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Summary 

In the past few decades finite element method has come to be known as one of the most 

popular and powerful numerical methods in analyzing different engineering structures 

including those threatened to experience an unpredicted fracture due to the initiation and 

growth of cracks. To deal with the linear elastic fracture problems, FEM provides a well-

established approach of quadratic quarter-point elements to produce the theoretical 

singularity in the stress and strain field. The following main advantages of FEM are the 

main reasons of its reputation for being used in different engineering applications; 

 The method handles relatively easy different problems with the complicated 

geometry and arbitrary loading configuration and boundary conditions. 

 The method has been well-established in the last decades such that it has a clear 

structure and possible for being used in developing new software packages. 

 The method provides a high reliability because of owning a solid theoretical 

foundation.  

Despite the foregoing features of FEM, it also suffers from a number of disadvantages 

which consist of; 

 Using the lower order elements like linear (triangular or tetrahedral) elements, 

FEM exhibits an overly stiff behavior; yielding in providing inaccurate results for 

the stress solutions. 

 Using the entire mesh of higher order elements in the framework of FEM results 

in a considerable amount of increase in the computational time. 
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To overcome these shortcomings, the present thesis focus on providing a softer model 

than that of FEM by using the strain smoothing technique on a dual domain of the space 

discretized with a set of non-overlapping and no-gapping linear elements.  Two new 

methods of singular ES-FEM and singular FS-FEM are then introduced to be used in two 

and three dimensional spaces. The methods propose new types of crack tip elements to 

capture the theoretical singularity of stress and strain field based on a simple and direct 

interpolation method. In 2-D, singular ES-FEM formulates a 5-node triangular crack tip 

element with the enriched shape functions to produce the singular behavior at the crack 

tip. Similarly, 10-node prism crack tip element is developed in the method of singular FS-

FEM. using the smoothed finite element method, one only need to calculate the 

displacement (and not the derivatives) over the boundaries of smoothing domains 

associated to with edges (in 2-D) or faces (in 3-D) of the elements.  

The results show that, in both cases of two and three dimensional problems, the proposed 

methods provide the more accurate results (in terms of strain energy, displacement, and 

more importantly stress intensity factors) than those of currently widely-used FEM with 

quarter-point elements. Besides, using the new proposed methods with a base mesh of 

coarse linear elements without using the any iso-parametric mapping will increase the 

computational efficiency.  
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Chapter 1:  Introduction 

“A dream becomes a goal when action is 

taken toward its achievement.” 

Bo Bonnett 

1.1 Background 

Responding to increasing demands in mechanical, aerospace and biomedical 

applications, several intensive studies have been conducted on the fracture mechanics 

behavior of materials over the past few decades. The catastrophic crack growth usually 

leads to the failure of different equipment like aircrafts, infrastructures or automotive 

structures, threatening human life and imposing additional expenses on the industry. 

Using developments in fracture mechanics, the inadequacies of the design criteria can be 

compensated, especially when there is a likelihood of initial crack existence in the 

structure. The crack propagation under the service load can be anticipated and controlled 

in such a case. 

The primary study on theory of fracture mechanics was conducted by Griffith (1921) 

to propose a model for the failure of brittle materials, justifying singular behavior of 

analytical stress around the crack tip. A modified form of the Griffith’s approach for the 

linear elastic fracture mechanics was later developed by Irwin (1958) reformulated in 
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terms of a parameter called stress intensity factor. Based on this approach stress intensity 

factor is the most significant parameter in categorizing the crack behavior. Although use 

of this parameter demands an accurate knowledge of stress field in the vicinity of the 

crack tip, analytical solutions only exist for selected and relatively simple problems. For 

more complicated practical cases without an analytical stress solution, however, 

numerical techniques can be considered as the only way to analyze the structure, where a 

proper estimation of singular stress field is demanded for an accurate analysis.  

One of the most widely-used and best established numerical techniques in the field 

of linear elastic fracture mechanics is finite element method (FEM). However, the stress 

singularity at the crack tip cannot be captured when the polynomial basis functions are 

used in the conventional finite elements, and hence the convergence rate of the solution is 

badly affected.  Currently, the most widely-used singular element for the crack problems 

is the so-called “eight-node quarter-point element” or the “six-node quarter-point element 

(collapsed quadrilateral)” in which the mid-side nodes are shifted by a quarter edge-

length toward the crack tip. The singularity is then achieved accordingly by the well-

known iso-parametric mapping procedure [1-3]. This method only works with the entire 

element mesh of quadratic elements of the same type which leads to a higher 

computational cost in comparison with linear elements.  

Although several other approaches have been proposed by adding new ideas to the 

singular FEM, it is still accepted as one of the best methods simulating fracture problems. 

Among the other developed techniques is extended finite element method (X-FEM) for 

discontinuous fields by adding some local enrichment functions to the FEM in the 
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framework of partition of unity finite element method (PUFEM) [4-7]. In the X-FEM 

settings, however, a layer of “blending” elements will be produced in the transition zone 

from the enrichment to the usual FEM approximation, leading to a local loss of the 

partition of unity.  Although some strategies were introduced to improve the blending 

elements in X-FEM and minimize the loss of partition of unity property [8-10], the 

problem still stands.   

On the other hand of developments, a new method of “smoothed-finite element 

method (S-FEM)” has recently been developed by Liu [11-13] to improve the accuracy of 

FEM for both two and three dimensional problems.  Using linear triangular and 

tetrahedral elements, the method works very well for continuous fields and provides the 

more accurate results than FEM. However, the method does not work well for the 

domains containing discontinuities like crack. In this thesis, a proper treatment is 

proposed and properly implemented to overcome the deficiency of S-FEM in dealing 

with fracture problems. 

1.2 Objectives and scope of the thesis 

Based on what is briefly reviewed in the last section, research gaps for the current 

FEM-based techniques customized for the fracture problems can be listed as follows: 

 An entire mesh of quadrilateral element type (or higher order elements) is 

required in the currently conventional singular FEM, which leads to a significant 

amount of increase in computational cost. The expensive computational cost of 

singular FEM can be highlighted more by considering the unavoidable re-meshing 
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process for the quasi-static or dynamic analyses of crack growth simulations. On 

the other hand, essential capturing of stress singularity around the crack tip is not 

achieved if a mesh of linear elements is adapted in the vicinity of crack tip. 

Unfortunately, in the framework of conventional FEM, the idea of decreasing 

computational costs by using a combination of quarter-point elements around the 

crack tip and linear elements on the rest parts of the domain is not applicable 

because of “incompatibility of displacement field” which will occur in the 

boundary of adjacent elements of different types. 

 The inherent overly-stiff property of singular FEM leads to a relative loss of 

accuracy. A question remains whether it is possible to improve the accuracy by 

softening the model represented by singular FEM.  

 It is of interest to enhance the performance of FEM in a way that the 

property of “partition of unity” always is satisfied. Although, the widely-used 

approach of extended finite element method (X-FEM) resolves the shortcoming of 

computational cost by skipping re-meshing process during the crack propagation, 

another deficiency of locally loss of “partition of unity” in the area of “blending 

elements” is produced by X-FEM.  

The main aim of this study is to develop a singular smoothed finite element method 

(singular S-FEM) to improve the accuracy and efficiency of FEM for both 2-D and 3-D 

fracture problems. In this study the following objectives are sought: 

 Proposing a novel crack tip element to simulate stress singularity around the crack 

tip. This element will be used instead of quarter-point elements of singular FEM. 
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 Increasing the computational efficiency by proposing a new technique which uses 

a combined mesh of linear elements and novel crack tip elements with an ensured 

compatibility in the whole displacement field and guaranteed satisfaction of 

“partition of unity” property in the entire domain. 

 Improving the accuracy of results by using “smoothing technique” to resolve the 

overly-stiff property of FEM.  

The new ideas of present study may have significant impact on both accuracy and 

computational efficiency compared to the available approach of singular FEM for 

fracture problems by: 

 Proposing novel crack tip elements with special shape functions to successfully 

simulate the stress singularity around the crack tip, 

 Using “linear elements” instead of “quadratic ones” and “interpolation method” 

instead of “isoparametric mapping procedure”, which may lead to more efficient 

computational analysis, and  

 Using “smoothing technique” on the domains associated with the edges and faces 

of elements (for, respectively, 2-D and 3-D problems) which may provide a 

method with a higher accuracy and convergence rate than singular FEM. 

To narrow the scope in the field of fracture mechanics, this study only focuses on 

different aspects of linear elastic fracture mechanics (LEFM) and not on the 

challenges of non-linear fracture mechanics (NLFM). Moreover, considering the fact 

that “partition of unity” is locally lost in the blending area of X-FEM and referring to 

our objective of developing a method that satisfies this property everywhere in the 
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domain, comparing the results of our method with X-FEM is out of scope of this 

study. 

This thesis is outlined as follows. In chapter 2 a brief review on the foundations of 

linear elastic fracture mechanics is provided followed by a survey on finite element 

method (FEM) and smoothed finite element method (S-FEM) in chapter 3 and chapter 4, 

respectively. Then, the method of singular ES-FEM for crack analysis in homogenous 

materials is introduced in chapter 5, precisely addressing relevant details such as novel 

crack tip elements, new proposed shape functions, smoothing domains creations and 

numerical approach for J-integral calculation. The method is then examined through 

several examples to verify its power in dealing with different problems compared to other 

approaches. In chapter 6, the newly proposed method of singular ES-FEM is customized 

for the interfacial crack problems and the performance is investigated through several 

numerical examples. Next, the quasi-static crack growth using the singular ES-FEM is 

formulated based on a Delaunay triangulation algorithm and is addressed in chapter 7. 

The crack trajectories for some benchmark problems are then investigated using the 

current method and are compared with the experimental observations. Next, the 

developed approach is used to simulate the more practical case of fatigue crack growth 

and the results are verified with the reference observations. Later on, in chapter 8, the 

method of singular faced-based smoothed finite element method (singular FS-FEM) for 

three dimensional spaces is introduced and formulated with the similar foundations to 

that of singular ES-FEM. Finally, some conclusions are drawn in chapter 9 and 

recommendations for future work are presented. 
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Chapter 2:  Linear Elastic Fracture Mechanics 

“Problems cannot be solved by the same level 

of thinking that created them.” 

Albert Einstein 

2.1 Introduction 

For a perfect non-defective solid material, stresses are considered to vary smoothly 

and mechanical behavior is explained based on the theory of elasticity equipped with 

proper tools to evaluate yield stresses. These stresses are then exerted in the established 

failure criteria to predict the material failure under loading conditions. For the defective 

materials like those containing cracks, however, the existence of local discontinuity in the 

stress field is not properly describable by theory of elasticity; resulting in a non-reliable 

analysis. 

For these kinds of problems, fortunately, another powerful theory of “fracture 

mechanics” has been developed to compensate the deficiency of classical approaches in 

analyzing crack problems. This theory is usually classified into two major categories 

named; “linear elastic fracture mechanics (LEFM)” which was developed on the basis of 

linear elastic theory and “plastic fracture mechanics” which was established by taking 

the crack-tip plastic deformation into account.  
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When the linear elastic principles are applied, it is presumed that the stress is sharply 

increased by approaching to the crack tip and goes to infinity at the crack-tip point. In 

reality, however, the resultant plastic deformation due to the high amount of stress 

prevents the stress values from really going to infinity (e.g. in ductile material). Although 

considering this plastic behavior is crucial in dealing with problems with a large plastic 

deformation, for those with a small plastic zone at the vicinity of crack LEFM has been 

accepted as a reliable method to provide accurate and reasonable predictions of crack 

behavior.   

In this study we will only focus on the LEFM problems, wherein a parameter called 

“stress intensity factor” is introduced to describe the stability behavior of crack based on 

the state of stress in the vicinity of crack tip. On the other hand, because of the fact that 

state of stress is solely analytically-available for a very limited number of problems with 

the very simple “geometries”, “loading” and “boundary conditions”, implementing a 

numerical approach to evaluate the stress field for the case of generic problems seems 

unavoidable. 

Responding the mentioned fundamental requirements for the LEFM analysis, in the 

following sections, a very brief review on the concepts of LEFM is provided, followed by 

the next chapter as a background survey on the finite element method (FEM) which has 

come to be known as one of the most popular techniques in the field of solid mechanics 

computations. 
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2.2 The Development of fracture mechanics 

The “elastic stress concentration” formulation proposed by Ingliss [14] can be known 

as the first effort in developing theory of fracture mechanics. According to his studies, the 

local stress for an elliptical hole located inside a solid body shown in Figure 2.1 is 

amplified to the value of 

   2y y
max

d
 



 
   
 

 (2.1) 

In which 2c / d   is the curvature radius.  
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Figure 2.1. A typical elliptical hole inside a body with a remote uniform stress   

The elliptical hole will turn to a sharp crack for the limiting case in which one axis 

(let say, axis c) approaches to an infinitesimal value, meaning that Inglis equation 

predicts an infinite local stress at the crack tip in such a case. Knowing the fact that no 

real material is capable of sustaining infinite amount of stress, some concerns were 

created after Inglis’s theory. 
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Later, In 1921, Griffith [15] developed a fracture theory based on energy balance 

rather than the local stress. He implemented energy conservation principles to a centrally-

cracked glass plate. According to his mindset, a crack would start to propagate only when 

the elastic strain release rate, due to crack extension, exceeded the rate of increase in 

surface energy associated with the newly formed crack surface.  

After calculating the amount of balanced energy U  of cracked body and solving 

0dU / da   (a stands for the crack length), he obtained the critical crack size 
ca  as  

 
 

2

2 s

c

E
a




  (2.2) 

Where 2 s is the total surface energy per unit area, E is the Young’s modulus, and 

f  is the remote stress. In addition;  
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 (2.3) 

For the case of ca a , the crack is stable; meaning that it is not extended without an 

input amount of energy. When ca a , however, the crack propagation occurs in an 

unstable manner. 

The total surface energy per unit area ( 2 s ) and the remote stress f  at failure time 

can then be found using the equation (2.4) and (2.5). It should be noted that these 

equations were all derived only based on the energy balance regardless the stress 

distribution inside the material and around the crack. 
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  (2.5) 

Based on several experimental verifications, it was found that the fracture strength of 

glass shows a very good agreement with that given by equation (2.5), while for the metals 

this equation does not provide reasonable estimates of the real fracture strength. In the 

other word, Griffith approach is only successful in describing fracture behavior of brittle 

materials and not the non-brittle ones. 

Therefore, several investigations were further conducted by other researchers to 

improve Griffith theory and analyze the fracture of ductile materials as well. 

Irwin [16] and Orowan [17] independently modified the Griffith formulation to the 

following equation which includes an additional term of p  that stands for plastic work 

per unit area of created surface. This term brings the plastic deformation of material into 

account. 

 
 2 s p

f

E

a

 





  (2.6) 

Nevertheless, since equation (2.6) is based on the assumptions of Griffith model, the 

global behavior of the structure must be elastic. In the other words, the plasticity effect 

must be confined to a small region at the vicinity of crack tip. Using the principles of 

linear elastic theory, it is possible to derive closed-form solutions for the stress 

distribution field in some simple cracked solids with special loading and boundary 

conditions. Westergaard [18], Sneddon [19], Irwin [16] and Williams [20] were among 

the first researchers to publish such solutions.  
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To propose a fracture model with capability of explaining behavior of metals, Irwin 

then focused on stress field rather than the energy balance method of Griffith. He 

categorized the general behavior of a cracked body based on the geometry of crack and 

loading conditions by means of introducing three basic different fracture modes called in-

plane opening mode (due to a symmetric loading), in-plane sliding mode (due to an anti-

symmetric loading ), and out-of-plane tearing mode (due to an anti-symmetric loading ) 

as shown in Figure 2.2. 

In general, any cracked body is configured as a superposition of these three modes. 

Using the semi-inverse method of Westergaard, Irwin then expressed the stress 

components in the vicinity of crack tip as   
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 (2.7) 

Where r is the radial distance from the crack tip and terms  if  ; ( 1 2 3i , , ) are 

functions of polar angle . The parameters KI, KII and KIII are also known as the stress 

intensity factors corresponding to the three fracture modes. 
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(a) (b) (c)  

Figure 2.2: The three basic modes of crack extension. (a) Opening mode (Mode I), (b) Sliding mode 

(Mode II), (c) Tearing mode (Mode III). 

 As it can be seen in equation(2.7), for a linear elastic fracture problem, Irwin 

formulation produces a mathematically infinitive stress at the crack tip ( 0r  ) by simply 

introducing a 1/ r  term in the stress field. Moreover, the stress intensity factor 

thoroughly characterizes crack tip condition by relating the remote applied stress to the 

local stress near the crack tip. The stability condition of crack is then examined by 

comparing the stress intensity factor with a critical value called fracture toughness, Kc, 

which is a material parameter depending on thickness of specimen and temperature. 

Normally Kc can be determined from Izod and Charpy impact test. 

2.2.1 Energy Method (J-Integral) 

The famous approach of contour integral for the energy release rate was later 

proposed by Rice [21] to characterize the behavior of non-linear fracture problems. The 

method was quickly flourished among the researchers all around the world because of its 

brilliant feature of “path-independency”. According to this technique, under the 

assumption of small displacement gradient for a two-dimensional, planar, elastic solid 

including a sharp crack, a J parameter is defined in a line-path integration as [21]: 
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  (2.8) 

where, w  is the strain energy density, ij is the kronecker delta, and J  is any path 

beginning at the bottom crack face and ending on the top face as shown in Figure 2.3. In 

addition, jn , ij and iu  are, respectively, components of outward unit normal vector n  

on J , stress tensor, and displacement vector referred to a Cartesian coordinate system 

located at the crack tip point.  

n
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Figure 2.3. Typical closed line-path around the crack tip 

As it was mentioned earlier, the significant property of J-integral in dealing with 

crack problems is its “path independency”. In numerical calculations, however, a path 

dependent behavior is usually observed in the results. To cope the case; a smoothing 

weighting function q is multiplied by the integrand of Equation (2.8) as 

 1

1

( )

J

i
ij j j

u
J w n qd
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  (2.9) 

In addition, to build up a more path independent nature for numerical results, it is 

strongly recommended to evaluate the integration over an area domain in lieu of a line 

path [22]. To obtain such an area-domain integration formula, consider a typical two 
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dimensional sharp-cracked body with an assumed closed contour J  around its crack tip 

as shown in Figure 2.4, where 1 2J J J        . The area JA  is enclosed by 

line segments 1J ,  , 2J and  . The segments   and   are, respectively, the 

boundaries of the lower and upper crack face. For such a closed contour, J-integral can 

then be defined in the form of area-integration as [21]: 
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   (2.10) 

where 1j  is the Kronecker delta and q is now a sufficiently smoothing function 

defined on JA . Later on, it will be discussed how q is defined for our -FEM model. 
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Figure 2.4. Typical closed area- path around the crack tip  

2.2.2 More on contour integral and area integral in the numerical analysis 

Early use of J-integral with finite element method (FEM) focused on a direct 

evaluation of equation (2.8) along a contour with the scheme of Figure 2.3 in the FEM 

mesh. Calculating such a contour integral is quite unfavorable in FEM codes as 

coordinates and displacements refer to nodal points and stresses and strains to Gaussian 

integration points. Stress fields are generally discontinuous over element boundaries and 

extrapolation of stresses to nodes requires additional assumptions [23]. Usually, the 
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contour is selected to pass through element Gauss integration points, where stresses are 

expected to be most accurately evaluated. Unfortunately, such an implementation rarely 

exhibits path independence of the integral.  

Li et al. [22] showed how the contour J-integral can be transformed to an equivalent 

area integral, which is much simpler to implement in a FEM context. The method is quite 

robust in the sense that accurate values are obtained even with quite coarse meshes; 

because the integral is taken over a domain of elements, so that errors in local solution 

parameters have less effect [24]. 

It is worth of mentioning that, in theory, calculating the integral of equation (2.8)

(that contains no q parameter as smoothing function) along a closed path contour like the 

one in Figure 2.4 will produce nothing but zero; since 0
J J

J J
     (Because, along 

these lines 1 0n  and 0ij jn  ) and 
1 2J J

J J   (Because, J-integral is supposed to be 

path independent). Therefore, the theoretical value would be 
1 2

0
J J

J J J J
        .  

Therefore, the equivalent area form of integration produced by divergence theorem 

will also be equal to zero. In the other words, in the case of having no smoothing function 

q, for an area JA  enclosed by 1 2J J J        , one can write
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     (2.11) 

In the case of introducing the smoothing function q as in equation (2.9), one will be 

able to get the following relation through the divergence theorem [22, 24] 

 ( ) ( )
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P q
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     (2.12) 
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Using a direct calculation shows that 0
j

P

x





 over JA  [22], meaning 

that ( )

J jA
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  has no contribution in the foregoing integral. This also means that 

( ) 0
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 which is identical to what mentioned in equation (2.11); meaning that 

without using q parameter the area form of integral over a closed path around the crack 

tip will yield zero value. By implementing the q function, however, one would be able to 

express the area form of J-integral parameter as ( )

J jA

q
P dA

x



  (that is nothing but what 

was mentioned earlier in equation (2.10)). Such a formulation suggests some average 

value for the J-integral based on the variations of q parameter in the domain. 

2.2.3 Relations between Stress Intensity Factors (SIF) and J-integral  

Based on the concepts of linear elastic fracture mechanics, for a general mixed mode 

problem in three dimensional spaces, the following relationships exist between the value 

of J-integral and components of stress intensity factors. 
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where *E  is defined in terms of material parameters E (Young’s modulus) and 

 (Poisson’s ratio) as equation (2.14) 
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To extract the values of stress intensity factors from the evaluated amount of J-

integral in a generic problem, the method of interaction integral method can be used. The 

method introduces an auxiliary state with the parameters (
( ) ( ) ( ), ,aux aux aux

ij ij iu  ) to be added 

to the real state of problem. with the parameters (
(1) (1) (1), ,ij ij iu  ). For the cases that 

auxiliary state is chosen as pure mode I, II, or III, one can write 
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In addition, the following relations can be written due to the linearity of problem. 
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After substituting equation (2.16) into equation (2.13), a new term (1 )auxI  appears.  
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Or  

 (1 ) (1) ( ) (1 )aux aux auxJ J J I     (2.18) 

In which (1 )auxI  is called the interaction integral between the real state and the 

auxiliary one and has the following relation with the stress intensity factors associated 

with real and auxiliary states, 

  (1 ) (1) ( ) (1) ( ) (1) ( )

*

2 1aux aux aux aux

I I II II III IIII K K K K K K
E

   


 (2.19) 

The asymptotic case for equation (2.19) occurs when the auxiliary state is set to be 

one the three pure fracture modes. In such a case the stress intensity factors are calculated 

as 
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Based on this equation, the calculation of stress intensity factors for the general 

mixed mode problem is quite straightforward if the parameter (1 )auxI   is given. This 

parameter is yet to be determined. In the following section, the computational procedure 

to evaluate the parameter in the two dimensional space is described.  

2.2.4 Interaction integral procedure 

In the two dimensional space, using the definition of J-integral along a path like 

J that was previously shown in Figure 2.3, the corresponding J value for the state 

(1+aux) is expressed as 
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which can be expanded and re-arranged in the form of equation (2.18) by setting 

(1)J , ( )auxJ , and an (1 )auxI   as the following expressions, 
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in this equation (1, )auxw  is called interaction strain energy and is defined as 

 (1, ) (1) ( ) ( ) (1)aux aux aux

ik ik ik ikw       (2.23) 

Using the obtained integral form for parameter (1 )auxI  ,and converting it to the area 

integration form which is given in the following equation, one will be able to calculate 

the stress intensity factors.  
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2.3 Fatigue analysis 

One of the most important failure types under the service loading condition is fatigue 

failure in which the structure undergoes variable amplitude of load. Numerous 

investigations have been conducted on fatigue crack growth and different models of this 

behavior have been proposed to date. However, there is no general agreement among the 
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researchers about the possibility of introducing a unique model for all the materials and 

problems [25]. In other words, different studies have reported different parameters 

affecting the fatigue behavior of the structures. Some studies, for instance, highlighted 

the significance of environmental influences [26, 27], while some others focused on the 

role of stress ratio R defined by the ratio of minimal to maximal stress of a loading cycle 

applied in the far field ( min

max

S
R

S
 ) [28, 29]. Paris and Erdogan were the first to propose a 

model that assumes fatigue crack growth rate (FCGR) /da dN  is a function of stress 

intensity factor range K  [30]. According to this model 

 ( ) Pn

P

da
C K

dN
   (2.25) 

 Where PC and Pn are the scaling constants of the log-log plot of /da dN versus K . 

According to the experimental investigations, the typical logarithmic curve of 

/da dN versus K  consists of three regions as shown in Figure 2.5. The first region 

represents the early development of fatigue crack growth, while the second and third 

regions present the stable and accelerated growth zones, respectively.  Paris-Erdogan 

relationship, however, is only able to model the second region, where the equation 

represents a straight line on the log-log plot. In addition, for some materials like titanium 

and its alloy, this criterion does not model the actual behavior since the transition point 

from region two to region three is a function of fracture toughness cK  and stress ratio R  

beside the value of K [31].   
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Figure 2.5. Three regions of logarithmic FCGR versus stress intensity factor range 

Forman [32] improved the Paris-Erdogan model in such a way that the third region 

can also be modeled.  The mathematical expression of Forman model is  
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C Kda
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 (2.26) 

In which coefficients FC and Fn are the Forman constants. Later, Walker [33] 

proposed a similar model for aluminum alloys 2024-T3 and 7075-T6 with driving terms 

of R-ratio and maximum stress intensity factor ( maxK ) as 

 max(1 )
wn

m

w

da
C R K

dN
     (2.27) 

The well-known concept of crack closure effect was introduced later by Elber [34] to 

justify his experimental observations of interfering opposite surfaces during tensile 

portions of load cycles [35]. Since then, several studies have been conducted on the crack 

closure phenomenon for different materials and loading conditions [36-42]. On the other 

hand, in a paper published by Kujawski [43] it was stated that there is no general 

agreement among all researchers regarding the significance of the crack closure concept. 
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He proposed a  
0.5

+

maxΔK .K fatigue growth model, instead, which yielded an excellent 

agreement with the experimental data previously published by Pang et al.[38]  and Lee et 

al. [44], where the plotted data for a given material collapsed on an almost straight line, 

showing almost no effect of R [45]. According to the kujawski’s model, the driving force 

for fatigue crack growth is a combination of  
0.5

+

maxΔK .K , where K  is the positive 

part of the applied stress intensity factor. This method works well for most of aluminum 

alloys and some other materials [43, 46, 47]. The mathematical expression for the 

Kujawski’s model is as follows: 

 ( ) Km

K

da
C PK

dN
  (2.28) 

Where KC and Km are Kujawski’s constants and 
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Chapter 3:  Finite Element Method (FEM) 

“ Never try to solve all the problems at once 

— make them line up for you one-by-one” 

Richard Sloma 

3.1 Introduction 

Since the numerical approach that will be proposed in the present dissertation is 

partially built up on the basis of finite element method (FEM), an essential abstract of 

standard FEM is briefly presented in this chapter by employing a simple mathematical 

language. The governing equations (including strong and weak formulation) and domain 

discretization are also discussed. In addition, advantages and disadvantages of FEM are 

reviewed. For the sake of simplicity in discussion, two-dimensional (2D) problems are 

chosen as the default. All the formula, however, are generally applicable to linear solid 

mechanics problems in higher dimension spaces. 

