
Efficiently Verifying Programs with
Rich Control Flows

Cristian Andrei Gherghina
School of Computing

National University of Singapore

A thesis submitted for the degree of

Doctor of Philosophy

November 23, 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48657030?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cristian@comp.nus.edu.sg
http://www.comp.nus.edu.sg
http://www.nus.edu.sg

i

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have
duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

__

Gherghina Cristian Andrei

21 August 2012

To my always steady compass: my dear parents, sister and my better half.

Multumesc dragii mei.

Acknowledgements

I am grateful to my advisor and mentor, Professor Chin Wei-Ngan, for his constant guid-

ance and encouragement both professionally and personally during these five years. I hope I

can eventually internalize his example on patience, kindness, focus, immense passion and drive

and constant search for both elegance and relevance.

I thank my Thesis Committee Members: Professors Khoo Siau Cheng, Joxan Jaffar and

Naoki Kobayashi for their feedbacks on my work, which greatly helped shape my thesis. I

also thank my colleagues and seniors Razvan Voicu, Aquinas Hobor, Cristina David, Florin

Craciun, Loc Le, Chanh Le for the fruitful research collaborations and the many lessons they

have taught me.

For interesting discussions, entertaining moments and mostly for making Singapore a home

away from home, I thank Andrei Hagiescu, Bogdan Tudor, Cristina Carbunaru, Dan Tudose,

Cristina David, Corneliu Popeea, Florin Craciun, Yamilet Serrano and Andreea Costea. I thank

Mihail Popa, Tudor Barbu and Mihai Mihailescu for their companionship and close friendship

through my PH.D. years, for many more years before that and hopefully for many more to

come.

I thank my parents, sister and my better half for their unconditional love and support, their

trust, patience, and understanding.

Abstract

In the era of multicore processing, formal verification is more important than ever. This the-

sis narrows the gap between the increased complexity of control flow patterns, often spanning

across multiple threads, and the stringent need for accuracy. We introduce a sound verification

logic designed to efficiently handle programs with complex control flow patterns.

We advocate for an extension of separation logic that can uniformly handle exceptions,

program errors and other kinds of control flows. This approach is supported through a uniform

mechanism that captures static control flows (such as normal execution) and dynamic control

flows (such as exceptions) within a single formalism. Following Stroustrup’s definition [94,

70], our verification technique could ensure exception safety in terms of four guarantees of

increasing quality, namely no-leak guarantee, basic guarantee, strong guarantee and no-throw

guarantee.

A second component of our verification logic handles Pthreads barriers. Unlike locks and

critical sections, Pthreads barriers generate complex control flow and resource ownership ex-

change patterns. They enable simultaneous resource redistribution between multiple threads

and are inherently stateful, leading to significant complications in the design of the logic and

its soundness proof. We equip our logic with a novel mechanism for explicitly capturing and

reasoning about barrier behaviour.

The last essential component of our proposal consists of a novel predicate pruning tech-

nique targeting user-defined disjunctive predicates. Although we will introduce a Hoare logic

that successfully verifies programs with exceptions and barriers, in order for our proposal to

gain acceptance, it is not sufficient to work we must also ensure that verification can be done

quickly and precisely. Our proposed predicate specialization and pruning mechanism is de-

signed with this goal in mind.

Our barrier extension can be viewed as an instance of a highly specialized verification

logic that relies on user-defined disjunctive predicates. We address the performance penalty

associated with the proof search induced by disjunctive predicates in general and by our barrier

handling in particular, by proposing a predicate specialization technique that allows efficient

symbolic pruning of infeasible disjuncts inside each predicate instance. Our technique is pre-

sented as a specialization operation whose derivations preserve the satisfiability of formulas,

while reducing the subsequent cost of their manipulation. Initial experimental results have

confirmed significant speed gains from the deployment of predicate specialization. It yields up

to a 10 fold increase in discharging proof obligations generated by the verification of general

sequential programs and up to 37 fold increase in the speed of barrier reasoning.

As support for our proposal, we showcase a program verification toolset, that uses our logic

to automatically prove the correctness of programs with exceptions and barriers.

vi

Contents

Contents vii

List of Figures xi

1 Introduction 1

1.1 Thesis Objectives . 5

1.2 Contributions of the Thesis . 7

1.3 Outline . 10

2 Preliminaries 11

2.1 Source Language . 12

2.2 Control Flow Hierarchy . 15

2.3 Core Language . 17

2.3.1 Syntax . 17

2.3.2 Semantic Model . 20

Concurrent Semantics . 22

Oracle Semantics . 26

Purely Sequential Semantics . 27

2.4 Specification Language . 29

2.4.1 Semantic Model . 33

2.5 Translation to the Core Language . 34

vii

viii

2.5.1 Translation Steps . 35

Phase I: Preprocessing . 35

Phase II: Main Translation . 36

Phase III: Wrapping-up the Translation 41

Phase IV: Handling Implicitly Raised Exceptions 42

2.5.2 Optimization Rules . 44

Soundness of Optimization Rules . 48

3 Exception Verification 57

3.1 Motivation . 57

3.2 Examples with Higher Exception Safety Guarantees 60

3.3 Verification for Unified Control Flows . 64

3.4 Experiments . 66

3.5 Summary . 67

4 Barrier Verification 69

4.1 Motivation . 69

4.2 Example . 72

4.3 Barrier Definitions and Consistency Requirements 75

4.4 Hoare Logic . 78

4.5 Soundness Results . 80

4.5.1 Unerased Semantics . 83

4.5.2 Soundness Proof Outline . 87

4.6 Tool Support for Barriers . 89

4.6.1 A Solver for Shares . 90

4.6.2 An Introduction to SLEEK . 95

4.6.3 Entailment Procedure for Separation Logic with Shares 98

4.6.4 Proving Barrier Soundness . 101

ix

4.6.5 Extension to Program Verification . 104

4.6.6 Tool Performance Outline . 106

4.7 Summary . 110

5 Effective Verification through Predicate Pruning 113

5.1 Motivation . 113

5.2 Examples . 115

5.3 Formal Preliminaries . 120

5.4 A Specialization Calculus . 122

5.5 Inferring Specializable Predicates . 133

5.6 Specialization for Program Verification . 139

5.7 Improved Specialization . 141

5.7.1 Memoization . 142

5.7.2 Incremental Pruning . 143

5.8 Experiments . 145

5.9 Barrier Logic with Specialization . 148

5.10 Summary . 153

6 Comparative Remarks 155

6.1 Barrier Verification . 155

6.2 Specialization Calculus . 158

6.3 Exception Verification . 160

7 Conclusions 163

7.1 Results Summary . 163

7.2 Future Work . 165

Bibliography 167

x

List of Figures

2.1 Source Language : SrcLang . 13

2.2 A Subtype Hierarchy on Control Flows . 15

2.3 Core Language : Core−U . 18

2.4 Small-Step Semantics . 28

2.5 Specification Language . 29

2.6 Semantics for the Jump Construct . 45

3.1 Some Verification Rules . 65

3.2 Verification Times . 67

4.1 Example: Code and Barrier Diagram . 73

4.2 Barrier Definitions . 76

4.3 Concurrent state . 84

4.4 XPure : Translating to Pure Form . 96

4.5 Separation Constraint Entailment . 97

4.6 FXPure: XPure with shares . 98

4.7 Folding/Unfolding in the presence of shares 99

4.8 Verification times for HIP with barriers . 107

5.1 The Annotated Specification Language. 120

5.2 Single-step Predicate Specialization . 125

xi

xii

5.3 Single-step Formula Specialization . 127

5.4 Inference Rules for Specializable Predicates 135

5.5 Initialization for Specialization . 137

5.6 Normalizing Specialized Separation Logic . 140

5.7 Some Verification Rules . 142

5.8 Improved Specialization . 146

5.9 Verification Times and Proof Statistics (Proof Counts, Avg Disjuncts, Avg Size) 147

5.10 Characteristic (disjunct, size, timing) of HIP+Spec compared to the Original HIP148

5.11 Inference Rules for Specializable Barriers . 150

5.12 Verification times for HIP with specialized barriers 152

Chapter 1

Introduction

The explosive growth in the software industry has led to a vast assortment of software being

created to control computer systems involving almost all aspects of our lives. While some of

these software components have been successfully built, there are also many software compo-

nents whose quality has continued to plague the users who are stuck with them. This in turn

pushed the need for better software engineering guidelines that would help in the creation and

quality control of software systems. Traditionally, software quality control relied on simplistic

methodologies e.g. peer inspection and repeated regression testing. Though such methods can

often discover the presence of problems, they cannot guarantee bug-free and/or low-defects

software, and unfortunately these are exactly the guarantees that we would expect for the com-

plex software tasked with controlling safety critical systems.

Two high-profile examples of safety critical software failures are the Mars Climate Orbiter

which crashed due to an incorrect conversion to metric units, and the Ariane 5 failure due to

a floating-point conversion which raised an exception that was not properly handled [30]. The

latter example is particularly significant for us since it highlighted the need for considering all

manner of control flows, particularly those that are related to exceptional scenarios. While it

might be challenging to investigate and consider all corner cases it is precisely these cases that

could haunt us if our software is not adequately prepared for them.

1

2 1. INTRODUCTION

Formal methods aim to address this issue with surgical precision: they aim for proving

software correctness and thus for guaranteeing that systems never fail [74, 46]. Program verifi-

cation is one successful approach to proving software correctness by focusing on proving spe-

cific, user provided, correctness statements [49, 48]. Such statements are typically expressed

in rich specification logics that allow for expressive yet concise specifications and more impor-

tantly are designed with the goal of lending themselves to systematic checking by verification

systems [35].

An example of a logic that is suitable for specification and verification is Hoare logic [47].

It was designed to help describe, modularly, the effect of sequential programs. The Hoare logic

approach consists of constructing triples of the form {P} c {Q} where c is a code sequence

while P andQ denote abstractions of concrete program states. Each such abstraction represents

a set of reachable concrete states which can be viewed as one abstract program state. A triple

is said to hold if and only if whenever c is executed from a concrete state that is captured by an

abstraction in P then, if c terminates, it will do so in a state whose abstraction can be described

by Q.

The core of Hoare logic is comprised of a set of axioms which define triples corresponding

to the basic statements in the programming language. However, depending on the programming

language of choice, on their specific features and the logical framework chosen for expressing

the program state, different Hoare logic variants can be constructed.

For example, many commonly used programming languages have complex memory mod-

els in which resources can be allocated on the stack or on the heap. Heap allocation introduces

an extra hurdle, as it facilitates sharing and aliasing of resources which requires the abstraction

mechanism to be able to capture aliasing in a preferably concise manner. One particularly el-

egant and concise framework of expressing and reasoning about such sharing and aliasing is

separation logic [57, 86].

As the common usage of separation logic revolves around abstracting and reasoning about

program states, typical models for separation logic are centered on abstractions of machine

1. INTRODUCTION 3

states with both stack and heap stores. Thus, the basic separation logic assertions capture

allocatedness facts of the form x 7−→a read as x points-to a heap location containing value a. In

order to concisely capture non-aliasing information, on top of the common logic connectives

of first-order logic, separation logic also exhibits two new connectives: separating conjunction

∗ and separating implication, −−∗. The separating conjunction assertion p1 ∗ p2 holds if and

only if there exists a division of the current heap such that one sub-heap satisfies p1, the other

satisfies p2 and the two sub-heaps are disjoint. Embedding heap disjointedness in the definition

of the connective ensures a clutter free mechanism for capturing non-aliasing information.

The advantage of a concise and precise logics has led to several automatic or semi-automatic

verification tools being developed: [9, 42, 75, 58].

Concurrency is another language feature with a big impact on the abstraction formalism. In

the last decade, languages that take advantage of the multicore/multiprocessor hardware plat-

forms have become mainstream. Thus verification tools are expected to cater for multithreaded

programs. O’Hearn, in [80], introduces an extension of Hoare logic, Concurrent Separation

logic (CSL), with the goal of allowing a form of parallelism in the verified program. One big

advantage of CSL is that it maintains the Hoare Logics modularity even at the concurrent com-

putation level: a correctness proof for the entire program can be constructed by verifying each

of the parallel computations individually. Since then, a considerable body of work has focused

on allowing in the verified program various forms of communication and synchronization while

still maintaining the guarantee that no races occur.

Recently, concurrent separation logic has been used to formally reason about shared-memory

programs that use critical sections and (first-class) locks [80, 51, 43, 50]. Programs verified

with concurrent separation logic are provably data-race free. However more sophisticated syn-

chronization mechanisms are inherently trickier to reason about. The general assumption is

that other mechanisms can be implemented with locks, and that reasonable Hoare rules can be

derived by verifying their implementation. Indeed, the first published example of concurrent

separation logic was implementing semaphores using critical sections [80]. Unfortunately, not

4 1. INTRODUCTION

all synchronization mechanisms can be easily reduced to locks in a way that allows for a rea-

sonable Hoare rule to be derived. Therefore, despite fundamental theoretical advances such as

Hoare logic, separation logic, CSL, plus a frenzy of further developments that tackle complex

verification problems, support for specifying and verifying several important language features

of modern programming languages is still lacking. As a consequence, languages are often too

complex to fully analyse, causing verification tools to omit some of the fancy features. For in-

stance, an essential feature of modern programming languages often overlooked in verification

is the ability to generate complex non-local control flows, e.g. exception handling .

Exception handling is an important mechanism for dynamically altering control flows. It

is instrumental for building robust software with good error handling capability. However, ex-

ceptions are often omitted during the initial formulation of program analysis and optimization.

Furthermore, with respect to the shared memory paradigm, there is a considerable chal-

lenge in verifying programs in the presence of the complex control flow patterns generated by

the use of sophisticated synchronization mechanisms. The Pthreads-style barriers are a prime

example of such a synchronization mechanism that is surprisingly often used in practice 1 and

yet has been overlooked by current verification systems.

When a thread issues a barrier call it waits until a specified number (typically all) of other

threads have also issued a barrier call; at that point, all of the threads continue. Even the

common barrier usage exhibits complex control flow patterns: usually programs with barriers

use multiple threads advancing in lockstep through a complex computation such that they will

not “step on each others toes” when accessing shared data, the usual access pattern is concurrent

read exclusive write. Thus in common usage, barriers are implicitly associated with a complex

resource ownership redistribution. The hardship of verifying multithreaded programs with

barriers lies in designing a mechanism for encoding the complex control and fractional resource

ownership change patterns associated with barriers.

138% of the total workloads in PARSEC, a standard benchmarking suite for multicore architectures, use barriers
[10]

1. INTRODUCTION 5

1.1 Thesis Objectives

The principal goal of this thesis is to introduce a sound verification logic designed to efficiently

handle programs with complex control flow patterns. The logic will explicitly and precisely

track control flows essential to the verification of the program like various exception related

flows however it will also incorporate abstractions required to maintain modularity and avoid

the exponential blowup when reasoning in a multithreaded setting. We will also describe sev-

eral contributions related to the integration of our verification logic in order to broaden the

applicability of an existing verification tool chain.

The first problem we tackle is the lack of a high level programming language which can be

middle ground between programmers and verification tools. When considering the traditional

approach of converting programs from high level languages to machine code, the target code

often turns out to be too cryptic (or low level) for program analysis. Our goal is to design

an intermediate, minimal but expressive, core language which can be easily analysed and ma-

nipulated, and to show that this language can handle major language features by translating a

significant imperative source language into it. The translation to the core language enables us to

easily analyse and optimize the code, while not sacrificing the flexibility and rich characteristic

of the source language.

Therefore we first design an intermediate, expressive, syntactically simple, core language

focused on simplifying the task of program verification in the presence of complex control

flows. The insight underlying the core language is that it is possible to simplify the verifica-

tion effort by recasting in one syntactically simple form most of the control flow generating

mechanisms.

Secondly, we advocate for an extension of concurrent separation logic that can uniformly

handle exceptions, program errors and other kinds of control flows. This is elegantly achieved

by designing our extension for the syntactically simple structures of the core language. Our

logic treats exceptions as possible outcomes that could be later remedied, while errors are

6 1. INTRODUCTION

conditions that should be avoided by user programs. This distinction is supported through a

uniform mechanism that captures static control flows (such as normal execution) and dynamic

control flows (such as exceptions) within a single formalism. Following Stroustrup’s definition

[94, 70], our verification technique could ensure exception safety in terms of four guarantees of

increasing quality, namely no-leak guarantee, basic guarantee, strong guarantee and no-throw

guarantee.

A third component of our verification logic handles Pthreads barriers. Unlike locks and

critical sections, Pthreads barriers generate complex control flow and resource ownership ex-

change patterns. They enable simultaneous resource redistribution between multiple threads

and are inherently stateful, leading to significant complications in the design of the logic and

its soundness proof. We equip our logic with a novel mechanism for explicitly capturing and

reasoning about barrier behaviour.

As support for our proposal, we showcase a program verification toolset, based on the

HIP verifier [78, 20], that uses our logic to automatically prove the correctness of programs

with the features discussed so far. Unfortunately, the inherently complex ownership exchange

patterns require HIP to support a shared resource ownership accounting scheme. Therefore

we introduce in HIP a fractional ownership control mechanism based on the binary tree model

described by Dockings et al. in [28].

The last essential component of our proposal consists of a novel general predicate prun-

ing technique targeting disjunctive predicates. Although we will introduce a Hoare logic that

successfully verifies programs with exceptions and barriers, in order for our proposal to gain

acceptance, it is not sufficient that it works but it needs to work fast too. Our barrier extension

can be viewed as an instance of a highly specialized verification logic that relies on user-defined

disjunctive predicates. Therefore we will incorporate our new predicate pruning technique into

our verification logic in order to greatly speedup the verification process.

In general, separation logic-based abstraction mechanisms, enhanced with user-defined

disjunctive predicates, represent a powerful, expressive means of specifying heap-based data

1. INTRODUCTION 7

structures with strong invariant properties. However, expressive power comes at a cost: the

manipulation of such logics typically requires the unfolding of disjunctive predicates which

may lead to expensive proof search.

We address the performance penalty induced by disjunctive predicates in general and by

our barrier handling in particular, by proposing a general predicate specialization technique that

allows efficient symbolic pruning of infeasible disjuncts inside each predicate instance. While

specialization is a familiar technique for code optimization, its use in program verification is

new. Our technique is presented as a specialization operation whose derivations preserve the

satisfiability of formulas, while reducing the subsequent cost of their manipulation. Initial

experimental results have confirmed significant speed gains from the deployment of predicate

specialization. It yields up to a 10 fold increase in discharging proof obligations generated

by the verification of general sequential programs and up to 37 fold increase in the speed of

barrier reasoning.

1.2 Contributions of the Thesis

The contributions of these thesis can be organized by four main vectors:

A core language with unified control flows

(Chapter 2, first presented in [25])

• We propose a core language, Core−U , with a novel view of the control flows unifying

both normal and exceptional executions. This new design is supported by a pair of

unified constructs that are considerably more general than previous approaches. Due to

this unification of the control flows, the core language is easier to analyse and optimize.

• We define a translation from an expressive Java-like imperative language into our core

language. The translation is based on rewrite rules and illustrates how advanced language

features, such as try−finally and multi-return functions, can be easily captured by our

8 1. INTRODUCTION

core language. Moreover, we prove two important properties of the translation, namely

completeness and termination.

• We provide a set of optimization rules for our language, designed to reduce the im-

plementation overhead. These rules are specified at a high-level which facilitates both

human understanding and the construction of correctness proofs. While the set of opti-

mization rules is by no means exhaustive, these rules can help support better practical

prospects for our core language. For all the rules we supply correctness proofs, which

are also meant to illustrate the ease of designing optimizations and proving them correct.

A Specification Logic for Exceptions

(Chapter 3, first presented in [37])

• We introduce a specification logic that captures the states for both normal and exceptional

executions. Our design is guided by the novel unification of both static control flows

(such as break and return), and dynamic control flows (such as exceptions and errors).

• We revisit exception safety guarantees as introduced in [94], and extended in [70]. Ad-

ditionally, we improve the strong guarantee for exception safety. To support a tradeoff

between precision and cost of verification, our verification system is flexible in enforcing

different levels of exception safety.

• We introduce a set of very simple Hoare rules for Core−U .

• We have included the above features in the HIP verifier and validated it with a suite of

exception-handling examples.

Pthreads Barriers in Concurrent Separation Logic

(Chapter 4 , first presented in [52] and extended in [53])

• We give a formal characterization for sound Pthreads barrier definitions.

1. INTRODUCTION 9

• We extend the Core−U verification logic with a natural Hoare rule for verifying barrier

calls and include it in the HIP verifier.

• We give a formal resource-aware unerased concurrent operational semantics for barriers

and prove our Hoare rules sound with respect to our semantics. Our soundness results

are machine-checked in Coq

• We add support for a fractional resource ownership accounting scheme to the entailment

procedure in the SLEEK separation logic entailment checker [20] which is the core of

the HIP verifier.

• We describe a solver for the binary tree domain proposed by Dockings et al. in [28] as a

model for fractional resource ownership accounting.

Specialization for Pruning Disjunctive Predicates to Support Verification

(Chapter 5, first presented in [21])

• We propose a new specialization calculus that leads to more effective program verifi-

cation. Our calculus specializes proof obligations produced in the program verification

process, and can be used as a preprocessing step before the obligations are fed into third

party theorem provers or decision procedures.

• We adapt memoization and incremental pruning techniques to obtain an optimized ver-

sion of the specialization calculus.

• We included our specialization calculus in the HIP/SLEEK together with the previous

extensions.

• We apply the specializer to barrier definitions. The use of our specializer yields dramatic

reductions in verification times, both for large sequential programs and programs em-

ploying barrier synchronization. Even for simple examples with barrier usage we show

a specialization induced speedup of up to 37 .

10 1. INTRODUCTION

1.3 Outline

In Chapter 2 we describe the formal preliminaries. We introduce SrcLang, the target language

of our verification solution together with a syntactically simple core language to which the

input language can be translated and for which we have designed our verification logic. We

will also describe a specification language with support for capturing various control flow types

and barrier related assertions.

In Chapter 3 we will elaborate on common expectations for exception safety guarantees

and introduce a set of elegantly simple rules for verifying programs with exceptions.

In Chapter 4 we further extend the exception logic by adding support for barrier reasoning

through a novel mechanism for describing barrier behaviours. Furthermore, we will introduce

a Hoare rule for verifying barrier calls which is surprisingly simple when compared to the

complex synchronization pattern the barriers introduce. We will outline the soundness proof

for our logic and also describe the work required to integrate our verification logic into an

existing verification toolset.

In Chapter 5 we describe the last essential component of our proposal which consists of a

predicate specialization and pruning technique targeting disjunctive predicates and showcase

how it can be applied to our verification logic with impressive verification time improvements.

Chapters 6 and 7 conclude the thesis with discussions on related work and possible direc-

tions for future research.

Chapter 2

Preliminaries

In this chapter we will describe SrcLang, a Java-like programming language and the specifica-

tion language we will use as the target of our verification solution. The programming language

is endowed with rich syntactic constructs which induce complex control flows: it supports ex-

ception handling and also multithreaded programming through the presence of fork/join state-

ments and barriers as synchronization mechanisms.

We will also introduce a syntactically simpler core language to which the input language

can be reduced and for which we have designed a verification logic targeted in proving cor-

rectness of programs with exceptions and barriers. We will define a small-step semantics for

the core language. We will also describe a separation logic based specification language with

support for capturing various control flow types and barrier related assertions.

We conclude the chapter with a translation from SrcLang to the core language followed

by a set of optimization rules for the core language, designed to reduce the implementation

overhead. These rules are specified at a high-level which facilitate both human understanding

and the construction of correctness proofs.

11

12 2. PRELIMINARIES

2.1 Source Language

As input language for our system, we consider a Java-like language which we call SrcLang.

Although we make use of the class hierarchy to define a subtyping relation for exception ob-

jects, the treatment of the other object-oriented features, such as instance methods and method

overriding, is outside the scope of the current work. We have opted for a first-order imper-

ative language that permits only static methods and single inheritance. These simplifications

are orthogonal to our verification goals. We have originally intended for our language to sup-

port only exception handling and barrier related features. However, we were pleasantly sur-

prised that other complex features with respect to how control flow is transferred such as the

break/continue statements, the try with multiple catch handlers construct, the finally construct,

and other more fancy features, such as the multi-return function call ([91]), can be unambigu-

ously expressed in terms of simpler constructs of our core language and thus are easily handled

by our verification logic.

We outline the full syntax for the input source language in Figure 2.1. Notice that most

of SrcLang’s syntactic constructs are straightforward therefore in the rest of the section we

elaborate on the slightly less common features like the multi-return function calls and clarify

the allowed interactions between concurrency and exception handling in SrcLang.

We represent the multi-return function call in our language as (m −→v) with
−−→
λv.e. Evalu-

ating such a form involves evaluating the inner application, (m −→v), in a context with n return

points. The first return point is for the context of the call itself. The other n− 1 return points

are captured by return points of the form λv2.e2, . . . , λvn.en. If the application eventually re-

turns a value val to a return point of the form λvk.ek, then vk is bound to the value val and

expression ek is evaluated in the caller’s context. The return construct, ret−i e, specifies that

the result of evaluating expression e is to be returned to the i-th return point of the caller.

The second peculiar SrcLang language feature are the concurrency related statements:

fork/join/barrier. A fork operation, fork (m(−→v)) creates a new thread which executes the

2. PRELIMINARIES 13

P ::=
−→
D ;
−→
V ;
−→
B ;
−→
M program

V ::= pred self::pname〈−→v 〉 ≡ Φ inv π pred declaration
B ::= barrier self::bname〈−→v 〉 ≡ barrier declaration∨

(requires Φpr ensures Φpo)

D ::= class c1 extends c2 {
−→
t f} data declaration

t ::= c | p user or prim. type

M ::= t m [with n] (
−→
t v)[throws t+]

requires Φpr ensures Φpo {e} method declaration
w ::= v | v.f variable or field
e ::= v variable

| k primitive constant
| new c new object
| v.f field access
| (t) e casting
| throw e throw exception
| break [L] | ret−i e break and return
| continue [L] loop continue
| w:=e assignment
| e1; e2 sequence

| (m −→v) with
−−→
λv.e multi−return call

| {t v; e} local var block
| if e then e1 else e2 conditional
| let v=e1 in e2 local binding
| L : e labelled expression
| fork (m(−→v)) thread creation
| join (tid) thread join
| barrier v barrier call
| e1 finally e2 finally
| try e catch c1 v1 e1 multiple catch

[catch(ci vi) ei]
n
i=2 handlers

| while e1 requires Φpr ensures Φpo {e2} loop

Figure 2.1: Source Language : SrcLang

method m with arguments v. The fork returns the thread identifier of the child thread. Con-

versely, the join (tid) waits until the child thread finishes. Finally barrier v blocks the

calling thread until all other threads have issued a similar barrier call for barrier v.

14 2. PRELIMINARIES

With regards to the interaction of exception handling with multithreaded computations the

crux of the problem lies in how to minimize the disturbance an exception in one thread has

on the other threads. There are two possible approaches: either disallow exceptions to esca-

late beyond the thread boundary or allow them but in a deterministic fashion, only at specific

program points. Java for example, supports both approaches. In Java there are two mecha-

nisms for thread execution, each with its own approach to exception handling: i)providing a

run method when extending the Thread class or when implementing the Runnable interface

ii) implementing the Callable interface by providing a call method.

In the first case, the run method does not allow a result to be returned, either normal or

exceptional. The return type is void and the method header does not allow any checked excep-

tions to be declared while any unchecked exceptions occurring at runtime are routed automat-

ically to a thread specific UncaughtExceptionHandler handler. The common usage of this

method has the threads store their results in a shared resource.

The behaviour in the second case is more refined. However, exceptions still can not be

automatically escalated beyond the thread boundary. If a thread has encountered an unhandled

exception, its execution finishes without interfering with any of the other threads. However,

the result of the computation including the exception can be retrieved by the get method in

the Future class. The get method is allowed to throw ExecutionException exceptions which

encapsulate the actual exception thrown during the threads execution.

We postulate that both behaviours can be easily handled by our verification logic. However

in the rest of the presentation, for simplicity we will adopt the Runnable approach with no

exceptions allowed to escape the threads.

SrcLang allows for functions (and loops) to be decorated with pre and post conditions

which are pairs of formulas expressed in a separation logic specification language described in

§2.4. SrcLang is also equipped with mechanisms for describing inductive predicates (predicate

definitions) and specifying barrier behaviour (user-defined barrier definitions). Barrier defini-

2. PRELIMINARIES 15

tions are given as sets of pre and post conditions1. Unlike SPEC# or ESC/Java, where even

specifications for exceptions are captured by a special syntax for exceptional postconditions,

we aim for a unified logic that is capable of capturing all kinds of control flow jumps through

specialized constraints included in the specification language. The specification constraints

allow explicit capturing of control flow jump information, in particular the class of language

constructs that generated a given control flow jump. Furthermore we introduce the concept of

control flow type to denote classes of such language constructs. Thus the specification con-

straints in effect capture control flow types. These specifications are verified automatically by

our tool.

2.2 Control Flow Hierarchy

Our proposal is based on a novel view of non-local purely sequential control flow types 2, in

which both normal and abnormal control flows are being handled in a uniform way. We will

organise these control flow types into a tree hierarchy, as illustrated in Figure 2.2. The control

flow type hierarchy incorporates all the possible control flow types: both the ones pertaining

to user-defined exceptions and the predefined flow types. Thus it incorporates all language

constructs generating control flow jumps.

c-flow abort

flow

c-flow

local

abort

halt hang
…

exc

norm

oca

others
runtimeExc

…

IOExc

ret_top

cont-top brk-top

brkcont

spec

nullPtrExc

…

FileIOExc
brk

brk-L1 brk-Ln
cont

cont-L1 cont-Ln

…
…

ret_1 ret_n

…

Figure 2.2: A Subtype Hierarchy on Control Flows

1barrier definitions will be discussed in detail in Chapter 4
2 We use the term sequential control flows to denote control flows occurring within a thread

16 2. PRELIMINARIES

Each arrow c2→c1 denotes a subtyping relation c1<:c2. In this tree hierarchy, exc captures

dynamic control flows due to exceptions, while local captures static control flows, such as:

brk to denote the break out of a loop, cont to denote a jump to the beginning of a loop and

ret to signal a method return (covering also methods with multi-return options [91]). The

control flow norm for normal execution is a special instance of this static control flow that

will be transferred to the default next instruction for execution. A key feature of static control

flows is that they can be efficiently implemented as local control transfers through either direct

or indirect jumps. On the other hand, dynamic control flows from exceptions would involve

non-local transfer of control via catch handlers present in the function calling hierarchy at

runtime. All control flow types are subtypes of >. All control flows that can be ‘caught’ by

our language are placed under the c−flow category, while the abort category denotes control

flows that cannot be caught. abort includes program errors, program termination by halt,

and non-termination by hang. The latter could, in principle, be used by our language to reason

about non-terminating behaviors but this aspect is not addressed in this work.

The use of a tree hierarchy, rather than a lattice, for our control flow is important for finite

abstraction. A useful property of the tree hierarchy is that every two nodes of the tree, say c1

and c2, are either mutually-exclusive, as denoted by ∀c·(c<:c1 =⇒ ¬(c<:c2)), or they overlap,

as denoted by c1<:c2 ∨ c2<:c1. This property is helpful for formal reasoning since we can

statically determine disjointedness of two flow types with the help of only their subtyping

relation. This decision allows us to build finite set abstractions required to model multiple

flows. While exceptions in Java are implicitly organised as a hierarchical tree, the previous use

of effects-based type system does not require this finitary abstraction property.

Although other systems enforce the restriction that the try-catch construct applies only

to exceptional flows, our unified view on control flows allows us to generalize the try-catch

construct across the entire domain of control flow types. This domain extension permits a

much more streamlined verification mechanism.

2. PRELIMINARIES 17

2.3 Core Language

In this section we introduce a concise language, Core−U , to which SrcLang can be translated.

Core−U has the benefit of allowing a much simpler formulation of the verification rules. In

designing Core−U we aimed for:

• Unified Constructs : To minimise on language features, our language should unify to-

gether constructs that have similar functionality, where possible.

• Syntactically Minimal : To keep our language small, we shall aim for fewer and simpler

constructs, where possible. This can make our language easier to formalise and analyse.

• Expressively Maximal : We strive to provide language constructs that are as general

as possible, to allow them to be used in more scenarios. The acid test is whether the

language can succinctly encode more advanced language features.

• Computationally Positive : The language should not hinder efficient compilation. Firstly,

it supports a set of optimization rules. Secondly, intermediate steps used to make the

language easier to analyse can be directly removed later by efficient compilation.

The unified view of control flows presented in §2.2 lies at the heart of our core language. An

unexpected benefit is that our core language with exceptions is as small as the corresponding

core language without exceptions. Designing analyses and optimizations for the core language

is therefore much simpler than it would be for the source language.

2.3.1 Syntax

We will detail the key Core−U constructs meant to allow us to take full advantage of the

complex control flow hierarchy introduced above. Also, a list of the syntactic constructs of

Core−U is given in Figure 2.3.

In previous core languages with exceptions for Java, such as [64] and [60], a variable v

would return a value with normal flow, while throw v would invoke an exceptional flow based

18 2. PRELIMINARIES

P ::=
−→
D ;
−→
V ;
−→
B ;
−→
M program

D ::= class c1 extends c2 {
−→
t v} data declaration

V ::= pred self::pname〈−→v 〉 ≡ Φ inv π pred declaration
B ::= barrier self::bname〈−→v 〉 ≡ barrier declaration∨

(requires Φpr ensures Φpo)
ft ::= c | predef flows flow types

M ::= t m(
−−−−−→
[ref] t v) requires Φpr ensures Φpo {e} method decl

e ::= fn#x output (flow&value)
| v.f field access
| w:=v assignment
|m(−→v) method call
| {t v; e} local var block
| if v then e1 else e2 conditional
| fork (m(−→v)) thread creation
| join (tid) thread join
| barrier v barrier call
| try e1 catch (ft[@v1] v2) e2 catch handler

fn ::= Ex(ft) | fv | ty(v) | v.1 flow
t ::= c | p user or prim. type
w ::= v | v.f var/field
x ::= v | k | new c | (fv, v) | v.2 basic values

(vars, consts, . . .)

Figure 2.3: Core Language : Core−U

on the exception object in v. In our approach, we unify both these constructs with the ft#v

statement which has the effect of explicitly generating a control flow of type ft with return

value v. With this construct normal flow is realised by norm#v while exceptions of the same

type as the object indicated by v may be thrown using ty(v)#v which also ensures that the

returned value is the exception object. The type of a raised exception object v is captured as

its control flow. The function ty(v) returns the runtime type of an exception object pointed

by v. In case v=null, it returns a special nullPtrExc flow type. This unified construct is a

generalization of the exception mechanism used in Java since we allow each flow type to be

2. PRELIMINARIES 19

unrelated to the type of the value being thrown. For example, we may use exc#13 to raise

an exception with integer value 13. This is not directly expressible in Java, though it could be

mimicked by a user-defined exception that embeds an integer value.

The core language allows the embedding of control flows directly as values, by allowing a

pair of control flow and its value (fv, v) to be specified. With this notation, we make explicit

the distinction between the control flow corresponding to an exception and its return value.

Furthermore, we can save each exception and its output value as an embedded pair that could

be later re-thrown. Operations v.1 and v.2 are used to access the control flow and the value,

respectively, from an embedded pair in v.

Another major construct of our language is a try-catch mechanism of the form:

try e1 catch ((c@fv)#v) e2 which specifies a control flow c and two bound variables to cap-

ture a control flow type fv and its thrown value v, provided that fv<:c. This try-catch construct

is more general than that used in Java since it can capture not only exceptional flow, but also

normal flow and other abnormal control flows due to break, continue and return statements

that can be translated to the corresponding control flows. As a pleasant surprise, the usual

sequential composition e1; e2 is now a syntactic sugar for try e1 catch ((norm@)#) e2

whereby each denotes a distinct anonymous bound variable. Although this desugaring sim-

plifies the verification process by making explicit the control flow paths, in this presentation

we will still use the e1; e2 for conciseness.

With the ft#v and try e1 catch ((c@fv)#v) e2 statements it is easy to reduce various

traditional statements to one of the two expressions:

x ⇒ norm#x

continue ⇒ cont#()

throw v ⇒ ty(v)#v

return x ⇒ ret#x

break L ⇒ brk−L#()

continue L ⇒ cont−L#()

While the previous rewritings are intuitive, rewriting a labeled while loop to use our structures

is a bit more involved as Core−U makes explicit several control flow jumps tipically hidden

20 2. PRELIMINARIES

in common languages. For example the destination points of break and continue control flow

jumps become try/catch statements in Core−U .

