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Summary 
 

Condition monitoring and fault diagnosis of induction motor are of great interest 

for the purpose of improving overall industrial system reliability. Since a few years 

ago, our project group has been developing various algorithms for fault detection and 

diagnosis of induction motors. A database containing time-domain measurements of 

stator currents on three 1-kW laboratory motors (one normal, one with broken bar and 

one with fault bearing) was created by our group before the candidate’s project.  

This research is focused upon the investigation of the two specific types of 

induction motor faults: broken rotor bar fault and bearing fault, which are measured 

on two laboratory motors. They are also the most frequently occurring faults in 

industries. The goal of this research is to develop appropriate algorithms for the 

perspective of on-line detection and diagnosis of these laboratory motor faults.  

In the framework of the present thesis, faults occurring on these motors have been 

studied in details both theoretically and numerically. Although fault-related features 

can be observed directly on the frequency spectrum derived from time-domain 

measurements of stator currents, a good feature extraction strategy and quantification 

method will reduce the human effort and surely improve the reliability and 

convenience of online fault detection. Hence, the candidate proposes two techniques 

namely Adaptive Centered Wavelet Technique (ACWT) and Adaptive Wavelet Packet 

Technique (AWPT) to achieve an adaptive feature extraction for stator currents of 

motors under different inverter frequencies. The capability of ACWT for reliable 

detection of broken rotor bar fault under various inverter frequencies is proven 

numerically robust but is less-convincing in bearing fault detection. In order to 

improve on the shortcoming of ACWT, AWPT is proposed to narrow down the 

window size of extraction while maintaining the adaptability for different inverter 

frequencies. In addition, several statistic indices are studied to quantify the extracted 

features. It is proposed to employ Shannon entropy’s great predictability of 

fault-related features and its consistent performance, which will make the method a 

generally accepted index in the present thesis for different inverter frequencies. 

Finally, the goal of the reliable motor fault detection under various inverter 

frequencies based on prior knowledge of a few normal operating conditions is 

achieved by employing both AWPT with Shannon entropy index. A two-dimensional 

fault detection graph is developed in the end to visualize the results. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

During the last twenty years, condition monitoring and fault diagnosis of 

induction motor have become a great interest for the purpose of improving overall 

industrial system reliability [1]. Undetected machine break-down could be avoided to 

the greatest possible extent since most of the early faults could be detected on-line. 

Moreover, the more reliable information of machine conditions helps to make a better 

decision on the issue of maintenance. Excessive inspection and maintenance could be 

avoided. As a result, the annual cost of machine maintenance could be cut down 

which brings economic benefits to industries.  

Since last year our project group has been developing various algorithms for the 

fault detection and diagnosis of induction motors. Dr. Wang, a leading researcher in 

our group, set up the experimental equipment and collected stator currents from three 

1-kW laboratory motors (one normal, one with broken bar and one with faulty 

bearing). A database containing these measurements was created. 

This research is focused upon the investigation of two specific types of motor 

faults namely the broken rotor bar fault and bearing fault, which are the most frequently 

occurring faults in industries. The goal of this research is to propose appropriate 
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methods and develop algorithms for the perspective of on-line detection and diagnosis 

of these two types of laboratory motor faults.  

1.2 Earlier Work and Contribution of this Thesis 

During the past decade, many methods have been developed in the research area 

of condition monitoring and fault diagnosis of induction motor [2]-[4]. Various 

techniques utilized differ from each other in terms of the following four aspects: 

1) Choice of measurement signal: The motor condition should be measurable from 

the motor’s vibration signal, stator current signal, acoustic signal, etc. [5]-[9] 

2) Choice of motor operating state: There is a choice between motor operating 

states, either steady state or transient state, during the conduction of 

measurement.[10]-[12] 

3) Choice of feature to be extracted: There exist a few methods which extract the 

features from signals. They reflect the time domain characteristics or/and the 

frequency domain characteristics of measured signals.[12]-[14],[16],[18] 

4) Classification Criterion: Based on feature properties, various methods, such as 

Mahalanobis distance, SVM and neural network, are developed to classify 

features into different groups representing different motor conditions. [16][21] 

This thesis will target at online condition monitoring and diagnosis of motor fault 

by developing a feasible and reliable technique by addressing the following issues for 

real-case applications: 
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1) whether the technique is generally applicable to motors under various operating 

conditions, including different inverter frequency , different load condition and 

different installation; 

2) whether the faulty condition in local environment needs to be known a prior by the 

diagnosis system for the subsequent stage of motor condition identification; 

3) whether there exist some tolerance of this technique to deal with certain degree of 

errors in measurement; and 

4) whether the fault thresholds can be easily built; 

Thus, by taking into the above considerations, the stator current of motor is 

chosen as the measurement signal for the following two reasons. Firstly, the main 

advantage of stator current signal is that the noise level to the input is less subjective 

to the environmental conditions as compared to vibration signal and acoustic signal 

[1]. Hence, the accuracy of fault detection is less affected by noisy external 

environment which may vary in time in industries. Secondly, the measurement of 

stator current is easy to be implemented for an online system. The feasibility study of 

detecting motor fault via stator current is presented in details in [5]-[6]. 

In terms of feature extraction, the wavelet transform (WT) is used in this thesis as 

a preprocessor to extract the signal feature in the time-frequency domain. Fault 

detection based on motor current relies on interpretation of the frequency components 

that are related to rotor or bearing asymmetries [1]. Thus, many studies use Fourier 

transform as a preprocessor to directly represent those components in the frequency 
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domain [7], [12]-[14]. However, stator currents measured from industrial motors are 

best modeled as a non-stationary signal or piece-wise stationary signal because of its 

dependency on electric supply, static and dynamic load conditions, noise and fault 

conditions which are subject to time variation [2]. Fourier transform (FT) is not 

appropriate to be used to analyze a signal that has a transitory characteristic such as 

drifts, abrupt changes, and frequency trends [15]. Its weakness and the practical 

disadvantage of frequency method in analyzing non-stationary or transient signals are 

discussed in [16]. Hence, compared with the frequency domain analysis by FFT, the 

time-frequency analysis is more appropriate for online motor condition monitoring and 

fault detection system. Among the time-frequency analysis techniques, wavelet 

transform (WT) becomes more and more popular for its better time and frequency 

resolution property as compared with short Fourier transform (SFT) [2]. Wavelet 

transform is further divided into three types: Continuous Wavelet Transform (CWT), 

Discrete Wavelet Transform (DWT) and Wavelet Packet Decomposition (WPD). Each 

of them has its pros and cons in signal processing [17]. The proposed techniques in this 

thesis make use of CWT and WPD. 

So far, many methods based on wavelet transform as a preprocessor for motor fault 

detection have been explored, such as [18]-[22]. These techniques all reveal the 

capability of multiple resolution representation and the applicability to non-stationary 

signals of wavelet transform. However, a generally applicable method still remains as a 

challenge for fault detection under various operating conditions because of the 
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dependency of motor fault feature on the operating condition. Most of the papers limit 

their scopes to specific motor fault detection under one constant operating condition 

such as a constant inverter frequency. Some other papers intend to achieve a more 

general application by building a neural network to recognize various operating 

conditions [21]-[22]. The main disadvantage of using neural network is the strong 

dependency of detection accuracy on the training data. In the case of not trained normal 

operating condition in subsequent testing stage, the false warning may occur. In 

addition, like other blind separation methods, neural network also gives a blind 

separation of different conditions. Thus, only when the specific motor fault in local 

condition is encountered in training stage and used as a benchmark in testing stage, the 

test motor condition revealed by subsequent signal can be identified by its feature 

location to the benchmarks of the predefined conditions. In online application, where 

various factors affect stator current, it is not possible to simulate all normal operating 

conditions as well as all faulty conditions. Thus, the fault type is usually unable to be 

addressed by neural network and a false warning is likely to occur. Hence, a reliable 

detection technique is needed for the online condition monitoring and fault detection of 

motor with limited prior knowledge of normal operating conditions and applicable to 

motor under various operating modes.  

Therefore, new techniques have been proposed in the present thesis for more 

reliable motor condition monitoring and fault detection. These techniques take into 

consideration of motors running under various inverter frequencies. They only require 
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prior knowledge of local normal operating conditions to achieve specific fault detection. 

The first method is named Adaptive Centered Wavelet Technique (ACWT) which uses 

CWT to detect motor faults. Based on the numerical result, this method shows its 

capability in detecting broken rotor bar fault. However, it also reveals the weakness in 

detecting bearing fault. In order to improve on the shortcoming of ACWT, Adaptive 

Wavelet Packet Technique (AWPT) is proposed to narrow down the window size of 

feature extraction while maintaining the adaptability for different inverter frequencies. 

In addition, several statistic indices are studied to quantify the extracted features and 

build the threshold for motor condition classification. Shannon entropy’s predictability 

of fault-related features and its consistent performance in the case of different inverter 

frequencies make it a generally accepted index in the present thesis. Finally, the goal of 

reliable motor fault detection under various inverter frequencies based on prior 

knowledge of local normal operating conditions is achieved by combining AWPT with 

Shannon entropy index.  

1.3 Background Information 

In Power System laboratory, there are three motors of the same design (3 phase, 4 

pole, 1.1kw). The structure of the laboratory motor is shown in Figure 1.On these three 

motors we are able to create two different motor faults and keep one unchanged as a 

reference of motor’s healthy condition in the local environment. Hence, three motors of 

different conditions: one normal, one with broken rotor bar and one with faulty bearing 
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are prepared for experiment. 

 
Figure 1 Motor structure 

 

The broken rotor bar fault is one of the most common electrical faults of industrial 

motors and certainly worth looking at. Hence, it is realized on a laboratory motor by 

drilling a hole on one rotor bar.  

