
PROVISION, DISCOVERY AND DEVELOPMENT

OF UBIQUITOUS SERVICES AND APPLICATIONS

ZHU JIAN

Bachelor of Computing (Honors)

National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2011

i

Acknowledgments

My first and foremost thank goes to my supervisor Dr. Pung Hung Keng, for his

heuristic guidance throughout the duration of my Ph.D. study. His insights and expe-

rience in ubiquitous computing have been invaluable for my research. The rigorous

attitude towards problems learnt from him makes me think more carefully not only for

my research work but also for future life problems. I appreciate all of his suggestions,

encouragement and patience made throughout my research as well as the thesis writing.

I also want to thank Dr. Gu Tao who inspired me a lot about research ideas through

discussions in the initial stage of my study. I specially thank Dr. Leong Ben and Dr. Ooi

Wei Tsang for serving on my thesis committee and providing many useful comments in

reviewing this thesis.

I would like to thank the Department of Computer Science, School of Computing,

National University of Singapore for providing me the opportunity and financial support

to pursue my Ph.D.. I also want to thank Dr. Wong Wai Choong who offered me an

opportunity to work for him as a research assistant that eases my financial burden in the

last year of my research work.

I would like to thank all the members in the Network Systems and Services Lab (now

located in the Systems and Networking Research Lab 4) including Chen Peng He, Xue

Ming Qiang, Sen Shubhabrata and Zhou Li Feng. In particular, I would like to thank

Oliya Mohammad for coauthoring with me to further improve the technical depths and

presentation qualities of my papers. It is the above people who make my journey to the

Ph.D. not boring but wonderful.

Last but not least, I would like to thank my parents, Zhu Pi Jia and Zhang Mei Jiu

for their continual support and encouragement. Without them, I would never have the

courage to start and fulfill my study.

CONTENTS

Acknowledgements i

Abbreviations vi

Abstract vii

Publications ix

1 Introduction 1

1.1 Background: Mobile Ubiquitous Computing As New Paradigm for Dis-

tributive Computing . 1

1.2 Challenges in Mobile Ubiquitous Computing 5

1.2.1 Hardware Limitations . 5

1.2.2 Communication Requirements 6

1.2.3 Resource and Service Discovery 6

1.2.4 Context Awareness . 7

1.2.5 Application Adaptation and Development 9

ii

iii

1.2.6 Privacy and Security . 9

1.3 Motivation: Mobile Device As A Nomadic Service Provider 10

1.4 Problem Statement . 14

1.5 Approaches and Contributions . 16

1.5.1 The Service Management Layer: LASPD 17

1.5.2 The Context Realization Layer: ACE 19

1.5.3 The Ubiquitous Application: SOLE 20

1.6 Thesis Outline . 21

2 Background 23

2.1 Service Provision and Discovery . 23

2.1.1 Centralized Architecture . 24

2.1.2 Distributed Architecture . 26

2.1.3 Hybrid Architecture . 30

2.1.4 Service Provision and Discovery for Mobile Services 35

2.2 Context Frameworks for Ubiquitous Application Development 38

2.3 Context-Aware Information Sharing 46

3 LASPD: A Platform of Location-Aware Service Provision and Discovery 52

3.1 Three-Tier Service Provision Architecture 53

3.1.1 Motivation . 53

3.1.2 Architecture Design . 54

3.1.3 Location-Aware Identifier Allocation and Connectivity Setup for

Service Peers . 57

3.1.4 Functional Components of Service Peer 61

3.1.5 Mobile Service Provisioning 63

3.1.6 Service Keyword Indexing . 65

iv

3.2 Location-Aware Service Discovery . 66

3.2.1 Small World Model . 66

3.2.2 Network Routing . 72

3.2.3 Area-based Service Discovery and Long-Range Link Indexing . 72

3.2.4 Distance-based Range Search 75

3.2.5 Bootstrapping and Connectivity Maintenance 76

3.3 Further Discussion . 80

3.3.1 Location Determination . 80

3.3.2 Data Replication, Caching and Service Migration 80

3.3.3 Security and Privacy Protection 81

3.4 Performance Analysis . 82

3.4.1 Simulation Modeling . 82

3.4.2 Simulation Results . 84

3.5 Summary . 98

4 ACE: A Context Realization Engine for Ubiquitous Applications with Run-

time Support 100

4.1 Motivation: A ShoppingHelper Application 101

4.2 ACM: Context Model for Application Contexts 105

4.2.1 Context Flow Representation 108

4.2.2 Context Constraint Specification 111

4.3 ACE: Application Independent Engine for Application Context Realization112

4.3.1 Application Context Interpreter 114

4.3.2 Context Fact Management . 117

4.3.3 Application Context Runtime Support 119

4.3.4 ACE Deployment . 123

4.4 A Case Study . 124

v

4.5 Summary . 131

5 SOLE: A Context-Aware Experience Sharing Application Based on LASPD

and ACE 134

5.1 Overview of SOLE . 136

5.2 Experience Representation and Storage Schemes 138

5.3 Functions of SOLE Participants . 140

5.3.1 SOLE Application Server . 141

5.3.2 SOLE Experience Provider/Consumer 142

5.4 SOLE with LASPD . 143

5.5 SOLE with Coalition and ACE . 146

5.5.1 Information “Pushing” to the SOLE-EC 147

5.5.2 Mobility of the SOLE-EP . 149

5.5.3 Other Features of Context-Awareness 149

5.6 Prototype Implementation . 150

5.6.1 Prototype of SOLE . 150

5.6.2 Prototype of LASPD . 152

5.6.3 Prototype of ACE . 157

5.6.4 Prototype Validation of SOLE 160

5.7 Summary . 163

6 Conclusion and Future Work 164

6.1 Conclusion . 164

6.2 Future Work . 168

Bibliography 172

vi

Abbreviations

ACE Application Context Engine

ACM Application Context Model

ASC Application Service Consumer

ASP Application Service Provider

AST Application Scenario Table

DHT Distributed Hash Table

DS Destination Sampling

LASPD Location-Aware Service Provision and Discovery

PSG Physical Space Gateway

SM Service Mediator

SOLE Sharing of Living Experience

SOLE-AS SOLE Application Server

SOLE-EC SOLE Experience Consumer

SOLE-EP SOLE Experience Provider

SS Source Sampling

TS Threshold Sampling

UbiComp Ubiquitous Computing

vii

Abstract

The rapid advancement in the field of hardware and information communication

technologies has enabled the emergence of mobile ubiquitous computing as a field of re-

search that would greatly improve people’s daily living experience. Tremendous research

efforts have been put into this area recently, including the development of embedded

system and sensors, the design of system architecture and middleware, and the imple-

mentation of software agent and application framework. This dissertation addresses two

open issues in mobile ubiquitous computing: (i) the provision and discovery of services

in mobile ubiquitous environments, especially those services to be hosted on mobile

portable devices; (ii) the development of ubiquitous applications, namely the process of

embedding context-awareness into the application design.

This thesis proposes a new framework for the provision, discovery and development

of ubiquitous services and applications. The whole thesis consists of three parts. First,

a three-tier architecture (LASPD) is designed for scalable and effective service provi-

sion and discovery. The first tier geographically divides the world into autonomous

areas to facilitate local service administration and management. The second tier orga-

nizes service providers of an area with adequate computing capability into a structured

peer-to-peer network. The locality-preserving property of the Hilbert space filling curve

is exploited in these two tiers to achieve location-awareness during service discovery.

In addition, an evolutionary link-rewiring mechanism is proposed to make the network

navigable and self-organized in mobile environments. To support service provision on

mobile devices in the third tier, the mobile service providers are allowed to delegate their

services to one of the designated peer nodes of the second tier, known as “proxy”. The

proxy is introduced to address some of the practical constraints of mobile devices, such

as limited processing capability and battery power. Extensive simulations have been

carried out to evaluate the navigability, adaptability and the resilience of the proposed

viii

platform in mobile environments. Second, to ease the development process of ubiqui-

tous applications, we introduce a specification model which allows context logic (i.e.

context-related tasks) required by application to be specified and be bound to the ap-

plication logic during runtime. The proposed framework (ACE) effectively decouples

the processes of developing context-related tasks with that of application logic. Conse-

quently it allows modification of the context logic to be carried without perhaps having

to re-implement and re-deploy the application. Three types of context-related tasks have

been defined, including application adaptation, constraint enforcement and context flow.

We have conducted a case study of a simple and yet realistic ubiquitous application

to have a better understanding of the software development process with the proposed

framework. Real-time experimental assessments have also been provided to demonstrate

the feasibility of the framework. Third, to further illustrate and validate the concepts in

the previous two proposals, a ubiquitous application (SOLE) has been developed for

context-aware information sharing. SOLE is indeed an application framework, as it is

extensible and generic in the sense that we do not assume the sharing of information is

due to a specific application scenario. In addition, SOLE offers flexibility in storing user

data and allows embedding context-awareness such as for intelligent information push.

The details of the application prototype implementation and performance measurements

are discussed in this thesis.

ix

Publications

Materials in this thesis are mainly revised from the following list of papers pub-

lished/accepted:

1. Jian Zhu, Mohammad Oliya and Hung Keng Pung, “A Pragmatic Approach to

Location-Aware Service Organization and Discovery”, In Proceedings of IEEE

28th International Performance, Computing, and Communications Conference

(IPCCC), pp. 272–279, Arizona, USA, 2009.

2. Jian Zhu, Mohammad Oliya, Hung Keng Pung and Wai Choong Wong, “LASPD:

A Framework for Location-Aware Service Provision and Discovery in Mobile En-

vironments”, In Proceedings of IEEE 6th Asia Pacific Services Computing Con-

ference (APSCC), pp. 218–225, Hangzhou, China, 2010.

3. Jian Zhu, Mohammad Oliya, Hung Keng Pung and Wai Choong Wong, “SOLE:

Context-Aware Sharing of Living Experience in Mobile Environments”, In Pro-

ceedings of 8th International Conference on Advances in Mobile Computing and

Multimedia (MoMM), pp. 366–369, Paris, France, 2010.

4. Jian Zhu, Penghe Chen, Hung Keng Pung, Mohammad Oliya, Shubhabrata Sen

and Wai Choong Wong, “Coalition: A Platform for Context-Aware Mobile Ap-

plication Development”, In Ubiquitous Computing and Communication Journal

(UBICC), Volume 6, Issue 1, 2011.

5. Jian Zhu, Mohammad Oliya, Hung Keng Pung and Wai Choong Wong, “SOLE:

Context-Aware Sharing of Living Experiences”, In International Journal of Per-

vasive Computing and Communications (IJPCC), Volume 7, Issue 1, 2011.

6. Jian Zhu, Hung Keng Pung, Mohammad Oliya and Wai Choong Wong, “A Con-

text Realization Framework for Ubiquitous Applications with Runtime Support”,

x

In IEEE Communications Magazine, Volume 49, Issue 9, 2011.

7. Jian Zhu, Mohammad Oliya and Hung Keng Pung, “Service Discovery for Mo-

bile Computing: Classifications, Considerations and Challenges”. In Handbook

of Mobile Systems Applications and Services (Editors: Anup Kumar and Bin Xie),

CRC Press, Taylor and Francis Group, USA, 2012.

In addition, during my Ph.D. study, I have made efforts in doing researches on Web

service matching and context data management. The resulted publications (including

those I participated in) are listed as follows:

10. Jian Zhu and Hung Keng Pung, “Process Matching: A Structure Behavioral Ap-

proach for Business Process Search”, In Proceedings of 1st International Confer-

ences on Pervasive Patterns and Applications (PATTERNS), pp. 227–232, Athens,

Greece, 2009.

11. Jian Zhu and Hung Keng Pung, “A Pragmatic Approach to Context-aware Service

Organization and Discovery”, In Enabling Context-Aware Web Services: Methods,

Architecture, and Technologies (Editors: Quan Z. Shen, Jian Yu and Schahram

Dustdar), CRC Press, Taylor and Francis Group, USA, 2010.

12. Hung Keng Pung, Tao Gu, Wenwei Xue, Paulito P. Palmes, Jian Zhu, Wen Long

Ng, Chee Weng Tang and Nguyen Hoang Chung, “Context-Aware Middleware for

Pervasive Elderly Homecare”, In IEEE Journal of Selected Areas of Communica-

tions, Volume 27, Issue 4, 2009.

13. Wenwei Xue, Hung Keng Pung, Shubhabrata Sen, Jian Zhu and Daqing Zhang,

“Context gateway for physical spaces”, In Journal of Ambient Intelligence and

Humanized Computing, Volume 1, Issue 4, 2010.

CHAPTER 1

INTRODUCTION

1.1 Background: Mobile Ubiquitous Computing As New

Paradigm for Distributive Computing

With the emergence of current mobile and wireless computing technologies, mobile

devices such as smart phones and tablets are often the choice for organizing personal

information and accessing services over the Internet. These devices also provide a new

form of platform for people to do business, e.g. marketing and advertising products. A

recent study conducted by A-1 Technology1, a leading New York-based software out-

sourcing company, estimates that the world market for mobile marketing and advertising

revenues will reach nearly $50 billion by 2014, up from about $29 billion in 2009, rep-

resenting an annual growth rate of 12 percent. Such a trend drives up the pace of appli-

cation development for these mobile devices, accessible through platforms such as App

1http://www.a1technology.com/.

1

2

Store2 and Google Play3. Furthermore, due to the adoption of open standards for service

integrations, such as Web services4 in service-oriented computing, the interoperability

issue in communicating among services has largely been resolved. Consequently, any

mobile user may access Internet services anywhere and at anytime.

To further enhance user experiences, software applications developed for mobile plat-

forms should be aware of the user situation and adapt to changes such as of the surround-

ing environment and users. The awareness can be of user’s location, personal preference,

or generally his contexts. “Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and applications

themselves” [1]. For instance, a taxi booking application may filter search results based

on the passenger’s location and return only those taxis within his proximity. Fortunately,

with the recent advancement of ubiquitous technologies, such as RFID tagging, GPS

and embedded wireless sensors (e.g. accelerometer and gyroscope), most of these in-

formation can be captured automatically without any human intervention. Therefore, by

leveraging on this information, the resulting applications could act intelligently by un-

derstanding the environment settings (perception) and reacting accordingly (adaptabil-

ity). This style of computing paradigm, known as Ubiquitous Computing (UbiComp),

has been identified as the new emerging paradigm for distributive computing that would

greatly improve people’s living experience [2]. Context-awareness, as one of the key

techniques of UbiComp, is adopted to practically realize the “disappearing computer”

concept [3] — pushing all the computer and hardware devices into the background and

making them seamlessly integrated with people’s daily activities.

A typical architecture of UbiComp system consists of five layers as shown in Figure

2http://itunes.apple.com/us/genre/ios/id36?mt=8.
3https://play.google.com/store.
4http://www.w3.org/2002/ws/.

3

Application Orchestration Layer

(Application Flow, Service Invocation)

Service Layer

(Business Logic)

Data Access Layer

(DBMS, Middleware)

Data Layer

(Application Data, Context Data)

User Interface Layer

(Web Interface, GUI)

Context-Awareness

(Application Adaptation,

Constraint Enforcement)

Figure 1.1: Overview of the architecture for ubiquitous computing systems.

1.1. The User Interface Layer directly interacts with users and captures their intentions

through means such as Web interface and Graphical User Interface (GUI). The Applica-

tion Orchestration Layer decides the application flow and controls the order of service

invocations so to complete application tasks. The Service Layer refers to the business

logic currently fulfilled by hardware devices (e.g. a printer) and human beings (e.g. a

salesman). This service is re-usable by an application or another service. The Data

Access Layer deal with mechanism for data retrieval and subscription, such as database

management systems (DBMS) or middlewares. The Data Layer physically supplies the

actual data required by the application, including the context data used to characterize

the situation of entities involved in the application, such as the location of the user. To

end-users, context-awareness of ubiquitous applications is mostly realized in the User

Interface Layer, Application Orchestration Layer and Service Layer, as illustrated in

Figure 1.1. For instance, the presentation style of an application to the user can be dy-

namically changed by adapting to the device capabilities (e.g. screen resolution) and

user preferences (e.g. text display preferred); or in a specific situation, a particular appli-

cation is triggered due to its relevance to the user contexts (e.g. a shopping recommender

4

application is started when the user steps into a shopping mall), which may again pick

up the most relevant services (e.g. to recommend those shops which match the user’s

interests). With all the reactive context logic embedded into the design of ubiquitous

applications, the user’s quality of experience could be greatly improved.

Indeed, the idea of UbiComp was proposed almost two decades ago. However, due

to technology restrictions such as high-cost sensor chips and low-speed and unreliable

wireless communication, the vision of UbiComp was only realized in laboratories or pro-

totyped in “smart spaces” in early days. Examples can be found in MIT’s Project Oxy-

gen5, Georgia Tech’s Aware Home6, CMU’s Project Aura7 and UCLA’s Smart Kinder-

garten8. Theses projects demonstrate the potentials of UbiComp with human-centered

computation design except that their testbed environments are on a small scale. In recent

years, the rapid progress in microelectronics (e.g. low-cost tiny sensor chips) and the

convergence of information and communications technologies (e.g. WiFi, Bluetooth and

3G) have opened up the possibility that when every object in the world is identified and

interconnected, there is a good chance that the vision of “a billion people interacting with

a million e-businesses with a trillion intelligent devices interconnected” (Lou Gerstner,

CEO IBM, 1995) can be achieved. The technology advancement can be best demon-

strated by the evolution of the smart phones. In addition to the conventional functionality

of voice call, they are now often equipped with cameras, GPS and other sensor chips.

Most importantly, they have the near full functionalities of desktop computers. With net-

working capabilities, smart phones may operate as personal base-stations that flexibly

exchange user-specific information with the environments, including among themselves.

The widespread use of smart phones and other mobile portable devices essentially has

created a large-scale pervasive infrastructure that allows the concept of UbiComp ap-

5http://oxygen.lcs.mit.edu/.
6http://awarehome.imtc.gatech.edu/.
7http://www-2.cs.cmu.edu/ aura/.
8http://nesl.ee.ucla.edu/projects/smartkg/.

5

plications be realized and tested for assisting people’s daily living. The combination

of mobile and ubiquitous computing, or referred to as Mobile Ubiquitous Computing in

this thesis, is emerging as a promising future paradigm with the goal to provide adaptive

computing services at anywhere, anytime and invisibly to users.

1.2 Challenges in Mobile Ubiquitous Computing

To develop an application in mobile ubiquitous computing, there are many factors

to consider. These include the hardware devices to be deployed, the communication

protocols, the resources and services, the application contexts and the type of end-users

involved. The following summarizes the major challenges to be encountered in mobile

ubiquitous computing for application developers.

1.2.1 Hardware Limitations

Hardware devices play the most important role in ubiquitous applications, especially

those wearable mobile devices. They are not only become smaller in size but also with

better capability. Moreover, there is an emerging trend of embedding sensors into these

portable devices, turning them into a very powerful and yet agile data collection, aggre-

gation and primary processing mobile nodes. Despite all these advancements, power

management, processing capability, memory availability and heterogeneity of device

platforms are still the biggest challenges for these devices [4]. In the case of smart

phones, battery life is an issue as it can be quickly drained in less than half a day if

functions such as GPS and 3G are enabled. The CPU speed and RAM of the device also

limit the system software capability such as the ability to handle complex tasks and to

support multi-tasking. Moreover, an application developed for a device may not work for

another device of different mobile operating system. When developing ubiquitous appli-

6

cations, developers have to be aware of these issues and minimize the impact of device

constraints in their application design, such as by offloading heavy-weight computation

tasks to more powerful machines like desktops, and avoiding using low-level codes for

better code efficiency, but at the expense of portability of applications to device platforms

(hardware and operating system).

1.2.2 Communication Requirements

The standardization of communication technologies for mobile devices (e.g. IEEE

802.11a/b/g/n WiFi standards, Bluetooth, 3G, HSPA and 4G) has greatly enhanced the

interoperability, pervasiveness, availability and efficiency of ubiquitous applications.

However, different communication technologies have their own characteristics such as

maximum transmission rates, costs, and power requirements. If there are more than

one communication options available, the ubiquitous application should select the most

suitable communication mean based on either user’s service level requirements and pre-

defined system policies. In addition, the so-called uneven conditioning issue in mobile

ubiquitous computing must be handled. It is referring to the lack of consistent devices,

technologies and services throughout a user’s environment. For instance, WiFi connec-

tivity may be present in one room but not in another. Most likely, this issue is caused

by the mobility of the device owner, e.g. moving from one place to another. Thus, the

challenge will be how to provide seamless mobility support on both the network and

application levels so that the interruption to end-user’s activity is minimized.

1.2.3 Resource and Service Discovery

In ubiquitous environments, sensors and computing devices are part of the resources

through which services may be offered. For examples, sensor nodes provide information

services and laptops provide computing services. The concept of “Everything as a Ser-

7

vice” in service-oriented computing also applies here. However, to utilize a service, it

must be discovered and identified first, and it is not trivial to discover and select a service

among many without some kinds of centralized registry for services. In small-scale envi-

ronments such as smart spaces as described in [5] [6] and [7], protocols such as UPnP9

are often used to discover local resources. However, complex ubiquitous applications

may involve more than one space. For instance, a mobile healthcare application may

rely on resources in the clinic as well as to monitor and collect data for the patient at

home, office and other places of visiting. How to efficiently discover the surrounding for

data or remote services at real-time given a very large scale of search scope is a chal-

lenging problem. The issue is further complicated by the dynamism of the respective

services, such as their availability in the presence of mobility as mentioned in Section

1.2.2. We will give a more detailed discussion on this problem in Section 1.4.

1.2.4 Context Awareness

Context-awareness, touted as a promising technique to enable UbiComp, has re-

ceived a lot of attentions by researchers in the last decade. However, to allow applications

to effectively make use of these contextual information is not a trivial task. Firstly, con-

texts must be represented in a machine-readable format so as to support automatic data

processing. A well-defined representation should capture the various characteristics of

contexts, including data freshness and uncertainty. The technique for representing con-

text is usually referred to as context modeling. Indeed, there are many context modeling

techniques, for examples, from the simplest key-value approach to the most compli-

cated ones such as ontology-based approach, as surveyed in [8]. Different techniques

may have their own advantages and disadvantages, such as in processing efficiency and

modeling expressiveness. However, as evaluated in [9], the most promising assets for

9http://www.upnp.org/.

8

context modeling for UbiComp environments are found in ontology-based models. The

advantages and challenges are further discussed in their later work as reported in [10].

To summarize, ontology-based approach provides a unified way for specifying concepts

and relations of contexts across different application domains, which eases the task for

knowledge sharing and reusing; however, it also imposes problems such as unscalable

performance due to its centralized data processing and reasoning. Secondly, context stor-

age and retrieval are crucial to the performance (e.g. in terms of adaptability efficiency)

of applications. In earlier context-aware systems such as CoBrA [11] and CASS [12],

the context data acquired from data sources (e.g. sensors) is usually stored in a central

place and managed via a DBMS. This approach is useful for efficient data retrieval and

reasoning; however, due to the issues of single point of failure, maintenance cost and

potentially very large data volume, it is slowly replaced by the distributed approach. The

distributed approach leverages the existing Peer-to-Peer (P2P) techniques. It distributes

the storage of context data to various peers (usually the peer closer to the data source,

such as the sensor gateway) and relies on P2P routing protocols to discover and query the

data. The representative systems are SOCAM [13] and Coalition [14]. This approach

has a better scalability, but the retrieval efficiency and data completeness remain as a

big challenge especially for those time- or mission-critical applications. Lastly, once the

context data is acquired from various sources, it is usually being processed as soon as

possible. The context processing concerns about aggregating and interpreting data to the

level as required by the application. For instance, if the application wants to know the

current activity of the person (e.g. eating or sleeping), then the data from relevant sensors

should not be fed to the application; instead, it should be passed on to a context processor

which derives the person’s activity. Clearly, the processor’s reasoning capability and its

processing efficiency are of major concerns.

9

1.2.5 Application Adaptation and Development

The application adaptation refers to the reaction of the application to the changes of

user contexts or events. The reaction can be autonomous without human intervention

or with human guidance (e.g. via popping up messages). On one hand, people may

leave entirely to the application for decision making; on the other hand, others may wish

to make some decision entirely themselves or to have certain level of control over the

decision making processes of the application. A good design approach to adaptation of

applications should balance the options for user input, especially for mobile users whose

attention span to a given task is typically shorter and hence the timing to have direct user

input is crucial for a successful mobile application.

The development of ubiquitous applications is yet another issue. The questions is

how to efficiently embed context-awareness into the application design so that we can

easily re-design existing applications that are not context-aware to be context-aware or

modify applications that are already context-aware to satisfy new requirements. Nu-

merous context frameworks have been developed for simplifying the development of

context-aware applications by providing low-level context data operations such as ac-

quisitions and simple aggregations in terms of APIs or toolkits. As will be discussed in

Section 1.3 and Section 2.2, these frameworks are still falling short in requiring devel-

opers to explicitly deal with context-related tasks such as constraint enforcement in the

application code, often resulting in a tight-binding application implementation model10.

1.2.6 Privacy and Security

To allow effective context-awareness in ubiquitous applications such as those assist-

ing daily living of people, the technology often requires entities involved, such as users

10When developing an application, if the developers have to implement all the functions/tasks in the
code, we refer to this approach as “tight-binding”; on the other hand, if the need for low-level code writing
is eliminated with techniques such as model-driven architecture, we refer to it as “soft-binding”.

10

and location sensors. For instance, end-users may be required to periodically upload

their personal information such as locations and health records through the mobile appli-

cation to an application server for centralized processing. This requirement introduces

two potential threats to user privacy. First, the user’s information may be exposed to the

environment unintentionally during its uploading process to the application server. Sec-

ond, there is no sure way to prevent personal data being abused or further exploitation

for selfish reasons. It seems clear that, effective data protection policies and data storage

schemes must be put in placed as infrastructure services for the application; otherwise,

the technology of mobile ubiquitous computing could be used to create a undesirable

surveillance infrastructure. We will further discuss this issue in Section 2.3.

1.3 Motivation: Mobile Device As A Nomadic Service

Provider

While in the design of classical mobile applications, the application services are

usually provided by static servers such as Web servers. However, with the recent ad-

vancement in mobile devices’ capabilities (e.g. to their CPU, RAM and storage), more

services would be provided directly by hand-held devices. For instance, a healthcare ap-

plication running on a handheld can directly provide patient’s health status to a legitimate

requester on an on-demand basis instead of pushing it through a server periodically. This

approach eliminates the need to submit patient’s data from the patient’s mobile device

on a recurrent basis, which is costly and ineffective. In the business domain, this kind

of people-centric service provisioning model also opens up new business opportunities

for small business operators, such as plumbers or traveling salesmen. Instead of relying

on a third-party hosting service for applications, they can now simply use their mobile

devices to advertise and offer services. Moreover, to enable context-awareness and per-

11

sonalization of services, the user contexts (e.g. his location and preferences) captured or

kept by the device can be available as a data service to other applications. In summary,

the resulting “nomadic mobile services” [15], or referred to as mobile services in this

thesis, would greatly enhance the effectiveness and flexibility of the mobile applications

in the following ways: (i) services are hosted on the mobile device and the up-to-date

contexts of the device (including its carrier) can be detected and leveraged on during

the service invocation; (ii) devices may play a more active role in applications by in-

voking services running on each other and real-time device-to-device interactions can be

supported without the requirement of a third-party server. The following two scenarios

illustrate the potentials of making mobile devices as nomadic service providers.

Scenario 1. Mobile (M-)Health Application. Bob is a patient suffering from coronary

artery disease. His family bought him a mobile phone add-on with auxiliary devices for

monitoring his heart status, e.g. heart beat rate and blood pressure. In addition to its

function as a mobile electro-cardiogram (ECG) monitor, the phone is also installed with

various mobile services potentially beneficial to Bob. For instance, information about his

body’s vital signs can be made available over the Internet and be retrieved anytime by

authorized third parties such as an online wellness care provider or his doctor. Similarly,

his personal information such as his historical records of wellness/health can be stored

in his phone, and made available as a data service for retrieval by, for example, the

authorized health-care service providers such as clinics and hospitals. Furthermore, in

the event that an abnormality of his heart is detected signaling a possible heart attack,

an in-mobile wellness service could summon the nearest ambulance to Bob’s current

location to ferry him to the nearest hospital in the shortest time. In addition, it could

also look for an emergency care service for any nearby volunteer who may render an

urgent assistance, assuming the volunteer has offered his emergency care service via his

mobile device.

12

Scenario 2. Interactive Event Sharing Application. Kate is a social media maven. She

has installed an interactive information sharing application service on her smart phone,

which allows her to share the social events she is attending remotely with people at

real-time. The mobile service can be discovered by people located anywhere. Interested

people who have appropriate permission may invoke the service and directly interact

with Kate (without the requirement of a third-party server). For instance, assume Kate

is currently doing a sharing of information regarding the general election in Singapore.

Keith, a Singaporean currently on a business trip to USA, is particularly interested in the

current campaigning activities of his political party. He can discover the information

sharing services in Singapore and finds the service provided by Kate. He could then

requests Kate for the latest information of the event in text, picture, or video format.

“The paradigm shift of smart phones from the role of service consumer to the ser-

vice provider is a step toward practical realization of various computing paradigms such

as pervasive computing, ubiquitous computing, ambient computing and context-aware

computing”, [16]. However, by taking these mobile services into the design considera-

tion of ubiquitous applications, it adds in more challenges to those discussed in Section

1.2. First, services provisioned on mobile devices tend to be dynamic. A mobile ser-

vice provider may turn on or shut down his device and hence the service at anytime,

and along with the movement of the device, the binding information of the service is

also changing. Such a service dynamism property makes the conventional centralized

approaches (e.g. UDDI11 and Jini12) for service organization inappropriate, as they can

have bottlenecks in dealing with service updating and have a potential single point of

failure. Second, the network transmission speed for the mobile service provider can be

the potential bottleneck in supporting concurrent requests. This is also because in prac-

tice wireless communication channels are often affected by environmental factors such
11http://www.uddi.org/pubs/uddi v3.htm.
12http://www.jini.org/wiki/Main Page.

13

as channel interference. In addition, these mobile devices can be hidden behind the Net-

work Address Translation (NAT) or Firewall, which causes network addressability issue

for the outside world. Third, issues such as service administration, security and privacy

are crucial during the provision of mobile services. For instance, the volunteered care-

givers in Scenario 1 may not want their locations to be revealed to all except people in

their respective proximity and requiring emergency first-aids.

While the mobile service enhances the flexibility of context data provision (e.g. on-

demand basis, ad-hoc style) which potentially can create a low-cost and yet large-scale

deployment environment for ubiquitous applications, research gaps have been identified

in the development process of these applications ([17], [18], [19] and [20]). Most early

ubiquitous applications as demonstrated in [21] and [22] are developed within a “closed”

environment, where each of them is designed for a specific application scenario, for ex-

ample in tourism. In this case, the developers always have to build their applications from

scratch, that is to reinvent all aspects related to context-awareness such as context mod-

eling and context management. Although such an approach yields efficiency in building

a specific application, it is generally harder to reuse any component or resource inside

the application. Furthermore, interoperability will be the major concern if there is any

demand for application integration. By considering the above issues, numerous context

frameworks including toolkits and middlewares (for examples, Solar [23] and SOCAM

[13]) have been proposed to simplify the context-related tasks for ubiquitous applica-

tion development. Although these middlewares are fairly generic and hence can be used

by any application, they are mainly designed for the acquisition of lower level context

data and hence do not provide capabilities in dealing with higher level context-related

tasks such as runtime constraint enforcement which are desirable from the application

developers’ point of view. Consequently, developers have to explicitly implement the

logic in the application code, for examples, calling the API to retrieve context data (e.g.

14

Bob and all ambulances’ locations in Scenario 1), and enforcing constraints by using

if/else statements (e.g. to find the nearest available ambulance for Bob). This results

in a tight-binding model for application implementation as mentioned in Section 1.2.5.

Consequently for any changes in the requirements or the underlying context frameworks,

application developers most likely have to rewrite and redeploy the whole application.

1.4 Problem Statement

In this thesis, we address the problem of the provision, discovery and development of

ubiquitous services and applications. As motivated in Section 1.3, the two objectives are

(i) to provide a scalable and effective way to manage mobile services in ubiquitous com-

puting, and (ii) to create a mechanism to allow a soft-binding implementation approach

for context-related tasks in a ubiquitous application. Hence the scopes of research in this

thesis are the service and application orchestration layers of the ubiquitous system archi-

tecture as shown in Figure 1.1. The specific problems and their respective challenges are

summarized as follows:

Service Provision and Discovery While there are scalable solutions (as will be sur-

veyed in Section 2.1) that utilize P2P techniques such as Chord [24] and CAN

[25] to handle the provision and discovery of services, they have seldom con-

sidered their application to mobile services. For instance, conventional P2P ap-

proaches typically require the maintenance of O(logN) connections among peer

nodes (i.e. service providers). But due to their resource constraints such as battery

power constraint and intermittent wireless connections, portable devices such as

smart phones can barely maintain many P2P connections for an extended period

of time. In addition, P2P approaches such as Chord are typically very sensitive

to the dynamics of the network [26], and they incur high maintenance cost to pre-

15

serve their network structures (e.g. O(log2N) messages are needed periodically

for a node to maintain its routing table in Chord). The challenge is how to de-

sign a scalable virtual network platform to manage distributed mobile services for

an efficient lookup of a service with high relevancy while minimizing the mainte-

nance cost for the network structure. To elaborate, let consider Scenario 1 for the

case when an emergency happens to Bob, such as a heart attack, after summoning

the ambulance, the immediate task is to find a caregiver who is in his vicinity so

that first-aid can be given in time. Therefore, contexts such as locations of service

providers or consumers should be considered during a service discovery so that in

the above example, the caregiver closest to Bob could be located. In the design

of the service platform architecture, we have incorporated the geographical loca-

tion information of service providers so that location-based range search can be

efficiently supported.13

Ubiquitous Application Development As mentioned in Section 1.2.4, context model-

ing is the first step towards context-awareness in ubiquitous applications. Simi-

larly, to enable a soft-binding approach for ubiquitous application development,

context-related tasks as required by the application must first be identified and iso-

lated from the application, and then their logic be defined and modeled by the de-

velopers at the design time. Instead of just modeling low-level properties of tasks

such as context sources and data types merely for data acquisition purpose, the

model should also capture those high-level derived context information processes.

For instance, in Scenario 1, to summon an ambulance for Bob, the constraints

about the ambulance — “nearest” and “available” — should be specified in the

model for runtime evaluation and enforcement. These constraints are derived con-

text produced by context-related tasks that determine the constraints by computing
13The main motivation for incorporating location context into the infrastructure is to cater the practical

considerations related to service administrative domain. Further discussion can be found in Section 3.1.1.

16

“nearest” and “available” based on the current location of ambulances with respect

to Bob’s, and their availability. As will be surveyed in Section 2.2, less work has

been done on how to isolate and separate context-related tasks from the application

business tasks as an application design process. Most context frameworks support-

ing ubiquitous application development only consider context modeling at a lower

level. They leave the implementation of context-related tasks to application devel-

opers, which imposes a lot of programming effort and also reduces the application

flexibility, especially in dealing with context requirement changes. In addition to

the design of the context model to represent various context-related tasks, another

challenge is the development of an engine to automatically realize the specified

tasks. To develop an effective engine, we have to consider many aspects, includ-

ing the context data management scheme, the context reasoning mechanism and

the engine deployment strategy.

1.5 Approaches and Contributions

In this section, we briefly describe our approaches to the problems as mentioned in

Section 1.4. The overview of the approaches is shown in Figure 1.2. As compared to

Figure 1.1, two layers are added in between the Service Layer and the Application Or-

chestration Layer, namely the Service Management Layer and the Context Realization

Layer. The Service Management Layer is about both the provision and discovery of

distributed services including those provisioned on mobile portable devices. We have

developed a Location-Aware Service Provision and Discovery platform, referred to as

LASPD, to support the desired tasks. The Context Realization Layer incorporates a con-

text realization engine which we call it as Application Context Engine (ACE) to provide

high-level development support for ubiquitous applications. The ACE is capable of cater-

17

Context Realization Layer

(Application Context Engine)

Service Management Layer

(Location-Aware Service Provision

and Discovery Platform)

Ubiquitous Application

(Sharing of Living Experience)

Application Orchestration Layer

(Application Flow, Service Invocation)

Service Layer

(Business Logic)

Data Access Layer

(DBMS, Middleware)

Data Layer

(Application Data, Context Data)

User Interface Layer

(Web Interface, GUI)

Figure 1.2: Overview of the approaches for the provision, discovery and development of
ubiquitous services and applications.

ing context-related tasks as specified by the developers at design time, and automatically

realizing them at application runtime. In summary, we have developed a software devel-

opment framework consisting these two layers for the provision, discovery, and develop-

ment of ubiquitous services and applications. As a proof of concept, we demonstrate the

use of the framework for the development of an information sharing application, known

as Sharing of Living Experience (SOLE). In the following, we summarize our proposed

techniques and contributions for the context-aware application development framework

as well as the SOLE application.

1.5.1 The Service Management Layer: LASPD

A three-tier architecture is designed for LASPD, which caters all the practical consid-

erations (as will be discussed in Section 3.1.1) while minimizing the platform implemen-

tation complexity. In the first tier, the world is geographically divided into autonomous

areas to facilitate local service administration and management. In the second tier, ser-

18

vice providers of an area with adequate computing capability are organized into a struc-

tured peer-to-peer network. The third tier supports mobile service providers equipped

with less capable devices such as smart phones or tablets. These providers are allowed

to delegate their services to one of the designated peer nodes of the second tier, known as

“proxy”. One major feature of LASPD is that location-awareness (i.e. during a service

discovery) can be easily augmented to its structured peer-to-peer network, whereas in the

conventional structured P2P approaches this property is usually hard to achieve (as will

be mentioned in Section 2.1.2). Besides, we propose an evolutionary rewiring mech-

anism to make the network navigable and self-organized with minimum maintenance

effort. The followings summarize all the detailed features of our LASPD:

1. LASPD distinguishes service administrative areas and considers a superpeer for

each of them. The service providers within each area are organized separately ac-

cording to their capabilities. More specifically, relatively powerful service providers

may take the role of a proxy to host services delegated by the resource-constrained

mobile devices. The combination of the P2P network structure and the proxy de-

sign solves the scalability issue and communication constraints of mobile service

providers while catering its practical concerns such as the need for service migra-

tion and the requirement of privacy protection (Section 3.3);

2. LASPD deploys Hilbert space filling curve [27] on the geographical locations of

service providers in the first two tiers of the architecture. The benefits are twofold:

first, due to its fractal (self-similar) property, the curve defines a flexible way for

organizing (i.e. adding/deleting) service administrative areas and setting up con-

nections among service providers (Section 3.1.3). Second, location-aware ser-

vice discovery including range search can be supported by exploiting the locality-

preserving property of the curve (Section 3.2.4);

19

3. LASPD exploits the fractal property of the Hilbert curve to achieve network nav-

igability: the recursively constructing manner of the curve exhibits a hierarchical

property; therefore, Kleinberg’s small world network model on the hierarchical

structure [28] can be applied to the peer nodes on the curve. As the default prob-

ability model from Kleinberg assumes a completed tree-structure, which is infea-

sible for its deployment in practice, we have modified the model by introducing

another two parameters (Section 3.2.1). The effectiveness about our modifications

is investigated through simulation studies (Section 3.4.2);

4. LASPD develops a mechanism for evolutionary rewiring of long-range links among

peer nodes. As a result, the network maintenance cost is minimized. In addition, an

indexing scheme for the long-range links is developed to make the platform more

resilient to the failure of superpeers. Extensive simulations have been carried out

to study the routing behaviors of peer nodes in the platform, and the results show

that our approach is more resilient to network topology changes when compared

with other similar approaches (Section 3.4).

