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Abstract

Discourse Parsing: Inferring Discourse Structure,

Modeling Coherence, and its Applications

Ziheng Lin

In this thesis, we investigate a natural language problem of parsing a free text

into its discourse structure. Specifically, we look at how to parse free texts in the Penn

Discourse Treebank representation in a fully data-driven approach. A difficult component

of the parser is to recognize Implicit discourse relations. We first propose a classifier to

tackle this with the use of contextual features, word-pairs, and constituent and dependency

parse features. We then design a parsing algorithm and implement it into a full parser in a

pipeline. We present a comprehensive evaluation on the parser from both component-wise

and error-cascading perspectives. To the best of our knowledge, this is the first parser that

performs end-to-end discourse parsing in the PDTB style.

Textual coherence is strongly connected to a text’s discourse structure. We present

a novel model to represent and assess the discourse coherence of a text with the use of

our discourse parser. Our model assumes that coherent text implicitly favors certain types

of discourse relation transitions. We implement this model and apply it towards the text

ordering ranking task, which aims to discern an original text from a permuted ordering of

its sentences. To the best our knowledge, this is also the first study to show that output

from an automatic discourse parser helps in coherence modeling.



Besides modeling coherence, discourse parsing can also improve downstream

applications in natural language processing (NLP). In this thesis, we demonstrate that

incorporating discourse features can significantly improve two NLP tasks – argumentative

zoning and summarization – in the scholarly domain. We also show that output from these

two tasks can improve each other in an iterative model.

ii
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Chapter 1

Introduction

Language is not simply formed by isolated and unrelated sentences, but instead by

collocated, structured, and coherent texts of sentences. A piece of text is often not to

be understood individually, but understood by joining it with other text units from its

context. These units can be surrounding clauses, sentences, or even paragraphs. A text

becomes semantically well-structured and understandable when its text units are analyzed

with respect to each other and the context, and are joined interstructurally to derive high

level structure and information. Most of the time, analyzing a text as a whole gives more

semantic information to the user than summing up the information extracted from the

individual units of this text. Such a coherent text segment of sentences is referred to as a

discourse (Jurafsky and Martin, 2009).

1.1 Computational Discourse

The process of text-level or discourse-level analysis may lead to a number of natural

language processing (NLP) tasks. One of them is anaphora resolution, which is to locate

the referring expressions in the text and resolve them to the exact entities. For instance, in

Example 1.1, the pronoun “They” in the second sentence refers to “These three countries”



2

in the first sentence. To resolve what these three countries are, we may need to look back

into the previous context.

(1.1) These three countries aren’t completely off the hook, though.

They will remain on a lower-priority list that includes 17 other countries.

If we analyze the second sentence in isolation without performing anaphora reso-

lution, it is difficult to understand what entities remain on a lower-priority list. And this

may hinder the progress of downstream applications such as information extraction and

question answering. In the case of question answering, it becomes problematic if the

question is to find “all countries on the lower-priority list”.

Another NLP task for discourse processing is to draw the connections between its

text units. From a discourse point of view, these connections are usually referred to as the

rhetorical or discourse relations.1 Such connections may appear between any spans of

text, where the spans can be clauses, sentences, or multiple sentences. As an example,

an analysis of Example 1.1 shows that there lies a Contrast relation between these two

sentences. We may illustrate this relation as follows: these three countries are not out

of danger; rather, they will still remain on the lower-priority list. In fact, if we add the

discourse connective “rather” at the beginning of the second sentence, it illustrates this

relation explicitly without modifying its original meaning.

Discourse relations can be formed between any pair of text spans. When discourse

relations in a text are identified, this will produce a representation of the discourse structure

for the text. Figure 1.1 shows an excerpt taken from an article with ID wsj 2402 from

the Penn Treebank corpus (Marcus et al., 1993). This text is segmented into clauses

and sentences, and all discourse relations in the text are annotated in the Penn Discourse

Treebank (Prasad et al., 2008). The discourse representation for this text is illustrated by

Figure 1.2. This structure provides very useful information for readers or machines to

understand the text from a “bird’s eye view”. There is a Conjunction relation between
1Throughout this thesis, the term rhetorical relation and discourse relation are used interchangeably.
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[ If you can swallow the premise that the rewards for such ineptitude are six-figure
salaries, ]a [ you still are left puzzled, ]b [ because few of the yuppies consume very
conspicuously. ]c [ In fact, few consume much of anything. ]d [ Two share a house
almost devoid of furniture. ]e [ Michelle lives in a hotel room, ]f [ and although she
drives a canary-colored Porsche, ]g [ she hasn’t time to clean ]h [ or repair it; ]i [ the
beat-up vehicle can be started only with a huge pair of pliers ]j [ because the ignition
key has broken off in the lock. ]k [ And it takes Declan, the obligatory ladies’ man of
the cast, until the third episode to get past first base with any of his prey. ]l

Figure 1.1: An excerpt taken from a Wall Street Journal article wsj 2402. The text is
segmented and each segment is subscripted with a letter. The discourse relations in this
text are illustrated in the graph in Figure 1.2.

spans fghi and l, and a causal relation between fghi and jk. Within fghi, there is

another Conjunction between f and ghi. g and hi are contrastive, and h and i elaborate

alternative meaning. As a sentence, fghijk also has a List relation with the previous

sentence e.

Note that the structure in Figure 1.2 is not a tree but a graph structure. Nodes (i.e.,

text spans or argument spans) can be shared by more than one relation. For example, d is

an argument span of two relations Specification and Instantiation. Furthermore, relations

may connect two text spans that are not consecutive, such as the Conjunction relation

between spans fghi and l. Another point worth mentioning here is that some of the

relations are signaled by discourse connectives, which are underlined in Figure 1.1. For

example, the causal relation between b and c is signaled by “because”, and “in fact” hints at

the Specification relation between c and d. Other relations, such as Instantiation between d

and e and List between e and fghijk, are not explicitly signaled by discourse connectives,

but are inferred by humans. These implicit discourse relations are comparatively more

difficult to deduce than those with discourse connectives.

Discourse segmentation, or text segmentation, is another task in discourse pro-

cessing that aims to segment a text into a linear discourse structure, based on the notion
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a             b             c             d             e          f          g          h          i          j          k          l 

Contingency. 

Cause.Reason 

Comparison. 

Concession. 

Expectation 

Comparison.Contrast 

Expansion. 

Restatement. 

Specification 

Expansion. 

Instantiation 
Expansion.Alternative. 

Conjunctive 

Contingency. 

Cause.Reason 

Contingency. 

Cause.Result 

Comparison.Contrast 

Expansion. 

Conjunction 

Expansion.Conjunction 
Expansion.List 

Figure 1.2: Discourse relations for the text in Figure 1.1. The relation annotation is
taken from the Penn Discourse Treebank. For notational convenience, I denote discourse
relations with an arrow, although there is no directionality distinction. I denote Arg2 as
the origin of the arrow and Arg1 as the destination of the arrow.

of subtopic shift. A subtopic usually consists of multiple paragraphs. In the domain of

scientific articles, subtopic structure is normally explicitly marked by section/subsection

titles which group cohesive paragraphs together. Brown and Yule (1983) have shown that

this is one of the most basic divisions in discourse. Many expository texts (for example,

news articles) consist of long sequences of paragraphs without explicit structural demar-

cation. A subtopical segmentation system will be very useful in such texts. Figure 1.3

shows a subtopic structure for a 21-paragraph news article called Stargazers, taken from

Hearst (Hearst, 1997).

Discourse segmentation is useful for other tasks and applications. For example,

in information retrieval, it can automatically segment a TV news broadcast or a long

web article into a sequence of video or text units so that we can index and search such

finer-grained information units. For text summarization, given an article’s subtopics, the

system can summarize each subtopic and then aggregate the results into a final summary.

While all of these three tasks – anaphora resolution, discourse parsing, and dis-

course segmentation – are very important in analyzing and understanding the discourse

of a text, in this thesis, we focus solely on the problem of discourse parsing, in which
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1–3 Intro – the search for life in space
4–5 The moon’s chemical composition
6–8 How early earth-moon proximity shaped the moon
9–12 How the moon helped life evolve on earth
13 Improbability of the earth-moon system
14–16 Binary/trinary star systems make life unlikely
17–18 The low probability of nonbinary/trinary systems
19–20 Properties of earth’s sun that facilitate life
21 Summary

Figure 1.3: Subtopic structure for a 21-paragraph science news article called Stargazers,
taken from Hearst (Hearst, 1997).

we infer the discourse relations and structure for a text. In particular, we will first look

at the harder problem of classifying Implicit discourse relations. This class of discourse

relations occupies a similar percentage as that for Explicit discourse connectives in the

news domain as shown in (PDTB-Group, 2007) 2. Although in the past, researchers paid

less attention to the Implicit discourse relations, they are as important as their Explicit

counterparts. We will design and implement a discourse parser that is capable of iden-

tifying text spans and classifying relation types for both Explicit and Implicit discourse

relations.

Recently Prasad et al. (Prasad et al., 2008) released the Penn Discourse Treebank,

or PDTB for short, which is a discourse-level annotation on top of the Penn Treebank

(PTB) (Marcus et al., 1993). This corpus provides annotations for both Explicit and

Implicit discourse relations. In this thesis, we conduct experiments for discourse parsing

in this corpus.

2The percentages of Explicit and Implicit relations are likely to vary in other domains such as fiction,
dialogue, and legal texts.
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1.2 Motivations for Discourse Parsing

There are generally two motivations for finding the discourse relations in a text and

constructing the corresponding discourse structure. One motivation is that such structure

can be used in understanding the coherence of the text. Given two texts and their respective

discourse structures, one can compare these two structures. Discourse patterns extracted

from the structures may suggest which text is more coherent than the other. For example,

Contrast-followed-by-Cause is one of the common patterns that can be found in discourse

structures. This is illustrated by the relations among a, b, and c in Figure 1.2. Knowing

which text is more coherent could be very useful in other tasks, such as automatic student

essay grading.

Another motivation is the use of marking discourse relations and argument spans

in downstream applications in natural language processing. Discourse parsing has been

used in automatic text summarization (Marcu, 1997), as the relation types can provide

indication of importance. For example, in Rhetorical Structure Theory, or RST (Mann

and Thompson, 1988), the two text spans of a rhetorical relation are labeled nucleus

and satellite. In this theory, the nucleus span provides central information, while the

satellite span provides supportive information to the nucleus. Thus, to locate important

spans in the text in order to construct a summary, one can concentrate on the nucleus

spans. Other discourse framework, which may not have the similar focus of nuclearity

but provide representation of relation types, can also be utilized in a summarization

system. As identifying redundancy is very important in summarization, relations such

as Conjunction, Instantiation, Restatement, and Alternative can provide clues to locate

redundant information. Furthermore, one can also utilize Contrast to identify updating

information in the task of update summarization, which aims to produce a summary with

an assumption that user has some prior knowledge of the topic. Thus in the summarization

task, discourse parsing can provide information on the relations between text spans and the

corresponding roles of the text spans in the relations. In Chapter 6, we will demonstrate
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how an automatic discourse parser can improve a text summarization system by utilizing

its discourse relation types.

Other NLP tasks, such as question answering (QA) and textual entailment, can

also benefit from discourse parsing (Higashinaka and Isozaki, 2008). As an example,

why-QA, which is a special type in QA, is to find answers to the question “Why X?”.

Here is an example for a “Why X?” question: Why are pandas on the verge of extinction?

If one is able to resolve causal relations between pairs of text spans, one can leverage

such information to locate the answers for a why question. For textual entailment, one can

use a discourse relation classifier to check whether there exists a discourse relation that

repeats or expands the semantics between the text T and the hypothesis H . Specifically,

such relation can be a Conjunction, Instantiation, Restatement, Alternative, or List.

1.2.1 Problem Statement

In this thesis, we hypothesize that we can build a discourse parser to infer discourse

structures, which can be utilized to model the textual coherence of a text and improve

downstream NLP tasks. Specifically, we argue that one can build a classifier to tackle

the harder problem of classifying Implicit discourse relations and integrate this into a

full parser. We also argue that one can train a model by examining the discourse patterns

of coherent and incoherent texts, and use the trained model to differentiate a coherent

text from an incoherent one. We also show that features extracted from the discourse

structure can improve the performance of two NLP tasks – text summarization and

argumentative zoning – in a supervised approach. Argumentative zoning is a task defined

by Teufel (1999) to label sentences in a scientific paper into one of the seven rhetorical

labels. The purpose of doing this is to provide a high level view on the rhetorical moves

and arguments of the paper.

Hypothesis: A discourse parser with a component to tackle Implicit discourse

relations can provide information to model textual coherence and improve user
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tasks in natural language processing.

1.3 Contributions

This thesis makes four major contributions in the area of discourse parsing, coherence

modeling, text summarization, and argumentative zoning. They are summarized as

follows:

• Implicit discourse relation classification. We develop a classifier to recognize

Implicit discourse relations in the Penn Discourse Treebank. We propose the use of

four feature classes: contextual features to check surrounding discourse relations,

production rules extracted from constituent parse trees, dependency rules extracted

from dependency parse trees, and word-pair features. We show that a classifier

trained on these features yields statistically significant improvements over a suitable

baseline. We perform data analysis on the PDTB and identify four challenges to this

task: relation ambiguity, semantic inference, deeper context modeling, and world

knowledge.

• A PDTB-styled end-to-end discourse parser. We design a parsing algorithm

that performs discourse parsing in the PDTB representation. We implement this

algorithm into a full parser that takes as input a free text, and returns a discourse

structure. The parser is configured as a pipeline: joining together an Explict relation

classifier, the aforementioned Implicit relation classifier, and an attribution span

labeler. In the first step of classifying Explicit discourse relations, we implement a

connective classifier that improves upon the previous work, and we propose a novel

component to locate and label the two text spans for a relation. We also propose and

present a comprehensive evaluation on the parser from both component-wise and

error-cascading perspectives. To the best of our knowledge, this is the first parser

that performs end-to-end discourse parsing in the PDTB style.
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• Evaluating textual coherence using discourse structures and relations. We

demonstrate that simply using the patterns of discourse relations is not enough

to assess the coherence of a text, as this leads to sparse features. We propose

a discourse role matrix that converts a discourse structure into a representation

which schematically represents term occurrences in text units and associates each

occurrence with its discourse roles in the text units. We show that statistics extracted

from such discourse model can be used to distinguish coherent text from incoherent

one. To the best of our knowledge, this is also the first study to show that output

from an automatic discourse parser helps in coherence modeling.

• Improving summarization and argumentative zoning using discourse relations.

We apply information extracted from the discourse structure for a text in both scien-

tific paper summarization and argumentative zoning, and demonstrate significant

improvement on these two tasks. We also propose an iterative model of these two

tasks and show that their output can improve each other.

1.3.1 Research Publications

The work in this thesis has been published in (Lin et al., 2009; Lin et al., 2010; Lin et al.,

2011):

• Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009. Recognizing Implicit Dis-

course Relations in the Penn Discourse Treebank. In Proceedings of the 2009

Conference on Empirical Methods in Natural Language Processing (EMNLP 2009),

pages 343–351, Singapore.

• Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2010. A PDTB-Styled End-to-End

Discourse Parser. Technical Report TRB8/10, School of Computing, National

University of Singapore, August.
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• Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011. Automatically Evaluating Text

Coherence Using Discourse Relations. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Technologies

(ACL-HLT 2011), pages 997–1006, Portland, Oregon, USA, June.

1.4 Overview of This Thesis

This thesis is structured into seven chapters.

• Chapter 2 discusses background and related work for this thesis. Previous work

that is related to this thesis basically belongs to five areas: Implicit discourse relation

classification, automatic discourse parsing, textual coherence modeling, automatic

text summarization (specifically in the scientific domain), and argumentative zoning.

Furthermore, we give an overview of the Penn Discourse Treebank (PDTB), which

is a discourse-level annotation atop the Penn Treebank and will be used as our

working data set.

• In Chapter 3, we design and implement a system to recognize Implicit discourse

relations in the PDTB. Features used in this classifier include the modeling of the

context of relations, features extracted from constituent parse trees and dependency

parse trees, and word pair features. We also conduct a data analysis in the PDTB

and discuss four challenges for designing an Implicit relation classifier.

• In Chapter 4, we design an algorithm that performs discourse parsing in the PDTB

representation, and implement it into an end-to-end system in a fully data-driven

approach. This is the first end-to-end discourse parser that can parse any unrestricted

text into its discourse structure in the PDTB style. The Implicit relation classifier is

used in this pipeline as one component. In addition to this, we specifically develop

other components to classify Explicit discourse relations and attributions. The demo
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and source code of the parser have been released online3.

• In Chapter 5, with this discourse parser, we propose a coherence model that

leverages the observation that coherent texts preferentially follow certain discourse

patterns. We posit that such patterns can be represented and captured by discourse

relation transitions, and demonstrate this using a matrix representation of the

discourse patterns for a text. We also demonstrate that this coherence model is

capable of differentiating a coherent text from an incoherent one.

• Chapter 6 applies discourse parsing in two NLP tasks: summarization on scientific

papers and argumentative zoning. We extract features from the output of the

discourse parser, and demonstrate that such features can improve the performance

on both tasks. In addition to this, we construct an iterative model of these two tasks,

and show that their results can be used as features to improve each other.

• Lastly, Chapter 7 summarizes the work in this thesis and outlines a number of

future directions.

3http://wing.comp.nus.edu.sg/˜linzihen/parser/
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Chapter 2

Background and Related Work

In this chapter, we briefly describe previous work that is related to this thesis. We first

give an overview of the Penn Discourse Treebank, followed by describing related work

in Implicit discourse relation classification and discourse parsing. We also list recent

research work that is conducted in the Penn Discourse Treebank. We will then describe

previous work in the areas of coherence modeling, text summarization, and argumentative

zoning.

2.1 Overview of the Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et al., 2008) covers the set of one million

word Wall Street Journal (WSJ) articles in the Penn Treebank (PTB) (Marcus et al., 1993),

which is much larger than the previous existing discourse annotations, such as the RST

Discourse Treebank (RST-DT) corpus (Carlson et al., 2001). The PDTB adopts a binary

predicate-argument view on discourse relations, where the connective acts as a predicate

that takes two text spans as its arguments. The span to which the connective is syntactically

attached is called Arg2, while the other is called Arg1. All connectives annotated in the

PDTB have exactly two arguments, which is unlike the predicate-argument structures
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of verbs in the PropBank (Palmer et al., 2005), where verbs can take any number of

arguments.

The PDTB provides annotation for each discourse connective and its two argu-

ments. Explicit relations are defined to be discourse relations that are explicitly signaled

by discourse connectives. The PDTB defines a set of 100 discourse connectives. Exam-

ple 2.1 shows an Explicit relation where the connective “because” is underlined, Arg1

span is italicized, and Arg2 span is bolded. The last line of the example shows the relation

type and the file in the PDTB from which the example is drawn.

(2.1) The federal government suspended sales of U.S. savings bonds because Congress

hasn’t lifted the ceiling on government debt.

(Contingency.Cause.Reason - wsj 0008)

The PDTB also examined pairs of adjacent sentences within paragraphs for dis-

course relations other than Explicit relations. Example 2.2 shows such an Implicit relation

where the annotator inferred an Implicit connective “for example” that most intuitively con-

nects Arg1 and Arg2 spans. Some relations are alternatively lexicalized by non-connective

expressions, i.e., expressions that are not in the set of 100 discourse connectives in the

PDTB. These relations are termed AltLex relations. Example 2.3 is such a relation with

the non-connective expression “Another concern”. Implicit connectives are represented

by the annotation “Implicit = . . . ”, and AltLex expressions are represented by “AltLex

[. . . ]”.

(2.2) “I believe in the law of averages,” declared San Francisco batting coach Dusty

Baker after game two. Implicit = ACCORDINGLY “I’d rather see a so-so hitter

who’s hot come up for the other side than a good hitter who’s cold.”

(Contingency.Cause.Result - wsj 2202)

(2.3) Political and currency gyrations can whipsaw the funds. AltLex [Another

concern]: The funds’ share prices tend to swing more than the broader
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market.

(Expansion.Conjunction - wsj 0034)

If no Implicit or AltLex relation exists between a sentence pair, annotators then

checked whether an entity transition (i.e., EntRel relation) holds, otherwise no relation

(NoRel) was concluded. EntRel captures the cases in which the same entity is realized

or repeated in both sentences. Example 2.4 shows an EntRel relation where the person

“Pierre Vinken” in the first sentence is repeated as “Mr. Vinken” in the second sentence.

Explicit, Implicit and AltLex relations are discourse relations, whereas EntRel and NoRel

are non-discourse relations.

(2.4) Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

(EntRel - wsj 0001)

For each discourse relation, the PDTB also provides annotation for the attribution

(i.e., the agent that expresses the argument) for Arg1, Arg2, and the relation as a whole.

For example, the text span in the box in Example 2.2 – “declared San Francisco batting

coach Dusty Baker after game two” – is the attribution span for the whole relation.

Aside from annotating discourse relations, the PDTB also provides a three-level

hierarchy of relation types. The first level consists of four major relation classes: Temporal,

Contingency, Comparison, and Expansion. Temporal is used when the events or situations

in Arg1 and Arg2 are related temporally. A discourse relation belongs to the Contingency

relation when one argument causally influences the other. When the events in Arg1 and

Arg2 are compared to highlight the difference, it is labeled as a Comparison relation.

Otherwise it is called Expansion if one argument expands the semantics or discourse in

the other argument.

For each class, a second level of types is defined to provide finer semantic distinc-

tions which are listed in Table 2.1. For example, there are six types defined under the
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Temporal Comparison
Synchronous Contrast
Asynchronous Juxtaposition

Precedence Opposition
Succession Pragmatic Contrast

Contingency Concession
Cause Expectation

Reason Contra-expectation
Result Pragmatic Concession

Pragmatic Cause Expansion
Justification Conjunction

Condition Instantiation
Hypothetical Restatement
General Specification
Unreal Present Equivalence
Unreal Past Generalization
Factual Present Alternative
Factual Past Conjunctive

Pragmatic Condition Disjunctive
Relevance Chosen Alternative
Implicit Assertion Exception

List

Table 2.1: Discourse relations in (Prasad et al., 2008): a hierarchy of semantic classes,
types and subtypes.
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Expansion class: Conjunction, Instantiation, Restatement, Alternative, Exception, and

List. Restatement describes a situation where one argument restates the semantics in the

other. In contrast, Conjunction is used when Arg2 provides additional, discourse-new

information that is related to that in Arg1. Instantiation – which is sometimes signaled by

the connective “for example” – exemplify or instantiate Arg1’s event in the Arg2 span.

A third level of subtypes is defined for some types to specify the semantic con-

tribution of each argument. For example, the relation type labeled for Example 2.2 is

Expansion.Restatement.Specification, meaning that there is a Restatement relation be-

tween Arg1 and Arg2, and Arg2 (instead of Arg1) is the argument that provides specific

details. Other types, such as Instantiation and List, are not further provided with subtypes.

2.2 Implicit Discourse Relations

One of the first works that use statistical methods to detect Implicit discourse relations

is that of Marcu and Echihabi (2002). They showed that word pairs extracted from two

text spans provide clues for detecting the discourse relation between the text spans. For

instance, the word pair (good, fails) in the following example provides a clue that a

contrast relation holds between the two sentences.

(2.5) John is good in math and sciences.

Paul fails almost every class he takes.

As they did not have human annotated data for Implicit discourse relations, they

used a set of textual patterns to automatically construct a large corpus of text span pairs

from the web. These text spans were assumed to be instances of specific discourse

relations. They removed the discourse connectives from the pairs to form a corpus of

Implicit relations. For example, one of the patterns is

[BOS . . . EOS] [BOS But . . . EOS]
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which matches two consecutive sentences where the second begins with “But” (BOS and

EOS mean begin of sentence and end of sentence, respectively). “But” is then removed

and the two sentences form a pair of Implicit discourse relation. They assumed “but”

always indicates a Contrast relation, and assigned Contrast to this pair. However, this

assumption is not always true, as we will show in Chapter 4. Not all occurrences of

connectives exhibit discourse functions (e.g., not every “but” is a discourse connective),

and some discourse connectives are ambiguous with regard to the relation types (e.g., not

every “but” indicates Contrast).

From this corpus, they collected word pair statistics, which were used in a Naı̈ve

Bayes framework to classify discourse relations. They determined the most likely dis-

course relation that holds between a pair of sentences S1 and S2 by finding the discourse

relation r that maximizes P (r|S1, S2), which is equivalent to logP (S1, S2|r) + logP (r).

The first component logP (S1, S2|r) can be calculated by∑
(w1,w2)∈S1,S2

logP ((w1, w2)|r)

where (w1, w2) is a word pair and w1 and w2 are extracted from S1 and S2, respectively.

Saito et al. (2006) extended this theme, to show that phrasal patterns extracted

from a text span pair provide useful evidence in relation classification. For example, if the

pattern “X should have done Y” is found in the first sentence and the second sentence is

“A did B”, there is most likely a Contrast relation between these two sentences. Another

example is the patterns “There is . . . ” and “Those are . . . ”, which we can usually conclude

an Instantiation relation, even if there is no other word pair clues found inside “. . . ”.

The authors combined word pairs with phrasal patterns, and conducted experiments with

these two feature classes to recognize Implicit relations between adjacent sentences in a

Japanese corpus. They restricted the phrasal patterns to those that match the following

regular expression in order to filter out less informative phrases:

“(noun-x | verb | adjective)? (particle | auxiliary verb | period)+$” or “adverb$”



18

They demonstrated that phrasal patterns are able to significantly improve the task in

addition to the word pair features.

Both of these previous works have the shortcoming of transforming Explicit

relations to Implicit ones by removing the Explicit discourse connectives, which was

previously discussed in (Sporleder and Lascarides, 2008). While this is a good approach to

automatically create large corpora, natively Implicit relations may be signaled in different

ways. The fact that Explicit relations are explicitly signaled indicates that such relations

need a cue to be unambiguous to human readers. Thus, such an artificially Implicit relation

corpus may exhibit marked differences from a natively Implicit one.

