predicting drug response. 
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Figure 5-2 EGFR pathway shows EGFR tyrosine kinase inhibitor (EGFRI) bypass mechanisms 
duo to downstream EGFR-independent signaling involving mutations resistant to EGFRI (D1), 
activating mutations in Raf (D2), Ras (D3), PI3K (D5), and AkT (D6), PTEN loss of function 
(D4), and enhanced accumulation of internalized EGFR by MDGI (D7). Proteins known to carry 
drug resistant mutations or activating mutations are in darker color and red label. The loss of 
function of PTEN is represented by dashed elliptic plate.  
 

 

The second class, shown in Figure 5-3, involves compensatory signaling due to 

EGFR transactivation by HER2 (C1) [341, 342], MET (C2) [286, 347], IGF1R 

(C3) [345], Integrin β1 (C4) [356], and HER3 (C4) [285]. In particular, C3, C4 and 

C5 activate PI3K via IRS1/IRS2, FAK or a PP2-sensitive kinase, and direct 

interaction respectively, which are different from the Grb2-Gab1-PI3K path used 

by the canonical EGFR signaling pathway. The ligands of EGFR and some other 

receptor tyrosine kinases, particularly members of ErbB families, have the ability to 

induce not only their own receptor homodimers but also heterodimers with other 
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selected receptor tyrosine kinases and GPCRs [414, 415], which significantly 

expands the signaling potential of EGFR [414, 415] and enables the bypass of 

EGFR inhibition in tumors [285, 286, 341, 342, 345, 347]. Depending on the 

activating ligand, EGFR and other selected receptor tyrosine kinases are able to 

form various homodimers or heterodimers with different biological signaling 

capacities and with response to the inhibition of EGFR or downstream proteins. 

 

 

 

 
Figure 5-3 EGFR pathway shows EGFR tyrosine kinase inhibitor (EGFRI) bypass mechanisms 
duo to compensatory signaling of EGFR transactivation with HER2 (C1), MET (C2), IGF1R (C3), 
Integrinβ1 (C4), and HER3 (C5). In particular, C3, C4 and C5 activates PI3K via IRS1/IRS2, FAK 
or a PP2-sensitive kinase,  and direct interaction respectively  
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The third class, shown in Figure 5-4, involves alternative signaling of VEGFR2 

activation (A1) [352], HER2-MET transactivation (A2) [286, 347], PDGFR 

activation (A3) [350], IGF1R activation (A4) [346], HER2-HER3 transactivation 

(A5) [342, 343], HER2-HER4 transactivation (A6) [342, 343], MET-HER3 

transactivation (A7) [305], PDGFR-HER3 transactivation (A8) [286], Integrin α/β 

activation (A9) [356], IL6 activation of IL6R-GP130 complex (A10) [358], and 

Cox2 mediated activation of EP receptors (A11) [360]. In particular, VEGFR 

activates Raf and Mek via PLC-PKC path and activates PI3K via Shb-FAK path, 

IGFR activates PI3K via IRS1/IRS2, and HER2-HER3, HER2-HER4, 

MET-HER3, and PDGFR-HER3 hetrodimers activate PI3K directly, which are 

different from the Grb2-Sos-Ras_Raf-Mek and Grb2-Gab1-PI3K paths used by the 

canonical EGFR signaling pathway. The paths A9, A10, and A11 are via 

non-kinase receptors with a certain downstream protein activating MEK and/or 

AKT pathways. 
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Figure 5-4 EGFR pathway shows EGFR tyrosine kinase inhibitor (EGFR-I) bypass mechanisms 
duo to alternative signaling of VEGFR2 activation (A1), HER2-MET transactivation (A2), 
PDGFR activation (A3), IGF1R activation (A4), HER2-HER3 transactivation (A5), HER2-HER4 
transactivation (A6), MET-HER3 transactivation (A7), PDGFR-HER3 transactivation (A8), 
Integrin β1 activation (A9), IL6 activation of IL6R-GP130 complex (A10), and Cox2 mediated 
activation of EP receptors (A11). In particular, VEGFR activates Raf and Mek via PLCγ-PKC path 
and activates PI3K via Shb-FAK path, IGFR activates PI3K via IRS1/IRS2, and HER2-HER3, 
HER2-HER4, MET-HER3, and PDGFR-HER3 hetrodimers activate PI3K directly. The paths A9, 
A10, and A11 are via non-kinase receptors. 

 

5.3.2 Drug response prediction by genetic and expression profiling 

of NSCLC cell-lines 

The performance and clinical relevance of the individual profile methods M1, M2, 

M3, A1, E1 and E2 and combination methods CB1 to CB7 in predicting gefitinib, 

erlotinib and sensitive and resistant NSCLC cell-lines were evaluated. The results 

are summarized in Table 5-8, and are detailed in Table 5-9 together with the 

respective cell-line sensitivity data. The methods M2 and M3 correctly predicted 

87.5%~100% EGFR-I sensitive and 52.2%~ 65.8% of EGFR-I resistant cell-lines, 
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which are comparable to the reported 77%~82% accuracies in predicting EGFR-I 

sensitive, and 54%~87% accuracies in predicting EGFR-I resistant patients [269, 

362]. The method A1 correctly predicted 50%~80% EGFR-I sensitive and 

62.2%~84.2% of EGFR-I resistant cell-lines respectively, which are comparable to 

the reported 61% and 74% accuracy in predicting EGFR-I sensitive and resistant 

patients by the EGFR amplification method [416]. Thus, some of the evaluated 

single-profile methods are capable of predicting EGFR-I sensitivity from NSCLC 

cell-lines at performance levels that reflect the sensitivity of real patients. 

Both the reported studies and our analyses in Table 1 indicated that the 

individual-profile tends to show good performance for sensitive cell-lines at the 

expense of resistant cell-lines or vice versa. Combined mutation and amplification 

profiles have shown good correlation with clinical response [417]. It is of interest to 

evaluate whether more balanced performance can be achieved by using 

combination-profile methods. We evaluated 5 two-profile methods: M3+A1 (CB1), 

M3+E1 (CB2), M3+E2 (CB3), A1+E1 (CB4), and A1+E2 (CB5), and 2 

three-profile methods: M3+A1+E1 (CB6) and M3+A1+E2 (CB7). M3 was used in 

Table 5-8 Ratio of gefitinib,  erlotinib, or lapatinib sensitive and resistant NSCLC cell-lines correctly predicted by 
mutation-based method M1, M2, and M3, amplification-based method A1,  expression-based method E1 and E2,  and 
combination methods CB1, CB2, CB3, CB4, CB5, CB6, and CB7.  RS and RR is ratio of correctly predicted sensitive and resistant 
cell-lines respectively. 
 

Drug (Efficacy
Targets) 

Number of 
Cell-lines 
(Sensitive/ 
Resistant) 

Ratio of Correctly Predicted Sensitive Cell-Lines (RS) and Resistant Cell-Lines (RR) by Different Methods  
 Mutation-Based 

Method 
Amplification-Based 

Method  
Expression- 

Based 
Method   

Combination of Two Methods Combination of 
Three Methods 

M1 M2 M3 A1 E1 E2 
CB1= 

M3+A1 
CB2=  

M3+E1 
CB3= 

M3+E2 
CB4= 
A1+E1 

CB5= 
A1+E2 

CB6= 
M3+A1+E1

CB7= 
M3+A1+E2

Gefitinib 
(EGFR) 

44(6/38) 
RS 6/6 6/6 6/6 4/6 3/6 2/6 4/6 3/6 2/6 5/6 5/6 5/6 4/6 

RR 2/38 23/38 25/38 32 /38 36/38 37/38 32/38 36/38 37/38 31/38 35 /38 31/38 35/38 

Erlotinib 
(EGFR) 

51(5/46) 

RS 5/5 5/5 5/5 4/5 3/5 2/5 4/5 3/5 2/5 5/5 5/5 5/5 4/5 

RR 
2 

/46 
24/46 27/46 38 /46 

44 

/46 

45 

/46 
40 /46 43/46 45/46 38/46 43/46 39/46 43/46 

Lapatinib 
(HER2, 
EGFR) 

48(8/40) 

RS 8/8 8/8 7/8 4/8 3/8 2/8 4/8 3/8 2/8 5/8 4/8 5/8 3/8 

RR 2/40 21/40 22 /40 31/40 
38 

/40 

39 

/40 
33/40 38/40 39 /40 31/40 36/40 31 /40 36/40 
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these combination methods because it covers the most of the known mutation-based 

EGFR-I resistance mechanisms. The results are summarized in Table 5-8, and 

provided in Table 5-9 which also include the cell-line sensitivity data and the 

genetic and expression profiles of the main target, bypass genes and downstream 

signaling and regulatory genes. Over-expression of the bypass gene HER2 in 

NSCLC cell-lines is not expected to significantly contribute to lapatinib resistance 

because the drug inhibits EGFR and HER2. 

Overall, the two-profile combination method CB5 and the three-profile 

combination method CB7 showed more balanced and improved predictive 

performance to EGFR-I gefitinib, erlotinib, and lapatinib over the 

individual-profile methods. Collective consideration of EGFR amplification or 

over-expression together with the profiles of downstream drug-resistant genes and 

bypass signaling genes substantially improved the predictive performance for 

sensitive cell-lines. The performance of multiple profile methods may be affected 

by at least two factors. One is the substantial level of redundancy among drug 

sensitizing mutation, amplification and expression profiles and among drug 

resistant activating/inactivating mutation and expression profiles. Another is the 

high noise levels of microarray gene expression data[300] that may in some cases 

negatively affect the performances of the combination methods with expression 

profiles. 

Table 5-10 shows the distribution and coexistence of drug sensitizing mutation, 

amplification and expression profiles, and drug resistant mutation and expression 

profiles in the evaluated NSCLC cell-lines. In NSCLC cell-lines, EGFR-I 

resistance profiles are dominated by RAS activating mutation and HER3 

over-expression, which are consistent with literature reports [269, 285]. Our results 
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show that a gefitinib-sensitive cell-line H3255 [270, 392] was, as predicted, 

resistant to all of the studied EGFR-Is due to the over-expression of COX2. H3255 

is able to acquire resistance to gefitinib by prolonged exposure of the cell to 

gefitinib in vitro introducing drug resistant mutation, T790M, at EGFR kinase 

domain [341]. However, as suggested in Figure 5-4, such resistance may also be 

mediated by COX2 induced activation of EP receptors and continued 

ErbB-3/PI3K/Akt signaling. 
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Table 5-9 The genetic and expression profiles of the main target, downstream genes and regulator, and bypass genes of 53 NSCLC cell-lines, and the predicted and actual 
sensitivity of these cell-lines against 3 kinase inhibitors: gefitinib (D1), erlotinib (D2), and lapatinib (D3).  
 