L : while e1 {e2} ⇒

try {bool v; v:=e1;

while v {

try e2 catch cont norm#()

catch (cont−L) norm#();

v:=e1}

catch (brk) norm#()

catch (brk−L) norm#()

Note that while Core−U may appear inefficient due to an apparent need to unwind through

a nested series of handlers, we emphasize that our primary goal is to make program codes easier

to analyse. For actual execution, we could use compilation techniques to ensure that every static

control flow is efficiently implemented by either a direct or indirect jump into its corresponding

handler code. Moreover, we could also use a similar optimization to efficiently implement

some of the dynamic control flows. Under suitable conditions, we can use an optimization

rule, called throw-catch linking, that could directly link a throw operation for an exception

with its intended handler through a parameterized jump (see § 2.5.2 later).

We point out that the fork/join/barrier statements carry forward from SrcLang: a fork

operation, fork (m(−→v)) creates a new thread which executes the method m with arguments

v returning the thread identifier of the child thread, the join (tid) waits until the child thread

finishes while a barrier v call blocks the calling thread until all other threads have issued a

similar barrier call for barrier v.

2.3.2 Semantic Model

In this section we will introduce an erased operational semantics for Core−U . We use erased

semantics to denote language semantics which use a machine model with few or no virtual

2. PRELIMINARIES 21

components, one that is close to the on-chip implementation.

Note that we will use Γ to denote the code memory, basically Γ is a function from function

names to function definitions. For simplicity of the presentation we will elide adding Γ to the

program state.

We use σ to model a thread state as a triple of stack s, heap h, barrier map b. Local variables

and other meta variables live in the stack s, which is a function from variable names to values

(either a constant, an address or a pair of control flow type and value). In contrast, a heap h

contains the locations shared between threads; heaps are partial functions from addresses to

objects. We use the notation with c[f1 7→ν1, .., fn 7→νn] for an object value of data type c where

ν1, .., νn are current values of the corresponding fields f1, .., fn. We also equip heaps with a

distinguished location, called the break, that tracks the boundary between allocated and unallo-

cated locations. The break lets us provide semantics for the x:= new e instruction in a natural

way by setting x equal to the current break and then incrementing the break. Since threads

share a common break, there is a covert communication channel (one thread can observe when

another thread is allocating memory); however the existence of this channel is a small price to

pay for avoiding the necessity of a concurrent garbage collector.

Finally, in modeling barriers, we associate to each barrier a pair of integers: the number

of threads that are synchronized by the barrier and the number of threads that are currently

waiting. The barrier map b is a partial function from addresses of barriers to pairs of positive

integers.

In the style of Hobor et al. [51], our operational semantics is divided into three parts:

purely sequential, which executes all of the instructions, except for barrier, fork and join, in

a thread-local manner; concurrent, which manages thread scheduling and handles the barrier,

fork, join instructions; and oracle, which provides a pseudosequential view of the concurrent

machine to enable simple proofs of the sequential Hoare rules.

For the purely sequential semantics, the form of the step judgment is (σ, c) 7→ (σ′, c′),

where σ is the thread state and c is a command of our language with the observation that if the

22 2. PRELIMINARIES

step relation reaches a barrier or fork or join call then it simply gets stuck. Later in this section

we will elaborate on the purely sequential semantics, however we will start with the concurrent

and oracle semantics.

Concurrent Semantics

We define the notion of a concurrent state as a four-tuple (Ω, thds, h, b) of scheduler Ω (mod-

eled as a list of natural numbers representing the thread identifiers), a list of threads thds , heap

h, and the barrier map b. The scheduler encodes the order in which threads get execution rights:

a scheduler Ω = 5, 3, . . . would have thread 5 execute until it blocks on a join or barrier call,

then pass control to thread 3 which will execute until it blocks and so on. A thread contains

its stack (the state store s) and a concurrent control, which is either Running(c), meaning the

thread is available to run command c, or Waiting(bn, c), meaning that the thread is currently

waiting on barrier bn ; after the barrier call the thread will resume running with command c.

Before we run a thread we transfer the heap and barrier map into the thread. When we suspend

the thread we remove the heap and barrier map and transfer it to the next thread. The concurrent

step relation has the form (Ω, thds, h, b) ; (Ω′, thds ′, h′, b′). It has only six cases; it relies on

the CStep-Seq case to run all of the sequential commands:

thds[i] = (s,Running(c))
(
(s, h, b), c

)
7→
(
(s′, h′, b), c′

)
thds ′ = [i 7→ (s′,Running(c′))]thds

(i :: Ω, thds, h, b) ; (Ω, thds ′, h′, b)
CStep-Seq

That is, the thread whose thread id is at the head of the scheduler is selected to run. Before

the sequential step relation is applied to the chosen thread, the heap and barrier map are trans-

ferred into the thread. If the command c is a barrier, fork or join call then the sequential relation

will not be able to run and so the CStep-Seq relation will not hold; otherwise the sequential

step relation will be able to handle any command. After a sequential step is taken, the heap and

2. PRELIMINARIES 23

barrier map are taken out of the thread state and reinsert the modified sequential state into the

thread list. Since we quantify over all schedulers and our language does not have input/output,

it is sufficient to utilize a non-preemptive scheduler.

For example, given a machine with one thread with some stack s and running the expression

v := 1; e1 with heap h and barriers b, one CStep-Seq step is:

(
1 :: Ω,

[
1 7→ (s,Running(v := 1; e1))

]
, h, b

)
;
(
Ω,
[
1 7→ ([v → 1]s,Running(e1))

]
, h, b

)

The second case of the concurrent step relation handles the case when a thread has reached

the last instruction, which must be a skip:

thds[i] = (s,Running(skip))

(i :: Ω, thds, h, b) ; (Ω, thds, h, b)
CStep-Exit

When the end on a thread is reached a context switch to the next thread occurs.

The interesting cases occur when the instruction for the running thread is a barrier or fork

or join call ; here the CStep-Seq rule does not apply. The concurrent semantics handles the

barrier call directly via the next two cases of the step relation. First, if a thread executes a

barrier but is not the last thread to do so:

thds[i] = (s, (Running (barrier bn; c)))

thds′ = [i→ (s, (Waiting(bn, c)))] thds

b[bn] = (waitingcnt, totalcnt)

b′ = [bn→ (waitingcnt + 1, totalcnt)] b

waitingcnt + 1 < totalcnt

((i :: Ω), thds, h, b) ; (Ω, thds ′, h, b′)
CStep-Suspend

After it increments the waiting threads counter of the bn barrier, CStep-Suspend checks to see

if the barrier is full by comparing the waiting threads with the total expected number. Because

24 2. PRELIMINARIES

the barrier is not full, the thread is suspended and the context is switched.

In the case of two threads, a barrier call on one would trigger the following application of

the CStep-Suspend step:

(
(1 :: Ω),

[
17→(s1,Running(barrier 1; c1)) ; 27→(s2,Running(c2))

]
, h,
[
1 7→(0, 2)

])
;(

Ω,
[
1 7→(s1,Waiting(1, c1)) ; 27→(s2,Running(c2))

]
, h,
[
1 7→(1, 2)

])

If the barrier is ready, then instead of using the CStep-Suspend case of the concurrent step

relation, the CStep-Release case is applied:

thds[i] = (s, (Running (barrier bn; c)))

thds′ = [i→ (s, (Waiting(bn, c)))] thds

b[bn] = (waitingcnt, totalcnt) b′ = [bn→ (0, totalcnt)] b

waitingcnt + 1 = totalcnt

transition threads (bn, thds′) = thds′′

((i :: Ω), thds, h, b) ; (Ω, thds′′, h, b′)
CStep-Release

The first requirement of CStep-Release is exactly the same as CStep-Suspend: the thread must

be suspended. However, now all of the threads have arrived at the barrier and so it is ready. The

waiting threads counter is reset. Finally, the suspended threads are simultaneously resumed

by the transition threads predicate which changes to the Running state all threads that are

currently in the Waiting state for barrier bn. If in the previous example the second thread also

executes a barrier call for barrier number 1 then:

(
(2 :: Ω),

[
1 7→(s1,Waiting(1, c1)) ; 27→(s2,Running(barrier 1; c2))

]
, h,
[
17→(1, 2)

])
;(

Ω,
[
17→(s1,Running c1) ; 27→(s2,Running c2)

]
, h,
[
1 7→(0, 2)

])

2. PRELIMINARIES 25

The last two cases describe the fork and join. When encountering a fork operation, fork

(m(−→v)), a completely new thread is generated, the stack is initialized by copying the values

corresponding to the method arguments from the stack of the calling thread, the body of method

m is retrieved from program memory Γ, and the thread is set to execute the method body.

thds[i] = (s, (Running (fork (m(−→v)); c)))

Γ[m] = void m(
−−→
t w) {e} tid = fresh tid()

thds′ = [i→ ([res→ tid]s, (Running c))] thds

ns[−→w] = s[−→v] thds′′ = [tid→ (ns, (Running e))] thds′

((i :: Ω), h, thds, b) ; (Ω, h, thds′′, b)
CStep-Fork

Note that we enforce the Java Runnable approach by allowing as fork arguments only

functions without a return value. Also note that we rely on a special variable res to convey

the operation result, the id of the newly created thread. Furthermore, the assumption that

the remaining scheduler Ω will contain the newly created tid is acceptable as the domain of

the scheduler list is not restricted to some statically defined thread ids, it is the set of natural

numbers.

Lastly, in order to execute a join on a given thread id the semantics require that the thread

be finished, in the (Running skip) state.

thds[i] = (s, (Running (join (tid); c)))

thds[tid] = (s′, (Running skip))

thds′ = [i→ (s, (Running c)))]thds

thds′′ = free(tid, thds′)

((i :: Ω), h, thds, b) ; (Ω, h, thds′′, b)
CStep-Join

Given two threads, the first having finished its execution when the second executes a join 1

26 2. PRELIMINARIES

call then the CStep-Join steps results in the following transition:

(
(2 :: Ω),

[
1 7→(s1,Running skip) ; 27→(s2,Running (join (1); c2))

]
, h, b

)
;(

Ω,
[
2 7→(s2,Running c2)

]
, h, b

)
Oracle Semantics

We denote the oracle semantic step by (σ, o, c) 7→ (σ′, o′, c′). Here the sequential state σ and

command c are exactly the same as in the purely sequential step. The new parameter o is an

oracle, a kind of box containing “the rest” of the concurrent machine—that is, o contains a

scheduler and a list of other threads. The oracle semantics encapsulates the concurrent and

purely sequential semantics in a “sequential looking” semantics thus providing a clean abstrac-

tion of the concurrent machine.

The oracle semantics behaves exactly the same way as the purely sequential semantics on

all of the instructions except for the barrier, fork or join calls, with the oracle o being passed

through unchanged. That is to say:

(
σ, c
)
7→
(
σ′, c′

)(
σ, o, c

)
7→
(
σ′, o, c′

) os-seq

When the oracle semantics reaches a barrier, fork or join instruction, it relies on the consult

operation to consult the oracle o to determine the state of the machine after the instruction:

d = barrier bn ∨ d = fork (m(−→v)) ∨ d = join (tid)

consult(h, b, o) = (h′, b′, o′)(
(s, h, b), o, d; c

)
7→
(
(s, h′, b′), o′, c

) os-consult

The consult operation would either execute the operation according to the concurrent semantics

or if other threads need to be waited for, the consult operation unpacks the concurrent machine

2. PRELIMINARIES 27

stored in o and runs all of the other threads until control returns to the original thread. Consult

then returns the current h′ and b′ (that resulted from the barrier call, fork or join) and repackages

the concurrent machine into the new oracle o′.

Purely Sequential Semantics

Here we provide a description of Core−U ’s purely sequential semantic. Note that the language

semantic reduces expressions to final values of the form (fn#a) where constant fn denotes

the current flow type while constant a denotes the result of the computation, either a value

(constant or address) or a pair (fn1, a1) to embed a control flow fn1 with another value a1.

The type of each final value can be obtained by a semantic function type(a). Syntactically

a ::= k | l | (fn, a).

For the dynamic semantics to follow through, we have introduced an intermediate con-

struct: BLK({−→v }, e1) where e1 denotes a residual code of the current block. This new construct

is used for handling try-catch constructs, method calls and local blocks. Its main purpose is

to provide a lexical scope for local variables that are removed once the expression has been

completely evaluated.

The full set of transitions is given in Figure 2.4. Take note that, following the translation

to Core−U , v.f is exception-free, meaning that if v was null, a nullPtrExc exception would

have been previously raised. Consequently, our rules for v.f and v1.f :=v2 do not test for null-

ness. In the rules, s(v) retrieves the value of variable v present on the stack using lookup(s, v).

We also provide an overloaded function s(ft) for ft ::= c | ty(v) | fv which is defined as

s(c)=c and s(ty(v))=type(lookup(s, v)) and s(fv)=lookup(s, fv). A reminder that the se-

quence operation e1; e2 used in the semantic steps for the do-while construct is just syntactic

sugar for try e1 catch norm e2. Take note that the symbol ⊥, appearing in the rules, stands

for uninitialized.

The semantic steps for local variable declaration, method call and try catch, use the newid()

function to return a fresh identifier, and the [u′/u] notation to represent the substitution of u by

28 2. PRELIMINARIES

(
(s, h, b), fn#v

)
7→
(
(s, h, b), s(fn)#s(v)

)
(
(s, h, b), fn#(fv, v)

)
7→
(
(s, h, b), s(fn)#(s(fv), s(v))

)
(
(s, h, b), v.f

)
7→
(
(s, h, b), norm#(h(s(v)).f)

)
(
(s, h, b), fn#a

)
7→
(
(s, h, b), s(fn)#a

)
(
(s, h, b), v1:=v2

)
7→
(
(s[v1 7→s(v2)], h, b), norm#()

)
(
(s, h, b), v1.f :=v2

)
7→
(
(s, h[s(v1).f 7→s(v2)], b), norm#()

)
l = inc break(h)(

(s, h, b), fn#new c
)
7→
(
(s, [l 7→c(

−→
⊥)]h, b), s(fn)#l

)
u=newid()

s′ = s+[u7→⊥]
e′ = BLK({u}, e[u/v])(

(s, h, b), {t v; e}
)
7→
(
(s′, h, b), e′

)
c1<:c

u=newid() fu=newid()
s′ = s+[fu7→c1,u7→a1]

e′ = BLK({fu, u}, e2[u/v, fu/fv])(
(s, h, b), try c1#a1 catch c@fv#v e2

)
7→
(
(s′, h, b), e′

)
¬(c1<:c)(

(s, h, b), try c1#a1 catch c@fv#v e2
)
7→
(
(s, h, b), c1#a1

)
(
(s, h, b), e

)
7→
(
(s1, h1, b1), e1

)(
(s, h, b), try e catch c@fv#v e2

)
7→
(
(s1, h1, b1), try e1 catch c@fv#v e2

)
if s(v) then e′ = e1 else e

′ = e2(
(s, h, b), if v then e1 else e2

)
7→
(
(s, h, b), e′

)
t0 mn (

−→
t u) {e}

−−−−−−−−→
u′=newid()

s′ = s+[
−−−−−→
u′ 7→s(v)]

e′ = BLK({−→u ′}, e[
−−→
u′/u])(

(s, h, b),mn(−→v)
)
7→
(
(s′, h, b), e′

)
(
(s, h, b), e

)
7→
(
(s1, h1, b1), e1

)
e′ = BLK({−→v }, e1)(

(s, h, b), BLK({−→v }, e)
)
7→
(
(s1, h1, b1), e

′)(
(s, h, b), BLK({−→v }, c#a)

)
7→
(
(s−{−→v }, h, b), c#a

)
Figure 2.4: Small-Step Semantics

u′. In order to avoid dynamic binding, every variable whose binding is added to the stack is

substituted by a fresh identifier. For instance, in the case of the method call, after performing

the renaming of the callee formal parameters, the mappings for the fresh identifiers are tem-

2. PRELIMINARIES 29

porarily added to the stack, s. These bindings will be removed after the evaluation of the callee

body.

2.4 Specification Language

Predicate spred ::= [self::]c〈−→v 〉 ≡ Φ [inv (π,−→v)]
Barrier bar ::= [self::]bname〈−→v 〉 ≡

∨
(requires Φpre ensures Φpost)

Formula Φ ::=
∨
i(∃
−→vi · (κi ∧ πi)) ∆ ::=

∨
i(κi ∧ πi ∧ βi)

Heap form. κ ::= emp | v ::cvf 〈−→v 〉 | κ ∗ κ
Pure form. π ::= γ ∧ φ ∧ µ ∧ τ
Flow types ft ::= c | predef flow
Flow form. β ::= fv=ft | fv1=fv2
Current flow µ ::= flow = fset fset = Ex(ft) | ft− {ft1, .., ftn}
Frac form. τ ::= vf ⊕ vf = vf | v = χ | τ ∧ τ
Pointer form. γ ::= v = v | v = null | v 6= v | v 6= null | γ ∧ γ
Presburger arith. φ ::= arith | φ ∧ φ | φ ∨ φ | ¬φ | ∃v · φ | ∀v · φ

arith ::= a = a | a 6= a | a < a | a ≤ a
a ::= z | v | z × a | a + a | −a | max(a, a) | min(a, a)

where v, w are variable names;
c is a data type name or a predicate name or barrier name;
z is an integer constant;
τ represents the fractional permission constraints
χ represents constant fractional shares

Figure 2.5: Specification Language

Figure 2.5 outlines the syntax of our specification language, a rich separation logic based

language that supports user-defined disjunctive predicates together with constraints over con-

trol flow types(for explicitly capturing flow types) and other various domains like linear and non

linear arithmetics. It also includes support for tracking access permissions to shared resources

in the form of partial ownership annotations, plus a novel specification feature for capturing

barrier behaviour and for homogeneous reasoning about both heap and barrier resources.

The specification language is equipped with an expressive means for encoding complex

abstract data structure properties in the form of user-defined inductive predicates. Predicates

are defined as separation formulae that describe the shape of data structures and associated

properties (e.g., list length, tree height, and bag of values contained in a list). Predicate defini-

30 2. PRELIMINARIES

tions make use of the self special variable to denote the pointer to the root of the data structures

they abstract. Predicate invariants can increase the precision of the verification (e.g., length ≥

0). An invariant for a predicate instance has two parts: a pure formula describing arithmetic

constraints on the arguments and the set of non null pointer arguments (e.g. the outward pointer

for a list segment). For example, given a node data structure defined as:

data node { int val ; node next }

It is possible to express a predicate abstraction for a list segment constructed of node instances.

The following predicate captures both the shape and the size, n, of the segment and the outward

pointer, p:

pred self :: lseg〈n, p〉 ≡ self = p ∧ n = 0

∨ self :: node〈 , r〉 ∗ r :: lseg〈n− 1, p〉 inv n ≥ 0, p.

Furthermore, the user defined predicates can be incorporated in any formula. For example,

given an append method that takes a null terminated list segment and appends another list

segment, the pre/post conditions can be expressed using the lseg predicate as follows:

void append (node x, node y)

requires x :: lseg〈n, null〉 ∗ y :: lseg〈m, p〉 ensures x :: lseg〈n+m, p〉

Note that the formulae describing the predicate body and the method specifications contain

both heap and arithmetic constraints. In the following paragraphs we will expand further on

formulae structure and give more details on each component.

In order to be able to reason about barrier behaviour we equip the specification language

with barrier definitions. Akin to predicate definitions which specify properties of abstract data

structures associated with concrete memory resources, barrier definitions are a novel mech-

anism for encoding the complex resource invariants associated with barrier usage. Barrier

2. PRELIMINARIES 31

definitions consist of sets of formula pairs, acting as pre/post conditions. Barrier definitions

and predicate definitions are similar in that they describe properties associated with resources,

heaps and barriers, however, they differ in that predicate definitions describe a property of the

current state while barrier definitions describe the behaviour of a barrier call in that program

state. For a clearer presentation we defer the in-depth presentation of barrier definitions and

their usage until Chapter 4.

Secondly, as both programming languages presented earlier handle two classes of resources:

heap and barriers, we propose to extend the syntax typically used for heap specification to cover

barrier resources as well. In our language, each disjunct within a disjunctive formula Φ con-

sists of a resource describing subformula κ, and π, the pure subformula that represents the

resource-independent part of the formula with constraints over several domains: arithmetic,

bag/list, etc.

κ describes the resource footprint which is composed of ∗-separated resource nodes written

as p::avf 〈−→v 〉 and interpreted as the current thread owns fraction vf of a resource of type a

pointed to by variable p with arguments−→v . The vf argument is optional. If none is specified, it

is implied that the resource is fully owned. Depending on a, the node can be either an instance

of a user-defined data structure, in which case the −→v arguments correspond to the structure

fields, or it can be an instance of a user-defined predicate, in which case −→v correspond to the

predicate arguments, or it could be a barrier, in which case the first argument, v1, gives an

indication of the barrier state while the rest v2... denote the shared variables guarded by the

barrier.

Bornat et al. introduced the concept of fractional share to handle the necessary accounting

of fractional ownership [14]. Shares form a disjoint multi-unit separation algebra 1; a full share

(complete ownership of a resource) can be broken into various partial shares; these shares can

then be rejoined into the full share. The empty share is the identity for shares. With respect
1Dockins et al. described in [28] a disjoint multi-unit separation algebra (hereafter just “DSA”) . Briefly, a

DSA is a set S and an associated three-place partial join relation⊕, written x⊕y = z, such that⊕ is commutative,
associative, a function (x⊕y = z1∧x⊕y = z2 ⇒ z1 = z2), cancelative (x1⊕y = z∧x2⊕y = z ⇒ x1 = x2),
has multiple units (∀x. ∃ux. x⊕ ux = x) and exhibits disjointedness (x⊕ x = y ⇒ x = y).

32 2. PRELIMINARIES

to resource ownership, we often need non-empty (strictly positive) shares. We require the full

share to modify a resource however we only require a positive share to read from one. There is

no danger of a data race even though we do not require the full share to read: if a thread has a

positive share of some location, no other thread can have a full share for the same location.

Here we use the following notations : the full share `; two distinct nonempty partial shares,

?and ? , and the empty share @. The key point is that ?⊕ ? = `. Also we will use χ

to denote generic constants of this domain. Also note that if a denotes a predicate, then the

notation p::avf 〈−→v 〉 indicates that p points to a memory region whose shape is described by

the definition of a and that all heap nodes abstracted by this predicate instance are owned with

permission vf .

We allow the pure part π to capture pointer equalities/inequalities (γ), linear arithmetic

(φ), a share subformula (τ) and the current flow constraint (µ). The share subformula contains

constraints expressing share facts of the form vf1 ⊕ vf2 = vf3, v1 = v2 or v = χ. The current

flow constraint µ expresses the control flow type associated with the respective program state.

It is captured by a special variable flow whose domain is the set of subtrees in the control

flow hierarchy. With this hierarchy, we can be as precise as required for verifying different

exception safety guarantees: the possible values of control flow are either Ex(ft) to denote an

exact control flow type (not including its subclasses), or ft− {ft1, .., ftn} to denote a control

flow from ft but not from subclasses ft1, .., ftn.

Note that for simplicity we also introduce ∆, to denote a composite formula that is en-

hanced with an extra pure component β to capture the bindings for flow type variables other

than flow . In Chapter 3 we will show how such bindings are generated and how are they

handled.

Lastly, each variable in our specification logic may be expressed in either primed form

(e.g. v′) or unprimed form (e.g. v). The former denotes the latest value of the corresponding

variable, while the latter denotes the original value of the same variable. When used in the

postcondition, they denote state changes that occur for parameters that are being passed by

2. PRELIMINARIES 33

reference.

2.4.1 Semantic Model

We interpret the assertions in the specification language with respect to the state model pro-

posed for Core−U : states σ are triples of a store, heap, and barrier map (σ = (s, h, b)) with the

addition that heaps are partial functions to pairs of shares and values and barrier maps are par-

tial functions to pairs of shares and barriers. Furthermore, barriers expose an integer variable

denoting the barriers state. The semantic model for our formulae is defined below. It follows

the models given in [86, 75].

Definition 2.4.1 (State join). Given two states σ1 = (s1, h1, b1) and σ2 = (s2, h2, b2) it is

possible to define an extension of the ⊕ operator from the share domain to the state domain:

σ1 ⊕ σ2 = (s1 ⊕ s2, h1 ⊕ h2, b1 ⊕ b2,) where:

• s1 ⊕ s2 is defined only if s1 = s2 and s1 ⊕ s2 = s1;

• h1 ⊕ h2 = h such that dom(h) = dom(h1) ∪ dom(h2) and:

– x ∈ dom(h1)/dom(h2) then h(x) = h1(x)

– x ∈ dom(h2)/dom(h1) then h(x) = h2(x)

– else if h1(x) = (π1, v1) and h2(x) = (π2, v2) then if v1 = v2 and ∃π ·π1⊕π2 = π

then h(x) = (π1 ⊕ π2, v1). We observe that if v1 6= v2 then the join fails

• The definition of b1 ⊕ b2 = b, follows identically the definition of h1 ⊕ h2 = h

Here function dom(f) returns the domain of function f .

34 2. PRELIMINARIES

Definition 2.4.2 (Model for Separation Constraint).

s, h, b |=Φ1∨Φ2 iff s, h, b |= Φ1 or s, h, b |= Φ2

s, h, b |=∃−→v ·κ∧π iff ∃−→ν ·s[−→v 7→−→ν], h, b |=κ and s[−→v 7→−→ν]|=π

s, h, b |=emp iff dom(h) = ∅

s, h, b |= v0 ::cvf 〈−→v 〉 iff c is a data structure c {t1 f1, .., tn fn}

and π = s(vf) and r=c[f1 7→s(v1), .., fn 7→s(vn)]

and h=[s(v0) 7→(π, r)]

s, h, b |= v0 ::cvf 〈−→v 〉 iff c is a predicate (c(−→w)≡Φ)

Φ′ = set perm(Φ, vf) and s, h, b |= Φ′[−→v /−→w]

s, h, b |= v0 ::cvf 〈−→v 〉 iff c is a barrier

b(s(v0)) = (s(vf), r) and r.state = s(v1)

s, h, b |=κ1∗κ2 iff ∃h1, h2, b1, b2 · (s, h1, b1)⊕ (s, h2, b2) = (s, h, b)

and s, h1, b1 |= κ1 and s, h2, b2 |= κ2

s |= π1 ∧ π2 iff s |= π1 and s |= π2

s |= v1 � v2 iff s(v1)� s(v2), where � ∈{=, 6=}

s |= v � null iff s(v)� 0, where � ∈{=, 6=}

s |= a�0 iff [[a]]s�0, where � ∈{=,≤, 6=}

. . .

The semantic entailment relation Φ1 |= Φ2 holds, if and only if, forall stacks s, heaps h

and barrier maps b, we have s, h, b |= Φ1 =⇒ s, h, b |= Φ2.

2.5 Translation to the Core Language

In this section we present the translation from SrcLang to Core−U . The translation is based

on rewrite rules and illustrates how advanced language features, such as try−finally and

multi-return functions, can be easily captured by the core language. Moreover, we prove two

2. PRELIMINARIES 35

important properties of the translation, namely completeness and termination.

We also provide a set of optimization rules for Core−U designed to reduce the implemen-

tation overhead. These rules are specified at a high-level thus facilitating both human under-

standing and the construction of correctness proofs. For all the rules we supply correctness

proofs.

2.5.1 Translation Steps

The translation from SrcLang to our core language consists of several steps. These steps are

preceded by a preprocessing phase dedicated to checking the validity of local control flows.

More specifically, we check that the continue [L] construct appears inside loops, break [L]

and continue [L] mention only accessible labels, and, in the case of the multi-return function

declaration with n return points, each of its return instruction must be of the form (ret−i e)

such that i≤n. Furthermore, method call must also be invoked with n− 1 return points.

Following the Stratego approach [98], we base the translation from SrcLang to Core−U on

rewrite rules. The translation process is split into four independent steps such that, in each of

the steps, there is no interference between the rules to be applied. In other words, each rule

will neither trigger nor block the application of any other rule from the same rewrite set. Addi-

tionally, the rules from each phase will not trigger the application of any rule from a previous

phase. As a consequence of this non-interference property, the order in which the rules are

applied in each of the steps is irrelevant. The non-interference property is also important for

guaranteeing the termination of the rewriting process.

Phase I: Preprocessing

In the first step, we transform expressions that appear in a more complex form than allowed

by the core language. For example, we may encounter if e then e1 else e2, while our core

language can only accept a simpler if v then e1 else e2. This mismatch can be handled in

a standard way with the help of the local let binding construct that always generates a fresh

36 2. PRELIMINARIES

new variable.

(c) e ⇒T let v=e in (c) v ¬V ar(e)

if e then e1 else e2 ⇒T let v=e in if v then e1 else e2 ¬V ar(e)

throw e ⇒T let v=e in throw v ¬V ar(e)∧¬New(e)

ret−i e ⇒T let v=e in ret−i v ¬V ar(e)∧¬New(e)

∧¬Const(e)

These rules contain guards, which are meant to restrict their applicability. For instance, the rule

corresponding to the cast construct, (c) e, contains the guard ¬V ar(e), meaning that it can only

be applied if the expression e is not a variable. Otherwise, the translation is not needed as the

construct is already in the expected Core−U form. Similarly, ¬New(e) and ¬Const(e) check

that the expression e is different from a new construct or a primitive constant, respectively. Take

note that the guards were used in order to restrict the introduction of new variables, wherever

possible.

The above rewrite rules would require local type inference to determine a suitable type

declaration for each of the intermediate variables. Intermediate variables allow us to support

a syntactically minimal core language that should be easier for formal reasoning. For com-

putational purpose, their overheads can be eliminated (after analysis) by applying either the

converse transformation or through better re-use of variables.

Phase II: Main Translation

In the main translation step, we aim to use Core−U ’s expressivity in order to uniformly manip-

ulate several of the SrcLang constructs. For this purpose, we will exploit a basic construct of

our core language, ft#x, where x denotes a simple term that would directly produce a value,

e.g. v, k, new c or (fv, v), while ft denotes the desired control flow. Using it, we can easily

2. PRELIMINARIES 37

translate a number of constructs from the source language, as shown below.

x ⇒T norm#x

break ⇒T brk#()

break L ⇒T brk−L#()

continue ⇒T cont#()

continue L ⇒T cont−L#()

ret−i x ⇒T ret−i#x

throw v ⇒T ty(v)#v

throw new c ⇒T c#new c

(c) v ⇒T if ty(v)<:c then norm#v

else ClassCastExc#v

For the throw command, we have to decide which flow type to raise. In case of new c, we can

determine that it is an exact type of class c. In case of v, we have to use ty(v) to retrieve the

runtime type of the object. Assuming the well-typedness of source programs, we expect these

flow types from throw commands to be subtypes of exc.

The other unified construct is for supporting a generalised try−catch mechanism. Its

format is try e1 catch (c@fv)#v e2 where c is the type of flow captured, must be a subtype

of c−flow, fv is a variable that binds to the concrete control flow type captured and v is a

variable capturing the thrown value. However, we may sometimes ignore the bound variables

fv and v. For convenience, we allow the following shorthands:

try e1 catch c#v e2 ≡ try e1 catch c@ #v e2

try e1 catch c e2 ≡ try e1 catch c@ # e2

The unified try-catch construct can be used to:

• translate the try-catch construct from the source language:

38 2. PRELIMINARIES

An important feature of Java for exception handling is the try construct with multiple

catch handlers. An example of its usage is the following construct with two handlers:

try {e}

catch (c1 v1) {e1}

catch (c2 v2) {e2}

It is tempting to think that the above feature can be directly implemented in our language,

as a nested pair of try−catch constructs, as follows:

try (try e catch (c1@ #v1) e1) catch (c2@ #v2) e2

However, this translation is not correct, since an exception raised inside e1 may be caught

by the second handler for the target (nested) code but not the source (unnested)

code. To avoid this problem, we must attach a side-condition which ensures that

∀ c ∈ throwsAll(e1) · ¬(c<:c2 ∨ c2<:c), where throwsAll(e1) statically computes all

the flow types that may escape from e1, before we allow the above translation.

Alternatively, we will use the following more general translation:

try e catch c1 v1 e1

[catch(ci vi) ei]
n
i=2

⇒T try (

[try]ni=2

try e catch (c1@fv1#v1) embed(spec, e1)

[catch (ci@fvi#vi) embed(spec, ei)]ni=2

) catch (spec@fv#v) v.1#v.2

We provide the notation embed(ft, e) as a shorthand for :

try e catch ((c−flow@fv)#v) ft#(fv, v)

For each flow that can be caught, it embeds the flow and its value into a pair (fv, v)

2. PRELIMINARIES 39

and attaches them to the flow ft taken as parameter. In the context of the previous

translation, all the flows that can be caught from ei, 1≤i≤n, will be embedded with their

corresponding values, and attached to a flow type named spec. Consequently, every

outcome from evaluating ei will indeed skip the outer handlers ej , i<j≤n, and will

only be caught by the outermost handler. Operations v.1 and v.2 are used to extract the

components of the pair denoted by v. Take note that the translation of a try catch with n

handlers will result in n+1 try catch constructs.

• translate the finally construct:

Let us consider the finally construct from Java, used in the following two code frag-

ments below:

try { return 2 } catch (Exception v) {print “catch′′}

finally { print “tidy up′′}

try { System.exit(0)}catch (Exception v){print “catch′′}

finally { print “tidy up′′ }

A frequent doubt is whether the finally block would be executed after the occurrence of

non-exceptional control flows, such as return or System.exit. We can unambiguously

and succinctly specify the intention of the finally construct by the following translation

to our core language:

e1 finally e2

⇒T try e1 catch ((c−flow@fv)#v) (e2; fv#v)

Any control flow (including norm) that escapes e1 and can be caught (under the c−flow

subtype) will lead to the execution of the finally block. For the above mentioned Java ex-

ample, we would model return by flow type ret−1, while System.exit, to terminate

the Java Virtual Machine, is modelled by flow type halt in our language. Our translation

40 2. PRELIMINARIES

therefore indicates that the finally e2 block is executed for the first code fragment but not

the second code fragment, since ret−1<:c−flow and ¬(halt<:c−flow).

• translate the multi-return function call and declaration:

(m −→v) with λv2.e2 . . . λvn.en

⇒T try (m −→v) catch ret−2#v2 e2

. . .

catch(ret−n#vn) en

The translation to our core language explicitly captures the choice of the return point,

based on the control flow that is caught after the evaluation of the inner application,

(m −→v).

Note that the first return of each method declaration is considered to be the normal value

that is to be returned directly to its callers’ sites. This is achieved by changing ret−1

to the norm control flow, for each method declaration, as follows:

m [with n] (
−→
t v) {e}

⇒T m [with n] (
−→
t v){try e catch ret−1#v norm#v}

• translate the local binding construct:

let v=e1 in e2 ⇒T try e1 catch norm#v e2

2. PRELIMINARIES 41

• handle abnormal controls due to breaks and continues for loops:

L : while e1 {e2}

⇒T try {bool v; v:=e1;

while v {

try e2 catch cont norm#()

catch (cont−L) norm#();

v:=e1}

catch (brk) norm#()

catch (brk−L) norm#()

The try-catch mechanism provides a uniform way to deal with non-local control flows,

such as break and continue via exception handling. If these mechanisms had not

been used, our language would resort to lower-level constructs, such as goto statements,

for formal reasoning. The unstructured goto construct may be useful for efficient im-

plementation, but has a lower abstraction level for formal reasoning.

• handle abnormal controls due to breaks for labelled expressions:

L : e⇒T try e catch brk−L norm#()

Phase III: Wrapping-up the Translation

For this phase, the unified try−catch construct is used to replace the sequence operator

e1; e2, and to simplify the RHS of the assignment construct (to a variable), as shown below.

e1; e2 ⇒T try e1 catch norm e2

w := e ⇒T try e catch norm#v w := v

42 2. PRELIMINARIES

The placement of these two rules in a separate phase is meant to maintain the non-interference

property of the translation process. This is due to the fact that some of the translations rules

from the previous phase trigger the application of the assignment and sequence translation

rules.

Phase IV: Handling Implicitly Raised Exceptions

To complete our translation, in the last rewriting step, we provide a set of rules to deal with

constructs that may implicitly raise some exceptions, such as null dereferencing or memory

overflow. These rules can help make all raised exceptions explicit.

v.f ⇒T if v=null then nullPtrExc#v

else v.f

v.f := v2 ⇒T if v=null then nullPtrExc#v

else v.f := v2

ft#new c ⇒T if enoughMem(c) then ft#new c

else OutofMemoryExc#null

ty(v)#v ⇒T if v=null then nullPtrExc#v

else ty(v)#v

As a wrap-up step unrelated to control flow handling, loops are transformed to tail-recursive

methods where the parameters are passed by reference.

Note that the translated codes can be more efficiently implemented than the original code,

since they can be specialised as exception-free code. Furthermore, there is potential for a

systematic optimization to eliminate some of the checks that have been explicitly inserted. For

example, we could use a nullness analysis to help statically determine those nullness tests that

are known to be redundant. Similarly, it is possible to aggregate a series of tests on memory

sufficiency to be replaced by a bigger test at the beginning. These steps can lead to simpler

(and more efficient) core programs.