Wellner et al. (2006) used multiple knowledge sources to produce syntactic and

lexico-semantic features, which were then used to automatically identify and classify

Explicit and Implicit discourse relations in the Discourse Graphbank (Wolf and Gibson,

2005). The features include: words at the beginning and end of the span to capture dis-

course connectives, distance between the two spans, semantic path between non-function

words, word pair similarity, dependency relations between the two spans, temporal links

between the two spans, and event-based features such as event head words and types.

Their experiments show that discourse connectives and the distance between the two text

spans have the most impact, and event-based features also contribute to the performance.

However, their system may not work well for Implicit relations alone, as the two most

prominent features only apply to Explicit relations: Implicit relations do not have dis-

course connectives and the two text spans of an Implicit relation are usually adjacent to

each other. As they did not separate the experimental results for Explicit and Implicit

relations, it is not able to draw a conclusion on the performance on classifying Implicit

relations.

Pitler et al. (2009) performed classification of Implicit discourse relations in the

PDTB using several linguistically informed features, which include: polarity of the span,

unigram and bigram language models, verb classes, first and last words of the span,
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modality of the span, and word pairs. The classification task is performed on the four

Level-1 types, i.e., Temporal, Contingency, Comparison, and Expansion. Their intuition

for using word polarity is that words from contrastive sentences may possess opposite

polarities. For example, “good” in Example 2.5 has positive polarity and “fails” negative

polarity. Surprisingly, this feature class did not contribute to the performance when they

conducted a binary classification of Comparison vs. Other. Their analysis showed that

this is most likely due to the low coverage of the positive-negative pairs in the data. The

idea behind using verb classes is that, if the verbs from the two text spans are from the

same or close classes, the relation between them are very likely to be Expansion. They

conducted four sets of binary classifications (i.e., Relation vs. Other) with a Naı̈ve Bayes

classifier, and showed performance increases over a random classification baseline.

2.3 Discourse Parsing

Many discourse frameworks have been proposed in the literature of discourse modeling.

Among them, there are the cohesive devices described by Halliday and Hasan (1976),

Hobbs’ inventory of coherence relations based on abductive reasoning (Hobbs, 1985), the

Rhetorical Structure Theory (RST) proposed by Mann and Thompson (1988), Grosz and

Sidner (1986)’s models which aim to associate speakers’ intentions with their focus of

attention in discourse, the Linguistic Discourse Model (LDM) proposed by (Scha and

Polanyi, 1988; Polanyi and Scha, 1984), the Lexicalized Tree Adjoining Grammar for

Discourse (D-LTAG) by (Webber and Joshi, 1998; Webber, 2004; Forbes et al., 2003),

and the discourse model that associates discourse relations in a graph structure (Wolf and

Gibson, 2005). A number of discourse parsing systems following the RST framework has

been proposed, due to the availability of the RST Discourse Treebank (RST-DT) (Carlson

et al., 2001). Thus, we will review RST and the automatic discourse parsers that follow

this framework. Furthermore, as the corpus of interest of this thesis – the PDTB – is



20

[ Farmington police had to help control traffic recently ]a [ when hundreds of people
lined up to be among the first applying for jobs at the yet-to-open Marriott Hotel. ]b
[ The hotel’s help-wanted announcement – for 300 openings – was a rare opportunity
for many unemployed. ]c [ The people waiting in line carried a message, a refutation,
of claims that the jobless could be employed if only they showed enough moxie. ]d
[ Every rule has exceptions, ]e [ but the tragic and too-common tableaux of hundreds
or even thousands of people snake-lining up for any task with a paycheck illustrates a
lack of jobs, ]f [ not laziness. ]g

Figure 2.1: A text taken from (Mann and Thompson, 1988), which originates from an
editorial in The Hartford Courant. The text is segmented and each segment is subscripted
with a number. The RST tree for this text is shown in Figure 2.2.

a          b          c          d          e          f          g

Circumstance Antithesis

ConcessionVolitional Result

Evidence

Background

Figure 2.2: RST tree for the text in Figure 2.1.

developed atop the D-LTAG framework, we will also review D-LTAG and its rule-based

parser.

Rhetorical Structure Theory, or RST, is a discourse theory that associates rhetorical

relations with text structures. Mann and Thompson (1988) proposed the Rhetorical

Structure Theory which takes a nucleus-satellite view on rhetorical relations. RST defines

a set of rhetorical relations as well as discourse schemas for the structural constituency

arrangements of text. As the RST schemas are recursive, they enable relation embedding

that lead to a tree structure of a text. Figure 2.2 shows an RST tree for the excerpt in

Figure 2.1. An arrow connects a satellite span to a nucleus span. Comparing Figure 2.2
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with Figure 1.2, one can see that the PDTB relations are more freely interconnected – they

construct a graph instead of a tree. However, there are no advantages of one representation

over the other. The preference depends on the aims and system design. The framework of

PDTB focuses more on local discourse coherence, , i.e., how two adjacent texts (clause

or sentence) are connected to each other. This enables reader to verify how text is glued

together in a local context. However, there is also no restriction on long distance relation –

readers are free to draw a relation between two text spans which are a few sentences away

from each other, if they infer a discourse relation between these two spans. On the other

hand, the recursive function of RST constructs a text from a global perspective but at the

same time put more restriction on the way that a text can be handled by a machine.

Marcu (1997) formalized an algorithm to automatically parse an unrestricted text

into its rhetorical tree using the RST framework. He made use of cue phrases to split

a sentence into elementary discourse units (edus), designed algorithms that are able to

recognize rhetorical relations with or without the signals of cue phrases, and proposed

four rule-based algorithms for determining the valid discourse tree given the relations of

adjacent edus. Take the previous example, the input to Marcu’s parser will be the free text

in Figure 2.1, and the output will be the RST tree shown in Figure 2.2.

Continuing this vein, Soricut and Marcu (2003) introduced probabilistic models to

segment a sentence into edus, and to derive their corresponding sentence-level discourse

structure, using lexical and syntactic features. A probability for each word is calculated

to check whether to insert an edu boundary after this word. They proposed the notion

of a dominance set. In order to construct the RST tree for the sentence, a dominance

set is used to check that which edu from a pair of edus dominate the other one. They

experimented with their models using the RST Discourse Treebank (RST-DT) corpus

(Carlson et al., 2001), which is annotated in the RST framework and covers a small

subset of 385 documents in the PTB. Figure 2.3 shows an RST tree for a sentence that is

segmented into three edus. Note that there is a relation named Attribution, which in the
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[ The bank also says ]a [ it will use its network ]b [ to channel investments. ]c

Enablement

Attribution

Figure 2.3: RST structure of a sentence, borrowed from (Soricut and Marcu, 2003).

PDTB framework is not defined as a discourse relation. In Chapter 4, we will introduce

an attribution span labeler to deal with attributions.

Huong et al. (2004) divided the discourse parsing process into two steps: first using

syntactic information and cue phrases to segment sentences into edus and to generate

discourse structures at sentence-level, and then generating text-level structure from the

sentence-level ones in a constrained, bottom-up manner. They experimented in the

RST-DT corpus and showed promising system performance on the following dimensions:

• edu segmentation at sentence level,

• Relation connection of text spans at both sentence and text level,

• Relation orientation (i.e., nucleus vs. satellite) at both sentence and text level, and

• Relation type classification at both sentence and text level.

In our system experiments of our developed discourse parser in Chapter 4, we also perform

component-wise evaluations in a similar fashion.

Recently, duVerle and Prendinger (2009) made use of a support vector machines

(SVM) approach, using a rich set of shallow lexical, syntactic, and structural features to

train two separate classifiers to identify the rhetorical structures and label the rhetorical

roles drawn from the RST-DT. Their tree building algorithm is applied to subtrees in a

recursive and bottom-up manner, starting from the edus: the binary relation identifier is
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applied to select the best match between adjacent subtrees, and the multi-class relation

classifier is applied to label the newly created subtree. The process continues recursively

until there is only one subtree left. As an example, to build the RST tree in Figure 2.3,

their system may check the existence of relations for two pairs of subtrees, (a, b) and

(b, c), select (b, c) and label it with Enablement. Since there is now only one subtree

(a, bc) left, it may label this as Attribution.

Apart from the RST framework and systems built upon it, Webber and Joshi (1998)

and Webber (2004) have developed a Lexicalized Tree Adjoining Grammar for Discourse

(D-LTAG) which associates local discourse relations with lexical elements. In D-LTAG,

discourse relations are triggered by lexical elements (i.e., explicit or implicit discourse

connectives), focusing on low-level discourse structures and semantics of monologic

discourse. Taking the relation between spans b and c in Figure 1.2 as example, there is a

Cause relation between these two spans that is triggered by the connective “because”. This

is illustrated by Figure 2.4, where (a) is a D-LTAG initial tree for subordinate substitution.

Another essential feature of D-LTAG is its use of auxiliary trees (mainly for discourse

adverbials), which is not shown in Figure 2.4. Auxiliary trees provide a recursive way

to adjoin a discourse clause to a discourse tree with coordinating or null connective, or

adjoin a discourse clause with adverbial to a discourse tree with anaphoric link pointing

to previous discourse. The explanatory power of D-LTAG comes from both initial and

auxiliary trees. In Chapter 4, we will propose a parsing algorithm that locates local

discourse relations in a similar fashion: it checks whether a connective occurrence is a

discourse connective, and if yes, it triggers the argument labeler to locate and label the

two connected text spans.

Forbes et al. (2003) implemented a rule-based discourse parsing system following

the D-LTAG framework with an integration of sentence-level and text-level parsing.

Discourse structure is derived in two passes of parsing: the first parses each single

sentence into its tree derivation, after which the second pass constructs a single discourse



24

Dc 

Dc Dc subordinate 

(a)

Dc 

because you still are left 
puzzled, 

few of the yuppies 
consume very 
conspicuously. 

Dc Dc subordinate 

(b)

Figure 2.4: (a) A D-LTAG initial tree for subordinate substitution. Dc stands for dis-
course clause, ↓ indicates a substitution point, and subordinate represents a subordinate
conjunction. (b) The tree after applying (a) on to the span bc in Figure 1.1.

[ The pilots could play hardball by noting they are crucial to any sale or restructuring
because they can refuse to fly the airplanes. ]a If [ they were to insist on a low bid of,
say $200 a share, ]b [ the board mightn’t be able to obtain a higher offer from other
bidders ]c because [ banks might hesitate to finance a transaction the pilots oppose. ]d
Also, because [ UAL chairman Stephen Wolf and other UAL executives have joined
the pilots’ bid, ]e [ the board might be able to exclude him from its deliberations in
order to be fair to other bidders. ]f

Figure 2.5: A text excerpt taken from a WSJ article wsj 2172. Its discourse tree that is
parsed by Forbes et al.’s rule-based parser is shown in Figure 2.6. Clauses are subscripted
with letters.
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Dc 

Dc 

Dc 

Dc 

Dc 

Dc 

Dc 

a 

Dc 

b 

Dc 

c 

Dc 

d 

Dc 

e 

Dc 

f 

Conn 

E 

Conn 

E 

Conn 

if 

Conn 

because 

Conn 

because 

Conn 

Also 

Figure 2.6: Discourse tree derived by Forbes et al.’s parser for the text in Figure 2.5. Null
anchors are labeled with E.

tree from the derivation. Figure 2.5 gives a text excerpt taken from a WSJ article wsj 2172.

When given this text as an input, Forbes et al.’s parser derives the tree shown in Figure 2.6.

Note that the first discourse connective “because” is ignored by the parser, as the parser

does not consider sententially embedded connectives. There is a number of shortcomings

in this parsing algorithm:

• This parser only builds the syntactic structure for a discourse, without providing the

semantics of this discourse structure, i.e., the relation types such as Contrast and

Cause.

• Although D-LTAG defines auxiliary trees and substitution rules, it does not enforce

the text to be represented as a single discourse tree. In fact, due to the notion of

locality, the discourse structures in the PDTB (which is constructed based on the

D-LTAG framework) are mostly graphs.
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• Sententially embedded discourse connectives are not taken into consideration, which

may lead to a large portion of connectives being left out of the parsing process.

2.3.1 Recent Work in the PDTB

The PDTB is the first annotation that follows the lexically grounded, predicate-argument

approach in the D-LTAG. With the advent of the PDTB, some recent work has attempted to

recognize discourse connectives, relation types and arguments in this newer corpus. Using

syntactic features extracted from the parse trees, Pitler and Nenkova (2009) introduced

a model that is able to disambiguate the discourse usage of connectives (i.e., discourse

vs. non-discourse) and recognize Explicit relations. They extracted syntactic features

from the constituent parses with regard to the connectives, and showed that it significantly

outperforms the baselines on a 10-fold cross validation.

Wellner and Pustejovsky (2007) and Wellner (2009) proposed machine learning

approaches to identify the head words of the two arguments for discourse connectives

in the PDTB. They applied constituent features, dependency features, lexico-syntactic

features, as well as the connective and its contextual features. Elwell and Baldridge (2008)

followed this work with the use of general and connective specific rankers and their

combinations. Although their method is capable of locating the positions of the arguments,

it is not able to label the span of these arguments.

Besides (Pitler et al., 2009)’s work on classifying Implicit relations, as briefly

introduced in the previous section, Wang et al. (2010) used a tree kernel and temporal

ordering information to automatically recognize and classify both Explicit and Implicit

discourse relations. The motivation is that temporal ordering information, such as verb

tense, aspectual, and event orders between the two argument spans, usually constrain the

discourse relation type.

All of these research efforts in the PDTB can be viewed as isolated components

of a full parser. In Chapter 4 we propose a system that differs from these prior efforts
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in that it connects all subtasks into a single pipeline, and we implement this pipeline

into an end-to-end parser in the PDTB style. The parser attempts to: recognize explicit

discourse connectives, identify relation types and argument spans for both Explicit and

Non-Explicit relations, and recognize attribution spans for these relations. Component-

wise, we introduce two novel approaches to accurately locate and label arguments, and

to label attribution spans. We also significantly improve on the current state-of-the-art

connective classifier with newly introduced features.

2.4 Coherence Modeling

Coherence is a property that makes a text semantically meaningful and easy to read.

Coherence is related to the discourse structure of a text, and in Chapter 5, we will apply

discourse parsing in modeling coherence. In this section, we review related work in

coherence modeling.

Barzilay and Lapata (2005; 2008) proposed a framework for representing and

assessing local text coherence. The model is motivated by Centering Theory (Grosz et

al., 1995), which states that subsequent sentences in a locally coherent text are likely to

continue to focus on the same entities as in previous sentences. Their assumption was

that the distribution of discourse entities (classes of coreference noun phrases) in locally

coherent texts at the level of sentence-to-sentence transitions exhibits certain regularities.

Local coherence is represented as an entity grid, in which the vertical axis corresponds to

entities and the horizontal axis corresponds to a sequence of sentences. Each grid cell ri,j

represents the role (subject (s), object (o), other (x), or absent (-)) of entity ej in sentence

Si, and each grid column rj represents the transitions of entity ej from a sequence of

sentences. Table 2.2 illustrates a fragment of an entity grid. They adopted a machine

learning approach and demonstrated their model’s ability to discern coherent texts from

incoherent ones. Elsner and Charniak (2008) improved the entity-based model by adding
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Table 2.2: A fragment of the entity grid. Noun phrases are represented by their head
nouns.

a model of discourse-new entity identification, and they subsequently presented a better

discourse-new model in (Elsner and Charniak, 2011) by adding additional features that

better capture the likelihood that an entity will be subsequently mentioned.

Another line of modeling local, sentential coherence is by constructing word co-

occurrence coherence models. Lapata (2003) proposed a sentence ordering model, where

she made the assumption that in an adjacent sentence pair (Si, Si+1), a word wi+1 ∈ Si+1

is generated independently by words wi ∈ Si, and the coherence of Si and Si+1 is defined

by the product of all word pair probabilities P (wi+1|wi). The coherence of a text is then

determined by aggregating the sentential coherence:

P (T ) =
∏
i

P (Si+1|Si)

=
∏
i

∏
(wi,wi+1)∈Si×Si+1

P (wi+1|wi) (2.6)

In a similar vein, Soricut and Marcu (Soricut and Marcu, 2006) introduced a coherence

model based on IBM Model 1 (Brown et al., 1993), as shown here:

P (T ) =
∏
i

∏
wi+1∈Si+1

ε

|Si|+ 1

∑
wi∈Si

P (wi+1|wi) (2.7)
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This model is trained with an Expectation-Maximization (EM) procedure over pairs

of consecutive sentences, in order to deduce hidden variables’ values. The difference

between this model and Lapata’s model is that, with the hidden variables, we learn which

wi is responsible for generating wi+1.

Newswire reports usually follow certain patterns of topic shift in reporting events.

For example, articles reporting earthquakes typically contain information about quake

strength, location, and casualties, and descriptions of casualties usually precede those

of rescue efforts. Based on this domain-specific observation, a well-written earthquake

report must be globally more coherent than a poorly-written one. Barzilay and Lee (2004)

proposed a domain-dependent HMM model to capture topic shift in a text, where topics

are represented by hidden states and sentences are observations. The global coherence

of the text can then be summarized by the overall probability of topic shift from the first

sentence to the last.

Following the two directions on local and global coherence, Soricut and Marcu (2006)

and Elsner et al. (2007) combined the entity-based and HMM-based models and demon-

strated that these two models are complementary to each other in coherence assessment.

In Elsner et al. (2007), the entity-based model is combined into the HMM model in a

way that, the observations (i.e., sentences) generated by the HMM hidden states (i.e.,

topics) are further categorized into known entities, new entities, and non-entities, when

entity-based probabilities are defined.

The above approaches all deal with entities and terms that appear in the text,

and do not address other phenomena that are also indicative of discourse coherence.

The coherence model in Chapter 5 differs from these models in that it introduces and

operationalizes another indicator of discourse coherence, by modeling a text’s discourse

relation transitions. Karamanis (2007) has tried to integrate local discourse relations into

the Centering-based coherence metrics for the task of information ordering, but was not

able to obtain improvement over the baseline method. This may have been partly due to
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the much smaller data set and the way the discourse relation information was utilized in

their heuristic constraints and rules.

Realizing that adjacent sentences exhibit syntactic regularities and sentences with

similar syntax are likely to have the same communicative goal, Louis and Nenkova (2012)

recently proposed a coherence model based on syntactic patterns to capture intentional

structure. They showed that such patterns correlate with the intentional structures of

academic conference articles and the proposed model is able to predict the coherence of

abstract, introduction, and related work sections of these articles.

2.5 Summarization and Argumentative Zoning

Discourse relations can provide crucial information for downstream NLP applications. For

example, a text summarization system may utilize the contrast and restatement relations

to recognize updating information and redundancy. In this section, we discuss related

work for two NLP applications – summarization and argumentative zoning – upon which

we will later apply our discourse parser on. For summarization, we specifically focus on

summarizing scientific articles.

Automatic text summarization for scientific articles has been studied for more

than half a century (Sparck-Jones, 1998; Mani and Maybury, 1999; Mani, 2001). One of

the early work that produces abstracts for scientific articles is that of (Luhn, 1958). The

intuition is that the salience factor of a sentence is derived from an analysis of its words,

whereas the frequency of word occurrence in the article suggests a useful measure of the

word salience. Luhn used word frequency statistics to compute a list of frequent words for

an article, and measured the salience of a sentence by a normalized sum of the frequent

words. The most salient sentences are output as the abstract of the article. This key word

method was later on utilized in Edmundson (1969)’s automatic sentence extraction system.

Besides this, Edmundson also proposed three new components: cue words (i.e., pragmatic
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words such as “significant” and “impossible”), title words (namely, words collected from

the titles, subtitles, and headings for that article), and sentence location. In the system, the

relative weights for the four components were parameterized in a linear function so that

the system can be tuned.

Many researchers have proposed methods to measure the salience of sentences

in extractive summarization (Radev et al., 2004; Erkan and Radev, 2004a; Ye et al.,

2005; Lin et al., 2007). Erkan and Radev (2004a) proposed LexRank to define sentence

importance based on a graph algorithm to compute the centrality of sentences. A lexical

graph is constructed by treating sentences as nodes and connecting them by their lexical

similarities. After construction, they then apply a random walk on the graph until it

converges. The weights of the sentence nodes are the sentence importance scores.

Current work on scientific article summarization includes summarizing citations

and related work. The citation text of a target article A is defined as the set of sentences

in other articles that explicitly cite A. Qazvinian and Radev (2008) argued that citation

texts are useful in creating a summary of the important contributions of a scientific article.

They constructed a lexical graph for the citation sentences and applied a network-based

clustering algorithm to select representative sentences to form a citation summary for A.

This notion was extended by Mohammad et al. (2009) to automatically create a survey

paper given a research topic. They compared a textual graph algorithm and a clustering

approach in summarizing multiple scientific papers in order to generate a survey. Hoang

and Kan (2010) proposed the task of summarizing related work for a research topic.

Given a set of research articles and a topic tree that defined by the user, their system

automatically generates the related work section.

Ono et al. (1994) developed an automatic abstract generation system for Japanese

based on the RST structure of the text. RST takes a nucleus-satellite view on rhetorical

relations, which they leverage as an indication of the importance of the relation spans.

They suggested a penalty score for every relation span based on their nucleus-satellite
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orientation: a span receives a penalty if it is the satellite in a relation. For example, in

Figure 2.3, the spans a and b receive a penalty as they are the satellite spans for the

Attribution and Enablement relations, respectively. The abstract can then be generated by

selecting sentences with smallest penalty scores.

Recently, Louis et al. (2010) investigated the predictive power of two specific

classes of information in discourse:

• The structure information provided by the RST structures, and

• The semantic information provided by the types of the relations in the PDTB.

They used as structural features the penalty scores from (Ono et al., 1994) and the

promotion set scores from (Marcu, 1998). The motivation is similar as we discussed in

the previous paragraph. To use as the semantic features, they applied the gold standard

relation types from the PDTB. For each sentence, they checked whether it contains a

single-sentential or multi-sentential relation, the Arg1 or Arg2 tag (when multi-sentential),

the relation type of the discourse relation, whether it is an Explicit or Implicit relation,

and the number of relations that a sentence is involved in. For example, the sentence in

Example 2.1 will generate the semantic feature “expresses Explicit Contingency relation”,

and the first sentence in Example 2.2 will generate the feature “contains Arg1 of Implicit

Contingency relation”. They showed that structural features are more predictive than

semantic features, and both are complementary to standard non-discourse features for

summarization. Louis et al. experimented in the gold standard PDTB data and showed

discourse information is complementary to non-discourse features. Although they applied

discourse information on news domain, we believe that such information is also useful

when we summarize scholarly papers. In Chapter 6, we will illustrate this by applying an

automatic discourse parser in summarizing scholarly papers.

Teufel (Teufel, 1999) proposed argumentative zoning (AZ) as a task to annotate

rhetorical functions of sentences in scientific articles. She defined a scheme with seven
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Category Abbr. Description
Aim AIM Specific research aims
Basis BAS Other work that provides basis for own work
Background BKG Generally accepted background knowledge
Contrast CTR Contrast, comparison, weaknesses of other work
Other OTH Statements that describe other work
Own OWN Statements that describe authors’ own work
Textual TXT Textual organization of the article

Table 2.3: Argumentative zones defined in (Teufel, 1999)

CTR The previously proposed semantic-head-driven generation methods run into
problems if none of the daughter constituents in the syntacto-semantic rule
schemata of a grammar fits the definition of a semantic head given in (Shieber
et al. 1990).

OTH This is the case for the semantic analysis rules of certain constraint-based
semantic representations, e.g. Underspecified Discourse Representation Struc-
tures (UDRSs) (Frank and Reyle 1992).

AIM Since head-driven generation in general has its merits, we simply return to a
syntactic definition of ‘head’ and demonstrate the feasibility of syntactic-head-
driven generation.

OWN In addition to its generality, a syntactic-head-driven algorithm provides a basis
for a logically well-defined treatment of the movement of (syntactic) heads,
for which only ad-hoc solutions existed, so far.

Figure 2.7: An abstract taken from a paper published in COLING 1994 (König, 1994).
Sentences are labeled by their rhetorical functions.
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categories of rhetorical functions, namely, aim (AIM), basis (BAS), background (BKG),

contrast (CTR), other (OTH), own (OWN), and textual (TXT) (cf. Table 2.3). Among these

seven categories, background, other, and own provide the basic intellectual ownership of

the article, and the other four provide finer-grained description of the rhetorical moves

of the article. As examples, AIM sentences are sentences that describe the specific

research aims, contributions, and conclusions of the current work, and CTR sentences

are statements of contrast, comparison, and weaknesses of other work. Figure 2.7 shows

an abstract taken from a paper. The four sentences from this abstract are labeled with

the corresponding AZ categories: CTR, OTH, AIM, and OWN. Automatic classification

approaches have been proposed in (Teufel, 1999; Teufel and Moens, 2002; Merity et

al., 2009; Teufel and Kan, 2011), in order to automatically assign AZ categories to the

sentences in scientific articles. Teufel and Moens (2002) used a naı̈ve Bayesian classifier

with a rich set of features to perform AZ classification. These features include content

features, verb syntax, citation features, locations, and a rich set of hand-crafted rules.

The input to their classifier is a scientific article annotated with AZ categories, citation

information, and structure information (i.e., sections, titles, etc.). Teufel and Kan (2011)

proposed a robust argumentative zoning classifier that is capable of taking plain texts

from scientific articles as input. They used a maximum entropy classifier. They included

n-gram features into (Teufel and Moens, 2002)’s feature pool, without the hand-crafted

rules. We hypothesize that discourse information will be useful in recognizing certain

AZ categories. For example, a Contrast relation can provide clue to judge whether a

sentence belongs to a CTR category. We will illustrate how to apply discourse parsing in

argumentative zoning in Chapter 6.
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2.6 Conclusion

In this chapter, we gave an overview of the PDTB, and reviewed related work in Implicit

discourse relation classification, discourse parsing, recent work in the PDTB, coherence

modeling, and two NLP tasks - summarization and argumentative zoning. In the upcoming

chapters, we will detail the building of a full discourse parser in the PDTB style and

how we can make use of the discourse parser’s output to model coherence and improve

downstream NLP tasks.
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Chapter 3

Classifying Implicit Discourse Relations

In this chapter, we present an Implicit discourse relation classifier in the Penn Discourse

Treebank (PDTB). Our classifier considers the context of the two arguments, word pair

information, as well as the arguments’ internal constituent and dependency parses. Our

results on the PDTB yield a significant 14.1% improvement over the baseline. In our error

analysis, we discuss four challenges in recognizing Implicit relations in the PDTB.