1.5.2 The Context Realization Layer: ACE

In this work, context logic is defined as the set of context-related tasks required by a

ubiquitous application. They concern about three types of tasks: application adaptation

— the situation or event when the application is triggered/terminated; constraint enforce-

ment — the checking on the validity of application entities involved and their context

status; context flow — the transition of the context data among application entities. In

previous works (as will be introduced in Section 2.2), the context logic is explicitly dealt

with by application developers during implementation; while in the proposed ACE, the

realization of these tasks is facilitated automatically. ACE allows the context logic of an

application to be specified in an Application Context Model (ACM) at application design

20

time. The ACM of the application is then registered with the ACE and instantiated for

automatic context realization at application runtime. The full life cycle — initialization,

execution and termination — of each ACM instance is handled by the ACE. One major

feature of ACE is that the ACM is formulated independently of the underlying context

data management frameworks, and therefore it could be built upon any of the existing

solutions. As a proof of concept, we showcase a ubiquitous application and illustrate

how ACE can be used to simplify embedding context logic into the application design

(Section 4.4). Besides, experimental results derived from the prototype also indicate the

feasibility of ACE. The followings are major contributions of ACE:

1. ACE allows the formulation of context logic to be shifted to the application design

time rather than during the implementation phase. The proposed ACM identifies

and specifies the requirements of a ubiquitous application over different context-

related tasks. The Model-Driven Approach (MDA) reduces the complexity of ap-

plication implementation and further provides flexibility in handling requirement

changes for evolving applications (Section 4.4);

2. ACE develops a set of architecture components to enable automatic context real-

ization of context logic at application runtime. The whole process is transparent

to application developers. If there is any change in context logic (e.g. context

constraints), the developers are only required to update the respective ACM, but

without rewriting and redeploying their applications.

1.5.3 The Ubiquitous Application: SOLE

SOLE is an application developed for context-aware experience sharing. It considers

user’s location, preferences, and other useful information for a seamless user experience

in mobile ubiquitous computing. It leverages on LASPD for the provision and discovery

21

of its application services. It uses ACE for easy incorporation of context logic. Fur-

thermore, it relies on our previously developed context middleware — Coalition [14] —

for data access and data layer functionality. SOLE facilitates location-based selection of

entities for associating or retrieving experiences. Other contexts of users are also embed-

ded in the discovery and delivery of experience information. We use SOLE to validate

our framework including LASPD and ACE. As compared to other information sharing

applications or systems (Section 2.3), SOLE has the following advantages:

1. SOLE is generic and extensible, by not assuming a specific application scenario.

It allows users to share and retrieve experiences about any things at anywhere,

anytime (without requiring RFID tags). In addition, third-party applications and

services can be integrated with SOLE easily;

2. SOLE is flexible, by allowing the user to choose where to store the experience data

and to specify his audience. When the data is stored on mobile devices, it could be

offered through services provided by these devices;

3. SOLE is context-aware, by considering the contexts for the user and his surround-

ing environments. With the support of Coalition, the context-awareness is no

longer restricted to attributes such as user’s location and social relationship.

1.6 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 reviews the related work. The topics to survey include platforms for

service provision and discovery, context frameworks for ubiquitous application

development, and applications/systems for information sharing;

22

• Chapter 3 presents our three-tier architecture for location-aware service provision

and discovery (LASPD). The characteristics of LASPD are demonstrated by sim-

ulation studies;

• Chapter 4 describes the context realization framework that we proposed for ubiq-

uitous applications (ACE). The use of ACE and its real-time performance are dis-

cussed through a case study;

• Chapter 5 introduces our application framework for context-aware sharing of liv-

ing experience (SOLE). The concepts of SOLE (including LASPD and ACE) are

illustrated and validated by prototype implementation;

• Chapter 6 concludes the thesis and highlights future research directions.

CHAPTER 2

BACKGROUND

This chapter surveys the related work in three areas, including Service Provision and

Discovery, Context Frameworks for Ubiquitous Application Development and Context-

Aware Information Sharing. The respective approaches will be compared to our propos-

als as mentioned in Section 1.5, namely the Service Management Layer (LASPD), the

Context Realization Layer (ACE) and the Ubiquitous Application (SOLE), to justify the

motivations behind this thesis work.

2.1 Service Provision and Discovery

Any typical platform for service provision and discovery will have two participating

entities: service provider and service consumer. In the early days, the roles of the two

entities are clearly separated. However, with the recent adoption of the Peer-to-Peer

(P2P) concept, the physical separation of these two roles is weakened. In most cases, the

entity can be served as both the service provider and the consumer. To develop a platform

23

24

for service provision and discovery, three processes have to be defined, namely service

advertisement, service discovery and service invocation. The service advertisement is

usually carried out by deploying a third participating entity also known as a service

directory. This “yellow page” directory is responsible for hosting partially or entirely

all the service information published by service providers and used for service matching

in the discovery phase. The service discovery is the process of finding services, where

the mechanisms applied are strongly dependent on the logical network structure used for

service provision. Finally, the service access refers to the invocation method supported

to utilize the service if it is a software service.

There have already been several survey papers for service provision and discovery

published in learning literatures, such as [29], [30], [31], [32] and [33]. In this thesis, we

focus on the classification of architecture support (i.e. the distribution of service infor-

mation) in the surveyed platforms. The methods of service advertisement, discovery and

invocation are discussed. In addition, the recent researches on mobile service provision

and discovery are surveyed and compared with LASPD.

2.1.1 Centralized Architecture

In this type of architecture, there is a clearly directory server to which service providers

are requested to upload their service information for their service provision. Service dis-

covery is done by directly sending requests to the server and getting candidate services.

This architecture is good for administration control and resource management, but it

lacks scalability and may cause a single point of failure. Besides, the reliability of the

retrieved service information is usually not guaranteed, as the server does not maintain

any state for the registered services. This could degrade user experience for service

discovery especially in highly-changing network topologies such as mobile ad-hoc net-

works (MANETs).

25

The industry initiative UDDI protocol1 is one of the representatives. It defines a

service directory named as Universal Business Registry (UBR) for all publicly available

Web services. UBR stores four types of information, including business information,

service information, binding information and information about specifications for ser-

vices (tModel). tModel further describes Web services in terms of attributes and meta-

data such as taxonomies, transports and digital signatures. To support automatic service

registration and discovery, UDDI provides a set of APIs for Web service providers and

consumers to interact with the registry. To minimize the issue of a single point of fail-

ure, UDDI supports data replication among two or more registry nodes as for registry

affiliation. It deploys a logical ring structure for all sites involved in the replication pro-

cess. A propagation process is started periodically to propagate all updates since the

last propagation. In summary, UDDI has attributed to the ease of administration control

and service management, which is superior for service discovery in local and static en-

vironments. The disadvantage, however, is the lack of scalability in the design and has a

potential single point of failure. Though the latest version of UDDI recognizes the need

for affiliations among registries, lacking of an efficient mechanism to locate the desired

registry would result in the same scalability issue as for service discovery. Another issue

is that UDDI is solely designed for Web services. As a consequence, users such as ser-

vice providers must have prior knowledge regarding Web services standards. Lastly, as

investigated in [34], many problems have been found in current UDDI implementations,

such as lack of guarantee for the availability of the registered services.

The Jini framework2 is yet another industrial standard specifying the way for Java-

enabled devices to find services on each other. The whole architecture is built on top of

the Java Virtual Machine (JVM), and thus is platform and protocol independent. Services

are considered as Java classes and each is identified with a Universally Unique Identifier

1http://www.uddi.org/pubs/uddi v3.htm.
2http://www.jini.org/wiki/Main Page.

26

(UUID). The instance of the service is described as a service item (i.e. Java object) which

assigns the value for each attribute defined in the service class. Like UDDI, in Jini there

is a lookup server acting as the registry for all the service items. The lookup service

maps service requests described by template attributes to service items that implement

interfaces for the matched services. The service items (or their RMI stubs for remote

access) are then downloaded by the consumer for service invocation. In Jini, the lookup

server can be reactively discovered by replying requests multicasted by service providers

or consumers; or, the lookup server can proactively announce its presence to the network

by multicasting. As compared to other service discovery solutions, a special feature

of Jini is the mobile Java codes, which can be moved among providers, registries and

consumers. Besides, it also supports leases to help remove those services no longer

available. However, the problem with Jini is that the JVM is required to be installed on

all the entities. This can be hard in practice due to the device heterogeneity3. Resource-

constrained devices may not have enough memory to support JVM. In addition, Jini has

the same scalability issue as UDDI, such as the use of multicast protocol for message

exchange.

The centralized architecture is mostly adopted in industry due to its simplicity of

implementation and management; while in the research arena, researchers are more fo-

cusing on the scalability and efficiency issues of the developed platforms. Distributed

architectures such as those based on P2P overlays are designed.

2.1.2 Distributed Architecture

In this type of architecture, there is no dedicated directory server to maintain all the

service information. P2P overlay networks, such as Gnutella4, Chord [24], CAN [25],

Pastry [35], and Tapestry [36] have been deployed as the underlying platforms for service

3One representative example is from iOS-based mobile devices, which do not support JVM.
4http://rfc-gnutella.sourceforge.net/src/rfc-0 6-draft.html.

27

discovery. Service information is distributed to peers in the network. Depending on the

type of the P2P overlay used (a detailed survey on P2P systems is referred to [33]), the

approach can be further classified into two categories: unstructured and structured.

Unstructured P2P-based

The approach inherits the flexibility from unstructured P2P overlays such as Gnutella.

Each service provider joins the platform in a peer form and maintains minimum in-

formation about the network topology as well as information regarding services pro-

vided by other peers. To ensure peer reachability, schemes for network conductivy, i.e.

the selection of neighbors, must be designed beforehand. For instance, there are four

schemes proposed in [37] — high-degree biased, proximity biased, connectivity biased

and proximity-connectivity hybrid. The interesting points about this type of architec-

ture include implementation simplicity, support for partial match queries, and relative

resilience (i.e. less maintenance overhead) to peer leave or failures. Besides, it allows

complex service matching mechanisms to be implemented and provides better privacy

protection. However, due to the lack of network knowledge, the discovery of services is

blind in that it is independent of the query and usually is based on flooding, resembling

broadcasting on the network layer; therefore, they tend not to scale for wide area net-

works and queries may not always get resolved if techniques for overhead reduction are

applied, e.g. by setting TTL in the query header.

The representative platform is WSPDS [38], which utilizes Gnutella as the underly-

ing protocol and defines a set of application protocols for neighbor selection and Web

service matching. In the initial version, each service peer, or so-called servent, maintains

a list of the most recently active servents of the network, denoted as servent cache. Each

time a servent is activated, it probes the servents listed in the servent cache to find k nodes

that are still active and designates them as its neighbors. The servent cache also contains

28

access points of a few WSPDS servents that are almost always active in case it is the first

time for the servent to activate. The routing of queries is probabilistic-based flooding.

To further reduce the overhead of query dissemination, the recent version adopts their

studies in querical data network [39], in which servents of similar “identity” are selected

as neighbors with higher probability. The similarity is measured by adopting the Match-

Maker algorithm in [40] on the inputs/outputs of their provisioned Web services. Service

queries are then routed to the neighbor with the most similar identity.

Indeed, service provision and discovery in MANETs can also be considered as un-

structured P2P-based. As for MANETs, two practical issues are limited topology knowl-

edge due to wireless communication range and changing topology due to node mobility.

Similarly, broadcasting and multicasting are used as the main communication techniques

for service advertisement and discovery. The representatives can be found in Bluetooth5,

DEAPspace [41], Mobiscope [42], PDP [43], Mobi-Dik [44] and HESED [45]. To re-

duce the communication overhead and improve the energy efficiency, different optimiza-

tion techniques are applied. [32] has summarized four major approaches: advertisement

range bounding/scoping; selective, probabilistic and intelligent (advertisement/request)

forwarding; P2P information caching; and intermediate node responding to service re-

quests. The authors have also done a survey study on the respective approach, which

we will not repeat here. There are also cross-layer design for service provision and dis-

covery in MANETs. This type of approach piggybacks service information into routing

messages, and service discovery is done on the network layer so as to reduce unnecessary

message exchange at the application level. Examples can be found in AODV-SD [46]

and MZRP [47]. To summarize, all these cross-layer approaches have shown their effi-

ciency in terms of network throughput, service acquisition time and energy consumption,

as demonstrated in [46] and [48]. However, this kind of approach destroys the protocol

5https://www.bluetooth.org/Technical/Specifications/adopted.htm.

29

stack in the Internet OSI model and tends to be protocol-specific, which may limit the

interoperability of the discovery platform, especially when they are deployed for large-

scale and heterogeneous networks.

Structured P2P-based

Unstructured approach has two major issues: firstly they may result in queries that

are not always resolved; secondly, they do not guarantee anything about performance

while scaling. On the other hand, platforms relying on structured P2P overlays solve

these issues. Most of them rely on the Distributed Hash Table (DHT) concept and assign

key ownerships in a pre-determined manner: each node in the overlay is responsible for

maintaining a part of the hash range which represents an index to available resources;

queries are input to a hash function and then are looked up in the nodes responsible

for the resulting keys. For these approaches, query resolution path lengths are usually

increasing logarithmically with the number of nodes in the network, i.e. in O(logN)

scale. Nevertheless, DHT-based P2P systems have their own limitations, as discussed

in [49], [26], and [50]. Firstly, most hashing techniques adopted do not consider data

semantics; thus, partial or range search is not supported. Secondly, DHT-based overlays

incur large overhead for the maintenance of its network structure, which usually requires

O(logN) messages to be exchanged for each peer to join or leave. Lastly, the constructed

overlay does not consider practical Quality of Service (QoS) parameters such as physical

distances among peers and query response time in real-life situations.

The representative is INS/TWINE protocol from MIT [51], which is based on Chord

structure and supports partial matching by hashing partitions of the resource description

(i.e. attribute-value pairs). In [52], the authors propose Lanes, which adopts the over-

lay structure based on CAN. The overlay has two dimensions: one for propagations of

service advertisements through a lane in a top-bottom manner on the y axis; and one for

30

distributions of service requests between lanes on the x axis. Nodes in the same lane

share the same anycast address which allows anycast routing for sending messages from

one lane to another lane. Other Similar DHT-based service discovery approach can be

found in [53].

2.1.3 Hybrid Architecture

The hybrid architecture aims to combine the merits of the above introduced architec-

tures, including centralized architecture, unstructured P2P-based architecture and struc-

tured P2P-based architecture, so that their respective strengths are maximized while the

effects of their undesired properties are minimized. The followings describe the two

mostly adopted approaches.

Distributed Centralized

To minimize the chance of a single point of failure and to relieve the workload on

the global directory server in the centralized approach, distributed centralized approach

is proposed. In this approach, service information is shared among several directory

servers and each server is only in charge of a partial scope. The advantage of such plat-

forms is that they can achieve a certain level of scalability; meanwhile, they can take

practical concerns such as service administration and privacy protection into considera-

tion. Local service discovery can be achieved in the same manner as that in centralized

one by approaching the local directory server. However, global discovery is hard to

support unless there is a backbone of these local directory servers. Existing distributed

centralized approaches can be mainly divided into two groups according to the backbone

architecture deployed: topology-specific and non-topology-specific.

In topology-specific architectures, the backbone of directory servers is predefined by

using structures such as hierarchy, ring or grid. Useful criteria to define such a topology

31

include those based on administrative domains (company divisions), network topology

(network hops), network metrics (bandwidth or delay) and geographic location (physical

distance). The followings summarize the four major topologies: hierarchy, ring, grid and

hybrid.

• Hierarchy Topology. This topology reduces the number of resources to a man-

ageable size, and it also allows autonomy for different parts of the system. The

hierarchical structure usually follows the DNS6 or LDAP7 model, where direc-

tory servers are organized in a tree structure. Service queries are propagated up

or down through the hierarchy. The representatives are Bonjour8, NOMAD [54],

Ad-UDDI [55] and SDS [56]. Apple’s Bonjour is based on the Multicast Domain

Name System (mDNS) for service name to address translation. The European

project NOMAD combines UDDI and LDAP information model to build a dis-

tributed service discovery platform in mobile networks. The Ad-UDDI platform

extends UDDI by updating service information to different registries in an active

manner. It organizes all the UDDI registries according to the hierarchy defined in

Global Industry Classification Standard. Registries in the same industry classifi-

cation are established with neighboring relationship. Service queries are routed to

the registry which is in charge of the classification. If they cannot be resolved lo-

cally, they will be routed to the neighboring and upper level registries. The Secure

Service Discovery Service (SDS) from the Berkeley Ninja Project allows directory

servers to be organized into multiple hierarchies. To guarantee a query can reach

all SDS servers, one particular hierarchy (primary hierarchy) must be supported

by all servers, e.g. hierarchy based on administrative domains.

• Ring Topology. This kind of approach links directory servers in a ring structure,
6http://tools.ietf.org/html/rfc1034.
7http://tools.ietf.org/html/rfc4512.
8http://developer.apple.com/opensource/.

32

and it relies on existing P2P techniques to help efficient query routing. In the

platform presented in [57], the authors build the backbone of service directories

(i.e. peers) on top of the P2P protocol Chord. Service registration is performed

implicitly by first embedding semantic information into the peer identifiers, then

grouping peers by service categories, and lastly forming islands on the ring topol-

ogy. Service discovery is performed by sending queries and anycast messages

to peers registered in the appropriate islands. The routing mechanism in Chord is

adopted to achieve O(logN) scale for efficient service discovery. Similar approach

can also be found in SPiDeR [58].

• Grid Topology. This approach is mostly used in MANETs and the backbone of

service directories is formed in a grid network. In [59], the authors propose a

Geography-based Content Location Protocol (GCLP) for service discovery. Ser-

vice advertisement occurs along a crisscross trajectory with four directions: 1)

east; 2) west; 3) north; and 4) south. The provider selects four relay nodes that are

the farthest node in each direction, i.e. within its wireless communication range.

These nodes are picked up to cache the advertisement and further propagate it in

the respective direction until there is no more relay node available. Service discov-

ery happens in the same manner. However, this approach imposes heavy storage

and communication consumption requirements. The recent SGrid platform [60]

addresses the issue by splitting the public area into a hierarchical grid. The pro-

posed scheme registers the information of available services to a specific location

along a predefined trajectory, which is to avoid the sparse node network topology

as for GCLP. The service description is registered to the center line of the network

(i.e., the maximum grid level). When a requestor wants to access a service, he dis-

covers the service toward the maximum grid level. The discovery is thus confined

to a quarter area of the network. The experiments show SGrid outperforms GCLP

33

in terms of higher discovery success ratio and lower control overheads.

• Hybrid Topology. The approach represents a hybrid of the above introduced topolo-

gies. In [61], the Service Rings platform establishes a hierarchical ring architec-

ture. A ring is a group of devices that are physically close to each other and offer

similar services. Each ring has a designated Service Access Point (SAP) for stor-

ing local service information. SAPs are also linked to form high-level rings, which

have SAPs that store summaries of services they provide.

In non-topology specific architectures, there is no predefined topology structure for

directory servers. It is therefore important for directory servers to discover each other

for global service discovery. In UPnP9 and SLP1011 protocols, IP multicast is extensively

used in the design, such as discovery of control points in UPnP and Directory Agents

(DAs) in SLP. In Meteor-S [62], an unstructured P2P infrastructure of registries, based

on JXTA protocol12, is built for semantic publication and discovery of Web services.

Nevertheless, there are exceptions that directory servers are not required to discover

each other and form links, such as that in [63]. The platform treats mobile users as

messengers, and they can submit cached Web service information to the UDDI registry

in range. In this way, other mobile users which are in the vicinity of the registry can

discover services in other places. But, precisely speaking, such a mechanism does not

support global discovery, and also, data reliability is an issue.

P2P Cluster-based

Clustering techniques are applied to the conventional P2P systems to further improve

the system scalability and efficiency. In addition, properties such as support for partial

9http://upnp.org/sdcps-and-certification/standards/.
10http://www.ietf.org/rfc/rfc2165.txt.
11http://tools.ietf.org/html/rfc3224.
12http://jxta.kenai.com/.

34

match queries and resilience to peer leave or failures as in unstructured P2P overlays can

be possessed. The followings are the three mostly applied clustering criteria:

• Semantic-Based Clustering. The approach is to cluster semantic-close services to

support semantic search and reduce routing effort. In [64], the authors map the se-

quence of service keywords in the d-dimensional CAN space to 1-dimensional lin-

ear space by using the Hilbert SFC technique. Points that are close on the curve are

mapped from close points in the d-dimensional space. However, such a mapping

destroys the properties of consistent hashing, and thus, not ensuring load balance.

An ad-hoc load balancing technique is further devised in the paper. ERGOT [65]

solves the load balancing issue by combining DHTs and Semantic Overlay Net-

works (SONs) to enable distributed and semantic based service discovery on the

Grid. The system involves a module to compute similarity among services based

on their Category Ontology (CO). Semantic links are built among those seman-

tic close service peers in addition to the conventional DHT links in Chord. Other

semantic-based clustering approaches have also been proposed in [66] and [67].

• QoS-Based Clustering. To take practical QoS (e.g. search efficiency) into con-

sideration, QoS-based clustering techniques may be used. In [50], service peers

are organized into clusters, in which every node may reach others within a given

time frame. This is similar to the mechanism used in WSPDS [38]; thus, a certain

quality of service can be provided. Algorithms for identifying such clusters are

also discussed in the paper and demonstrated through simulations.

• Superpeer-Based Clustering. DHT-based P2P systems require high maintenance

cost for their overlay structures. As a result, they may apply the same technique as

in the distributed centralized approach by narrowing down the maintenance scope

and forming clusters. Each cluster has a representative peer, known as a super-

35

peer or ultrapeer, which has an overview of the resources (e.g. services) kept in

the local cluster. The superpeers in different clusters form connections among

themselves so that if the desired resource cannot be found locally, the request is

forwarded to other clusters. The backbone architecture for organizing superpeers

is similar to that in the distributed centralized approach. For instance, hierarchy

topology is adopted in GloServ [68] and VIRGO [69]. While for the organiza-

tion of peers inside a cluster, it can be either unstructured-based (e.g. FastTrack13

and Gnutella214) or structured-based (e.g. GloServ and VIRGO). One major prob-

lem in this approach is that a lot of workload is imposed on superpeers, and their

presence makes the network more vulnerable to the failure of superpeers [33].

2.1.4 Service Provision and Discovery for Mobile Services

Most of the platforms introduced in the previous sections (Section 2.1.1 to Section

2.1.3) seldom consider service provisioning on mobile devices in Internet scale, as mo-

bile and wireless computing technologies were not ready for such application at that

time. With the recent advancement of these technologies, using portable devices such

as smart phones as service providers (e.g. context data provision) is feasible and is

identified as a step toward practical realization of UbiComp [16]. Although the above

mentioned approaches can still be applied for service provision and discovery on mobile

devices, they are not specially tailored for the paradigm, as the challenges and prob-

lems discussed in Section 1.3 and Section 1.4. In the following, we present platforms

specifically designed for mobile services and compare them with LASPD.

The feasibility and performance of deploying Web services on mobile devices have

been investigated in [70], [71], and [72]. [72] claims that the total Web services pro-

cessing time on mobile devices is only a small fraction of the total request-response time

13http://en.wikipedia.org/wiki/FastTrack.
14http://g2.trillinux.org/index.php?title=Main Page.

36

(< 10%). Various frameworks for mobile service provisioning have also been proposed

since 2005. For instance, [73] presents a lightweight SOAP server design; [74] describes

the Mobile Host concept for Web service providers on smart phones; [75] designs a

lightweight component architecture for hosting Web services on mobile devices; and

[76] proposes an adaptable Web service provision/consumption architecture for mobile

service providers/consumers. However, these works only examine hosting Web services

on mobile devices; the issues of service organization and discovery for such mobile ser-

vices have rarely been discussed. As far as we know, only the following platforms have

taken in the design of mobile service provision for their large-scale service discovery.

There are platforms leveraging on the Jini Surrogate Architecture15 (JSA) for the pro-

vision and discovery of mobile services. The representatives can be found in the Mobile

Service Platform [15] [77] and the Mobile Service Provisioning Middleware [78]. The

JSA specifies a software architecture to allow a device (hardware or software compo-

nents) that is not capable of directly participating in a Jini network to join a Jini network

with the aid of a third-party host, known as surrogate host. The surrogate host is a frame-

work residing in a machine that is already in the Jini network. It retrieves and activates

the device’s surrogate so to behavior on behalf of the device. Interconnect protocols are

defined for discovery, retrieval of the surrogate and liveness between the surrogate host

and device. For instance, the HTTP interconnect is implemented in both representatives.

As compared to our approach LASPD, the major difference is that the JSA requires the

environment of Jini, which is purely Java-based platform and requires multicasting for

message exchange and service discovery/invocation. Despite of the issues discussed in

Section 2.1.1 for Jini, in [79] the author has argued that the JSA may be not suitable for

large-scale deployment due to device heterogeneity (e.g. vendor-specific device APIs)

and different platform requirement (e.g. Web services desired). In addition, the device

15http://www.jini.org/files/specs/surrogate/sa.pdf.

37

service provider has to explicitly provide the surrogate (i.e. Java codes) to be loaded by

the surrogate host. LASPD, on the other hand, applies the emerging Web services tech-

nology for service invocation. Instead of restricting the platform to be Java-based, the

Web service technology allows services to be developed and interoperated under differ-

ent programming environments. The detailed discussion on the architecture for service

provision in LASPD can be found in Section 3.1.

The Mobile Web Services Mediation Framework (MWSMF) [80, 81] is extended

from the Mobile Host concept in [74] and acts as an intermediary between the mobile

Web service clients and the mobile hosts so to form the Mobile Enterprise [82, 83]. The

platform is responsible to convert and route the mobile Web service’s messages to the

respective mobile hosts with QoS considered. Mobile hosts are organized as JXTA peers

in a peer-to-peer network [84]. To address the integration problem across mobile enter-

prises, the platform leverages on the Enterprise Service Bus (ESB) technology [85] to al-

low services on mobile hosts to be requested by different enterprise networks. The recent

efforts have focused on shifting components in the platform to the new cloud computing

paradigm to further improve the scalability [16], as well as adding context-awareness into

the service discovery process [86]. Although the authors have done various load tests for

the platform in [16], the scalability study for mobile service discovery in [84] is limited

by the number of JXTA peers simulated. Indeed, JXTA is suitable for stable peer-to-peer

networks, and due to its random walk routing protocol, it does not guarantee search re-

sults even if there are matched services. LASPD deploys the superpeer-based clustering

approach. By distinguishing service administrative areas (e.g. enterprise networks) and

considering a superpeer for each of them, the scalability can be achieved. Besides, in-

stead of relying on a message broker (the bus in the ESB) to redirect all messages among

different service administrative areas, a consistent P2P routing scheme is designed for

both local-area and cross-area scenarios. Moreover, LASPD deploys the Hilbert space

38

filling curve in its network structure and applies the so-called source sampling technique

to help construct a small world network in an autonomous manner. While achieving net-

work navigability, location-awareness during service discovery is also supported. The

detailed discussion on the network model and the routing scheme of LASPD can be

found in Section 3.2. The simulation studies are demonstrated in Section 3.4.

Other related work can be found in Nokia’s Mobile Web Server project [87] and

Splendor [88]. The former approach relies on a gateway in the fixed network to redi-

rect all the HTTP requests to the HTTP servers hosted on mobile phones; while the latter

one adopts a client-service-directory-proxy model to support secure service discovery for

nomadic users and services in public environments. Nevertheless, both platforms have

scalability issue: the gateway is inherently a bottleneck as mentioned in [87], and Splen-

dor is mainly designed for small-scale environments (e.g. a shopping mall scenario)

while the set of security protocols adopted incur high overhead during the discovery pro-

cess. For mobile service provision, LASPD adopts a similar idea by deploying the role

of proxy. However, the design of the proxy is more distributed: rather than having a

fixed static machine acting as the gateway, the functions of the proxy are implemented

as services and can be hosted on any capable peer in LASPD. The use of the proxy is

also flexible: the mobile service providers may explicitly choose their trusted proxies for

service provision. The design of the proxy and its potential usage will be discussed in

Section 3.1.5 and Section 3.3.

2.2 Context Frameworks for Ubiquitous Application De-

velopment

This section gives an overview of the related work done in context frameworks for

ubiquitous application development, which serves as the motivation for our proposed

39

ACE framework for context realization. In the discussion, we focus on the aspects of

programming support, development support, target domain, and technique detail for the

surveyed frameworks. The programming support considers what functions (e.g. APIs)

are supplied for the application developers to utilize, such as those for context data re-

trieval and for application triggering. The development support discusses in which phase

these frameworks are integrated with the application development, e.g. at design time or

at implementation stage. The target domain concerns about for which application domain

these frameworks are used, such as activity-based applications. The technique detail de-

scribes what techniques are applied to help achieve application context-awareness, such

as those discussed in Section 1.2.4.

Over the last decade, many researchers have been working on development support

for context-aware applications. Their primary focus has been on the simplification of

context-related tasks such as context management and retrieval so that developers could

focus more on the application itself. Numerous context frameworks including toolkits

and middlewares have been developed.

Context Toolkit [89] [90], as one of the pioneer toolkits for context programming,

presents a reusable solution for making use of context information by leveraging on

the notion of Widget. The various Widgets abstract the details for context acquisition

from each context source and also allow applications to do event subscription. A set of

other abstractions including Aggregator, Interpreter, Service, Discoverer are provided to

further ease the task for applications. The toolkit itself is developed in Java environment

and a set of base Classes are supplied for developers to extend.

Solar [23] is an infrastructure for context collection, aggregation and dissemination.

Similar to Context Toolkit, it provides a collection of distributed, reusable planet to

facilitate the retrieval and subscription of context events. Depending on the application

needs, the developers may compose a directed acyclic graph of event operators including

40

filter, transformer, merger and aggregator. These operators are then subscribed to the

respective planet by a centralized star process.

iQL [91] is a non-procedural programming language defined for higher-level con-

text composition. It eases the task for application developers by automated binding and

rebinding of heterogeneous data sources. By specifying context requirements on Com-

poser (i.e. the central element of the iQL programming model), a pervasive composition

system is capable of discovering appropriate data sources, binding them and rebinding

when the values of data sources change. The language has powerful operators useful in

composition, including operators to generate, filter, and abstract streams of values.

a CAPpella [92] is a system designed to empower end-users in building context-

aware applications. The motivation is that end-users have a better position in knowing

what they want under a particular situation. The system allows the user to do program-

ming by demonstration. By using the graphical interface, the user may indicate what

portions of the demonstration (i.e. scenario) are relevant to the desired behaviors, e.g.

turning on the lights. With such kinds of training, the system can perform the demon-

strated action whenever it detects the demonstrated situation.

CoBrA [11] is an agent architecture to support context-aware systems. It leverages

on the Semantic Web language to define ontologies for context modeling, sharing and

reasoning. The rule-based reasoning engine uses a combination of Jena reasoner for

ontology inference and Jess reasoner otherwise. Application programmers develop soft-

ware agents which cater for ontology sharing and rule subscription. Once the rule is

triggered, the agents receive notification from the broker architecture, and fulfill their

tasks, e.g. sending command to the respective presentation service in a meeting room.

The architecture is demonstrated by a smart meeting room system called EasyMeeting

[93].

SOCAM [13] [94] is an ontology-based, service-oriented middleware architecture

41

for rapid prototyping of context-aware applications. All the architecture components

including context provider, context interpreter, context database, context-aware appli-

cation and service-locating service are designed as independent services distributed over

the network. Java RMI mechanism is used for communication. The middleware offers a

set of APIs for application developers to do context query and event subscription. Rules

specifying context-aware behaviors (e.g. application methods invoked) upon conditions

satisfied can be registered with the context interpreter which runs Jena reasoner.

iCAP [17] is a high-level toolkit for rapid context-aware application prototyping. It

aims to allow end-users to design applications visually, without writing any code. To

achieve so, it provides a set of graphical interface to let users create people and artifacts,

and specify the context-aware behaviors associated with these objects. The three types

of applications supported — simple if-then rule, relationship-based actions and environ-

ment personalization are relying on a rule engine to manipulate the actual object contexts

populated from Context Toolkit.

Software Engineering Framework [18] takes an object-role approach to context mod-

eling. The proposed Context Modeling Language (CML) is capable of capturing context

requirements of a context-aware application, including the abstraction of high-level situ-

ations by using predicate logic. Application personalization is catered by its preference

model. In addition, the framework supports two programming models to allow efficient

software engineering in the process of context-aware application development, whereas

the branching model is to assist flexible context-dependent decision making and the trig-

gering model is to launch an application under a particular situation.

VisualRDK [95] is a high-level toolkit for prototyping context-aware applications.

It offers a visual programming environment for the developers to incorporate context-

awareness into their application flows. Developers may define hardware components

with a set of commands they accept or emit, and these components together with the

42

application logic commands (e.g. specifying the situation) are composed in the editor

for application specifications. VisualRDK is responsible for generating executable ap-

plication code for the actual deployment.

Hydra [19] is a framework to help the development of context-aware applications for

mobile devices. The detailed functionalities to handle mobile application related tasks

are encapsulated into different layers to achieve reusability. This includes Mobile Com-

munication layer for networking tasks, Framework Component layer for mobile user

information retrieval task, Mobile Applications layer for application development task.

The awareness of user profiles and his location can be embedded in the mobile applica-

tions by calling the specific framework services.

Coalition, extended from SOCAM, is an open, programmable and reusable infras-

tructure for context data management [14] (the middleware was previously known as

CAMPH [96] and has been uprated with more functions such as the support of callbacks

in the recent version). It applies a more scalable solution — the “space” concept for

modeling context data. The various context sources are organized based on the context

space they belong to and form the respective peer-to-peer overlays. With a declarative,

SQL-based context query interface implemented on the top of the middleware, context

queries could be issued to do context data retrieval and subscription. As the prototype

of our proposed SOLE application leverages on Coalition for context data retrieval and

subscription, we will give a more detailed introduction in Section 5.5.

OPEN [20] is a programming framework emphasizing on the cooperation among

users with different technical skills in the development of context-aware applications. It

consists of a set of middleware components including Context Providers for low-level

context data retrieval, Context Manager for context query and reasoning. The program-

ming toolkits for application development support three programming modes to satisfy

diverse user technical skills and the resources (e.g. application rules) may be shared

43

among the users so that they can learn from each other and do fast customization.

There are also tools developed for prototyping a specific type of context-aware ap-

plications, such as Topiary [97] for location-aware applications, CRN Toolbox [98] and

ActivityDesigner [99] for activity-based applications and CMM [100] for multimedia

related applications.

To compare with our ACE, Table 2.1 summarizes the key properties of the above

introduced frameworks over the aspects we discussed in the beginning of this section.

As shown in the table, most of these frameworks only consider programming support

at a low level: context data retrieval and application triggering. Frameworks such as a

CAPpella, iCAP and VisualRDK, although give graphical user interfaces to let develop-

ers implement their applications visually, they are typically restricted by the functions

allowed for applications and only meant for prototyping. In frameworks such as Context

Toolkit, SOCAM and Coalition, various APIs are provided to simplify context-related

tasks for developers, such as the retrieval of user’s context and the subscription of an

event. For instance, in Scenario 1 of Chapter 1 by subscribing the event of heart at-

tack for Bob (through a set of criteria over his heart status such as heart beat rate and

blood pressure), the emergency care application can be triggered in time. Nevertheless,

these frameworks only consider the triggering of an application at the right context but

without catering for its runtime context requirements. The application developers have

to explicitly integrate those low-level APIs in the application code. For example, after

the emergency care application starts, to find the nearest ambulance service for Bob, in

the application logic the developer has to first get locations of all the available ambu-

lances (through the provided APIs), and then compare with Bob’s location (through a

set of if/else statements) to derive the best candidate. As mentioned in Section 1.3, this

approach results in a tight-binding model during the application implementation, and it

imposes a lot of programming effort on context-related tasks. Meanwhile, the developed

44

Programming Sup-
port

Development Phase Target
Domain

Technique Detail

Context Toolkit,
iQL, Solar

context retrieval,
event subscription

implementation (hard
integration)

general context modeling (attribute-value
model), context composition (iQL)

a CAPpella application prototyp-
ing, application trig-
gering

design (UI-based) general context modeling (attribute-value
model), context reasoning (machine
learning)

CoBrA context retrieval, ap-
plication triggering

implementation (hard
integration)

general context modeling (ontology-based
model), context reasoning (rule-
based)

SOCAM, Coali-
tion

context retrieval,
event subscription,
application triggering

implementation (hard
integration)

general context modeling (OWL-based
model), context reasoning (rule-
based)

iCAP application prototyp-
ing, application trig-
gering

design (UI-based) general based on Context Toolkit, context
reasoning (rule-based)

Software Engi-
neering Frame-
work

application triggering,
context branching at
runtime

design (CML-based),
implementation (soft
integration)

general context modeling (object-role
model), context reasoning (rule-
based), context branching (prefer-
ence model)

VisualRDK application prototyp-
ing, application exe-
cution at runtime

design (UI-based) general context modeling (attribute-value
model), context branching (event-
based)

Hydra context (mobile user
information) retrieval

implementation (hard
integration)

mobile appli-
cation

context modeling (attribute-value
model)

OPEN application triggering design (for normal
user), implementation
(for expert)

general context modeling (OWL-based
model), context reasoning (rule-
based)

Topiary application prototyp-
ing, application trig-
gering

design (UI-based) location-
aware
application

context modeling (spatial relation
model), context retrieval (back
tracking search)

CRN Toolbox application prototyp-
ing, application trig-
gering

design (UI-based) activity-
based appli-
cation

context modeling (attribute-value
model), context reasoning (machine
learning)

ActivityDesigner application prototyp-
ing, application trig-
gering

design (UI-based) activity-
based appli-
cation

context modeling (attribute-value
model), context retrieval (SQL
query)

CMM context retrieval implementation (hard
integration)

multimedia
application

context modeling (OWL-based
model)

ACE application triggering,
context constraint en-
forcement at runtime

design (OWL-based),
implementation (soft
integration)

general context modeling (application con-
text model), context reasoning
(rule-based)

Table 2.1: Summary of the context frameworks for context-aware application develop-
ment.