 

NSCLC Cell 
lines 

 

Profile of Main Target 
(EGFR) Related to Drug 
Sensitivity 
 

Profile of
Main Target
(EGFR) 
Related to
Drug 
Resistance 

Profile of Downstream 
Signaling Gene or Regulator 
Directly Contributing to
Drug Resistance 
 

Profile of Bypass Gene Directly Contributing to Drug 
Resistance 
 

Predicted (Pre) and 
Actual (Act) 
Sensitivity to 
Gefitinib (D1) and 
Erlotinib (D2) 
  

Predicted (Pre)
and Actual (Act)
Sensitivity to
Lapatinib (D3)  
  

 
over 
exp 

 
amp 

(copy 
no>4) 

 
amp 

(copy 
no>3)

 
s-mut 

 
r-mut 

 
RAS 
a-mut

 
BRAF 
a-mut

 
PIK3CA 

a-mut 

 
PTEN 
loss 

 
HER2 

over exp 
(Not 

applicable 
to D3) 

 
HER3 
over 
exp 

 
FGFR1 
over exp 

 
IGF1R 

over exp

 
VEGFR2 

over 
exp 

 
c-MET 

over 
exp 

 
PDGFR 
over exp

Pre by M1,
M2, M3, A1,
E1, E2, C1,
C2, C3, C4,
C5, C6, C7 

Act 
(D1)

 
Act 
(D2)

Pre by M1, 
M2, M3,  A1, 
E1, E2, C1, 
C2, C3, C4, 
C5, C6, C7 

Act 
(D3) 

Calu3          1 1      R,S,R,R,R,R,R
,R,R,R,R,R,R S NA R,S,R,R,R,R,R

,R,R,R,R,R,R S 

H3255 1 1 1 1             S,S,S,S,S,S,S,
S,S,S,S,S,S S S S,S,S,S,S,S,S,S

,S,S,S,S,S S 

HCC2279  1 1 1             S,S,S,S,R,R,S,
S,S,S,S,S,S S S S,S,S,S,R,R,S,

S,S,S,S,S,S R 

HCC2935 1   1             S,S,S,R,S,S,S,
S,S,S,S,S,S S S S,S,S,R,S,S,S,

S,S,S,S,S,S S 

HCC4006  1 1 1              S,S,S,S,R,R,S,
S,S,S,S,S,S S S S,S,S,S,R,R,S,

S,S,S,S,S,S S 

HCC827 1 1 1 1              S,S,S,S,S,S,S,
S,S,S,S,S,S S S S,S,S,S,S,S,S,S

,S,S,S,S,S S 

A549      1            R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

Calu1      1            R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

Calu6      1            R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H1299      1            R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H1355      1            R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H1395       1           R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H1437           1       R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 
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H157      1            R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H1648               1  R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R S 

H1650   1 1             S,S,S,R,R,R,S,
S,R,R,R,S,S R R S,S,S,R,R,R,S,

S,R,R,R,S,S R 

H1666       1    1      R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R S 

H1770                 R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R  

H1792   1   1          1 R,R,R,R,R,R,R
,R,R,R,R,R,R NA R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H1819   1       1 1      R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R S 

H1975   1 1 1            S,S,R,R,R,R,R
,R,R,R,R,R,R R R S,S,R,R,R,R,R,

R,R,R,R,R,R R 

H1993               1  R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H2009      1         1  R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H2052                1 R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H2087      1 1    1      R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H2122      1     1      R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H2126           1      R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H23      1           R,R,R,R,R,R,R
,R,R,R,R,R,R NA R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H2347      1     1    1  R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H28                 R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H2882                 R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H2887      1           R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H3122           1      R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H322   1        1      R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H358      1           R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 
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H441      1     1   1   R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H460      1  1         R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

H661                1 R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

H820   1 1 1      1      S,S,R,R,R,R,R
,R,R,R,R,R,R R R S,S,R,R,R,R,R,

R,R,R,R,R,R R 

HCC1171      1     1      R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

HCC1195   1   1     1      R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

HCC1359                1 R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

HCC15      1           R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

HCC1833           1      R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

HCC193 1  1            1  R,S,R,R,S,R,R
,S,R,S,R,S,R R R R,S,R,R,S,R,R,

S,R,S,R,S,R R 

HCC2429                 R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

HCC2450        1   1      R,S,R,R,R,R,R
,R,R,R,R,R,R NA R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

HCC366 1                R,S,R,R,S,S,R,
R,S,S,S,S,S R R R,S,R,R,S,S,R,

R,S,S,S,S,S R 

HCC44      1           R,R,R,R,R,R,R
,S,R,R,R,R,R R R R,R,R,R,R,R,R

,S,R,R,R,R,R R 

HCC461      1           R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

HCC515      1     1      R,R,R,R,R,R,R
,R,R,R,R,R,R R R R,R,R,R,R,R,R

,R,R,R,R,R,R R 

HCC78           1      R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

HCC95                 R,S,R,R,R,R,R
,R,R,R,R,R,R R R R,S,R,R,R,R,R

,R,R,R,R,R,R R 

 
Notes: “1” indicates the corresponding profile is positive (over-expressed, amplified or mutated) and blank indicates negative (not over-expressed, amplified or mutated) 
respectively.  “S”, “R”, “NA”, “s-mut”, “r-mut”, ‘a-mut’, “amp”, “over exp”, “pre”, and “act” stands for sensitive to drug, resistant to drug, no available drug sensitivity, 
drug sensitive mutation, drug resistance mutation, activating mutation, amplification, over expression, predicted drug sensitivity, and actual drug sensitivity respectively.  
The prediction methods M1, M2, M3, A1, E1, E2, C1, C2, C3, C4, C5, C6, and C7 are described in the text. 
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Table 5-10 The distribution and coexistence of amplification and expression profiles, and the drug resistance mutation and expression profiles in NSCLC cell-lines. 
 
 
Cancer: NSCLC 
Main Target for the Treatment of Specific Cancer: EGFR  
Drugs Evaluated: gefitinib (D1), erlotinib (D2), and lapatinib (D3) 

Drug Sensitizing or 
Resistance Profile (index) 

Number of 
Cell-Lines with 
This Profile 

Number of These 
Cell-Lines with Another 
Sensitizing Profile 

Number of These Cell-Lines with Another Resistance Profile Number of These 
Cell-Lines Sensitive/ 
Resistant to Drug  Drug Sensitizing 

Profile 
Drug Resistance Profile 

Drug Sensitizing profile S1 S2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 D1 D2 D3 

EGFR amp(copy no≥3) (S1) 12  3 2 2    1 4 1 1    4/7 4/8 4/8 

EGFR over exp (S2) 5 3         1     3/2 3/1 3/2 

Drug Resistance profile 

EGFR r-mut (R1) 2        1      0/2 0/2 0/2 

RAS a-mut (R2) 22    1    7 2    1 0/20 0/22 0/21 

BRAF a-mut (R3) 3   1     1      0/3 0/3 1/2 

PIK3CA a-mut (R4) 2        2      0/1 0/2 0/2 

PTEN loss (R5) 0                 

HER2 over exp (R6) 2        2      1/1 0/1 2/0 

HER3 over exp (R7) 18  1 7 1 2  2  1    1 1/14 0/17 3/12 

MET over exp (R8) 5   2     1      0/5 0/5 1/4 

PDGFR over exp (R9) 4                 

IGF1R over exp (R10) 0                 
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FGFR1 over exp (R11) 0                 

VEGFR2  over exp (R12) 1   1     1      0/1 0/1 0/1 
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5.3.3 Relevance and limitations of cell-line data for drug response 

studies 

 

The relevance of our studied cell-lines for EGFR-I response studies was evaluated 

by comparison of the distribution profiles of drug resistant mutations of EGFR and 

3 downstream genes and the expression profiles of EGFR and 8 bypass genes in our 

studied 53 NSCLC cell-lines (including all sensitive and resistant cell-lines against 

the three drugs) and those of 45 NSCLC patient samples with expression data [407] 

and 37-753 NSCLC patient samples with mutation and amplification data [361, 

405, 406] to determine if the cell-line profiles are sufficiently close to those of real 

patient samples. As shown in Table 5-11, the percentages of our studied NSCLC 

cell-lines carrying drug-resistant mutant genes and up-regulated bypass genes tend 

to be lower but roughly comparable to those of the patient samples with the 

exception of VEGFR2. The level of VEGFR2 elevation in patient samples is 

significantly higher than that of cell-lines. It has been reported that, in some 

circumstances, the development of VEGFR2 expressing cells is strongly influenced 

by VEGFR2 ligands in the microenvironment [418]. The VEGFR2 ligand VEGF 

has been found to be over-expressed in association with microlocalisation of M1 

and M2 macrophages in NSCLC [419], which likely contribute to the 

over-expression of VEGR2 in larger percentages of NSCLC patients [420-422]. 

Apart from VEGFR2 ligands, tumor microenvironment in NSCLC is known to 

promote the expression of a number of other factors such as CD163, HLA-DR, 

iNOS, MRP 8/14, and hypoxia related proteins [419, 423]. The effects of these 
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microenvironment-related factors in upregulating VEGFR2 and other bypass genes 

may not be fully reflected by the cell-line based models, which partly contribute to 

the discrepancy between the expression profiles of some of the genes in our studied 

NSCLC cell-lines and those of real NSCLC patient samples. 

 

5.3.4 The usefulness of cell-line expression data for identifying 

drug response biomarkers 

 

We used our support vector machines recursive feature elimination (SVM-RFE) 

method [301] to select EGFR-I response biomarkers from the gefitinib, erlotinib, or 

lapatinib sensitive and resistant NSCLC cell-lines and compare them with the 

published EGFR-I response biomarkers derived from NSCLC patient samples 

[371] and cell-lines [293, 328] by using the differentially expressed genes method. 

In our method, NSCLC cell-lines sensitive and resistant to each EGFR-I were 

separated by using SVM classification and the gene expression of these cell-lines. 