 Bearing faults are the primary cause of three phase induction motor failure. In the 

scope of this study, only localized bearing fault is concerned. It is realized by a 

man-made dent on one side shield of the bearing. 
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Figure 2 Experiment setup 

 

After the preparation of the laboratory motors, the experiment is set up as shown in 

Figure 2. The induction motor is connected with a DC generator which acts as a load in 

this system. The load is set to be 41% loading from the rating motor throughout the 

experiment. The formula is provided in Appendix A. The intension of using a light 

load here is to increase the difficulty of fault detection because generally the effect of 

motor fault on the system becomes more pronounced when the load is heavier. A three 

phase inverter, which powers up the motor, is connected to the motor stator. Based on 

the experimental setting, the output inverter frequency is adjustable at six different 

levels which are 20, 25, 31.5, 37.5, 43.5 and 50 Hz. Hence there are six different 

operating conditions available for each motor.  

During the experiment, the stator current data is collected under steady state 

operation of a motor. The signal is sampled by an oscilloscope at a frequency of 50 kHz 

and sent to computer. Each measurement lasts 20.04s hence every set of collected stator 
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current data consists of 1002000 sampling points. Five sets of measurement of one 

phase stator current are carried out for each operating condition. Meanwhile, the rotor 

speed is recorded for each operating condition. The details of the experiment are shown 

in Appendix A. 

1.4 Thesis Organization 

The rest of the present thesis is organized as follows. In Chapter 2, the nature of 

broken rotor bar fault and bearing fault, and their current signature analysis are 

studied. After the introduction of general concepts of these two faults, the two cases of 

faults: broken rotor bar fault and bearing fault on laboratory motors are examined and 

some predictions on the specific fault related features in stator current are made based 

on the theoretical study. Chapter 3 presents the first method ACWT with its application 

on broken rotor bar detection. Three indices, STD index, R index and Shannon entropy 

index, are used to quantify the information. The ACWT capability of reliable detection 

of broken rotor bar fault under various operating conditions is demonstrated. On top of 

the success of ACWT on broken rotor bar fault detection, ACWT is further extended 

for bearing fault detection in Chapter 4. Unlike the previous success, ACWT reveals its 

weakness in bearing fault detection. Two reasons are addressed for this result. The fault 

feature of bearing fault generated in our laboratory motor only shows the appearance of 

some characteristic frequencies instead of all as predicted in the theoretical study in 

Chapter 2. In addition, the window size of feature extraction in AWCT for bearing fault 
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detection is too large to focus only on the determined fault-related feature and exclude 

other disturbances. Thus, although the Shannon entropy agrees with the prediction and 

STD agrees with other researchers’ experimental results, the application of AWCT is 

less convincing on bearing fault detection. In order to make an improvement, another 

method named AWPT is proposed in Chapter 5 to narrow down the window size while 

maintaining the adaptability in various inverter frequencies. In this chapter, the goal of 

fault detection under various operating modes based on prior knowledge of local 

normal operating conditions is achieved. Chapter 6 concludes the present work 

completed and proposes further work by extending the application of AWPT for more 

types of motor faults and local conditions.  
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Chapter 2 

Motor Faults and Current Signature Analysis 

 

Motor Current Signature Analysis (MCSA) represents a group of methods for 

motor fault detection based on analyzing the effect of motor fault on stator current 

[6]. Motor fault adds extra frequency components to stator current under operation. 

The specific locations of these frequencies are determined by operating mode, fault 

mode and physical construction of motor. Thus, the stator current can be used as an 

information source to estimate the motor condition. In this chapter, the general 

concepts of broken rotor bar fault and bearing fault are discussed. Their effects on 

stator current are illustrated. Based on the experimental setup, predictions of 

fault-related information in the local environment are made for these two cases. 

2.1 Broken Rotor Bar Fault 

2.1.1 General Concepts 

Rotor faults (such as broken or cracked rotor bars and end rings), which all bring 

about a rotor asymmetry, give rise to fault specific patterns in electrical 

electromagnetic and mechanical quantities. Broken rotor bar as an electrical fault can 

be represented as an asymmetry circuit as below: 
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Where 

ir  rotor loop currents 

ie circulating end ring current 

Lb rotor bar leakage inductance 

Le rotor end ring leakage inductance 

rb rotor bar resistance 

re end ring segment resistance 

As can be seen in Figure 3, broken rotor bar results in the change of electrical 

circuit. It can be detected by monitoring the motor current frequency components 

produced by the magnetic field anomaly induced by the broken rotor bars [1]-[3]. 

These specific frequencies of interest are given in equation (1) by Kliman et al.[6]  

Figure 3 Electrically equivalent circuit of broken rotor bar 
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!#$ = !" × FG H1 − I
J K ± IM (1)

where 

 fbr  broken rotor bar characteristic frequencies 

fs  inverter frequency; 

s  per-unit slip; 

p  number of poles pairs; 

k  = 1, 2, 3,…;    

Due to the normal winding configuration, we have k/p = 1,3,5… for the 

detectable !#$ [6]. 

Two prominent characteristic frequencies (sideband frequencies) in the stator 

current are identified from a broken rotor bar by Kliman et al.[6] and Filippetti et 

al.[23]. They are located on the two sides of the inverter frequency fs. The amplitude 

of left sideband frequency component !"(1 − 2I) is a special case of !# when k/p 

=1 (1). It is proportional to the number of broken rotor bars [1]. The more rotor bars 

are broken the more significant the characteristic frequency is. The right sideband 

component !"(1 + 2I) is due to consequent speed oscillation and could also be used 

in monitoring fault severity. Its importance is clearly demonstrated in [23]. Some 

experimental studies suggest that when the amplitude of these characteristic 

frequencies is within 50dB smaller than the fundamental frequency component 

amplitude, the rotor should be considered unhealthy [24]. Thus, extracting the 

information on these two main components is usually sufficient to differentiate 



 

broken rotor bar motor from other mo

the motor with faulty bearing

In this study, the analysis is limited for the motors of the same model and with a 

light load. Thus, the slip value is estimated in training stage using healthy motor

assumed to remain fairly constant 

 

2.1.2 Laboratory Model

In our experiment, the broken rotor fault is made by drilling a hole into one rotor 

bar as shown in Figure 4. 

to be 0.026 in local condition. Hence, 

broken rotor bar fault !"(1

1. 
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broken rotor bar motor from other motors conditions such as the healthy motor and 

the motor with faulty bearing. 

, the analysis is limited for the motors of the same model and with a 

he slip value is estimated in training stage using healthy motor

to remain fairly constant in subsequent testing stage for all three motors.

Laboratory Model 

Figure 4 Broken rotor bar fault 

he broken rotor fault is made by drilling a hole into one rotor 

. Based on the experimental measurement, slip s is measured 

to be 0.026 in local condition. Hence, the two prominent characteristic frequencies

1 L 2I. at different inverter frequencies are shown in

conditions such as the healthy motor and 

, the analysis is limited for the motors of the same model and with a 

he slip value is estimated in training stage using healthy motor and 

for all three motors.  

 

he broken rotor fault is made by drilling a hole into one rotor 

slip s is measured 

characteristic frequencies of 

at different inverter frequencies are shown in Table 
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 20 25  31.5 37.5 43.5 50 

!"(1 − 2I) 18.96  23.70 29.86 35.55 41.24 47.40 

!"(1 + 2I) 21.04 26.30 33.14 39.45 45.76 52.60 

Table 1 Broken rotor bar characteristic frequencies 

2.2 Bearing Fault 

2.2.1 General Concepts 

Bearing faults are the most frequent faults in induction motors (41%) according 

to an IEEE motor reliability study for large motors [25]. Bearing faults can be 

categorized into distributed and localized faults [5]. Distributed faults, such as general 

roughness, influence the whole region and cannot be characterized by distinct 

frequencies. In contrast, single point defects are localized and have corresponding 

characteristic frequencies. They can be further classified according to the following 

affected element: 

� Outer raceway defect 

� Inner raceway defect  

� Ball defect 

A single point defect could be imagined as a missing piece of material on the 

corresponding element, such as a small hole, a pit, or a local deformation of the 

element, such as a dent.  

In fact, !% 	represents the periodicity by which an anomaly appears due to the 

fs(Hz) 
fbr(Hz) 
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existence of defect. For example a hole on the outer raceway, as the rolling elements 

move over the defect, they are regularly in contact with the hole and produce an effect 

on the machine at a given frequency. !% is a function of the bearing geometry and the 

mechanical rotor frequency !$ ,	whose detailed calculation is found in [5]. !%  for 

different localized bearing fault is given in (2)-(4). 错误错误错误错误！！！！未找到引用源未找到引用源未找到引用源未找到引用源。。。。 gives a 

graphical illustration of general bearing structure. 

