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Summary

Condition monitoring and fault diagnosis of indectimotor are of great interest
for the purpose of improving overall industrial ®m reliability. Since a few years
ago, our project group has been developing vambgsrithms for fault detection and
diagnosis of induction motors. A database contagirtime-domain measurements of
stator currents on three 1-kW laboratory motors (oormal, one with broken bar and
one with fault bearing) was created by our groujpfgethe candidate’s project.

This research is focused upon the investigatiorthef two specific types of
induction motor faults: broken rotor bar fault aoelaring fault, which are measured
on two laboratory motors. They are also the mosguently occurring faults in
industries. The goal of this research is to deveppropriate algorithms for the
perspective of on-line detection and diagnosihes$é laboratory motor faults.

In the framework of the present thesis, faults ogeg on these motors have been
studied in details both theoretically and numehcallthough fault-related features
can be observed directly on the frequency spectdemved from time-domain
measurements of stator currents, a good featuraatixin strategy and quantification
method will reduce the human effort and surely iower the reliability and
convenience of online fault detection. Hence, thedidate proposes two techniques
namely Adaptive Centered Wavelet Technique (ACWAQ Adaptive Wavelet Packet
Technique (AWPT) to achieve an adaptive featureaekibn for stator currents of
motors under different inverter frequencies. Theatality of ACWT for reliable
detection of broken rotor bar fault under varionserter frequencies is proven
numerically robust but is less-convincing in begrifault detection. In order to
improve on the shortcoming of ACWT, AWPT is propobsi® narrow down the
window size of extraction while maintaining the ptibility for different inverter
frequencies. In addition, several statistic indiaes studied to quantify the extracted
features. It is proposed to employ Shannon entsopyeat predictability of
fault-related features and its consistent perfoceamhich will make the method a
generally accepted index in the present thesisditierent inverter frequencies.
Finally, the goal of the reliable motor fault ddten under various inverter
frequencies based on prior knowledge of a few nbraperating conditions is
achieved by employing both AWPT with Shannon entrimlex. A two-dimensional
fault detection graph is developed in the end soi@iize the results.

vi
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Chapter 1

I ntroduction

1.1 Motivation and Objectives

During the last twenty years, condition monitoriagd fault diagnosis of
induction motor have become a great interest ferghrpose of improving overall
industrial system reliability [1]. Undetected mashibreak-down could be avoided to
the greatest possible extent since most of the éawlts could be detected on-line.
Moreover, the more reliable information of machooaditions helps to make a better
decision on the issue of maintenance. Excessiygeai®n and maintenance could be
avoided. As a result, the annual cost of machinenteraance could be cut down
which brings economic benefits to industries.

Since last year our project group has been devedoyparious algorithms for the
fault detection and diagnosis of induction mot@s.Wang, a leading researcher in
our group, set up the experimental equipment afldated stator currents from three
1-kW laboratory motors (one normal, one with brolkesr and one with faulty
bearing). A database containing these measuremastsreated.

This research is focused upon the investigatiotwof specific types of motor
faults namely the broken rotor bar fault and beafault, which are the most frequently

occurring faults in industries. The goal of thisearch is to propose appropriate



methods and develop algorithms for the perspedivan-line detection and diagnosis

of these two types of laboratory motor faults.

1.2 Earlier Work and Contribution of thisThes's

During the past decade, many methods have beerogedein the research area
of condition monitoring and fault diagnosis of imtion motor [2]-[4]. Various
techniques utilized differ from each other in terohshe following four aspects:

1) Choice of measurement signal: The motor conditfiukl be measurable from
the motor’s vibration signal, stator current sigraoustic signal, etc. [5]-[9]

2) Choice of motor operating state: There is a chdiebwveen motor operating
states, either steady state or transient stateingluthe conduction of
measurement.[10]-[12]

3) Choice of feature to be extracted: There existva rigethods which extract the
features from signals. They reflect the time domeharacteristics or/and the
frequency domain characteristics of measured ssdial-[14],[16],[18]

4) Classification Criterion: Based on feature progsitivarious methods, such as
Mahalanobis distance, SVM and neural network, aeselbped to classify
features into different groups representing difiémaotor conditions. [16][21]

This thesis will target at online condition monitg and diagnosis of motor fault
by developing a feasible and reliable techniquadligressing the following issues for

real-case applications:



1) whether the technique is generally applicable tbomsounder various operating
conditions, including different inverter frequengagifferent load condition and
different installation;

2) whether the faulty condition in local environmeptds to be known a prior by the
diagnosis system for the subsequent stage of motwlition identification;

3) whether there exist some tolerance of this tecteniqudeal with certain degree of
errors in measurement; and

4) whether the fault thresholds can be easily built;

Thus, by taking into the above considerations, sketor current of motor is
chosen as the measurement signal for the followivg reasons. Firstly, the main
advantage of stator current signal is that theent@sel to the input is less subjective
to the environmental conditions as compared toatibn signal and acoustic signal
[1]. Hence, the accuracy of fault detection is ledfected by noisy external
environment which may vary in time in industriesec8ndly, the measurement of
stator current is easy to be implemented for amerdystem. The feasibility study of
detecting motor fault via stator current is preedrh details in [5]-[6].

In terms of feature extraction, the wavelet tramsf@WT) is used in this thesis as
a preprocessor to extract the signal feature intitne-frequency domain. Fault
detection based on motor current relies on intéagion of the frequency components
that are related to rotor or bearing asymmetrigs Thus, many studies use Fourier

transform as a preprocessor to directly reprederdet components in the frequency



domain [7], [12]-[14]. However, stator currents reg@ed from industrial motors are
best modeled as a non-stationary signal or piese-siationary signal because of its
dependency on electric supply, static and dynawea Iconditions, noise and fault
conditions which are subject to time variation [Hourier transform (FT) is not
appropriate to be used to analyze a signal tha@ahaansitory characteristic such as
drifts, abrupt changes, and frequency trends [1iS].weakness and the practical
disadvantage of frequency method in analyzing riatiemary or transient signals are
discussed in [16]. Hence, compared with the frequetomain analysis by FFT, the
time-frequency analysis is more appropriate formanimotor condition monitoring and
fault detection system. Among the time-frequencyalgsis techniques, wavelet
transform (WT) becomes more and more popular fobdtter time and frequency
resolution property as compared with short Foutiansform (SFT) [2]. Wavelet
transform is further divided into three types: Gonbus Wavelet Transform (CWT),
Discrete Wavelet Transform (DWT) and Wavelet Paékatomposition (WPD). Each
of them has its pros and cons in signal proceg4&inig The proposed techniques in this
thesis make use of CWT and WPD.

So far, many methods based on wavelet transforrpasprocessor for motor fault
detection have been explored, such as [18]-[22fks€&htechniques all reveal the
capability of multiple resolution representatiordahe applicability to non-stationary
signals of wavelet transform. However, a genergtlylicable method still remains as a

challenge for fault detection under various opagatconditions because of the



dependency of motor fault feature on the operatomglition. Most of the papers limit
their scopes to specific motor fault detection unolee constant operating condition
such as a constant inverter frequency. Some otleerp intend to achieve a more
general application by building a neural network rexognize various operating
conditions [21]-[22]. The main disadvantage of gsimeural network is the strong
dependency of detection accuracy on the training diathe case of not trained normal
operating condition in subsequent testing stage, fithse warning may occur. In
addition, like other blind separation methods, akuretwork also gives a blind
separation of different conditions. Thus, only whka specific motor fault in local
condition is encountered in training stage and @sea benchmark in testing stage, the
test motor condition revealed by subsequent sigaal be identified by its feature
location to the benchmarks of the predefined caoonbt In online application, where
various factors affect stator current, it is nosgible to simulate all normal operating
conditions as well as all faulty conditions. Thtig fault type is usually unable to be
addressed by neural network and a false warnitigaly to occur. Hence, a reliable
detection technique is needed for the online cardimonitoring and fault detection of
motor with limited prior knowledge of normal opergf conditions and applicable to
motor under various operating modes.

Therefore, new techniques have been proposed irprigent thesis for more
reliable motor condition monitoring and fault deéten. These techniques take into

consideration of motors running under various iterefrequencies. They only require



prior knowledge of local normal operating condigdn achieve specific fault detection.
The first method is named Adaptive Centered Waviedehnique (ACWT) which uses
CWT to detect motor faults. Based on the numenieallt, this method shows its
capability in detecting broken rotor bar fault. Hoxer, it also reveals the weakness in
detecting bearing fault. In order to improve on shertcoming of ACWT, Adaptive
Wavelet Packet Technique (AWPT) is proposed toavamlown the window size of
feature extraction while maintaining the adaptapiior different inverter frequencies.
In addition, several statistic indices are stud@duantify the extracted features and
build the threshold for motor condition classificat Shannon entropy’s predictability
of fault-related features and its consistent penorce in the case of different inverter
frequencies make it a generally accepted indelxarptesent thesis. Finally, the goal of
reliable motor fault detection under various ineerfrequencies based on prior
knowledge of local normal operating conditionsdkiaved by combining AWPT with

Shannon entropy index.

1.3 Background Information

In Power System laboratory, there are three maibtee same design (3 phase, 4
pole, 1.1kw). The structure of the laboratory magashown in Figure 1.0n these three
motors we are able to create two different motaitéaand keep one unchanged as a
reference of motor’s healthy condition in the logavironment. Hence, three motors of

different conditions: one normal, one with broketor bar and one with faulty bearing
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are prepared for experiment.

Non-Drive End

Drive End

Figure 1 Motor structure

The broken rotor bar fault is one of the most comralectrical faults of industrial
motors and certainly worth looking at. Hence, itaalized on a laboratory motor by
drilling a hole on one rotor bar.

Bearing faults are the primary cause of three @hasuction motor failure. In the
scope of this study, only localized bearing fagltconcerned. It is realized by a

man-made dent on one side shield of the bearing.



