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Summary 

 
Gold nanoparticles interact strongly with visible and near infrared 

wavelengths because of their shape dependent plasmon resonance. These 

nanoparticles can be potential contrast agents for nonlinear optical 

microscopy. But nonlinear scattering from small particles with different 

shapes is difficult to predict by analytical methods. We have developed a 

numerical method which assumes the scatterer to be made of dipoles. In our 

model, the dipoles of a scatterer interact with each other and with external 

radiation. Previous dipole models for nonlinear scattering failed to take into 

account interaction between the dipoles. We show here that the dipole 

coupling is necessary for predicting the effects of shape and size of a 

nanoparticle on its nonlinear optical properties. The coupling between dipoles 

increases with increase in the magnitude of refractive index of the scatterer. 

Similarly dipole coupling becomes important in regions where there is a 

sharp change in refractive index like edges.  

Gold nanoparticles synthesized by wet chemistry are generally 

symmetric in shape and therefore they are not good candidates of second 

harmonic generation (SHG). The coupled dipole model was used to design 

and optimize a gold nano-helix for SHG. For a given excitation wavelength, 

the geometry of the helix can be tuned to yield maximum SHG. The gold 

nano-helix was found to be 65 times better than a comparable gold nanorod 
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for SHG. The approach for designing SHG scatterers can be extended to any 

other type nonlinear scattering. 

A generic methodology for modifying the surface of gold nanoparticles 

was developed. Gold nanorods were used as sample gold nanoparticles. Gold 

nanorods were coated with PEG to keep them stable in biological buffers. The 

nanorods were conjugated with antibodies to target specific cell types. The 

concentration of the antibody on the gold nanorods was optimized to reduce 

non-specific binding. Multiphoton luminescence (MPL) microscope was used 

for imaging gold nanorods targeted to cancer cells. When gold nanorods with 

longitudinal plasmon resonance (LPR) close to the laser wavelength (824 nm) 

were used, the nanorods got heated up very quickly even with 1 mW of 

excitation power. But when long excitation wavelengths (1200 nm) were used, 

the heating of nanorods was significantly reduced and this allowed imaging 

for longer period of time. Therefore longer excitation wavelengths, away from 

LPR of nanorods might be a better choice for MPL microscopy of gold 

nanorods. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Optical microscopy is a very important tool for biologists. It has played a key 

role in many biological discoveries including the discovery of cell, the 

fundamental unit of life. Optical microscopes are mostly non-invasive and 

they provide sub-cellular resolution which is sufficient for tackling most of 

biological problems. However, the focus of biological research is moving from 

single cell to collection of cells in complex three dimensional (3D) 

environments like tissues or small animals. Observation of cells in such 

environments requires microscopes which can overcome scattering by the 

sample and resolve objects in 3D. Scattering and absorption of light by 

biological specimen decrease as wavelength increases [1]. But longer 

wavelengths decrease the resolution of a microscope. Nonlinear optical 

microscopy is one of the solutions to this multi-faceted problem. Nonlinear 

optical microscopes use near-infrared excitation that can penetrate deeper 

into biological specimens. The nonlinear interaction of light with the sample 

provides high resolution in 3D.  

Another important challenge for optical microscopy is source of 

contrast in biological samples. Cells and tissues in general do not have 
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specific optical signatures which stand out of the background. Moreover, the 

ability to monitor a specific component in the sample is important. Therefore 

external contrast agents like fluorescent dyes or nanoparticles are necessary. 

These contrast agents should be small enough to be able to target cells. The 

optical signature from these contrast agents should be strong and it should 

allow for long term monitoring of the samples. Hence there is a need for 

better contrast agent for nonlinear optical microscopy.  

 

1.2 Nonlinear Optics 

Nonlinear optical microscopy refers to a collection of microscopy techniques 

which rely on nonlinear interaction between light and matter. When light 

interacts with a material without changing the optical properties of the 

material, it is called a linear interaction. Nonlinear interaction, on the other 

hand, occurs when the optical properties of the material are transiently 

changed by the light itself [2]. To observe such nonlinear phenomena, a very 

high intensity of light is necessary and therefore almost all non-linear optics 

was developed after the invention of the ruby laser [3]. However, antecedents 

of nonlinear optics can be found in electro-optic effects like the Kerr effect [4] 

and the Pockels effect. In the experiments leading to the discovery of these 

effects, a strong electric field was used to change the optical properties of a 

sample and a polarized light source was used to probe the extent of these 
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changes. After the invention of laser, researchers were able to induce changes 

in optical properties of some materials by using only light. 

There are a number of nonlinear optical phenomena but the ones 

important to microscopy are two photon fluorescence (2PF), three photon 

fluorescence (3PF), second harmonic generation (SHG), third harmonic 

generation (THG) and coherent anti-Stokes Raman scattering (CARS). 2PF 

was described theoretically by Maria Goppert-Mayer [5] in 1931. Before 

Goppert-Mayer’s work, it was believed that an electron could absorb only one 

photon to get excited to a higher energy level. The light emitted on relaxation 

of the excited electron to its ground state is called one (or single) photon 

fluorescence (1PF) (Fig. 1.1(a)). Goppert- Mayer showed that an electron can 

absorb two photons to get excited to a higher energy level. Two photon 

absorption is an intensity dependent absorption which can be described by 

equation (1.1). 

 

0 2 .a a a I= +                                                                                                            (1.1) 

 

where a is the total absorption coefficient, a0 is the linear absorption 

coefficient, a2 is the two photon absorption coefficient and I is the intensity of 

excitation light. Generally, in order for the term a2I to be comparable in 

magnitude to a0, high intensities are required. The fluorescence resulting from 
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two photon absorption is called 2PF (Fig. 1.1(b)). The first experimental 2PF 

was observed from CaF2:Eu2+ crystals in 1961 [6]. Three photon absorption is 

an extension of this concept. It should be noted here that the emitted photons 

are completely independent of how the excitation has occurred.  

The nonlinear optical phenomena like SHG, THG and CARS are types 

of nonlinear scattering. In SHG, two incident photons are jointly scattered by 

an electron to give a single photon whose energy is the sum of energies of the 

incident photons (Fig. 1.2). During this process, the refractive index of the 

sample is modulated by amplitude of the electric field (Eq. 1.2). 

 

.0 1n = n + n E                                                                                                          (1.2) 

 

where n is the net refractive index of the material, n0 is the linear refractive 

index, n1 is the first order refractive index of the material and E is the 

amplitude electric field in the incident field. n0 and n1 are tensors and E is a 

vector. In scattering processes, no real energy levels are involved. Since all the 

energy of the incident photons is converted into energy of the emitted photon, 

there is no energy loss to the sample. SHG was demonstrated experimentally 

for the first time in 1961 [7].  
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Figure 1.1. Jablonski diagram of electronic transitions during (a) 
one photon and (b) two photon fluorescence. 

 

 

 

 

Figure. 1.2 Cartoon of second harmonic generation. λ refers to 
the wavelength of light. e- represents an electron. 
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In any material, the elementary scatterer of light is an electron which is 

bound to a nucleus. The polarization induced in a single electron-nucleus pair 

is defined by equation (1.3): 

 

  (1) (2) (3)

p = αE + βEE + γEEE + ...

= p + p + p + ...
                         (1.3) 

 

where α, β and γ  are first, second and third order polarizabilities of the 

electron-nucleus pair respectively, E is the incident local electric field and p is 

the induced dipole moment which includes linear dipole moment (p(1)) and 

the nonlinear dipole moments (p(2), p(3),..). This dipole moment is responsible 

for all scattering processes. It should be noted that all these parameters are 

tensors. For example, second order polarization (p(2)) which is responsible for 

SHG can be decomposed into its components as follows 
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 
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Scattering is a coherent process which implies that the scattered light has well 

defined phase relation with the incident photons as well as with the sample. 

The scattering of light, which is experimentally observed in the laboratory, is 

a vectorial summation from different dipoles within a sample. Therefore the 

structure of the sample and distribution of its optical properties play a very 

important role in the determining the nature of the scattered light. The 

macroscopic scattering observed can be described by equation (1.5) which is 

expressed in terms of macroscopic properties: 

 

( )ε0

(1) (2) (3)P = χ + χ E + χ EE + ... E  ,                          (1.5) 

 

where ε0 is the permittivity of free space, χ(1), χ(2) and χ(3) are first, second and 

third order susceptibilities respectively, of the scatterer. In a strict sense, the 

electric field E in equation (1.5) is not the local field but the incident electric 

field assuming the sample is absent. Susceptibilities are macroscopic 

quantities and they are related to atomic polarizabilities by a vectorial sum 

(Eqs.1.6-1.8): 

 

0

1

Nε
= ∑(1)

i
χ α  ,                  (1.6) 

2

0

1

Nε
= ∑( )

i
χ β  ,                  (1.7) 
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3

0

1

Nε
= ∑( )

i
χ γ  ,                  (1.8) 

 

where N is the number density of dipoles in the scatterer. The summation in 

equations (1.6-1.8) takes into account the spatial organization of atomic 

dipoles in the scatterer. As a result χ(2) is zero for centrosymmetric scatterers 

[8]. However SHG has been observed at the surface of centrosymmetric 

materials [9] and theoretically explained [10]. Here it is sufficient to say that 

when the local field gradient is strong, SHG can be observed even in 

centrosymmetric scatterers. It should also be mentioned that the theory 

presented above is the dipole theory and the equations are presented in their 

simplified versions. 

 

1.3 Nonlinear Microscopy 

2PF and SHG have proved to be excellent contrast mechanisms for imaging 

biological specimen. The design of a nonlinear laser scanning microscope for 

SHG and 2PF was described by Sheppard and Kompfner [11]. The first 

nonlinear laser scanning microscope was a second harmonic microscope, built 

by Gannaway and Sheppard in 1978 [12]. In this microscope, non-linear 

crystals were scanned through a focused laser beam and the SHG was 

recorded to form image pixel-by-pixel. This set-up remains fundamentally 

unchanged even today, with the main difference being that a focused laser 
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beam is scanned across static samples in most cases. The invention of 

femtosecond pulsed lasers with high repetition rates [13] gave a major boost 

to the development nonlinear microscopy. Femtosecond pulses provide high 

instantaneous intensities but keep the average power low. The first 2PF 

microscope was built in Denk and coworkers [14]. Starting in 1990s, nonlinear 

microscopy emerged as the most preferred imaging modality for thick 

biological samples. Nonlinear laser scanning microscopy has intrinsic 3D 

imaging ability because the signal is generated only from the focal region. 

Therefore, unlike a confocal microscope, there is no need for pinhole in 

nonlinear microscopes. This makes the design of nonlinear microscopes much 

simpler. The radial (r) and axial (z) point spread function (PSF) of a nonlinear 

microscope which uses nonlinear signal of order n can be calculated from 

equations (1.9) and (1.10) respectively [15]: 

 

2

12 ( )
n

radial

J v
PSF

v

 
∝   

 ,                (1.9) 

2
sin( / 4)

/ 4

n

axial

u
PSF

u

 
∝   

,                            (1.10) 

 

where v = k NA r , u = 4 k NA2 z and k = 2π/λ. NA is numerical aperture of the 

lens and λ is the central wavelength of excitation laser. Nonlinear 

microscopes use infrared lasers for excitation, which penetrate deeper into 
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tissues. Since spatial localization is a result of the nonlinear excitation process, 

the signal from the depths, though highly scattered, does not have to be 

descanned or passed through a pinhole. Instead, the signal can be directly 

collected by a detector. Both these factors improve the imaging depth of 

nonlinear microscopes. In the case of 2PF microscope where fluorophores are 

involved, excitation of fluorophores occurs only in the focal region and hence 

photobleaching is reduced. This allows for long term imaging with minimal 

loss in fluorescence signal.  

The ability of 2PF and SHG microscopes to image deeper into the 

sample at sub-cellular resolution has contributed significantly to the 

development of various fields of biology [15-18]. For example, Miller and 

coworkers [19] used 2PF to look into a lymph node of live mice and studied 

interactions of lymphocytes with the antigen presenting cells. Sandoval and 

Molitoris [20] reviewed 2PF technique for studying the functioning of a 

mouse kidney. Due to relatively high transparency of brain tissue to light, 2PF 

has been extensively used in neurobiology [16, 21]. The technique is so benign 

to biological tissue that in vivo nonlinear microscopy has been performed on 

human skin [22, 23]. Unlike 2PF microscopy which mostly relies on external 

fluorophores for contrast, SHG microscopy mainly uses endogenous contrast 

in biological tissue. SHG microscopy has been used to image collagen, myosin 

and microtubule arrays in dividing cells [24]. Collagen type I has been 

extensively imaged using SHG microscopy [25, 26]. Detailed images of cornea 
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[27] and optic nerve head [28] were obtained because these structures are 

primarily made up of collagen. Diagnosis of a fibrotic liver can be performed 

based on second harmonic images of the liver [29]. Second harmonic imaging 

of cell membrane stained with polar dye molecules has also been reported 

[30].  

 

1.4 SHG Microscopy 

SHG has certain advantages over 2PF. Since no energy is absorbed in SHG, 

there are no issues of photo-bleaching or photo-toxicity. Therefore SHG 

imaging can be performed over extended periods of time with no drop in 

signal intensity. In 2PF, dye molecules can easily get saturated beyond a 

certain excitation power or pulse repetition rate. This is one of the limitations 

on signal intensity in 2PF microscopy. SHG microscopy does not suffer from 

sample saturation as no real energy levels are involved. SHG is a narrow band 

emission as compared to fluorescence. The narrow band of SHG is also easy 

to distinguish from the broad autofluorescence background in biological 

samples. Quantum efficiency of fluorescent dyes which emit in the red region 

of the spectrum is very low due to non-radiative decay. This is a serious 

limitation for deep tissue imaging. Red wavelengths are less scattered by 

tissue and therefore availability of efficient probes which emit in the red 

region of the spectrum is highly desirable. There is no non-radiative decay in 

SHG and therefore SHG probes designed for red region of the spectrum 
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should be efficient. The main limitation for SHG and THG in the infrared 

region is absorption by water which increases sharply for wavelengths above 

1000 nm. A new class of contrast agents for SHG microscopy has recently 

emerged [31]. Some inorganic nanoparticles made of metals or metal oxides 

have been found to be strong scatterers for SHG. Bariuam titanate (BaTiO3) 

nanocrystals have been used as probes for in vivo second harmonic imaging 

[32, 33]. Strong SHG has been observed from zinc oxide (ZnO) nanocrystals. 

Individual silver nanoparticle or in groups can be strong scatterers for SHG 

[34]. Similarly SHG microscopy using gold particles has been reported [35]. 