3.1 Introduction

Detecting Implicit relations is a critical step in forming a discourse understanding of

text, as many text spans do not mark their discourse relations with explicit cues. As in

the recent release of the second version of the PDTB (Prasad et al., 2008), among all

relations annotated, about 45% of them are Explicit relations, 40% are Implicit relations,

and the remaining ∼15% belongs to AltLex, EntRel, and NoRel relations. PDTB does

not examine sentence pairs across paragraphs for Implicit relations. It is crucial that

a discourse parser is capable of identifying Implicit relations. With the PDTB, which

provides a larger, cleaner, and more thorough Implicit relation annotation than the previous

discourse corpora such as RST-DT (cf. Chapter 2), there is an opportunity to address this
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area of work.

In this chapter, we provide classification of Implicit discourse relations on the

second version of the PDTB. One thing to note is that a system that handles Implicit

relations needs to identify that there exists an Implicit relation (but not Explicit, AltLex,

EntRel, or NoRel) between two text spans before classifying the type of the Implicit

relation. We focus on the second step in this chapter, i.e., we assume the input to our

classifier consists of all Implicit relations and we only classify their relation types. In the

next Chapter, we will describe a separate module which is capable of both identifying

the existence of an Implicit relation and classifying its relation type. The features we use

include contextual modeling of relation dependencies, features extracted from constituent

parse trees and dependency parse trees, and word pair features. We show an accuracy of

40.2%, which is a significant improvement of 14.1% over the majority baseline.

We first explain the Implicit relation types that we are going to work on. We then

describe our classification methodology, followed by experimental results. We give a

detailed discussion on the difficulties of Implicit relation classification in the PDTB, and

then conclude the chapter.

3.2 Implicit Relation Types in PDTB

The PDTB provides a three level hierarchy of relation tags for its annotation. We focus on

Implicit relation classification of the Level-2 types in the PDTB, as we feel that Level-1

classes are too general and coarse-grained for downstream applications, while Level-3

subtypes are too fine-grained and are only provided for some types. Table 3.1 shows the

distribution of the 16 Level-2 relation types of the Implicit relations from the training

sections, i.e., Sections 2 – 21. As there are too few training instances for Condition,

Pragmatic Condition, Pragmatic Contrast, Pragmatic Concession, and Exception, we

removed these five types from further consideration. We thus use the remaining 11 Level-
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Level-1 Class Level-2 Type Training % Adjusted %
instances

Temporal Asynchronous 583 4.36 4.36
Synchrony 213 1.59 1.59

Contingency Cause 3426 25.61 25.63
Pragmatic 69 0.52 0.52
Cause
Condition 1 0.01 –
Pragmatic 1 0.01 –
Condition

Comparison Contrast 1656 12.38 12.39
Pragmatic 4 0.03 –
Contrast
Concession 196 1.47 1.47
Pragmatic 1 0.01 –
Concession

Expansion Conjunction 2974 22.24 22.25
Instantiation 1176 8.79 8.80
Restatement 2570 19.21 19.23
Alternative 158 1.18 1.18
Exception 2 0.01 –
List 345 2.58 2.58

Total 13375
Adjusted total 13366

Table 3.1: Distribution of Level-2 relation types of Implicit relations from the training
sections (Sec. 2 – 21). The last two columns show the initial distribution and the
distribution after removing the five types that have only a few training instances.
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Figure 3.1: Two types of discourse dependency structures. Top: fully embedded argument,
bottom: shared argument.

2 types in our work. The initial distribution and adjusted distribution are shown in the last

two columns of the table. We see that the three predominant types are Cause (25.63%),

Conjunction (22.25%), and Restatement (19.23%).

3.3 Methodology

Our Implicit relation classifier is built using supervised learning on a maximum entropy

classifier. As such, our approach processes the annotated argument pairs into binary

feature vectors suitable for use in training a classifier. Attributions and supplements

are ignored from the relations, as our system does not make use of them. We chose

the following four classes of features as they represent a wide range of information –

contextual, syntactic, and lexical – that have been shown to be helpful in previous works

and tasks. We now discuss the four categories of features used in our framework.
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I'm talking about landing in a canal. In a porous wicker basket. With a pilot who speaks no English.  

List 
List 

Figure 3.2: Two List relations. Similar to other figures in this thesis, I denote discourse
relations with an arrow for notational convenience, although there is no directionality
distinction. I denote Arg2 as the origin of the arrow and Arg1 as the destination of the
arrow.

Contextual Features

Lee et al. (2006) showed that there are a variety of possible dependencies between pairs

of discourse relations: independent, fully embedded argument, shared argument, properly

contained argument, pure crossing, and partially overlapping argument. They argued that

the last three cases – properly contained argument, pure crossing, and partially overlapping

argument – can be factored out by appealing to discourse notions such as anaphora and

attribution. Moreover, we also observed from the PDTB corpus that fully embedded

arguments and shared arguments are the most common patterns, which are shown in

Figure 3.1. The top portion of Figure 3.1 shows a case where relation r1 is fully embedded

in Arg1 of relation r2, and the bottom portion shows r1 and r2 sharing an argument.

We model these two patterns as contextual features. We believe that these discourse

dependency patterns between a pair of adjacent relations are useful in identifying the

relations. For example, if we have three items in a list, according to the PDTB binary

predicate-argument definitions, there will be a List relation between the first item and

the second item, and another List relation between the previous List relation and the

third item, where the previous List relation is fully embedded in Arg1 of the current List

relation. Figure 3.2 shows such an example with two List relations1 As we are using the

1The PDTB also contains some exceptions where Arg1 of the last List relation covers more than the
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Fully embedded argument:
prev embedded in curr.Arg1
next embedded in curr.Arg2
curr embedded in prev.Arg2
curr embedded in next.Arg1

Shared argument:
prev.Arg2 = curr.Arg1
curr.Arg2 = next.Arg1

Table 3.2: Six contextual features derived from two discourse dependency patterns. curr
is the relation we want to classify.

gold standard argument segmentation from the PDTB, we can extract and leverage these

dependency patterns. For each relation curr, we use the previous relation prev and the

next relation next as evidence to fire six binary features, as defined in Table 3.2. For the

two List relations in Figure 3.2, the contextual features are “curr embedded in next.Arg1”

for the first List relation, and “prev embedded in curr.Arg1” for the second. In real data

where we do not have gold standard discourse relations, we may run the classifier first

without contextual feature, and run it in a second iteration where we use the result from

the first iteration to compute the contextual feature.

Note that while curr is an Implicit relation to be classified, both prev and next can

be Implicit or Explicit relations. Pitler et al. (2008) showed that the type of a relation

sometimes correlates to the type of its adjacent relation. When the adjacent relation is

Explicit, its type may be suggested by its discourse connective. Thus we include another

two groups of contextual features representing the connectives of prev and next when they

are Explicit relations.

previous List relation or partially covers the previous List relation.
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Constituent Parse Features

Research work from other NLP areas, such as semantic role labeling, has shown that

features derived from syntactic trees are useful in semantic understanding. Such features

include syntactic paths (Jiang and Ng, 2006) and tree fragments (Moschitti, 2004). Thus,

we expect that syntactic features will also help in our task. From our observation of the

PDTB relations, syntactic structure within one argument may constrain the relation type

and the syntactic structure of the other argument. For example, the constituent parse

structure in Figure 3.3(a) usually signals an Asynchronous relation when it appears in

Arg2, as shown in Example 3.1, while the structure in Figure 3.3(b) usually acts as a clue

for a Cause relation when it appears in Arg1, as shown in Example 3.2. In both examples,

the lexicalized parts of the parse structure are highlighted with wavy underline.

(3.1) But the RTC also requires “working” capital to maintain the bad assets of thrifts

that are sold

Implicit = SUBSEQUENTLY That debt would be paid off
::
as the assets are sold

(Asynchronous - wsj 2200)

(3.2) It would
::::
have

:::::
been too late to think about on Friday. Implicit = SO We had to

think about it ahead of time.

(Cause - wsj 2201)

For Arg1 and Arg2 of each relation, we extract the corresponding gold standard

syntactic parse trees from the corpus. As an argument can be a single sentence, a clause,

or multiple sentences, this results in a whole parse tree, parts of a parse tree, or multiple

parse trees. From these parses, we extract all possible production rules. Although the

structures shown in Figure 3.3 are tree fragments, tree fragments are not extracted since

production rules act as generalization of tree fragments. As an example, Figure 3.4 shows

the parse tree for Arg1 of an Implicit discourse relation from the text wsj 2224. As Arg1

is a clause, the extracted tree is a subtree. We then collect all production rules from this
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(a)
SBAR

IN

as

S

. . . . . .

(b)
VP

MD VP

VB

have

VP

VBN

been

ADJP PP

Figure 3.3: (a) constituent parse in Arg2 of Example 3.1, (b) constituent parse in Arg1 of
Example 3.2.

S-TPC-1

NP-SBJ

PRP

We

VP

VBD

had

NP

NP

DT

no

NN

operating

NNS

problems

ADVP

IN

at

DT

all

Figure 3.4: A gold standard subtree for Arg1 of an Implicit discourse relation from
wsj 2224.
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subtree, with function tags (e.g., SBJ) removed from internal nodes. POS tag to word

production rules are collected as well. The resulting production rules include ones such as:

S→ NP VP, NP→ PRP, PRP→ “We”, etc. Each production rule is represented as three

binary features to check whether this rule appears in Arg1, Arg2, and both arguments. In

the example in Figure 3.4, “... had/have no/not ... at all” usually signals a restatement

relation with inferred connective of “indeed” or “in fact”, and this pattern is captured by

the set of production rules.

Dependency Parse Features

We also experimented with features extracted from dependency trees of the arguments.

We used the Stanford dependency parser (de Marneffe et al., 2006), which takes in a

constituent parse tree and produces a dependency tree. Again, for an argument, we may

collect a whole dependency tree, parts of a tree, or multiple trees, depending on the span

of the argument. The reason for using dependency trees is that they encode additional

information at the word level that is not explicitly present in the constituent trees. From

each tree, we collect all words with the dependency types from their dependents. Figure

3.5 shows the dependency subtree for the same example in Figure 3.4, from which we

collect three dependency rules: “had” ← nsubj dobj, “problems” ← det nn advmod,

“at” ← dep. Similarly as for Figure 3.4 and Figure 3.5, we hope to capture the same

pattern with the set of dependency rules.

Note that unlike the constituent parse features which are guaranteed to be accurate

(as they are extracted from the gold parses of the corpus), the dependency parses occa-

sionally contain errors. As with the constituent parse features, each dependency rule is

represented as three binary features to check whether it appears in Arg1, Arg2, and both

arguments. When we use real data, both constituent parse and dependency parse need to

be done automatically, and we expect errors from both parsers.



45

had

nsubj dobj

problemsWe

nndet advmod

operatingno at

dep

all

Figure 3.5: A dependency subtree for Arg1 of an Implicit discourse relation from
wsj 2224.

Lexical Features

Marcu and Echihabi (2002) demonstrated that word pairs extracted from the respective

text spans are a good signal of the discourse relation between arguments. At the beginning

of Section 2.2, we have shown a word pair example of (good, fails) which helps to

signal a Contrast relation between the adjacent sentence pair. The example is repeated in

Example 3.3 for reference.

(3.3) John is good in math and sciences.

Paul fails almost every class he takes.

Thus we also consider word pairs as a feature class. We stemmed and collected all word

pairs from Arg1 and Arg2, i.e., all (wi, wj) where wi is a word from Arg1 and wj a word

from Arg2. In Example 3.3, both Arg1 and Arg2 contain 7 stemmed words, which gives

rise to 7× 7 = 49 word pairs. Unlike Marcu and Echihabi’s study, we limit the collection

of word pair statistics to occurrences only in the training set of the PDTB corpus.
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3.3.1 Feature Selection

For the collection of production rules, dependency rules, and word pairs, we used a

frequency cutoff of 5 to remove infrequent features. From the Implicit relation dataset of

the training sections (i.e., Sections 2 – 21), we extracted 11,113 production rules, 5,031

dependency rules, and 105,783 word pairs in total. We applied mutual information (MI) to

these three classes of features separately, resulting in three ranked lists. A feature f has 11

MI values with all 11 types (for example, MI(f, Cause) andMI(f,Restatement)), and

we used the MI with the highest value for a feature to select features. In our experiments,

the top features from the lists are used in the training and test phases.

3.4 Experiments

We experimented with a maximum entropy classifier from the OpenNLP MaxEnt package

using various combinations of features to assess their efficacy. We used PDTB Sections 2

– 21 as our training set and Section 23 as the test set2, and only used the Implicit discourse

relations.

In the PDTB, about 2.2% of the Implicit relations are annotated with two types, as

shown in Example 3.4, which is labeled as Conjunction and Contrast. During training,

a relation that is annotated with two types is considered as two training instances, each

with one of the types. During testing, such a relation is considered one test instance, and

if the classifier assigns either of the two types, we consider it as correct. Thus, the test

accuracy is calculated as the number of correctly classified test instances divided by the

total number of test instances.

(3.4) Sales surged 40% to 250.17 billion yen from 178.61 billion.

2(PDTB-Group, 2007) suggests to use Sections 2 – 21 for training, 22 for development, 23 for testing,
and 0, 1, and 24 for additional development.
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# Production # Dependency # Word Context Acc.
rules rules pairs

R1 11,113 – – No 36.7%
R2 – 5,031 – No 26.0%
R3 – – 105,783 No 30.3%
R4 – – – Yes 28.5%
R5 11,113 5,031 105,783 Yes 35.0%

Table 3.3: Classification accuracy with all features from each feature class. Rows 1 to 4:
individual feature class; Row 5: all feature classes.

Implicit = MEANWHILE Net income rose 11% to 29.62 billion yen from 26.68

billion.

(Conjunction; Contrast - wsj 2242)

In our work, we use the majority class as the baseline, where all instances are

classified as Cause. This yields an accuracy of 26.1% on the test set. A random baseline

yields an even lower accuracy of 9.1% on the test set.

3.4.1 Results and Analysis

To check the efficacy of the different feature classes, we trained individual classifiers

on all features within a single feature class (Rows 1 to 4 in Table 3.3), as well as a

single classifier trained with all features from all feature classes (Row 5). Among the

four individual feature classes, production rules and word pairs yield significantly better

performance over the baseline with p < 0.01 and p < 0.05 respectively, while context

features perform slightly better than the baseline.

Interestingly, we note that the performance with all dependency rules is slightly

lower than the baseline (Row 2), and applying all feature classes does not yield the highest

accuracy (Row 5), which we suspected were due to noise. To confirm this, we employed

MI to select the top 100 production rules and dependency rules, and the top 500 word
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# Production # Dependency # Word Context Acc.
rules rules pairs

R1 100 – – No 38.4%
R2 – 100 – No 32.4%
R3 – – 500 No 32.9%
R4 – – – Yes 28.5%
R5 100 100 500 Yes 40.2%

Table 3.4: Classification accuracy with top rules/word pairs for each feature class. Rows 1
to 4: individual feature class; Row 5: all feature classes.

pairs (as word pairs are sparser). We then repeated the same set of experiments, as shown

in Table 3.4 (Row 4 of this table is repeated from Table 3.3 for consistency). With only

the top features, production rules, dependency rules, and word pairs all gave significant

improvement over the baseline with p < 0.01. When we used all feature classes, as in

the last row, we obtained the highest accuracy of 40.2%. Comparing Table 3.3 and 3.4,

feature selection helps to improve the performance for production rules, dependency rules,

and word pairs by 1.7%, 6.4%, and 2.6%, respectively. The main reason is that the feature

set before feature selection contains too much noise. As in Example 3.3, only one out

of the 49 word pairs – namely, (good, fails) – contributes to signal the Contrast relation.

Such noise is more pronounced in relations with longer sentences.

Table 3.4 also validates the pattern of predictiveness of the feature classes: produc-

tion rules contribute the most to the performance individually, followed by word pairs,

dependency rules, and finally, context features. A natural question to ask is whether any

of these feature classes can be omitted to achieve the same level of performance as the

combined classifier. To answer this question, we conducted a final set of experiments,

in which we gradually added in feature classes in the order of their predictiveness (i.e.,

production rules� word pairs� dependency rules� context features), with results shown

in Table 3.5. These results confirm that each additional feature class indeed contributes a

marginal performance improvement (although not statistically significant), and that all
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# Production # Dependency # Word Context Acc.
rules rules pairs

R1 100 – – No 38.4%
R2 100 – 500 No 38.9%
R3 100 100 500 No 39.0%
R4 100 100 500 Yes 40.2%

Table 3.5: Accuracy with feature classes gradually added in the order of their predictive-
ness.

Level-2 Type Precision Recall F1 Count in
test set

Asynchronous 0.50 0.08 0.13 13
Synchrony – – – 5
Cause 0.39 0.76 0.51 200
Pragmatic Cause – – – 5
Contrast 0.61 0.09 0.15 127
Concession – – – 5
Conjunction 0.30 0.51 0.38 118
Instantiation 0.67 0.39 0.49 72
Restatement 0.48 0.27 0.35 190
Alternative – – – 15
List 0.80 0.13 0.23 30
All (Micro Avg.) 0.40 0.40 0.40 780

Table 3.6: Recall, precision, F1, and counts for 11 Level-2 relation types. “–” indicates
0.00.

feature classes are needed for optimal performance.

Note that Row 3 of Table 3.3 corresponds to a system similar to (Marcu and

Echihabi, 2002) which applies only word pair features. The differences are that they

used a Naı̈ve Bayes classifier while we used a maximum entropy classifier and they

trained on a much larger data set of artificially constructed relations while we trained on

actual relations. As we did not implement their Naı̈ve Bayes classifier, we compare their

method’s performance using the result from Table 3.3 Row 3 with ours from Table 3.5

Row 4, which shows that our system significantly (p < 0.01) outperforms theirs.
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Table 3.6 shows the recall, precision, and F1 measure for the 11 individual Level-2

relation types in the final experiment set up (Row 4 from Table 3.5). A point worth noting

is that the classifier labels no instances of the Synchrony, Pragmatic Cause, Concession,

and Alternative relation types. The reason is that the percentages for these four types are

so small that the classifier is highly skewed towards the other types. From the distribution

shown in Table 3.1, there are just 4.76% training data for these four types, but 95.24% for

the remaining seven types. In fact, only 30 test instances are labeled with these four types,

as shown in the last column of Table 3.6. As Cause is the most predominant type in the

training data, the classifier tends to label uncertain relations as Cause, thus giving Cause

high recall but low precision. We see that the F measures correlate well with the training

data frequency, thus we hypothesize that accuracy may improve if more training data for

low frequency relations can be provided.

Our work differs from that of (Pitler et al., 2009) in that our system performs

classification at the more fine-grained Level-2 types, instead of the coarse-grained Level-

1 classes. Their system applies a Naı̈ve Bayes classifier whereas our system uses a

maximum entropy classifier, and the sets of features used are also different. In addition,

the data set of (Pitler et al., 2009) includes EntRel and AltLex, which are relations in

which an implicit connective cannot be inserted between adjacent sentences, whereas our

data set excludes EntRel and AltLex.

3.5 Discussion: Why are Implicit Discourse Relations

Difficult to Recognize?

In the above experiments, we have shown that by using the four feature classes, we

are able to increase the classification accuracy from 26.1% of the majority baseline to

40.2%. Although we feel a 14.1 absolute percentage improvement is a solid result, an

accuracy of 40% does not allow downstream NLP applications to trust the output of such
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a classification system.

Pitler et al. (2009) performed a 6-way classification on the four Level-1 types with

EntRel and NoRel, and they achieved an accuracy of 44.58%. This also suggests that

classification of Implicit relations is a tough task even if we back off to the coarse-grained

Level-1 types.

To understand the difficulties of the task more deeply, we analyzed individual

training and validation data pairs, from which we were able to generalize four challenges

to automated Implicit discourse relation recognition. We hope that this discussion may

motivate future work on Implicit discourse relation recognition.

Ambiguity

There is ambiguity among relations without sufficient contextual and domain knowledge.

For example, we notice that a lot of Contrast relations are mistakenly classified as

Conjunction (in Table 4.8 where we train a classifier with Implicit, AltLex, EntRel, and

NoRel relations, 26 Contrast relations have been mistakenly labeled as Conjunction).

When we analyzed these relations, we observed that Contrast and Conjunction in the

PDTB annotation are very similar to each other in terms of lexical choice, syntax, and

semantics, as Examples 3.5 and 3.6 show. In both examples, the same antonymous verb

pair is used (fell and rose), different subjects are mentioned in Arg1 and Arg2 (net and

revenue in the first example, and net and sales in the second), and these subjects are all

compared to like items from the previous year. Without sufficient domain knowledge, it

is very difficult to disambiguate the relation types for these two examples. It is worth

noting that the implicit discourse connective given by the annotators is “while” in both

examples, which is an ambiguous connective as shown in (Miltsakaki et al., 2005). As the

annotation process of the implicit connectives and the relation types are separated (i.e.,

the implicit connectives were ignored when relation type annotation was done), it shows

that the annotators were aware of the similarity between these two examples and thus



52

inferred the same implicit connective.

(3.5) In the third quarter, AMR said, net fell to $137 million, or $2.16 a share, from

$150.3 million, or $2.50 a share. Implicit = WHILE Revenue rose 17% to $2.73

billion from $2.33 billion a year earlier.

(Contrast - wsj 1812)

(3.6) Dow’s third-quarter net fell to $589 million, or $3.29 a share, from $632 million,

or $3.36 a share, a year ago. Implicit = WHILE Sales in the latest quarter rose

2% to $4.25 billion from $4.15 billion a year earlier.

(Conjunction - wsj 1926)

Relation ambiguity may be ameliorated if an instance is analyzed in context.

However, according to the PDTB annotation guidelines, if the annotators could not disam-

biguate between two relation types, or if they felt both equally reflect their understanding

of the relation between the arguments, they could assign two types to the relation. In

the whole PDTB corpus, about 5.4% of the Explicit relations and 2.2% of the Implicit

relations are annotated with two relation types. Example 3.4 in Section 3.4 is such a

case where the implicit connective “meanwhile” may be interpreted as expressing a

Conjunction or Contrast relation.

Inference

Sometimes inference and a knowledge base are required to resolve the relation type.

In Example 3.7, to understand that Arg2 is a restatement of Arg1, we need a semantic

mechanism to show that either the semantics of Arg1 implies that of Arg2 or the other

way around. In the below example, “I had calls all night long” implies “I was woken up

every hour” semantically, as shown in:

receive call(I) ∧ duration(all night)⇒ woken up(I) ∧ duration(every hour)
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Relation type Semantic representation
Cause |Arg1| ≺ |Arg2| ∨ |Arg2| ≺ |Arg1|
Concession A ≺ C ∧ B ⇒ ¬C

where A ∈ |Arg1|, B ∈ |Arg2|
Instantiation exemplify(|Arg2|, λx.x ∈ E)

where E = extract(|Arg1|)
Restatement |Arg1| ⇒ |Arg2| ∨ |Arg1| ⇐ |Arg2|
Alternative |Arg1| ∧ |Arg2| ∨ |Arg1| ⊕ |Arg2|

Table 3.7: Some examples of relation types with their semantic representations, as taken
from (PDTB-Group, 2007).

(3.7) “I had calls all night long from the States,” he said. “Implicit = IN FACT I was

woken up every hour – 1:30, 2:30, 3:30, 4:30.”

(Restatement - wsj 2205)

In fact, most relation types can be represented using formal semantics (PDTB-

Group, 2007), as shown in Table 3.7, where |Arg1| and |Arg2| represent the semantics

extracted from Arg1 and Arg2, respectively. This kind of formal semantic reasoning

requires a robust knowledge base, which is still beyond our current technology.

Context

PDTB annotators adopted the Minimality Principle in argument selection, according to

which they only included in the argument the minimal span of text that is sufficient for the

interpretation of the relation. While the context is not necessary to interpret the relation,

it is usually necessary to understand the meaning of the arguments. Without an analysis

of the context, Arg1 and Arg2 may seem unconnected, as the following example shows,

where the meaning of Arg1 is mostly derived from its previous context (i.e., West German

... technical reactions).
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(3.8) Previous Context: West German Economics Minister Helmut Haussmann said,

“In my view, the stock market will stabilize relatively quickly. There may be one or

other psychological or technical reactions,

but they aren’t based on fundamentals. Implicit = IN SHORT The economy of

West Germany and the EC European Community is highly stable.”

(Conjunction - wsj 2210)

Sometimes the range of the context may easily extend to the whole text, which

would require a system to possess a robust context modeling mechanism. In Example 3.9,

in order to realize the causal relation between Arg2 and Arg1, we possibly need to read the

whole article and understand what was happening: the machinist union was having a strike

and the strike prevented all its union members from working, so the 2,400 machinists that

are still working must not be union members, which is given the reason in the Arg2 span.

(3.9) And at the company’s Wichita, Kan., plant, about 2,400 of the 11,700 machinists

still are working, Boeing said. Implicit = BECAUSE Under Kansas

right-to-work laws, contracts cannot require workers to be union members.