Power Supply
from Inverter

L ]

Computer

Induction Motor

Load Digital Oscilloscope

Figure 2 Experiment setup

After the preparation of the laboratory motors,ékperiment is set up as shown in
Figure 2. The induction motor is connected with@ @&nerator which acts as a load in
this system. The load is set to be 41% loading ftbenrating motor throughout the
experiment. The formula is provided in Appendix e intension of using a light
load here is to increase the difficulty of faultelgtion because generally the effect of
motor fault on the system becomes more pronoundeshuthe load is heavier. A three
phase inverter, which powers up the motor, is cotatkto the motor stator. Based on
the experimental setting, the output inverter fegtpy is adjustable at six different
levels which are 20, 25, 31.5, 37.5, 43.5 and 50 H{nce there are six different
operating conditions available for each motor.

During the experiment, the stator current data adected under steady state
operation of a motor. The signal is sampled bysailoscope at a frequency of 50 kHz

and sent to computer. Each measurement lasts 2@ed4ds every set of collected stator



current data consists of 1002000 sampling poinise Bets of measurement of one
phase stator current are carried out for each tipgreondition. Meanwhile, the rotor
speed is recorded for each operating condition.details of the experiment are shown

in Appendix A.

1.4 ThesisOrganization

The rest of the present thesis is organized asvisll In Chapter 2, the nature of
broken rotor bar fault and bearing fault, and thairrent signature analysis are
studied. After the introduction of general concegtthese two faults, the two cases of
faults: broken rotor bar fault and bearing faultl@poratory motors are examined and
some predictions on the specific fault relatedue=d in stator current are made based
on the theoretical study. Chapter 3 presents therfiethod ACWT with its application
on broken rotor bar detection. Three indices, SAdzx, R index and Shannon entropy
index, are used to quantify the information. The"lkCcapability of reliable detection
of broken rotor bar fault under various operatingditions is demonstrated. On top of
the success of ACWT on broken rotor bar fault desac ACWT is further extended
for bearing fault detection in Chapter 4. Unlike firevious success, ACWT reveals its
weakness in bearing fault detection. Two reasomsddressed for this result. The fault
feature of bearing fault generated in our labosatootor only shows the appearance of
some characteristic frequencies instead of allradigted in the theoretical study in

Chapter 2. In addition, the window size of featexé&action in AWCT for bearing fault

9



detection is too large to focus only on the detaadifault-related feature and exclude
other disturbances. Thus, although the Shannoomnagrees with the prediction and
STD agrees with other researchers’ experimentailtssghe application of AWCT is
less convincing on bearing fault detection. In ordemake an improvement, another
method named AWPT is proposed in Chapter 5 to nadmwvn the window size while
maintaining the adaptability in various invertegduencies. In this chapter, the goal of
fault detection under various operating modes basegrior knowledge of local
normal operating conditions is achieved. Chaptecofcludes the present work
completed and proposes further work by extendiegatiplication of AWPT for more

types of motor faults and local conditions.

10



Chapter 2

Motor Faultsand Current Signature Analysis

Motor Current Signature Analysis (MCSA) represeatgroup of methods for
motor fault detection based on analyzing the efféanotor fault on stator current
[6]. Motor fault adds extra frequency componentstator current under operation.
The specific locations of these frequencies arerdehed by operating mode, fault
mode and physical construction of motor. Thus,dta&or current can be used as an
information source to estimate the motor condititm.this chapter, the general
concepts of broken rotor bar fault and bearingtfavt discussed. Their effects on
stator current are illustrated. Based on the erpamial setup, predictions of

fault-related information in the local environmemé made for these two cases.

2.1 Broken Rotor Bar Fault

2.1.1 General Concepts

Rotor faults (such as broken or cracked rotor bacsend rings), which all bring
about a rotor asymmetry, give rise to fault specipatterns in electrical
electromagnetic and mechanical quantities. Brokéor tbar as an electrical fault can

be represented as an asymmetry circuit as below:

11



Figure 3 Electrically equivalent circuit of brokestor bar

I rotor loop currents

le circulating end ring current

Ly, rotor bar leakage inductance

Le rotor end ring leakage inductance

f, rotor bar resistance

re end ring segment resistance

As can be seen iRigure 3, broken rotor bar results in the changelettrical
circuit. It can be detected by monitoring the matarrent frequency components
produced by the magnetic field anomaly induced hey liroken rotor bars [1]-[3].

These specific frequencies of interest@gireen in equation (1) by Klimaet al.[6]

12



for = fox [ () 5] )

p
where
for broken rotor bar characteristic frequencies
fs inverter frequency;
S per-unit slip;
p number of poles pairs;
k =1,23,...;

Due to the normal winding configuration, we havep k¥ 1,3,5... for the
detectablef;,, [6].

Two prominent characteristic frequencies (sideb&redquencies) in the stator
current are identified from a broken rotor bar bymén et al[6] and Filippettiet
al.[23]. They are located on the two sides of the iterefrequencys. The amplitude
of left sideband frequency componefaf1 — 2s) is a special case of, when k/p
=1 (1). It is proportional to the number of brokemor barg1]. The more rotor bars
are broken the more significant the characterigquency is. The right sideband
componentf;(1 + 2s) is due to consequent speed oscillation and cdstdlze used
in monitoring fault severity. Its importance is @ty demonstrated in [23]Some
experimental studies suggest that when the amplitofl these characteristic
frequencies is within 50dB smaller than the fundarak frequency component
amplitude, the rotor should be considered unheal#td]. Thus, extracting the

information on these two main components is usuallfficient to differentiate
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broken rotor bar motor from other torsconditions such as the healthy motor i
the motor with faulty bearir.

In this studythe analysis is limited for the motors of the samodel and with
light load. Thusthe slip value is estimated in training stage usieglthy motc and

assumedo remain fairly constarin subsequent testing stafpe all three motor:

2.1.2 Laboratory Model

‘ Hole drilled into
AL one bar

Figure 4 Broken rotor bar fault
In our experiment,he broken rotor fault is made by drilling a hol&ione rotol
bar as shown in Figure Based on the experimental measuremsift,s is measure
to be 0.026 in local condition. Henche two prominentharacteristic frequenci of

broken rotor bar faulf; (1 £+ 2s) at different inverter frequencies are show Table
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f 20 25 31.5 37.5 43.5 50
s(H2)
for(H2)
£.(1=2s) 1896 | 23.70 | 29.86 | 3555| 4124 47.4d
fs(1 + 2s) 21.04 26.30 33.14 39.45 45.76 52.60

Table 1 Broken rotor bar characteristic frequencies

2.2 Bearing Fault

2.2.1 General Concepts

Bearing faults are the most frequent faults in otetun motors (41%) according
to an IEEE motor reliability study for large motdi25]. Bearing faults can be
categorized into distributed and localized faulis Distributed faults, such as general
roughness, influence the whole region and cannotcl@racterized by distinct
frequencies. In contrast, single point defects lacalized and have corresponding
characteristic frequencies. They can be furthessdi@d according to the following
affected element:

o Outer raceway defect
« Inner raceway defect
o Ball defect

A single point defect could be imagined as a mggrece of material on the
corresponding element, such as a small hole, aopig local deformation of the
element, such as a dent.

In fact, f, represents the periodicity by which an anomaly appalue to the
15



existence of defect. For example a hole on thergateway, as the rolling elements
move over the defect, they are regularly in contattt the hole and produce an effect
on the machine at a given frequengy.is a function of the bearing geometry and the
mechanical rotor frequency., whose detailed calculation is found in [5]. for

different localized bearing fault is given in (2)(4iR! RIKBI5| HIFE. gives a

graphical illustration of general bearing structure

N, D,
Outer raceway: fo = 7fr (1 — D—cos ﬁ) (2)
C
Np Dy,
Inner raceway: fin = 7]& <1 + D—cos ﬁ) (3)
C
Ball D, D; (4)
foau = D—bfr (1 - D_%COSZ,B
where

N, number of balls
D, ball diameter
D. pitch or cage diameter

B contact angle

/,v vuter FACEWa

p
i
10
ball : \

Figure 5 Bearing structure
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These characteristic frequencifggan be further approximated for most bearings

with 6 to 12 balls by (5) and (6)

fo = 0.4Npf; (5)
fin = 0.6Nyf; (6)

The effect of bearing defect on the induction mstastator current was firstly
proposed by Schoen [5], who considered the geoerati rotating eccentricities at
frequencyf,. Mechanical vibrations caused by the bearing defesult in air gap
eccentricity and oscillations in the air gap lengthe latter in turn cause variations in
flux density. Variations in flux density affect nfage inductances, which produce
sideband components of the fundamental frequenstatdr current. Hence, two series
of additional frequencieg;, are introduced in stator current

fo = Ifs £ kfyl (7)
where

k =1,2,3,...;

This model is widely applied in later work. HoweMgonly includes the physical
effect of radial movement of the rotor center causg bearing defect. A recent work
[26] takes into the consideration of the secondsptay effect of bearing defect, which
is the load torque variation caused by bearingt faben the defect comes into contact
with another bearing element. For example, each #rbearing ball passes by a hole of
outer race, a mechanical resistance will appeaniiltieball tries to leave the hole. The

consequence is a small increase of the load taajeach contact between the defect
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and another bearing element. Load torque variatipnscipally lead to phase
modulations atf,, of the stator current fundamental frequefacyhe phase modulation
produces a characteristic signature which is giwethe sideband components around
fundamentals dif; + kf,|. The result of the load variation approach coiesiavith

Schoen’s conclusion which is based on rotor ecu#ytf5].