 

1.5 Gold Nanoparticles  

Gold nanoparticles have been extensively used as contrast agents for optical 

microscopy because of their superior optical properties, simple surface 

chemistry and biocompatibility. Gold nanoparticles, like other metallic 

nanoparticles, have free electrons on their surface which oscillate collectively 

at certain characteristic frequency surface plasmon resonance (SPR) 

frequency. Gold nanoparticles absorb and scatter light strongly around their 

SPR frequency. SPR of gold nanoparticles depend on the size. For example, 

the SPR of gold nanospheres shows a red shift with increase in the size of the 

nanospheres [36, 37]. Another way to change the SPR of gold nanoparticles is 

by changing the shape of the particle [38]. If we are looking at aggregates of 

gold nanoparticles, then again depending on the size and shape of the 
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aggregates, the optical properties change [39]. The flexibility to tune the 

optical properties of gold nanoparticles make them good probes for optical 

microscopy. Gold, being an inert metal, does not interact with the sample. It 

has been shown in multiple studies than gold nanoparticles are not toxic to 

cells or tissues [40, 41]. Gold nanospheres (Fig. 1.3(a)) are the simplest form of 

gold nanoparticles. Since these particles strongly scatter light they were used 

as contrast agents for confocal reflectance microscopy (Fig. 1.4). Antibody 

conjugated gold nanospheres were used to image cancer cells in culture [42] 

as well as in ex vivo tissue [43]. Gold nanoshells (Fig. 1.3(b)) are better at 

scattering light in the near infrared region [44], and hence these nanoparticles 

have been used as contrast agents for optical coherence tomography (OCT) 

[45]. Gold nanorods are another kind of gold nanoparticles which exhibit 

strong photoluminescence [46], and these nanoparticles have been used for 

multiphoton luminescence microscopy [47].   

 

a) 

 

b) 

 

 
Figure 1.3. Transmission electron microscope images of gold 
nanospheres (a) and gold nanoshells (b). 
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Figure 1.4. Confocal reflection image of dividing cells which 
have been stained with gold nanospheres (Courtesy: Prof Colin 

Sheppard). 
 

Given the strong scattering ability of gold nanoparticles, it might appear that 

these nanoparticles would be promising contrast agents for SHG. 

Unfortunately that is not the case. Most common types of gold nanoparticles 

made in the laboratory have a symmetric structure that attenuates SHG. Gold 

nanospheres dried on a coverslip can be imaged by SHG (Fig. 1.5(a)) owing to 

the sharp change in refractive index at the point of contact with glass. When 

this difference in refractive index is reduced by adding water, the intensity of 

SHG drops sharply (Fig. 1.5(b)). 
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Figure 1.5. Second harmonic images of 30 nm gold nanospheres 
dried on a coverslip. From top the particles were (a) open to air 
and (b) submerged in DI water. 

 

Similarly, nonlinear spectra of gold nanorods (Fig. 1.6) excited by 

femtosecond pulses centered at 800 nm show a small SHG signal at 400 nm 

and strong multiphoton luminescence, which includes three photon 

luminescence at wavelengths smaller than 400 nm and two photon 

luminescence at wavelengths greater than 400 nm. This spectrum was 

acquired from a gold nanorod suspension in a cuvette.  The low magnitude of 

SHG can be attributed to the centrosymmetric shape of gold nanorods. If the 

symmetry is broken, as in a cluster of gold nanospheres (Fig. 1.7), strong SHG 

can be obtained. These results agree well with hyper-Rayleigh scattering 

results from gold nanospheres [48]. Hyper-Rayleigh scattering is an 

incoherent form of SHG. 

 

 

a) 

  

b) 
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Figure 1.6. Nonlinear spectrum of gold nanorods when excited 
with femtosecond pulses centered around 800 nm. 

 

 

Figure 1.7 Intense second harmonic signal from a cluster of gold 
nanospheres. The particles lie sandwiched between two layers 
low melting agarose (0.5%). 

 

1.6 Overview of Thesis 

Conventional forms of gold nanoparticles are not good as contrast agents for 

SHG due to their symmetric structure. Therefore asymmetric gold 

nanoparticles are required for SHG. Such asymmetric gold nanoparticles are 

not readily available for experimental studies. However it is possible to 

theoretically design asymmetric gold nanoparticles which will strongly scatter 

second harmonic light. In other words, we can design artificial nonlinear 
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molecules [49]. I have developed a numerical model to simulate nonlinear 

scattering from small structures of any arbitrary shape and size (Chapter 2). 

My numerical model is derived from Discrete Dipole Approximation (DDA) 

[50] and another dipole model for nonlinear scattering [30]. The previous 

dipole model for nonlinear scattering does not take into account interactions 

between dipoles. I used the concept of dipole coupling from DDA to create a 

new dipole model for nonlinear scattering. I have shown that my model can 

be used for different types nonlinear scattering and that it gives better 

predictions than the previous model (Chapter 3). Using my model I have 

proposed the design of a chiral gold nanoparticle which will be a strong 

scatterer for SHG (Chapter 4). The design of this scatterer is based on a 

biological scaffold which makes the structure very robust. Further, using gold 

nanorods I have developed methodology to functionalize gold nanoparticles 

of any kind (Chapter 5). I have also demonstrated multiphoton luminescence 

of cancer cells targeted with functionalized gold nanorods. 
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Chapter 2 

Discrete Dipole Approximation for Second Harmonic Scattering 

 

2.1 Introduction 

The scattering of light by small particles has been an active area of research 

for over a century. The initial light scattering problems focused primarily on 

spherical particles but with the progress made by materials scientists and 

chemists it is possible to synthesize small particles with different shapes, in 

different sizes and in complex assemblies [38]. Light scattered by a particle 

depends on various factors – wavelength of the light, refractive index of the 

particle relative to its surroundings, the particle’s shape, size and orientation, 

and distribution (intensity, direction and polarization) of the incident light. A 

simple a computational model for light scattering that can readily account for 

these factors has become all the more important. The most common form of 

light scattering is linear scattering where there is no change in the frequency 

of scattered light and the scattered light intensity is directly proportional to 

the incident light intensity. However we are interested nonlinear scattering of 

light because of its applications to bioimaging as discussed in chapter 1. 

Nonlinear optical properties, specifically second harmonic generation (SHG) 

from small particles are highly dependent on the particle geometry. It is well 
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known that under the dipolar approximation, SHG is forbidden from a 

centrosymmetric medium. At an interface where this symmetry breaks, SHG 

can be observed. However, in the case of spherical particles which are small 

relative to the excitation wavelength, SHG generated from one part of the 

particle surface is cancelled out by SHG generated from the other parts of the 

particle surface. An expression for second order polarization in a 

centrosymmetric medium, proposed by Adler [51], forms the basis of most 

bulk models of SHG from small spheres. Agarwal and Jha [52] proposed the 

first model for SHG from small metal spheres, predicting a dipolar bulk 

response and a quadrupolar surface response from the particles. Others have 

taken into account the dynamics of electrons within a small sphere [53, 54] to 

predict its second harmonic scattering properties. SHG from an array of 

quantum dots was calculated by modeling each quantum dot as a particle in a 

box which is being perturbed by excitation light [55]. All the above works 

consider the bulk of the particle as a source of SHG. The surface of a spherical 

particle can also cause SHG provided the particle is not small as compared to 

the excitation wavelength or if the excitation field is not uniform across the 

particle. Under such conditions, the phase of the incident wave changes 

significantly as it travels across the particle. As a result the surface SHG does 

not exactly cancel out. The theory of SHG from small spheres under 

inhomogeneous illumination has been reported [56, 57]. For spherical 

particles whose size is comparable to the excitation wavelength, the charge 
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induced on the surface by incident light can give rise to higher harmonics 

[58]. Polar molecules immobilized on the surface of small polystyrene beads, 

when excited scatter second harmonic light which is polarized and has a 

specific angular distribution [59-61]. Second harmonic response from small 

spheres with arbitrary surface response was calculated by Dadap et al. [62, 

63]. All these analytical models give us an insight into the interaction of light 

with small particles. While these models are important, they are restricted to 

spherical particles in a relatively homogeneous environment. With the 

increasing importance of non-spherical metal nanoparticles being recognized 

[64-66], it is necessary to have a computational frame work that can efficiently 

predict the SHG properties of these non-spherical particles.  In addition to 

particle geometry, the illumination conditions may also be far from simple 

with significant field gradient or complex polarization distribution. To add to 

this complexity, the local environment of the nanoparticles may be 

heterogeneous, especially for biomedical applications. Numerical methods are 

better equipped to solve these problems. 

Here we use a numerical method called the discrete dipole 

approximation (DDA) [67] to calculate second harmonic scattering properties 

of small particles. This method was formulated to simulate linear scattering 

and absorption by interstellar dust particles [67, 68]. In DDA, a scatterer is 

assumed to be made up of small polarizable dipoles (Fig. 2.1) which interact 

among themselves and with the external field. The optical properties of the 
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scatterer are given by the summation of the optical properties of all the 

constituent dipoles. Draine and coworkers developed an efficient Fourier 

transforms based algorithm for DDA to facilitate fast computation of scattered 

fields by particles of various geometries [50, 69]. The algorithm is 

implemented in FORTRAN language and it is available as a free program - 

DDSCAT[70]. Hoekstra et al. developed a parallel computing version of DDA 

which made it possible to simulate light scattering by large particles [71, 72]. 

DDA has been used in different areas of research but with different names, 

like the coupled dipole method (CDM) [73] and the polarizable dipole model 

(PDM) [74].  

 

        a)        b) 

 

Figure 2.1. Approximation of a sphere (a) as an arrangement of 
sub-volumes on a cubic lattice (b). Each sub-volume behaves as 
an individual dipole. 

 

One of the main advantages of DDA is its ability to handle arbitrary 

shapes of scatterers. The method is easy to implement and it is 

computationally undemanding. Although DDA was developed for materials 
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with moderate magnitudes of refractive index, it can be used to calculate 

scattering properties of metal nanoparticles which have high magnitudes of 

refractive index [75]. The results predicted in the far field and in the highly 

sensitive near field regions agree well with results from other numerical 

methods. As such, it has been extensively used to calculate linear optical 

properties of noble metal nanoparticles, especially for non-spherical shapes, 

clusters of nanoparticles and nanoparticles in heterogeneous local 

environments [39, 76-78]. DDA has also been adapted to calculate scattering 

by a wide variety of objects like periodic scatterers [79], photonic crystals [80], 

magnetic nanoparticles [81], metamaterials [82] and blood cells [83]. Apart 

from scattering, this method has also been used to calculate optical forces on 

nanoparticles [84]. All these applications of DDA consider linear interaction of 

light with matter. We have shown here that by taking into account nonlinear 

interaction between light and matter, DDA can be extended to predict 

nonlinear optical scattering from small particles. We have formulated the 

relevant mathematical expressions to calculate second harmonic scattering 

from small particles of different kinds. We compared our computational 

results with experimental results reported earlier. 
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2.2 Theory 

When a nanoparticle is excited by an electromagnetic wave, a strong near 

field is created around the particle. This strong field is ideal for nonlinear 

interaction of light and matter. DDA has been used to calculate field 

enhancement around nanoparticles [76] but nonlinear scattering from small 

particles using this method has never been reported. We have achieved this 

by extending the DDA to calculate induced nonlinear dipoles within small 

particles when excited by light. Here we briefly describe the linear model and 

then extend it to the nonlinear regime. To begin with, a scatterer can be 

assumed to be made up of N small sub-volumes which are arranged on a 

cubic lattice. If Einc,i is the incident field and P(1)i is the first order polarization 

induced at the center of the ith sub-volume, then these quantities are related by 

equation (2.1): 
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The superscript in braces refers to the order of the process. αi,ω is the linear 

polarizability of the ith dipole at angular frequency ω.  A(1)ij is the term 

defining interaction between ith and jth dipoles at frequency ω. If ri is the 
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position vector of the ith dipole, then the expression for A(1)ij is given by 

equation (2.2):  
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where k = ω/v, ω and v being angular frequency and velocity respectively, of 

the incident light in the ambient medium; rij = ri – rj and rij = |ri – rj|. By 

combining A(1)ij and A(1)ii terms we can define A matrix and rewrite equation 

(1) in a compact form (Eq. 2.3): 

 

(1) (1) (1)
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1

.
N
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=∑A P E                                                                  (2.3) 

 

Finding exact solution to Eq. (2.3) is a challenging task because of the large 

size of matrix A. But approximate solutions to this equation can be calculated 

by various forms of conjugate gradient methods which are fast in finding 

solutions to reasonable accuracy [85, 86]. Once the induced dipole moments 

are known, the scattered field is given by superposition of the individual 
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dipoles fields. One can also calculate extinction cross-section (Cext) and 

absorption cross-section (Cabs) of the scatterer [68]. 

 

(1)* (1)

,2
1

4
Im( . ) .

| |

N

ext inc j j

jinc

k
C

π

=

= ∑ E P
E

                                             (2.4) 

{ }(1) 1 * (1)* 3 (1) 2

2
1

4
Im ( ) (2 / 3) | |  .

| |

N

abs j j j j

jinc

k
C k

π
α −

=

 = ⋅ − ∑ P P P
E

                                (2.5) 

 

All the above equations describe the linear phenomena and we have 

reproduced them here for the purpose of clarity. We extended this dipole 

approximation from Eq. (2.1) to calculate nonlinear scattering by the scatterer. 

Linear local field at a dipole can be derived from the linear polarizability 

induced at that dipole (Eq. 2.6):  
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This linear local field is the actual driving force for the various orders of 

polarization. Typically, we neglect the higher orders of local field relative to 

the first order local field because they are comparatively much smaller in 

magnitude. Since we are interested in second harmonic scattering, we focused 
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on the second order polarization, P(2). If βi is the first hyperpolarizability of the 

ith sub-volume, then 
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Equation (2.8) differs from equation (2.3) mainly in the driving force for the 

induced polarizations, which appears on the right hand side of these 

equations. For the second harmonic polarization, the driving force is 

proportional to the square of the linear local field weighted by first 

hyperpolarizability tensor. It should also be noted that the interaction term 

A(2)ij in equations (2.7) and (2.8) is a function of the second harmonic wave 

number and not the excitation wave number. Incidentally, similar models for 

SHG from surfaces were reported by Wijers et al. [87] and Poliakov et al. [88]. 

Wijers et al. assumed a silicon wafer surface to be made up of 20-80 stacked 

layers where each layer acts as a dipole. In Wijers’ model, the geometry is 

simple – a linear arrangement of dipoles. On the other hand, Poliakov et al. 

[40] used their model to calculate various types of induced nonlinear 

polarization in molecules adsorbed on rough metallic surfaces. The present 
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work, however, differs from these two earlier reports because here we have 

focused on far field second harmonic scattering properties of nanoparticles of 

different types and geometries. Shape and size of a nanoparticle play 

important roles in its second order optical properties and we have 

demonstrated this effect by means of simple examples. We have also shown 

here that our method can be used for nanoparticle composites. Another dipole 

model [30, 89] worth mentioning here considers the dipoles to be independent 

of each other and driven only by the incident field. This model can be termed 

as uncoupled dipole model and it is an approximation to our nonlinear 

coupled dipole model.  The coupled dipole model is a two step improvement 

of the uncoupled dipole model. The coupled dipole model first takes into 

account the corrected linear local field rather than the incident field itself. 