3.2 Governing equations for elastic solid mechanics problems  

The equilibrium equation for a 2D elastic solid mechanics problem in a physical 

domain of Ω∈ℝ2 
bounded with a Lipschitz-continuous boundary Γ with Γ = Γu + Γt  , Γu 

∩ Γt =∅, is governed by 

 .T

s in   σ b 0  (3.1) 
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In which [ ]T

xx yy xy  σ  is the stress vector, [ ]T

x yb bb  is the vector of 

external body forces, and T

s  is a symmetric differential operator matrix given by  

 

0

0T

s

x

y

y x

 
 
 
 

   


 
  
 
  

 (3.2) 

The essential boundary condition (Dirichlet boundary condition) is given as 

 uon 0u = w  (3.3) 

Where [ ]Tu vu  is the displacement vector with the displacement components of u 

and v in the x and y directions, respectively, and 0 0[ ]T

x yw w
0

w  is the prescribed 

displacement vector on the essential boundary condition. For more simplicity in 

discussion, we only consider the problems with the homogenous boundary condition, 

meaning that   

 0 uon u =  (3.4) 

The natural boundary or Newman condition is also given as follows 

 T

ton n σ t  (3.5) 

Where [ ]T

x yt tt  is the prescribed traction vector on the natural boundary t , and 

n  is the unit outward normal matrix with the components of xn  and yn  in the x and y 

directions. 
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 (3.6) 

On the other hand, strain vector of the form [ ]T

xx yy xy  ε can be calculated using 

the strain-displacement relation of  

 sε u  (3.7) 

Subsequently, the stress can be evaluated based on the Hook’ law 

 σ Dε  (3.8) 

In which D  is a symmetric positive definite matrix of material constants. 

3.3 Hilbert Spaces 

The Hilbert spaces 1( ; )m  is defined as a set of functions with a square 

integrable derivatives up to m
th

 order as  

  1 2 1( ; ) | ( ; ),m v D v m     ∀  (3.9) 

In which m is a non-negative integer and   is a bounded domain in 2 . Besides, 

2 1( ; )  is defined as a set of scalar functions 1v  which are piecewise continuous 

and square integrable over  . 

 
2 1 1 2( ; ) |v v is defined on and v d



 
     

 
  (3.10) 

2 1( ; )  is associated with scalar inner product   2 1( ; )
,v w


 as given in equation 

(3.11). It is also equipped with the corresponding norm 2 1( ; )
v


of equation (3.12): 
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   2 1( ; )
,v w vwd





   (3.11) 

  2 1

1/2

1/22

( ; )
,v v d v v





 
   
 
  (3.12) 

In addition, D v  is the notation for the general differentiation and is defined as 

 
1 2

v
D v

x y




 



 

 (3.13) 

In which 1 2( , )   and a non-negative integer and 1 2    . 

Similar to 2 1( ; ) , Hilbert spaces 1( ; )m   is associated with the scalar inner 

product   1( ; )
, mv w


and is equipped with the corresponding norm 1( ; )mv


as follows: 

   1( ; )
, ( )( )m

m

v w D v D w d 




 

    (3.14) 

And 

 1

1/2

2

( ; )m

m

v D v d




 

 
   
 
   (3.15) 

It might seem interesting to note that 0 1 2 1( ; ) ( ; )    [48]. Moreover, the 

most relevant space to the 2-D solid elastic mechanics problems governed by equation 

(3.1) is the 1 1( ; ) space expressed as: 

  1 1 2 1 2 1( ; ) | ( ; ), / ( ; ), ,i iv v v x x x y          (3.16) 

With the scalar product   1 1( ; )
,u w


of the form 

   1 1( ; )
, ( . )v w vw v w d





     (3.17) 
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And the corresponding norm of  

  1 1

1/2

22

( ; )
v v v d





 
    
 
  (3.18) 

Where in these equations [ ]Tv v
v

x y

 
 

 
is denoted as the gradient of v . In addition 

to the foregoing spaces, a subset of 1 1( ; )  with the vanishing values on the u  is 

further defined as  1 1 1 1

0( ; ) ( ; ) | 0 uv v on       and is equipped with the 

same scalar inner product and norms as 1 1( ; ) . 

Since the field variable v  for 2-D solid mechanics problems takes a vector form 

constructed by its components as 
T

x yv v   v , the foregoing spaces can be re-written 

in a more precise form as 

  2 2 2 1( ; ) ( , ); ( ; ) , ,x y iv v v i x y     v  (3.19) 

And similarly, 

  1 2 1 1( ; ) ( , ); ( ; ) , ,x y iv v v i x y     v  (3.20) 

With the corresponding norm of 

 2 12 2 ( ; )

1/2
2

2

( ; )
1

i

i

v v 


 
  
 
  (3.21) 

And 

 1 11 2 ( ; )

1/2
2

2

( ; )
1

i

i

v v 


 
  
 
  (3.22) 
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3.4 Variational formulation and weak form 

Considering the governing equilibrium equation of (3.1) for a 2-D elastic solid 

mechanics, the variational formulation and week form is derived as will be briefly 

discussed in this section. 

After multiplying Equation (3.1) with a test function belonging to the Hilbert space 

( 1 2

0( ; ) v ) and integrating over the entire problem domain  , one can obtain the 

following relationship 

 1 2

00, ( ; )T T T

s d d
 

      v σ v b v∀  (3.23) 

Using the Green’s divergence theorem [48] and the boundary conditions, the 

foregoing integral equation can be converted to the following form  

     1 2

0, ( ; )

t

T T T

s s d d d
  

         v D u v b v t v∀  (3.24) 

In which the left side of equation has a bilinear form and the right side term is a 

linear functional. The well-known weak formulation for a typical 2-D solid governed by 

equation (3.1) and exposed to the boundary condition of equation (3.4) and (3.5) can then 

be simply stated as “finding a 1 2

0( ; ) u such that equation (3.24) be satisfied”. 

This single equation consisting of governing equilibrium equation and boundary 

conditions  is the well-known weak formulation statement for a typical 2-D solid 

governed by equation (3.1) and exposed to the boundary condition of equation (3.4) and 

(3.5). The advantage of this equation is that it only needs the first derivatives for the trial 

function u  since the second order derivative terms of u  has been transferred to the test 



Chapter 3 

30 

 

function v . In the other words, the continuity requirement for the trial function is one 

order weakened in comparison with strong formulation (equation (3.1)) which demands 

u  to be a second order differentiable term.  

3.5 Finite element discretization of problem domain 

As it was mentioned before, the test function v  and trial function u  in the 

variational formulation belong to the Hilbert space 1 2

0 ( ; ) which is an infinite-

dimensional space. For the sake of simplicity, from now on, we let 1 2

0 0( ; )  . 

Generally speaking, it is almost impossible to analytically solve the governing 

equation and provide the exact solution; no matter which formulation is used (strong 

form or weak form). The approximate solution, however, can be naturally sought using a 

variational formulation in the framework of FEM.  

In such a case, the approximated solution 0

h hu  is introduced on a discrete 

solution space of finite-dimentsional 0

h  in which h stands for the finite dimension. The 

above space is a subspace of infinite-dimensional space 0 ( 0 0

h   ) and we expect 

that 0 0

h   and h u u  when 0h . In other words, using the finite-dimensional 

space 0

h  instead of 0  in the varaitional formulation, an approximation error term will 

be appeared in the analysis process.  

For the discretization purpose, the whole domain can be properly decomposed using 

the polygonal elements for each domain 2 . The domain is covered with nN  non-
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duplicating nodes and 
eN  non-overlapping and no-gaping polygonal elements, that is; 

1

eN

e

i

i

    and e e

i j    for i j  in which e

i  is the domain of i
th

 element.  

Using these assumptions, a set of linearly independent nodal shape functions 

1 2 3, , ,...,
nNN N N N are introduced as a basis for spanning the FEM space 0

h , where 

( ) 0
( )

0 ( )

I

I

I

N

N

 
  
 

x
N x

x
 is the matrix of shape functions for node I. The displacement 

field is then assumed to be a linear combination of nodal shape functions multiplied by 

the nodal displacements. 

 
1

( )
nN

h

I I

I

u N x d  (3.25) 

where  
T

x yx , ( )h

I Id u x  is the nodal displacement vector of I
th

 node and Ix is 

the coordinate of I
th

 node of element housing x . Substituting the discretized 

displacements in the variational equation, one needs to obtain an 0

h hu  such that  

     0( ) ( ) ,

t

T
h h h T h T h h

s s d d d
  

        v D u v b v t v∀  (3.26) 

Using the shape functions and nodal displacements for the displacement 

interpolation, the foregoing equation will yield the following system of Nn equations  

    
1

( ) ( ) , 1,...,
n

t

N
T T T

s I s J J I I n

J

d d d I N
   

 
       

 
   N D N d N b N t  (3.27) 

In the conventional FEM framework, the above formulation is re-written in the 

following matrix form 
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 Kd f  (3.28) 

In which K, d, and f are, respectively, the stiffness matrix, nodal displacement vector 

and nodal external force vector associated with the whole nodes of the model. The 

stiffness matrix can be calculated using the so-called strain gradient matrix ( )B x as 

 dT

IJ I J



 K B DB  (3.29) 

In which ( )IB x  is the strain gradient matrix associated with I
th

 node and is 

calculated as  

 

( )
0

( )
( ) 0

( ) ( )

I

I
I

I I

N

x

N

y

N N

y x

 
 

 
 

  
 

  
 

  

x

x
B x

x x

 (3.30) 

The entries of external force vector is also computed using the following relation 

 ( ) ( )

t

T T

I I Id d
 

   f N b N t  (3.31) 

3.6 Advantages and disadvantages of FEM 

Using the finite element method for different solid mechanics has been widely 

popular due to several advantages that it offers including the capability of easily handling 

different problems with complicated geometries or boundary conditions, multi material 

domains or non-linear properties. Furthermore, because of its clear structure it seems 

feasible to develop general purpose FEM software packages.  
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Nevertheless, FEM is not successful in providing accurate results when the problem 

domain is discretized with lower order elements. For instance, in the case of using linear 

elements with triangular or tetrahedral shapes, an overly-stiffness property will be 

observed in the model behavior. This causes an inaccuracy in the stress solution and 

needs to be treated either by refining the mesh or using higher order elements. Adopting 

higher order elements, however, will increase the computational time and reduce the 

computational efficiency. 

This deficiency problem along with some other issues has raised the motivation for 

the smoothed finite element method (S-FEM) to be born. In the next chapter, we will 

briefly review the S-FEM for the continuous solid domains. 

3.7 Mesh Generation (Adaptive Procedure) 

When a partial differential equation (PDE) is about to be solved through a commonly 

used computational approach like finite element method (FEM), first step seems to be 

nothing but creating a high quality mesh. Generally, mesh can be generated in the 

structured (uniform) or unstructured form based on the size and shape of distributed 

elements. Contradictory to the former type that is more suitable to characterize the 

simplex problems, the latter one is more powerful in dealing with complicated cases, 

especially when locally large variations are expected in the solution domain of governing 

PDEs. Moreover, a variety of elements can be used to provide a discretized solution for 

the unknown variables. In two-dimensional space, for instance, triangular element is very 

popular since it can be easily used to discretize any arbitrary geometry. To automatically 

creating triangular meshes, hence, numerous numbers of algorithms have been developed 
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by the mathematicians and computer scientists around the world. These algorithms are 

mostly based on the well-known technique of Delaunay triangulation procedure 

proposed in 1934 by Delaunay [49] as a dual approach of the so-called Voronoi diagrams 

previously had established by Voronoi [50]. For a given set of generator points, Delaunay 

triangulation method deals with decomposing a planar domain into a number of triangular 

regions at which min-max angle property is assured. According to this property; the 

minimum angle of all possible Delaunay triangles is maximized, resulting in a higher 

quality of mesh in which all triangles are very close to the ideal case of congruent with no 

long thin triangle. Using this idea, several algorithms have been developed by computer 

scientists and mathematicians to obtain a higher quality of mesh with less running time 

and expected storage. For instance, “Incremental algorithm” [51-55] is known as one of 

simplest algorithms among the developed ones, and is based on adding nodes to the body 

of mesh, one by one, and updating the mesh after each node is added. The process is 

continued to the point that quality of all the created triangles is sufficiently high. Another 

type of algorithm proposed by Fortune in the late 1980s [56] is called “Sweepline” and is 

based on keeping track of a set of edges called “frontier” while a conceptual sweep line 

sweeps up the domain. The method has been even further improved by other researchers 

[57, 58], showing a good performance when the initial nodes are well-distributed on the 

problem domain. Other researchers also tried to develop another algorithms similar to the 

so-called “gift wrapping algorithm  for convex hulls” by growing a triangle at a time [59-

61]. Later in 1992, Barber [62] presented an algorithm which is based on lifting the nodes 

into three dimensional space and compute their convex hull. Another approach which is 

also known as one of the most popular methods is called divide and conquer (D&C) 
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algorithm. The algorithm is used to recursively break down a complicated problem into 

several smaller sub-problems of the same type which are simple enough to be directly 

solved. The solution of the original problem is then obtained as a combination of those 

for the sub-problems. Although the proper implementation of algorithm is complicated, it 

usually guarantees the computational efficiency which is very important for complex 

problems. The first efforts for the construction of Delaunay triangulation with D&C 

strategy can be affiliated to Hoey and Shamos in the late 1970s when they proposed a 

D&C algorithm for the construction of Voronoi diagrams with time complexity O(nlogn) 

in the two dimensional space [63]. Later, the method was modified by Lee and Schachter 

to directly construct the Delaunay triangulation instead of Voronoi diagrams [64]. Since 

then, several researchers have proposed different D&C-based algorithms for Delaunay 

triangulation [51, 60, 65-70].  

The mentioned algorithms are only some examples of the massive number of 

proposed algorithms to create Delaunay triangulation. For more information about the 

most popular algorithms, the surveys by Bern and Plassmann [71] and Owen [72] can be 

studied. 

3.7.1 Voroni diagrams 

The concept of Voronoi diagrams associated with n given points in a plane (Assume, 

n is a finite number and let address the given points as generator points for future 

reference) is a way to decompose that plane into n non-overlap and no-gap regions (each 

is associated with only one generator point) such that any arbitrary point located inside a 

region is closer to the corresponding generator point than any other one. Mathematically 
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expressing, if 2S  be a set of n given points, then i
th

 voroni region associated with i
th

 

point ( Si ) is a set of points 2x with no greater distance from point i than from any 

other point in S; that is, 

  2 | ,      iV x x i x j j S  (3.32) 

Using the perpendicular bisectors, these regions are geometrically constructed as 

shown in Figure 3.1. 

si Vi

Generator points Voronoi cells vertices

Convex hull

 

Figure 3.1. Creation of Voronoi diagram for a set of given points in plane; the black dashed lines are 

the prependicular bisectors of connector lines of two given neigber points, the red circle line shows the 

circumcircle passing through three given neigber points. The colored area shows the Voroni diagram Vi 

associated with point si. 

 

In this figure, dashed black lines represent the corresponding perpendicular bisectors 

which create the Voronoi diagram and the colored area show the typical cell Vi  

associated with point si. In addition, a typical circumcircle passing through three 

generator points is shown in the figure by a red circular line. As it can be observed in the 

figure, each typical Voronoi cell Vi associated with i
th

 point creates a convex polygonal 

region with at most n-1 edges. Each point 2Rx  belongs to at least one Voronoi cell 
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(meaning that the set of all Voronoi cells cover the entire domain), and at most two 

Voronoi cells (it only happens when the point x lies on the on corresponding bisector). 

The combination of all Voronoi cells together with their vertices and edges create the 

Voronoi diagram of generator points S. 

3.7.2 Delaunay triangulation 

For a set of generator points  1, , , , 2 3 nS s s s s  (that, hereafter, will be addresses 

as “nodes”), a dual graph of Voronoi diagram 𝒱(S) is constructed by drawing straight 

lines between any two nodes S with a common edge in their corresponding Voronoi cells. 

The dual graph for the nodes S is called Delaunay Triangulation 𝒟(S) and is typically 

shown with solid lines in Figure 3.1. For such a Delaunay triangulation structure, the 

following characteristic can be highlighted as the most important properties: 

 There is a one to one correspondence between 𝒱(S) and 𝒟(S), meaning that every 

triangle of 𝒟(S) is associated with one vertex of 𝒱(S) and vice versa. Similarly, 

every edge of 𝒟(S) is associated with one edge of 𝒱(S), and every node of 𝒟(S) is 

associated with one cell of 𝒱(S). 

 Using the principles of planar graph theory, it is simply proved that no two edges 

of 𝒟(S) cross each other [73]. 

 𝒟(S) is triangulation if no more than three nodes lie on a common circumcircle. 

Otherwise, a so-called degeneracy happens which can be resolved with some 

proper treatments.  
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 The number of edges for a 𝒟(S) with at least three vertices ( 3n ) could be at 

most 3 6n  based on Euler’s formulation [73]. 

 As it is shown in Figure 3.1, the boundary of 𝒟(S) creates a convex hull over the 

domain in which nodes S are distributed. 

 The interior region of any triangle contains no other node S. This property is 

equivalently stated by saying that the circumcircle of every three nodes contains 

no other node.   

The last property is practically used in the Delaunay triangulation algorithms as 

follows; Considering a set of four nodes A, B, C, and D as shown in Figure 3.2, two 

choices of triangulation can be made based on the circumcircles passing through each 

three nodes. If the first choice is made and edge CD is drawn, the circles ACD or BCD 

will, respectively, contain the other node B or A.  In such a case the constructed edge CD 

is considered as illegal and is, therefore, flipped to other choice of AB, ensuring the 

resultant circles of ABC and ABD not containing the fourth node D or C.  

A B

C

D

(a)

Il
le

g
a

l 
ed

g
e

 

A B

C

D

(b)

legal edge

  

Figure 3.2. two choices of triangulation based on the circumcircles passing through three nodes of 

each possible traingle  
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A triangulation assumed to be Delaunay if and only if any arbitrary edge is locally 

Delaunay, meaning that: 

i. It belongs to only one triangle (in another word, to the boundary convex hull), or 

ii. It is a common edge between two triangles with the corresponding circumcircles 

that are empty of any other vertex. 

Regardless of the way that different algorithms adopt to distribute the vertices or initiate 

the triangulation, they all implement the simple criterion of flipping edges until all the 

edges in the domain become locally Delaunay. 

A degeneracy or special case, however, occurs for the set of nodes in Figure 3.2 if all the 

four nodes locate on the same circumcircle. Such case can be resolved by applying a 

small perturbation to slightly shift one node, as shown in the following figure in which 

neither edge AB nor CD is acceptable since the corresponding circumcircle for any three 

node passes through the fourth one as well. The problem can be coped with slightly 

perturbing node B from its former position as shown in part (c) of figure. 

B

(a)

A

C

D

Illegal edge
BA

C

D

Il
le

g
a

l 
ed

g
e

(b)

A B

C

D

legal edge

(c)
 

Figure 3.3. (a) and (b) Special case (degeneracy) when the foure typical nodes A,B,C and D are on the 

same circumcircule (c) resolving the degeneracy by a small shift in the location of node B 



Chapter 3 

40 

 

3.8 Finite Element Method for Linear Elastic Fracture Mechanics 

Over the last two decades, the finite element method has become firmly established 

as a standard procedure for the solution of practical fracture problems. There are a 

number of simulation programs have been developed and even commercialized. 

Generally, a fundamental difficulty in simulation of linear elastic fracture problems using 

standard FEM is known as deficiency of conventional elements with the polynomial basis 

functions in modeling theoretical singular behavior of stress and strain field at the 

vicinity of crack tip.  

Several researchers started to present different FEM models containing special basis 

functions at the early seventies which none of them was general enough to be used for the 

general cases of crack problems [74-78]. To produce such an essential singularity in a 

finite element setting Tracey introduced a 1/ r  stress singularity within a triangular 

element. His approach is known as one earliest works to incorporate this fractional term 

in the simple strain field. Later on, he generalized his approach from triangular elements 

to another types of elements and created a family of elements with the desired singularity 

in the stress field [79]. The proposed family of elements, however, was unsuccessful in 

properly modeling the problems with thermal stresses. Another type of triangular and 

quadrilateral elements with special singular shape functions of arbitrary order ( -pr ) were 

developed by Akin [80]. For 1 2p   the resulting shape function is identical to that 

previously given by Blackburn [81] when he had proposed a singular strain field for 

triangular elements. For simulating the essential singularity using quadrilateral elements, 

Benzley [82] also introduced some supplementary terms to the displacement field. 
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However, the significant milestone in the development of finite element method for the 

linear elastic fracture problems was the simultaneous and independent discovery of 

“quarter-point” elements proposed by  Henshell and Shaw [83] and Barsoum [2] as 

shown in Figure 3.4 (a) and Figure 3.4(b) ,respectively.  
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Figure 3.4.  (a) Quadrilateral Quarter-Point element proposed by Henshel and Shaw (b) ) Collapsed 

Quadrilateral Quarter-Point element proposed by Barsoum 

 

They showed that a proper 1/ r  singularity in the strain and stress field can be 

created by simply using the standard quadratic order isoparametric finite elements and 

shifting the mid-side nodes of the edges directly connected to the crack tip to the position 

one-quarter of that edge. Using this simple shifting method along with the isoparametric 

mapping procedure, produces a desired singularity.  

Instead of using collapsed quadrilateral elements, Freese and Tracy [84] also 

suggested to directly use the so-called “natural triangular quarter-point element” which is 

nothing but 6-node crack tip element as shown in Figure 3.5. In the following sections a 

brief review on the quarter-point elements is presented to provide a better understanding 

about the effect of shifting method. A typical quadratic 1-D element is explained first, 
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and the algebraic principles for higher dimensionality elements are derived in the same 

way as 1-D element. They only differ in the appearance of final equations which are more 

complicated for the higher order elements. 
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Figure 3.5. The natural triangular quarter-point element (6-node crack tip element) 

3.8.1 One dimensional quarter-point element 

A one dimensional element is shown in Figure 3.6 in both parametric space and 

Cartesian space. In this figure, the crack tip is located at 0r  , and   is introduced as 

the parameter that controls middle node position in the settings of Cartesian coordinates. 

( )a


1 1   0 

1 2 3

  
( )b

r

1 2 3

l

l

 

Figure 3.6. One dimensional quadratic element (a) natural coordinate (parametric space) of element 

(b) Cartesian space of element 

Using the parametric coordinate of the element, the displacement component u  at 

any point of the element can be evaluated using the nodal values and the shape functions 

as  
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3

2

1 2 3

1

1 1
( ) ( ) (1 ) (1 ) ( 1)

2 2
i i

i

u N u u u u      


        (3.33) 

Which can be re-written as 

 2

2 3 1 3 1 2

1 1
( ) ( ) ( ( ) )

2 2
u u u u u u u         (3.34) 

Using the similar approach, the following relation can be found between Cartesian 

coordinate r  and parametric coordinate    

 
3

2

1

1 1
( ) ( )

2 2
i i

i

r N r l l l    


      (3.35) 

After using the above relation and setting 
1

4
  , one can express   as 

2
1

lr

l
   . 

The interpolated displacement u  at any point of Cartesian coordinate can then be 

obtained by substituting   into equation (3.34) as 

 1 1 2 3 1 2 3( ) 2( 2 ) ( 3 4 )
r lr

u r u u u u u u u
l l

         (3.36) 

The strain can then be evaluated by differentiating the displacement as 

 1 2 3 1 2 3

( ) 2 1 1
( ) ( 2 ) ( 3 4 )

2

du r
r u u u u u u

dr l l r
          (3.37) 

As it is clearly observed based on the derived equation; the expression for the strain 

field contains a singular term 
1

r
 which resembles the lead term for the stress and strain 

in the LEFM.  This is the term that simulates the desired singular behavior of the crack 
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problems and can be produced only through a mapping procedure when the middle node 

is located in a special location of one-quarter of the element (
1

4
  ).  

For instance, let assume 
1

2
   which results in the mapping relation 

2
1

r

l
    . 

Following the similar foregoing procedure to obtain the displacement and strain field in 

the Cartesian coordinate, one can find  

 

2

1 1 2 3 1 2 3 2

1 2 3 1 2 32

( ) ( 3 4 ) 2( 2 )

1 4
( 3 4 ) ( 2 )

r r
u u u u u u u u

l l

du
u u u u u u r

dr l l





       

       

 (3.38) 

Meaning that strain field around the crack tip is assumed to vary in a linear fashion 

which does not conform to the theory of LEFM.  

3.8.1 Two dimensional quarter-point element 

Referring to the two dimensional elements shown in Figure 3.7, two edges 1-5-2 and 

1-7-4 resemble the 1-D quarter-point element described in the previous section, meaning 

that desired singular strain field along these edges is created in the similar fashion as in 1-

D element. This may not necessarily happen along other straight lines radially connected 

to the crack tip node. For his proposed collapsed quadrilateral element, however, 

Barosoum [85] showed that for the case in which node 6 is exactly located at the mid-side 

of edge 2-3 (See, Figure 3.4 (b)), the proper singular form is generated along all radial 

straight lines emanating from crack tip. A similar singular behavior was also predicted by 

Freese and Tracey [84] for the natural triangular quarter-point elements shown in Figure 

3.5. In their study, they also explained that if a quadrilateral element with the natural 
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coordinates   and   of Figure 3.7 (a) is collapsed, for all paths in which   remains 

constant the strain varies in the similar singular fashion of 1-D quarter-point element. 

According to them, these paths form a set of radial straight lines emanating from crack tip 

node for the case that node 6 is exactly at the mid-side point of edge 1-2 as shown in 

Figure 3.7(b). It is obvious that this finding confirms Barsoum’s justification about the 

singular field inside the collapsed quadrilateral elements. 
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Figure 3.7. (a) The parametric coordinates for a typical quadratic quarter-point element (b) striaght 

lines with the constant   inside the collapsed element if node 6 is exactly located at the mid-side of edge 1-

2. 

According to the studies conducted by Banks-Sills and Bortman [86, 87], it was 

demonstrated that a quadrilateral quarter-point element also has a singular behavior along 

all the lines emanating from crack tip node, but only in a very small region around the 

crack tip and only if the element has the rectangular shape as shown in Figure 3.8. 
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Figure 3.8. The singular region inside the quadrilateral quarter-point element 

Generally, triangular elements (collapsed quadrilateral or 6-node crack tip element) are 

more popular, in practice, comparing to the quadrilateral elements. The main reason is 

that it is much easier to properly generate and refine the mesh when triangular elements 

are used. On the other hand, less number of quadrilateral elements can be created around 

the crack tip which can leads to the less accurate estimation of trigonometric functions of 

displacement and stress field in the circumferential direction. 

 



Chapter 4 

47 

 

 

Chapter 4:  Smoothed Finite Element Method 

"Do not seek to follow in the footsteps of the 

men of old; seek what they sought." 

Basho  

4.1 Introduction 

As it was mentioned in previous chapter, by implementing discretized form of weak 

formulation in the framework of finite element method (FEM), one will be able to 

compute the energy potential functional based on the compatible strain field ( )hε x  which 

is evaluated using the derivatives of assumed displacement field 0

h hu  as   

 ( ) ( )h h

sε x u x  (4.1) 

( )hε x  is then used to create the stiffness matrix and estimate the nodal displacement 

values. In the smoothed finite element method (S-FEM), however, a modified compatible 

strain field is created based on the strain smoothing technique [88] to define a proper 

weak energy form that does not demand the derivatives of displacement field for the 

stiffness matrix calculation. It can be computed, instead, only by using the values of 

displacement field. 
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4.2 General Formulation of S-FEM 

In the S-FEM, a background mesh of elements is required and can be generated in 

the same manner as in FEM. Based on the generated elements, the problem domain   is 

then divided into sN  number of non-overlap and no-gap smoothing domains such that 

1

sN

s

k

k

    and s s

i j    for i j  in which s

k  is the domain of k
th

 smoothing 

domain. Based on the way that smoothing domains are created, various S-FEM models 

with different properties have been developed. Some of the most popular S-FEMs consist 

of cell-based S-FEM (CS-FEM) [11, 12, 89], node-based S-FEM (NS-FEM) [90], edge- 

based S-FEM (ES-FEM) [91], alpha-FEM [92] and face-based S-FEM (FS-FEM) [93].  