2.2.2 Laboratory Model

The shield type ball bearings (NTN 6205z) are usegkperiment. The artificially
damaged bearing is shown in Figure 6 and its streas depicted in Figure 7. The
metal shield plate is affixed to outside ring; inm@g incorporates a V-groove and
labyrinth clearance. It has nine balls. In thidgtuve focus on one type of the single
point fault. To realize such a bearing defect, it temade on one side shield as shown
in Figure 6. The dent introduces a resistance vahagaring ball passes by. It causes the
variation of load torque in rotation. The shieldixed with the outer race. Hence, the
frequency of physical contact between the bearamgsthe defect is as the same as the

case of defect on outer ragg = f,
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Figure 6 Faulty bearing with manmade dent on shield

"l.|~|

Figure 7 Shield bearing structure

Based on the previous study of bearing fault, tharacteristic frequencids in
stator current are predicted by the formula (5)hvilie estimated slip 0.026. The
detailed values of its two series of harmonfgscalculated by the formula (7) are
shown in Table 2 and Table 3. The existence otively significant components at

these harmonics is an evidence for the outer ragcéwaring fault.
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fs fo fb(Hz)

() | ¢+ | k=1| k=2 | k=3 | k=4| k=5| k=6| k=7| k=8 k=9 k=10 | k=11
20 | 35.1| 15.1] 50.1 85.2 120.355.3|190.4|225.4| 260.5| 295.6| 330.6| 365.7
25 | 43.8| 18.8 62.7 106/5150.3| 194.2| 238.0| 281.8| 325.6| 369.5| 413.3| 457.1
31.5| 55.2| 23.7 79.0 134/2189.4| 244.6| 299.9| 355.1| 410.3| 465.5| 520.8| 576.0
37.5| 65.8| 28.2 94.0 159/7225.5|291.2| 357.0| 422.7| 488.5| 554.2| 620.0| 685.7
43.5| 76.3| 32.8 109.0185.3| 261.6| 337.8| 414.1| 490.3| 566.6| 642.9| 719.1| 795.4
50 | 87.7| 37.7 125.83213.0| 300.6| 388.3| 476.0| 563.6| 651.3| 738.9| 826.6| 914.3

Table 20uter raceway bearing fault characteristic freqiesnf, — kf, |

fs fo fb(Hz)

(H2) H | k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 | k=9 |k=10| k=11
20 | 35.1| 55.1| 90.1 | 125.2] 160.3| 195.3| 230.4| 265.4| 300.5| 335.6| 370.6| 405.7
25 | 43.8| 68.8| 112.7| 156.5| 200.3| 244.2| 288.0| 331.8| 375.6| 419.5| 463.3| 507.1
31.5| 55.2| 86.7| 142.0| 197.2| 252.4| 307.6| 362.9| 418.1| 473.3| 528.5| 583.8| 639.0
37.5| 65.8| 103.2| 169.0| 234.7| 300.5| 366.2| 432.0| 497.7| 563.5| 629.2| 695.0| 760.7
43.5| 76.3| 119.8| 196.0| 272.3| 348.6| 424.8| 501.1| 577.3| 653.6| 729.9| 806.1| 882.4
50 | 87.7| 137.7| 225.3| 313.0| 400.6| 488.3| 576.0| 663.6| 751.3| 838.9| 926.6| 1014.3

Table 30uter raceway bearing fault characteristic freqies|fs + kf,|
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Chapter 3
Adaptive Centered Wavelet Technique for Broken Rotor Bar

Detection

Adaptive Centered Wavelet Technique (ACWT) is psmubin this chapter to
detect broken rotor bar fault. The methodologyegadoped in Section 4.1 followed by
the result and discussion in Section 4.2. The nugtlgy begins with the explanation
of principal idea and the main procedures. Thecbhagivelet transform concept is
briefly introduced and the proposed adaptive waveésign for our experiment is
illustrated. The main steps, such as inverter faqy estimation, feature extraction
and feature evaluation, are explained separatel{ection 4.2, the performance of
adaptive wavelet is firstly verified by experimdnesult and the feasibility of inverter
frequency estimation is proven. The evaluationxifaeted feature is conducted by the
direct observation in time domain, the histogrameartation and the quantification by
statistic indices. It should be noted that all alilpms used in this thesis are carried out
in time domain although many frequency spectrurplysaare used here to help readers
understand the operations. At the end of Secti@nalcomparison is made between
ACWT and Short-Fourier Transform based algorith®@] ih order to justify the better

performance of ACWT in the feature extraction stage
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3.1 Methodology

The key idea in the proposed method is to caphedime variation of a specific
narrow frequency band where fault-related frequetmyponents may reside and to
analyze it statistically in order to distinguislke tmotor with broken rotor bar fault from
the healthy motor and the faulty bearing motor undeious inverter frequencies.
Since the stator current of motor is affected by tonnected power system, load
condition and motor geometry, a supervised approacteveloped to recognize the
local normal operating conditions of motor priarigctual fault detection.

The proposed approach consists of three stageasinga testing and fault

identification as illustrated in Figure 8.

Trainina Dat:

»| Training

Testina Dat Baselir

Testing

Lo

Fault Identification

Figure 8 Block diagram of ACWT

During the training stage, shown in Figure 9, thketas current from healthy
motor under various operating conditions is measarel processed to form a baseline
for detecting broken rotor fault occurring in sulpsent stages of motor operation.

Since, the fault-related feature, which is outline&ection 3.1, depends on the inverter
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frequency, it is necessary to measure or estinfaeiriverter frequency. In online
application, the motor is subject to various opagatonditions. Hence, the estimation
or measurement of inverter frequency is conducezibgically to ensure the correct
association of measured signal with a specific ajpgy condition. This coulg@revent
false alarm at the switching of operating mode whaismatch may occur. ACWT
includes the step of estimation of inverter frequedirectly from stator current in
order not to enroll excessive measurement fadoitghe perspective of convenience in
online application. Once the inverter frequencgh$ained, a specific wavelet function
is selected to extract the potential broken rotar fault-related feature in this local
condition. Later, several indices are proposediamtjfy the resulting feature and build
a baseline for broken rotor bar fault detectione Tiaining is repeated a number of

times and the baseline is built based on severaorements.

Stator Currer
Inverter frequency

e . .
Estimation

A4

Feature Extraction

Statistical Analysis

I

Baseline Building

Figure 9 Training Stage of ACWT
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During the test stage, shown in Figure 10, the aigninverter frequency is
measured or estimated to determine the operatirdgrobtesting motor. The feature
relevant to the broken rotor bar fault in the looahdition is extracted and quantified.
Next, the distance between the test feature andbdkeline is computed. If the test
feature is beyond the threshold of baseline atesponding operating condition, it is
tagged as a potential fault signal. Hence, theesponding testing motor with this

feature is diagnosed as a broken rotor bar motor.

Stator Currer
Inverter frequency

Estimation

\4

Feature Extraction

Statistical Analysis

l

Figure 10 Testing stage of ACWT

3.1.1 Wavedet Transform

Wavelet transform is one of the tools used in tineguency analysis. In this thesis,
it is used to extract the time variation of a spedifrequency band where broken rotor
bar fault-related feature may reside. One of iteerent advantages is the good time
resolution for the high-frequency transients anddyérequency resolution for the

low-frequency components. Morlet (1982a,b) firdstoduced the idea of wavelets as a
24



family of functions constructed from translationdadilation of a single function

called the mother wavelét ¥ (t). They are defined by

1 t—>b (8)
lpa,b(t): T — < )) arbER;aior
lal a

wherea is called ascaling parametewhich measures the degree of compression
or scale, and a translation parametemwhich determines the time location of the
wavelet. If |[a] <1, the wavelet is the compressed version (small@p@t in
time-domain) of the mother wavelet and correspamdinly to higher frequencies.
On the other hand, whea| > 1,1, ,(t) has a larger time-width thas(t) and
corresponds to lower frequencies. Thus, wavelete hiane-widths adapted to their
frequencies. This is the main reason for the sgcoéshe Morlet wavelets in signal
processing and time-frequency signal analysis.ay tme noted that the resolution of
wavelets at different scales varies in the time fiaquency domains as governed by
the Heisenberg uncertainty principle. At large sc#te solution is coarse in the time
domain and fine in the frequency domain. As thdesaalecreases, the resolution in

the time domain becomes finer while that in frequyetiomain becomes coarser [17].

3.1.2 Adaptive Wavelet Design

A wavelet is a waveform of effectively limited dticmn that has an average value
of zero. It is a wave-like oscillation with amplitel that starts out at zero, increases,
and then decreases back to zero. The Morlet waiglehosen to be used for the

convenience of center placement. It is a modul&adssian, shown in Figure 11.
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Figure 11 Morlet wavelet

It is defined as below:

w(t, f;) = exp (— ;—;2) cos(2mf;t) (9)
where
fi is the center frequency of wavelet
bi is the standard deviation.
Its Fourier transform is shown below
W(f, fi) = bN2mexp(=2bfm*(f — f)?) (10)
0.12
01 |
0.08 |
0.06 .
0.04f |
0.02 |
"0 10 20 30 4 0 6

Figure 12 Fourier transform of Morlet wavelet
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Given a wavelet, the following admissibility shoudd satisfied:

f' D 4 < o (1)
I

where W(f) is the FT ofw(t).

Becausew(t) decays with time, the admissibility (8) is eques to the
requirementfj;o w(t) dt = 0. Strictly speaking, the Morlet wavelet does ndis$a
this zero-mean requirement. However, the mean emorbe infinitely small if the
termf; is sufficiently large. Ad increases, the duration of the wavelet expands, an
the time resolution will decrease correspondinglg a result, the relationship
between the standard deviation bi and the scalateicdrequencyf; is kept as a

constant in this thesis, e.@nb;f; = 5.

3.1.3 Inverter Frequency Estimation

A motor has finite operating modes. In other wottsre are a limited number of
inverter frequencieg, feeding the motor based on the commands. In coererent
the measurement of stator current is conductechatnmotors running at inverter
frequencyf;determined by operation. In the steady state, th®rscurrent at the
inverter frequencyf; takes the majority of signal energy. A Morlet wigtevith center
frequency placed af; will surely extract most energy from the signalcasnpared
with the wavelets placed elsewhere at the same Titmgs, by placing a set of wavelets
over those possiblg and looking for the one where resides largestggnide inverter

frequency of stator current can be estimated. Tdtemated inverter frequency is
27



denoted ag;".