Then it calculates the corrected second order polarization rather than 

obtaining it directly by squaring the linear local field. 

Since our model is an extension of DDA, it can be used for scatterers of 

random shapes. The dipole size (d) should be such that the |m|kd < 1, where 

m is the refractive index of the scatterer and k wave number of the scattering 

wavelength involved. In the case of nonlinear scattering, multiple 

wavelengths are involved and therefore, we should consider the wavelength 

for which |m|k is maximum. This ensures that the dipole size is good for all 

other wavelengths. In our case, the second harmonic wavelength is the 

smallest wavelength. The size of the dipole should also be small enough to 
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roughly approximate the shape of the scatterer. This criterion is difficult to 

quantify, especially when the shape of the scatterer is irregular. The refractive 

index of gold nanoparticles was obtained from Blanchard et al. [90]. The exact 

value of hyperpolarizability (β) of gold is not known. However we can say 

that the surface of the particle is asymmetric and hence hyperpolarizability for 

dipoles on the surface is non-zero. We have considered only one component 

(βsurf,⊥ ⊥ ⊥) of the hyperpolarizability tensor which acts on the electric field 

normal to the surface (Eloc,surf,⊥) and yields a second order polarization in the 

same direction [91]:  
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0 .
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= ≠

β
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2.3 Results & discussion 

Based on the algorithm proposed by Draine and coworkers [69], we have 

developed a MATLAB code to implement the nonlinear DDA model. Second 

harmonic scattering from a nanosphere is widely discussed in literature. 

Therefore it is good sample scatterer to test our model. We calculated the 

distribution of scattered second harmonic light from a gold nanosphere of 15 

nm diameter. The excitation source is a plane polarized wave of wavelength 

800 nm, polarized along x-axis and propagating along positive z-axis. The 
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nanosphere is located at the origin of the coordinate axes and it is assumed to 

be made up of dipoles which are 1 nm apart on a cubic lattice. We calculated 

the induced second order dipole moments (P(2)i’s) and the scattered second 

harmonic field was calculated from these dipoles.  

 

 

 

Figure 2.2.  Spatial distribution of scattered second harmonic 
light from a 14nm gold nanosphere when excited by plane 
polarized light. 

 

 

The three polarization components (x, y and z) and the total intensity of the 

scattered second harmonic field are represented on a polar plot (Fig. 2.2). The 

distance from the origin represents the magnitude of second harmonic 

scattering in a given orientation. The magnitudes have been normalized with 

the maximum intensity value to give an estimate of relative strengths of field 
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components. These results are in good agreement with the theoretical analysis 

of second harmonic scattering from small spherical particles reported earlier 

[63]. 

Extending our work to a less trivial case, we applied this DDA formalism to 

calculate the SHG from non-spherical scatterers.  Although DDA models a 

scatterer as a collection of dipoles, the overall scattering depends on the 

geometry of the scatterer among other factors. The geometry of the scatterer 

influences the interaction between the dipoles and therefore the overall 

scattering profile is a superposition of various multipoles such as a dipole, 

quadrupole and so on. This is clearly evident in the hyper Rayleigh scattering 

(HRS) experiments on gold and silver nanospheres [92, 93]. In our 

experimental setup incident light propagates along the positive z-axis. The 

polarization of the incident light is rotated in the xy plane and the polarization 

angle was measured with respect to the positive x-axis. At each incident 

polarization angle, the intensity of x-polarized scattered second harmonic 

light from a suspension of nanospheres was measured along the y-axis. Figure 

(2.3) is schematic of the hypothetical set up.  
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Figure 2.3. Schematic of hypothetical set-up where scattering 
from a scatterer is measured over a forward aperture (Aforward) 
and a side aperture (Aside). 

 

In this schematic, a triangular scatter is represented to highlight the fact that 

shape is not a constraint. The triangular scatterer is approximated by a 

collection of dipoles and the scattering of each dipole in a desired direction is 

calculated. In the real experiments, small metal nanospheres are not perfectly 

spherical. Due to this asymmetry in shape, the scattered second harmonic 

light is predominantly dipolar in nature as long as the nanospheres are small. 

With increase in size of a nanosphere, retardation effects make the 

quadrupolar scattering stronger than the dipolar scattering. A finite element 

analysis of this HRS experiment showed that even small metal nanoparticles 

which are perfectly spherical in shape show quadrupolar scattering but a 

slight deviation from spherical shape in these small metal nanoparticles gives 

rise to a dipolar scattering [91]. The perfect spherical shape leads to a 

cancellation of dipolar scattering. Therefore, quadrupolar scattering, though 
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weak in small nanoparticles, shows up. In metal nanoparticles which are not 

perfectly spherical, the dipolar behavior dominates as long as the nanoparticle 

is small. With increasing size, the quadrupolar behavior becomes stronger 

than the dipolar behavior. We simulated these HRS experiments using our 

nonlinear DDA model. In figure (2.4) we show the effect of shape of a 

nanoparticle on the scattered second harmonic light. The samples were a gold 

nanosphere, 16 nm in diameter and two types of nanorods, each 12 nm in 

diameter but with lengths of 14 nm and 16 nm. To account for the free 

rotation of the particle in a suspension, we averaged the intensity of scattered 

second harmonic light over six different orientations of the particle for each 

incident polarization angle. These six directions correspond to axes joining the 

six diametrically opposite pairs of vertices in an icosahedron. Since an 

icosahedron is one of the five Platonic solids, its vertices sample the entire 

solid angle of 4π equally. Figure (2.4) shows the strength of x-polarized 

second harmonic light, calculated along positive y-axis, as we change the 

polarization angle of incident light in the xy-plane. The second harmonic 

scattering from nanospheres is predominantly quadrupolar in nature. On the 

other hand, second harmonic scattering from the gold nanorods tends to be 

dipolar with increasing aspect ratio of the rods.  
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a) 
 

 
b) 

 
c) 

 
 

Figure 2.4. Distribution of x-polarized second harmonic 
scattering from nanosphere and two types of nanorods with 
different aspect ratios as a function of the incident polarization 
angle with respect to the x-axis. The scattered second harmonic 
light intensity was calculated along y-axis and the incident light 
was propagating along positive z-axis. 

 

To compare our results with experimental results, we simulated HRS 

experiments on silver nanospheres [93]. The excitation wavelength was set at 

780 nm. Scattering samples were silver nanospheres of diameters 40 nm, 60 
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nm and 80 nm. To match the experimental conditions closely our simulated 

nanospheres should have all forms of surface and bulk asymmetries which 

occur in silver nanospheres used for experiments. This, however, is not 

possible because of the large number of asymmetries. Therefore we used just 

one asymmetry [91], elongation in one direction, for all three sizes of 

nanospheres. With increase in size of the spheres, the degree of asymmetry 

decreases and the quadrupolar behavior dominates as can be seen in second 

harmonic scattering patterns (Fig. 2.5). All these results are in good agreement 

with the experimental results [93] and numerical simulations [91]. 
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a) 
 

 
b) 

 
c) 

 
 

Fig. 2.5.  Distribution of x -polarized second harmonic scattering 
from silver nanospheres of diameters 40 nm (a), 60nm (b) and 80 
(c) nm as a function of the incident polarization angle with 
respect to the x -axis. The scattered second harmonic light 
intensity was calculated along y-axis and the incident light was 
propagating along positive z-axis.  

 
 

So far we have compared the results from our model with theoretical 

and experimental results for metal nanoparticles. But our model can also 

predict nonlinear scattering from dielectric particles. Yang et al. [61] reported 
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HRS  from a water suspension of polystyrene beads which were coated with 

malachite green molecules. They used polystyrene beads of 510 nm, 700 nm 

and 980 nm in diameter and measured position dependent p-polarized second 

harmonic scattering for s- and p-polarized incident light. In Yang’s 

experiments, the detector was rotated about the sample from the positive z-

direction (+ k̂) to the negative z-direction (- k̂) to measure the spatial 

distribution of HRS. To test our model, we simulated these experiments using 

polystyrene beads of diameters 510 nm, 680 nm and 986 nm. The incident 

wavelength was set at 840 nm to match the experimental conditions. Owing to 

the low refractive index of polystyrene, we set the distance between dipoles as 

17 nm. The excitation light can be either s- or p-polarized, and the second 

harmonic scattering is a combination of s- and p-polarizations. The 

experimental results [61] show that for p-polarized excitation, the p-polarized 

HRS becomes more forward directed with increase in size of the beads (Fig. 

2.6). It was also reported that the p-polarized HRS becomes weaker and 

spatially less localized when the polarization of excitation light is changed 

from p to s (Fig. 2.6).  
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Figure 2.6. Angular distribution of p-polarized HRS from 
polystyrene beads coated with malachite green molecules. Size 
of the polystyrene beads is 510nm (a), 700nm (b & d) and 980nm 
(c). The exciting light is p-polarized in (a), (b), (c), and it is s-

polarized in (d). The angle (θ) of the detector is zero at positive 
z-axis (+ k̂ ) and it goes to �180o at negative z-axis (- k̂ ).  

 Reprinted figures (3) and (4) with permission from N. Yang, W. E. Angerer, and A. 

G. Yodh, Physical Review Letters 87, 103902 (2001). Copyright (2001) by the 

American Physical Society. 
 

 

The results from our simulations (Fig. 2.7) agree well with the 

experimental results (Fig. 2.6). The angular localization of the main lobes and 

the first side lobes, and relative strengths of the HRS intensities match well 

with the experimental results [61]. For example, the magnitudes of p-

polarized HRS from 686 nm beads when excited with s-polarized light and 

that from 510 nm beads when excited with p-polarized light are comparable. 

One aspect of our results which does not match with the Yang’s results is the 

size of side lobes. This mismatch is partly due to the fact that the 

polarizability of malachite green molecules is not known quantitatively. We 

observed that as we increased the polarizability of the surface bound 
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molecules, the side lobes decreased in size. But higher refractive index implies 

higher computational costs, especially when we have to find the right 

polarizability by iteration. It is possible to match the experimental results by 

iteratively choosing the right polarizability but due to the marginal 

improvement in results, we avoided this extra computational cost.  

 

 

Figure 2.7. Angular distribution of p-polarized HRS from 
polystyrene beads coated with malachite green molecules. Size 
of the polystyrene beads is 510nm (a), 680nm (b & d) and 986nm 
(c). The exciting light is p-polarized in (a), (b), (c), and it is s-

polarized in (d). The angle (θ) of the detector is zero at positive 
z-axis (+ k̂ ) and it goes to �180o at negative z-axis (- k̂ ). 

 

2.4 Conclusion 

We have demonstrated that DDA is a very simple model to predict second 

harmonic scattering from nanoparticles of various kinds. We have shown how 
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shape and size of nanoparticles influence their nonlinear optical properties. 

With increasing applications of nanoparticles in optical experiments, this 

method should be helpful in providing good prediction of nonlinear 

scattering properties. The model does not restrict itself to specific shapes of 

scatterers or illumination conditions. We can model a single particle as well as 

a collection of particles by this method. This is a first step in exploring DDA 

for applications in nonlinear scattering from small particles. A more detailed 

analysis of this method is essential. Uncoupled dipole model is a well 

established for nonlinear scattering and it is numerical much simpler than 

DDA. Therefore there is need to justify why one should undertake the extra 

computational effort involved in DDA.  There is also a need to find a physical 

quantity which causes this coupling between the dipoles. Further, like the 

uncoupled dipole model, DDA can be easily extended to other types of 

nonlinear scattering. Some of these problems have been investigated in the 

next chapter.  

Note: The contents of this chapter are based on the following paper: 

N.K. Balla, P.T.C. So and C.J.R. Sheppard, "Second harmonic scattering from small 

particles using Discrete Dipole Approximation," Optics Express 18, 21603 (2010).  
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Chapter 3 

Comparison between Coupled and Uncoupled Dipole Models 

for Nonlinear Scattering 

 

3.1 Introduction 

Nonlinear scattering of light by matter has been widely used as a tool for 

spectroscopy and microscopy. Second harmonic spectroscopy has been used 

to study liquid interfaces [94] and surfaces of small particles [95]. The three 

main forms of microscopy which are based on nonlinear scattering of light are 

second harmonic generation (SHG) microscopy, third harmonic generation 

(THG) microscopy and coherent anti-Stokes Raman scattering (CARS) 

microscopy. Nonlinear microscopy is based on endogenous contrast from the 

sample and therefore does not require an external contrast agent. The 

nonlinear effect gives 3D sectioning ability to these imaging modalities. Since 

there is no absorption of photons, photobleaching and photo-toxicity effects 

do not arise. The principle of nonlinear laser scanning microscopy was first 

demonstrated by Gannaway and Sheppard [12] in 1978. Under the dipole 

approximation SHG occurs in noncentrosymmetric structures and therefore it 

can be used to image chiral structures. SHG microscopy has been used for 

structural imaging of specially stained cell membranes [96], extracellular 

matrix [97], myosin [98] and collagen [24, 99, 100] in tissues.  THG occurs in 
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all types of materials but due to Gouy phase shift in a focused beam, it is 

appreciable only at interfaces [101]. As a result, THG microscopy has been 

used to study morphology of biological specimens [102, 103]. In vivo imaging 

of embryos [104-106] using THG microscopy has been successfully 

demonstrated by a number of groups. Apart from morphological imaging, 

nonlinear microscopy can also be used for vibrational imaging of samples by 

CARS. Unlike harmonic generation microscopy, a CARS microscopy [107, 

108] uses two different beams, a pump and a Stokes beam. CARS microscopy 

can be used to image the distribution of bonds whose energy overlaps with 

energy difference between two pump photons and one Stokes photon [109]. 

CARS microscopy has been used to image live cells [110] and lipid droplets 

[111] within cells.  