2. PRELIMINARIES 43

It is possible to provide a semantics for Core−U and another semantics for SrcLang, be-

fore proving that the translation rules are fully abstract [89] by preserving observational equiv-

alence between the source and target programs under their respective semantics. This would

have proven the correctness of the translation rules between the two languages. However, since

the core language is at a relatively high level and can be viewed as a subset of the source lan-

guage, we could also define the semantics of the SrcLang directly in terms of the Core−U .

With this simplified approach, the translation rules would be correct by construction. This ap-

proach is not at all new. For example, the Haskell language [54] is largely defined in this way,

by translating more complex language features into a simpler core.

Nevertheless, we will prove two important properties of our translation rules. Firstly, we

shall show that given any arbitrary SrcLang expression, we can always translate it into a

Core−U counterpart. Secondly, we shall prove that the application of the translation rules

always terminates.

Lemma 2.5.1 (Completeness of Translation). Consider any term e ∈ SrcLang. Repeated

applications by our transformation rules via e ⇒∗T e′ would eventually result in e′ ∈ Core−U

, when the transformation terminates.

Proof [(sketch)] There is at least one transformation rule for each syntactic construct of

SrcLang, except for the local block {t v; e} which remains unchanged in Core−U . Fur-

thermore, each target form in the RHS of the translation rules belongs to Core−U or can

be transformed as so in a subsequent step. Hence, by induction on the syntactic structure of

SrcLang, we can prove that the final expression belongs to Core−U , should the transformation

terminate. 2

Lemma 2.5.2 (Termination of Translation). The transformation e ⇒∗T e′ always terminates.

Proof [(sketch)] Let us first note that all the rewrite rules used in the translation process

follow a common design, namely the RHS does not contain the pattern from the LHS that

triggers the application of the rule. This property ensures that each application of a rewrite

44 2. PRELIMINARIES

rule will eliminate one occurrence of a specific trigger. Moreover, none of the rules trigger the

application of any other rule from the same set, nor the application of a rule from any of the

previous steps. Consequently, the rewriting process, for each of the four steps, must terminate.

2

2.5.2 Optimization Rules

We shall now provide a set of equivalence rules for our language that can be used for formal

reasoning and optimization. One feature of our rules is that they are formulated at a relatively

high-level based on our core language. We expect such high-level rules to be easier to under-

stand and prove correct.

Our first rule is inspired by the associativity property of sequential composition, namely

(e1; e2); e3 ⇔ e1; (e2; e3). A corresponding rule, generalised to nested try-catch commands,

is shown below:

[Re−Ordering Rule]

c2<:c1

try (try e catch c1 e1) catch c2 e2

⇔ try e catch c1 (try e1 catch c2 e2)

This re-ordering may be used to help group a nested series of expressions with a similar prop-

erty together, so that we may have a larger expression with the same property. For example,

if expressions e1 and e2 are free of dynamic control flows (namely exceptions), we may group

them closer via the above rule. Grouping together expressions without exceptions can give us

larger code blocks that can be better optimized.

The second optimization rule ensures the elimination of redundant catch handlers. This can

occur if the try block never raises any of the control flows that are caught by a given handler.

Take note that, throws(e) is intended to capture the entire set of exceptions (or control flows)

that may escape from the expression e. The auxiliary function overlap(c1, c2) signifies the

2. PRELIMINARIES 45

val = (s(ft), s(x))(
(s, h, b), jump L(ft, x)

)
7→
(
(s, h, b), jump−L#val

)
¬(c1<:c)(

(s, h, b), try c1#a1 catch c L(fv, v):e2
)
7→
(
(s, h, b), c1#a1

)
e = jump−L#(c1, a1) u = newid() fu = newid()

e′ = BLK({u, fu}, e2[u/v, fu/fv])(
(s, h, b), try e catch c L(fv, v):e2

)
7→
(
(s+[fu7→c1, u7→a1], h, b), e′

)
c1<:c

u = newid() fu = newid()
e′ = BLK({u, fu}, e2[u/v, fu/fv])(

(s, h, b), try c1#a1 catch c L(fv, v):e2
)
7→
(
(s+[fu7→c1, u7→a1], h, b), e′

)
Figure 2.6: Semantics for the Jump Construct

condition that c1 shares some common subtypes with c2, overlap(c1, c2)=c1<:c2∨c2<:c1.

[Catch Elimination Rule]

∀c ∈ throws(e) · ¬overlap(c, c1)

try e catch c1@fv1#v1 e1 ⇒ e

Our next rule is intended to optimize the stack unwinding mechanism that is typically used

to propagate a raised exception to its handler. Occasionally, it is possible to determine that

the invocation of a particular exception (or control flow) will always be caught by a given

handler. If this scenario is detected, we can transform a raised exception into a direct jump to

its handler’s code. Such a jump feature shall be added directly to the target compiled language.

As our core language also supports the capture of both a control flow and its thrown value,

we will have to pass these items to the handler during such a jump. Argument passing can be

implemented with the help of a parameterized jump. A jump(L(−→v)) command is said to be

parameterized by −→v if it carries a list of arguments for its labelled location. Correspondingly,

46 2. PRELIMINARIES

a labelled location jump(L(−→v) : e) is said to be parameterized with −→v , if variables −→v in code

e can be initialized by its corresponding jump. Our parameterized label shall always be used

in the context of a catch handler of the form try e catch c@fv#v L(fv, v):e2, which shall

be abbreviated as try e catch c L(fv, v):e2.

In real languages, the jump instruction would be a machine primitive that changes the

current program counter to the address of the labelled instruction. However, for convenience,

we shall model the jump construct (in the same way as break construct) with an abnormal

control flow that would be caught by its labelled handler. Using this interpretation, the jump

construct, jump L(ft, x), is essentially modelled using jump−L#(ft, x), where each flow

type jump−L will only be captured by its handler at the labelled location L. In Figure 2.6 we

provide the semantics for the newly introduced jump construct. Take note that the formalised

semantic mirrors the state transition relation for the actual machine.

We shall now consider the optimization itself. As a simple example, consider the code

fragment:

try try

(try exc#3 catch (nullPtrExc) e1)

catch (exc#v) e2

catch (norm) e3

An exception exc#3 is being thrown that will be caught by the second catch handler. We

may directly link this throw with its corresponding catch handler by the following transformed

code:

try try

(try jump L1(exc, 3) catch (nullPtrExc) e1)

catch (exc) L1(, v) : e2

catch (norm) e3

This is a desirable optimization since a jump command can usually be implemented much

more efficiently. The rule for linking a throw with its corresponding catch handler can be

2. PRELIMINARIES 47

formally expressed, as follows:

[Throw−Catch Linking Rule]

escape(C[], fc) Γ(ft) = fc fc<:c

try C[ft#x] catch c@fv#v e ⇒

try C[jump L(ft, x)] catch c L(fv, v) : e

Note that we assume a prior type inference algorithm. Consequently, Γ denotes the type en-

vironment, with its corresponding runtime stack capturing both values and control flows. For

each flow, ft, Γ(ft) will capture the flow type. We use a context notation C[] to denote an

expression with a single hole [], and C[e] to denote the replacement of the hole by e for the

given context. Formally, the context notation is defined as:

C[] ::= [] | {t v; C[]} | if v then C[] else e

| if v then e else C[] | try C[] catch @fv#v e

| try e catch c@fv#v C[] | do C[] while v

We also provide an operator escape(C[], fc) that can determine if a control flow fc will escape

its given context C[]. This operation is defined, as follows:

escape([], fc) = true

escape(try C[] catch c e, fc) | overlap(fc, c) = false

escape(try C[] catch c e, fc) | ¬overlap(fc, c)

= escape(C[], fc)

escape(E, fc) = escape(C[], fc)

where E ::= if v then C[] else e | if v then e else C[]

| do C[] while v | {t v; C[]} | try e catch c C[]

After some throw-catch linkings, it may be possible to obtain code involving a series of con-

48 2. PRELIMINARIES

secutive jumps. In order to shortcut such a series of jumps, we consider the scenario under

which a parameterized jump can be inlined. This can occur if control flows from e are never

caught by the context (try C[] catch c L(fv, v) : e), as defined in the rule below:

[Jump Inlining Rule]

∀c1 ∈ throws(e) · (escape(C[], c1) ∧ ¬overlap(c, c1))

try C[jump L(ft, x)] catch c L(fv, v) : e

⇒ try C[[fv 7→ft, v 7→x]e] catch c L(fv, v) : e

To avoid name capture during this non-local inlining, we have to ensure that the variables from

(free(e)− {fv, v}) do not clash with the bound variables from the context C[]. This can be

ensured by uniquely renaming the bound variables in C[].

Soundness of Optimization Rules

Definition 2.5.1 (Semantics Preserving Transformation). An expression e′ is said to be a

semantics preserving transformation of e if, whenever the evaluation of e terminates and

(
e, h, s

)
7→∗
(
c#a, h1, s1

)
,

then the evaluation of e′ terminates and

(
e′, h, s

)
7→∗
(
c#a, h1, s1

)
.

Definition 2.5.2 (Sound Optimization Rule). An optimization rule rewriting an expression

exp into an expression exp′ is said to be sound if exp′ is a semantics preserving transformation

of exp.

Def. 2.5.1 and Def. 2.5.2 are used to state the soundness of the optimization rules. When

sketching the proofs of the soundness lemmas, we will make use of some notational conven-

2. PRELIMINARIES 49

tions. The initial expression, before optimization, will be denoted by exp, while the optimized

one, obtained after rewriting, will be denoted by exp′. Additionally, h will stand for the current

heap, and s for the current stack.

Lemma 2.5.3 (Soundness of Re-Ordering Rule (⇒ direction)). If c2<:c1 then the following

expression:

try e catch c1@fv1#v1 (try e1 catch c2@fv2#v2 e2)

is a semantics preserving transformation of:

try (try e catch c1@fv1#v1 e1) catch c2@fv2#v2 e2

Proof: According to the hypothesis that the evaluation of exp terminates and to the seman-

tics of the try catch construct, we can assume that e gets evaluated to c#a. Consequently, there

are two possibilities:

• c<:c1. In this case, the evaluation of exp is reduced to the evaluation of the handler e1

in a try e1 catch c2 e2 construct. On the other hand, when considering the expression

exp′ obtained after optimization, e gets evaluated in a similar way and, assuming that

c<:c1, everything is reduced again to try e1 catch c2 e2. 2

• ¬(c<:c1). Conform to the semantics, the handler e1 is not reachable in exp. Moreover,

due to the assumption that c2 <: c1, the handler e2 is also unreachable. Therefore, exp is

evaluated to c#a. On the other hand, in exp′, the handler try e1 catch c2@fv2#v2 e2

is also unreachable. Hence, exp′ also evaluates to c#a. 2

Take note that the [Re-Ordering Rule] rule claims the equivalence of the two expressions, exp

and exp′. Therefore, we need another lemma for proving soundness when the rule is applied

from right to left.

Lemma 2.5.4 (Soundness of Re-Ordering Rule (⇐ direction)). If c2<:c1 then the following

50 2. PRELIMINARIES

expression:

try (try e catch c1@fv1#v1 e1) catch c2@fv2#v2 e2

is a semantics preserving transformation of:

try e catch c1@fv1#v1 (try e1 catch c2@fv2#v2 e2)

Proof: Similar to the proof for Lemma 2.5.3. 2

Lemma 2.5.5 (Soundness of Catch Elimination Rule). Assuming that

∀c ∈ throws(e) · ¬overlap(c, c1)

then expression e is a semantics preserving transformation of

try e catch c1@fv1#v1 e1

Proof: We show that exp′ is a semantics preserving transformation of exp by proving that

the handler e1 of exp is unreachable. Let us assume that e evaluates to c#a. According to the

assumption that all the exceptions are checked (any exception escaping from a method’s body

must be declared in its throws list), to the semantics for try catch, and the hypothesis that all

the control flows of e escape from exp, the handler e1 is unreachable. 2

Lemma 2.5.6. Soundness of Throw-Catch Linking Rule: If the following conditions hold:

escape(C[], fc) and Γ(ft) = fc and fc<:c

then the expression: try C[jump L(ft, x)] catch c L(fv, v) : e is a semantics preserving

transformation of the expression

try C[ft#x] catch c@fv#v e.

2. PRELIMINARIES 51

Proof: By structural induction on the context of the try block C[].

• Case []. Straightforward.

• Case try C[] catch c e. Conform to the semantics, the evaluation of both exp and exp′

implies first the evaluation of the inner try block. According to the hypothesis that

Γ(ft) = fc and that the control flow fc escapes the context C[] being caught by the

external handler, both expressions will be reduced to the following machine configura-

tion: 〈(s+[fv 7→ft, v 7→x], h, b), e〉, where s , h and b denote the stack, heap and barrier

map after the evaluation of the try block. The conclusion is immediate.

• Case do C[] while v. The initial expression exp is reduced to:

try C[ft#x]; if v then (do C[ft#x] while v) else ()

catch c@fv#v e

which is syntactic sugar for:

try (try C[ft#x] catch norm

if v then (do C[ft#x] while v)

else ()) catch c@fv#v e

On the other hand, exp′ is reduced to:

try (try C[jump L(ft, x)] catch norm

if v then (do C[jump L(ft, x)] while v)

else ()) catch c L(fv, v) : e

The conclusion follows from the hypothesis that escape(C[], fc) and Γ(ft) = fc and

fc<:c and from the dynamic semantics.

• Case t v; C[]. We conclude immediately from the semantics and the hypothesis that

52 2. PRELIMINARIES

Γ(ft) = fc and the control flow fc escapes the context C[] and it is caught by the exter-

nal handler. Both exp and exp′ are reduced to

〈(s+[fv 7→ft, v 7→x], h, b), e〉

where s,h and b denote the stack, heap and barrier map after the evaluation of the try

block, respectively.

• Case if v then C[] else e1. According to the semantics for the if construct, there are

two cases:

– s(v)=true. The two expressions, exp and exp′, are reduced respectively to:

try C[ft#x] catch c@fv#v e

and try C[jump L(ft, x)] catch c L(fv, v) : e

Conclusion follows immediately.

– s(v)=false According to the semantics:

∗ exp is reduced to: try e1 catch c@fv#v e

∗ exp′ is reduced to: try e1 catch c L(fv, v) : e

The conclusion follows from the semantics, as e1 does not contain any jump construct.

• Case if v then e1 else C[]. Similar to the previous case.

• Case try e1 catch (c1@fv1)#v1 C[]. According to the semantics, there are two cases:

– the evaluation of e1 generates a control flow c′ and c′<:c1. From the dynamic

semantics, the handlers C[ft#x] and C[jump L(ft, x)] are to be evaluated, re-

spectively. The conclusion follows from the induction hypothesis.

– the evaluation of e1 generates a control flow c′ and ¬(c′<:c1). The conclusion

follows from the fact that e1 does not contain any jump construct.

2. PRELIMINARIES 53

2

Lemma 2.5.7 (Soundness of Jump Inlining Rule:). Assuming that the following conditions

hold:

∀c1 ∈ throws(e) · (escape(C[], c1) ∧ ¬overlap(c, c1))

then expression

try C[[fv 7→ft, v 7→x]e] catch c L(fv, v) : e

is a semantics preserving transformation of the expression

try C[jump L(ft, x)] catch c L(fv, v) : e.

Proof: By structural induction on the context of the try block C[].

• Case []. Straightforward.

• Case try C[] catch c e. Conform to the semantics, the evaluation of both exp and exp′

implies first the evaluation of the inner try block. The conclusion comes from the as-

sumption that all the control flows from e escape the context C[] and from the induction

hypothesis.

• Case do C[] while v. The initial expression exp is reduced to:

try (C[jump L(ft, x)];

if v then (do C[jump L(ft, x)] while v) else ())

catch c L(fv, v) : e

which is syntactic sugar for:

try (try C[jump L(ft, x)] catch norm

if v then (do C[jump L(ft, x)] while v)

else ()) catch c L(fv, v) : e

54 2. PRELIMINARIES

On the other hand, exp′ is reduced to:

try (try C[[fv 7→ft, v 7→x]e] catch norm

if v then (do C[[fv 7→ft, v 7→x]e] while v)

else ()) catch c L(fv, v) : e

From the semantics and the assumption that all the control flows from e escape both the

context C[] and the external try catch, the two expressions will be reduced to:

[fv 7→ft, v 7→x]e.

• Case t v1; C[]. The two expressions, exp and exp′, are reduced to

try (t v1; C[jump L(ft, x)]) catch c L(fv, v) : e

and try (t v1; C[[fv 7→ft, v 7→x]e]) catch c L(fv, v) : e, respectively. According to

the semantics and the assumption that all the control flows from e escape both the context

C[] and the external try catch construct, the two expressions will evaluate e. Note that,

for the latter case, the stack will also contain the local variable v1. In order to avoid

name clashing, we uniquely rename the free variables of e. Consequently, the result of

the evaluation is the same regardless of whether or not v1 is on the stack.

• Case if v then C[] else e1. According to the semantics for the if construct, there are

two possibilities:

– s(v)=true. The conclusion follows immediately from the induction hypothesis as

the two expressions, exp and exp′, are reduced respectively to:

try C[jump L(ft, x)] catch c L(fv, v) : e

and try C[[fv 7→ft, v 7→x]e] catch c L(fv, v) : e.

– s(v)=false. Both expressions reduce to:

2. PRELIMINARIES 55

try e1 catch c L(fv, v) : e.

• Case if v then e1 else C[]. Similar to the previous case.

• Case try e1 catch (c1@fv1)#v1 C[]. According to the semantics, there are two possi-

bilities:

– the evaluation of e1 generates a control flow c′ with the property c′<:c1. From the

dynamic semantics, the handlers C[jump L(ft, x)] and

C[[fv 7→ft, v 7→x]e] are to be evaluated, respectively. The conclusion follows from

the induction hypothesis.

– the evaluation of e1 generates a control flow c′ and ¬(c′<:c1). Both expressions

are reduced to try e1 catch c L(fv, v) : e.

2

56 2. PRELIMINARIES

Chapter 3

Exception Verification

So far we have introduced the input language, we defined a novel core language which unifies

various control flow types under one formalism and we showed how the input language can be

translated to the core language.

In this chapter we will elaborate on common expectations for exception safety guarantees,

and show how easily they can be captured in our specification language. We then introduce a

set of elegantly simple rules for verifying programs with exceptions. We conclude by reporting

on experimental results of introducing our verification logic into the HIP verifier.

3.1 Motivation

Exception handling is considered to be an important but yet controversial feature for many

modern programming languages. It is important since software robustness is highly dependent

on the presence of good exception handling codes. Exception failures can account for up to

2/3 of system crashes and 50% of system security vulnerabilities [72]. It is controversial since

its dynamic semantics is often considered too complex to follow by both programmers and

software tools.

Goodenough provides in [41] a possible classification of exceptions according to their us-

57

58 3. EXCEPTION VERIFICATION

age. More specifically, they can be used:

• to permit dealing with an operation’s failure as either domain or range failure. Domain

failure occurs when an operation finds that some input assertion is not satisfied, while

range failure occurs when the operation finds that its output assertion cannot be satisfied.

• to monitor an operation, e.g. to measure computational progress or to provide additional

information and guidance should certain conditions arise.

In the context of Spec#, the authors of [67] use the terms client failures and provider fail-

ures for the domain and range failures, respectively. Client failures correspond to parameter

validation, whereas provider failures occur when a procedure cannot perform the task it is

supposed to. Moreover, provider failures are divided into admissible failures and observed

program errors. To support admissible failures, Spec# provides checked exceptions and throws

sets. In contrast, an observed program error occurs if the failure is due to an intrinsic error in

the program (for e.g. an array bounds error) or a global failure that is not tied to a particular

procedure (for e.g. an out-of-memory error). Such failures are signaled by Spec# with the use

of unchecked exceptions, which do not need to be listed in the procedure’s throws set. Likewise

for Java, its type system has been used to track a class of admissible failures through checked

exceptions.

However, omitting the tracking of unchecked exceptions is a serious shortcoming, since

it provides a backdoor for some programmers to deal exclusively with unchecked exceptions.

This shortcut allows programmers to write code without specifying or catching any exceptions.

Although it may seem convenient to the programmer, it sidesteps the intent of the exception

handling mechanisms and makes it more difficult for others to use the code. A fundamental

contradiction is that, while unchecked exceptions are regarded as program errors that are not

meant to be caught by handlers, the runtime system continues to support the handling of both

checked and unchecked exceptions.

Here we show how it is possible to ensure a higher level of exception safety, as defined by

3. EXCEPTION VERIFICATION 59

Stroustrup [94] and extended by Li and co-authors [70], which takes into consideration both

checked and unchecked exceptions. According to Stroustrup, an operation on an object is said

to be exception safe if it leaves the object in a valid state when it is terminated by throwing an

exception. Based on this definition, exception safety can be classified into four guarantees of

increasing quality:

• No-leak guarantee: For achieving this level of exception safety, an operation that throws

an exception must leave its operands in well-defined states, and must ensure that every

resource that has been acquired is released. For example, all memory allocated must be

either deallocated or owned by some object whenever an exception is thrown.

• Basic guarantee: In addition to the no-leak guarantee, the basic invariants of classes are

maintained, regardless of the presence of exceptions. To illustrate, consider the following

Java example: a wrapper class List with two members, (i) ll, an instance of a linked

list class Ll and (ii) size, an integer capturing the size of the linked list. Assuming that

the append operation in the Ll class might throw an error, then we can define an append

operation in the List that does not satisfy the basic guarantee:

void append(List lst wrap; Object o)

{ lst wrap.size + +;

lst wrap.ll.append(o); }

By incrementing size irrespective of the outcome of ll.append(o) then the invariant

that size captures the length of the ll list might be broken.

• Strong guarantee: In addition to providing the basic guarantee, the operation either

succeeds, or has no effects when an exception occurs. That is, for the exceptional case,

all intermediary steps taken need to be unrolled. In other words, if an exception occurs,

the only observable effects of the operation should be the raising of the exception.

• No-throw guarantee: In addition to providing the basic guarantee, the operation is guar-

anteed not to throw an exception.

60 3. EXCEPTION VERIFICATION

We propose a methodology for program verification that can guarantee higher levels of ex-

ception safety. Our approach can deal with all kinds of control flows, including both checked

and unchecked exceptions, thus avoiding the unsafe practice of using the latter to circumvent

exception handling. Another aspect worth mentioning is that some of the aforementioned ex-

ception safety guarantees might be expensive. For instance, strong guarantee might incur the

high cost of roll-back operations as it pushes all the recovery mechanism into the callee. How-

ever, such recovery may also be performed by the caller, or there might be cases when it is

not even required. Consequently, in §3.2 we improve on the definition of strong guarantee for

exception safety.

Moreover, verifying a strong guarantee is generally more expensive than the verification of

a weaker guarantee, as it is expected to generate more complex proof obligations (details can

be found in §3.4). Hence, according to the user’s intention, our system can be tuned to enforce

different levels of exception safety guarantees.

3.2 Examples with Higher Exception Safety Guarantees

We next illustrate our new specification mechanism through a few examples. Let us first con-

sider the following class and predicate definitions.

class node { int val; node next}

pred self::ll〈n〉 ≡ self=null ∧ n=0 ∨

∃r·self::node〈 , r〉 ∗ r::ll〈n−1〉 inv n≥0;

Predicate ll defines a linear-linked list of length n. As elaborated earlier, each predicate

describes a data structure, which is a collection of objects reachable from a base pointer denoted

by self in the predicate definition. The expression after the inv keyword captures a pure

formula that always holds for the given predicate.

3. EXCEPTION VERIFICATION 61

Let us now consider the method list alloc allocating memory for a linear-linked list

to be pointed by x. The precondition requires x to be null, while the postcondition asserts

that either no error was raised, i.e. the flow is norm, and the updated x points to a list with n

elements, or an out of memory exception was raised, i.e. the flow is out of mem exc, and x

remains null.

Method list alloc calls an auxiliary method list alloc helper which recursively al-

locates nodes in the list. If an out of memory exception is raised, the latter performs a rollback

operation, inside a try-catch block, during which it frees all the memory that was acquired up to

that point. Take note that, in the following examples, for illustration purposes, we provide an al-

ternative set of library methods with explicit memory deallocation (via method list dealloc)

that coexists with our Java like language.

void list alloc(int n, ref node x)

requires x=null ∧ n≥0

ensures (x′::ll〈n〉 ∧ flow=norm) ∨ (x′=null ∧ flow=out of mem exc);

{list alloc helper(n, 0, x); }

62 3. EXCEPTION VERIFICATION

void list alloc helper(int n, int i, ref node x)

requires x::ll〈i〉 ∧ n≥i ∧ i≥0

ensures (x′::ll〈n〉 ∧ flow=norm) ∨ (x′=null ∧ flow=out of mem exc);

{

if(n>i)

{ try

{ x = new node(0, x); }

catch(out of mem exc exc)

{ list dealloc(i, x);

raise (new out of mem exc());

}

list alloc helper(n, i+1, x);

}

}

According to [94], method list alloc is said to ensure a strong guarantee on exception

safety, as it either succeeds in allocating all the required memory cells, x′::ll〈n〉 ∧flow=norm,

or it has no effect, x′=null ∧ flow=out of mem exc. However, this rollback operation can

be expensive if we have been building a long list. Moreover, there can be cases when such

rollbacks are not needed. For instance, in the context of the aforementioned method, a caller

might actually accept a smaller amount of the allocated memory.

We propose to improve Stroustrup’s definition on strong guarantee as follows: An operation

is considered to provide a strong guarantee for exception safety if, in addition to providing

basic guarantees, it either succeeds, or its effect is precisely known to the caller. Given this

new definition, the method list alloc helper prime defined below is also said to satisfy

the strong guarantee. Compared to method list alloc helper, the newly revised method

has an extra pass-by-reference parameter, no cells, to denote the number of memory cells

3. EXCEPTION VERIFICATION 63

that were already allocated. Through this output parameter, the caller is duly informed on the

length of list that was actually allocated. This method has two possible outcomes :

• it succeeds and all the required memory cells were allocated:

x′::ll〈n〉 ∧ no cells′=n;

• an out of memory exception is thrown and no cells captures the number of success-

fully allocated memory cells. The caller is duly informed on the amount of acquired

memory through the no cells parameter, and could either use it, run a recovery code to

deallocate it, or mention its size and location to its own caller.

void list alloc helper prime(int n, int i, ref node x, ref int no cells)

requires x::ll〈i〉 ∧ n≥i ∧ i≥0

ensures (x′::ll〈n〉 ∧ no cells′=n ∧ flow=norm)∨

(x′::ll〈no cells′〉 ∧ flow=out of mem exc);

{

if(n>i)

{ try

{ x = new node(0, x); }

catch(out of mem exc exc)

{ no cells=i;

raise (new out of mem exc());

}

list alloc helper(n, i+1, x);

}

else no cells=n;

}

Next, we will illustrate how to make use of our verification mechanism for enforcing the

64 3. EXCEPTION VERIFICATION

no-throw guarantee from [94]. For this purpose, let us consider the following swap method

which exchanges the data fields stored in two disjoint nodes.

void swap(node x, node y)

requires x::node〈v1, q1〉∗y::node〈v2, q2〉

ensures x::node〈v2, q1〉∗y::node〈v1, q2〉 ∧ flow=norm;

{ int tmp = x.val;

x.val = y.val;

y.val = tmp;

}

The precondition requires the nodes pointed by x and y, respectively, to be disjoint, while

the postcondition captures the fact that the values stored inside the two nodes are swapped.

Additionally, the postcondition asserts that the only possible flow at the end of the method is the

normal flow, flow=norm, i.e. no exception was raised. This specification meets the definition

of no-throw guarantee given in [94]. Any presence of exception, including an exception caused

by null pointer dereferencing, would require the postcondition to explicitly capture each such

exceptional flow. Conversely, any absence of exceptional flow in our logic is an affirmation for

the no-throw guarantee. We have shown how our specification language can capture various

kinds of control flow types and how this can be used to specify different levels of exception

safety guarantees. In the next section we will outline a Hoare logic that can be used to verify

such specifications.

3.3 Verification for Unified Control Flows

As we mentioned in the previous chapters, we construct our Hoare logic with the Core−U as

the target language. The beauty of having a properly designed high level core language as a

stepping stone is that it allows really clean and simple forward verification rules.

3. EXCEPTION VERIFICATION 65

The rules describe the construction of Hoare-style triples ` {∆1} e {∆2}, where ∆1 is a

captured program state whereby flow =>, while ∆2 is a disjunctive heap state capturing the

entire set of control flows that may escape during the execution of e. For example, we may

have:
∆2 = (x′=x+1 ∧ flow=norm) ∨ (x′=x∧flow=exc)

to denote two possible final states, a state with normal control flow describing an increment in

variable x and a second state in which an exception occurs and the state of x is unchanged.

In the remainder of the current section we will focus mainly on the verification of the

unified throw construct, #, and the try-catch construct. We give the formulations for the rules

for these constructs in Figure 3.1. We delay the presentation of the barrier rule until Chapter 4.

Also since the other rules are largely conventional we omit them.

[FV−[SPLIT]]

split(∆, c, fv, v) =

(
∃flow .[res7→v]∆ ∧ flow <: c ∧ flow = fv,

∆ ∧ ¬(flow <: c)

)
[FV−[TRY−CATCH]]

` {∆} e1 {∆1} (∆2,∆3) = split(∆1, c, fv, v) ` {∆2} e2 {∆4}
` {∆} try e1 catch (c@fv v) e2 {∆3 ∨ ∃v, fv ·∆4}

[FV−[OUTPUT]]

resolve(∆, ft) = fset
∆1=∃res.(∆ ∧ flow = fset) ∧ res = a

` {∆} ft#a {∆1}
resolve(∆, Ex(ft)) = Ex(ft) resolve(∆ ∧ (fv=ft), fv) = ft

∆ ` ∃fv.v=(fv,)
resolve(∆, fv) = ft

resolve(∆, v.1) = ft

v was declared of type ft

resolve(,ty(v)) = ft

Figure 3.1: Some Verification Rules

Notice that the # statement sets on one hand the control flow to a value denoting one of the

subtrees from the control flow hierarchy and on the other hand it also captures the result of the

operation. To capture this behaviour, we require each control flow variable to be resolved to an

66 3. EXCEPTION VERIFICATION

appropriate flow set (fset) value, before we can set it as the current control flow by assigning

it to the flow variable. We rely on an auxiliary operation, resolve to obtain the corresponding

control flow set from a given program state.

The verification system makes use of the res variable in order to store the result of the

current operation. Note that for the (fv#v) statement, the result value is indicated by v, which

is bound to the res variable as seen in the [OUTPUT] rules.

Regarding the [FV−TRY−CATCH] rule, we first compute the post-state of expression e1 as

∆1. Since ∆1 may capture a range of control flows, it has to be split into two components,

∆2 and ∆3, with the help of the [FV−SPLIT] rule. The ∆2 component will model the program

states with control flows that can be captured by the catch handler, whereas ∆3 will model

those states with control flows that escape from the catch handler. Moreover, for the case when

the control flow is being caught by the handler, the control flow type is bound to fv, and its

thrown value is bound to v. These bindings are kept in ∆2 which is made available as the pre-

state for e2. Keeping the bindings ensures that although flow has been quantified away in ∆2

the information can still be available to the catch handler through fv. As these local variables

are only valid in the catch handler, we quantify them away in the resulting postcondition.

Before further extending our verification logic to handle barriers as well, we first report on

integration of exception handling constructs into HIP/SLEEK, an existing verification toolset.

3.4 Experiments

In order to prove the viability of our verification method we tried our prototype implementa-

tion against a few examples from SPECjvm2008[1], a widely used Java benchmark created

by SPEC. Due to the focus of our work, we only considered those tests from SPECjvm2008

that are related to exception handling. After annotating the tested methods with pre and post

conditions, we were able to successfully verify all the tests. Due to the fact that the KeY[6]

approach is semi-automated in the sense that it occasionally prompts the user for choice of

3. EXCEPTION VERIFICATION 67

rewriting rules, while our approach is fully-automated, we cannot perform a direct comparison

of the verification timings.

Among these examples, MyClass is a Java program emphasizing the use of exception han-

dling in the presence of user defined exceptions. Its aim is to detect mishandling of the excep-

tion class hierarchy. The main objective of While and ContLabel examples is testing abrupt

termination in the presence of loops. PayCard is a Java class from a real life Java application

that makes heavy use of exceptions while modelling the behaviour of a credit card.

Figure 3.2 contains the timings obtained when using our system to verify the aforemen-

tioned examples.

Programs CODE ANN Time Focus
LOC LOC (seconds)

Break (KeY) 17 3 0.11 break handling
MyClass (KeY) 31 2 0.10 exception hierarchy

While (KeY) 91 49 2.47 while loops and break

ContLabel (KeY) 82 18 0.95 imbricated while loops and continue

PayCard (KeY) 54 16 0.91 general exception handling
SPECjvm2008 175 15 1.20 general exception handling

Figure 3.2: Verification Times

We also verified the examples presented throughout chapter. Method list alloc was

verified in 0.41 seconds, list alloc helper prime in 0.26 seconds and method swap in

0.09 seconds. Take note that the verification of list alloc helper prime, which ensures

an improved strong exception safety guarantee as according to our approach, is faster by 36%

than the verification of list alloc which enforces the original strong guarantee defined in

[94].

3.5 Summary

We have presented a new approach to the verification of exception-handling programs based

on a specification logic that can uniformly handle exceptions, program errors and other kinds

68 3. EXCEPTION VERIFICATION

of control flows. The specification logic is currently built on top of the formalism of separa-

tion logic, as the latter can give precise descriptions to heap-based data structures. Our main

motivation for proposing this new specification logic is to adapt the verification method to help

ensure exception safety in terms of the four guarantees of increasing quality introduced in [94]

and extended in [70], namely no-leak guarantee, basic guarantee, strong guarantee and no-

throw guarantee. During the evaluation process, we found the strong guarantee to be restrictive

for some scenarios, as it always forces a recovery mechanism on the callee, should exceptions

occur. Hence, we propose to generalise the definition of strong guarantee for exception safety.

Our approach has been formalised and implemented in a prototype system, and tested on a

suite of exception-handling examples. We hope it would eventually become a useful tool to

help programmers build more robust software.

Chapter 4

Barrier Verification

In this chapter we further extend the verification logic introduced in the previous chapter by

adding support for barrier synchronization. To this aim we introduce barrier definitions, a novel

mechanism for describing barrier behaviours. We were able to introduce a Hoare rule for veri-

fying barrier calls which is surprisingly simple when compared to the complex synchronization

pattern the barriers introduce.

4.1 Motivation

In a shared-memory concurrent program, threads communicate via a common memory. Pro-

grammers use synchronization mechanisms, such as critical sections and locks, to avoid data

races. In a data race, threads “step on each others’ toes” by using the shared memory in an

unsafe manner. Recently, concurrent separation logic has been used to formally reason about

shared-memory programs that use critical sections and (first-class) locks [80, 51, 43, 50]. Pro-

grams verified with concurrent separation logic are provably data-race free.

What about shared-memory programs that use other kinds of synchronization mechanisms,

such as semaphores? The usual assumption is that other mechanisms can be implemented

with locks, and that reasonable Hoare rules can be designed based on the particular implemen-

69

70 4. BARRIER VERIFICATION

tation. Indeed, the first published example of concurrent separation logic was implementing

semaphores using critical sections [80]. Unfortunately, not all synchronization mechanisms

can be easily reduced to locks in a way that allows for a reasonable Hoare rule to be derived.

In this chapter we introduce a Hoare rule that natively handles one such synchronization mech-

anism, the Pthreads-style barrier.

Pthreads (POSIX Threads) is a widely-used API for concurrent programming, and includes

various procedures for thread creation/destruction and synchronization [17]. When a thread is-

sues a barrier call it waits until a specified number (typically all) of other threads have also

issued a barrier call; at that point, all of the threads continue. Although barriers do not get

much attention in theory-oriented literature, they are very common in numerical applications

code. PARSEC is the standard benchmarking suite for multicore architectures, and has thirteen

workloads selected to provide a realistic cross-section for how concurrency is used in practice

today; a total of five (38%) of PARSEC’s workloads use barriers, covering the application do-

mains of financial analysis (blackscholes), computer vision (bodytrack), engineering (canneal),

animation (fluidanimate), and data mining (streamcluster) [10].

A common use for barriers is managing large numbers of threads in a pipeline setting. For

example, in a video-processing algorithm, each thread might read from some shared common

area containing the most recently completed frame while writing to some private area that will

contain some fraction of the next frame. (A thread might need to know what is happening in

other areas of the previous frame to properly handle objects entering or exiting its part of the

current frame.) In the next iteration, the old private areas become the new shared common area

as the algorithm continues.

Our key insight is that a barrier is used to simultaneously redistribute ownership of re-

sources (typically, permission to read/write memory cells) between multiple threads. In the

video-processing example, each thread starts out with read-only access to the previous frame

and write access to a portion of the current frame. At the barrier call, each thread gives up its

write access to its portion of the (just-finished) frame, and receives back read-only access to

4. BARRIER VERIFICATION 71

the entire frame.