In this thesis, the wavelet centers are set t®2be2b 31.5 37.5 43.5 50] which
covers all possible operating modes of motors mallenvironment. The Fourier
transforms of these wavelets are shown in Figureltl® verified that the center
frequency of each wavelet has the highest passmglitade. In other words, a
frequency component will be maximally extracted @ywavelet with the center
frequency at its position. As can be seen in tgaré, the blue dotted arrow and red
solid arrow denote the passing amplitudes of 20Hmseidal signal in wavelets
centered 20 and 25 respectively. The energy ofeiditeire extracted from this signal is
higher by using wavelet centered at 20Hz insteath®fone centered at 25Hz. The
wavelets further away from 20Hz have decreasingsipgsamplitude for 20Hz
frequency component. Hence, by finding which walveldracts the highest energy
from stator current, the inverter frequency of theasured stator current can be

determined.
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Figure 13 Fourier transforms of wavelets

Since the experiment is conducted on the motorsingnat the steady state, a

small portion of one measurement data is enougdetiect the inverter frequency of the

measured stator current. In online detection, whetor is subjected to the switching

of operating mode at unpredictable time instarits, ihverter frequency should be

frequently estimated in order to categorize meabul&a into a right group of a

specific operating mode with reference to the apoading benchmark. In addition,
the energy value extracted by each wavelet carobegared with historical data of

corresponding operating mode to differentiate teady state data for ACWT from the

transient state data.

In ACWT, the number of observation points of meadwsignal, which is used for

inverter frequency detection, is calculated byftrenula in (12):

29



N = foampie/fs1 (12)
Where
fsample S@Mpling rate,
fs1 lowest possible inverter frequency
A new signal is formed by using the first N sampdents of the measured signal
in order to reduce computational load while coveleast one period of the lowest
possible inverter frequency to avoid the bias mithverter frequency detection stage.
In our measurement, each measured signal has 100200pling points and its
lowest possible inverter frequency is 20Hz in tieepe of this thesis. Hence, N is
calculated to be 2500.
The wavelet coefficients extracted from the sigr(@) by the morlet wavelet
w(t, f;) with a center frequencyi are given by the equation (13).
Wi f) = | jx'(r>w<—(t 0, f)dr (13)
Where
X(t) signal to be extracted
w(t,f) morlet wavelet at centef;
In the inverter frequency detection stage, x(this new formed signal which is
the first 2500 sampling point of the measured digna
After obtained the wavelet coefficients of the nsignal, its average energy is

calculated as follow:
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L
1
energy(£) = 1 D IWTy(ti I 4
k=1

Where
L length of signal WTx
tx  kth sample point
fi  center frequency of wavelet

At last, the estimated inverter frequen£y is determined by following equation

f&' = max ({filenergy(f)}) (15)

3.14 FeatureExtraction

The wavelet with its center frequengy at estimated inverter frequengy is
further used to extract the feature from the oagistator signal. The feature is the
wavelet coefficients obtained in the formula (13) bsing original stator current
signal as x(t). Aim to achieve a more precise aislgf the characteristics of feature,
the use of full length original signal, which ha802000 sampling points, helps to
avoid the statistical bias in the extraction.

Figure 14 gives an example of wavelets center@® and 50Hz. As can be seen,
the window width and amplitude are automaticallg@ed to the center frequency. The
frequency component located at the center is masthserved after extraction. The
further the components are away from this centter,niore they are discriminated in
extraction. The window amplitude decreases to gemato for a frequency situated
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beyond two times the center frequency. Thus, whenapplied to stator current, only
information near inverter frequency is retaineaéxtraction and other components
including the harmonics of inverter frequency axeleded. The arrows in Figure 14
denote the magnitude of wavelet at center frequ&ny sideband frequencig$l-2s)
andf; (1+2s) The adaptation of window width automatically taketo account of the
increasing distance of characteristic frequenadiesifcenter frequencly. It allows a
relatively constant ratio of extractionfaaindf; (1+2s)whenf; varies. Thus, it results in

a relatively unbiased extraction along differgrity remaining the proportionality of

extraction.
Morlet Window
0.08, il
0.07
fi(1-2s) ||| f (1+2s)
0.06 - g
| € 25Hz

0.05 \ .
(]
E f
Z 0.04ecccooooodo ) O R
% A
S qemeeemeeed-- O bt - R EGECETETEEEEEEEREPERE PR

0.03 fi (1-2s) f, (1+25) i

0.02 .

< 50Hz
0.01 - / \ _
/ / \\ \
0 / - ] I \7 | | — |
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Frequency(Hz)

Figure 14 Spectrum of wavelet windows centerecbadril 50Hz
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3.1.5 FeatureEvaluation

After the feature extraction, the time variationtbé targeted frequency band,
named broken rotor bar feature, is obtained, whexh be observed in time domain
and/or in frequency domain. In this thesis, sevetatistic indices are studied and

compared to quantify the feature which revealsilogor rotor condition.
3151 Mean and Standard Deviation I ndices

Among various statistic measurements, the mean sémodard deviations of
absolute value of feature are among the most poplhay are also widely applied in
the analysis of stator current [16], [18]-[22]. Tkquations of mean and standard
deviation, denoted M and STD respectively, areryineg(16) and (17).

L
1
M= 2 WLt ) (16)
k=1

L
1
STDAWTD = 7 Y (W, (i, £l = M)’ ()
k=1

Where

L : total sample points

WT,(t, f5) : broken rotor bar feature for operating mofie

3.15.2 Shannon Entropy

Entropy is a common concept in many fields, mainlgignal processing. It is a
measure of the degree of uncertainty [27]. Shammdropy (18), which is developed in

[28], is used in this thesis as a statistic meastifeature

B(O = ) xPlogx? (18)

i
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Where

Xi: ith sample point of signal x.

3.1.6 Fault Identification

After the features of normal operating motor arardified by the statistic indices
(16)-(18), the baseline is built for the comparisath subsequent signals which may
be from faulty motors.

In testing stage, the further the STD index anchifek of feature are above the
baseline, the higher possibility of the presencbroken rotor bar fault [4][13][18].
The STD and M are important measurements of thiststal distribution of data. The
higher M value implies wider distribution while lhigr STD implies heavier tail of
distribution. The two prominent broken rotor bar addcteristic frequencies
f:(1 £ 2s) are very close to the inverter frequency and adlsamplitudes. They are
retained after the feature extraction. These efxgquency components change the
data distribution of the feature as compared taheéedthy motor case and the bearing
fault motor case where only one main inverter fesuy is retained after extraction.
Those extra frequency components extend the extnahees of the feature and
smoothing its distribution by the superimpositidieet.

With respect to Shannon entropy index, its lowdue@delow the baseline implies
a higher possibility of broken rotor bar fault. Theeasured stator current usually
contains both the frequency components and backgraandom noises. The
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frequency components, which are the determinedrfadh the signal, reduce the
randomness of signal. Since entropy is a measutieeoflegree of uncertainty [27],
signals with more determined information are lemsdom and have lower entropy
values. The presence of broken fault relevant #aqy components are the extra
determined information in stator current. In analgzthe broken rotor bar fault, the
wavelet extracts the information within a very wavrfrequency band around the
inverter frequency. The two prominent broken rotbar relevant frequency
components are retained in extracted feature ahuteethe feature entropy value as
compared with the healthy case. Based on the reasabove, if the entropy index of
a measured feature is smaller than the baseliné tpihealthy motor, there is a

possibility of the presence of broken rotor baitfau

3.2 Resault and Discussion

3.21 Centered Waveet Performance

Figure 15 shows the frequency spectrum observatidhe extracted feature and
the original stator current of the motor with broketor bar fault. As predicted by
Section 4.1, the frequency band around invertguieacy is conserved after the feature
extraction. The leveling off starts from 30Hz, winis 1.5 times inverter frequency. Itis
also observed that the broken rotor bar prominbatacteristic frequencies are well
conserved after feature extraction in a zoom-isioerin Figure 16. The capability of
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ACWT in extracting broken rotor bar fault featusevierified graphically here.
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Figure 15 Spectrums of feature and original signal
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Figure 16 Zoom-in spectrums of feature and origaighal
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3.2.2 Inverter Frequency Estimation

Table 4.1 shows the energy of feature extracteth femach normal operating
condition by different centered wavelet. As cansben in the comparison of energy
among all wavelets in a specific operating conditithe largest energy is given by the
wavelet adapted to the corresponding operating mibdeproven experimentally the

feasibility of the inverter frequency estimatiog@lithm developed in Section 4.1.
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Wavelet 1 2 3 4 5 6
Wavelet
Energy
Signal
20Hz 9704.76 | 1593.23| 2.87 0.86 0.88 0.47
25Hz 3402.42| 8449.72| 1187.94| 10.10 0.91 0.51
31.5Hz 287.14 | 2771.207221.85| 2439.52| 123.81 1.30
37.5Hz 30.55 446.51 3691.236482.87 | 2953.89| 274.89
43.5Hz 4.84 70.18| 971.43 3952.215869.95| 2877.86
50Hz 1.19 11.46 190.91 1242.36 3768|04258.63
Table 4Energy of features from healthy motor
3.2.3 FeatureEvaluation

3.231 Direct Observation

Figure 17 and the zoom-in graphs in Figure 18 a@mples of stator current
signals from three motors at 20Hz inverter freqyermealthy, broken rotor bar and
faulty bearing. Through directly observation th&esignificant noise presented in
stator current for all three cases. In additiore #mplitude of stator current from
bearing fault motor is smaller than other two cagether than this, no specific
information of characteristic frequency can be r&adn them. Hence, no conclusion

upon the motor fault can be drawn from direct obsgon of the original stator current.
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Figure 17 Stator current signalsfat 20Hz
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Figure 18 Zoom-in stator current signaldsat 20Hz

The extracted features from three motors and #@m-in version are shown in
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Figure 19 and Figure 20 respectively. By directembation, it is found that the
extracted features have less noise than the ofigigaals because the extraction
concentrates only one limited frequency band wheseles the inverter frequency as a
determined sinusoidal signal component. The frequetomponents as well as the
noise which fall outside the narrow band are autarally filtered out.