SHG, THG and CARS microscopy have significantly contributed to the 

class of 3D optical imaging modalities. Most often, these imaging modalities 

do not require a contrast agent but they instead rely on the properties of the 

sample to generate a contrast. However it should be noted that these imaging 

modalities are based on scattering which is fundamentally different from 

fluorescence, the more popular source of contrast in optical imaging. The 

fundamental difference between fluorescence and scattering is that the former 

is an incoherent process whereas the later is a coherent process. Therefore 

fluorescence is uniform in all directions and it is directly proportional to the 

concentration of the contrast agent. Scattering on the other hand is mostly 
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directional and it is proportional to concentration of the contrast agent raised 

to a value which can lie anywhere between 0 and 2 [112]. The value of this 

exponent depends on orientation and organization of contrast agents which 

are simultaneously excited. Inhomogeneities in the distribution of contrast 

agents in a sample make the process more complicated. Therefore 

interpretation of results is not always simple. The dipole model introduced by 

Jerome Mertz and co-workers [30] has been used to study light scattering 

patterns in nonlinear microscopy. In this model, each scatterer is assumed to 

be made up of dipoles. Depending on the location and orientation of a dipole 

in the focal volume, its scattering properties can be calculated from the 

excitation field it experiences. The net scattered field is then given by coherent 

summation over all the dipoles present in the focal volume. The scattered 

field can be propagated to any location in space by using Green’s function 

[89]. This dipole model was used to describe SHG scattering patterns from 

membranes of giant unilamellar vesicles [113] and from collagen fibers [25, 

114]. This model has also been extended to describe THG [89] and CARS 

[115]. This dipole model however has certain limitations. The dipoles in a 

scatterer interact with one another and with the incident field. The final 

distribution of the excitation field is a result of this interaction. Similarly when 

nonlinear dipoles are induced, they interact among themselves and 

redistribute the net nonlinear field. This interaction is not captured by the 

dipole model we have discussed so far. Therefore this model can be aptly 
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referred to as the uncoupled dipole model (UDM). The coupled dipole model 

(CDM) which takes into account interaction between dipoles was proposed by 

Purcell and Pennypacker [67], and it was further developed by Draine and 

coworkers [50, 68, 69].  In chapter 2, we have extended CDM for second 

harmonic generation from small particles [116]. The uncoupled dipole model 

is numerically less expensive as compared to the coupled dipole model. In 

this chapter, we discuss the conditions under which CDM results are more 

accurate as compared to results from UDM. We have also extended the 

coupled dipole model to THG and CARS. 

 

3.1 Theory 

The theory of macroscopic and microscopic polarization has been briefly 

discussed in chapter 1. The coupled dipole theory for second harmonic 

scattering has been discussed in chapter 2 but the equations have been 

reproduced here for the sake of clarity. If Einc,i is the incident field of angular 

frequency ω at the ith dipole and P(1)i induced linear dipole, then these 

quantities are related by equation (3.1): 
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=∑A P E                   (3.3) 

 

The interaction between the dipoles is defined by a Green’s function (Eqn. 3.2) 

where k (= c/ω) is the wavenumber, αi is the linear polarizability of the ith 

dipole and rij is the displacement vector between dipoles i and j. Equation (1) 

can be reduced to a simplified form as equation (3.3) and it can be solved 

using conjugate gradient method. The linear local field (E(1)loc,i) from equation 

(3.4) can be used to calculate the local driving field for various nonlinear 

processes: 
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(2) (1) (1)

, , , 2 ,/
SHG i i loc i loc i iω=E β E E α                  (3.5) 

(3) (1) (1) (1)

, , , , 3 ,/
THG i i loc i loc i loc i iω=E γ E E E α                 (3.6) 

(3) (1) (1) (1)

,  ,  ,  , ,
/

CARSCARS i i loc pump i loc pump i loc Stokes i iω=E γ E E E α                (3.7) 
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=∑A P E   where (n,x) = (2,SHG) or (3,THG) or (3,CARS)             (3.8) 
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 βi and γi are the first and second hyperpolarizabilities respectively of the ith 

dipole. Equations (3.5) and (3.6) were used to calculate SHG and THG driving 

fields. In the case of CARS two different excitation fields, pump and Stokes, 

are involved. If E(1)pump,i and E(1)Stokes,i are the local pump field and local Stokes 

fields respectively, as calculated by equation (3.4) then the CARS driving field 

can be calculated by equation (3.7). The induced nonlinear dipoles can be 

calculated by using the driving fields (Eq.3.8). In the UDM, these nonlinear 

dipoles can be calculated directly from the incident field (Eqs. 3.9-11). 

However it must be noted that when looking at the ith dipole, no other dipole 

comes into picture.  

 

(2) (1) (1)

, , ,SHG i i inc i inc i
=P β E E                            (3.9) 

(3) (1) (1) (1)

, , , ,THG i i inc i inc i inc i
=P γ E E E                                                                                             (3.10)  

(3) (1) (1) (1)

,  ,  ,  ,CARS i i inc pump i inc pump i inc Stokes i
=P γ E E E                                    (3.11) 

 

3.3 Results & Discussion 

Refractive index of a material is a measure of interaction between the material 

and light. The higher the magnitude of refractive index, the stronger is the 

interaction of light with that material. UDM takes into account only a part of 

this interaction but CDM captures this interaction adequately. Therefore it 

was hypothesized that with increase in refractive index of a material, the 
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results predicted by UDM and CDM should differ. To test the hypothesis, 

second harmonic generation from hypothetical myosin fiber bundles was 

analyzed. Yew and Sheppard [114] had analyzed second harmonic 

polarization induced due to cross polarization terms in a thin layer of myosin 

fiber bundles when it is excited by a focused beam of light. When linearly 

polarized light, say x-polarized, is focused through a high numerical aperture 

(NA) lens, the polarization of light at the focus is not entirely along the x-axis 

but there are significant y and z polarized components as well. Richards and 

Wolf [117] calculated the vectorial distribution of light in the focal region of a 

lens in non-paraxial systems. The distribution of light in the focal region can 

be described by equations (3.12) and (3.13): 
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Here (ρ,z,φ) are cylindrical coordinates of a point in the focal region of the 

lens. Figure 3.1(b) shows the polarization distribution of 800 nm wavelength 
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light in the focal plane of a lens with numerical aperture of 0.87 (= sin 60o). 

When a thin layer of myosin fiber bundles oriented along the x-axis is 

illuminated by the focal field described above, the induced second harmonic 

polarization is mainly due to the z-polarized excitation rather than the x-

polarized excitation [114]. This can be explained by the second order 

susceptibility, χ(2) of myosin fiber bundles [118]: 

 

a)    

 
 

b) 

 
Figure 3.1. a) A schematic of x-polarized light being focused by 
a lens and b) distribution of polarization in the focal plane. The 
unit of the axes is μm. 
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The induced polarization in the myosin fiber bundle layer can be calculated 

by either UDM or CDM. Results from both these models were compared (Fig. 

3.2). In both the dipole models, the size of a dipole was set at 20 nm. The 

collagen sheet was assumed to be surrounded by water. Figure 3.2(b) shows 

the distribution of the induced second order polarization as calculated by 

UDM. For CDM, refractive index of collagen needs to be included in the 

model. Depending on the hydration of collagen type I, its refractive index can 

vary from 1.36 to 1.42 [119]. Here we assumed that the refractive index of 

myosin fiber bundles lies within a similar range of values. In the CDM results 

presented here, refractive index values were set at 1.42 (Fig. 3.2(c)) and 1.6 

(Fig. 3.2(d)), a hypothetical value to highlight the difference in results. The 

main difference in figures 3.2(b), (c) and (d) can be noticed in the x-component 

(P(2)x) of the induced second order polarization. With the increase in refractive 

index, the central lobe becomes stronger and the side lobes become weaker. 

This is due to interaction of dipoles among themselves. 

However this small change is refractive index of should not affect the 

farfield SHG scattering in a significant manner because of the strong axially 
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induced dipole components (P(2)z). Scatterers with a refractive index of large 

magnitude are better samples to test the farfield scattering effects. Metal 

nanoparticles are known to have high magnitudes of refractive index. As 

discussed in Chapter (2), the results of hyper Rayleigh scattering (HRS) 

experiments with silver nanoparticles can be predicted with CDM. To explain 

briefly, Russier-Antoinne et al. [93] measured x-polarized second harmonic 

scattering from a suspension of silver nanospheres as the input polarization 

was rotated through 360o. The average diameter of the silver nanospheres 

used was 40 nm, 60 nm and 80 nm. These experimental results were 

simulated using UDM. A comparison between CDM and UDM results shows 

that UDM fails to capture the effect of change in the size of silver nanospheres 

(Fig. 3.3). These results support our hypothesis that CDM performs better in 

terms of accuracy when refractive index of the scatterer is large in magnitude. 

On the other hand, for low refractive index materials, the difference in results 

is small and therefore from a computational point of view UDM is sufficient. 
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a) 

 
 

b) 

 
c) 

 
d) 

 
 

Figure 3.2. a) Schematic of x-polarized light being focused on a 
thin layer of collagen fibers oriented along x-axis. Distribution 
of second order polarizations induced in the collagen layer as 
calculated by UDM (b) and CDM for refractive index values of 
1.42 (c) and 1.6 (d). The unit of axes is μm.  
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a) 

 
 

b) 

 
 

Figure 3.3. Polar plots of x-polarized second harmonic scattering 
from a suspension of silver nanospheres of sizes 40 nm, 60 nm 
and 80 nm as predicted by CDM (a) and UDM (b). The second 
harmonic scattering has been plotted against input polarization 
angle as measured with respect to the experimental x-axis. 

 

Like UDM, CDM can be extended to other types of nonlinear scattering. Here 

we have demonstrated how CDM can be used to simulate two main types of 

third order scattering processes – THG (Eqs. 3.6 & 3.8) and CARS (Eqs. 3.7 & 

3.8). Third harmonic scattering from polystyrene beads was taken as an 

example for this study. The refractive index of polystyrene was taken to be 

1.59 [120]. The beads were assumed to be surrounded by water. Excitation 

wavelength was 1200 nm and the numerical aperture of the objective was set 

to 1. The third order polarizability (γ) of polystyrene was assumed to be the 

same as that of an isotropic material [121]:  
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a) 

 
 

b) 

 
 

c) 

 

 

Figure 3.4. a) THG scattering from polystyrene beads of 
different sizes when excitation beam is focused at the center of 
the bead. THG scattering from a 2.5μm bead when focal spot is 
scanned axially (b), and transversely (c), across the center of the 
bead. 
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γxxyy = γyyxx = γyyzz = γzzyy = γzzxx = γxxzz , 

γxyxy = γyxyx = γyzyz = γzyzy = γzxzx = γxzxz , 

γxyyx = γyxxy = γyzzy = γzyyz = γzxxz = γxzzx and 

γxxyy + γxyxy + γxyyx = γxxxx = γyyyy = γzzzz . 

 Assuming that excitation and third harmonic frequencies are far from the 

resonance frequencies of polystyrene, from Kleinman’s symmetry γxxyy= γxyxy= 

γxyyx. THG scattering in the farfield was calculated for both forward and 

backward directions. Effect of size of polystyrene beads (50 nm to 2500 nm) 

on the farfield THG when the laser beam is focused at the center of the bead 

was studied. An oscillatory behavior in the detected THG was observed with 

increase in the size of the bead. This can be understood from the fact that most 

of the THG comes from the surface dipoles of the bead because dipoles in the 

bulk mutually cancel each other’s scattering. Therefore with change in the size 

of the bead, the surface dipoles oscillate sometimes in phase and sometimes 

out of phase. Besides this, the near field effects enhance the local field at 

specific location along the bead-water interface [122]. There are two factors 

which determine the magnitude of THG – phase difference across the bead 

and strength of the surface fields. For the smallest bead size, the phase 

difference across the bead is low and surface fields are strong because the 

entire particle lies within the focus. Therefore strong THG is recorded. As the 

size increases, the phase difference across the bead increases and strength of 

surface fields decreases. Therefore with increase in size, the average THG 



 

 

 54 

signal decreases in magnitude but it still has an oscillatory behavior because 

the phase difference oscillates (Fig. 3.4(a)). The backward THG is strong for 

small particles because of the small number of dipoles. With increase in the 

size of the beads and hence the number of dipoles, THG becomes 

predominantly a forward scattering process. The axial scan (Fig. 3.4(b)) and 

the transverse scan along x-axis (Fig. 3.4(c)) of the focal spot across a 2.5 μm 

polystyrene bead shows that the scattering is not symmetrical across the two 

interfaces of the particle as predicted by UDM [89]. Our results are supported 

by experimental results of THG from an axial scan of a polystyrene bead 

reported in the literature [123].  

The simulations for THG were repeated for CARS from polystyrene 

beads. The size of beads was varied from 200 nm to 2000 nm. The pump 

wavelength (λp), the Stokes wavelength (λs) and the CARS wavelength (λc) are 

750 nm, 852 nm and 670 nm respectively. This corresponds to a Raman shift of 

1600 cm-1 in polystyrene beads [122]. The beads were assumed to be 

surrounded by water. The γ of polystyrene should have resonant and a non-

resonant component whereas the γ of water should have only the non-

resonant component. The non-resonant component of γ is taken to be of the 

same form as that in THG calculations. The γ of water, which contributes to 

background here, is assumed to be 60% in magnitude of the non-resonant γ of 

polystyrene. For the resonant γ, the ratios of non-zero elements are γxyyx / γxxxx 
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= 3/4, γxxyy / γxxxx = 1/8 and γxyxy / γxxxx = 1/8. Further, resonant γ was taken to be 

2.5 times the magnitude of non-resonant γ.  

 
a) 

 
 

b) 

 
 

c) 

 
 

Figure 3.5. a) CARS scattering from polystyrene beads of 
different sizes when pump and Stokes beams are focused at the 
center of the bead. CARS scattering from a 1.5μm bead when 
focal spot is scanned axially (b) and transversely (c) across the 
center of the bead.  
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Being a third order scattering process, CARS is present in all materials. The 

effect of Gouy Phase shift at the focus is partially compensated by the 

interaction between the pump field and the conjugate Stokes field [124]. 

Therefore CARS is not restricted to interfaces and it increases with the 

increase in size of polystyrene beads increases and it saturates once the bead 

is big enough to cover the whole focal spot (Fig. 3.5(a)). Backward scattered 

CARS becomes weaker and forward scattered CARS becomes stronger with 

increase in size of the beads. The axial scan and the transverse scan along the 

x-axis of the focal spot across a 1.5 μm bead are shown is figures 3.5(b) and 

3.5(c) respectively. The backward scattered CARS is much weaker than the 

forward scattered CARS because of the large size of the bead. The transverse 

scan shows that the locations of forward and backward CARS peaks do not 

overlap. These results match very well with experimental results reported 

earlier [125]. Backward CARS for the transverse scan shows multiple peaks. It 

has been reported earlier that backward CARS is due to refractive index 

mismatch between the scatterer and the surroundings [125]. Therefore we 

believe these peaks arise partly due to edge effects where there is refractive 

index mismatch.  

 

3.4 Conclusion 

A comparison between UDM and CDM shows that the latter gives better 

results when the refractive index of the scatter is large in magnitude. CDM is 
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also able to predict the field enhancement at interfaces where there is a 

change of refractive index. The main difference between the two models is the 

interaction of different parts of the scatterer among themselves. This 

interaction becomes stronger with increase in the magnitude of refractive 

index. However, for scatterers with low magnitudes of refractive index, like 

biological specimen, the farfield scattering results as predicted by UDM and 

CDM would not differ significantly. Under such circumstances UDM is a 

better choice because of its lower computational cost as compared to CDM. In 

the experiments involving strong scatterers like metal nanoparticles or in 

experiments where surface effects are important, CDM is a better choice. We 

believe that CDM will be very useful in this era of nanophotonics where 

optical properties of small particles have assumed great importance.  