Separation logic (when combined with fractional permissions [14, 28]) can elegantly model

this kind of resource redistribution. Let Prei be the precondition satisfied by thread i when it

enters the barrier, and Post i be the postcondition that will hold after thread i is released; then

the following equation, stating that all the resources in the preconditions are carried unchanged

in the postcondition, is almost true:

∗
i
Prei = ∗

i
Post i (4.1)

Pipelined algorithms often operate in stages. Since barriers are used to ensure that one

computation has finished before the next can start, the barriers need to have stages as well—a

piece of ghost state associated with the barrier. We model this by building a finite automaton

into the barrier definition. We then use the assertion, written b::bnameπ〈cs,−→v 〉, which says

that the barrier pointed to by b, of type bname corresponding to a barrier definition1, owned

with fractional permission π, is currently in state cs . Furthermore, arguments −→v are used to

denote the memory locations guarded by the barrier. The state of a barrier changes exactly as

the threads are released from the barrier. We can correct equation (4.1) by noting that barrier b

is transitioning from state cs (current state) to state ns (next state), and that the other resources

(frame F) are not modified:

∗
i
Prei = F ∗ b::bname `〈cs,−→v 〉

∗
i
Post i = F ∗ b::bname `〈cs,−→v 〉

(4.2)

We use the symbol ` to denote the full (∼100%) permission, which we require so that no thread

has a “stale” view of the barrier state. Although the on-chip (or erased) operational behavior

of a barrier, as described in Chapter 2, is conceptually simple2, it may be already apparent that

1the barrier name, bname, is akin to the predicate names for user-defined predicates. In §4.2 we will give a
concrete example of a barrier definition

2Suspend each thread as it arrives; keep a counter of the number of arrived threads; and when all of the threads
have arrived, resume the suspended threads.

72 4. BARRIER VERIFICATION

the verification can rapidly become quite complicated.

4.2 Example

In this section we use an example to outline the key observations and give the intuitions behind

our approach to barrier verification. Our example consists of two threads implementing a

simple map-reduce operation: at each iteration through a loop, the two threads work in parallel

to first produce some data and store it in shared variables x and y (one for each thread) while

using data from variable i; secondly one thread centralizes the data produced and generates a

new value for i. The x, y and i variables have type c which is a data structure with one integer

field named val.

Note that in this two thread example, other synchronization primitives could be employed

with similar overhead as barriers. However, also note that if the example is extended to a larger

number of threads, barriers would handle the thread count increase without any change however

the other synchronization schemes would need significant changes, implicitly increasing the

complexity of the synchronization. We give the code outline for the two threads in Figure 4.1.

In Figure 4.1 we give a pictorial representation of the state machine associated with the bar-

rier used in the code snippets. Our pictorial representation relies on the following specialized

notation:

Spec1
post

Spec2
post

Spec1
pre

Spec2
pre

T

3

3 ∧ T≥30

∧ T≥30 T

T

1

1 ∧ T≥30

 i b-state

 ≡ ∃ x,y,i,T. i: : c◩〈T〉 ∗ b: : bname◩〈1, x, y, i〉 ∧ T ≥ 30
 ≡ ∃ x,y,i,T. i: : c◪〈T〉 ∗ b: : bname◪〈1, x, y, i〉 ∧ T ≥ 30

 ≡ ∃ x,y,i,T. i: : c■〈T〉 * b: : bname◪〈3, x, y, i〉 ∧ T ≥ 30

 ≡ ∃ x, y, i, T. ∗ b: : bname◩〈3, x, y, i〉

This pictorial representation is used to express the pre- and postconditions for a given

4. BARRIER VERIFICATION 73

0: {x ::c `〈0 〉 ∗ y ::c `〈0 〉 ∗ i ::c `〈0 〉 ∗ b::bname `〈0 , x , y , i〉}

0’: {x ::c
?〈0 〉 ∗y ::c

?〈0 〉 ∗i ::c ?〈0 〉 {x ::c
? 〈0 〉 ∗y ::c

? 〈0 〉 ∗i ::c? 〈0 〉
∗b::bname

?〈0 , x , y , i〉} ∗b::bname
? 〈0 , x , y , i〉}

1: barrier b; barrier b; // b transitions 0→1

2: while i.val < 30 { while i.val < 30 {

3: x.val := i.val + 1; y.val := i.val + 2;

4: barrier b; barrier b; // b transitions 1→2

5: i.val := (x.val+2∗y.val);

6: barrier b; barrier b; // b transitions 2→1

} }
7: barrier b; barrier b; // b transitions 1→3

8: i.val := 0;
.

A

C

A
A

Spec1

post

T

Spec2

post
3

3 ∧ T≥30

∧ T≥30 Spec1

pre T

T Spec2

pre
1

1 ∧ T≥30

 i b-state

1 2

0

3

Spec1

pre A C T

A C T Spec2

pre
0

0

Spec1

post C T
 T Spec2

post
1

1

X Y i b-state

2

2

Spec1

post
C T

C Spec2

post
∧ T<30

Spec1

pre
 C T

X Y i b-state

 T Spec2

pre
∧ T<30 1

1 ∧ T<30

Spec2

post
Spec1

post
C T

A

 T

Spec1

pre

A

T

C

Spec2

pre

X Y i b-state

1

1

2

2

A

A

Figure 4.1: Example: Code and Barrier Diagram

74 4. BARRIER VERIFICATION

barrier transition. Each row is a pictorial representation (values, barrier states, and shares)

of a formula in separation logic as indicated above. In the above pictorial representation, the

preconditions are given in the upper block (one per row) and the postconditions in the lower

block.

In our pictorial representation, each row is associated with a specification; specification

Spec1 is a pair of the precondition Specpre1 and the postcondition Specpost1 , etc. A barrier that

is waiting for n threads will have n specs; n can be less than the total number of threads. We

do not require that a given thread always satisfies the same specification each time it reaches a

given barrier transition.

Note that only the permissions on the memory cells change during a transition; the contents

(values) do not.1 The exception to this is the special column on the right side, which denotes

the assertion associated with the barrier itself. As the barrier transitions, this value changes

from the previous state to the next; we require that the sum of the preconditions includes the

full share of the barrier assertion to guarantee that no thread has an out-of-date view of the

barrier’s state. Observe that all of the preconditions join together, and, except for the state of

the barrier itself, are exactly equal to the join of the postconditions.

Each thread owns part of the entire state, described on line 0. The partitioning is given on

line 0’, with the left thread (A) and right thread (B) owning the shares ?and ? , respectively

of each resource.

The real action starts with the barrier call on line 1, which ensures that both threads start at

the same time. Thread A satisfies spec 1 and thread B satisfies spec 2. Afterwards, thread A

has full ownership over x and thread B has full ownership over y; the ownership of i remains

split between A and B. While the ownership of the barrier is unchanged, it is now in state 1.

We then enter the main loop on line 2. On line 3, both threads read from the shared cell

i and both threads update their fully-owned cell. The barrier call on line 4 ensures that these

1We use the same quantified variable names before and after the transition because an outside observer can tell
that the values are the same. A local verification can use ghost state to prove the equality; alternatively we could
add the ability to move the quantifier to other parts of the diagram, e.g., over an entire pre-post pair.

4. BARRIER VERIFICATION 75

updates have been completed before the threads continue. Since the value T at memory location

i is less than 30, only the 1–2 transition is possible; the 1–3 transition requires T≥ 30. Thread

A satisfies spec 1 and thread B satisfies spec 2; afterwards, both threads have partial shares of

x and y, thread A has the full share of i; the barrier is in state 2.

On line 5 , thread A updates cell i. The barrier on line 6 ensures that the update on line

5 has completed before the threads continue; thread A satisfies spec 2 while thread B satisfies

spec 11. Afterwards, the threads have the same permissions they had on entering the loop: A

has full ownership of x, B has full ownership of y, and they share ownership of i; the barrier is

again in state 1.

After 30 iterations, the loop exits and control moves to the barrier on line 7. Observe that

since the (shared) value T at memory location i is greater than or equal to 30, only the 1–3

transition is possible; the 1–2 transition requires T< 30. Thread A satisfies spec 1 while thread

B satisfies spec 2; afterwards, both threads are sharing ownership of x, y (since the transition

from 1 to 3 does not mention x and y, they are unchanged). Thread A has full permission over

the condition variable i; the barrier is in state 3. Finally, on line 8, thread A updates i; the

barrier on line 8 ensures that thread B’s read of i associated with the while condition test on

line 2 has already occurred.

4.3 Barrier Definitions and Consistency Requirements

Conceptually, a barrier definition is as a set of barrier states, each barrier state containing a set

of possible transitions described by specifications. In this section we use two data structure

types, one for barrier transitions and one for barrier definitions in order to clearly describe

and group the consistency requirements imposed on barrier definitions. The two structures are

outlined in Figure 4.2.

1Note that the threads are not constrained by the rules of our logic to always satisfy the same spec for a given
transition.

76 4. BARRIER VERIFICATION

BarDef ≡ { bd bname : String barrier id
(barrier definition) bd limit : Nat # of threads

bd transitions : list BarSpecList} transition list
BarSpecList ≡ {bt ns : Nat next state
(transition) bt cs : Nat current state

bt specs : list (assert× assert)} pre/post pairs

Figure 4.2: Barrier Definitions

Definition 4.3.1 (Wellformed barrier definitions). A barrier definition (BarDef) consists of a

barrier name, the number of threads synchronized, and a transition list; such that all transitions

are well-formed and for any given state, outgoing transitions are mutually exclusive.

Definition 4.3.2 (Wellformed barrier transition). A transition (BarSpecList) contains a bar-

rier name (bname), the current state identifier (cs), a next state identifier (ns), and the list of

precondition/postcondition pairs (the spec list bt specs). We require that:

1. the length of list of specs (the bt specs list) matches the limit in the containing BarDef.

1

2. all of the pre/postconditions in the spec list ignore the store (stack), focusing only on the

memory and barrier map. Since stores are private to each thread (on a processor these

would be registers), it does not make sense for them to be mentioned in the “public”

pre/post conditions.

3. all of the preconditions in the spec list are precise. Precision is a technical property

involving the identifiability of states satisfying an assertion. An assertion P is precise

when:
σ1 ⊕ σ2 = σ3 σ1 |= P σ′1 ⊕ σ′2 = σ3 σ′1 |= P

σ1 = σ′1

1A command to dynamically alter the number of threads managed by a barrier might allow different
states/transitions to wait for different numbers of threads. However, in this proposal we do not consider such a
command.

4. BARRIER VERIFICATION 77

That is, P can hold on at most one substate of an arbitrary state σ3. 1

4. each precondition P includes some positive share of the barrier assertion with b, cs and

−→v , i.e., ∃π. P ⇒ > ∗ b::bnameπ〈cs,−→v 〉.

5. the sum of the preconditions must equal the sum of the postconditions, except for the

state of the barrier; moreover, the sum of the preconditions must include the full share of

the barrier, that is the individual shares of barrier b owned by the threads synchronizing

on b must add-up to the full share ` (equation (4.2), repeated here):

∗
i
Prei = F ∗ b::bname `〈cs,−→v 〉

∗
i
Post i = F ∗ b::bname `〈cs,−→v 〉

Item 1 is simple bookkeeping; items 2–4 are similar to technical requirements present in

other variants of concurrent separation logic [80, 50, 43]. As previously mentioned, property 5

of Definition 4.3.2 is the fundamental insight of this approach .

Although the requirement that assertions are ”tokens” might seem a too restrictive, in prac-

tice it did not prove to be a hindrance on barrier reasoning. In particular during our experiments

it has not affected the relative completeness of our reasoning. Furthermore, we postulate that

”token” assertions are expressive enough to maintain relative completeness.

We define the function lookup spec in order to simplify the lookup of a spec in a BarDef:

lookup spec(bd , cs,ns, spec) returns the pre/post pair on position spec in the spec list corre-

sponding to the transition from state cs to state ns in barrier definition bd .

Using this notation, we can express the important requirement that all transitions from the

1Precision may not be required; another property (tentatively christened “token”) that might serve would be if,
for any precondition P , P ∗ P ≡ false. Note that precision in conjunction with item (3) implies P is a token.

78 4. BARRIER VERIFICATION

barrier state cs of the barrier definition bd are mutually exclusive:

∀tr1, tr2, spec1, spec2, pre1, pre2.

tr1 6= tr2 ∧ lookup spec(bd , cs, tr1, spec1) = (pre1,) ∧

lookup spec(bd , cs, tr2, spec2) = (pre2,) ⇒

(> ∗ pre1) ∧ (> ∗ pre2) ≡ false

In other words, it is impossible for any of the preconditions of more than one transition (of a

given state) to be true at a time. The simplest way to understand this is to consider the 1–2 and

1–3 transitions in the example program. The 1–2 transition requires that the value in memory

cell i be strictly less than 30; in contrast, the 1–3 transition requires that the same cell contains a

value greater than or equal to 30. Plainly these are incompatible; but in fact the above property

is stronger: both of the specs on the 1–2 transition, and both of the specs on the 1–3 transition

include the incompatibility. Thus, if thread A takes transition 1–2, it knows for certain that

thread B cannot take transition 1–3. This way we ensure that both threads always agree on the

barrier’s current state.

4.4 Hoare Logic

In this section we extend the verification rules presented in §3.3 to include barrier support. Our

Hoare judgment has the form Γ ` {P} c {Q}, where Γ is a list of barrier definitions as given in

§4.3, P and Q are assertions in separation logic, and c is a command. Our Hoare rules come in

three groups: standard Hoare logic (Skip, If, Assignment, Consequence); standard separation

logic (Frame, Store, Load, New, Free); and the barrier rule. While the first two groups are

rather standard the highlight of this proposal is the barrier rule, as given below:

Γ[b] = bd lookup spec(bd , cs, tr , spec) = (P,Q)

Γ ` {P} barrier b {Q} Barrier

4. BARRIER VERIFICATION 79

The Hoare rule for barriers is so simple that at first glance it may be hard to understand. The

ghost variables for the current state cs , transition tr , and specification spec appear to be free in

the lookup spec! However, things are not quite as unconstrained as they initially appear. Recall

from §4.3 that one of the consistency requirements for the precondition P is that P implies an

assertion about the barrier itself: P ⇒ Q ∗ b::bnameπ〈cs,−→v 〉; thus at a given program point

we can only use transitions and specifications from the current state. Similarly, recall from §4.3

that since the transitions are mutually exclusive, tr is uniquely determined.

This leaves the question of the uniqueness of spec. If a thread only satisfies a single pre-

condition, then the spec spec is uniquely determined. Unfortunately, it is simple to construct

programs in which a thread enters a barrier while satisfying the preconditions of multiple specs.

What saves us is that we are developing a logic of partial correctness. Since preconditions to

specs must be precise and nonempty (i.e., token), only one thread is able to satisfy a given

precondition at a time. The pigeonhole principle guarantees that if a thread holds multiple pre-

conditions then some other thread will not be able to enter the barrier; in this case, the barrier

call will never return and we can guarantee any postcondition.

We now apply the Barrier rule to the barrier calls in line 6 from our example program; the

80 4. BARRIER VERIFICATION

lookup specs are direct from the barrier state diagram:

Thread A

lookup spec(b, 2, 1, 2) = (P,Q)

P = x ::c
?〈A〉 ∗ y ::c

?〈C 〉 ∗ i ::c `〈T 〉∗b::bname
?〈2 , x , y , i〉

Q = y ::c `〈C 〉 ∗ i ::c ?〈T 〉∗b::bname
?〈1 , x , y , i〉

Γ ` {P} barrier b {Q}

Thread B

lookup spec(b, 2, 1, 1) = (P,Q)

P = x ::c
? 〈A〉 ∗ y ::c

? 〈C 〉∗b::bname
? 〈2 , x , y , i〉

Q = x ::c `〈A〉 ∗ i ::c? 〈T 〉∗b::bname
? 〈1 , x , y , i〉

Γ ` {P} barrier b {Q}

Note that in this line of the example program, the frame is emp in both threads and that in the

retrieved pre/post conditions (P, Q) variables x, y, i, A, C, T are existentially quantified over

P and Q respectively. However, through the common view of the barrier predicate for b it is

ensured that the bindings for x, y and i are consistent in the precondition P and postcondition

Q.

4.5 Soundness Results

This section outlines the machinery developed for proving the soundness of our verification

logic. We start by adding more comprehensive , albeit virtual, resource tracking features to the

operational semantic presented earlier1. We outline the Coq proof of soundness for our veri-

fication logic with respect to the unerased semantics and finally we observe that the unerased

semantic is a conservative approximation of the erased one, thus showing that the soundness

result holds for both semantics.

1We use the term unerased for the resulting resource-aware concurrent operational semantics.

4. BARRIER VERIFICATION 81

Various complex yet unrelated language features have already been properly formalized

and their handling proved sound [4, 51] therefore including them in our proofs would not

generate any ground breaking new insights with respect to the problem at hand but would serve

only to clog-up the proof. In order to simplify the proof machinery, we discard several of the

Core−U features orthogonal to the core issue of exception and barrier handling. Therefore we

maintain in the programming language the following commands: skip (do nothing, syntactic

sugar for norm#TRUE), x := e (local variable assignment), x := [e] (load from memory),

[e1] := e2 (store to memory), x:= new e (memory allocation), free e (memory deallocation),

if e then c1 else c2 (if-then-else),e1#e2 (sets current control flow type and return value),

try e1 catch (ft[@v1] v2) e2 and barrier b (wait for barrier b).

We define five kinds of (tagged) values v: TRUE, FALSE, ADDR(N), DATA(N) and

FLOWS(N list). FLOWS capture a flow type value, represented as a positive integer or an

embedding of such values as lists of naturals. We have two (tagged) expressions e: C(v) and

V(x), where x are local variable names. For simplicity, we model barrier names as positive

integers. numbers, bname ∈ N.

We also restrict the assertion language to: points-to assertions (e1
π7−→ e2), barrier assertions

and flow assertions.

We follow the model presented in §2.4 and interpret the assertions with regard to thread

states σ, triples of a store, heap, and barrier map (σ = (s, h, b)). The fractional points-to

assertion, e1
π7−→ e2, means that the expression e1 is pointing to an address a in memory; a is

owned with positive share π, and contains the evaluated value v of e2. The fractional points-to

assertion does not include any ownership of the break. The barrier assertion, b::bnameπ〈s〉,

means that the barrier b, owned with positive share π, is in state s. For simplicity but without

a great loss of generality, we will assume that the set of shared variables is globally fixed

for each barrier instance, therefore the barrier assertions have only one argument, the barrier

state. Tracking these extra arguments would just serve to burden the proof with extra variable

renaming tracking. Flow assertions describe the current flow type. By convention, we use one

82 4. BARRIER VERIFICATION

fixed location in the stack as a special register recording the current flow indicated by the flow

variable.

Our expressions e are evaluated only in the context of the store; we write s ` e ⇓ v to

mean that e evaluates to v in the context of the store s. We denote the empty heap (which

lacks ownership for both all memory locations and the distinguished break location) by h0.

Finally, the barrier map b is a partial function from barrier numbers to pairs of barrier states

(represented as natural numbers) and positive shares; we denote the empty barrier map by b0.

An assertion is a function from states to truth values. As is common, we define the

usual logical connectives via a straightforward embedding into the metalogic; for example,

the object-level conjunction P ∧Q is defined as λσ. (Pσ) ∧ (Qσ). We will adopt the conven-

tion of using the same symbol for both the object-level operators and the meta-level operators

to avoid symbol bloat; it should be clear from the context which operator applies in a given

situation. We provide all of the standard connectives (>,⊥,∧,∨,⇒,¬,∀,∃).

We model the connectives of separation logic in the standard way:

emp = λ(s, h, b). h = h0 ∧ b = b0

P ∗ Q = λσ. ∃σ1, σ2. σ1 ⊕ σ2 = σ ∧ P (σ1) ∧ Q(σ2)

e1
π7−→ e2 = λ(s, h, b). ∃a, v. (s ` e1 ⇓ ADDR(a)) ∧ (s ` e2 ⇓ v) ∧

b = b0 ∧ h(a) = (v, π) ∧ dom(h) = {a} ∧ break(h) = @

barrier(bn, π, s) = λ(s, h, b). h = h0 ∧ b(bn) = (s, π) ∧ dom(b) = {bn}

flow (e) = λ(s, h, b). h = h0 ∧ b = b0 ∧ ∃fl. (s ` e ⇓ FLOWS(fl)

∧ s(0) = FLOWS(fl))

We also lift program expressions into the logic: e ⇓ v, which evaluates e with σ’s store (i.e.,

λ(s, h, b). h = h0 ∧ b = b0 ∧ s ` e ⇓ v); [e], equivalent to e ⇓ TRUE; and x = v, equivalent to

V(x) ⇓ v. These assertions have a “built-in” emp.

4. BARRIER VERIFICATION 83

4.5.1 Unerased Semantics

In this section we introduce the unerased operational semantics which we use to prove the

soundness of the verification logic. As with the erased version presented in Chapter 2 our

unerased semantics is divided into three parts: purely sequential, concurrent and oracle. The

main changes are related to the purely sequential and the concurrent semantics.

Purely sequential semantics. The bulk of the unerased purely sequential semantics is iden-

tical to the one presented in §2.3.2. The only “tricky” part is that the machine gets stuck if one

tries to write to a location for which one does not have full permission or read from a location

for which one has no permission; e.g., here is the store rule:

s ` e1 ⇓ C(ADDR(n)) s ` e2 ⇓ v

n < break(h) h(n) = (`, v′) h′ = [n 7→ (`, v)]h(
(s, h, b), [e1] := e2; c

)
7→
(
(s, h′, b), c

) sstep− store

The test that n < break(h) ensures that the address for the store is “in bounds”—that is, less

than the current value of the break between allocated and unallocated memory; since we are

updating the memory we require that the permission associated with the location n be full (`).

We say that this step relation is unerased since these bounds and permission checks are virtual

rather than on-chip.

Concurrent semantics. We define the notion of a concurrent state in Figure 4.3. A concur-

rent state contains a scheduler Ω (modeled as a list of natural numbers), a distinguished heap

called the allocation pool, a list of threads, and a barrier pool1. The allocation pool “owns” all

of the unallocated memory cells and the “break” that indicates the division between allocated

and unallocated cells. Before a thread runs, the allocation pool is transferred into the local heap

1There is also a series of consistency requirements such as the fact that all of the heaps in the threads and barrier
pool join together with the allocation pool into one consistent heap

84 4. BARRIER VERIFICATION

Cstate ≡ { cs sched : list N schedule
cs allocpool : heap alloc pool
cs thds : list Thread thread pool
cs barpool : Barpool} barrier pool

Thread ≡ { th stk : store
th hp : heap
th bs : BarrierMap local view of barrier states
th ctl : conc ctl} running or waiting

conc ctl ≡ | Running(c) executing code c
|Waiting(bn, tr, spec, c) waiting on bn

Barpool ≡ { bp bars : list DyBarStatus dynamic barrier status
bp st : store× heap× BarrierMap} current state

DyBarStatus ≡ { dbs bn : N barrier id
dbs wp : Waitpool waiting thread pool
dbs bd : BarDef}

Waitpool ≡ { wp tr : option N transition id
wp slots : option (list slot) taken slots
wp limit : N
wp st : store× heap× BarrierMap} current state

slot ≡ (thread id× heap× BarrierMap) waiting slot

Figure 4.3: Concurrent state

owned by the thread so that new can transfer a cell from this pool into the local heap of a thread

when required. When a thread is suspended, (what is left of) the allocation pool is transferred

from the threads heap so that it can be passed to the next thread.

A thread contains a (sequential) state (store, heap, and barrier map) and a concurrent

control, which is either Running(c), meaning the thread is available to run command c, or

Waiting(bn, tr , spec, c), meaning that the thread is currently waiting on barrier bn to take

specification spec while making transition tr ; after the barrier call completes the thread will

resume running with command c.

The barrier pool (Barpool) contains a list of dynamic barrier statuses (DBSes) as well as

a state which is the join of all of the states inside the DBSes. Each DBS consists of a barrier

number (which must be its index into the array of its containing Barpool), a barrier definition

4. BARRIER VERIFICATION 85

(from §4.3), and a waitpool (WP). A waitpool consists of a transition option (None before the

first barrier call in a given state; thereafter the unique transition to the next state), a limit (the

number of threads synchronized by the barrier, and comes from the barrier definition in the

enclosing DBS), a slot list, and a state (which is the join of all of the states in the slot list). A

slot is a heap and barrier map (the store is unneeded since barrier pre/postconditions ignore it)

as well as a thread id (the thread from which the heap and barrier map came as a precondition,

and to which the postcondition will return).

The concurrent step relation has the form (Ω, ap, thds, bp) ; (Ω′, ap′, thds ′, bp′), where

Ω, ap, thds , and bp are the scheduler, allocation pool, thread list, and barrier pool respectively.

The concurrent step relation has only four cases; the following case CStep-Seq is used to run

all of the sequential commands:

thds[i] = (s, h, b,Running(c)) h⊕ ap = h′
(
(s, h′, b), c

)
7→
(
(s′, h′′, b), c′

)
h′′′ ⊕ ap′ = h′′ isAllocPool(ap′) thds ′ = [i 7→ (s′, h′′′, b,Running(c′))]thds

(i :: Ω, thds, ap, bp) ; (i :: Ω, thds ′, ap′, bp) CStep-Seq

That is, we look up the thread whose thread id is at the head of the scheduler, join in the

allocation pool, and run the sequential step relation. If the command c is a barrier call then

the sequential relation will not be able to run and so the CStep-Seq relation will not hold;

otherwise the sequential step relation will be able to handle any command. After we have

taken a sequential step, we subtract out the (possibly diminished) allocation pool, and reinsert

the modified sequential state into the thread list. We observe that the resulting semantics does

not allow interleavings on the non-synchronization related code sequences. Since we quantify

over all schedulers and our language does not have input/output, it is sufficient to utilize a

non-preemptive scheduler; for further justification on the use of such schedulers see [50].

The second case of the concurrent step relation handles the case when a thread has reached

86 4. BARRIER VERIFICATION

the last instruction, which must be a skip:

thds[i] = (, , ,Running(skip))

(i :: Ω, thds, ap, bp) ; (Ω, thds, ap, bp)
CStep-Exit

When we reach the end of a thread we simply context switch to the next thread.

The interesting cases occur when the instruction for the running thread is a barrier call; here

the CStep-Seq rule does not apply. The concurrent semantics handles the barrier call directly

via the last two cases of the step relation; before presenting these cases we will first give a

technical definition called fill barrier slot:

thds[i] = (stk, hp, bs, (Running (barrier bn; c)))

lookup spec(bp.bp bars[bn], tr, spec) = (pre, post)

hp′ ⊕ hp′′ = hp bs′ ⊕ bs′′ = bs pre(stk, hp′, bs′)

bp inc waitpool (bp, bn, tr, spec, (i, (hp′, bs′))) = bp′

thds′ = [i→ (stk, hp′′, bs′′, (Waiting (bn, tr, spec, c)))] thds

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)

The predicate fill barrier slot gives the details of removing the (sub)state satisfying the precon-

dition of the barrier from the thread’s state, inserting it into the barrier pool, and suspending

the calling thread. The predicate bp inc waitpool does the insertion into the barrier pool; the

details of manipulating the data structure are straightforward but lengthy to formalize.

We are now ready to give the first case for the barrier, used when a thread executes a barrier

but is not the last thread to do so:

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)

¬ bp ready (bp′, bn)

((i :: Ω), ap, thds, bp) ; (Ω, ap, thds′, bp′)
CStep-Suspend

4. BARRIER VERIFICATION 87

After using fill barrier slot, CStep-Suspend checks to see if the barrier is full by counting the

number of slots that have been filled in the appropriate wait pool by using the bp ready predi-

cate, and then context switches.

If the barrier is ready then instead of using the CStep-Suspend case of the concurrent step

relation, we must use the CStep-Release case:

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)

bp ready (bp′, bn)

bp transition (bp′, bn, out) = bp′′

transition threads (out, thds′) = thds′′

((i :: Ω), ap, thds, bp) ; (Ω, ap, thds′′, bp′′)
CStep-Release

The first requirement of CStep-Release is exactly the same as CStep-Suspend: we suspend the

thread and transfer the appropriate resources to the barrier pool. However, now all of the threads

have arrived at the barrier and so it is ready. We use the bp transition predicate to go through

the barrier’s slots in the waitpool, combine the associated heaps and barrier maps, redivide

these resources according to the barrier postconditions, and remove the associated resources

from the barrier pool into a list of slots called out. Finally, the states in out are combined with

the suspended threads, which are simultaneously resumed by the transition threads predicate.

The formal definitions of the bp transition and transition threads predicates are extremely

complex and very tedious and we refer interested readers to the mechanization.

4.5.2 Soundness Proof Outline

Our soundness argument falls into several parts. We define our Hoare tuple in terms of our

oracle semantics using a definition by Appel and Blazy [4]; this definition was designed for

a sequential language and we believe that other standard sequential definitions for Hoare tu-

88 4. BARRIER VERIFICATION

ples would work as well1. We then prove (in Coq) all of the Hoare rules for the sequential

instructions; since the os-seq case of the oracle semantics provides a straight lift into the purely

sequential semantics this is straightforward.

Next, we prove (in Coq) the soundness for the barrier rule. This turns out to be much

more complicated than a proof of the soundness of (non-first-class) locks and took the bulk

of the effort. There are two points of particular difficulty: first, the excruciatingly painful

accounting associated with tracking resources during the barrier call as they move from a source

thread (as a precondition), into the barrier pool, and redistribution to the target thread(s) as

postcondition(s). The second difficulty is proving that a thread that enters a barrier while

holding more than one precondition will never wake up; the analogy is a door with n keys

distributed among n owners; if an owner has a second key in his pocket when he enters then

one of the remaining owners will not be able to get in.

After proving the Hoare rules for the sequential language statements sound with respect

to the oracle semantics, the remaining task is to prove oracle soundness. That is, to connect

the oracle semantics to the concurrent semantics. Oracle soundness says that if each of the

threads on a machine is safe with respect to the oracle semantics, then the entire concurrent

machine combining the threads together is safe. The (very rough) analogy to this result in

Brookes’ semantics is the parallel decomposition lemma. Here we use a progress/preservation

style proof closely following that given in [50, pp.242–255]; the proof was straightforward and

quite short to mechanize.

A direct consequence of oracle soundness is that if each thread is verified with the Hoare

rules, and is loaded onto a single concurrent machine, then if the machine does not get stuck

and if it halts then all of the postconditions hold.

Erasure One can justly observe that our concurrent semantics is not especially realistic; e.g.,

we: explicitly track resource ownership permissions (i.e., our semantics is unerased); have

1We change Appel and Blazy’s definition so that our Hoare tuple guarantees that the allocation pool is available
for verifying the Hoare rule for x:= new e.

4. BARRIER VERIFICATION 89

an unrealistic memory allocator/deallocator and scheduler; ignore issues of byte-addressable

memory; do not store code in the heap; and so forth. We believe that we could connect our

semantics to a more realistic semantics that could handle each of these issues, but most of

them are orthogonal to barriers. For brevity we will comment only on erasing the resource

accounting since it forms the heart of our soundness result.

We have defined, in Coq, the erased sequential and concurrent semantics presented in

§2.3.2. An erased memory is simply a pair of a break address and a function from addresses

to values. The run-time state of an erased barrier is simply a pair of naturals: the first tracking

the number of threads currently waiting on the barrier, and the second giving the final num-

ber of threads the barrier is waiting for. We define a series of erase functions that take an

unerased type (memory/barrier status/thread/etc.) to an erased one by “forgetting” all permis-

sion information. The sequential erased semantics is quite similar to the unerased one, with the

exception that we do not check if we have read/write permission before executing a load/store.

The concurrent erased semantics is much simpler than the complicated accounting-enabled se-

mantics explained above since all that is needed to handle the barrier is incrementing/resetting

a counter, plus some modest management of the thread list to suspend/resume threads. Crit-

ically, our erased semantics is a computable function, enabling program evaluation. Finally,

we have proved that our unerased semantics is a conservative approximation to our erased one:

that is, if our unerased concurrent machine can take a step from some state Σ to Σ′, then our

erased machine takes a step from erase(Σ) to erase(Σ′).

4.6 Tool Support for Barriers

We have integrated our program logic for barriers into HIP/SLEEK, an existing program veri-

fication toolset [76, 38]. SLEEK is an entailment checker for separation logic and HIP applies

Hoare rules to programs and uses SLEEK to discharge the associated proof obligations.

Currently HIP and SLEEK support all the features in the specification language described

90 4. BARRIER VERIFICATION

in §2.4 except for fractional shares and barrier definitions. We proceeded as follows:

1. We developed an equational solver over the sophisticated fractional share model of Dock-

ins et al. [28]. Permissions can be existentially or universally quantified and arbitrarily

related to permission constants.

2. We integrated our equational solver over shares into SLEEK to handle fractional permis-

sions on separation logic assertions (e.g., points-to, etc.). We believe that SLEEK is the

first automatic entailment checker for separation logic that can handle a sophisticated

share model (although some other tools can handle simpler share models).

3. We developed an encoding of barrier definitions (diagrams) in SLEEK, which now auto-

matically verifies the side conditions from §4.3.

4. We modified HIP to recognize barrier definitions (whose side conditions are then verified

in SLEEK) and barrier calls and apply the barrier rule presented in §4.4.

Next we describe our equational solver for the Dockins et al. share model before giving a

more technical background to the HIP/SLEEK system and describing our modifications to it in

detail.

4.6.1 A Solver for Shares

SLEEK discharges the heap-related proof obligations but relies on external decision procedures

for the pure logical fragments it extracts from separation logic formulae. For example, SLEEK

utilizes Omega for Presburger arithmetic, Redlog for arithmetic in R, and MONA for monadic

second-order logic. Adding fractional permissions required an appropriate equational solver

for fractional shares.

Solvers for simple fraction share models such as rationals between 0 and 1 need only solve

systems of linear equations. The more sophisticated fractional share model of Dockins et al.

[28] requires a more sophisticated solver.

4. BARRIER VERIFICATION 91

Dockins et al. represent shares as binary trees with boolean-valued leaves. The full share

` is a tree with one true leaf • and the empty share @ is a tree with one false leaf ◦. The

left-half share ?is a tree with two leaves, one true and one false: • ◦; similarly, the right-half

share ? is a tree with two leaves, one false and one true: ◦ •. The trees can continue to be split

indefinitely: for example, the right half of ?is ◦ • ◦. Joining is defined by structural induction

on the shape of the trees with base cases ◦ ⊕ ◦ = ◦, • ⊕ ◦ = •, and ◦ ⊕ • = • (emphasis: ⊕ is

partial). When two trees do not have the same shape, they are unfolded according to the rules

• ∼= • • and ◦ ∼= ◦ ◦; for example:

◦ • ◦ ⊕ • ◦ ◦ • = ◦ • ◦ ◦ ⊕ • ◦ ◦ • = • • ◦ • = • ◦ •

SLEEK takes a formula in separation logic with fractional shares and extracts a specialized

formula over strictly positive shares whose syntax is as follows:

φ ::= ∃v.φ | φ1 ∨ φ2 | φ1 ∧ φ2 | v1 ⊕ v2 = v3 | v1 = v2 | v = χ

Our share formulae φ contain share variables v, existentials ∃, conjunctions ∧, disjunctions ∨,

join facts⊕, equalities between variables, and assignments of variables to constants χ. The tool

also recognizes v∈[χ1, χ2], pronounced “v is bounded by χ1 and χ2”, which is semantically

equal to:

((v = χ1) ∨ (∃v′. χ1 ⊕ v′ = v)) ∧ ((v = χ2) ∨ (∃v′′. v ⊕ v′′ = χ2))

Disjunctions are needed because share variables can only be instantiated with positive shares:

∀v. 6 ∃v′.v ⊕ v′ = v. Handling bounds checks “natively” rather than compiling them into se-

mantic definitions increases efficiency by reducing the number of existentials and disjunctions.

SLEEK asks the solver questions of the following forms:

92 4. BARRIER VERIFICATION

1. (UNSAT) Is a given formula φ unsatisfiable?

2. (∃-ELIM) Given a formula of the form ∃v. φ(v), is there a unique constant χ such that

∃v. φ(v) is equivalent to φ(χ)?

3. (IMPL) Given two formulae φ1 and φ2, does φ1 entail φ2?

All of these questions can be reduced to solving a series of constraint systems whose equa-

tions are of the form v1 ⊕ v2 = v3, v∈[χ1, χ2], and v = χ. Solving constraint systems in sep-

aration algebras (i.e., cancellative partial commutative monoids) is not as straightforward as it

might seem because many of the traditional algebraic techniques do not apply. Our lightweight

constraint solver finds an overapproximation to the solution, returning either (a) the constant

UNSAT or (b) for each variable vi either an assignment vi = χ or a bound vi ∈ [χ1, χ2] such

that:

• (FALSE) If the algorithm returns UNSAT, then the formula is unsatisfiable. The algo-

rithm will return UNSAT if it discovers a bound whose “lower value” is higher than its

“upper value”, or if it discovers a falsehood (e.g., after constant propagation one of the

equations becomes `⊕ ` = `).