Outer raceway: !& =	NP2 !$ H1 −	DPDR cos SK (2) 

Inner raceway: !'( = NP2 !$ H1 +	DPDR cos SK (3) 

Ball !#)** =	 DRDP !$ T1 −	
DPUDRU cosU SV 

(4) 

where 

Nb number of balls  

Db ball diameter   

Dc pitch or cage diameter 

β contact angle 

 
Figure 5 Bearing structure 
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These characteristic frequencies fv can be further approximated for most bearings 

with 6 to 12 balls by (5) and (6) 

!& = 	0.4NP!$ (5) 

!'( = 	0.6NP!$ (6) 

The effect of bearing defect on the induction motor’s stator current was firstly 

proposed by Schoen [5], who considered the generation of rotating eccentricities at 

frequency !%. Mechanical vibrations caused by the bearing defect result in air gap 

eccentricity and oscillations in the air gap length. The latter in turn cause variations in 

flux density. Variations in flux density affect machine inductances, which produce 

sideband components of the fundamental frequency of stator current. Hence, two series 

of additional frequencies !# are introduced in stator current 

!# =	 |!" ± 	G!%| (7) 

where  

k  = 1, 2, 3,…; 

This model is widely applied in later work. However, it only includes the physical 

effect of radial movement of the rotor center caused by bearing defect. A recent work 

[26] takes into the consideration of the second physical effect of bearing defect, which 

is the load torque variation caused by bearing fault when the defect comes into contact 

with another bearing element. For example, each time a bearing ball passes by a hole of 

outer race, a mechanical resistance will appear when the ball tries to leave the hole. The 

consequence is a small increase of the load torque at each contact between the defect 
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and another bearing element. Load torque variations principally lead to phase 

modulations at !% of the stator current fundamental frequency!". The phase modulation 

produces a characteristic signature which is given by the sideband components around 

fundamentals at	|!" ± 	G!%|. The result of the load variation approach coincides with 

Schoen’s conclusion which is based on rotor eccentricity [5]. 

2.2.2 Laboratory Model 

The shield type ball bearings (NTN 6205z) are used in experiment. The artificially 

damaged bearing is shown in Figure 6 and its structure is depicted in Figure 7. The 

metal shield plate is affixed to outside ring; inner ring incorporates a V-groove and 

labyrinth clearance. It has nine balls. In this study, we focus on one type of the single 

point fault. To realize such a bearing defect, a dent is made on one side shield as shown 

in Figure 6. The dent introduces a resistance when a bearing ball passes by. It causes the 

variation of load torque in rotation. The shield is fixed with the outer race. Hence, the 

frequency of physical contact between the bearings and the defect is as the same as the 

case of defect on outer race !% = 	!&	 .  
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Figure 6 Faulty bearing with manmade dent on shield 

 
Figure 7 Shield bearing structure 

 

Based on the previous study of bearing fault, the characteristic frequencies fv in 

stator current are predicted by the formula (5) with the estimated slip 0.026. The 

detailed values of its two series of harmonics !# calculated by the formula (7) are 

shown in Table 2 and Table 3. The existence of relatively significant components at 

these harmonics is an evidence for the outer raceway bearing fault. 

  



20 
 

 

 

fs 

(Hz) 
fo 

(Hz) 
fb (Hz) 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 

20 35.1 15.1 50.1 85.2 120.3 155.3 190.4 225.4 260.5 295.6 330.6 365.7 

25 43.8 18.8 62.7 106.5 150.3 194.2 238.0 281.8 325.6 369.5 413.3 457.1 

31.5 55.2 23.7 79.0 134.2 189.4 244.6 299.9 355.1 410.3 465.5 520.8 576.0 

37.5 65.8 28.2 94.0 159.7 225.5 291.2 357.0 422.7 488.5 554.2 620.0 685.7 

43.5 76.3 32.8 109.0 185.3 261.6 337.8 414.1 490.3 566.6 642.9 719.1 795.4 

50 87.7 37.7 125.3 213.0 300.6 388.3 476.0 563.6 651.3 738.9 826.6 914.3 

Table 2 Outer raceway bearing fault characteristic frequencies |�� − 		�
	| 
 
 
 

fs 

(Hz) 
fo 

(Hz) 
fb (Hz) 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 

20 35.1 55.1 90.1 125.2 160.3 195.3 230.4 265.4 300.5 335.6 370.6 405.7 

25 43.8 68.8 112.7 156.5 200.3 244.2 288.0 331.8 375.6 419.5 463.3 507.1 

31.5 55.2 86.7 142.0 197.2 252.4 307.6 362.9 418.1 473.3 528.5 583.8 639.0 

37.5 65.8 103.2 169.0 234.7 300.5 366.2 432.0 497.7 563.5 629.2 695.0 760.7 

43.5 76.3 119.8 196.0 272.3 348.6 424.8 501.1 577.3 653.6 729.9 806.1 882.4 

50 87.7 137.7 225.3 313.0 400.6 488.3 576.0 663.6 751.3 838.9 926.6 1014.3 

Table 3 Outer raceway bearing fault characteristic frequencies |�� + 		�
| 
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Chapter 3 

Adaptive Centered Wavelet Technique for Broken Rotor Bar 

Detection 
 

Adaptive Centered Wavelet Technique (ACWT) is proposed in this chapter to 

detect broken rotor bar fault. The methodology is developed in Section 4.1 followed by 

the result and discussion in Section 4.2. The methodology begins with the explanation 

of principal idea and the main procedures. The basic wavelet transform concept is 

briefly introduced and the proposed adaptive wavelet design for our experiment is 

illustrated. The main steps, such as inverter frequency estimation, feature extraction 

and feature evaluation, are explained separately. In Section 4.2, the performance of 

adaptive wavelet is firstly verified by experimental result and the feasibility of inverter 

frequency estimation is proven. The evaluation of extracted feature is conducted by the 

direct observation in time domain, the histogram observation and the quantification by 

statistic indices. It should be noted that all algorithms used in this thesis are carried out 

in time domain although many frequency spectrum graphs are used here to help readers 

understand the operations. At the end of Section 4.2, a comparison is made between 

ACWT and Short-Fourier Transform based algorithm [16] in order to justify the better 

performance of ACWT in the feature extraction stage. 
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3.1 Methodology 

The key idea in the proposed method is to capture the time variation of a specific 

narrow frequency band where fault-related frequency components may reside and to 

analyze it statistically in order to distinguish the motor with broken rotor bar fault from 

the healthy motor and the faulty bearing motor under various inverter frequencies. 

Since the stator current of motor is affected by the connected power system, load 

condition and motor geometry, a supervised approach is developed to recognize the 

local normal operating conditions of motor priori to actual fault detection.  

The proposed approach consists of three stages: training, testing and fault 

identification as illustrated in Figure 8. 

 

 

 

 

 

 

Figure 8 Block diagram of ACWT 

During the training stage, shown in Figure 9, the stator current from healthy 

motor under various operating conditions is measured and processed to form a baseline 

for detecting broken rotor fault occurring in subsequent stages of motor operation. 

Since, the fault-related feature, which is outlined in Section 3.1, depends on the inverter 

Training 

Testing 

Fault Identification 

Training Data 

Testing Data 
Baselin
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frequency, it is necessary to measure or estimate the inverter frequency. In online 

application, the motor is subject to various operating conditions. Hence, the estimation 

or measurement of inverter frequency is conducted periodically to ensure the correct 

association of measured signal with a specific operating condition. This could prevent 

false alarm at the switching of operating mode where mismatch may occur. ACWT 

includes the step of estimation of inverter frequency directly from stator current in 

order not to enroll excessive measurement facility for the perspective of convenience in 

online application. Once the inverter frequency is obtained, a specific wavelet function 

is selected to extract the potential broken rotor bar fault-related feature in this local 

condition. Later, several indices are proposed to quantify the resulting feature and build 

a baseline for broken rotor bar fault detection. The training is repeated a number of 

times and the baseline is built based on several measurements.  

 

 

 

 

 

 

 

 

Figure 9 Training Stage of ACWT 

Inverter frequency 
Estimation 

Feature Extraction 

Baseline Building 

Stator Current 

Statistical Analysis 
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During the test stage, shown in Figure 10, the signal’s inverter frequency is 

measured or estimated to determine the operating mode of testing motor. The feature 

relevant to the broken rotor bar fault in the local condition is extracted and quantified. 

Next, the distance between the test feature and the baseline is computed. If the test 

feature is beyond the threshold of baseline at corresponding operating condition, it is 

tagged as a potential fault signal. Hence, the corresponding testing motor with this 

feature is diagnosed as a broken rotor bar motor. 

 

 

 

 

 

 

 

Figure 10 Testing stage of ACWT 

3.1.1 Wavelet Transform 

Wavelet transform is one of the tools used in time-frequency analysis. In this thesis, 

it is used to extract the time variation of a specified frequency band where broken rotor 

bar fault-related feature may reside. One of its inherent advantages is the good time 

resolution for the high-frequency transients and good frequency resolution for the 

low-frequency components. Morlet (1982a,b) first introduced the idea of wavelets as a 

Inverter frequency 
Estimation 

Feature Extraction 

Statistical Analysis 

Stator Current 
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family of functions constructed from translation and dilation of a single function 

called the “mother wavelet” +(-). They are defined by 

+),#(-) = 	 1
[|\|+ H

- − ]
\ K ,						\, ] ∈ ℝ, \ ≠ 0,			 (8) 

where a is called a scaling parameter which measures the degree of compression 

or scale, and b a translation parameter which determines the time location of the 

wavelet. If |\| 	< 1, the wavelet is the compressed version (smaller support in 

time-domain) of the mother wavelet and corresponds mainly to higher frequencies. 

On the other hand, when |\| 	> 1,	+),#(-) has a larger time-width than +(-) and 

corresponds to lower frequencies. Thus, wavelets have time-widths adapted to their 

frequencies. This is the main reason for the success of the Morlet wavelets in signal 

processing and time-frequency signal analysis. It may be noted that the resolution of 

wavelets at different scales varies in the time and frequency domains as governed by 

the Heisenberg uncertainty principle. At large scale, the solution is coarse in the time 

domain and fine in the frequency domain. As the scale a decreases, the resolution in 

the time domain becomes finer while that in frequency domain becomes coarser [17]. 

3.1.2 Adaptive Wavelet Design 

A wavelet is a waveform of effectively limited duration that has an average value 

of zero. It is a wave-like oscillation with amplitude that starts out at zero, increases, 

and then decreases back to zero. The Morlet wavelet is chosen to be used for the 

convenience of center placement. It is a modulated Gaussian, shown in Figure 11. 
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Figure 11 Morlet wavelet 

It is defined as below: 

0(-, !') = 	cdJ	 T− -U
2]'UV efI(2g!'-) (9) 

where  

fi is the center frequency of wavelet 

bi is the standard deviation.  