Generally, in order to smoothing the compatible strain field ( )hε x  of FEM to be fit 

in the S-FEM settings, a smoothing function ( )k x  is introduced to generate the 

smoothed strain ( )kε x in each smoothing domain k as  

 ( ) ( ) ( )
s
k

h

k k d



  ε x ε x x  (4.2) 

In which area of s

k  is evaluated as
s
k

s

kA d



  , and ( )k x  satisfies unity property 

as 

 ( ) 1
s
k

k d



   x  (4.3) 

Setting the smoothing function to a piecewise constant step function as equation 

(4.4), the smoothed strain will be expressed as equation (4.5) 
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 (4.4) 

 
1 1

( ) ( ) ( )
s s
k k

h h

k ss s

k k

d d
A A

 

     ε x ε x u x  (4.5) 

The assumed displacement field is continuous over the problem domain covered with 

sN  smoothing domains s

k  that, in general, each of them can consist of more than one 

subdivision named sub-smoothing domain ,

s

k p .  

In the two dimensional space, by applying the divergence theorem on equation (4.5), 

the domain integration over the smoothing domain will be converted to the line 

integration along the boundaries of smoothing domain as  

 
1

( )
s
k

s h

k k ks

k

d
A



 ε x n u  (4.6) 

Where s

k  is the boundary of k
th

 smoothing domain s

k , and s

kn  is a matrix of 

outward normal vector on that boundary represented in the following form: 

 

0

0

s

kx

s s

k ky

s s

ky kx

n

n

n n

 
 

  
 
 

n  (4.7) 

In which s

kxn  and s

kyn  are the components of outward normal vector in the x and y 

axis, respectively. Now by substituting the discretized displacement field of equation 

(3.25) into equation (4.6), one can obtain the following matrix form for the smoothed 

strain  
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1

( )

s
nN

k I I

I

ε x B d  (4.8) 

Where s

nN  is the number of nodes associated with smoothing domain, 
Id  and 

IB are, respectively, the smoothed displacement vector and smoothed strain gradient 

matrix associated with  I
th  

node of the smoothing domain. IB  can be represented as  

 

0
1

0
s
k

Ix

s

I k I Iys

k

Iy Ix

b

d b
A

b b

 
 

    
 
 

B n N  (4.9) 

In which  

 
1

( , )
s
k

s

Ih kh Is

k

b n N d h x y
A



    (4.10) 

This equation is numerically re-written in the following form 

 , ,

1 1

1
( ) ( ) ; ( , )

GPNM
GP GP k

Ih k I i j i j ihs
i jk

b x N x w n h x y
A  

   (4.11) 

where M is the number of (line) boundary segments of s

k , ,

GP

i jx  is the Gaussian point 

location on the ith boundary segment, ,

GP

i jw  is the Gaussian weight associated with the 

Gaussian point ,

GP

i jx , GPN  is the number of Gaussian points on the i
th

  boundary segment, 

and k

ihn  is the h
th

 component of the unit outward vector on the i
th

 boundary segment. 

After calculation of strain gradient components, the stiffness matrix and algebraic 

system of equations for the S-FEM solution can be formulated using the same procedural 

steps followed to develop the FEM system of equations. The final formulation differs 

from FEM only in some parameters which are substituted with their smoothed peers; for 
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instance, compatible strain hε , element domain e

i , total number of elements 
eN , and 

strain gradient matrix 
IB  are, respectively, replaced with smoothed strain ε , smoothing 

domain s

k , number of smoothing domains sN  and smoothed gradient matrix IB . As a 

result, the final formulation for the S-FEM will be in the form of equation  

 Kd f  (4.12) 

K  is called the smoothed stiffness matrix and is calculated in the similar way to the 

FEM stiffness matrix. The entities of K  over k
th

 smoothing domain is given by 

 ( ) dT

IJ k I J



 K B DB  (4.13) 

This equation can be more simplified as equation (4.14) based on the strain 

smoothing assumption over each smoothing domain that will yield to the constant matrix 

for IB  

 ( )

Ts
I JIJ k kAΚ B DB  (4.14) 

The total stiffness matrix is then constructed using an assembly procedure similar to 

that in FEM. In summary, the numerical algorithm for a S-FEM can be outlined as 

follow: 

1. The domain is discretized using a background mesh in the same manner as in 

FEM. 

2. Based on the information for the nodes and elements connectivity, new smoothing 

domains are created and the information for nodes contributing to each smoothing 

domain is identified. 
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3. For each smoothing domain: 

 For each segment of the smoothing domain boundary, the outward unit 

normal vector is determined. 

 The strain gradient matrix IB is calculated using equations (4.11) and (4.9). 

 The stiffness matrix entries associated with the smoothing domain is then 

calculated using equation (4.14). 

4. The global stiffness matrix is calculated by assembling the stiffness matrices of 

smoothing domains. 

5. The boundary conditions and nodal load vector are applied.  

6. The linear system of equations is solved to calculate the nodal displacement 

vector. 

As it was mentioned before, based on the way that smoothing domains are created 

different types of S-FEM are developed with the similar computational steps listed above. 

These different types of S-FEM are briefly addressed as follows. 

4.3 Cell-Based Smoothed Finite Element Method (CS-FEM) 

In the CS-FEM, the number of smoothing domains sN  can be the same as the 

number of elements eN  , meaning one element is assumed to be one smoothing domain. 

More number of smoothing domains, however, can be created by further subdividing 

each element into more cells. Figure 4.1 shows the smoothing domain construction in a 

typical CS-FEM. As it can be seen, the smoothing domains can be simply created by 
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connecting mid-edge points of opposite segments in parent smoothing domain to each 

other. 

(a) (b) (c) (d)
 

Figure 4.1. Creation of different number of smoothing domains (SDs) inside a quadrilateral element in 

the CS-FEM; (a) 1 SD (b) 2 SD (c) 3 SD (d) 4 SD  

4.4 Node-Based Smoothed Finite Element Method (N-FEM) 

In the NS-FEM settings, per each node k of the background mesh one smoothing 

domain s

k  is created by sequentially connecting the mid-edge points to the central 

points of the elements surrounding node k as shown in Figure 4.2 for a typical n-sided 

polygonal base mesh. The boundary path s

k  in the figure is formed by the lines AB, BC, 

CD, DE, EF, FG, GH, and HA. 

s

k

node k

s

k

A
B

C

D

E

F
G

H

Field node Smoothing domain vertices
 

Figure 4.2. Creation of smoothing domain in the NS-FEM for a typical mesh of n-sided polygonal 

elements 
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4.5 Edge-Based Smoothed Finite Element Method (ES-FEM) 

In the ES-FEM framework, per each edge k of the background element one 

smoothing domain s

k  is constructed by connecting two endpoints of that edge to the 

central points of its adjacent elements as typically shown in Figure 4.3. Colored area in 

the figure shows the s

k  with the boundary path s

k  when edge AC is assigned as k
th

 

edge. s

k  is formed by sequent lines AB, BC, CD and DA.  

 

ed
g
e k

s

k

s

k

Field node

A

B

C

D

Smoothing domain vertices  

Figure 4.3. Creation of smoothing domain in the ES-FEM for a typical mesh of n-sided polygonal 

elements 

4.6 Alpha-based Finite Element Method (Alpha-FEM) 

The method of  -FEM is developed by a rational combination of upper bound 

behavior of NS-FEM and the lower bound behavior of standard FEM models with a 

scaling factor   using triangular and tetrahedral elements in 2-D and 3-D, 

respectively( FEM-T3,  FEM-T4).  

Figure 3.3 shows the schematic way of crating smoothing domains in the ES-FEM 

for a typical mesh of n-sided polygonal elements.  



Chapter 4 

55 

 

s

k

node k

s

k

A B C

D

EFG

H

Field node Smoothing domain vertices
 

Figure 4.4. Creation of smoothing domain in the  FEM for a typical mesh of n-sided polygonal 

elements 

Figure 4.5 also shows this scheme in more details for the case of 3-node triangular 

elements. As it can be seen in this figure, a fractional portion of each element is assumed 

as the smoothing domain associated with each node of the element, and the strain is then 

smoothed over this domain. The rest part of the element, however, is treated as the same 

way of standard FEM.  

 

 

Figure 4.5. An   FEM-T3 element: combination of the triangular elements of FEM-T3 and NS-

FEM-T3. The NS-FEM-T3 is used for three quadrilaterals sub-domain, and the FEM-T3 is used for the Y-

shaped sub-domain in the center. 
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4.7 Faced-Based Smoothed Finite Element method (FS-FEM) 

In the FS-FEM framework, per each element face k of the tetrahedral background 

mesh one smoothing domain s

k  is constructed which can be created by connecting three 

field nodes of that face to the centers of the adjacent elements as shown in Figure 4.6. In 

this figure, the colored face ABC is the common face between two tetrahedrons ABCD 

and ABCE with the center points G and H, respectively. The volume of smoothing 

domain is created with the surfaces ACG, CGB and BGA from upper tetrahedron and 

AHC, HCB and BAH from lower tetrahedron. 

A
B

C

D

E

Field node

(a)  

A
B

C

D

E

G

H

Field node Smoothing domain vertices

(b)  

Figure 4.6. (a) Two typical tetrahedrons sharing a face (b) Creation of smoothing domain for a FS-

FEM model 
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Chapter 5:  Singular Edge-based Smoothed Finite 

Element Method (Singular ES-FEM) for the LEFM 

problems 

"There's a way to do it better—find it." 

Thomas Edison 

 

5.1 Introduction  

Several studies on the edge-based smoothed finite element method indicate that 

using the ES-FEM with triangular elements provides the more accurate results than those 

obtained from FEM with the quadrilateral elements [91] . Moreover, the displacement 

field is evaluated by a simple interpolation method and no mapping procedure is required, 

resulting in an improved computational efficiency. The method is stable and 

straightforward to be implemented. It only works properly for the domains containing no 

discontinuity, though. The main objective of introducing new technique of singular edge-

based smoothed finite element method is to cope with deficiency of standard ES-FEM in 

analyzing discontinuous domains like the problems including cracks. A special type of 

triangular element is proposed to be used at the crack tip. The element is designed to be 
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compatible with the standard linear triangular element which is used at the rest of the 

domain. The strain smoothing technique is then implemented on the smoothing domains 

associated with edges of all elements including the proposed one. Finally, the strain 

gradient and stiffness matrix are accordingly computed, and the resultant system of 

equations is solved to get the nodal displacement values. The stress intensity factors can 

be also evaluated by adopting the method of interaction integral in the framework of 

singular ES-FEM. 

5.2 Idea of singular ES-FEM for reproducing stress singularity at the 

crack tip 

5.2.1  Displacement interpolation along the element edge 

When a linear fracture mechanics problem is simulated using a numerical approach, 

the theoretical requirement of singular stress field near the crack tip should be justified. 

In the finite element method, the most widely used technique to simulate this kind of 

stress singularity is the so-called (quadratic) 6-node crack-tip element in which the mid-

edge nodes are shifted by a quarter edge-lengths toward the crack-tip. The singularity is 

then achieved nicely by the well-known iso-parametric mapping procedure [94, 95]. 

In the present singular ES-FEM method, however, no mapping is needed and only 

the shape function values (not the derivatives) are required.  Making use of this important 

feature of ES-FEM, the stress singularity at the crack tip can be created by a simple point 

interpolation method with extra basis functions of proper fractional order polynomials. 

Figure 5.1 shows an ES-FEM model for a fracture problem with a horizontal opening 
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crack. As it can be observed in the figure, the domain is discretized using two different 

types of triangular elements including the “new 5-node triangular elements” located at the 

crack tip (distinguished with the colored area), and the “standard 3-node triangular 

elements” typically used in the standard ES-FEM. The new 5-noded elements of present 

singular ES-FEM are simply generated by adding-in one additional node on each edge of 

standard 3-node triangular elements connected to the crack tip node, as shown in Figure 

5.2. 

Field node Centroid of triangle  

Figure 5.1. A singular ES-FEM model for domains including a crack 

 

Figure 5.2.  Node arrangement near the crack tip. Dash lines show  the boundary of a smoothing 

domain for an edge directly connected to the crack tip node 
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Besides, in spite of FEM approach to produce the singularity by using the quarter-

point elements, in the singular ES-FEM the location of added intermediate node can be in 

general at any point on the edge, as shown in Figure 5.3.  

 

Figure 5.3. Coordinate for an edge connected to the crack-tip 

Then, the displacement field, for example, the component u, at any point of interest 

on an edge directly connected to the crack tip is suggested to be approximated using: 

 0 1 2u c c r c r    (5.1) 

Where r is the radial coordinate originated at the crack-tip (node 1 in Figure 5.3), and 

ci ( , ,i 1 2 3 ) are the constants yet to be determined.  Clearly, the assumed displacement 

using equation (5.1) is at least linearly complete. Using equation (5.1), displacements at 

node 1, 2 and 3 can be expressed as: 

 1 0 ;( 0 1)u c r at node   (5.2) 

 2 0 1 2 ;( 2)u c c l c l r l at node       (5.3) 

 3 0 1 2 ;( 3)u c c l c l r l at node     (5.4) 

Where ui ( , ,i 1 2 3 ) are the nodal displacements, l is the length of the element edge, 

and  0 1  controls the location of node 2. Solving this simultaneous system of three 

equations (5.2)- (5.4) for ci, we shall have: 
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 (5.5) 

After substituting ci ( , ,i 1 2 3 ) back into Equation(5.1), we obtain:  
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 (5.6) 

where i ( , ,i 1 2 3 ) are the basis nodal shape functions for these three nodes on the 

edge connected to the crack tip and can be written in the following row-matrix form: 
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 (5.7) 
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In which 
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 (5.8) 

It is clear that the shape functions are (complete) linear in r and “enriched” with r  

that is capable of producing a strain (hence stress) singularity field of an order of ½ near 

the crack-tip, because the strain is evaluated from the derivatives of the assumed 

displacements. Note also that in this formulation the intermediate edge node can be at any 

position on the edge controlled by factor  , which is very general and different from the 

usual FEM crack tip elements where the intermediate nodes are located at a quarter of 

lengths to the crack tip. Moreover, the usual FEM crack tip element achieves the 

singularity by coordinate mapping, while the singular ES-FEM achieves the singularity 

via direct interpolation with a proper fractional order basis term and without demanding 

any mapping procedure. 

5.2.2  Displacement interpolation within a crack-tip element 

As it was mentioned before, in the present ES-FEM, we use a base mesh of 3-node 

linear triangle elements for areas without singularity, and one layer of the specially 

designed singular 5-node triangular elements containing the crack-tip to produce the 

desired stress singularity behavior at the crack tip, as shown in Figure 5.1. The same 

procedure described in section 5.2.1 can be properly implemented within a crack-tip 
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element by using the basic nodal shape functions derived in Equation (5.8) for a one-

dimensional element.   

We first assume that in the radial directions originated from the crack tip, the 

displacements vary in the same fashion as given in equation (5.1). In the tangential 

direction, however, it is assumed to vary linearly. This assumption ensures the 

compatibility along the edges which are common between the 3-node linear triangular 

elements and the 5-node crack tip elements. Figure 5.4 shows two 5-node elements, parts 

of which form one edge-based smoothing domain. 

1

2 3

4 5

6 7

B1

C1

B2

C2

D1

D2





  

Figure 5.4 . Two 5-node elements connected to the crack tip node 1(colored area shows the smoothing 

domain associated with edge 1-4-2) 

Points D1 and B1 in this figure are, respectively, the midpoints of lines 2-3 and 4-5. 

The displacements at these two points can be evaluated simply by averaging (because of 

linear variation assumption on the tangential direction):  

 
1 4 5

1
( )

2
Bu u u   (5.9) 

 
1 2 3

1
( )

2
Du u u   (5.10) 
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At any point on the line 1 11 B D   displacement is then evaluated using the shape 

functions for edges given in equation (5.8):  

 
1 11 1 2 3B Du u u u      (5.11) 

Substituting Equations (5.9) and (5.10) into equation (5.11), we have: 

 
1 1 4 5 2 2 3 3

1 1
( ) ( )

2 2
u u u u u u        (5.12) 

Hence, the interpolation at any point on line 1 11 B D   can be given as follows:  

 1 1 3 2 3 3 2 4 2 5

1 1 1 1

2 2 2 2
u u u u u u          (5.13) 

Similarly, at any point on line 1-γ-β (see, Figure 5.4), the displacement can be calculated 

as 

 1 1 2 3u u u u       (5.14) 

where  

 
4 4

4 5
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 (5.15) 

 
2 2

2 3

2 3 2 3

1
l l

u u u
l l

 



 

 

 
   
 

 (5.16) 

in which 
i jl 

 is the distance between points i and j. Because of the simple fact that 

4 2

4 5 2 3

l l

l l

 


 

 

   ,  we finally arrive at 

 

1 53 42

1 1 3 2 3 3 2 4 2 5(1 ) (1 )

N NN NN

u u u u u u              (5.17) 
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The general form of the nodal shape functions for the interpolation at any point 

within the 5-node crack-tip element can then be written as: 
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 (5.18) 

Because in our singular ES-FEM, we do not need derivatives of shape functions, 

Equation  (5.18) is all we need in computing the stiffness matrix for creating our 

numerical model.  

If the location parameter of   is set to 1 4 
 
to have the most similarity with the 

FEM quarter-point elements, the shape functions for the one-dimensional element shown 

in figure Figure 5.2 will be reduced to 
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 (5.19) 

Resulting in the following statements for the shape functions of two dimensional 5-node 

crack tip element 
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 (5.20) 

5.2.3 Creation of smoothing domains in the singular ES-FEM 

In order to calculate the stiffness matrix in the present ES-FEM, strain smoothing 

domains are constructed associated with the edges of each element. Each 3-node 

triangular element is divided into three sub-triangular areas corresponding to three edges 

of the triangle and two such sub-triangular areas sharing the same edge form a smoothing 

domain (SD) associated with that edge. A similar procedure is also used to create 

smoothing domains for the crack tip elements. For these elements, however, more 

domains can be constructed. Figure 5.5 shows three cases of one, two and three domains 

per edge for a typical 5-node crack-tip element. Based on the way that strain gradient 

matrix and stiffness matrix are calculated, these domains act as different smoothing 

domains or as sub-domains of the main smoothing domain (Let call them, sub-smoothing 

domains (S-SDs)). Later we will mention that how smoothing domains are numerically 

different from sub-smoothing domains. In the numerical example section, we will also 

show that increasing the number of smoothing domains will not improve the accuracy of 

results while the use of proper number of sub-smoothing domains might yield in better 

results. 
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Figure 5.5. Dividing the smoothing domain associated with edge 1-4-2 into smaller domains. For 

crack tip edges, we may use SD=1 or 2 or 3.  For other edges, we use SD=1. 

5.3 Stiffness matrix evaluation  

As it was mentioned earlier; in the ES-FEM procedure, the stiffness matrix of the 

whole model is the summation of the sub-matrixes of the stiffness matrix associated with 

all the strain smoothing domains. 

 ,

1

sN

IJ IJ k

k

K K  (5.21) 

Where 
IJΚ  is the assembled stiffness matrix and ,IJ kΚ  is the stiffness matrix of the 

smoothing domain corresponding to edge k and is calculated by 

 , dA
s
k

T

IJ k I J

A

 Κ B DB  (5.22) 

In which 
s
kA is the k

th
 strain smoothing area associated with edge k. IB can be 

calculated using 
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Where  

 
1
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s
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k
Ih k I hs

k

b x N x n x d h x y
A



    (5.24) 

In which IN
 
is the I

th
 shape function of the element, s

k  is the integration domain 

and 
k

hn  is the h
th

 component of the outward normal vector matrix on the boundary s

k . 

For the standard 3-node triangular elements with the linear shape functions, the 

entries of matrix IB are constants and the relation (5.22) is reduced to 

 ( )

Ts
I JIJ k kAΚ B DB  (5.25) 

Also equation (5.24) can be numerically calculated by  

 , ,

1 1

1
( ) ( ) ; ( , )

GPNM
GP GP k

Ih k I i j i j ihs
i jk

b x N x w n h x y
A  

   (5.26) 

Where M is the number of (line) boundary segments of s

k , ,

GP

i jx  is the Gaussian 

point location on the i
th

 boundary segment, ,

GP

i jw  is the Gaussian weight associated with 

the Gaussian point ,

GP

i jx , GPN  is the number of Gaussian points on the i
th

  boundary 

segment, and k

ihn  is the h
th

 component of the unit outward vector on the i
th

 boundary 

segment. 

It should be noticed that for the boundary segments associated with the standard 3-

node triangular elements, one Gaussian point at the midpoint of the (line) boundary 
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segment is sufficient, due to the linear interpolation used.  For a 5-node crack tip element, 

however, more Gaussian points should be used, because the shape functions are no longer 

linear on the segment.   

5.4 Increasing the number of smoothing domains associated with the 

edges directly connected to crack tip  

The numerical approach for calculating stiffness matrix in this case is, in general, 

very similar to what has been explained in the previous part, except in some details. The 

stiffness matrix associated with those edges which are directly connected to the crack tip 

can be calculated by 

 
,

, ,

1

sd eg
Z

N

IJ k IJ k

z

 Κ Κ  (5.27) 

Where 
,

N
sd eg

 is the number of smoothing domains per edge k and ,

z

IJ k  is the 

stiffness matrix of z
th

 smoothing domain associated with the edge k and is calculated by 

 
,

, dA
T

s z
k

z z z

IJ k I J

A

 Κ B DB  (5.28) 

In which 
,s z

kA  is z
th

 strain smoothing area associated with edge k and 
z

IB  can be 

calculated using 

 

0( )

( ) 0 ( )

( ) ( )

z

Ix k
z z

I Iyk k

z z

Iy Ixk k

b x

x b x

b x b x

 
 

  
 
  

B  (5.29) 

Where  
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    (5.30) 

In this equation ,s z

k  is the boundary of z
th

 smoothing domain of the edge k and 
,k z

hn  

is the h
th

 component of the outward normal vector matrix on the boundary ,s z

k .  

5.5 Increasing the number of sub-smoothing domains associated with the 

edges directly connected to crack tip  

In this case, only one smoothing domain is created associated with each edge. In 

order to get a better capture of singular field, however, more partitions are made in the 

domains corresponding to the crack tip edges by dividing the main SD into more S-SDs. 

In this case the calculation can be performed as follows. The stiffness matrix of the whole 

model can be still obtained using equation (5.21) and (5.22). However, the strain matrix 

of the smoothing domain IB
 is calculated by taking average of the strain matrices of S-

SDs.  

 
,

1

1 s sd egkN
aa

I Is

as

A
A





 B B  (5.31) 

In which 
,s sd egkN 

 is the number of sub-smoothing domains per edge k and 
a

IB  is the 

strain matrix of the a
th

 sub-smoothing domain associated with the edge k. 

 

0( )

( ) 0 ( )

( ) ( )
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Ix k
a a

I Iyk k
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B  (5.32) 

Where 
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    (5.33) 

In which ,s a

kA  is the a
th

 sub-smoothing domain area associated with the edge k, ,s a

k  

is the boundary of a
th

 sub-smoothing domain of the same edge and 
,k a

hn  is the h
th

 

component of the outward normal vector matrix on the boundary ,s a

k .  

Using this approach will help us to represent the strain value of each smoothing 

domain as the average value of the strains corresponding to the sub-smoothing domains. 

In the section of numerical examples it will be seen that this procedure yields a better 

capture of singular stress field.  

5.6 Determination of area-path for the interaction integral calculation 

As it was mentioned in chapter 2, for a proper characterization of crack behavior, it 

is firstly required to evaluate the stress intensity factor (SIF) parameters. Using the 

domain form of interaction integral, SIFs can be easily derived from the J-integral 

parameter and through an energy-based method. To this end, an area-path JA  needs to be 

assigned to the domain over which the integral is calculated.  

Because our numerical method of ES-FEM uses a base mesh of linear 3-node 

triangular elements, a simple scheme can be devised to determine the area-path JA  as 

shown in Figure 5.6. First, a set of elements having at least one node within a circle of 

radius dr  is found, and this element set is denoted as 
dN . The weighting function q  used 

in the area-path interaction integral (2.24) is then chosen as a piece wisely linear function 

passing through the nodal values at all the nodes belonging to all the elements in 
dN . If a 
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node in  belonging to an element 
de N  lies outside the circle, then the nodal value of the 

weighting function is set to zero: 0iq  ; if a node in  lies inside the circle, however, the 

weighting function is set to unit: 1iq  . Since the elements set in

dN  has all the nodes 

inside the circle as shown in Figure 5.6, the weight function will be a constant (unit) 

within all these elements in set in

dN .  Because the gradient of q  is used in equation (2.24)

, the element set in

dN  will contribute nothing to the interaction integral.  The non-zero 

contribution to the integral is obtained only for elements set eff

dN  with (two) edges 

intersecting the circle.  Because 3-node elements are used in ES-FEM, any circle will 

naturally always select a layer of elements that form JA . 

 

Figure 5.6. A typical method to select the area-path for the interaction integral 

5.7 Numerical Examples  

In this section some examples are presented to demonstrate the properties of singular 

ES-FEM for 2-D fracture problems. For comparison, the problems are also analyzed 

using the FEM with or without 6-node crack tip elements. Moreover, to show the 

improvements of the method in comparison with standard ES-FEM, the examples were 
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solved using the ES-FEM (T3) without the present 5-node crack tip elements. The first 

example is thoroughly analyzed to examine the effect of different number of smoothing 

domains and sub-smoothing domains on the results accuracy. In addition, a 

computational efficiency study and a convergence study is conducted for first and fourth 

example, respectively, to show how computationally efficient and numerically accurate 

singular ES-FEM is in comparison with other methods. For the stress intensity factor 

evaluation, the interaction integral method is used and the numerically path independency 

feature of results is investigated for the mixed mode problems. The reference solution in 

all the examples has been obtained using the singular FEM with the degrees of freedom 

that is 20 times the greatest DOF in the numerical analysis. 

5.7.1 Rectangular plate with an edge crack under tension 

A rectangular plate with an edge crack under tension load has been studied as a 

benchmark. The plate is assumed to have a unit thickness so that plane stress condition is 

valid. The rectangular plate has the length of 8mm and the width of 4mm, and the length 

of sharp crack at the edge is 0.5mm. The bottom edge is fixed while the other edge is 

subjected to the tension stress of 2100 N mm . This structure has been shown in Figure 

5.7. The solution in terms of strain energy and displacement has been computed using 

SD=1, 2, 3, 4 and S-SD=1, 2, 3, 4 for the edges directly connected to the crack tip. The 

results of strain energy and displacement are plotted in Figure 5.8 and Figure 5.9, 

respectively. 
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The computational time at different degrees of freedom has been also recorded and a 

comparison of the computational efficiency in terms of error in the energy norm has also 

conducted. The result has been depicted in Figure 5.10.  

The horizontal axis in this log-log plot is associated with the computational time, 

while the vertical axis expresses the error norm of strain energy ee  calculated using the 

following relation 

 
1

2
e num Ree E E    (5.34) 

Where numE is the numerical strain energy, and ReE is the reference strain energy. 