(Cause - wsj 2208)

World Knowledge

Sometimes even context modeling is not enough. We may also need world knowledge to

understand the arguments and hence to interpret the relation. In the following example,

from the previous sentence of Arg1, it is reported that “the Senate voted to send a

delegation of congressional staffers to Poland to assist its legislature”, and this delegation

is viewed as a “gift” in Arg1. It is suggested in Arg2 that the Poles might view the

delegation as a “Trojan Horse”. Here we need world knowledge to understand that

“Trojan Horse” is usually applied as a metaphor for a person or thing that appears as a gift

but actually has harmful intent, and hence understand that Arg2 poses a contrasting view

of the delegation as Arg1 does.
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(3.10) Senator Pete Domenici calls this effort “the first gift of democracy”.

Implicit = BUT The Poles might do better to view it as a Trojan Horse.

(Contrast - wsj 2237)

Context and world knowledge are considered supplementary material. This ma-

terial is not necessary for recognizing the existence of a relation and the relation type,

but can improve the classifier when it is added to the system. The last row of Table 3.5

has shown that integrating a gold standard contextual feature marginally improves the

performance.

These four classes of difficulties – ambiguity between relations, inference, contex-

tual modeling, and world knowledge – show that Implicit discourse relation classification

needs deeper semantic representations, more robust system design, and access to more

external knowledge. These obstacles may not be restricted to recognizing Implicit rela-

tions, but are also applicable to other related discourse-centric tasks. We did not calculate

the explicit percentage for these four types, as sometimes it is vague to point out whether

a certain type appears or does not appear in a relation. For example, understanding the

context will always help better understand the relation, but it is difficult to tell whether

a relation needs contextual modeling or estimate how much contextual information is

needed.

3.6 Conclusion

We implemented an Implicit discourse relation classifier and showed initial results on the

PDTB. The features include the modeling of the context of relations, features extracted

from constituent parse trees and dependency parse trees, and word pair features. Our

classifier achieves an accuracy of 40.2%, a 14.1% absolute improvement over the baseline.

We also conducted a data analysis and discussed four challenges that need to be addressed

in future to overcome the difficulties of Implicit relation classification in the PDTB.
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Chapter 4

An End-to-End Discourse Parser

In this chapter, we build on our Implicit classifier to design and develop an end-to-end

discourse parser to parse free texts in the PDTB style, in a fully data-driven approach. The

parser consists of multiple components joined in a sequential pipeline architecture, which

includes a connective classifier, argument labeler, Explicit relation classifier, Non-Explicit

relation classifier, and attribution span labeler. Non-Explicit relations include Implicit,

AltLex, EntRel, and NoRel relations. Our trained parser first identifies all relations, locates

and labels their arguments, and then classifies their relation types. When appropriate,

the parser also determines the attribution spans to these relations. We introduce novel

approaches to locate and label arguments, and to identify attribution spans. We also

significantly improve on the current state-of-the-art connective classifier. We propose

and present a comprehensive evaluation from both component-wise and error-cascading

perspectives, in which we illustrate how each component performs in isolation from the

rest of the pipeline, as well as how the whole pipeline performs with the components

joined together and error propagated down the pipeline. The parser gives an overall system

F1 score of 46.80% for partial matching with gold standard parses, and 38.18% with full

automation.

This system includes novel components to locate and label arguments as well as
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improved components from previous work. We also propose and present a comprehensive

evaluation on the parser from both component-wise and error-cascading perspectives.

To the best of our knowledge, this is the first parser that performs end-to-end discourse

parsing in the PDTB style.

4.1 System Overview

We design our parsing algorithm as a sequential pipeline to mimic the annotation procedure

performed by the PDTB annotators. Figure 4.1 shows the pseudocode. The input to the

parser is a free text T , whereas the output is the discourse structure of T in the PDTB

style. The algorithm consists of three steps which sequentially label Explicit relations,

Non-Explicit relations, and attribution spans. Non-Explicit relations include all relations

that are not Explicit – i.e., Implicit, AltLex, EntRel, and NoRel.

The first step is to deal with Explicit relations. This step is further divided into the

following sub-steps:

1. Identifying discourse connectives,

2. Labeling their Arg1 and Arg2 spans, and

3. Recognizing their Explicit relation types.

First, the parser identifies all connective occurrences in T (Line 2 in Figure 4.1), and

labels them as to whether they function as discourse connectives or not (Lines 3–4). If a

connective occurrence C is determined to be a discourse connective, its Arg1 and Arg2

spans are then identified. The system examines whether the Arg1 and Arg2 spans appear

in the same sentence or different sentences. In this work, we focus on the first case where

we extract the Arg1 and Arg2 spans from the same sentence. The parser next classifies

the tuple (C, Arg1, Arg2) into one of the Explicit relation types (Lines 5–7).
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Input: a text T
Output: a discourse structure of T

1: // Step 1: label Explicit relations
2: Identify all connective occurrences in T
3: for each connective occurrence C do
4: Label C as disc-conn or non-disc-conn
5: if C is disc-conn then
6: Label Arg1 span and Arg2 span of C
7: Label (C, Arg1, Arg2) as one of the Explicit relations
8: end if
9: end for

10:
11: // Step 2: label Non-Explicit: Implicit, AltLex, EntRel, and NoRel relations
12: for each paragraph P in T do
13: for each adjacent sentence pair (Si, Sj) in P do
14: if (Si, Sj) is not labeled as an Explicit relation in Step 1 then
15: Label (Si, Sj) as EntRel, NoRel, or one of the Implicit/AltLex relations
16: end if
17: end for
18: end for
19:
20: // Step 3: label attribution spans
21: Split T into clauses
22: for each clause U do
23: if U is in some Explicit/Implicit/AltLex relation from Step 1 or 2 then
24: Label U as attr-span or non-attr-span
25: end if
26: end for

Figure 4.1: Pseudocode for the discourse parsing algorithm.
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The second step then examines all adjacent sentence pairs within each paragraph.

For each pair (Si, Sj) that is not identified in any Explicit relation from Step 1, the parser

then classifies the pair into EntRel, NoRel, or one of the Implicit/AltLex relation types

(Lines 12–15). Following the PDTB annotation convention, our parser also ignores inter-

paragraph relations, i.e., it ignores the adjacent sentence pair in between two paragraphs.

In Step 3, the parser first splits the text into clauses (Line 21), and for each clause

U that appears in any discourse relations (i.e., Explicit, Implicit, and AltLex relations; we

define EntRel and NoRel as non-discourse relations), it checks whether U is an attribution

span (Lines 22–24). In this step, the parser also follows the PDTB representation to only

identify attribution spans appearing in discourse relations.

In our work, we adopt a sequential pipeline to parse a text, instead of following

a top-down or bottom-up approach common to parsing in general and to parsing RST

discourse trees (Marcu, 1997) in specific. The reason is twofold. First, the algorithm is

designed to mimic the annotation procedure performed by the PDTB annotators. Second,

as the PDTB makes no commitments to what kinds of high-level structures may be built

up from the low-level units, it does not make sense to presume a tree-like structure and

adopt a tree parsing algorithm. Note that this design allows a relation to be embedded

within the argument of another relation, as well as an argument to be shared between

two adjacent relations (cf. the two structures in Figure 3.1). Therefore, the structure that

constructed by the relations is more like a graph, as illustrated by Figure 1.2 in Chapter 1.

The pipeline of the parser is shown in Figure 4.2. The first three components

correspond to Step 1 in Figure 4.1, while the last two correspond to Steps 2 and 3,

respectively. There are two sub-components in the argument labeler: an argument position

classifier and an argument extractor. A detailed description of these components follows

in the next section.

To illustrate the parsing algorithm, we look at how an ideal parser parses the

excerpt of three sentences in Figure 4.3. In the first step, after comparing the text against
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Figure 4.2: System pipeline for the discourse parser.

a list of 100 discourse connectives defined in the PDTB, three connective occurrences are

identified, which are “and” in S1, “and” in S2, and “But” in S3. The connective classifier

then checks these occurrences and labels the second and third as discourse connectives,

as underlined in Figure 4.3. The first connective “and” in “spot and futures prices” does

not serve as a discourse connector. The argument labeler follows by labeling the Arg1

and Arg2 spans for each discourse connective. In S2, the Arg1 and Arg2 spans for the

connective “and” labeled out by the argument labeler are Span b (“He adds that ... a mutual

funds,”) and Span c (“volatility ... fund.”). The tuple (“and”, b, c) is next propagated to the

Explicit relation classifier, which classifies the relation type as Conjunction. Similarly, the

argument labeler marks S2 and S3 as the Arg1 and Arg2 spans for the connective “But”,

and the Explicit relation classifier labels the tuple (“But”, S2, S3) as Concession.

In the second step, the parser examines all adjacent sentence pairs within this

excerpt, namely, (S1, S2) and (S2, S3). Since an Explicit relation is already assigned to the
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S1 [ Arbitraging on differences between spot and futures prices is an important part
of many financial markets, he says. ]a

S2 [ He adds that his shares in a company savings plan are invested in a mutual
fund, ]b [ and volatility, on a given day, may hurt the fund. ]c

S3 [ But “I’m a long-term investor,” he says. ]d

Figure 4.3: An excerpt taken from a Wall Street Journal article wsj 0121. The text consists
of three sentences. Relations arguments are subscripted with letters. The discourse
relations in this text are illustrated in the discourse structure in Figure 4.4.

a              b              c              d 

Concession Contrast 

Conjunction 

Figure 4.4: Discourse relations for the text in Figure 4.3. Arrows are pointing from Arg2
span to Arg1 span, and labeled with the respective relation types, but do not represent any
ordering between the argument spans.

pair (S2, S3), it is exempt from further classification. The Non-Explicit relation classifier

then classifies the remaining pair (S1, S2) as Contrast.

In the last step, the attribution span labeler will examine all discourse relations to

label their attribution spans, when applicable. We make an assumption that all attribution

spans appear in clauses and within the discourse relations. This will be further illustrated

in Section 4.2.5. In Figure 4.3, three clauses are labeled as attribution spans, which are

“he says”, “He adds”, and “he says”. These three relations are shown in Example 4.1, 4.2,

and 4.3. The results are also illustrated in the discourse structure in Figure 4.4, which is

built by joining the relations together. Note that although there is no notion of direction

in a PDTB relation, we use arrows to show the orientation of the arguments: an arrow is

pointing from the Arg2 span to the Arg1 span. Figure 1.1 and Figure 1.2 show a more

complex discourse structure in the PDTB representation.
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(4.1) Arbitraging on differences between spot and futures prices is an important part of

many financial markets, he says. He adds that his shares in a company

savings plan are invested in a mutual fund, and volatility, on a given day, may

hurt the fund.

(Comparison.Contrast - wsj 0121)

(4.2) He adds that his shares in a company savings plan are invested in a mutual fund,

and volatility, on a given day, may hurt the fund.

(Expansion.Conjunction - wsj 0121)

(4.3) He adds that his shares in a company savings plan are invested in a mutual fund,

and volatility, on a given day, may hurt the fund. But “I’m a long-term investor,”

he says.

(Comparison.Concession - wsj 0121)

We now refine this overview by detailing the individual components’ structure and

processing workflow.

4.2 Components

Our parser takes a fully-data driven, supervised learning approach. As such, the annotated

data is processed into binary feature vectors that are suitable to be learnt by a maximum

entropy model. In the following descriptions, we elaborate the component designs as well

as the derived feature classes.

4.2.1 Connective Classifier

There are 100 types of discourse connectives defined in the PDTB. Given a connective

occurrence such as “when”, the parser needs to decide whether it is functioning as a

discourse connective. To illustrate, compare the two “and” occurrences in Figure 4.3.
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The first “and” in S1 is used to conjoin “spot” and “futures prices” in a noun phrase,

which does not have a discourse usage. On the other hand, “and” in S2 is functioning as a

discourse connective to join two discourse events in Arg1 and Arg2, thus the annotators

labeled the type as Conjunction. Among the whole PDTB corpus, there are 29.65% of

connective occurrences annotated as discourse connectives; in other words, more than

70% are non-discourse connectives. Thus, it is crucial to disambiguate the connectives

before sending them down the pipeline to label their argument spans and relation types.

Pitler and Nenkova (2009) showed that syntactic features extracted from constituent

parse trees are very useful in disambiguating discourse connectives. Beside the connective

itself as a feature, they applied other syntactic features: the highest node in the tree that

covers only the connective words (which they termed self category), the parent, left and

right siblings of the self category, and two binary features that check whether the right

sibling contains a VP and/or a trace. The best feature set they demonstrated also included

pairwise interaction features between the connective and each syntactic feature (i.e., each

connective is paired with each syntactic feature to form a new feature), and the interaction

features between pairs of syntactic features (i.e., each syntactic feature is paired with

another syntactic feature to form a new feature).

In addition to the above, we observed that a connective’s context and part-of-speech

(POS) give a very strong indication of its discourse usage. For example, the connective

“after” is usually functioning as a discourse connective when it is followed by a present

participle, as in “after rising 3.9%”. The syntactic parse path from the connective to

the root of the tree models how it is syntactically connected to the sentence as a whole,

reflecting its functionality within the sentence. Based on these observations, we propose a

set of lexico-syntactic and path feature classes for a connective C with its previous word

prev and next word next:

− C POS

− prev + C
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− prev POS

− prev POS + C POS

− C + next

− next POS

− C POS + next POS

− path of C’s parent→ root

− compressed path of C’s parent→ root

Each of the above represents a feature class. The first seven feature classes model

the connective’s context and POS, while the last two are the path fromC to the root and the

compressed path where adjacent identical tags are combined (e.g., -VP-VP- is combined

into -VP-). The path feature class is novel in the way how it models the syntactic relation

between the connective under consideration and the syntactic root. As an example to

illustrate the path feature, Figure 4.5 shows the partial parse trees for “and” functioning

as a non-discourse connective and a discourse connective. The path feature “path of

C’s parent→ root” is circled in both figures. Figure 4.5(b) shows that “and” is directly

under a sentence node which is in the verb phrase of the main sentence, while in the

non-discourse case in Figure 4.5(a), “and” is embedded in a noun phrase which is part of

a prepositional phrase. When analyzing the PDTB, we observe that the path feature for

discourse connective “and” usually consists of CC, S, SBAR, and VP, which is captured

by the path feature “CC ↑ S ↑ VP ↑ S” in Figure 4.5(b). However, in the non-discourse

case of Figure 4.5(a), the same pattern is not observed.

Appendix A.1.1 lists out all features for the connective classifier to disambiguate

the connective “after” in Example A.1. The constituent parse tree for the example is

shown in Figure A.1. Appendix A.1 uses the Explicit relation in Example A.1 to illustrate

the features extracted for the classifiers in Step 1. Features for the classifiers in Step 1 and

3 are shown in Appendix A for illustration and comparison.
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recording the industry electronics manufacturers 
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Figure 4.5: (a) Non discourse connective “and”. (b) Discourse connective “and”. The
feature “path of C’s parent→ root” is circled out on both figures.

4.2.2 Argument Labeler

The parser now labels the Arg1 and Arg2 spans of every connective labeled in the previous

step as a discourse connective, in two steps:

1. Identifying the locations of Arg1 and Arg2, and

2. Labeling the spans.

We note that Arg2 is the argument with which the connective is syntactically associated,

and thus its position is fixed once we locate the connective. The remaining problem of

the first step is in identifying the location of Arg1. We implement this as a classification

task to recognize the relative position of Arg1, with respect to the connective (Line 2 in

Figure 4.6). According to the different relative positions of Arg1, the argument extractor

then attempts to extract the Arg1 and Arg2 spans in the second step (Lines 5–11 in

Figure 4.6). Figure 4.6 gives the pseudocode for the argument labeler, which corresponds

to Line 6 in Figure 4.1 and is further discussed in the following.
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Input: a discourse connective C and the text T
Output: Arg1 and Arg2 spans of C

1: // Argument position classifier
2: Classify the relative position of Arg1 as SS or PS
3:
4: // Argument extractor
5: if the relative position of Arg1 is SS then
6: Identify the Arg1 and Arg2 subtree nodes within the sentence parse tree
7: Apply tree subtraction to extract the Arg1 and Arg2 spans
8: else // the relative position of Arg1 is PS
9: Label the sentence containing C as Arg2

10: Identify and label the Arg1 sentence from all previous sentences of Arg2
11: end if

Figure 4.6: Pseudocode for the argument labeler, which corresponds to Line 6 in Fig-
ure 4.1.

4.2.2.1 Argument Position Classifier

Prasad et al. (2008) described the demographic breakdown of the positions of Arg1 in

their study of the PDTB annotations. They showed that Arg1 can be located within the

same sentence as the connective (SS), in some previous sentence of the connective (PS),

or in some sentence following the sentence containing the connective (FS). When Arg1 is

located in some previous sentence, it can either be in the immediately previous sentence

of the connective (IPS), or in some non-adjacent previous sentence of the connective

(NAPS). Example 4.2 is a relation where the arguments and connective appearing in the

same sentence, while Example 4.3 shows a case in which Arg2 immediately follows Arg1.

The distribution from their paper shows that 60.9% of the Explicit relations are SS, 39.1%

are PS, and less than 0.1% are FS (only 8 instances in the whole PDTB corpus).

Motivated by this observation, we design an argument position classifier to identify

the relative position of Arg1 as SS or PS. We ignore FS since there are too few training

instances. We notice that the connective string itself is a very good feature. For example,
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when the connective token is “But” (i.e., “but” with its first letter capitalized, as in

Example 4.3), it is a comparison with the previous sentence and thus Arg1 is likely in PS;

whereas when the connective token is lowercase (e.g., “and” in Example 4.2), Arg1 is

likely the clause at the left hand side of the connective and thus it is in SS. Furthermore,

some connectives always take a particular position. For example, “when” always indicates

an SS case, whereas “additionally” always indicates PS.

Aside from the connective string, we also use the contextual feature classes in the

classifier for the connective C with its first and second previous words prev1 and prev2,

as shown here (prev1 is the word immediately adjacent to C and prev2 the word before

prev1):

− C string

− position of C in the sentence: start, middle, or end

− C POS

− prev1

− prev1 POS

− prev1 + C

− prev1 POS + C POS

− prev2

− prev2 POS

− prev2 + C

− prev2 POS + C POS

Here prev1 is the same as prev in the feature list for the connective classifier. We

use subscripted numbers to explicitly represent their positions to the connective. After the

relative position of Arg1 is identified, the result is propagated to the argument extractor,

which employs different strategies to extract the Arg1 and Arg2 spans depending on

whether the result is SS or PS.
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4.2.2.2 Argument Extractor

When the relative position of Arg1 is classified as PS from the previous stage, Arg1 is

located in one of the previous sentences of the connective. A majority classifier labels the

immediately previous sentence as Arg1, which already gives an F1 of 76.90% under the

gold standard setting on the entire PDTB. Since the focus of this work is not on identifying

the Arg1 sentences for the PS case but on extracting the argument spans for the SS case,

we employ the majority classifier as our classifier for the PS case. In this work we make

the assumption that for the PS case, Arg1 and Arg2 appear in full sentences, while in

the PDTB, Arg1 or Arg2 may be shorter or longer than a full sentence. Wellner and

Pustejovsky (2007) made a stronger assumption that the argument can be represented by

the head verb of the sentence. Next we describe our approach to extract the arguments for

the SS case in details.

When Arg1 is classified as in the same sentence (SS), this means that Arg1, Arg2

and the connective itself are in the same sentence. This can be further divided into four

situations depending on the overlapping and positioning of the two arguments in the

sentence:

1. Arg1 precedes Arg2,

2. Arg2 precedes Arg1,

3. Arg2 is embedded within Arg1, and

4. Arg1 is embedded within Arg2.

These four situations are illustrated by Example 4.2, 4.4, 4.5, and 4.6, respectively. One

possible approach is to split the sentence into clauses before deciding which clause is

Arg1 or Arg2. The problem with this approach is that it is not able to recognize the last

two cases, where one argument divides the other into two parts. Another challenge is to

exclude the text spans that are not in the relation, such as the span “It’s the ... American”

in Example 4.5.
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(4.4) Although preliminary findings were reported more than a year ago, the latest

results appear in today’s New England Journal of Medicine, a forum likely to bring

new attention to the problem.

(Comparison.Contrast - wsj 0003)

(4.5) It’s the petulant complaint of an impudent American whom Sony hosted for a year

while he was on a Luce Fellowship in Tokyo – to the regret of both parties.

(Temporal.Synchrony - wsj 0037)

(4.6) The prime minister, whose hair is thinning and gray and whose face has a

perpetual pallor, nonetheless continues to display an energy, a precision of

thought and a willingness to say publicly what most other Asian leaders dare

say only privately.

(Comparison.Concession.Contra-expectation - wsj 0296)

Dinesh et al. (2005) showed that Arg1 and Arg2 in the same sentence for subordi-

nating connectives are always syntactically related as shown in Figure 4.7(a), where Arg1

and Arg2 nodes are the lowest nodes that cover the respective spans. They demonstrated

that a rule-based algorithm is capable of extracting Arg1 and Arg2 in such cases for

subordinating connectives. By using tree subtraction, the third case mentioned above can

be easily recognized and the text spans that are not in the relation can also be excluded. In

Figure 4.7(a), span 3 is labeled as Arg2 that divides Arg1 into two non-continuous spans

2 and 4, and the out-of-relation spans (Spans 1 and 5) are also excluded.

However, dealing with only the subordinating connectives is not enough, because

they only occupy 40.93% of all SS cases; the percentages of coordinating connectives and

discourse adverbials for SS cases occupy up to 37.50% and 21.57%, respectively, with

respect to the whole PDTB. We observe that coordinating connectives (“and”, “or”, “but”,

etc.) usually constrain Arg1 and Arg2 to be syntactically related in one of two ways as

shown in Figure 4.7(b)-(c), where CC is the connective POS. Discourse adverbials do
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Figure 4.7: Syntactic relations of Arg1 and Arg2 subtree nodes in the parse tree. (a): Arg2
contains span 3 that divides Arg1 into two spans 2 and 4. (b)-(c): two syntactic relations
of Arg1 and Arg2 for coordinating connectives.

not demonstrate such syntactic constraints as strongly as subordinating and coordinating

connectives do, but their Arg1 and Arg2 are also syntactically bound to some extent. For

example, Figure 4.8 shows the syntactic relation of Arg1 and Arg2 nodes for the discourse

adverbial “still” in Example 4.7. Furthermore, the rule-based algorithm in (Dinesh et

al., 2005) does not recognize the fourth case where Arg1 span is embedded within Arg2.

The ratio of occurrences of the third case to the fourth case in the entire PDTB corpus is

approximately 1:1. Thus we believe that the fourth case also needs to be taken care of.

(4.7) The ultimate result came in Hymowitz v. Lilly, where the highest New York court

expanded the market-share approach for the first time to say that drug makers that

could prove Mindy Hymowitz’s mother didn’t use their pill must still pay their

share of any damages.

(Comparison.Concession.Contra-expectation - wsj 0130)
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Figure 4.8: Part of the parse tree for Example 4.7 with Arg1 and Arg2 nodes labeled.

Given these observations, we design an automatic argument node identifier to

first identify the Arg1 and Arg2 subtree nodes within the sentence parse tree for all

subordinating connectives, coordinating connectives and discourse adverbials, then apply

tree subtraction to extract the Arg1 and Arg2 spans. The argument node identifier labels

each internal node (except POS nodes, which are parent nodes of leaf nodes) of the tree

with three probabilities: functioning as Arg1-node, Arg2-node, and None. The internal

node with the highest Arg1-node probability is chosen as the Arg1 node, and likewise

for the Arg2 node. If the Arg1 node is the ancestor of the Arg2 node, the subtree under

the Arg2 node is then subtracted from the Arg1 subtree to obtain the Arg1 span, and

respectively when the Arg2 node is the ancestor of the Arg1 node. Motivated by the

syntactic properties observed, we propose the following feature classes for the node N

under consideration with regard to the connective C:

− C string

− C’s syntactic category: subordinating, coordinating, or discourse adverbial

− number of left siblings of C

− number of right siblings of C
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− the path P of C’s parent→ N

− the path P and whether the number of C’s left sibling is greater than one

− the relative position of N to C: left, middle, or right

The syntactic category (subordinating, coordinating, or discourse adverbial) of the

connective is a useful clue of the locations of the Arg1 and Arg2 nodes. We obtain the

corresponding categories for the connectives from the list provided in (Knott, 1996). The

path from the C’s parent node to the node N under consideration is also an informative

feature, as it reflects how N is related to C syntactically. The following are two paths for

the actual Arg2 node and the MD node in Figure 4.8:

RB ↑ ADVP ↑ VP

RB ↑ ADVP ↑ VP ↓MD

The relative position of N to C is medial when N is on the path of C to root. The position

can also be left or right depending on whether it is located on the left- or right-hand side

of this path. This feature also models the syntactic relation of C and N to some extent.

To label each internal node with these three probabilities, we adopt a maximum entropy

classifier, as it is capable of estimating class probabilities.

To illustrate how the argument position classifier and argument extractor work

together to label the arguments, let us look at Example 4.5. After examining the features

for the connective “while”, the argument position classifier will decide that Arg1 and

Arg2 are in the same sentence (SS), and pass it to the argument extractor. Since the class

is SS, the argument extractor fires the argument node identifier to locate the internal nodes

that covers the Arg1 span (i.e., “whom Sony ... both parties”) and that covers Arg2 and

the connective (i.e., “while he ... in Tokyo”). Finally, tree subtraction is applied to clean

up and remove the Arg2 span from the Arg1 span. The results are: connective = “while”,

Arg1 = “whom Sony hosted for a year . . . to the regret of both parties”, and Arg2 = “he

was on a Luce Fellowship in Tokyo”,
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4.2.3 Explicit Relation Classifier

After identifying a discourse connective and its two arguments, the next step is to decide

what Explicit relation it conveys. It is important to disambiguate the relation type of

the connective, as the same connective may carry different semantics under different

contexts. For example, the connective “and” has relation types of Expansion.Conjunction

and Expansion.List in Example 4.2 and 4.8, respectively.

(4.8) Microsoft added 2 1/8 to 81 3/4 and Oracle Systems rose 1 1/2 to 23 1/4.