The contribution of each gene to the separation of sensitive and resistant cell-lines 

was ranked by the SVM feature ranking algorithm and the least contributing genes 

were selected and subsequently eliminated by consensus scoring from repeated 

random sampling [298] and by incorporating a multi-step gene-ranking consistency 

evaluation procedure into the SVM-RFE method [301].  
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The statistics of SVM-RFE selected gefitinib, erlotinib, and lapatinib response 

biomarkers and those of the published studies [293, 328, 371] are summarized in 

Table 5-12 and the detailed lists of the selected biomarkers are provided in the 

Appendix B Tables 1, 2 and 3 respectively. The numbers of our selected 

biomarkers (65-148) are comparable to those of the published studies (51-332) 

[293, 328, 371], but few biomarker genes are commonly selected by these studies. 

For instance, only 0 and 5 of the 148 gefitinib response biomarkers selected in this 

work are commonly selected by the published studies from NSCLC patient samples 

[293] and cell-lines [328] respectively, and none of the 51 biomarkers selected by 

the published study from NSCLC patient samples [293] is commonly selected by 

the other published study from NSCLC cell-lines [328]. This discrepancy arises in 

part from the small number of samples used in each study as well as the intrinsic 

noise in the gene expression data [298-302]. It is noted that our selected biomarkers 

contain significantly higher number of drug target and bypass genes (4-5) than 

Table 5-11 Comparison of the expression profiles of EGFR and bypass genes in NSCLC 
cell-lines and patient samples. 

 
Target or 
Bypass gene 

% of the 53 
NSCLC cell 
lines  with the 
gene 
up-regulated or 
lost 

% of the 45 
NSCLC 
patients with 
the gene 
up-regulated  
or lost 

Target or 
Bypass 
gene 

% of the 53 
NSCLC cell 
lines with the 
gene harboring 
resistance 
mutation or 
amplified 

% of the 
37-753 NSCLC 
patients with 
the gene 
harboring 
resistance 
mutation or 
amplified  

EGFR  Up 9.4% Up 28.9% EGFR  Mut 3.8% Mut 19%-49% 

HER2 Up 3.8% Up 15.6% PIK3CA Mut 3.8% Mut 5% 

HER3 Up 33.9% Up 22.2% Ras Mut 41.4% Mut 20% 

IGF1R Up 0.0% Up 4.4% EGFR Amp  22.6% Amp 8% 

c-MET Up 9.4% Up 8.9%    

PDGFR Up 7.6% Up 24.4%    

FGFR Up 0.0% Up 0.0%    

VEGFR2 Up 1.9% Up 51.1%    

PTEN  Loss 0.0% Loss 8.9%    
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those (0-1) of the published studies [293, 328, 371], which may result from the use 

of significantly higher number of samples (44-53) in our study than those (11-25) in 

the published studies [293, 328, 371], and the use of multiple sampling, consensus 

scoring and multi-step gene-ranking consistency evaluation procedure. The ability 

in identifying substantial number of drug target and bypass genes as biomarkers 

provides further evidence about the usefulness of cell-line data in facilitating the 

discovery of drug response biomarkers [303-306]. 

ERBB3 has been repeatedly selected as biomarkers for the three evaluated drugs 

by more than one method. Recent investigations have shown that ERBB3 is 

responsible for tumor resistance to therapeutic agents targeting EGFR or HER2 

[424], and is associated with poor prognosis [425], decreased survival in patients 

with early stage [426] and overall survival [427] in NSCLC. Therefore, it is not 

surprising that ERBB3 was repeatedly selected. ERBB3 is kinase inactive and 

thus is not an easily druggable target for developing small molecule inhibitors 

[424]. RNA aptamers and siRNAs targeting ERBB3 may be explored as potential 

therapeutics in combination with EGFR and HER2 targeted drugs [428, 429]. 

The testing accuracies of the RFE-SVM method in differentiating Gefitinib, 

Erlotinib and Laptinib resistant/sensitive cell-lines are 76.3%, 87.3% and 71.2% 

respectively. The reported testing accuracies of the method B and C in 

differentiating Gefitinib resistant/sensitive patients are 91.7% and 100% [293, 

371], and that of the method E in differentiating Erlotinib resistant/sensitive 

cell-lines is 80% [328]. Our RFE-SVM method appears to perform slightly better 

for Erlotinib but worse for Gefitinib than those of the existing methods. It is 

cautioned that it is not appropriate to straightforwardly compare these methods 

based on our and reported testing results, because these tests are based on separate 
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testing samples that are very small in sizes and high in size differences (44-53 

samples in our study vs 5-12 in the reported studies) with the relevant data 

containing high genetic and measurement variations. Further tests based on a 

common set of more diverse samples may enable more appropriate comparison of 

these methods. 

 

Table 5-12 Statistics of the SVM-RFE selected gefitinib, erlotinib, and lapatinib response 
biomarkers in comparison with those of the published studies. 
 

Drug No of 
resistant/ 
sensitive 
NSCLC 
cell-lines / 
patients 

Method No of 
biomarkers 
selected by 
method 

No of biomarkers 
also selected by 
another method 

Bypass genes 
selected as 
biomarker by 
method 

Gefitinib 38/6 A:  
SVM-RFE; 
This work 

148 0 by B; 5 by C ERBB3, 
EGFR, 
FGFR1, MET 

 7/10 
(patients) 

B: Differential 
expression 
method[371] 

51 0 by A; 0 by C  

 6/5 C: Differential 
expression 
method[293]  

332 5 by A; 0 by C ERBB3 

Erlotinib 46/7 D:  
SVM-RFE; 
This work 

65 3 by E EGFR, 
ERBB3, 
FGFR3, 
MET 

 11/14 E: Differential 
expression 
method[328]  

180 3 by A EGFR 

Lapatinib 40/8 F:  
SVM-RFE; 
This work 

98  ERBB2, 
ERBB3, 
FGFR3, 
PDGFR, 
COX2 
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5.4 Conclusion 

 

Consideration of bypass signaling from pathway regulation perspectives appears to 

be highly useful for deriving knowledge-based drug response biomarkers to 

effectively predict drug responses as well as for understanding the mechanism of 

pathway regulation and drug response. The bypass signaling based biomarkers 

described in this and other studies can be experimentally validated by the methods 

used for discovering compensatory PI3K/Akt/mTor activation [304], MET 

amplification [305], and CRAF overexpression [306] as a mechanism of acquired 

resistance to imatinib in CML, EGFR-I therapy in NSCLC [305], and BRAF 

inhibitor therapy in melanomas [306] respectively. Specifically, mutation, copy 

number or expression analysis is conducted in both resistant and sensitive samples 

to determine if the biomarkers show resistant mutations, marked amplifications or 

elevated expressions in resistant samples only, followed by the investigation of 

whether inhibition or down-regulation of the bypass gene together with the 

inhibition or down-regulation of the drug target reduces the resistance effects.  

The currently available molecular interaction, network signaling and regulation, 

and the genetic and expression profiles of regulatory genes appear to have reached 

the level for facilitating the discovery of some of the drug response biomarkers 

based on various drug resistance mechanisms. The mining of the relevant 

information from the literatures is a key step towards the identification of bypass 

signalling based drug response biomarkers, which may be hindered by multiple 

gene and protein nomenclatures [430] and complexities of languages [431]. 

Collective use of dictionary-based and vocabulary-based methods, disambiguation 

and correct classification algorithms, and restricted domain search strategies may 
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enable more comprehensive and efficient search of the relevant information [431]. 

The drug sensitivity prediction capability of biomarkers may be affected by 

multiple factors including the number and quality of samples,[303] the genetic 

variation [331, 332], plasticity [333], and microenvironment [334, 335] of the 

samples, and the quality and stability of the predicted biomarkers [432]. In addition 

to the collection of sufficiently diverse patient samples, collective analysis of 

mutation, amplification and expression profiles of target, bypass genes, and 

downstream drug-resistant genes is potentially useful for facilitating drug 

sensitivity prediction. Development, integration and expanding application of next 

generation sequencing [433], microarrays [434], and copy number variation [435] 

detection tools and methods coupled with expanded knowledge of systems biology, 

cancer biology and drug resistance bypass mechanisms and the further 

improvement of biomarker discovery methods [301, 432, 436] enable more 

accurate prediction of drug sensitivity. 



Chapter 6 Concluding Remarks 

   162

6 Chapter 6 Concluding Remarks 

6.1 Major findings and merits 

6.1.1 Merits of A two-step Target Binding and Selectivity Support 

Vector Machines Approach for Virtual Screening of 

Dopamine Receptor Subtype-Selective Ligands 

In this work, we introduced a new two-step support vector machines 

target-binding and selectivity screening method for searching DR 

subtype-selective ligands, which was tested together with three previously-used 

machine learning methods for searching D1, D2, D3 and D4 selective ligands. Its 

subtype selective ligand identification rates are significantly better than, and its 

multi-subtype ligand identification rates are comparable to the best rates of the 

previously used methods. Our method produced low false-hit rates in screening 

13.56M PubChem, 168,016 MDDR and 657,736 ChEMBLdb compounds. 

Molecular features important for subtype selectivity were extracted by using the 

recursive feature elimination feature selection method. These features are 

consistent with literature-reported features. Our method showed similar 

performance in searching estrogen receptor subtype selective ligands. 

Virtual screening methods have been increasingly explored for facilitating the 

discovery of target selective drugs for enhanced therapeutics and reduced side 

effects. Our study further suggested that the two-step target binding and selectivity 

support vector machines virtual screening tools developed from protein subtype 

ligands with unspecified subtype selectivity are capable of identifying protein 

subtype selective ligands at good yields, subtype selectivity and low false-hit rates 

 



Chapter 6 Concluding Remarks 

   163

in screening large chemical libraries. 

6.1.2 Merits of Building a prediction model for IKK beta 

inhibitors  

SVM shows substantial capability in identifying IKK beta inhibitors at 

comparable yield and in many cases substantially lower false-hit rate than those of 

typical VS tools reported in the literatures and evaluated in this work. It is capable 

of searching large compound libraries at sizes comparable to the 13.56M 

PubChem and 168K MDDR compounds at low false-hit rates. Because of their 

high computing speed and generalization capability for covering highly diverse 

spectrum compounds, SVM can be potentially explored to develop useful VS 

tools for facilitating the discovery of IKK beta inhibitors and other active 

compounds. 