By considering a horizontal line in this plot and fixing the amount of error, it can be 

observed that different methods cross the line at different values of computational time; 

among which singular ES-FEM takes the smallest value; meaning that this method is the 

fastest one in reaching a certain amount of accuracy. 

Likewise; at a fixed computational time, different methods produce different values 

of error norm in the strain energy, among which singular ES-FEM provides the smallest 

value; meaning that the method is able to offer the most accurate results at a certain 

computational time. 
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Figure 5.7. Plate with an edge crack under a tension load 
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(a) 

 

(b) 

Figure 5.8. Strain energy for the rectangular plate with an edge crack computed using different 

methods 
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(a) 

(a) 

 
(b) 

 

Figure 5.9. Displacements for the rectangular plate with an edge crack computed using different 

methods 
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Figure 5.10. Computational efficiency in the norm of energy 

From these results it can be seen clearly that  

1) the results of the present singular ES-FEM with SD=1 at each crack tip edge are 

much more accurate and convergence much faster than the FEM-T3 and 

standard ES-FEM;  

2) By dividing the smoothing domains at the crack tip into some other sub-

smoothing domains (e.g.  2, 3 or 4) the results can be further improved; 

however, increasing the number of smoothing domains from one to 2, 3 or 4 

strain smoothing domains (only for the crack tip elements) makes the model 

stiffer and the results do not improved  

3) When S-SD=2 the results are more accurate and converge much faster not only 

than FEM-T3 and ES-FEM, but also than the FEM-T6 with standard crack tip 

elements; 
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4) Based on the comparison conducted among different methods, it can be clearly 

recognized that the singular ES-FEM with more than one sub-smoothing domain 

produces higher computational efficiency than FEM-T3, ES-FEM and even 

FEM-T6 with the crack tip elements. In the other word, singular ES-FEM with 

2S SD   is faster in reaching the more accurate results.  

5) It can be also observed that there is no significant change in the results when 

2S SD   for the each crack tip edges. We therefore recommend the use of 

2S SD   in the present singular ES-FEM.   

5.7.2 Compact tension specimen 

A compact tension specimen with initial crack length a=13.7 mm and width w=23.5 

mm is now analyzed using the singular ES-FEM. Specimen has the elasticity module of 

72 10E MPa  and Poisson’s ratio 3.0 . The diameter of each hole is 1mm and the 

concentrated load is applied to the specimen at the points shown in Figure 5.11. The 

problem is solved using FEM-T3, FEM-T6 and standard ES-FEM and the results in terms 

of the strain energy and displacement have been plotted in Figure 5.12 and Figure 5.13, 

respectively.  

The findings from this problem are similar to the findings from the previous 

example, which reinforces our claims.  Our singular ES-FEM with more than 2 sub-

smoothing domains presents the best results among all the other methods and even the 

quadratic FEM with 6-node crack tip elements. 
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Figure 5.11. Compact tension specimen 
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Figure 5.12. Strain energy for the compact tension specimen computed using different methods 
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Figure 5.13. Displacement for the compact tension specimen computed using different methods 

5.7.3 Double cantilever beam 

In this example a double cantilever beam under tension load has been studied. The 

geometry of the model is shown in Figure 5.14. The plane stress condition is assumed 

with elastic modulus 72 10E MPa   and Poisson’s ratio 0.3  . The length of the 

sharp crack is 2mm, and the specimen is subjected to the tension load of 10 N. The results 

in term of strain energy are shown in Figure 5.15. The findings from this problem are 

similar to the findings for the previous two examples, which reinforce again our claims. 

P

P
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w

h

 

Figure 5.14. Cantilever beam with an edge crack under tension 



Chapter 5 

82 

 

3.40E-04

3.50E-04

3.60E-04

3.70E-04

3.80E-04

3.90E-04

4.00E-04

4.10E-04

750 950 1150 1350 1550 1750

DOF

S
tr

a
in

 e
n

e
rg

y

FEM-T3
ES-FEM-T3
FEM-T6
Singular ES-FEM(SD=1,S-SD=1)
Singular ES-FEM(SD=1,S-SD=2)
Singular ES-FEM(SD=1,S-SD=3)
Singular ES-FEM(SD=1,S-SD=4)
FEM-T6-Very fine mesh

 

Figure 5.15. Strain energy for the cantilever beam computed using different methods 

5.7.4 Rectangular finite plate with a central crack under pure mode I 

A rectangular finite plate containing a central crack is analyzed under tension load at 

its top edge. This problem is of pure mode I. the structure is depicted in Figure 5.16, and 

the parameters used are 10 0w . cm , 25 0L . cm , 4a cm  and 21N / cm . The 

material is isotropic elastic and material constants are 
7 23 10E N cm   and 0 25.  . 

The analytical solution of stress intensity factors for such a structure is given by Tada et 

al. [96]; 

 2 4 0.51 0.025( ) 0.06( ) (sec( ))
2

I

a a a
K a

w w w


 

 
   

 
 (5.35) 

The problem is then solved using FEM-T3, ES-FEM, FEM-T6, and the present 

singular ES-FEM. In the singular ES-FEM, one smoothing domain (SD=1) and two cases 

of one and two sub-smoothing domains (S-SD=1 & S-SD=2) for the crack tip elements is 
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used. In addition, for the case of using two sub-smoothing domains, the effects of 

intermediate node position on the crack tip edges have been examined by choosing 

different values of  .   

 

Figure 5.16. Homogenous finite plate with a central crack under tension (pure mode I) 

The results in terms of the relative error of both strain energy and stress intensity 

factors have been illustrated in Figure 5.17, Figure 5.18, and Figure 5.19. In these figures 

h indicates the element size. In addition, the error norm of energy 
ee  and the error norm 

of stress intensity factor 
IKe are, respectively, calculated by the following formula; 

 

1
2

1
Re2

Re

Re

( ) ( )
,

( )I

I num I f

e num f K

I f

K K
e E E e

K


    (5.36) 

Where numE and ( )I numK are, respectively, the strain energy and stress intensity 

factor obtained using the numerical method and similarly, Re fE and Re( )I fK are those of 

reference solution. 
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Figure 5.17. Strain energy results for the finite plate under mode I 

 

 

Figure 5.18. Error norm of stress intensity factor at point A for the finite plate under mode I 
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Figure 5.19. Error norm of stress intensity factor at point B for the finite plate under mode I 

From these results it can be highlighted that: 

1) The results of the singular ES-FEM are almost the same for different values 

of  which is the parameter for the intermediate node position on the edges 

directly connected to the crack tip. Despite of the singular FEM in which 

strain singularity is generated by setting 1 4   and using the iso-parametric 

mapping procedure, our method is independent of the parameter . A simple 

interpolation method is adopted in the present method to produce the 

singularity with no use of mapping implementation. 

2) The results of the singular ES-FEM are more accurate than those obtained 

from the other methods including FEM-T6. At a mesh size of 1h   the 

results in terms of the strain energy are about 1.7 times more accurate than 

FEM-T6 with the singular quarter point elements. At the same mesh, the 

findings of the stress intensity factors also show that singular ES-FEM yields 

the results which are about 2.8 times more accurate than FEM-T6.   
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3) The results in terms of the strain energy also show that our method provides a 

higher convergence rate compared to all the other methods including FEM-

T6. Using just one S-SD can yield the convergence rate of 0.7639 which is 

more than the peer value from FEM-T6. Increasing the number of S-SD to 

two can increase the convergence rate to 1.0157 which is greater than the 

value for FEM-T6. 

4) It can be observed from the results that by increasing the number of S-SDs 

from one to two the accuracy of results will increase and the relative error 

decreases. It also provides a higher convergence rate. 

5) A comparison between Figure 5.18 and Figure 5.19 reveals that the value of 

stress intensity factors and related numerical error at crack tips A and B are 

very close to each other and almost identical. This expected result confirms 

that our method works very well for the domains including more than one 

crack. 

5.7.5 Homogeneous infinite plate with a central crack under pure mode II 

In this example, we study the homogeneous infinite plate with the similar geometry 

but under the pure shear mode.  This structure has been shown in Figure 5.20. The 

analytical solution for this plate when its dimensions go to infinity is available and the 

stress intensity factor in mode II equals to IIK a  , in which   is the shear stress 

and a  is the crack length. In this example the plate dimensions has been fixed to 

10a mm  and 200w mm , and since / 20w a  , the solution for the infinite plate with a 

central crack can be valid. The problem has been solved under pure shear mode using 
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different methods including FEM-T3, ES-FEM and singular ES-FEM. The results in term 

of strain energy and stress intensity factor have been tabulated in Table 5.1, Table 5.2 and 

Table 5.3, and depicted in Figure 5.21 and Figure 5.22. 

 

Figure 5.20. Infinite plate with a central crack under pure mode II 

Table 5.1.Strain energy for the homogeneous infinite plate with a central crack under pure shear mode 

 360 448 504 588 704 2206 5382 

FEM-T3 976.2515 976.2797 976.2868 976.2955 976.3033 976.3235 

 

976.3471 

ES-FEM 976.4103 976.4339 976.4345 976.4363 976.4362 976.4364 

 

976.4384 

FEM-T6 976.5201      976.5517     976.5609     976.5620     976.5635     976.5649     976.5707 

 

Sing ES-

FEM 

976.5364 976.5639 976.5650 976.5655 976.5660 976.5667 

 

976.5735 
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Table 5.2.  Normalized KII at point A for the homogeneous infinite plate with a central crack under pure 

shear mode 

 360 

(Error %) 

448 

(Error %) 

504 

(Error %) 

588 

(Error %) 

704 

(Error %) 

2206 

(Error %) 

5382 

(Error %) 

FEM-T3 0.9509 

(4.9083) 

0.9625 

(3.7461) 

0.9649 

(3.5083) 

0.9669 

(3.3135) 

0.9710 

(2.9042) 

0.9856 

(1.4403) 

0.9880 

(1.2036) 

ES-FEM 0.9847 

(1.5301) 

0.9879 

(1.2098) 

0.9894 

(1.0580) 

0.9922 

(0.7765) 

0.9933 

(0.6701) 

0.9937 

(0.6313) 

0.9937 

(0.6287) 

FEM-T6 0.9876   

(1.2399) 

0.9912 

(0.8847) 

0.9935 

(0.6536) 

0.9967  

(0.3289)  

0.9974  

(0.2615)  

0.9983 

(0.1699) 

0.9991 

(0.0900) 

Sing ES-

FEM 

0.9888 

(1.1155) 

0.9930 

(0.6987) 

0.9948 

(0.5160) 

0.9970 

(0.2958) 

0.9982 

(0.1824) 

0.9989 

(0.1069) 

0.9998 

(0.0211) 

 

Table 5.3. Normalized KII at point B for the homogeneous infinite plate with a central crack under pure 

shear mode 

 360 

(Error %) 

448 

(Error %) 

504 

(Error %) 

588 

(Error %) 

704 

(Error %) 

2206 

(Error %) 

5382 

(Error %) 

FEM-T3 0.9504 

 (4.9579)  

 0.9628 

(3.7221)  

0.9654 

(3.4580) 

0.9677 

(3.2311) 

0.9706 

(2.9381) 

0.9853 

(1.4702) 

0.9872 

(1.2755) 

ES-FEM 0.9847 

(1.5292) 

0.9880 

(1.1961) 

0.9893 

(1.0716) 

0.9918 

(0.8213) 

0.9928 

(0.7172) 

0.9932 

(0.6824) 

0.9934 

(0.6598) 

FEM-T6 0.9878 

(1.2245) 

0.9915 

(0.8511) 

0.9934 

(0.6569) 

0.9963 

(0.3666) 

0.9974 

(0.2587) 

0.9980 

(0.2049) 

0.9990 

(0.1010) 

Sing ES-

FEM 

0.9892 

(1.0808) 

0.9931 

(0.6864) 

0.9944 

(0.5577) 

0.9965 

(0.3451) 

0.9977 

(0.2295) 

0.9985 

(0.1517) 

0.9997 

(0.0285) 
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Figure 5.21. Strain energy for the infinite plate under mode II 
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Figure 5.22. Normalized stress intensity factor at point A  

Similar to the previous example and according to the results tabulated in the tables it 

can be seen that the value of stress intensity factor at points A and B is very close to each 

other. Therefore, the stress intensity factor behavior has been plotted only for one of the 

crack tip points. Based on the results it can be clearly observed that: 

1) Singular ES-FEM with SD=1 works very well in this example to evaluate the 

strain energy and stress intensity factors at either of two crack tip points and provides the 

more accurate results than FEM-T6.  

2) Based on Table 5.2 and Table 5.3 it can be clearly observed that by increasing the 

mesh the value of error declines to 0.02% for singular ES-FEM. It is much less in 

comparison with FEM and standard ES-FEM.  

5.7.6 Double edge crack specimen 

The geometry of double edge crack specimen is shown in Figure 5.23. The specimen 

is subjected to a remoter tensile stress   at top edge and being fixed at the bottom. The 
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analytical formula of the stress intensity factor for such a specimen is given by Tada [96] 

as: 

 

2

3 4 0.5

[1.122 0.561( ) 0.205( )

0.471( ) 0.910( ) ] / (1 )

I

a a
K a

w w

a a a

w w w

   

  

 (5.37) 

In this example, the parameters used are 4 0w . cm , 11 0L . cm , 1 2a . cm  and 

21N / cm . The material is isotropic elastic and material constants are 73 10E    and 

0 25.  . In this example the effect of increasing the number of sub-smoothing domain is 

also examined. The results have been tabulated in Table 5.4, Table 5.5, and Table 5.6, 

and depicted in Figure 5.24 and Figure 5.25.  

 

 

Figure 5.23. Double Edge Crack Specimen 
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Table 5.4. Strain energy for double edge crack specimen 

 336 530 948 1286 1780 

FEM-T3 2.8552e-004 

 

2.8756e-004 

 

2.8823e-004 

 

2.8860e-004 

 

2.8880e-004 

 

ES-FEM 2.8862e-004 

 

2.8952e-004 

 

2.8960e-004 

 

2.8975e-004 

 

2.8979e-004 

 

FEM-T6 2.8922e-004 
 

2.9009e-004 

 

2.9019e-004 

 

2.9039e-004 

 

2.9042e-004 

 

Sing ES-FEM 

(S-SD=1) 

2.8930e-004 

 

2.9022e-004 

 

2.9028e-004 

 

2.9043e-004 

 

2.9047e-004 

 

Sing ES-FEM 

(S-SD=2) 

2.8953e-004 

 

2.9046e-004 

 

2.9053e-004 

 

2.9068e-004 

 

2.9072e-004 

 

 

Table 5.5. Normalized KI at point A for double edge crack specimen 

 336 

(Error %) 

530 

(Error %) 

948 

(Error %) 

1286 

(Error %) 

1780 

(Error %) 

FEM-T3 0.9249 

(7.5073 %) 

0.9582 

(4.1825 %) 

0.9691 

(3.0897 %) 

0.9722 

(2.7782 %) 

0.9752 

(2.4750 %) 

ES-FEM 0.9725 

(2.7469 %) 

0.9840 

(1.5971 %) 

0.9843 

(1.5716 %) 

0.9848 

(1.5176 %) 

0.9843 

(1.5675 %) 

FEM-T6 0.9763 

(2.3704 %) 

0.9896 

(1.0399 %) 

0.9918 

(0.8244 %) 

0.9935 

(0.6531 %) 

0.9990 

(0.1001 %) 

Sing ES-FEM 

(S-SD=1) 

0.9772 

(2.2839 %) 

0.9890 

(1.1035 %) 

0.9924 

(0.7596 %) 

0.9941 

(0.5863 %) 

0.9985 

(0.1498 %) 

Sing ES-FEM-

(S-SD=2) 

0.9796 

(2.0376 %) 

0.9916 

(0.8378 %) 

0.9933 

(0.6873 %) 

0.9951 

(0.4854 %) 

0.9994 

(0.0564 %) 

 

Table 5.6. Normalized KI  at point B for double edge crack specimen 

 336 

(Error %) 

530 

(Error %) 

948 

(Error %) 

1286 

(Error %) 

1780 

(Error %) 

FEM-T3 0.9333 

(6.6730 %) 

0.9580 

(4.2013 %) 

0.9715 

(2.8513 %) 

0.9730 

(2.7045 %) 

0.9752 

(2.4825 %) 

ES-FEM 0.9797 

(2.0278 %) 

0.9826 

(1.7409 %) 

0.9835 

(1.6539 %) 

0.9830 

(1.6957 %) 

0.9842 

(1.5832 %) 

FEM-T6 0.9766 

(2.3399 %) 

0.9882 

(1.1846 %) 

0.9915 

(0.8523 %) 

0.9929 

(0.7140 %) 

0.9989 

(0.1111 %) 

Sing ES-FEM 

(S-SD=1) 

0.9844 

(1.5616 %) 

0.9875 

(1.2487 %) 

0.9923 

(0.7601 %) 

0.9931 

(0.6845 %) 

0.9982 

(0.1764 %) 

Sing ES-FEM-

(S-SD=2) 

0.9868 

(1.3239 %) 

0.9901 

(0.9903 %) 

0.9929 

(0.7096 %) 

0.9945 

(0.5476 %) 

0.0.9992 

(0.0763 %) 
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Figure 5.24. Strain energy results for the Double Edge Crack Specimen 

Similar to the pervious example the stress intensity factor behavior has been plotted 

for one of the crack tips. Regarding to the results tabulated in the tables it can be seen that 

the value of stress intensity factor at points A and B is very close to each other. 
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Figure 5.25. Normalized KI at point A for the Double Edge Crack Specimen 

From these results it can be seen that: 
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1) The results of singular ES-FEM are more accurate than FEM-T3 and standard 

ES-FEM.  

2) It also can be observed that using two sub-smoothing domains ( 2S-SD  ) can 

yield to the further improvement in the results including either strain energy and 

stress intensity factors. 

Based on Table 5.5 and  

3) Table 5.6, it is clear that for this example the value of numerical error for 

singular ES-FEM is much less than FEM-T3 and standard ES-FEM. This value 

decreases more by choosing two sub-smoothing domains (S-SD=2). 

5.7.7 Single edge cracked plate under mixed-mode loading 

A rectangular plate with an edge crack under shear load is examined as a plane strain 

problem with the geometry shown in Figure 5.26. The plate is clamped at the bottom and 

undergoes a shear load of 1MPa   at its top edge yielding a mixed-mode situation of 

fracture. The Young’s modulus and Poisson’s ratio of the plate are equal to 

7 23 10E N mm   and 0 25.  . In this example the dimensions of the plate are 

considered as 7 0w . mm , 8 0h . mm , 3 5a . mm . The reference solution for the stress 

intensity factor is available by [97]  

 
34.0

4.55

I

II

K MPa mm

K MPa mm




 (5.38) 

The stress intensity factors in two Modes are calculated using FEM-T3, ES-FEM-T3, 

FEM-T6 and singular ES-FEM with S-SD=1. The integration domain is identified by a 

circular closed path around the crack tip as shown in Figure 5.27. As it is clear in this 
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figure, by changing the value of circle radius ( dr ), the integration domain will change. 

For a common mesh and different integration domains, the results of FEM-T3, ES-FEM, 

FEM-T6 as well as singular ES-FEM with S-SD=1 have been tabulated in Table 5.7 and 

Table 5.8. Increasing the number of sub-smoothing domains will yield similar results.  

a

w

2h



 

Figure 5.26. The single edge cracked plate under shear mode 

 

Figure 5.27. A closed up view around the crack tip and the circular path which defines the area for the 

J-integral and stress intensity factor calculations 
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Table 5.7. Normalized 
IK  value for different domain sizes. 

Domain sizes 

dr  

FEM-T3 ES-FEM FEM-T6 Singular ES-FEM 

(S-SD=1) 

0.1 * 0.895895 0.889025 0.9883025 0.24523 

0.3 0.961841 0.989298 0.991072 1.001909 

0.5 0.958602 0.987162 0.991958 0.996139 

0.7 0.956747 0.987214 0.991617 0.996182 

0.9 0.956291 0.987206 0.991523 0.996174 

* Integration domain is inside the crack tip elements 

Table 5.8. Normalized 
IIK  value for different domain sizes. 

Domain sizes 

dr  

FEM-T3 ES-FEM FEM-T6 Singular ES-FEM 

(S-SD=1) 

0.1 * 0.862719 0.880563 0.903601 0.636927 

0.3 0.971699 0.981927 0.983637 0.988385 

0.5 0.975613 0.982901 0.984284 0.986631 

0.7 0.974925 0.982558 0.984077 0.986292 

0.9 0.975607 0.983338 0.984164 0.987064 

*  Integration domain is inside the crack tip elements 

 

From these tables, it can be indicated that singular ES-FEM bring more accurate 

values of IK  and IIK  than other methods when the integration domain is outside the 

crack tip elements. However, when it is inside the crack tip elements, the singular ES-

FEM (SD=1) will lead to unstable solutions. It is also observed from these results that 

singular ES-FEM works very well with interaction integral and the results are nicely path 

independent. 

5.7.8 Homogenous infinite plate with a central inclined crack under mixed mode 

Based on the fact that path independency is the most important feature of J-integral 

theory, the stress intensity factors which are calculated in a similar fashion should also be 

path-independent. It means that using the different paths or domains around the crack tip 
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should not impose a considerable variation in the value of the stress intensity factors. In 

order to investigate this characteristic for the singular ES-FEM, an inclined crack under 

tension load is studied as an example of mixed mode situation. This structure is shown in 

Figure 5.28. In this example 40w mm , 2a mm , 
4


  , and 1MPa  . The 

analytical solution for such a structure is available as 

 

2sin

sin cos

I

II

K a

K a

  

   

 




 (5.39) 

For this example   is fixed as 
4


   and therefore we will have  

 0.5000I IIK K

a a   
   (5.40) 

The results of stress intensity factors for this structure has been evaluated using 

singular ES-FEM with one smoothing domain (SD=1) based on different paths around 

the crack tip and outside the crack tip elements. These results have been tabulated in 

Table 5.9 and Table 5.10. Similar to previous example; it can be clearly observed that 

singular ES-FEM presents stable results for different paths chosen around the crack tip. 
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Figure 5.28.the plate with an inclined central crack under tension 

Table 5.9. Path independency at point A for the specimen with inclined crack under tension load 

 0.4dr 
 

(Error) 

0.6dr 
 

(Error) 

0.7dr 
 

(Error) 

0.9dr 
 

(Error) 

1dr 
 

(Error) 

IK

a   

0.4991 

(0.000867) 

0.4997 

(0.000269) 

0.4996 

(0.000359) 

0.5001 

(0.000127) 

0.5002 

(0.000203) 

IIK

a   

0.4962 

(0.003799) 

0.5017 

(0.001685) 

0.5018 

(0.001804) 

0.5060 

(0.005965) 

0.5010 

(0.001050) 

 

Table 5.10. Path independency at point B for the specimen with inclined crack under tension load 

 0.4dr 
 

(Error) 

0.6dr 
 

(Error) 

0.7dr 
 

(Error) 

0.9dr 
 

(Error) 

1dr 
 

(Error) 

IK

a   

0.4985 

(0.001467) 

0.4985 

(0.001530) 

0.4987 

(0.001276) 

0.4981 

(0.001864) 

0.4989 

(0.001104) 

IIK

a   

0.4963 

(0.003652) 

0.5022 

(0.002236) 

0.5022 

(0.002236) 

0.5062 

(0.006230) 

0.5023 

(0.002316) 
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5.8 Summary 

In this chapter the novel method of singular ES-FEM was proposed and formulated 

to analyze linear elastic fracture mechanic problems including the general cases with 

more than one crack tip undergoing different fracture states of Mode I, Mode II or mixed-

Mode configuration. The method uses a strain smoothing technique on a base mesh of 

linear triangular elements to create a softer model than that of FEM using the same mesh 

with the same set of nodes and elements. More importantly, the method proposes and 

establishes a new triangular element with a set of specially designed shape functions to 

capture the strain singularity at the vicinity of crack tip. Based on the way that smoothed 

strain gradient matrix is computed, additional smoothing domains and sub-smoothing 

domains were suggested associated with each edge of 5-node crack tip element, and a 

study were conducted to examine the effect of new discretization on the accuracy of 

results. Using the developed method several examples were solved and the results were 

presented in terms of strain energy, displacement, stress intensity factor, and 

computational efficiency and convergence rate. 

Based on the findings, it can be highlighted that singular ES-FEM with one sub-

smoothing domain adopted for each crack tip smoothing domain always provides the 

more accurate results than standard ES-FEM and FEM using linear triangular elements. 

However, it is not always superior to singular FEM (with quarter-point elements). To 

enhance the performance of the proposed approach in comparison with singular FEM, the 

number of smoothing domains and sub-smoothing domains were increased. Several 

analyses then revealed that while increasing the number of sub-smoothing domains in the 
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setting of singular ES-FEM does not improve the results, increasing the number of sub-

smoothing domains always leads to the more accurate results than those of singular FEM 

with quarter-point elements. Therefore, to be on the safe side, one can always use 

singular ES-FEM with two sub-smoothing domains at each smoothing domain associated 

with each of the newly- proposed 5-node crack tip element. 
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Chapter 6:   Singular ES-FEM for interfacial crack 

analysis  

“An obstacle is often a stepping stone” 

Prescott 

6.1 Introduction 

In the previous chapter the new approach of singular ES-FEM for isotropic materials was 

introduced and its performance was thoroughly examined through several examples. In 

this chapter the method is further developed to make it capable of properly examining the 

interfacial crack between two dissimilar isotropic materials. 

6.2 Interface fracture mechanics  

A schematic of two dimensional structures with a bimaterial interface crack along 

the interface of two semi-infinite planes is shown in Figure 6.1. In this figure, the upper 

plane is denoted by material 1 with Young’s modulus and Poisson’s ratio of 1E  and 1v , 

respectively, and the lower plane is assumed as material 2 with corresponding properties 

of 2E  and 2v .  

The stress intensity factor for an interfacial crack is represented as a complex value 
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of  I IIK iK K  [98, 99], where the in-plane traction vector at a distance r ahead of the 

crack is expressed as: 

 
22 12 0( )

2

ir
i

r



 


 
K

 (6.1) 

1 1,E v

2 2,E v

Material 1

Material 2

r


1x

2x

22 

22 

22 

22 

crack

 

Figure 6.1. Bimaterial interface crack 

Where i  is assigned as the square root of 1  , and   as a bimaterial constant  with 

the following form   

 
1 1

log( )
2 1









 
 (6.2) 

In which   is called “second Dundurs parameter” [100] and in terms of material 

properties is described as 

 1 2 2 1

1 2 2 1

( 1) ( 1)

( 1) ( 1)

  


  

k k

k k

 


 
 (6.3) 
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Where ik
 
( 1,2)i   is the so-called “Kolosov constant of material” and is calculated 

in terms of shear modulus ( i ) and Poisson’s ratio ( iv ) of the material  

 ( )




 
 

i

ii

i

3 v
(plane stress)

1 vk i = 1,2

3 4v (plane strain)

 (6.4) 

Similar to the cracks in isotropic materials, stress intensity factors and J-integral 

parameter for interfacial cracks are also relevant to each other. The relation between these 

parameters is expressed as the following equation [99],  

 

2

2 2 2

* 2

1
,

cosh ( )
I IIJ G K K

E 
    

K
K KK  (6.5) 

Where 

 
*

21 2

2 1 1
,

1

i

i i

i

E (plane stress)

E E
(plane strain)E E E

v




   
 

 (6.6) 

The parameter   is called “phase angle” and plays an important role in 

characterization of interfacial crack behavior. For a given loading configuration, it 

provides a measure of relative proportion of shear to normal tractions at a distance l  

ahead of the crack tip, in which l  is addressed as the characteristic length and is 

happened to be the smallest specimen dimension. It should be noted that interfacial crack 

problems are different from isotropic ones in the point that tension and shear effects are 

inseparable in the vicinity of crack. The phase angle   for such an interfacial crack 

problem can be evaluated  then through the following relation [98], 

 ei il  K K  (6.7) 
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Or 

 1 Im[ ]
tan ( )

Re[ ]

i

i

l

l




 

K

K
 (6.8) 

In which Re[·] and Im[·] denote the real and imaginary parts of a complex number, 

respectively.  