45

application is not flexible. In case there are changes in the context requirements or the

underlying context frameworks, application developers have to rewrite and redeploy the

whole application. For instance, if special care facilities are required on the ambulance,

the application logic has to incorporate these new requirements in its code implemen-

tation. Our proposed framework ACE is targeting to address this issue. It aims to help

application developers to specify their context requirements easily at design time and

automatically realize them at runtime in a soft integration fashion. With this approach,

developers have not to worry about context logic during application implementation.16

The case study shown in Section 4.4 demonstrates the differences for ubiquitous appli-

cation development with and without ACE.

The closest framework to our proposal is the Software Engineering Framework from

Henricksen and Indulska [18]. However, their context model is application dependent;

hence, context facts describing the same entity for different applications may be dupli-

cated, which results in large-size context repository and incurs additional maintenance

overhead. In our approach, we allow the mapping of entities in the application level to

entities in the context level through abstraction, so that the same set of context facts can

be used in reasoning for different application triggering. The detailed discussion on the

two-level application context management can be found in Section 4.3.2. In addition,

their approach does not consider application life cycle in the management of context

facts. Indeed, context facts can be generated or determined during the application exe-

cution, i.e. by the application itself; therefore, context realization at application runtime

is necessary. In spite of the proposed branching model in their approach, they have not

addressed the problem adequately. While our proposed ACE framework caters the full

life cycle — initialization, execution and termination — of each application instances.

The details of the ACE support during application runtime are referred to Section 4.3.3.

16The programming effort on context-related tasks can be minimized by the ACE framework, but there
are potential issues related to our proposed approach. Further discussion can be found in Section 4.4.

46

2.3 Context-Aware Information Sharing

This section gives an overview of the state of the art work in context-aware informa-

tion sharing, which is related to our proposed SOLE application.

The concept of information sharing had long been developed, and become a crucial

part of our daily living since the available of networked computing systems. Examples of

application are the FTP, network-file-systems, databases, and Webs for files/data sharing

between servers and clients through the Internet. For context-aware information shar-

ing, the advancement of technologies is closely related to the following development of

distributed computing environment: (i) mobile computing, which is an extension of the

traditional desktop networked computing with the clients being mobile. With additional

features such as embedded GPS receiver on the mobile device, the client’s context data

can be utilized by applications such as mobile Webs; (ii) ubiquitous computing, which

benefits from the recent ubiquitous technologies such as RFID tags. The developed sys-

tem is capable of identifying the objects around the user by reading their tag information,

and then their associated information is smartly delivered to the user. Table 2.2 summa-

rizes those representative context-aware information sharing applications/systems. In the

following, we compare them with SOLE in greater detail.

Existing Web 2.0 applications such as Flickr17, Youtube18 provide a worldwide plat-

form for people to contribute content (e.g. photos and videos) and interact with each

other (e.g. comments). While this type of applications are more focusing on the shar-

ing of the information itself (e.g. content uploading, viewing and embedding in other

Websites), the emerging Web applications such as Facebook19, Twitter20, Foursquare21

17http://www.flickr.com/.
18http://www.youtube.com/.
19http://www.facebook.com/.
20http://www.twitter.com//.
21http://foursquare.com/.

47

Target
Domain

Context
Support

Context-Aware Ap-
plication

Privacy Protection Additional Feature

Flickr,
Youtube

Web appli-
cation for
photo, video
sharing

user’s loca-
tion, social
relationship

location-based con-
tent search, content
sharing and comment
notification

user controlled settings
such as public, friend, pri-
vate and guest pass

allow dynamic badge to
be embedded in other sites
to display content; provide
tools and APIs for manip-
ulating people and content

Facebook,
Twitter,
Foursquare,
Gowalla

Web applica-
tion for so-
cial network-
ing

user’s loca-
tion, social
relationship

location-based peo-
ple and information
search, notifica-
tion about people’s
activity such as
place check-in and
comment

user controlled settings
such as public, protected
and private

design with a game-
oriented approach with
badges and titles; involve
business to reward users
for checking in to their
locations; provide APIs
for other applications to
interact with the platform

Sentient
Graffiti

Web applica-
tion for shar-
ing of object
annotations

user and
object’s
locations,
time, user’s
preference

location-based in-
formation search,
browsing and push

user controlled settings
such as public and re-
stricted

support multi-model
interactions to enable
location-awareness such
as by RFID tags, GPS and
Bluetooth; involve rules
for smart information push

Cyberguide,
RevisiTour

tour guide
system

user’s loca-
tion, time

location-based con-
tent search and
browsing

— keep the history of the
places visited for the
tourist

C-Map exhibition
tour system

user and
exhibit’s
locations,
time, user
preference,
exhibit site
status

location/semantic-
based content search
and browsing,
exhibit recommen-
dation based on user
contexts such as his
interest

— combine with a virtual ex-
hibition space including
user avatars

eXspot museum
exploration
system

user’s iden-
tity time

exhibit bookmarking
by triggering auto-
matic cameras

— keep the bookmarking of
the exhibits visited so that
the tourist can explore
more later

LORAMS,
APriori,
SharedLife

living experi-
ence sharing
system

object’s
identity,
user’s lo-
cation and
profile
(SharedLife)

learn people’s expe-
rience on the objects
around the user, find
relevant sharing part-
ner (SharedLife)

personal memory for pri-
vate usage and commu-
nity memory for public
access (SharedLife)

link experience with
movies (LORAMS);
propose dynamic product
rating criteria (APriori);
differentiate content data
into different memory
models and manage them
with distinct characteris-
tics (SharedLife)

SOLE living experi-
ence sharing
system

user and
object’s
contexts
(supported
by Coalition)

location-based in-
formation search,
browsing and push

three kinds of data stor-
age schemes: public, pro-
tected, private

support information pro-
vision directly from mo-
bile device; utilize con-
text frameworks for con-
text modeling, retrieval
and reasoning

Table 2.2: Summary of the context-aware information sharing applications/systems.

48

and Gowalla22 emphasize on the social networking perspective along with the recent ad-

vance of social computing. Relationships such as friends and families are used as the

major communication links for information sharing and propagation. As mentioned be-

fore, with the widespread adoption of mobile technologies in people’s daily life, more

and more such applications are allowing access via people’s mobile devices, e.g. smart

phones. Through functions such as embedded camera, the mobile device provides a

convenient way for people to create and share experience. Furthermore, context-aware

information sharing can be achieved by utilizing the sensors attached on these devices.

For instance, in Foursquare and Gowalla, the place check-in concept is adopted: when-

ever a user checks in a place (in the application), his friends will get notified about

his location, and the tips (e.g. comments) created about the place will be shared. The

user may also discover nearby places and friends and interact with them. Such kind of

location-awareness is adopted by many mobile applications. However, these Web-based

context-aware information sharing applications have their own problems. First, these ap-

plications require the user to upload his content to a central repository. A user may not be

able to do so due to technical issues such as low bandwidth, or intermittent availability in

network connectivity. Second, their context-awareness is restricted to attributes such as

user’s location and social relationship. They cannot support more advanced tasks such

as automatic photo tagging (for people involved) and intelligent information push due to

lack of context infrastructure support. The issue is also raised in [101] and [102]. Indeed,

the Sentient Graffiti framework in [101] resembles our approach of SOLE by consider-

ing contextual attributes of user-created graffitis (associated to a location or object). In

the back-end, there is a Graffiti Rulebase to infer suitable graffitis for a user and filter

out those unlikely to be of interest. The information is then pushed to the user. Nev-

ertheless, the contextual attributes of graffitis are all static, with values assigned during

22http://gowalla.com/.

49

the creation time, such as locations and periods of availability. The context model does

not support dynamic context attributes, such as crowd level of a graffiti associated with

a shop service. Therefore, the information push is done in an intuitive manner, i.e. by

matching distance and tags interested by the user. Compared with the framework, SOLE

is built on top of Coalition for context data retrieval and subscription, and therefore those

dynamic attributes of graffitis can also be supported in the process of inference. Further-

more, with the ACE framework, SOLE does not need to consider how to interact with

Coalition. The push mechanism can be simply achieved by specifying a set of rules

over the contextual attributes of the user and the graffitis involved. The details about

context-awareness of SOLE will be presented in Section 5.5. Third, privacy is the major

concern2324 for these Web applications, as the user may not trust the hosting service for

the storage of his private data. For instance, the recent data collected by Inside Face-

book Gold25 shows that Facebook has lost 6 million users in the U.S. during May 2011,

which is the first time U.S. numbers have dropped in more than a year. Reasons have

been analyzed in Websites such as PCMAG.COM26, and one of the main reasons is that

these Websites overuse people’s private data such as their profiles without permissions.

Although all these applications provide user controlled privacy settings, straightly speak-

ing, all the data is still under the control of the application but not the user. Compared

to these applications, SOLE is more flexible by allowing the user to choose where to

store the experience data and to specify his audience. Three storage schemes have been

designed for different levels of privacy protection. When the data is stored on mobile

devices, it could be offered through services provisioned by these devices. The details

will be described in Section 5.2.

In UbiComp, there are context-aware systems making use of ubiquitous technolo-

23http://www.prweb.com/releases/facebook/privacysurvey/prweb4057284.htm.
24http://news.blogs.cnn.com/2011/06/08/gotta-watch-facebook-privacy-concerns/.
25http://gold.insidenetwork.com/facebook/.
26http://www.pcmag.com/article2/0,2817,2386884,00.asp/.

50

gies such as Infrared (IR) sensors, RFID tags and Near Field Communication (NFC)

technology to detect user contexts (e.g. location) and identify objects around him. In

case the objects are associated with information contributed by other users, the infor-

mation can be searched, browsed and utilized by the user. The early representatives are

Cyberguide [103] and C-Map [104]. In C-Map, several criteria are used for the recom-

mendation of exhibition, such as the similarity between the interest vector of the user

and each exhibit’s keyword vector, the geographical distances between exhibit sites and

the user location, and the exhibit site attendance. Like Web 2.0 applications, the re-

cent context-aware information sharing systems are also encouraging users to contribute

their own data. In RevisiTour [105], the system enables visitors to organize photos taken

from tour sites and share them with others. Visitors are identified with RFID tags and

the pictures taken are sorted by location and time. The whole system is integrated with

Flickr, so others including the visitor himself could see the sorted pictures on the Web.

Similar ideas by tagging people or objects for information sharing can also be found in

systems eXspot [106], LORAMS [107], and APriori [108]. However, one major limi-

tation of these systems is that they are designed and deployed for specific application

domains, e.g. for museums, exhibitions and conference rooms, and hence tend to be

smaller in scale. They assume all the entities are identified with RFID tags, which may

be restrictive in practice. In addition, privacy protection is seldom discussed in these sys-

tems (An exception can be found in SharedLife system, which differentiates user data

into several “memory” categories — personal, community, object and application, and

thus managing them with distinct characteristics). Compared to these context-aware in-

formation sharing systems, SOLE is more generic and extensible. The widespread use

of smart phones and other mobile portable devices has effectively created a large-scale

testbed for UbiComp. The user may be identified by the mobile device carried with him,

and through services running on the device, the user’s context data such as his location

51

can be easily retrieved. Moreover, like other Web 2.0 applications, SOLE provides a

set of APIs for third-party applications and services to utilize. For instance, a shopping

recommendation application can make use of people’s experience rating on shops from

SOLE.

In summary, SOLE is a context-aware information sharing application developed

for mobile ubiquitous computing. It combines the technologies (e.g. mobile portable de-

vices) and techniques (e.g. context infrastructure) applied in the two computing paradigms.

We use SOLE to validate the technical feasibility of LASPD and ACE for enabling the

provision, discovery and development of ubiquitous services and applications.

CHAPTER 3

LASPD: A PLATFORM OF

LOCATION-AWARE SERVICE

PROVISION AND DISCOVERY

This chapter presents the detailed design of LASPD — a general platform to support

efficient and effective mobile service provision and discovery. The solutions to issues

and challenges as mentioned in Section 1.4 are described, including how to support

mobile service provision and how to enable location-aware service discovery. We will

use the two application scenarios illustrated in Section 1.3 of Chapter 1 as the case studies

to help explain concepts and mechanisms in LASPD.

The rest of the chapter is organized as follows: Section 3.1 describes the motiva-

tion and structure of the three-tier service provision architecture in LASPD. Section 3.2

presents the network model of LASPD and its location-aware routing mechanism for

service queries. Section 3.3 discusses the potential features of LASPD for practical ser-

52

53

vice provision and discovery. Section 3.4 shows the performance results derived from

simulation studies. Finally, Section 3.5 summarizes the chapter.

3.1 Three-Tier Service Provision Architecture

3.1.1 Motivation

Service oriented computing is becoming the de facto method for efficient develop-

ment and integration of software in different application domains. The resulting in-

teroperability, due to the adoption of open standards such as Web services, enables us

to move closer to the vision of Internet of Services. Furthermore, with the emergence

of mobile services, the model of service provisioning is moving from the conventional

legacy server-centric approach to a people-centric one. To handle such a scale (to the

size of the world) of service provision and discovery, conventional centralized solutions

are inappropriate due to the issues as discussed in Section 1.3 and Section 2.1.1. The dis-

tributed approaches such as those P2P-based (Section 2.1.2) are more promising in terms

of scalability when dealing with the situations such as a single point of failure, frequent

joining and leaving of service providers. Therefore, we have adopted P2P techniques in

designing LASPD for large-scale service provision.

On the other hand, in real-life situations, each service can be under the control of

an administrative domain and governed by a set of policies. The area of administration

is usually defined by the geographical boundary of for example a shopping mall or an

enterprise. In the P2P-based approaches as discussed in Section 2.1.2 and Section 2.1.3,

most of them have not addressed this practical concern; while we believe by taking ser-

vice administrative domains into the design consideration for the architecture of service

provision, the benefits are threefold: first, the scale of service management is reduced,

with each area hosting a manageable number of service providers; second, services are

54

controlled by the specific domain, which allows policies such as for service access con-

trol and for service data storage to be enforced; third, each administrative domain can

be a potential autonomous area so that failing or disruption in other areas does not affect

service provision and discovery in the current area.

Furthermore, as mentioned in Section 1.4, mobile portable devices such as smart

phones have limited memory, processing power and battery life, and are mostly mobile.

Consequently their availability as a service provider cannot be guaranteed. Besides, these

devices usually contain personal information which is vulnerable to security threats and

breaches of data privacy. Therefore, when organizing the actual service providers, we

distinguish normal devices to mobile portable devices, and thus managing those mobile

service providers separately for better customization of security and privacy protections.

3.1.2 Architecture Design

As motivated in Section 3.1.1, LASPD is designed with a three-tier architecture for

worldwide service provision (Figure 3.1). In the first tier, service administrative areas

are identified and some of which may be further divided into smaller sub-areas according

to some criteria such as boundaries of service authority. The boundary for each area is

geography-based and is associated with a semantic name such as ION Shopping Center.

In addition, the area hierarchy (i.e. whether or not an area is contained by another one)

is specified in a geographical tree structure. All the service providers are assumed to

originate in one of the specified areas and reside there except those mobile services. As

illustrated in Figure 3.1, we are currently modeling each area as a rectangle for simplicity

in prototyping while noticing an irregular area could be approximated by multiple rectan-

gles in practice. The complete specification of each area is maintained by a special peer

node known as a superpeer. Though the superpeer represents the geographical center

of the area, the computing hardware enabling the functionalities of this superpeer does

55

Area A

Area B Area C

Area D

Subarea D3

Subarea D2 Subarea D1

Unclassified

Service Peer

a

2
nd
Tier

Local-Area Service

Organization

b

c

d

e

f

g

Superpeer A

B C

D

Superpeer

1
st
Tier

Area

Organization

Personal

Devices

WiFi 3
rd
Tier

Mobile Service

Organization

GPRS

Personal

Devices

Proxy

Personal

Devices

3G

Proxy Proxy

Figure 3.1: Three-tier service provision architecture.

not need to be physically present in that area. In fact, the superpeer in Figure 3.1 can in

principle be implemented in a networked server says of a remote data center. The same

arrangement is also applicable to other peer nodes shown in the second tier (i.e. defined

as service peers later). To simplify our discussion from hereon, we assume a superpeer

of an area and its service peers are all residing in physical hosts of that area. Each super-

peer performs the following two fundamental operations: it helps new service providers

to register (i.e. join) to the area and facilitates cross-area queries by maintaining links

with superpeers of neighbor areas (Section 3.1.3). The role and functions of a superpeer

for an area can be hosted on a designated server or on capable service provider’s server

in the area. While the former has full administrative control, the latter may only perform

the basic essential operations of superpeers due to server ownership issues. With our

current indexing mechanism (Section 3.2.3), we have found through simulations that the

processing workload of a superpeer is quite light and is manageable by most modern

desktop computers.

After dealing with area/sub-area organization, the service providers of a specific

area/sub-area (referred to as local area) are managed in the second and the third tier

56

based on their capabilities. Service providers in the second tier tend to be resource richer

and highly available, such as the server of a shopping mall or an enterprise. In this tier,

P2P concepts are applied to achieve scalability and to mitigate the negative effects of

joining and leaving of service providers. We refer to all service providers in this tier

as service peers which share common computation tasks such as service indexing and

query routing. Note that the superpeers are also service peers, and the role and functions

of the latter can similarly be implemented in hosts not geographically located in the area.

The third tier is to enable mobile service provisioning through portable devices such

as smart phones. We assume they can connect to the Internet in some way, such as

through GPRS, WiFi, or 3G. Each device in this tier shares its service through a proxy

in the second tier, which is a peer of supposedly higher availability and resourcefulness

(Figure 3.1). For instance, in the M-Health Application (Scenario 1 in Chapter 1), if a

doctor wishes to be the volunteer to provide the emergency care service to nearby peo-

ple, he can run the application on his mobile phone which announces his presence. When

entering a specific area, the mobile application will look for a proxy which will in turn

register the mobile service in the P2P network of the area for discovery and invocation.

We choose to have the role of proxy in LASPD due to the following considerations: (i)

the resource limitation of mobile devices as discussed in Section 1.2.1 and Section 1.2.2

restricts the scalability and availability for the services hosted on them. It is inappro-

priate for these mobile services to support large number of requests, such as for video

streaming from the embedded cameras. The issue is further complicated when dealing

with multiple concurrent requests. In addition, the availability of the service is largely

affected by the facts such as battery level of the device and its mobility. Therefore, to

ensure a better quality of service for these mobile services, they should be distinguished

from the conventional services and be taken care of with special support; (ii) consider-

ing the P2P concepts deployed in the second tier of LASPD, it is not feasible for these

57

mobile devices to perform the peer operations such as facilitating P2P connectivity and

routing of queries. Also, their frequent moves impose a big challenge to set up and main-

tain the P2P connectivity for others and themselves. As a result, to help the provision of

these mobile services in LASPD, additional components are required. Indeed, the issue

presented in (i) is also discussed in [79] and [109]. They have also carried out survey

studies on existing approaches to handle the issue, and found that the intermediary-based

approaches such as those by deploying JSA (Section 2.1.4) are more effective by com-

paring with those by using direct communications between clients and mobile services.

Our proxy concept is much like the surrogate host concept in JSA; however, as discussed

in Section 2.1.4, one major difference between JSA and LASPD is that we are applying

the emerging Web services technology for service invocation, which is more flexible for

choices of the underlying programming environment (by considering the heterogeneity

of mobile devices). The detailed modeling for the proxy and its support of mobile ser-

vice provisioning are presented in Section 3.1.4 and Section 3.1.5. Additional features

supported by the proxy are discussed in Section 3.3.

3.1.3 Location-Aware Identifier Allocation and Connectivity Setup

for Service Peers

As mentioned in Section 1.4, the relevance of the discovered services is critical for

the quality of service of the developed platform. The relevance can be determined by

contexts such as the locations of the service provider and consumer, the type of the

service provisioned and the interest of the consumer. In fact, most information (service

may also be considered as a type of information) sharing applications/systems utilize the

user location (Section 2.3). Therefore, we have incorporated the geographical location

information of service providers in their provision process so that location-aware service

discovery can be efficiently supported for service consumers.

58

In practice, the location of an entity is usually represented in a two-dimensional coor-

dinate space1, with one dimension known as latitude and the other as longitude. Never-

theless, by simply relying on the geographic coordinates, it has the following limitations

for organizing service peers and providing location-aware service discovery in LASPD:

(i) the information of the service’s administrative area is not reflected, and therefore

area-based service discovery cannot be supported; (ii) there lacks an effective way for

managing service peers and maintaining their connectivity in an administrative area. If

geographical distance is used as the metric to organize different service peers (e.g. each

service peer is connected to the nearest neighbor on the geographical map), it would

result in an unstructured network and make efficient routing difficult (e.g. by flooding

queries for distance-based range search). Furthermore, if there is any changes to the net-

work topology, e.g. due to joining/leaving of a service peer, the maintenance overhead

would become high, since variable number of service peers could be affected for their

connectivity setup.

To cope with the above issues, we have chosen to encode the location information

of each service peer in a one-dimensional identifier. More specifically, the identifier

is represented in a binary form and is composed of two parts: areaID peerID. As

an example, the identifier for service peer c in Figure 3.1 is 1110 1001. The areaID

is to differentiate peers in different areas so to enable cross-area routing. Its length is

d · ⌈log2(bfmax)⌉, where d is the depth of the geographical tree in the first tier and bfmax

is the maximum branching factor of the tree. Figure 3.2 illustrates the allocation of

areaID for the areas in the first tier of Figure 3.1. Once the areaID is determined, the

connections among superpeers that represent these areas are settled. Each superpeer is

connected to the first superpeer whose areaID is greater than that of its own, i.e. in terms

of decimal value. This maximizes the flexibility of area organization; most importantly,

1Some geographic positioning system may also add a third dimension to state the entity’s altitude.

59

Root Area

Area A

0000

Area B

0100

Area C

1000
Area D

Subarea D1

1100

Subarea D2

1101

Subarea D3

1110

Unclassified

1111

Figure 3.2: Labeling areaIDs for a geographical tree (d = 2, bfmax = 4) defined for the
first tier in Figure 3.1.

it ensures a fixed number of connections is maintained by a superpeer irrespective of

changes in area definitions.

While the areaID reflects the coarse-grained location information of a service peer,

the peerID is supposed to contain the fine-grained location information; meanwhile, it

should allow a simple yet effective way for managing service peers in a local area. When

surveying the techniques for peerID assignment, we have found the Hilbert space filling

curve (Hilbert curve for short) [27] best fits our requirements due to its locality preserv-

ing and fractal (self-similar) properties. As illustrated in Figure 3.3 (top), the Hilbert

curve is a continuous fractal curve that can cover a d-dimensional space (in our case

d = 2) through several iterations. The area shown in the figure consists of seven service

peers as demonstrated in the second tier of Figure 3.1. Initially, the curve consists of

lines which lay over a few coarse-grained regions. Then it is recursively refined until

only one service peer remains in each cell (in two iterations for this case). The peerID

of a service peer will then be the ID of the cell it resides in. In fact, the set of cell IDs

generated in different iterations can be represented in a hierarchy which we call Hilbert

construction tree (Hilbert tree for short) (Figure 3.3 bottom). The peerID length is 2r,

where r is the depth of the Hilbert tree for the area. In practice, we target a predefined

cell size of 1m2 to determine the number of iterations required, as we assume a density

of one service peer per square meter is deemed acceptable for most applications.

60

01

00 11

10

HCT

00 01 10 11

10 01 10 11

01 00

00 00

11 01 11 10 11 11

1
st

Order

2
nd

Order

0000

0010

0001

0011

0100

0110

0111

0101

1000

1010

1011

1001

1110

1100

1111

1101

Figure 3.3: Using Hilbert curve for assigning identifiers to service peers (top). The IDs
generated in different iterations form a Hilbert construction tree (bottom).

Applying the Hilbert curve has two main advantages: (i) the curve allows one to re-

duce higher-dimensional proximity problems, e.g. distance-based range search, to a one-

dimensional problem. The neighboring cells (in terms of their decimal values of IDs) on

the Hilbert curve are always mapped from points that are closest on the geographical

map. Although the converse cannot always be true (which is inevitable when mapping

from a 2-dimensional space to 1-dimensional space), the Hilbert curve has been found

as the best mapping technique for maintaining locality in both directions compared with

other space filling curves [110]; (ii) the connectivity among service peers can be simply

based on peerID, i.e. if two peers follow each other on the curve, they maintain a con-

nection to each other. With this mechanism, each service peer maintains a fixed number

of connections. This allows easy management of service peers especially when the area

definition is changed. For instance, if the cell labeled with 01 in Figure 3.3 (top left)

is classified as a new area of service administration (due to the construction of a new

shopping mall), only the service peers with peerID 0000, 0100 and 1001 are affected

for their connectivity. More specifically, service peer 0100 could become the superpeer

61

for the new area, and service peers 0000 and 1001 will become neighbors. In Section

3.2, we would like to give more details on how to utilize peerID to achieve efficient

location-aware service discovery.

Indeed, the method for connecting service areas in the first tier of LASPD resembles

the mechanism to construct the Hilbert curve, i.e. by considering the geographical tree

as a “Hilbert tree”. Though the geographical tree may be incomplete in terms of area

definitions (i.e. certain area may be undefined in the tree), the resulted connectivity

among service areas exhibits the two properties as discussed for the Hilbert curve. For

instance, Area B shown in Figure 3.2 can be further defined into B1 (0100) and B2

(0101), and then the dot line will cross each area in the order <A1, B1, B2, C, D1, D2,

D3, Unclassified>, which preserves the area locality. As a result, we will use the term

“Hilbert curve” for both tiers in our later discussion, and when referring to the curve for

a specific area on the second tier (i.e. local area), we use the term “local Hilbert curve”.

3.1.4 Functional Components of Service Peer

Each service peer in LASPD can perform two basic tasks: service provision and ser-

vice discovery. The service provision relates to the publication and indexing of services;

while the service discovery deals with lookup and invocation of the desired service upon

a request. Figure 3.4 shows the core functional components of a service peer and how it

relates to services. The functions of each component will be highlighted below.

As a service peer may host multiple services, service management is essential. It

controls the start/termination of a service and may support service migration as will be

discussed in Section 3.3.2. The service registration component handles service regis-

tration to LASPD with its specifications such as name and description (e.g. WSDL file

for Web services), in which we consider three types of services: local service, remote

service and mobile service. The latter two types of services are deployed on separate ma-

62

Service

Registration

Service

Invocation

Peer Link

Maintenance

Query

Routing

Query

Processing

Query

Generation

Service

Indexing

Range Link

Indexing

Service Management

Mobile

Service

Service Peer Functions in LASPD

Bind

SM

SM

SM

Remote

Service

Bind

Local

Service

Bind

Figure 3.4: Illustration of the functional components of a service peer and its relationship
with services. (SM stands for the service mediator)

chines that do not co-host any service peer. For instance, in an enterprise environment,

there can be only one machine (e.g. the enterprise server) implementing the functions

of a service peer, while the rest of the machines which have services to offer are oper-

ating as remote service providers (to the enterprise server). There can also be service

provisioned on mobile devices which have limited resources to run a service peer. With

the help of the service mediator component, the service peer may operate as a proxy for

these remote and mobile services. The details about service mediator and how the proxy

functions will be discussed in Section 3.1.5. To improve the efficiency of the process

of service discovery, all service information registered are indexed using the DHT tech-

nique over the respective P2P network of service peers for each local area. The process

is completed by the service indexing component, and we will discuss in details in Section

3.1.6. The components of range link indexing, peer link maintenance, query generation,

query routing and query processing are all related to the network model of LASPD and

the protocol for service discovery, for which we would like to present their functions in

Section 3.2. Once the desired service is looked up, the requester may invoke the service

directly through the service invocation component.

63

3.1.5 Mobile Service Provisioning

To enable mobile service provision, the mobile service providers have to first find

a proxy (as motivated in Section 3.1.2) in the second tier of LASPD. In the prototype,

we have designated a port for each service peer capable of being a proxy to listen to,

so that if the mobile service provider and the proxy are in close proximity, i.e. in the

same WiFi network, the proxy can be discovered via WiFi broadcasting. Alternatively,

a list identifying the addresses of potential proxies can be retrieved from a dedicated

Web server; or due to security and privacy concerns, the mobile service provider may

explicitly choose his own trusted proxy (Section 3.3.3). Once the proxy is discovered,

a TCP connection is established between the mobile service and the service peer. More

specifically, the connection is maintained by the service mediator (SM component in

Figure 3.4) which is created by the service peer and is bound to each mobile service

provider. The connection between the mobile service provider and the service mediator

acts as a control channel and fulfills three tasks:

• Utilization of Service Peer Function. Through the service mediator, the mobile

service provider registers its service in LASPD by sending the request with nec-

essary service information (e.g. name, description and WSDL file). The service

mediator is responsible for interacting with the underlying functions of the service

peer such as service registration and service indexing, so that the mobile service

can be discovered in LASPD.

• Invocation of Mobile Service. To the outside world, the service mediator running

on top of the service peer acts on behalf of the mobile service. It registers the

service for the mobile service provider using its own IP address and a port as the

service reference. Thereafter, any request for invocation of that service will first

be routed to the corresponding service mediator designated by the IP address and

64

the port. By receiving the request (in Web Services SOAP2 format), the service

mediator will pass the message to the mobile service provider through the con-

nection between them. To support concurrent requests, for each request received

another TCP connection is set up between the mobile service provider and the ser-

vice mediator which serves as the data channel to transmit the reply. The number

of concurrent requests supported by the mobile service can be configured by the

provider.

• Keepalive. Despite of the above two types of control messages, a dummy keepalive

message will be sent periodically from the service mediator to the mobile service

provider. It is to ensure the liveness of the mobile service. In case the mobile

service provider has turned off the service or changed network connection due to

the movement, the service mediator will detect the event and deregister the mobile

service with LASPD and then terminate itself. In addition, the message is also used

to prevent disconnection due to network inactivity when the provider is behind a

NAT proxy or a Firewall.

It is worth noting that the presence of service mediator has eliminated the need for

the service registration to differentiate between local, remote and mobile service pro-

visions, which simplifies the process of registration. The network addressability issue

as discussed in Section 1.3 is also solved so that mobile service providers do not nec-

essarily possess public IP addresses for their service provision. At this moment we are

assuming each proxy has a public address, but solutions such as Traversal Using Re-

lay NAT (TURN)3 and Interactive Connectivity Establishment (ICE)4 protocols can be

incorporated into LASPD to remove the assumption.

2http://www.w3.org/TR/soap12-part1/.
3http://tools.ietf.org/html/rfc5766.
4http://tools.ietf.org/html/rfc5245.

65

3.1.6 Service Keyword Indexing

For validation purpose, the current prototype of LASPD supports keyword-based

service discovery; that is, the set of service keywords extracted from the service’s de-

scription file (e.g. WSDL file) for its name and service description are filtered with a

list of stop words (e.g. “and”, “the”), and then indexed in the Hilbert curve of the local

area by using the SHA-1 hashing function. We have truncated the key size so that each

keyword is hashed to a 2r-bit key (i.e. according to the length of peerID in the area)

and is assigned to the first service peer on the Hilbert curve whose peerID is equal to

or greater than the key value. The manner to distribute keys is exactly the same as that

in the consistent hashing algorithm proposed in [111] and that adopted by P2P systems

such as Chord. Meanwhile, the concept of service scope is considered in the process

of keyword indexing. It defines the target areas (i.e. areas/sub-areas in the first tier of

LASPD) for which the service is supposed to serve. The rationale is that for services

such as Web services, their hardware facilities do not have to be physically present in

their target areas. In such cases, the information of their services should be correctly

indexed. For instance, consider a weather report Web service which is hosted in USA

but returns weather information of Singapore. To make this service locally discoverable

to Singaporeans, this service should be indexed in the Hilbert curve of Singapore but not

that of USA.

Of course, by simply using keyword-based service discovery, it has two trivial prob-

lems: (i) only exact matching is supported, which restricts the service consumer to issue

exactly the same keyword used for indexing in order to discover the service; (ii) for Web

services which contain process flows for business logic, the matching is only done at

shallow level: the process structure of the service is not reflected in the matching pro-

cess, and therefore the incompatibility issue may raise up during the integration with the

discovered service. There are semantic-based approaches as introduced in Section 2.1.3

66

to address issue (i); while for issue (ii), our previous work has developed a structure

behavioral approach in [112].

3.2 Location-Aware Service Discovery

Due to area classifications, a service consumer and a desirable service provider may

not reside in the same area. This mandates the need for differentiating between local-area

and cross-area queries. For local area queries, they are routed along the Hilbert curve

of the local area until they reach the destination service peer. However for a cross-area

query, it could first be directed to the superpeer of the area where the query was origi-

nated, and then be routed to the superpeer of the target area along the Hilbert curve of

the first tier, and finally be routed to the destination service peer via the Hilbert curve of

the target local area. Unfortunately, such a method (which we will refer it as superpeer-

based routing approach in Section 3.2.3 and Section 3.4.2) is neither efficient nor fault

tolerant, as the routing path may involve all the service peers in the two areas and if any

of them fails, the destination peer will be unreachable. Moreover, the frequent cross-area

queries through the query source’s superpeer may stress that superpeer and the overload-

ing or failure of a superpeer would jeopardise the efficiency or operation of cross-area

query routing. Therefore, we apply the concept of long-range links (i.e. shortcuts) in

the small world model to help construct the underlying network and to achieve network

navigability and fault tolerance.

3.2.1 Small World Model

Small world phenomenon was first demonstrated by [113], showing that pairs of

people in a society can be connected by short chains of acquaintances, or so-called six

degrees of separation. Since then, a number of network models have been proposed to

67

exploit the phenomenon. The most successful one is proposed by [114], in which they

construct the small world by modifying a regular network with a small portion of links

randomly rewired to form long-range links. The model achieves small world properties

in terms of low network diameter and high cluster coefficient. Later, [115] general-

izes their model to an infinite family of network models and provides a way of rewiring

long-range links so that a decentralized greedy algorithm can be applied to achieve poly-

logarithmic search time. Such a navigability property is first studied in a 2-dimensional

grid and later extended to the hierarchical and group structure models [28]. While Klein-

berg’s work largely characterizes the static properties of a network that needs to be nav-

igable, recent studies on the small world model are more focussed on its emergence in

real world settings. Among those, the rewiring or augmentation process in the evolution

of a network attracts the most attention, as it potentially makes a network autonomous.

[116] proposes a process that if the target cannot be reached after Tthresh steps, a long-

range link is rewired from the source peer to the current peer. The threshold Tthresh is set

based on the expected number of routing steps in the topology. [117] suggests emerging

small world by random walks; that is, each peer in the k-dimensional lattice possesses

a token. These tokens move mutually independently according to random walks. If the

token stops at a certain point of time, a long-range link is rewired from the peer possess-

ing the token to the current one. A link forgetting mechanism is also included in their

proposal which reflects natural behavior of the individuals. [118] proposes a so-called

Destination Sampling mechanism. The mechanism iteratively selects two peers (source

and destination) from the peer set uniformly, and constructs the path based on greedy

routing from source to destination. For every peer on the path, it has a chance p to create

a long-range link to the destination peer. It has been shown that the mechanism adapts

robustly to a wide variety of realistic situations [119].

68

Source Sampling

Among the three evolutionary rewiring proposals, the approaches in [116] and [118]

are more efficient and feasible by possibly involving the rewiring process into the process

of query routing. However, both of them assume certain information of the destination

peer (e.g. distance to the destination peer in [116] and contact information of the desti-

nation peer in [118]) is known in advance. Such an assumption can easily be emulated in

simulations, but in practice the information of the destination peer can hardly be known

until it is discovered first. We hereby propose the Source Sampling mechanism as defined

in Definition 1. The rationale is that the information of the source peer (e.g. IP address)

is always contained in the query message and can be known to every peer on the routing

path; thus it is more practical to rewire long-range links from the source peer to any peer

on the path. In addition, the maintenance effort of each peer is minimized as the network

structure is constructed and maintained in an autonomous manner. P2P systems such as

Chord and CAN usually have fixed network structures and require strong maintenance

over the connectivity with the peers in the routing table; while in LASPD, only the con-

nectivity as mentioned in Section 3.1.3 requires strong maintenance to ensure network

reachability (more details refer to Section 3.2.5).

Definition 1. Source Sampling. For a given network graph G = (V,E) composed of a

set of vertices V and edges E, let R be the predefined routing scheme and E(v) be the

set of edges going out of v ∈ V . A path X(v0, t) = v0
e0−→ v1

e1−→ v2 . . . vn
en−→ t can be

constructed from vertex v0 ∈ V to vertex t ∈ V based on R, where vi ∈ V and ei =

R(vi, t, G) ∈ E(vi). For each vertex vi (i ≥ 1) on the path, including t, an independent

sampling process is performed. With probability p a shortcut edge e is created from v0 to

vi. In addition, a random shortcut edge e′ is replaced if the current number of shortcut

edges reaches the limit for v0. At the end, G ⇒ G′ = (V,E ∪ {e} − {e′}).

Figure 3.5 illustrates the source sampling mechanism in a local-area topology. In the

69

v0

v1

v2

t

1

2

3

4

5

1, 2, 3: links used for constructing the

query routing path from v0 to t, and

link 1 is the long-range link built

previously;

4: the sampling process on v2 is

successful and v0 is informed to create

a long-range link to v2;

5: a long-range link is rewired from v0
to v2 , and if there is only 1 long-range

link allowed for v0, link 1 is replaced.