• (COMPLETE) All solutions to the system (if any) lie within the bounds.

• (SAT-PRECISE) A solution is precise when all variables are given assignments. If a

solution is precise, then the formula is satisfiable.

Note that, for this presentation we have chosen an incomplete but fast method for solving

these constraints. However in a separate investigation, we have proven the problem to be

decidable and provided the first sound and complete solver, albeit considerable slower, for

constraints over this share domain [66].

SLEEK queries are given in share formulae that must be transformed into the equational

systems understood by our constraint solver. To do this transformation, first we put the relevant

4. BARRIER VERIFICATION 93

formulae into disjunctive normal form (DNF). Each disjunct becomes an independent system

of equations. Given one disjunct we form this system by simply treating each basic constraint

(i.e., v = v′, v = χ, v ∈ [χ1, χ2], and v1 ⊕ v2 = v3) as an equation. Our solver approximates

each system independently and can then answer SLEEK’s questions as follows:

• (UNSAT): Return False when the algorithm returns UNSAT for each constraint system

obtained from the formula; otherwise return True.

• (∃-ELIM): If the variable v has the same assignment in all constraint systems derived

from the DNF, then return that value. It is sound to substitute that value for v and elimi-

nate the existential. (If the formula is satisfiable, then that is the unique assignment that

makes it so; if the formula is false then after the assignment it will still be false.)

• (IMPL): Return True only when either:

– the solver returns UNSAT for all systems derived from the antecedent

– the solver returns a precise solution for each system of equations derived from the

antecedent, and the solver also returns the same precise solution for at least one of

the consequent systems.

The constraint solver works by eliminating one class of constraints at a time:

1. First we substitute v = χ constraints into the remaining equations.

2. We handle ⊕ constraints with exactly one variable as follows:

• χ1 ⊕ χ2 = v: we check if the join is defined, and if so substitute the sum for v in

the remaining equations; otherwise, we return UNSAT.

• χl ⊕ v = χr or v ⊕ χl = χr: we check if χr contains χl, and if so substitute the

difference χr−χl for v in the remaining equations; otherwise return UNSAT. (“−”

has the property that if χ1 − χ2 = χ3 then χ3 ⊕ χ2 = χ1).

94 4. BARRIER VERIFICATION

3. Constraints involving constants (χ1 ⊕ χ2 = χ3 and χ∈[χ1, χ2]) are dismissed if the

equality/inequalities hold; otherwise return UNSAT.

4. We attempt to dismiss certain kinds of unsatisfiable systems via a consistency check as

follows. We first compute the transitive closure of variable substitutions, resulting in

facts of the form v1⊕ . . .⊕vn⊕χ1⊕ . . .⊕χm = χ. Nonempty shares cannot join with

themselves. Therefore, if the vi contain duplicates we return UNSAT. We also return

UNSAT if the constants χi do not join or if χ does not contain χ1 ⊕ . . .⊕ χm.

5. Variables in the remaining constraints are given initial domains of (@, `).

6. Each ∈ constraint is used to restrict the domain of its corresponding variable.

7. At this point only a1 ⊕ a2 = a3 constraints involving at least two variables remain. The

algorithm then proceeds by iteratively selecting an equation, checking it for consistency,

and then refining the associated domains via a forward and backward propagation. The

algorithm iterates until either a fixpoint is reached or a consistency check fails. To check

an equation for consistency, the algorithm verifies that:

• for each variable, the lower bound is less than the upper bound

• the current lower bounds of the LHS variables join together

• the join of the LHS lower bounds is below the RHS upper bound

• the join of the LHS upper bounds is above the RHS lower bound

Forward propagation consists of (Fa) lowering the upper bound of the RHS by intersect-

ing away any subtree that does not appear in the upper bounds of the LHS, and (Fb)

increasing the lower bound of the RHS by unioning all subtrees present in the lower

bounds in the LHS. Backwards propagation consists of (Ba) lowering the upper bounds

of the LHS by intersecting away any subtree that does not appear in the upper bound on

the RHS. Increasing the lower bounds of the LHS (Bb) is trickier since we do not know

4. BARRIER VERIFICATION 95

which operand should be increased. There are several possibilities we could have taken,

but we selected the simplest: we simply leave the bounds as they were unless one of the

operands has been determined to be a constant, in which case we can calculate exactly

what the lower bound for the other variable should be. After each forward/backwards

propagation, if we have refined a domain to a single point, the variable is substituted for

a constant value of that point in the remaining equations.

Once we reach a fixpoint, the resulting variable bounds represent an over approxi-

mation of the solution.

4.6.2 An Introduction to SLEEK

SLEEK checks entailments in separation logic with user-defined predicates [78]. The an-

tecedent may cover more of the heap than the consequent, in which case SLEEK returns this

residual heap together with the pure portion of the antecedent. SLEEK can also discover in-

stantiations for certain existentials in the consequent, a feature that we elide here; details may

be found in [20, 38].

The core of the SLEEK entailment works by algorithmically discharging the heap obliga-

tions and then referring any remaining pure constraints to other provers. Entailments in SLEEK

are written as follows: ∆A`κV QC ∗∆R, which is shorthand for κ∗∆A`∃V ·(κ∗QC) ∗∆R The

entailment checks whether the consequent heap nodes QC are covered by heap nodes in an-

tecedent ∆A, and if so, SLEEK returns the residual heap ∆R, which consists of the antecedent

nodes that were not used to cover QC . The implementation performs a proof search and thus

returns a set of residues. For simplicity, assume that only one residue is computed. In the en-

tailment, κ is the history of nodes from the antecedent that have been used to match nodes from

the consequent, V is the list of existentially quantified variables from the consequent. Note that

κ and V are discovered iteratively: entailment checking begins with κ = emp and V = ∅.

The initial system behavior was described in detail in [78, 20, 38]. The main rules for

matching, folding, unfolding, and discharging of pure constraints are given here. The initial

96 4. BARRIER VERIFICATION

XPure(emp) ≡ (true, ∅)

IsData(c)

XPure(p::c〈−→v 〉) ≡ (p6=0; {p})

IsPred(c) (pred c〈−→v 〉 ≡ Q inv (π1, π2)) ∈ V
XPure(p :: c〈−→vp〉) ≡ ([p/self,−→vp/−→v]π1, [p/self,−→vp/−→v]π2)

XPure(κ1) ≡ (f1, s1) XPure(κ2) ≡ (f2, s2)

XPure(κ1∗κ2) ≡ (f1 ∧ f2, s1 ∪ s2)

Figure 4.4: XPure : Translating to Pure Form

main entailment checking rules are given in Figure 4.5. Later we show how we modified these

rules to accommodate fractional shares.

Entailment between separation formulae is reduced to entailment between pure formulae

by matching heap nodes in the RHS to heap nodes in the LHS (possibly after a fold/unfold).

Once the RHS is pure, the remaining LHS heap formula is soundly approximated to a pair

of pure formula and set of disjoint pointers by function XPure as defined in Figure 4.4. The

functions IsData(c) and IsPred(c) decide respectively if c is a data structure or a predicate.

The procedure successively pairs up heap nodes that it proves are aliased. SLEEK keeps the

successfully matched nodes from the antecedent in κ for better precision in the next iteration.

SLEEK discharges heap obligations in three ways: heap node matching, predicate folding,

and predicate unfolding. All three heap reducing steps start by establishing that there is a heap

node on the LHS of the entailment that is aliased with the RHS heap node that is to be reduced

(p1 = p2). In order to prove the aliasing, the LHS heap together with the previously consumed

nodes are approximated to a pure formula, and together with the LHS pure formula the p1 = p2

implication is checked. Similarly, when a match occurs (rule MATCH), equality between node

arguments needs to be proven.

4. BARRIER VERIFICATION 97

EMP
(ρ, S)=XPure(κ1∗κ)

ρ∧(
∧x 6=y
x,y∈S x 6= y)=⇒∃V·π2

κ1∧π1`κV π2 ∗ (κ1∧π1)

MATCH
fst(XPure(p1 :: c〈−→v1〉∗κ1∗κ))∧π1=⇒p1=p2
κ1∧π1`κ∗p1::c〈

−→v1〉
V κ2∧π2∧(

∧
i(v

i
1 = vi2)) ∗∆

p1 :: c〈−→v1〉∗κ1∧π1`κV (p2 :: c〈−→v2〉∗κ2∧π2) ∗∆

FOLD
IsPred(c2)∧IsData(c1) pred c2〈−→v 〉≡Q inv (π1c2, π

2
c2) ∈ V

fst(XPure(p1 ::c1〈−→v1〉∗κ1∗κ)) ∧ π1=⇒p1=p2
p1 ::c1〈−→v1〉∗κ1∧π1`κ∅ [p1/self,−→v1/−→v]Q ∗∆r

∆r`κV (κ2∧π2) ∗∆

p1 ::c1〈−→v1〉∗κ1∧π1`κV (p2 :: c2〈−→v2〉∗κ2∧π2) ∗∆

UNFOLD
IsPred(c1)∧IsData(c2) pred c1〈−→v 〉≡Q inv (π1c2, π

2
c2) ∈ V

fst(XPure(p1 :: c1〈−→v1〉∗κ1∗κ)) ∧ π1=⇒p1=p2
[p1/self,−→v1/−→v]Q∗κ1∧π1`κV (p2 ::c2〈−→v2〉∗κ2∧π2) ∗∆

p1 :: c1〈−→v1〉∗κ1∧π1`κV (p2 ::c2〈−→v2〉∗κ2∧π2) ∗∆

Figure 4.5: Separation Constraint Entailment

Fold/unfold operations handle inductive predicates in a deductive manner. SLEEK can

unfold a predicate instance that appears in the LHS if the unfolding exposes a heap node that

can match with a node in the RHS. Similarly, several LHS nodes can be folded into a predicate

instance if the resulting predicate instance can be matched with a RHS node. To guarantee

termination, SLEEK needs to ensure that (i) each predicate fold or unfold must be immediately

followed by a match, and (ii) no two fold operations for the same predicate are performed in

order to match one node. These restrictions ensure that each successful fold, unfold, and match

operation decreases the number of RHS nodes. Well-formedness conditions imposed on the

predicate definitions ensure that after a fold or unfold a matching always takes place; these

conditions have been elided for this presentation. The unfold rule presents the replacement

of a predicate instance in which the predicate definition is reduced to a disjunctive form and

98 4. BARRIER VERIFICATION

FXPure(emp, τ) ≡ (true, ∅)
IsData(c) τ ⇒ vf = cs

FXPure(p::cvf 〈−→v 〉, τ) ≡ (p6=0; {(p, cs)})

FXPure(κ1, τ) ≡ (f1, s1) FXPure(κ2, τ) ≡ (f2, s2)

FXPure(κ1∗κ2, τ) ≡ (f1 ∧ f2, s1 ∪ s2)

IsPred(c) (c〈−→v 〉 ≡ Q inv (π1, π2)) ∈ P
τ ⇒ vf = cs π′1 = [p/self]π1 π′2 = {∀v ∈ π2, ([p/self]v, cs)}

XPure(p :: cvf 〈−→v 〉, τ) ≡ (π′1, π
′
2)

Figure 4.6: FXPure: XPure with shares

in which the arguments have been substituted. The fold step requires the LHS to entail the

predicate definition. The residue of this entailment is then used as the new LHS for the rest of

the original entailment. Chin et al. give a more detailed explanation of the SLEEK entailment

process in [20].

4.6.3 Entailment Procedure for Separation Logic with Shares

Adding fractional permissions required several modifications to the entailment process.

• Empty heap. In a separation logic without shares, whenever (∃a, b.x7−→a∗y 7−→b) then

x 6= y. In SLEEK, this fact is captured in the EMP rule, which tries to prove the pure

part of the consequent after enriching the antecedent pure formula with pure information

collected from the previously consumed heap and the remaining LHS heap. It extracts

both the invariants of the heap nodes and constructs a formula that ensures that all point-

ers in the heap are distinct.

Introducing fractional permissions requires the relaxation of this constraint because

∃a, b.x
xf7−→a∗y

yf7−→b implies x 6= y only if the xf and yf shares overlap. We extended

the XPure function to (a) take into account fractional shares constraints, given through

an extra argument τ , and (b) return a pair of a pure formula, and a set of pairings be-

4. BARRIER VERIFICATION 99

FOLD
IsPred(c2)∧IsData(c1) c2〈−→v 〉≡Q inv(π1c2, π

2
c2) ∈ V

fst(FXPure(p1 ::cf11 〈
−→v1〉∗κ1∗κ, τ1)) ∧ π1=⇒p1=p2

Q′ = set shares([p1/self,−→v1/v]Q, f2)

p1 ::cf11 〈
−→v1〉∗κ1∧π1∧τ1`κ∅Q′ ∗∆r

∆r`κrV (κ2∧π2∧τ2) ∗∆

p1 ::cf11 〈
−→v1〉∗κ1∧π1 ∧ τ1`κV (p2 :: cf22 〈

−→v2〉∗κ2∧π2 ∧ τ2) ∗∆

UNFOLD
c1〈−→v 〉≡Q inv(π1c2, π

2
c2) ∈ V IsPred(c1)∧IsData(c2)

fst(FXPure(p1 :: cf11 〈
−→v1〉∗κ1∗κ, τ1)) ∧ π1=⇒p1=p2

Q′ = set shares([p1/self,−→v1/−→v]Q, f1)

Q′∗κ1∧π1∧τ1`κV (p2 ::cf22 〈
−→v2〉∗κ2∧π2∧τ2) ∗∆

p1 :: cf11 〈
−→v1〉∗κ1∧π1∧τ1`κV (p2 ::cf22 〈

−→v2〉∗κ2∧π2∧τ2) ∗∆

Figure 4.7: Folding/Unfolding in the presence of shares

tween pointers and the concrete fractional shares associated with the memory location

the pointers point to. The new formulation for FXPure is given in Figure 4.6. This ex-

tension allowes the EMP rule to be rewritten to enforce inequality only between pointers

that have conflicting shares:

(ρ, S)=FXPure(κ1∗κ, τ)

ρ∧(
∧x 6=y∧(¬∃z·xf⊕yf=z)

(x,xf),(y,yf)∈S ·x 6= y)=⇒∃V·π2
κ1 ∧ π1 ∧ τ1`κV π2 ∗ (κ1 ∧ π1 ∧ τ1)

EMP

• Folding/unfolding. By convention, all the heap nodes abstracted by a predicate instance

are owned with the same fractional permission as the predicate instance. Therefore,

unfolding a node first replaces the permissions of the nodes in the predicate definition

with the permission of that LHS node. Then the updated predicate definition replaces

the predicate instance. Similarly, folding a node replaces the permissions of all nodes in

100 4. BARRIER VERIFICATION

the definition with the permission of that RHS node before trying to entail the predicate

definition. The set shares(Q, v) function sets the permissions of all heap nodes in Q to

v. The new set of rules is shown in Figure 4.7.

• Matching. In order to properly handle a match in the presence of fractional shares, the

entailment process needs to (a) reduce both LHS and RHS nodes entirely, or (b) split the

LHS node and reduce one side, or (c) split the RHS and reduce one side.

(
fst(FXPure(p1 :: cf1〈−→v1〉∗κ1, τ1)) ∧ π1

)
=⇒ p1 = p2

κ′ = κ∗p1 :: cf1〈−→v1〉

ρ = f1=f2 ∧ (
∧
i(v

i
1 = vi2))

κ1 ∧ π1 ∧ τ1`κ
′
V κ2 ∧ π2 ∧ τ2 ∧ ρ ∗∆

p1 :: cf1〈−→v1〉∗κ1 ∧ π1 ∧ τ1`κV (p2 :: cf2〈−→v2〉∗κ2 ∧ π2 ∧ τ2) ∗∆
FULL-MATCH (a)

fst(FXPure(p1 :: cf1〈−→v1〉∗κ1, τ1))∧π1 =⇒ p1=p2

τ ′1 = τ1 ∧ fc1 ⊕ fr1 = f1

κ′ = κ∗p1 :: cfc1〈−→v1〉

ρ = fc1=f2∧(
∧
i(v

i
1 = vi2))

p1 :: cfr1〈−→v1〉∗κ1∧π1∧τ ′1 `κ′V κ2∧π2∧τ2∧ρ ∗∆

p1 :: cf1〈−→v1〉∗κ1∧π1∧τ1`κV (p2 :: cf2〈−→v2〉∗κ2∧π2∧τ2) ∗∆

LEFT-

SPLIT-

MATCH (b)

4. BARRIER VERIFICATION 101

fst(FXPure(p1 :: cf1〈−→v1〉∗κ1, τ1))∧π1 =⇒ p1=p2

V ′ = if f2 ∈ V then V ∪ {fc2, fr2} else V

τ ′1 = if f2 ∈ V then τ1 else (τ1∧fc2 ⊕ fr2 = f2)

τ ′2 = if f2 ∈ V then (τ2∧fc2 ⊕ fr2 = f2) else τ2

κ′ = κ∗p1 :: cf1〈−→v1〉

ρ = f1=fc2∧(
∧
i(v

i
1 = vi2))

κ1∧π1∧τ ′1 `κ
′
V ′ p2 :: cfr2〈−→v2〉∗κ2∧π2∧τ ′2 ∧ ρ∗∆

p1 :: cf1〈−→v1〉∗κ1∧π1∧τ1`κV (p2 :: cf2〈−→v2〉∗κ2∧π2∧τ2) ∗∆

RIGHT-

SPLIT-

MATCH (c)

Because the search can be computationally expensive, we have devised an aggressive

pruning technique. We try to determine to what extent the fractional constraints restrict

the fractional variables. It may be that (a) f1 = f2, in which case only FULL-MATCH

is feasible, or (b) f1 is included in f2, in which case RIGHT-SPLIT-MATCH is feasible,

or (c) f1 includes f2, in which case only

LEFT-SPLIT-MATCH is feasible.

4.6.4 Proving Barrier Soundness

The fractional share solver and enhancements to SLEEK’s entailment procedures discussed

above help with any program logic that needs fractional shares (e.g., concurrent separation

logic with locks, sequential separation logic with read-only data). In contrast, our other en-

hancements are specific to the logic for Pthreads-style barriers. Our initial goal is to automat-

ically check the consistency of barrier definitions—that is, whether a barrier definition meets

the side conditions presented in §4.3. The first step is to describe a barrier diagram to SLEEK.

Although the barrier diagrams presented in §4.3 are intuitive and concise, programs need

a more textual representation. Barrier diagrams describe the possible transitions a barrier state

can make and the specifications associated with those transitions. In a sense, a barrier definition

can be viewed as a disjunctive predicate definition where the body is a disjunction of possible

102 4. BARRIER VERIFICATION

transitions.

SLEEK already contains user-defined predicates so it is easy to introduce the “is a barrier”

assertion bn::bnamevf 〈−→v 〉. We extended SLEEK’s input language to accept barrier diagrams

in the form:

bdef ::= barrier bname[n] < −→v >==
−−−−−−→
transition

transition ::= (from state , to state ,
−−−−−−−−−→
pre-post-spec)

pre-post-spec ::= (Φpre , Φpost)

Where n denotes the number of threads synchronized by any instance of this barrier definition.

We have chosen this rather verbose form in order to allow the input to resemble more the

graphical diagrams presented in the previous sections rather than the more compact form from

Figure 2.5 in §2.4:

[self::]bname〈−→v 〉 ≡
∨

(requires Φpre ensures Φpost)

However the latter form is much more suitable for the verification process. It is straight

forward to translate from the former to the latter formulation and in fact SLEEK does that as a

preprocessing step.

SLEEK can now automatically check the well-formedness conditions on the barrier defini-

tions as follows:

• All transitions must have exactly n specifications, one for each thread

• For each transition, let from and to be the state labels, then:

– for each specification (Φpre , Φpost)

1. Φpre contains a fraction of the barrier in state from:

Φpre ` self :: bnvf 〈from〉 ∗ ∆

2. Φpost contains a fraction of the barrier in state to:

4. BARRIER VERIFICATION 103

Φpre ` self :: bnvf 〈to〉 ∗∆

3. Φpre∗Φpre ` False

The soundness proof assumes that each precondition P is precise. Unfor-

tunately, precision is not very easy to verify automatically. We believe that the

logic will be sound if we can assume the (strictly) weaker property “token”:

P ? P ` False instead of precision. At this stage, our prototype extension to

SLEEK verifies that preconditions are tokens rather than that they are precise.

We are in the process of attempting to update our soundness proof to require

that preconditions be tokens rather than precise; if we are unable to do so then

one solution would be for SLEEK to output a Coq file stating lemmas regard-

ing the precision of each precondition. Users would then be required to prove

these lemmas manually to be sure that their barrier definitions were sound.

In our experience, the Coq proofs of precision were very easily discharged as

compared with the soundness proof of the entire barrier definition. So the sav-

ings from using SLEEK to verify the soundness of a barrier definition should

still be quite substantial. Another choice would be to devise a heuristic al-

gorithm for determining precision; we suspect that such an algorithm could

handle the examples from this chapter.

– the star of all the preconditions contains the full barrier (recall that the entailment

` check in SLEEK can produce a residue)

∗ni=1Φ
i
pre ` self :: bn `〈from〉 ∗∆

– the star of all the postconditions contains the full barrier

∗ni=1Φ
i
post ` self :: bn `〈to〉 ∗∆

– the star of all the preconditions equals the star of all postconditions modulo the

barrier state change for a transition. We check this constraint by carving the full

barrier out of the total heap using the residues ∆pre and ∆post of the entailments

given in the previous constraints. ∆pre and ∆post are then tested for equality by

104 4. BARRIER VERIFICATION

requiring bi-entailment with empty residue. That is, given

∗ni=1Φ
i
pre ` self :: bn `〈from〉∗∆pre

and

∗ni=1Φ
i
post ` self :: bn `〈to〉∗∆post ,

we check

∆pre ` ∆post and ∆post ` ∆pre with empty residues.

– For states with more than one successor, we check mutual exclusion for the pre-

conditions as required by §4.3 by verifying that for any two preconditions of two

distinct transitions must entail False. This check was extremely tedious but SLEEK

can do it easily.

Once SLEEK has verified each of the above conditions, the barrier definition is well-formed

according to the well-formed Definitions 4.3.1 and 4.3.2 given §4.3 (modulo precision).

4.6.5 Extension to Program Verification

Integrating our Hoare rule for barriers into HIP was the easiest part of adding our program

logic to HIP/SLEEK. As mentioned, following the concept of structured specifications [38],

we transform our barrier diagrams into disjunctions of the form

∨
(requires Φpre ensures Φpost),

where the disjunction contains all specifications in all transitions in the barrier definition. The

benefit of such an encoding lies in the insight that SLEEK’s entailment procedure is flexible

enough to discharge entailment obligations even if the consequent is presented in this complex

form [38].

In short and informal, given the entailment ∆ `
∨

(requires Φpre ensures Φpost),

SLEEK will first check which preconditions Φpre are entailed by ∆ , compute the residue

for each entailment, add the corresponding postcondition Φpost to the residue and return the

4. BARRIER VERIFICATION 105

possible outcomes as a disjunctive formula.

With this formulation the barrier rule presented in §4.4 becomes even simpler. In order

to verify a barrier call barrier b, it prescribed two operations: locating the proper barrier

definition in the barrier repository Γ and executing the lookup spec. In HIP these operations

correspond to: first locating in the current state, a node of the form b::bnameπ〈−→v 〉 which indi-

cate that b points to a barrier of type bname; secondly retrieving the bname barrier definition,

in the disjunctive form presented earlier and substituting the formal arguments substituted with

the −→v arguments; thirdly, the lookup spec is performed through a SLEEK entailment check

between a formula abstracting the current states and the barrier definition.

Thus ensuring that in one entailment check, the proper pre/post condition pair is selected,

the precondition is consumed, and the postcondition is added, in effect applying the barrier

Hoare rule in one simple go.

Note that the bulk of the work behind the verification of barrier calls elegantly reduces

to an entailment. However, based on the example application of the barrier rule in §4.4, one

might suggest that a simpler method be used, one with a more syntactic flavour. Unfortunately,

despite the fact that the entailment process is expensive, for the general case a syntactic filtering

is not sufficient, as the values critical for selecting the proper specification might not be given

as plain text constants in ∆. Thus a very costly, full entailment check is required.

As a final observation, the performance cost lies in the fact that entailment checks need to

take place for each precondition in the barrier definition. For our simple running example this

translates to eight entailments for each barrier call. In the next section we will show what are

the performance penalties induced when verifying programs with barriers. Also in Chapter 5

we will introduce a general technique which can greatly improve the performance by reducing

this disjunctive explosion.

106 4. BARRIER VERIFICATION

4.6.6 Tool Performance Outline

We have developed a small set of benchmarks for our HIP/SLEEK with barriers prototype.

Our SLEEK tests divide into two categories: entailment checks for separation logic formulae

containing fractional permissions and checking barrier consistency constraints as described in

§4.6.4. Individual entailment checks are quite speedy and our benchmark covers a number

of interesting cases (e.g., inductively defined predicates). Barrier wellformedness checks take

more time but the performance is more than adequate: for a set of 54 human generated entail-

ments focusing on corner cases of fractional share reasoning SLEEK took 2.1 seconds, while

for a set of 279 machine generated entailments obtained during the well-formedness checks of

various barrier definitions SLEEK took 3.69 seconds.

One of the barrier definitions used is the example barrier given in Figure 4.1. For a similar

example, it took 2,700 (highly tedious) lines of code and 48 seconds of verification time to

convince Coq that the example barrier definition met the soundness requirements1. SLEEK

verifies this example barrier definition and analyzes five others (some sound, others not) in

3.69 seconds without any interaction from the user2.

We have also developed a HIP benchmark suite. Through this suite we outline the impact

several parameters have on the verification time for programs with barriers. The parameters

we are interested in, are the number of threads synchronized, the number of memory resources

shared, the pattern of communications (both the barrier definition shape and the complexity of

the resource reshuffling) and finally the complexity of the arithmetic constraints imposed on

the content of the shared memory.

In Figure 4.8 we list the HIP verification times for several tests. For each test we also

note the number of threads and the number of shared memory cells. We note that the most

important variation between the examples lie in the structure of the barrier definitions, the

1Techniques such as those developed by Braibant et al. [15], Nanevski et al. [73], and Gonthier et al. [40]
can probably eliminate some (but not all) of the tedium of reasoning about the associativity and commutativity of
∗. Unfortunately, proofs of mutual exclusion for barrier transitions seem less tractable.

2As explained in §4.6.4, SLEEK verifies properties that are slightly different from those listed in §4.3.

4. BARRIER VERIFICATION 107

Test Threads Mem CODE SPEC Time
cells LOC LOC (s)

video 2 5 43 36 59.17
3 7 68 60 215

video-weak 2 5 43 36 60.35
video-strong 2 5 43 36 61.12

2 1 36 26 0.81
3 1 36 31 1.33

MISD 4 1 36 37 1.97
(without feedback) 5 1 36 43 2.81

6 1 36 51 3.88
2 2 47 27 3.22
3 3 52 28 4.04

MISD 4 4 87 42 9.28
(with feedback) 5 5 105 51 69.51

6 6 127 60 177
3 4 102 58 12.82

multi-loops 4 5 135 73 132
5 6 165 90 364
3 3 35 19 1.43

pipeline 4 4 44 26 2.52
5 5 56 33 4.25
6 6 66 40 7.08

Horner(v1) 3 7 73 43 181
3 4 74 37 8.04

Horner(v2) 4 5 95 48 97
5 6 118 58 279

Figure 4.8: Verification times for HIP with barriers

pattern of permission reshuffling, and the number of guarded memory locations and threads.

The examples are grouped in five classes of tests included in our HIP benchmark:

• various instantiations of a simplified video encoding algorithm that encodes a video

frame by frame. Encoding a frame consists of splitting the frame among several worker

threads and piecing together the result once the threads finish. The main challenge in

108 4. BARRIER VERIFICATION

verifying this type of algorithms lies in the fact that the encoding of each frame piece

depends both on the piece itself and on the entire previous frame, thus inducing a more

complex resource handling protocol. The outline of the synchronization pattern is:

while (cond)

{ compute & write to memory;

barrier;

read results of all threads;

barrier;

}

. . .

while (cond)

{ compute & write to memory;

barrier;

read results of all threads;

barrier;

}

• a general communication architecture with one thread generating data that is fed into sev-

eral workers each executing a set of operations functionally equivalent yet structurally

distinct. This architecture resembles the multiple instructions/single data(MISD) struc-

ture defined the Flynn taxonomy[36]. Such an architecture is often used in safety critical

systems in which redundancy is required. We construct two types of examples based on

this architecture: i)one in which the output of the working threads is fed into subsequent

stages without interfering with the generator, ii) the worker output is also fed as feedback

into the generator. The synchronization pattern can be outlined as follows:

while (true)

{ generate;

write to memory;

barrier;

barrier;

}

while (true)

{

barrier;

read and compute;

barrier;

}

. . .

while (true)

{

barrier;

read and compute;

barrier;

}

4. BARRIER VERIFICATION 109

• various instantiations of a row-by-row matrix traversal in which several threads work

together to examine each element of the matrix. The main feature of this test consists

in a complex barrier definition, one containing two imbricated loops which mirror the

program code.

• a linear systolic machine for computing polynomials of various degrees by using Horner’s

algorithm.

• a generic pipeline architecture, each stage in the pipeline is modelled by a thread, the

output of one stage is used by the next stage. The barrier ensures that the threads advance

in a lockstep manner.

The video encoding tests use two threads that share 5 memory cells. Each test has a differ-

ent level of precision with respect to the barrier and method specifications: in the video tests,

we verify a trivial correctness property i.e., we verify the postcondition of True, meaning that

if the barrier calls succeed then the program finishes safely; we also verified two more complex

postconditions by using two more finely-grained barrier definitions: in video-weak, we ver-

ified a general relationship between the input frame piece and the resulting encoding; finally,

in video-strong we verified the precise values in the result after the loop terminates. As

expected, the tighter bounds require more verification time; however, the differences are rel-

atively small because most of the work is dealing with the heap constraints as opposed to the

pure constraints. Part of the time for each example is spent verifying the correctness of the

included barrier definition.

We also experimented with various thread count and shared memory footprints. For each of

the five test classes described, we include in Figure 4.8 verification timings for implementations

with various numbers of threads and shared memory cells. We observe that the thread count

by itself does not greatly influences the verification speed, as suggested by the MISD without

feedback tests. Neither does the increase in the memory footprint greatly affect the verification

speed, as indicated by the pipeline examples. This is due to the fact that both sets of examples

110 4. BARRIER VERIFICATION

rely on a relatively simple ownership change pattern.

However, for more complex examples like the MISD with feedback or the Horner imple-

mentations or the multi-loops, where the ownership patterns or the barrier definition graphs

are considerably more complex we can observe a sharp degradation of performance with the

increase in the number of tracked memory cells. This is because with more individual re-

sources being tracked while they are pushed through a complex ownership change pattern, the

generated heap constraints become more complex leading to more expensive entailments.

The previous results clearly point out that even for relatively small programs, in the current

form, barrier calls are fairly computationally expensive to verify due to the need to check mul-

tiple, possibly complex, entailments. We believe that the performance can be greatly improved

by applying the novel predicate specialization technique described in Chapter 5, thus ensuring

that our verification logic is both expressive end efficient enough to warrant wider adoption.

4.7 Summary

We have designed a sound program logic for Pthreads-style barriers. Our development includes

a formal design for barrier definitions and a series of soundness conditions to verify that a par-

ticular barrier can be used safely. Our Hoare rules can verify threads independently, enabling

a thread-modular approach. We have modified the verification toolset HIP/SLEEK to use our

logic to verify concurrent programs that use barriers.

Our prototype HIP/SLEEK verification tool is available at:

www.comp.nus.edu.sg/∼cristian/projects/barriers/tool.html

Acknowledgements. We thank Christian Bienia for showcasing numerous example programs

containing barriers, Christopher Chak for help on an early version of this work, Jules Villard

for useful comments in general and in particular on the relation of our logic to the logic of

his Heap-Hop tool, and Bart Jacobs for discovering how to verify our example program in his

4. BARRIER VERIFICATION 111

VeriFast tool.

112 4. BARRIER VERIFICATION

Chapter 5

Effective Verification through

Predicate Pruning

We have shown a Hoare logic that successfully verifies programs with exceptions and barriers

and we have shown how it can be included in an automatic verifier. However, in order for our

proposal to gain acceptance, it is not sufficient to work; it needs to work fast.

The last essential component of our proposal consists of a general predicate pruning target-

ing disjunctive predicates. In this chapter we will describe the novel predicate pruning calculus

and showcase how it can be applied to our verification logic with impressive results.

5.1 Motivation

Abstraction mechanisms are important for modelling and analyzing programs. Recent devel-

opments allow richer classes of properties to be expressed via user-defined predicates for cap-

turing commonly occurring patterns of program properties. Separation logic-based abstraction

mechanisms represent one such development. As an example, the following predicate captures

an abstraction of a sorted doubly-linked list.

113

114 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

data node { int val; node prev; node next; }

self ::dll〈p,n,S 〉 ≡ self=null ∧ n=0 ∧ S={}

∨ ∃v, q, S1 · self ::node〈v , p, q〉 ∗ q ::dll〈self ,n−1 ,S1 〉

∧S = S1∪{v}∧∀a∈S1 · v≤a inv n≥0;

In this definition self denotes a pointer into the list, n the length of the list, S represents

its set of values, whereas p denotes a backward pointer from the first node of the doubly-linked

list. The invariant n≥0 must hold for all instances of this predicate.

We clarify the following points. Firstly, this abstraction mechanism is inherently infinite,

due to recursion in predicate definition. Secondly, a predicate definition is capable of capturing

multiple features of the data structure it models, such as its size and set of values. While this

richer set of features can enhance the precision of a program analysis, it inevitably leads to

larger disjunctive formulas.

This chapter focuses on a novel way of handling disjunctive formulas, in conjunction with

abstraction via user-defined predicates. While disjunctive forms are natural and expressive,

they are major sources of redundancy and inefficiency. The goal of this work is to ensure that

disjunctive predicates can be efficiently supported in a program analysis setting, in general, and

program verification setting, in particular.

To achieve this, we propose a specialization calculus for disjunctive predicates that sup-

ports symbolic pruning of infeasible states within each predicate instance. This allows for

the implementation of both incremental pruning and memoization techniques. As a methodol-

ogy, predicate specialization is not a new concept, since general specialization techniques have

been extensively used in the optimization of logic programs [84, 83, 69]. The novelty of our

approach stems from applying specialization to a new domain, namely program verification,

with its focus on pruning infeasible disjuncts, rather than a traditional focus on propagating

static information into callee sites. This new use of specialization yields a fresh approach to-

wards optimising program verification. This approach has not been previously explored, since

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 115

pervasive use of user-defined predicates in analysis and verification has only become popular

recently (e.g. [75]).

Our key contributions are:

• We propose a new specialization calculus that leads to more effective program verifi-

cation. Our calculus specializes proof obligations produced in the program verification

process, and can be used as a preprocessing step before the obligations are fed into third

party theorem provers or decision procedures.

• We adapt memoization and incremental pruning techniques to obtain an optimized ver-

sion of the specialization calculus.

• We present a prototype implementation of our specialization calculus, integrated into

an existing program verification system. The use of our specializer yields significant

reductions in verification times, especially for larger problems.

• We adapt the specialization calculus for barrier definitions. We outline the impressive

speedup in verifying programs with barriers observed after the introduction of special-

ization.

5.2 Examples

Program states that are built from predicate abstractions are more concise, but may require

properties that are hidden inside predicates. As an example, consider :

x ::dll〈p1 ,n,S1 〉 ∗ y ::dll〈p2 ,n,S2 〉 ∧ x6=null

This formula expresses the property that the two doubly-linked lists pointed to by x and y have

the same length. Ideally, we should augment our formula with the property: y6=null, n>0,

116 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

S1 6={} and S2 6={}, currently hidden inside the two predicate instances but may be needed by

the program verification tasks at hand.

A naive approach would be to unfold the two predicate instances, but this would blow up

the number of disjuncts to four, as shown:

x=null ∧ y=null ∧ n=0 ∧ S1={} ∧ S2={} ∧ x6=null

∨ y ::node〈v2 , p2 , q2 〉 ∗ q2 ::dll〈y ,n−1 ,S4 〉 ∧ x=null

∧ S1={} ∧ n=0 ∧ S2={v2} ∪ S4 ∧ n−1≥0 ∧ x6=null

∨ x ::node〈v1 , p1 , q1 〉 ∗ q1 ::dll〈x ,n−1 ,S3 〉 ∧ y=null ∧ n=0

∧ S1={v1} ∪ S3 ∧ S2={} ∧ n−1≥0 ∧ x6=null

∨ x ::node〈v1 , p1 , q1 〉 ∗ y ::node〈v2 , p2 , q2 〉 ∗ q1 ::dll〈x ,n−1 ,S3 〉

∗ q2 ::dll〈y ,n−1 ,S4 〉 ∧ S1={v1} ∪ S3∧ S2={v2} ∪ S4 ∧ n−1≥0 ∧ x6=null

As contradictions occur in the first three disjuncts, we can simplify our formula to:

x ::node〈v1 , p1 , q1 〉 ∗ y ::node〈v2 , p2 , q2 〉 ∗ q1 ::dll〈x ,n−1 ,S3 〉

∗ q2 ::dll〈y ,n−1 ,S4 〉 ∧ S1={v1} ∪ S3 ∧ S2={v2} ∪ S4 ∧ n−1≥0 ∧ x6=null

After removing infeasible disjuncts, the propagated properties are exposed in the above

more specialized formula. However, this naive approach has the shortcoming that unfolding

leads to an increase in the number of disjuncts handled, and its associated costs.