Formula (6.9) to (6.13) express the Cartesian components of near-crack tip 

displacement fields (for the upper-half plane) in terms of materials constants, stress 

intensity factors, and polar coordinates components ( , )r   with the origin at the crack tip 

[98]. For the lower-half plane the equations are slightly varied due to replacing term   

by  [99]: 

  1 1

1

1
Re[ ] ( , , ) Im[ ] ( , , ) ( 1,2)

2 2

i I i II

j j j

r
u l u v l u v j

u

    


  K K  (6.9) 

 2 ( ) 2

1 (cos 2 sin ) (cos 2 sin ) (1 4 )sin sin
2 2 2 2 2

I

Iu A e k       
    

       
 

(6.10) 

 2 ( ) 2

1 (sin 2 cos ) (sin 2 cos ) (1 4 )cos sin
2 2 2 2 2

II

Iu A e k       
    

      
 

(6.11) 

 2 ( ) 2

2 (sin 2 cos ) (sin 2 cos ) (1 4 )cos sin
2 2 2 2 2

I

Iu A e k       
    

      
 

 (6.12) 

 2 ( ) 2

2 (cos 2 sin ) (cos 2 sin ) (1 4 )sin sin
2 2 2 2 2

II

Iu A e k       
    

      
 

 (6.13) 

In which 

 
( )

2(1 4 )cosh( )

e
A

  

 

 




 (6.14) 
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Note that, in the foregoing equations, one can write 

loge cos( log ) sin( log )i i rr r i r      .  

6.3 ES-FEM for bimaterial interface  

6.3.1 Governing equations  

Consider a 2D static elastic problem governed by the equilibrium equation in the 

domain     separated by a single interface, i  as shown in Figure 6.2: 

 0 in   σ b  (6.15) 

where   is the divergence operator, σ  is the Cauchy stress tensor and b  is the body 

force term. 

The essential and natural boundary conditions are given by: 

 uon u u  (6.16) 

 ton  σ n t  (6.17) 

where u  and t  are the vectors of the prescribed displacements and tractions 

respectively, and n  is the outward normal unit vector defined on the boundary  . 
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u t

     

u

u t

     

t

 

Figure 6.2. Inhomogeneous body with interface subjected loads 

On the interface i , continuity of tractions and displacements requires 

 0i i it t t     (6.18) 

 0i i iu u u     (6.19) 

where .  denotes a jump. 

The constitution equation (stress-strain relation) is given by: 

 σ Dε  (6.20) 

where D  is the matrix of material constants, and }{T

xyyyxx σ  and 

T { }xx yy xy  ε  are the vector forms of the stress and strain tensor respectively. The 

strain-displacement relation is given by: 

 sε u  (6.21) 

where  T

yx uuu  is the vector of the displacement and s u  is the symmetric gradient 

of the displacement field. 
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6.4 Edge-based strain smoothing  

In the ES-FEM, however, we do not use the compatible strains sε u  but the 

strains “smoothed” over the local smoothing domains. These local smoothing domains 

are constructed with respect to the edges of triangular elements such that 
 

1

sN
k

k

    and 

   i j
   , i j , in which sN  is the number of smoothing domains. The rule is that 

the problem domain is first divided into two sub-domains based on the assignment of 

materials as shown in Figure 6.3.  

interface

Filed node

Centroid

Smoothing domain with material 1

Smoothing domain with material 2

inner edge kboundary edge m

interface

 edge n

 

Figure 6.3. Construction of edge-based strain smoothing domains 

Then, for each sub-domain with the isotropic material, the smoothing domain 

corresponding to the inner edge k,  k
 , is formed by connecting two end points of edge k 

and two centroids of the adjacent triangular elements. The smoothing domain for the 
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boundary edge m or the interface edge n,  m
 or  n

 , is just one third region of 

triangular element which contains the edge m or the edge n. 

6.5 Domain Interaction Integral Methods for Bimaterial Interface Cracks  

In the linear elasticity, the general form of J-contour integral which is identical to 

the energy release rate, for a two dimensional crack can be written as [101]: 

 
1 ,1

1
( )
2

ik ik j ij i jJ G u n d   


     (6.22) 

The J-integral remains globally path independent for bimaterial interface crack 

problems when there exists no material inhomogeneity in the direction parallel to the 

crack [101]. In this case, the mixed-mode stress intensity factors IK  and IIK  are 

evaluated using the domain form of contour interaction integral by considering two states 

of a cracked body including state 1, (
(1) (1) (1), ,ij ij iu  ), corresponds to the present state and 

state 2, (
(2) (2) (2), ,ij ij iu  ), associated with the auxiliary state. Here, unlike the cracks in 

homogeneous materials, it is chosen as the asymptotic fields with the oscillatory effect 

ir  at interface crack tip. On summing the J-integral of two states, we can obtain the 

contour interaction integral [6]: 

 (1) (2) (1) (2) (2) (1)

1 ,1 ,1( ) ;( , 1,2)ik ik j ij i ij i jI u u n d i j    


      (6.23) 

From equation (6.5) , the interaction integral is related to the SIFs through the relation  

 
(1) (2) (1) (2)

* 2

2

cosh ( )

I I II IIK K K K
I

E 


  (6.24) 

Making the judicious choice of state 2 (auxiliary) as the pure Mode I asymptotic 
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fields, i.e., setting (2) 1IK  , (2) 0IK   and evaluating 1I I , we can compute IK  and we 

proceed in an analogous manner to evaluate IIK : 

 
* 2 * 2cosh ( ) cosh ( )

2 2
I I II II

E E
K I K I

 
   (6.25) 

To extract the mixed-mode stress intensity factors 
IK  and IIK  for bimaterial 

interface cracks, the auxiliary displacement field in the local 1 2x x  crack-tip co-ordinate 

system (Figure 6.1) is more complex compared to the cracks in homogeneous materials, 

and   can be written as: 

 

1

1

2

2

( , , , ) ;
4 cosh( )

( )

( , , , ) ;
4 cosh( )

j

j

j

1 r
f r k (upper-half plane)

u 2
u j = 1,2

1 r
f r k (lower-half plane)

u 2

 
 

 
 





 




 (6.26) 

where   is the bimaterial constant that is defined in equation (6.2). To extract IK , 

the functions 1f  and 2f  are 

 1 1 2 2f D T f C T      (6.27) 

whereas to compute IIK , the expressions for 1f  and 2f  are: 

 1 2 2 1f C T f D T       (6.28) 

In the above equations , , C,  D, 1T  and 2T  are defined as: 

 cos sin cos sin
2 2 2 2

C D
   

             (6.29) 

 1 22 sin sin 2 sin cosT T        (6.30) 
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( )

  ( )
; log

2  ( )

e upper - half  plane
r

e lower - half  plane

  

  


  

 




  


 (6.31) 

 
2 2

0.5cos( log ) sin( log ) 0.5sin( log ) cos( log )

0.25 0.25

r r r r     
 

 

 
 

 
 (6.32) 

 
1 1

k k   
 

     (6.33) 

in which  

 
1

2

( )

( )

k upper - half  plane
k

k lower - half  plane


 


 (6.34) 

The auxiliary strain components are the symmetric gradient of the auxiliary 

displacement components: 

 (2) (2) (2)

, ,

1
( )

2
ij i j j iu u    (6.35) 

 On defining  

 cos sin cos sin
2 2 2 2

E F
   

             (6.36) 

we have 

 , , 
2

r

D F
C C E

r



      (6.37) 

 , , ,
2

r

C E
D D F

r



     (6.38) 

On setting  

 3 42 cos sin , 2 cos cosT T        (6.39) 
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we have 

 2 2
1, 1, 1 3,

2
r

T T
T T T T

r



     (6.40) 

 1 1
2, 2, 2 4,

2
r

T T
T T T T

r



     (6.41) 

If IK   is to be extracted, then 

 1, , 1, 2, , 2, , ( , )f D T f C T r              (6.42) 

whereas if IIK  is to be computed, then 

 1, , 2, 2, , 1, , ( , )f C T f D T r               (6.43) 

Since
, 1 cosr  , 

, 2 sinr  , 
, 1 sin / r    and 

, 2 cos / r  , on using the chain rule, 

we can write the derivatives of 1f  and 2f  in the 1 2x x  co-ordinate system as: 

 1, 1 1, , 1 1, , 1 1, 2 1, , 2 1, , 2,     r rf f r f f f r f       (6.44) 

 2, 1 2, , 1 2, , 1 2, 2 2, , 2 2, , 2,     r rf f r f f f r f       (6.45) 

Letting 

 
1

2

4 cosh( )

2

4 cosh( )

1
  (upper-half plane)

u r
A B

1
  (lower-half plane)

u











 



 (6.46) 

we can now write the gradients of the auxiliary displacements as: 

 
, 1 1 , 2 1(2) (2)

1, 1 1, 1 1, 2 1, 2( ),     ( )
4 4

r f r f
u A Bf u A Bf

B B 
     (6.47) 

 
, 1 2 , 2 2(2) (2)

2, 1 2, 1 2, 2 2, 2( ),     ( )
4 4

r f r f
u A Bf u A Bf

B B 
     (6.48) 
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Finding the differentiations of displacement components, one can easily calculate the 

auxiliary strain components using equation (6.35). The auxiliary stress is then easily 

evaluated by substituting the obtained strains in the Hooke’s law.   

6.6 Numerical examples 

6.6.1 Centre-crack in an Infinite bimaterial plate  

The problem of an interface crack between two dissimilar elastic semi-infinite 

planes under remote traction 
22 12i   t  as depicted in Figure 6.1 is first studied. The 

exact solution to this problem was provided by Rice and Sih [98, 102] as:  

 22 12( )(1 2 ) (2 ) i

I IIK iK i i a a          K  (6.49) 

The case of pure tension remote loading is first studied in details. In the 

computation, only half of the specimen is considered with the appropriate displacement 

constraint due to symmetry (Figure 6.4). The right edge are constrained in x direction to 

remove the edge singularity [98].  
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Figure 6.4.  Centre-crack under remote tension (half model) 

The factors 0K  and 0G  are used to normalize the stress intensity factors and the 

energy release rate, respectively, as 

 
2

22
0 22 0

1

( ) a
K a G

E


 


   (6.50) 

where 2a is the crack length. The material constants used in the numerical 

computation are: 2 1/ 22E E  , 1 0.3v  and 2 0.2571v  , and plane strain conditions are 

assumed. The exact solutions from equation (6.49) are: 

 
0 0 0

1.008 0.1097 1.4358I IIK K G

K K G
    (6.51) 

An in-depth numerical investigation is conducted, with the following objectives: 

1) To investigate the influence of the number of gauss points along one segment of 
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smoothing domains on the SIFs , energy release rate G  and strain energy; 

2) To compare the SIFs, G  and convergence rate of the relative error in energy 

norm using the standard FEM, ES-FEM and the singular ES-FEM with the same 

triangular meshes. 

3) To study domain independence, 

4) To study robustness of the method: accuracy of the SIFs and G  under small 

perturbations of the crack-tip, and finally,  

5) To compute SIFs and G  for a wide range of material mismatch combinations. 

The crack dimension is selected as 1a  . Since the exact solution is for the infinite 

domain problem, the sample size / 30W a   is used in all models to avoid the effect of 

finite size. Five structured meshes with /a h : (3.0, 4.0, 6.0, 8.0 and 10.0) and one 

unstructured mesh from ABAQUS are adopted, where h  is the mesh spacing.  A sample 

structured mesh ( / 8.0a h  ) and unstructured mesh in the vicinity of crack tip are, 

respectively, shown in Figure 6.5 and Figure 6.6. All the studies are conducted using the 

domain radius parameter 4kr  , unless stated to be otherwise. The strain energy and the 

error in energy norm are respectively defined as: 

 1/2

( )

1
( d )
2

T

E  
 u ε Dε  (6.52) 

 1/2

( )

1
( ( ) ( )d )
2

h h T h

e E
e

 
     u u ε ε D ε ε  (6.53) 
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Figure 6.5. Structured meshe in the vicinity of the crack ( / 8.0a h  ). 
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Figure 6.6. Unstructured mesh in the vicinity of the crack ( 1, 20a W  ). 

Table 6.1 lists the results of the study of number of Gauss points’ effects. In this 

study, the mesh with / 8.0a h   is used. It can be seen that strain energy and SIFs keep 

nearly constant when more than 5 gauss points are used. Thus, all the models discussed 

later use 5 gauss points along one segment of the smoothing domain. Note that the less 

the gauss points used, the higher the strain energy and the SIFs. This may be explained 

that less gauss points bring the effect of the similar reduce integration, and thus lead to 

over-estimation of results.  
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In Table 6.2, comparison of the SIFs and the energy release rate using different 

numerical methods (standard FEM, ES-FEM, singular FEM and singular ES-FEM) are 

presented.  

Table 6.1. Centre-crack under remote tension: the number of Gauss points effects 

GPN  
( )E 

u  
0/IK K ( % error) 

0/IIK K ( % error) 
0/G G ( % error) 

1 0.01049016 1.0063 (0.1) 0.1100 (0.2) 1.4306 (0.3) 

3 0.01048783 1.0060 (0.2) 0.1099 (0.1) 1.4297 (0.4) 

5 0.01048779 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4) 

7 0.01048778 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4) 

 

Table 6.2.  Centre-crack under remote tension: comparison of stress intensity factors and energy 

release rate using standard FEM, singular FEM, ES-FEM and singular ES-FEM. 

Exact solution        /a h  
     Method 

3.0 ( % error) 4.0( % error) 6.0( % error) 8.0( % error) 10.0( % error) 

1 0/ 1.008K K   

 

FEM-T3 0.9740 (3.4) 0.9834 (2.4) 0.9903 (1.8) 0.9939 (1.4) 0.9959 (1.2) 

ES-FEM 0.9944 (1.3) 0.9989 (0.9) 1.0020 (0.6) 1.0033 (0.5) 1.0041 (0.4) 

FEM-T6 1.0030 (0.5) 1.0046 (0.4) 1.0057 (0.3) 1.0059 (0.2) 1.0062 (0.2) 

Sing ES-FEM 1.0039 (0.4) 1.0051 (0.3) 1.0060 (0.2) 1.0061 (0.2) 1.0063 (0.2) 

0/ 0.1097IIK K   

 

FEM-T3 

ES-FEM 

0.1244 (13.4) 0.1192 (8.6) 

0.1134 (3.4) 

0.1141(4.6) 

0.1118 (1.0) 

0.1122 (2.3) 

0.1108 (1.0) 

0.1111 (1.3) 

0.1104 (0.6) 0.1165 (6.2) 

FEM-T6 0.1119 (2.0) 0.1106 (0.9) 0.1105 (0.9) 0.1101 (0.3) 0.1099 (0.2) 

Sing ES-FEM 0.1119 (2.0) 0.1106 (0.9) 0.1105 (0.9) 0.1101 (0.3) 0.1099 (0.2) 

FEM-T3 

ES-FEM 

1.3459 (6.3) 

1.3993 (2.5) 

1.3699 (4.6) 

1.4109 (1.7) 

1.3872 (3.4) 

1.4188 (1.2) 

1.3964 (2.7) 

1.4223 (0.9) 

1.4018 (2.4) 

1.4244 (0.8)  

FEM-T6 1.4219 (1.0) 1.4261 (0.7) 1.4292 (0.5) 1.4296 (0.4) 1.4304 (0.4) 

 Sing ES-FEM 1.4244 (0.8) 1.4273 (0.6) 1.4296 (0.4) 1.4301 (0.4) 1.4306 (0.3) 

 

It can be highlighted from these results that compared to standard FEM, ES-FEM 

and even FEM with the singular elements, the SIFs and G of the singular ES-FEM, no 

matter what mesh size is used, are much closer to the exact values. More importantly, the 

relative errors of IK , IIK
 
and G  using the singular ES-FEM are all within 1 percent for 
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all the models used in this study, except the case of IIK value with the very coarse mesh 

( / 3.0a h  ). In addition, Figure 6.7 compares the strain energy for different numerical 

methods. The reference solution has been obtained using the singular FEM with 
450 10  

degrees of freedom (DOF) that is 20 times the greatest DOF adopted in the numerical 

analysis. Clearly, the convergence of both strain energy and error in energy norm for the 

singular ES-FEM models is faster than that of the standard FEM, ES-FEM or FEM-T6 

with the singular elements. All of these indicate the singular ES-FEM can solve the 

interface crack problems effectively. 
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Figure 6.7. Strain energy for the problem of Centre-crack under remote tension. 

Table 6.3 provides the results of domain independence study using both the 

structured mesh and unstructured mesh. We can easily observe domain independence of 

the SIFs for 3kr 
 
on both structured and unstructured meshes.  

To study the robustness of the singular ES-FEM, a simple test is conducted. The 
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crack-tip location is perturbed by / 0.001a    and the results are compared to those 

when 0  . The mesh parameter is / 8.0a h  . The results are shown in Table 6.4. From 

the results, we can notice clearly that the SIFs and G  from all the numerical calculations 

are in excellent agreement with the corresponding exact solutions. 

Table 6.3. Centre-crack under remote tension: domain independence study 

Mesh kr  0/IK K ( % error) 
0/IIK K ( % error) 

0/G G ( % error) 

Structured 

/ 4.0ea h   

2 1.0123 (0.4) 0.1078 (1.7) 1.4467 (0.8) 

3 1.0052 (0.3) 0.1109 (1.1) 1.4276 (0.6) 

4 1.0048 (0.3) 0.1103 (0.6) 1.4262 (0.7) 

Structured 

/ 8.0ea h   

2 1.0129 (0.5) 0.1065 (2.9) 1.4480 (0.9) 

3 1.0059 (0.2) 0.1094 (0.3) 1.4291 (0.5) 

4 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4) 

5 1.0061 (0.2) 0.1100 (0.3) 1.4293 (0.4) 

6 1.0061 (0.2) 0.1100 (0.3) 1.4295 (0.4) 

Unstructured 

2 1.0036 (0.4) 0.1095 (0.2) 1.4229 (0.9) 

3 1.0058 (0.2) 0.1099 (0.2) 1.4289 (0.5) 

4 1.0060 (0.2) 0.1099 (0.2) 1.4293 (0.4) 

5 1.0059 (0.2) 0.1098 (0.1) 1.4292 (0.4) 

 

Table 6.4. Centre-crack under remote tension: robust study. 

Crack-tip  

perturbation / a  
0/IK K ( % error) 0/IIK K ( % error) 0/G G ( % error) 

0 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4) 

-0.001 1.0055 (0.3) 0.1098 (0.1) 1.4281 (0.5) 

0.001 1.0066 (0.1) 0.1099 (0.2) 1.4314 (0.3) 

 

To study the performance of the singular ES-FEM on interface crack for different 

material property pairs, the ratio 1 2/E E  is varied from 2 to 1000 with the constant poison 

ratios: 1 0.3v   and 2 0.2571v  . It is observed that the results are also accurate to within 

a few percent relative errors in Table 6.5, which demonstrates again the effectiveness of 
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singular ES-FEM for bimaterial interface cracks.  

Table 6.5. Centre-crack under remote tension: material mismatch study. 

1 2/E E  

 

  

 

Singular ES-FEM Exact solution 

0/IK K ( % error) 
0/IIK K ( % error) 

0/G G ( % error) 
0

IK

K
 

0

IIK

K
 

0

G

G
 

2 0.0249 0.9995 (0.12) 0.0327 (0.64) 2.1497 (0.25) 1.0007 0.0325 2.1551 

4 0.0516 1.0016 (0.14) 0.0678 (0.72) 1.7633 (0.29) 1.0030 0.0673 1.7684 

8 0.0699 1.0039 (0.17) 0.0915 (0.36) 1.5620 (0.35) 1.0056 0.0912 1.5675 

20 0.0833 1.0060 (0.19) 0.1088 (0.16) 1.4375 (0.41) 1.0079 0.1086 1.4434 

40 0.0883 1.0072 (0.17) 0.1151 (0.03) 1.3959 (0.39) 1.0089 0.1151 1.4013 

100 0.0914 1.0081 (0.14) 0.1192 (0.11) 1.3712 (0.33) 1.0096 0.1191 1.3758 

1000 0.0933 1.0089 (0.11) 0.1217 (0.05) 1.3569 (0.26) 1.0100 0.1216 1.3604 

 

Next, the bimaterial plate problem is condidered to be under remote shear tractions 

with the geometry size, crack configuration and boundary conditions as shown in Figure 

6.8. In the computation, full model is considered to demonstrate the computational 

strategy for problems containing more than two crack tips. The same material parameters 

as before are used in this case: 2 1/ 22E E  , 1 0.3v 
 
and 2 0.2571v  , and plane strain 

conditions are considered. The exact solution under pure shear loading (
22 0   ) is 

obtained from equation (6.49). 

 
2

22
0 22 0

1

( ) a
K a G

E


 


   (6.54) 

 1 2

0 0 0

0.1097 1.008 1.4358
K K G

K K G
     (6.55) 

where IK  is positive at the left crack tip and negative at the right crack tip. The 

specimen dimensions are set as: 1a   and / 30W a  . Similar to the previous test, five 
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structured meshes with /a h : (3.0, 4.0, 6.0, 8.0 and 10.0) are considered here as well; All 

the studies, except domain independence study, are conducted using the domain radius 

parameter 4kr  . 

Material 1

Material 2

W

2a

W

W

22 

22 

 

Figure 6.8.  Centre-crack under remote shear 

The SIFs and the energy release rate obtained using different numerical methods are 

compared in Table 6.6.  
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Table 6.6. Centre-crack under remote shear: comparison of stress intensity factors and energy release rate 

using the singular ES-FEM (SES-FEM), the standard FEM and ES-FEM. 

Exact solution Mesh 

( /a h ) 
3.0 (% error) 

4.0 

(% error) 

6.0 

(% error) 

8.0 

(% error) 

10.0 

(% error) 

0/ 0.1097IK K    

 

FEM-T3 -0.1310 (19.4) -0.1284 (17.0) -0.1240 (13.0) -0.1214(10.6) -0.1196 (9.0) 

ES-FEM -0.1215 (10.7) -0.1185 (8.0) -0.1155 (5.3) -0.1141 (4.0) -0.1132 (3.2) 

FEM-T6 -0.1109 (1.1) -0.1108 (1.0) -0.1105 (0.7) -0.1104 (0.6) -0.1103 (0.5) 

Sing ES-FEM -0.1109 (1.1) -0.1108 (1.0) -0.1105 (0.7) -0.1104 (0.6) -0.1103 (0.5) 

2 0/ 1.008K K   

 

FEM-T3 0.9789 (2.9) 0.9823 (2.6) 0.9889 (1.9) 0.9931 (1.5) 0.9957 (1.2) 

ES-FEM 0.9937 (1.4) 0.9977 (1.0) 1.0015 (0.7) 1.0034 (0.5) 1.0045 (0.4) 

FEM-T6 1.0029 (0.5) 1.0041 (0.4) 1.0057 (0.3) 1.0065 (0.2) 1.0069 (0.1) 

Sing ES-FEM 1.0037 (0.4) 1.0050 (0.3) 1.0062 (0.2) 1.0068 (0.1) 1.0072 (0.1) 

0/ 1.4358G G   

 

FEM-T3 1.3611 (5.2) 1.3693 (4.6) 1.3861 (3.5) 1.3967 (2.7) 1.4034 (2.3) 

ES-FEM 1.3984 (2.6) 1.4086 (1.9) 1.4184 (1.2) 1.4233 (0.9) 1.4262 (0.7) 

FEM-T6 1.4214 (1.0) 1.4247 (0.8) 1.4292 (0.5) 1.4314 (0.3) 1.4325 (0.2) 

Sing ES-FEM 1.4231 (0.9) 1.4268 (0.6) 1.4301 (0.4) 1.4318 (0.3) 1.4328 (0.2) 
 

It can be seen again that the SIFs and energy release rate of singular ES-FEM 

approach the exact solutions more than that of standard FEM and ES-FEM, at the same 

mesh. Moreover, the maximum relative error of all these values obtained by the singular 

ES-FEM is only 1.1 % even at the relative coarse mesh.  

In Table 6.7 domain independency in the SIFs using the singular ES-FEM is also 

studied for this shear loading. We can observe domain independence of the SIFs at both 

the left and right crack tip for 3kr  . Again, the singular ES-FEM results are found to be 

in good agreement with the reference solutions. Results of the material mismatch study 

are also conducted and given in Table 6.8. Excellent agreement between the normalized 

IK , IIK and G  computed by the singular ES-FEM and the exact correspondence is 

realized for a wide range of material combinations ( 1 2/ 2 ~1000E E  ). 
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Table 6.7. Centre-crack under remote shear: domain independence study 

Crack tip kr  0/IK K  (% error) 
0/IIK K  (% error) 0/G G  

(% error) 

Left (A) 

2 0.1051 (4.26) 1.0085 (0.1) 4.2619 (0.1) 

3 0.1098 (0.04) 1.0051 (0.3) 1.4267 (0.6) 

4 0.1098 (0.08) 1.0054 (0.3) 1.4275 (0.6) 

5 0.1098 (0.06) 1.0053 (0.3) 1.4274 (0.6) 

Right (B) 

2 -0.1099 (0.1) 1.0122 (0.4) 1.4467 (0.8) 

3 -0.1095 (0.2) 1.0073 (0.1) 1.4329 (0.2) 

4 -0.1104 (0.6) 1.0068 (0.1) 1.4318 (0.3) 

5 -0.1103 (0.5) 1.0067 (0.1) 1.4315 (0.3) 

 

 

Table 6.8. Centre-crack under remote shear: material mismatch study *. 

1 2/E E  

 

  

 

Singular ES-FEM Exact solution  

0/IK K  (% error) 
0/IIK K  (% error) 

0/G G  (% error) 
0

IK

K
 

0

IIK

K
 

0

G

G
 

2 0.0249 -0.0318 (2.2) 0.9989 (0.2) 2.1473 (0.4) -0.0325 1.0007 2.1551 

4 0.0516 -0.0671 (0.3) 1.0013 (0.2) 1.7622 (0.4) -0.0673 1.0030 1.7684 

8 0.0699 -0.0916 (0.5) 1.0040 (0.2) 1.5622 (0.3) -0.0912 1.0056 1.5675 

20 0.0833 -0.1092 (0.6) 1.0066 (0.1) 1.4393 (0.3) -0.1086 1.0079 1.4434 

40 0.0883 -0.1157 (0.6) 1.0078 (0.1) 1.3977 (0.2) -0.1151 1.0089 1.4013 

100 0.0914 -0.1199 (0.6) 1.0085 (0.1) 1.3725 (0.2) -0.1191 1.0096 1.3758 

1000 0.0933 -0.1224 (0.6) 1.0090 (0.1) 1.3573 (0.2) -0.1216 1.0100 1.3604 

* The SIFs and the exact energy release rate are from the right crack tip. 