Figure 3.5: Illustration of the source sampling mechanism for a query from v0 to t.

actual setting, we allow each service peer to have up to k (O(1)) number of long-range

links. The rewiring probability p is derived based on the formula applied in Kleinberg’s

hierarchical small world model [28]:

pb(v, u) =
b−dist(v,u)

Zv

(3.1)

In Equation 3.1, v and u represent the leaf nodes in the hierarchical model (i.e. a

complete tree); b is the branching factor of the tree (b-ary tree); the function dist(v, u) is

set to measure the height (i.e. the length of the longest downward path to a leaf node) of

the least common ancestor between v and u in the tree; Zv is a normalization factor for

v, which is equal to
∑

x̸=v b
−dist(v,x). The probability pb(v, u) calculates the chance that

there is a long-range link from v to u. Indeed, such a probability ensures the chance to

have a long-range link to each group of leaf nodes in the tree (the group is determined

by the value measured by dist(v, x), where x is any leaf node except v) to be the same,

and a decentralized algorithm is thus allowed to achieve searching in polylogarithmic

time with O(logN) number of long-range links assigned for each leaf node [28]. When

applying the probability model to the Hilbert tree (as illustrated in Figure 3.3 (bottom)), v

and u represent the service peers; b is equal to 4; and dist(v, u) can be measured directly

from the two peers’ IDs, i.e. peerID for local-area scenarios and areaID for cross-area

70

scenarios. Since we allow O(1) rather than O(logN) number of long-range links for

each service peer, the actual routing efficiency is expected to be O(log2N) (as verified5

in the network navigability test in Section 3.4.2). Nevertheless, in practice, deploying

the original probability model faces two issues. Firstly, the default model applies on

complete balanced trees only, which may not be true for the case of the Hilbert tree as

illustrated by the empty leaf nodes in Figure 3.3 (bottom), and therefore the probability

model can be inaccurate and results in routing performance issue as will be demonstrated

in Section 3.4.2. Secondly, the process of constructing the small world network (i.e. the

convergence speed for the routing performance) is extremely slow when the model is

applied to areas with large size, which is due to the large dist(v, u) value applied. As a

result, we have introduced two other parameters in the default model:

p̃b(v, u) =
b−dist(v,u)

Zv

· covid(u) · α (3.2)

In Equation 3.2, parameter covid(u) measures the ID “coverage” of service peer u,

and is used to remove the effect of empty leaves in the Hilbert tree, which may fre-

quently happen in large areas. It is derived by halving the ID distance between the two

neighbors of u on the Hilbert curve. The constant parameter α, on the other hand, helps

to accelerate the convergence speed for source sampling, i.e. by increasing the chance

that a shortcut is created. It varies the mean shortcut distance (i.e. the link length in

terms of hop count) for all the long-range links rewired. In Section 3.4.2, we will justify

the effectiveness of applying the two parameters in performance convergence for source

sampling as compared to the original probability model.

5The complete formal proof of the O(log2N) performance bound still requires further investigation.
It is hard to analyze the network model mathematically, which is due to the dependencies between long-
range links rewired in the evolutionary process. Nevertheless, to prove the performance convergence of
the process, Sandberg and Clarke’s approach [118] can be applied here.

71

Centralized Sampling

An alternative way to construct the small world network is what we called Central-

ized Sampling. The mechanism requires a centralized coordinator (i.e. the superpeer in

this case) to help assign long-range links (i.e. the computation of p̃) for all the peers

in the network. For instance, when there is a new service peer registered, the following

two sampling processes are involved: (i) sampling for the registered service peer (i.e. v

in Equation 3.2) with each peer in the network (i.e. u); (ii) sampling for every service

peer in the network (i.e. v) with the registered peer (i.e. u). In (ii), if the process suc-

cesses, the coordinator will send a message to the respective peer with the information

of the registered peer (for the creation of long-range link). However, compared with

source sampling, centralized sampling suffers from two drawbacks: (i) the computation

and assignment of long-range links are all done by the centralized coordinator, which

could be the potential bottleneck and become a single point of failure; (ii) for any topol-

ogy change, all the service peers have to be re-sampled, and if there is any change to

the long-range link assignment, messages have to be sent out by the coordinator, which

causes large maintenance overhead.

Nevertheless, in practice source sampling also has its own issues: (a) not every peer

has a chance to become the source peer, so the peer can have no long-rang link assigned

(due to the rewiring process as described in Definition 1); (b) source sampling requires

time to converge for its routing performance (as will be demonstrated in Section 3.4.2).

Therefore, a more practical approach is to combine the two mechanisms, by first apply-

ing centralized sampling for the newly registered service peer (i.e. the sampling process

(i) as described in the last paragraph), and then relying on source sampling for the main-

tenance of its long-rang links. The advantage by combining the two mechanisms has

been observed through simulation studies and will be demonstrated in Section 3.4.2.

72

3.2.2 Network Routing

For query routing, a simple greedy algorithm based on the identifiers assigned to each

service peer is adopted. To further improve the routing efficiency, we close the Hilbert

curve to form a loop by connecting the service peer with the smallest identifier to the

one with the largest identifier. In this way, queries can be routed in both directions on

the Hilbert curve. Definition 2 describes the greedy routing process.

Definition 2. Greedy Routing R. For a given network graph G = (V,E) with each

vertex labeled with areaID of length 2d and peerID of length 2r, let E(v) be the set of

edges going out of v ∈ V and vi = ei(v) be the vertex connected through ei ∈ E(v)

from v. Suppose t is the destination vertex, the greedy routing R selects the next edge

e = R(v, t, G) from v based on the criteria that e = argminei∈E(v) (˜dist(ei(v), t)),

where

˜dist(vi, t) =



min{|peerID(vi)− peerID(t)|,

22r − |peerID(vi)− peerID(t)|}

min{|areaID(vi)− areaID(t)|,

22d − |areaID(vi)− areaID(t)|}

for local-area and cross-area routing respectively.

3.2.3 Area-based Service Discovery and Long-Range Link Indexing

The greedy routing algorithm mentioned above is based on a target key contained

in the query header. For local-area queries, the keywords specified by the requester are

first hashed to the respective keys according to the hash function used in Section 3.1.6.

Each key is then looked up on the local Hilbert curve. During the query generation, the

areaID of the target service peer in the query header is set to −1; while the peerID is

set to the integer value of the key. The greedy routing mechanism is then applied to find

73

Singapore
USA

New York

Superpeer

Keith
WiFi

Proxy

Superpeer

 Proxy

3G

Kate

Proxy

Service peer

storing the index

for Kate’s service

Long-range link to

superpeer

Long-range link to

service peer

Service invocation

through service mediator

Service query

Long-range link

Service invocation

Figure 3.6: Illustration of the source sampling mechanism for the Interactive Event Shar-
ing Application (Scenario 2 in Chapter 1).

the service peer storing the key.

For cross-area queries, the target area is specified by the user and indicated by the

areaID in the query header. The superpeer-based routing algorithm as mentioned in

the beginning of Section 3.2 can be applied. For instance, consider the Interactive Event

Sharing Application illustrated in Scenario 2 of Chapter 1 (Figure 3.6): the proxy of

Keith’s mobile device may send the service query (i.e. asking for services about sharing

of information for the general election) to the local superpeer of New York directly,

which in turn will route it to Singapore by the Hilbert curve on the first tier (Note that it

is possible to have shortcuts among superpeers on the first tier). Once the query reaches

Singapore, the local-area greedy routing algorithm is applied and the query is routed to

the service peer storing the index for relevant services. In this case, Kate’s mobile service

is discovered. After receiving the reply from the service peer, Keith may invoke Kate’s

service through the service mediator running on Kate’s proxy.

However, as mentioned before, the above method would stress superpeers from the

workload for cross-area routing and the system robustness is also an issue in case some

of the superpeers fail. Therefore, we have decided to make use of the long-range links

created through Source Sampling by service peers in an area. Continuing the application

74

example, now assume there are also people in New York who want to discover other

services in Singapore (not necessarily to be Kate’s service), their requests would then be

efficiently routed to Singapore by leveraging on those shortcuts (red dot lines) created

due to the routing of Keith’s request. Nevertheless, to let other service peers within the

area know the existence of long-range links of the current service peer, an index for the

long-range link should be kept, which maps the target areaID of the long-range links

to the local service peer IP address. Two options are available here for the storage of the

index: (i) let each local superpeer take the role; (ii) distribute the index to the service

peers in the area. Option (i) obviously contradicts our intention (i.e. make superpeers

stressful again); therefore, we have chosen the second option also due to its scalability

in dealing with index maintenance. The distribution and maintenance of the index are

similar to that of service keyword indexing except that this time we use the target areaID

of the long-range link as the key. As a result, using the modified cross-area routing

mechanism, the query is first routed to the local service peer that stores the index of

the target areaID. If there are already long-range links created for the target area, a

random service peer with such a link is contacted for the routing of the query; but,

if the index is empty, the local superpeer is contacted and used for routing. Such an

approach introduces some overhead in the routing of cross-area queries, especially in

the initial stage of Source Sampling. Nevertheless, after some rounds we expect that

our approach would require significantly less routing effort on the superpeers while the

routing performance is not degraded compared to the superpeer-based routing approach.

Indeed, the above phenomenons have been observed in our simulation whose details

could be found in Section 3.4.2.

75

3.2.4 Distance-based Range Search

Consider queries like “discover services of type t within x meters” or “browse all ser-

vices within x meters”. These are examples of distance-based range search queries that

are extremely useful in real life. It is hard to provide such features via conventional P2P

platforms unless the query is flooded to all peers of the area. In our platform, such queries

can be easily handled due to the usage of locality-preserving Hilbert curve. The query

is only matched with those relevant service peers in the range but not to all local peers.

In our approach, we first discover segments of the Hilbert curve involved in the range

search (as illustrated in Figure 3.7). Segments are identified with < startID, endID >

and are stored in the query in ascending order based on startID. The query is then

sent to discover the service peers falling within those segments. A temporal segment

< currentStartID, currentEndID > is kept to trace the current segment to be dis-

covered, initially assigned with the value of the first segment. Once the query reaches

the destination peer which has the least greater peerID compared to currentStartID,

the query is passed through and matched with all service peers along the curve until the

current peer has a peerID exceeding currentEndID. The discovery on this segment is

then considered finished and the temporal segment is assigned with the value of the next

segment. The process continues until all segments are finished.6

For the detailed derivation of segments, we have developed an R-tree style search al-

gorithm. Algorithm 1 represents the procedure to get segments. It requires parameters of

the area boundary, the number of bits for the peerID and the search bound. After creating

and filling the segment list, it will assemble those continuous ones to reduce later process

overhead. The actual segments are found by calling the procedure findSegments() in

Algorithm 2, which specifies a recursive procedure to find all the relevant segments that
6In practice, the routing efficiency of the process can be improved by sending range queries for each

segment simultaneously. With this approach, each query only carries the information of a single segment
< startID, endID >. The major routing overhead occurs when looking for the service peer with peerID
equals to startID, i.e. to discover the initial peer on each segment.

76

Service Peer

a

b

c

d

e

f

g

0 1

23

4

5 6

7

9 10

1213

14 15

8 11

Range search

involves 2 segments

(<8,8>, <11,13>).

Query regarding segment <8,8> is routed to c, but

the identifier of c is 9 (>8), so service discovery on

this segment is finished. Query regarding segment

<11,13> is routed to d with identifier 11, and the

query is matched by services d, e.

e

g

Figure 3.7: Illustration of the distance-based range search mechanism.

are contained in the search bound. It utilizes the process for the Hilbert curve construc-

tion. Each sub-area (r1,r2,r3,r4) is checked with the bound in ascending order of their

startIDs (line 10–18) so that they can be added into the list in an orderly manner. Besides,

if the sub-area is already contained by bound, a segment can be directly constructed and

added to the list. Algorithm 2 presents the recursive procedure, in which the processing

of one area is illustrated.

3.2.5 Bootstrapping and Connectivity Maintenance

Like many other P2P networks, a new service peer who intents to join LASPD must

first discover contact information for another service peer in the existing network. As

LASPD deploys superpeer for each local area (i.e. maintaining area information includ-

ing the local Hilbert curve), the bootstrapping process of a service peer mainly involves

the discovery of its local superpeer. The following methods have been implemented in

the current prototype to handle different cases:

• If the service peer is first time joining LASPD, it can contact our Web server to get

its local superpeer information (i.e. based on its service scope as discussed in Sec-

tion 3.1.6). Once the service peer successfully contacts the superpeer, its peerID is

assigned based on geographical location and its areaID is directly copied from the

superpeer. Besides, the contact information of the two immediate neighbors of this

77

Algorithm 1 List getSegments(Rectangle areaBound, int areaIDLength, Rectangle
bound)
1: Create an empty List segs;
2: x = areaBound.x; y = areaBound.y;
3: w = areaBound.width;
4: leftBits = areaIDLength− 2;
5: findSegments(x, y, w, 0, 0, 0, leftBits, bound, segs);
6: for i = 0 to segments.size()− 1 do
7: seg = segs.get(i);
8: nextSeg = segs.get(i+ 1);
9: if seg.endID = nextSeg.startID − 1 then

10: newSeg = Segment(seg.startID, nextSeg.endID);
11: segs.setElementAt(newSeg, i);
12: segs.removeElementAt(i+ 1);
13: i = i− 1;

Algorithm 2 findSegments(int x, int y, int w, int i1, int i2, int idHead, int leftBits, Rect-
angle bound, List segs)
Require: w > 1
1: w = w/2; id1 = 0; id2 = 0; id3 = 0; id4 = 0;
2: size = 2leftBits; leftBits = leftBits− 2;
3: if i1 = 0 AND i2 = 0 then
4: id1 = idHead ∗ 4 + 1; id2 = idHead ∗ 4 + 0;
5: id3 = idHead ∗ 4 + 3; id4 = idHead ∗ 4 + 2;
6: r1 = Rectangle(x+ i1 ∗ w, y + i1 ∗ w,w,w);
7: r2 = Rectangle(x+ i2 ∗ w, y + (1− i2) ∗ w,w,w);
8: r3 = Rectangle(x+ (1− i1) ∗ w, y + (1− i1) ∗ w,w,w);
9: r4 = Rectangle(x+ 1− i2) ∗ w, y + i2 ∗ w,w,w);

10: if bound.intersects(r2) then
11: if bound.contains(r2) then
12: seg = Segment(id2 ∗ size, (id2 + 1) ∗ size− 1);
13: segs.add(seg);
14: else
15: findSegments(x+ i2 ∗ w, y + (1− i2) ∗ w,w, i1, 1− i2, id2, leftBits, bound, segs);
16: if bound.intersects(r1) then . . .
17: if bound.intersects(r4) then . . .
18: if bound.intersects(r3) then . . .
19: else if i1 = 0 AND i2 = 1 then . . .
20: else if i1 = 1 AND i2 = 0 then . . .
21: else . . .

78

new service peer on the local Hilbert curve is also passed by the superpeer. Subse-

quently, the two neighbors shall be updated with the new service peer information

due to the connectivity requests sent from the service peer. In addition, long-range

links to other service peers in the same area can be assigned by the superpeer at

this moment, if the centralized sampling mechanism (Section 3.2.1) is applied;

• If the service peer is the first peer appearing in the area, it may take the role of

superpeer. In that case, the area information including the areaID and area size is

retrieved from the Web server to aid it in the construction of local Hilbert curve.

In addition, the new superpeer has to set up two extra connections with the two

neighbors on the Hilbert curve in the first tier of LASPD in favor of cross-area

query routing;

• Each service peer caches a list of other service peers in LASPD (i.e. their contact

information) after it successfully joins LASPD, e.g. its local superpeer and the two

neighbors. For the case of rebooting or rejoining, the cached service peer may be

contacted to acquire the local superpeer information. The procedure is completed

by sending a superpeer discovery message to the cached service peer. The message

is then routed to the target area (where the new service peer is supposed to register)

similarly to the service discovery message, and any peer in the area can reply with

its superpeer information.

All the service peers in LASPD maintain their connectivity with other peers by peri-

odically sending ping messages to detect peer leavings or failures. More specifically, the

maintenance involves two types of connectivity :

• Neighboring link connectivity, which is assigned based on the mapping of geo-

graphical locations of service peers on the Hilbert curve. Note that all superpeers

have two more neighboring links (i.e. for the Hilbert curve on the first tier) as

79

compared to service peers on the second tier. The superpeer does not explicitly

maintain connectivity with all the local-area service peers; rather, it operates in a

passive manner such as by relying on reports sent from services peers to deduct

the unavailability of a particular service peer. For instance, if a service peer leaves

without notice, its two neighbors would discover the fact as they cannot receive any

reply from their ping messages. If this situation (i.e. ping without reply) occurs

more than a certain threshold (e.g. 3 times as set in the prototype), the two neigh-

bors will conclude that the service peer has gone, and a link repair request will be

sent to the local superpeer from their respective peer link maintenance component

as shown in Figure 3.4. Once the request is received, the superpeer will remove the

service peer from its local-area peer list, and new neighboring connectivity will be

assigned to the requested service peer;

• Long-range link connectivity, which is assigned by the process of centralized sam-

pling or source sampling. Since long-range link is one-way connection (as defined

in Definition 1), its maintenance is only done by the assigned service peer. More

specifically, if the remote peer of the long-range link becomes unavailable (i.e. de-

tected with the same mechanism as for neighboring link), the long-range link will

be simply removed from the connectivity list of the service peer.

However, we realize that the above approach for neighboring link maintenance would

have problems when the superpeer fails. In that case, service peer would not be able to

get neighboring link assigned either for their registrations or for link repair requests. We

are currently working on an autonomous approach, which involves a protocol for service

peer discovery (similarly to the case for superpeer discovery). The protocol leverages on

the existing peers in the network to discover the destination peer, i.e. the neighboring

peer. With the protocol, service peers may register or repair their links without the help of

the superpeer. But there are further challenges to take care of, such as the segmentation

80

of network overlay due to simultaneous failures/leavings of service peers.

3.3 Further Discussion

This section presents and discusses potential features supported by LASPD, which is

for practical considerations of service provision and discovery.

3.3.1 Location Determination

Location determination of service providers and requesters is essential for location-

aware service discovery. In fact, providing the location information of mobile devices

can itself be considered as a service deployed in LASPD. The physical location of the ser-

vice provider could be determined by using either the Global Positioning System (GPS),

the WiFi networks, or other suitable localization technologies. The coordinates are then

transformed to the semantic location (area name) identified by areaID and peerID during

the registration of a service peer by the superpeer. For mobile service providers, their

proxy will join the corresponding network of service peers according to the location of

the service provider. However, if the mobile devices do not support GPS or are with GPS

function disabled (e.g. due to large power consumption), they could use the physical lo-

cation of the proxy to approximate their coordinates, assuming they are using WiFi to

connect the proxy.

3.3.2 Data Replication, Caching and Service Migration

Data replication is extremely important in mobile and dynamic environments since

nodes may join or leave at anytime. For the first and second tiers, failure or leaving of

a peer without notice may result in key loss. In LASPD, we could replicate the keys by

setting the length of a key to less than 2r bits as derived by the order of local Hilbert

81

curve. For instance, with key length equal to 2r − 3, the last 3 bits of the peerID are not

considered when distributing keys, and the same set of keys may be stored by up to 23

service peers, which are indeed geographically close on the local Hilbert curve.

For third-tier peers, caching of WSDL files and SOAP responses on the proxy can

lessen the workload on the mobile device. Another option is to do service migration as

in [75]; that is, to deploy the Web service to the proxy and letting it temporarily host

the Web service. The two options are also quite useful in dealing with the mobility of

the service provider. For instance, if the mobile service provider (e.g. Kate) is moving,

the services provided by her may be interrupted when she switches proxies, e.g. due to

the change of access point. Stateful services such as a video streaming service which

keeps the frame position for each end user are one possible solution. In LASPD, we

consider two mechanisms to handle the mobility issue: (i) if the expected interruption

time is short, the original proxy may cache the requests for a limited time period, and

once the service provider is attached to a new proxy, the original proxy is informed by

the new proxy so that those cached requests can be forward to the service provider; (ii)

if the expected interruption time is long, e.g. moving from one city to another, under the

permission of the service provider, the service could be migrated to the original proxy

and after a predefined time (or until there are no more requests for this service), the

service is closed. Of course, for both caching and service migration, the challenges will

be the privacy of the transferred data, deciding on when to do the operations, and who

decides if the operation is required, i.e. machine or user.

3.3.3 Security and Privacy Protection

Security is always a concern in the public domain, especially when not all the en-

tities are trusted. To provide secure service provision, the standard WS-Security7 can

7http://docs.oasis-open.org/wss/v1.1/.

82

be adopted in LASPD. In addition, we allow the mobile service provider to explicitly

choose his trusted proxy. For instance, the caregiver in Scenario 1 of Chapter 1 can se-

lect his home computer or an enterprise server as the proxy, for caching or migrating his

service data. Aside from the security considerations, the location of a service provider

can be revealed during service provision, while he may only want to be known in his

surrounding or a specific area. To address this issue, we utilize the concept of service

scope (Section 3.1.6). The service provider may choose his scope of service provision.

For private areas, the security function of the superpeer is extremely important. Our

architecture and the network routing model could support tasks such as access control

efficiently. The range-link indexing mechanism discussed in Section 3.2.3 could be dis-

abled in an area so that all messages sent from the area are routed through the superpeer

first. Also, in source sampling technique, the source peer address can be masked by the

local superpeer so that the long-range link can only reach the superpeer but not any peer

inside the area. In this way, all messages sent to the area should go through the superpeer.

Other tasks such as service peer authentication can also be provisioned by a superpeer.

3.4 Performance Analysis

We have developed a simulation model of LASPD and conducted a detailed series

of simulation to investigate its characteristics and performance in terms of service dis-

covery. The simulation program models the architecture of LASPD, its components and

processes; their details will be described together with simulation results in this section.

3.4.1 Simulation Modeling

• Simulation Model. Our simulation model considers service peers on the first two

tiers of LASPD. The third tier is for mobile service providers, which rely on a

83

proxy (in the second tier) for their service provision and discovery. Therefore,

when we simulate the process of query routing, these providers are not consid-

ered in the model. Rather, in Section 5.6.4 when we present the prototype imple-

mentation for SOLE, the tests on mobile service provision such as the latency of

real-time service invocation will be demonstrated.

• Topology Setup. The simulated LASPD platform considers two types of area defi-

nitions: a single area and a large area composed by multiple sub-areas. The single

area topology is constructed solely for the testing of query routing on the second

tier, i.e. the local-area scenario; while the large area involves routing on both tiers

(i.e. the cross-area scenario) and its detailed area definition is according to a pre-

defined geographical tree. In the simulation, each area/sub-area is represented by

a rectangle and is specified using < x, y, width, height > format, where < x, y >

refers to the starting coordinate of the area, and width×height represents the size

of the area. For each type of area definition, there are total N number of service

peers generated for the area (N may vary from 210 to 214 in the actual setting),

and each of them has up to 2 · k number of long-range links (in most cases k = 1

unless otherwise specified), with k links assigned for local-area query routing and

another k for cross-area routing.

• Simulation Process. The service peer joins LASPD by following the process as

presented in Section 3.2.5. Note that a service peer will take the role of superpeer

if there is no other peer in the same area. Each service peer provisions a local

service identified with a unique name, and the service name is indexed through

the process described in Section 3.1.6. The service discovery is then simulated

by composing a query which contains the following information: the source peer

where the query is originated, the target area where the query is routed to (i.e.

indicated by areaID), and the target service which is selected from the set of the

84

services provisioned in the target area. Thereafter, the process of service discovery

is triggered (Section 3.2.3), and the process is completed until the source peer

receives the reply from the service peer which stores the key for the target service.

The following assumptions/simplifications are made in the simulation model:

• Service peers are uniformly distributed in the area, and each coordinate contains

at most one service peer. This assumption is to ensure every service peer can be

assigned with a unique ID which is used for query routing.

• Service queries are generated in a way that both the source peer and the target peer

(i.e. the service peer which provisions the target service) are uniformly picked up

from the service peer set. The areaID of the target area is then encoded from that

of the target peer. The process assumes every service peer can be the source peer

for service discovery as well as the target peer for its service provisioned, and also

every query is resolvable.

• The simulation model has not counted in parameters such as network transmission

delay and message processing delay, as these parameters are largely dependent on

the practical setups, e.g. networks and machines deployed. Instead, our simula-

tion studies are by observing the path-length in terms of hop count to learn the

query routing efficiency. The detailed performance metric will be discussed in the

respective section.

3.4.2 Simulation Results

Network Navigability

This section aims to verify that the network model constructed by the proposed

source sampling mechanism exhibits the navigability property; that is, with O(1) long-

range links allowed for each service peer, the service discovery can be completed in

85

 3

 4

 5

 6

 7

 8

 5 5.5 6 6.5 7

S
qr

t.
of

 m
ea

n
pa

th
-le

ng
th

log4N

source sampling, k=1
source sampling, k=3

(a) Network navigability test.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

M
ea

n
pa

th
-le

ng
th

k

source sampling, N=212

source sampling, N=214

(b) The impacts of k values.

Figure 3.8: Experimental results for the mean path-length versus increased network size
and k values.

O(log2N) time. The simulations are carried out on a 512 × 512 single area. We use

path-length, which is measured by the total number of hops (i.e. service peers) traversed

by the query until the reception of the reply by the source peer, to evaluate the routing

efficiency. Figure 3.8a plots the relationship between the number of peers (in terms of

logbN , where b = 4 as for the branching factor of the Hilbert tree) and the square root

of mean path-length (derived by summing all the path-length for each service query and

divided by the total number of queries sent) for query routing when the routing perfor-

mance of source sampling converges to a stationary state. As illustrated by the figure,

with k = 1 long-range link allowed for each peer, the mean routing path-length increases

in O(log2N) scale while the peer size N increases exponentially. The same pattern is

also observed for the case when k = 3.

Figure 3.8b demonstrates the effects of changing the value of k for N = 212 and 214

service peers in the same single area. The mean path-length is shortened as k increases;

however, the performance gain becomes smaller when k reaches a certain value, e.g.

k = 3. Indeed, with larger k value, we should expect that the cost from the operation for

long-range link rewiring as well as that for link maintenance is increasing.8

8While this thesis focuses on the validation of network navigability for source sampling when k = 1,
in practice the tuning of k’s value is necessary to achieve optimal performance, i.e. by balancing network

86

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

102 103 104 105 106

M
ea

n
pa

th
-le

ng
th

Number of queries

512x512 area, N=210

512x512 area, N=211

512x512 area, N=212

512x512 area, N=213

512x512 area, N=214

128x128 area, N=214

256x256 area, N=214

(a) Convergence patterns without covid.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

102 103 104 105 106

M
ea

n
pa

th
-le

ng
th

Number of queries

512x512 area, N=210

512x512 area, N=211

512x512 area, N=212

512x512 area, N=213

512x512 area, N=214

128x128 area, N=214

256x256 area, N=214

(b) Convergence patterns with covid.

Figure 3.9: Effect of parameter covid in determining convergence pattern.

Effects of Parameters covid and α

This section studies the two parameters (i.e. covid and α) we introduced in the default

probability model from Kleinberg (Section 3.2.1). Equation 3.1 and Equation 3.2 are

applied in the source sampling mechanism and the patterns of convergence (i.e. in terms

of routing efficiency) are compared.

Figure 3.9a shows the patterns for the default probability model proposed by Klein-

berg9, in which the convergence of routing performance is dependent on both the area

size (e.g. by comparing the case of 512× 512 area, N = 214 and the case of 128× 128

area, N = 214) and the network size (e.g. by comparing the case of 512 × 512 area,

N = 210 and the case of 512 × 512 area, N = 214); while with the introduction of pa-

rameter covid (Figure 3.9b), the convergence patterns are only dependent on the network

size. This justifies the usage of covid, which aims to remove the effect of empty cells in

a local area (i.e. those cells without service peers allocated by the process of Topology

Setup) and allow faster convergence speed for large-size area (Section 3.2.1).

Figure 3.10 shows the effect of parameter α for network size N = 212 and N =

routing efficiency and maintenance cost. The network optimization problem has been left as part of our
future work. In addition, for those networks with high churn rate, by setting larger k value the robustness
in small world routing can be improved. Such an observation has already been demonstrated in [120].

9Note that at the initial stage of the simulation, there are quite few number of long-range links aug-
mented by our source sampling. As a result, the routing path-length can be extremely long.

87

 30

 35

 40

 45

 50

 55

 60

 500000 1e+006 1.5e+006 2e+006 2.5e+006

M
ea

n
pa

th
-le

ng
th

Number of queries

α=1
α=10
α=50

α=100
α=1000

(a) Convergence patterns for N = 212.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 500000 1e+006 1.5e+006 2e+006 2.5e+006

M
ea

n
pa

th
-le

ng
th

Number of queries

α=1
α=10

α=100
α=200

α=1000

(b) Convergence patterns for N = 214.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 500000 1e+006 1.5e+006 2e+006 2.5e+006

M
ea

n
sh

or
tc

ut
 d

is
ta

nc
e

Number of queries

α=1
α=10
α=50

α=100
α=1000

centralized sampling

(c) Snapshots of shortcut distance for N = 212.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500000 1e+006 1.5e+006 2e+006 2.5e+006

M
ea

n
sh

or
tc

ut
 d

is
ta

nc
e

Number of queries

α=1
α=10

α=100
α=200

α=1000
centralized sampling

(d) Snapshots of shortcut distance for N = 214.

Figure 3.10: Effect of parameter α in determining routing performance.

214. From Figure 3.10a and 3.10b, we can observe that α plays an important role in

determining the convergence pattern for source sampling. The convergence speed boosts

up when the value of α is increasing. For instance, the routing performance almost

reaches a stationary state after 106 queries in the case of α = 100 for N = 212 service

peers. However, the value of α cannot be set to be infinitely large. On one hand, it

increases the cost for link-rewiring operations; on the other hand, it may severely impact

on the underlying probability model (Equation 3.2). The latter problem is observed

when α is set to 1000 for both N = 212 and N = 214 cases. Through further simulation

studies, we have found that the value of α indeed affects the mean shortcut distance (i.e.

the average link length in terms of hop count) for all the service peers in the network,

as illustrated in Figure 3.10c and 3.10d. In both figures, we have plotted the respective

88

mean shortcut distance derived from the centralized sampling mechanism (the value is

stable in both cases as there is no modification to the network topology after Topology

Setup). As observed, when α achieves similar results for the value of mean shortcut

distance as in centralized sampling (e.g. α = 50 for N = 212 and α = 200 for N = 214),

its effect on source sampling (i.e. in terms of convergence speed and stationary routing

performance) is almost the best (as illustrated in Figure 3.10a and 3.10b). In addition,

the optimal value of α seems to be proportional to the network size N in our network

model. One possible reason is that the value of covid in the probability model (Equation

3.2) is inversely proportional to the network size N (based on the definition of covid in

Section 3.2.1). Therefore, to achieve the same sampling effect on each peer, α has to

be increased along with the network size N . Nevertheless, further investigation on the

optimal value of α is still required.10 In later experiments, unless otherwise specified,

we use α = 1 for performance testing.

Routing with Different Sampling Mechanisms

This section studies the routing efficiency for the proposed source sampling and cen-

tralized sampling mechanisms (Section 3.2.1) in a 512 × 512 single area with N = 214

service peers. The performance in terms of routing path-length for both approaches has

been plotted in Figure 3.11. The figure shows that by involving a centralized coordi-

nator for the assignment of long-range links, the centralized sampling mechanism has

already achieved a good routing performance, i.e. mean path-length is 57 with k = 1 for

each service peer. While source sampling is still in its convergence process (the figure

is plotted after 106 queries). However, as mentioned in Section 3.2.1, centralized sam-

pling requires explicit maintenance of long-range links assigned for each service peer;

10Our empirical studies show that the hypothesis “when α achieves similar results for the value of mean
shortcut distance as in centralized sampling, its effect on source sampling (i.e. in terms of convergence
speed and stationary routing performance) is almost the best” is true in both ring (i.e. the initial setup of
peer connectivity on a local Hilbert curve) and later grid topologies (Section 3.4.2).

89

 40

 60

 80

 100

 120

 140

1*105 2*105 3*105 4*105 5*105 6*105 7*105 8*105 9*105 1*106

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling
centralized sampling

centralized+source
random sampling

Figure 3.11: Performance comparison for local-area routing efficiency with different
sampling mechanisms.

while source sampling adopts an autonomous approach to achieve so. Indeed, as shown

in Figure 3.8a, source sampling may achieve 52 mean path-length for the same testing

case when it reaches the steady state. As a result, a better approach in practice is to

combine the two mechanisms as discussed in Section 3.2.1. The result of doing so has

been plotted in Figure 3.11, which shows 50 mean path-length.

The centralized sampling mechanism may also deploy other types of probability

models in its sampling process. To verify the effectiveness of the probability model we

adopted (Equation 3.2), we have plotted the results for Random Sampling; that is, dur-

ing the registration of a service peer, one of the peers in the network will be randomly

selected and assigned as its remote peer. As shown in the figure, the mean path-length is

114 which is significantly worse than the performance of other mechanisms.

Effect of Long-Range Link Indexing

This section simulates the scenario for cross-area query routing. The simulation is

carried out on a 512 × 512 large area, with its area hierarchy based on a geographical

tree generated randomly. In a trail run of the simulation, the depth of the tree is 6 and

90

the number of tree nodes (i.e. local areas) is 364. The centralized sampling mechanism

is adopted during the peer registration time: each service peer is assigned with k num-

ber of long-range links for local-area query routing, and each superpeer is assigned with

additional k number of long-range links for cross-area routing, i.e. by targeting super-

peers in different areas. Similar to the query generation process in 3.4.1, both the source

peer and the target peer are selected randomly, except that they must be in different lo-

cal areas. The routing effort imposed on superpeers (or service peers), defined as the

average number of superpeers (or service peers) involved in routing of a single query, is

studied. It reflects the required processing workload. Figure 3.12 compares the results

for our current approach (with cross-area long-range link index) and the superpeer-based

routing approach (without cross-area long-range link index). We observe that in our ap-

proach (Figure 3.12a and 3.12b), the routing effort required on superpeers decreases as

the number of queries routed increases. This is because the more the number of queries,

the more the long-range link indexes are created. It justifies that the role of the superpeer

in LASPD can be performed by any non-dedicated server and the failure of a superpeer

unlikely will affect cross-area routing severely, as will be shown in the next section.

We also note that with larger k values (i.e. number of long-range links augmented for

cross-area routing), a lesser number of queries is required to achieve the same effect in

reducing the routing effort. The reason is simply due to more long-range links being cre-

ated with the same number of queries routed. However, the performance gain becomes

smaller when k increases. For the superpeer-based routing approach (Figure 3.12c and

3.12d), the routing effort required on superpeers does not change considerably at differ-

ence number of queries. Figure 3.12c shows that for the case of low-density distribution

of service peers on the large area (with 212 service peers), superpeers play a more critical

role in cross-area routing, e.g. the routing effort imposed on superpeers is almost twice

as that on service peers when k = 1.

91

 0

 5

 10

 15

 20

 25

 30

 35

101 102 103 104 105 106

A
vg

. n
um

be
r

of
 p

ee
rs

 in
vo

lv
ed

 fo
r

a
si

ng
le

 q
ue

ry

Number of queries

superpeer (w/ index, k=1)
service peer (w/ index, k=1)

superpeer (w/ index, k=2)
service peer (w/ index, k=2)

superpeer (w/ index, k=3)
service peer (w/ index, k=3)

(a) Our approach (for 212 service peers).

 0

 10

 20

 30

 40

 50

101 102 103 104 105 106

A
vg

. n
um

be
r

of
 p

ee
rs

 in
vo

lv
ed

 fo
r

a
si

ng
le

 q
ue

ry

Number of queries

superpeer (w/ index, k=1)
service peer (w/ index, k=1)

superpeer (w/ index, k=2)
service peer (w/ index, k=2)

superpeer (w/ index, k=3)
service peer (w/ index, k=3)

(b) Our approach (for 214 service peers).

 0

 5

 10

 15

 20

 25

 30

101 102 103 104 105 106

A
vg

. n
um

be
r

of
 p

ee
rs

 in
vo

lv
ed

 fo
r

a
si

ng
le

 q
ue

ry

Number of queries

superpeer (w/o index, k=1)
service peer (w/o index, k=1)

superpeer (w/o index, k=2)
service peer (w/o index, k=2)

superpeer (w/o index, k=3)
service peer (w/o index, k=3)

(c) Superpeer-based approach (for 212 service
peers).

 0

 5

 10

 15

 20

 25

 30

 35

101 102 103 104 105 106

A
vg

. n
um

be
r

of
 p

ee
rs

 in
vo

lv
ed

 fo
r

a
si

ng
le

 q
ue

ry

Number of queries

superpeer (w/o index, k=1)
service peer (w/o index, k=1)

superpeer (w/o index, k=2)
service peer (w/o index, k=2)

superpeer (w/o index, k=3)
service peer (w/o index, k=3)

(d) Superpeer-based approach (for 214 service
peers).

Figure 3.12: Effect of long-range indexing mechanism in affecting the routing behavior
of superpeers and service peers respectively.

Note that overall, our approach requires a slightly higher routing effort on service

peers. For instance, when k = 1 we have an average of 26 service peers after 106 queries

(Figure 3.12b) as compared to 15 in the superpeer-based approach (Figure 3.12d). It is

also noticed that, the path-length for cross-area routing does not differ much, i.e. 1 + 26

versus 13 + 15 after 106 queries.

Fault Resilience

As mentioned in Section 2.1.3, one major problem of the superpeer-based cluster-

ing approach for service provision and discovery is that a lot of workload is imposed

on superpeers, and their presence makes the network more vulnerable to the failure of

92

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1% 5% 10% 15% 20%

R
ea

ch
ab

ili
ty

 r
at

io

Fault ratio for superpeers (N=364)

source sampling (w/ index, k=1)
source sampling (w/ index, k=3)

source sampling (w/o index, k=1)
source sampling (w/o index, k=3)

Figure 3.13: Fault resilience of LASPD in terms of routing reachability.

superpeers. In this section, we simulate the failures of superpeers and test our system

fault resilience in terms of routing reachability. In the greedy routing algorithm (Defi-

nition 2), the destination peer is considered unreachable if the current peer cannot find

any immediate neighbor or long-range contact, which is nearer to the target. The simula-

tion considers the same setup as that in the previous section. The respective reachability

for each case is recorded and plotted in Figure 3.13. As noted in the previous section,

our approach doesn’t depend on superpeers heavily, and thus, even if some of them fail,

we can still provide the satisfied routing reachability, for example 75% reachability for

k = 1 when 20% of superpeers fail. However, this is not the case for the superpeer-based

approach: the reacheability falls to 38% for failure rate of 10% and further reduced to

21% when the failure rate is 20%.