A better approach would be to avoid predicate unfolding, but instead apply predicate

specialization to prune infeasible disjuncts and propagate hidden properties. Given a pred-

icate v ::pred〈−→v 〉 that is defined by k disjuncts, we shall denote each of its specialized in-

stances by v ::pred〈−→v 〉@L, where L denotes a subset of the disjuncts, namely L ⊆ {1. . .k},

that have not been pruned. Initially, we can convert each predicate instance v ::pred〈−→v 〉 to

v ::pred〈−→v 〉@{1. . .k}, its most general form, while adding the basic invariant of the predicate

to its context. As an illustration, we may view the definition of dll as a predicate with two

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 117

disjuncts, labelled informally by 1: and 2: prior to each of its disjuncts, as follows:

self ::dll〈p,n,S 〉 ≡ 1:(self=null ∧ n=0 ∧ S={})

∨ 2:(self ::node〈v , p, q〉 ∗ q ::dll〈self ,n−1 ,S1 〉 ∧ S = S1∪{v} ∧ ∀a∈S1 · v≤a)

We may convert each dll predicate by adding its invariant n≥0, as follows:

x ::dll〈p,n,S 〉 =⇒ x ::dll〈p,n,S 〉@{1, 2} ∧ n≥0

With our running example, this would lead to the following initial formula after the same

invariant n≥0 (from the two predicate instances) is added.

x ::dll〈p1 ,n,S1 〉@{1, 2} ∗ y ::dll〈p2 ,n,S2 〉@{1, 2}∧ x6=null ∧ n≥0

This predicate may be further specialized with the help of its context by pruning away disjuncts

that are found to be infeasible. Each such pruning would allow more states to be propagated by

the specialized predicate. By using the context, x 6=null, we can specialize the first predicate

instance to x ::dll〈p1 ,n,S1 〉@{2} since this context contradicts the first disjunct of the dll

predicate.

In a general case, it would be desirable to have a pre-computed set of pruning conditions

which encode rules of the form: when a condition is contradicted, a set of labes can be dis-

carded. In the previous case, the desired pruning condition would be: x = null←2, if x is

guaranteed not to be null then label 2 is infeasible.

With the previous specialization, we may strengthen the context with a propagated state,

namely n>0 ∧ S1 6={}, that is implied by its specialized instance, as follows:

x ::dll〈p1 ,n,S1 〉@{2} ∗ y ::dll〈p2 ,n,S2 〉@{1, 2} ∧ x6=null ∧ n>0 ∧ S1 6={}

Note that n≥0 is removed when a stronger constraint n>0 is added. The new constraint n>0

118 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

now triggers a pruning of the second predicate instance, since its first disjunct can be shown to

be infeasible. This leads to a specialization of the second predicate, with more propagation of

atomic formulas, as follows:

x ::dll〈p1 ,n,S1 〉@{2} ∗ y ::dll〈p2 ,n,S2 〉@{2}

∧ x6=null ∧ n>0 ∧ S1 6={} ∧ y6=null ∧ S2 6={}

As another example of predicate specialization, consider the following more general for-

mula:

x ::dll〈p1 ,n,S1 〉@{1, 2} ∗ y ::dll〈p2 ,n,S2 〉@{1, 2} ∧ n≥0

Taken separately, neither of the two predicate instances can be further specialized. How-

ever, by analyzing the two predicate instances, we would notice that they share a pair of com-

mon pruning conditions, namely n=0 or n>0, that could be employed to simultaneously spe-

cialize both predicates. Furthermore, n=0∨n>0 is implied by the current context n≥0. We can

therefore perform a case analysis on the above formula to obtain two distinct program states,

as shown below:

x ::dll〈p1 ,n,S1 〉@{1, 2} ∗ y ::dll〈p2 ,n,S2 〉@{1, 2} ∧ n=0

∨ x ::dll〈p1 ,n,S1 〉@{1, 2} ∗ y ::dll〈p2 ,n,S2 〉@{1, 2} ∧ n>0

The above case analysis has managed to strengthen each of the two program states in isolation.

This strengthening can be harnessed to further specialize both program states as follows:

x ::dll〈p1 ,n,S1 〉@{1} ∗ y ::dll〈p2 ,n,S2 〉@{1} ∧ n=0

∧x=null ∧ y=null ∧ S1={} ∧ S2={}

∨ x ::dll〈p1 ,n,S1 〉@{2} ∗ y ::dll〈p2 ,n,S2 〉@{2} ∧ n>0

∧x6=null ∧ y6=null ∧ S1 6={} ∧ S2 6={}

We refer to this general mechanism as case specialization. This mechanism is applicable when-

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 119

ever we have a set of pruning conditions S that are common across two or more predicate

instances, and under the same context C as follows:

• Each of the pruning conditions is neither implied by, nor does it contradict the context C.

That is ∀α∈S · ¬(C =⇒ α ∨ C =⇒ ¬α). This condition ensures that all specialization

steps have been applied to each of the selected pruning conditions.

• Each pair of pruning conditions are mutually exclusive. That is:

∀αi∈S · ∀αj∈(S−{αi}) · αi∧αj =⇒ false

This condition ensures that each program state that is being split from the case analysis

is also disjoint from every other state.

• The context implies a disjunction for the selected set of pruning conditions for case

analysis. That is C =⇒
∨
α∈S α. This allows us to introduce the splitting required by

case analysis.

While case specialization allows more pruning to occur for some of the predicate instances,

it causes the program state to be represented as multiple disjuncts. One advantage is that more

of the infeasible disjuncts from the predicate instances are being pruned from our program

state. Also, when compared to unfolding, the original abstraction for each of the predicate

instances is still being kept. This allows the converse process of abstraction from the multiple

disjuncts, if required, to be more easily carried out.

In a nutshell, the goal of our approach is to apply aggressive specialization to our predicate

instances, without the need to resort to predicate unfolding, in the hope that infeasible disjuncts

are pruned, where possible. In the process, our specialization technique is expected to propa-

gate states that are consequences of each of the specialized predicate instances. We expect this

proposal to support more efficient manipulation of program states, whilst keeping the original

abstractions intact where possible.

120 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

spred ::= p(−→v) ≡ Φ̂; I;R

Φ̂ ::=
∨

(∃−→w ·σ̂ | C)∗ σ̂ ::= κ̂ ∧ π
κ̂ ::= emp | v ::cv〈−→v 〉 | v ::pv〈−→v 〉@L#R | κ̂1 ∗ κ̂2
where p, v, w, c, π denote the same as in Figure 2.5;

I is a family of invariants;
R is a set of pruning conditions.
C is a pure formula denoting a context computed in the specialization process.

Figure 5.1: The Annotated Specification Language.

5.3 Formal Preliminaries

In this section we introduce the basic concepts and terminology that will be used in this chapter.

First we would like to reiterate an observation related to the interplay of predicates and

fractional ownership. Given a predicate instance v ::pvf 〈−→v 〉 it is implied that all resources

abstracted by this predicate instance, as described by the predicate definition p are owned with

the same share vf . Therefore ownership annotations within predicate definitions are irrelevant.

Unannotated formulas, as described in Chapter 2 become annotated in the specialization

process. Figure 5.1 defines the syntax of the annotated specification language. Annotated

predicate definitions are generated by the nonterminal spred.

Definition 5.3.1 (Annotated Predicates and Formulas).

Given a predicate definition p(−→v) ≡
∨

(∃−→w ·κ ∧ π)∗, the corresponding annotated predicate

definition has the form p(−→v) ≡
∨

(∃−→w ·κ̂ ∧ π | C)∗; I;R, where I is a family of invariants,

and R is a set of pruning conditions. Each disjunct ∃−→w ·κ̂ ∧ π |C now contains the annotated

counterpart κ̂ of κ, and is augmented with a context C, which is a pure formula for which

C → π always holds. Intuitively, C captures also the consequences of the specialized states

of κ̂. An annotated formula is a formula where all the predicate instances are annotated. An

annotated predicate instance is of the form v ::pv〈−→v 〉@L#R, where L⊆{1, .., n} is a set of labels

denoting the unpruned disjuncts, and where R ⊆ R is a set of remaining pruning conditions.

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 121

The set of invariants I is of the form {(L→πL) | ∅⊂L⊆{1, .., n}}. For each set of labels L,

πL represents the invariant for the specialized predicate instance v ::pv〈−→v 〉@L. For a given

annotated predicate instance v ::pv〈−→v 〉@L#R, it is possible for L = ∅. When this occurs, it

denotes that none of the predicate’s disjuncts are satisfiable. Moreover, we have π∅=false

which will contribute towards a false state (or contradiction) for its given context.

Definition 5.3.2 (Pruning Condition). A pruning condition is a pair of an atomic predicate

instance α and a set of labels L, written α←L. Its intuitive meaning is that the disjuncts in L

should be kept if α is satisfiable in the current context. The symbol R denotes a finite set of

such pruning conditions.

In the case of the dll〈p, n, S〉 predicate, a pruning condition can be S 6= {}←2. That is,

if the set of elements in the list is shown to be empty, then the inductive branch, labeled 2, can

be discarded as it is infeasible. Similarly n = 0←1 indicates that if the number of elements

in the list is not 0 then the base case, the first disjunct is infeasible. Lastly, we observe there

is no explicit limit on the pruning condition guards. They could be expressed on pointers as

well: self = null←1. The practical restriction is however that the conditions allow a fast

satisfiability check.

Given a predicate definition p(−→v) ≡
∨n
i=1(∃

−→w ·σ̂i |Ci); I; R, we call Di =df (∃−→w ·σ̂i |Ci)

the ith disjunct of p ; i will be called the label of its disjunct. We shall use Di freely as the ith

disjunct of the predicate at hand whenever there is no risk of confusion. We employ a notion of

closure for a given conjunctive formula. Consider a formula π(−→w) = ∃−→v ·α1∧· · ·∧αm, where

αi are atomic predicates, and variables −→w appear free. We denote by S = closure(π(−→w)) a

set of atomic predicates (over the free variables −→w) such that each element α ∈ S is entailed

by π(−→w). Some of the variables −→w may appear free in α but not −→v . To ensure this closure set

be finite, we also impose a requirement that weaker atomic constraints are never present in the

same set, as follows: ∀αi ∈ S ·¬(∃αj ∈ S · i 6=j∧αi =⇒ αj). Ideally, closure(π(−→w)) contains

all stronger atomic formulas entailed by π(−→w), though depending on the abstract domain used,

this set may not be computable. A larger closure set leads to more aggressive pruning.

122 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

We extend the semantic model of the assertion language, as presented in §2.4.1 to also

cover annotated predicates and formulas as follows:

Definition 5.3.3 (Extension of Assertion Model).

s, h, b |=∃−→v · σ̂ |π iff s, h, b |=∃−→v · σ̂∧π

s, h, b |=∃−→v ·κ̂∧π iff ∃−→ν ·s[−→v 7→−→ν], h, b |= κ̂ and s[−→v 7→−→ν]|=π

s, h, b |= κ̂1∗κ̂2 iff ∃h1, h2, b1, b2 · (s, h1, b1)⊕ (s, h2, b2) = (s, h, b)

and s, h1, b1 |= κ̂1 and s, h2, b2 |= κ̂2

s, h, b |=v0 ::pvf 〈−→v 〉@L#R iff (p(−→w)≡
∨n
i=1 (∃−→u · σ̂i|πi); I;R) and

s, h, b |=
∨
i∈L (∃−→u ·set perm(σ̂i, vf)|πi) [−→v /−→w]

Here v ::pv〈−→v 〉@L#R denotes an annotated predicate instance.

Our specialization calculus (§ 5.4) is based on the annotated specification language. We

have an initialization and inference process (§ 5.5) to automatically generate all annotations

(including I,R) that are required by specialization. For simplicity of presentation, we only

include normalized linear constraints in our language. Our system currently supports both

arbitrary linear arithmetic constraints, as well as set constraints. This is made possible by

integrating the Omega [85] and MONA solvers [63] into the system. In principle, the system

may support arbitrary constraint domains, provided that a suitable solver is available for the

domain of interest. Such a solver should be capable of handling conjunctions efficiently, as

well as computing approximations of constraints that convert disjunctions into conjunctions

(e.g. hulling).

5.4 A Specialization Calculus

Our specialization framework detects infeasible disjuncts in predicate definitions without ex-

plicitly unfolding them, and computes a corresponding strengthening of the pure part while

preserving satisfiability. We present this as a calculus consisting of specialization rules that

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 123

can be applied exhaustively to convert a non-specialized annotated formula1 into a fully spe-

cialized one, with stronger pure parts, that can be subsequently extracted and passed on to a

theorem prover for satisfiability/entailment checking. Apart from being syntactically correct,

annotated formulas must satisfy the following well-formedness conditions.

Definition 5.4.1 (Well-formedness). For each annotated predicate v ::pv〈−→v 〉@L#R in the for-

mula at hand, assuming the definition p(−→v)≡
∨n
i=1 Di; I;R, we have that (a) L ⊆ {1, . . . , n} ;

(b) R ⊆ R ; and (c) forall α←L0 ∈ R we have L ∩ L0 6= ∅.

Definition 5.4.2 (Specialization Step). A specialization step has the form

Φ̂1 | C1 −sf→ Φ̂2 | C2, and denotes the relation allows the annotated formula Φ̂1 with context

C1 to be transformed into a more specialized formula Φ̂2 with context C2.

Our calculus produces specialization steps, which are applied in sequence, exhaustively,

to produce fully specialized formulas (a formal definition of such formulas will be given be-

low). Relation −sf→ depends on relation −sp→, which produces predicate specialization steps

defined by the following:

Definition 5.4.3 (Predicate Specialization Step). A predicate specialization step has form

(1) v ::pv〈−→v 〉@L1#R1 | C1 −sp→ v ::pv〈−→v 〉@L2#R2 | C2.

and signifies that annotated predicate v ::pv〈−→v 〉@L1#R1 | C1 can be specialized into

v ::pv〈−→v 〉@L2#R2 | C2, where L2 ⊆ L1, R2 ⊂ R1, and C2 is stronger than C1.

Here, the sets L1 and L2 denote sets of disjuncts of v ::pv〈−→v 〉 that have not been detected to

be infeasible. Each specialization step aims at detecting new infeasible disjuncts and removing

them during the transformation. Thus L2 is expected to be a subset of L1.

The sets of pruning conditions R1 and R2 may be redundant, but are instrumental in mak-

ing specialization efficient. They record incremental changes to the state of the specializer, and
1 The conversion of non-annotated formulas into annotated ones shall be presented in § 5.5.

124 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

represent information that would be expensive to re-compute at every step. Essentially, a prun-

ing condition α←L0 states that whenever ¬α is entailed by the current context, the disjuncts

whose labels are in L0 can be pruned. The initial set of pruning conditions is derived when

converting formulas into annotated formulas, and is formally discussed in § 5.5.

In a nutshell, each specialization step of the form (1) detects (if possible) a pruning con-

dition α←L0 ∈ R such that if ¬α is entailed by the current context, then the disjuncts whose

labels occur in L0 are infeasible and can be pruned. Given the notations in (1), this is achieved

by setting L2 = L1 − L0. Subsequently, the current set of pruning conditions is reduced to

contain only elements of the form α′←L′0 such that L′0 ∩ L2 6= ∅. Thus, the well-formedness of

the annotated formula is preserved

A key aspect of a specialization step is that, as a result of pruning, the context of a predicate

can often be strengthened due to the fact that fewer disjuncts are now potentially feasible. The

strengthening procedure shall be discussed later in this section, when the calculus rules are

introduced. However, at this point, we would like to emphasize the important role that context

strengthening plays in the overall process of formula specialization. After having specialized

a predicate in the formula of interest, we can use the resulting stronger context to specialize

a second predicate. The new strengthening may create a new opportunity for specializing

the first predicate again, which in turn will strengthen the context enough to lead to yet another

specialization of the second predicate, and so on. In fact, context strengthening helps reveal and

prune mutually infeasible disjuncts in groups of predicates, which leads to a more aggressive

optimization as compared to the case where predicates are specialized in isolation.

Definition 5.4.4 (Fully Specialized Formula; Complete Specialization). An annotated

formula is fully specialized w.r.t a context when all its annotated predicates have empty pruning

condition sets. If the initial pruning condition sets are computed using a notion of strongest

closure, then for each predicate in the fully specialized formula, all the remaining labels in the

predicate’s label set denote feasible disjuncts with respect to the current context, and in that

sense, the specialization is complete.

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 125

[SP−[FILTER]]

Rf = {(α←L0) | (α←L0)∈R, (L∩L0=∅)∨(C =⇒ α)}
C,L ` R −filter→ (R− Rf)

[SP−[PRUNE]]

C∧α =⇒ false (α←L0) ∈ R L ∩ L0 6= ∅ L2 = L− L0

C1 = Inv(v ::pv〈−→v 〉,L2) C ∧ C1,L2 ` R −filter→ R1

v ::pv〈−→v 〉@L#R | C −sp→ v ::pv〈−→v 〉@L2#R1 | C ∧ C1

[SP−[FINISH]]

C,L ` R −filter→ ∅ R 6= ∅
v ::pv〈−→v 〉@L#R | C −sp→ v ::pv〈−→v 〉@L#∅ | C

Figure 5.2: Single-step Predicate Specialization

This procedure is formalized in the calculus rules given in Figures 5.2 and 5.3. Figure 5.2

defines the predicate specialization relation−sp→. This relation has two main components: the

one represented by the rule [SP−[FILTER]], which restores the well-formedness of an annotated

predicate, and the one represented by the rule [SP−[PRUNE]], which detects infeasible disjuncts

and removes the corresponding labels from the annotation. A third rule, [SP−[FINISH]] pro-

duces the fully specialized predicate. The rules in Figure 5.3 turn predicate specialization steps

into formula specialization steps. Let us examine the rules in detail.

The rule [SP−[FILTER]] restores the well-formedness of an annotated predicate, and is

necessary because, as the next rule will reveal, once a new set of labels L, and a new context

C have been inferred during a specialization step, some of the elements in the current pruning

condition set R become irrelevant.

The −filter→ relation collects pruning conditions that are no longer relevant to the newly

specialized set of labels into the set Rf and then removes them from the original set R.

The rule [SP−[PRUNE]] defines the part of the relation−sp→ that performs the actual prun-

126 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

ing. In transforming the annotated predicate v ::pv〈−→v 〉@L#R, the rule picks a pruning condi-

tion α←L0 ∈ R such that C∧α is unsatisfiable, with the added requirement that L and L0 not be

disjoint. Having found such a pruning condition, it is necessarily the case that those disjuncts

of predicate p whose labels occur in L0 are infeasible in the current context C. Thus, replacing

L with L − L0 will not change the satisfiability of the predicate. Consequently, due to the fact

that we have fewer potentially feasible disjuncts, a new, stronger context can be computed for

v ::pv〈−→v 〉. This new context is based on the procedure Inv that is detailed in § 5.5. Intuitively,

this procedure computes a conjunction of atomic formulas entailed by all the disjuncts whose

labels are in L2. Obviously, it is desirable for this conjunction to be as strong as possible, and

the choices available for computing it shall be discussed in due course. For the time being,

however, we shall only assume that the result of Inv is stronger when the procedure is applied

to fewer disjuncts. The new context is obtained by conjoining the old one with the result of

the Inv procedure. Finally, the well-formedness of the predicate is restored by applying the

−filter→ relation. The set of pruning conditions effectively shrinks as a result, since the α←L0

element of R is indeed filtered out.

The rule [SP−[FINISH]] handles the case when all remaining pruning conditions are irrel-

evant for the current context and set of labels. It defines the part of the −sf→ relation that

transforms a predicate into a fully specialized one.

The predicate specialization relation can be weaved into the formula specialization rela-

tion given in Figure 5.3. The first rule, [SF−[PRUNE]], defines the part of the −sf→ relation

which picks a predicate in a formula and transforms it using the −sp→ relation, leaving the

rest of the predicates unchanged. However, the transformation of the predicate’s context is

incorporated into the transformation of the formula’s context. This rule realizes the poten-

tial for cross-specialization of predicates, eliminating disjuncts of different predicates that are

mutually unsatisfiable.

The rule [SF−[CASE−SPLIT]] allows further specialization via case analysis. It defines

the part of the −sf→ relation that produces two instances of the same formula, joined in a

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 127

[SF−[PRUNE]]

v ::pv〈−→v 〉@L#R | C −sp→ v ::pv〈−→v 〉@L2#R2 | C2

v ::pv〈−→v 〉@L#R ∗ κ̂ | C −sf→ v ::pv〈−→v 〉@L2#R2 ∗ κ̂ | C2

[SF−[CASE−SPLIT]]

` C =⇒ α1∨α2 ` α1∧α2 =⇒ false

∀i ∈ {1, 2} · κ̂ | C∧αi −sf→ κ̂i | Ci
κ̂ |C −sf→ (κ̂1 |C1) ∨ (κ̂2 |C2)

[SF−[OR]]

κ̂1 | C1 −sf→ κ̂3 | C3

(κ̂1 |C1) ∨ (κ̂2 |C2) −sf→ (κ̂3 |C3) ∨ (κ̂2 |C2)

Figure 5.3: Single-step Formula Specialization

disjunction, each of the new formulas having a stronger context. Each stronger context is

produced by conjunction with an atom αi, i ∈ {1, 2}, with the requirement that the two atoms

be disjoint and their disjunction cover the original context C. This rule is instrumental in

guaranteeing that all predicates reach a fully specialized status. Indeed, whenever an annotated

predicate has a pruning condition α←L0, such that α is not entailed by the context C, yet α∧C

is satisfiable, the only way to further specialize the predicate is by case analysis with the atoms

α and ¬α. Finally, the rule [SF−[OR]] handles formulas with multiple disjunctions.

In the remainder of this section, we formalize the notion that our calculus produces termi-

nating derivations, and is sound and complete.

Property 1. Relations −sp→ and −sf→ preserve well-formedness. Thus, given two annotated

predicate instances v ::pv〈−→v 〉@L1#R1 and v ::pv〈−→v 〉@L2#R2, if

v ::pv〈−→v 〉@L1#R1 | C1 −sp→ v ::pv〈−→v 〉@L2#R2 | C2

can be derived from the calculus, and v ::pv〈−→v 〉@L1#R1 is well-formed, then

128 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

v ::pv〈−→v 〉@L2#R2 is well-formed as well. Moreover, for all annotated formulas Φ̂1 and Φ̂2, if

Φ̂1 | C1 −sf→ Φ̂2 | C2

can be derived from the calculus, and Φ̂1 is well-formed, then Φ̂2 is well formed as well.

Proof sketch: The relation −filter→ is responsible for maintaining the well-formedness of

annotated formulas by filtering out exactly those pruning conditions that violate the well-

formedness requirements with respect to a newly computed set of labels. Filtering of the prun-

ing condition set is employed in both the [SP−[PRUNE]] and [SP−[FINISH]] rules, ensuring that

their output is well-formed.

In the case of the [SF−[PRUNE]], [SF−[CASE−SPLIT]], and [SF−[OR]] rules, the proof fol-

lows from the assumption that the relations given as a premises have the preservation property,

and the fact that neither of these rules make explicit changes in the predicate annotations. 2

A predicate specialization sequence is a sequence of annotated predicates such that each

pair of consecutive predicates is in the relation −sp→. A formula specialization sequence is

a sequence of annotated formulas such that each pair of consecutive formulas is in the −sf→

relation.

Definition 5.4.5 (Canonical Specialization Sequence). A canonical specialization sequence is

a formula specialization sequence where:

1. the first element is well-formed;

2. specialization rules are applied exhaustively ;

3. the [SF−[CASE−SPLIT]] relation is only applied as a last resort (i.e. when no other

relation is applicable);

4. the case analysis atoms for the [SF−[CASE−SPLIT]] relation must be of the form α, ¬α,

whereα←L0 is a pruning condition occurring in an annotated predicate v ::pv〈−→v 〉@L#R

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 129

of the formula, such that L ∩ L0 6= ∅.

Property 2 (Termination). All canonical specialization sequences are finite and produce either

fully specialized formulas, or formulas whose context is unsatisfiable.

Proof sketch The proof is divided into two parts. The first part addresses the finiteness of spe-

cialization sequence. We note that the “driving” steps of the calculus are provided by the rules

[SP−[PRUNE]], [SP−[FINISH]], and [SF−[CASE−SPLIT]]. The rest of the rules are “weaving”

rules that establish how the “driving” steps are to operate in larger contexts. Thus, it is suf-

ficient to show that these three steps produce relations where some measure decreases. It is

obvious that in both the [SP−[PRUNE]] and [SP−[FINISH]] rules the size of the R annotation

is decreased for the predicate at hand. Since a formula has only a finite number of predicates,

each with a finite number of pruning conditions, the relations produced by these rules can only

be applied a finite number of times.

The [SF−[CASE−SPLIT]] rule poses a somewhat more complicated problem, since each ap-

plication of the resulting relation increases the size of the formula at hand. However, each split

will use up one pruning condition of the form α←L0, which cannot be subsequently reused.

To understand this, let us examine how the two branches, whose contexts are strengthened

respectively with ¬α and α, behave after the split. In the branch strengthened with ¬α, a spe-

cialization step will be immediately applicable, removing the labels in L0 from the predicate’s

L annotation. As a consequence, α←L0 will be filtered out as well, and subsequent case anal-

ysis steps on this branch will not be able to reuse this pruning condition. On the other hand,

in the branch strengthened with α, α is now entailed by the context and further ineligible for

case analysis, at least not without violating the canonical specialization sequence requirements.

Thus, even though a formula increases in size as a result of case analysis, it can only do so a

finite number of times for each predicate. As a result, the specialization sequence is necessarily

finite.

For the second part of the proof, let us assume a canonical specialization sequence whose

last element is a formula that is not fully specialized (i.e. R6=∅ for some predicate), and whose

130 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

context is satisfiable. According to Property 1, this last element must be well formed. Since

the set R is not empty, one of the following cases must hold:

• There exists a pruning condition α←L0 that occurs in the annotation of some predicate

v ::pv〈−→v 〉@L#R | C, such that α∧C and ¬α∧C are both satisfiable, and also L∩L0 6=∅.

In this case, a case-analysis step is applicable.

• There exists a pruning condition α←L0 that occurs in the annotation of some predicate

v ::pv〈−→v 〉@L#R | C, such that α∧C is not satisfiable, and also L∩L0 6=∅. In this case, a

pruning step is applicable.

• Finally, either all the pruning conditions have α entailed by the current context, or

L0∩L = ∅. In this case, the [SP−[FINISH]] is applicable.

This shows that for any well-formed formula that is not fully specialized, some rule is applica-

ble. This contradicts the hypothesis that the specialization sequence was canonical. Thus, each

canonical sequence must end with a fully specialized formula. 2

Property 3 (Soundness). The −sp→ and −sf→ relations preserve satisfiability. Thus:

if v ::pv〈−→v 〉@L1#R1 | C1 −sp→ v ::pv〈−→v 〉@L2#R2 | C2 can be derived from the

calculus, then for all heaps h, stacks s and barrier maps b, it follows that

s, h, b |= v ::pv〈−→v 〉@L1#R1 | C1 iff s, h, b |= v ::pv〈−→v 〉@L2#R2 | C2. Moreover, if

Φ̂1 | C1 −sf→ Φ̂2 | C2 can be derived from the calculus, then s, h, b |= Φ̂1|C1 iff

s, h, b |= Φ̂2|C2.

Proof It is sufficient to prove that each rule produces a relation that preserves the satisfiabil-

ity of its arguments. The satisfiability of a formula depends on the satisfiability of its annotated

predicates, which in turn depends on the set of labels L that represents the disjuncts that have

yet to be checked for infeasibility. Since the rule [SP−[PRUNE]] is the only one that specifi-

cally removes elements from L, it is sufficient to prove that this rule produces only relations

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 131

that preserve the satisfiability of the predicates given as arguments. This rule selects a pruning

condition α←L0 such that, given the pruning context C, we have that C ∧ α is unsatisfiable.

Since, by the construction1 of R, α is entailed by all the pure parts of disjuncts whose labels

are in L0, it follows immediately that those disjuncts are infeasible in the context C. Thus, by

replacing L with L2 = L − L0, the satisfiability of the predicate is preserved with respect to

the current context C. The next step is the strengthening of the context, which is performed by

computing an invariant C2 of the remaining disjuncts. Since C2 is entailed by all the disjuncts

represented in L2, conjoining it with the current context C will produce an equisatisfiable for-

mula. 2

We note here that the set R does not play a role in the way an annotated predicate is inter-

preted. Mishandling R (as long as no elements are added) may result in lack of termination or

incompleteness, but does not affect soundness.

Finally, we address the issue of completeness. This property, however, is dependent on

how “complete” the conversion of a predicate into its annotated form is. Thus, we shall first

give an ideal characterization of such a conversion, after which we shall endeavour to prove

the completeness property. Realistic implementations of this conversion shall be discussed in

§5.6.

Definition 5.4.6 (Strongest Closure). The strongest closure of unannotated formula Φ, denoted

by sclosure(Φ), is the largest set of atoms α with the following properties: (a) for all stacks

s, s |= α whenever there exists h, b such that s, h, b |= Φ, and (b) there exists no atom α′

strictly stronger than α – that is, it is not the case that for all s, s |= α whenever s |= α′. For

practical and termination reasons, we shall assume only closures which return finite sets in our

formulation.

1 A subtle point here is that the set R continue to enjoy this property after repeated applications of specialization
steps. This is indeed true since, via the −filter→ relation, each specialization step only removes elements from R.

132 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

In our conversion of an unannotated predicate definition for p(−→v) into the annotated defi-

nition p(−→v)≡
∨n
i=1 Di; I;R, we compute the following sets:

• Gi = sclosure(Di∧π), for i = 1, .., n,

• HL = {α | forall i ∈ L, exists α′ ∈ Gi s.t. forall s, s |= α′ whenever s |= α}

• I={L→π |L⊆{1...n}, π =
∧
α∈HL α}, and

• R = {α←L |L is the largest set s.t. α∈
⋂
i∈L Gi}.

Moreover, we introduce the notation Inv(v ::pv〈−→v 〉,L) = πL, where (L→πL)∈I. This notation

is necessary in applying the rule [SP−[PRUNE]].

In practice, either the assumption holds, or the closure procedure computes a close enough

approximation to the strongest closure so that very few, if any, infeasible disjuncts are left in

the specialized formula.

Property 4 (Completeness). Let v ::pv〈−→v 〉@L#∅ ∗ σ̂|C be a fully specialized formula that

resulted from a specialization process that started with an annotated formula. Denote by πi,

1 ≤ i ≤ n the pure parts of the disjuncts in the definition of p(−→v), and assume that C is

satisfiable. Then, for all i ∈ L, πi ∧ C is satisfiable.

Proof Let us assume that we have a formula specialization sequence whose last element,

while fully specialized, has a predicate with an annotation that contains the label of an infeasi-

ble disjunct. That is, the fully specialized formula has the form v ::pv〈−→v 〉@L#∅ ∗ σ̂|C, and it

is the case that Di ∧ C is unsatisfiable. Since R is part of a well-formed annotation, there must

exist a set of pruning conditions of the form (α←L0)∈R such that the following three condi-

tions hold simultaneously: Di entails α, i∈L0, and α∧C is unsatisfiable. The fact that neither

of these pruning conditions could be used to prune the ith disjunct Di can only be attributed to

the fact that all these pruning conditions were filtered out before any of them had a chance to

be picked by a pruning step.

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 133

Let us consider the step in the specialization sequence where the last of these pruning

conditions was filtered out. Assume that the transformation performed at this step relies on the

following predicate specialization relation:

v ::pv〈−→v 〉@L1#R1 | C1 −sp→ v ::pv〈−→v 〉@L2#R2 | C2,

and that the pruning condition of interest is filtered out in the process of computing R2 from R1

and L2. For the filtering operation to proceed as described, either of the following conditions

(preconditions to the rule [SP−[FILTER]]) must hold:

• L2∩L0 = ∅; this can only happen if the disjunct has already been pruned, which contra-

dicts the hypothesis that it was still present in the last element.

• C2 =⇒ α ; this contradicts the hypothesis that the context C of the fully specialized

formula, which can only be stronger than C2, would have the property that C∧α is un-

satisfiable.

Thus, the hypothesis that the fully specialized formula has infeasible disjuncts is false. 2

5.5 Inferring Specializable Predicates

We present inference techniques that must be applied to each predicate definition so that they

can support the specialization process. We refer to this process as inference for specializable

predicates. A predicate is said to be specializable if it has multiple disjuncts and it has a non-

empty set of pruning conditions. These two conditions would allow a predicate instance to be

specializable from one form to another specialized form. Our predicates are processed in a

bottoms-up order with the following key steps:

• Transform each predicate definition to its specialized form.

• Compute an invariant (in conjunctive form) for each predicate.

134 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

• Compute a family of invariants to support all specialized instances of the predicate.

• Compute a set of pruning conditions for the predicate.

• Specialize recursive invocations of the predicate, if possible.

As a running example for this inference process, let us consider the following predicate

which could be used to denote a list segment of singly-linked nodes, for conciseness we use x

instead of self :

data snode { int val; snode next; }

x ::lseg〈p,n〉 ≡ x=p ∧ n=0 ∨ ∃q, m · x ::snode〈 , q〉 ∗ q ::lseg〈p,m〉 ∧ m=n−1

Our inference technique derives the following specializable predicate definition:

x::lseg〈p,n〉 ≡ x=p ∧ n=0 | x=p∧n=0 ∨

∃q, m · x ::snode〈 , q〉∗q ::lseg〈p,m〉∧m=n−1 | x 6=null∧n>0;

I = {{1}→x=p∧n=0, {2}→x 6=null∧n>0, {1, 2}→n≥0};

R = {x=p←{1}, n=0←{1}, x6=null←{2}, n>0←{2}}

Note that we have a family of invariants, named I, to cater to each of the specialized states.

The most general invariant for a lseg predicate instance is :

Inv(x ::lseg〈p,n〉, {1, 2}) = n≥0

This is computed by a fix-point analysis [24] on the body of the predicate. If we determine

that a particular predicate instance can be specialized to x ::lseg〈p,n〉@{2}, we may use a

stronger invariant Inv(x ::lseg〈p,n〉, {2}) = x6=null∧n>0 to propagate this constraint from

the specialized instance. Such a family of invariants allows us to enrich the context of the

predicate instances that are being progressively specialized.

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 135

Furthermore, we must process the predicate definitions in a bottom-up order, so that pred-

icates lower in the definition hierarchy are inferred before predicates higher in the hierarchy.

This is needed since we intend to specialize the body of each predicate definition with the help

of specialized definitions that were inferred earlier. In the case of a set of mutually-recursive

predicate definitions, we shall process this set of predicates simultaneously. Initially, we shall

assume that the set of pruning conditions for each recursive predicate is empty, which makes its

recursive instances unspecializable. However, once its set of pruning conditions has been de-

termined, we can apply further specialization so that the recursive invocations of the predicate

are specialized as well.

[INIT−[MULTI−SPEC]]

κ∧π −if→ κ̂∧π |C1 κ̂ | C1 −sf→∗ κ̂1 | C2

κ∧π −msf→ κ̂1∧π | C2

[ISP−[SPEC−BODY]]

spredold = (p(−→v) ≡
∨n
i=1(∃−→u i · σi)) ∀i∈{1, .., n} · σi −msf→ σ̂i | Ci

sprednew = (p(−→v) ≡
∨n
i=1(∃−→u i · σ̂i |Ci))

spredold −isp→ sprednew

[ISP−[BUILD−INV−FAMILY]]

spredold = (p(−→v) ≡
∨n
i=1(∃−→u i · σ̂i |Ci)) ρ = [invp(−→v) 7→fix(

∨n
i=1 ∃

−→u i · Ci)]
I = {(L→hull(

∨
i∈L ∃
−→u i · ρCi) | ∅⊂L⊂{1..n}} ∪ {{1..n}→ρ(invp(−→v))}

sprednew = (p(−→v) ≡
∨n
i=1(∃−→u i · σ̂i | ρCi); I)

spredold −isp→ sprednew

[ISP−[BUILD−PRUNE−COND]]

spredold = (p(−→v) ≡
∨n
i=1(∃−→u i · σ̂i |Ci); I) G =

⋃n
i=1 closure(I({i}))

R =
⋃
α∈G{α←{i | 1≤i≤n ∧ I({i}) =⇒ α}} ∀i∈{1, .., n} · σ̂i | Ci −sf→∗ σ̂i,2 | Ci,2

sprednew = (p(−→v) ≡
∨n
i=1(∃−→u i · σ̂i,2 |Ci,2); I; R)

spredold −isp→ sprednew

where −sf→∗ is the transitive closure of −sf→; and I({i}) = πi, given ({i}→πi) ∈ I.