It should be noted that there is a difference betwine broken rotor bar feature
and other two cases. In Figure 19 the edges aireat broken rotor bar case reflect
another periodic characteristic. This may corregigomo the presence of extra

frequency components around inverter frequency.
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3232 Frequency Spectrum Observation

The extracted features are transformed into frequespectrum to observe the
major characteristic components and their amplgude order to help the
understanding of later statistical analysis. Thae one full scale version of feature
spectrum Figure 21 and two zoom-in graphs Figurar@PFigure 23. The results from
three motor conditions are superimposed. The dalie line represents the broken
rotor bar case and the dashed green line and dettielihe represent the healthy case
and faulty bearing case respectively. In Figureh&lspectrums of features from three
motors are similar to each other in full vision.elfundamental components locate at
20Hz and take the majority of the signal energyweheer, after zoom in, two major
differences are found. In Figure 22, the comporatrinverter frequency of broken
rotor bar motor is obviously larger than the otfnay. As predicted by formula (1) with
k =1, there exist a broken rotor bar relevant fesgry component at. Hence, it
results in larger amplitude &fin the broken rotor bar case due to the superimipos
In Figure 23, two prominent characteristic frequescappear near the inverter
frequency at the locations around 19Hz and 20H#hé& broken rotor bar case. The
amplitudes of characteristic frequency componeatraughly 100 times smaller than
the inverter frequency component. These obsensaomin accord with the prediction

made by the theoretical study of broken rotor laitfin Section 4.1.
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3233 Statistical Observation

A statistical representation named histogram iddusehelp a direct statistical
observation of the feature data distribution. Thaxis is the segmentation of
magnitude and the y-axis is the number of poiritarfto the corresponding segment.
Thus, the surface of histogram is the same foryefeature because the number of
sampling points of a measurement is the same.

From Figure 24 to Figure 26, it is observed thatdata distribution of feature of
broken rotor bar fault is different from other twases in the way of the extended
extreme value and smoother distribution around ékgeme value. The extended
extreme value is mainly contributed by the highemponent at inverter frequenty

which is observed in Figure 25. The smoother coeffit distribution is due to the
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existence of extra components which, in this canie the two broken rotor bar fault
relevant characteristic frequencies locating by sl of inverter frequency. This

observation is consistent with previous predictioSection 4.1.
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Figure 24 Histogram of healthy motor feature
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3.2.34 Statistic Indices

All sets of data, consisting of five measuremeritsach operating condition, are
put through the proposed method ACWT. Their STDaM Shannon entropy values
at every operating condition are shown in Figure Rigure 28 and Figure 31

respectively
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Figure 27 M index from ACWT
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Figure 28 STD index from ACWT

As shown in Figure 27 and Figure 28, the STD inalest M index of broken rotor

bar motor are higher than the other two cases atyeoperating condition. The

difference is obvious and maintained relatively stant throughout the different

operating conditions. This constant differenceug ¢b the adjustment of extraction

wavelet window along the different inverter freqagnt is the main advantage of this

adaptive centered wavelet method. A general thidgbobroken rotor bar detection is

able to be built for all operating modes. This @ called adaptability to different

operating mode. It is also observed that the vatieisdices decline linearly along the

increase of inverter frequency. This is due todiféerent height of centered wavelet

windows. Thus, the baseline needs to be built lyning all normal operating

conditions. And a predetermined threshold is toded as a boundary dividing broken
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rotor bar fault region and other conditions. Thaaxthreshold value used in our
experiment is the healthy condition boundary vahfter a few measurements.
However, it is possible to build in margin to impeothe tolerance for errors in
measurement in real industry applications and italoeconsideration of the allowable
degree of degeneration of rotor bar before brokembe specific value of the margin
is worthy of studying in the future work.

The ACWT in broken rotor bar detection is compaseith another feature
extraction technique. The Figure 29 and Figure 1&0tlae M index and STD index
resulting from the method based on Short Fouremdfiorm developed in [16]. This
method places a narrow window with fixed wind widthound the characteristic
frequency to extract the feature. Although, as jeted in Section 4.1, M index and
STD index values of broken rotor bar fault arehadher than the other two cases, the
distance between them at every operating condsialifferent. The value of M index
increases initially with the increase of invertexquency to the point of 43.5 Hz and
decreases at 50Hz. The STD value of broken rotofdadure increases linearly along
inverter frequency. However, no trend can be olexkon the STD values of healthy
and faulty bearing cases. At inverter frequenc$ K, the STD value of faulty bearing
feature even exceed the healthy one. This bringdifficulty in building a general
threshold to detect broken rotor bar fault with egra priori knowledge of normal
conditions. Hence, by examining the STD and M iadjcACWT overtakes the Short

Fourier transform based technique in [16] througtbetter feature extraction result.
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Next, the third index of feature quantificationswdied. The result of Shannon
entropy shown in Figure 31 agrees with the prevmresliction. The higher peak value
of inverter frequency and extra components neaobyribute to the certainty of signal,
hence decrease the entropy value of feature inebrotor bar case. The increase of
entropy values along the inverter frequency is tluehe wider window width of
adapted wavelet and lower window height associafedvider wavelet window
includes more background noise thus increase t#oraness of information which
results in higher entropy value for all three casesverter frequency increase. Lower
window height reduces the amplitude of centeredjueacy component after

extraction. As a result, the entropy is increased.
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Figure 31 Shannon entropy index from ACWT
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After the step of quantification of feature, alhtsstic indices agree with the
theoretical prediction of their performance in beokotor bar case and other two cases.
The broken rotor bar motor can be identified by panng these statistic values of the
extracted feature from stator current to the origeehealthy motor. The adaptability
of ACWT to different motor operating mode is vexdi experimentally and by

comparison with another widely used technique.
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Chapter 4
Adaptive Centered Wavelet Technique for Bearing Fault

Detection

Following the success of adaptive centered wavetdtnique in the detection of
broken rotor bar fault, the similar methodologyaigplied to detect bearing fault

which is the primary cause of induction motor feglin industry.

4.1 Process

A similar process is conducted in bearing faultedgon. The major difference
resides in the feature extraction stage. Unlikekdno rotor bar characteristic
frequencies, of which the most significant compdseaxist at two sides of the
inverter frequency, the bearing fault characterifttquencies spread over the entire
spectrum and no prominent components are predectabhe magnitude of
components depends on the severity of the beasnlj itself as well as the load
condition. The more severe fault and/or heavied IEad to larger load variations,
which will result in higher amplitude of the chaterstic components. As our
algorithm is targeted for early fault detectiong fightest load is used in our design.
Hence, unlike one wavelet window that is centeredirad inverter frequency is used
in the feature extraction for broken rotor bar fadgtection; a set of wavelets are

placed over several potential characteristic frequelocations for bearing fault
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detection to observe the local conditions. Theukeafrom each wavelet is analyzed
separately.

Each wavelet, denoted by the node n, is placeddsatyf; — (n+ 1)f,| and
|fs + nf,| in order to cover two nearby bearing fault reldieduency components.
Table 5.1 lists those chosen centers which areceded with different inverter

frequencies:

?=<2n+1)fo (19)
Where

n node number

f, outer raceway bearing fault vibration characterisequency

n

F H2) 1 2 3 4 5 6 7 8 9 10
fo (H2)

35.1 52.6 | 87.7 | 122.7| 157.8| 192.9| 227.9| 263.0| 298.0| 333.1| 368.2
43.8 65.7 | 109.6| 153.4| 197.2| 241.1| 284.9| 328.7| 372.6| 416.4| 460.2
55.2 82.8 | 138.1| 193.3| 248.5| 303.7| 359.0| 414.2| 469.4| 524.6| 579.9
65.8 98.6 | 164.4| 230.1| 295.9| 361.6| 427.3| 493.1| 558.8| 624.6| 690.3
76.3 114.4| 190.7| 266.9| 343.2| 419.5| 495.7| 572.0| 648.2| 724.5| 800.8
87.7 131.5| 219.2| 306.8| 394.5| 482.1| 569.8| 657.5| 745.1| 832.8| 920.4

Table 5 Wavelet placemer®
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4.2 Result and Discussion

4.2.1 Frequency Spectrum Observation

Because the window widths of wavelets increase \heh increasing center
frequency, the features extracted in high frequemeg have relative large bandwidths.
The wider the feature bandwidth is the more ungtatlie components are retained in
the feature after extraction. In Figure 32, the parisons are made between the
features at node 1 and node 10 of the stator dusigmal withfs = 50Hz. It is
observed that the feature bandwidths at node 1nadé 10 are around 100Hz and
700Hz respectively. In the feature extraction stafjemotor fault detection, the
wavelet is designed to target specific characterfstquencies predicted in Section
3.2.2. Hence, the small wavelet bandwidth is preterto discriminate the
unpredictable or fault irrelevant components arotine characteristic frequencies.
From this point of view, ACWT manifests its weaksen the feature extraction at

high frequency area.

57



% 10° Node 1 of supply frequency at 50Hz fs= 50Hz

4.5 ccfsH H Node 1
ccfsBR

Magnitude
= N w
ol N al w [4;] IS
T T T T T T
| | | | | |

A=Y
T
1

0.5r N

| | | | |
0 100 200 300 400 500 600 700 800 900
Frequency(Hz)

% 10" Node 10 of supply frequency at 50Hz fs = 50Hz
5 T T T T

4.5+ ccfsH [ NOde 10
ccfsBR

Magnitude
N w
ol w a1 £
T T T T
| | | |

N
T
|

=
(3]
T

0.5+

0 bl Ll W \ it R LA i bl "
400 500 600 700 800 9 1000 1100 1200 1300
Frequency(Hz)

Figure 32 Spectrums of features at node 1 and 10

It is also observed that the difference betweeritlineanotor and bearing fault

motor in stator current exist not only at the chtastic frequencies predicted in
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Section 3.2 but also other unpredictable locations.