(Expansion.List - wsj 0327)

Prasad et al. (2008) reported a human agreement of 94% on Level-1 classes and

84% on Level-2 types for Explicit relations over the whole PDTB corpus. The connective

itself is a very good feature, as only a few connectives are ambiguous as pointed out in

(Pitler et al., 2008), and the distribution of most ambiguous connectives are highly skewed

toward certain types. We train an Explicit relation classifier using three types of feature

classes of the connective C and its previous word prev:

− C string

− C’s POS

− C + prev

We follow Chapter 3 to train and test on the Level-2 types. Different from Chapter 3,

we do not remove the five relation types and use all 16 Level-2 types in the Explicit relation

classifier. The reason for this is that we have a larger number of training instances for these

five relations compared to that for the training data for Non-Explicit relation classifier:

1135 instances for Condition and 98 for the other four.

4.2.4 Non-Explicit Relation Classifier

The PDTB also provides annotation for Implicit relations, AltLex relations, entity tran-

sition (EntRel), and otherwise no relation (NoRel), which are lumped together as Non-
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Explicit relations. The Non-Explicit relations are annotated for all adjacent sentence pairs

within paragraphs. If there is already an Explicit relation from the previous step between

two adjacent sentences, they are exempt from further examination.

This Non-Explicit relation classifier is adapted and re-trained from the classifier

in the last chapter. Similarly, we adapt the Level-2 types for the Implicit and AltLex

relations. As pointed out in Chapter 3, there are too few training instances for Condition,

Pragmatic Condition, Pragmatic Contrast, Pragmatic Concession, and Exception relations

(in total, only 9 training instances). Thus these five types are removed, resulting in 11

Level-2 types. Our Non-Explicit relation classifier assigns candidate sentence pairs to one

of 13 types (11 Level-2 types plus EntRel and NoRel). We apply the three feature classes

from Chapter 3:

− constituent parse features

− dependency parse features

− word-pair features

Besides including AltLex, EntRel, and NoRel, another difference between this

classifier and the classifier developed in Chapter 3 is that no context features about the

surrounding relations are used. The reason is that such features need gold standard relation

types from the previous and next relations.

AltLex relations are very similar to their counterpart Explicit relations, except

that they are alternatively lexicalized by some non-connective expressions, instead of by

pre-defined discourse connectives. Such non-connective expressions are usually attached

to the beginning of Arg2 (e.g., such as “Another concern” in Arg2 of Example 2.3). To

distinguish AltLex relations, we use three feature classes that represent the first three

stemmed terms of Arg2. For the example above, the features that are turned on will be

term1=another, term2=concern, and term3=the. No other feature classes are designed

to specifically handle both EntRel and NoRel relations. However, in the experimental
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section below, we will show that the current feature classes are capable of handling EntRel

relations well.

4.2.5 Attribution Span Labeler

For each discourse relation (i.e., Explicit, Implicit, or AltLex relation), the PDTB annota-

tors labeled the attribution spans and annotated four dimensions for Arg1, Arg2, and the

relation: their sources, types, scopal polarities, and determinacy. For the current parser,

we develop a component to label the attribution spans, without labeling the four attribution

dimensions and direction (Arg1, Arg2, or the relation) it is associated with. Our focus is

on the attribution location and span; recognizing these additional four dimensions and

attribution direction fall beyond our scope of study. We label attribution spans that appear

within discourse relations.

In our work, we make the assumption that attribution spans always appear in

clauses, and we only examine clauses within the identified relations from the previous

steps. Note that in the PDTB not all attribution spans appear in exact clauses and some

appear outside the texts of discourse relations. 7 out of 559 of the attribution spans appear

in less than a clause (i.e., the length of the attribution span is shorter than a clause), based

on a calculation using our lightweight clause splitter. Attribution span and argument

spans usually do not overlap in the PDTB, but attribution spans always appear in the

same sentence of an argument span. 3.09% (60 of 1943) of all relations in the test data

contain attributions appearing outside the argument sentences. Our attribution span labeler

consists of the following two steps:

1. Splitting the text into clauses, and

2. Deciding which clauses are attribution spans.

In the first step we employ a lightweight clause splitter that we have developed which uses

syntactically motivated approach similar to (Skadhauge and Hardt, 2005). This clause
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splitter makes use of punctuation symbols and syntactic structures of SBAR complements.

The attribution span labeler then classifies each clause into attribution span (attr-

span) or non-attribution span (non-attr-span). Words (especially verbs) in the clause are a

very good clue in deciding whether the clause is an attribution. For example, the verbs

“declared” and “say” in Example 2.2 and 4.7. Another useful clue is by looking at the end

of the previous clause and the start of the next one. In Example 2.2, which is partially

replicated in the following, the previous clause of the current clause ends with a comma

and a closing quotation mark, and the next clause starts with an opening quotation mark,

which suggest that the previous and next clauses are in the same speech act and the current

clause is probably the attribution of the speech.

... averages,” declared San Francisco batting coach Dusty Baker after game two. “I’d ...

Based on the observations, we propose the following feature classes extracted from

the current, previous, and next clauses (curr, prev, and next):

− lowercased and lemmatized verbs in curr

− the first and last terms of curr

− the last term of prev

− the first term of next

− the last term of prev + the first term of curr

− the last term of curr + the first term of next

− the position of curr in the sentence: start, middle, end, or whole sentence

− production rules extracted from curr

Appendix A.2 shows features extracted for the above example. Some clauses that

belong to single attribution spans may be incorrectly split into more than one clause by

the clause splitter. For example, “said C. Bruce Johnstone, who runs Fidelity Investments’

$5 billion Equity-Income Fund.” is annotated as a single attribution span in the PDTB, as

shown in the following. It is (mistakenly) split into two clauses “said C. Bruce Johnstone,”
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and “who runs Fidelity Investments’ $5 billion Equity-Income Fund.” by our clause

splitter, and then both classified as attr-span. To correct such mistakes, adjacent attribution

clauses within a sentence are combined to form a single attribution span after classification:

around,” said C. Bruce Johnstone, who runs Fidelity Investments’ $5 billion Equity-Income Fund. “This

4.3 Evaluation

Identical to our setup in Chapter 3, we use Section 02–21 in the PDTB for training,

Section 22 for development, and Section 23 for testing. All classifiers are trained with the

OpenNLP maximum entropy package1 without smoothing and with 100 iterations which

is the default settings. However, further experiments can be done to evaluate how these

two parameters affect the performance.

For each component, the experiments are carried out when there is no error

propagated from the previous components (i.e., using gold standard annotation for the

previous components), and when there is error propagation. As the PDTB was annotated

on top of the PTB, we can either directly use the gold standard parse trees and sentence

boundaries from the PTB files, or we can apply an automatic parser and sentence splitter.

The experiments are carried out under three settings for each component:

1. GS + no EP: using gold standard (GS) parses and sentence boundaries without error

propagation (EP)

2. GS + EP: using GS with EP

3. Auto + EP: using both automatic parsing and sentence splitting (Auto) with EP.

Thus, GS + no EP corresponds to a clean, per component evaluation, whereas

the Auto + EP setting assesses end-to-end fully automated performance (as would be
1http://maxent.sourceforge.net/
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expected on new, unseen text input). We use the NIST’s text segmenter2 to insert sentence

boundaries and the Charniak parser3 to parse the sentences in the Auto setting. As

there are no gold standard dependency parses for the PTB files, we employ the Stanford

dependency parser4 in both GS and Auto settings.

4.3.1 Results for Connective Classifier

On the connective classifier task, Pitler and Nenkova (2009) (P&N) reported an accuracy

of 96.26% and F1 of 94.19% with a 10-fold cross validation on Section 02–22. To

compare with P&N, we also run a 10-fold CV on Section 02–22 using their features

and obtain replicated accuracy of 96.09% and replicated F1 of 93.57%. Adding in our

lexico-syntactic and path features, the performance is increased to 97.25% accuracy and

95.36% F1, yielding improvements of 0.99% and 1.17% over the reported results and

1.16% and 1.79% over the replicated results. A paired t-test shows that the improvements

over our replication of P&N’s results are significant with p < 0.0015.

In Table 4.1, we report results from the connective classifiers trained on Section 02–

21 and tested on Section 23. As there is no error propagated into the connective classifier

as it is the first component, we report results for just the GS and Auto settings. The second

and third columns show the accuracy and F1 using the features of P&N, whereas the

last two columns show the results when we add in the lexico-syntactic and path features

(+new). Introducing the new features significantly (all with p < 0.001) increases the

accuracy and F1 by 2.04% and 3.01% under the GS setting, and 1.81% and 2.62% under

Auto. This confirms the usefulness of integrating the contextual and syntactic information.

As the connective classifier is the first component in the pipeline, good performance is

crucial to mitigate the effect of cascaded errors downstream.

2http://duc.nist.gov/duc2004/software/duc2003.breakSent.tar.gz
3ftp://ftp.cs.brown.edu/pub/nlparser/
4http://nlp.stanford.edu/software/lex-parser.shtml
5It is not possible to conduct paired t-test on the reported results for P&N as we do not have the

predictions.
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P&N +new
Acc. F1 Acc. F1

GS 95.30 92.75 97.34 95.76
Auto 94.21 91.00 96.02 93.62

Table 4.1: Results for the connective classifier. No EP as this is the first component in the
pipeline.

When we compare the performance under GS and Auto settings for our classifier,

there are significant drops (with p < 0.001) of 1.32% and 2.14% for accuracy and

F1, respectively. This is because the lexico-syntactic and path features we introduced

heavily depend on the syntactic structures of the sentences. When we use an automatic

parser instead of gold standard parses, it dramatically affects the performance of these

new features. When we look into the incorrectly labeled connectives, we find that the

connective with the highest number of incorrect labels is “and” (8 false negatives and 4

false positives for the GS setting), which is not surprising, as “and” is always regarded as

an ambiguous connective.

4.3.2 Results for Argument Labeler

We next perform evaluation on the argument position classifier and report the results in

the contingency tables in Table 4.2 for the three settings. The last row of the tables show

the numbers of errors propagated from the previous component. This does not apply to

the setting of GS + no EP, as no error propagation is performed. The micro precision,

recall and F1, as well as the per class F1, are calculated from Table 4.2 and reported in

Table 4.3. The GS + no EP setting gives a high F1 of 97.94%, which drops 3.59% and

another 2.26% when error propagation and full automation are added in. The per class

F1 shows the performance degradation is mostly due to the SS (Arg 1 and 2 in the Same

Sentence) class: the drops for SS are 5.36% and 3.35%, compared to 1.07% and 0.68%
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Ground truth Predictions
GS + no EP GS + EP Auto + EP
PS SS PS SS PS SS

PS 369 8 364 5 360 5
SS 11 535 8 504 9 484

Error propagated - - 6 30 6 46

Table 4.2: Contingency tables for the argument position classifier for the three settings.
The last row shows the numbers of errors propagated from the previous component, which
does not apply to the first setting of GS + no EP.

Per class F1

Prec. Recall F1 SS PS
GS + no EP 97.94 97.94 97.94 98.26 97.49
GS + EP 94.66 94.04 94.35 92.90 96.42
Auto + EP 92.75 91.44 92.09 89.55 95.74

Table 4.3: Results for the argument position classifier.

for PS. When we look into the contingency table for the GS + EP setting, we notice that

out of the 36 false positives propagated from the connective classifier, 30 of them are

classified as SS; for the Auto + EP setting there are 46 out of 52 classified as SS. This

shows that the difference in the performance drops for SS and PS is largely due to the

error propagation from the connective classifier, and not the classes themselves.

We next evaluate the performance of the argument extractor. Table 4.4 illustrates

the results of identifying the Arg1 and Arg2 subtree nodes for the SS case for the three con-

nective categories. The last column shows the Arg1&Arg2 F1 which requires both Arg1

and Arg2 nodes to be identified correctly. We only show the results for the GS + no EP

setting. As expected, Arg1 and Arg2 nodes for subordinating connectives are the easiest

ones to identify and give a high Arg2 F1 of 97.93% and a Arg1&Arg2 level F1 of 86.98%.

We note that the Arg1 F1 and Arg2 F1 for coordinating connectives are the same, which

is strange, as we expect Arg2 nodes to be easier to classify as Arg2 and the connective

are syntactically associated. Error analysis shows that Arg2 spans for coordinating con-



81

Arg1 F1 Arg2 F1 Arg1&Arg2 F1

Subordinating 88.46 97.93 86.98
Coordinating 90.34 90.34 82.39
Discourse adverbial 46.88 62.50 37.50
All 86.63 93.41 82.60

Table 4.4: Results for identifying the Arg1 and Arg2 subtree nodes for the SS case under
the GS + no EP setting for the three categories.

nectives tend to include extra text that cause the Arg2 nodes to move lower down in the

parse tree. For example, “... and Mr. Simpson said he resigned in 1988” contains the

extra span “Mr. Simpson said” which causes the Arg2 node (which covers “he resigned in

1988”) moving two levels down the tree. The system erroneously labels “Mr. Simpson ...

1988” as Arg2. One solution to this is to feedback from the attribution span label to the

argument extractor, so that we can remove this extra text of attribution span.

Also as we discussed in Section 4.2.2.2, discourse adverbials are difficult to identify

as their Arg1 and Arg2 nodes are not strongly bound in the parse trees. However, as

they do not take up a large percentage in the test data (only 5.38% of the test data is for

identifying Arg1 and Arg2 nodes for discourse adverbials under the GS + no EP setting),

they do not lead to a large degradation as shown in the last row of the overall performance

of the three categories.

Miltsakaki et al. (2004) reported human agreements on both exact and partial

matches to be 90.2% and 94.5%, respectively. They found that most of the disagreements

for exact match come from partial overlaps which do not show significant semantic

difference. We follow such work and report both exact and partial matches. When

checking exact match, we require two spans to match identically, excluding any leading

and ending punctuation symbols. A partial match is credited if there is any overlap

between the verbs and nouns of the two spans. The results for the overall performance for

both SS and PS cases are shown in Table 4.5. The GS + no EP setting gives a satisfactory
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Arg1 F1 Arg2 F1 Arg1&Arg2 F1

Partial
GS + no EP 86.67 99.13 86.24
GS + EP 83.62 94.98 83.52
Auto + EP 81.72 92.64 80.96

Exact
GS + no EP 59.15 82.23 53.85
GS + EP 57.64 79.80 52.29
Auto + EP 47.68 70.27 40.37

Table 4.5: Overall results for the argument extractor.

F1 of 86.24% for partial matching on Arg1&Arg2 F1. On the other hand, the results

for exact matching are much lower than the human agreement. We observe that most

misses are due to small portions of text being deleted from or added to the spans by the

annotators to follow the minimality principle, which is in accordance with the explanation

in (Miltsakaki et al., 2004). The minimality principle states that the annotation should

define the argument to only include the minimal span of text that is sufficient for the

interpretation of the relation. This ability requires deep semantic analysis and poses

difficulties for machines to follow.

4.3.3 Results for Explicit Classifier

Following the pipeline, we then evaluate the Explicit relation classifier, with its perfor-

mance shown in Table 4.6. Recall that human agreement on Level-2 types is 84.00% and a

baseline classifier that uses only the connectives as features yields an F1 of 86.00% under

the GS + no EP setting on Section 23. Adding our new features improves F1 to 86.77%.

With full automation and error propagation, we obtain an F1 of 80.61%. Pitler and

Nenkova (2009) show that using the same syntactic features as their connective classifier

is able to improve the classifier on a 10-fold cross validation on Section 02-22. We have

trained the classifier on Section 02-21 using their features and tested on Section 23, but it

actually performs worse than the baseline. Therefore we do not include their features in
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Precision Recall F1

GS + no EP 86.77 86.77 86.77
GS + EP 83.19 82.65 82.92
Auto + EP 81.19 80.04 80.61

Table 4.6: Results for the Explicit relation classifier.

Precision Recall F1 Baseline F1

GS + no EP 39.63 39.63 39.63 21.34
GS + EP 26.21 27.63 26.90 20.30
Auto + EP 24.54 26.45 25.46 19.31

Table 4.7: Results for the Non-Explicit relation classifier.

the Explicit relation classifier.

4.3.4 Results for Non-Explicit Classifier

For the Non-Explicit relation classifier, a majority class baseline that labels all instances as

EntRel yields an F1 in the low 20s, as shown in the last column of Table 4.7. The percent-

age of EntRel is slightly higher than the most frequent Implicit Cause relations (21.34%

vs. 21.24% in the Implicit relations). A single component evaluation (GS + no EP)

shows a micro F1 of 39.63%. This is slightly lower than the result of 40.2% reported in

Chapter 3. The reason is that in the previous chapter, we trained and tested only on the

11 Level-2 types; in contrast, here we added two additional classes – EntRel and NoRel.

Although the F1 scores for the GS + EP and Auto + EP settings are unsatisfactory, they

still significantly outperform the majority class baseline by about 6%. This performance

is in line with the difficulties of classifying Implicit relations as discussed in detail in the

previous chapter.

Table 4.8 shows the contingency table for 11 Level-2 types, EntRel, and NoRel

under the GS + no EP setting. Unlike in the previous chapter, we added EntRel and
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Ground truth Predictions
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Asynchronous 0 0 7 0 0 0 0 0 0 0 0 7.5 0
Synchrony 0 0 0 0 0 0 2 0 0 0 0 1 0
Cause 1 0 152 0 2 0 15.5 0 15 0 0 29.5 0
Pragmatic Cause 0 0 4 0 0 0 1 0 0 0 0 0 0
Contrast 1 0 46.5 0 16 1 26 1 7 0 0 28 0
Concession 0 0 3 0 0 0 2 0 0 0 0 1 0
Conjunction 0 0 35.5 0 5 0 33 1 9 0 0 40.5 0
Instantiation 1 0 7 0 0 0 3.5 22 12 0 0 23.5 0
Restatement 1 0 81 0 3 0 26 6 26 0 0 47 0
Alternative 0 0 12 0 0 0 1 0 0 0 0 2 0
List 0 0 5 0 2 0 9 1 2 0 4 5 0
EntRel 0 0 36 0 4 0 16 4 7 0 0 150 0
NoRel 0 0 0 0 0 0 0 0 0 0 0 4 0

Table 4.8: Contingency table for Non-Explicit relation classification for 11 Level-2
relation types, EntRel, and NoRel under the GS + no EP setting. As some instances
were annotated with two types, the instance is considered correct if one of these two is
predicted. This is why we can have .5 in the table.
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Relation Type Precision Recall F1 % in test set % in training set
Asynchronous – – – 1.47 3.53
Synchrony – – – 0.49 1.26
Cause 39.07 70.37 50.25 21.24 20.02
Pragmatic Cause – – – 0.49 0.38
Contrast 50.00 12.50 20.00 12.59 9.26
Concession – – – 0.59 1.10
Conjunction 24.44 26.40 25.38 12.29 16.84
Instantiation 62.86 30.14 40.74 7.18 6.64
Restatement 33.33 13.61 19.33 18.78 14.42
Alternative – – – 1.47 0.87
List 100.00 12.90 22.86 3.05 1.89
EntRel 44.25 69.12 53.96 21.34 22.68
NoRel – – – 0.39 1.12
All (Micro Avg.) 39.63 39.63 39.63

Table 4.9: Precision, recall, and F1 for 11 Level-2 relation types, EntRel, and NoRel under
the GS + no EP setting. “–” indicates 0.00.

NoRel in the classification, and thus we wish to discuss their classification performance

here. From the table, we can see that as both Cause and EntRel are the majority classes

(the percentage of EntRel is slightly higher than that of Cause), most errors for the other

classes are due to being mis-classified into these two types. Table 4.9 shows the precision,

recall, and F1 derived from the contingency table. We see that EntRel and NoRel have

counts of 217 and 4 instances in the test set, and their percentages in the training data are

22.68% and 1.12%. The performance figures for EntRel are 44.25%, 69.12%, and 53.96%

for precision, recall, and F1, respectively. EntRel gives the best F1 score compared to the

other relations. This illustrates that although we use the same features from Chapter 3 and

do not propose new features specifically for EntRel and NoRel, these three feature classes

are able to capture EntRel relation. The classifier is not able to identify the NoRel cases.

However, as there are only 4 NoRel instances in the test case, it does not affect the overall

performance much. The performance figures for the other 11 Level-2 relations are similar
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to that reported and discussed in Table 3.6 and Section 3.4.1.

4.3.5 Results for Attribution Span Labeler

The final component, the attribution span labeler, is evaluated under both partial and

exact match, in accordance with the argument extractor. As we only examine clauses that

appear inside identified relations, the missing clauses are also included in the performance

calculation. From Table 4.10, we see that the GS + no EP setting achieves F1 scores of

79.68% and 65.95% for partial and exact match, respectively. The gap between partial

and exact match is due to our assumption that all attribution spans appear in clauses and

the fact that not all attribution spans in the PDTB are clauses. In the example below,

“reportedly” is an attribution span but it is not in a clause form. The system was not able

to locate the exact span for this example and label it as an attribution span.6

. . . , ” Olivetti reportedly began shipping these tools in 1984.

When error propagation is introduced, the degradation of F1 is largely due to the drop

in precision. This is not surprising as at this point, the test data contains a number of

false positives propagated from the previous components. This has effect on the precision

calculation but not recall (the recall scores do not change). When full automation is further

added, the degradation is largely due to the drop in recall. This is because the automatic

parser introduces noise that causes errors in the clause splitting step. We expect a better

parser or clause splitter will improve the performance.

4.3.6 Overall Performance

To evaluate the whole pipeline, we look at the Explicit and Non-Explicit relations that are

correctly identified. We define a relation as correct if its relation type is classified correctly,

6As we do not have the gold standard annotation of clauses in the PDTB, we are not able to calculate
the percentage of errors that is due to the non-clausal attribution spans.
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Precision Recall F1

Partial
GS + no EP 79.40 79.96 79.68
GS + EP 65.93 79.96 72.27
Auto + EP 64.40 51.68 57.34

Exact
GS + no EP 65.72 66.19 65.95
GS + EP 54.57 66.19 59.82
Auto + EP 47.83 38.39 42.59

Table 4.10: Results for the attribution span labeler.

F1

Partial
GS + EP 46.80
Auto + EP 38.18

Exact
GS + EP 33.00
Auto + EP 20.64

Table 4.11: Overall performance for both Explicit and Non-Explicit relations. GS + no
EP setting is not included, as this is not a component-wise evaluation.

and both its Arg1 and Arg2 are partially or exactly matched. The overall performance is

shown in Table 4.11. Under partial matching, the GS + EP setting gives an overall system

F1 of 46.80%, while under exact matching, it achieves an F1 of 33.00%. Auto + EP gives

38.18% F1 for partial match and 20.64% F1 for exact match. A large portion of the misses

come from the Non-Explicit relations, as they are more difficult to classify in comparison

to the Explicit relations. The GS + EP results are close to the system F1 of 44.3% of an

RST parser reported in (duVerle and Prendinger, 2009).

4.3.7 Mapping Results to Level-1 Relations

We map Level-2 types to their corresponding Level-1 types (Comparison, Contingency,

Expansion, and Temporal) and calculate the performance of the Explicit classifier on

the four Level-1 types and the Non-Explicit relation classifier on the four Level-1 types,

EntRel, and NoRel. The results are shown in Table 4.12 and 4.13.
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Precision Recall F1

GS + no EP 95.23 95.23 95.23
GS + EP 91.59 91.00 92.29
Auto + EP 89.88 88.61 89.24

Table 4.12: Results for the Explicit relation classifier on the four Level-1 types.

For the Explicit classifier, 16 Level-2 types are mapped to the four Level-1 types,

which gives rise to a 4-way classifier. Pitler and Nenkova (2009) reported 94.15% F1 of

the corresponding four Level-1 types on 10-fold cross validation over Section 2–22 gold

standard data. Compared to their system, our Explicit classifier achieves a F1 of 95.23%

under the GS + no EP setting in Section 23. The F1 drops 3% when error propagation is

added and drops another 3% when we use automatic sentence splitting and parsing.

Our Non-Explicit classifier from the previous section is capable of handling the 11

Level-2 types for both Implicit and AltLex relations (recall that our Non-Explicit classifier

also handles AltLex relations with new features to capture the non-connective expressions),

as well as EntRel and NoRel. We map these 11 Level-2 types to the corresponding four

Level-1 types. The Non-Explicit classifier gives 47.30% F1 when it runs as a 6-way

classifier (i.e., four Level-1 types plus EntRel and NoRel) under the GS + no EP setting.

Table 4.13 shows that the performance degradation is mostly due to error propagation:

∼15% drop when EP is introduced and only ∼1% drop when Auto is further introduced.

Pitler et al. (2009) reported a F1 of 44.58% for their 6-way classifier. However, the results

are not strictly comparable, as they did not include AltLex relations and they trained and

tested on different sections. Note that as both (Pitler and Nenkova, 2009) and (Pitler et al.,

2009) tested their systems on gold standard data, we also use gold standard and report

results on the GS + no EP setting.

Note that the Explicit and Non-Explicit classifiers are trained and tested on Level-2

types, and the results are mapped to the corresponding Level-1 types. The results are
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Precision Recall F1

GS + no EP 47.30 47.30 47.30
GS + EP 31.81 33.53 32.65
Auto + EP 30.29 32.65 31.42

Table 4.13: Results for the Non-Explicit relation classifier on the four Level-1 types,
EntRel, and NoRel.

unlikely to be the same if we train and test the classifiers directly on Level-1 types.

4.4 Discussion and Future Work

The overall performance of the whole pipeline shows that the Non-Explicit relation

classifier generates a large portion of the errors, which suggests that there is still large

room for improvement on the classifier. In Chapter 3 on classifying Implicit relations, we

have shown that the difficulties of this task are mostly attributed to four types of challenges:

the ambiguity among the relation types, the need for using inference and a knowledge

base, the analysis of the contextual information in understanding the arguments, and the

access to world knowledge. We plan to tackle some of these same challenges for the

Non-Explicit relations in our future work. We used the three feature classes from the

Implicit relation classifier in Chapter 3 in our Non-Explicit relation classifier, where we

also included EntRel and NoRel. As no features are proposed specifically for EntRel and

NoRel, we plan to investigate other features that can differentiate EntRel and NoRel from

other Implicit relations.