Source Sampling versus Threshold Sampling and Destination Sampling

In Section 3.2.1, we have introduced two other evolutionary approaches to emerge

small world network: the Threshold Sampling (TS) in [116] and the Destination Sam-

pling (DS) in [118] (we follow the terminologies as defined in [118]). Their detailed

algorithms can be described as follows: in TS, a random number Tthresh is picked up

93

from the range 1 to dist(source, destination), i.e. the number of hops to the destination

peer. If the destination peer cannot be reached in Tthresh hops, a shortcut is created from

the source peer to the current peer with dist = Tthresh; while in DS, a probability p is

predefined, e.g. p = 0.1. For the routing of query, every peer on the path has a chance p

to create a shortcut to the destination peer. In fact, TS best resembles our Source Sam-

pling (SS) by allowing dynamic creation of shortcuts from source peer to other peers on

the routing path. As a result, in this section we focus on the comparison of SS and TS;

while leaving the discussion of SS and DS to the end of this section.

We have carried out simulations to compare the ability of SS and TS in dealing with

network topology changes, such as in mobile environments. To be fair, we apply the

two-dimensional grid network topology from [115] (the topology is used by both TS and

DS in their simulation studies). The grid contains 100 × 100 peers, and each peer is

assigned with the label (x, y) : x, y ∈ 1, 2, ..., 100. The distance between any two peers

is thus measured by lattice distance dist(v, u) = |v.x− u.x| + |v.y − u.y|. For the link

setup, each peer always has a directed link to every other peer within distance 1. Besides,

each peer is allowed to have a long-range link to the peer with distance larger than 1, i.e.

k = 1. There are three phases during the simulation runtime:

1. Initialization: We start up with the Kleinberg’s small world model [115]; that is,

all the peers are already augmented with a long-range link (the probability to set

up the link between v and u is proportional to [dist(v, u)]−2).

2. Evolution: For each round of query, two peers are randomly selected as the source

and the destination. The greedy routing algorithm is then applied to do query

routing. In SS, for each peer on the route, an independent sampling process is

carried out to rewire a long-range link from the source peer to the current one.

The probability p in SS is proportional to [dist(v, u)]−2 and is normalized by the

factor Z as defined in Equation 3.1. The constant parameter α is involved in the

94

calculation of p and is set to 1000 (we pick this value because it results in similar

value of mean shortcut distance as in centralized sampling for the grid network).

In TS, Tthresh is uniformly chosen from [2, dist(v, u)], by assuming the distance

from the source peer to the destination peer is known.

3. Modification: Starting from the first query, for every 10K queries (the number is

chosen so that every peer has a chance to send a query before the next modifica-

tion phase), the network topology is modified. The effect of the modification is

determined by a constant parameter c; that is, every peer in the grid has a chance

c to switch its position with another random peer. This is to simulate the peer

movement in a real-life scenario. Once the two peers swapped their positions in

the grid, whichever link targeting them is destroyed. However, the links coming

out from themselves are still kept unless the remote peers targeted by these links

also shift their positions.

Figure 3.14 plots the results for the cases c = 0.2, 0.4, 0.6, 0.8. There are a total

of 30K queries generated. For each query, we ensure that the same set of queries are

used for SS and TS respectively in a simulation run. The modification phase happens at

query num = 0, 10K, 20K. To show the effect of network topology change, the mean

path-length is reset for every 10K queries. We repeat the experiments 10 times with

different sets of queries and topology modification behaviors. The averaged values are

plotted in the figure. Note that to fully understand the characteristic of SS, we have also

plotted the case for SS with uniform distribution, i.e. p = 0.1 for the sampling process

(independent of the lattice distance on the grid network).

We have the following observations: as we start the network topology with Klein-

berg’s small world model, the topology modification occurring at query num = 0 have

the same impact to both SS and TS; however, as time progresses, due to their different

evolutionary behaviors, SS is more resilient to network change (e.g. peer movements)

95

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=1000)
threshold sampling

source sampling (p=0.1)

(a) c = 0.2.

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=1000)
threshold sampling

source sampling (p=0.1)

(b) c = 0.4.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=1000)
threshold sampling

source sampling (p=0.1)

(c) c = 0.6.

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=1000)
threshold sampling

source sampling (p=0.1)

(d) c = 0.8.

Figure 3.14: Performance comparison of Source Sampling and Threshold Sampling in
dealing with network topology changes.

for different c values. For the case of SS (uniform p), its performance is worse than both

SS and TS. To have a further analysis, Table 3.1 and 3.2 have given more details about

variations of number of long-range links and their mean shortcut distance for the three

mechanisms (i.e. in the case c = 0.6). Further observations are provided as follows:

• As shown in Table 3.1, SS has more long-range links created in each evolution

phase, and therefore it has more links preserved after each modification. This can

be one of the reasons why it has better performance as compared to TS. In fact,

a good estimation of the distance to the destination peer (dist) is critical for TS

in practice: if dist is too small (e.g. dist = 5), though more long-range links are

allowed to be added in each evolution phase, its convergence speed is not improved

96

query num = 10K 20K 30K

SS 1466/6733 (21.8%) 1406/6485 (21.7%) 1378/6449 (21.4%)
TS 1196/5506 (21.7%) 1129/5027 (22.5%) 1102/5009 (22%)

SS (uniform p) 1198/5369 (22.3%) 1054/4880 (21.6%) 992/4649 (21.3%)
TS (dist = 5) 1559/7120 (21.9%) 1545/6886 (22.4%) 1499/6881 (21.8%)

TS (dist = 100) 969/4359 (22,2%) 779/3651 (21.3%) 790/3600 (21.9%)

Table 3.1: Variation of number of long-range links (number after modification / number
before modification) for the mechanisms shown in Figure 3.14c and 3.15.

query num = 0 10K 20K 30K

SS 55/19 56/26 56/25 56/25
TS 55/19 60/45 60/44 60/44

SS (uniform p) 55/19 64/57 64/59 63/59

Table 3.2: Variation of mean shortcut distance of long-range links (distance after modi-
fication / distance before modification) for the mechanisms shown in Figure 3.14c.

due to high clustering effect; if dist is too large (e.g. dist = 100), less long-range

links are augmented, and the resulting convergence speed becomes slow. We have

plotted the cases for TS (dist = 5) and TS (dist = 100) in Figure 3.15, and added

their variations of number of long-range links in Table 3.1.

• As shown in Table 3.2, the network model constructed by SS best recovers the

property of the original small world model in terms of mean shortcut distance,

i.e. by comparing with the case of query num = 0. To further validate that SS

outperforms TS in dealing with network topology changes, we have carried out

the above simulations in a larger network (α for SS has been increased to 10000,

as the same reason for α = 1000). The results plotted in Figure 3.16 show that SS

has better capabilities in recovering routing efficiency from topology changes.

With the same experimental setup, we have conducted simulations to compare SS

and DS. As the authors in [118] have not specified any optimal value for p (p = 0.1

is used in their simulations) in DS, we have carried experiments with p = 0.01 and

p = 0.1. Based on the value of p, the value of α in SS is calculated and set to 100 and

97

 25

 30

 35

 40

 45

 50

 55

 60

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

threshold sampling
threshold sampling (dist=5)

threshold sampling (dist=100)

Figure 3.15: Performance comparison of Threshold Sampling with different dist esti-
mations in dealing with network topology changes (c = 0.6).

 50

 100

 150

 200

 250

 300

 0 1e+006 2e+006 3e+006

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=10000)
threshold sampling

Figure 3.16: Performance comparison of Source Sampling and Threshold Sampling in
1000× 1000 grid network (c = 0.6).

1000 respectively (we may think DS follows a uniform distribution for rewiring of long-

range links). Figure 3.17 plots the results in 100× 100 grid network. As observed, when

p is relatively small as compared to the network diameter (i.e. the mean path-length),

SS performs better than DS in coping with network topology changes. This is due to

the fact that less long-range links are rewired in DS (average number of links rewired in

each evolution phase is 3016). However, when p becomes larger, more long-range links

are added (average number of links rewired in each evolution phase is 7561). As DS

allows multiple long-range links to be rewired in routing of a single query (which is quite

different from TS and SS), its performance convergence speed is faster. Nevertheless,

98

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=100)
destination sampling (p=0.01)

(a) p = 0.01 (DS).

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 5000 10000 15000 20000 25000 30000

M
ea

n
pa

th
-le

ng
th

Number of queries

source sampling (α=1000)
destination sampling (p=0.1)

(b) p = 0.1 (DS).

Figure 3.17: Performance comparison of Source Sampling and Destination Sampling in
dealing with network topology changes (c = 0.6).

the above results for DS are under the assumption that the destination peer is known

in advance. Indeed, in our problem, because all the queries are routed based on the

key hashed from the target service, the destination peer will not be known until it is

discovered. Therefore, if DS must be applied, overhead to discover the destination peer

has to be taken into account, such as by applying the reverse routing technique.

3.5 Summary

In this chapter, we described the design of a location-aware service provision and

discovery platform (LASPD). The motivation is to have an effective and scalable plat-

form to support large-scale service provision and discovery including those emerging in

mobile ubiquitous computing. To achieve this, LASPD constructs a three-tier architec-

ture for service provision: while the first tier provides classifications of areas of service

administration, the second tier considers service providers which are not resource con-

strained in a structured peer-to-peer network. In both tiers, the Hilbert space filling curve

is deployed to preserve the physical localities of service providers and to support area-

based or distance-based service discovery. In the third tier, services hosted by mobile

99

devices are allowed to delegate to a proxy in the second tier. To minimize the network

maintenance effort, LASPD leverages on the proposed Source Sampling mechanism to

allow shortcut creation during the service discovery. Simulations have been carried out

to study the routing behaviors of peer nodes in different tiers and the effect of long-range

link indexing mechanism. The performance of Source Sampling is also compared with

other similar approaches in dealing with network topology changes.

As demonstrated, by applying the proposed source sampling mechanism, it helps

to achieve a navigable network in an autonomous manner. However, due to the nature

of sampling, in practice an alternative approach — centralized sampling may be applied

first to boost its convergence speed for routing performance. The effect of the long-range

link indexing mechanism has been studied: less workload is imposed on superpeers and

the system fault resilience is improved. As compared to threshold sampling, source

sampling shows its resilience in dealing with network topology changes. While the

current research focuses on the design and validation of a navigable and self-organized

network in mobile environments, the various network optimization techniques (e.g. data

replication, link caching) can be applied in practice. As our future work, we would

like to further investigate on the network model of LASPD, such as the study on the

effect of parameter α, the design of link replacement policy (i.e. when k > 1) and the

development of load balancing strategy for long-range link indexes.

CHAPTER 4

ACE: A CONTEXT REALIZATION

ENGINE FOR UBIQUITOUS

APPLICATIONS WITH RUNTIME

SUPPORT

This chapter presents a framework to facilitate the realization of context-related tasks

and therein the context logic (defined as application adaptation, constraint enforcement

and context flow in Section 1.5) is decoupled from the application layer, and its formula-

tion is shifted to the application design time rather than during the implementation phase.

This approach reduces the complexity of application implementation and further pro-

vides flexibility in handling requirement changes for evolving applications. The detailed

designs of the Application Context Model (ACM) for capturing context logic specified

by application developers and the Application Context Engine (ACE) for handling the

100

101

full life cycle — initialization, execution and termination — of each ACM instance are

presented.

The rest of the chapter is organized as follows: Section 4.1 presents an application

scenario to illustrate the design considerations and challenges for ubiquitous application

development. Section 4.2 describes our proposed Application Context Model (ACM)

that captures application contexts of a ubiquitous application. Section 4.3 presents the

component design of the Application Context Engine (ACE) and its runtime support

for context realization during the application execution. Section 4.4 shows a case study

based on the illustrated application scenario to validate the proposed framework. Finally,

Section 4.5 concludes the chapter.

4.1 Motivation: A ShoppingHelper Application

Alice loves to shop along the world famous shopping belts. On a recent

business trip to Singapore, she is particularly interested in the goods and

services provided on the Orchard Road. However, the tight schedule simply

does not allow her to visit every shop for goodies; rather, she has to pick up

those “most wanted”. With the newly installed ShoppingHelper application

on her Google Nexus, she does not need to waste time to search and review

all the shops beforehand; instead, she could select and visit the interest-

ing ones during her shopping time. The mobile application would smartly

recommend those shops within her proximity and based on her shopping

preferences. Shopping experiences shared by others are easily accessible

even on the move to further influence her decision on the shops eventually

to visit. Moreover, if any of her Singaporean friends is in the nearby shop,

she will get notified with the name of the shop.

102

While shopping at the ION Center, Alice found that the goods and services

provided by the mall are excellent and the stores inside are giving further

discount to commemorate this opening occasion. She could not help but to

share her impression of the newly opened center through her Nexus. Alice

is given a couple of options to share her impression of the shops1: (a) to

store her data in an application server for ease of access by others or; (b) to

store the data, if deemed private, in her smart phone for a full control over

the data. She can share the information publicly or provide a friend list. All

options could be configured with the touch of her finger tip.

The above application illustrates the usage of Alice’s contexts, e.g. her location

(from the phone GPS) and preferences (from the data kept in the phone). These contexts

are matched with the corresponding ones (e.g. location and type) of the shop services

for the application to achieve context-awareness. Although the application scenario is

trivial, it has typical features of ubiquitous applications so that we can use it to illustrate

the following design considerations and challenges:

1. What are the contexts in the application? How could they be described in a

machine-readable format? (context modeling)

2. How are the contexts gathered and retrieved for the application? (context manage-

ment and retrieval)

3. How does the application leverage on the contexts and embed context-awareness

into its application design? (context realization)

Available context modeling techniques vary from the simplest attribute-value ap-

proach to the most complicated ones such as ontology-based approach. For the detailed

1It is possible to distribute the data for storage in both the server and her mobile phone.

103

survey, interested readers may refer to [8]. As discussed in Section 1.2.4, ontology-based

models are the most promising assets for context modeling in UbiComp. Nevertheless,

existing ontology-based context models are mostly focusing on the definition of seman-

tics for context data, including their types and sources. Therefore, the resulting model

is mainly designed for the acquisition of context data. This enables the development

of a common middleware (e.g. Solar, SOCAM and Coalition) for the management and

retrieval of context data. But as mentioned in Section 1.3 and Section 2.2, these middle-

wares do not provide capabilities in dealing with higher level context-related tasks such

as runtime constraint enforcement which are desirable from the application developers

point of view. Consequently, developers have to explicitly implement the logic in the ap-

plication code, for examples, calling the API to retrieve context data (e.g. shop’s location

and type), and enforcing constraints (e.g. nearby shops that match Alice’s preferences)

by using if/else statements. This results in a tight-binding model for application imple-

mentation. In case there are changes in the application requirements (e.g. in addition

to the shop’s location and type, its crowd level may also be considered in the shop rec-

ommendation process), application developers have to rewrite and redeploy the whole

application. We argue that this issue is indeed caused by context modeling at a lower

level: context logic embedded in the application such as context constraints and flows is

not captured and reflected in the conventional context model of the middleware (Figure

4.1 left); thus, developers are not fully relieved from the considerations for the detailed

process of context realization. We hereby propose a new context modeling approach

considering the unsupported context logic and add a new conceptual layer, i.e. context

realization layer (Figure 4.1 right), to help shift the formulation of context logic to the

design time rather than during the implementation phase of the application. The design

considerations for the illustrated framework architecture (Figure 4.1 right) include:

1. What is the context logic in the application? How could it be formally represented?

104

Regi
st

er

Application Layer

D
ir

e
ct

 C
o

n
te

x
t

R
e

a
li

za
ti

o
n

Application Layer

Context

Middleware

Application

Contexts

Context Logics

Extracted
Context Logics

Subscribe/

Get/U
pdate

Context

Realization Layer

C
o

n
te

x
t

R
e

a
li

za
ti

o
n

Context

Middleware

Figure 4.1: Comparison of context realization model for the conventional approach (left)
and our approach (right).

An application context model is supposed to be developed to allow developers to

specify their requirements over tasks such as for application triggering and for

constraint checking, whereas some of these tasks may be carried out at applica-

tion runtime. Such a model should be easy to learn and develop for application

developers so that their design effort is minimized. In the taken approach, we

have proposed an ontology-based application context model. The model follows

the Entity-Relationship Modeling (ERM) style, which is intuitive and frequently

adopted in the design of relational database. Its details will be presented in the

next section (Section 4.2).

2. How could the extracted application contexts be taken care of so that the tasks

specified are completed as desired? The context realization layer should be able

to understand the application context model and help to fulfill the tasks required

automatically. In the taken approach, we have developed an application context

engine in the layer to cater the task of context realization. The design of the engine

includes a set of functional components, such as for context model interpretation

and for context data reasoning. Furthermore, it gives applications runtime support

105

for the context-related tasks as specified in the application context model. We will

present its details in Section 4.3.

3. How does the application layer interact with the context realization layer? Where

should the application context engine be deployed? To support context realization

for ubiquitous applications, communications between the application layer and

the context realization layer are necessary. For instance, after deriving the suitable

shops for Alice, the application context engine should push the information of the

shops to the ShoppingHelper application running on Alice’s mobile device. In ad-

dition, some of the context data may be provisioned by the application itself, such

as the experience providers’ names for the shops interested by Alice. Therefore,

APIs (i.e. register/subscribe/get/update as shown in Figure 4.1 right) have been

defined to allow applications to successfully interact with the application context

engine. (A more detailed implementation architecture for ubiquitous application

development with ACE can be found in Figure 4.10). The deployment of the ap-

plication context engine is yet another issue as it determines the scalability and

efficiency of context realization. We will discuss this issue and present our ideas

in Section 4.3.4.

4.2 ACM: Context Model for Application Contexts

We adopt a model-driven approach to develop our context model. The proposed

context model, called Application Context Model (ACM), is a conceptual graph model

that defines a set of elements, including ApplicationEntities, ContextEntities, Contex-

tAttributes, ContextRelationships, StartingContexts, and EndingContexts. The Applica-

tionEntities are entities involved in the application scenarios. They execute application

logic such as message sending and task processing. The ContextEntities are abstractions

106

ExpProvider

PERSON

ShopService

equal(User.id, “alice”)

le(distance(ShopService.location, User.location), “100”)

SHOP

StartingContexts

locationname id location

ApplicationEntity

ContextEntity

ContextAttribute <I> IndependentEntity

<D> DependentEntity

cf1: equal(User.id, “alice”)

 le(distance(ShopService.location, User.location), “100”)

match(ShopService.type, User.preferences) #

ShopService.name

User

ExpIndexing

Server

<I>

cf4:#ShopService.name

cf5:#ExpProvider.id

type
preferenc

es

<D><S>,<I>

cf6: friend(User.id, ExpProvider.id)

User.id, ShopService.name

EndingContexts

equal(APPLICATION.Status, “FINISH”)

ContextBelonging ContextFlow

ContextAbstraction <S> StartingEntity

<E> EndingEntity

cf3: equal(User.id, “alice”)

 le(distance(ShopService.location, User.location), “100”)

locatedAt(Friend.id, ShopService.name) #

ShopService.name

Friend
<I>

cf2: equal(User.id, “alice”)

friend(User.id, Friend.id)

Figure 4.2: An example Application Context Model, constructed for the ShoppingHelper
application in Section 4.1. Operator le means less than or equal to.

of the ApplicationEntities that act as virtual context sources of the application. We define

them based on the ContextAttributes they possess, and a collection of ApplicationEntities

having similar context attributes are abstracted to the same ContextEntity. The Contex-

tRelationships define the types of context relations among the entities in the model. It

is further divided into three types: ContextBelongings between ContextAttributes and

ContextEntities; ContextAbstractions between ApplicationEntities and ContextEntities;

and ContextFlows among ApplicationEntities. The last two elements StartingContexts

and EndingContexts indicate the situations when the application should be triggered to

get start or terminated to get stop. With regards to the processes of context realization,

they refer to when the ACM should be instantiated or destroyed. They are specified by a

set of constraints over ApplicationEntities, which are similar to those for ContextFlows.

The example ACM shown in Figure 4.2 illustrates the graphical notations used. This

model has five ApplicationEntities represented by rectangles, namely “ShopService”,

107

“User”, “Friend”, “ExpProvider” and “ExpIndexing Server”, which are extracted from

the ShoppingHelper application described in Section 4.1. Four of the ApplicationEntities

are abstracted as ContextEntities shown in pentagons, namely “SHOP” and “PERSON”.

“‘User”, “Friend” and “ExpProvider” are all abstracted to “PERSON” as they share the

common ContextAttributes “id”, “location” and “preferences” (as shown in circles). The

respective ContextRelationships are indicated using different types of edges. When de-

scribing the ContextAttribute of a particular ApplicationEntity, the operator “.” is used,

e.g. “User.id”. To express constraints in ContextFlows, StartingContexts and Ending-

Contexts, context rules are applied. In addition, high-level operators such as “distance()”

and “match()” are supplied to help developers specify constraints in a more intuitive way.

The detailed constraints could be either specified in the model directly or be referenced

to a text file. In our current implementation, the ACM specification is ontology-based

and marked up using W3C’s OWL language. The following illustrates part of the OWL

specification for the illustrated ACM in Figure 4.2.

<!DOCTYPE rdf:RDF [

<!ENTITY acm ‘http://www.comp.nus.edu.sg/acm/ApplicationContextModel#’>

]>

<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:acm=“http://www.comp.nus.edu.sg/acm/ApplicationContextModel#”

xml:base=“http://www.comp.nus.edu.sg/acm/ApplicationContextModel#”>

<acm:ACM rdf:ID=“ShoppingHelper”>

<acm:hasApplicationEntity>

<acm:ApplicationEntity rdf:ID=“ShopService”/>

</acm:hasApplicationEntity>

<acm:hasApplicationEntity>

<acm:ApplicationEntity rdf:ID=“User”/>

</acm:hasApplicationEntity>

<acm:hasContextFlow>

108

<acm:ContextFlow rdf:ID=“cf1”>

<acm:fromApplicationEntity rdf:resource=“#ShopService”/>

<acm:toApplicationEntity rdf:resource=“#User”/>

<acm:hasConstraint>constraint1.txt</acm:hasConstraint>

<acm:hasFlowData>ShopService.name</acm:hasFlowData>

</acm:ContextFlow>

</acm:hasContextFlow>

</acm:ACM>

</rdf:RDF>

The ACM reflects the context logic embedded in an application. For instance, the

StartingContexts and EndingContexts are for application adaptation; constraints in Con-

textFlows are for constraint enforcement; and the edges between ApplicationEntities are

for context flow. By separating them from the application logic, it has the flexibility in

modification of any logic parameter without reimplementing and redeploying the appli-

cation. For instance, in Figure 4.2 we could easily add another constraint (i.e. in “cf6”)

to the ACM for retrieving shopping experience from the ExpProvider; that is, only if the

ExpProvider is a friend of Alice, then we retrieve the ExpProvider’s data for Alice.

4.2.1 Context Flow Representation

Among the three types of ContextRelationships, the most important one is Con-

textFlows, as they determine what context data is relevant to which ApplicationEntity

and under what situation the data can be derived from the relevant ApplicationEntity.

They follow the name:constraint#data syntax as illustrated in Figure 4.2, where name is

the ContextFlow name, constraint specifies the qualifications for participating Applica-

tionEntities or their ContextAttributes, data refers to the context data being passed in the

form of either ContextAttributes or constant values. Both the constraint and data may be

omitted, and for retrieving data, the ContextFlow name is used for reference. In the cur-

rent framework design, there are two kinds of representations for ContextFlows: context

109

flow confined to a single entity and context flow between entities, to be discussed in the

following sections.

Context Flow Confined to a Single Entity

The ContextFlow can be used to specify an ApplicationEntity. In its syntax, if con-

straint is specified but data is not, the ContextFlow is used for checking on the validity of

the instances of the ApplicationEntity involved. Those unsatisfied instances are filtered.

For instance, in Figure 4.3a, a ContextFlow is added on ExpProvider itself. It specifies

the constraint that the contacted ExpProvider must have its “devicePower” greater than

or equal to “50%”. Note that to use the ContextAttribute “devicePower”, it must be de-

fined for the ContextEntity “PERSON”. If both constraint and data are specified, the

ContextFlow is for checking the status of ContextAttributes for the instances of the Ap-

plicationEntity. For those satisfied instances, they are assigned with the constant value

indicated in data, and this value is used by application logic to determine the next step

of application execution. For instance, a requirement for context status checking is spec-

ified in Figure 4.3b. For those ExpProviders with “devicePower” greater than or equal to

“50%”, they are assigned with the constant value “true”. The application logic running

on the respective device can leverage on this value and decides whether it should send

the experience information to requestors as for power saving consideration. The major

difference between the above two representations is that the former representation filters

those unsatisfied instances of the ApplicationEntity which are irrelevant to the applica-

tion; while the latter only does the context status checking but without instance filtering.

In addition, multiple ContextFlows are allowed on a single entity, we consider disjunc-

tive relationships among them. For instance, the satisfied ExpProvider can be either with

“devicePower” greater than or equal to “50%” or with “deviceStatus” being “onPower”

as illustrated in Figure 4.3c.

110

ExpProvider

cf7: ge(ExpProvider.devicePower,

“50%”)

PERSON

devicePo

wer

(a) Context filtering.

ExpProvider

cf7: ge(ExpProvider.devicePower,

 “50%” # “true”)

PERSON

devicePo

wer

(b) Context checking.

ExpProvider

cf7: ge(ExpProvider.devicePower,

 “50%”)

PERSON

devicePo

wer

deviceSta

tus

cf8: equal(ExpProvider.deviceStatus,

“onPower”)

(c) Multiple ContextFlows.

Figure 4.3: Representation of the context flow on a single entity.

Context Flow between Entities

When ContextFlows are specified between two entities, data must be specified while

constraint is optional. If constraint is specified, context filtering will be enforced on

the instances of the related ApplicationEntities. The values of ContextAttributes of the

satisfied instances (i.e. indicated in data) will then be available to the corresponding in-

stances of the ApplicationEntity that is targeted by the ContextFlow. For instance, “cf1”,

“cf3” and “cf6” in Figure 4.2 illustrate such ContextFlows. Similar to the case of Con-

textFlow confined to a single ApplicationEntity, data can also be constant values so to be

used by application logic, e.g. for context status checking. For instance, the ContextFlow

“cf9” in Figure 4.4a checks whether there is any ShopService within 100m and matching

Alice’s preferences. If there are multiple ContextFlows specified between the two Appli-

cationEntities, the respective satisfied instances are merged by doing disjunction. Figure

4.4b illustrates the constraints (“cf1” and “cf3”) that the ShopService should be nearby

and either matching Alice’s preferences or having Alice’s friend visiting. Note that the

data in these ContextFlows can also be different. Each data is identified and linked to

the name of the specific ContextFlow, depending on the application requirements. For

instance, in “cf3”, the application may also want to pass “Friend.id” to “User”.

111

ShopService

cf9: equal(User.id, “alice”)

 le(distance(ShopService.location, User.location), “100”)

match(ShopService.type, User.preferences) # “true”

User

(a) Context filtering.

ShopService User

cf1: equal(User.id, “alice”)

 le(distance(ShopService.location, User.location), “100”)

match(ShopService.type, User.preferences) #

ShopService.name

cf3: equal(User.id, “alice”)

 le(distance(ShopService.location, User.location), “100”)

locatedAt(Friend.id, ShopService.name) #

ShopService.name

(b) Multiple ContextFlows.

Figure 4.4: Representation of the context flow between entities.

4.2.2 Context Constraint Specification

Each constraint in the ACM (i.e. constraint in ContextFlows) follows the rule syntax

of Jena2, which defines a rule by a list of body terms (premises) and a list of head terms

(conclusions). Only premises are required to be defined by developers, as the default

conclusions are that the involved ApplicationEntities satisfy the constraint referred by

name of the ContextFlow. Inside the premise, each term is represented either in a triple

pattern (node, node, node) or with procedural primitive builtin(node, ... node), where

node may refer to: uri-ref (e.g. http://foo.com/eg), prefix:localname (e.g. rdf:type),

<uri-ref> (e.g. <myscheme:myuri>), ?varname (e.g. variable), ‘a literal’ (e.g. a plain

string literal), ‘lex′∧∧typeURI (e.g. xsd:*), and number (e.g. 42). There are many built-

in procedural primitives provided by Jena, such as those listed in Table 4.1, on which

developers may leverage to do complex computation and reasoning tasks.

Due to its succinct syntax, Jena rules are considered as the easiest ones to read and

write as compared to that in other rule-based inference engines [121]. However, the

major limitation of Jena rule syntax is that it does not support nested functions. Con-

sequently, temporary variables must be used to hold the returned values of functions,

which may result in large-size premise specification and downgrade the rule readability.

We therefore extend3 the rule syntax to allow higher level constraint specifications:

2http://jena.sourceforge.net/inference/.
3The syntax extension we currently made is not on the source code of Jena directly; rather we have

created a customized interpreter on top of Jena. The interpreter allows features such as nested functions
and new operators (i.e. those based on Jena primitive operators) to be interpreted.

112

Builtin Operations
isLiteral(?x) notLiteral(?x) isFunc-
tor(?x) notFunctor(?x) isBNode(?x)
notBNode(?x)

Test whether the single argument is or is not a literal,
a functor-valued literal or a blank-node, respectively.

equal(?x,?y) notEqual(?x,?y) Test if x=y (or x != y). The equality test is semantic
equality so that, for example, the xsd:int 1 and the
xsd:decimal 1 would test equal.

lessThan(?x, ?y), greaterThan(?x, ?y)
le(?x, ?y), ge(?x, ?y)

Test if x is <, >, <= or >= y. Only passes if both
x and y are numbers or time instants (can be integer
or floating point or XSDDateTime).

sum(?a, ?b, ?c) addOne(?a, ?c) differ-
ence(?a, ?b, ?c) min(?a, ?b, ?c) max(?a,
?b, ?c) product(?a, ?b, ?c) quotient(?a,
?b, ?c)

Sets c to be (a+b), (a+1) (a-b), min(a,b), max(a,b),
(a*b), (a/b). Note that these do not run backwards,
if in sum a and c are bound and b is unbound then the
test will fail rather than bind b to (c-a). This could
be fixed.

Table 4.1: Part of the commonly used builtin operators in the Jena framework.

• Nested functions are allowed, as shown in “cf1” of Figure 4.2.

• Variable bindings are not necessary for ApplicationEntities and their ContextAt-

tributes. For instance, “User” in “User.id” and “User.location” in “cf1” of Figure

4.2 are bound to the same variable by default.

• High-level operators can be customized and reused among different applications,

such as “distance()” and “friend()”.

To support the above features, additional rule parser is necessary for the ACM, which

we will introduce it in Section 4.3. Alternatively, developers may follow the default Jena

syntax in describing context constraints.

4.3 ACE: Application Independent Engine for Applica-

tion Context Realization

To automate the process of context realization for ubiquitous applications, we have

developed an application independent engine, named as Application Context Engine

113

ACM

Instance

ACM

Ontology

ACM

Manager

Initialization Execution Termination

Application

Context Engine

(ACE) Interface

Application Context

Interpreter

Application

Contexts

Application Scenario

Table (AST)

Context Handler

ACM

Registration

ACM Instance

Query

ACM Parsing

Instance

Initialization/

Enforcement/

Termination

Application

Contexts

Interpretation

Creation
Updating/

Retrieval
Removal

Retrieval Subscription

ACM

Instance

Application Context Interpreter

Application

Contexts

Rule Parser

Inference Engine

Rule Transformer

Event Subscriber

Context Fact

Base

Ontology Parserparse update

load

transform

infer

subscribe

Upper

Ontology
realize

infer

update

Context Fact

Updater

update

Context

Handler
update

realize

subscribe

realize

notify

ApplicationEntities:

User, ExpProvider,

ShopService

......

ContextEntities:

PERSON, SHOP

......

Figure 4.5: Functional components of the ACE and the Application Context Interpreter.

(ACE), in the context realization layer (Figure 4.1 right) to process their ACMs. More

specifically, the engine is able to automatically trigger the application with its registered

ACM and provides runtime support for each ACM instance. The functional components

of ACE and their relationships are shown in Figure 4.5.

At first, the ACM specified by the application developer is registered to the ACE

through the ACE Interface; thereafter, the ACM Manager extracts the Application Con-

texts (i.e. all the ACM elements) and passes them to the Application Context Interpreter,

which is in charge of constructing the ACM specific ontology as well as parsing and

transforming rules in the StartingContexts, EndingContexts and ContextFlows of the

ACM. To enable automatic contextual events triggering and termination of each ACM

Instance, the ContextAttributes involved in the StartingContexts and EndingContexts are

subscribed through the Context Handler that in turn interacts with an underlying context

framework to get the related context facts updated. When an ACM Instance is created,

it is initialized with an Application Scenario Table (AST), which is used to track all the

relevant instances of ApplicationEntities involved in all possible application scenarios.

The table is also updated along with the execution of the application instance.

114

4.3.1 Application Context Interpreter

The Application Context Interpreter with its functional components is shown in Fig-

ure 4.5. Once the Application Contexts are passed, its Ontology Parser constructs the

specific ACM Ontology. For instance, the following OWL concepts about the Applica-

tionEntities in Figure 4.2 are updated.

<owl:Class rdf:ID=“ShopService”>

<rdfs:subClassOf rdf:resource=“&acm;ApplicationEntity”/>

</owl:Class>

<owl:Class rdf:ID=“User”>

<rdfs:subClassOf rdf:resource=“&acm;ApplicationEntity”/>

</owl:Class>

<owl:Class rdf:ID=“Friend”>

<rdfs:subClassOf rdf:resource=“&acm;ApplicationEntity”/>

</owl:Class>

<owl:Class rdf:ID=“ExpProvider”>

<rdfs:subClassOf rdf:resource=“&acm;ApplicationEntity”/>

</owl:Class>

As mentioned in Section 4.2.2, for the detailed constraint specification, developers

may use the default rule syntax from Jena. Alternatively, they could use our extended

version with high-level operators such as “distance()” and “friend()”. The Rule Parser

is responsible for converting the specification to the terms and those primitive operators

supported by the Inference Engine, e.g. Jena.4 The conversion is a recursive process that

constructs the parse tree for a specific constraint, whereas each tree node is represented

by an operator (e.g. “equal()”) and a list of arguments (e.g. “User.id”). After the tree

is constructed, the Rule Parser transverses it in a depth-first manner. Each tree node is

interpreted in the way: if the operator is not built-in (i.e. non-primitive), the specification

for the tree node is passed to the specific operator converter, and a binding variable is

4Note that in the current implementation of Application Context Interpreter, the high-level operators
are composed from the primitive ones supported by the Inference Engine, e.g. Jena. Therefore, the types
of queries supported by the ACE are restricted by the underlying Inference Engine.

115

equal(User.id, “alice”)

 le(distance(ShopService.location, User.location), “100”)

match(ShopService.type, User.preferences) #

ShopService.name

equal(User.id, “alice”) le(distance(ShopService.location, User.location), “100”) match(ShopService.type, User.preferences)

Bind ?v1 to User

Bind ?v2 to User.id

Bind ?v3 to ShopService

Bind ?v4 to ShopService.location

Bind ?v5 to User.location

distance(ShopService.location, User.location)

Call distance() converter

Call match() converter

Bind ?v6 to ShopService.type

Bind ?v7 to User.preferences

1 2 3
4

5 6
7

8

1
0

1
1

129

Figure 4.6: Construction of the parse tree for the constraint in “cf1” of Figure 4.2.

returned for the function if it is a nested function; if the ApplicationEntity or ContextAt-

tribute is not bound, a variable is assigned to bind to it, and in the following transversal

of the tree the occurrence of the ApplicationEntity or ContextAttribute will be replaced

by the variable. Figure 4.6 illustrates the parse tree for constraint in “cf1” of Figure

4.2, and the following example shows the conversion for the constraint “friend(User.id,

ExpProvider.id)” to the premises in Jena syntax.

friend(User.id, ExpProvider.id) → (?v1 rdf:type acm:User)

(?v2 rdf:type acm:User.Friend.ID)

(?v1 acm:hasContextAttribute ?v2)

(?v2 acm:hasContextValueS ?v3)

(?v4 rdf:type acm:ExpProvider)

(?v5 acm:type acm:ExpProvider.ID)

(?v4 acm:hasContextAttribute ?v5)

(?v5 acm:hasContextValueS ?v6)

equal(?v3 ?v6)

After the rule parsing, the Rule Transformer marks up the rules to satisfy different

needs: if the rules are for constraints in ContextFlows, they are marked up by using the

specific ACM Ontology (e.g. acm:User) and will be enforced by the ACM Instance at

116

application runtime (Section 4.3.3); otherwise, if the rules are for StartingContexts and

EndingContexts, they are marked up by using the Upper Ontology5 for ContextEntities

(e.g. acm:PERSON) and subscribed to the Event Subscriber. The following illustrates

the ontology about ContextEntity “PERSON”.

<owl:Class rdf:ID=“PERSON”>

<rdfs:subClassOf rdf:resource=“&acm;ContextEntity”/>

</owl:Class>

<owl:Class rdf:ID=“PERSON.Name”>

<rdfs:subClassOf rdf:resource=“&acm;ContextAttribute”/>

</owl:Class>

<owl:Class rdf:ID=“PERSON.Preferences”>

<rdfs:subClassOf rdf:resource=“&acm;ContextAttribute”/>

</owl:Class>

The Event Subscriber fulfills two tasks: (i) it subscribes via the Context Handler the

ContextEntities required to be updated, e.g. PERSON, SHOP;(ii) it interacts with the

Inference Engine to check the occurrence of an event. Depending on the event type, if

the StartingContexts for an ACM are satisfied, the corresponding ACM Instance is ini-

tialized, and meanwhile, the notifications are sent to those ApplicationEntities labeled

with StartingEntity as illustrated in Figure 4.2; otherwise, if the EndingContexts are

satisfied, then the corresponding ACM Instance is terminated and ApplicationEntities

labeled with EndingEntity are notified. These events are derived by the Inference En-

gine that performs the computation and reasoning tasks as requested by both the Event

Subscriber and the ACM Instance.

At this stage, there are two Inference Engines deployed in the Application Context

Interpreter, i.e. Jena and Jess6. Both of them are well-known engines for rule-based

reasoning. Jena, as mentioned before, it has succinct syntax for rule specification and
5The upper ontology (top-level ontology, or foundation ontology) is an ontology which describes very

general concepts that are the same across all knowledge domains. In the context of the ACE framework, it
describes ContextEntities that are shared across different ubiquitous applications.

6http://www.jessrules.com/.

117

provides native support for OWL ontology language; Jess, on the other hand, has no di-

rect ontology support, but it is small, light and one of the fastest rule engines available.