 

Note: The contents of this chapter are based on the following paper: 

N. K. Balla, Elijah Y. S. Yew, C. J. R. Sheppard and P. T. C. So, "Coupled and 

Uncoupled Dipole Models of Nonlinear Scattering," Opt. Express (In Press). 
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Chapter 4.  

Bio-inspired nano contrast agents for second harmonic 

generation microscopy 

 

4.1 Introduction 

Gold nanoparticles have garnered much attention as contrast agents for 

various optical imaging modalities. Two main advantages of gold 

nanoparticles over conventional fluorophores are their low cytotoxicity [40] 

and resistance to photobleaching.  Gold nanoparticles can be synthesized in a 

wide variety of shapes and sizes [36, 38, 126-128]. Since geometry is one of the 

main factors which dictates optical properties of these particle, optical 

properties of these particles are tunable [77, 129]. The simplest form of gold 

nanoparticle is a nanosphere. Gold nanospheres are strong scatterers of light 

and hence have been used as contrast agents for dark-field microscopy [130] 

and confocal reflectance microscopy [131, 132]. Gold nanoshells are superior 

to nanospheres in scattering light and their optical resonance can be tuned to 

the near infrared (NIR) wavelengths which are good for biological imaging. 

Therefore gold nanoshells have been used as contrast agents for in vivo 

imaging modalities like optical coherence tomography (OCT) [45]. Gold 

nanorods on the other hand have strong multiphoton luminescence properties 

[133]. These particles have been extensively used as contrast agents for 
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multiphoton luminescence microscopy for cells and tissues [47, 64]. Gold 

nanoparticles are also known for their hyper-Rayleigh scattering (HRS) 

properties [134]. HRS is incoherent second harmonic generation (SHG) 

observed due to fluctuations  in the orientation of scatterers in a colloidal 

suspension [135]. SHG is very sensitive to symmetry and under the dipolar 

approximation only non-centrosymmetric scatterers can give rise to SHG. In 

small gold nanospheres, the imperfect spherical shape of the particles gives 

rise to dipolar second harmonics scattering. With increase in the size of 

scatters, retardation effects become prominent and therefore multipolar 

second harmonic scattering is also observed [92].  The strength of second 

harmonic scattered light per atom of colloidal gold nanospheres is stronger 

than that of the best known molecular chromophores [136]. Such strong 

nonlinear scattering has been attributed to enhancement by plasmon 

resonance observed in gold nanoparticles. The most common morphologies of 

gold nanoparticles like rods, spheres and shells are centrosymmetric. In these 

nanoparticles, SHG arises from the surface where symmetry breaks down. It 

is possible to create artificial molecules [49, 137] out of nanoparticles with 

desired optical properties. A non-centrosymmetric gold nano-scatterer should 

give arise to strong SHG. Such nano-scatterer can be of two types – gold 

nanoparticles with non-centrosymmetric structure, or a non-centrosymmetric 

assembly of gold nanoparticles. SHG from chiral particles like planar G-

shaped [138] and L-shaped [139] gold nanoparticles have been reported 
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earlier. T-shaped gold nanodimers made up of gold nanorods [140] and multi-

layered structure made up of gold nanospheres [141] have been reported to 

show enhanced second harmonic scattering. By carefully tuning the resonance 

of either chiral gold nanoparticles or chiral assemblies of gold nanoparticles to 

the excitation wavelength it is possible to create a strong second harmonic 

probe. It should be noted here that the gold nanoscattterer is being considered 

as a harmonophore. Some reports have used organic harmonophores in 

conjugation with metal nanostructures to benefit from the plasmonic 

enhancement of excitation field [142-144].   

One promising approach to assemble nanoparticles into complex 

patterns is by using biological molecules as scaffolds [145, 146]. Assembly of 

gold nanoparticles into a double helix using peptide molecules as scaffold has 

been reported [147, 148]. Viral protein coats, also called capsids, can be used 

to assemble gold nanoparticles. Capsids are rigid as compared to protein or 

DNA molecules and they provide a number of specific sites where 

nanoparticles can be attached to achieve a pattern of interest. Tobacco mosaic 

virus (TMV) [149-151], cowpea mosaic virus (CPMV) [152] and M13 phage 

[153] are some of the viruses which have been used as scaffolds for metal 

nanoparticle assemblies. A. M. Belcher’s group has developed libraries of 

peptides [154] which can bind to inorganic nanoparticles, and these peptides 

were used to assemble nanoparticles into large assemblies [155, 156]. This 

strategy of using biological scaffolds has a number of advantages. The 
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scaffolds can be altered to some extent by genetic engineering tools. These 

complex artificial molecules can be made in large scale with good structural 

consistency. The scaffolds are biodegradable. The small nanoparticles (~ 5 nm) 

used in such assemblies are suitable for renal clearance when administered 

into small animals. Surface modified viral scaffolds can be used as contrast 

agents for intravital imaging [157]. 

Assuming that such complex gold nanoparticle assemblies can be 

synthesized, we report a numerical study on second harmonic scattering from 

gold nanohelices with a TMV capsid like cylindrical core. The helix is one of 

the most common 3D chiral structures which we come across in nature. In 

nonlinear microscopy of tissues, fibrillar collagen is the main source of second 

harmonic generation. The unique triple helix structure of fibrillar collagen is 

responsible for its chiral and nonlinear optical properties [158]. Collagen 

fibrils are made up of peptide chains which are weak harmonophores. But, 

when these peptide chains bind together into a compact triple helix, they give 

rise to  strong SHG due to coherent addition of second harmonic scattering by 

the individual peptides [159]. This effect can be mimicked in gold nanohelices 

to get enhanced SHG. Gold nanohelices can also be made by direct laser 

writing [160] but the method cannot be scaled up to synthesize large volumes 

of particles.  
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4.2 Theory 

Analytical methods cannot be used to study light scattering from complex 

scatterers like a nanohelix. We therefore used the discrete dipole 

approximation method (DDA), also referred to as coupled dipole method 

(CDM).  As discussed in chapters (2) and (3), CDM can accurately predict 

nonlinear scattering from metal nanoparticles. CDM had been used to study 

linear scattering form silver nanohelices [161]. Here however, in addition to 

the gold nanohelix, there is a hollow cylindrical core which supports the helix. 

The cylindrical core is assumed to be a TMV capsid whose optical properties 

are quite different from the optical properties of gold. Therefore two different 

kinds of materials are involved apart from the surrounding medium which is 

assumed to be water.  

 

Figure 4.1. Cartoon of the helix (Yellow) over a cylindrical TMV  
capsid (Gray). The two main geometrical parameterss of the 
helix are pitch (P) and diameter (D). 
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The simulations presented here take into account the simultaneous 

interaction between all the dipoles involved. In other words, every gold 

dipole interacts with all the other gold and TMV dipoles, and vice versa. 

Similar multi-material simulation results have been presented earlier for HRS 

from beads coated with malachite green molecules (Chapter 2) and CARS 

from beads immersed in water (Chapter 3). However the mathematical 

manipulation involved in these simulations was not discussed in the earlier 

chapters so as to avoid deviation from the main focus of those chapters. The 

hypothetical scatterer proposed here includes a biological scaffold as its 

integral part and therefore we feel it is important to highlight this 

computational step. Linear interaction between all dipoles in a scatterer can 

be summarized in equation (1): 

  

(1) (1)

,

1

N

ij j inc i

j=

=∑A P E .                   (4.1) 

 

In this equation, the term A(1)ijPj calculates the electric field experienced by the 

ith dipole due to the jth dipole. Depending on whether the ith dipole is a gold 

dipole or a TMV dipole, the term A(1)ij would change. Therefore the interaction 

term A(1)ij can be written as a sum of two different materials, the TMV core 

and the gold helix. Once the linear induced polarizations at all the dipoles 
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were calculated, the extinction cross section of the scatterer at that wavelength 

was calculated to study the spectral response (Eq. 4.2): 
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.                 (4.2) 

 

The local linear electrical field at the dipoles can be calculated from equation 

(4.1). Since we are considering gold as the source of SHG, here the driving 

field for SHG was calculated only at the gold dipoles (Eq. 4.2). The elements 

of gold’s first hyperpolarizability matrix (β) are unknown. Therefore the effect 

of each of the 18 elements of the β was studied one by one by setting that 

element to 1 and setting all the other elements to 0. For example, in a 

Cartesian coordinate system, to study the effect of βxxx , the form of the β 

matrix would be as shown in equation (4.3). 

 

(2) (1) (1)

, , , 2 ,/
SHG i i loc i loc i iω=E β E E α     only for dipoles of gold nanohelix.                            (4.3) 

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 =  
  

β                    (4.4) 

 

CDM was used as a tool to calculate absorption spectra and second harmonic 

scattering properties of helices with different pitch lengths. The diameter of 

the cylindrical core scaffold was set at 18 nm which is typical diameter of a 
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TMV capsid. The refractive index of the core was assumed to be 1.57 [162]. 

Typical assemblies of gold nanoparticles use very small gold nanoparticles, 

less than 5 nm. Therefore the thickness of the gold helix was assumed to be 5 

nm which made the total outer diameter of the entire structure 28 nm. Helices 

with 2 complete turns were used in the simulations, and only pitch length of 

the helices was varied. The different pitch lengths used in this study were 10, 

15, 20, 25, 30, 35, 40 and 45 nm. The refractive index of the gold was calculated 

using data from Blanchard et al. [90] and it was corrected using the Claussius-

Mossotti equation as described by Draine and Flatau [50]. The surrounding 

medium is assumed to be water, which is close to physiological conditions. In 

the simulations, the nanoparticles were excited by x-polarized laser light, 

which was focused by a lens of numerical aperture 0.87 (= sin 60o). The 

incident field was calculated using vector theory of diffraction [117]. The 

relevant equations for focal field are presented in chapter (3). The excitation 

wavelength used for second harmonic scattering calculations was set at 800 

nm. Most plasmonic nanoparticles are highly sensitive to polarization of light. 

Three different orientations (x, y and z) of the nanohelices were used in the 

simulations to account for their orientation with respect to polarization of the 

incident field. The SHG properties of gold nanohelices were compared with 

that of gold nanorods, which are one of the most common types of gold 

nanoparticles used as imaging probes. The size and aspect ratio of the gold 

nanorod was carefully chosen so that the volume and plasmon resonance 
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wavelength of the nanorod and nanohelix are almost same. This allows for a 

fair comparison between SHG properties of the two nanoparticles. Second 

harmonic scattering from the nanoparticles was calculated by coherent 

summation of light scattered by all the constituent dipoles. For imaging 

probes, the direction of scattered light is an important factor. In bioimaging 

applications, back scattered light is considered important because it allows 

non-invasive imaging of optically thick samples. Forward and backward 

scattering was calculated by summation of second harmonic scattered light 

over a numerical aperture of 0.87. In order to visualize the scattering pattern 

from the nanoparticles, light scattered along x-z and y-z planes was 

calculated.  

 

4.3 Results and discussion 

For calculating SHG from a nanohelix, it is important to define the form of β 

matrix. A helix has a cylindrical structure and therefore β matrix was defined 

in a cylindrical coordinate system (Eq. 4.5):  
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The choice of coordinate system also makes the interpretation of results 

easier.  When calculating the driving field for SHG, the z-axis of the 

coordinate system was aligned parallel to the axis of the nanohelix by a 

rotation operation. The linear local electric field (E(1)loc,i) was recalculated in the 

cylindrical coordinates system before calculating the SHG driving field 

(E(1)SHG,i). For further calculations, the fields were converted into Cartesian 

coordinates and rotated back to the laboratory frame.  

SHG from nanohelices of 8 different pitch lengths was studied. For 

each nanohelix, there are 18 elements of β matrix and for each element of β 

matrix, there are 3 different orientations of the nanohelix. Therefore 

altogether, there are 432 different simulations for SHG from nanohelices. It is 

not possible to analyze all these simulation results in detail at the same time. 

Therefore the initially the results were filtered out, based on maximum SHG 

detected in the farfield after summation over the 3 orientations and 18 

elements of β matrix. The sum of second harmonic scattering intensity in the 

backward and forward direction, collected over a NA of 0.87 and 3 mm focal 

length, was considered as SHG detected in the farfield, unless otherwise 

mentioned.  
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Figure 4.2. SHG detected in the farfield from nanohelices of 
different pitch lengths. The effects of orientation and elements of 
β matrix were averaged. 

 

The intensity of SHG detected in the farfield decays rapidly with increase in 

pitch length from 10 nm to 20 nm and then with further increase in pitch 

length the intensity oscillates (Fig. 4.2). The high intensity of farfield second 

harmonic light scattered by small pitch nanohelices may be due to resonance 

with the excitation or second harmonic wavelengths. Next the effect of 

individual elements of β was analyzed. The normalized SHG detected in the 

farfield was plotted against pitch lengths and elements of β (Fig. 4.3). The 

normalization was achieved by dividing the SHG contribution of each 

element of β by the sum of contribution from all the elements. This 

normalization was done individually for each pitch length so that the 

difference in total SHG intensities does not interfere with the analysis. Here 

again the orientation effects were avoided by summation over all the 3 

orientations.  
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Figure 4.3. Comparison of second harmonic scattered light due 
to different elements of β. Listed aside are the numbers of 
different elements of β which are plotted along the horizontal 
axis in the 3-axis plot.  

 

In figure (4.3), the β elements have been assigned numbers 1-18 for easier 

discussion. Elements 1-6 correspond to the cases where the second order 

polarization is driven along the radial direction of the helix. Similarly, 

elements 7-12 correspond to the axial direction, and elements 13-18 

correspond to the azimuthal direction. Within each of these three categories, 

the SHG intensity is maximum for elements (3, 9 and 15) driven by azimuthal 

components (E(1)loc,φ E(1)loc,φ) of local field, followed by elements (5, 11 and 17) 

driven by a combination of azimuthal and axial components (E(1)loc,z E(1)loc,φ) of 

the local field, and so on. This implies that the strength of induced linear local 

field follows the order  E(1)loc,φ > E(1)loc,z > E(1)loc,ρ. From antenna theory it is known 

that most of the electric field travels through the metallic structure. In this 

case, the majority of the electric field is channeled through the helix. A helical 

trajectory can be written as a sum of azimuthal and axial vectors but no radial 

vector is needed. This explains the difference in the strengths of different 

1  ρρρ 7    zρρ 13  φρρ 
2  ρzz 8    zzz 14  φzz 

3  ρφφ 9    zφφ  15  φφφ 
4  ρρz 10  zρz 16  φρz 
5  ρzφ 11  zzφ 17  φzφ 

6  ρφρ 12  zφρ 18  φφρ 
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components of local field. In this study, only the pitch length of the helices 

was changed but the diameter of the helix was kept constant. Therefore the 

relative strength of axial vector which defines the helix should increase with 

pitch length and the strength of the corresponding azimuthal vector should 

decrease. This can be clearly seen in the relative strengths of SHG from the 

pairs of elements (3,5), (9,11) and (15,17) with increasing pitch length. There 

are other interfering factors like phase matching and resonance which make it 

difficult to come up with an exact mathematical relation between the 

components of the electric field. However these observations tell us that the 

simulations are working in the right manner.  