Its Fourier transform is shown below 

1(!, !h) = 	]'√2gcdJ(−2]'UgU(! − !')U) (10) 

 

Figure 12 Fourier transform of Morlet wavelet 
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Given a wavelet, the following admissibility should be satisfied: 

0 < j |1,!.|k

|!|
;! < ∞

mn

on

 
(11) 

where 1,!. is the FT of 0,-..  

Because 0,-.  decays with time, the admissibility (8) is equivalent to the 

requirement p 0,-.
mn

on
;- = 0. Strictly speaking, the Morlet wavelet does not satisfy 

this zero-mean requirement. However, the mean can become infinitely small if the 

term fi is sufficiently large. As fi increases, the duration of the wavelet expands, and 

the time resolution will decrease correspondingly. As a result, the relationship 

between the standard deviation bi and the scaled center frequency fi is kept as a 

constant in this thesis, e.g. 2g]'!' = 5.  

3.1.3 Inverter Frequency Estimation  

A motor has finite operating modes. In other words, there are a limited number of 

inverter frequencies !" feeding the motor based on the commands. In our experiment 

the measurement of stator current is conducted at the motors running at inverter 

frequency !"determined by operation. In the steady state, the stator current at the 

inverter frequency !" takes the majority of signal energy. A Morlet wavelet with center 

frequency placed at !" will surely extract most energy from the signal as compared 

with the wavelets placed elsewhere at the same time. Thus, by placing a set of wavelets 

over those possible !" and looking for the one where resides largest energy the inverter 

frequency of stator current can be estimated. The estimated inverter frequency is 
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denoted as !"∗.  

In this thesis, the wavelet centers are set to be [20 25 31.5 37.5 43.5 50] which 

covers all possible operating modes of motors in local environment. The Fourier 

transforms of these wavelets are shown in Figure 13. It is verified that the center 

frequency of each wavelet has the highest passing amplitude. In other words, a 

frequency component will be maximally extracted by a wavelet with the center 

frequency at its position. As can be seen in the figure, the blue dotted arrow and red 

solid arrow denote the passing amplitudes of 20Hz sinusoidal signal in wavelets 

centered 20 and 25 respectively. The energy of the feature extracted from this signal is 

higher by using wavelet centered at 20Hz instead of the one centered at 25Hz. The 

wavelets further away from 20Hz have decreasing passing amplitude for 20Hz 

frequency component. Hence, by finding which wavelet extracts the highest energy 

from stator current, the inverter frequency of the measured stator current can be 

determined. 
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Figure 13 Fourier transforms of wavelets 

Since the experiment is conducted on the motors running at the steady state, a 

small portion of one measurement data is enough to detect the inverter frequency of the 

measured stator current. In online detection, when motor is subjected to the switching 

of operating mode at unpredictable time instants, the inverter frequency should be 

frequently estimated in order to categorize measured data into a right group of a 

specific operating mode with reference to the corresponding benchmark. In addition, 

the energy value extracted by each wavelet can be compared with historical data of 

corresponding operating mode to differentiate the steady state data for ACWT from the 

transient state data.  

In ACWT, the number of observation points of measured signal, which is used for 

inverter frequency detection, is calculated by the formula in (12): 

� 20Hz 

� 50Hz 

� 43.5Hz 

� 37.5Hz 

� 31.5Hz 

� 25Hz 
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r = 	 !")45*6/!"* (12) 

Where  

!")45*6 sampling rate,  

!"*  lowest possible inverter frequency 

A new signal is formed by using the first N sample points of the measured signal 

in order to reduce computational load while cover at least one period of the lowest 

possible inverter frequency to avoid the bias in the inverter frequency detection stage. 

In our measurement, each measured signal has 1002000 sampling points and its 

lowest possible inverter frequency is 20Hz in the scope of this thesis. Hence, N is 

calculated to be 2500.  

The wavelet coefficients extracted from the signal	d(-)	by the morlet wavelet 

0(-, !') with a center frequency !h	are given by the equation (13). 

123(-, !') = j dt(u)0(−(- − u), !');u
mn
on

 (13) 

Where 

x(t)  signal to be extracted 

w(t,fi) morlet wavelet at center !' 
In the inverter frequency detection stage, x(t) is the new formed signal which is 

the first 2500 sampling point of the measured signal. 

After obtained the wavelet coefficients of the new signal, its average energy is 

calculated as follow: 
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cvcwxy(!') = 	 1z{|123(-9, !')|U
|

9}B
 

(14) 

Where 

L length of signal WTx 

tk kth sample point 

fi center frequency of wavelet  

At last, the estimated inverter frequency !"∗ is determined by following equation 

!"∗ = ~\d	(�!h|cvcwxy(!')�) (15) 

 

3.1.4 Feature Extraction  

The wavelet with its center frequency !' at estimated inverter frequency !"∗ is 

further used to extract the feature from the original stator signal. The feature is the 

wavelet coefficients obtained in the formula (13) by using original stator current 

signal as x(t). Aim to achieve a more precise analysis of the characteristics of feature, 

the use of full length original signal, which has 1002000 sampling points, helps to 

avoid the statistical bias in the extraction. 

Figure 14 gives an example of wavelets centered at 25 and 50Hz. As can be seen, 

the window width and amplitude are automatically adapted to the center frequency. The 

frequency component located at the center is mostly conserved after extraction. The 

further the components are away from this center, the more they are discriminated in 

extraction. The window amplitude decreases to nearly zero for a frequency situated 
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beyond two times the center frequency. Thus, when it is applied to stator current, only 

information near inverter frequency is retained after extraction and other components 

including the harmonics of inverter frequency are excluded. The arrows in Figure 14 

denote the magnitude of wavelet at center frequency fi and sideband frequencies fi (1-2s) 

and fi (1+2s). The adaptation of window width automatically takes into account of the 

increasing distance of characteristic frequencies from center frequency fi. It allows a 

relatively constant ratio of extraction at fi and fi (1±2s) when fi varies. Thus, it results in 

a relatively unbiased extraction along different fi by remaining the proportionality of 

extraction. 

 

Figure 14 Spectrum of wavelet windows centered at 25 and 50Hz 
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3.1.5 Feature Evaluation 

After the feature extraction, the time variation of the targeted frequency band, 

named broken rotor bar feature, is obtained, which can be observed in time domain 

and/or in frequency domain. In this thesis, several statistic indices are studied and 

compared to quantify the feature which reveals the motor rotor condition.  

3.1.5.1 Mean and Standard Deviation Indices 

Among various statistic measurements, the mean and standard deviations of 

absolute value of feature are among the most popular. They are also widely applied in 

the analysis of stator current [16], [18]-[22]. The equations of mean and standard 

deviation, denoted M and STD respectively, are given in (16) and (17). 

� = 	 1z{|123(-9, !"∗)|
|

9}B
 

(16) 

�2�(|123|) = 	1z{(|123(-9, !"∗)| − �)U
|

9}B
 

(17) 

Where 

L : total sample points  

123(-9, !"∗) : broken rotor bar feature for operating mode !"∗  

3.1.5.2 Shannon Entropy 

Entropy is a common concept in many fields, mainly in signal processing. It is a 

measure of the degree of uncertainty [27]. Shannon entropy (18), which is developed in 

[28], is used in this thesis as a statistic measure of feature.  

E(x) = 	{x�U log x�U
�

 (18) 
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Where  

xi: ith sample point of signal x. 

3.1.6 Fault Identification 

After the features of normal operating motor are quantified by the statistic indices 

(16)-(18), the baseline is built for the comparison with subsequent signals which may 

be from faulty motors.  

In testing stage, the further the STD index and M index of feature are above the 

baseline, the higher possibility of the presence of broken rotor bar fault [4][13][18]. 

The STD and M are important measurements of the statistical distribution of data. The 

higher M value implies wider distribution while higher STD implies heavier tail of 

distribution. The two prominent broken rotor bar characteristic frequencies 

!"(1 ± 2I) are very close to the inverter frequency and of small amplitudes. They are 

retained after the feature extraction. These extra frequency components change the 

data distribution of the feature as compared to the healthy motor case and the bearing 

fault motor case where only one main inverter frequency is retained after extraction. 

Those extra frequency components extend the extreme values of the feature and 

smoothing its distribution by the superimposition effect.  

With respect to Shannon entropy index, its lower value below the baseline implies 

a higher possibility of broken rotor bar fault. The measured stator current usually 

contains both the frequency components and background random noises. The 
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frequency components, which are the determined factors in the signal, reduce the 

randomness of signal. Since entropy is a measure of the degree of uncertainty [27], 

signals with more determined information are less random and have lower entropy 

values. The presence of broken fault relevant frequency components are the extra 

determined information in stator current. In analyzing the broken rotor bar fault, the 

wavelet extracts the information within a very narrow frequency band around the 

inverter frequency. The two prominent broken rotor bar relevant frequency 

components are retained in extracted feature and reduce the feature entropy value as 

compared with the healthy case. Based on the reasoning above, if the entropy index of 

a measured feature is smaller than the baseline built by healthy motor, there is a 

possibility of the presence of broken rotor bar fault. 

3.2 Result and Discussion 

3.2.1 Centered Wavelet Performance 

Figure 15 shows the frequency spectrum observation of the extracted feature and 

the original stator current of the motor with broken rotor bar fault. As predicted by 

Section 4.1, the frequency band around inverter frequency is conserved after the feature 

extraction. The leveling off starts from 30Hz, which is 1.5 times inverter frequency. It is 

also observed that the broken rotor bar prominent characteristic frequencies are well 

conserved after feature extraction in a zoom-in version in Figure 16. The capability of 
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ACWT in extracting broken rotor bar fault feature is verified graphically here.  