6.1.3 Merits of Analysis of bypass signaling in EGFR pathway and 

profiling of bypass genes for predicting response to 

anticancer EGFR tyrosine kinase inhibitors 

In this work, we searched and analyzed 16 literature-reported EGFR tyrosine 

kinase inhibitor bypass signaling routes in EGFR pathway, which include 5 

compensatory routes of EGFR transactivation by another receptor, and 11 

alternative routes activated by another receptor. Their expression profiles together 

with the mutational, amplification and expression profiles of EGFR and 4 

downstream drug-resistant genes were used as new sets of biomarkers for 

identifying 53 NSCLC cell-lines sensitive or resistant to EGFR tyrosine kinase 

inhibitors gefitinib, erlotinib, and lapatinib. The collective profiles of all 16 genes 
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distinguish sensitive and resistant cell-lines are better than those of individual 

genes and the combined EGFR and downstream drug resistant genes, and their 

derived cell-line response rates are consistent with the reported clinical response 

rates of the three drugs. The usefulness of cell-line data for drug response studies 

was further analyzed by comparing the expression profiles of EGFR and bypass 

genes in NSCLC cell-lines and patient samples, and by using a machine learning 

feature selection method for selecting drug response biomarkers. Our study 

suggested that the profiles of drug bypass signaling are highly useful for improved 

drug response prediction. 

6.2 Limitations and suggestions for future studies 

As for the virtual screening (VS) for multi-target agents, the support vector 

machine (SVM) is a robust but not perfect machine learning method. The SVM 

models developed using the putative negative dataset have been proven to be able 

to improve the false hit rates. However, there are still some false hits that cannot 

be excluded easily. These false hits are selected as positive agents by the SVM 

models mostly due to the structural framework similarities with the actual active 

compounds. This could be caused by the molecular descriptors used in the SVM 

models in that they are insufficient to adequately differentiate the compounds with 

similar structural frameworks. In order to solve this problem, it is necessary to test 

different combinations of descriptors and apply optimal sets of descriptors by 

using more refined feature selection algorithms and parameters in future work. 

Besides, the integration of new descriptors may help appropriate representations 

of compounds. Therefore, it is encouraging to employ new descriptors in the 

model constructions. 
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There is no conclusive answer to which VS approach is the best. Both ligand 

based and structural based methods have their own advantages and drawbacks. 

Therefore, the choice of one or another depends on the specific case faced by the 

medicinal chemist. In terms of performance, ligand based methods have the 

advantage of better enrichment factors and higher speed serving and they are more 

efficient in removing non active compounds; structure based methods provide a 

more direct view of the interactions between the ligand and molecular target and it 

has an advantage for the detecting of novel structures. Nowadays a synergistic, 

rational, synthetic combination of different approaches has become a trend. The 

combined VS approaches aims to firstly include less costly approaches, usually 

ligand based VS, at the first stage and apply the most demanding methods, such as 

docking, for the last stage when the original large compound library has been 

reduced to a manageable size after the previous stage. 

Drug response biomarkers facilitate the characterization of patient populations 

and quantitation of the extent to which new drugs reach intended targets. Clinically 

useful biomarkers are required to inform regulatory and therapeutic 

decision-making regarding candidate drugs. Further improvement in measurement 

quality, annotation accuracy and coverage, and signature-selection will enable the 

derivation of more accurate signatures for facilitating drug response biomarker and 

target discovery. The currently available platforms for microarray data are 

different. Therefore if we could synchronize the platform and provide more 

samples, we could further improve the accuracy of our system and reduce the 

computational time. The gene ontology information also could be integrated into 

the system and the selected genes would be given a biological meaning directly. 

The drug sensitivity prediction capability of biomarkers may be affected by 
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multiple factors including the number and quality of samples, the genetic variation, 

plasticity, and microenvironment of the samples, and the quality and stability of the 

predicted biomarkers. In addition to the collection of sufficiently diverse patient 

samples, collective analysis of mutation, amplification and expression profiles of 

target, bypass genes, and downstream drug-resistant genes is potentially useful for 

facilitating drug sensitivity prediction. Development, integration and expanding 

application of next generation sequencing, microarrays, and copy number variation 

detection tools and methods coupled with expanded knowledge of systems biology, 

cancer biology and drug resistance bypass mechanisms and the further 

improvement of biomarker discovery methods enable more accurate prediction of 

drug sensitivity. 
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9 Appendices 

Appenix A:  
 
Table 1 Chemical databases 
 

Company 
name 

Link 
Number of 

compounds
Description 

4SC  www.4sc.de 5,000,000 
Virtual library; small-molecule 
drug candidates  

ACB BLOCKS 
www.acbblocks.com/a
cb/bblocks.html  

90,000 
Building blocks for combinatorial 
chemistry  

Advanced 
ChemTech  

http://triton.peptide.co
m/index.php  

18,000 
OmniProbeTM: peptide libraries; 
8000 tripeptide, 10,000 
tetrapeptide  

Advanced 
SynTech  

www.advsyntech.com/
omnicore.htm  

170,000 
Targeted libraries: protease, 
protein kinase, GPCR, steroid 
mimetics, antimicrobials  

Ambinter  
ourworld.compuserve.
com/homepages/ambi
nter/Mole.htm 

1,750,000 
Combinatorial and parallel 
chemistry, building blocks, HTS  

Asinex  
www.asinex.com/prod
/index.html  

150,000 
Platinum collection: drug-like 
compounds  

Asinex   250,000 
Gold collection: drug-like 
compounds  

Asinex   5009 
Targeted libraries: GPCR (16 
different targets)  

Asinex   4307 
Kinase-targeted library (11 
targets)  

Asinex   1629 Ion-channel targeted (4 targets)  

Asinex   2987 
Protease-targeted library (5 
targets)  

Asinex   1,200,000 Combinatorial constructor  

BioFocus  
www.biofocus.com/pa
ges/drug__discovery.
mhtml   

100,000 
Diverse primary screening 
compounds  

BioFocus   ~16,000  
SoftFocus: kinase target-directed 
libraries  
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BioFocus   ~10,000  
SoftFocus: GPCR target-directed 
libraries  

CEREP  
www.cerep.fr/cerep/us
ers/pages/ProductsSe
rvices/Odyssey.asp  

>16,000  
Odyssey II library: diverse and 
unique discovery library; more 
than 350 chemical families  

CEREP   5000 
GPCR-focused library (21 
targets)  

Chemical 
Diversity  

www.chemdiv.com/dis
covery/downloads/  

>750,000  
Leadlike compounds for 
bioscreening  

ChemStar  
www.chemstar.ru/pag
e4.htm  

60,260 
High-quality organic compounds 
for screening  

ChemStar   >500,000  
Virtual database of organic 
compounds  

COMBI-BLOC
KS  

www.combi-blocks.co
m  

908 Combinatorial building blocks  

ComGenex  
www.comgenex.hu/cgi
-bin/inside.php?in=pro
ducts&l_id=compound 

260,000 
“Pharma relevant”, discrete 
structures for multitarget 
screening purposes  

ComGenex   240 GPCR library  

ComGenex   2000 

Cytotoxic discovery library: very 
toxic compounds suitable for 
anticancer and antiviral discovery 
research  

ComGenex   5000 
Low-Tox MeDiverse: druglike, 
diverse, nontoxic discovery 
library  

ComGenex   10,000 
MeDiverse Natural: natural 
product like compounds 

EMC 
microcolection 

www.microcollections.
de/catalogue_compun
ds.htm#  

30,000 
Highly diverse combinatorial 
compound collections for lead 
discovery  

InterBioScreen 
www.ibscreen.com/pr
oducts.shtml  

350,000 Synthetic compounds  

InterBioScreen  40,000 Natural compounds  

Maybridge plc 
www.maybridge.com/
html/m_company.htm 

60,000 Organic druglike compounds  

Maybridge plc  13,000 Building blocks  

MDDR 

http://www.symyx.com
/products/databases/b
ioactivity/mddr/index.j
sp 

180,000 MDL Drug Data Report database 
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MicroSource 
Discovery  
Systems, Inc.  

www.msdiscovery.co
m/download.html  

2000 

GenPlus: collection of known 
bioactive compounds NatProd: 
collection of pure natural 
products  

Nanosyn  
www.nanosyn.com/th
ankyou.shtml  

46,715 Pharma library  

Nanosyn   18,613 Explore library  

Pharmacopeia 
Drug 
Discovery, Inc. 

www.pharmacopeia.c
om/dcs/order_form.ht
ml  

N/A  
Targeted library: GPCR and 
kinase  

Polyphor  www.polyphor.com 15,000 Diverse general screening library 

PubChem 
pubchem.ncbi.nlm.nih
.gov 

>16,000000 PubChem database 

Sigma-Aldrich 

www.sigmaaldrich.co
m/Area_of_Interest/C
hemistry/Drug_Discov
ery/Assay_Dev_and_
Screening/Compound
_Libraries/Screening_
Compounds.html 

90,000 
Diverse library of drug-like 
compounds, selected  based on 
Lipinski Rule of Five  

Specs  www.specs.net 240,000 Diverse library  

Specs   10,000 
World Diversity Set: pre-plateled 
library  

Specs   6000 Building blocks  

Specs   500 
Natural products (diverse and 
unique)  

TimTec  www.timtec.net >160,000  
Compound libraries and building 
blocks  

Tranzyme 
Pharma  

www.tranzyme.com/dr
ug_discovery.html  

25,000 
HitCREATE library: macrocycles 
library  

Tripos  

www.tripos.com/sciTe
ch/researchCollab/che
mCompLib/lqCompou
nd/index.html  

80,000 LeadQuest compound libraries  
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Table 2 Performance of machine learning methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of pharmaceutical relevance. The 
relevant literature references are given in the method column. 
Screening 
task 

Compounds screened Method 
and 
reference 
of 
reported 
study 

Molecular 
descriptors 

Compounds 
in training 
set (No of 
positives / 
No of 
negatives) 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included 

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected 

Yield Hit 
rates 

Enrichment 
factor 

COX2 
inhibitors 

2.5M 22 SVM [70] Molecular 
fingerprints 

94/200K 2,500 0.1% 18 81% 
 

0.7% 795 
 

25,300 25 SVM+ 
BKD [71] 

DRAGON 
descriptors 

125/5035 506 2% 20 80% 
 

3.9% 39.5 
 

COX 
inhibitors 

102,514 536 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 76 14.3% 
 

1.4% 2.7 
 

98,435 536 CKD [61] Pipeline pilot 100/4000 984 1% 232 43.4% 23.7% 43.1 
ECFP4 100/4000 984 1% 365 68.1% 37.2% 67.7 

SVM-RBF 
[61]  