6.6.2 Film/substrate system by the four point bending test  

The second example is a film/substrate system with the four point bending test. 

Owing to symmetry, one half of the specimen is used in the computation. The specimen 

dimensions, crack orientation, loading and the displacement boundary conditions are 

given in Figure 6.9.  The thickness of film is fh  and that of the substrate is sh , with the 
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total thickness denoted by 
th . 

fE  and 
fv  are used to denote Young’s modulus and 

Poisson’s ratio of film. sE  and 
sv  are the corresponding properties for the substrate.  

 

a
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/ 2P b

Film: ,f fE 

GInterface:  

Substrate: ,s sE 

fh

sh

 

Figure 6.9.  Schematic-diagram of film/substrate system by four point bending test (half model) 

When the interface crack length significantly exceeds the thickness of the film, 

steady state conditions are reached and the energy release rate stabilizes to a constant 

value, ssG , the steady state energy [103]: 

 

3 3 3
2 2 2

2 3 2

3(1 )
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f f s fs t s s
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s t s t t t t t

h h h hv P L h h h
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 (6.56) 

where b is the depth of film/substrate system and   is defined as:  
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 (6.57) 

The phase angle is computed by taking the characteristic length l  given in equation 

(6.8) to be the total thickness of film/substrate system th : 
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K

K
 (6.58) 
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In addition, we also choose the factors 
0K  and 0G  are used to normalize the SIFs 

and the energy release rate, respectively. 

 
2 2 2

0 03/2 2 3

(1 )s

t s t

v P LPL
K G

bh E b h


   (6.59) 

In the numerical model, the depth b  is taken to be unity, 1fh  , / 10t fh h  , 

/ 2.5L D  , / 5tD h   and / 3ta h  . Thus, the problem domain is 125 10tL h    and 

30a  . The material parameters are / 10f sE E   and 0.3f sv v  . The mesh with 

/ 6.0th h   and the domain radius parameter 4kr   are used.  Based on this, the exact 

steady state energy release rate is 1.3632 from equation (6.56). Comparison of energy 

release rates obtained by standard FEM, ES-FEM and singular ES-FEM are presented in  

Table 6.9.  

Results for IK , IIK  and   are also indicated for completeness. From the results, it 

is found again that the singular ES-FEM provide more accuracy of energy release rate 

compared to the standard FEM, ES-FEM and FEM-T6 using the singular elements. 

Moreover, the energy release rate obtained by the singular ES-FEM is in good agreement 

with the exact value [103] with a fraction of percent error.  

Table 6.9. Film/substrate system by four point bending test: comparison of stress intensity factors and 

energy release rate using the singular ES-FEM (SES-FEM), the standard FEM and ES-FEM under the same 

triangular mesh with / 6.0th h *. 

Method 0/IK K  
0/IIK K    

0/G G  (% error) 

FEM 0.9386  1.2832 43.81 1.3142 (3.6) 

ES-FEM 0.9517 1.2946 43.68 1.3423 (1.5) 

FEM-T6 0.9564 1.2965 43.54 1.3502 (0.9) 

Sing ES-FEM 0.9572 1.2970 43.57 1.3511 (0.8) 

* The exact energy release rate from equation (6.56) is 1.3632. 
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Then, the fixed total thickness 10th   is used and the thickness ratio /f th h  is varied 

from 0.1 to 0.5. Also, we varied the material properties combinations of film and 

substrate. Table 6.9 lists the steady state energy release rate for different thickness ratio 

and different material combinations. Again, we can observe that all the results by the 

singular ES-FEM are in excellent agreement with the corresponding reference solutions, 

and the relative errors are less than 1 percent. 

Table 6.10. Film/substrate system by four point bending test: effect of thickness ratio. 

f

s

E

E
 

f

s f

h

h h
 

Singular ES-FEM Exact solution  

0/IK K   
0/IIK K     

0/G G  (% error) 
0

G

G
 

10 

0.1 0.9572 1.2970 43.57 1.3511 (0.8) 1.3632 

0.2 1.2948 1.6356 41.63 2.2626 (0.7) 2.2793 

0.3 1.7766 1.9884 38.22 3.6969 (0.7) 3.7254 

0.4 2.4676 2.4454 34.74 6.2754 (0.8) 6.3249 

0.5 3.4789 3.1173 31.86 11.3451 (0.9) 11.4523 

0.1 

0.1 0.0729 0.1000 63.90 0.0801 (0.9) 0.0807  

0.2 0.1618 0.1787 57.85 0.3022 (0.7) 0.3043 

0.3 0.3024 0.2844 53.25 0.8959 (0.5) 0.9010 

0.4 0.5295 0.4372 49.55 2.4518 (0.5) 2.4655 

0.5 0.8949 0.6661 46.66 6.4706 (0.8) 6.5228 

 

6.7 Summary 

In this chapter, a singular edge-based smoothed finite element method (ES-FEM) is 

used to solve problems with mix-mode interface cracks between two dissimilar isotropic 

materials. A five-node singular element is designed within the framework of ES-FEM to 

construct the singular shape functions. To model the oscillatory effect ir  at the crack tip, 
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the mix-mode SIFs are numerically extracted by the domain form of interaction integral 

with appropriate modifications. Through the formulation and numerical examples, some 

conclusions can be drawn as follows:  

1. In the Gauss integrations for computing the stiffness matrix, at least 5 gauss points 

should be used along one segment of the smoothing domain for the 5-node singular 

element to ensure the accurate results.  

2. Domain independence of the SIFs are observed for the domain radius excluding the 

crack tip elements.  

3. The singular ES-FEM significantly improves the accuracy of stress intensity factors 

and energy release rate in comparison with the standard FEM and ES-FEM. 

4. Excellent agreement between the numerical results and reference solutions with less 

than 1 percent relative error was realized for a wide range of material combinations 

and boundary conditions. This indicates that singular ES-FEM can solve the interface 

crack problems effectively. 
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Chapter 7:  Crack propagation analysis using Singular 

Edge-based Smoothed Finite Element Method 

(Singular ES-FEM) 

"It's easy to come up with new ideas; the hard 

part is letting go of what worked for you two 

years ago, but will soon be out of date." 

Roger von Oech 

7.1 Introduction 

In the previous chapters, the new method of singular ES-FEM for stationary crack 

problems in both bimaterial and isotropic materials was introduced and different aspects 

of the method were investigated through several examples.  

In this chapter the method is even further developed to simulate the quasi-static crack 

growth on top of the stationary crack analysis. For the sake of simplicity in automation of 

mesh generation, the standard Delaunay triangulation is adopted with a set of unique (no 

over-lapping and no-gaping) triangles, edges and nodes. In order to implement the 

singular ES-FEM, one layer of 5-node crack tip elements is then created by adding one 

additional node on the crack tip edges. Stress intensity factors are computed using the 

developed method of singular ESFEM developed for the stationary crack problems. 
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These values are then plugged in the maximum circumferential criterion to predict the 

crack growth direction.  

As a more practical case study, fatigue crack growth is further analyzed using the 

developed approach. Simulating fatigue problems undergoing varying loads, trajectory 

and crack growth rate parameter are predicted adopting two different models of Forman 

and Kujawski. The results are finally compared with the reference observations and an 

excellent agreement is exhibited in all the studied cases. 

Because triangular mesh is used, re-meshing near the crack-tip can be automated. In 

addition, because of using singular ES-FEM, the stability, accuracy and efficiency are 

ensured. It will be seen that singular ES-FEM is able to successfully predict sufficiently 

accurate path of the crack during propagation. 

7.2 Formulation 

As it was mentioned in previous chapters, the method of area-path interaction 

integral [97, 104] is properly used in the settings of singular ES-FEM to accurately 

evaluate the stress intensity factors for the stationary crack problems.  

Using the developed method for the stationary crack problems, a quasi-static crack 

growth can be simulated by dividing the propagation process into several numbers of 

stationary states, solving each state and predicting the crack growth direction at the next 

step based on the current solutions and through a criterion for the crack geometry 

updating. In the present study, the maximum circumferential stress criterion is adopted to 

determine the crack growth direction [105]. According to this criterion, for isotropic 

materials under mixed-mode loading, the crack will propagate in a direction normal to 
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maximum circumferential stress.  Since this stress is the principle stress, the direction of 

crack growth can be evaluated by setting the shear stress to zero and solving the resultant 

equation  

 sin (3cos 1) 0I IIK K      (7.1) 

Where   is the crack growth angle and IK and IIK are, respectively, the stress 

intensity factors related to the first and second fracture mode. This equation yields the 

crack growth direction as [106]:  

 

2 2 2

1

2 2

3 8
cos
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II I I II

I II
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K K


   

   
  

  (7.2) 

In which 

 
2




  (7.3) 

In addition, in order to making ensure that the opening stress associated with the 

crack direction of the crack extension is maximum, the sign of   should be opposite to 

the sign of IIK , as it is illustrated in Figure 7.1. 

 

Figure 7.1. direction of crack growth at a typical sub step 
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In this study, the length of crack increment a  is the only arbitrary parameter and 

usually is taken as 10% 20%  of the initial crack length a , inversely proportional to the 

ratio of II IK K . However, this range of percentage can be changed appropriately 

depending on the problem. For instance, some researchers used the range 20% 50%  in 

their studies [107, 108]. Generally, by choosing a smaller length of increment, the 

trajectory of crack growth will be predicted more precisely, particularly in the regions 

where ratio of II IK K  is relatively high.  

For the fatigue analysis, as it was mentioned before, another additional model is 

required to predict the fatigue crack growth rate under the loading condition and for 

different cycles of load. It is almost impossible, however, to introduce a unique model 

capable of successfully simulating the behavior of all materials under all arbitrary loading 

condition. Therefore, numerous models have been proposed by researchers. In the present 

thesis, two different models of Forman and Kujawski are adopted. Based on Forman 

model, crack growth rate is a function of stress ratio, critical stress intensity factor, and 

stress intensity factor range as  

 
( )

(1 )

Fn

F

c

C Kda

dN R K K




 
 (7.4) 

While in the Kujawski’s model, another term of  
0.5

+

maxΔK .K is introduced as crack 

growth driving force and is defined as follows; 

 ( ) Km

K

da
C PK

dN
  (7.5) 

In which 
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7.3 Adaptive procedure 

An algorithm for the propagation analysis using standard Delaunay triangulation 

procedure is developed that is shown in Figure 7.2. The algorithm contains the following 

main steps;  

1) At the initial stage with given initial crack of length a, a mesh is generated 

including 4 to 5 layers of fine mesh at the crack tip and the coarse one at the rest 

areas of domain.   

2) One more node is then added in each edge directly connected to the crack tip node 

to create one layer of 5-node specially designed crack tip elements.  

3) The singular ES-FEM is then implemented and stress intensity factors are 

efficiently computed.  

4) Based on the stress intensity factors evaluated in the previous step, crack growth 

direction is predicted using “maximum circumferential stress criterion”.  

5) In order to coarsen the mesh, a criterion is used to smooth the new portion of 

crack surface. This criterion compares the predicted crack angle calculated at step 

4 with the current crack direction (Let name them 1i   
and i , respectively). 

Based on this criterion; if 1 0.001i i rad    , the current crack tip node is split 

into two separated nodes and a new crack tip position is assigned using an 

increment of crack with the length da  in the predicated direction 1i  . If 
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1 0.001i i rad    , however, the new crack tip position is assigned using the 

increment da  in the same direction i . The current crack tip node is then omitted 

and the new portion will be generated by connecting the new crack tip node to 

two nodes on the current crack surface which are directly connected to the current 

crack tip node.  

6) Steps 1-5 are repeated until the entire path of the crack growth in problem domain 

is produced.  

End

Creating a mesh of 4 to 5 layers of fine mesh at the crack 

tip and the coarse one at the rest areas of the domain

No

Crack still Growing?

Adding one additional node in each crack edge to create 

one layer of our 5-node crack tip elements  

Solving the boundary value problem using the singular 

ES-FEM

Yes

Input Data:

Geometry, loads and boundary, conditions

Yes

No

initial crack size    and direction    
ia

i

Using the maximum circumferential stress criterion to 

evaluate crack growth direction       based on the SIFs 

calculated in step i
1i 

1 0.001i i rad   

 new crack tip in  

direction
1i 

new crack tip in  

direction
i

 

Figure 7.2. The procedure of delaunay triangulation for the singular ES-FEM    
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In our adaptive simulation process, we use a very coarse mesh in the major part 

of the problem domain, and only at the vicinity of the crack tip a few layers (4-5 

layers) of fine and well controlled mesh is generated. This fine “crack tip mesh” 

moves together with propagating crack to ensure the quality solution of stress 

intensity values and, hence, the next crack growth direction. The entire process can be 

coded with ease and implemented automatically. 

For the fatigue analysis, a very similar approach is implemented. Two different 

models of Forman and Kujawski are used in the present fatigue prediction approach 

to determine the crack growth rate for the structures under varying-amplitude service 

load. The procedure is illustrated in flowchart of Figure 7.3. 

Input data:

Geometry, initial crack size,  loads and boundary conditions

No
Selection of new data End

Using the “standard Delaunay triangulation procedure” to generate the 

mesh

Solving the boundary value problem using the singular ES-FEM

Evaluation of stress intensity factors, crack growth direction and 

number of cycles for the new crack growth amount

New geometry based on the new crack tip and the growth direction

Yes

 

Figure 7.3. The algorithm for the fatigue analysis using the singular ES-FEM 
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7.4 Numerical examples 

In this section some examples are presented to investigate the capability of singular 

ES-FEM in simulation of crack growth problems through a quasi-static process. A code 

for crack growth path prediction is developed following the formulation given in section 

7.2 and the procedure given in section 7.3. The mesh generations, node creation, mesh 

smoothing and adaptive re-meshing is based on the standard Delaunay triangulation 

procedure. A comparison between final state of problems and the reference observations 

clearly shows that the presented singular ES-FEM is capable of accurately predict crack 

growth trajectory. 

7.4.1 Crack growth in an edge cracked plate 

The code is first applied to simulate the crack growth in an edge cracked plate. 

Geometry, loading, and boundary condition of the plate is exactly identical to the 

example presented in section 5.7.7; meaning that it is clamped at the bottom and 

undergoes a shear load at its top edge creating a mixed-mode situation of fracture.  The 

length of crack increment at each step of solution is fixed to 0.1da mm . Figure 7.4 

shows the predicted crack trajectory using singular ES-FEM at different steps of crack 

growth as well as final state of problem which closely resembles the numerical solutions 

in Ref. [108, 109]. As it can be seen in this figure, the crack growth is not symmetrical 

due to the unsymmetrical loading and boundary condition. The entire crack propagation 

is gained after 39 steps. The obtained results clearly show that the present singular ES-

FEM is able to predict the stress intensity factors and simulate the crack path accurately. 

Note that, all the results have been obtained using a largely coarse mesh which can save 
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the computational time. This can be done only because of the high accuracy that singular 

ES-FEM offers when the linear triangular elements are adopted. In the other words, if the 

same set of elements and nodes are used for the standard FEM, the results will be of less 

accuracy. 

     

  

Figure 7.4. Crack growth trajectory at different steps using singular ES-FEM for the single edge 

cracked plate 
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7.4.2 Crack growth in a cracked cantilever beam 

 

The quasi-static crack growth for a double cantilever beam illustrated in Figure 7.5 is 

studied for further evaluating the ability of singular ES-FEM to predict the crack growth 

trajectory. 

 

Figure 7.5. Double cantilever beam with a small perturbation angle at the crack tip 

The cantilever beam has the dimensions of 11.8L mm , 3.94h mm  and 

3.94a mm , and is subjected to the tensile load of 197P N . In addition, plane stress 

condition is assumed with Young’s modulus and Poisson's ratio of  7 23 10 / E N mm  

and 0.3  , respectively. The crack is given a small perturbation of length 0.3x mm   

at the tip with initial angle of d  as shown in the figure. This perturbation contributes 

second mode of fracture in the problem state and leads to a mixed mode problem 

situation, deflecting crack trajectory from straight-horizontal path during the propagation. 

Figure 7.6 shows the crack path at several steps for the case in which 0.1d rad   and 

0.2da mm , where da  is the length of crack increment at each step of crack growth 

process. Moreover, another study has been conducted to examine the effect of d  as well 

as da  on the crack propagation trajectory. Figure 7.7 shows how the crack trajectory will 
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vary when different initial perturbation slopes are implemented. It should be mentioned 

that the length of crack increment is fixed to 0.1da mm  for all the reported cases in this 

figure. It is clearly highlighted from this figure that the crack trajectory will vary when 

the initial crack geometry changes. For the case in which 0d rad   the problem is 

under pure mode I situation and the crack propagates on a horizontal and straight line. By 

increasing the slope of initial perturbation, however, second mode of fracture plays a 

more important role and crack trajectory bends more. Figure 7.8 also shows the crack 

trajectories when the length of crack increment is changed, while the initial perturbation 

is fixed to 0.1d rad  . It can be observed from this figure that the numerically 

predicted crack trajectories can be somewhat affected by the length of crack increment; 

however, for the small enough increments the variation in the paths can be ignored. All 

the results are in a good agreement with those in some other studies [110, 111]. The 

quality of our solution is very well controlled using triangular mesh with the singular ES-

FEM ensuring the accuracy. 
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Figure 7.6.  Crack growth trajectory at different steps using singular ES-FEM for the single edge 

cracked plate; The first 4 schemes in this figure have been obtained by singular ES-FEM while the last has 

been reported by experiments [110, 111] 
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Figure 7.7. Crack propagation trajectories for different initial perturbation angles 

(The unit of the angles d is rad) 
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Figure 7.8. Influence of crack growth increment on crack propagation trajectory 

7.4.3 Crack growth in a PMMA Specimen 
 

 

The PMMA beam specimen has been examined as another benchmark with the 

available experimental observations by Bittencourt et al. [107]. The geometry and 

boundary conditions have been shown in Figure 7.9.  

2

2

1.25

b a

P=16
10

8

1 1
  

 a b 

Case I 1.0 4.0 

Case II 1.5 5 

Figure 7.9. Problem statement for the PMMA specimen 
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The material properties for this specimen are 43 10E MPa   and 0.3  , 

respectively. Two different settings of a and b (See, Figure 7.9) is adopted for the 

problem and crack is quasi-statically grown using singular ES-FEM with S-SD=1. 

Moreover, the length of crack increment is set to 0.05da mm  for the solution steps in 

which shear mode of fracture tends to increase and 0.2II IK K   (similar to what 

happens near the holes). The length of increment is set to 0.1da mm , however, when 

the opening mode of fracture is much more effective and 0.2II IK K  . This kind of 

setting for the increment length helps to predict the crack trajectory more accurately.  

The results are shown in Figure 7.10 and Figure 7.11. According to these results, in 

the first studied case, the crack passes above the lower hole and ends to the middle hole 

from the left side. In the second case, however, it passes through the material between 

lower and middle hole and approaches the middle hole from the right side. Moreover, the 

completely propagated crack in the first case has been obtained after 30 solution steps, 

while for the second case this number is 59 steps. This is due to the considerable increase 

in the shear (second) stress intensity factor around the holes of the second case which 

forces us to decrease the increment length occasionally. The results of the crack trajectory 

during the propagation have an excellent agreement with the experimental results given 

by Bittencourt et al. [107]. This excellent agreement between our results and reference 

observations reinforces again the claim that singular ES-FEM accurately predicts the 

stress intensity factors and successfully simulates the quasi-static crack growth problems 

by using a largely coarse base mesh of linear triangular elements. 
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Figure 7.10.  Crack growth trajectory at different steps for PMMA specimen (case I). The first 5 

schemes in this figure have been obtained by singular ES-FEM while the last has been reported by 

experiments [107] 
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Figure 7.11. Crack growth trajectory at different steps for PMMA specimen (case II). The first 5 

schemes in this figure have been obtained by singular ES-FEM while the last has been reported by 

experiments [107]  

7.4.4 Fatigue analysis of a single-edge notched specimen using Forman model and 

Singular ES-FEM 

 

A single-edge notched specimen as shown in Figure 7.12 is analyzed to examine the 

capacity of the method for prediction of crack behavior during a fatigue failure. The 

problem is solved under mode I loading with a load ratio of 0.1R   while the specimen 

undergoes a sinusoidal load P .  

a

29 mm

16 mm

19 mm

100 mm

11.5 mm11.5 mm

16 mm

19 mm

 

Figure 7.12. A single-edge notched specimen 
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The fatigue crack propagation is then simulated by adopting the Forman model. In 

order to verify the accuracy of results, the findings are compared with those from 

experimental data reported by Mohanty et al. [25] for the same geometry, load, boundary 

condition and material properties. Similar to that reference, the problem has been solved 

for two aluminum alloys of “Al7020-T7 “and “Al2024-T3”. The Mechanical properties 

of materials, values of the Forman constants and load scenarios are listed in Table 7.1 and 

Table 7.2. 

Table 7.1. Mechanical properties of 7020-T7 and 2024-T3 Al-alloys 

Material Young’s modulus 

( )E MPa  

Poisson’s ratio   Plane strain 

fracture 

toughness

( )ICK MPa m   

Plane stress 

fracture 

toughness

( )ICK MPa m  

7020-T7 Al-alloy 70000 0.33 50.12 236.8 

2024-T3 Al-alloy 73100 0.33 37.0 95.31 

 

Table 7.2. Forman constants and load scenarios 

Material 510FC   Fm  Maximum load 

max ( )F KN  

Minimum 

load 

min ( )F KN  

Initial crack 

length 

( )a mm  

7020-T7 Al-

alloy 

1.33 3.1954 8.89 0.89 18.30 

2024-T3 Al- 

alloy 

1.00 3.2094 7.20 0.72 17.75 

Length of the crack during the fatigue process as well as behavior of 
da

dN
 while K  

is changing are presented in Figure 7.13 to Figure 7.16. According to these figures it can 

be easily highlighted that the results of singular ES-FEM have an excellent agreement 

with the findings from the experimental study.  
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Figure 7.13. Fatigue crack growth for aluminum alloy 2024-T3 

0.9 1 1.1 1.2 1.3 1.4

-4.258

-3.758

-3.258

-2.758

log(K )(MPa-m^(1/2))

lo
g

(d
a
\d

N
)(

m
m

/c
y

cl
e)

Singular ES-FEM

Experimental

 

Figure 7.14. Logarithmic behavior of FCGR versus stress intensity factor range for aluminum alloy 

2024-T3 
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Figure 7.15. Fatigue crack growth for aluminum alloy 7020-T7 

 

Figure 7.16. Logarithmic behavior of FCGR versus stress intensity factor range for aluminum alloy 

7020-T7 

7.4.5 Kujawski’s Model of  
0.5

+

maxΔK .K for aluminum alloy 

 

The same geometry of previous example with the initial crack length of 1a mm  is 

analyzed under the sinusoidal loading with the stress ratio of 0.1R  and maximum load 

of max 200F N . The material properties consist of 73100E MPa  and 0.33  . The 

problem is solved using the singular ES-FEM and the results are compared with those 
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presented in a study conducted by Maymon [45]. The stress intensity factor in each step 

has been calculated using the singular ES-FEM and the FCGR has been evaluated 

adopting the Kujawski’s model of  
0.5

+

maxΔK .K . The study is performed on the 

aluminum alloy 2024-T351 and the coefficients CK and mK for the material are borrowed 

from the reference study [45] as 127.648179 10KC    and 4.05Km  . The results of 

analysis as well as the collapsed experimental data reported in the reference study of 

Maymon are illustrated in Figure 7.17. The excellent agreement between the results 

shows the power of singular ES-FEM for the fatigue crack growth simulation. 
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Figure 7.17.  The logarithmic behavior of FCGR versus Kujawski’s parameter PK 

7.5 Summary 

In this chapter, the method of singular ES-FEM has been employed to simulate the 

path of crack growth under quasi-static crack propagation. The stress intensity factors in 

both fracture modes have been calculated using the domain form of interaction integral 

method in the framework of singular ES-FEM. The method uses a largely coarse base 
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mesh of linear triangular elements. For simulating the stress and strain field singularity at 

the crack tip, however, singular ES-FEM implements a new 5-node triangular crack tip 

element.  

For the fatigue analysis, two different models of Forman and Kujawski were adopted 

to predict the amount of crack growth due to the fatigue phenomenon. In addition, the 

direction of crack growth was evaluated using the maximum circumferential stress 

criterion. A standard Delaunay triangulation procedure was then employed for 

automatically mesh generating and re-meshing process. The comparison of results with 

the experimental observations exhibits an excellent agreement which confirms the ability 

of singular ES-FEM to analyze crack growth behavior. 
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Chapter 8:  Singular Face-based Smoothed Finite Element 

Method (Singular FS-FEM) for the LEFM problems 

“Imagination is the beginning of creation. 

You imagine what you desire, you will what 

you imagine and at last you create what you 

will.” 

George Bernard Shaw 

8.1 Introduction 

In previous chapters, the method of singular ES-FEM for two-dimensional linear 

elastic fracture mechanic problems was thoroughly developed for both cases of stationary 

and quasi-static crack growth simulations. Contrary to the widely used approach of FEM 

that simulates the singular stress field by mapping between natural and Cartesian 

coordinates of the so-called “collapsed quadratic elements (quarter-point elements)”, in 

the singular ES-FEM a new 5-node triangular element with a set of specially designed 

shape functions is introduced to serve the purpose via a simple point interpolation 

method.  In spite of FEM that does not work well with the linear elements, singular ES-

FEM is capable of producing accurate results when the linear elements are employed. 

This is because of taking advantage of strain smoothing technique to develop a softer 

model than that of FEM.  

In the present chapter, a similar approach will be developed to analyze the problems 

in 3-dimensional space.  Instead of exerting iso-parametric mapping over a mesh of 



Chapter 8 

148 

 

higher order elements, a simple interpolation method is implemented over the strain 

smoothed domains constructed associated with a background mesh of linear tetrahedral 

elements. To capture the singularity of stress field, a layer of new specially designed 

prism element is then used along the crack front line. To connect crack tip prism elements 

to the base mesh of tetrahedrons, pyramid elements are then suggested to be adopted. The 

stiffness matrix is accordingly evaluated only by calculating the displacement field (and 

not the derivatives) over the boundaries of smoothing domains. Similar achievements of 

singular ES-FEM in analysis of 2-D problems are expected to be observed in 3-D cases 

when the similar procedure of singular FS-FEM is employed. To investigate this, 

performance of the method is examined through some examples and results are presented 

in terms of strain energy and displacement. Furthermore, stress intensity factors are 

evaluated based on a volume form of 3-D interaction integral approach, and path 

independency of results is investigated by adopting different domains. As it will be 

observed, the method works very well with the 3-D interaction integral approach and 

provides the accurate and path-independent results. The results of strain energy also 

confirms that singular FS-FEM with the proposed crack tip elements (along the crack 

front) and the linear tetrahedral elements (at the rest of domain) provides the more 

accurate results than those of FEM using quadratic and collapsed quadratic elements. 

8.2 Displacement interpolation in standard faced-based smoothed finite 

element method (FS-FEM) 

In order to improve the results of FEM using the linear 4-noded tetrahedral elements 

(T4), the idea of strain smoothing approach similar to that of ES-FEM in 2D space is 
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exerted in the faced-based smoothed finite element method (FS-FEM). Using the strain 

smoothing technique in the calculation of system stiffness matrix will result in a softer 

model than that of FEM using the same background mesh of T4 elements. Furthermore, 

because of using T4 elements in the FS-FEM model, the process of mesh generation can 

be done automatically and with ease even for the very complicated geometries. When the 

FS-FEM is employed, only displacements over the smoothing domains associated with 

the faces (and not their derivatives) are required to be evaluated. In addition, similar to 

other S-FEM approaches and despite FEM, in FS-FEM no iso-parametric mapping 

procedure is required and the stiffness matrices are calculated based on a simple 

interpolation method.  