 

 

Figure 15 Spectrums of feature and original signal 

 

 

Figure 16 Zoom-in spectrums of feature and original signal 
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3.2.2 Inverter Frequency Estimation 

Table 4.1 shows the energy of feature extracted from each normal operating 

condition by different centered wavelet. As can be seen in the comparison of energy 

among all wavelets in a specific operating condition, the largest energy is given by the 

wavelet adapted to the corresponding operating mode. It is proven experimentally the 

feasibility of the inverter frequency estimation algorithm developed in Section 4.1. 
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 1 2 3 4 5 6 

20Hz 9704.76 1593.23 2.87 0.86 0.88 0.47 

25Hz 3402.42 8449.72 1187.94 10.10 0.91 0.51 

31.5Hz 287.14 2771.20 7221.85 2439.52 123.81 1.30 

37.5Hz 30.55 446.51 3691.23 6482.87 2953.89 274.89 

43.5Hz 4.84 70.18 971.43 3952.21 5869.95 2877.86 

50Hz 1.19 11.46 190.91 1242.36 3768.04 5258.63 

Table 4 Energy of features from healthy motor 

3.2.3 Feature Evaluation 

3.2.3.1 Direct Observation 

Figure 17 and the zoom-in graphs in Figure 18 are examples of stator current 

signals from three motors at 20Hz inverter frequency: healthy, broken rotor bar and 

faulty bearing. Through directly observation there is significant noise presented in 

stator current for all three cases. In addition, the amplitude of stator current from 

bearing fault motor is smaller than other two cases. Other than this, no specific 

information of characteristic frequency can be read from them. Hence, no conclusion 

upon the motor fault can be drawn from direct observation of the original stator current.  

Wavelet 

Wavelet 
Energy 

Signal 
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Figure 17 Stator current signals at fs = 20Hz 
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Figure 18 Zoom-in stator current signals at fs = 20Hz 
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Figure 19 and Figure 20 respectively. By direct observation, it is found that the 

extracted features have less noise than the original signals because the extraction 

concentrates only one limited frequency band where resides the inverter frequency as a 

determined sinusoidal signal component. The frequency components as well as the 

noise which fall outside the narrow band are automatically filtered out.  

It should be noted that there is a difference between the broken rotor bar feature 

and other two cases. In Figure 19 the edges of feature in broken rotor bar case reflect 

another periodic characteristic. This may corresponds to the presence of extra 

frequency components around inverter frequency. 
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Figure 19 Extracted features from stator currents at fs = 20Hz 
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Figure 20 Zoom-in extracted features from stator currents at fs = 20Hz 
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3.2.3.2 Frequency Spectrum Observation 

The extracted features are transformed into frequency spectrum to observe the 

major characteristic components and their amplitudes in order to help the 

understanding of later statistical analysis. There are one full scale version of feature 

spectrum Figure 21 and two zoom-in graphs Figure 22 and Figure 23. The results from 

three motor conditions are superimposed. The solid blue line represents the broken 

rotor bar case and the dashed green line and dotted red line represent the healthy case 

and faulty bearing case respectively. In Figure 21 the spectrums of features from three 

motors are similar to each other in full vision. The fundamental components locate at 

20Hz and take the majority of the signal energy. However, after zoom in, two major 

differences are found. In Figure 22, the component at inverter frequency of broken 

rotor bar motor is obviously larger than the other two. As predicted by formula (1) with 

k =1, there exist a broken rotor bar relevant frequency component at fs. Hence, it 

results in larger amplitude of fs in the broken rotor bar case due to the superimposition. 

In Figure 23, two prominent characteristic frequencies appear near the inverter 

frequency at the locations around 19Hz and 20Hz in the broken rotor bar case. The 

amplitudes of characteristic frequency component are roughly 100 times smaller than 

the inverter frequency component. These observations are in accord with the prediction 

made by the theoretical study of broken rotor bar fault in Section 4.1. 
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Figure 21 Spectrums of features from stator currents at fs =20Hz 

 

 

Figure 22 Zoom-in spectrums of features from stator currents at fs =20Hz 
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Figure 23 Zoom-in spectrums of features from stator currents at fs =20Hz 
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existence of extra components which, in this context, are the two broken rotor bar fault 

relevant characteristic frequencies locating by the side of inverter frequency. This 

observation is consistent with previous prediction in Section 4.1. 

 

 

Figure 24 Histogram of healthy motor feature 
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Figure 25 Histogram of broken rotor bar motor feature 

 

 

Figure 26 Histogram of bearing fault motor feature 
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3.2.3.4 Statistic Indices 

All sets of data, consisting of five measurements of each operating condition, are 

put through the proposed method ACWT. Their STD, M and Shannon entropy values 

at every operating condition are shown in Figure 27, Figure 28 and Figure 31 

respectively 

 

Figure 27 M index from ACWT 
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Figure 28 STD index from ACWT 
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rotor bar fault region and other conditions. The exact threshold value used in our 

experiment is the healthy condition boundary value after a few measurements. 

However, it is possible to build in margin to improve the tolerance for errors in 

measurement in real industry applications and take into consideration of the allowable 

degree of degeneration of rotor bar before broken up. The specific value of the margin 

is worthy of studying in the future work. 

The ACWT in broken rotor bar detection is compared with another feature 

extraction technique. The Figure 29 and Figure 30 are the M index and STD index 

resulting from the method based on Short Fourier transform developed in [16]. This 

method places a narrow window with fixed wind width around the characteristic 

frequency to extract the feature. Although, as predicted in Section 4.1, M index and 

STD index values of broken rotor bar fault are all higher than the other two cases, the 

distance between them at every operating condition is different. The value of M index 

increases initially with the increase of inverter frequency to the point of 43.5 Hz and 

decreases at 50Hz. The STD value of broken rotor bar feature increases linearly along 

inverter frequency. However, no trend can be observed on the STD values of healthy 

and faulty bearing cases. At inverter frequency 43.5Hz, the STD value of faulty bearing 

feature even exceed the healthy one. This brings the difficulty in building a general 

threshold to detect broken rotor bar fault with merely a priori knowledge of normal 

conditions. Hence, by examining the STD and M indices, ACWT overtakes the Short 

Fourier transform based technique in [16] through its better feature extraction result. 
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Figure 29 M index from Short Fourier transform 

 

 

Figure 30 STD index from Short Fourier transform 
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Next, the third index of feature quantification is studied. The result of Shannon 

entropy shown in Figure 31 agrees with the previous prediction. The higher peak value 

of inverter frequency and extra components nearby contribute to the certainty of signal; 

hence decrease the entropy value of feature in broken rotor bar case. The increase of 

entropy values along the inverter frequency is due to the wider window width of 

adapted wavelet and lower window height associated. A wider wavelet window 

includes more background noise thus increase the randomness of information which 

results in higher entropy value for all three cases as inverter frequency increase. Lower 

window height reduces the amplitude of centered frequency component after 

extraction. As a result, the entropy is increased. 

 

 

Figure 31 Shannon entropy index from ACWT 
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After the step of quantification of feature, all statistic indices agree with the 

theoretical prediction of their performance in broken rotor bar case and other two cases. 

The broken rotor bar motor can be identified by comparing these statistic values of the 

extracted feature from stator current to the ones of the healthy motor. The adaptability 

of ACWT to different motor operating mode is verified experimentally and by 

comparison with another widely used technique. 
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Chapter 4 

Adaptive Centered Wavelet Technique for Bearing Fault 

Detection 

 

Following the success of adaptive centered wavelet technique in the detection of 

broken rotor bar fault, the similar methodology is applied to detect bearing fault 

which is the primary cause of induction motor failure in industry.  

4.1 Process 

A similar process is conducted in bearing fault detection. The major difference 

resides in the feature extraction stage. Unlike broken rotor bar characteristic 

frequencies, of which the most significant components exist at two sides of the 

inverter frequency, the bearing fault characteristic frequencies spread over the entire 

spectrum and no prominent components are predictable. The magnitude of 

components depends on the severity of the bearing fault itself as well as the load 

condition. The more severe fault and/or heavier load lead to larger load variations, 

which will result in higher amplitude of the characteristic components. As our 

algorithm is targeted for early fault detection, the lightest load is used in our design. 

Hence, unlike one wavelet window that is centered around inverter frequency is used 

in the feature extraction for broken rotor bar fault detection; a set of wavelets are 

placed over several potential characteristic frequency locations for bearing fault 
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detection to observe the local conditions. The feature from each wavelet is analyzed 

separately. 

Each wavelet, denoted by the node n, is placed between |�� − 	 (� + �)�
| and 

|�� + 	��
| in order to cover two nearby bearing fault related frequency components. 

Table 5.1 lists those chosen centers which are associated with different inverter 

frequencies: 

ℱ = H2v + 12 K !& (19) 

Where 

n node number 

	!& outer raceway bearing fault vibration characteristic frequency 

 

ℱ (Hz) 1 2 3 4 5 6 7 8 9 10 

35.1 52.6 87.7 122.7 157.8 192.9 227.9 263.0 298.0 333.1 368.2 

43.8 65.7 109.6 153.4 197.2 241.1 284.9 328.7 372.6 416.4 460.2 

55.2 82.8 138.1 193.3 248.5 303.7 359.0 414.2 469.4 524.6 579.9 

65.8 98.6 164.4 230.1 295.9 361.6 427.3 493.1 558.8 624.6 690.3 

76.3 114.4 190.7 266.9 343.2 419.5 495.7 572.0 648.2 724.5 800.8 

87.7 131.5 219.2 306.8 394.5 482.1 569.8 657.5 745.1 832.8 920.4 

Table 5 Wavelet placement ℱ 

n 
 

fo (Hz) 
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4.2 Result and Discussion 

4.2.1 Frequency Spectrum Observation 

Because the window widths of wavelets increase with the increasing center 

frequency, the features extracted in high frequency area have relative large bandwidths. 