Pipeline pilot 100/4000 984 1% 240 44.7% 24.4% 44.5 

Thrombin 
inhibitors 

2.5M 46 SVM [70] Molecular 
fingerprints 

188/200K 11,250 0.45% 25 55% 
 

0.2% 108.7 
 

102,514 703 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 367 52,3% 
 

7.1% 10.3 
 

98,435 703 CKD [61] Pipeline pilot 100/4000 984 1% 435 61.9% 44.4% 61.7 
ECFP4 100/4000 984 1% 603 85.8% 61.5% 85.5 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 381 54.2% 38.9% 54.0 

Protease 
inhibitors 

171,726 118 SVM [74] Extended 
connectivity 
fingerprints 

228/4200 1717 1% 26 22% 
 

1.5% 21.8 
 

LMNB 
[74] 

19 16% 
 

1% 14.5 
 

Chemokine 
receptor 

171,560 128 SVM [74] Extended 
connectivity 

258/4199 1716 1% 70 55% 
 

4.1% 54.9 
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antagonists LMNB 
[72, 75] 

fingerprints 68 53% 
 

3.9% 52.3 
 

5HT3 
antagonists 

102,514 652 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 236 36.3% 
 

4.6% 7.2 
 

98,435 852 CKD [61] Pipeline pilot 100/4000 984 1% 480 56.4% 49.0% 56.3 
ECFP4 100/4000 984 1% 680 79.8% 69.4% 79.8 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 529 62.1% 54.0% 62.1 

5HT1A 
antagonists 

102,514 727 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 224 30.9% 
 

4.3% 6.1 
 

98,435 727 CKD [61] Pipeline pilot 100/4000 984 1% 268 36.9% 27.3% 36.9 
ECFP4 100/4000 984 1% 426 58.6% 43.5% 58.7 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 319 43.9% 32.6% 44.0 

5HT reuptake 
inhibitors 

102,514 259 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 65 25% 1.2% 4.7 
 

98,435 259 CKD [61] Pipeline pilot 100/4000 984 1% 131 50.7% 13.4% 51.5 
ECFP4 100/4000 984 1% 194 75.6% 19.7% 75.9 

SVM-RBF 
[61]  

Pipeline pilot 100/4000 984 1% 137 52.9% 14.0% 53.8 

D2 antagonists 102,514 295 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 90 30.6% 
 

1.7% 5.9 
 

98,435 295 CKD [61] Pipeline pilot 100/4000 984 1% 132 44.7% 13.5% 44.9 
ECFP4 100/4000 984 1% 219 74.4% 22.4% 74.7 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 137 46.4% 14.0% 53.8 

Rennin 
inhibitors 

102,514 1030 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 972 94.4% 
 

18.9% 18.9 
 

98,435 1030 CKD [61] Pipeline pilot 100/4000 984 1% 842 81.8% 86.0% 81.9 
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ECFP4 100/4000 984 1% 960 93.2% 98.0% 93.3 
SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 710 68.9% 72.4% 69.0 

Angiotesin II 
AT1 
antagonists 

102,514 843 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 776 92.1% 
 

15.1% 18.4 
 

98,435 843 CKD [61] Pipeline pilot 100/4000 984 1% 393 46.6% 40.1% 46.6 
ECFP4 100/4000 984 1% 593 70.4% 60.6% 70.4 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 384 45.6% 39.2% 45.6 

Substance P 
antagonists 

102,514 1146 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 378 33% 
 

7.3% 6.5 
 

98,435 1146 CKD [61] Pipeline pilot 100/4000 984 1% 705 61.5% 71.9% 61.5 
ECFP4 100/4000 984 1% 942 82.2% 96.1% 82.2 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 509 44.4% 51.9% 44.4 

HIV protease 
inhibitors 

102,514 650 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 377 58% 
 

7.3% 11.5 
 

98,435 650 CKD [61] Pipeline pilot 100/4000 984 1% 436 67.1% 44.5% 67.4 
ECFP4 100/4000 984 1% 574 88.3% 58.6% 88.7 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 355 54.6% 36.2% 54.9 

Protein kinase 
C inhibitors 

102,514 353 BKD [72, 
73] 

Extended 
connectivity 
fingerprints 

100/400 5125 5% 81 23.1% 
 

1.5% 4.4 
 

98,435 353 CKD [61] Pipeline pilot 100/4000 984 1% 238 67.3% 24.2% 67.3 
ECFP4 100/4000 984 1% 291 82.5% 29.7% 82.5 

SVM-RBF 
[61] 

Pipeline pilot 100/4000 984 1% 206 58.3% 21.0% 58.3 

MAO 
inhibitors 

101,437 1166 BKD [76] Atom pairs and 
topological torsions 
APTT descriptors 

1166/3834 6000 5.9% 600 51.4% 
 

10% 11.5 
 



Appendices 

   193 

Muscarinic 
M1 agonists 

98,435 748 CKD [61] Pipeline pilot 100/4000 984 1% 467 62.4% 47.4% 62.4 
ECFP4 100/4000 984 1% 597 79.8% 60.7% 79.8 

NMDA 
receptor 
antagonists 

98,435 1211 CKD [61] Pipeline pilot 100/4000 984 1% 604 49.9% 61.4% 49.9 
ECFP4 100/4000 984 1% 889 73.4% 90.3% 73.4 

Nitric oxide 
synthase 
inhibitors 

98,435 277 CKD [61] Pipeline pilot 100/4000 984 1% 192 69.3% 19.5% 69.7 
ECFP4 100/4000 984 1% 244 88.2% 27.3% 97.6 

Aldose 
reductase 
inhibitors 

98,435 782 CKD [61] Pipeline pilot 100/4000 984 1% 436 55.8% 44.3% 56.1 
ECFP4 100/4000 984 1% 665 85.0% 67.6% 85.5 

Reverse 
transcriptase 
inhibitors 

98,435 419 CKD [61] Pipeline pilot 100/4000 984 1% 238 56.9% 24.2% 56.3 
ECFP4 100/4000 984 1% 337 80.4% 34.2% 79.6 

Aromatase 
inhibitors 

98,435 413 CKD [61] Pipeline pilot 100/4000 984 1% 284 68.7% 28.8% 68.6 
ECFP4 100/4000 984 1% 389 94.1% 39.5% 94.0 

Phospholipase 
A2 inhibitors 

98,435 604 CKD [61] Pipeline pilot 100/4000 984 1% 297 49.2% 30.2% 49.5 
ECFP4 100/4000 984 1% 447 74.0% 45.4% 74.5 

CDK2 
inhibitors 

25,300 25 SVM+ 
BKD [71] 

DRAGON 
descriptors 

125/5035 506 2% 18 72% 
 

3.5% 35.4 
 

FXa inhibitors 25,300 25 SVM+ 
BKD [71] 

DRAGON 
descriptors 

125/5035 506 2% 21 84% 
 

4.1% N/A 

PDE5 
inhibitors 

50,000 19 RO5+ DS 
[77] 

Pharmacophore and 
macroscopic 
descriptors 

130/10K 1821 3.6% 11 57.8% 
 

0.6% 15.8 
 

25,300 25 SVM+ 
BKD [71] 

DRAGON 
descriptors 

125/5035 506 2% 21 84% 
 

4.1% 41.5 
 

Alpha1A AR 
antagonists 

25,300 25 SVM+ 
BKD [71] 

DRAGON 
descriptors 

125/5035 506 2% 20 80% 3.9% 39.5 
 

 
BKD – binary kernel discrimination; CKD – Continuous kernel discrimination; DS – decision tree; LMNB – laplacian modified naive Bayesian; SVM – support vector 
machine; DRAGON – (an application for the calculation of molecular descriptors); AR – androgen receptor; PDE 5 – phosphodiesterase type 5; FXa – factor Xa;  CDK2 – 
cyclin-dependent kinase 2; MAO – mono amino oxidase; HIV – human immunodeficiency virus; COX – cycloocygenase. 
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Table 3 Performance of docking methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of pharmaceutical relevance; the relevant 
literature references are given in the method column. 
 
Screening task Compounds screened Method and 

reference of 
reported study 

No of 
pre-docking 
selected 
compounds 

Docking 
cut-off 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included 

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected 

Yield Hit 
rates 

Enrichment 
factor 

Factor Xa inhibitors 2M 630 AUTODOCK + 
pre-docking RO5 
and EA screen 
[78] 

60,000 Binding 
energy <  
-10.5 
kcal/mol 

60,000 3% 392 62% 0.65% 20 

COX2 inhibitors 1.2M 355 DOCK+ 
pre-docking 
chemical group 
screen [79]  

13,711 DOCK 
scores <  
-35 

959 0.08% for 
all 

7% for 
actually 
docked  

337 95% 
 

35.2% 1189.2 for 
all 
13.6 for 
actually 
docked 

Human casein 
kinase II 

400K >4 DOCK4 + 
H-bond and 
hinge segment 
screen [80]  

<400K N/A 35 0.0087% 4 N/A 11.4% N/A 

Thyroid hormone 
receptor antagonists 

250K >14 ICM VLS 
module (Molsoft) 
[81] + 
pre-docking RO5 

190K Selected 
75 from 
top-100 

dock 
scores 

75 0.03% for 
all 

0.039% for 
actually 
docked 

14 N/A 18.7% N/A 

PTP1B inhibitors 235K >127 DOCK3.5 + atom 
count (17~60) 
screen [82] 

165,581 Top-500 
+ 

Top-500 

889 0.38% 127 N/A 14.3% N/A 

141K 10 GOLD + 
elements and 
chemical group 

<141K Top-2% <2820 <2.5% 8 80% <0.28% 39.4 
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screen [83] 
BCL-2 inhibitors 206,876 >1 DOCK3.5 + 

non-peptidic 
screen [84] 

<206,876 Top-500 35 0.017% 1 N/A 2.9% N/A 

HIV-1 protease 
inhibitors 

141K 5 GLIDE + 
elements and 
chemical group 
screen [83] 

<141K Top-5% <7050 <5% 1 20% <0.014% 4.6 

HDM2 inhibitors 141K 14 DOCK + 
elements and 
chemical group 
screen [83] 

<141K Top-5% <7050 <5% 4 28.6% <0.056% 5.7 

UPA inhibitors 141K 10 GOLD + 
elements and 
chemical group 
screen [83] 

<141K Top-2% <2820 <2.5% 9 90% <0.32% 45.1 

Alpha 1A adrenergic 
receptor antagonists 

141K >38 GOLD on 
homology model 
+ pharmacophore 
screen [85] 

22,950 Top-300 300 0.21% 38 N/A N/A N/A 

Thrombin inhibitors 141K 10 GLIDE + 
elements and 
chemical group 
screen [83] 

<141K Top-2% <2820 <2.5% 3 30% <0.11% 15.5 

133.8K 760 FlexX + 
Similarity [86] 