Firstly, the amplitudes of harmonics of inverteequency in stator current are
different between the different motors. This isgueisualized in frequency spectrum
of both stator current signals and extracted featun Figure 33. The frequency
spectrum of bearing fault condition is plotted atié red line on top of the healthy one
represented by dashed green line. It is obviousahharmonics of 40, 100, 120 and
140 Hz, the frequency components are higher intlneahse. This phenomenon is not
due to the wavelet transformation but to the natdirgtator current in local condition.
This is possibly resulted from the installatiomaodtor and/or the disturbance from the
connected power system during the measurementaiSoesearches have not yet
proven the correlation between the motor fault #reresulted modification of the
harmonics of inverter frequency in stator currétgénce, the harmonics of inverter
frequency are characterized as irrelevant to médatt condition and are usually
excluded in motor fault analysis. By observatitneytare of considerable amplitude in
low frequency band and become less prominent ispietrum after the ¥harmonic
(ex. 260Hz forfs = 20Hz). For this reason, it is better to extrthet feature locating at
middle frequency band which is less affected byfthdt irrelevant inverter frequency

harmonics
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Figure 33 Spectrums of original signal and feature

In addition, from Figure 34, it can be seen thasides inverter frequency

harmonics some other unpredictable components mir@s¢he original signal and the
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extracted feature. They may be introduced by imevest other factors in the power

system.
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Figure 34 Spectrums of original signal and feature

Based on the direct observation of the stator atsren frequency domain, it is
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found that not every bearing fault related charéstie frequency predicted in Section
3.2 appears in stator current spectrum of faularing motor. Some of them with too
small amplitude are corrupted by noise and thusheervable in spectrum [5], [18],
[19]. The characteristic frequencies are more alvia middle frequency band such as
node 9 where the main harmonics decrease to cert@énd. Figure 35 shows the
experimental result of bearing fault related chemastic frequency components, which

are at the locations around 2Hz smaller than tedigtion. This pattern is similar in

different operating condition.
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Figure 35 Zoom-in spectrums of original signalsuaic 330Hz

Because the light load is used in experiment, treacteristic components have
very low amplitude as compared with main harmoiicd even other unpredictable

components. This brings difficulty to a reliableabag fault detection which counts on
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the contribution of determined fault-related infatmon in final feature instead of the

effect from other unpredictable factors.

4.2.2 Statistic I ndices Evaluation

Most STD index values of bearing fault motor featubased on ACWT are below
the ones of healthy motor in ten nodes at diffemgdrating conditions. This implies
the existence of bearing fault related informaiiomll nodes [18], [19]. However, in
fact, only the bearing fault related features inddie frequency band are of
considerable amplitude. Hence, the STD result®wéf nodes where the observable
fault not included are not convincing. These resnilfly due to other factors such as the
variation of harmonics in low frequency band betwd#dferent motors.

By observation, higher order nodes generate betseiit in STD. For example, the
STD results of features extracted at node 9 an@ dodre shown in Figure 36 and
Figure 37. Where the bearing fault related charestie frequencies are observed
within the window of node 9, the STD value is camgly below the other two at all
operating modes. In contrast, the consistence dlanverter frequency is violated in

low order nodes such as in node 1 shown.
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Figure 37 STD index at node 1

Shannon entropy reveals a different behavior apeoad to STD index. In Figure

38 and Figure 39, Node 2 and Node 9 are used asamnple. Node 2 has the entropy
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value of bearing fault case beyond the other twaesavhile Node 9 exhibits the
entropy value of bearing fault constantly below ethis in accord with the prediction
of existence of extra determined components in N&édéndeed, in the previous
observation of bearing fault spectrum, only theringafault related characteristic
frequencies within the wavelet window node 9 arseobed. Other characteristic
frequencies are corrupted by noise and fault e disturbance presented in low
frequency band. This bearing fault related charestie frequencies are mostly
extracted in Node 9 other than Node 2. The enthoggx reveals this difference.

The lower entropy value for bearing fault motor Ndde 9 agrees with the
prediction made before: characteristic frequenaiah decrease the uncertainty of
information thus decrease the entropy value. Basethe performance of centered
wavelet technique on both broken rotor bar andibgafiault detection, it can be
concluded that Shannon entropy proves a more leligtatistic measurement of
determined fault related information.

However, the wide spread spectrum of feature irh higgquency area after
extraction reduced the credit of attribution froharacteristic frequencies on the final
lower entropy value of feature. As can be seengnrEé 34, the feature contains a few
harmonics of inverter frequency. Any difference these motor fault irrelevant
components can affect the conclusion.

In conclusion, the reliability of ACWT is less caneing in bearing fault detection

compared to broken rotor bar fault detection. Téidue to the combined effect of the
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non-observable bearing fault feature in low frequelband in our experimental result

and the incapability of wavelet in achieving narmmimdow width in middle frequency

band.
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Figure 38 Shannon entropy index at node 2
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Chapter 5
Adaptive Wavelet Packet Technique for Motor Fault

Detection

Aiming to maximize the advantage of adaptability ACWT developed in
previous chapters while improve over its shortcamai wide window width in the
high frequency area, adaptive wavelet packet deositipn technique (AWPT) is
proposed in this chapter to achieve an adaptiveniatlt detection.

There are two main advantages of wavelet packetdeasition (WPD) compared
to wavelet analysis: adjustable bandwidth anddastputation. The main challenge is
how to deal with the window location and width feature extraction under different
inverter frequencies. The spectrum width of a statarrent is determined by its
sampling frequency. In WPD, the spectrum is comtirally divided into 2 to the desired
level imposed by the user [29]. Thus, the faultdeain two different operating modes
may locate in different subbands or at differergippons within a subband or even in
the cross section of two consecutive subbands. Thmkes the feature node
unpredictable or even insignificant. In additidme inter-relationship between nodes is
not maintained. Many people implement neural netvtoiovercome this disadvantage.
It uses a big range of fixed nodes from WPT asrtpats of the network, which cover
all possible feature locations in different cas&scording to this input strategy, the

input patterns of the stator current from the sama¢or condition but under different

68



fs are different from each other. Hence, the netwm&ds to memorize all of them as
different cases and summarize them into one coiciusf motor condition in the
training stage. For example, the motor conditiobedring fault motor witly = 50Hz
cannot be identified although the network has Kesned successfully to diagnosis
the bearing fault motor undéy = 20Hz. What's more, since the node placement is
fixed in WPT, the cases, of which the featuresdesin the cross sections of nodes,
cannot be identified by neural network even inttlaeing stage. These are the limits
of the input strategy based on WPT. Hence, forntle¢or fault detection techniques
developed in this thesis as well as the neural odtvtechniques, it is critical to
respect the inter-relationship in the feature etioa under various operating modes
to achieve a better detection accuracy and efiigien

The following method aims to achieve a better n@deement hence better feature
extraction. The overall block diagram of AWPT iggented in the beginning of this
section and the details of wavelet packet decoripasiresampling process and
statistic indices are illustrated in separate stiis@s. In Section 5.2, the spectrum
observations and the statistic indices evaluatayespresented. Finally, a fault region

graph is proposed for a visualization of the AWB3ults.

5.1 Methodology

The adaptation of wavelet packet to stator curreattsdifference inverter

frequencies is realized by adding a resampling kblbefore the wavelet packet
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decomposition Figure 40. The resampling procesk cliinge the whole spectrum
length in order to adjust the node position andthvidts effect on wavelet packet

decomposition will be demonstrated in details iotle® 6.1.2.
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Figure 40 Training stage of AWPT

511 Waveet Packet Decomposition

A finer frequency resolution in the middle- or hiffequency band could be
achieved via wavelet packet decomposition (WPD)DA&Xlosely related to multirate
filter banks. Subband decomposition of signal udwwg-band filter banks can be
implemented efficiently and conveniently [28]. Daghies showed that the following
equations can be used to numerically obtain waagldtscaling coefficients

Pk (t) = 277227t — k) (20)

The wavelet coefficients for level j can be obtdifiem scaling coefficients from
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level j — 1 using
Y(t) = Zgn—2k¢j—1,n(t) (21)
n
(x, 1) = me i) (22)
n
The scaling coefficients for level j can be obtdifeom the scaling coefficients
from level j — 1 using
G (t) = z hn—2k®j-1,n (1) (23)
n
G50 = D T o byoan) (24)
n

Where g and h are high-pass and low pass filtespectively. The procedure can
start by calculatingx, 1 ) and(x, ¢ ) from {x, ¢y ) using(22), (24) respectively.
Then, the same procedure is used until the lergalgached.

An example of WPD is illustrated in Figure 41 andufe 42. The frequency
separation obtained by WPD is depicted in FigureA&lcan be seen, the spectrum is
divided into 8 subbands by a 3 level decomposifidre band width is around /8 where
f is the sampling frequency of the input signaleTavelet filter bank structure to

accomplish such decomposition is shown in Figure 42

Constant Bandwith (WPT)

OO Y

Figure 41 Linear frequency separation

Frequency
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The wavelet packet coefficients at any level j+h ba obtained from coefficients at

level j by using equations (25) (26)

d:? [k] = dP[k] « h[2k] (25)
AP k] = dP[k] * g[2K] (26)

Where
d, is the input signal
Thus, subband width and location are determineddoypling rate of signal and

level of decomposition.