The wider the feature bandwidth is the more unpredictable components are retained in 

the feature after extraction. In Figure 32, the comparisons are made between the 

features at node 1 and node 10 of the stator current signal with fs = 50Hz. It is 

observed that the feature bandwidths at node 1 and node 10 are around 100Hz and 

700Hz respectively. In the feature extraction stage of motor fault detection, the 

wavelet is designed to target specific characteristic frequencies predicted in Section 

3.2.2. Hence, the small wavelet bandwidth is preferred to discriminate the 

unpredictable or fault irrelevant components around the characteristic frequencies. 

From this point of view, ACWT manifests its weakness in the feature extraction at 

high frequency area.  
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fs = 50Hz 

Node 1 

 

fs = 50Hz 

Node 10 

Figure 32 Spectrums of features at node 1 and 10 
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Section 3.2 but also other unpredictable locations. 

Firstly, the amplitudes of harmonics of inverter frequency in stator current are 

different between the different motors. This issue is visualized in frequency spectrum 

of both stator current signals and extracted features in Figure 33. The frequency 

spectrum of bearing fault condition is plotted in solid red line on top of the healthy one 

represented by dashed green line. It is obvious that at harmonics of 40, 100, 120 and 

140 Hz, the frequency components are higher in healthy case. This phenomenon is not 

due to the wavelet transformation but to the nature of stator current in local condition. 

This is possibly resulted from the installation of motor and/or the disturbance from the 

connected power system during the measurement. So far, researches have not yet 

proven the correlation between the motor fault and the resulted modification of the 

harmonics of inverter frequency in stator current. Hence, the harmonics of inverter 

frequency are characterized as irrelevant to motor fault condition and are usually 

excluded in motor fault analysis. By observation, they are of considerable amplitude in 

low frequency band and become less prominent in the spectrum after the 13th harmonic 

(ex. 260Hz for fs = 20Hz). For this reason, it is better to extract the feature locating at 

middle frequency band which is less affected by the fault irrelevant inverter frequency 

harmonics  
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fs =20Hz 

fs =20Hz 

Node 1 

Figure 33 Spectrums of original signal and feature 
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extracted feature. They may be introduced by inverter or other factors in the power 

system.  

 

fs =20Hz 

 

fs =20Hz 

Node 9 

Figure 34 Spectrums of original signal and feature 
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found that not every bearing fault related characteristic frequency predicted in Section 

3.2 appears in stator current spectrum of faulty bearing motor. Some of them with too 

small amplitude are corrupted by noise and thus not observable in spectrum [5], [18], 

[19]. The characteristic frequencies are more obvious in middle frequency band such as 

node 9 where the main harmonics decrease to certain extend. Figure 35 shows the 

experimental result of bearing fault related characteristic frequency components, which 

are at the locations around 2Hz smaller than the prediction. This pattern is similar in 

different operating condition.  

 

fs = 

20Hz 

 

Figure 35 Zoom-in spectrums of original signals around 330Hz 
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the contribution of determined fault-related information in final feature instead of the 

effect from other unpredictable factors.   

4.2.2 Statistic Indices Evaluation 

Most STD index values of bearing fault motor features based on ACWT are below 

the ones of healthy motor in ten nodes at different operating conditions. This implies 

the existence of bearing fault related information in all nodes [18], [19]. However, in 

fact, only the bearing fault related features in middle frequency band are of 

considerable amplitude. Hence, the STD results of lower nodes where the observable 

fault not included are not convincing. These results may due to other factors such as the 

variation of harmonics in low frequency band between different motors. 

By observation, higher order nodes generate better result in STD. For example, the 

STD results of features extracted at node 9 and node 1 are shown in Figure 36 and 

Figure 37. Where the bearing fault related characteristic frequencies are observed 

within the window of node 9, the STD value is constantly below the other two at all 

operating modes. In contrast, the consistence along the inverter frequency is violated in 

low order nodes such as in node 1 shown.  
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Figure 36 STD index at node 9 

 

Figure 37 STD index at node 1 
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value of bearing fault case beyond the other two cases while Node 9 exhibits the 

entropy value of bearing fault constantly below which is in accord with the prediction 

of existence of extra determined components in Node 9. Indeed, in the previous 

observation of bearing fault spectrum, only the bearing fault related characteristic 

frequencies within the wavelet window node 9 are observed. Other characteristic 

frequencies are corrupted by noise and fault irrelevant disturbance presented in low 

frequency band. This bearing fault related characteristic frequencies are mostly 

extracted in Node 9 other than Node 2. The entropy index reveals this difference. 

The lower entropy value for bearing fault motor at Node 9 agrees with the 

prediction made before: characteristic frequencies which decrease the uncertainty of 

information thus decrease the entropy value. Based on the performance of centered 

wavelet technique on both broken rotor bar and bearing fault detection, it can be 

concluded that Shannon entropy proves a more reliable statistic measurement of 

determined fault related information. 

However, the wide spread spectrum of feature in high frequency area after 

extraction reduced the credit of attribution from characteristic frequencies on the final 

lower entropy value of feature. As can be seen in Figure 34, the feature contains a few 

harmonics of inverter frequency. Any difference of these motor fault irrelevant 

components can affect the conclusion. 

In conclusion, the reliability of ACWT is less convincing in bearing fault detection 

compared to broken rotor bar fault detection. This is due to the combined effect of the 
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non-observable bearing fault feature in low frequency band in our experimental result 

and the incapability of wavelet in achieving narrow window width in middle frequency 

band. 

 

Figure 38 Shannon entropy index at node 2 

20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2
x 10

5 entropy of node 2

Supply Voltage Frequency (Hz)

M
ag

ni
tu

de

 

 
BR
B
H



67 
 

 

Figure 39 Shannon entropy index at node 9 
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Chapter 5 

Adaptive Wavelet Packet Technique for Motor Fault 

Detection 

 

Aiming to maximize the advantage of adaptability of ACWT developed in 

previous chapters while improve over its shortcoming of wide window width in the 

high frequency area, adaptive wavelet packet decomposition technique (AWPT) is 

proposed in this chapter to achieve an adaptive motor fault detection. 

There are two main advantages of wavelet packet decomposition (WPD) compared 

to wavelet analysis: adjustable bandwidth and fast computation. The main challenge is 

how to deal with the window location and width for feature extraction under different 

inverter frequencies. The spectrum width of a stator current is determined by its 

sampling frequency. In WPD, the spectrum is continuously divided into 2 to the desired 

level imposed by the user [29]. Thus, the fault feature in two different operating modes 

may locate in different subbands or at different positions within a subband or even in 

the cross section of two consecutive subbands. This makes the feature node 

unpredictable or even insignificant. In addition, the inter-relationship between nodes is 

not maintained. Many people implement neural network to overcome this disadvantage. 

It uses a big range of fixed nodes from WPT as the inputs of the network, which cover 

all possible feature locations in different cases. According to this input strategy, the 

input patterns of the stator current from the same motor condition but under different 
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fs are different from each other. Hence, the network needs to memorize all of them as 

different cases and summarize them into one conclusion of motor condition in the 

training stage. For example, the motor condition of bearing fault motor with fs = 50Hz 

cannot be identified although the network has been trained successfully to diagnosis 

the bearing fault motor under fs = 20Hz. What’s more, since the node placement is 

fixed in WPT, the cases, of which the features reside in the cross sections of nodes, 

cannot be identified by neural network even in the training stage. These are the limits 

of the input strategy based on WPT. Hence, for the motor fault detection techniques 

developed in this thesis as well as the neural network techniques, it is critical to 

respect the inter-relationship in the feature extraction under various operating modes 

to achieve a better detection accuracy and efficiency. 

The following method aims to achieve a better node placement hence better feature 

extraction. The overall block diagram of AWPT is presented in the beginning of this 

section and the details of wavelet packet decomposition, resampling process and 

statistic indices are illustrated in separate subsections. In Section 5.2, the spectrum 

observations and the statistic indices evaluations are presented. Finally, a fault region 

graph is proposed for a visualization of the AWPT results. 

5.1 Methodology 

The adaptation of wavelet packet to stator currents at difference inverter 

frequencies is realized by adding a resampling block before the wavelet packet 
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decomposition Figure 40. The resampling process will change the whole spectrum 

length in order to adjust the node position and width. Its effect on wavelet packet 

decomposition will be demonstrated in details in Section 6.1.2.  

 

 

 

 

 

 

 

 

 

Figure 40 Training stage of AWPT 

5.1.1 Wavelet Packet Decomposition  

A finer frequency resolution in the middle- or high-frequency band could be 

achieved via wavelet packet decomposition (WPD). WPD is closely related to multirate 

filter banks. Subband decomposition of signal using two-band filter banks can be 

implemented efficiently and conveniently [28]. Daubechies showed that the following 

equations can be used to numerically obtain wavelet and scaling coefficients 
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level � − 1 using 

+8,9(-) = 	{x(oU9:8oB,((-)
(

 (21) 

〈d, +8,9〉 = 	{x(oU9>>>>>>>>〈d, :8oB,(〉
(

 (22) 

The scaling coefficients for level j can be obtained from the scaling coefficients 

from level � − 1 using 

:8,9(-) = 	{ℎ(oU9:8oB,((-)
(

 (23) 

〈d, :8,9〉 = 	{ℎ(oU9>>>>>>>>〈d, :8oB,(〉
(

 (24) 

Where g and h are high-pass and low pass filters, respectively. The procedure can 

start by calculating 〈d, +B,9〉 and 〈d, :B,9〉 from 〈d, :�,(〉 using (22), (24) respectively. 