Not only the smoothing domains creation but also the formulations of FS-FEM 

imitate the same patterns of ES-FEM. Assuming domain   decomposed into eN  number 

of non-overlap and no-gap tetrahedral domains as 
1

eN
e

i

i

    ( e e

i j for i j    ), a 

new set of sN  non-overlap and no-gap smoothing domains is further created such that 

1

sN
s

k

k

    (
s s

k j for k j    ), in which sN  is the total number of faces 

associated with tetrahedrons of background mesh. In such a discretization method, for 

every typical face k, a unique smoothing domain s

k  is created by simply connecting 

three endpoints of the triangular face to the center points of the adjacent elements to 

which the face belongs.  
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The colored areas in Figure 8.1 schematically show the way of constructing such 

smoothing domains for two possible cases in which face k either belongs to one 

tetrahedron (as a boundary face) or two (as a common face between two neighbor 

tetrahedrons). Case (a) typically shows the constructed smoothing domain for the dashed 

face ACD which is assumed to be a boundary face and the corresponding s

k  is the 

volume domain bounded with surfaces ACD, ACG, DCG, ADG. Similarly, case (b) 

shows the s

k  associated with face ABC. As it can be seen; the smoothing domain is 

bounded with triangular faces ACG, CGB, BGA, AHC, HCB and BAH, where points G 

and H are, respectively, denoted as center points of tetrahedrons ABCD and ABCH. 

A
B

C

D

E

G

H

Field node Smoothing domain vertices

(a)  

A
B

C

D

E

G

H

Field node Smoothing domain vertices

(b)  

Figure 8.1. Smoothing domain for typical tetrahedral elements faces (a) for boundary face ADC (b) 

for interior face ABC 

For such a discretized domain, the smoothed strain can be calculated in the following 

fashion; 

 ( ) ( ) ( ) ( ) ( )
s s
k k

h h

k k s kd d

 

       ε x ε x x u x x  (8.1) 
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Where, as before, hu  is a trial function identical to that of finite element method 

which can be re-written in the following matrix form 

 
1

( ) ( )
Np

h

i i

i

u x N x d  (8.2) 

Where pN  is number of nodes per the element housing x , ( )iN x  and 
id  are i

th
 

component of, respectively, nodal shape function matrix and nodal displacement vector. 

Moreover, smoothing function k  in equation (8.1) satisfies the unity property as 

 ( ) 1
s
k

k d



   x  (8.3) 

And can be defined based on the volume s

kV  of the smoothing domain s

k    

 
1/

( )
0

s s

k k

k s

k

V X

X

 
  


x  (8.4) 

In which the volume s

kV  is calculated as 

 
1

1
( )

4

e

s
k

N
s i

k e

i

V d V


    x  (8.5) 

Wherein i  is the number of adjacent elements to face k ( 1i  ; if the face is a 

boundary face, 2i  ; otherwise), and i

eV  is the volume of i
th

 element next to face k. By 

choosing trial function hu  satisfying equation (8.2), substituting it in equation (8.1), and 

smoothing the strain over s

k  corresponding smoothed strain is re-written in the 

following form 

 
1

( )
ns

N

k I I

I

ε x B d  (8.6) 
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Where 
nsN  is the number of nodes associated with the smoothing domain; for the 

boundary faces 4nsN   whilst 5nsN   for the interior faces. For instance, in Figure 8.1, 

associated nodes with the smoothing domains corresponding to the dashed faces are, 

respectively, nodes A, B, C, D for case (a) and A, B, C, D, E for case (b).  

In addition, using the divergence theorem, the smoothed strain gradient matrix IB  in 

the foregoing equation can be written in the following form 

 
1

( )
s
k

I s I

k

d
V



  B N x  (8.7) 

Meaning that IB  is calculated by performing the integration on the boundaries of 

smoothing domain ( s

k ), resulting in the following matrix form; 

 

( ) 0 0

0 ( ) 0

0 0 ( )1
( ) ( ) ( )

( ) ( ) 0

0 ( ) ( )

( ) 0 ( )

s
k

Ix k

Iy k

s Iz k

I k k Is

k Iy k Ix k

Iz k Iy k

Iz k Ix k

b

b

b
d

V b b

b b

b b



 
 
 
 

    
 
 
 
  



x

x

x
B x n x N x

x x

x x

x x

 (8.8) 

Where s

kn  is a matrix of outward normal vector on the boundary s

k  as 

 ( ) 1
s
k

k d



   x  (8.9) 

In addition, ( , , )Ihb h x y z  in equation (8.8) is calculated as 

 
1

( ) ( ) ;( , , )
s
k

s

Ih kh Is

k

b n N d h x y z
V



   x x  (8.10) 

Where Ihb  is numerically evaluated using the Gauss-Quadrature rule  
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 , ,

1 1

1
( ) ( ) ; ( , , )

GPNM
GP GP k

Ih k I i j i j ihs
i jk

b x N x w n h x y z
V  

   (8.11) 

In which M is the number of (area) boundary segments of s

k , ,

GP

i jx  is the Gaussian 

point location on the i
th

 boundary segment, ,

GP

i jw
 
is the Gaussian weight associated with 

the Gaussian point ,

GP

i jx , GPN  is the number of Gaussian points on the i
th

  boundary 

segment, and k

ihn  is the h
th

 component of the unit outward vector on the i
th

 boundary 

segment. 

Using the calculated smoothed strain gradient matrix B , the IJ
th

 entry of k
th

 

smoothed stiffness matrix K  can be now calculated as 

 
( ) d

s
k

T T s

IJ k I J I J kV



  K B DB B DB  (8.12) 

The global stiffness of entire domain is then calculated by assembling the stiffness 

matrices of all the smoothing domains. 

8.3 Idea of singular FS-FEM  

As it was mentioned in the foregoing section, FS-FEM uses a strain smoothing 

technique to produce a softer model than that of FEM, yielding more accurate results than 

that of FEM. Most importantly, FS-FEM works very well with linear 4-noded tetrahedral 

elements and provides more accurate results than FEM. Unfortunately; standard form of 

FS-FEM does not exhibit the same remarkable features when it comes to the problems 

containing a discontinuity like crack. The reason is rooted in theoretically-singular 
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behavior of stress field along the crack front line which cannot be captured using the 4-

noded tetrahedral elements with the linear interpolation functions. 

In the following sections, the main focus is to develop a new type of FS-FEM for the 

crack problems by properly simulating theoretical behavior of stress field, and 

simultaneously, taking advantage of simple but unique properties of standard FS-FEM.  

The new proposed method will be called “singular faced-based smoothed finite 

element method (singular FS-FEM) which, similar to the singular ES-FEM approach in 

2D space, modifies the standard FS-FEM for the fracture simulation. Singular FS-FEM 

adopts a layer of specially designed singular 10-node prism elements located along the 

crack-tip nodes as shown in Figure 8.2. For the remaining parts of the domain, however, 

the standard 4-node tetrahedral elements are recommended due to their capability of 

being easily created even for the geometrically-complicated volumes.  

Crack line
 

Figure 8.2. Some layers of prism elements along the crack line for a typical 3-D problem 

Simultaneous use of tetrahedral and prism elements, however, causes an 

inconformity issue in the areas wherein rectangular faces of prism and triangular faces of 

tetrahedrons meet each other. As it can be seen in Figure 8.3(a), at least two tetrahedrons 
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are required to cover one rectangular face of the prism, meaning that each prism will have 

more than one adjacent element at the rectangular face meeting tetrahedron mesh. To 

resolve the issue, another type of element is proposed to be used.  In this study pyramid 

element is adopted as the simplest choice to make a connection between two different 

types of elements without creating an inconformity issue. This is shown in Figure 8.3(b). 

(a)   (b)  

Figure 8.3. (a) Directly connecting prism element to tetrahedral elements (b) Using the pyramid 

element as a connector between quadrilateral surface of prism and triangular face of tetrahedron 

Using the set of three different types of elements and applying the strain smoothing 

technique over the smoothing domains associated with elements faces, the method of 

singular FS-FEM is developed. In the following sections, different aspects of the method 

will be elaborated more. 

8.4 Smoothing domain creation in singular FS-FEM 

Following the similar strategy of standard FS-FEM for creation of smoothing 

domains associated with triangular faces of tetrahedral elements, the discretized model 

for the singular FS-FEM is created. However, due to introducing new additional element 

types, four more types of smoothing domains are constructed beyond those created in 
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standard FS-FEM. Based on the shape and neighboring elements, each face in singular 

FS-FEM model falls in one of the following categories: 

 Triangular face belonging to two tetrahedral elements;  

This face is the typical face of standard FS-FEM with the smoothing domain 

construction approach previously described. 

 Rectangular face between two neighboring prism elements;  

Creation of smoothing domain in this case is typically shown in Figure 8.4 for 

face ABCD as the common face between two prisms ABCDEF and ABCDLK. 

Edge BC in this figure is distinguished as the crack edge, and every other edge to 

which it directly connects is enriched with one additional node. The smoothed 

domain for this face is then created with faces ABG1, ADH1G1, BCH1G1, DCH1, 

ABG2, ADH2G2, BCH2G2, and DCH2, where H1, G1, H2 and G2 are the centroid 

of triangular faces. 

 Rectangular face belonging to only one prism element on the free surface of 

crack;  

Creation of smoothing domain in this case is typically shown for face BCEF in 

Figure 8.5. The smoothing domain is constructed by faces BCEF, BCG1H1, 

EFG1H1, BFG1, CEH1.  
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Figure 8.4. Smoothing domain associated with rectangular face between two neighbor prism elements 

Crack Front line 

Crack Surface 
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G1
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E

F
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G2
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Field node Smoothing domain vertices  

Figure 8.5. Smoothing domain associated with rectangular face belonging to only one prism element 

on the free surface of crack 

 Rectangular face between one prism and one pyramid element;  

Creation of smoothing domain in this case is typically shown in Figure 8.6 for 

face AKLD as the common face between prism ABCDLK and pyramid element 

ADLKM. The smoothing domain is constructed with faces AKG2, ADH2G2, 

KLH2G2, DLH2, AKG3, ADG3, KLG3 and  DLG3. It should be noted that G3 is the 

center point of pyramid.  
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Figure 8.6. Smoothing domain associated with rectangular face between one prism and one pyramid 

element 

 Triangular face between one tetrahedron and one pyramid element;  

Creation of smoothing domain in this case is typically shown for face MLD in 

Figure 8.7. The smoothing domain is constructed with faces MDG3, MLG3, 

LDG3, MDG4, MLG4 and LDG4, where G4 is the centroid of tetrahedron. 

Crack Front line 

A

DL

K

(d)

M

E

F

G3
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S

G4

B

Field node Smoothing domain vertices  

Figure 8.7. Smoothing domain associated with triangular face between one tetrahedron and one 

pyramid element 
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As it can be seen, in the prism element, smoothing domains are only created 

associated with rectangular faces (and not the triangular ones) by subsequently 

connecting the corner nodes of rectangular face to the centroid of triangular ones. Using 

this technique, every prism element contributes in three smoothing domains. For the 

pyramid elements, however, per each surface one smoothing domain is created (similar to 

tetrahedrons) by connecting the corner nodes of that face (could be rectangular or 

triangular face) to the centroid of the pyramid. This makes every pyramid element of the 

background mesh contribute in 5 smoothing domains.  

8.5 Displacement interpolation within the prism element  

The novel prism element for the crack problems with specially designed shape 

functions is exhibited in Figure 8.8. This specially designed element for properly 

simulation of singular behavior of stress field needs to be placed at the crack front along 

one of its longitude edges. In order to derive the shape functions for such element, two 

basic assumptions have been made: 

 In the radial directions emanating from crack edge, displacement varies in the 

same way as in the previously introduced one dimensional crack tip elements 

(See, Figure 5.3) with the following interpolation fashion 

 0 1 2 0 1 2;( , , )u c c r c r c c c are cosntants    (8.13) 

As it can be seen this function is linearly complete in r and owns some extra 

fractional term r  to produce the singular term 1
r

 in the strain field. 
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Referring to the strategy thoroughly described in chapter 5, the shape functions 

for such element is given by equation (5.8).  

 In the tangential directions, displacement is assumed to vary linearly. 

Considering edge 1-4 in Figure 8.8 as the crack front edge, any displacement component 

like component u  along an arbitrary line   M    is evaluated as: 

 1 2 3Mu u u u        (8.14) 

In addition, by using simbole i jl   as the distance between points i and j , 

displacement values of points M ,   and  can be written in terms of those values of 

element nodes as following equation. 
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Figure 8.8. A prism element at the crack tip 
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 (8.15) 
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in which u , u  , u  and u   are, themselves, linear variations of nodal values as 
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 (8.16) 

After making relations (8.15) and (8.16) more simplified by using the simple fact 

that 1

4 1

M
lll

l l l



   

  
  

   

  and 
2 57 9

7 8 2 3 9 10 5 6

l ll l

l l l l

  

   


   

    , they can be  

substituted into (8.14) to give the following  equation as the corresponding function to the 

variation of displacement component for any arbitrary point inside the prism element. 
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 (8.17) 

Or in terms of nodal displacement values as 
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 (8.18) 

That can be re-written in the following matrix form 

 u  Nd  (8.19) 

with 
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1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

,
T

u u u u u u u u u u and

N N N N N N N N N N





d

N

 (8.20) 

In which the nodal shape functions are defined as equation (8.21). Because in our 

singular ES-FEM, we do not need derivatives of shape functions, this equation is all we 

need in computing the stiffness matrix for creating our numerical model.  
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 (8.21) 

8.6 Displacement interpolation for a pyramid element in FS-FEM 

As it was mentioned before, the pyramid elements are divided into five strain 

smoothing domains associated with faces, through the similar strategy of smoothing 

domain creation for the triangular faces of tetrahedral elements. The numerical 

integrations are then computed on the surfaces bounding these domains to calculate the 

stiffness matrix. In the singular FS-FEM, A natural pyramid element with the 

corresponding natural coordinate system shown in Figure 8.9 and shape functions given 

in equation (8.22) is used. 
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Figure 8.9. The pyramid element in the natural coordinate 

The shape functions for such element have been proposed by Bedrosian [65] as: 
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 (8.22) 

Since in singular FS-FEM, integrations are calculated over the surrounding faces of 

each smoothing domains, the integration points and weighting coefficients of the Gauss-

Legendre quadrature for triangular surfaces can be adopted here. The location of  

Gaussian points on the faces can be then identified using a simple mapping approach 

between the coordinate system of natural triangle and the one in the new setting of 

smoothing domains which is shown with red color in Figure 8.10. 
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Figure 8.10. Mapping between triangle natural coordinate system and new coordinate system in the 

smoothing domain setting 

As it is shown in this figure a direct mapping function   can be defined to directly 

map a typical point ( , )   on the reference triangle to a unique point on a triangle inside 

the pyramid (e.g., triangle ABC). Assume that points (1,0), (0,1) and (0,0) in the reference 

coordinate are respectively mapped on the points A, B and C in the second coordinate. 

Writing χ  for ( , )  and R  for ( , , )r s h , the mapping function can be formulated in the 

following simple form: 

 ( ) .   χ Ωχ C R  (8.23) 

In order to use the above transition, the function matrix Ω  should be identified. The 

following mathematical efforts will lead to finding the components of matrixΩ . 
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 (8.24) 

Therefore,  
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Similarly, 
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 (8.26) 

This results in: 
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 (8.27) 

Hence, the mapping function can be written as the following form: 

 ( , ) .

r r r r r

s s s s s

h h h h h

A C B C C r

A C B C C s

A C B C C h

      
      

                          

 (8.28) 

One might also think about finding the location of Gaussian points in the Cartesian 

coordinate first and then in the natural coordinate of the pyramid as follows: 

 

3

1

3

1

3

1

( , )

( , )

( , )

GP i i

i

GP i i

i

GP i i

i

X X

Y Y

Z Z








   




   



   








 (8.29) 

Wherein ( , )i   represents the i th
 shape function of the triangle in its natural 

coordinate system and  , ,i i iX Y Z are the Cartesian coordinates of the triangle nodes. 
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Similarly, one can describe the position of the Gaussian point in the framework of 

the pyramid as: 
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 (8.30) 

Wherein ( , , )jH r h s
 
represents the j

th
 shape function of the triangle in its natural 

coordinate system and  , ,j j jX Y Z
 
are the Cartesian coordinates of the pyramid nodes. 

Therefore, by substituting the Cartesian coordinates of the Gaussian point from (8.29) 

into (8.30), one may find a system of nonlinear simultaneous equations in terms of 

( , , )r h s . Regarding the fact that finding a unique solution for this system of nonlinear 

equations is not easy, the simpler method of direct mapping between two triangles is 

adopted in this study. 

8.7 J-integral and stress intensity factors 

Using the singular FS-FEM to analyze the problem, the displacements, strains and 

stresses can be evaluated. Using these outputs, J-integral parameter can be also 

computed. The stress intensity factors, however, are still unknown. Although, some 

models have been proposed to calculate stress intensity factors based on the displacement 

values around the crack tip, these methods suffers from the lack of accuracy. Yet, the 

energy method seems to be the best choice. On the other hand the successful interaction 

integral has provided the possibility of using an energy-based method and extracting the 
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stress intensity factor values from the evaluated J-integral. The process is explained in the 

following sections.   

8.7.1 Calculation of J-integral and Stress intensity factor 

According to the definition of J-integral at point s along a 3-D crack front shown in 

Figure 8.11 [112]; 

 1
0

1

( ) lim ( )
J

J

j

i ij i

u
J s w n d

x 



  

    (8.31) 

Where J  is a closed boundary contour that encloses the crack front point s and lies 

in the X1-X2 plane of the local coordinate system. Besides, in equation (8.31), in  

represents the components of outward normal vectors on J .  

Equivalent volume form of equation (8.31) proposed by shih et al. [112] seems much 

easier to work with for a numerical evaluation in a 3-D FEM framework. To this end, a 

volume is created associated with point s by extending contour J over a length cL of 

crack front as shown in the figure. As it can be seen, the volume V is enclosed with the 

lateral surfaces 2S  and 3S , cylindrical surfaces tS  and 1S , and top and bottom crack-face 

surfaces S  and S  . 
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Figure 8.11.  A typical 3-D crack front and corresponding domain for J-integral calculation 

The energy released per unit advance of crack front segment cL  is then calculated as 

    ,1 1 , ,1 1 ,1,
( ) ij j i i ij j i j ji

V V S S

J s u W q dV u W qdV t u qdS
 

           (8.32) 

Where q is a smoothing function. The relation between J value at point s and ( )J s  is 

also given by 

 
( )

( )
( )

cL

J s
J s

q s ds



 (8.33) 

Figure 8.12 also shows a suitable cylindrical path for a typical point s located on a 

straight crack front. For the axisymmetric problems like a circular penny shape crack at 

the middle of a cylindrical shaped solid of which a portion is shown in Figure 8.13 , one 

can also write 

 ( ) ( )

c cL L

q s ds q s Rd    (8.34) 
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Figure 8.12. A typical straight crack front in 3-D and corresponding domain for J-integral calculation 

d

Crack 

Surface

  

Figure 8.13. A portion of a typical axisymmetric problem  

8.7.2 Volume form of interaction integral for planar crack surfaces 

In order to extract the values of stress intensity factors from J-integral parameter, the 

volume form of interaction integral method is implemented. When the crack surfaces are 

planar, the domain form of the averaged Interaction integral can be written using the 

following equation [113, 114];  
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 (8.35) 

Although the second integral of the above equation will vanish for the straight crack 

fronts, it does not equal to zero for the cracks with the curved front. This is because of 

employing the curvilinear coordinate system for the curved crack front. In this case 

( ) ( )aux aux

sε u and as a result 

 ( ) ( ) ( )( . ) : ( ) ( ).( . ) 0T aux aux aux       P σ ε u u σ  (8.36) 

 A strategy for skipping the difficulty of calculating second integral was proposed by 

Dodds [113] as “not using the curvilinear coordinate system instead of the Cartesian 

one”. In such case one can simply avoid to evaluate the second integral even for the crack 

curved fronts. It should be noticed that the last term in the right hand side of the equation 

will be also vanished in the absence of traction on the crack surfaces. Furthermore, this 

equation works only for the planar crack surfaces and for the non-planar ones another 

additional terms should be evaluated as discussed in a work by Gosz [112] for the non-

planar cracks. ( )I s  can then be calculated as: 

 
( )

( )
( )

cL

I s
I s

q s ds



 (8.37) 

According to Williams’ solution [115] for the stresses and displacements at the 

vicinity of crack fronts, 
( )aux

ij , ( )aux

iu and 
( )aux

ij  (i,j=1,2,3) is described as 
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Resulting in the following forms for the stress and displacement components [113, 114]. 
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Where r and   are measured from the origin of coordinate system located at the 

crack tip node and  

 

3 4

3

1

plane strain

plane stress




  






 



 (8.48) 

8.8 Calculation of r and θ  at the integration points 

Using a number of elements to discretize the problem domain, each integral term of 

equation (8.35) is numerically calculated. To this end, values of r and θ corresponding to 

each Gaussian point should be known. For a typical crack front with the local coordinate 

system shown in Figure 8.13, distance r between the Gaussian point and its nearest 

element edge lying along the crack front, and relevant angle θ is identified based on a 

simple algorithm which is schematically shown in the figure as well. 

First, projection of Gaussian point G on crack front plane (plane X1-X3 in the figure) 

is determined (Let name it, point H). Next, point H is projected on the nearest element 

edge along the crack front (Let say, edge AB) to obtain point D. point D is then 

connected to the initial Gaussian point G using a straight line to create the r  vector with 

the norm r and angle θ with the crack plane. Since, in vector space, the magnitude of 

cross product of two vectors can be interpreted as the positive area of parallelogram built 

up on those vectors, one can mathematically express the distance r as 

 



AB AG

r
AB

 (8.49) 
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Based on the position of point G regarding crack plane as well as crack front (which 

can be above or below the crack plane, or ahead or behind the crack front), four possible 

regions are identified as shown in Figure 8.13. If the second component of G’s local 

coordinate is positive ( 2 0GX ) then the point is placed above the crack plane, either in 

region I or II. On the other hand, if the sign of AB× AH  is greater than zero, the point is 

located ahead of crack front, either in region I or IV. The angle θ is then expressed for 

four different regions as 

 

1 12 2

1 12 2

sin ; , sin ;

sin ; , sin ;

G G

G G

X X
Region I Region II

r r

X X
Region III Region IV

r r

  

  

 

 

   
     

   

   
      

   

 (8.50) 
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Figure 8.14. Identifying values of r and  at each Gaussian point 

8.9 Numerical calculation of q for singular FS-FEM  

Because the FS-FEM uses a base mesh of linear 4-node tetrahedral elements, a 

simple scheme can be devised to determine the area-path JV  shown in Figure 8.15. First, 

a set of elements having at least one node within a cylindrical volume of radius dr  around 

the crack line is found, and is denoted as 
dN . The weighting function q  used in the 

Volume-path interaction integral is then chosen as a piecewisely linear function passing 

through the nodal values at all the nodes belonging to all the elements in 
dN . If a node in  
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belonging to an element 
de N  lies outside the circle, then the nodal value of the 

weighting function is set to zero: 0iq  ; if a node in  lies inside the cylinder, however, the 

weighting function is then set to unit: 1iq  .  

in

d
N

eff

d
Nout

N

Crack front

J-integral 

cylindrical 

Volume

 

Figure 8.15. A typical method to select elements around the crack front to form the volume-path for 

the calculation of the interaction integral  

Since the elements set in

dN  has all the nodes inside the cylinder as shown in the 

figure, their weight function will be a constant (unit) value, and they will contribute 

nothing to the interaction integral. This is due to the fact that gradient of q  would be zero 

for a constant distributed field of nodal q  for the element set 
in

dN . A similar postulation 

is made for the element set outN
 
located outside the cylindrical volume. The non-zero 

contribution to the integral is obtained only for the element set eff

dN  with edges 

intersecting the cylinder. Because 4-node elements are used in ES-FEM, any cylinder will 

naturally always select a layer of elements that form JV . 
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8.10 Numerical examples 

In this section, performance of singular FS-FEM for both cases of straight and 

curved crack fornts is examined in details. The problems are solved using the proposed 

singular FS-FEM as well as singular FEM. In the singular FEM a mesh of 20-node and 

collapsed 20-node solid elements is used. The results in terms of strain energy, 

displacement and stress intensity factors are obtained using both methods. Furthermore, 

the path independency of the SIF results is investigated through different volumes chosen 

for the interaction integral method.  

8.10.1  Homogenous finite cubical solid with a face crack  

A cubical finite solid with a crack in one face was studied as a bench mark to 

examine the performance of singular FS-FEM in dealing with 3-D crack problems. The 

body is under tension stress at both edges. However, due to the symmetry in load and 

geometry, only half of the solid is modeled, as shown in Figure 8.16.  

crack

2 mm



2 mm

  

Figure 8.16. Homogenous finite cubical solid with a face crack 

The problem has been solved using the singular FS-FEM and the results in terms of 

strain energy, displacement and stress intensity factors were obtained. First, a study 
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conducted to investigate the optimum number of Gaussian points (GPs) ensuring the 

stability of computational results. The findings of strain energy obtained at different 

meshes and by choosing five different sets of Gaussian points at different area types have 

been tabulated in Table 8.1. A comparison between the results corresponding to case (2) 

and (4) shows that, for the rectangular faces, increasing the number of GPs from 9 to 16 

does not impose a considerable amount of change in the results. Similarly, comparing the 

results of cases (1) and (5), or cases (2) and (3) indicates that the results keep nearly 

constant when more than 3 GPs are used at triangular areas of the smoothing domains 

associated with the elements faces. Therefore, case (2) as set of 9 and 3 GPs at, 

respectively, rectangular and triangular areas is recommended to be adopted for the 

numerical integrations of present singular FS-FEM.  