<133.8K Top-1% 1338 1% 231 29.3% 17.3% 30.5 

DHFR inhibitors 135K 165 DOCK3.5.54 
applied to holo 
form [87] 

135K Top-1% 
of 50k 
docked 

1350 1% 47 25% 3.4% 27.8 

DOCK3.5.54 
applied to appo 
form [87] 

135K Top-1% 
of 100k 
docked 

1000 1% 16 9.7% 1.6% 13.1 

Neutral 
endopeptidase 

135K 356 DOCK3.5.54 
[87] 

135K Top-1% 
of 

1255 0.74% 3 0.8% 0.24% ~1 
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inhibitors 125.5K 
docked 

Thrombin inhibitors 135K 788 DOCK3.5.54 
[87] 

135K Top-1% 
of 

121.5K 
docked 

1215 0.9% 61 7.7% 5.0% 8.6 

Thymidylate 
synthase inhibitors 

135K 185 DOCK3.5.54 
[87] 

135K Top-1% 
of 54K 
docked 

540 0.4% 49 26.5% 9.1% 66.4 

Phospholipase C 
inhibitors 

135K 25 DOCK3.5.54 
[87] 

135K Top-1% 
of 123K 
docked 

1230 0.9% 5 20% 0.4% 21.6 

Adenosine kinase 
inhibitors 

135K 356 DOCK3.5.54 
applied to holo 
form [87] 

135K Top-5% 
of 

database 

4500 3.3% 10 2.8% 0.22% ~1 

DOCK3.5.54 
applied to appo 
form [87] 

135K Top-5% 
of 

database 

4500 3.3% 5 1.4% 0.11% <1 

133.8K 59 FlexX + 
Similarity [86] 

<133.8K Top-1% 1338 1% 13 22% 0.97% 22.0 

Acetylcholinesterase 
inhibitors  

135K 637 DOCK3.5.54 
applied to holo 
form [87] 

135K Top-1% 
of 77K 
docked 

770 0.57% 49 7.7% 6.4% 13.6 

DOCK3.5.54 
applied to appo 
form [87] 

135K Top-1% 
of 37.5K 
docked 

375 0.28% 25 3.9% 6.7% 14.2 

HMG-CoA 
reductase inhibitors 

133.8K 1016 FlexX + 
Similarity [86] 

<133.8K Top-1% 1338 1% 35 3.4% 2.6% 3.4 
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Table 4 Performance of pharmacophore methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of pharmaceutical relevance. The relevant 
literature references are given in the method column. 
 
Screening task Compounds screened Method and 

reference of reported 
study 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included 

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected 

Yield Hit rates Enrichment 
factor 

ACE inhibitors 3.8M 55 Pharmacophore [88] 1M 26% 39 70.1% 
 

0.0039% 2.8 
 

3.8M 55 Structure-based 
pharmacophore [89] 

91K 2.4% 6 10.9% 0.0066% 4.6 

11-hydroxysteroid 
dehydrogenase 1 
inhibitors 

1.77M 144 Pharmacophore [55] 20.3K 1.15% 17 11.8% 0.084% 10.3 

Rhinovirus 3C 
protease inhibitors 

380K 30 Pharmacophore [56] 6,917 1.82% 23 76.7% 0.33% 41.8 
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Table 5 Performance of clustering methods in virtual screening test for identifying inhibitors, agonists and substrates of proteins of pharmaceutical relevance; the relevant 
literature references are given in the method column. 
Screening 
task 

Compounds screened Method and reference of 
reported study 

Compounds selected Known hits selected 

No of 
compounds 

No of 
known 
hits 
included

No of 
compounds 
selected 

Percentage 
of screened 
compounds 
selected 

No of 
hits 
selected 

Yield Hit 
rates 

Enrichment 
factor 

ACE 
inhibitors 

344.5K 490 Hierachical k-means [54] 5590 1.6% 246 50.2% 
 

4.4% 31.2 
 

NIPALSTREE [54] 8174 2.4% 188 38.4% 2.3% 16.2 
Hierachical k-means + 
NIPALSTREE disjunction [54] 

12240 3.6% 306 62.4% 2.5% 17.6 

Hierachical k-means + 
NIPALSTREE conjunction [54] 

1662 0.48% 128 26.1% 7.7% 54 

COX 
inhibitors 

344.5K 1556 Hierachical k-means [54] 15322 4.4% 761 48.9% 5.0% 11 
NIPALSTREE [54] 22321 6.5% 625 40.2% 2.8% 6.16 
Hierachical k-means + 
NIPALSTREE disjunction [54] 

33793 9.8% 980 63.0% 2.9% 6.42 

Hierachical k-means + 
NIPALSTREE conjunction [54] 

3980 1.2% 406 26.1% 10.2% 22.6 

Adrenoceptor 
ligand 

344.5K 542 Hierachical k-means [54] 21285 6.2% 298 55.0% 1.4% 8.99 
NIPALSTREE [54] 28125 8.2% 270 49.8% 0.96% 6.14 
Hierachical k-means + 
NIPALSTREE disjunction [54] 

42365 12.3% 394 72.7% 0.93% 5.93 

Hierachical k-means + 
NIPALSTREE conjunction [54] 

6692 1.9% 174 32.1% 2.6% 16..3 

Glucocorticoid 
receptor ligand

344.5K 91 Hierachical k-means [54] 3750 1.1% 27 29.7% 0.72% 27..3 
NIPALSTREE [54] 3469 1.0% 17 18.7% 0.49% 18.7 
Hierachical k-means + 
NIPALSTREE disjunction [54] 

7317 2.1% 30 33.0% 0.41% 15.6 
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Hierachical k-means + 
NIPALSTREE conjunction [54] 

538 0.16% 14 15.4% 2.6% 98 

GABA 
receptor ligand

344.5K 478 Hierachical k-means [54] 10000 2.9% 110 23% 1.1% 7.97 
NIPALSTREE [54] 17143 5.0% 84 17.6% 0.49% 3.51 
Hierachical k-means + 
NIPALSTREE disjunction [54] 

24265 7.0% 165 34.5% 0.68% 4.86 

Hierachical k-means + 
NIPALSTREE conjunction [54] 

2636 0.77% 29 6.1% 1.1% 7.77 
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Appendix B: 
 
Table 1 The 148 gefitinib response biomarkers selected by our SVM-RFE method from the 38 and 
6 gefitinib resistant and sensitive NSCLC cell-lines, the biomarkers selected by a previously 
published study or as the gefitinib target or bypass gene are marked in the Table. 

SVM-RFE selected 
biomarker  

Biomarker commonly selected by a previous 
published study  

Biomarker as 
gefitinib target or 
bypass gene 

Probeset ID 
Gene 
Symbol Gene Description 

Selected by 
the study of 
[371] 

Selected 
by the 
study of 
[293] 

Bypass 
gene 

212895_s_at ABR active BCR-related gene 

202982_s_at ACOT1 acyl-CoA thioesterase 2 

218795_at ACP6 
acid phosphatase 6, 
lysophosphatidic 

202666_s_at ACTL6A actin-like 6A 

219199_at AFF4 AF4/FMR2 family, member 4 

202054_s_at 
ALDH3A
2 

aldehyde dehydrogenase 3 family, 
member A2 

221825_at ANGEL2 angel homolog 2 (Drosophila) 

206200_s_at ANXA11 annexin A11 

221653_x_at APOL2 apolipoprotein L, 2 

203025_at ARD1A 
ARD1 homolog A, 
N-acetyltransferase (S. cerevisiae) 

219335_at ARMCX5 
armadillo repeat containing, 
X-linked 5 

207076_s_at ASS1 argininosuccinate synthetase 1 

209492_x_at ATP5I 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, subunit 
E 

218631_at AVPI1 arginine vasopressin-induced 1 

203304_at BAMBI 
BMP and activin membrane-bound 
inhibitor homolog (Xenopus laevis) 

202331_at BCKDHA 

branched chain keto acid 
dehydrogenase E1, alpha 
polypeptide 

201101_s_at BCLAF1 
BCL2-associated transcription 
factor 1 

211715_s_at BDH1 
3-hydroxybutyrate dehydrogenase, 
type 1 

218792_s_at BSPRY B-box and SPRY domain containing √ 

218462_at BXDC5 brix domain containing 5 

219240_s_at C10orf88 
chromosome 10 open reading frame 
88 

217969_at C11orf2 
chromosome 11 open reading 
frame2 

219099_at C12orf5 
chromosome 12 open reading frame 
5 

218940_at C14orf138 
chromosome 14 open reading frame 
138 

218183_at C16orf5 
chromosome 16 open reading frame 
5 
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219260_s_at C17orf81 
chromosome 17 open reading frame 
81 

212574_x_at C19orf6 
chromosome 19 open reading frame 
6 

213528_at C1orf156 
chromosome 1 open reading frame 
156 

220477_s_at C20orf30 
chromosome 20 open reading frame 
30 

219329_s_at C2orf28 
chromosome 2 open reading frame 
28 

219008_at C2orf43 
chromosome 2 open reading frame 
43 

213148_at C2orf72 
chromosome 2 open reading frame 
72 

218646_at C4orf27 
chromosome 4 open reading frame 
27 

206016_at CCDC22 coiled-coil domain containing 22 

218026_at CCDC56 coiled-coil domain containing 56 

213743_at CCNT2 cyclin T2 

204306_s_at CD151 
CD151 molecule (Raph blood 
group) 

204693_at 
CDC42EP
1 

CDC42 effector protein (Rho 
GTPase binding) 1 

203493_s_at CEP57 centrosomal protein 57kDa 

212228_s_at COQ9 
coenzyme Q9 homolog (S. 
cerevisiae) 

206918_s_at CPNE1 copine I 

201983_s_at EGFR 

epidermal growth factor receptor 
(erythroblastic leukemia viral 
(v-erb-b) oncogene homolog, avian) √ 

201313_at ENO2 enolase 2 (gamma, neuronal) 

217941_s_at ERBB2IP erbb2 interacting protein 

202454_s_at ERBB3 
v-erb-b2 erythroblastic leukemia 
viral oncogene homolog 3 (avian) √ √ 

218481_at EXOSC5 exosome component 5 

207813_s_at FDXR ferredoxin reductase 

219901_at FGD6 
FYVE, RhoGEF and PH domain 
containing 6 

207822_at FGFR1 fibroblast growth factor receptor 1 √ 

206095_s_at FUSIP1 
FUS interacting protein 
(serine/arginine-rich) 1 

203987_at FZD6 frizzled homolog 6 (Drosophila) 