5.1.2 Resampling

The subband width is expected to be small enougkdlude harmonics of inverter
frequency in stator current, which act as unprediet factors in fault detection around

the targeted fault-related characteristic frequesicirhis is particularly essential for
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detecting bearing fault of which the feature anupolé is weak. Thus, its width should
be smaller thah,. Asfsvaries in different operating condition and fadlated features
change accordingly, the width is ought to be adhpighis variation to keep the same
node covered the same feature under different bpgreondition. This adaptation is
realized by resampling process.

The original signal is sampled at rate of 50 kHug, the useful spectrum of the
discrete signal covers 25 kHz frequency band. Bszahe information in high
frequency band mainly contains the noise and iohgteat interest in fault detection.
Hence, resampling to lower sampling rate is applea this case.

An anti-aliasing FIR filter is first applied duringe resampling process to filter
out the frequency components above the desiredlsaatp position in signals. Next,
10 terms on either side of the current sample, ,xék® used to perform the
interpolation in order to achieve the least digtdrtliscrete signal in desired sampling
rate.

In this work, the sample rate for signals with eliéint inverter frequency is
designed as follow:

fr = R X fsampting X fs' (27)
where

R a predetermined constant

The value of R together with the level of decomposidetermines the wavelet

packet position and bandwidth. In this thesis, Resto be5.2 x 1073 and level of
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decomposition is set to be 8 for achieving the Ipestormance. Table 6dhows the
corresponding bandwidth and fault-related featumdes for different inverter
frequency. Feature Node [8,1] focus on broken rbaorrelated information. It covers
the broken rotor bar fault related characteristegfiencyf;(1 — 2s). Feature Node
[8,48] focus on bearing related information. It e |fs — 10f,| and |fs + 9f ol
these two bearing fault characteristic frequendsscan be seen, the width of wavelet
window is well adapted to different operating cdiwdli. Furthermore, the harmonics of
inverter frequency are excluded in feature nodd$$so that the extracted information
relies more on the bearing condition of a motor.uBing these two nodes, the motor
rotor bar condition and bearing condition are obserat the same time. They can be

analyzed simultaneously in diagnosing the motoddam.
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fs 20Hz 25Hz 31.5Hz 37.5Hz 43.5Hz| 50Hz
Sampling Rate | 5200 6500 8190 9750 11300 13000
(Hz)
Subband Width | 10.2 12.7 16.0 19.0 22.1 25.4
(Hz)
Feature Node [8,1] 10.2~ 12.7~ 16.0~ 19.0~ 22.1~ 25.4~
(Hz) 20.4 25.4 32.0 38.0 44.2 50.8
Feature Node [8,48] 325~ 406.3~ |511.9~ |609.4~ 706.3~ | 812.5~
(Hz) 335.2 418.9 527.9 628.4 728.3 837.9

5.1.3 Statistic Index

Table 6 Resampling details

Both STD index and Shannon entropy are applied eatufes. In addition,

normalization based on packet energy is appliechpwove the feature quality.

Where

d]? feature at node [j,p]

d]lD normalizedd}D
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5.2 Result and Discussion

The features extracted by using AWPT are firsthaleated in spectrum. The
adaptability of AWPT to different operating conditiin the step of feature extraction is
discussed and compared to the non-adaptive wapatdiet decomposition which is
used in other papers [18]-[20]. Later, the perfanoeaof different indices is evaluated.
At last, by using entropy index, a fault regiongras finally built to achieve the goal of

fault detection with a priori knowledge of normglerating conditions.

5.2.1 Frequency Spectrum Observation

The determined fault-related information is effeely extracted by AWPT. This
can be observed in the comparison between thedreyspectrum of featurdi® and
original signal spectrum of the 20Hz signal in Fegyd3. The harmonics at 320Hz and
340Hz are all excluded after the extraction whebeaken rotor bar related feature and
bearing fault-related features around predictedtion 330Hz are conserved. However,
an unpredictable component at frequency 333Hz aitlmne motor and bearing fault

motor remains after extraction.
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Figure 43 Spectrums of original signals ad}f features by AWPT

Figure 44 shows the frequency spectrums of themgped stator current of 50Hz
inverter frequency and its featudd. Although the original spectrum pattern is not

conserved in this case after extraction, the esdealifference between the broken rotor
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bar fault and other two cased are remained.
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Figure 44 Spectrums of original signals adlfeatures by AWPT

In Figure 45, the similar layouts of spectrum afttere dg® are found in different

operating conditions in AWPT. This result prove® tbuccess of the method in
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associating same node at same feature from matarsng under different inverter
frequency. The node [8,48] extracts the featurerdd20Hz from 31.5Hz signal and
the feature around 825Hz from 50Hz signal. A congpar with traditional
non-adaptive wavelet packet decomposition is gimeRigure 46.With the constant
sampling rate of 5200 and 3 level decompositior, tbde [8, 48] always focus on
frequency band around 330Hz regardless of diffespetating condition. Thus, as can
be seen in the upper graph, for inverter frequematy equal to 20Hz, the feature
extracted at node [8,48] is not related to preditteilt feature. Moreover, although the
fault-related frequency band can be found, suchaake [8,121] for 50Hz inverter
frequency current shown in the second graph, th@ebed pattern does not conserve
the similar layout for different operating condit® as compared with the ones by
AWPT shown in Figure 45. Hence, AWPT overtakestaditional WPT in term of the

adaptability of feature extraction to different cgeng conditions.
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The similar layouts of featurdi are also found in different operating conditions

as shown in Figure 47.
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The bearing fault related feature is enhanced loghatization using packet energy

(28). The spectrums afg® anddfg8 of stator current with 31.5Hz inverter frequency

are compared in Figure 48. Indeed, the bearing tdracteristic frequencies at the
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predicted positions become more obvious in faudigrimg case after the normalization.
In contrast, as can be seen in Figure 49 , thedoradtor bar related featudg in three
cases remains almost the same after normalizaticepe the change of the amplitude

of the whole spectrums.

1.5Hz
spectrum of coefficients at node [8,48] 31.5
0.07 : : ; Node[8,48]
ccfsH
***** ccfsB
0.06 ccfsBRY ]|
0.05+ b
2 0.04r b
2
5
< 0.03F .

83



spetrum of coefficients at node [8,48]

31.5Hz

6 ; ‘ Node[8.48]
- s Normalized
***** ccfsB

5¢ ! } ccfsBR
| |
! 1:
4 : |
| |
() | i
k] | J
= I “
€ 3r | I
g lu »
= M h

i

o

T TR T

kwwhwuwwwww”

10000
Figure 48 Spectrums of featuré4® and normalized featureg?®
Hz
spetrum of coefficients at node [8,1] 50
T T T T T T NOde[8,1]

Magnitude

40

— — —ccfsH

ccfsBR

0

1
200

1 1 1
400 800 1000 1200

! !
1400 1600

84




50Hz

spetrum of coefficients at node [8,1]

60 ‘ ‘ ‘ ‘ Node[8,1]
cefsH Normalized
***** ccfsB H
ccfsBR

Magnitude

200 400 600 800 1000 1200 1400 1600

Figure 49 Spectrums of featureg and normalized featurec?é

5.2.2 Statistic Indices Evaluation

STD and Shannon entropy are applied to quantifyfeh&ures in node [8,1] and
node [8,48] directly after the extraction. Nodel|8ontains broken rotor bar related
featured} whereas node [8,48] contains bearing fault relétatureds®. The results
are shown in Figure 50 and Figure 51. As can bg,dbeir interrelationship agrees
with the previous predictions. It is also obsertieat Shannon entropy gives a better
separation of data in node [8,48] which is assediatith bearing fault feature. As early
as in the bearing fault detection in Chapter 5,n8ba entropy has proven its better
predictability of fault feature as compared to STHEence, from this point on, the

Shannon entropy is accepted as a general statidég in evaluating the features.
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The entropy of the normalized feature at node [&léhoted byE(d3), measures

the Shannon entropy of feature around the invémguency. It is observed in Figure
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52 that theE(d}) of broken rotor bar motor is much lower than thesin both

healthy and bearing fault motors. And the relajpasition is kept nearly constant

throughout the different inverter frequencies. TiBisimilar to the result obtained in

section 4.2 by ACWT. This observation agrees vhithgrevious prediction and result.
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Figure 52Shannon entropy index at node [8,1]

In addition, the linear relationship between ingerfrequency and entropy

magnitude is observed in all three cases. Aftelitiear regression, the slope and the

offset for three motors are found. It can be dedubat the position of entropy value of

broken rotor bar fault becomes further below thalthg motor with the increase of

inverter frequency. Thus, the detection accuratetter for motors in higher operating

frequency.
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Condition Healthy Bearing Fault Broken Rotor Bal
Slope 0.1697 0.1745 0.1631
Offset 2.3881 2.4189 2.2088

Table 7Slope and offset after linear regression

The good linear behavior cB‘(d_};) along the inverter frequency and the similar

slope between three cases make the compressieatafd to one bench mark possible.

For the purpose of condition monitoring, the slot)@(d_};) of healthy motor, which is

obtained in training stage, is used to compresgdadd to one benchmark, which is the

E(d_};) of lowest operating frequency of healthy motorH20n this study). The final

entropy value of node [8,1] is calculated by equra(29). And the result is shown in

Figure 53.

Where

E(ds, f;) = E(dS, f) — a x (fs — f)

fs1 is the lowest operating frequency of motor

fs is the estimated inverter frequency of signal

a is the slope found in training stage of healthyano
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Figure 53Entropy index at node [8,1] after linear regressio

By using only the healthy motor stator current, blaseline can be built to detect
broken rotor bar fault, of which the entropy isdyelthe healthy case. The lower the
E(d_é) the higher the possibility of broken rotor bar Ifais. However, the hard
threshold is to be established based on expermndeas the motor type and working
environment. In the scope of the present thesedgatlver boundary oE(d_};) in normal
conditions after a few measurements is used alsabeline to detect broken rotor bar
fault.