In our Explicit relation classifier, although the tuple (C, Arg1, Arg2) is passed

into the classifier, the current approach does not make use of information from Arg1 and

Arg2. The features that we applied only involve the connective string, its POS, and its

previous word. One future work is to extract informative features from the two arguments

for the Explicit relation classifier. For AltLex relations, Prasad et al. (2010b) showed that
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the set of AltLex markers is open-ended with unconstrained syntactic possibilities. As

AltLex are alternatively lexicalized by non-predefined and non-connective expressions,

an identifier that solely attacks these issues may also improve the overall performance

of the Non-Explicit relation classifier. As we know, Explicit relations are signaled by

the explicit discourse connectives, while AltLex relations by non-connective expressions.

When we move from the one-million word PTB to other domains or corpora, it is expected

that we will encounter new discourse connectives and non-discourse expressions that do

not appear in PTB. One possible future work is to look at the problem from a domain

adaptation point of view.

The PDTB provides a three level hierarchy of relation tags for its annotation. In

this work we focused on the Level-2 types in the PDTB, as we feel that Level-1 classes

are too general and coarse-grained for downstream applications, while Level-3 subtypes

are too fine-grained and are only provided for some types. As we discussed in Section 2.1,

Level-3 provides the orientation of the relation. For example, Contingency.Cause.Reason

and Contingency.Cause.Result show that the causal relation is pointing from Arg2 to Arg1

and from Arg1 to Arg2, respectively. Similar to Level-1 and -2, Level-3 relations are also

unequally distributed. Our current work did not provide features to identify the orientation

of the relations. We plan to extend our current system with capabilities to handle relation

orientation for Level-3 types.

The current approach also does not deal with identifying Arg1 from all previous

sentences for the PS case. Although about 77% of Arg1s can be located in the immediately

previous sentence of Arg2s in this case, it is important to take the rest into consideration

to make this component complete. Furthermore, this task will not be easy, as there is

no restriction of the distance between Arg1 and Arg2. Example 4.9 shows a situation

where Arg1 is located four sentences away from Arg2. Our next step is to design a full PS

identifier and integrate it into the current pipeline. One possibility is to follow (Prasad

et al., 2010a) to use a set of filters and heuristics to locate the positions of Arg1 spans,
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which also takes into account whether the connectives are in paragraph-initial sentences.

(4.9) GOODY PRODUCTS Inc. cut its quarterly dividend to five cents a share from 11.5

cents a share. The reduced dividend is payable Jan. 2 to stock of record Dec. 15.

The Kearny, N.J.-based maker of hair accessories and other cosmetic products said

it cut the dividend due to its third-quarter loss of $992,000, or 15 cents a share. In

the year-ago quarter, the company reported net income of $1.9 million, or 29 cents

a share. The company also adopted an anti-takeover plan.

(Expansion.Conjunction - wsj 0068)

The PDTB also provides annotations for the four dimensions for the attributions

(their sources, types, scopal polarities, and determinacy) as well as the direction of the

attributions to indicate whether an attribution is pointing to Arg1, Arg2, or the relation as a

whole. Currently our parser does not consider these data as output targets for classification

nor as input features. In Example 4.10, the attribution “traders said” has scope over Arg1

of “However”, while the second attribution “Disney ... said” is taken to have scope over

the connective “However” and hence over the entire coherence relation.

(4.10) But then it shot upward 7 1/2 as Goldman, Sachs & Co. stepped in and bought,

traders said . However, Disney specialist Robert Fagenson said : “I would be

surprised if Goldman represented 4% of the opening volume.”

(Comparison - wsj 2232)

Such information can also be incorporated into the parser, as this provides finer grained

information on the opinions and the opinion holders, which are useful for the downstream

subjectivity analysis. The current attribution span labeler only considers clauses within

the relation, which may result in missing out clauses that are attribution spans of the

relation but reside outside the relation. For instance, in Example 4.11, the attribution span

“said David ... Sunday’s go” for the relation “I’m for ... lost yesterday” resides outside

the relation itself, thus it will not be examined by our system. One possible approach is to
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use a window of sentences to check previous and following sentences for attributions that

are pointing to this relation.

(4.11) “I’m for the Giants today, but only because they lost yesterday.

I love ’em both. The only thing I’m rooting for is for the Series to go seven games,”

said David Williams, a Sacramento septuagenarian, at the Coliseum

before Sunday’s go .

(Contingency.Cause.Reason - wsj 2202)

Wellner (2009) pointed out that verbs from the attribution spans are useful features

in identifying the argument head words. In his work, Wellner checked whether the

argument verb (as only argument verbs, not argument spans, are identified) is a potentially

attribution-denoting verb. This suggests that we can use the downstream results from

the attribution span labeler as input to the earlier argument labeling stage. In fact, we

can enlarge this feedback loop, feeding all results from the end of the pipeline into

the start, to construct a joint learning model (imagine an arrow being drawn from the

attribution span labeler back to the connective classifier in Figure 4.2). We believe that

discourse parsing is very useful in downstream applications, such as text summarization

and question answering (QA). For example, a text summarization system may utilize the

contrast and restatement relations to recognize updates and redundancy, whereas causal

relations can be used in a QA system to answer why-questions. The attribution spans from

the parser are also very useful for applications on opinion mining and subjectivity analysis

to locate the opinion holders. In the next two chapters, we will show the applicability

of this discourse parser in coherence modeling, text summarization, and argumentative

zoning.
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4.5 Conclusion

In this chapter, we have designed a parsing algorithm that performs discourse parsing

in the PDTB representation, and implemented it into an end-to-end system in a fully

data-driven approach. We have proposed automatic approaches to locate the relative

positions of Arg1 and label the exact spans of the arguments when they appear in the

same sentence. The performance of the connective classifier is also significantly improved

from previous work. We have implemented a component to label the attribution spans for

the relations. We evaluated the system both component-wise as well as in an end-to-end

fashion with cascaded errors. We reported overall system F1 scores for partial matching

of 46.80% with gold standard parses and 38.18% with full automation.
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Chapter 5

Evaluating Text Coherence Using

Discourse Relations

In this chapter, we present a novel model to represent and assess the discourse coherence

of text. Our model assumes that coherent text implicitly favors certain types of discourse

relation transitions. We implement this model and apply it towards the text ordering

ranking task, which aims to discern an original text from a permuted ordering of its

sentences. The experimental results demonstrate that our model is able to significantly

outperform the coherence model by (Barzilay and Lapata, 2005), reducing the error

rate of the previous approach by an average of 29% over three data sets against human

upper bounds. We further show that our model is synergistic with the previous approach,

demonstrating an error reduction of 73% when the features from both models are combined

for the task.

5.1 Introduction

Figure 5.1 shows two texts taken from Knott’s thesis on A Data-Driven Methodology for

Motivating a Set of Coherence Relations (Knott, 1996). Text (a) on the left column is



95

The World in 1993
1993 will start with the world in a pes-
simistic frame of mind. That gloom
should soon dispel itself. A clear eco-
nomic recovery is under way. Though
it will be hesitant at first, it will last the
longer for being so. If you are sitting in
one of the world’s blackspots, this pre-
diction will seem hopelessly optimistic.
But next year’s wealth won’t return to
yesteryear’s winners; these middle-aged
rich people need to look over their shoul-
ders to the younger world that is closing
in on them.

(a)

The World in 1993
1993 will start with the world in a pes-
simistic frame of mind. A clear eco-
nomic recovery is under way. That gloom
should soon dispel itself. These middle-
aged rich people need to look over their
shoulders to the younger world that is
closing in on them. But next year’s
wealth won’t return to yesteryear’s win-
ners; it will last the longer for being so
if you are sitting in one of the world’s
blackspots. Though it will be hesitant at
first, this prediction will seem hopelessly
optimistic.

(b)

Figure 5.1: Coherent and incoherent texts, from Knott’s thesis (Knott, 1996). Text (a) on
the left column is taken from the editorial of an issue of The Economist, whilst Text (b)
on the right column contains exactly the same sentences as (a), but in a randomized order.

an original editorial of an issue of The Economist, while Text (b) on the right column

is a permutation of (a), namely, sentences from (a) are randomized to form (b). Knott

discussed two types of incoherence relating to Text (b). The first one has to do with

resolving the referents of anaphoric expressions. As the text is simply reordered without

rewording, readers will find it difficult to sort out what entities the anaphoric expressions

refer to. For instance, the phrase “these middle-aged rich people” cannot be interpreted, as

the sentence that contains the entity that this anaphoric expression refers to is shifted. This

type of incoherence has been tackled by the entity-based coherence model in (Barzilay

and Lapata, 2005).

The second class of incoherence is related to the readers’ inability to understand

the discourse of the text: why two text spans are juxtaposed, and how they are connected

to each other. In the following example, the connective “if” suggests a causal relation
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between the two text spans. However, the discourse of these two spans does not resolve to

a causal relation, even when we put them in the context of the whole text.

(5.1) it will last the longer for being so

if you are sitting in one of the world’s blackspots.

As another example, look at the first two sentences of Text (b):

(5.2) 1993 will start with the world in a pessimistic frame of mind.

A clear economic recovery is under way.

It does not make sense for these two sentences to be placed next to each other: why should

the world be pessimistic, if an economic recovery is under way? In other words, the

discourse does not follow coherently from the first sentence to the second. In this chapter,

we propose a coherence model to tackle this type of incoherence by comparing discourse

patterns extracted from a pair of source and permuted texts.

Intra- and Inter-Discourse Relation Orderings

The coherence of a text is usually reflected by its discourse structure and relations. In

Rhetorical Structure Theory (RST), Mann and Thompson (1988) observed that certain

RST relations tend to favor one of two possible canonical orderings. Some relations (e.g.,

Concessive and Conditional) favor arranging their satellite span before the nucleus span.

In contrast, other relations (e.g., Elaboration and Evidence) usually order their nucleus

before the satellite. If a text that uses non-canonical relation orderings is rewritten to use

canonical orderings, it often improves text quality and coherence.

This notion of preferential ordering of discourse relations is observed in natural

language in general, and generalizes to other discourse frameworks aside from RST. The

following example shows a Contrast relation signaled by “but” between two sentences.

(5.3) Everyone agrees that most of the nation’s old bridges need to be repaired or

replaced.
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But there’s disagreement over how to do it.

Here the second sentence provides contrasting information to the first. If this order is

swapped without rewording, it produces an incoherent text (Marcu, 1996).

In addition to the intra-relation ordering, such preferences also extend to inter-

relation ordering:

(5.4) The Constitution does not expressly give the president such power.

However, the president does have a duty not to violate the Constitution.

The question is whether his only means of defense is the veto.

The second sentence above provides a contrast to the previous sentence and an explana-

tion for the next one. This pattern of Contrast-followed-by-Cause is rather common in

text (Pitler et al., 2008). Ordering the three sentences differently results in incoherent,

cryptic text.

Thus coherent text exhibits measurable preferences for specific intra- and inter-

discourse relation ordering. Our key idea is to use the converse of this phenomenon to

assess the coherence of a text. In this paper, we detail our model to capture the coherence

of a text based on the statistical distribution of the discourse structure and relations.

Our method specifically focuses on the discourse relation transitions between adjacent

sentences, modeling them in a discourse role matrix.

In this chapter, we apply the discourse parser developed in Chapter 4 to generate

input to our coherence model. We implement and validate our model on three data sets,

which show robust improvements over (Barzilay and Lapata, 2005)’s entity-based model

for coherence assessment. We also provide the first assessment of the upper-bound of

human performance on the standard task of distinguishing coherent from incoherent

orderings. To the best our knowledge, this is also the first study in which we show output

from an automatic discourse parser helps in coherence modeling. We are aware that

(Barzilay and Lapata, 2005)’s entity-based model is not the state-of-the-art model, as
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Elsner and Charniak (2008; 2011) have proposed an improved model with discourse-new

entity identification (cf. Chapter 2). On top of Barzilay and Lapata’s model which looks

at where and how entities are mentioned in the text, Elsner and Charniak separated the

discourse-new (i.e., newly mentioned) entities from discourse-old entities and added new

features extracted from named entity recognition and coreference resolution to improve

the model. Compared to the entity-based approach which models entity transition, our

work takes a different approach by modeling text coherence from the point of view

of discourse structure. To examine how our model differs from the core entity-based

model, we compare our discourse model directly with (Barzilay and Lapata, 2005)’s core

entity-based model and do not compare with Elsner and Charniak’s enhanced model.

5.2 Using Discourse Relations

To utilize discourse relations of a text, we apply the automatic discourse parsing developed

in the previous chapter. In contrast to the previous chapter, we discard the Level-2 type

information generated by the parser and use only the four PDTB Level-1 relation types

– Temporal, Contingency, Comparison, and Expansion – plus the entity relation and no

relation (EntRel and NoRel) types. We found Level-1 types to give better performance

empirically, which may due to the fact that the parser performance on Level-1 types is

better than that on Level-2. Recall that as reported in Chapter 4, the parser’s performance

under fully automatic setting is 89.24% (Explicit) and 31.42% (Non-Explicit) for Level-1

types, and 80.61% (Explicit) and 25.46% (Non-Explicit) for Level-2 types.

A simple approach to directly model the connections among discourse relations

is to use the sequence of discourse relation transitions. Text 5.4 in Section 5.1 can be

represented by S1

Comparison

−−−−−−→ S2

Contingency

−−−−−−→ S3, for instance, when we use Level-1 types.

In such a basic approach, we can compile a distribution of the n-gram discourse relation

transition sequences in gold standard coherent text, and a similar one for incoherent text.
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For example, Text 5.4 would generate the transition bigram Comparison→Contingency.

We can build a classifier to distinguish one from the other through learned examples or

using a suitable distribution distance measure (e.g., KL Divergence).

In our pilot work where we implemented such a basic model with n-gram features

for relation transitions, the performance was very poor. In the task of discerning original

text from its permutation in the Earthquakes and Accidents data sets (which will be

detailed in our experimental section), Barzilay and Lapata’s entity-based models gave

83.59% and 89.93% accuracies, our pilot model which uses bigram and trigram discourse

relation transition gave 65.9% and 70.1%, while the random baseline is 50% for both. Our

analysis revealed a serious shortcoming: as the number of discourse relation transitions in

short texts is small, we have very little data to base the coherence judgment on. However,

when faced with even short text excerpts, humans can distinguish coherent texts from

incoherent ones, as exemplified in our example texts. The basic approach also does not

model the intra-relation preference. In Text 5.3, a Comparison relation would be recorded

between the two sentences, regardless of whether S1 or S2 comes first. However, it is

clear that the ordering of (S1 ≺ S2) is more coherent. Thus, the core problem of using

the n-gram features is data sparseness, which is most pronounced in short texts.

5.3 A Refined Approach

The central problem with the basic approach is in its sparse modeling of discourse relations.

In developing an improved model, we need to better exploit the discourse parser’s output

to provide more circumstantial evidence to support the system’s coherence decision. We

thus introduce the concept of a discourse role matrix. This matrix aims to capture an

expanded set of discourse relation transition patterns. We describe how to represent the

coherence of a text with its discourse relations and how to transform such information

into a matrix representation. We then illustrate how we use the matrix to formulate a
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preference ranking problem.

5.3.1 Discourse Role Matrix

Figure 5.2 and Figure 5.3 show a text and its gold standard PDTB discourse relations.

When a term appears in a discourse relation, the discourse role of this term is defined as

the discourse relation type plus the argument span in which the term is located (i.e., the

argument tag). For instance, consider the term “cananea” in the first relation. Since the

relation type is a Comparison and “cananea” is found in the Arg1 span, the discourse role of

“cananea” is defined as Comparison.Arg1. When terms appear in different relations and/or

argument spans, they obtain different discourse roles in the text. For instance, “cananea”

plays a different discourse role of Temporal.Arg1 in the third relation in Figure 5.2. In

the fourth relation, since “cananea” appears in both argument spans, it has two additional

discourse roles, Expansion.Arg1 and Expansion.Arg2. The discourse role matrix thus

represents the different discourse roles of the terms across the continuous text units. We

use sentences as the text units, and define terms to be the stemmed forms of the open class

words: nouns, verbs, adjectives, and adverbs. We formulate the discourse role matrix such

that it encodes the discourse roles of the terms across adjacent sentences.

Figure 5.4 shows a fragment of the matrix representation of the text in Figure 5.2.

Columns correspond to the extracted terms; rows, the contiguous sentences. A cell CTi,Sj

contains the set of the discourse roles of the term Ti that appears in sentence Sj . For

example, the term “cananea” from S1 takes part in the first relation, so the cell Ccananea,S1

contains the role Comparison.Arg1. A cell may be empty (nil, as in Ccananea,S2) or

contain multiple discourse roles (as in Ccananea,S3 , as “cananea” in S3 participates in the

second, third, and fourth relations). Given these discourse relations, building the matrix

is straightforward: we note the relations that a term Ti from a sentence Sj participates

in, and record its discourse roles in the respective cell. Note that discourse relations can

appear within a sentence (i.e., arguments are clauses) and these relations are also captured
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S1 Japan normally depends heavily on the Highland Valley and Cananea mines as
well as the Bougainville mine in Papua New Guinea.

S2 Recently, Japan has been buying copper elsewhere.

S3.1 But as Highland Valley and Cananea begin operating,
S3.2 they are expected to resume their roles as Japan’s suppliers.

S4.1 According to Fred Demler, metals economist for Drexel Burnham Lambert, New
York,

S4.2 “Highland Valley has already started operating
S4.3 and Cananea is expected to do so soon.”

Figure 5.2: An excerpt with four contiguous sentences from wsj 0437. The term “cananea”
is highlighted for the purpose of illustration. Si.j means the jth clause in the ith sentence.

S1           S2          S3.1          S3.2          S4.1          S4.2          S4.3 

Implicit 

Comparison 

Explicit 

Comparison 

Explicit 

Temporal 

Implicit 

Expansion 

Explicit 

Expansion 

Figure 5.3: Five gold standard discourse relations on the excerpt in Figure 5.2. Arrows
are pointing from Arg2 to Arg1.

S# Terms
copper cananea operat depend . . .

S1 nil Comparison.Arg1 nil Comparison.Arg1

S2
Comparison.Arg2

nil nil nil
Comparison.Arg1

S3 nil
Comparison.Arg2 Comparison.Arg2

nilTemporal.Arg1 Temporal.Arg1
Expansion.Arg1 Expansion.Arg1

S4 nil Expansion.Arg2
Expansion.Arg1

nil
Expansion.Arg2

Figure 5.4: Discourse role matrix fragment for Figure 5.2 and 5.3. Rows correspond to
sentences, columns to stemmed terms, and cells contain extracted discourse roles.
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in the matrix. This is not affected by the fact that we use sentences as processing units in

the matrix.

We hypothesize that the sequence of discourse role transitions in a coherent text

provides clues that distinguish it from an incoherent text. The discourse role matrix thus

provides the foundation for computing such role transitions, on a per term basis. In fact,

each column of the matrix corresponds to a lexical chain (Morris and Hirst, 1991) for

a particular term across the whole text. The key differences from the traditional lexical

chains are that our chain nodes’ entities are simplified (they share the same stemmed form,

instead being connected by WordNet relations), but are further enriched by being typed

with discourse relations.

We compile the set of sub-sequences of discourse role transitions for every term

in the matrix. These transitions tell us how the discourse role of a term varies through

the progression of the text. For instance, “cananea” functions as Comparison.Arg1 in S1

and Comparison.Arg2 in S3, and plays the role of Expansion.Arg1 and Expansion.Arg2

in S3 and S4, respectively. As we have six relation types (Temporal, Contingency,

Comparison, Expansion, EntRel and NoRel) and two argument tags (Arg1 and Arg2) for

each type, we have a total of 6 × 2 = 12 possible discourse roles, plus a nil value. We

define a discourse role transition as the sub-sequence of discourse roles for a term in

multiple consecutive sentences. For example, the discourse role transition of “cananea”

from S1 to S2 is Comparison.Arg1→nil. As a cell may contain multiple discourse

roles, a transition may produce multiple sub-sequences. For example, the length 2

sub-sequences for “cananea” from S3 to S4, are Comparison.Arg2→Expansion.Arg2,

Temporal.Arg1→Expansion.Arg2, and Expansion.Arg1→Expansion.Arg2.

Each sub-sequence has a probability that can be computed from the matrix. To

illustrate the calculation, suppose the matrix fragment in Figure 5.4 is the entire discourse

role matrix. Then since there are in total 25 length 2 sub-sequences and the sub-sequence

Comparison.Arg2→Expansion.Arg2 has a count of two, its probability is 2/25 = 0.08.
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A key property of our approach is that, while discourse transitions are captured locally

on a per-term basis, the probabilities of the discourse transitions are aggregated globally,

across all terms. We believe that the overall distribution of discourse role transitions for

a coherent text is distinguishable from that for an incoherent text. Our model captures

the distributional differences of such sub-sequences in coherent and incoherent text in

training to determine an unseen text’s coherence. To evaluate the coherence of a text, we

extract sub-sequences with various lengths from the discourse role matrix as features1 and

compute the sub-sequence probabilities as the feature values.

To further refine the computation of the sub-sequence distribution, we follow

(Barzilay and Lapata, 2005) and divide the matrix into a salient matrix and a non-salient

matrix. Terms (columns) with a frequency greater than a threshold form the salient matrix,

while the rest form the non-salient matrix. The term frequency is calculated based on the

text under consideration, i.e., it will vary when we apply the model to a new text. The

sub-sequence distributions are then calculated separately for these two matrices. The

threshold can be set empirically, maximizing performance on a set task (described below).

5.3.2 Preference Ranking

While some texts can be said to be simply coherent or incoherent, often it is a matter

of degree. A text can be less coherent when compared to one text, but more coherent

when compared to another. As such, since the notion of coherence is relative, we feel that

coherence assessment is better represented as a ranking problem rather than a classification

problem. Given a pair of texts, the system ranks them based on how coherent they are.

Applications of such a system include differentiating a text from its permutation (i.e.,

the sentence ordering of the text is shuffled) and identifying a more well-written essay

from a pair. Such a system can easily generalize from pair-wise ranking into list-wise,

suitable for the ordinal ranking of a set of texts. Coherence scoring equations can also be

1Sub-sequences consisting of only nil values are not used as features.
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deduced (Lapata and Barzilay, 2005) from such a model, yielding coherence scores. Most

recently, we showed in (Lin et al., 2012) that this model is also capable of ranking a list of

texts in the task of summarization evaluation.

To induce a model for preference ranking, we use the SVMlight package2 by

(Joachims, 1999) with the preference ranking configuration for training and testing. All

parameters are set to their default values.

5.4 Experiments

We evaluate our coherence model on the task of text ordering ranking, a standard coherence

evaluation task used in both (Barzilay and Lapata, 2005) and (Elsner et al., 2007). In

this task, the system is asked to decide which of two texts is more coherent. The pair of

texts consists of a source text and one of its permutations (i.e., the text’s sentence order

is randomized). Assuming that the original text is always more discourse-coherent than

its permutation, an ideal system will prefer the original to the permuted text. A system’s

accuracy is thus the number of times the system correctly chooses the original divided by

the total number of test pairs.

In order to acquire a large data set for training and testing, we follow the approach

in (Barzilay and Lapata, 2005) to create a collection of synthetic data from Wall Street

Journal (WSJ) articles in the Penn Treebank. All of the WSJ articles are randomly

split into a training and a testing set; 40 articles are held out from the training set for

development. For each article, its sentences are permuted up to 20 times to create a set of

permutations3. Each permutation is paired with its source text to form a pair.

We also evaluate on two other data collections (cf. Table 5.1), provided by (Barzilay

and Lapata, 2005), for a direct comparison with their entity-based model. These two data

sets consist of Associated Press articles about earthquakes from the North American News

2http://svmlight.joachims.org/
3Short articles may produce less than 20 permutations.
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WSJ Earthquakes Accidents

Train
# Articles 1040 97 100
# Pairs 19120 1862 1996
Avg. # Sents 22.0 10.4 11.5

Test
# Articles 1079 99 100
# Pairs 19896 1956 1986

Table 5.1: Details of the WSJ, Earthquakes, and Accidents data sets, showing the number
of training/testing articles, number of pairs of articles, and average length of an article (in
sentences).

Corpus, and narratives from the National Transportation Safety Board. These collections

are much smaller than the WSJ data, as each training/testing set contains only up to 100

source articles. Similar to the WSJ data, we construct pairs by permuting each source

article up to 20 times.

Our model has two parameters:

1. The term frequency (TF) that is used as a threshold to identify salient terms, and

2. The lengths of the sub-sequences that are extracted as features.

These parameters are tuned on the development set, and the best ones that produce the

optimal accuracy are TF >= 2 and lengths of the sub-sequences <= 3.

We must also be careful in using the automatic discourse parser. We note that the

discourse parser employed is trained on the PDTB, which provides annotations on top

of the whole WSJ data. As we also use the WSJ data for this evaluation, we must avoid

parsing an article that has already been used in training the parser to prevent training on

the test data. We re-train the parser with 24 WSJ sections and use the trained parser to

parse the sentences in our WSJ collection from the remaining section. We repeat this

re-training/parsing process for all 25 sections. Because the Earthquakes and Accidents

data do not overlap with the WSJ training data, we use the original parser to parse these

two remaining data sets. Since the discourse parser utilizes paragraph boundaries but a
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permuted text does not have such boundaries, we ignore paragraph boundaries and treat

the source text as if it has only one paragraph. This is to make sure that we do not give the

system extra information because of this difference between the source and permuted text.

5.4.1 Human Evaluation

While the text ordering ranking task has been used in previous studies, two key questions

about this task have remained unaddressed in the previous work:

1. To what extent is the assumption that the source text is more coherent than its

permutation correct?

2. How well do humans perform on this task?

The answer to the first is needed to validate the correctness of this synthetic task, while

the second aims to obtain the upper bound for evaluation. We conduct a human evaluation

to answer these questions.