From the above analysis it is evident that the helices with short pitch 

lengths are better for SHG. The linear spectral response of these helices with 

pitch lengths of 10 nm, 15 nm and 20 m was calculated for each orientation (x, 

y and z). The excitation light is almost purely x-polarized because at the center 

of the focal plane of an x-polarized beam the z and y polarized components 

are zero. x-oriented helices were found have a resonance peak around 510 nm 

(Fig. 4.4(a)), which is normally associated with gold nanospheres of sizes 20 

nm and below. This resonance peak should be due to oscillation of plasmons 

across the thickness of the helices. Therefore the pitch length does not affect 

the position of the peak. The helices show strong resonance peaks in the 

infrared region when oriented along the y-axis (Fig. 4.4(b)). The estimated 

peak positions are 820 nm, 820 nm and 840 nm for helices with pitch lengths 
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of 10 nm, 15 nm and 20 nm respectively. The infrared peak is strongest for the 

helix with 10 nm pitch. It should also be noted that the extinction cross-section 

of the helices in the blue region of the spectrum is large for the y-orientation. 

Lastly, when the helices are oriented along the z-axis the spectra again show 

infrared peaks around 880 nm (Fig. 4.4(c)). The estimated peak positions are 

880 nm, 880 nm and 870 nm for pitch lengths of 10 nm, 15 nm and 20 nm 

respectively. The resonance is strongest in magnitude for 10 nm pitch. Even 

for z-orientation, the helices have a large extinction cross-section in the blue 

region of the spectrum. The extinction spectra of gold helices behave very 

similar to the extinction spectra of silver nanohelices reported earlier [161]. 

The infrared resonance peaks for y and z-orientations are due to oscillation of 

plasmons across the width of the helix. Another interesting observation which 

has not been reported earlier is the enhanced extinction cross-section in the 

blue region of the spectrum for y and z-orientations, which greatly help SHG 

in our case.  
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a) 

 
 

b) 

 
 

c) 

 

 

Figure 4.4. Linear spectral response of gold nanohelices with 
different pitch lengths for all three orientations along – a) x-axis, 
b) y-axis and c) z-axis.  

 

The farfield SHG results and the linear spectra, both show that the helix with 

10 nm pitch length is better for SHG as compared to the helices with other 

pitch lengths studied here. Since the pitch length has been finalized, it is 
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interesting to compare the SHG properties of this helix with that of a gold 

nanoparticle commonly used as a contrast agent for nonlinear microscopy. A 

gold nanorod is centrosymmetric in its structure and therefore the 

comparison between a gold nanorod and nanohelix would highlight the 

effects of particle shape on SHG. A gold nanorod with a longitudinal plasmon 

resonance peak around 800 nm and with a volume similar to that of the helix 

would be ideal for comparison. The helix with 10 nm pitch has 2861 dipoles of 

size 1 nm and an approximate volume of 2865 nm2. It is known that a gold 

nanorod with an aspect ratio of 4 has longitudinal plasmon resonance around 

810 nm when placed in water [78]. Therefore it is easy to calculate the width 

of the desired rod. A nanorod with 10 nm diameter and 40 nm length has 2952 

dipoles of 1 nm size and an approximate volume of 2880 nm2. The linear 

extinction spectra of the gold nanorod were calculated for all three 

orientations (Fig. 4.5). 

The gold nanorod closely resembles the helix with 10 nm pitch in volume and 

plasmon resonance wavelengths. Therefore the second harmonic scattering 

properties of the gold nanorod were compared with that of the helix. As 

mentioned earlier, a nanorod has a symmetric shape but its symmetry breaks 

at the surface. Therefore surface dipoles drive the second order polarization in 

a gold nanorod. The orientation of this driving force for second order 

polarization is normal to the surface [91]. A nanorod is made up of two 

hemispherical caps and a central cylindrical region which joins the two 
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hemispheres. The hyperpolarizability (β) was defined in polar coordinates 

(Eq. 4.5) for the cylindrical region, and in spherical coordinates (Eq. 4.6) for 

the hemispherical caps: 

 

a) 

 
 

b) 

 
 

c) 

 

 
Figure 4.5. Extinction spectrum of 40 nm by 10 nm gold nanorod 
when oriented along (a) x-axis, (b) y-axis and (c) z-axis. It should 
be noted the scale along the y-axis in figure (a) is one order of 
magnitude larger than that in figures (b) and (c). 
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Only the elements of the first row of β matrix were used, one at a time, in the 

case of SHG from gold nanorods, because these terms are responsible for 

driving the second order polarization normal to the surface of the rod. The 

excitation conditions and the farfield detection conditions were kept the same 

as in the case of the nanohelices. The scattering properties of the nanohelix 

and the nanorod were compared mainly on the basis of the magnitude of 

SHG detected in the farfield, and also on the extent of forward and backward 

scattering. The farfield SHG was calculated along xz and yz planes as the 

detector position was rotated through 180o about the origin where the 

scatterer was located. These calculations were done for each element of β 

matrix and for each orientation of the helix and the rod. It is not possible to 

present all the scattering plots here and therefore only one plot each, for the 

rod and helix have been presented here. In the case of the helix, element βzφφ 

causes the strongest SHG when the helix is oriented along the y-axis (Fig.6a). 

Similarly in the case of a rod, element βrrr/ρρρ caused the strongest SHG when 

the rod is oriented along x-axis (Fig. 4.6(a)).  
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The second harmonic scattering strength of the nanohelix is double 

that of the nanorod (Fig. 4.6). But a more careful analysis should take into 

account the strength of drive fields as well. The extinction cross-sections of 

the nanohelix and the nanorod at 800 nm (excitation wavelength) give an 

estimate of the linear local field. The square of linear local field strength is 

proportional to the strength of the local field driving the second order 

polarization. The ratio of the linear local field strengths of the nanorod and 

nanohelix is 5.53, and therefore the ratio of driving field strengths is 30.6. 

Hence the net ratio of SHG from nanohelix and nanorod amounts to about 65. 

As expected the helical geometry is found to be highly efficient at SHG. The 

scattering is mostly in the backward direction which is advantageous for 

biological imaging. The relatively smaller extinction cross-section of the 

nanohelix has an advantage over the gold nanorod. Gold nanorods cause 

immense heating due their strong absorption cross-section which can alter the 

shape of the particles [133]. Such high local heat concentration can also 

damage the biological samples. A nanohelix would cause less heating due its 

lower absorption cross-section.  
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a) 

 
 

b) 

 

 
Figure 4.6. Scattering profile of SHG detected in the farfield 
along planes xz and yz as the detector was rotated about the 
origin. The abscissa is the angle made by the detector with the 
+ve z-axis. Therefore 180o represents the backward direction and 
0o represents the forward direction.  

 

 

4.4 Conclusion 

With rapid advances in the synthesis techniques and molecular biology, it will 

be possible to create complex assemblies of nanoparticles on biological 

scaffolds. The helix, due to its non-centrosymmetric structure, is a good 

candidate for SHG. Therefore a helical geometry was proposed for an artificial 

molecule made of gold nanoparticles. Using DDA, the structural parameters of 

the gold nanohelix were optimized for a given excitation wavelength (800 nm 
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in this case). More detailed plots of SHG in farfield and nearfield have been 

included in the appendix. The nanohelices considered in this study have only 

2 complete turns. The efficiency of the nanohelices should improve rapidly 

with addition of more turns. More detailed studies are required to account for 

practical issues, like structural imperfections during synthesis of real 

nanohelices. Artificial molecules with other desired optical particles can be 

conceived of, and they can be studied using a numerical tool like DDA.  
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Chapter 5. 

Surface Modification and Multiphoton Luminescence 

Microscopy of Gold Nanorods  

 

5.1 Introduction 

In the previous chapters, we have shown that second harmonic generation 

(SHG) from small particles can be calculated using a nonlinear extension of 

the discrete dipole approximation (DDA) method. Most of the common types 

of gold nanoparticles synthesized are symmetric in shape and hence not ideal 

for SHG.  Therefore, we studied the specific case of SHG from a hypothetical 

gold nanohelix which can be formed using Tobacco Mosaic Virus (TMV) 

capsid as a scaffold. Due to the chiral structure of a helix, gold nanohelices 

can be efficient contrast agents for SHG microscopy. However, it is not trivial 

to make these complex gold nanohelices and optimizing the synthesis 

techniques for such complex nanoparticle assemblies will take some time. 

Once synthesized, gold nanohelices have to be modified so that they can be 

effectively used as contrast agents in biological specimen. These modifications 

consist of stabilizing gold nanoparticles in biological buffers and coating these 

nanoparticles with an optimal number of ligand molecules to target a specific 

type of cells. These surface modifications would be the same as required for 

any other kind of gold nanoparticles. Therefore the experimental studies on 
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using gold nanorods as contrast agents were carried out by multiphoton 

luminescence (MPL) microscopy. Freshly synthesized gold nanorods are 

covered with Cetyl trimethylammonium bromide (CTAB), a surfactant which 

stabilizes the gold nanorods in water and prevents them from aggregation. 

CTAB, however, is cytotoxic and hence has to be replaced by a biocompatible 

molecule that keeps the gold nanorods stable in biological buffers and also 

facilitates specific targeting by conjugation with ligands. Polyethylene glycol 

(PEG) is polymer which has been used in the pharmaceutical industry to 

deliver active molecules into the human body [163]. It has been used to 

stabilize gold nanorods in various buffers [164]  and to eliminate cytotoxicity 

due to CTAB. Thiol (-SH) and di-sulphide (-S-S-) groups have a strong affinity 

for gold surfaces [165]. Therefore the most common form of PEG used for 

conjugation to gold nanoparticles is X-PEG-SH, where X- is either an active 

group (–NH– or –COOH) to which a ligand can be conjugated or it is an 

inactive group. Conjugation of PEG to gold nanoparticle surface decreases 

their non-specific uptake by cells [166] which is very important to improve 

specificity of targeting. In in vivo experiments involving lab animals, 

pegylated gold nanoparticles have better circulation times and reduced 

nonspecific accumulation in internal organs [167, 168]. The length [169] and 

form [170] of the PEG chain also affects the circulation times of the 

nanoparticles. We used linear PEG molecules of different chain lengths to 

stabilize the gold nanorods. Specific targeting of cancerous cells was achieved 
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by conjugating the pegylated gold nanorods to anti-epidermal growth factor 

receptor (anti-EGFR).  

Besides developing a methodology to modify surface of gold 

nanoparticles, we have improved MPL microscopy of gold nanorods. MPL is 

the most popular form of nonlinear optical contrast from gold nanoparticles. 

It is an incoherent emission and therefore it is not directly dependent on the 

shape of the particles. The most important factors affecting MPL are the local 

plasmon resonance and local field enhancement. Photoluminescence in metals 

was reported for the first time by Mooradian in 1969 [171]. It was single 

photon luminescence and the origin is believed to be recombination of 

electrons from the conduction band with holes in d orbitals in a metal. MPL is 

caused by nonlinear excitation of the electron-hole pairs. MPL was reported 

experimentally for the first time as a background in SHG studies from rough 

metal surfaces [172]. In the first systematic study of the phenomenon [173],  

MPL was observed only from rough metal surfaces whereas single photon 

luminescence was observed from both smooth and rough metal surfaces. This 

led to the conclusion that local field enhancement is necessary for the 

nonlinear excitation of electron-hole pairs. These results were supported by 

another study where MPL from gold nanospheres was reported [174]. There 

are conflicting reports on whether the photon absorption preceding MPL is 

simultaneous [47, 175] or sequential [176]. The MPL spectrum is broad; 

starting from below 400 nm and extending beyond 700 nm. Gold nanospheres 
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were used for the first time as contrast agents for MPL microscopy in 2003 

[177]. Photoluminescence from gold nanorods is much stronger than that in 

gold nanospheres [46]. The intensity of photoluminescence increases 

quadratically with the aspect ratio of the nanorod, and this is popularly 

referred to as “lightning-effect” of gold nanorods [46]. The suppressed 

interband damping in gold nanorods as compared to nanospheres is partly 

responsible for enhanced local fields and photoluminescence in the nanorods 

[178]. The local field enhancement at the tips of a gold nanorod is responsible 

for most of the MPL [175, 179, 180]. Gold nanorods have a strong longitudinal 

plasmon resonance (LPR) in the near infrared region that overlaps with the 

excitation wavelengths of MPL microscopy. All these factors have made gold 

nanorods one of the best contrast agents for MPL microscopy. The first report 

of in vitro and in vivo MPL microscopy with gold nanorods [47] highlighted 

the potential of these novel contrast agents in bioimaging. The two photon 

cross-section of the gold nanorods used in this study was 2320 Göppert-

Mayer (GM; 1 GM = 10-50cm4s/photon) at 830 nm. To compare, the two photon 

cross-section of a Rhodamine 6g molecule is 40 GM [181] at the same 

wavelength. As a result, gold nanorods can be excited at intensities as low as 

35 μW for cellular imaging [64].  

However, there are certain drawbacks of using gold nanorods as 

contrast agents for MPL microscopy. The excitation wavelength generally 

overlaps with the LPR of gold nanorods. Therefore gold nanorods absorb the 
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excitation photons very efficiently. Only a small fraction of the absorbed 

photons lead to MPL but most of these photons’ energy dissipates as heat 

within the nanorod, thereby causing local heating. The extent of local heating 

is sufficient to melt the particle [133, 182]. A suspension of gold nanorods 

when irradiated with a wavelength which overlaps with its LPR, can causes a 

sharp rise in temperature [183]. This local heating, when unintended, has 

adverse effect on biological samples. On the other hand the photothermal 

effect can be very useful to kill malignant cells by specifically targeting gold 

nanorods to these cells. Tumor cells can be specifically targeted and destroyed 

using the photothermal heating of gold nanorods [184]. Further it was 

observed that gold nanorods localized on the cell membrane are much more 

effective in cell damage by photothermal heating as compared to the gold 

nanorods internalized by the cells [185]. Gold nanorods bound to the cell 

membrane cause membrane blebbing upon being irradiated with 

wavelengths close to their LPR [186]. The photothermal heating with gold 

nanorods is also effective against tumor in laboratory animals. Irradiation of 

untargeted gold nanorods, which have accumulated in a tumor post injection, 

reduce the growth of the tumor [169]. Intravenous injection of gold nanorods 

targeted to tumor cells improves the photothermal therapy of the tumor [187]. 