Figure 5.4: Inference Rules for Specializable Predicates

The formal rules for inferring each specializable predicate are given in Figure 5.4. The

rule [INIT−[MULTI−SPEC]] converts an unannotated formula into its corresponding special-

136 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

ized form. It achieves this by an initialization step via the −if→ relation given in Figure 5.5,

followed by a multi-step specialization using −sf→∗, without resorting to case specialization

(that would otherwise result in an outer disjunctive formula). This essentially applies a transi-

tive closure of −sf→ until no further reduction is possible.

The rule [ISP−[SPEC−BODY]] converts the body of each predicate definition into its spe-

cialized form. For each recursive invocation, it will initially assume a symbolic invariant,

named invp(−→v), without providing any pruning conditions. This immediately puts each recur-

sive predicate instance in the fully-specialized form.

After the body of the predicate definition has been specialized, we can proceed to build

a constraint abstraction for its predicate’s invariant, denoted by invp(−→v), in the

[ISP−[BUILD−INV−FAMILY]] rule. For example, we may denote the invariant of predicate

x ::lseg〈p,n〉 symbolically using invlseg(x, p, n), before building the following recursive con-

straint abstraction:

invlseg(x, p, n) ≡ x=p∧n=0 ∨ ∃q, m · x6=null∧n=m+1∧invlseg(q, p, m)

If we apply a classical fix-point analysis to the above abstraction, we would obtain a closed-

form formula as the invariant of the lseg predicate, that is invlseg(x, p, n) = n≥0. With

this predicate invariant, we can now build a family of invariants for each proper subset L of

disjuncts, namely 0⊂L⊂{1..n}. This is done with the help of the convex hull approximation.

The size of this family of invariants is exponential to the number of disjuncts. While this is not

a problem for predicates with a small number of disjuncts, it could pose a problem for unusual

predicates with a large number of disjuncts. To circumvent this problem, we could employ

either a lazy construction technique or a more aggressive approximation to cut down on the

number of invariants generated. For simplicity, this aspect is not considered in the present

work.

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 137

Our last step is to build a set of pruning conditions for the disjunctive predicates using

the [ISP−[BUILD−PRUNE−COND]] rule. This is currently achieved by applying a closure

operation over the invariant I({i}) for each of the disjuncts. To obtain a more complete

set of pruning conditions, we are expected to generate a set of strong atomic constraints for

each of the closure operations. For example, if we currently have a formula a>b ∧ b>c,

a strong closure operation over this formula may yield the following set of atomic constraints

{a>b, b>c, a>c+1} as pruning conditions and omit weaker atomic constraints, such as a>c.

[INIT−[EMP]]

emp −ih→ emp | true
[INIT−[CELL]]

x ::p〈−→v 〉 −ih→ x ::p〈−→v 〉 | x6=null

[INIT−[PRED]]

p(−→v) ≡ (
∨n
i=1(∃−→u i·σ̂i |Ci)); I;R

C = Inv(v ::p〈−→v 〉, {1..n})
v ::p〈−→v 〉 −ih→ v ::p〈−→v 〉@{1..n}#R | C

[INV−DEF]

p(−→v) ≡ (
∨n
i=1(∃−→u i·σ̂i |Ci)); I;R
(L→C) ∈ I

Inv(v ::p〈−→v 〉, L) = C

[INIT−[HEAP]]

∀i∈{1, 2}·κi −ih→ κ̂i | Ci
κ1∗κ2 −ih→ κ̂1∗κ̂2 | C1∧C2

[INIT−[FORMULA]]

κ −ih→ κ̂ | C
κ∧π −if→ κ̂∧π |C∧π

Figure 5.5: Initialization for Specialization

Definition 5.5.1 (Sound invariant and sound pruning condition). Given a predicate definition

p(−→v)≡
∨n
i=1 Di; I; R:

(1) an invariant L→π is said to be sound w.r.t. the predicate p if

(1.a) ∅ ⊂ L ⊆ {1, .., n}, and

(1.b) v ::p〈−→v 〉@L# |= π.

(2) a family of invariants I is sound if every invariant from I is sound and the domain of I is

the set of all non-empty subsets of {1, .., n};

(3) a pruning condition (α←L) is sound w.r.t. the predicate p if

(3.a) ∅ ⊂ L ⊆ {1, .., n},

138 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

(3.b) vars(α) ⊆ {−→v }, and

(3.c) ∀i∈L·Di |= α.

(4) a set of pruning conditions R is sound if every pruning condition in R is sound w.r.t. the

predicate p.

Property 5. For each predicate p(−→v), the family of invariants and the set of pruning conditions

derived for p by our inference process are sound, assuming the fixpoint analysis and the hulling

operation used by the inference are sound.

Proof Suppose the inference process produces the annotated predicate definition:

p(−→v)≡
∨n
i=1 Di; I; R, where Di = ∃−→wi·σ̂i|Ci

(1) To prove the soundness of I, by Definition 5.5.1, we need to show the soundness of

each invariant in I. Given (L→πL) ∈ I, by the same definition, it is sufficient to show that:

• (1.a) ∅ ⊂ L ⊆ {1, .., n}

obvious from the [ISP−[BUILD−INV−FAMILY]] rule for constructing I

• (1.b) v ::p〈−→v 〉@L# |= πL.

This follows from an induction on |L|.

Base case (|L|=1): Let L = {i}. v ::p〈−→v 〉@L# = Di and I({i}) = ρCi. (1.b) clearly

holds since Di |= Ci and Ci |= ρCi. The latter comes from the fact that

invp(−→v) =⇒ fix(invp(−→v)).

Inductive case (|L|=k+1): there exist some L0 and some i such that L=L0∪{i} and

|L0| = k. By induction hypothesis, we have v ::p〈−→v 〉@L0# |= I(L0). We also have

v ::p〈−→v 〉@{i}# |= I({i}) from base case. Therefore,

(v ::p〈−→v 〉@L# ∨ v ::p〈−→v 〉@L0#) |= (I(L0)∨I({i}), from which (1.b) follows (in ad-

dition to the soundness of the hulling operation).

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 139

(2) To prove the soundness of R, by Definition 5.5.1, we need to show the soundness of

each pruning condition in R. Given (α←L) ∈ R, by the same definition, we need to show:

• ∅⊂L⊆{1, .., n}, follows from [ISP−[BUILD−PRUN−COND]]

• vars(α) ⊆ {−→v }, follows from [ISP−[BUILD−PRUN−COND]]

• ∀i∈L·∃−→w ·Di|=α, follows from the soundness of I({i}) (which gives Di|=I({i})) and

that I({i} =⇒ α(from the aforementioned rule)

2

5.6 Specialization for Program Verification

We have designed our specialization calculus originally to improve an existing separation

logic-based program verification system. To support predicate specialization, we must pro-

vide a set of translation rules that would normalize and specialize each given formula. A

core set of the rules is given in Fig 5.6. The first rule ([NORM−[PURE−AND]]) shows how

a pure term is added to the context of its annotated formula, prior to its specialization via

the −sf→∗ transition. The second rule ([NORM−[SEP−AND]]) shows how two heap terms

are spatially conjoined together, with a conjunctive strengthening of their combined contexts.

Specialization is also applied to eliminate infeasible disjuncts, where possible. The third rule

([NORM−[UNFOLDING]]) can be used to unfold a specialized predicate by revealing only the

feasible disjuncts. This unfolding rule may be invoked by our entailment procedure to help

materialize a predicate instance. The disjunctive formula itself is distributed and recursively

normalized by the rule ([NORM−[DIST−OR]]).

The final step towards our goal consists in linking the specializer into the verification logic

we proposed in the previous chapters. One of the first changes we made to our verification

140 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

[NORM−[PURE−AND]]

κ̂ | C∧π2 −sf→∗ κ̂2 | C2

(κ̂∧π |C)∧π2 −norm→ κ̂2∧(π∧π2) | C2

[NORM−[SEP−AND]]

(κ̂1∗κ̂2) | C1∧C2 −sf→∗ κ̂3 | C3

(κ̂1∧π1 |C1) ∗ (κ̂2∧π2 |C2) −norm→ κ̂3∧(π1∧π2) | C3

[NORM−[UNFOLDING]]

p(−→v) ≡
∨n
i=1(∃−→ui · σ̂i |Ci)

J ≡ (
∨
i∈L ∃
−→ui · σ̂i) |Ci J ∗ (σ̂ |C) −norm→ Φ̂

((v ::p〈−→v 〉@L#R) ∗ σ̂) |C −norm→ Φ̂

[NORM−[DIST−OR]]

∀i∈{1..n} · (σ̂i∗σ̂) |C∧Ci −norm→ σ̂i,2 |Ci,2
(
∨n
i=1 ∃

−→ui · (σ̂i |Ci)) ∗ (σ̂ |C) −norm→
∨n
i=1 ∃

−→ui · (σ̂i,2 |Ci,2)

Figure 5.6: Normalizing Specialized Separation Logic

system was to transform pre/post specifications into specialized form, as shown below:

Φpr −msf→ Φ̂pr Φpo −msf→ Φ̂po

mn ((t v)∗; (ref t v)∗) requires Φpr ensures Φpo · · ·

=⇒ mn ((t v)∗; (ref t v)∗) requires Φ̂pr ensures Φ̂po · · ·

This pre-processing step has several benefits. Firstly, it is able to strengthen the contexts of our

specifications. Secondly, the specialized formula is reusable at each of its caller’s site, reducing

computation costs. Lastly, we may eliminate constraints from the specification that are already

implied by the specialized predicates. This can help reduce some proof obligations needed. As

an example of these benefits, consider a specification formula, x ::dllv〈p,n,S 〉∧n>2∧x6=null.

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 141

Applying our normalization and specialization to this formula would initially yield:

x ::dllv〈p,n,S 〉@{2}∧n>2∧x 6=null | n>0∧x6=null∧S6={}

We can remove the constraint x6=null as it is already implied by invariant of the specialized

predicate x ::dllv〈p,n,S 〉@{2},thus obtaining a more compact formula:

x ::dllv〈p,n,S 〉@{2}∧n>2 | n>0∧x6=null∧S6={}.

With the specialized pre/post specifications, we can now present Hoare-style forward ver-

ification rules ` {Φ̂1} e {Φ̂2}, where we expect Φ̂1 to be given before computing Φ̂2. We

highlight some verification rules in Figure 5.7. They are used to track heap states as ac-

curately as possible with path-sensitivity ([FV−[IF]]), flow-sensitivity and context-sensitivity

([FV−[CALL]]). For each call site, [FV−[CALL]] ensures that its method’s precondition is satis-

fied, while its postcondition is spatially conjoined with the prevailing program state. In all these

rules, we always normalize/specialize after each monotonic change to the program state. This

allows the specialized formula to be shared on a timely basis. Our new entailment checking

procedure is optimized to take advantage of this specialized form.

5.7 Improved Specialization

Thus far, we have described the core concepts behind predicate specialization, and how it

enables a more optimal representation of program states for static reasoning. In this section,

we explore two key optimization techniques that can make predicate specialization a practical

tool for program reasoning. The first technique, called memoization, is based on a trade-off

between re-proving a result with respect to a given context, or recalling its stored result from

a memoized set. The second technique, called incremental pruning, relies on incremental

computation that is made possible through our approach. Both optimizations are detailed in

142 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

[FV−[IF]]

Φ̂∧v′ −norm→ Φ̂1 ` {Φ̂1} e1 {Φ̂3}
Φ̂∧¬v′ −norm→ Φ̂2 ` {Φ̂2} e2 {Φ̂4}
` {Φ̂} if v then e1 else e2 {Φ̂3∨Φ̂4}

[FV−[CALL]]

t0 m(t1 v1, .., tn vn) requires Φ̂pr ensures Φ̂po {..}
ρ=[v′i/vi] Φ̂ −norm→ Φ̂0 Φ̂0 ` ρΦ̂pr ∗ Φ̂1

W = {v1, .., vn} (Φ̂1 ∗W ρΦ̂po) −norm→ Φ̂2

` {Φ̂}m(v1..vn) {Φ̂2}

Figure 5.7: Some Verification Rules

Figure 5.8 and shall be discussed in the remainder of this section.

5.7.1 Memoization

As the cost for invoking automated provers accounts for the bulk of the time taken by program

verification system, in general, we can improve our system by minimising the number of in-

vocations to these provers. One simple way to achieve this is to maintain two memoization

sets for each context C using a so-called syntactic context: S = (I,F). The first element I

denotes a set of atomic constraints that are implied by the context C, that is ∀α∈I · C =⇒ α.

The second element F denotes a set of atomic constraints that are in contradiction with con-

text C, that is ∀α∈F · C =⇒ ¬α. With these two memoization sets, we may now approximate

the check C =⇒ α by a membership test α∈I, and also approximate the contradiction check

C =⇒ ¬α by its corresponding membership test α∈F. These two membership tests are only

sound approximations of the corresponding implication checks. In case both membership tests

fail for a given pruning condition α, we could turn to automated provers (as a last resort) to

help determine C =⇒ ¬α.

Furthermore, the syntactic context S currently keeps track of both strong and weak atomic

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 143

constraints for memoization purposes, whereas for implication checking we only need to use

the stronger constraints. To support this feature of using only the stronger atomic constraints,

where possible, our system keeps two implication sets, namely I = (IS, IW). The IS set is

expected to capture a set of stronger atomic constraints, while IW set can keep the weaker

atomic constraints that are already implied by IS.

As an example of how these two implication sets are maintained, consider a simple exam-

ple x ::dllv〈p,n,S 〉 ∧ x6=null. In the beginning, our specialization mechanism will add the

predicate invariant n≥0 to its current context. After specializing the predicate to

x ::dllv〈p,n,S 〉@{2}, our mechanism can add a stronger atomic constraint n>0 to the con-

text. This specialization step would cause the earlier atomic constraint n≥0 to be marked as

redundant. When this happens, we keep each new stronger atomic constraint (computed as

πo in rule [OSF−[ADD−INV]]) in the IS set, while each weaker atomic constraint (computed

as πi in the same rule) will be moved into the IW set. Both the memoization sets, IS and

IW, are for membership tests to approximate implication, but only the stronger set IS is used

by the automated prover. This allows us to use a more efficient Strong-Imply(S) =⇒ ¬α in-

stead of Imply(S) =⇒ ¬α where Strong-Imply(S) denotes
∧
α∈IS

α, while Imply(S) denotes∧
α∈(IS∪IW) α.

5.7.2 Incremental Pruning

To support the early elimination of infeasible states, our calculus is designed to prove if each

atomic constraint α contradicts a given context C by the implication C =⇒ ¬α. Furthermore,

the context C is allowed to evolve to a monotonically stronger context C1, such that C1 =⇒ C.

Hence, if indeed C =⇒ ¬α, we can be assured that C1 =⇒ ¬α will also hold. This mono-

tonic change of the context is the basis of the memoization optimization that allows previous

outcomes of implications and contradictions to be reused.

Another advantage of the above approach is that we can easily slice out relevant constraints

from (a satisfiable) C that are needed to prove an atomic constraint α. This slicing technique

144 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

is allowed by our approach because we detect infeasible branches by proving only one atomic

pruning constraint at a time. For example, consider a context x6=null ∧ n>0 ∧ S6={}. If

we need to prove its contradiction with n=0, a naive solution is to use (x6=null ∧ n>0 ∧

S6={}) =⇒ ¬(n=0). A better solution is to slice out just the constraint n>0, and then proceed

to prove the contradiction using n>0 =⇒ ¬(n=0). Slicing out constraints from the context is

an integral part of incremental pruning and is enabled by our decision to use atomic constraints

as pruning conditions, and relying on monotonically stronger contexts.

To support this optimization, we propose to partition each context into sets of connected

constraints. Two atomic constraints in a context C are said to be connected if they satisfy the

following relation.

connected(α1, α2) :- (vars(α1)∩vars(α2)) 6= {}

connected(α1, α2) :- ∃α∈C · connected(α1, α)∧connected(α2, α)

With a continuous partitioning of connected constraints for the contexts, our system can easily

slice out a set of constraints (from the context) that are connected to each pruning condition.

This slicing mechanism has been shown to reduce analysis time significantly in our experi-

ments.

One other important optimization that is possible in our calculus is to take advantage of

provers with incremental solving capability, particularly from SMT provers like Yices [32]

and Alt-Ergo [12]. In these provers, it is possible to incrementally add new constraints into

an existing context before checking for satisfiability of the combined formula, and later pop

out constraints based on a stack-like discipline. The pre-processing done for each context is al-

ways kept when the prover returns to a prior state. In the case of our specialization calculus, the

strong constraints from our earlier context would have been added by incremental provers. To

check if each new pruning condition α contradicts with the current context, we need only push

constraint α into the prover before checking for a contradiction. This same α constraint can

later be popped out, before we explore the next pruning conditions in turn. The context may

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 145

also be monotonically strengthened with new constraints, but this has to be checked for con-

tradiction too, since a false context should be detected explicitly. Furthermore, we may use

a set of simultaneous incremental provers, one for each set of connected constraints from the

context. This approach yields an even better performance gain for our specialization calculus.

In the improved specialization, we would attempt to minimize on the number of calls to

the prover. This is achieved by memoising on all atomic constraints that are either implied

by or contradicted with the current context. We represent each current context S by (I,F)

where I is the set of atomic constraints that are implied by the context, while F is the set of

atomic constraints that are in contradiction with the context. That is ∀α ∈ I · S =⇒ α and

∀α ∈ F · S =⇒ ¬α.

Furthermore, in the implied set I, we distinguish between strong and weak atomic con-

straints. A constraint from I is said to be strong if it is not implied by a different constraint in

I. In theory, we can compute the set of strong constraint by the following operator

strong-imply(I) =df {α1|α1 ∈ I,¬(∃α2∈I · α1 6=α2 ∧ α2 =⇒ α1)}

As this computation can be expensive, we shall instead use a marker to identify each atomic

constraint in I that is known to be redundant. The operator to select stronger atomic constraints

will simply omit those constraints that are marked as redundant.

5.8 Experiments

We have built a prototype system for our specialization calculus inside HIP [75].

Figure 5.9 summarizes a suite of programs tested which included the 17 small programs

(comprised of various methods on singly, doubly, sorted and circular linked lists, selection-sort,

insertion-sort and methods for handling heaps, and perfect trees). Due to similar outcomes, we

present the average of the performances for these 17 programs. We also experimented with

a set of medium-sized programs that included complex shapes and invariants, to support full

146 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

[OSP−[FILTER]]

L⊆L0 ∨ α∈Imply(S)

v ::pv〈−→v 〉@L#R | S −osp→ v ::pv〈−→v 〉@L2#R2 | S2

v ::pv〈−→v 〉@L#({α←L0}∪R) | S −osp→ v ::pv〈−→v 〉@L2#R2 | S2

[OSP−[PRUNE1]]

α ∈ FailSet(S)

v ::pv〈−→v 〉@(L−L0)#R | S −osp→ v ::pv〈−→v 〉@L2#R2 | S2

v ::pv〈−→v 〉@L#({α←L0}∪R) | S −osp→ v ::pv〈−→v 〉@L2#R2 | S2

[OSP−[PRUNE2]]

` Strong-Imply(S) =⇒ ¬α
v ::pv〈−→v 〉@(L−L0)#R | S∧¬α −osp→ v ::pv〈−→v 〉@L2#R2 | S2

v ::pv〈−→v 〉@L#({α←L0}∪R) | S −osp→ v ::pv〈−→v 〉@L2#R2 | S2

[OSF−[HEAP]]

v ::pv〈−→v 〉@L#R | S −osp→ v ::pv〈−→v 〉@L#R2 | S1

κ | S1 −osf→ κ̂ | S2

v ::pv〈−→v 〉@L#R ∗ κ | S −osf→ v ::pv〈−→v 〉@L#R2 ∗ κ̂ | S2

[OSF−[ADD−INV]]

L2⊂L v ::pv〈−→v 〉@L#R | S −osp→ v ::pv〈−→v 〉@L2#R2 | S1

πi = Inv(p(−→v), L2)− Inv(p(−→v), L)

πo = Inv(p(−→v), L)− Inv(p(−→v), L2)

I2 = ImplySet(S1)	πo] πi
F2 = FailSet(S1) ∪ {¬α | α ∈ πi}

κ | (I2,F2) −osf→ κ̂ | S3

v ::pv〈−→v 〉@L#R ∗ κ | S −osf→ v ::pv〈−→v 〉@L2#R2 ∗ κ̂ | S3

For S = ((IS, IW),F), Imply(S) =df

∧
α∈(IS∪IW)

α;

ImplySet(S)=df (IS, IW); FailSet(S)=dfF;

(IS, IW)	π = (IS−π, IW∪π); (IS, IW)]π = (IS∪π, IW);

For π =

m∧
i=1

αi, I−π=df I−{α1..αm}, I∪π=df I∪{α1..αm},

((IS, IW),F)∧π=df ((IS∪{α1, .., αm}, IW),F∪{¬α1, ..,¬αm})

Figure 5.8: Improved Specialization

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 147

Progs (specified props) LOC HIP HIP+Spec
Time(s) Time(s)

17 small progs (size) 87 0.86 0.80
Bubble sort (size, sets) 80 2.20 2.23
Quick sort (size, sets) 115 2.43 2.13
Merge sort (size, sets) 128 3.10 2.15
Complete(size,minh) 137 5.01 2.94

AVL (height, size, bal) 160 64.1 16.4
Heap Trees(size, maxel) 208 14.9 4.62

AVL (height, size) 340 27.5 13.1
AVL (height, size, sets) 500 657 60.7
Red Black (size, height) 630 25.2 15.6

Progs (specified props) HIP HIP+Spec
Count Disj Size Count Disj Size

17 small progs (size) 229 1.63 12.39 612 1.13 2.97
Bubble sort (size, sets) 296 2.13 18.18 876 1.09 2.79
Quick sort (size, sets) 255 3.29 17.97 771 1.27 3.08
Merge sort (size, sets) 286 2.04 16.74 1079 1.07 2.99
Complete(size,minh) 463 3.52 43.75 2134 1.11 10.10

AVL (height, size, bal) 764 2.90 85.02 6451 1.07 9.66
Heap Trees(size, maxel) 649 2.10 56.46 2392 1.02 8.68

AVL (height, size) 704 2.98 70.65 7078 1.09 10.74
AVL (height, size, sets) 1758 8.00 86.79 14662 1.91 10.11
Red Black (size, height) 2225 3.84 80.91 7697 1.01 3.79

Figure 5.9: Verification Times and Proof Statistics (Proof Counts, Avg Disjuncts, Avg Size)

functional correctness. We measured the verification times taken for the original HIP system,

and also the enhanced system, called HIP+Spec, with predicate specialization. For the suite of

simple programs, the verifier with specializer runs about 7% faster. For programs with more

complex properties (with the exception of bubble sort), predicate specialization manages to

reduce verification times by between 12% and 90%. These improvements were largely due to

the presence of smaller formulae with fewer disjuncts, as captured in Figure 5.10. This graph

compares the characteristics (e.g. average disjuncts, sizes and timings) of formula encountered

by HIP+Spec, as a percentage relative to the same properties of the original HIP system. For

example, the average number of disjuncts per proof encountered went down from 3.2 to 1.1;

while the size of each proof (based on as the number of atomic formulae) also decreased from

an average of 48.0 to 6.5. This speed-up was achieved despite a six fold increase in the proof

148 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

25

50

75

100

Avg.

Disjuncts

Avg. Size

HIP %

HIP + Spec :

0

25

17 small

progs

Bubble

sort

Quick

sort

Merge

sort

Complete AVL

(h, s,b)

Heap

Trees

AVL

(h, s)

AVL

(h, s, s)

Red

Black

Time

Figure 5.10: Characteristic (disjunct, size, timing) of HIP+Spec compared to the Original HIP

counts per program from 763 to 4375 used by the specialization and verification processes.

We managed to achieve this improvement despite the overheads of a memoization mechanism

and the time taken to infer annotations for specializable predicates. We believe this is due to

smaller and simpler proof obligations generated with the help of our specialization process.

We also investigated the effects of various optimizations on the specialization mechanism.

Memoizing implications and contradictions saves 3.47%, while memoizing each context for

state change saves 22.3%. For incremental pruning, we have utilized the slicing mechanism

which saves 48% on average. We have not yet exploited the incremental proving capability

based on strengthening of contexts since our current solvers, Omega and MONA, do not sup-

port such a feature. These optimizations were measured separately, with no attempt made to

study their correlation.

5.9 Barrier Logic with Specialization

Our novel specialization calculus is a great general purpose tool for improving verification

efficiency in the presence of disjunctive predicates. In the previous section we presented sev-

eral compelling results showcasing the efficiency improvements the specialization calculus can

generate. However we believe it could also produce impressive results when applied to our

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 149

verification logic with exceptions and barriers.

In this section we will present the extensions necessary for applying the specialization

calculus to barrier definitions. As support, we will also present the considerable improvements

specialization generated in the performance of the HIP/SLEEK for the barrier examples.

We have already pointed out that barrier definitions and predicate definitions are similar

in that they both describe properties associated with resources, heaps and barriers. However

they differ in that predicate definitions describe a property of the current state while barrier

definitions describe how a barrier call would behave given the program state. Therefore, while

predicate specialization eagerly dismisses infeasible states thus decreasing the penalty of rea-

soning with unfolded predicates, barrier specialization will do an eager pruning of the infeasible

transitions minimizing the barrier call penalty.

As a quick reminder, in §4.6 we have shown that barrier definitions can be encoded as a set

of formula pairs :

[self::]bname〈−→v 〉 ≡
∨

(requires Φpre ensures Φpost)

We have also shown that applying the barrier verification rule for a barrier call barrier b

translates into locating the barrier node b::bnameπ〈−→v 〉 corresponding to b, retrieving the bar-

rier definition for bname and issuing a SLEEK entailment check with the barrier body as the

consequent.

This behaviour is very similar to the unfolding of disjunctive predicates. And unfortunately

induces a similar performance penalty. In the style of predicate definition annotations we enrich

the barrier definitions with the set of pruning conditions R:

[self::]bname〈−→v 〉 ≡
(∨

(requires Φ̂pre ensures Φ̂post)
)

;R

As with predicate definitions we use R = {α←L} to express the conditions in which a par-

ticular specification in the barrier definition can be eagerly discarded before actually executing

150 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

the entailment. In order to compute the R pruning conditions we apply a similar specialization

inference relation to the one presented for predicates in §5.5.

get inv(∃−→u · κ̂ ∧ π | C) = [invp(−→v)7→fix(∃−→u · Ci)]C
get inv(Φ1 ∨ Φ2) = hull(get inv(Φ1) ∨ get inv(Φ2))

[ISP−[BUILD−PRUNE−COND]]

bdefold = bname〈−→v 〉 ≡
(∨

i (requires Φipre ensures Φipost)
)

Φipre −msf→ Φ̂ipre G =
⋃n
i=1 closure(get inv(Φ̂ipre))

R =
⋃
α∈G{α←{i | 1≤i≤n ∧ get inv(Φ̂ipre)) =⇒ α}}

Φipost −msf→ Φ̂ipost

bdefnew = bname〈−→v 〉 ≡
(∨

i (requires Φ̂ipre ensures Φ̂ipost)
)

;R

bdefold −isp→ bdefnew

Figure 5.11: Inference Rules for Specializable Barriers

Note that the inference process takes into account only information from the preconditions,

which is intuitive since the preconditions contain the link to the current state. In the process

of building the barrier pruning conditions the invariants corresponding to the preconditions are

built as an intermediary step, however, they are not exposed. In the case of barrier definitions,

there are no invariant families, as barrier definitions describe the behaviour of an operation

rather than the properties of a state.

Once the pruning conditions have been computed, the actual barrier instance specialization

step varies little from the predicate specialization. The only change lies in the [SP−[PRUNE]]

step and consists in not adding any invariant after a pruning has been triggered.

[SP−[PRUNE]]

C∧α =⇒ false (α←L0) ∈ R L ∩ L0 6= ∅

L2 = L− L0 C,L2 ` R −filter→ R1

v ::bnamev〈−→v 〉@L#R | C −sp→ v ::bnamev〈−→v 〉@L2#R1 | C ∧ C1

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 151

We would like to point out that so far we have considered only linear arithmetic constraints

as pruning conditions. However, as mentioned in the previous sections, it is possible to extend

the domain simply by ensuring a hulling operation for the desired domain. In particular we are

interested in also using fractional share constraints as pruning conditions. Although a proper

hulling could be devised, in our investigations we have observed that even a trivial approach

in which the hull returns the weakest result, true, works sufficiently well in practice and is

strong enough to prune all the necessary branches for our examples. This not surprising, since

most of the specifications could be pruned based on arithmetic constraints. For example, given

the context: b::bname
?〈2 , x1 , x2 , y1 , y2 , i〉where bname denotes the barrier definition from

our running example in §4.2, the arithmetic conditions would eliminate all specifications not

pertaining to the transition from state 2 to state 1 however this still leaves two specifications.

By adding the fractional shares pruning conditions, the specializer is able to properly reduce to

only one applicable specification (the second move). And thus cutting the search space from 8

possible specifications to only one.

Experimental validation. We run HIP and SLEEK with pruning support for barrier defini-

tions on the benchmarks used in §4.6.6 to test the initial extension for barrier verification.

Unsurprisingly, the timings obtained for the SLEEK example without barriers are slightly

higher, mainly due to the preprocessing overhead for predicate definitions: for the 54 entail-

ments focused on the fractional share support, the timing increased from 2.1 seconds to 2.34.

However, for the 279 entailments generated during the well-formedness checks of several bar-

rier definitions, the timing dropped from 3.69 seconds to 2.45 seconds.

Furthermore, in Figure 5.12, we list the timings obtained with pruning versus the timings

without pruning, for the HIP examples presented in §4.6.6 .

Note that for the HIP examples , specialization generated an average speedup of 12.5.

Another important observation is that the highest gain were attained for the examples with more

complex ownership transfer patterns and larger barrier definitions (e.g. multi-loops, Horner

152 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

Test Threads Mem LOC No With Speedup
cells code+ Prun Prun

spec (s) (s)
video 2 5 79 59.17 2.38 24.86

3 7 128 215 6.06 35.59
video-weak 2 5 79 60.35 2.89 20.88
video-strong 2 5 79 61.12 2.99 20.44

2 1 62 0.81 0.69 1.17
MISD 3 1 67 1.33 0.95 1.40

(without 4 1 73 1.97 1.25 1.58
feedback) 5 1 79 2.81 1.65 1.70

6 1 87 3.88 2.12 1.83
2 2 74 3.22 1.64 1.96

MISD 3 3 80 4.04 1.95 2.07
(with 4 4 129 9.28 3.21 2.89

feedback) 5 5 156 69.51 5.18 13.42
6 6 187 177 7.9 22.41
3 4 160 12.82 3.8 3.37

multi-loops 4 5 208 132 6.31 20.92
5 6 255 364 9.76 37.3
3 3 54 1.43 1.03 1.39

pipeline 4 4 70 2.52 1.25 2.02
5 5 89 4.25 2.08 2.04
6 6 106 7.08 2.88 2.46

Horner(v1) 3 7 116 181 5.22 34.67
3 4 111 8.04 2.6 3.09

Horner(v2) 4 5 143 97 4.3 22.56
5 6 176 279 7.41 37.65

Figure 5.12: Verification times for HIP with specialized barriers

algorithm). This is extremely important as these factors often lead to massive performance

degradation.

Furthermore, note that introducing specialization to barrier reasoning makes it almost as

efficient as traditional verification for reasonable complex sequential programs of comparable

size (e.g. AVL or red black trees).

5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING 153

5.10 Summary

In this chapter we have proposed a specialization calculus for disjunctive predicates in a sep-

aration logic-based abstract domain. Our specialization calculus is proven sound and is termi-

nating. It supports symbolic pruning of infeasible states within each predicate instance, under

monotonic changes to the program context. We have designed inference techniques that can

automatically derive all annotations required for each specializable predicate. We have also

proposed various ways to optimize the specialization process, including memoization and in-

cremental pruning. Initial experiments have confirmed speed gains from the deployment of

our specialization mechanism to handle separation logic specifications in program verification.

Nevertheless, our calculus is more general, and is useful for program reasoning over any ab-

stract domain that supports disjunctive predicates. Apart from its efficiency benefits, predicate

specialization has the added advantage of providing an abstraction barrier that would allow

a modular approach to the program verification process. Similar to modular code develop-

ment practices, the sets of pruning conditions and family of invariants, once computed, can

be seen as an “interface” of the predicate, whereas the predicate definition can be seen as its

“implementation”. Program verification with specialized predicates requires only the use of

the “interface”. By not unfolding the predicate’s definition, we have made the “implementa-

tion” opaque. In a modular setting, a large verification problem could be split up not only by

code regions, but also by specifications, utilizing pre-specialized pre/post conditions and pred-

icate interfaces between modules. This modular approach to verification is being enabled by

predicate specialization.

Finally, we have shown how the specialization calculus naturally extends to barrier defini-

tions and that it ensures that the barrier reasoning mechanism does not incur any considerable

performance penalty.

154 5. EFFECTIVE VERIFICATION THROUGH PREDICATE PRUNING

Chapter 6

Comparative Remarks

Next, we will outline some of the recent works relevant to our proposal and comment on their

respective merits. We will divide the discussion in three topics following the main contributions

of this thesis.

6.1 Barrier Verification

O’Hearn’s concurrent separation logic focused on programs that used critical regions [80, 16];

subsequent work by Hobor et al. and Gotsman et al. added first-class locks and threads [51,

43, 50]. Our basic soundness techniques (unerased semantics tracks resource accounting;oracle

semantics isolates sequential and concurrent reasoning from each other; etc.) follow Hobor et

al. Recently both Villard et al. and Bell et al. extended concurrent separation logic to channels

[7, 96]. The work on channels is similar to ours in that both Bell and Villard track additional

dynamic state in the logic and soundness proof. Bell tracks communication histories while

Villard tracks the state of a finite state automaton associated with each communication channel.

Of all of the previous soundness results, only Hobor et al. had a machine-checked soundness

proof, albeit an incomplete one.

An interesting question is whether is it possible to reason about barriers in a setting with

155

156 6. COMPARATIVE REMARKS

locks or channels. The question has both an operational and a logical flavor. Speaking op-

erationally, in a practical sense the answer is no: for performance reasons barriers are not

implemented with channels or locks. If we ignore performance, however, it is possible to im-

plement barriers with channels or locks1. The logical part of the question then becomes, are the

program logics defined by O’Hearn, Hobor, Gotsman, Villard, or Bell (including their coau-

thors) strong enough to reason about the (implementation of) barriers in the style of the logic

we have presented? As far as we can tell each previous solution is missing at least one required

feature, so in a strict sense, the answer here is again no.

For illustration we examine what seems to be the closest solution to ours: the copyless

message passing channels of Villard et al. Operationally speaking, the best way to implement

barriers seems to be by adding a central authority that maintains a channel with each thread

using a barrier. When a thread hits a barrier, it sends “waiting” to the central authority, and then

waits until it receives “proceed”. In turn, the central authority waits for a “waiting” message

from each thread, and then sends each of them a “proceed” message. Fortunately Villard allows

the central authority to wait on multiple channels simultaneously.

The question then becomes a logical one. Although it should not pose any fundamental

difficulty, their logic would first need to be enhanced with fractional permissions; in fact we

believe that Villard’s Heap-Hop tool already uses the same fractional permission model (by

Dockins et al.) that we do. Since Villard uses automata to track state, we think it probable,

but not certain, that our barrier state machines can be encoded as a series of his channel state

machines.

There are some problems to solve. Villard requires certain side conditions on his channels;

we require other kinds of side conditions on our barriers; these conditions do not seem fully

compatible 2. Assuming that we can weaken/strengthen conditions appropriately, we reach a

second problem with the side conditions: some of our side conditions (e.g., mutual exclusion)

1Indeed, it is possible to implement channels and locks in terms of each other.
2For example, Villard requires determinacy whereas we do not; he would also require that the postconditions

of barriers be precise whereas we do not; etc.

6. COMPARATIVE REMARKS 157

are restrictions on the shape of the entire diagram; in Villard’s setting the barrier state diagram

has been partitioned into numerous separate channel state machines. Verifying our side condi-

tions seems to require verification of the relationships that these channel state machines have

to each other; the exact process is unclear.

Once the matter of side conditions is settled, there remains the issue of verifying the indi-

vidual threads and the central authority. Villard’s logic seems to have all that is required for the

individual threads; the question is how difficult it would be to verify the central authority. Here

we are less sure but suspect that with enough ghost state/instructions it can be done.