Figure 54 shows the entropy of the normalized fea&t node [8,48], denoted by
E(d2®), It is observed thaE(dZ®) of bearing fault motor is much lower than the
ones in both healthy and broken rotor bar motohss ®bservation is in accord with

the previous prediction. Compared with the non-radized result in Figure 51, the
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normalized result has a better consistence of agpardistance between three cases
at different inverter frequency whereas the separatistance in non-normalized case

grows along the inverter frequency.
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Figure 54Entropy index at node [8,48] after linear regressi
Different from the entropy behavior in node [8,1he E(d—‘gs) is relatively
constant along the inverter frequency. It can lbeatly used to compress the bearing
fault feature into one dimension. It is also fouhdt in high operating frequency the
deviation of entropy between different measurementsmaller than the one in low
operating frequency. The smallé)(d_gs) compared the baseline, the higher the

possibility of bearing fault is.
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5.2.3 Fault Detection Graph

Since each feature can be compressed into one siiomea two-dimensional fault
detection graph can be obtained through integratiege two features as shown in
Figure 55. Different from many other researchetassification methodologies of
motor conditions [21][22][30], this graph has detered regions for motor conditions
which makes the prediction of specific motor fdudm a priori knowledge of healthy
condition possible. The principle idea is that mangtor faults add characteristic
frequency components into stator current, suchraken rotor bar fault and bearing
fault. By focusing on specific frequency bands, meheaelatively prominent
components of specific fault reside, the determifemdt-related features can be
extracted and finally evaluated by statistic indaxch as Shannon entropy. This
fault-related feature always decreases the entvajue as compared with the feature
extracted from the same frequency band of the nlooperating conditions. In Figure
55, Node [8, 1] focus on the frequency band aromndrter frequency while Node
[8,48] focus on the frequency band around the joosiof 9" order characteristic
frequency of bearing fault. The training takes nalroperating conditions as many as
possible. And the lower bounds of the training ssim these two nodes are used as
boundaries to divide this graph into four regiohsalthy region, broken rotor bar
region, bearing fault region and other abnormailoegas illustrated in Figure 55. It is
predicted that broken rotor bar fault will resuit lower entropy in Node [8, 1] as

compared to normal operation conditions while bepdault will result in lower
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entropy in Node [8,48]. If a signal’s indices a@vér in both nodes than normal
condition, it implies that extra components exigiimthe two targeted frequency bands.
Hence, an unidentified abnormal condition occursubsequent testing stage, a motor,
whose indices fall in one specific region, is diaged to be of this specific condition.
Finally, a reliable and adaptive motor fault detectis achieved with a priori
knowledge of normal operating conditions. In theltfaetection graph, different color
represents different operating mode. It is obsevegod consistence of the results
from the same motor but different operating modgoAd separation is also observed
for stator currents from different motor conditiowkich proves the reliability and

adaptability of AWPT based on our experimental data
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Chapter 6

Conclusion

6.1 Outcomes

In the framework of the present thesis, the motokén rotor bar fault and bearing
fault have been studied in details both theordticahd numerically. Based on the
investigation of physical natures of the three fabary motors (one normal, one with
broken rotor bar and one with faulty bearing), stegor current features of the faults
measured on the laboratory motors have been peedictough the theoretical analysis.
By using the real time measurement data of statoent from the laboratory motors,
these predictions have been verified numericallthdugh the fault-related features
can be observed directly on frequency spectrum B, Ehe good feature extraction
strategy and quantification method developed inpilesent thesis surely improve the
reliability and provide convenience of fault detent especially for the purpose of
online application. The candidate has proposedtegbniques in the present thesis,
ACWT and ACPT, to achieve an adaptive feature ektva for motors running under
different inverter frequencies. ACWT'’s capabilitireliable detection of broken rotor
bar fault under various operation conditions hasnbeerified. Compared with the
result based on the method of Short Fourier trans{@6], ACWT has demonstrated a
better adaptability for various operating condiso®n top of the success of ACWT on

broken rotor bar fault detection, ACWT has beethierr extended its performance for
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bearing fault detection. However, ACWT has reveatedveakness in bearing fault
detection for two reasons. The features of bediaodf generated on the laboratory
motor only appear at certain positions insteadldsapredicted in theoretical studies.
In addition, the window size of AWCT for bearingifefeature extraction is too large to
focus only on determined fault-related features.initludes other unpredictable
components from stator current after extractionndée the reliability of ACWT is
less-convincing in bearing fault detection. In arttieimprove on the shortcoming of
ACWT, another method named AWPT has been propasedrtow down the window
size of extraction while maintaining the adaptapiiin various operating modes.
Unlike the traditional methods of wavelet packetalaposition, AWPT is able to focus
on specific fault features and extract them rolyuistespective of different inverter
frequencies.

In terms of feature quantification, several statistdices have been studied in the
thesis. Their capability of quantifying fault fee¢s has been demonstrated. After
several comparisons and discussions, Shannon gritegbeen chosen to be used as a
general index for its great predictability of faldatures and its consistent performance
in different operating conditions.

Finally, the goal of motor fault detection underivas operating conditions based
on prior knowledge of normal operating conditiors leeen achieved by AWPT with
Shannon entropy index. During the training sta¢gos currents of normal operating

conditions have been collected to build a faulted&gbn graph. The extraction of

96



broken rotor bar related feature is chosen to berat the inverter frequency while the
one of bearing fault related feature is determin&sked on the number of bearing balls
and the motor slip estimated in normal operatingdatoon. Shannon entropy values of
these two features from healthy motor are useetoe four motor condition regions
in the fault detection graph: healthy region, begfault region, broken rotor bar fault
region and other abnormal region. In the subseqestihg stage, the motor condition
has been determined by the region where it fafiglenthis graph based on its feature
values. The experimental result has proved thetaldipy and reliability for motor

condition monitoring and fault detection of the posed method.

6.2 FutureWork

In the motor fault detection graph, the divisiomodtor condition regions makes
use of lower bound of Shannon entropy values ofmaboperating conditions in each
feature. InFigure 55 it is observed that there exists certain deviatwdnfeature
locations in different measurements of the samemblence, the use of lower bound
of limited measurements may result in misclasdifice of a normal operating
condition into faulty regions. As can be seen, éhexist obvious separations between
normal conditions and faulty conditions. Thus,sitpossible to build in margins to
improve the tolerance for errors in measuremené Jpecific values of the margins
are worthy of further study.

In addition, in the present thesis the severitynudtor fault has not been

97



addressed. For example, the broken rotor bar fauttade by drilling a hole on one
bar in our experiment. The cases of more brokea bave not yet been established.
The interest of studying fault severity is for thetter prediction of the transient
change of motor condition in real cases in ordelactbieve early fault detection.
Hence, in the future work, more laboratory modes recommended to be built for
the study of the severity in each kind of motort&u

In the present thesis, only broken rotor bar fautl bearing fault have been
targeted in motor fault detection under variousrafdeg conditions. There is some
potential for AWPT to be extended to other typesotor faults in order to become a
more generally accepted motor fault technique. Thusre types of faults are

expected to be established on laboratory motofistime research.
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Appendix A

Parameters for Induction Motor

Power 1.1kwW
\oltage 230/400V
Current 4.5/2.6A
Frequency 50Hz
Speed 1410rpm
Pole 2

Annotation for Data “090407Healthy_load10_Inverter”

Inverter Frequency, Voltage(V) Current(A) Angular
Speed(rpm)
20Hz 39.00 1.787 585
25Hz 48.81 2.238 732
31.5Hz 61.86 2.837 922
37.5Hz 73.92 3.391 1099
43.5Hz 85.82 3.938 1275
50Hz 98.46 4517 1465
Annotation for Data “090407BrokenBar_Inverter_lo@d1l
Inverter Frequency, Voltage(V) Current(A) Angular
Speed(rpm)
20Hz 39.20 1.800 582
25Hz 49.10 2.254 729
31.5Hz 62.20 2.850 920
37.5Hz 74.05 3.400 1094
43.5Hz 86.20 3.900 1271
50Hz 99.05 4.550 1461
Annotation for Data “090408Bearing_load10_Inverter”
Inverter Frequency, Voltage(V) Current(A) Angular
Speed(rpm)
20Hz 39.26 1.800 584
25Hz 49.37 2.265 731
31.5Hz 62.42 2.860 922
37.5Hz 74.38 3.410 1098
43.5Hz 86.45 3.960 1274
50Hz 99.92 4.590 1464
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Calculation of load

S —Sm
Load = X 1009
oa S _3 %

S T
Where:
Load Output power as a % of rated power
Sm Measured speed in rpm
Ss Synchronous speed in rpm

Sr Nameplate full-load speed
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Appendix B

1. Bearing Design and Features,

Table 1 Bearing design and futures

Seal/Shield Bearing Types and Selection

Type, code no.
Construction
» Metal shield plate is ® Quter ring incorporates & Quter ring incorporates ® Basic construction the
_affixecl_io qulside ring; synthetic rubber molded synthetic rubber molded same as LU type, but
inner ring incorporates 1o a steel plate; seal to a steel plate; seal specially designed lip
a V-groove and edge is aligned with V- edge contacts V-groove on edge of seal
labynnth clearance. groove along inner ring along inner ring prevenis penetration by
surface with labyrinth surface. foreign matter; low
clearance. torque construction.
£ Torque Very Low Very Low Medium Low
3 Dust proofing Good Very Good Best Excellent
Water proofing Poor Poor \ery good Good
é High speed capacity Same as open type Same as open type Limited by contact seals Beftter than LLU-type
g Allowable temp.range @ Depends on lubricant 25C~120TC 25 C~110TC 2ET~120C

@ Plzase consult NTN Enginearing about applications which exceed the allowable temperature range of products listed on this tabla.
Mote : This chart lists double shielded and double sealed bearings, but single shisided (Z) and single sealed (LB, LU, LH) are also available.
Grease lubrication should be used with singie shielded and single sealed bearings.
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