218313_s_at GALNT7 

UDP-N-acetyl-alpha-D-galactosami
ne:polypeptide 
N-acetylgalactosaminyltransferase 
7 (GalNAc-T7) 

206920_s_at GLE1 
GLE1 RNA export mediator 
homolog (yeast) 

201501_s_at GRSF1 
G-rich RNA sequence binding 
factor 1 

201470_at GSTO1 glutathione S-transferase omega 1 

201007_at HADHB 
hydroxyacyl-Coenzyme A 
dehydrogenase/3-ketoacyl-Coenzy
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me A thiolase/enoyl-Coenzyme A 
hydratase (trifunctional protein), 
beta subunit 

218460_at HEATR2 HEAT repeat containing 2 

210982_s_at 
HLA-DR
A 

major histocompatibility complex, 
class II, DR alpha 

202854_at HPRT1 
hypoxanthine 
phosphoribosyltransferase 1 

212221_x_at IDS iduronate 2-sulfatase 

221548_s_at ILKAP 
integrin-linked kinase-associated 
serine/threonine phosphatase 2C 

213392_at IQCK IQ motif containing K 

217938_s_at KCMF1 
potassium channel modulatory 
factor 1 

212303_x_at KHSRP KH-type splicing regulatory protein 

201776_s_at 
KIAA049
4 KIAA0494 

217906_at KLHDC2 kelch domain containing 2 

206316_s_at KNTC1 kinetochore associated 1 

202594_at 
LEPROT
L1 

leptin receptor overlapping 
transcript-like 1 

209205_s_at LMO4 LIM domain only 4 

201569_s_at 
LOC1001
31861 

sorting and assembly machinery 
component 50 homolog (S. 
cerevisiae) 

220130_x_at LTB4R2 leukotriene B4 receptor 2 

203497_at MED1 mediator complex subunit 1 

211599_x_at MET 
met proto-oncogene (hepatocyte 
growth factor receptor) √ 

209124_at MYD88 
myeloid differentiation primary 
response gene (88) 

219946_x_at MYH14 myosin, heavy chain 14 √ 

37005_at NBL1 
neuroblastoma, suppression of 
tumorigenicity 1 

200854_at NCOR1 nuclear receptor co-repressor 1 

203245_s_at 
NCRNA0
0094 non-protein coding RNA 94 

219726_at NLGN3 neuroligin 3 

205895_s_at NOLC1 
nucleolar and coiled-body 
phosphoprotein 1 

214661_s_at NOP14 
NOP14 nucleolar protein homolog 
(yeast) 

209628_at NXT2 
nuclear transport factor 2-like 
export factor 2 

201282_at OGDH 
oxoglutarate (alpha-ketoglutarate) 
dehydrogenase (lipoamide) 

212858_at PAQR4 
progestin and adipoQ receptor 
family member IV 

211048_s_at PDIA4 
protein disulfide isomerase family 
A, member 4 

202464_s_at PFKFB3 
6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 

219235_s_at PHACTR phosphatase and actin regulator 4 
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4 

217954_s_at PHF3 PHD finger protein 3 

211668_s_at PLAU plasminogen activator, urokinase 

206080_at PLCH2 phospholipase C, eta 2 

203735_x_at PPFIBP1 
PTPRF interacting protein, binding 
protein 1 (liprin beta 1) 

201300_s_at PRNP prion protein 

201705_at PSMD7 
proteasome (prosome, macropain) 
26S subunit, non-ATPase, 7 

219938_s_at PSTPIP2 
proline-serine-threonine 
phosphatase interacting protein 2 

221808_at RAB9A 
RAB9A, member RAS oncogene 
family 

205037_at RABL4 
RAB, member of RAS oncogene 
family-like 4 

201039_s_at RAD23A RAD23 homolog A (S. cerevisiae) 

210621_s_at RASA1 
RAS p21 protein activator (GTPase 
activating protein) 1 

212646_at RFTN1 raftlin, lipid raft linker 1 

218564_at RFWD3 ring finger and WD repeat domain 3

218323_at RHOT1 
ras homolog gene family, member 
T1 

214700_x_at RIF1 
RAP1 interacting factor homolog 
(yeast) 

201823_s_at RNF14 ring finger protein 14 

208540_x_at S100A11 
S100 calcium binding protein A11 
pseudogene 

201747_s_at SAFB scaffold attachment factor B 

203455_s_at SAT1 
spermidine/spermine 
N1-acetyltransferase 1 

201339_s_at SCP2 sterol carrier protein 2 

202657_s_at SERTAD2 SERTA domain containing 2 

216457_s_at SF3A1 
splicing factor 3a, subunit 1, 
120kDa 

200753_x_at SFRS2 
splicing factor, arginine/serine-rich 
2 

218878_s_at SIRT1 

sirtuin (silent mating type 
information regulation 2 homolog) 1 
(S. cerevisiae) 

205896_at SLC22A4 

solute carrier family 22 (organic 
cation/ergothioneine transporter), 
member 4 

221020_s_at 
SLC25A3
2 solute carrier family 25, member 32 

218041_x_at SLC38A2 solute carrier family 38, member 2 

203579_s_at SLC7A6 

solute carrier family 7 (cationic 
amino acid transporter, y+ system), 
member 6 

202043_s_at SMS spermine synthase 

207390_s_at SMTN smoothelin 

205443_at SNAPC1 
small nuclear RNA activating 
complex, polypeptide 1, 43kDa 
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201221_s_at SNRNP70 
small nuclear ribonucleoprotein 
70kDa (U1) 

201522_x_at SNRPN 
small nuclear ribonucleoprotein 
polypeptide N 

203217_s_at ST3GAL5 
ST3 beta-galactoside 
alpha-2,3-sialyltransferase 5 

205339_at STIL SCL/TAL1 interrupting locus 

202786_at STK39 
serine threonine kinase 39 
(STE20/SPS1 homolog, yeast) √ 

202260_s_at STXBP1 syntaxin binding protein 1 

205759_s_at SULT2B1 
sulfotransferase family, cytosolic, 
2B, member 1 

202384_s_at TCOF1 
Treacher Collins-Franceschetti 
syndrome 1 

220407_s_at TGFB2 transforming growth factor, beta 2 

219580_s_at TMC5 transmembrane channel-like 5 √ 

219005_at 
TMEM59
L transmembrane protein 59-like 

220431_at 
TMPRSS1
1E transmembrane protease, serine 11E 

206907_at TNFSF9 
tumor necrosis factor (ligand) 
superfamily, member 9 

207196_s_at TNIP1 TNFAIP3 interacting protein 1 

202734_at TRIP10 
thyroid hormone receptor interactor 
10 

209109_s_at TSPAN6 tetraspanin 6 

213058_at TTC28 tetratricopeptide repeat domain 28 

211285_s_at UBE3A ubiquitin protein ligase E3A 

219960_s_at UCHL5 
ubiquitin carboxyl-terminal 
hydrolase L5 

201903_at UQCRC1 
ubiquinol-cytochrome c reductase 
core protein I 

201831_s_at USO1 
USO1 homolog, vesicle docking 
protein (yeast) 

202664_at WIPF1 
WAS/WASL interacting protein 
family, member 1 

201760_s_at WSB2 
WD repeat and SOCS 
box-containing 2 

204022_at WWP2 
WW domain containing E3 
ubiquitin protein ligase 2 

221423_s_at YIPF5 Yip1 domain family, member 5 

212787_at YLPM1 YLP motif containing 1 

201531_at ZFP36 
zinc finger protein 36, C3H type, 
homolog (mouse) 

203730_s_at 
ZKSCAN
5 

zinc finger with KRAB and SCAN 
domains 5 

203247_s_at ZNF24 zinc finger protein 24 

206829_x_at ZNF430 zinc finger protein 430 
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Table 2 The 65 Erlotinib response biomarkers selected by our SVM-RFE method from the 46 and 
7 Erlotinib resistant and sensitive NSCLC cell-lines, the biomarkers selected by a previously 
published study or as the Erlotinib target or bypass gene are marked in the Table. 
 

SVM-RFE selected biomarker 

Biomarker 
commonly 
selected by a 
previous 
published study 

Biomarker as 
Erlotinib 
target or 
bypass gene 

Probeset ID Gene 
Symbol 

Gene Description Selected by  the 
study of [328]  

Bypass gene 

219199_at AFF4 AF4/FMR2 family, member 4   

202054_s_at ALDH3A
2 

aldehyde dehydrogenase 3 family, 
member A2 

  

221825_at ANGEL2 angel homolog 2 (Drosophila)   

204416_x_at APOC1 apolipoprotein C-I   

203311_s_at ARF6 ADP-ribosylation factor 6   

207076_s_at ASS1 argininosuccinate synthetase 1   

214068_at BEAN brain expressed, associated with Nedd4   

217969_at C11orf2 chromosome 11 open reading frame2   

221208_s_at C11orf61 chromosome 11 open reading frame 61   

219260_s_at C17orf81 chromosome 17 open reading frame 81   

220477_s_at C20orf30 chromosome 20 open reading frame 30   

219329_s_at C2orf28 chromosome 2 open reading frame 28   

213148_at C2orf72 chromosome 2 open reading frame 72   

213322_at C6orf130 chromosome 6 open reading frame 130   

206016_at CCDC22 coiled-coil domain containing 22   

204306_s_at CD151 CD151 molecule (Raph blood group)   

212648_at DHX29 DEAH (Asp-Glu-Ala-His) box 
polypeptide 29 

  

200606_at DSP desmoplakin   

201983_s_at EGFR epidermal growth factor receptor 
(erythroblastic leukemia viral (v-erb-b) 
oncogene homolog, avian) 

√ √ 

217941_s_at ERBB2IP erbb2 interacting protein   

202454_s_at ERBB3 v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 3 (avian) 

 √ 

218481_at EXOSC5 exosome component 5   

218898_at FAM57A family with sequence similarity 57, 
member A 

  

213646_x_at FGFR3 fibroblast growth factor receptor 3  √ 

207966_s_at GLG1 golgi apparatus protein 1   

203384_s_at GOLGA1 golgi autoantigen, golgin subfamily a, 1   

206204_at GRB14 growth factor receptor-bound protein 14 √  

201631_s_at IER3 immediate early response 3   

221548_s_at ILKAP integrin-linked kinase-associated 
serine/threonine phosphatase 2C 

  