It adopts an enhanced version of the Rete algorithm [122] to process rules, and the in-

termediate reasoning results are cached to improve reasoning efficiency. We will discuss

and compare both deployments in the later case study (Section 4.4).

At the bottom of the Application Context Interpreter is the Context Fact Base together

with the Context Fact Updater. The Context Fact Base consists of a set of context facts

(i.e. information about a ContextEntity and its ContextAttributes), wherein each of them

is marked up by the Upper Ontology (i.e. for ContextEntities such as “PERSON” and

“SHOP”). The Context Updater is in charge of feeding fact data to the Inference Engine

through the Context Fact Base. Depending on the type of the engine deployed, it updates

the data in different formats, e.g. triple for Jena and template record for Jess. The Context

Updater is invoked by the Context Handler that gets the actual data by either subscribing

with or retrieving directly from an underlying context acquisition framework, such as a

middleware like Coalition. The following statements illustrate the context facts related

to Alice’s name and preferences in the Context Fact Base:

(acm:alice rdf:type acm:PERSON)

(acm:alice.PERSON.Name rdf:type acm:PERSON.Name)

(acm:alice.PERSON.Name acm:hasContextValueS “Alice′′∧∧xsd:string)

(acm:alice.PERSON.Preferences rdf:type acm:PERSON.Preferences)

(acm:alice.PERSON.Preferences acm:hasContextValueS “clothing, shoes, jewellery′′∧∧xsd:string)

(acm:alice acm:hasContextAttribute acm:alice.PERSON.Name)

(acm:alice acm:hasContextAttribute acm:alice.PERSON.Preferences)

4.3.2 Context Fact Management

As the management of context data is extremely important for efficient data process-

ing as well as context reasoning, the following two schemes are applied to help improve

memory usage and to reduce the size of the data for inference:

118

• Selective Context Attribute Update: In reality, there are numerous context facts

to be updated in the Context Fact Base. However, not all the information (i.e.

ContextAttributes for a particular ApplicationEntity) is useful. For instance, to

infer those shops within a certain proximity, only the context fact regarding the

location of the shop should be updated. As mentioned in the previous section,

the Event Subscriber in the Application Context Interpreter is able to subscribe to

the Context Handler only for those attributes required by the ACM. Therefore, the

context facts will be selectively updated.

• Two-Level Application Context Management: In addition to the Context Fact Base

in Figure 4.5, each ACM Instance has its own Application Context Base that stores

the context facts relevant to its application usage (as shown in Figure 4.7). The

Application Context Base is marked up by the specific ACM Ontology (i.e. for

ApplicationEntities such as “User” and “ExpProvider”). To utilize fact data from

the Context Fact Base, an ontology update is required for each Application Context

Base; that is, to associate the ontology of a specific ApplicationEntity (e.g. “User”)

with that of a ContextEntity (e.g. “PERSON”). For instance, to allow Alice’s con-

text facts in the Context Fact Base (e.g. her name and preferences as illustrated

in the previous example of statements) to be used by the ShoppingHelper ACM

Instance, a triple statement (acm:alice rdf:type acm:User) has to be inserted to the

Application Context Base, so that Alice performs the role of “User” in the Shop-

pingHelper application and her data is available for reasoning on the constraints

related to “User”. With such a scheme, it allows the isolation of application context

management, and the same context facts in the Context Fact Base can be reused

among all the ACM Instances when they are needed.

119

Upper

Ontology
Context Fact

Base

ACM

Ontology

ACM Instance

Application

Context Base

ACM

Ontology

ACM Instance

Application

Context Base

ACM

Ontology

ACM Instance

Application

Context Base
……

Application Context Level

Ground Context Level

ApplicationEntities:

User, ExpProvider,

ShopService

......

ContextEntities:

PERSON, SHOP

......

Figure 4.7: Context fact management model in the ACE.

4.3.3 Application Context Runtime Support

ACM Instance Initialization

Once an ACM Instance is created, the Application Scenario Table (AST) is initialized.

The AST is used to keep track of all the possible ApplicationEntities and their context

facts at application runtime. At first, only ApplicationEntities labeled with Independen-

tEntity (as illustrated in Figure 4.2) are instantiated to fill the AST. ApplicationEntities

labeled with DependentEntity are not instantiated right now, as their attributes can be

instantiated during application execution and certain attributes may be derived from the

application logic, e.g. ExpProvider.id from the matching process by ExpIndexingServer.

We differentiate these two types of ApplicationEntities so to improve the speed of context

realization and the efficiency of memory usage. They are automatically differentiated by

checking whether there is any ContextAttribute of the ApplicationEntity that is not de-

rived from the ApplicationEntity itself but is involved in any ContextFlow. For instance,

in Figure 4.2, ShopService, User and Friend are IndependentEntities; ExpIndexingServer

is not of either type since it is not abstracted to any ContextEntity; ExpProvider is a De-

pendentEntity as its ContextAttribute — ExpProvider.id is not derived by itself. Once

all the possible ApplicationEntities are instantiated and the corresponding context facts

are stored in the Application Context Base, the available rules from the ACM Ontol-

120

User ShopService ExpProvider

id preferences name typelocation

“alice” (1296373,103783642)

“alice”

“alice”

(1296373,103783642)

(1296373,103783642)

Clothing, Shoes, Jewellery

Clothing, Shoes, Jewellery

Clothing, Shoes, Jewellery

“This Fashion”

“Channel”

“Cartier”

location

(1296371,103783646)

(1296368,103783650)

(1296369,103783647)

Clothing

Clothing

Jewellery

Application Scenario Table

“PC Zone” (1296369,103783647) Computer

“Lee Hwa” (1296369,103783747) Jewellery

…... Filtered!

Figure 4.8: Initialization of the AST due to ContextFlow “cf1” in Figure 4.2 (the values
shown in the AST are represented without ontology markups for better clarity).

ogy (i.e. transformed by the Rule Transformer in Figure 4.5) are applied on these facts.

Only those satisfied application scenarios are filled in the AST. As illustrated in Figure

4.8, the constraint that the shops are within 100m from Alice and matching her prefer-

ences is enforced during the initialization of the AST. Note that the ContextAttributes of

ExpProvider are not instantiated at this moment as ExpProvider is a DependentEntity.

ACM Instance Execution

Once ApplicationEntities labeled with StartingEntity are notified by the ACE, the

application logic start execution. The latter caters to application-level processes such as

data storage and communication, and may be distributed to several ApplicationEntities.

With the ACE, application logic no longer need to include context logic such as context

constraints into their consideration. For instance, when Alice’s smart phone is notified,

it could simply call “retrieve(‘ShopService.name’)” from the ACE Interface (which can

be deployed on a remote server) to retrieve the names of the nearby shops that match

her interests (Note that the type of data to be retrieved is restricted by the data indi-

cated in the ContextFlow that is incoming to the ApplicationEntity). The semantics of

“nearby shops that match interests” are realized by the ACE but not embedded in the

121

ShopService

.name

User ShopService

id preferences name typelocation

“alice” …...

“alice”

“alice”

…...

…...

“This Fashion”

“Channel”

“Cartier”

location

Application Scenario Table

…...

…...

…...

…...

…...

…...

…...

…...

…...

ExpProviderShopService

name id

“This Fashion” “John Smith”

“This Fashion”

“Channel”

Scenario Update Table

“Channel”

“Kate Hudson”

“John Smith”

“John Smith”

Figure 4.9: Update of the AST due to ContextFlow “cf6” in Figure 4.2 (the left table is
constructed after filtering ExpProviders that are not friends of Alice).

application logic. The same thing occurs when Alice wishes to get experience data from

ExpProviders through her smart phone, which calls “retrieve(‘ExpProvider.id’)” from

the ACE Interface, with the constraint that the provider must be a friend of Alice is au-

tomatically enforced in the returning results. To achieve this, (i) each AST is identified

with a unique ID that is assigned during the initialization of the corresponding ACM

Instance. The application logic should know which AST to interact with during their

executions; hence, the ID of the AST is provided as the additional parameter in all the

interactions with the ACE Interface. (ii) The AST should be updated along with the

execution of application logic so that other ApplicationEntities could work with the lat-

est application scenarios. For instance, once ExpIndexingServer gets ShopService.name

from User, it updates the AST by invoking “update(shop service, exp provider)” to the

ACE Interface, where shop service may refer to “Channel” and exp provider refers to

the person who has experience on the shop service, e.g. “John Smith”. However, due

to the constraint (i.e. ExpProvider must be a friend of Alice) indicated in the ACM, the

ACE will filter those irrelevant ExpProviders. The IDs of the remaining ExpProviders

are then filled in the AST by doing the JOIN operation based on the matched shops (Fig-

ure 4.9). By doing so, the ShopService.name is provided as the right parameter to the

right ExpProvider for each application scenario in the AST.

At application runtime, the application contexts may change frequently. For instance,

122

when Alice moves around, her location is changing continuously. A good design of

the ShoppingHelper application should consider this factor and always reflects the most

up-to-date information (e.g. shops nearby) to Alice. At this moment, the support of

“continually changing context” in ACE is done at two levels: at the inference engine

level and at the ACM instance level. As mentioned before, the Context Handler in the

Application Context Interpreter (Figure 4.5) will always get the latest context data from

the underlying context acquisition framework. By default, the newly updated data will

be immediately inserted into the inference engines of all the registered ACM instances

(referring to the Selective Context Attribute Update mechanism as discussed in Section

4.3.2). Depending on whether the inference engine supports incremental reasoning7, the

time to re-evaluate the rules and update the respective AST can be quite different. We

select Jena and Jess in our prototype implementation as both of them support incremental

reasoning on additions (Jess also supports on deletions if “logical” keyword is used). To

further reduce the overhead in handling continually changing context at the inference en-

gine level, we have also considered the “updating frequency of context data” at the ACM

instance level. The motivation is simple: in practice the demand of updating context

data varies for each application. For instance, to achieve the best outcome in terms of

user experience and reasoning efficiency, the ShoppingHelper may be suggested to have

1min updating frequency of Alice’s location to its ACM instance. The ACM allows this

property to be defined for each ContextAttribute, i.e. “updatingFrequency”. With this

attribute defined, e.g. for Alice’s location, the inference engine in the ACM instance will

only be updated by the Context Updater with the specified frequency. This approach ef-

fectively lessens the workload on the inference engine in handling continually changing

context, and it also offers flexibility for developers in designing their applications.

7Incremental reasoning means the ability of the inference engine to process updates (additions or dele-
tions) applied to an ontology without having to perform all the reasoning steps from scratch.

123

ACM Instance Termination

The termination of an ACM Instance can be explicitly invoked by the application, so

that the “APPLICATION.Status” becomes “FINISH”. Alternatively, it can be terminated

by indicating the EndingContexts in the ACM. Similar to the StartingContexts, they are

subscribed by the Event Subscriber in the Application Context Interpreter. Once the

conditions are satisfied, the EndingEntities are notified, and the ACM Instance together

with its ACM Ontology, Application Context Base and AST are removed from the ACE.

4.3.4 ACE Deployment

As mentioned before, the developed ubiquitous application is executed by different

ApplicationEntities, including devices such as Alice and ExpProvider’s smart phones.

Nevertheless, the proposed ACE is conceptually designed as a layer between ubiquitous

application and the underlying context management framework; hence, it can be de-

ployed in a flexible manner: if there is a management system (e.g. a middleware such as

SOCAM and Coalition) managing large-scale context sources, the ACE can be deployed

on top of it and be provisioned as part of the middleware service for different appli-

cations to interact with. Alternatively, for small-scale applications which usually have

their own context management schemes (e.g. a relational database hosted by one of the

ApplicationEntities), the ACE can be co-hosted in the computer system hosting the cor-

responding ApplicationEntity8. For instance, the host of the ExpIndexingServer is such

a suitable place to co-host the ACE in the illustrated ShoppingHelper application. Never-

theless, in both cases, the underlying context management framework have to support the

retrieval and subscription tasks of the Context Handler in the Application Context Inter-

preter. More specifically, if the management framework already has an ontology-based

8Mobile portable devices are not recommended for co-hosting the ACE due to their memory and battery
constraints.

124

context model for context data, the Upper Ontology may directly copy the concepts and

relationships defined in the model, so there is no need to do ontology mapping in the

retrieval and subscription processes; otherwise, a mapping is required, e.g. by mapping

of ContextAttributes of ContextEntities in the Upper Ontology to column attributes in

the database.

However, the current deployment of ACE for context reasoning is still centralized:

a single machine is supposed to carry out reasoning tasks for all the applications, with

multiple instances of the reasoning engine (e.g. Jena and Jess) created. This approach

would potentially result in scalability issue when there is a large number of applications

to support or there is a lot of context data to process. For instance, if shops within 1km

are considered as “nearby” in the ShoppingHelper application, then there could be thou-

sands of shops to filter for Alice. The problem would become more obvious when the

application supports recommendations for multiple users9. In order to overcome this lim-

itation, it is possible to distribute the application-dependent reasoning tasks to different

machines so to remove the hardware constraints, e.g. CPU and RAM. Nevertheless, we

believe a more scalable way is to further divide the reasoning task into smaller sub-tasks

and allow each sub-task to be handled by a separate ACE. The decentralized deployment

approach for the ACE will be further discussed in Section 6.2 as our future work.

4.4 A Case Study

As a proof of concept, we present the use of our context realization framework for the

development of the exemplar ShoppingHelper application. The middleware — Coalition

[14] is leveraged on to support the retrieval of context facts and subscription of con-

9With the specific user constraints such as “equal(User.id, “alice”)” removed from the ACM (Figure
4.2), a single ACM instance can be used to support shop recommendations for multiple users. In Section
4.4, this scenario will be further discussed and used as one of the test cases to validate the inference support
from ACE.

125

Context Realization Layer

(Application Context Engine)

C
o

n
te

x
t

R
e

a
li

za
ti

o
n

re
tr

ie
v

e
()

Context Data Management Layer

(Coalition Middleware)

Application Layer

A
C

M
 R

e
g

is
tr

a
ti

o
n

re
g

is
te

r(
)

A
S

T
 U

p
d

a
ti

n
g

u
p

d
a

te
()

A
p

p
.

N
o

ti
fi

ca
ti

o
n

n
o

ti
fy

()

C
o

n
te

x
t

R
e

tr
ie

v
a

l

“
S

E
L
E

C
T

 …
 F

R
O

M
 …

W
H

E
R

E
 …

”

C
o

n
te

x
t

S
u

b
sc

ri
p

ti
o

n

“
S

U
B

S
C

R
IB

E
 …

 F
R

O
M

…
 W

H
E

R
E

 …
”

App. Entity

with Contexts

App. Entity

with Contexts

App. Entity

with Contexts

Figure 4.10: Software implementation architecture for ubiquitous application develop-
ment with ACE.

textual events.10 Figure 4.10 presents the detailed software implementation architecture

(as compared to Figure 4.1). The application layer considers application logic such as

those deployed on application servers or mobile devices. It interacts with the context

realization layer through a set of APIs provided by the ACE to get its required context

logic realized. ApplicationEntities with contexts are managed by the context middle-

ware Coalition, whose functions are invoked by the Context Handler in the ACE to get

ApplicationEntities’ context data updated.

Figure 4.11 shows the sequence diagram of interactions between system components

and users in the ShoppingHelper application which was implemented without the use of

ACE. Figure 4.12 presents a similar sequence diagram of interactions for the same ap-

plication implemented and deployed with the use of ACE with the support of Coalition

10The current ACE framework is built on top of Coalition: the Context Handler component in the Ap-
plication Context Interpreter (Figure 4.5) communicates with the middleware services for the acquisition
and preliminary processing of context data. A detailed architecture design of Coalition and its middleware
services will be introduced in Section 5.5.

126

middleware (the interactions between ACE and Coalition are omitted for better clarity

of the diagram). Note that in both diagrams, User and ExpProvider components are de-

ployed on mobile devices; while the rest components are running on desktop computers.

By referring the two figures, we can summarize the following advantages for developing

ubiquitous application with our ACE context realization framework:

• The triggering of the application is no longer initialized by the application itself,

i.e. by constantly checking the condition (the Loop structure in Figure 4.11); rather

it can be notified by the ACE by registering its ACM. This approach is useful in

mobile computing where power consumption is a major concern for applications

running on mobile devices;

• The context logic embedded in the application is taken care of by the ACE but

not the application logic running on different ApplicationEntities. This improves

processing efficiency and saves power consumption;

• Once the context logic is extracted from the application layer, it is flexible to mod-

ify them. For instance, in addition to the proximity and type constraints, the ACM

can be easily modified to add in the crowd level consideration (i.e. if the shop

is too crowd, then it would not be appropriate for her tight schedule). The new

ACM can be uploaded to the ACE and the modification immediately takes effect

for the next instance initialization; while the application running on Alice’s mo-

bile device is not affected, and the whole updating process is transparent to the

ubiquitous application users.

Indeed, as mentioned in Section 4.2, our ACE framework follows the Model-Driven

Approach (MDA) for the realization of context logic required by the application. The

MDA has recently become popular in both academia and industry as a way to handle the

increasing complexity of modern software and it offers advantages in terms of chiefly,

127

User:Alice ExpProviderExpIndexingServerCoalition

Get ShopService

based on User.location

Loop

(No ShopService

satisfying

ContextConstratins

cf1 or cf3 = true)

Return

ShopService.name

Get ExpProvider.id

based on ShopService.name

Return ExpProvider.id

Filter ExpProvider

based on id

Get experience data based

on ShopService.name

Return experience data

Filter ShopService

based on

ContextConstraints

cf1 and cf3

Figure 4.11: Sequence diagram for ShoppingHelper application without ACE. The con-
text logic such as context retrieval and filtering is all realized in the application logic
running on Alice’s smart phone.

User:Alice ExpProviderExpIndexingServerACE

Get

ShopService.name

Update ExpProvider.id

to the AST

Update the AST

Get experience data based

on ShopService.name

Return experience data

Notify there is

ShopService satisfying

ContextConstraints cf1

or cf2

Return

ShopService.name

from the AST

Get ExpProvider.id

based on ShopService.name

Return ExpProvider.id

from the AST

Get ExpProvider.id

Figure 4.12: Sequence diagram for ShoppingHelper application with ACE. The context
logic is separated from the application logic running on Alice’s smart phone.

128

gains in productivity, portability, maintainability and interoperability [123]. For instance,

during the design phase of ShoppingHelper, the various entities and relationships can be

abstracted and modeled. More specifically, the context tasks are specified in an intuitive

manner, e.g. under what situations there will be context data passing between the two

entities. This results in a much cleaner semantics for application design, especially on

context-related tasks. In the actual implementation of ShoppingHelper, the defined tasks

are catered by ACE, and therefore the programming effort on context-related tasks can

be minimized: after utilizing ACE for ContextFlow “cf1” in Figure 4.2, it results in 26

line code reduction in the source file (Note that the code reduction is task dependent).

Lastly, in the future, if there is any updates or modifications on the design of context

logic (e.g. adding the crowd level consideration), we can easily fulfill the requirement

at the model level, but without changing the implementation code, which saves a lot of

effort and time. However, there are still issues related to MDA which require further

investigation. For instance, the feature of automatic code generation in the MDA helps

to improve productivity. But the extra effort required to develop the model, along with

the possible need to make manual modifications, would appear to have a negative effect

on productivity. Similarly, in the ACE framework, the learning and construction of the

ACM require efforts from application developers. They have to understand the syntax of

ACM such as for specification of rules. To minimize such efforts, We are currently in the

process of developing an ACM modeler that offers a Graphical User Interface (GUI)to

allow application developers to specify the ACM by using graphical notations, and the

modeler is capable to transform them to ontology languages automatically.

Based on the case study, we have also measured the overhead occurred during the

ACM registration, which mainly involves ontology and rule parsing as mentioned for

the Application Context Interpreter. Figure 4.13 plots the processing time over the ACM

specifications with different size. Note that the specification for the case scenario as

129

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10KB 50KB 100KB 500KB 1MB

T
im

e
co

st
 (

m
s)

The size of the ACM specification

Figure 4.13: Processing overhead for ACM ontology parsing.

shown in Figure 4.2 costs around 10KB file size. After the creation of the ACM On-

tology, the next step is to do rule parsing. With high-level operators (e.g. “distance()”)

required for conversion, the processing overhead is around 50ms for the illustrated rules

in Figure 4.2.

In addition, we have carried out experiments to evaluate the performance of the ACE

prototype in terms of the updating overheads of its AST operation and the reasoning de-

lay of the inference support. The prototype is implemented in Java on a 32-bit Intel Core2

Duo @3.0GHz PC with 4GB of RAM. The AST updating involves the Scenario Update

Table and the Application Scenario Table as illustrated in Figure 4.9. Upon receiving

all the updating context facts from the ApplicationEntity (e.g. ExpIndexingServer), the

Scenario Update Table is constructed. It is merged with the AST to derive the appli-

cation scenarios that involve all the relevant instances of ApplicationEntities for further

execution of the application. In all of our tests, we found the JOIN operation on the two

tables has taken less than one second.

For the inference support, the reasoning efficiency over the fact data is measured.

There are two kinds of detailed scenarios: offline and online. In the offline scenario, all

the fact data is assumed to be in the working memory before the inference engine starts

130

reasoning. It is applied to enforce context constraints and is used for the construction of

the AST. While in the online scenario, context facts are dynamically updated and rea-

soned with the inference engine. It is used for runtime application adaptation, and those

StartingEntities defined in the ACM will be notified by ACE. The tests are carried out for

constraint in “cf1” of Figure 4.2. Two test patterns are applied: “N-1” and “N-N”. The

first pattern represents Many ShopServices and One User; that is, in the ACE there are

context facts regarding many instances of ShopService but only one instance of User (i.e.

Alice). While the second pattern represents Many ShopServices and Many Users, i.e. by

excluding the constraint “User.id=“alice””. Up to 10K instances of User are emulated in

the “N-N” pattern. In the offline scenario, the reasoning delay, defined as the time spent

for the engine to get the potential User and his relevant ShopServices, is measured. Ta-

ble 4.2 presents the results by using Jena and Jess, whereas forward-chaining inference

mode is applied for both of them. As observed, Jena is not a good choice for real-time

reasoning despite of its better features such as direct support for RDF/OWL. Jess, on

the other hand, has no semantic support and requires preprocessings such as RDF triple

transformation (i.e. to its template record format). Nevertheless, its reasoning speed is

much faster than Jena. In the tests, we have also tried both engines in backward-chaining

inference mode. Generally speaking, the reasoning speed of Jena is boosted up as com-

pared to that in forward-chaining mode. However, the current implementation of Jena

in backward-chaining mode does not support complex rules that involve more than 15

variables. In fact, as nested functions are not supported in Jena, the variable number

limitation will be quickly exhausted by using temporary variables to hold the returned

values of functions, e.g. for the computation of “distance()”.

Due to its faster reasoning performance, Jess is further evaluated in ACE for the

online scenario. Similarly, the StartingContexts defined in Figure 4.2 is modified by

excluding the constraint “User.id=“alice””. The “N-N” pattern is applied, and we assume

131

Pattern N-1
Test Case 100-1 1K-1 10K-1

Jena 2832ms ≈ 45min > 5hour

Jess 10ms 21ms 131ms

Pattern N-N
Test Case 100-100 1K-1K 10K-10K

Jena ≈ 8min OOM OOM
Jess 45ms 2652ms ≈ 6min

Table 4.2: Reasoning delay for inference engines Jena and Jess in the offline scenario.
OOM stands for out of memory when the maximum Java heap size set to 1GB.

in the working memory of the inference engine there are already “N” ShopServices. The

context facts of “N” different Users are updated sequentially, and each User has four

context facts, i.e. one for User.id, two for User.location, and one for User.preferences.

The results for the reasoning delay to get the potential Users to send notifications are

plotted in Figure 4.14. Figure 4.14a shows that given “1K” ShopServices in the working

memory, it takes average 4ms for each User to derive the fact that whether ACE should

send the notification. While Figure 4.14b shows the case for “10K” ShopServices, and

it takes average 35ms for each User.

4.5 Summary

In this chapter, we presented a framework of context realization for ubiquitous appli-

cations. The fundamental goal is to ease the task for application developers in embed-

ding context logic (i.e. application adaptation, constraint enforcement and context flow)

in their application design. To achieve this, we have proposed the Application Context

Model (ACM) which considers context logic required by the application and allows the

developer to specify them easily at design time. The defined ACM is then managed by

the Application Context Engine (ACE) at runtime. The detailed context realization for

each ubiquitous application instance is carried out on the corresponding ACM instance

132

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

s
co

st
 (

m
s)

Number of updates

sampling value
mean value

(a) 1K-1K ACE online scenario.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5000 10000 15000 20000 25000 30000 35000 40000

T
im

s
co

st
 (

m
s)

Number of updates

sampling value
mean value

(b) 10K-10K ACE online scenario.

Figure 4.14: Inference support of Jess for the online scenario in ACE.

133

automatically. With context logic extracted from the application layer, the whole frame-

work provides flexibility such as in modifications to context constraints. We have done a

case study to demonstrate the use of the framework. Experiments have also been carried

out to validate the prototype.

As observed, the reasoning delay from the underlying inference engine raises a big

issue for the effectiveness of the framework. Indeed, context reasoning is a common

problem in UbiComp. The issue is how to handle reasoning over large-scale context

data that may frequently change. In spite of optimizing the inference engine itself, a more

practical way is to distribute the data over multiple machines and carry out distributed

reasoning. We are currently working towards that direction, and we believe the two-

level application context management scheme and the flexible ACE deployment plan as

mentioned in Section 4.3.2 and 4.3.4 serve as a good starting point. In addition, a more

rigorous evaluation of the framework system such as through a field trial involving real

users will be carried out in the near future.

CHAPTER 5

SOLE: A CONTEXT-AWARE

EXPERIENCE SHARING

APPLICATION BASED ON LASPD

AND ACE

As described in Section 2.3, one major limitation of existing information sharing ap-

plications is that their context-awareness is restricted to attributes such as user’s location

and social relationship. It is hard for them to support complex context-aware tasks due

to lack of context infrastructure support. For instance, to enable intelligent shop recom-

mendation, besides the user’s location, other contexts such as his preferences, the shop’s

location and crowd level should also be considered in the application design. Without

any common context infrastructure (a middleware such as Coalition [14]), each appli-

cation has to define and implement its own way to support these tasks, e.g. retrieval of

134

135

shop’s crowd level. Another issue is about people’s privacy, especially for those Web 2.0

applications. The user profile, his preferences and his generated content are all kept by

the server in the application. There is no guarantee that how the application developer is

going to utilize the data, e.g. selling to a third-party. As a result, there is a need of a new

application for context-aware information sharing in mobile ubiquitous computing.

This chapter presents the design and development of a prototype of Sharing of Living

Experience (SOLE), which enables mobile users in addition to those of desktop to share

their experience of any daily activity such as shopping, entertainment, traveling and

learning. More specifically, SOLE makes use of LASPD — the mobile service concept

presented in Chapter 3 — to register and deploy services offered by service providers

(mobile or static); it utilizes ACE — the context realization layer — presented in Chapter

4 and the Coalition middleware, for the development of context-aware SOLE. Users of

popular services like Facebook and Twitter usually play the role of content provider and

Application Service Consumer (ASC). However in SOLE, they can play an additional role

of Application Service Provider (ASP), whereas as ASP, they each creates and shares his

information (i.e. as content provider) of living experiences, and may offer them directly

to ASC in a peer-to-peer fashion (i.e. as service provider).

The rest of the chapter is organized as follows: Section 5.1 gives discussion on the re-

spective design consideration of SOLE. Section 5.2 presents the data schema and storage

schemes adopted by SOLE. Section 5.3 describes the detailed design of constituent com-

ponents of SOLE. Section 5.4 discusses the deployment of SOLE application services

in LASPD. Section 5.5 considers the deployment of ACE and Coalition frameworks to

achieve context-aware SOLE. Section 5.6 shows a prototype implementation of SOLE

with LASPD and ACE. Experimental results for the validation and assessment of the

prototype are also presented. Finally, Section 5.7 concludes the chapter.

136

5.1 Overview of SOLE

SOLE is considered as an extension to the ShoppingHelper application (Section 4.1).

Instead of restricted to the shopping experience, SOLE extends the sharing of experience

to generally any information domains. Mobile users may turn on the “push” feature of

SOLE so that it could automatically update experience information of around proximity

in response to the changes of user preference of types of experience. Alternatively, users

could query (pull) “information” by searching certain keywords or specifying an area on

the map for browsing the available information. Nevertheless, in order to support the

various application scenarios in SOLE, the following design considerations have to be

bear in mind for the development of SOLE:

1. What are the application participants of SOLE, i.e. ApplicationEntities as de-

fined in Section 4.2? How could they interact with each other? There are three

types of participants in SOLE to facilitate sharing of experiences, namely SOLE

Application Server (SOLE-AS), SOLE Experience Provider (SOLE-EP) and SOLE

Experience Consumer (SOLE-EC)1. The main task of the SOLE-AS is to maintain

an index to the shared data of experiences. The index key represents the entity of

interest such as a location or a shop service on the map, and the value describes

certain qualifications of the experience, e.g. who shared it, when and where it

was shared, and who can access the data. Users play the role of SOLE-EP/EC to

share or retrieve experience information. As SOLE allows the actual experience

to be stored on the mobile device, and when retrieving data from the device, the

respective SOLE-EP is known as a mobile service provider. Due to the fact that the

functional components of these participants are implemented in different devices,

cares must be taken to ensure they can interact. We leverage on the open standard
1In our previous paper [124], we have used terminologies SOLE-ASP and SOLE-ASC to refer to

SOLE-EP and SOLE-EC respectively. However, in this thesis, SOLE-EP and SOLE-EC are adopted
instead since they are more intuitive and easy to understand.

137

of Web services to ensure interoperability. That is, the functions of the SOLE-

AS and SOLE-EP are exposed as Web services. Retrieval of experience data is

taken place when the SOLE-EC invokes the service provisioned by the SOLE-AS.

Subsequently, if the required information is stored in the device of the experience

information provider, the SOLE-EC invokes the service hosted by the SOLE-EP.

The detailed component design of the three participants will be introduced in Sec-

tion 5.3.

2. How is the application data of SOLE (e.g. experience information) managed and

shared? As surveyed in Section 2.3, privacy is the major concern for the use of

current information sharing applications such as Facebook and Twitter. One of

the main reasons is that the user data is kept by their Web servers and therefore,

the user has no absolute control over the usage of his personal data. SOLE fa-

cilitates this issue by considering data to be stored on the user’s mobile device.

These devices such as smart phones are usually carried by people in their daily

life; thus, they are such suitable places for putting people’s private data, and it is

also convenient for people to access the data when it is needed. As a result, three

storage schemes have been defined in SOLE, with the details to be presented in

Section 5.2. To allow data (e.g. the user profile, preferences and experience data)

to be provisioned from mobile devices, the concept of mobile service (presented

in Chapter 3) is applied. In summary, there are two types of application services

for the provision of experience data in SOLE: one provisioned by SOLE-AS and

one provisioned by SOLE-EP, which correspond to the two types of service provi-

sioning models in LASPD as will be discussed in Section 5.4.

3. How can SOLE achieve context-awareness in the process of experience sharing

and retrieving? To achieve context-awareness, as mentioned in Section 4.1, the

application has to cater all the context-related tasks including context modeling,

138

Meta-data (Where, When, Who) Experience Data (What)

Location Time Profile Entity of

Interest

Tags Experience

- geo-cords

- semantic

names

- date - ID

- device type

- city

- friend list

- …

- place

- object

- event

- keywords - information

- opinion

Experience Data Schema

Figure 5.1: Experience data schema defined in SOLE.

context management and context realization. Fortunately, with our proposed ACE

framework and Coalition middleware, most of these tasks can be automatically

taken care of. Application developers may focus on the design (i.e. in ACM) rather

than the implementation of context logic. We will briefly introduce the Coalition

middleware and further illustrate its context-aware support together with ACE in

Section 5.5. In addition, context-awareness of SOLE can also be achieved by

utilizing the context information that is captured during the process of experience

sharing, such as the time and the location. As a result, such information has been

incorporated in the design of the experience data schema (Section 5.2) and will be

used in the process of experience discovery (Section 5.5.3).

5.2 Experience Representation and Storage Schemes

In SOLE, each experience data issued by the SOLE-EP is represented by the data

schema defined in Figure 5.1. The experience is expressed in a storytelling structure and

the contexts of the user when creating the experience is also captured to enable context-

aware experience sharing, as will be discussed in Section 5.5. In the current prototype,

the data schema is implemented using XML format for its better extensibility.

139

The first segment is the Meta-data which captures three contextual elements: Where,

When and Who. “Where” specifies the geographical location where the experience in-

formation is meant. It can be the user’s smart phone GPS coordinates or a meaningful

semantic name (e.g. Orchard Road) for the location. The geo-coordinates can be mapped

into semantic names by our system with the use of an annotated digital site map. “When”

indicates the time of creation of the experience data which could further be used for ag-

gregation or filtering of experience data by the applications, for instance, to retrieve all

the experiences for the last month. “Who” specifies the profile of the person sharing the

experience. The most important attribute of the profile is the identity of the user (ID),

which must be unique. We currently use the email address of the user to determine his

identity. Providing the rest of the profile information, though is not mandatory, may re-

sult in an improved discovery of experience data. Note that all the meta-data is either

filled once (e.g. ask the user explicitly) or captured implicitly (e.g. location and time).

The second segment contains the actual Experience Data which corresponds to What

the user is sharing. It is further divided into three aspects: Entity of Interest, Tags and

Data. “Entity of Interest” specifies the subject of interest, which could be an object,

a place, or an event. We use the entity’s name together with the location information

associated with the experience to identify it. Moreover, if the entity has a corresponding

service registered with LASPD, the service can be searched or browsed on the map

and be selected for sharing the experience or retrieving the experience attached to it

(assuming SOLE is integrated with LASPD, a service can be discovered or browsed by

sending service discovery queries to LASPD). The “Tags” part consists of the keywords

that best reflect the experience shared by the user. It is a kind of abstraction to allow

others to grasp the content of the experience quickly. Besides, it can further be exploit

for high level knowledge representations such as tag clouds2 to facilitate aggregation of

2http://en.wikipedia.org/wiki/Tag cloud.

140

several experiences. The last part of the schema is the details of the “Experience” to

be shared. We consider two types of experience: descriptive information and personal

opinions. The descriptive ‘information’ is to further elaborate the tagged entity, e.g. the

‘history’ of a picture in a museum. The personal ‘opinion’ is the subjective comments of

user’s to the tagged entity. For both types of experience, the representation format could

be texts, images, or videos.

The decision for the storage of the experience data must take security, privacy, and

performance into consideration. In SOLE, we offer three storage schemes for the ex-

perience data: Public, Restricted and Private. The user (i.e. SOLE-EP) is asked to

choose one of the schemes during the process of experience creation. “Public” allows

full data visibility to everyone. All the experience data is encouraged to be stored on the

SOLE-AS to maximize the efficiency of retrieval, filtering, and aggregation of experi-

ence data. This will also prevent excessive load on the SOLE-EP’s device, if the shared

content becomes popular. Therefore, this scheme is set to default. “Restricted” is to limit

the sharing experience by providing a list of friend IDs (as a part of the data schema).

Note that the actual experience data can be stored on the responsible SOLE-AS or at

the SOLE-EP’s device. “Private” is for personal reference and helps the SOLE-EP in

organizing his private experience data; all the data is preferred to be stored on his mobile

device for restricted access. Nevertheless, through authentication mechanisms, external

access to the data is also allowed by the SOLE-EP. In Section 5.6, we will demonstrate

an example of “restricted” scheme.

5.3 Functions of SOLE Participants

The detailed design of components for the SOLE-AS and SOLE-EP/EC are presented

in this section.

141

User Interface

Service/Policy

Management

Data

Retrieval
Data

Indexing

Data

Management

Database

Data

Processing

Dispatcher

SOLE-AS Web Service

Figure 5.2: Functional components of SOLE-AS.

5.3.1 SOLE Application Server

Figure 5.2 highlights the major functional components for the SOLE-AS with data

stored for public access. The SOLE-AS provisions its service to the SOLE-EP/EC

through its SOLE-AS Web Service. The administrator uses the User Interface to en-

able/disable the service, manage data processing policies (e.g. returning friends’ expe-

rience first), or organize the local experience database. The Dispatcher authenticates

the arriving requests and delivers them to the appropriate component. Requests by the

SOLE-EP are dispatched to Data Indexing component, while those issued by the SOLE-

EC are sent to Data Retrieval. The data provided by the SOLE-EP is stored into the

Experience Database through Data Management module.

The Data Retrieval component responds to the SOLE-EC by asking the Data Man-

agement component to search through the Experience Database. Once the available

records are identified, they are ranked by Data Processing based on the requester’s con-

text (e.g. location). After processing, all the publicly available experience and those

which the requester has access to are returned. The component can also aggregate all

the matching records into a unified representation. Nevertheless, if the actual experience

data is not stored on the SOLE-AS, the SOLE-EP’s ID where the data is stored will be

142

returned instead, so that the SOLE-EC can retrieve the data directly from the SOLE-EP.

Details of this will be described in Section 5.4.

5.3.2 SOLE Experience Provider/Consumer

The components for the SOLE-EP/EC are shown in Figure 5.3. They allow a user to

create new experiences or retrieve those shared by others. A new experience is created

using Experience Creation component. It first asks the Data Management component

to store the data on the local Experience Database. Subsequently, the SOLE-AS is no-

tified of the new experience (if is not private) through the SOLE-AS/EP WS Invocation

component. Note that it is possible to have multiple application servers in SOLE to

reduce the workload on a single machine and to cater practical concerns such as ad-

ministration control of SOLE-AS. In the case of multiple SOLE-ASs, their deployment

leverages on LASPD and the SOLE-AS/EP Discovery component finds the appropriate

SOLE-AS (e.g. based on its administrative area). Similarly, to retrieve an experience,

the SOLE-AS hosting the relevant index information should first be discovered, and then

the SOLE-AS/EP WS Invocation component asks the SOLE-AS for experience data. The

result of the request is processed and shown to the user. If the data is hosted in another

SOLE-EP, the discovery and invocation process is repeated to the SOLE-EP.

On the right side of Figure 5.3, we have the SOLE-EP Web service which can be

discovered and invoked by a SOLE-EC. Upon service invocation, the Request Handler

authorizes the request (if required) and asks the Data Management component for the

requested experience. The Experience Database is then searched and the matched ex-

perience is returned. Using the Service/Policy Management component, the user can set

access rules for the Request Handler, for instance, whether a group of people such as

friends may access a particular experience record. Additionally, the component can be

used to organize the available data in the local Experience Database.