Apart from photothermal destruction of cells, this effect can be used to 

selectively release different kinds of molecules like oligonucleotides [66] 

which were bound to the gold nanorods. So there are two different properties 
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of gold nanorods, MPL and photothermal heating, which have been shown to 

have wide application in biology. Unfortunately imaging of gold nanorods by 

MPL microscopy is always accompanied by some local heating and unless 

excitation laser power is carefully monitored, the damage to biological 

samples can be significant. One way to solve this problem is to excite MPL in 

gold nanorods with a wavelength which does not overlap with the LPR of 

nanorods. This would require slightly more power than the conventional 

MPL microscopy but photothermal heating would reduce significantly. 

Composite nanoparticles made of silver and gold have been used in MPL 

microscopy with excitation wavelengths around 1200-1300 nm [188, 189]. 

These excitation wavelengths are far away from the plasmon resonances of 

the composite particles used. The photothermal effect was relative weak with 

the longer wavelengths. Another major advantage of these longer 

wavelengths is better tissue penetration [1, 190, 191]. We have demonstrated 

that femtosecond pulsed lasers operating around 1200 nm are good for MPL 

microscopy with gold nanorods as contrast agents, and damage due to 

photothermal heating with these wavelengths is considerably less than that 

observed with excitation wavelengths close to the LPR of the nanorods.  

 

5.2 Materials and Methods 

Synthesis of gold nanorods: Gold nanorods with different aspect ratios were 

synthesized using the seed-mediated synthesis method [192]. This synthesis 
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method is adapted from a report by Sau and Murphy [193]. Minor changes 

were made to the protocol to scale up the synthesis volume. The gold seed 

solution was prepared by mixing 250 μl of 0.01 M gold salt (HAuCl4.3H2O, 

Sigma-Aldrich Inc.) in 9.75 ml of 0.1 M CTAB (Sigma-Aldrich Inc.) and 

reducing this mixture at room temperature by addition of 600 μl of freshly 

prepared ice-cold 0.01 M sodium borohydride (NaBH4, Sigma-Aldrich Inc.) 

under continuous stirring. The resultant seed solution was stored at room 

temperature.  

For gold nanorod synthesis, 500 μl of 0.01 M gold salt and 50 μl of 0.01 M 

of silver nitrate (AgNO3, Sigma-Aldrich Inc.) were added to 9.5 ml 0.1 M of 

CTAB. This solution was partially reduced by addition of 60 μl of 0.1 M 

freshly prepared L-ascorbic (Sigma-Aldrich Inc.) acid under continuous 

stirring. On addition of ascorbic acid, the solution turns colorless. To this 

reaction mixture, 10 μl-100 μl of seed solution was added, depending on the 

required aspect ratio of the rods. The solution was gently mixed and left 

undisturbed at room temperature for 16 hours. A final colored solution of 

gold nanorods was obtained. These gold nanorods were washed a couple of 

times by centrifuging at 3500 g for 40 min and re-suspending the pellet in 

double distilled (DD) water. The particles were analyzed by UV-visible 

spectrometry (UV-2450, Shimadzu Corp.) and stored at 4°C. Apart from the 

synthesized gold nanorods, one batch of gold nanorods (Nanorodz # 30-10-
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808) with an LPR of 812 nm was purchased from Nanopartz Inc, Salt Lake 

City, UT.  

 

Pegylation of gold nanorods: The cytotoxic CTAB on the surface of gold 

nanorods was replaced with PEG. PEG is not known to be cytotoxic, and it 

also prevents gold nanoparticles from aggregating in biological buffers like 

phosphate buffer saline (PBS). Linear methoxy/amine PEG with thiol (MeO-

PEG-SH) terminus was obtained from Celares GmbH. The size of PEG 

molecules used in the experiments reported here is 5 KDa. Pegylation was 

carried out by adding 500 l solution of PEG in DD water to 1 ml gold 

nanorods suspension with a LPR of magnitude 1.0. PEG was added while 

sonicating the gold nanorods, and the mixture was left for overnight shaking 

[194]. Excess PEG and the displaced CTAB were removed by centrifugation at 

2500 g for 30 min. The precipitate of pegylated nanorods was washed twice 

with DD water and suspended finally in 1X PBS. 

 

Optimizing concentration of PEG: The supernatant from the first centrifugation 

of pegylated gold nanorods was used to estimate excess PEG by Ellman’s 

reagent (5,59-dithiobis-(2-nitrobenzoic acid, Sigma-Aldrich Inc.) [194]. 

Ellman’s reagent is used for quantification of thiol (-SH) groups in a sample. 

Ellman’s reagent reacts with thiol groups to give 2-nitro-5-thiobenzoate which 

absorbs strongly at 412 nm. Gold nanorods with LPR at 618 nm were 
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pegylated with 2 KDa MeO-PEG-SH of four different concentrations – 20 μM, 

100 μM, 500 μM, and 2.5 mM. The supernatant after first centrifugation of 

gold nanorods was incubated with Ellman’s reagent at room temperature for 

30 min and the absorption of the reaction mixture was measured at 412 nm 

using Infinite-200 microplate reader (Tecan Trading AG). 

 

Protein/antibody conjugation: PEG with an amine terminus (NH2-PEG-SH) was 

used instead of MeO-PEG-SH to conjugate gold nanorods with a protein. 

Glutaraldehyde was used as cross-linker between the pegylated gold 

nanorods and the protein molecules [195, 196]. 1 ml of pegylated gold 

nanorods were centrifuged and resuspended in 1 ml of 0.5% (v/v) of 

glutaraldehyde. The suspension was left in a shaker for 3 hours at room 

temperature. Glutaraldehyde attaches to the primary amines of PEG 

molecules on gold nanorods. The excess glutaraldehyde was removed by 

washing the gold nanorods twice with 1X PBS. To 1 ml of the glutaraldehyde 

activated nanorods, 5 μg of chilled protein was added and the mixture was 

left in a chilled shaker for another 3 hours. The glutaraldehyde on the gold 

nanorods binds to the primary amine groups on the outer surface the protein. 

The gold nanorods were washed twice in 1X PBS and stored at 4oC.  

 

Cell Culture: Human epidermoid carcinoma cells (A431), human cervical 

cancer cells (HeLa) and rat skeletal myoblasts (SKMB) were used in this 
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study. Cell culture medium consists of 10% fetal bovine serum (FBS) and 1% 

penicillin –streptomycin (pep-strep) mix in Dubelco’s Modified Eagle’s 

Medium (DMEM). Cells were grown in T75 and T25 tissue culture flasks at 

37oC. Once confluent, cells were detached using either 0.25% (A431 cells) or 

0.05% (HeLa and SKMB cells) Trypsin. The detached cells were washed in cell 

culture medium and cultured again with a dilution factor of 1/4. For imaging 

purposes, these cells were grown either over 13 mm circular coverslips placed 

in 12-well plates or in 8-well chambered coverglass (Lab TekTM, Thermo Fisher 

Scientific Inc.). 

 

Multiphoton Luminescence Imaging: Custom-built multiphoton microscopes 

were used for imaging (Fig 5.1). Femtosecond laser operating at center 

wavelengths of 824 nm (Mira900, Coherent Inc) and 1200 nm (OPO, Coherent 

Inc) were used for excitation. Laser light was coupled to FV300 laser scan 

head (Olympus Corp). The scanned beam was directed into either 1X71 

inverted microscope (Olympus Corp) or a custom built table-top microscope 

with a detector (PMT, R3896, Hamamatsu Photonics) for non-descanned 

detection.  
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Figure 5. 1. Custom built MPL microscope used for imaging 
gold nanorods. The parts numbered in the schematic are - (1, 4, 
5, 7) mirrors, (2) beamsplitter, (3) beam combiner, (6) scan lens, 
(8) tube lens, (9) dichroic mirror, (10) microscope objective, (11) 
microscope stage, (12) demagnifying lens combination, and (13) 
computer to control scanning and to acquire data. 

 

The table top microscope was built with 2 inch optical elements which are 

large as compared to the optical elements found in most commercial 

microscopes. The large size optics improves the light throughput of the 

microscope.  

 

5.3 Results and Discussion 

Synthesis of gold seed yields a bright yellowish brown colored solution. The 

typical size of a gold seed is less than 4 nm [128].  By adding different 

volumes of this seed solution to the gold nanorod growth solution, gold 

nanorods different aspect ratios and hence LPR wavelengths were obtained. 
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The seed volumes of 10 μl, 20 μl, 60 μl, 80 μl and 100 μl yielded gold 

nanorods with LPR wavelengths of 605 nm, 618 nm, 650 nm, 677 nm and 709 

nm respectively (Fig 5.2). 

 

Figure 5.2. Absorption spectra of some of the synthesized gold 
nanorods. The LPR wavelength of the gold nanorods can be 
tuned by varying the amount of gold seed solution added to the 
synthesis mixture. 

 

The CTAB on the surface of gold nanorods can be replaced with PEG 

molecules. However, the amount of PEG required for completely replacing 

the CTAB from a defined quantity of gold nanorods is not reported clearly in 

literature. One of the easiest measures of concentration of gold nanorods in a 

given suspension is the strength of LPR peak. It is also known that the 

strength of LPR of gold nanorods increases with aspect ratio. Therefore a 

suspension of gold nanorods with LPR wavelength at 650 nm and with peak 

strength 1.0 will contain more nanorods than a suspension of nanorods with 

LPR wavelength greater than 650 nm and peak strength 1.0.  If the 

concentration of PEG required for gold nanorods with lower LPR wavelength 
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is determined, this concentration will always be sufficient for gold nanorods 

with greater LPR wavelengths, provided the magnitude of LPR peak and 

thickness of the nanorods remains same. Gold nanorods with LPR 

wavelength at 618 nm were used to optimize the concentration of PEG 

required. For every 1ml suspension of gold nanorods with LPR peak strength 

1.0, 500 μl of PEG solution was added. After pegylation, excess PEG in the 

supernatant was quantified using Ellman’s reagent. The amount of PEG in the 

supernatant increased rapidly when PEG concentrations in excess of 500 μM 

were used (Fig. 5.3(a)).  Therefore 500 μM PEG was used for all the pegylation 

experiments.  After pegylation, the LPR peak of the nanorods shows a small 

red shift (Fig. 5.3(b)) and broadening.  

 

 

 

 

 



 

 92 

a) 

 

b) 

 

 

Figure 5.3. (a) Absorption of supernatants after reaction with 
Ellman’s reagent as a function of initial PEG concentrations 
added to gold nanorod suspension. (b) Absorption spectra of 
gold nanorods after synthesis (CTAB coated) and after 
pegylation (PEG coated). 
 
 

Pegylated gold nanorods are not cytotoxic and they are stable in 1X PBS. But 

these particles lack specificity for any cell type. In order to achieve specific 

targeting, gold nanorods have to be conjugated to some ligands. In this study, 

we used anti-EGFR (sc-120, Santa Cruz Biotechnology, Inc.) as a ligand for 

targeting cancer cells. For conjugation, NH2-PEG-SH was used instead of 

MeO-PEG-SH. Anti-EGFR was conjugated to amine terminus (NH2-) of PEG 
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chain using glutaraldehyde molecule as a cross-linker. The gold nanorods can 

be coated with NH2-PEG-SH or a mixture of NH2-PEG-SH and MeO-PEG-SH. 

Only a few antibody molecules can be accommodated on gold nanorod due to 

steric hindrance. There should be enough NH2-PEG-SH to saturate gold 

nanorods with antibody molecules. On the other hand, amine group (NH2-), 

being positively charged, gets attracted to negatively charged cell surface 

causing non-specific binding. Therefore there should not be many free amine 

groups on the gold nanorods. To determine this critical ratio, we tried three 

different percentages of NH2-PEG-SH – 10%, 50% and 100% in NH2-PEG-SH 

and MeO-PEG-SH mixture. As a control for anti-EGFR, bovine serum 

albumin (BSA, sc-2323, Santa Cruz Biotechnology Inc.) was used.  After 

conjugation, absorption spectra of all the six samples were recorded (Fig. 5.4). 

Gold nanorods coated with 10% NH2-PEG-SH and conjugated to anti-EGFR 

had the lowest LPR peak strength of 0.75 among all the 6 samples. Before cell 

staining experiments, all the samples were diluted to have LPR peak strength 

of 0.75. This ensured that all the samples had roughly similar concentration of 

gold nanorods. 
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a) 

 

b) 

 

c) 

 

 

Figure 5.4. Absorption spectra of gold nanorods with (a) 10 %, 
(b) 50% and (c) 100% of NH2-PEG-SH on their surface. These 
gold nanorods were conjugated to anti-EGFR (···) and BSA (–). 
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For evaluating the targeting efficiency of these gold nanorods, the 

nanorods were used to stain A431 cells which are known to express EGFRs in 

large numbers and SKMB cells which express only a few EGFRs. The cells of 

both types were cultured on 13 mm circular coverslips which were placed 12-

well tissue culture plates. Once the cells reached 80 % confluence, they were 

washed and incubated with 200 μl of gold nanorods conjugated to either BSA 

or anti-EGFR and 300 μl of cell culture medium per well for 3 hrs. Then the 

cells were washed and fixed with 2% paraformaldehyde. The coverslips were 

mounted onto glass slides and sealed with nail enamel to prevent the drying 

up of the cells. For each cell type (A431 and SKMB) there were 3 different 

levels (10%, 50% and 100%) of amine grafting on the nanoparticle surface and 

for each level of amine grafting, there were 2 different proteins (BSA and anti-

EGFR) conjugated. These 12 different cases were studied in this experiment. 

Gold nanorods attached to cell surface were imaged using a multiphoton 

microscope. The set up consists of modelocked femtosecond laser operating at 

wavelengths centered on 824 nm, FV300 scanhead and IX71 inverted 

microscope. The samples were imaged with a 40X/0.9 NA objective (Olympus 

Corp). Multiphoton luminescence from the gold nanorods was filtered with a 

shortpass filter (SP01-785RS-25, Semrock, Inc.) and detected using a PMT in 

the backward direction. Direct scattering from the cells in the forward 

direction was used to form an image of the cells. 3D imaging of the cells was 

carried out to map all the particles attached to cell-surface (Fig. 5.5).  
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

 

h) 

 

i) 

 

j) 
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Figure 5.5. Z-stack multiphoton images (a-j) of an A431 cell 
stained with gold nanorods containing 10% NH2-PEG-SH and 
conjugated to anti-EGFR. The images are 0.8 μm apart in depth 
and the scale bar is 10 μm. 

To calculate the targeting efficiency of gold nanorods, all z-stack images were 

projected into a single plane and the area covered by gold nanorods was 

calculated in terms of number of pixels. The transmission images were used 

to calculate the area of the cells in a 2D plane. The percentage of cell surface 

covered by gold nanorods was used as a measure of the targeting efficiency. 