202419_at KDSR 3-ketodihydrosphingosine reductase   

209205_s_at LMO4 LIM domain only 4   

216908_x_at LOC7300 RRN3 RNA polymerase I transcription   
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92 factor homolog (S. cerevisiae) 
pseudogene 

217543_s_at MBTPS1 membrane-bound transcription factor 
peptidase, site 1 

  

211599_x_at MET met proto-oncogene (hepatocyte growth 
factor receptor) 

 √ 

209124_at MYD88 myeloid differentiation primary response 
gene (88) 

  

37005_at NBL1 neuroblastoma, suppression of 
tumorigenicity 1 

  

203245_s_at NCRNA0
0094 

non-protein coding RNA 94   

218036_x_at NMD3 NMD3 homolog (S. cerevisiae)   

209628_at NXT2 nuclear transport factor 2-like export 
factor 2 

  

221538_s_at PLXNA1 plexin A1   

37028_at PPP1R15
A 

protein phosphatase 1, regulatory 
(inhibitor) subunit 15A 

  

221808_at RAB9A RAB9A, member RAS oncogene family   

205037_at RABL4 RAB, member of RAS oncogene 
family-like 4 

  

210621_s_at RASA1 RAS p21 protein activator (GTPase 
activating protein) 1 

√  

218323_at RHOT1 ras homolog gene family, member T1   

208540_x_at S100A11P S100 calcium binding protein A11 
pseudogene 

  

201339_s_at SCP2 sterol carrier protein 2   

216457_s_at SF3A1 splicing factor 3a, subunit 1, 120kDa   

200753_x_at SFRS2 splicing factor, arginine/serine-rich 2   

205896_at SLC22A4 solute carrier family 22 (organic 
cation/ergothioneine transporter), 
member 4 

  

221020_s_at SLC25A3
2 

solute carrier family 25, member 32   

203579_s_at SLC7A6 solute carrier family 7 (cationic amino 
acid transporter, y+ system), member 6 

  

202043_s_at SMS spermine synthase   

218327_s_at SNAP29 synaptosomal-associated protein, 29kDa   

200783_s_at STMN1 stathmin 1/oncoprotein 18   

202260_s_at STXBP1 syntaxin binding protein 1   

203449_s_at TERF1 telomeric repeat binding factor 
(NIMA-interacting) 1 

  

219580_s_at TMC5 transmembrane channel-like 5   

206907_at TNFSF9 tumor necrosis factor (ligand) 
superfamily, member 9 

  

201546_at TRIP12 thyroid hormone receptor interactor 12   

211758_x_at TXNDC9 thioredoxin domain containing 9   

201649_at UBE2L6 ubiquitin-conjugating enzyme E2L 6   

202664_at WIPF1 WAS/WASL interacting protein family, 
member 1 

  

221423_s_at YIPF5 Yip1 domain family, member 5   

212787_at YLPM1 YLP motif containing 1   
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Table 3 List of the 98 Lapatinib response biomarkers selected by our SVM-RFE method from the 
40 and 8 Lapatinib resistant and sensitive NSCLC cell-lines, the biomarkers as the Lapatinib target 
or bypass gene are marked in the Table. 

SVM-RFE selected biomarker 

Biomarker 
as 

Lapatinib 
target or 
bypass 
gene 

Probeset ID Gene Symbol Gene Description 

212895_s_at ABR active BCR-related gene 

205512_s_at AIFM1 
apoptosis-inducing factor, 
mitochondrion-associated, 1  

204416_x_at APOC1 apolipoprotein C-I 

221653_x_at APOL2 apolipoprotein L, 2 

220658_s_at ARNTL2 
aryl hydrocarbon receptor nuclear 
translocator-like 2  

207076_s_at ASS1 argininosuccinate synthetase 1 

209406_at BAG2 BCL2-associated athanogene 2 

222000_at C1orf174 chromosome 1 open reading frame 174 

218646_at C4orf27 chromosome 4 open reading frame 27 

218026_at CCDC56 coiled-coil domain containing 56 

219036_at CEP70 centrosomal protein 70kDa 

213735_s_at COX5B cytochrome c oxidase subunit Vb 

203368_at CRELD1 cysteine-rich with EGF-like domains 1 

201201_at CSTB cystatin B (stefin B) 

205399_at DCLK1 doublecortin-like kinase 1 

209916_at DHTKD1 
dehydrogenase E1 and transketolase 
domain containing 1  

209190_s_at DIAPH1 diaphanous homolog 1 (Drosophila) 

218976_at DNAJC12 
DnaJ (Hsp40) homolog, subfamily C, 
member 12  

222221_x_at EHD1 EH-domain containing 1 

201313_at ENO2 enolase 2 (gamma, neuronal) 

210930_s_at ERBB2 

v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, neuro/glioblastoma 
derived oncogene homolog (avian) 

√ 

217941_s_at ERBB2IP erbb2 interacting protein 

202454_s_at ERBB3 
v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 3 (avian) 

√ 

202766_s_at FBN1 fibrillin 1 

213646_x_at FGFR3 fibroblast growth factor receptor 3 √ 

214170_x_at FH fumarate hydratase 

215075_s_at GRB2 growth factor receptor-bound protein 2 

201209_at HDAC1 histone deacetylase 1 

208306_x_at HLA-DRB4 
major histocompatibility complex, class 
II, DR beta 4  

209417_s_at IFI35 interferon-induced protein 35 

219209_at IFIH1 
interferon induced with helicase C 
domain 1  
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202859_x_at IL8 interleukin 8 

205051_s_at KIT 
v-kit Hardy-Zuckerman 4 feline sarcoma 
viral oncogene homolog  

210111_s_at KLHDC10 kelch domain containing 10 

209008_x_at KRT8 keratin 8 

217892_s_at LIMA1 LIM domain and actin binding 1 

209737_at MAGI2 
membrane associated guanylate kinase, 
WW and PDZ domain containing 2  

205192_at MAP3K14 
mitogen-activated protein kinase kinase 
kinase 14  

213927_at MAP3K9 
mitogen-activated protein kinase kinase 
kinase 9  

218440_at MCCC1 
methylcrotonoyl-Coenzyme A 
carboxylase 1 (alpha)  

200617_at MLEC malectin 

201710_at MYBL2 
v-myb myeloblastosis viral oncogene 
homolog (avian)-like 2  

209498_at MYCN 
v-myc myelocytomatosis viral related 
oncogene, neuroblastoma derived (avian)  

209124_at MYD88 
myeloid differentiation primary response 
gene (88)  

208754_s_at NAP1L1 nucleosome assembly protein 1-like 1 

217286_s_at NDRG3 NDRG family member 3 

202647_s_at NRAS 
neuroblastoma RAS viral (v-ras) 
oncogene homolog  

212316_at NUP210 nucleoporin 210kDa 

215952_s_at OAZ1 ornithine decarboxylase antizyme 1 

209043_at PAPSS1 
3'-phosphoadenosine 5'-phosphosulfate 
synthase 1  

203131_at PDGFR 
platelet-derived growth factor receptor, 
alpha polypeptide 

√ 

219165_at PDLIM2 PDZ and LIM domain 2 (mystique) 

221538_s_at PLXNA1 plexin A1 

209317_at POLR1C 
polymerase (RNA) I polypeptide C, 
30kDa  

209482_at POP7 
processing of precursor 7, ribonuclease 
P/MRP subunit (S. cerevisiae)  

204748_at PTGS2 

prostaglandin-endoperoxide synthase 2 
(prostaglandin G/H synthase and 
cyclooxygenase) 

√ 

212032_s_at PTOV1 prostate tumor overexpressed 1 

203329_at PTPRM 
protein tyrosine phosphatase, receptor 
type, M  

206157_at PTX3 
pentraxin-related gene, rapidly induced 
by IL-1 beta  

211823_s_at PXN paxillin 

213878_at PYROXD1 
pyridine nucleotide-disulphide 
oxidoreductase domain 1  

219681_s_at RAB11FIP1 
RAB11 family interacting protein 1 (class 
I)  

208732_at RAB2A RAB2A, member RAS oncogene family 

210621_s_at RASA1 RAS p21 protein activator (GTPase 
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activating protein) 1 

208242_at RAX retina and anterior neural fold homeobox 

213718_at RBM4 RNA binding motif protein 4 

205740_s_at RBM42 RNA binding motif protein 42 

218323_at RHOT1 ras homolog gene family, member T1 

216913_s_at RRP12 
ribosomal RNA processing 12 homolog 
(S. cerevisiae)  

218307_at RSAD1 
radical S-adenosyl methionine domain 
containing 1  

208540_x_at S100A11P 
S100 calcium binding protein A11 
pseudogene  

203408_s_at SATB1 SATB homeobox 1 

203889_at SCG5 secretogranin V (7B2 protein) 

201339_s_at SCP2 sterol carrier protein 2 

214016_s_at SFPQ 

splicing factor proline/glutamine-rich 
(polypyrimidine tract binding protein 
associated) 

 

202433_at SLC35B1 solute carrier family 35, member B1 

204368_at SLCO2A1 
solute carrier organic anion transporter 
family, member 2A1  

218327_s_at SNAP29 synaptosomal-associated protein, 29kDa 

205443_at SNAPC1 
small nuclear RNA activating complex, 
polypeptide 1, 43kDa  

204729_s_at STX1A syntaxin 1A (brain) 

210580_x_at SULT1A3 
sulfotransferase family, cytosolic, 1A, 
phenol-preferring, member 3  

203167_at TIMP2 TIMP metallopeptidase inhibitor 2 

212165_at TMEM183A transmembrane protein 183A 

202688_at TNFSF10 
tumor necrosis factor (ligand) 
superfamily, member 10  

206907_at TNFSF9 
tumor necrosis factor (ligand) 
superfamily, member 9  

214550_s_at TNPO3 transportin 3 

203050_at TP53BP1 tumor protein p53 binding protein 1 

202734_at TRIP10 thyroid hormone receptor interactor 10 

215111_s_at TSC22D1 TSC22 domain family, member 1 

217979_at TSPAN13 tetraspanin 13 

46167_at TTC4 tetratricopeptide repeat domain 4 

211285_s_at UBE3A ubiquitin protein ligase E3A 

202316_x_at UBE4B 
ubiquitination factor E4B (UFD2 
homolog, yeast)  

220419_s_at USP25 ubiquitin specific peptidase 25 

205139_s_at UST uronyl-2-sulfotransferase 

201531_at ZFP36 
zinc finger protein 36, C3H type, 
homolog (mouse)  

218645_at ZNF277 zinc finger protein 277 

218735_s_at ZNF544 zinc finger protein 544 

 