Table 8.1. Strain energy calculated by singular FSFEM and different sets of Gaussian points 

DOF 726 864 942 1059 1215 

Singular  

FS-FEM (1) 

4.49431755442

2599e-008 

4.82422671174

1371e-008 

4.94693769993

6874e-008 

4.99796247983

6373e-008 

5.01797948222

3033e-008 

Singular  

FS-FEM (2) 

4.49896188909

9087e-008 

4.82735503184

5988e-008 

4.94866810684

3756e-008 

4.99880571525

8969e-008 

5.01835419181

5782e-008 

Singular  

FS-FEM (3) 

4.49894320521

5413e-008 

4.82734239975

1259e-008 

4.94865168005

9800e-008 

4.99879683239

1507e-008 

5.01834957001

4202e-008 

Singular  

FS-FEM (4) 

4.49894267117

41371e-008 

4.82734175544

22599e-008 

4.94865057152

58969e-008 

4.99879486681

06843e-008 

5.01834682410

97752e-008 

Singular  

FS-FEM (5) 

4.49429926031

7620e-008 

4.82421390002

8739e-008 

4.94692161535

6938e-008 

4.99795398780

3813e-008 

5.01797555123

3350e-008 

The arrangement of the Gaussian points for the rectangular and triangular surfaces belong to the 

smoothing domains associated with the pyramid and prism elements:  

(1)        (2)         (3)         (4)        (5) 
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In order to make a comparison between performances of singular FS-FEM and 

singular FEM, the problem was also solved with FEM using the enriched elements along 

the crack front line, and the results in terms of strain energy and displacement have been 

illustrated in Figure 8.17 and tabulated in Table 8.2 and Table 8.3. Based on the analyses 

outcomes it can be observed that singular FS-FEM presents the more accurate results in 

terms of strain energy and displacement than standard singular FEM.  
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Figure 8.17. Strain energy obtained from singular FS-FEM and FEM with the singular elements along 

the crack front 

Table 8.2. Comparison of Strain energy calculated by singular FSFEM and Singular FEM 

DOF 726 864 942 1059 1215 2280 

Singular 

FEM  

4.4691224

3e-008 

4.6991991

8e-008 

4.7900766

5e-008 

4.8345349

e-008 

4.8513016

6e-008 

4.8734403

1e-008 

Singular 

FS-FEM 

 

4.4943175

54422599e

-008 

4.8242267

11741371e

-008 

4.9469376

99936874e

-008 

4.9979624

79836373e

-008 

5.0179794

82223033e

-008 

5.0186012

00713675e

-008 

Reference Solution 

(Singular FEM 

With 26125node) 

 

5.07757825e-008 
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Table 8.3. Displacement component in the y direction 

DOF 726 864 942 1059 1215 2280 

Singular 

FEM 

0.13526E-

06 

0.15167E-

06 

0.15757E-

06 

0.16046E-

06 

0.16150E-

06 

0.16321E-

06 

Singular 

FS-FEM 

1.4066367

26645794e

-007 

1.6159809

24035188e

-007 

1.6833253

18460817e

-007 

1.7078958

77211193e

-007 

1.7171106

82274230e

-007 

1.7186017

62097757e

-007 

Reference Solution 

(Singular FEM 

With 26125node) 

 

0.17205E-06 

 

Moreover, the volume form of interaction integral has been adopted to evaluate the 

stress intensity factors at different points along the crack front line when the domain is 

discretized using a mesh containing a layer of prism elements along the crack line 

connected to the mesh of linear tetrahedral elements with a few pyramid elements in 

between.  

   

Figure 8.18. Typical mesh used in singular FS-FEM 

In the development of singular FS-FEM it was sought to enhance the method in a 

way that it successfully simulates the problem by using a coarse base mesh of tetrahedral 

elements. Using such a coarse mesh will increase the computational efficiency and 

decrease the relevant costs.  
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Figure 8.19. Typical volume chosen for the interaction integral calculation of singular FS-FEM 

Furthermore, in order to provide the more smooth results of stress intensity factors 

for different domains chosen around the crack front, several layers of cylindrical volumes 

are created around the crack front to be used in the evaluation of interaction integral 

calculation of singular FS-FEM. Such a typical cylindrical volume is depicted in Figure 

8.19 . 

Based on the numerical results tabulated in Table 8.4; it can be highlighted that the 

method works very well with the interaction integral and provides stable results for 

different domains chosen around the crack front line. The results are accurate and path-

independent.  

The parameter r in this table is the radius of cylindrical volume chosen for the 

interaction integral evaluation and t is the thickness of specimen. 

Based on these results, a symmetrical behavior can be highlighted for the values of 

stress intensity factors through the thickness; meaning that at 0z   and z t  results are 

very close together, similarly at 4z t  and 3 4z t . Besides, regardless of the volume 

chosen for the calculation of interaction integral, stress intensity parameter takes the 

maximum value at 0z   and z t  (wherein the pure plane stress state exists) and 
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slightly decrease by approaching the mid plane of the specimen ( 2z t ; wherein the 

stress state is no longer pure plane stress). 

 

Table 8.4. Stress intensity factors calculated on different domains 
 

Location Method 0z   

(error %) 

4z t  

(error %) 

2z t  

(error %) 

3 4z t  

(error %) 

z t  

(error %) 

  

0.35r   

Sing ES-FEM 2.6475 

(0.2700 %) 

2.6247 

(0.2400 %) 

2.4226 

(0.3100 %) 

2.6248 

(0.2300 %) 

2.6471 

(0.3100 %) 

Sing FEM 2.6421 

(0.8100 %) 

2.6211 

(0.6000 %) 

2.4189 

(0.6800 %) 

2.6213 

(0.5800 %) 

2.6423 

(0.7900 %) 

 

0.45r   

Sing ES-FEM 2.6474 

(0.2800%) 

2.6249 

(0.2200 %) 

2.4228 

(0.2900 %) 

2.6244 

(0.2700 %) 

2.6470 

(0.3200 %) 

Sing FEM 2.6417 

(0.8500 %) 

2.6209 

(0.6200 %) 

2.4176 

(0.8100 %) 

2.6210 

(0.6100 %) 

2.6422 

(0.8000 %) 

 

0.55r   

Sing ES-FEM 2.6472 

(0.3000 %) 

2.6241 

(0.3000 %) 

2.4225 

(0.3200 %) 

2.6241 

(0.3000 %) 

2.6471 

(0.3100 %) 

Sing FEM 2.6421 

(0.8100 %) 

2.6211 

(0.6000 %) 

2.4188 

(0.6900 %) 

2.6208 

(0.6300 %) 

2.6429 

(0.7300 %) 

 

0.65r   

Sing ES-FEM 2.6473 

(0.3200 %) 

2.6242 

(0.2900 %) 

2.4229 

(0.2800 %) 

2.6247 

(0.2400 %) 

2.6472 

(0.3000 %) 

Sing FEM 2.6423 

(0.7900 %) 

2.6208 

(0.6300 %) 

2.4191 

(0.6600 %) 

2.6211 

(0.6000 %) 

2.6425 

(0.7700 %) 

 

Average 

Sing ES-FEM 2.6473 

(0.2900 %) 

2.6245 

(0.2600 %) 

2.4227 

(0.3000 %) 

2.6245 

(0.2600 %) 

2.6471 

(0.3100 %) 

Sing FEM 2.6421 

(0.8100 %) 

2.6210 

(0.6100 %) 

2.4186 

(0.7100 %) 

2.6211 

(0.6000 %) 

2.6425 

(0.7700 %) 

Reference solution 2.6502 2.6271 2.4257 

 

2.6271 2.6502 

 

8.10.2  Homogenous finite plate with a central crack under pure mode I 

In order to examine the performance of singular FS-FEM for the curved crack front 

lines, a homogenous finite plate with two parallel semi-circular surface cracks has been 

analyzed and the results have been compared with the analytical solution. The structure 

has the thickness of t and width w, and undergoes a tension stress   at both top and 
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bottom faces as shown in Figure 8.20. Similar to the previous example, this structure is 

analyzed by modeling only half of it because of the symmetrical load and geometry. 

45.0°



t

2a
2w





2b

 

Figure 8.20. Homogenous finite plate with a central crack under pure mode I 

An analytical solution for this problem was proposed by Newman and Raju [116] as: 

 

2 4

( / , / , / , )

(1.04 0.202( / ) 0.16( / ) )

I

a
K F a c a t c w

Q

F a t a t gf


 

  

 (8.51) 

In which f  and g are functions of the following forms; 

 

2 2

1/2

1 (0.1 0.35( / ) )(1 sin )

sec
2

g a t

a a
f

w t





   

  
    
   

 (8.52) 

In which a and c are crack depth and crack length, respectively. For a semicircular 

surface crack, / 1a c   and 2.464Q   [117]. In addition, the state of stress for such a 

solid body is plane stress at the free surfaces ( 0  ) and varies to the plane strain in the 
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interior part of the plate (
2


  ). Therefore, we have used the following model to 

describe the Young’s modulus of material; 

 *

2

1
1 ( 1)sin

1
E E 



 
   

 
 (8.53) 

Adopting different values of t and w, the problem has been examined and the results 

of normalized stress intensity factors have been tabulated in Table 8.5 for three different 

cases of 0  , 
4


  and 

2


  . 

Based on these results, it can be highlighted that our singular FS-FEM provides the 

accurate and stable results for the domains containing curved cracks.  

As it can be observed, for all the cases, normalize value of stress intensity factor 

obtained from singular ES-FEM is more accurate than that of singular FEM.  
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Table 8.5. Normalized SIF solution of singular ES-FEM for / 0.5b a   and

 

three different angles 

/a w    Method 

/a t  

0.1 

(error %) 

0.2 

(error %) 

0.3 

(error %) 

0.4 

(error %) 

0.1 

 

 

0 

 

Sing ES-FEM 

0.9970 

(0.30 %) 

0.9973 

(0.27 %) 

0.9981 

(0.29 %) 

0.9988 

(0.22 %) 

 

Sing FEM 

0.9911 

(0.89 %) 

0.9917 

(0.83 %) 

0.9910 

(0.90 %) 

0.9914 

(0.86 %) 

 

4
  

 

Sing ES-FEM 

0.9984 

(0.26 %) 

0.9968 

(0.32 %) 

0.9971 

(0.29 %) 

0.9969 

(0.07 %) 

 

Sing FEM 

0.9905 

(0.95 %) 

0.9909 

(0.91 %) 

0.9911 

(0.89 %) 

0.9921 

(0.79 %) 

 

2
  

 

Sing ES-FEM 

0.9989 

(0.11 %) 

0.9971 

(0.29 %) 

0.9968 

(0.32 %) 

0.9972 

(0.28 %) 

 

Sing FEM 

0.9919 

(0.81 %) 

0.9914 

(0.86 %) 

0.9909 

(0.91 %) 

0.9917 

(0.83 %) 

0.2 

 

0 

 

Sing ES-FEM 

0.9988 

(0.12 %) 

0.9984 

(0.16%) 

0.9982 

(0.18 %) 

0.9964 

(0.36 %) 

 

Sing FEM 

0.9907 

(0.93 %) 

0.9911 

(0.89 %) 

0.9904 

(0.96 %) 

0.9913 

(0.87 %) 

 

 

4
  

 

Sing ES-FEM 

1.0001 

(0.01 %) 

0.9982 

(0.18 %) 

0.9987 

(0.13 %) 

0.9983 

(0.17 %) 

 

Sing FEM 

0.9918 

(0.82 %) 

0.9923 

(0.77 %) 

0.9922 

(0.78 %) 

0.9916 

(0.84 %) 

 

2
  

 

Sing ES-FEM 

0.9996 

(0.04 %) 

0.9991 

(0.09 %) 

0.9994 

(0.06 %) 

1.0020 

(0.20 %) 

 

Sing FEM 

0.9897 

(1.03 %) 

0.9922 

(0.78 %) 

0.9914 

(0.86 %) 

0.9915 

(0.85 %) 

0.3 

 

0 

 

Sing ES-FEM 

0.9986 

(0.14 %) 

0.9993 

(0.07 %) 

0.9988 

(0.12 %) 

0.9989 

(0.11 %) 

 

Sing FEM 

0.9910 

(0.90 %) 

0.9912 

(0.88 %) 

0.9929 

(0.71 %) 

0.9924 

(0.76 %) 

 

4
  

Sing ES-FEM 
0.9996 

(0.04 %) 

0.9997 

(0.03 %) 

1.0003 

(0.03 %) 

0.9994 

(0.06 %) 

Sing FEM 
0.9933 

(0.67 %) 

0.9926 

(0.74 %) 

0.9918 

(0.82 %) 

0.9917 

(0.83 %) 

 

2
  

Sing ES-FEM 
0.9984 

(0.16 %) 

0.9997 

(0.03 %) 

0.9982 

(0.18 %) 

0.9988 

(0.12 %) 

Sing FEM 
0.9919 

(0.81 %) 

0.9916 

(0.84 %) 

0.9917 

(0.83 %) 

0.9921 

(0.79 %) 
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8.11 Summary 

In this chapter the novel approach of singular face based smoothed finite element 

method (singular FS-FEM) was formulated and developed. The method uses a basic 

mesh of linear tetrahedral elements to discretize the domain. Despite the standard finite 

element method, the proposed singular FS-FEM works very well with a coarse base mesh 

of linear tetrahedral elements. To capture the stress singularity in the stress and strain 

domain, the method introduces a novel and specially-designed 10-node prism element to 

be located along the crack front line. The element has a set of shape functions that are 

(complete) linear in the r (radial distance emanating from crack front line) and enriched 

with a fractional term r  to generate the singular term 1 r  in the strain field. For 

resolving the inconformity issue in where adjacent rectangular and triangular faces of 

prism and tetrahedral elements meet, 5-node pyramid elements are adopted to connect 

two different element types. Then the method applies the strain smoothing technique on 

the boundary faces of all the smoothing volumes associated with the elements faces, and 

provides a softer model than that of FEM.  

The results of analyses indicates that using singular FS-FEM with a base mesh of 

linear tetrahedral elements provides the more accurate results than that of FEM using a 

base mesh of higher order elements. This, for sure will increase the computational 

efficiency. Moreover, the obtained values of stress intensity factors at different points 

along either straight or curved crack front lines are accurate and stable for different 

cylindrical domains chosen for the interaction integral calculation. 
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Chapter 9:  Conclusion and Future Work 

Try not to become a man of success but rather 

try to become a man of value.  

Albert Einstein 

  

9.1 Conclusion remarks and research contributions 

In the present study, a novel singular finite element method (singular ES-FEM) was 

developed to be used for analysis of fracture problems in both two and three dimensional 

cases. The method properly simulates the analytical discontinuity of stress field by 

proposing a new crack tip element compatibly connected to a mesh of linear triangular or 

tetrahedral elements. Chapter 4 presented the important foundational theories of the 

currently established S-FEM models. In Chapter 5, the idea of singular ES-FEM was 

presented to improve the performance of standard ES-FEM in dealing with fracture 

problems. In chapter 6, the method was further developed for the interfacial cracks 

between dissimilar materials. Using the introduced method in chapters 5, a Delaunay 

triangulation procedure was developed in chapter 7 to automatically generate the mesh 

for crack propagation analysis through a quasi-static simulation.  The developed approach 

was also used to conduct a case study on the fatigue crack growth prediction. Finally, in 

chapter 8, another S-FEM method was proposed and formulated for the crack problems in 
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three dimensional spaces. The study had four main objectives which will be addressed in 

this section.  

Introducing a novel method of singular ES-FEM for the 2-D crack problems: 

 The primary aim of the study was to accurately analyze fracture problems in the 

frame work of smoothed finite element method (S-FEM) using a base mesh of 

linear 3-node triangular elements. Adapting triangular elements for creating the 

mesh is desirable due to the feasibility of these elements for being automatically 

generated even for a very complicated geometry. It was found that in spite of 

conventional FEM, which does not provide an accurate analysis when linear 

triangular elements are used, the present method successfully examines the crack 

parameters based on the linear elements. According to the analyses of several 

homogenous problems with the proposed method, the results (in terms of strain 

energy, displacements, and more importantly; stress intensity factors) of singular 

ES-FEM with SD=1 at each crack tip edge are always more accurate than those of 

standard FEM and ES-FEM using the same mesh of linear triangular elements. It is 

not always true, however, when it comes to comparison of the method with singular 

FEM using currently widely-used quarter-point crack tip elements; In some cases 

the results of singular ES-FEM with SD=1 are better than those of singular FEM, 

while they are not in some other cases. However, by further dividing each crack tip 

smoothing domain into more sub-smoothing domains (S-SD= 2, 3 or 4), 

performance of the method can be improved compared to the singular FEM. 

Findings from several examples indicate that when S-SD=2 the results are always 
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more accurate not only than FEM-T3 and ES-FEM, but also than FEM-T6 with 

quarter-point crack tip elements; This ensured accuracy can be attributed to the 

proper use of “smoothing technique” on the domains associated with the edges of 

the elements, leading to a solution for resolving the overly-stiff behavior of the 

FEM model. Since the FEM provides a monotonically lower bound solution for the 

solid problems, properly softening the model may yield more accurate results with 

a lower value of error norm.  

 Increasing the number of smoothing domains (SDs) associated with each crack tip 

edge does not show the same effect that the increasing of number of sub-smoothing 

domains does. In other words, using more smoothing domains associated with each 

edge makes the model stiffer and declines the accuracy of analysis.  

 The conducted study on the relative error in energy norm of the proposed method 

also shows that our method provides a higher convergence rate compared to all the 

other methods including FEM-T6. In the case study conducted on a rectangular 

finite plate with a central crack, it was observed that using only one S-SD can yield 

the convergence rate of 0.7639 which is more than the peer value for FEM-T3 

(0.4745), ESFEM (0.5462) and even FEM-T6 (0.7104). Increasing the number of 

S-SD to two will results in a further increase in the convergence rate and provides 

the super convergence value of 1.0157.  

 It can be also observed that there is no significant change in the results when 

2S SD  . Although in some cases the method works very well even when one S-

SD is adopted for the crack tip edges, to be always on the safe side and benefit from 
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the super convergence behavior, we recommend the use of two S-SDs in the present 

singular ES-FEM.   

 The foregoing features of the method are not exclusive to the problem domains 

containing only one crack. All the remarkable properties of the method were also 

observed for the domains with more than one crack. 

 The simulation results of computational efficiency suggest that the computational 

efficiency of singular ES-FEM is higher than that of singular FEM with quadratic 

elements. In other words, the singular ES-FEM with a base mesh of linear elements 

approaches the analytical solution faster than singular FEM with a mesh of 

quadratic elements. This amazing property of being faster in reaching the more 

accurate results is because of the simultaneous use of linear triangular elements 

instead of quadratic elements and interpolation method instead of isoparametric 

mapping technique.  

 From the analyses based on the general formulation of singular ES-FEM, it was 

also found that strain energy and stress intensity factors are almost the same for 

different values of parameter   which is the parameter for the intermediate node 

position on the edges directly connected to the crack tip. This implies that in spite 

of singular FEM, there is no obligation to fix the value of parameter 1
4

   in our 

singular ES-FEM; meaning that the intermediate nodes could be located in any 

arbitrary position on the edges when our singular ES-FEM is used (0 1  ). It 

may be attributed to the fact that in the singular FEM, the singular term in the stress 
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field is created only by applying the iso-parametric mapping procedure for a special 

value of 1
4

  . In our singular ES-FEM method, however, the singular term is 

generated via a direct interpolation method using a proper pre-identified fractional 

term in the proposed displacement functions.  

 From the results, it also can be highlighted that the method works well for the stress 

intensity factor calculations based on the domain form of interact integration. The 

results are accurate and stable for different area chosen around the crack tip 

confirming the ‘path independency’ nature of stress intensity factors calculated 

with our singular ES-FEM. Since the most important feature of J-integral parameter 

is the “path-independency”, it is of high importance to achieve that feature for the 

stress intensity factors calculated in the similar fashion by using the interaction 

integral. 

 It should be noted that, the present method enhances the performance of currently 

established FEM (in terms of accuracy and computational efficiency) in a way that 

the property of “partition of unity” is always satisfied. This can be justified by 

considering the fact that in the singular ES-FEM there is no demand for blending 

elements in the transition zone from “3-noded triangular elements” to the “crack-tip 

enriched elements”. This is because in singular ES-FEM, the compatibility of 

displacement field between the adjacent elements is ensured by the assumption of 

linear variation in the tangential direction inside the crack tip elements. 
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Developing the singular ES-FEM for the interfacial crack analysis  

 Another objective of the study was to modify the proposed method for analysis of 

interfacial cracks between the dissimilar isotropic materials in addition to the 

isotropic fracture cases. Based on the findings, It can be seen that strain energy and 

SIFs keep nearly constant when more than 5 Gauss points are used to evaluate the 

numerical integration of strain gradient matrix components. It also observed that 

the less the gauss points used, the higher the strain energy and the stress intensity 

factors. This may be explained that less gauss points bring the effect of the similar 

reduce integration, and thus lead to over-estimation of results. 

 The study on the interfacial crack problems using singular ES-FEM exhibits similar 

properties observed in analysis of homogenous problems. It can be highlighted 

from the results that compared to standard FEM, ES-FEM and even FEM with the 

singular elements, the SIFs and G of the singular ES-FEM, no matter the mesh size 

used, are much closer to the exact values. More importantly, the relative errors of 

IK , IIK
 
and G  using the singular ES-FEM are all within 1 percent for all the 

models used in the study, except the case of IIK  value with the very coarse mesh.  

It also can be observed that convergence of strain energy for the singular ES-FEM 

models is faster and the error in energy norm is less than that of standard FEM, ES-

FEM or FEM-T6 with the singular elements, confirming the fact that singular ES-

FEM can solve the interface crack problems effectively. A study using both the 

structured and unstructured mesh to calculate the stress intensity factors also 

indicates that the method works very well in providing path-independent results for 
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the interfacial crack problems. 

 The conducted study on the robustness of singular ES-FEM by perturbing the 

location of crack tip conveys an excellent agreement between the numerical values 

of SIFs and G  with the corresponding exact solutions.  

 The performance of the method associated with different material property pairs 

was also studied by changing the ratio of 1 2/E E  at the constant poison ratios. It 

was observed that the results are also accurate to within a few percent relative 

errors. Furthermore, the method was implemented to a film\substrate system and all 

the foregoing features were identically observed. In addition, the problem was 

examined in a fixed total thickness, and different thickness ratios as well as 

material properties combinations of film and substrate. The steady state energy 

release rate for different thickness ratio and different material combinations 

exhibits an excellent agreement with the corresponding reference solutions, and the 

relative errors are less than 1 percent. 

Developing an automatically quasi-static crack propagation simulation using the 

singular ES-FEM: 

 Third objective of the present dissertation was to accomplish a quasi-static crack 

growth prediction using the singular ES-FEM. The obtained results clearly show 

that the present singular ES-FEM is able to predict the stress intensity factors and 

simulate the crack path accurately in a quasi-static propagation procedure. It is of 

high importance to notice that all the results have been obtained using a simple 

interpolation method and without any mapping on the natural coordinate of the 
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elements. Moreover, all the problem domains have been discretized to a largely 

coarse mesh of linear triangular elements that are known as the simplest elements in 

two-dimensional space. It should be highlighted that while singular ES-FEM 

ensures the accuracy of results even when such coarse linear elements are adopted, 

using standard FEM on the same set of elements causes a considerable loss of 

accuracy. This analogy helps to better highlighting the power of singular ES-FEM 

in working with linear elements.  The results also imply that singular ES-FEM 

works very well with maximum circumferential criterion. The mesh generation, 

node creation, mesh smoothing and adaptive re-meshing are based on the standard 

Delaunay triangulation procedure which is very straightforward to be implemented. 

 The crack incremental value a  was the only arbitrary parameter in the conducted 

propagation simulations and based on the strength of shear mode was accordingly 

chosen in the range of 10% 20%  of initial crack length a , inversely proportional 

to the ratio of II IK K . Generally, by choosing a smaller length of increment, the 

trajectory of the crack growth will be predicted more accurately, particularly in the 

regions where the ratio of II IK K  is relatively high. The numerical results 

indicate that the predicted crack trajectory can be somewhat affected by the length 

of crack increment; however, for the small enough increments the variation in the 

paths can be ignored. To be on the safe side, the method can occasionally decline 

the incremental value for the solution steps at which high shear mode occurs.  
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 Fatigue analysis of the structures undergoing thousands cycles of varying-

amplitude load indicate that the results of our singular ES-FEM have an excellent 

agreement with the findings from the experimental studies. Two different models of 

Forman and Kujawski’s were successfully adopted in the frame work of developed 

adaptive singular ES-FEM and provided the results that confirm capability of 

singular ES-FEM in dealing with fatigue crack growth simulations. 

Introducing a novel method of singular FS-FEM for the 3-D crack problems: 

 The final aim of the present study was to formulate a S-FEM approach for the 3-D 

crack problems. To this end, a novel approach of singular face based smoothed 

finite element method (singular FS-FEM) was proposed, formulated and developed. 

The method uses a base mesh of linear tetrahedral elements to discretize the 

domain. Despite the standard finite element method, the proposed singular FS-FEM 

works very well with a coarse base mesh of linear tetrahedral elements. To capture 

the stress singularity in the stress and strain domain, the method introduces a novel 

and specially-designed 10-node prism element to be located along the crack front 

line. The element is armed with a set of shape functions that are (complete) linear 

in the r (radial distance emanating from crack front line) and enriched with a 

fractional term r  to generate the singular term 1 r  in the strain field. For 

resolving the inconformity issue in where adjacent rectangular and triangular faces 

of prism and tetrahedral elements meet, 5-node pyramid elements are adopted. 

Then, the method applies the strain smoothing technique on the boundary faces of 
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all the smoothing volumes associated with the elements faces, and provides a softer 

model than that of FEM. 

 The results of analysis indicate that using singular FS-FEM with a base mesh of 

linear tetrahedral elements provides the more accurate results than that of FEM 

using a base mesh of higher order elements. Moreover, the obtained values of stress 

intensity factors at different points along either straight or curved crack front lines 

are accurate and stable for different cylindrical volumes chosen for the interaction 

integral calculation.  

 In summary, singular FS-FEM with a direct interpolation method on a combination 

of “one layer of proposed 10-node crack tip prism elements along the crack front 

line”, “4-node linear tetrahedral elements at the rest parts of the domain”, and “5-

node pyramid elements in between” successfully provides the results which are 

more accurate than FEM using a mapping procedure on an entire mesh of higher 

order elements. Although, using the strain smoothing technique significantly helps 

to provide a softer discretized model, the main improvement of our singular FS-

FEM for the fracture applications is due to the use of novel prism elements. The 

method is straightforward and easy to implement.  

9.2 Recommendations for future works 

First, as one of the novel numerical methods, mathematical proofs about the 

characters and advantages of the proposed new numerical method have not been explored 

comprehensively in this research. Some obtained results were mainly drawn from the 
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numerical results which may restrict the general application of the methods to a certain 

degree. Further study is therefore needed to develop mathematical bases for the method. 

This not only makes the proposed new numerical method more applicable to practical 

engineering problems with certain confidence, but also guides us on how to further 

improve the solutions. It is now clearly necessary to establish a general theoretical 

framework to justify the formulation of the newly developed FEM model, similar to the 

works have been recently performed by Liu [118-122] to establish the new functional 

spaces containing the S-FEM models and S-PIM models. However, many theoretical 

aspects related to these spaces still need to be analyzed in details in the coming time. 

Second, based on the achievements of the method in dealing with elementary and 

basic sample problems, it seems necessary to implement the established method on the 

more practical engineering problems to analyze the structures with complicated 

geometries undergoing complicated loading conditions. This will help the further 

modification of the method to be suit for the real problems of industry. For instance, it 

seems necessary to establish the method for the more popular material structures like 

composite materials which are widely used in the vehicle and aerospace industry because 

of their remarkable features including high strength and low weight.  

Third, both approaches of singular ES-FEM and singular FS-FEM were established 

for the linear fracture problems with a very small plastic deformation zone at the crack tip 

compared to the characteristic length of the crack. Since analysis of the non-linear 

fracture mechanics was out of the scope of present dissertation, this type of failure has 
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not been studied. More studies on extension of present methods to the case of non-linear 

fracture problems are suggested. 

Fourth, the present methods were formulated to produce a singular term of order ½ 

around the crack tip. Higher orders of singularity can be produced to examine if there is 

an improvement in the accuracy and computational efficiency. 

Fifth, for the three dimensional cases, the method of singular FS-FEM for the 

stationary crack analyses was successfully developed using three different element types. 

The propagation of the crack in three dimensional cases has not been presented in the 

present study. In the future works, this can be sought by initially creating a mesh of prism 

elements along the crack front line and moving this set of elements with the crack front 

while the crack propagates. The re-meshing problem can be then simplified to the 

tetrahedral re-meshing on the rest part of the domain.  

Finally, it is promising to develop the more accurate models by combining the 

present method with the other competitive methods established based on the strong 

discontinuity theory. The method can be also studied in more details to extend the idea in 

the Multiscale simulations. 
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