We randomly select 50 source text/permutation pairs from each of the WSJ, Earth-

quakes, and Accidents training sets. We observe that some of the source texts have

formulaic structures in their initial sentences that give away the correct ordering. Sources

from the Earthquakes data always begin with a headline sentence and a location-newswire

sentence, such as:

BC-Taiwan-Earthquake|Quake Jolts Taiwan

TAIPEI, Taiwan (AP) An earthquake with . . .

and many sources from the Accidents data start with the following two sentences:

This is preliminary . . . errors.

Any errors . . . completed.

We remove these sentences from the source and permuted texts, to avoid the subjects

judging based on these clues instead of textual coherence. For each set of 50 pairs, we
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WSJ Earthquakes Accidents Overall
90.0 90.0 94.0 91.3

Table 5.2: Inter-subject agreements on the three data sets.

assigned two human subjects (who was not the author of this thesis nor his supervisors) to

perform the ranking. The subjects are told to identify the source text from the pair. When

both subjects rank a source text higher than its permutation, we interpret it as the subjects

agreeing that the source text is more coherent than the permutation. Table 5.2 shows the

inter-subject agreements.

While our study is limited and only indicative, we conclude from these results that

the task is tractable. Also, since our subjects’ judgments correlate highly with the gold

standard, the assumption that the original text is always more coherent than the permuted

text is supported. Importantly though, human performance is not perfect, suggesting

fair upper bound limits on system performance. We note that the Accidents data set is

relatively easier to rank, as it has a higher upper bound than the other two. This is because

articles in Accidents data set are accident reports which are more formulaic than the news

articles in the other two data sets.

5.4.2 Baseline

Barzilay and Lapata (2005) showed that their entity-based model is able to distinguish a

source text from its permutation accurately. Thus, it can serve as a good comparison point

for our discourse relation-based model. Their full model is Coreference+Syntax+Salience,

which uses coreference resolution to group entity classes, syntax to determine whether

an entity is subject, object, or other, and salience to determine whether an entity appears

frequently in the text. We compare against their Syntax+Salience setting, instead of

the setting with coreference resolution. Since they did not automatically determine the
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coreferential information of a permuted text but obtained that from its corresponding

source text, we do not perform automatic coreference resolution in our reimplementation

of their system. For fair comparison, we follow their experiment settings as closely

as possible. We re-use their Earthquakes and Accidents dataset as is, using their exact

permutations and pre-processing. For the WSJ data, we need to perform our own pre-

processing, thus we employed the Stanford parser4 to perform sentence segmentation and

constituent parsing, followed by entity extraction.

5.4.3 Results

We perform a series of experiments to answer the following four questions:

1. Does our model outperform the baseline?

2. How do the different features derived from using relation types, argument tags, and

salience information affect performance?

3. Can the combination of the baseline and our model outperform the single models?

4. How does system performance of these models compare with human performance

on the task?

Baseline results are shown in the first row of Table 5.3. The results on the Earth-

quakes and Accidents data are quite similar to those published in (Barzilay and Lapata,

2005) (they reported 83.4% on Earthquakes and 89.7% on Accidents), validating the

correctness of our reimplementation of their method.

Row 2 in Table 5.3 shows the overall performance of the proposed refined model,

answering Question 1. The model setting of Type+Arg+Sal means that the model makes

use of the discourse roles consisting of (1) relation types and (2) argument tags (e.g., the

discourse role Comparison.Arg2 consists of the type Comparison and the tag Arg2), and

4http://nlp.stanford.edu/software/lex-parser.shtml
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WSJ Earthquakes Accidents
Baseline 85.71 83.59 89.93
Type+Arg+Sal 88.06** 86.50** 89.38
Arg+Sal 88.28** 85.89* 87.06
Type+Sal 87.06** 82.98 86.05
Type+Arg 85.98 82.67 87.87
Baseline & 89.25** 89.72** 91.64**
Type+Arg+Sal

Table 5.3: Test set ranking accuracy. The first row shows the baseline performance,
the next four show our model with different settings, and the last row is a combined
model. Double (**) and single (*) asterisks indicate that the respective model significantly
outperforms the baseline at p < 0.01 and p < 0.05, respectively. We follow (Barzilay and
Lapata, 2008) and use the Fisher Sign test.

(3) two distinct feature sets from salient and non-salient terms. Recall that the features are

sub-sequences of discourse roles with lengths<= 3 and values are their probabilities in the

matrix. Comparing these accuracies to the baseline, our model significantly outperforms

the baseline with p < 0.01 in the WSJ and Earthquakes data sets with accuracy increments

of 2.35% and 2.91%, respectively. In Accidents, our model’s performance is slightly

lower than the baseline, but the difference is not statistically significant. The reason is

that the accident reports in this data set are more formulaic and contain many mentions of

the pilots and airplane parts, which are easily captured by the entity-based model.

To answer Question 2, we perform feature ablation testing. We eliminate each of

the information sources from the full model. In Row 3, we first delete relation types from

the discourse roles, which causes discourse roles to only contain the argument tags. A

discourse role such as Comparison.Arg2 becomes Arg2 after deleting the relation type.

Comparing Row 3 to Row 2, we see performance reductions on the Earthquakes and

Accidents data after eliminating type information. Row 4 measures the effect of omitting

argument tags (Type+Sal). In this setting, the discourse role Comparison.Arg2 reduces

to Comparison. We see a large reduction in performance across all three data sets. This
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model is also most similar to the basic naı̈ve model in Section 5.2. These results suggest

that the argument tag information plays an important role in our discourse role transition

model. Row 5 omits the salience information (Type+Arg), which also markedly reduces

performance. This result supports the use of salience, in line with the conclusion drawn

in (Barzilay and Lapata, 2005).

To answer Question 3, we train and test a combined model using features from

both the baseline and our model (shown as Row 6 in Table 5.3). The entity-based model

of Barzilay and Lapata (2005) connects the local entity transition with textual coherence,

while our model looks at the patterns of discourse relation transitions. As these two

models focus on different aspects of coherence, we expect that they are complementary to

each other. The combined model in all three data sets gives the highest performance in

comparison to all single models, and it significantly outperforms the baseline model with

p < 0.01. This confirms that the combined model is linguistically richer than the single

models as it integrates different information together, and the entity-based model and our

model are synergistic.

To answer Question 4, when compared to the human upper bound (Table 5.2),

the performance gaps for the baseline model are relatively large, while those for our full

model are more acceptable in the WSJ and Earthquakes data. For the combined model, the

error rates are significantly reduced in all three data sets. The average error rate reductions

against 100% are 9.57% for the full model and 26.37% for the combined model. If we

compute the average error rate reductions against the human upper bounds (rather than an

oracular 100%), the average error rate reduction for the full model is 29% and that for the

combined model is 73%. While these are only indicative results, they do highlight the

significant gains that our model is making towards reaching human performance levels.

We further note that some of the permuted texts may read as coherently as the

original text. This phenomenon has been observed in several natural language synthesis

tasks such as generation and summarization, in which a single gold standard is inadequate
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to fully assess performance. As such, both automated systems and humans may actually

perform better than our performance measures indicate. We leave it to future work to

measure the impact of this phenomenon.

Given that we have shown the upper bound for the task in all three data sets, we

also note that it would be good to show the performance of our system with gold standard

discourse structures. However, we do not have gold standard discourse structures for the

Earthquakes and Accidents data sets. Although we have that for the original articles in

the WSJ data, we also do not have gold standard discourse parsing for the corresponding

permutations. Thus it is not possible to conduct the same experiments under gold standard

setting.

5.5 Analysis and Discussion

When we compare the accuracies of the full model in the three data sets (Row 2), the

accuracy in the Accidents data is the highest (89.38%), followed by that in the WSJ

(88.06%), with Earthquakes at the lowest (86.50%). To explain the variation, we examine

the ratio between the number of the relations in the article and the article length (i.e.,

number of sentences). This ratio is 1.22 for the Accidents source articles, 1.2 for the

WSJ, and 1.08 for Earthquakes. The relation/length ratio gives us an idea of how often a

sentence participates in discourse relations. A high ratio means that the article is densely

interconnected by discourse relations, and may make distinguishing this article from its

permutation easier compared to that for a loosely connected article.

We expect that when a text contains more discourse relation types (i.e., Temporal,

Contingency, Comparison, Expansion), it is easier to compute how coherent this text is.

This is because compared to articles with less discourse relations, these four discourse

relations can combine to produce meaningful transitions, such as the example Text 5.4. To

examine how this affects performance, we calculate the average ratio between the number
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of the four discourse relations in the permuted text and the length for the permuted text.

The ratio is 0.58 for those that are correctly ranked by our system, and 0.48 for those that

are incorrectly ranked, which supports our hypothesis.

We also examined the learning curves for our Type+Arg+Sal model, the baseline

model, and the combined model on the data sets, as shown in Figures 5.5(a)–5.5(c). In

the WSJ data, the accuracies for all three models increase rapidly as more pairs are added

to the training set. After 2,000 pairs, the increase slows until 8,000 pairs, after which the

curve is nearly flat. From the curves, our model consistently performs better than the

baseline with a significant gap, and the combined model also consistently and significantly

outperforms the other two. Only about half of the total training data is needed to reach

optimal performance for all three models. The learning curves in the Earthquakes data

show that the performance for all models is always increasing as more training pairs

are utilized. The Type+Arg+Sal and combined models start with lower accuracies than

the baseline, but catch up with it at 1,000 and 400 pairs, respectively, and consistently

outperform the baseline beyond this point. On the other hand, the learning curves for the

Type+Arg+Sal and baseline models in Accidents do not show any one curve consistently

better than the other: our model outperforms in the middle segment but underperforms

in the first and last segments. The curve for the combined model shows a consistently

significant gap between it and the other two curves after the point at 400 pairs.

With the performance of the model as it is, how can future work improve upon

it? We point out one weakness that we plan to explore. We use the full Type+Arg+Sal

model trained on the WSJ training data to test Text (5.4) from the introduction, which is

repeated in Figure 5.6. As (5.4) has 3 sentences, permuting it gives rise to 5 permutations,

as shown in Figure 5.6. The model is able to correctly determine the original in four

of these 5 pairs. The only permutation it fails on is (S3 ≺ S1 ≺ S2), when the last

sentence is moved to the beginning. A very good clue of coherence in Text 5.4 is the

Explicit Comparison relation between S1 and S2 signaled by “However”. Since this clue
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Figure 5.5: Learning curves for the Type+Arg+Sal, the baseline, and the combined models
on the three data sets.
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S1 The Constitution does not expressly give the president such power.
S2 However, the president does have a duty not to violate the Constitution.
S3 The question is whether his only means of defense is the veto.

Original ordering:
S1 ≺ S2 ≺ S3

Permuted orderings:
S1 ≺ S3 ≺ S2

S2 ≺ S1 ≺ S3

S2 ≺ S3 ≺ S1

S3 ≺ S1 ≺ S2

S3 ≺ S2 ≺ S1

Figure 5.6: An exemplar text of three sentences and its five permutations.

is retained in (S3 ≺ S1 ≺ S2), it is difficult for the system to distinguish this ordering

from the source. In contrast, as “However” becomes less coherent with the movement

of its Arg1, it is easier to distinguish them as incoherent. By modeling longer range

discourse relation transitions, we may be able to discern these two cases.

5.6 Conclusion

In this chapter, we have proposed a new model for discourse coherence that leverages

the observation that coherent texts preferentially follow certain discourse structures. We

posit that these structures can be captured in and represented by the patterns of discourse

relation transitions. We first demonstrate that simply using the sequence of discourse

relation transition leads to sparse features and is insufficient to distinguish coherent from

incoherent text. To address this, our method transforms the discourse relation transitions

into a discourse role matrix. The matrix schematically represents term occurrences in

text units and associates each occurrence with its discourse roles in the text units. In our
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approach, per-term transition sub-sequences constitute the evidence used in our model to

distinguish coherence from incoherence.

When applied to distinguish a source text from a sentence-reordered permutation,

our model significantly outperforms the previous the entity-based local coherence model.

While the entity-based model captures repetitive mentions of entities, our discourse

relation-based model gleans its evidence from the argumentative and discourse structure

of the text. Our model is complementary to the entity-based model, as it tackles the same

problem from a different perspective. Experiments validate our claim, with a combined

model outperforming both single models.

The idea of modeling coherence with discourse relations and formulating it in

a discourse role matrix can also be applied to other NLP tasks. We plan to apply our

methodology to other tasks, such as summarization, text generation and essay scoring,

which also need to produce and assess discourse coherence. Apart from applying our dis-

course parser in coherence modeling, in the next chapter, we will propose the applications

of discourse parsing in both summarization and argumentative zoning.
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Chapter 6

Applying Discourse Relations in

Summarization and Argumentative

Zoning of Scholarly Papers

In Chapter 5, we have shown that we can build a textual coherence model by leveraging

discourse patterns from our fully automatic discourse parser and apply this model to

distinguish coherent from incoherent texts. In this chapter, we show that discourse struc-

tures and relations can also improve downstream NLP applications. We demonstrate that

incorporating discourse features can significantly improve two NLP tasks – argumentative

zoning and summarization – in the scholarly domain. We also show that output from these

two tasks can improve each other in an iterative model.

6.1 Introduction

Each segment in a text has a specific rhetorical function with regard to its context. Focusing

on the scholarly domain, a scientific paper usually devotes parts of the body to explain

the research goals of the work, describe others’ work, compare their own work against
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others’, and most importantly, illustrate the nuances of their own contributions. Each

sentence can thus be supposed to have its own rhetorical function to guide the reader in

understanding the paper’s arguments. To this end, argumentative zoning (hereafter, “AZ”

or “zoning”) is a task proposed by Teufel (Teufel, 1999) to assign a rhetorical function to

each sentence from a set of seven canonical rhetorical functions: AIM (aim), BAS (basis),

BKG (background), CTR (contrast), OTH (other), OWN (own), and TXT (textual). The

description of these labels was shown in Table 2.3 in Chapter 2.

Discourse parsing differs from argumentative zoning in that it constructs the

discourse structure of a text in order to unveil the discourse relations between text spans.

Despite this difference, both discourse parsing and zoning target the understanding of a

text from its structure, context, and syntactic arguments. For instance, we have shown

that discourse parsing provides a measure for how coherent a text is in the last chapter;

argumentative zoning can also be said to provide an indication of a paper’s coherence: a

well-written research paper usually follows conventional rhetorical patterns in organizing

and explaining its aims, background, own work, and comparison to other work. Thus, we

argue that discourse parsing and argumentative zoning exhibit a strong connection, and

we hypothesize that discourse parsing can assist in the task of argumentative zoning.

Text summarization has also been shown to have strong connection with discourse

parsing and can benefit from an understanding of a text’s discourse structure. Carlson et

al. (2001)’s RST Discourse Treebank contains both nucleus-satellite and nucleus-nucleus

relations of all informational relations, which shows that nuclearity is distinct from

relation type. Marcu (Marcu, 1997) explained that the nucleus-satellite view on discourse

relations provide an indication of the importance of the text units. This indication of

importance can be applied in summarization to promote and select important text spans.

The PDTB framework does not have the notion of nuclearity. However, its relation types

and arguments together may provide hints at which argument spans contain more relevant

information to specific application needs. For instance, in the Cause relation signaled by
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“because” in Example 2.1, Arg2 provides the reason to support the event in Arg1. Thus,

we also hypothesize that automated text summarization can benefit from the output of

discourse parsing. Related to this, Louis et al. (2010) have already demonstrated the use

of PDTB relations in summarization. However, our work differs from theirs in that we

utilize a fully automated discourse parser whereas they experimented on the gold standard

data set.

We first explain how we incorporate the discourse features from our parser for

both argumentative zoning and scientific paper summarization tasks in the next section.

We then describe our experimental setup and results for each task. We then present an

iterative model that accomplishes both tasks.

6.2 Methodology

We first apply discourse parsing on the input scientific papers with our automatic parser

developed in Chapter 4. Similar to applying discourse parsing in coherence modeling in the

chapter, we leverage the four PDTB Level-1 types (Temporal, Contingency, Comparison,

and Expansion), EntRel, and NoRel. Both Explicit and Implicit relations are utilized.

6.2.1 Discourse Features for Argumentative Zoning

In the argumentative zoning task, each sentence is assigned one of the seven labels:

AIM, BAS, BKG, CTR, OTH, OWN, and TXT. At sentence level, the discourse parser

provides information on whether a particular sentence has certain types of discourse

connections with its context (specifically, its previous and next sentences) and within

itself. We hypothesize that such sentence-level features are related to AZ labels. For

example, sentences that have a Comparison relation may be more likely to be labeled as

CTR, as CTR (contrast) means to compare with others’ work; whereas sentences with

Expansion relations may relate more to the OWN sentences, as Expansion relations are
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used to exemplify, restate, and generalize the discussion, which are usually used by one in

explaining one’s OWN work. Thus, for each sentence, we use the following output of our

discourse parser:

If both Arg1 and Arg2 spans of a relation appear in a sentence (i.e., the SS case), the

following feature is triggered:

SS + relation type

else if one argument span of a relation appears in a sentence (i.e., the PS case), this feature

is triggered instead:

PS + relation type + argument tag

where argument tag is Arg1 or Arg2. Here SS means same sentence and PS means the

immediately previous sentence (cf. Chapter 4). We also include the number of relations

that this sentence participates in as a feature.

For instance, in the following example (Example 6.1), there is an Implicit Compar-

ison relation between the first and the second sentences (the last line of the example shows

the article number that this example belongs to). The first sentence contains the Arg1 span

of this relation and the second contains the Arg2 span. Thus, for the second sentence, we

will extract the feature “PS Comparison Arg2”. This indicates that the second sentence is

contrastive to the first one and therefore its AZ class is CTR. The second sentence is also

involved in another relation with the sentence following it, thus the number of relations

for the second sentence is 2.

(6.1) In fact, it appears that gapping is felicitous in those constructions where VP-ellipsis

requires a syntactic antecedent, whereas gapping is infelicitous in cases where

VP-ellipsis requires only a suitable semantic antecedent.

Past approaches to VP-ellipsis that operate within a single module of language

processing fail to make the distinctions necessary to account for these differences.

(CMP-LG 9405010)
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6.2.2 Discourse Features for Summarization

Summarization techniques are usually divided into extractive and abstractive summariza-

tion. Simply put, one generates a summary by extracting important and representative

sentences, whilst the other rewrites or generates a natural text as the summary. In this

work, we follow a supervised extractive summarization approach, in which we train a

system to score sentence importance and extract the most salient sentences to construct a

summary.

Knowing the relation type and argument tag of a sentence in a discourse relation

can provide clues for the importance of this sentence with regard to its context. The

discourse features that we use for summarization are slightly different from those for

argumentative zoning: we ignore the SS cases (as we will be extracting entire sentences),

and instead differentiate between Explicit and Implicit relations. For each sentence, if one

argument span of a relation appears in this sentence, we extract the feature:

PS + Explicit/Implicit + relation type + argument tag

For instance, the feature for the second sentence in Example 6.1 for summarization is

“PS Implicit Comparison Arg2”. This is indicative of the importance of the sentence, as

it shows that the sentence is providing contrastive and updated information to its previous

context. Similar to argumentative zoning, we also include the number of relations as a

feature.

6.3 Experiments

We first describe our data sets, experimental setup, and the two respective baseline systems.

We then demonstrate that incorporating discourse features significantly improves both

tasks. While the focus of this chapter is to study the application of discourse parsing in

summarization and argumentative zoning, it will be interesting to also look at whether
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AIM BAS BKG CTR OTH OWN TXT Total
#instances 310 246 789 600 2019 8624 227 12815

% 2.42 1.92 6.16 4.68 15.75 67.30 1.77

Table 6.1: Number and percentages of the instances of the AZ labels.

AIM BAS BKG CTR OTH OWN TXT
% in abstract 27.14 2.00 8.57 8.00 6.86 47.43 0.00

% in body 1.65 1.92 6.09 4.59 16.01 67.89 1.82

Table 6.2: Percentages of AZ labels in abstract and body.

these two tasks have effect on each other, as this has not been properly studied before. For

example, as shown in Table 6.2, AZ labels have very different distribution in the abstract

and body of scientific papers. As we want to generate a summary similar to the abstract,

taking AZ labels as input will help the summarization system to produce a summary with

correct distribution of AZ labels. To this end, we propose an iterative model, and show

that argumentative zoning and summarization can improve each other in this model.

6.3.1 Data and Setup

We utilize the corpus of 80 scientific articles from (Teufel, 1999) as-is. These papers were

collected from the conferences and workshops of ACL, COLING, ANLP, and EACL,

published during 1987–1996. The papers’ sentences are annotated with the AZ labels by

three trained annotators. There are 12,815 sentences in total, exhibiting a skewed zoning

distribution: 67.30% of all sentences are marked as OWN. This skewed distribution is

reasonable, as the bulk of a paper should describe the authors’ own work. We give the

label distribution on the corpus in Table 6.1 and the label distribution in abstract and body

of the papers in Table 6.2.

The same 80 articles are also used in the summarization task. In scientific article

summarization, abstracts can be deemed gold standard summaries (model summaries), a
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practice which we adopt. The average number of words in the abstracts is 102. Thus, we

round this down and set the maximum length of the extracted summaries to be 100 words,

which means that the last sentence of the extracted summary will need to be trimmed if

needed, to keep it exactly 100 words. When summarizing the scientific article, its abstract

is omitted from the summarization process.

Since we have a relatively small set of documents, we employ 10-fold cross

validation to assess performance. The articles are sorted by their article numeric IDs and

divided into 10 sets of 8 articles.

We employ the Robust Argumentative Zoning (RAZ) system (Teufel and Kan,

2011) as the baseline system for the zoning tasks. RAZ is robust to articles with plain

text input, i.e., without markup for titles, authors, section titles, tables, figures, citations,

etc. RAZ uses the maximum entropy classifier from Le Zhang1 for sentence classifi-

cation. Features used by RAZ include raw tokens, bigrams and trigrams, cue words

and phrases, position, citation presence, sentence length, title overlap, agent, and verb

tense. Teufel (1999) also described a classifier for Argumentative Zoning. The differences

between Teufel’s original system and RAZ are that Teufel’s system

1. Utilizes a Naı̈ve Bayes classifier,

2. Uses a much larger set of 1000 – 2000 hand crafted patterns and rules, and

3. Needs fully marked up articles as input (i.e., it needs markup for titles, authors,

section titles, equations, tables, figures, and citations).

Teufel (1999) obtained a macro F1 of 50%, while RAZ gives a macro F1 of 46.79%. How-

ever, as RAZ is freely available online2, we use RAZ directly, instead of reimplementing

Teufel’s system. The reason is that RAZ and Teufel’s system share many of their feature

classes, and if we observe significant improvement on RAZ with discourse features, we

1http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
2http://wing.comp.nus.edu.sg/raz/
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Precision Recall F1

AIM 60% 44% 51%
BAS 29% 18% 22%
BKG 32% 20% 24%
CTR 28% 14% 19%
OTH 35% 28% 31%
OWN 76% 87% 81%
TXT 74% 52% 61%

Table 6.3: RAZ performance on each label reported in (Teufel and Kan, 2011).

can conclude that discourse features are complementary to the current AZ feature set.

Table 6.3 shows the precision, recall, and F1 for each label reported in (Teufel and Kan,

2011).

We use a machine learning approach to train and test the summarization system,

and use ROUGE (Lin and Hovy, 2003) to automatically evaluate the system. The problem

with a machine learning approach for extractive supervised summarization is that we

need to train a regression model for scoring sentences, but we do not have annotations of

importance scores of sentences for training. We follow (Varma et al., 2009) to estimate

sentence importance score by calculating the ROUGE-2 score between a sentence S and

the sentences in the abstract:

ROUGE2 score(S, abstract) =

∑
S′∈abstract |BigramS ∩BigramS′ |

|S|
(6.2)

where |BigramS ∩ BigramS′ | is the number of bigrams shared by the sentence S and

the abstract sentence S ′, and the sum is normalized by the length of S. ROUGE-2 is

one of the evaluation scores calculated by ROUGE which has been shown to have high

correlation with humans. Since ROUGE-2 has high correlation with human judgment, we

can use it to estimate the gold standard importance scores for the sentences.

With the estimated importance scores, we use a regression model to estimate a

real value for each testing sentence. We apply Support Vector Regression (SVR) to train
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our summarization model, as SVR has been shown to perform well in summarization

task (Varma et al., 2009). We use the SVMlight package3 by (Joachims, 1999) with the

regression configuration. After SVR assigns a score to each sentence, the system ranks

the sentences in descending order of the scores and constructs a summary by selecting the

first several sentences with a cutoff of 100 words.

As our summarization system uses supervised approach, we also choose a super-

vised baseline system for comparison. The baseline summarization system uses three

features: the length of the sentence, the position of the sentence, and the LexRank score

of the sentence. The first two are standard features used by most supervised and un-

supervised summarization systems. LexRank (Erkan and Radev, 2004a) is a graph model

that computes the sentence centrality by running a random walk on the lexical graph,

where nodes are sentences and edges are lexical similarities. LexRank has been shown to

perform very well in text summarization (Erkan and Radev, 2004b).

6.3.2 Results for Argumentative Zoning

Table 6.4 shows the evaluation results (precision, recall, and F1) and confusion matrix for

the baseline RAZ system. The final row shows the macro precision, recall and F1 over all

labels. The macro F1 for the baseline RAZ system is 46.79%.