Then, the same procedure is used until the level j is reached.  

An example of WPD is illustrated in Figure 41 and Figure 42. The frequency 

separation obtained by WPD is depicted in Figure 41. As can be seen, the spectrum is 

divided into 8 subbands by a 3 level decomposition. The band width is around f/8 where 

f is the sampling frequency of the input signal. The wavelet filter bank structure to 

accomplish such decomposition is shown in Figure 42. 

 

Figure 41 Linear frequency separation 

 

f 
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Figure 42 Filter bank structure 

 

The wavelet packet coefficients at any level j+1 can be obtained from coefficients at 

level j by using equations (25) (26) 

;8mB
U5 �G� = 	 ;85�G� ∗ h>�2k� (25) 

;8mBU5mB�G� = 	;85�G� ∗ g>�2k� (26) 

Where 

d� is the input signal 

Thus, subband width and location are determined by sampling rate of signal and 

level of decomposition.  

5.1.2 Resampling 

The subband width is expected to be small enough to exclude harmonics of inverter 

frequency in stator current, which act as unpredictable factors in fault detection around 

the targeted fault-related characteristic frequencies. This is particularly essential for 
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detecting bearing fault of which the feature amplitude is weak. Thus, its width should 

be smaller than fs. As fs varies in different operating condition and fault-related features 

change accordingly, the width is ought to be adapted to this variation to keep the same 

node covered the same feature under different operating condition. This adaptation is 

realized by resampling process. 

The original signal is sampled at rate of 50 kHz. Thus, the useful spectrum of the 

discrete signal covers 25 kHz frequency band. Because the information in high 

frequency band mainly contains the noise and is not of great interest in fault detection. 

Hence, resampling to lower sampling rate is applicable in this case. 

An anti-aliasing FIR filter is first applied during the resampling process to filter 

out the frequency components above the desired sample rate position in signals. Next, 

10 terms on either side of the current sample, x(k), are used to perform the 

interpolation in order to achieve the least distorted discrete signal in desired sampling 

rate. 

In this work, the sample rate for signals with different inverter frequency is 

designed as follow: 

!? = � × !")45*'(� × !"∗ (27) 

where 

R  a predetermined constant 

The value of R together with the level of decomposition determines the wavelet 

packet position and bandwidth. In this thesis, R is set to be 5.2 × 10o� and level of 
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decomposition is set to be 8 for achieving the best performance. Table 6.1 shows the 

corresponding bandwidth and fault-related feature nodes for different inverter 

frequency. Feature Node [8,1] focus on broken rotor bar related information. It covers 

the broken rotor bar fault related characteristic frequency !"(1 − 2I). Feature Node 

[8,48] focus on bearing related information. It covers |�� − 	����| and |�� + ���| 
these two bearing fault characteristic frequencies. As can be seen, the width of wavelet 

window is well adapted to different operating condition. Furthermore, the harmonics of 

inverter frequency are excluded in feature node [8, 48] so that the extracted information 

relies more on the bearing condition of a motor. By using these two nodes, the motor 

rotor bar condition and bearing condition are observed at the same time. They can be 

analyzed simultaneously in diagnosing the motor condition.   
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fs 20Hz 25Hz 31.5Hz 37.5Hz 43.5Hz 50Hz 

Sampling Rate 

(Hz) 

5200 6500 8190 9750 11300 13000 

Subband Width 

(Hz) 

10.2 12.7 16.0 19.0 22.1 25.4 

Feature Node [8,1] 

(Hz) 

10.2~ 

20.4 

12.7~ 

25.4 

16.0~ 

32.0 

19.0~ 

38.0 

22.1~ 

44.2 

25.4~ 

50.8 

Feature Node [8,48] 

(Hz) 

325~ 

335.2 

406.3~ 

418.9 

511.9~ 

527.9 

609.4~ 

628.4 

706.3~ 

728.3 

812.5~ 

837.9 

Table 6 Resampling details 

5.1.3 Statistic Index  

Both STD index and Shannon entropy are applied on features. In addition, 

normalization based on packet energy is applied to improve the feature quality. 

d<
=>>> = 	 d�=

�d�=�
 (28) 

Where 

d�= feature at node [j,p] 

d<=>>> normalized d�= 
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5.2 Result and Discussion  

The features extracted by using AWPT are firstly evaluated in spectrum. The 

adaptability of AWPT to different operating condition in the step of feature extraction is 

discussed and compared to the non-adaptive wavelet packet decomposition which is 

used in other papers [18]-[20]. Later, the performance of different indices is evaluated. 

At last, by using entropy index, a fault region graph is finally built to achieve the goal of 

fault detection with a priori knowledge of normal operating conditions.  

5.2.1 Frequency Spectrum Observation 

The determined fault-related information is effectively extracted by AWPT. This 

can be observed in the comparison between the frequency spectrum of feature dA�A and 

original signal spectrum of the 20Hz signal in Figure 43. The harmonics at 320Hz and 

340Hz are all excluded after the extraction whereas broken rotor bar related feature and 

bearing fault-related features around predicted location 330Hz are conserved. However, 

an unpredictable component at frequency 333Hz in healthy motor and bearing fault 

motor remains after extraction.  
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20Hz 

20Hz 
Node[8,48] 

Figure 43 Spectrums of original signals and dA�A	features by AWPT  

Figure 44 shows the frequency spectrums of the re-sampled stator current of 50Hz 

inverter frequency and its feature dAB. Although the original spectrum pattern is not 

conserved in this case after extraction, the essential difference between the broken rotor 
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bar fault and other two cased are remained. 

50Hz 

 

50Hz 

Node[8,1] 

Figure 44 Spectrums of original signals and dAB	features by AWPT 

In Figure 45, the similar layouts of spectrum of feature dA�A are found in different 

operating conditions in AWPT. This result proves the success of the method in 
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associating same node at same feature from motors running under different inverter 

frequency. The node [8,48] extracts the feature around 520Hz from 31.5Hz signal and 

the feature around 825Hz from 50Hz signal. A comparison with traditional 

non-adaptive wavelet packet decomposition is given in Figure 46. With the constant 

sampling rate of 5200 and 3 level decomposition, the node [8, 48] always focus on 

frequency band around 330Hz regardless of different operating condition. Thus, as can 

be seen in the upper graph, for inverter frequency not equal to 20Hz, the feature 

extracted at node [8,48] is not related to predicted fault feature. Moreover, although the 

fault-related frequency band can be found, such as node [8,121] for 50Hz inverter 

frequency current shown in the second graph, the extracted pattern does not conserve 

the similar layout for different operating conditions as compared with the ones by 

AWPT shown in Figure 45. Hence, AWPT overtakes the traditional WPT in term of the 

adaptability of feature extraction to different operating conditions.  
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31.5Hz 
Node[8,48] 

50Hz 
Node[8,48] 

Figure 45 Spectrums of dA�A	features at different fs by AWPT 
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50Hz 
Node[8,48] 

50Hz 
Node[8,121] 

Figure 46 Spectrums of features by traditional WPD 

The similar layouts of feature dAB are also found in different operating conditions 

as shown in Figure 47. 
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37.5Hz 

Node[8, 1] 

 

50Hz 

Node[8, 1] 

Figure 47 Spectrums of dAB	features at different fs by AWPT 

The bearing fault related feature is enhanced by normalization using packet energy 
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predicted positions become more obvious in faulty bearing case after the normalization. 

In contrast, as can be seen in Figure 49 , the broken rotor bar related feature dAB in three 

cases remains almost the same after normalization except the change of the amplitude 

of the whole spectrums. 
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31.5Hz 
Node[8.48] 
Normalized 

Figure 48 Spectrums of features dA�A	and normalized features dA�A>>>>> 
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50Hz 
Node[8,1] 
Normalized 

Figure 49 Spectrums of features dAB	and normalized features dAB>>> 

5.2.2 Statistic Indices Evaluation 

STD and Shannon entropy are applied to quantify the features in node [8,1] and 

node [8,48] directly after the extraction. Node [8,1] contains broken rotor bar related 

feature dAB whereas node [8,48] contains bearing fault related feature dA�A. The results 

are shown in Figure 50 and Figure 51. As can be seen, their interrelationship agrees 

with the previous predictions. It is also observed that Shannon entropy gives a better 

separation of data in node [8,48] which is associated with bearing fault feature. As early 

as in the bearing fault detection in Chapter 5, Shannon entropy has proven its better 

predictability of fault feature as compared to STD. Hence, from this point on, the 

Shannon entropy is accepted as a general statistic index in evaluating the features.  
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Figure 50 STD index at node [8,1] and node [8,48] 
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Figure 51 Entropy index at node [8,1] and node [8,48] 
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52 that the E@dAB>>>C of broken rotor bar motor is much lower than the ones in both 

healthy and bearing fault motors. And the relative position is kept nearly constant 

throughout the different inverter frequencies. This is similar to the result obtained in 

section 4.2 by ACWT. This observation agrees with the previous prediction and result. 

 

 

Figure 52 Shannon entropy index at node [8,1] 

In addition, the linear relationship between inverter frequency and entropy 

magnitude is observed in all three cases. After the linear regression, the slope and the 

offset for three motors are found. It can be deduced that the position of entropy value of 

broken rotor bar fault becomes further below the healthy motor with the increase of 

inverter frequency. Thus, the detection accuracy is better for motors in higher operating 

frequency.  
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Condition Healthy Bearing Fault Broken Rotor Bar 

Slope 0.1697 0.1745 0.1631 

Offset 2.3881 2.4189 2.2088 

Table 7 Slope and offset after linear regression 

The good linear behavior of E@dAB>>>C along the inverter frequency and the similar 

slope between three cases make the compression of feature to one bench mark possible. 