143

User Interface

SOLE-AS/

EP

Discovery

Data

Processing

Experience

Creation

Data

Management

Experience Database

SOLE-EP Web Service

Request

Handler

Service/Policy

Management

SOLE-AS/

EP WS

Invocation

Figure 5.3: Functional components of SOLE-EP/EC.

5.4 SOLE with LASPD

Any application service can be deployed and registered in LASPD. Figure 5.4 shows

the software architecture of application services. The architecture has three logical func-

tional layers: (i) service management specific which interacts with the underlying ser-

vice management functions of LASPD to complete tasks such as service registration

and query routing for the application service (e.g. the functions of service mediating);

(ii) application specific which performs specific business logic plus session management

(e.g. the functions of SOLE-AS); and (iii) user interface specific which interacts with

the user to allow functions of the application service to be invoked (e.g. the functions of

SOLE-EC). The functions of these layers can be implemented and deployed completely

on any service peer, or be deployed onto several computing including mobile devices.

For the example of SOLE, as mentioned before, there are two types of service providers:

SOLE-AS — for sharing and retrieving experience by SOLE-EP/EC, and SOLE-EP —

for retrieving experience by SOLE-EC. For the deployment of their application services

in LASPD, the service peer is the most logical place to co-host the service mediating

layer, which refers to the SM module in Figure 3.4 of Chapter 3. For the application

specific layer, the functions of SOLE-AS can either be resided on a service peer, or on

144

Area A

Area B Area C

Area D

Subarea D3

Subarea D2 Subarea D1

Unclassified

2
nd
Tier

Local-Area Service

Organization

Hilbert Space

Filling Curve

Superpeer A

B C

D

Superpeer

1
st
Tier

Area

Organization

Personal

Devices

WiFi 3
rd
Tier

Mobile Service

organization

GPRS

Personal

Devices

Proxy

Personal

Devices

3G

Proxy
Proxy

c
b

Service Peer

a

e f

d

Service Peer

Model

UI specific

App.

specific

Serivce

management

specific

App. Service

Components

LASPD

Components (e.g.

service indexing,

query routing)

SOLE

App.

Service

Other

App.

Services

Figure 5.4: Illustration of service deployment in LASPD. Multiple services can be hosted
on the same service peer.

a designated server if additional processing and storage capacities are needed; while the

functions of SOLE-EP must be deployed on user devices such as mobile phones (or lap-

top or desktop). Depending on the application service to be invoked, i.e. whether it is

for experience sharing or retrieving, the user interface specific layer is implemented on

either the device of SOLE-EP or the device of SOLE-EC. Indeed, the application ser-

vices provisioned on the SOLE-AS and the SOLE-EP represent two different types of

service provisioning models. In the former case, it describes a “client-server” model as

in the conventional Web applications such as Facebook and Twitter; while the latter case

represents a “peer-peer” model among user devices. Figure 5.5 illustrates the two service

provisioning models for SOLE in LASPD: in the “client-server” model, the SOLE-AS is

resided on a service peer and its application services are registered with LASPD through

the mediator running on the peer. SOLE-EP/EC may discover and invoke its services for

creating and retrieving experience. In the “peer-peer” model, the SOLE-EP registers its

service through a proxy (i.e. a service peer) in LASPD. For its “restricted experience”,

the SOLE-EC can retrieve the reference of the SOLE-EP (i.e. its ID) from the SOLE-AS,

and then discover the SOLE-EP’s service in LASPD. Once the service is discovered, a

145

create experience

retriev
e expe

rience

SOLE-AS
SOLE-EP

SOLE-EC

SOLE-EP

SOLE-EC retrieve experience

client-server

model

peer-peer

model

L
A
S
P
D

publish

SOLE-SM

register

Proxy

publish

SOLE-SM

re
tri
ev
e
th
e
re
fe
re
nc
e

of
th
e
S
O
LE
-E
P

c
re
a
te
re
s
tr
ic
te
d

e
x
p
e
ri
e
n
c
e

Figure 5.5: Two types of service provisioning models for SOLE in LASPD. “SOLE-SM”
stands for the service mediator for SOLE application services.

request can be sent from the SOLE-EC to ask for the restricted data. In practice, as the

SOLE-EP may frequently move from one place to another, we can incorporate the con-

text retrieval function of Coalition to efficiently locate it (as will be discussed in Section

5.5.2). In fact, in the latter “peer-peer” model, the SOLE-EC may also directly invoke the

service on SOLE-EP without the presence of SOLE-AS. For instance, in a local party,

friends may share their experience to each other through WiFi network.

As mentioned before, when SOLE is integrated with LASPD, it can use the service

browsing and discovery features of LASPD. If an entity of interest has a corresponding

service registered with LASPD, the service is visible on the map and users can associate

their experience with the representative service. Similarly, to retrieve the experience

information, the users can select a service to check whether the corresponding entity has

any experience information associated with it or not. SOLE can easily support proximity

accessing (or sharing) of experiences or a range-based access by SOLE-ECs due to the

location-awareness of LASPD. Alternatively, the users may also search for the relevant

experience using keywords.

In the current prototype, we have deployed only one SOLE-AS for experience shar-

146

ing and retrieving. But it is possible to have multiple SOLE-ASs deployed, whereas each

of them is in charge of a particular area of administration, e.g. a city or a country. The

management of these SOLE-ASs can be handled over to LASPD, so that the experience

data could be correctly updated to or retrieved from the right server, i.e. by sending

service queries to LASPD based on the location of the entity of interest.

5.5 SOLE with Coalition and ACE

Coalition [14] is a context middleware designed for pervasive homecare. Its pre-

decessor CAMPH [96] was proposed to support the development and deployment of

various homecare services for the elderly such as patient monitoring, location-based

emergency response, data and social networking. The middleware offers several key-

enabling system functionalities that consist of P2P-based context query processing and

context reasoning (e.g. for activity recognition). To be an open, programmable and

reusable infrastructure, Coalition is designed as a service-oriented architecture; that is,

the various system functionalities such as context data acquisition are all designed and

deployed as system services for developers and end-users to access. More specifically,

the middleware architecture consists of two main logical layers for context-related tasks.

• Physical Space Layer. This layer consists of real-world physical spaces that rep-

resent the various sources of context data. A physical space is an operating envi-

ronment (e.g. people’s homes, offices) that provides context data from its attached

entities such as sensors, actuators and computing devices. It mandates all interac-

tions of its entities with the “outside world” through a designated gateway known

as Physical Space Gateway (PSG). Moreover, a PSG can be static (e.g. at home)

or mobile (e.g. worn by a person).

• Context Data Management Layer. To efficiently manage physical spaces and sup-

147

port context data lookup, the concept of context space is defined in this layer. A

context space can be thought of an abstraction of a collection of physical spaces

having some common attributes. Examples of context spaces in pervasive home-

care are HOSPITAL, PERSON and HOME. The physical spaces in a context space

are organized as peers in several clusters (i.e. context attributes) of a semantic over-

lay network, over which the context queries for data acquisition are processed. On

top of this layer, a declarative, SQL-based query interface is implemented for ser-

vices or applications to acquire context data or subscribe to event notifications.

Figure 5.6 illustrates the overall layering architecture of Coalition. To achieve context-

aware SOLE, the software implementation model shown in Figure 4.10 for UbiComp ap-

plications is adopted. Coalition is used to support low-level context-related tasks such as

the retrieval of context facts and subscription of contextual events; while the ACE frame-

work discussed in Chapter 4 is used to simplify the development process for high-level

tasks. In the illustrated application scenarios for SOLE in Section 5.1, we can consider

the smart phone carried by Alice as the PSG of her PERSON space, which stores and

supports the retrieval of Alice’s personal information such as her ID, location and pref-

erences. With the support of Coalition middleware, the context-aware applications to be

described in Section 5.5.1 to Section 5.5.3 can be easily realized.

5.5.1 Information “Pushing” to the SOLE-EC

SOLE for shopping as described in Section 4.1 can be more proactive by pushing

relevant information to the user (i.e. SOLE-EC) at the right time and manner. For ex-

ample, the push can be triggered by the location of Alice, the matching between sales

offer and her preferences, or her coming soon birthday. Each SOLE-AS can use the ca-

pability of ACE for the realization of such context-aware customizing of application for

its administrative area. More specifically, the user’s interest and preferences, as well as

148

Figure 5.6: Overall layering architecture of Coalition [96].

discount margin of shops and crowd level of restaurants should be included as context

constraints to the ACM model to further enhance the shopping and dinning experiences.

With all these specifications, the ACE will subscribe to the Coalition middleware for the

desirable user contexts and events. For instance, if the SOLE-AS is designated for infor-

mation pushing to appropriate shoppers whose presences to Orchard shopping mall are

detected, the ACE will fire the corresponding query “SUBSCRIBE id, preferences FROM

PERSON WHEN LocationChange WHERE new location = ‘Orchard shopping mall’” to

Coalition. Later when the LocationChange event is detected for Alice and her presence

to the shopping mall is also detected by the middleware through the shop’s PSG, Coali-

149

tion will notify SOLE-AS with Alice’s ID and her Preferences as stored in her PERSON

PSG (i.e. her mobile phone). The contexts of shops and services such as their types and

crowd levels can also be retrieved in a similar manner through their respective PSGs by

the middleware upon the requests from the ACE. Once all the relevant context facts are

retrieved, the realization of the context logic (i.e. pushing of recommendations) can be

achieved by the ACE automatically.

5.5.2 Mobility of the SOLE-EP

If the experience data is stored on a mobile device (instead of a static server), it would

be a challenge for the SOLE-EC to locate the SOLE-EP without assistance. Fortunately

in Coalition, such a problem can be handled in two phases: (i) retrieving the current

location of the mobile PSG by issuing to the middleware the query “SELECT location

FROM PERSON WHERE id = ep id”, where ep id is the SOLE-EP’s ID; and (ii) sending

a service discovery query to LASPD for services by limiting the search scope to the

proximity of SOLE-EP’s location. Once the reference of the SOLE-EP is retrieved, its

service can be invoked. However, if the reference is corresponding to a proxy for the

mobile device, the proxy will instead take care of the request by directing it to the right

SOLE-EP. In this case, the involvement of the proxy is transparent to the SOLE-EC.

In addition, to enable seamless communication of delivery of multimedia content (e.g.

streaming a video) during an experience sharing process, we are currently optimizing a

mobility support module in Coalition for both the SOLE-EP and SOLE-EC.

5.5.3 Other Features of Context-Awareness

The location-awareness capability of SOLE has been enabled by LASPD. Conse-

quently, users of SOLE-EC/EP may browse for service entities within the local range

or issue keyword-based queries to select a service entity of interest. Other types of

150

context-awareness can be realized by exploiting the experience meta-data (Figure 5.1).

For instance, “Time” can be used for filtering old experience data; similarly “Friend

List” can be used for filtering irrelevant SOLE-ECs not in the list. Users (i.e SOLE-EP)

may choose to keep data of selected attributes private for better privacy and keep the rest

opened to the public (three data storage schemes as mentioned in Section 5.2).

5.6 Prototype Implementation

We have developed a prototype of SOLE in our laboratory. The prototype involves

implementations of SOLE-AS on desktops and SOLE-EP/EC on user mobile devices.

Moreover, the prototype of LASPD for supporting SOLE application services (as dis-

cussed in Section 5.4) and the prototype of ACE for supporting SOLE context-awareness

(as discussed in Section 5.5) will be presented in this section. Lastly, prototype tests have

been carried out with observations and measurements to demonstrate the feasibility of

SOLE.

5.6.1 Prototype of SOLE

In the SOLE prototype, it consists of a SOLE-AS which relies on MySQL for the

data management. Its functions of experience indexing and retrieval are exposed using

Web services, as shown Table 5.1. The SOLE-EP/EC is implemented using HTC Hero

Android handphone. Different from the SOLE-AS, the private data management in the

mobile phone is implemented using the SQLite library. Figure 5.7 presents the screen-

shots for the user interface of SOLE-EP/EC: Figure 5.7a demonstrates that by leveraging

on LASPD, the user can search/browse service entities (stars) for sharing or retrieving

experience; Figure 5.7b shows that upon selecting an entity on the map, the user can

share experience about the entity or retrieve experience associated with it; Figure 5.7c il-

151

Public APIs Operations
registerAccount() Create account for SOLE-EP/EC. The email address

is registered as account ID.
login() Log in to SOLE with account ID and password.
getAccountInfo() Get the detailed information about an account, in-

cluding its nick name and avatar.
retrievePassword() Retrieve the password of an account in case the

owner forgets it.
updateAccountAvatar() Update the avatar image of an account.
discoverExperiences() Discover entities that are associated with people’s

experiences. The discovery can be keyword-based
and within a predefined scope (e.g. ≤ 200 meters).

getEntityTags() Retrieve experience tags associated with a particular
entity of interest.

retrieveExperiences() Retrieve experience details about an entity of inter-
est or based on the tags selected by SOLE-EC.

createExperience() Create an experience about an entity of interest by
SOLE-EP.

deleteExperience() Delete an experience by SOLE-EP. The experience
must be created by the same SOLE-EP.

updateExperience() Update an experience by SOLE-EP. The experience
must be created by the same SOLE-EP.

retrieveAccountExperiences() Retrieve all the experiences created by the SOLE-EP
(identified by the account ID).

Table 5.1: SOLE-AS functions which are exposed as Web services.

lustrates that for sharing experience, besides filling the required information in the form,

the user may check/edit previously shared experience list; Figure 5.7d demonstrates that

for retrieving experience, the user can view the list of experiences shared by others and

he may add in his experience directly; Figure 5.7e illustrates a sample of an experience

list associated with the entity; Figure 5.7f presents the details for the user selected expe-

rience.

Table 5.2 illustrates a scheme for the storage of “restricted” experience data. The

user relies on the SOLE-AS for access control, i.e. by uploading friend list. He may

also keep the whole experience data (especially those large-size data such as images and

videos) on his own device for future reference or retrieval. Note that the user can always

change the scheme by manipulating with the Service/Policy Manager in the SOLE-EP

152

(a) (b) (c)

(d) (e) (f)

Figure 5.7: UI screenshots for SOLE-EP/EC.

(Figure 5.3) through its User Interface. For instance, he may remove all the ticks in the

column which represents storage on the SOLE-EP device in case his smart phone is low

on memory.

5.6.2 Prototype of LASPD

The whole package of LASPD consists of three parts: implementation of service

peers, implementation of LASPD clients and implementation of a public Web server.

153

SOLE-AS SOLE-EP Device
Location Geo-Coords

√ √

Time Date
√ √

Personal Profile

ID
√ √

Home Address
√

Friend List
√ √

Push Preference
√

Entity of Interest Place, Object, Event
√ √

Tags Keywords
√ √

Experience Data
Text

√ √

Image
√

Video
√

Table 5.2: A scheme for “restricted” storage of experience. The ticks show the support
or need to store the schema attributes on SOLE-AS or SOLE-EP’s device.

For service peers, the implementation focuses on the connection setup, query routing

and creation of long-range links as all those have been discussed in Chapter 3. In the

implementation of LASPD clients (i.e. service providers and consumers), all the APIs for

interacting with LASPD are wrapped into a Java class, so the clients do not have to worry

about the details, such as the message format used in LASPD. The public Web server is

used to monitor service peers in LASPD. In addition, it helps mobile service providers

to discover their nearby proxies (Section 3.1.5) and helps service peers to discover their

local superpeers (Section 3.2.5).

For applications such as SOLE which consists of several application services (e.g.

provisioned by SOLE-AS and SOLE-EP), they may leverage on the client’s side imple-

mentation (i.e. the wrapper class) to interact with LASPD. The following statements

demonstrate the methods to get their services published:

LASPDClientAPI api = new LASPDClientAPI();

ServiceData service = new ServiceData(name, location, type, description, reference);

SM mediator = api.registerService(service);

mediator.publishService();

In the above statements, the reference to a service peer is retrieved by instantiating the

wrapper class LASPDClientAPI. By default, it queries our Web server to get the nearest

154

service peer information; alternatively, the client may explicitly state the reference of a

service peer (i.e. IP and port) in the constructor of LASPDClientAPI. The service peer

will then act as a proxy and its functions will be invocable through the wrapper instance

api. The ServiceData service is used to describe the registered service, including its

name, location, type, description and reference. “type” indicates the category of the ser-

vice so that later application-specific query received by the service peer can be directed

to the correct service. “description” of the service is described so to let others discover

it. By default, we use the name together with the type as the keywords. Nevertheless,

application developer may use richer descriptions such as those parsed by WSDL file to

support Web service function discovery. “reference” refers to the mean to trigger the ser-

vice in case it is a software service. It can be a memory function reference, a Web service

URL or a TCP/IP socket. Once “registerService()” is called, the reference to the newly

created SM object on the service peer is returned back to the application, so application

can let the mediator to publish its associated service. The service indexing function of

the service peer will then be triggered to index the service in LASPD. Note that once

the application service is bound to a particular SM instance, it can utilize the functions

provided by the SM instance to communicate with LASPD and to use its resources or

functions. Figure 5.8 illustrates the relationships and interactions among the software

components Application, ApplicationService, ServicePeer and ServiceMediator.

In the package, we have also provided a set of User Interfaces (UIs) to help users of

LASPD. The screenshots for the registration of SOLE-AS service are presented in Figure

5.9, wherein Figure 5.9a illustrates the UI on the Web server to monitor the deployment

of the distributed service peers in a university campus; Figure 5.9b demonstrates the UI

for the client to register the SOLE-AS service; Figure 5.9c shows the topology for all the

service registered. Note that each service is bound to a service peer (i.e. proxy) shown

in Figure 5.9a.

155

+addConnection() : void

+routeQuery() : void

+registerAS() : ServiceMediator

+removeAS() : void

ServicePeer

-ip : string

-port : int

-address : string

-areaID : int

-peerID : int

-leftNeighbor : ServicePeer

-rightNeighbor : ServicePeer

+publishAS() : bool

-subscribeAS() : bool

+receiveQuery() : Result

ServiceMediator

-serviceName : string

-serviceType : string

-serviceReference : URL

<<interface>>

Application

<<interface>>

ApplicationService

+register

1..*

+host

1..*

+create1

+referencedBy1..*

+consist1

+containedBy1..*

+invoke

1

+callback

1

Figure 5.8: Software component interactions between application and service peer.

(a) Monitoring UI on Web server side.

Figure 5.9: UI screenshots of LASPD for supporting SOLE-AS service (I).

156

(b) Registration UI on client side.

(c) Overall service topology.

Figure 5.9: UI screenshots of LASPD for supporting SOLE-AS service (II).

157

(a) Mobile service provision. (b) Service discovery.

Figure 5.10: UI screenshots for mobile service provision and discovery.

The client’s side implementation has also been integrated with the mobile platform,

i.e. Android OS. In Figure 5.10a, the mobile user decides which of his available service

should be registered with LASPD; for example, the SOLE-EP’s service. Figure 5.10b

shows the result of a range search issued by a mobile user. The available services (e.g.

“bus stop”) are annotated by stars. Upon a click on a service (star), the user is prompted

for the inputs as required by that service.

5.6.3 Prototype of ACE

The prototype of ACE follows the architecture design as shown in Figure 4.5. We

have also implemented a console for the system administrator to monitor: (i) all the

ACMs registered; (ii) all the context facts in the Context Fact Base; (iii) all the ASTs

of running ACM Instances. Figure 5.11a illustrates the UI of ACM Management. The

administrator may explicitly register an ACM from the local repository or wait for re-

quests from remote sites (i.e. handled by the ACE Interface in Figure 4.5). Once the

ACM specification is retrieved, the various ACM elements are parsed and reflected in

the console. The administrator may browse each element and see the detail. For a com-

158

(a) UI of ACM Management.

(b) UI of Context Data Management.

(c) Creation of a SOLE ACM Instance.

Figure 5.11: UI screenshots of ACE for supporting SOLE context-awareness (I).

159

(d) Initialization of a SOLE ACM Instance.

(e) Execution of a SOLE ACM Instance.

Figure 5.11: UI screenshots of ACE for supporting SOLE context-awareness (II).

plete ACM specification of SOLE, it can be found in the Appendix. Figure 5.11b shows

the UI of Context Data Management. Similarly, the administrator may load context facts

from the local management system (e.g. DBMS) or subscribe with our Coalition mid-

dleware (Section 5.5.1). As context facts are selectively updated according to the regis-

tered ACMs (Section 4.3.2), only the relevant context facts are retrieved. For SOLE, we

implement the application intelligence as illustrated in the ShoppingHelper application

(Section 4.1); therefore, context facts of PERSON and SHOP are required. The fact data

160

is updated to the Context Fact Base in ACE, which is utilized by the Inference Engine

to do the reasoning tasks, i.e. over the StartingContexts subscribed by each registered

ACM. If the reasoning is successful, the corresponding ACM is instantiated and notifi-

cations are sent to the StartingEntities as shown in Figure 5.11c. Figure 5.11d illustrates

the list of the running ACM Instances. For each instance, its AST is shown. As the ACM

Instance of SOLE is just initialized, only IndependentEntities are instantiated and filled

in the table, i.e. User and ShopService. Alice’s smart phone may retrieve the satisfied

ShopServices from ACE and send their names to the SOLE-AS together with the ID of

the ACM Instance, i.e. “SOLEACM1”. The SOLE-AS matches the ShopServices to

their corresponding experience data. However, if the data is stored on people’s devices,

the SOLE-AS updates ACE with the pairs of ShopService’s name and ExpProvider’s ID

(i.e. the ID of the SOLE-EP), which in turn updates the Application Context Base of the

ACM Instance. The constraint that the provider must be a friend of Alice is enforced by

ACE, with the provider’s ID filled in the AST (as shown in Figure 5.11e). With the AST

updated, Alice’s could then retrieve experience data from her friends’ devices.

5.6.4 Prototype Validation of SOLE

For a more rigorous study and evaluation of SOLE performance, we have run the dis-

tributed SOLE-AS on desktop PC (Intel Dual-Core E8400) and the SOAP-EP on mobile

device (HTC Hero) to measure the overhead occurred during the application execution.

Several metrics based on real-time evaluation are compared and shown in Table 5.3. In

the table, “SOAP Deserialization/Serialization” is referring to the time spent for pars-

ing/composing SOAP messages when the application services are invoked on SOLE-AS

and SOLE-EP. As we are using Web services for communications, this overhead must be

studied to test the application feasibility, especially for mobile devices. “Application Ex-

ecution” is referring to the overhead occurred for application logic of SOLE. We further

161

Metric Time (Milliseconds)
Desktop Mobile Device

SOAP Deserialization 12 132
SOAP Serialization 5 45

Application Execution
Experience Insertion 17 62
Experience Deletion 2 12
Experience Search 4 14

Table 5.3: Performance comparisons for application services running on desktop (i.e.
SOLE-AS) and mobile device (i.e. SOLE-EP) in real-time.

divided it into three categories of operations: experience insertion, deletion and search.

For all the three operations, the network latency has not been included for assessment

in the table. Though compared to the conventional desktops, applications running on

mobile devices incur more overhead due to their slower CPU and smaller memory, the

performance is still acceptable. Indeed, with rapid advancement in mobile technologies,

we can foresee mobile devices as service providers will be popular in the near future.

To further investigate SOLE’s performance in real-life scenarios, we have set up its

prototype in the university campus. A public Web server is deployed for the functions

of SOLE-AS. Mobile clients (i.e. SOLE-EP/EC) may access its Web services through

wireless networks. In addition, the machine running the Web server also implements the

functions of a service peer which acts as the proxy for both SOLE-EP and SOLE-EC. As

a result, the SOLE-EC may directly retrieve experience data from the SOLE-EP (if the

SOLE-EP’s ID is known). The tests have been carried out in the campus environment

and 3G network is used for communication by mobile devices. For SOLE-EP, the latency

for the process of experience sharing is measured; while for SOLE-EC, the latencies of

experience discovery and retrieval are studied. Table 5.4 shows the results for each

category of measurement.

For SOLE-EP, the sharing of experience to SOLE-AS is divided into two types: with

text only, with both text and image. The sample text contains 50 words and the size

162

Metric Time (Milliseconds)
Experience Sharing to SOLE-AS

Text 1753
Text + One Image 2540
Text + Two Images 3577

Experience Discovery and Retrieval from SOLE-AS
Experience Discovery 1482
Experience Retrieval 1778
Image Downloading 526

Experience Retrieval from SOLE-EP
Text 1679

One Image 2902
Two Images 4287

Table 5.4: Performance measurements of SOLE application in real-life scenarios.

of each sample image is around 25KB. The increment in the latency of the sharing

process is caused by the process of image uploading, which is sequential in the cur-

rent implementation. The experience discovery process concerns about retrieval of the

relevant information from SOLE-AS that matches the SOLE-EC’s request, such as the

keywords specified and the distance indicated. The details about each discovered expe-

rience such as text content and images are not retrieved in the process; instead, only the

name of the entity and its location are retrieved and displayed on the map. The number

of the discovered experiences in the tests varies from 1 to 40, and the mean value for

the latency is shown in the table. Once the SOLE-EC wants to know the details about

a particular experience (e.g. by long-pressing the star icon in Figure 5.7a), the expe-

rience retrieval process is triggered. The process retrieves the text content and image

references (i.e. Web URL) about the experience from SOLE-AS. After that, images are

downloaded concurrently in the background processes. However, if the experience data

is restricted, i.e. the text content and images are stored on the mobile device of SOLE-

EP, the SOLE-EC may ask for the SOLE-EP’s permission to retrieve them. The retrieval

process is completed with the help of the proxy (as described in Section 3.1.5 of Chapter

3). Overall, from Table 5.4 we demonstrate that SOLE is feasible for practical usage.

163

5.7 Summary

In this chapter, we proposed a generic Sharing Of Living Experience (SOLE) ap-

plication, which fits in the vision of ubiquitous computing to let people communicate

and share information at anywhere, anytime. SOLE has been used as a test case for

application development on our context middleware (Coalition), service management

platform (LASPD) and context realization framework (ACE). More specifically, SOLE

may deploy its application services (i.e. the two types of services provided by SOLE-AS

and SOLE-EP) and utilize the resources (e.g. registered services) and mechanisms (e.g.

location-aware service discovery) in LASPD. It could enhance the quality of service by

incorporating context-awareness in the process of experience sharing and retrieving, with

the support of Coalition and ACE.

As a proof of concept, we have implemented a prototype of SOLE including the

introduced components (i.e. SOLE-AS, SOLE-EP and SOLE-EC) as well as the three

data storage schemes for experience data. The use of the underlying platform/framework

(i.e. LASPD and ACE) to support SOLE is also demonstrated. Tests on the SOLE

prototype show that it is feasible for practical deployment. In the near future, we would

like to carry out a field trial of SOLE with more users involved, such as by involving the

students in the university campus.

CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter concludes the whole thesis. Section 6.1 summarizes the research work

we have done to resolve the problems as raised in Section 1.4; the respective results and

contributions are highlighted. Section 6.2 indicates potential extension of research and

directions for future work.

6.1 Conclusion

Many researchers have envisaged that Ubiquitous Computing (UbiComp) would lead

to the development of smart ambient that would seamlessly assist and improve the quality

of our daily living to next level that close to what being described in science-fiction.

Context-awareness, as a key enabling technology of UbiComp, will help to achieve this

vision by adapting applications and services to user contexts and environment settings.

However, in early days, due to technology restrictions such as high-cost sensor chips

and low-speed wireless communication, the vision of UbiComp could only demonstrated

164

165

partially in laboratories. With the recent advancement in hardware and communication

technologies, it is becoming feasible to develop the concept of UbiComp for real-life

applications in larger scale. In particularly, portable devices such as smart phones and

tablets which are becoming pervasive, will play a major role in the transition to real

life commercial UbiComp from the lab-based research prototypes. On one hand, these

mobile devices could act as the gateways to collect user contexts (e.g. user’s location)

through embedded sensors; on the other hand, they possess computing and networking

capabilities to allow services to be hosted. This will open up a new era of true mobile

services, marking a major paradigm shift of providing services from the fixed server-

centric service model to the new mobile people-centric service model.

Indeed, realizing UbiComp for real world applications has posed many research chal-

lenges in computer science. These include resource and service discovery, context-aware

system design, and ubiquitous application development. Most existing approaches for

UbiComp systems are domain and application-centric, with simple use of sensors, in-

volving fewer context entities in the application. Due to the complexity in its design and

implementation, UbiComp has yet to reach the stage that involves the exchange of infor-

mation from large-scale distributed context sensing sources. Our early work in this area

includes context data modeling, retrieval and reasoning techniques in a service-oriented

middleware known as Coalition. In fact, Coalition provides the essential middleware

infrastructure for large-scale context-aware operations, and has been used for the devel-

opment and testing of the design concepts proposed in this thesis.

The main deliverable and achievements of this thesis can be summarized as follow:

(i) the proposal of an advanced framework for the provision, discovery and development

of ubiquitous services and applications; (ii) the proof of the design concept of the pro-

posed framework through simulation study and prototyping; and (iii) the integration of

the prototype to an existing middleware with an extended architecture and the demon-

166

stration of its enhanced capability through the design and development of a ubiquitous

application. The technical contributions of this thesis are elaborated as follows:

• We have proposed the LASPD platform (Chapter 3) which has a three-tier archi-

tecture for the provision and discovery of services, including the support for the

emerging mobile services. Peer-to-Peer (P2P) concepts have been deployed in the

first two tiers to achieve scalability. Meanwhile, the design of the P2P overlay

structure has facilitated the management of services and a location-based range

search of services. The deployment of the Hilbert space filling curve preserves

the geographical locations of service providers, and contributes to the flexibility

of managing service providers and service administrative areas. The proposed

Source Sampling mechanism defines a probabilistic process of augmenting long-

range links in the P2P network which helps to achieve the “small world effect”

autonomously. As demonstrated in simulation studies, our system can achieve

network navigability by using source sampling. The modified probability model

for source sampling also exhibits its effectiveness in adapting to real-world set-

tings, where parameter covid(u) is used to remove the assumption that every cell

in the area must be occupied by a peer and parameter α is to boost up the perfor-

mance convergence speed. The performance of the source sampling mechanism

has been compared with that of other similar approaches (e.g. Random Sampling,

superpeer-based approach) in local-area and cross-area routings. The simulation

results demonstrated that our scheme has better routing efficiency and is more re-

silience to peer node (i.e. superpeer) failure. Furthermore, compared with Thresh-

old Sampling in mobile environments, our source sampling has better capabili-

ties in recovering routing efficiency in the presence of network topology changes.

However, as observed, source sampling requires a longer time to converge to its

peak routing performance. In view of this, a way to overcome this slow start is

167

to apply a Centralized Sampling during the initial bootstrapping phase of the peer,

and then reply on source sampling to maintain its long-range links.

• We have proposed the ACE framework (Chapter 4) which aims to fast-track the

implementation of context-related tasks in a ubiquitous application. Three types

of context-related tasks (i.e. context logic) respectively for application adapta-

tion, context constraint enforcement and context flow are considered in this thesis.

They may all be specified and modeled in the Application Context Model (ACM).

The respective specification is then registered with the Application Context En-

gine (ACE) which is capable of interpreting and realizing the tasks at application

runtime. The case study on a ubiquitous application (i.e ShoppingHelper) demon-

strates that the ACE framework simplifies implementation process of application

as well as enhancing its maintainability when dealing with changing context re-

quirements. With the use of ACM and ACE, the formulation of context-related

tasks is shifted to the design time from the implementation phase under normal

circumstances. An important implication of this ‘shift’ is the de-coupling of ‘the

design and implementation of context-related tasks’ from that of the application

itself. Hence any changes of the underlying context data acquisition or processing

affect only the context-related tasks instead of the whole application. In addition,

ACE also helps to shift the context-related computation tasks away from resource-

constrained devices (e.g. smart phones) where power consumption is a major con-

cern. Based on the case study, we have conducted experiments and validated the

prototype performance on ACM parsing, AST updating, and offline/online context

reasoning. However, during the experimental tests, we observed that the rule-based

reasoning engine (e.g. Jena and Jess) used by the ACE has incurred substantial de-

lay. The delay incurred would increase almost exponentially with the increase of

data size of context facts. We therefore conclude that the state of the art reasoning

168

technology is not suitable for reasoning over large-scale context data, and clearly

this is an important area for future research.

• We have proposed the SOLE application (Chapter 5) which fits in the vision of

UbiComp to let people communicate and share experience at anywhere, anytime.

It leverages on LASPD to manage its application services (i.e. services provi-

sioned by SOLE-AS and SOLE-EP), and it incorporates ACE (with the help of

Coalition) to achieve context-aware experience sharing and retrieving. As a re-

sult, the successful development of SOLE is a clear demonstration of the feasibil-

ity of the design concepts of the integrated framework consisting LASPD, ACE

and Coalition middleware. Compared with other information sharing applications,

SOLE is more flexible as it allows the user to store his context data (e.g. loca-

tion and profile) and application data (e.g. experience) on his mobile device. The

data is then provided through the mobile service hosted on the device and acces-

sible with user permission. This approach allows the user to have a better control

over his personal data instead of relying on a third-party server which may cause

privacy issue. Moreover, the context-awareness of SOLE is not restricted to sim-

ple attributes such as user’s location. Complex context-aware tasks can also be

supported with the help of the context infrastructure — Coalition and the context

realization framework — ACE. Our current prototype of SOLE is performing sat-

isfactorily. However, we still need more rigorous study of its performance with

more users involved, such as for a field trial in the university campus.

6.2 Future Work

Driven by the advancement in technologies such as microelectronics and information

computing, it is clear that UbiComp will increasingly influence everyday life. Neverthe-

169

less, as mentioned before, much remains to be done and learned in this area. Despite of

the work proposed in this thesis, the following problems have been identified:

• Improvement of Reasoning Efficiency: Reasoning plays an important role in Ubi-

Comp, and due to the characteristics of context data (e.g. uncertainty and frequent

changes), it is crucial to improve the reasoning efficiency to make the developed

context frameworks and ubiquitous applications effective in practice. As demon-

strated in Chapter 4, existing reasoners (e.g. Jena) are falling short in supporting

context reasoning over dynamic data at real-time. This is simply because their

engines are not designed for context data, and the update (involving both deletion

and addition) of data may result in the re-evaluation and execution of the whole

reasoning process over all the data and rules. It is therefore necessary to develop

an efficient algorithm to effectively support reasoning over dynamically changing

data [125]. To further enhance the reasoning efficiency, the reasoning process in-

volved in a particular task such as the recommendation of shops based on their

distances and types may be distributed to multiple nodes. Each node is supposed

to handle a sub-task which may refer to an operator function such as checking

the shop type using “equal()” or refer to a computation task such as computing

distance between the shop and the user. Indeed, these sub-tasks can be further di-

vided and eventually form a tree structure for context reasoning. Each node of the

tree can be considered as an aggregation point, which can consume the data from

low-level points and provide the results to high-level points. Moreover, the ag-

gregation point can be reused by any other application that has the same sub-task.

We believe by distributing the reasoning process, the size of the context data for

reasoning can be reduced and the efficiency of reasoning on each sub-task can be

improved. Of course, the challenges of this approach will be how to divide a given

task, namely the plan to construction the tree, and how to distribute the aggrega-

170

tion point. For the latter issue, one possible solution is to map each aggregation

point to a Physical Space Gateway (PSG) in Coalition. The mapping criteria can

be relevancy-based, for instance, if the task is concerning about whether there is

anyone in a specific room, then the aggregation point assigned with the task can

be mapped to the room’s PSG, and a separate ACE framework is deployed there

to fulfill the task.

• Personalization of Application Adaptation: The current ACM designed in the ACE

framework requires that the conditions for application adaptation (i.e. Starting-

Contexts and EndingContexts) must be explicitly predefined by application devel-

opers. Although personalization can be achieved by imposing different specifi-

cations for different users, it can be a quite tedious work in practice. Moreover,

there can be mismatching between the scheme designed by developers and that de-

sired by users. As a result, intelligence should be incorporated into the design for

personalization of application adaptation, and the whole process should be made

automatic and possibly transparent to the user. Techniques such as machine learn-

ing can be applied so that useful data is mined and used for future predication.

The range of context data to be mined must be restricted for the considerations of

efficiency and effectiveness. For instance, ContextAttributes of the user that are

relevant to the application adaptation should be predefined and this kind of data

is collected whenever the user uses the application. Artificial intelligence tech-

niques are then applied on the historical data over certain period. Upon the next

occurrence of the similar situation, the application can be adapted automatically.

Of course, this approach for personalization should not be intrusive, especially in

the early stage of machine learning when there is less data to mine.

• Practical Deployment of LASPD and SOLE: As mentioned in Chapter 5, we have

implemented the prototypes for LASPD and SOLE in our laboratory. However,

171

they are currently deployed on a small scale and mainly for demonstration pur-

pose. We would like to put more development effort to make them suitable for

a field trial. To achieve so, we are currently working on a project — Dig’it!1

which combines the features of LASPD and SOLE. The project platform supports

the sharing, provision and discovery of information and services. As in LASPD,

the service can be provisioned by mobile devices, and it can be invoked directly

through the developed platform. Other features such as information/service push,

user activity tracing, local data storage are also provided. The goals of the project

are to create an interactive environment for information/service providers and con-

sumers, and to improve user experiences with our developed frameworks and tech-

niques for mobile ubiquitous computing.

1http://137.132.145.205/DigitWeb.

BIBLIOGRAPHY

[1] Anind K. Dey. Understanding and Using Context. Personal Ubiquitous Comput.,

5:4–7, January 2001.

[2] Mark Weiser. The computer for the 21st century. Scientific American, 265(3):66–

75, September 1991.

[3] Norbert Streitz and Paddy Nixon. The Disappearing Computer. Commun. ACM,

48(3):32–35, March 2005.

[4] Adwait Gupte and Phillip Jones. Towards hardware support for common sensor

processing tasks. In Proceedings of the 2009 15th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications, RTCSA ’09,

pages 85–90, Washington, DC, USA, 2009. IEEE Computer Society.

[5] Xiaohang Wang, Jinsong Dong, Chung Yau Chin, SankaRavipriya Hettiarachchi,

and Daqing Zhang. Semantic space: An infrastructure for smart spaces. IEEE

Pervasive Computing, 3:32–39, 2004.

172

173

[6] Sailesh Sathish and Cristiano di Flora. Supporting smart space infrastructures:

a dynamic context-model composition framework. In Proceedings of the 3rd in-

ternational conference on Mobile multimedia communications, MobiMedia ’07,

pages 67:1–67:6, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering).