We add the discourse features from the output of the discourse parser into the RAZ

system. The evaluation results for RAZ+Discourse is shown in Table 6.5. All macro

precision, recall and F1 scores are improved over the RAZ system, with a new macro

F1 of 47.88%. A two tailed paired t-test shows that this new macro F1 is significantly

higher than that for RAZ with p < 0.01. Comparing precision and recall scores, it is clear

that recall goes up in some classes and down in others, while precision is improved in

all classes except OWN. For example, the precision for AIM increases by 6.93% while

its recall drops by 3.23%. One reason is that adding discourse information improves the

3http://svmlight.joachims.org/
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Predicted as
AIM BAS BKG CTR OTH OWN TXT P R F1

AIM 177 6 17 5 13 84 8 59.60 57.10 58.32
BAS 13 63 7 5 54 102 2 34.05 25.61 29.23
BKG 8 4 226 22 190 336 3 36.69 28.64 32.17
CTR 13 12 52 119 88 315 1 35.95 19.83 25.56
OTH 7 57 118 46 647 1140 4 38.15 32.05 34.83
OWN 71 41 191 134 689 7453 45 78.56 86.42 82.30
TXT 8 2 5 0 15 57 140 68.97 61.67 65.12
Macro 50.28 44.47 46.79

Table 6.4: Results for the baseline RAZ system.

Predicted as
AIM BAS BKG CTR OTH OWN TXT P R F1

AIM 167 7 17 5 12 96 6 66.53 53.87 59.54 (+1.22)
BAS 11 61 6 4 64 97 3 34.08 24.80 28.71 (−0.52)
BKG 4 5 240 25 178 335 2 41.10 30.42 34.96 (+2.79)
CTR 5 10 49 132 84 318 2 38.82 22.00 28.09 (+2.53)
OTH 7 53 113 48 635 1160 3 39.27 31.45 34.93 (+0.10)
OWN 52 41 155 125 633 7573 45 78.55 87.81 82.92 (+0.62)
TXT 5 2 4 1 11 62 142 69.95 62.56 66.05 (+0.93)
Macro 52.61 44.70 47.88 (+1.09)

Table 6.5: Results for RAZ+Discourse. A two tailed paired t-test shows that macro F1

for RAZ+Discourse is significantly better than that for RAZ with p < 0.01. On the last
column, + and − represent increase and drop, respectively, as compared to the RAZ
baseline.

quality of labeled results but decreases the coverage of the classifier.

We now illustrate how discourse information helps in recognizing the rhetorical

function of a sentence through examples. As explained, we expect that a Comparison

discourse relation may help to identify CTR label, as it tends to compare others’ work

with authors’ own work. In Example 6.1, the gold standard label for the second sentence

is CTR (contrast). Before adding in the discourse features, RAZ incorrectly classifies it

into OWN. As the discourse parser recognizes an Implicit Comparison relation between

these two sentences and assigns the discourse feature “PS Comparison Arg2” to the
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second sentence, the system now learns that this sentence provides a contrasting rhetorical

function. Therefore, the new model is able to correctly assign CTR to this sentence.

The previous example is an instance of an Implicit discourse relation. Some

Explicit discourse connectives are captured by the cue word/phrase and n-gram features

of RAZ. However, many connectives (such as “when” and “and”) are ambiguous and

need the assistance of an external classifier to identify their actual discourse functions (cf.

Chapter 4). Moreover, the RAZ features do not capture all connectives, such as “on the

other hand” in Example 6.3. RAZ assigns an incorrect label of OWN to Example 6.3. As

the discourse parser recognizes this sentence as the Arg2 span of an Explicit Comparison

relation, the new model (RAZ+Discourse) is able to correctly classify this as CTR.

(6.3) On the other hand, the fact that these approaches extract co-occurrences without

reliability on being verb-complements violates accuracy requirements.

(CMP-LG 9409004)

The above examples illustrate the influence of the Comparison relation on clas-

sifying the CTR instances. This is further elaborated in Table 6.6, which shows the

top 20 (AZ label, discourse feature) pairs ranked by their mutual information. The

first pair on the list, (CTR, PS Comparison Arg2), shows that CTR and the discourse

feature PS Comparison Arg2 have the highest correlation. In the list, we observe that

PS EntRel Arg1 and PS EntRel Arg2 appear very often, and the first two for EntRel are

OTH and OWN. In Table 6.2 we see that OWN and OTH are the most common labels in

the body, as authors usually spend most of the body text in explaining how they derive

their results from others’ and their own work. As entity transition is commonly seen in

such explanation, it gives the reason of the high correlation of OWN/OTH and EntRel

features.

Comparing Table 6.4 and Table 6.5, we see that BKG and CTR contribute the most

to the improvement in terms of F1 scores: F1 for BKG and CTR increases 2.79% and

2.53%, respectively. BKG, CTR, and OWN contribute the most to the performance in
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CTR PS Comparison Arg2
OTH PS EntRel Arg2
OWN PS Contingency Arg2
OTH PS Contingency Arg2
CTR SS Comparison
OWN PS EntRel Arg1
OTH PS EntRel Arg1
BAS PS EntRel Arg1
OTH PS Comparison Arg1
AIM SS Contingency
AIM PS Expansion Arg2
TXT PS Expansion Arg2
OWN SS Contingency
AIM PS EntRel Arg1
OTH PS Contingency Arg1
AIM PS EntRel Arg2
OWN PS Comparison Arg1
OWN PS EntRel Arg2
TXT SS Contingency
CTR PS EntRel Arg2

Table 6.6: A list of top 20 (AZ label, discourse feature) pairs ranked by their mutual
information in descending order.
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terms of more correctly labeled instances (cf. the diagonals in the two tables). F1 increases

are observed for all labels, except BAS. This is explained by the fact that, among the top

20 pairs ranked by mutual information scores, there is only one pair that incorporates the

BAS label, which is “PS EntRel Arg1”. As “PS EntRel Arg1” has higher correlation

with OWN and OTH, it does not provide enough information to differentiate BAS from

other labels. BAS sentences describe the basis for the work in the paper, and usually

are recognized by the appearances of citations, as shown in the following example. As

citation features are included in RAZ and discourse features do not further address the

problem of citation, it is not surprising that adding discourse features does not help.

(6.4) We present a different method that takes as starting point the back-off scheme of

Katz (1987).

(CMP-LG 9405001)

6.3.3 Results for Summarization

The results for the baseline summarization system are shown in the first row in Table 6.7.

ROUGE-1 and ROUGE-2 are the unigram and bigram co-occurrence scores, while

ROUGE-SU4 measures the skip-unigram and -bigram co-occurrence with a word window

of 4. These three metrics have been shown in past publications to have high correlation

with humans (Lin and Hovy, 2003). As ROUGE is a recall-based metric, it shows how

much of the abstract is covered by the selected sentences.

When we incorporate discourse features into the baseline, the performance is

significantly improved, with p < 0.05 for ROUGE-1 and ROUGE-SU4 and p < 0.01 for

ROUGE-2 (cf. Row 2 in Table 6.7). When we look at the sentences in the generated

summaries, 26.48% of them are associated with the Contingency relation. As Contingency

indicates how one argument causally influences the other, in scientific papers it is used

to explain how the authors derive their research work and results from the previous

context. Thus it makes sense to use it as an indicator of the salience of the sentence in
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ROUGE-1 ROUGE-2 ROUGE-SU4
Baseline 40.80 10.79 15.56
Baseline+Discourse 42.47* 12.73** 16.98*
Baseline+AZ(gs) 48.19** 16.73** 20.71**
Baseline+RAZ 48.12** 16.76** 20.52**
Baseline+RAZ+Discourse 48.31** 17.08** 20.75**

Table 6.7: Results for different summarization models. The first row shows the baseline
performance, while the following four rows show the performance of the combined models.
Double (**) and single (*) asterisks indicate that the respective model significantly
outperforms the baseline at p < 0.01 and p < 0.05, respectively. We use a two tailed
paired t-test.

summarization.

We also look at whether adding AZ information into summarization improves

performance. Teufel and Moens (2002) suggested that argumentative zoning can provide

indication for a summarization system of scientific articles to concentrate on the contri-

butions of the article and highlight the differences with previous work. However, to the

best of our knowledge, there is no supervised summarization system that utilizes AZ. We

include the gold standard AZ label as a feature for each sentence in the baseline system.

The results in Row 3 show that AZ information is very useful in our scientific document

summarization system: the performance is significantly improved (p < 0.01), with 7.39%,

5.94%, and 5.15% increases in ROUGE-1, ROUGE-2, and ROUGE-SU4, respectively.

We then replace the gold standard AZ labels with the predicted labels from the RAZ

system. As illustrated in Row 4, the improvement over the baseline is also statistically

significant with p < 0.01, but slightly lower than that with gold standard labels for

ROUGE-1 and ROUGE-SU4. Table 6.8 shows the distribution of AZ labels in the

abstracts and generated summaries. Before adding the AZ labels, the distribution in the

summaries generated by the baseline is not close to that in the abstracts: the majority label

is BKG which does not make sense as background is usually discussed in introduction
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AIM BAS BKG CTR OTH OWN TXT
% in abstract 27.14 2.00 8.57 8.00 6.86 47.43 0.00
% in summary (Baseline) 8.49 2.70 40.15 7.34 21.62 19.31 0.39
% in summary (Baseline+RAZ) 31.25 4.08 11.41 4.08 9.78 19.57 19.84

Table 6.8: Percentages of AZ labels in abstracts and generated summaries.

but not in abstract. As shown in the first row, the focus in abstract is usually OWN and

AIM. After adding predicted AZ labels onto the baseline system, the majority class is now

changed to AIM, OWN, and TXT, and the distribution is closer to that in the abstracts.

The reason for a high TXT percentage is that TXT sentences give a high level overview

and textual organization of the work in the paper, and thus is included in the summaries.

The following example shows a TXT sentence.

(6.5) In the following section we explain how the probabilities for these various

processing stages are combined to select the most likely target word sequence .

(CMP-LG 9408014)

When we add in both predicted AZ labels and discourse information, as shown in

the last row of Baseline+RAZ+Discourse, it outperforms both Baseline+Discourse and

Baseline+RAZ.

However, discourse information contributes little to Baseline+RAZ, as shown in

the last two rows. The improvement of Baseline+RAZ+Discourse over Baseline+RAZ

is not statistically significant. This shows that discourse is providing little information

beyond that already provided by RAZ.

Recall that we made use of two discourse feature classes in the Baseline+Discourse

model: one is the relation count (i.e., how many discourse relations that this sentence

is involved in), and the other is “PS + Explicit/Implicit + relation type + argument tag”.

To study how different kinds of discourse information contribute to the performance, we

conduct an ablation test, in which we eliminate particular information sources from the
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ROUGE-1 ROUGE-2 ROUGE-SU4
Baseline+Discourse 42.47 12.73 16.98
– Relation type 41.84 11.23 16.06
– Argument tag 42.09 12.38 16.79
– Explicit/Implicit 41.71 11.93 16.37
– Relation count 42.72 12.29 16.85

Table 6.9: Summarization performance when ablating away discourse information sources.

features: relation type, argument tag, Explicit/Implicit information, and relation count.

The results are shown in Table 6.9, in which the first row shows the Baseline+Discourse

model and the next four rows show the results when we eliminate one information source

at a time from Baseline+Discourse. When we eliminate Explicit/Implicit information, we

do not differentiate whether a relation is Explicit or Implicit. The results show that all four

discourse information sources are needed to achieve best performance. The performance

on all three ROUGE scores drops when we eliminate any information source. Relation

type seems to have the most impact, as when we remove it, performance suffers the most.

6.3.4 An Iterative Model

We have shown that argumentative zoning improves summarization of scientific articles.

Can we utilize the output from the scientific document summarizer to assist in zoning? If

this improves performance, we can view the two tasks as synergistic and perform a type

of iterative co-training, by alternatingly utilizing the output from one system as input to

the other task.

As RAZ uses binary features in the maximum entropy classifier and the sum-

marization system assigns a score to each sentence, we need to convert this score into

a binary feature. We include in RAZ a binary feature to check whether a sentence is

selected as a summary sentence by the summarization system. As the model is designed
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to examine whether RAZ improves summarization and whether summarization improves

RAZ, discourse features are not used in the model.

In the iterative model of the RAZ and the summarization systems, the output from

a system is sent into the other system. Both systems are then re-trained and re-tested with

the updated features. This process is repeated for several iterations. Figure 6.1 shows the

results for 10 iterations for the learning process.

Figure 6.1(a) shows a sawtooth performance with an overall trend that is increasing

over the 10 iterations. This suggests that when the summarization system is able to

provide more accurate input, the performance of RAZ will be improved at the end of

10 iterations. However, the same is not seen in the summarization task (Figure 6.1(b)):

here the improvement in the first iteration (which is the same as Row 4 of Table 6.7) is

very large, but there is negligible improvement in the remaining nine iterations. This is

due to the fact that the improvement of RAZ in Figure 6.1(a) is not significant enough to

improve the summarization system.

Figure 6.2 summarizes the results from the experiments that we conducted in this section.

It shows how the three NLP tasks – discourse parsing, argumentative zoning, and sum-

marization – affect one another in terms of performance. An arrow pointing from task

a to task b means that results from a can be used as features to improve b. It illustrates

that features extracted from a discourse parser improve both downstream NLP tasks

argumentative zoning and summarization, and output from argumentative zoning and

summarization can also improve each other in an iterative manner.
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Figure 6.1: Results for the iterative model of argumentative zoning and summarization.
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Discourse Parsing 

Argumentative 
Zoning Summarization iterative 

Figure 6.2: Application of discourse parsing in argumentative zoning and summarization.
An iterative model for argumentative zoning and summarization.

6.4 Conclusion

In this chapter, we leveraged the information extracted from discourse structures and

relations from our discourse parser, and demonstrated that incorporating discourse infor-

mation significantly improves the performance on two NLP tasks – argumentative zoning

and summarization of scholarly papers. This suggests that understanding the discourse

structure of a text is needed to improve downstream tasks. We also proposed an iterative

model for argumentative zoning and summarization, and demonstrated that both tasks can

improve each other in this model. This interestingly shows how these three NLP tasks

are interconnected with one another. Chapter 5 and this chapter together validate our hy-

pothesis that discourse parsing can provide information to model textual coherence

and improve user tasks in natural language processing. In our future work, we plan

to apply discourse parsing in multi-document summarization in news domain, and to

further show the applicability of discourse parsing in other NLP tasks, including question

answering and textual entailment.
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Chapter 7

Conclusion

In this thesis, we have designed and implemented a classification system to recognize

Implicit discourse relations, and have conducted experiments in the Penn Discourse

Treebank and showed significant improvement over the baseline. This classifier has been

integrated into an end-to-end discourse parser, which we designed and developed to parse

any free text into its discourse structure in the PDTB representation. The parser consists of

different components to identify discourse relations and arguments for Explicit and Non-

Explicit relation, and to recognize attribution spans. Then, to demonstrate its applicability,

we applied this parser in two directions on coherence modeling and downstream NLP

applications. We proposed a discourse role matrix to capture the discourse relation

transition patterns, and showed that such model can be used to distinguish a coherent

text from an incoherent one. Finally, we demonstrated that features extracted from the

discourse parser can be leveraged in text summarization and argumentative zoning.

In this chapter, we recap the contributions of our research work. We briefly discuss

the discourse parser that we made available to the research community. Finally, we will

conclude this thesis with a number of future directions.
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7.1 Main Contributions

This thesis makes four main contributions to the research in natural language processing.

They include:

1. Classifying Implicit discourse relations. (Chapter 3)

2. An end-to-end discourse parser. (Chapter 4)

3. Modeling and evaluating text coherence. (Chapter 5)

4. Applying discourse parsing in summarization and argumentative zoning. (Chap-

ter 6)

Classifying Implicit Discourse Relations. Implicit discourse relation classifica-

tion is a harder task compared to its counterpart for Explicit relations, due to the absence

of the discourse markers. In Chapter 3, we looked into this problem in the PDTB and

proposed a supervised approach to tackle the problem. We implemented a classifier for Im-

plicit discourse relations by leveraging four feature classes: (1) contextual features which

check the states of the preceding and following relations, (2) production rules extracted

from the constituent parses of the two arguments, (3) corresponding production rules

extracted from the dependency trees of the two arguments, and (4) highly correlated word

pairs extracted from the argument spans. We conducted feature selection based on mutual

information, and adopted the maximum entropy classifier. The experiments conducted

in the PDTB showed that the resultant classifier significantly outperforms the baseline

system. We performed data analysis in the PDTB and identified four challenges to this

task, which include: the ambiguity among the relation types, the need for using inference

and a knowledge base, the analysis of the contextual information in understanding the

arguments, and the access to world knowledge.

An End-to-End Discourse Parser. We designed a parsing algorithm and imple-

mented it into a fully automatic, data-driven, end-to-end, discourse parser that is able to
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derive the discourse structure in the PDTB representation for any free text. This parser

consists of three steps to identify and label Explicit relations, Non-Explicit relations, and

attributions spans. In order to identify Explicit relations, we implemented a connective

classifier to differentiate discourse connectives from non-discourse connectives. We

also implemented an argument labeler to locate and label the Arg1 and Arg2 spans for

Explicit relations. The Implicit classifier from Chapter 3 is adapted and re-trained to

classify Non-Explicit relations. We performed a comprehensive evaluation of the parser

from both component-wise and error-cascading perspectives. The parser gives an overall

system F1 score of 46.80% for partial matching with gold standard parses, and 38.18%

with full automation. We also released the parser online for the benefit of the research

community1. In Chapter 5 and 6 we showed that the parser improves downstream NLP

tasks of coherence modeling, summarization, and argumentative zoning. However, as

the overall performance is considered low, we believe that there are still much room for

improvement before the parser can be applied in real products.

Modeling and Evaluating Text Coherence. Discourse researchers have shown

that textual coherence and discourse structure are closely related to each other. However,

there has not been research to empirically validate how automatic discourse parsing

influences coherence modeling. Another contribution in our work is in applying discourse

parsing in modeling and evaluating text coherence. We motivated the work by showing

that coherent texts preferentially follow certain discourse relation patterns, which can

be captured by analyzing the output of a discourse parser. We demonstrated that simply

using the linear sequence of relation transition will lead to sparse features, and proposed a

solution to this problem: a discourse role matrix. We showed that probabilities for relation

transitions obtained from this matrix can be utilized in a preference ranking framework

(which we used SVM) to differentiate coherent texts from incoherent ones. We compared

the discourse-based coherence model with Barzilay and Lapata (2008)’s entity-based

1http://wing.comp.nus.edu.sg/˜linzihen/parser/
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model in the same task of differentiating a source (i.e., coherent) text from its permuted

(i.e., incoherent) text, and showed significant improvement. To the best of our knowledge,

this is the first study in which we showed that the output from an automatic discourse

parser helps in coherence modeling.

Summarization and Argumentative Zoning. To further prove the applicability

of a discourse parser in the downstream end-user NLP applications, we turned to text

summarization and argumentative zoning in the scientific domain. We demonstrated that

discourse features extracted from the discourse relations can significantly improve both

tasks. Such features include, for example, the number of relations that the current sentence

is involved in, and the current sentence is “the Arg2 span of an Implicit Comparison

relation”. We also proposed an iterative model for summarization and argumentative

zoning, and showed that they can improve each other. This work demonstrated that our

discourse parser is applicable in end-user tasks, and we believe that once the performance

of the parser is improved, we will see its applications in other NLP tasks.

7.2 Future Work

Improvements for the Discourse Parser

As we have discussed in Chapters 3 and 4, there are several places in the discourse

parser that we can improve upon. The first is in Implicit relation classification. We

discussed four challenges in this task: ambiguity among relations, inference, contextual

information, and world knowledge. In our current approach we do not look beyond the

relation under consideration except the previous and next relations. Thus we plan to first

explore contextual information in depth to look at how context can help better understand

the Implicit relations.

The next area of improvement is in the Explicit classifier. Although the perfor-

mance of the Explicit classifier is much better than that of the Implicit classifier, there
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is still much room for improvement. For example, we can extract informative features

from the two arguments for the Explicit classifier, as the current classifier does not lever-

age the argument spans in the (C, Arg1, Arg2) tuple. The attribution span labeler only

identifies and labels attribution spans, but does not indicate their direction, i.e., whether

an attribution is pointing to Arg1, Arg2, or the relation as a whole. The PDTB also pro-

vides annotations for the four dimensions for the attributions: their sources, types, scopal

polarities, and determinacy. Thus, future steps also include identifying the attribution

directions as well as the four dimensions. The current attribution span labeler is built upon

two assumptions: (a) attribution spans always appear in clauses, and (b) we only examine

clauses that are within the identify discourse relations from the previous steps. We would

also like to identify attributions spans that are outside the discourse relations (i.e., not

within the Arg1 and Arg2 spans) and are more than or less than a clause. The above

work would increase the end-to-end discourse parser’s coverage of the entire spectrum of

annotations done by the PDTB team.

The PDTB also examined work beyond formal discourse relations. In this work,

AltLex relations are combined into Non-Explicit relations and handled together with

Implicit, EntRel, and NoRel relations. Prasad et al. (2010b) showed that the set of AltLex

expressions is open-ended and it is difficult to handle them by using syntactic patterns.

We believe that although the set of AltLex relations is much smaller than that of Implicit,

they should be handled separately from Implicit relations. Thus we would also like to

look into this issue of open class of AltLex expressions and design a system to identify

AltLex relations. EntRel relation models how entity transitions from a sentence to its

following sentence. Both Expansion and EntRel are similar in the way that Expansion

captures how the discourse of the same entity is expanded. In fact, Pitler et al. (2009)

combined both into one class in their experiments. We are also interested in exploring

approaches that we can utilize EntRel in other NLP tasks.
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Coherence Model and its Application

Our discourse coherence model operates at the sentential level. However, as the PDTB

relations connect clauses, sentences, and even multiple sentences, our discourse coherence

model should also be extended to operate on clausal and multi-sentential levels as well.

That is, instead of having only sentences as rows as shown in Table 5.4, we can have, for

example, clauses as rows. The current model also does not capture the discourse hierarchy

structure, i.e., whether one relation is embedded within another relation. Another future

plan is to look at how hierarchical information can be integrated into the discourse role

matrix.

In the discourse role matrix that we proposed, each column of the matrix corre-

sponds to a lexical chain (Morris and Hirst, 1991) for a particular term across the whole

text. The key differences between the chains in the matrix and the traditional lexical

chains are that our chain nodes’ entities are simplified (they share the same stemmed form,

instead being connected by WordNet relations), but are further enriched by being typed

with discourse relations. One possible future work is to study how such a discourse model

can be combined with a lexical chain to improve topic segmentation.

The Automatically Evaluating Summaries of Peers (AESOP) task that is part of

the Text Analysis Conference (TAC) is a task to develop better summarization system

evaluation2. Its purpose is to encourage and promote research of automatic evaluation

metrics to evaluate the quality of machine generated summaries, in terms of their (1) con-

tent and (2) readability (i.e., linguistic quality). The first is to measure how informative

the machine generated summary is, while the second is to evaluate the linguistic qualities

of the summary, which also include measuring how coherent this summary is.

Therefore, another future direction is to apply the coherence model that we pro-

posed in Chapter 5 in a summarization evaluation system to measure readability. The

2http://www.nist.gov/tac/2011/Summarization/AESOP.2011.guidelines.
html
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current coherence model is applied in a pair-wise preference ranking approach (which we

used SVM), because the initial idea was to differentiate between a coherent and incoherent

texts. To adopt this model in a summarization evaluation metric to rank a set (instead of a

pair) of summaries, we thus need to figure out how to generalize the pair-wise ranking

model into list-wise. We can also frame the coherence model in a linear regression model

to give a real value of coherence for each text.
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Appendix A

An Example for Discourse Parser

A.1 Features for the Classifiers in Step 1

Here are features extracted from the Explicit relation in Example A.1 for the classifiers in

Step 1 of the parser. The constituent parse of Example A.1 is shown in Figure A.1.

(A.1) Orders for durable goods were up 0.2% to $127.03 billion after rising 3.9% the

month before.

(Temporal.Asynchronous - wsj 0036)

A.1.1 Features for the Connective Classifier

C POS = IN

prev + C = billion after

prev POS = CD

prev POS + C POS = CD IN

C + next = after rising
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Orders for

durable goods

were

up

0.2 % to

$ 127.03 billion

*U*

after
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.
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Figure A.1: The constituent parse tree for Example A.1.

next POS = VBG

C POS + next POS = IN VBG

path of C’s parent→ root = IN ↑ PP ↑ VP ↑ S

compressed path of C’s parent→ root = IN ↑ PP ↑ VP ↑ S

A.1.2 Features for the Argument Position Classifier

C string = after

C POS = IN

prev1 = billion

prev1 POS = CD
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prev1 + C = billion after

prev1 POS + C POS = CD IN

prev2 = 127.03

prev2 POS = CD

prev2 + C = 127.03 after

prev2 POS + C POS = CD IN

A.1.3 Features for the Argument Node Identifier

In the parser tree (Figure A.1) for Example A.1, we need to identify the Arg1 and Arg2

nodes from the 18 internal nodes (except POS nodes). Here we list out the features used

to label the S node that covers the Arg2 span.

C string = after

C’s syntactic category = subordinating

numbers of left siblings of C = 0

numbers of right siblings of C = 1

the path P of C’s parent→ N = IN ↑ PP ↓ S

the relative position of N to C = right

A.1.4 Features for the Explicit Classifier

C string = after

C’s POS = IN

C + prev = billion after
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A.2 Features for the Attribution Span Labeler in Step 3

The following shows features extracted from Example A.2 for the attribution span labeler.

The curr clause under consideration and its previous and next clauses are:

curr clause = declared San . . . game two.

prev clause = . . . averages,”

next clause = “I’d . . .

(A.2) ... averages,” declared San Francisco batting coach Dusty Baker after game two.

“I’d ...

lowercased verb in curr = declared

lemmatized verb in curr = declare

the first term of curr = declared

the last term of curr = .

the last term of prev = ”

the first term of next = “

the last term of prev + the first term of curr = ” declared

the last term of curr + the first term of next = . “

the position of curr in the sentence = middle

VP→ VBD S

VBD→ declared

NP→ NNP NNP NN NN NNP NNP

NNP→ San
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NNP→ Francisco

NN→ batting

NN→ coach

NNP→ Dusty

NNP→ Baker

PP→ IN NP

IN→ after

NP→ NN CD

NN→ game

CD→ two