All the image processing was done using ImageJ software (MBF-ImageJ 

Bundle). The results (Fig. 5.6) show that 50% NH2-PEG-SH coating on the 

surface of gold nanorods is ideal for achieving targeting efficiency against 

cancerous cells as well for reducing non-specific binding. Too low a 

percentage (10%) of NH2-PEG-SH is not sufficient to conjugate protein 

molecules to nanoparticles. On the other hand, too high a percentage (100%) 

of NH2-PEG-SH leaves many positively charged primary amine groups on the 

surface of gold nanorods. These amine groups stick to the negatively charged 

cell surface in a non-specific manner, which is undesirable. The process of 

conjugating gold nanorods to antibody is fairly general and it can be applied 

to any other type of gold nanoparticle. 
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a) 

 

 

b) 

 

 

Figure 5.6. Percentage of cell surface covered with gold 
nanorods as a function of quantity of NH2-PEG-SH on gold 
nanorods’ surface. Gold nanorods have been conjugated to BSA 
(-□-) or anti-EGFR (-o-). A431 cells (a) express EGFRs in large 
numbers whereas SKMB cells (b) express only a few EGFRs.  

 

In this process, we also demonstrated multiphoton microscopy of gold 

nanorods with LPR peak at 610 nm using excitation wavelength centered at 

824 nm. This approach is different from most of the reports on multiphoton 

microscopy of gold nanorods [47, 64]. The more common approach is to use 

nanorods whose LPR peak overlaps with laser output. This enhances 

absorption and hence the subsequent photoluminescence by the nanorods. 
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Unfortunately only a small fraction of the absorbed photon energy leads to 

photoluminescence and the rest dissipates as heat. There is also no direct 

evidence to show that the mechanism of linear absorption is the same as the 

mechanism of multiphoton absorption. Our imaging results show that gold 

nanorods can be effectively used for multiphoton microscopy by exciting 

them away from their linear absorption maxima. To further support our 

observations, we compared thermal effects of gold nanorods on live cells 

when excited close to and far away from their absorption peak.  

Gold nanorods with LPR peak at 812 nm (Nanopartz, Inc) were coated 

with 100% NH2-PEG-SH to make them stick to cell surface. The LPR peak of 

these gold nanorods overlaps with Ti:Sapphire output which is center at 824 

nm. Another laser output from the OPO which is centered at 1200 nm was 

used for exciting multiphoton luminescence in gold nanorods far away from 

the LPR peak. Wavelengths greater than 1000 nm have a very poor 

transmission in commercial microscopes. The OPO output is limited to a 

maximum of 110 mW, and therefore some modifications were required to 

minimize power losses in the microscope. All the mirrors used in the set-up 

were gold coated for efficient reflection of NIR wavelengths and all lenses in 

the laser path had anti-reflection coating for NIR wavelengths. The two main 

components a commercial laser scanning microscope are the scanhead and 

the microscope body. The scanhead is essential for scanning the beam and 

therefore we could not find a substitute for the scan head. The microscope 
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body on the other hand is a relatively simple design and we replaced it with a 

table top custom built table-top microscope. This customized microscope uses 

larger aperture (2 inch) lenses and a large aperture objective (40x/1.3 oil) for 

efficient collection of light. After these modifications, we were able to get up 

to 6 mW of 1200 nm laser light from the objective of the microscope, which 

was sufficient for imaging thin samples. A non-descanned detection path was 

designed by imaging the back aperture of the objective onto a PMT. The 

output of the PMT was amplified and fed back to the Olympus A/D card. This 

allowed us to use the Olympus Fluoview software for image acquisition.  

This customized microscope was used to image live A431 cells which 

were cultured in 8-well chambered coverglass. Before imaging, these cells 

were incubated with the gold nanorods for 3 hours. This gives sufficient time 

for some of the gold nanorods to stick to the cell surface. Just before imaging 

cells in a well, ethidium bromide was added to the well. Ethidium bromide is 

a nuclear staining dye which cannot penetrate through intact cell membrane. 

If the cell membrane ruptures due to heating by gold nanorods attached to the 

cell surface, the dye enters the cell and stains the nucleus. Fluorescence from 

nucleus-bound ethidum bromide can be excited with our Ti:Sapphire output. 

Transmission images of the cell were recorded using the 824 nm beam from 

the Ti:Sapphire laser. These transmission images (Fig. 5.7a, 5.7c, 5.8a & 5.8c) 

show the morphology of the cells before and after continuous scanning. 

Stained live cells were continuously scanned with a pixel residence time of 6.3 
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μs using either 824 nm or 1200 nm. When only 1 mW of laser power was used 

for 824 nm excitation wavelength, the cells ruptured with visible blebbing 

(Fig. 5.7(c)) and nuclear staining (Fig. 5.7(d)) by ethidium bromide within 25 s. 

However when 3mW of 1200 nm excitation wavelength was used, even after 

80 s of continuous scanning, no cell damage or nuclear staining was observed 

(Fig. 5.8). 1200 nm wavelength is not detected my transmission PMT in our 

microscope. Therefore the transmission image (Fig. 5.8a) of the cells before 

continuous scanning was acquired using a single scan by 824 nm laser from 

the Ti:Sapphire. At the end of the continuous scanning by the 1200 nm laser, 

another transmission image (Fig. 5.8c) was acquired using a single scan by 824 

nm laser. The apparent defocus in figure 5.8(c) is due mismatch in focal 

planes for the two different wavelengths – 1200 nm and 824 nm. The 

multiphoton intensity of gold nanorods from both the excitation wavelengths 

is comparable. It should be noted that the bright spots due to gold nanorods 

appear blurred because the nanorods are not rigidly bound to the cell surface 

and some of the nanorods are freely moving around in the culture medium. 

These results demonstrate that multiphoton microscopy of gold nanorods can 

be carried out much more efficiently with minimal thermal damage to cells by 

appropriately choosing the excitation wavelengths. NIR wavelengths around 

1200 nm have other advantages like minimal scattering by tissue and 

attenuated absorption water. These long wavelengths cause minimal 
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autofluorescence from biological samples, which is good for high contrast 

imaging.   

 

a) 

 

b) 

 

c) 

 

d) 

 

 

Figure 5.7. Images of A431 cells (a,b) before  and (c,d) after 25s 
of continuous scanning with 1 mW focused femtosecond pulses 
centered at 824 nm. (a) and (c) are transmission images and (c) 
and (d) multiphoton luminescence images. Rupture of cell 
membrane can be inferred from the stained nuclei in image (d) 
and blebbing marked by arrows in image (c). 
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a) 

 

b) 

 

c) 

 

d) 

 

 

Figure 5.8. Images of A431 cells (a,b) before and after 80 s of 
continuous scanning with 3 mW focused femtosecond pulses 
centered at 1200 nm. (a,c) are transmission images whereas (b,d) 
are multiphoton luminescence images. Images (a,b) were 
acquired using 1200 nm excitation whereas images (c,d) were 
acquired using 824 nm. No nuclear staining is observed after 
prolonged scanning (d) but gold nanorods can be clearly 
visualized even with 1200 nm excitation (b). 

 

5.4 Conclusions 

We have developed a fairly general procedure to modify gold nanoparticles 

for imaging biological specimen. Gold nanorods were used as samples in this 

study because of the excellent optical properties like multiphoton 

luminescence.  The gold nanorods of different aspect ratios were synthesized 

and coated with PEG molecules to make them biocompatible. PEG coated 
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gold nanorods are good for in vitro as well as in vivo applications. Further, 

these gold nanorods were conjugated to an optimum quantity of anti-EGFR to 

target cancer cells. Multiphoton microscopy of gold nanorods with minimal 

thermal damage to cells was demonstrated by using femtosecond laser 

operating at 1200 nm.  
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Chapter 6 

Conclusions 

 

Optical properties of gold nanoparticles, their low cytotoxicity and simple 

surface chemistry make them promising contrast agents for current day 

optical microscopy. The gold nanoparticles which were initially synthesized 

were symmetric in shape, like spheres, shells and rods. The optical properties 

of these particles can be tuned over a wide range of the spectrum. But the 

symmetric geometry of these nanoparticles is not favorable for strong second 

harmonic generation (SHG). Non-centrosymmetric scatterers are known to be 

strong contrast agents for SHG. Gold nano-scatterers with non-

centrosymmetric geometry can be synthesized either by lithographic 

techniques or by assembling very small gold nanoparticles (< 10 nm) into non-

centrosymmetric assemblies. It is very useful to theoretically study the 

nonlinear optical properties of these nanoparticles. It helps us in 

understanding the interaction of light with small particles and it also helps us 

in designing nano-scatterers with specific optical activity. In other words, 

contrast agents for a specific kind of microscopy can be designed[49]. We 

developed a numerical method to simulate nonlinear interaction of light small 

particles of any shape. Our method assumes that a scatterer is made up of 

dipoles which interact with external radiation as well as among themselves. 
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This method is a combination of two models – the discrete dipole 

approximation (DDA)[50] for linear scattering, and the uncoupled dipole 

model for nonlinear scattering[113]. We introduced the concept of dipole 

coupling from DDA into the uncoupled dipole model for nonlinear scattering. 

Second harmonic scattering from small particles as predicted by the coupled 

dipole model agrees well with experimental results reported in the literature. 

Comparison between coupled and uncoupled dipole models shows that the 

coupled dipole model gives more accurate results when the magnitude of the 

refractive index of the scatterer is high, as well as when surface effects are 

involved. The coupled dipole model is computational expensive as compared 

to uncoupled dipole model and therefore for scatterers with low magnitudes 

of refractive index the uncoupled dipole model is better, as long as edge 

effects are ignored. The coupled dipole model is a conceptually simple model 

and it can be applied to scatterers of any shape and for any distribution of 

incident radiation. We used it as a tool to demonstrate how a contrast agent 

can be designed for second harmonic microscopy. Our design is a gold 

nanohelix, made up of gold nanoparticles arranged in a helical pattern on a 

tobacco mosaic virus. Using biological structures as scaffold for patterning 

nanoparticles has been widely reported and hence it is a plausible design. The 

influence of pitch of the gold nanohelix on its optical properties was 

demonstrated. SHG from the gold nanohelix was found to be 65 times 

stronger than that from a comparable gold nanorod. This example of 
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designing a contrast agent for SHG and evaluating its performance 

theoretically can be applied to design a nano-scatterer with any other kind of 

optical activity. The coupled dipole model not only allows us to evaluate the 

optical properties of existing gold nanoparticles, but it will also help us to 

propose rational designs of scatterers for a specific application.  

Apart from development of the coupled dipole model for nonlinear 

scattering, we also worked on strategies to target gold nanoparticles to 

biological cells with high specificity. For this purpose, gold nanorods were 

used as model particles and multiphoton luminescence microscopy was used 

to visualize the targeted cells. Gold nanorods were stabilized in biological 

buffers by coating them with polyethylene glycol (PEG). Amine terminated 

PEG was used for conjugating gold nanorods to antibody for epidermal 

growth factor receptor (anti-EGFR). It was further observed that only 50% of 

amine terminated PEG is necessary to achieve good targeting of cancer cells 

with minimal background. Finally, comparison of multiphoton luminescence 

microscopy of gold nanorods with two different excitation wavelengths, one 

(824 nm) close to the longitudinal plasmon resonance (LPR) of the nanorods 

and another (1200 nm) far away from the LPR, shows that the former causes 

more photothermal damage to cells. This photothermal damage is mostly due 

to LPR enhanced absorption of photons by the nanorods. The longer 

wavelength is weakly absorbed by gold nanorods and hence photothermal 

damage is minimal.  The longer excitation wavelength also has advantage of 
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deeper penetration into biological tissues. Therefore multiphoton microscopy 

of gold nanorods with excitation wavelengths centered around 1200 nm was 

found to be more suitable for bioimaging of tissues. 

 

 

 

 



 

 109 

Chapter 7 

Future directions 

 

The coupled dipole model is a useful tool to understand nonlinear scattering 

from small particles. To the best of our knowledge, we are the first to use this 

method for simulating nonlinear scattering from small particles. Coupled 

dipole model is more accurate than the uncoupled dipole model but it is also 

computationally intensive. Reducing the computational time of coupled 

dipole model will enhance its utility. We can think of two ways to speed up 

the calculations of coupled dipole model – parallel computing[71] and graphic 

processor unit based computing. Both these methods speed up the 

computational task by dividing it into many small parts. These methods are 

especially useful when studying freely rotating nanoparticles in solution 

where a number of orientations of the particle have to be taken into account. 

These methods are also useful for calculating spectral response of a 

nanoparticle where a number of wavelengths are involved. Spectral response 

of a nanoparticle can also be used to calculate its temporal response to a short 

light pulse[197].  

The coupled dipole model, like other numerical methods for nonlinear 

scattering, is qualitative in nature because nonlinear susceptibility data for 

most materials is not available. The nonlinear susceptibility of gold 
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nanoparticles and its dependence of wavelength are important for 

quantitative prediction of nonlinear interactions between light and these 

particles. The second order  susceptibility matrix of gold nanoparticles can be 

determined by hyper-Rayleigh scattering studies[198]. For example, the 

second order susceptibility of gold nanoparticles should give us complete 

information about the direction, polarization and magnitude of SHG. This 

information is essential for comparing gold nanoparticles with other kinds of 

contrast agents like fluorescent dyes, nonlinear nanocrystals, etc. Similarly 

third order susceptibility contains information of two photon absorption as 

well as third harmonic generation. Two photon microscopy of gold nanorods 

generally involves exciting the nanorods at their linear absorption maxima. 

This causes significant heating in the nanorods as demonstrated in chapter (5) 

of this thesis. With knowledge of third susceptibility of gold nanorods as a 

function of wavelength, it is perhaps possible to separate linear absorption 

maxima from two photon absorption maxima, thus minimizing the heat 

generated in the particles.  

We used a gold nanohelix as an example to demonstrate how non-

scatterers can be designed for second harmonic generation. There are a 

number of gold nanoparticles which can be synthesized in large quantities, 

but nonlinear optical properties of such particles have not been fully 

characterized. There are also new type of metal nanoparticles which are made 

of more than one metal[188]. All such particles can be studied using coupled 
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dipole model and nanoparticles can be sorted according to their nonlinear 

optical properties. This will assist researchers in choosing nanoparticles with 

specific nonlinear activity. Comparing nanoparticles with a specific nonlinear 

activity will give us an insight to correlation between morphological features 

of nanoparticles and their optical properties.  

Strong multiphoton luminescence of gold nanorods and emission in the 

red region of the spectrum is favorable for deep tissue imaging. We have also 

demonstrated multiphoton luminescence from gold nanorods can be excited 

with long excitation wavelengths around 1200 nm which are good for deep 

tissue imaging. With conventional fluorophores, multiphoton imaging in 

tissue can be performed up to depths of 1 mm[199]. If gold nanorods are used 

instead of fluorophores, depth of imaging in biological tissues can be further 

increased. Imaging depth can be even further increased by using techniques 

like adaptive optics which negate scattering by the tissue. Plasmonic probes 

for SHG are expected to further improve the imaging depth by selective back 

scattering.  
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