For the purpose of condition monitoring, the slope of E@dAB>>>C of healthy motor, which is 

obtained in training stage, is used to compress all data to one benchmark, which is the 

	E@dAB>>>C of lowest operating frequency of healthy motor (20Hz in this study). The final 

entropy value of node [8,1] is calculated by equation (29). And the result is shown in 

Figure 53. 

�@;AB>>>, !"C = 	�@;AB>>>, !"C − � × (!" − !"*) (29) 

Where  

!"* is the lowest operating frequency of motor 

!" is the estimated inverter frequency of signal 

� is the slope found in training stage of healthy motor  
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Figure 53 Entropy index at node [8,1] after linear regression 

By using only the healthy motor stator current, the baseline can be built to detect 
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normalized result has a better consistence of separation distance between three cases 

at different inverter frequency whereas the separation distance in non-normalized case 

grows along the inverter frequency.  

 

 

Figure 54 Entropy index at node [8,48] after linear regression  

Different from the entropy behavior in node [8,1], the E@dA�A>>>>C  is relatively 

constant along the inverter frequency. It can be directly used to compress the bearing 

fault feature into one dimension. It is also found that in high operating frequency the 

deviation of entropy between different measurements is smaller than the one in low 

operating frequency. The smaller E@dA�A>>>>C  compared the baseline, the higher the 

possibility of bearing fault is.  
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5.2.3 Fault Detection Graph 

Since each feature can be compressed into one dimension, a two-dimensional fault 

detection graph can be obtained through integrating these two features as shown in 

Figure 55. Different from many other researcher’s classification methodologies of 

motor conditions [21][22][30], this graph has determined regions for motor conditions 

which makes the prediction of specific motor fault from a priori knowledge of healthy 

condition possible. The principle idea is that many motor faults add characteristic 

frequency components into stator current, such as broken rotor bar fault and bearing 

fault. By focusing on specific frequency bands, where relatively prominent 

components of specific fault reside, the determined fault-related features can be 

extracted and finally evaluated by statistic index such as Shannon entropy. This 

fault-related feature always decreases the entropy value as compared with the feature 

extracted from the same frequency band of the normal operating conditions. In Figure 

55, Node [8, 1] focus on the frequency band around inverter frequency while Node 

[8,48] focus on the frequency band around the position of 9th order characteristic 

frequency of bearing fault. The training takes normal operating conditions as many as 

possible. And the lower bounds of the training results in these two nodes are used as 

boundaries to divide this graph into four regions: healthy region, broken rotor bar 

region, bearing fault region and other abnormal region, as illustrated in Figure 55. It is 

predicted that broken rotor bar fault will result in lower entropy in Node [8, 1] as 

compared to normal operation conditions while bearing fault will result in lower 
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entropy in Node [8,48]. If a signal’s indices are lower in both nodes than normal 

condition, it implies that extra components existing in the two targeted frequency bands. 

Hence, an unidentified abnormal condition occurs. In subsequent testing stage, a motor, 

whose indices fall in one specific region, is diagnosed to be of this specific condition. 

Finally, a reliable and adaptive motor fault detection is achieved with a priori 

knowledge of normal operating conditions. In the fault detection graph, different color 

represents different operating mode. It is observed a good consistence of the results 

from the same motor but different operating mode. A good separation is also observed 

for stator currents from different motor conditions which proves the reliability and 

adaptability of AWPT based on our experimental data. 
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Figure 55 Fault detection graph 
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Chapter 6  

Conclusion 

6.1 Outcomes 

In the framework of the present thesis, the motor broken rotor bar fault and bearing 

fault have been studied in details both theoretically and numerically. Based on the 

investigation of physical natures of the three laboratory motors (one normal, one with 

broken rotor bar and one with faulty bearing), the stator current features of the faults 

measured on the laboratory motors have been predicted through the theoretical analysis. 

By using the real time measurement data of stator current from the laboratory motors, 

these predictions have been verified numerically. Although the fault-related features 

can be observed directly on frequency spectrum by FFT, the good feature extraction 

strategy and quantification method developed in the present thesis surely improve the 

reliability and provide convenience of fault detection, especially for the purpose of 

online application. The candidate has proposed two techniques in the present thesis, 

ACWT and ACPT, to achieve an adaptive feature extraction for motors running under 

different inverter frequencies. ACWT’s capability of reliable detection of broken rotor 

bar fault under various operation conditions has been verified. Compared with the 

result based on the method of Short Fourier transform [16], ACWT has demonstrated a 

better adaptability for various operating conditions. On top of the success of ACWT on 

broken rotor bar fault detection, ACWT has been further extended its performance for 
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bearing fault detection. However, ACWT has revealed its weakness in bearing fault 

detection for two reasons. The features of bearing fault generated on the laboratory 

motor only appear at certain positions instead of all as predicted in theoretical studies. 

In addition, the window size of AWCT for bearing fault feature extraction is too large to 

focus only on determined fault-related features. It includes other unpredictable 

components from stator current after extraction. Hence, the reliability of ACWT is 

less-convincing in bearing fault detection. In order to improve on the shortcoming of 

ACWT, another method named AWPT has been proposed to narrow down the window 

size of extraction while maintaining the adaptability in various operating modes. 

Unlike the traditional methods of wavelet packet decomposition, AWPT is able to focus 

on specific fault features and extract them robustly irrespective of different inverter 

frequencies. 

In terms of feature quantification, several statistic indices have been studied in the 

thesis. Their capability of quantifying fault features has been demonstrated. After 

several comparisons and discussions, Shannon entropy has been chosen to be used as a 

general index for its great predictability of fault features and its consistent performance 

in different operating conditions. 

Finally, the goal of motor fault detection under various operating conditions based 

on prior knowledge of normal operating condition has been achieved by AWPT with 

Shannon entropy index. During the training stage, stator currents of normal operating 

conditions have been collected to build a fault detection graph. The extraction of 
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broken rotor bar related feature is chosen to be around the inverter frequency while the 

one of bearing fault related feature is determined based on the number of bearing balls 

and the motor slip estimated in normal operating condition. Shannon entropy values of 

these two features from healthy motor are used to define four motor condition regions 

in the fault detection graph: healthy region, bearing fault region, broken rotor bar fault 

region and other abnormal region. In the subsequent testing stage, the motor condition 

has been determined by the region where it falls inside this graph based on its feature 

values. The experimental result has proved the adaptability and reliability for motor 

condition monitoring and fault detection of the proposed method.  

6.2 Future Work 

In the motor fault detection graph, the division of motor condition regions makes 

use of lower bound of Shannon entropy values of normal operating conditions in each 

feature. In Figure 55 it is observed that there exists certain deviation of feature 

locations in different measurements of the same motor. Hence, the use of lower bound 

of limited measurements may result in misclassification of a normal operating 

condition into faulty regions. As can be seen, there exist obvious separations between 

normal conditions and faulty conditions. Thus, it is possible to build in margins to 

improve the tolerance for errors in measurement. The specific values of the margins 

are worthy of further study. 

In addition, in the present thesis the severity of motor fault has not been 
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addressed. For example, the broken rotor bar fault is made by drilling a hole on one 

bar in our experiment. The cases of more broken bars have not yet been established. 

The interest of studying fault severity is for the better prediction of the transient 

change of motor condition in real cases in order to achieve early fault detection. 

Hence, in the future work, more laboratory models are recommended to be built for 

the study of the severity in each kind of motor faults. 

In the present thesis, only broken rotor bar fault and bearing fault have been 

targeted in motor fault detection under various operating conditions. There is some 

potential for AWPT to be extended to other types of motor faults in order to become a 

more generally accepted motor fault technique. Thus, more types of faults are 

expected to be established on laboratory motors in future research. 
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Appendix A 
 
Parameters for Induction Motor 

Power 1.1kW 

Voltage 230/400V 

Current 4.5/2.6A 

Frequency 50Hz 

Speed 1410rpm 

Pole 2 
 

Annotation for Data “090407Healthy_load10_Inverter” 

Inverter Frequency Voltage(V) Current(A) Angular 
Speed(rpm) 

20Hz 39.00 1.787 585 

25Hz 48.81 2.238 732 

31.5Hz 61.86 2.837 922 

37.5Hz 73.92 3.391 1099 

43.5Hz 85.82 3.938 1275 

50Hz 98.46 4.517 1465 

 
Annotation for Data “090407BrokenBar_Inverter_load10” 

Inverter Frequency Voltage(V) Current(A) Angular 
Speed(rpm) 

20Hz 39.20 1.800 582 

25Hz 49.10 2.254 729 

31.5Hz 62.20 2.850 920 

37.5Hz 74.05 3.400 1094 

43.5Hz 86.20 3.900 1271 

50Hz 99.05 4.550 1461 

 
Annotation for Data “090408Bearing_load10_Inverter” 

Inverter Frequency Voltage(V) Current(A) Angular 
Speed(rpm) 

20Hz 39.26 1.800 584 

25Hz 49.37 2.265 731 

31.5Hz 62.42 2.860 922 

37.5Hz 74.38 3.410 1098 

43.5Hz 86.45 3.960 1274 

50Hz 99.92 4.590 1464 
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Calculation of load 

zf\; = �" − �4
�" − �$

× 100% 

Where: 
Load  Output power as a % of rated power 
Sm  Measured speed in rpm 
Ss   Synchronous speed in rpm 
Sr   Nameplate full-load speed 
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Appendix B 
 

 