There remains a question as to whether it is a good idea to reason about barriers via channels

(or locks). We suspect that it is not a good idea, even ignoring the fact that actual implemen-

tations of barriers do not use channels. The main problem seems to be a loss of intuition: by

distributing the barrier state machine across numerous channel state machines and the inclu-

sion of necessary ghost state, it becomes much harder to see what is going on. We believe that

one of the major contributions of our work is that our barrier rule is extremely simple; with

a quick reference to the barrier state diagram it is easy to determine what is going on. There

is a secondary problem: we believe that our barrier rule will look and behave essentially the

same way in a setting with first-class barriers in which it is possible to define functions that

are polymorphic over the barrier diagram; even assuming a channel logic enriched in a similar

way, the verification of a polymorphic central authority seems potentially formidable.

One interesting question is how our barrier rule would interact with the rules of other flavors

of concurrent separation logic (e.g., with locks or channels). We believe that the answer is yes,

at least in the context of a logic of partial correctness1, as long as the primitives used remain

strongly synchronizing (i.e., coarse-grained). It is not clear how our barrier rule might interact

with the kind of fine-grained concurrency that is the subject of Vafeiadis and Parkinson [95],

Dodds et al. [29], or Dinsdale-Young et al. [26]. We believe that our barrier rule is sound on a

1Of course, the more concurrency primitives a programmer has, the easier it is to get into a deadlock. We
hypothesize that concurrent program logics of total correctness may not be as compositional as concurrent program
logics of partial correctness.

158 6. COMPARATIVE REMARKS

machine with weak memory as long as all of the concurrency is strongly synchronized.

Finally, work on concurrent program analysis is in the early stages; Gotsman et al., Calcagno

et al., and Villard et al. give techniques that cover some use cases involving locks and channels

but much remains to be done [42, 18, 97].

Connection to a result by Jacobs and Piessens. We recently learned that Jacobs and Piessens

have an impressive result on modular fine-grained concurrency [59]. Jacobs was able to reason

about our example program using his VeriFast tool by designing an implementation of barriers

using locks and reducing our barrier diagram to a large disjunction for a resource invariant.

However, VeriFast has some disadvantages compared to the HIP/SLEEK approach we pre-

sented. First, HIP/SLEEK required far less input from the user. In the case of our 30-line

example program, more than 600 lines of annotation were required in VeriFast, not including

the code/annotations for the barrier implementation itself. HIP/SLEEK were able to verify the

same program with approximately 30 lines of annotation (mostly the barrier definition). Sec-

ond, it was harder to gain insight into the program from the disjunction-form of the invariant;

in contrast we find our barrier diagrams straightforward to understand. Finally, it is unclear

to us whether the reduction is always possible or whether it was only enabled by the relative

simplicity of our example program. That said, Jacobs and Piessens have the only logic and tool

proven to be able to reason about barriers as derived from a more general mechanism.

6.2 Specialization Calculus

Traditionally, specialization techniques [61, 83, 69] have been used for code optimization by

exploiting information about the context in which the program is executed. Classical exam-

ples are the partial evaluators based on binding-time analysers that divide a program into static

parts to be specialized and dynamic parts to be residualized. However, our work focusses

on a different usage domain, proposing a predicate specialization for program verification to

prune infeasible disjuncts from abstract program states. In contrast, partial evaluators [61]

6. COMPARATIVE REMARKS 159

use unfolding and specialised methods to propagate static information. More advanced partial

evaluation techniques which integrate abstract interpretation have been proposed in the con-

text of logic and constraint logic programming [84, 83, 69].They can control the unfolding of

predicates by enhancing the abstract domains with information obtained from other unfolding

operations. Our work differs in its focus on minimizing the number of infeasible states, rather

than on code optimization. This difference allows us to use techniques, such as memoization

and incremental pruning, that were not previously exploited for specialization.

Several symbolic pruning techniques [39, 2, 34, 44] have been proposed in the area of

model checking for ameliorating the state explosion problem, especially in the context of veri-

fying concurrent systems. Thus partial order reduction techniques [39, 2, 34] are used to prune

away redundant thread interleavings within each trace equivalence class, while property-driven

symbolic methods [62] are used to prune away property specific redundant interleavings be-

tween different trace classes. Similarly, symbolic model checking techniques, e.g. [23, 44, 62],

rely on underlying SAT or SMT solvers to prune infeasible states. SAT solvers usually use a

conflict analysis [92] that records the causes of conflicts so as to recognize and preempt the

occurrences of similar conflicts later on in the search. Modern SMT solvers (e.g. [79, 32]) use

analogous analyses to reduce the number of calls to underlying theory solvers. Compared to

our pruning approach, conflict analysis [92] is a backtracking search technique that discovers

contexts leading to conflicts and uses them to prune the search space. These techniques are

mostly complementary since they did not consider predicate specialization, which is important

for expressive logics. From a program verification perspective, our work falls in line with re-

cent trends of having an expressive specification mechanism. This is important for verification

systems, such as [101, 102], that aim for full functional correctness to be guaranteed.

The primary goal of our work is to provide a more effective way to handle disjunctive pred-

icates for separation logic [75, 77]. The proper treatment of disjunction (to achieve a trade-off

between precision and efficiency) is a key concern of existing shape analyses based on sepa-

ration logic [27, 65]. One research direction is to design parameterized heap materialization

160 6. COMPARATIVE REMARKS

mechanisms (also known as focus operation) adapted to specific program statements and to

specific verification tasks [88, 71, 87, 8, 82]. Another direction is to design partially disjunc-

tive abstract domains with join operators that enable the analysis to abstract away information

considered to be irrelevant for proving a certain property [45, 100, 19]. Techniques proposed

in these directions are currently orthogonal to the contribution of this work and it would be

interesting to investigate if they could benefit from predicate specialization, and vice-versa.

6.3 Exception Verification

Some proposals, [64, 60] have considered a core language with exceptions by adding both a

throw e construct and a simplified try e1 catch (c v) e2 construct from the Java language.

However, this simplified feature was not able to succinctly handle more advanced features, such

as try−finally nor try−with−multiple−catches. Another proposal [31] directly adds

these advanced features in their core language, but this is done at the price of a more complex

formalization. [60] employs two analyses of different granularity, at the expression and method

levels, to collect constraints over the set of exception types handled by each Java program. By

solving the constraint system using techniques from [33], they can obtain a fairly precise set

of uncaught exceptions. To overcome the above shortcomings, we proposed a more expressive

specification logic, which complements the type system through selective tracking on types

that are linked to control flows.

A recent approach towards exception handling in a higher-order setting, is taken in [11].

Exceptions are represented as sums and exception handlers are assigned polymorphic, exten-

sible row types. Furthermore, following a translation to an internal language, each exception

handler is viewed as an alternative continuation whose domain is the sum of all exceptions

that could arise at a given program point. Though CPS can be used to uniformly handle the

control flows, it increases the complexity of the verification process as continuations are first

class values.

6. COMPARATIVE REMARKS 161

Spec# also has a specification mechanism for exceptions however exceptional specifica-

tions are currently useable only by the runtime checking module. The current Spec# prototype

for static verification would unsoundly approximate each exception as false, denoting an un-

reachable program state [68].

Another impressive verification system, based on the Java language, is known as the KeY

approach [6]. This approach is more complex ,due to their use of dynamic logic, since rewrit-

ing rules would have to be specified for each programming construct that is allowed in the

dynamic logic. For example, to support exception handling, a set of rewriting rules (that are

meaning-preserving) would have to be formulated to deal with raise, break and try-catch-finally

constructs, in addition to rewriting rules for block and conditionals and their possible combina-

tions. The KeY approach is meant to be a semi-automated verification system that occasionally

prompts the user for choice of rewriting rules to apply. In contrast, our approach is meant to be

fully-automated verification system, once pre/post specifications have been designed.

At a foundational level, Ancona et al [3] have added a limited form of exceptions into

Featherweight Java [56] to formally study the interaction between inheritance and exceptions.

Others [64, 31, 13] have provided a richer core language with exceptions but have still to

provide an unified view over the myriad of control flows, including that for normal execu-

tion. These proposals have formalised type systems that have been proven sound, though [64]

skipped the tracking of uncaught exceptions. Another important dimension is the inference of

uncaught exceptions [60, 33, 81]. For example, [60] employs two analyses of different granu-

larity, at the expression and method levels, to collect constraints over the set of exception types

handled by each Java program. By solving the constraint system using techniques from [33],

they can obtain a fairly precise set of uncaught exceptions.

Exception-based programs are generally harder to analyse, since they introduce extra con-

trol flows to the programs. Many previous approaches handle this challenge at a lower-level of

abstraction. For example, [93] describes the effects of exceptions on a control-flow, data-flow

and control dependence analysis and suggested using a control flow graph that will contain

162 6. COMPARATIVE REMARKS

exceptional flows. For this approach to be concise, a prior type inference for exception types

must also be done. Along the same line, [22] introduced a form of a compact control flow graph

that includes exceptional control flow and demonstrated that it could be used to construct an

improved interprocedural analysis. Weimer and Necula [99] use a data flow analysis to detect

broken specifications for resource usage. Even in the verification setting, Barnett and Leino

[5] resorted to lower-level unstructured programs (with global variables) to model and analyse

exception-based programs. Though lower-level constructs can be made to work, they are typ-

ically harder to formulate and prove correct. Our proposal to unify both normal and abnormal

control flows in a core calculus is aimed at providing a higher-level of abstraction for reasoning

about exception-based programs, including those needed by advance program analyses.

To support deeper reasoning of exception-based programs, Huisman et al. [55] proposed

an extension for Hoare-style verification to handle exceptions and abnormal control flows.

Separate logical rules were formulated to support reasoning on total and partial correctness,

and for handling each kind of abnormal control flows. However, the myriad of logical rules

used can be complex to implement. In the case of our core calculus, we were able to provide

a unified specification mechanism for the outcomes of both normal and abnormal executions,

without having to treat exceptions in a special way.

Chapter 7

Conclusions

In this thesis we have introduced a sound verification logic designed to efficiently handle pro-

grams with complex control flow patterns. On one hand, in the sequential setting, the logic

explicitly and precisely tracks control flows essential to the program verification. On the other

hand, it incorporates abstractions (e.g. barrier definitions) required to maintain modularity and

avoid the exponential blowup when reasoning in a multithreaded setting in the presence of so-

phisticated synchronization mechanisms. In order to maintain the tractability of verification in

the presence of barriers, we have introduced a novel calculus for pruning disjunctive predicates.

We have also described several contributions related to the integration of our verification logic

in order to broaden the applicability of the HIP/SLEEK verification tool chain, e.g. the first

solver for the distinct fractional shares domain.

7.1 Results Summary

Exception Verification. In Chapters 2 and 3 we have presented a new approach to the verifi-

cation of exception-handling programs based on a specification logic that can uniformly handle

exceptions, program errors and other kinds of control flows. During the implementation pro-

cess of our verification logic we have found it beneficial to make a fundamental language

163

164 7. CONCLUSIONS

re-design. The unification of flow type handling, has allowed us to formalise a core calculus

that enables an elegant formulation of the verification rules.

The specification logic is currently built on top of the formalism of separation logic, as

the latter can give precise description to heap-based data structures. Our main motivation

for proposing this new specification logic is to adapt the verification method to help ensure

exception safety in terms of the four guarantees of increasing quality introduced in [94] and

extended in [70], namely no-leak guarantee, basic guarantee, strong guarantee and no-throw

guarantee. During the evaluation process, we found the strong guarantee to be restrictive for

some scenarios, as it always forces a recovery mechanism on the callee, should exceptions

occur. Hence, we propose to generalise the definition of strong guarantee for exception safety.

Barrier Verification. In Chapter 4, we have extended the exception logic with support for

Pthreads-style barriers. Our development includes a formal design for barrier definitions and a

series of soundness conditions to verify that a particular barrier can be used safely. Our Hoare

rules can verify threads independently, enabling a thread-modular approach.

Efficient Verification. In Chapter 5, we have proposed a sound specialization calculus for

disjunctive predicates in a separation logic-based abstract domain. The calculus supports sym-

bolic pruning of infeasible states within each predicate instance, under monotonic changes to

the program context. We have designed inference techniques that can automatically derive all

annotations required for each specializable predicate. We have also proposed various ways

to optimize the specialization process, including memoization and incremental pruning. Initial

experiments have confirmed speed gains from the deployment of our specialization mechanism

to handle separation logic specifications in program verification.

We have shown how the specialization calculus naturally extends to barrier definitions and

that it ensures that the barrier reasoning mechanism does not incur any considerable perfor-

mance penalty over traditional verification of sequential programs.

Our approach has been formalised and implemented in a prototype extension of HIP/SLEEK,

7. CONCLUSIONS 165

and tested on a suite of exception-handling and barrier synchronized concurrent examples. We

hope it would eventually become a useful tool to help programmers build more robust software.

7.2 Future Work

We observe several avenues for further research:

Barrier analysis With respect to barrier reasoning , we have described the necessary mech-

anisms for capturing and reasoning about barrier behaviour. However, the current assumptions

were that both barrier call placement and barrier definitions were given. We believe that it

could be possible to go two steps further: to first develop a program analysis that could infer

the sufficient set of program points at which barrier calls are needed and secondly to infer , at

least to some extent, both barrier definition shape and partial specifications.

Synchronization logic A second avenue of investigation is spurred by the observation that a

myriad of highly specialized, synchronization related, verification logics have been proposed,

each targeted at a specific synchronization technique: barriers, locks, semaphores. More so,

several others have not been investigated: various styles of monitors, dynamic barriers (X10-

style clocks), phasers[90]. One open question that arises is: could a general synchronization

mechanism together with a corresponding verification logic be designed such that they would

encompass the commonly used synchronization mechanisms and thus have one simple, practi-

cal, unifying formalism?

Reverse specialization One motivation for the specialization calculus was the fact that un-

fold operations are on one hand essential for obtaining more precise information and on the

other hand are quite expensive. We point out that the folding operation could also benefit

from the specialization calculus. For the sake of conciseness or abstraction in most instances

information is commonly discarded during folding. By making use of the specialization calcu-

166 7. CONCLUSIONS

lus, this loss of information could be alleviated while still obtaining the conciseness required.

Apart from program verification, we suspect program analysis could also greatly benefit from

“reverse pruning”.

Specialization optimisation In §5.7.2 we have briefly discussed a secondary optimization

facilitated by the pruning mechanism. Although it did allow for significant gains by generating

a partition of the constraints into dependent groups and thus permitting an easy filtering of rel-

evant constraints and effectively shrinking the proof obligations sent to the provers we believe

there is still room for improvement. The observation is that the current construction is very

conservative in its partitioning due to the definition of the connected relation.

One proposal is to allow for a more flexible partitioning scheme in which the user is allowed

to partially sketch the partitions. For example he could specify that constraints pertaining to

certain variables be in distinct partitions. Simple annotations can be fitted into the specification

languages such that providing partitioning hints would be effortless while unannotated con-

straints would be processed by the current partitioning mechanism thus requiring the user to

specify only the partitions of interest.

Bibliography

[1] SPECjvm2008 Benchmarks. ”http://www.spec.org/jvm2008/”. 66

[2] R. ALUR, R. K. BRAYTON, T. A. HENZINGER, S. QADEER, AND S. K. RAJAMANI.

Partial-order reduction in symbolic state-space exploration. Form. Methods Syst. Des.,

18[2]:97–116, 2001. 159

[3] DAVIDE ANCONA, GIOVANNI LAGORIO, AND ELENA ZUCCA. A Core Calculus for

Java Exceptions. In Conference on Object-Oriented, pages 16–30, 2001. 161

[4] ANDREW W. APPEL AND SANDRINE BLAZY. Separation logic for small-step C minor.

In TPHOLs, pages 5–21, 2007. 81, 87

[5] MICHAEL BARNETT AND K. RUSTAN M. LEINO. Weakest-precondition of unstruc-

tured programs. In PASTE, pages 82–87, 2005. 162

[6] BERNHARD BECKERT, REINER HÄHNLE, AND PETER H. SCHMITT, editors. Verifi-

cation of Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag,

2007. 66, 161

[7] CHRISTIAN J. BELL, ANDREW W. APPEL, AND DAVID WALKER. Concurrent sepa-

ration logic for pipelined parallelization. In SAS, 2010. 155

167

http://www.spec.org/jvm2008/

168

[8] J. BERDINE, C. CALCAGNO, B. COOK, D. DISTEFANO, P. W. O’HEARN, T. WIES,

AND H. YANG. Shape analysis for composite data structures. In CAV, pages 178–192,

2007. 160

[9] J. BERDINE, C. CALCAGNO, AND P. W. O’HEARN. Smallfoot: Modular automatic

assertion checking with separation logic. In FMCO, Springer LNCS 4111, pages 115–

137, 2006. 3

[10] CHRISTIAN BIENIA. Benchmarking Modern Multiprocessors. PhD thesis, Princeton

University, Department of Computer Science, Princeton, NJ, December 2010. 4, 70

[11] MATTHIAS BLUME, UMUT A. ACAR, AND WONSEOK CHAE. Exception handlers as

extensible cases. In APLAS, pages 273–289, 2008. 160

[12] FRANÇOIS BOBOT, SYLVAIN CONCHON, EVELYNE CONTEJEAN, AND STÉPHANE

LESCUYER. Implementing Polymorphism in SMT solvers. In SMT 2008: 6th Interna-

tional Workshop on Satisfiability Modulo, 2008. 144

[13] EGON BÖRGER AND WOLFRAM SCHULTE. A practical method for specification and

analysis of exception handling - a java/jvm case study. IEEE Trans. Software Eng.,

26[9]:872–887, 2000. 161

[14] RICHARD BORNAT, CRISTIANO CALCAGNO, PETER O’HEARN, AND MATTHEW

PARKINSON. Permission accounting in separation logic. In POPL, pages 259–270,

2005. 31, 71

[15] THOMAS BRAIBANT AND DAMIEN POUS. Tactics for reasoning modulo AC in Coq.

In CPP, pages 167–182, 2011. 106

[16] STEPHEN D. BROOKES. A semantics for concurrent separation logic. In CONCUR,

pages 16–34, 2004. 155

[17] DAVID R. BUTENHOF. Programming with POSIX Threads. Addison-Wesley, 1997. 70

169

[18] CRISTIANO CALCAGNO, DINO DISTEFANO, AND VIKOR VAFEIADIS. Bi-abductive

resource invariant synthesis. In APLAS, 2009. 158

[19] B.-Y. E. CHANG AND X. RIVAL. Relational inductive shape analysis. In POPL, pages

247–260, 2008. 160

[20] WEI-NGAN CHIN, CRISTINA DAVID, HUU HAI NGUYEN, AND SHENGCHAO QIN.

Automated verification of shape, size and bag properties via user-defined predicates in

separation logic. Science of Computer Programming, 2010. 6, 9, 95, 98

[21] WEI-NGAN CHIN, CRISTIAN GHERGHINA, RAZVAN VOICU, QUANG LOC LE,

FLORIN CRACIUN, AND SHENGCHAO QIN. A specialization calculus for pruning dis-

junctive predicates to support verification. In CAV, pages 293–309, 2011. 9

[22] JONG-DEOK CHOI, DAVID GROVE, MICHAEL HIND, AND VIVEK SARKAR. Efficient

and precise modeling of exceptions for the analysis of java programs. SIGSOFT Softw.

Eng. Notes, 24[5]:21–31, 1999. 162

[23] BYRON COOK, DANIEL KROENING, AND NATASHA SHARYGINA. Symbolic model

checking for asynchronous boolean programs. In SPIN, 2005. 159

[24] P. COUSOT AND R. COUSOT. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In ACM Symposium

on Principles of Programming Languages, 1977. 134

[25] C. DAVID, C. GHERGHINA, AND W. N. CHIN. Translation and optimization for a

core calculus with exceptions. In ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation. ACM Press, 2009. 7

[26] THOMAS DINSDALE-YOUNG, MIKE DODDS, PHILIPPA GARDNER, MATTHEW J.

PARKINSON, AND VIKTOR VAFEIADIS. Concurrent abstract predicates. In ECOOP,

pages 504–528, 2010. 157

170

[27] D. DISTEFANO, P. W. O’HEARN, AND H. YANG. A local shape analysis based on

separation logic. In TACAS, pages 287–302, 2006. 159

[28] ROBERT DOCKINS, AQUINAS HOBOR, AND ANDREW W. APPEL. A fresh look at

separation algebras and share accounting. In APLAS, 2009. 6, 9, 31, 71, 90

[29] MIKE DODDS, XINYU FENG, MATTHEW J. PARKINSON, AND VIKTOR VAFEIADIS.

Deny-guarantee reasoning. In ESOP, pages 363–377, 2009. 157

[30] MARK DOWSON. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22[2]:84–,

March 1997. 1

[31] SOPHIA DROSSOPOULOU AND TANYA VALKEVYCH. Java Exceptions Throw No Sur-

prises. Technical report, Imperial College of Science, Technology and Medicin, March

2000. 160, 161

[32] B. DUTERTRE AND L. M. DE MOURA. A Fast Linear-Arithmetic Solver for DPLL(T).

In CAV, pages 81–94, 2006. 144, 159

[33] MANUEL FÄHNDRICH AND ALEXANDER AIKEN. Program analysis using mixed term

and set constraints. In SAS ’97: Proceedings of the 4th International Symposium on

Static Analysis, pages 114–126, London, UK, 1997. Springer-Verlag. 160, 161

[34] CORMAC FLANAGAN AND PATRICE GODEFROID. Dynamic partial-order reduction

for model checking software. In ACM Symposium on Principles of Programming Lan-

guages, 2005. 159

[35] ROBERT W. FLOYD. Assigning meanings to programs. In Proc. Amer. Math. Soc.

Symposia in Applied Mathematics, 19, pages 19–31, 1967. 2

[36] MICHAEL J. FLYNN AND KEVIN W. RUDD. Parallel architectures. ACM Comput.

Surv., 28[1]:67–70, March 1996. 108

171

[37] CRISTIAN GHERGHINA AND CRISTINA DAVID. A specification logic for exceptions

and beyond. In ATVA, pages 173–187, 2010. 8

[38] CRISTIAN GHERGHINA, CRISTINA DAVID, SHENGCHAO QIN, AND WEI-NGAN

CHIN. Structured specifications for better verification of heap-manipulating programs.

In FM, 2011. 89, 95, 104

[39] PATRICE GODEFROID. Partial-Order Methods for the Verification of Concurrent Sys-

tems: An Approach to the State-Explosion Problem. Springer-Verlag, 1996. 159

[40] GEORGES GONTHIER, BETA ZILIANI, ALEKSANDAR NANEVSKI, AND DEREK

DREYER. How to make ad hoc proof automation less ad hoc. In ICFP, pages 163–

175, 2011. 106

[41] JOHN B. GOODENOUGH. Structured exception handling. In POPL ’75: Proceedings of

the 2nd ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 204–224, New York, NY, USA, 1975. ACM. 57

[42] ALEXEY GOTSMAN, JOSH BERDINE, AND BYRON COOK. Interprocedural Shape

Analysis with Separated Heap Abstractions. In SAS, pages 240–260, 2006. 3, 158

[43] ALEXEY GOTSMAN, JOSH BERDINE, BYRON COOK, NOAM RINETZKY, AND

MOOLY SAGIV. Local reasoning for storable locks and threads. In APLAS, pages

19–37, 2007. 3, 69, 77, 155

[44] ORNA GRUMBERG, FLAVIO LERDA, OFER STRICHMAN, AND MICHAEL

THEOBALD. Proof-guided underapproximation-widening for multi-process systems. In

ACM Symposium on Principles of Programming Languages, pages 122–131, 2005. 159

[45] B. GUO, N. VACHHARAJANI, AND D. I. AUGUST. Shape analysis with inductive

recursion synthesis. In ACM SIGPLAN Conf. on Programming Language Design and

Implementation, pages 256–265, 2007. 160

172

[46] J. V. GUTTAG AND J. J. HORNING, editors. Larch: Languages and Tools for Formal

Specification. Springer-Verlag, 1993. 2

[47] C. A. R. HOARE. An axiomatic basis for computer programming. Commun. ACM,

12[10]:576–580, 1969. 2

[48] TONY HOARE. Verified software: Theories, tools, experiments. In International Con-

ference on Engineering of Complex Computer Systems, 2008. 2

[49] TONY HOARE AND JAYADEV MISRA. Verified software: Theories, tools, experiments

vision of a grand challenge project. In VSTTE, pages 1–18, 2005. 2

[50] AQUINAS HOBOR. Oracle semantics. Technical Report TR-836-08, Princeton, 2008. 3,

69, 77, 85, 88, 155

[51] AQUINAS HOBOR, ANDREW W. APPEL, AND FRANCESCO ZAPPA NARDELLI. Oracle

semantics for concurrent separation logic. In ESOP, pages 353–367, 2008. 3, 21, 69,

81, 155

[52] AQUINAS HOBOR AND CRISTIAN GHERGHINA. Barriers in concurrent separation

logic. In ESOP, pages 276–296, 2011. 8

[53] AQUINAS HOBOR AND CRISTIAN GHERGHINA. Barriers in concurrent separation

logic: Now with tool support! Logical Methods in Computer Science, 8[2], 2012. 8

[54] P. HUDAK AND ET AL. Report on the programming language Haskell: A non-strict,

purely functional language. ACM SIGPLAN Notices, 27[5], May 1992. 43

[55] MARIEKE HUISMAN AND BART JACOBS. Java Program Verification via a Hoare Logic

with Abrupt Termination. In FASE, pages 284–303, 2000. 162

[56] A. IGARASHI, B. PIERCE, AND P. WADLER. Featherweight Java: A Minimal Core

Calculus for Java and GJ. In ACM OOPSLA, Denver, Colorado, Nov 1999. 161

173

[57] S. ISHTIAQ AND P.W. O’HEARN. BI as an assertion language for mutable data struc-

tures. In ACM Symposium on Principles of Programming Languages, pages 14–26,

London, Jan 2001. 2

[58] B. JACOBS, J. SMANS, AND F. PIESSENS. A Quick Tour of the VeriFast Program

Verifier. In APLAS, pages 304–311, 2010. 3

[59] BART JACOBS AND FRANK PIESSENS. Expressive modular fine-grained concurrency

specification. In POPL ’11, page To appear, 2011. 158

[60] JANG-WU JO, BYEONG-MO CHANG, KWANGKEUN YI, AND KWANG-MOO CHOE.

An uncaught exception analysis for Java. Journal of Systems and Software, 72[1]:59–69,

2004. 17, 160, 161

[61] N.D. JONES, C.K. GOMARD, AND P. SESTOFT. Partial Evaluation and Automatic

Program Generation. Prentice Hall, 1993. 158

[62] VINEET KAHLON, AARTI GUPTA, AND NISHANT SINHA. Symbolic model checking

of concurrent programs using partial orders and on-the-fly transactions. In CAV, pages

286–299, 2006. 159

[63] N. KLARLUND AND A. MOLLER. MONA Version 1.4 - User Manual. BRICS Notes

Series, Jan 2001. 122

[64] GERWIN KLEIN AND TOBIAS NIPKOW. A machine-checked model for a Java-like

language, virtual machine, and compiler. ACM Trans. Program. Lang. Syst., 28[4]:619–

695, 2006. 17, 160, 161

[65] V. LAVIRON, B.-Y. EVAN CHANG, AND X. RIVAL. Separating shape graphs. In ESOP,

pages 387–406, 2010. 159

[66] XUAN BACH LE, CRISTIAN GHERGHINA, AND AQUINAS HOBOR. Decision proce-

dures over sophisticated fractional permissions. In APLAS, 2012. 92

174

[67] K. RUSTAN M. LEINO AND WOLFRAM SCHULTE. Exception Safety for C#. In SEFM

’04: Proceedings of the Software Engineering and Formal Methods, Second Interna-

tional Conference, pages 218–227, Washington, DC, USA, 2004. IEEE Computer Soci-

ety. 58

[68] RUSTAN LEINO. personal communication, Jan 2009. 161

[69] M. LEUSCHEL. A framework for the integration of partial evaluation and abstract inter-

pretation of logic programs. ACM Trans. Program. Lang. Syst., 26[3]:413–463, 2004.

114, 158, 159

[70] XIN LI, H. JAMES HOOVER, AND PIOTR RUDNICKI. Towards automatic exception

safety verification. In FM, pages 396–411, 2006. iv, 6, 8, 59, 68, 164

[71] R. MANEVICH, J. BERDINE, B. COOK, G. RAMALINGAM, AND M. SAGIV. Shape

analysis by graph decomposition. In TACAS, pages 3–18, 2007. 160

[72] ROY A. MAXION AND ROBERT T. OLSZEWSKI. Improving software robustness with

dependability cases. In 28th International Symposium on Fault Tolerant Computing,

pages 346–355, 1998. 57

[73] ALEKSANDAR NANEVSKI, VIKTOR VAFEIADIS, AND JOSH BERDINE. Structuring

the verification of heap-manipulating programs. In POPL, pages 261–274, 2010. 106

[74] CHARLES GREGORY NELSON. Techniques for program verification. PhD thesis, Stan-

ford University, 1980. 2

[75] H.H. NGUYEN, C. DAVID, S.C. QIN, AND W.N. CHIN. Automated Verification of

Shape And Size Properties via Separation Logic. In VMCAI, Nice, France, Jan 2007. 3,

33, 115, 145, 159

[76] HUU HAI NGUYEN AND WEI-NGAN CHIN. Enhancing program verification with lem-

mas. In CAV, pages 355–369, 2008. 89

175

[77] HUU HAI NGUYEN AND WEI-NGAN CHIN. Enhancing program verification with lem-

mas. In CAV, 2008. 159

[78] HUU HAI NGUYEN, CRISTINA DAVID, SHENGCHAO QIN, AND WEI-NGAN CHIN.

Automated verification of shape and size properties via separation logic. In VMCAI,

pages 251–266, 2007. 6, 95

[79] R. NIEUWENHUIS, A. OLIVERAS, AND C. TINELLI. Solving SAT and SAT Mod-

ulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to

DPLL(T). J. ACM, 53[6]:937–977, 2006. 159

[80] PETER W. O’HEARN. Resources, concurrency and local reasoning. Theoretical Com-

puter Science, 375[1]:271–307, May 2007. 3, 69, 70, 77, 155

[81] FRANCOIS PESSAUX AND XAVIER LEROY. Type-based analysis of uncaught excep-

tions. In Symposium on Principles of Programming Languages, pages 276–290, 1999.

161

[82] A. PODELSKI AND T. WIES. Counterexample-guided focus. In ACM Symposium on

Principles of Programming Languages, pages 249–260, 2010. 160

[83] G. PUEBLA AND M. HERMENEGILDO. Abstract specialization and its applications. In

ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manip-

ulation, pages 29–43, 2003. 114, 158, 159

[84] G. PUEBLA, M. HERMENEGILDO, AND J. P. GALLAGHER. An integration of partial

evaluation in a generic abstract interpretation framework. In ACM SIGPLAN Workshop

on Partial Evaluation and Semantics-Based Program Manipulation, pages 75–84, Jan-

uary 1999. 114, 159

[85] W. PUGH. The Omega Test: A fast practical integer programming algorithm for depen-

dence analysis. Communications of the ACM, 8:102–114, 1992. 122

176

[86] J. REYNOLDS. Separation Logic: A Logic for Shared Mutable Data Structures. In IEEE

LICS, pages 55–74, Copenhagen, Denmark, Jul 2002. 2, 33

[87] N. RINETZKY, A. POETZSCH-HEFFTER, G. RAMALINGAM, M. SAGIV, AND E. YA-

HAV. Modular shape analysis for dynamically encapsulated programs. In ESOP, pages

220–236, 2007. 160

[88] M. SAGIV, T. REPS, AND R. WILHELM. Parametric shape analysis via 3-valued logic.

ACM Trans. Program. Lang. Syst., 24[3]:217–298, 2002. 160

[89] S. B. SANJABI AND C.-H. L. ONG. Fully abstract semantics of additive aspects by

translation. In AOSD ’07: Proceedings of the 6th international conference on Aspect-

oriented software development, pages 135–148, New York, NY, USA, 2007. ACM. 43

[90] JUN SHIRAKO, DAVID M. PEIXOTTO, VIVEK SARKAR, AND WILLIAM N. SCHERER.

Phasers: a unified deadlock-free construct for collective and point-to-point synchroniza-

tion. In Proceedings of the 22nd annual international conference on Supercomputing,

ICS ’08, pages 277–288, 2008. 165

[91] OLIN SHIVERS AND DAVID FISHER. Multi-return function call. In ICFP ’04: Proceed-

ings of the ninth ACM SIGPLAN international conference on Functional programming,

pages 79–89, New York, NY, USA, 2004. ACM. 12, 16

[92] J. P. MARQUES SILVA AND K. A. SAKALLAH. GRASP—a new search algorithm for

satisfiability. In International Conference on Computer-Aided Design, pages 220–227,

1996. 159

[93] SAURABH SINHA AND MARY JEAN HARROLD. Analysis and testing of programs with

exception handling constructs. IEEE Trans. Software Eng., 26[9]:849–871, 2000. 161

[94] BJARNE STROUSTRUP. Exception safety: Concepts and techniques. In Advances in

Exception Handling Techniques, pages 60–76, 2000. iv, 6, 8, 59, 62, 64, 67, 68, 164

177

[95] VIKTOR VAFEIADIS AND MATTHEW J. PARKINSON. A marriage of rely/guarantee and

separation logic. In CONCUR, pages 256–271, 2007. 157

[96] JULES VILLARD, ÉTIENNE LOZES, AND CRISTIANO CALCAGNO. Proving copyless

message passing. In APLAS, pages 194–209, 2009. 155

[97] JULES VILLARD, ÉTIENNE LOZES, AND CRISTIANO CALCAGNO. Tracking heaps

that hop with heap-hop. In TACAS, pages 275–279, 2010. 158

[98] EELCO VISSER. Program transformation with stratego/xt. rules, strategies, tools, and

systems in stratego/xt 0.9. Technical Report UU-CS-2004-011, Department of Informa-

tion and Computing Sciences, Utrecht University, 2004. 35

[99] WESTLEY WEIMER AND GEORGE C. NECULA. Exceptional situations and program

reliability. ACM Trans. Program. Lang. Syst., 30[2]:1–51, 2008. 162

[100] H. YANG, O. LEE, J. BERDINE, C. CALCAGNO, B. COOK, D. DISTEFANO, AND

P. W. O’HEARN. Scalable shape analysis for systems code. In CAV, pages 385–398,

2008. 160

[101] KAREN ZEE, VIKTOR KUNCAK, AND MARTIN RINARD. Full functional verification

of linked data structures. SIGPLAN Not., 43[6]:349–361, 2008. 159

[102] KAREN ZEE, VIKTOR KUNCAK, AND MARTIN C. RINARD. An integrated proof lan-

guage for imperative programs. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN

conference on Programming language design and implementation, pages 338–351, New

York, NY, USA, 2009. ACM. 159

	Contents
	List of Figures
	1 Introduction
	1.1 Thesis Objectives
	1.2 Contributions of the Thesis
	1.3 Outline

	2 Preliminaries
	2.1 Source Language
	2.2 Control Flow Hierarchy
	2.3 Core Language
	2.3.1 Syntax
	2.3.2 Semantic Model
	Concurrent Semantics
	Oracle Semantics
	Purely Sequential Semantics

	2.4 Specification Language
	2.4.1 Semantic Model

	2.5 Translation to the Core Language
	2.5.1 Translation Steps
	Phase I: Preprocessing
	Phase II: Main Translation
	Phase III: Wrapping-up the Translation
	Phase IV: Handling Implicitly Raised Exceptions

	2.5.2 Optimization Rules
	Soundness of Optimization Rules

	3 Exception Verification
	3.1 Motivation
	3.2 Examples with Higher Exception Safety Guarantees
	3.3 Verification for Unified Control Flows
	3.4 Experiments
	3.5 Summary

	4 Barrier Verification
	4.1 Motivation
	4.2 Example
	4.3 Barrier Definitions and Consistency Requirements
	4.4 Hoare Logic
	4.5 Soundness Results
	4.5.1 Unerased Semantics
	4.5.2 Soundness Proof Outline

	4.6 Tool Support for Barriers
	4.6.1 A Solver for Shares
	4.6.2 An Introduction to SLEEK
	4.6.3 Entailment Procedure for Separation Logic with Shares
	4.6.4 Proving Barrier Soundness
	4.6.5 Extension to Program Verification
	4.6.6 Tool Performance Outline

	4.7 Summary

	5 Effective Verification through Predicate Pruning
	5.1 Motivation
	5.2 Examples
	5.3 Formal Preliminaries
	5.4 A Specialization Calculus
	5.5 Inferring Specializable Predicates
	5.6 Specialization for Program Verification
	5.7 Improved Specialization
	5.7.1 Memoization
	5.7.2 Incremental Pruning

	5.8 Experiments
	5.9 Barrier Logic with Specialization
	5.10 Summary

	6 Comparative Remarks
	6.1 Barrier Verification
	6.2 Specialization Calculus
	6.3 Exception Verification

	7 Conclusions
	7.1 Results Summary
	7.2 Future Work

	Bibliography