[7] Manal Al-Bahlal and Jalal Al-Muhtadi. A middleware for personal smart spaces.

In Proceedings of the 34th Computer Software and Applications Conference

Workshops, pages 299–304, Los Alamitos, CA, USA, 2010. IEEE Computer So-

ciety.

[8] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela

Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of context modelling

and reasoning techniques. Pervasive Mob. Comput., 6:161–180, April 2010.

[9] Thomas Strang and Claudia L. Popien. A Context Modeling Survey. In Workshop

on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 -

The Sixth International Conference on Ubiquitous Computing, September 2004.

[10] R. Krummenacher and Thomas Strang. Ontology-Based Context Modeling. In

Workshop on Context-Aware Proactive Systems, 2007.

[11] Harry Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Sys-

tems. PhD thesis, University of Maryland, Baltimore County, 2004.

[12] Patrick Fahy and Siobhan Clarke. Cass — a middleware for mobile context-aware

applications. In Workshop on Context Awareness, MobiSys, 2004.

[13] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware

for building context-aware services. J. Netw. Comput. Appl., 28:1–18, January

2005.

174

[14] Jian Zhu, Penghe Chen, Hung Keng Pung, Mohammad Oliya, Shubhabrata Sen,

and Wai Choong Wong. Coalition: A platform for context-aware mobile appli-

cation development. Ubiquitous Computing and Communication Journal, 6, Jan-

uary 2011.

[15] A. van Halteren and P. Pawar. Mobile service platform: A middleware for no-

madic mobile service provisioning. In Proceedings of the 2006 IEEE Interna-

tional Conference on Wireless and Mobile Computing, Networking and Commu-

nications, pages 292–299, Washington, DC, USA, 2006. IEEE Computer Society.

[16] Satish Narayana Srirama, Vladimir Sor, Eero Vainikko, and Matthias Jarke. Sup-

porting mobile web service provisioning with cloud computing. Int. J. on Ad-

vances in Internet Technology, 3:261–273, 2010.

[17] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP: Interac-

tive Prototyping of Context-Aware Applications. In Proceedings of the Pervasive

Computing, pages 254–271, 2006.

[18] Karen Henricksen and Jadwiga Indulska. Developing context-aware pervasive

computing applications: Models and approach. Pervasive Mob. Comput., 2:37–

64, February 2006.

[19] Thorsten Caus, Stefan Christmann, and Svenja Hagenhoff. Hydra — An applica-

tion framework for the development of context-aware mobile services. Business

Information Systems, 7(14):471–481, 2008.

[20] Bin Guo, Daqing Zhang, and Michita Imai. Toward a cooperative program-

ming framework for context-aware applications. Personal Ubiquitous Comput.,

15:221–233, March 2011.

175

[21] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Ef-

stratiou. Developing a context-aware electronic tourist guide: some issues and

experiences. In Proceedings of the SIGCHI conference on Human factors in com-

puting systems, CHI ’00, pages 17–24, New York, NY, USA, 2000. ACM.

[22] P. J. Brown and G. J. F. Jones. Context-aware retrieval: Exploring a new envi-

ronment for information retrieval and information filtering. Personal Ubiquitous

Comput., 5:253–263, January 2001.

[23] Guanling Chen and David Kotz. Solar: A pervasive-computing infrastructure for

context-aware mobile applications. Technical Report TR2002-421, Dartmouth

College, Computer Science, Hanover, NH, February 2002.

[24] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of the 2001 conference on Applications, technologies, architectures,

and protocols for computer communications, SIGCOMM ’01, pages 149–160,

New York, NY, USA, 2001. ACM.

[25] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A scalable content-addressable network. In Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer commu-

nications, SIGCOMM ’01, pages 161–172, New York, NY, USA, 2001. ACM.

[26] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling

churn in a dht. In Proceedings of the annual conference on USENIX Annual Tech-

nical Conference, ATEC ’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX

Association.

176

[27] David Hilbert. Ueber die stetige Abbildung einer Line auf ein Flächenstück.

Mathematische Annalen, 38(3):459–460, 1891.

[28] Jon Kleinberg. Small-World Phenomena and the Dynamics of Information. Ad-

vances in Neural Information Processing Systems, 14:431–438, 2001.

[29] R. Marin-Perianu, P. Hartel, and H. Scholten. A Classification of Service Discov-

ery Protocols. Technical report, Dept. Electrical Eng., Mathematics, and Com-

puter Science, Univ. of Twente, Netherlands, 2005.

[30] Fen Zhu, Matt W. Mutka, and Lionel M. Ni. Service discovery in pervasive com-

puting environments. IEEE Pervasive Computing, 4:81–90, October 2005.

[31] S.A. Hosseini-Seno, R. Budiarto, and T.C. Wan. Survey and New Approach in

Service Discovery and Advertisement for Mobile Ad Hoc Networks. Computer

Science and Network Security, 7:275–284, 2007.

[32] Christopher N. Ververidis and George C. Polyzos. Service Discovery for Mobile

Ad Hoc Networks: A Survey of Issues and Techniques. IEEE Communications

Surveys and Tutorials, 10:30–45, 2008.

[33] Elena Meshkova, Janne Riihijärvi, Marina Petrova, and Petri Mähönen. A sur-

vey on resource discovery mechanisms, peer-to-peer and service discovery frame-

works. Comput. Netw., 52:2097–2128, August 2008.

[34] Stephan Hagemann, Carolin Letz, and Gottfried Vossen. Web service discovery -

reality check 2.0. In Proceedings of the Third International Conference on Next

Generation Web Services Practices, NWESP ’07, pages 113–118, Washington,

DC, USA, 2007. IEEE Computer Society.

[35] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-

ject location, and routing for large-scale peer-to-peer systems. In Proceedings of

177

the IFIP/ACM International Conference on Distributed Systems Platforms Hei-

delberg, Middleware ’01, pages 329–350, London, UK, 2001. Springer-Verlag.

[36] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An in-

frastructure for fault-tolerant wide-area location and routing. Technical report,

University of California at Berkeley, Berkeley, CA, USA, 2001.

[37] W. Acosta and S. Chandra. Unstructured peer-to-peer networks — next gener-

ation of performance and reliability. In Proceedings of the 24th Annual IEEE

International Conference on Computer Communications, 2005.

[38] Farnoush Banaei-Kashani, Ching-Chien Chen, and Cyrus Shahabi. WSPDS: Web

services peer-to-peer discovery service. In Proceedings of the International Con-

ference on Internet Computing, pages 733–743, 2004.

[39] Farnoush Banaei-Kashani and Cyrus Shahabi. Searchable Querical Data Net-

works. In Proceedings of the International Workshop on Databases, Information

Systems and Peer-to-Peer Computing in conjunction with VLDB, 2003.

[40] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.

Semantic matching of web services capabilities. In Proceedings of the First In-

ternational Semantic Web Conference on The Semantic Web, ISWC ’02, pages

333–347, London, UK, UK, 2002. Springer-Verlag.

[41] Reto Hermann, Dirk Husemann, Michael Moser, Michael Nidd, Christian Rohner,

and Andreas Schade. Deapspace: transient ad-hoc networking of pervasive de-

vices. In Proceedings of the 1st ACM international symposium on Mobile ad hoc

networking & computing, MobiHoc ’00, pages 133–134, Piscataway, NJ, USA,

2000. IEEE Press.

178

[42] Matthew Denny, Michael J. Franklin, Paul Castro, and Apratim Purakayastha.

Mobiscope: A scalable spatial discovery service for mobile network resources.

In Proceedings of the 4th International Conference on Mobile Data Management,

MDM ’03, pages 307–324, London, UK, UK, 2003. Springer-Verlag.

[43] Celeste Campo, Mario Munoz, Jose Carlos Perea, Andres Marin, and Carlos

Garcia-Rubio. Pdp and gsdl: A new service discovery middleware to support

spontaneous interactions in pervasive systems. In Proceedings of the Third IEEE

International Conference on Pervasive Computing and Communications Work-

shops, PERCOMW ’05, pages 178–182, Washington, DC, USA, 2005. IEEE

Computer Society.

[44] Ouri Wolfson, Bo Xu, Huabei Yin, and Hu Cao. Search-and-discover in mobile

p2p network databases. In Proceedings of the 26th IEEE International Confer-

ence on Distributed Computing Systems, ICDCS ’06, pages 65–, Washington,

DC, USA, 2006. IEEE Computer Society.

[45] Hossam Hassanein, Yu Yang, and Afzal Mawji. A new approach to service dis-

covery in wireless mobile ad hoc networks. Int. J. Sen. Netw., 2:135–145, April

2007.

[46] J. Antonio Garcia-Macias and Dante Arias Torres. Service discovery in mobile

ad hoc networks: Better at the network layer? In Proceedings of the 2005 Inter-

national Conference on Parallel Processing Workshops, ICPPW ’05, pages 452–

457, Washington, DC, USA, 2005. IEEE Computer Society.

[47] Christopher N. Ververidis and George C. Polyzos. Routing layer support for ser-

vice discovery in mobile ad hoc networks. In Proceedings of the Third IEEE Inter-

national Conference on Pervasive Computing and Communications Workshops,

179

PERCOMW ’05, pages 258–262, Washington, DC, USA, 2005. IEEE Computer

Society.

[48] A. Varshavsky, B. Reid, and Eyal de Lara. The Need for Cross-Layer Service Dis-

covery in MANETs. Technical Report CSRG-492, University of Toronto, 2004.

[49] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and

Alec Wolman. Skipnet: a scalable overlay network with practical locality prop-

erties. In Proceedings of the 4th conference on USENIX Symposium on Internet

Technologies and Systems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA,

2003. USENIX Association.

[50] H. Unger and M. Wulff. Cluster-building in P2P-Community Networks. In

Proceedings of the 14th IASTED International Conference on Parallel and Dis-

tributed Computing and Systems, pages 680–685, 2002.

[51] Magdalena Balazinska, Hari Balakrishnan, and David Karger. INS/Twine: A

Scalable Peer-to-Peer Architecture for Intentional Resource Discovery. In Pro-

ceedings of the 1st International Conference on Pervasive Computing, Pervasive

’02, pages 195–210, London, UK, 2002. Springer-Verlag.

[52] Michael Klein, Birgitta König-Ries, and Philipp Obreiter. Lanes - A lightweight

overlay for service discovery in mobile ad hoc networks. In Proceedings of the

3rd Workshop on Applications and Services in Wireless Networks, 2003.

[53] Eunyoung Kang, Moon Jeong Kim, Eunju Lee, and Ungmo Kim. Dht-based mo-

bile service discovery protocol for mobile ad hoc networks. In Proceedings of

the 4th international conference on Intelligent Computing: Advanced Intelligent

Computing Theories and Applications - with Aspects of Theoretical and Method-

180

ological Issues, ICIC ’08, pages 610–619, Berlin, Heidelberg, 2008. Springer-

Verlag.

[54] NOMAD Deliverable 3.5. Service Discovery Middleware. Technical report, Euro-

pean project NOMAD (Integrated Networks for Seamless and Transparent Service

Discovery), Brussels, February 2004.

[55] Z. Du, J. Huai, and Y Liu. Ad-UDDI: An active and distributed service registry.

In Proceedings of the 6th VLDB Intl. Wsp. on Technologies for E-Services, pages

58–71, 2006.

[56] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and

Randy H. Katz. An architecture for a secure service discovery service. In Pro-

ceedings of the 5th annual ACM/IEEE international conference on Mobile com-

puting and networking, MobiCom ’99, pages 24–35, New York, NY, USA, 1999.

ACM.

[57] Tim Hsin-Ting Hu and Aruna Seneviratne. Autonomic peer-to-peer service direc-

tory. IEICE - Trans. Inf. Syst., E88-D:2630–2639, December 2005.

[58] O.D. Sahin, C.E. Gerede, D. Agrawal, A.E. Abbadi, O.H. Ibarra, and J.W. Su.

SPiDeR: P2P-Based Web Service Discovery. In Proceedings of the 3rd Interna-

tional Conference on Service Oriented Computing, pages 157–170, 2005.

[59] J.B. Tchakarov and N.H. Vaidya. Efficient Content Location in Wireless Ad Hoc

Networks. In Proceedings of the IEEE International Conference on Mobile Data

Management, pages 74–85, 2004.

[60] H.W. Tsai, T.S. Chen, and C.P. Chu. Service Discovery in Mobile Ad Hoc Net-

works Based on Grid. IEEE Transactions on Vehicular Technology, 58:1528–

1545, 2009.

181

[61] Michael Klein, Birgitta König-Ries, and Philipp Obreiter. Service rings - a seman-

tic overlay for service discovery in ad hoc networks. In Proceedings of the 14th

International Workshop on Database and Expert Systems Applications, DEXA

’03, pages 180–, Washington, DC, USA, 2003. IEEE Computer Society.

[62] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna

Oundhakar, and John Miller. METEOR-S WSDI: A Scalable P2P Infrastruc-

ture of Registries for Semantic Publication and Discovery of Web Services. Inf.

Technol. and Management, 6:17–39, January 2005.

[63] Zakaria Maamar, Hamdi Yahyaoui, and Qusay H. Mahmoud. Dynamic man-

agement of uddi registries in a wireless environment of web services: Concepts,

architecture, operation, and deployment. J. Intell. Inf. Syst., 28:105–131, April

2007.

[64] Cristina Schmidt and Manish Parashar. A peer-to-peer approach to web service

discovery. World Wide Web, 7:211–229, June 2004.

[65] Giuseppe Pirrò, Paolo Trunfio, Domenico Talia, Paolo Missier, and Carole Goble.

Ergot: A semantic-based system for service discovery in distributed infrastruc-

tures. In Proceedings of the 2010 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, CCGRID ’10, pages 263–272, Washington,

DC, USA, 2010. IEEE Computer Society.

[66] Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. psearch: information

retrieval in structured overlays. SIGCOMM Comput. Commun. Rev., 33:89–94,

January 2003.

[67] Y. Zhu and Y. Hu. Semantic search in peer-to-peer systems. In Jie Wu, editor,

Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-

182

Peer Networks, pages 643–664. Auerbach Publications, Taylor and Francis Group,

USA, 2006.

[68] K. Arabshian and H. Schulzrinne. GloServ: global service discovery architec-

ture. In Proceedings of the 1st Annual International Conference on Mobile and

Ubiquitous Systems: Networking and Services, pages 319–329, 2004.

[69] Lican Huang. A p2p service discovery strategy based on content catalogues.

In Proceedings of the 20th International CODATA Conference, pages 492–499,

2006.

[70] Linh Pham and Guido Gehlen. Realization and performance analysis of a SOAP

server for mobile devices. In Proceedings of the 11th European Wireless Confer-

nce, pages 791–797, 2005.

[71] Daniel Schall, Marco Aiello, and Schahram Dustdar. Web services on embedded

devices. WEB INFOR. SYST., 2:45–50, 2006.

[72] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile host: a

feasibility analysis of mobile web Service provisioning. In Proceedings of the

4th International Workshop on Ubiquitous Mobile Information and Collaboration

Systems, a CAiSE’06 Workshop, pages 942–953, 2006.

[73] Guido Gehlen and Linh Pham. Mobile web services for peer-to-peer applications.

In Proceedings of the 2nd Consumer Communications and Networking Confer-

ence, pages 427–433, 2005.

[74] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile web ser-

vice provisioning. In Proceedings of the Advanced Int’l Conference on Telecom-

munications and Int’l Conference on Internet and Web Applications and Services,

183

AICT-ICIW ’06, pages 120–125, Washington, DC, USA, 2006. IEEE Computer

Society.

[75] Yeon-Seok Kim and Kyong-Ho Lee. A lightweight framework for mobile web

services. Computer Science - Research and Development, 24:199–209, 2009.

[76] Sonja Zaplata, Viktor Dreiling, and Winfried Lamersdorf. Realizing mobile web

services for dynamic applications. In Proceedings of IFIP Advances in Informa-

tion and Communication Technology, pages 240–254, 2009.

[77] Pravin Pawar, Bert-Jan van Beijnum, Hailiang Mei, and Hermie Hermens. To-

wards proactive context-aware service selection in the geographically distributed

remote patient monitoring system. In Proceedings of the 4th international confer-

ence on Wireless pervasive computing, ISWPC’09, pages 318–325, Piscataway,

NJ, USA, 2009. IEEE Press.

[78] Andrew Meads, Adam Roughton, Ian Warren, and Thiranjith Weerasinghe. Mo-

bile service provisioning middleware for multihomed devices. In Proceedings

of the 2009 IEEE International Conference on Wireless and Mobile Computing,

Networking and Communications, WIMOB ’09, pages 67–72, Washington, DC,

USA, 2009. IEEE Computer Society.

[79] Andrew John Dennis Meads. A holistic approach to mobile service provisioning.

In Proceedings of the 2009 IEEE/ACM International Conference on Automated

Software Engineering, ASE ’09, pages 698–702, Washington, DC, USA, 2009.

IEEE Computer Society.

[80] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. A mediation

framework for mobile web service provisioning. In Proceedings of the 10th IEEE

184

on International Enterprise Distributed Object Computing Conference Work-

shops, EDOCW ’06, pages 14–17, Washington, DC, USA, 2006. IEEE Computer

Society.

[81] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mwsmf: a

mediation framework realizing scalable mobile web service provisioning. In

Proceedings of the 1st international conference on MOBILe Wireless Middle-

WARE, Operating Systems, and Applications, MOBILWARE ’08, pages 43:1–

43:7, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sci-

ences, Social-Informatics and Telecommunications Engineering).

[82] Satish Narayana Srirama and Matthias Jarke. Mobile enterprise a case study of

enterprise service integration. In Proceedings of the 2009 Third International

Conference on Next Generation Mobile Applications, Services and Technologies,

NGMAST ’09, pages 101–107, Washington, DC, USA, 2009. IEEE Computer

Society.

[83] Satish Narayana Srirama and Matthias Jarke. Mobile hosts in enterprise service

integration. Int. J. Web Eng. Technol., 5:187–213, September 2009.

[84] Satish Narayana Srirama, Matthias Jarke, Hongyan Zhu, and Wolfgang Prinz.

Scalable mobile web service discovery in peer to peer networks. In Proceedings

of the 2008 Third International Conference on Internet and Web Applications and

Services, pages 668–674, Washington, DC, USA, 2008. IEEE Computer Society.

[85] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. The enterprise service

bus: making service-oriented architecture real. IBM Syst. J., 44:781–797, October

2005.

185

[86] Satish Narayana Srirama. Publishing and Discovery of Mobile Web Services in

Peer to Peer Networks. ArXiv abs/1007.2980v1, 2010.

[87] Johan Wikman and Ferenc Dosa. Providing HTTP Access to Web Servers Run-

ning on Mobile Phones. Technical Report NRC-TR-2006-005, Nokia Research

Center Helsinki, 2006.

[88] Feng Zhu, Matt Mutka, Anish Bivalkar, Abdullah Demir, Yue Lu, and Chock-

alingam Chidambarm. Toward secure and private service discovery anywhere

anytime. Front. Comput. Sci China, 4:311–323, September 2010.

[89] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware applications.

Hum.-Comput. Interact., 16:97–166, December 2001.

[90] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: aiding

the development of context-enabled applications. In Proceedings of the SIGCHI

conference on Human factors in computing systems: the CHI is the limit, CHI ’99,

pages 434–441, New York, NY, USA, 1999. ACM.

[91] Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis II, and Apratim Pu-

rakayastha. Composing pervasive data using iql. In Proceedings of the Fourth

IEEE Workshop on Mobile Computing Systems and Applications, WMCSA ’02,

pages 94–, Washington, DC, USA, 2002. IEEE Computer Society.

[92] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. a cap-

pella: programming by demonstration of context-aware applications. In Proceed-

ings of the SIGCHI conference on Human factors in computing systems, CHI ’04,

pages 33–40, New York, NY, USA, 2004. ACM.

186

[93] Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin, and Anupam Joshi.

Intelligent agents meet semantic web in a smart meeting room. In Proceedings of

the Third International Joint Conference on Autonomous Agents and Multiagent

Systems - Volume 2, AAMAS ’04, pages 854–861, Washington, DC, USA, 2004.

IEEE Computer Society.

[94] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an osgi-based infrastruc-

ture for context-aware applications. IEEE Pervasive Computing, 3:66–74, October

2004.

[95] Torben Weis, Mirko Knoll, Andreas Ulbrich, Gero Muhl, and Alexander Brandle.

Rapid prototyping for pervasive applications. IEEE Pervasive Computing, 6:76–

84, April 2007.

[96] Hung Keng Pung, Tao Gu, Wenwei Xue, Paulito P. Palmes, Jian Zhu, Wen Long

Ng, Chee Weng Tang, and Nguyen Hoang Chung. Context-aware middleware for

pervasive elderly homecare. IEEE J.Sel. A. Commun., 27:510–524, May 2009.

[97] Yang Li, Jason I. Hong, and James A. Landay. Topiary: a tool for prototyping

location-enhanced applications. In Proceedings of the 17th annual ACM sympo-

sium on User interface software and technology, UIST ’04, pages 217–226, New

York, NY, USA, 2004. ACM.

[98] David Bannach, Oliver Amft, and Paul Lukowicz. Rapid prototyping of activity

recognition applications. IEEE Pervasive Computing, 7:22–31, April 2008.

[99] Yang Li and James A. Landay. Activity-based prototyping of ubicomp applica-

tions for long-lived, everyday human activities. In Proceeding of the twenty-sixth

annual SIGCHI conference on Human factors in computing systems, CHI ’08,

pages 1303–1312, New York, NY, USA, 2008. ACM.

187

[100] Zhiwen Yu, Xingshe Zhou, Zhiyong Yu, Daqing Zhang, and Chung-Yau Chin. An

osgi-based infrastructure for context-aware multimedia services. IEEE Commu-

nications Magazine, 44:136–142, October 2006.

[101] Diego López-de Ipiña, Juan Ignacio Vazquez, and Joseba Abaitua. A web 2.0

platform to enable context-aware mobile mash-ups. In Proceedings of the 2007

European conference on Ambient intelligence, AmI’07, pages 266–286, Berlin,

Heidelberg, 2007. Springer-Verlag.

[102] Adrien Joly, Pierre Maret, and Johann Daigremont. Context-awareness, the miss-

ing block of social networking. International Journal of Computer Science and

Applications, 6:50–65, 2009.

[103] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper,

and Mike Pinkerton. Cyberguide: a mobile context-aware tour guide. Wirel. Netw.,

3:421–433, October 1997.

[104] Yasuyuki Sumi, Tameyuki Etani, Sidney Fels, Nicolas Simonet, Kaoru Kobayashi,

and Kenji Mase. C-map: Building a context-aware mobile assistant for exhibition

tours. In Community Computing and Support Systems, Social Interaction in Net-

worked Communities [the book is based on the Kyoto Meeting on Social Interac-

tion and Communityware, held in Kyoto, Japan, in June 1998], pages 137–154,

London, UK, 1998. Springer-Verlag.

[105] Youn-ah Kang, John Stasko, Kurt Luther, Avinash Ravi, and Yan Xu. RevisiTour:

enriching the trourism experience with user-generated content. In Proceedings of

the International Conference on Information and Communication Technologies in

Tourism, pages 59–69, 2008.

188

[106] Sherry Hsi and Holly Fait. Rfid enhances visitors’ museum experience at the

exploratorium. Commun. ACM, 48:60–65, September 2005.

[107] Hiroaki Ogata, Yoshiki Matsuka, Moushir M. El-Bishouty, and Yoneo Yano.

Lorams: linking physical objects and videos for capturing and sharing learn-

ing experiences towards ubiquitous learning. Int. J. Mob. Learn. Organ., 3:337–

350, July 2009.

[108] Felix von Reischach, Dominique Guinard, Florian Michahelles, and Elgar Fleisch.

A mobile product recommendation system interacting with tagged products. In

Proceedings of the 2009 IEEE International Conference on Pervasive Computing

and Communications, pages 1–6, Washington, DC, USA, 2009. IEEE Computer

Society.

[109] Pravin Pawar, Satish Srirama, Bert-Jan Beijnum van, and Aart Halteren van. A

comparative study of nomadic mobile service provisioning approaches. In Pro-

ceedings of the 2007 International Conference on Next Generation Mobile Appli-

cations, Services and Technologies, pages 277–286, Cardiff, 2007.

[110] M. Knoll and T. Weis. Optimizing locality for self-organizing context-based sys-

tems. In Proceedings of the 1st International Workshop on Self-Organizing Sys-

tems, pages 62–73, 2006.

[111] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and

Daniel Lewin. Consistent hashing and random trees: distributed caching protocols

for relieving hot spots on the world wide web. In Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing, STOC ’97, pages 654–663,

New York, NY, USA, 1997. ACM.

189

[112] Jian Zhu and Hung Keng Pung. Process Matching: A Structure Behavioral Ap-

proach for Business Process Search. In Proceedings of the 1st International Con-

ferences on Pervasive Patterns and Applications, pages 227–232, 2009.

[113] Stanley Milgram. The Small World Problem. Psychology Today, 2:60–67, 1967.

[114] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, June 1998.

[115] Jon Kleinberg. The small-world phenomenon: an algorithm perspective. In Pro-

ceedings of the thirty-second annual ACM symposium on Theory of computing,

STOC ’00, pages 163–170, New York, NY, USA, 2000. ACM.

[116] A. Clauset and C. Moore. How do networks become navigable? ArXiv cond-

mat/0309415, 2003.

[117] Augustin Chaintreau, Pierre Fraigniaud, and Emmanuelle Lebhar. Networks Be-

come Navigable as Nodes Move and Forget. In Proceedings of the 35th inter-

national colloquium on Automata, Languages and Programming, Part I, pages

133–144, Berlin, Heidelberg, 2008. Springer-Verlag.

[118] Oskar Sandberg and Ian Clarke. The evolution of navigable small-world networks.

ArXiv cs/0607025, 2006.

[119] Olof Mogren, Oskar Sandberg, Vilhelm Verendel, and Devdatt Dubhashi. Adap-

tive Dynamics of Realistic Small-World Networks. ArXiv cs/0804.1115v1, 2008.

[120] Felix Halim, Yongzheng Wu, and Roland H. C. Yap. Small world networks as

(semi)-structured overlay networks. In Proceedings of the 2008 Second IEEE In-

ternational Conference on Self-Adaptive and Self-Organizing Systems Workshops,

SASOW ’08, pages 214–218, Washington, DC, USA, 2008. IEEE Computer So-

ciety.

190

[121] Jakub Moskal and Christopher J. Matheus. Detection of suspicious activity using

different rule engines – comparison of basevisor, jena and jess rule engines. In

Proceedings of the International Symposium on Rule Representation, Interchange

and Reasoning on the Web, RuleML ’08, pages 73–80, Berlin, Heidelberg, 2008.

Springer-Verlag.

[122] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19(1):17–37, 1982.

[123] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering

practices in industry. In Proceeding of the 33rd international conference on Soft-

ware engineering, ICSE ’11, pages 633–642, New York, NY, USA, 2011. ACM.

[124] Jian Zhu, Mohammad Oliya, Hung Keng Pung, and Wai Choong Wong. SOLE:

Context-aware sharing of living experience in mobile environments. In Proceed-

ings of the 8th International Conference on Advances in Mobile Computing and

Multimedia, pages 366–369, 2010.

[125] Mohammad Oliya, Jian Zhu, Hung Keng Pung, and Antoine Veillard. Incremental

query answering over dynamic contextual information. In Proceedings of the 2011

IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI

’11, pages 452–455, Washington, DC, USA, 2011. IEEE Computer Society.

Appendix

 ACM_Ont.owl: the ontology specification for the Application Context Model.

<!DOCTYPE rdf:RDF [

 <!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>

]>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:acm="http://www.comp.nus.edu.sg/acm/ApplicationContextModel#"

 xml:base="http://www.comp.nus.edu.sg/acm/ApplicationContextModel#">

 <owl:Class rdf:ID="ACM"/>

 <owl:Class rdf:ID="ApplicationEntity"/>

 <owl:Class rdf:ID="ContextEntity"/>

 <owl:Class rdf:ID="ContextAttribute"/>

 <owl:Class rdf:ID="ContextBelonging"/>

 <owl:Class rdf:ID="ContextAbstraction"/>

 <owl:Class rdf:ID="ContextFlow"/>

 <owl:Class rdf:ID="ContextRelationship">

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#ContextBelonging"/>

 <owl:Class rdf:about="ContextAbstraction"/>

 <owl:Class rdf:about="#ContextFlow"/>

 </owl:unionOf>

 </owl:Class>

 <owl:Class rdf:ID="StartingContext"/>

 <owl:Class rdf:ID="EndingContext"/>

 <owl:Class rdf:ID="ACMComponent">

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#ApplicationEntity"/>

 <owl:Class rdf:about="#ContextEntity"/>

 <owl:Class rdf:about="#ContextAttribute"/>

 <owl:Class rdf:about="#ContextRelationship"/>

 <owl:Class rdf:about="#StartingContext"/>

 <owl:Class rdf:about="#EndingContext"/>

 </owl:unionOf>

 </owl:Class>

 <owl:Class rdf:ID="ContextConstraint">

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#ContextFlow"/>

 <owl:Class rdf:about="#StartingContext"/>

 <owl:Class rdf:about="#EndingContext"/>

 </owl:unionOf>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasComponent">

 <rdfs:domain rdf:resource="#ACM"/>

 <rdfs:range rdf:resource="#ACMComponent"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPrimaryEntity">

 <rdfs:domain rdf:resource="#ACM"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="definesContextAttribute">

 <rdfs:domain rdf:resource="#ContextBelonging"/>

 <rdfs:range rdf:resource="#ContextAttribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="belongsTo">

 <rdfs:domain rdf:resource="#ContextBelonging"/>

 <rdfs:range rdf:resource="#ContextEntity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="abstractsFrom">

 <rdfs:domain rdf:resource="#ContextAbstraction"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="abstractsTo">

 <rdfs:domain rdf:resource="#ContextAbstraction"/>

 <rdfs:range rdf:resource="#ContextEntity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="fromApplicationEntity">

 <rdfs:domain rdf:resource="#ContextFlow"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="toApplicationEntity">

 <rdfs:domain rdf:resource="#ContextFlow"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:ObjectProperty>

 <owl:DataProperty rdf:ID="hasFlowData">

 <rdfs:domain rdf:resource="#ContextFlow"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasConstraint">

 <rdfs:domain rdf:resource="#ContextConstraint"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasProtocol">

 <rdfs:domain rdf:resource="#ApplicationEntity"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasStartEntity">

 <rdfs:domain rdf:resource="#ACM"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasEndEntity">

 <rdfs:domain rdf:resource="#ACM"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:DataProperty>

 <!-- The followings are for Jena-based interpreter -->

 <owl:DataProperty rdf:ID="hasContextAttribute">

 <rdfs:domain rdf:resource="#ContextEntity"/>

 <rdfs:range rdf:resource="#ContextAttribute"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasContextValueS">

 <rdfs:domain rdf:resource="#ContextAttribute"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasContextValueD">

 <rdfs:domain rdf:resource="#ContextAttribute"/>

 <rdfs:range rdf:resource="&xsd;double"/>

 </owl:DataProperty>

 <owl:DataProperty rdf:ID="hasContextValueI">

 <rdfs:domain rdf:resource="#ContextAttribute"/>

 <rdfs:range rdf:resource="&xsd;integer"/>

 </owl:DataProperty>

 <owl:ObjectProperty rdf:ID="satisfyContextConstraint">

 <rdfs:domain rdf:resource="#ApplicationEntity"/>

 <rdfs:range rdf:resource="#ContextConstraint"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="satisfyConstraintWith">

 <rdfs:domain rdf:resource="#ApplicationEntity"/>

 <rdfs:range rdf:resource="#ApplicationEntity"/>

 </owl:ObjectProperty>

 <owl:DataProperty rdf:ID="hasACMStatus">

 <rdfs:domain rdf:resource="#ACM"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DataProperty>

</rdf:RDF>

 SOLE_Ont.owl: the ontology specification for the Sharing of Living Experience

application (to be registered to the Application Context Engine).

<!DOCTYPE rdf:RDF [

 <!ENTITY acm 'http://www.comp.nus.edu.sg/acm/ApplicationContextModel#'>

]>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:acm="http://www.comp.nus.edu.sg/acm/ApplicationContextModel#"

 xml:base="http://www.comp.nus.edu.sg/acm/ApplicationContextModel#">

 <acm:ACM rdf:ID="SOLEACM">

 <acm:hasComponent>

 <acm:ApplicationEntity rdf:ID="User">

 <acm:hasProtocol>192.168.1.100:8080</acm:hasProtocol>

 </acm:ApplicationEntity>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ApplicationEntity rdf:ID="Friend"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ApplicationEntity rdf:ID="ShopService"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ApplicationEntity rdf:ID="ExpIndexingServer"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ApplicationEntity rdf:ID="ExpProvider"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextEntity rdf:ID="PERSON"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextEntity rdf:ID="SHOP"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAttribute rdf:ID="PERSON.id"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAttribute rdf:ID="PERSON.location"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAttribute rdf:ID="PERSON.preferences"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAttribute rdf:ID="SHOP.name"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAttribute rdf:ID="SHOP.location"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAttribute rdf:ID="SHOP.type"/>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextBelonging rdf:ID="cb1">

 <acm:belongsTo rdf:resource="#PERSON"/>

 <acm:definesContextAttribute rdf:resource="#PERSON.id"/>

 </acm:ContextBelonging>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextBelonging rdf:ID="cb2">

 <acm:belongsTo rdf:resource="#PERSON"/>

 <acm:definesContextAttribute rdf:resource="#PERSON.location"/>

 </acm:ContextBelonging>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextBelonging rdf:ID="cb3">

 <acm:belongsTo rdf:resource="#PERSON"/>

 <acm:definesContextAttribute rdf:resource="#PERSON.preferences"/>

 </acm:ContextBelonging>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextBelonging rdf:ID="cb4">

 <acm:belongsTo rdf:resource="#SHOP"/>

 <acm:definesContextAttribute rdf:resource="#SHOP.name"/>

 </acm:ContextBelonging>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextBelonging rdf:ID="cb5">

 <acm:belongsTo rdf:resource="#SHOP"/>

 <acm:definesContextAttribute rdf:resource="#SHOP.location"/>

 </acm:ContextBelonging>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextBelonging rdf:ID="cb6">

 <acm:belongsTo rdf:resource="#SHOP"/>

 <acm:definesContextAttribute rdf:resource="#SHOP.type"/>

 </acm:ContextBelonging>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAbstraction rdf:ID="ab1">

 <acm:AbstractsFrom rdf:resource="#ShopService"/>

 <acm:AbstractsTo rdf:resource="#SHOP"/>

 </acm:ContextAbstraction>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAbstraction rdf:ID="ab2">

 <acm:AbstractsFrom rdf:resource="#User"/>

 <acm:AbstractsTo rdf:resource="#PERSON"/>

 </acm:ContextAbstraction>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAbstraction rdf:ID="ab3">

 <acm:AbstractsFrom rdf:resource="#Friend"/>

 <acm:AbstractsTo rdf:resource="#PERSON"/>

 </acm:ContextAbstraction>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextAbstraction rdf:ID="ab4">

 <acm:AbstractsFrom rdf:resource="#ExpProvider"/>

 <acm:AbstractsTo rdf:resource="#PERSON"/>

 </acm:ContextAbstraction>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextFlow rdf:ID="cf1">

 <acm:fromApplicationEntity rdf:resource="#ShopService"/>

 <acm:toApplicationEntity rdf:resource="#User"/>

 <acm:hasConstraint>cf1.rule</acm:hasConstraint>

 <acm:hasFlowData>ShopService.name</acm:hasFlowData>

 </acm:ContextFlow>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextFlow rdf:ID="cf2">

 <acm:fromApplicationEntity rdf:resource="#Friend"/>

 <acm:toApplicationEntity rdf:resource="#Friend"/>

<acm:hasConstraint>cf2.rule</acm:hasConstraint>

 </acm:ContextFlow>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextFlow rdf:ID="cf3">

 <acm:fromApplicationEntity rdf:resource="# ShopService "/>

 <acm:toApplicationEntity rdf:resource="#User"/>

<acm:hasConstraint>cf3.rule</acm:hasConstraint>

 <acm:hasFlowData>ShopService.name</acm:hasFlowData>

 </acm:ContextFlow>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextFlow rdf:ID="cf4">

 <acm:fromApplicationEntity rdf:resource="#User"/>

 <acm:toApplicationEntity rdf:resource="# ExpIndexingServer "/>

 <acm:hasFlowData>ShopService.name</acm:hasFlowData>

 </acm:ContextFlow>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextFlow rdf:ID="cf5">

 <acm:fromApplicationEntity rdf:resource="#ExpIndexingServer"/>

 <acm:toApplicationEntity rdf:resource="#User"/>

 <acm:hasFlowData>ExpProvider.id</acm:hasFlowData>

 </acm:ContextFlow>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:ContextFlow rdf:ID="cf6">

 <acm:fromApplicationEntity rdf:resource="#User"/>

 <acm:toApplicationEntity rdf:resource="#ExpProvider"/>

 <acm:hasConstraint>cf6.rule</acm:hasConstraint>

 <acm:hasFlowData>User.id</acm:hasFlowData>

 <acm:hasFlowData>ShopService.name</acm:hasFlowData>

 </acm:ContextFlow>

 </acm:hasComponent>

 <acm:hasComponent>

 <acm:StartingContext rdf:ID="SOLEStart">

 <acm:hasConstraint>start.rule</acm:hasConstraint>

 </acm:StartingContext>

 </acm:hasComponent>

 <acm:hasStartEntity rdf:resource="#User"/>

 </acm:ACM>

</rdf:RDF>

 start.rule: the starting contexts specification for the SOLE application. Note that

distance() is a customized operator provided by the interpreter in the ACE.

[StartingContexts: le(distance(User.location ShopService.location) "100"^^double)]

 cf1.rule: the constraint specification for ContextFlow cf1. Note that match() is a

customized operator provided by the interpreter in ACE.

[cf1: le(distance(User.location ShopService.location) "100"^^double)

 match(ShopService.type User.preferences)]

 cf2.rule: the constraint specification for ContextFlow cf2. Note that friend() is a

customized operator provided by the interpreter in ACE.

[cf2: friend(User.id Friend.id)]

 cf3.rule: the constraint specification for ContextFlow cf3. Note that locatedAt() is

a customized operator provided by the interpreter in ACE.

[cf3: le(distance(User.location ShopService.location) "100"^^double)

 locatedAt(Friend.id ShopService.name)]

 cf6.rule: the constraint specification for ContextFlow cf6.

[cf6: friend(User.id ExpProvider.id)]

	thesis
	Appendix

