
 
 

 

 

 

 

 

SPANNING CACTI FOR  

STRUCTURALLY CONTROLLABLE NETWORKS 

 

 

 

NGO THI TU ANH 

 

 

 

 

NATIONAL UNIVERSITY OF SINGAPORE 

 

 

2012 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48656843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

  



 
 

 
 
 
 
 
 
 

SPANNING CACTI FOR  

STRUCTURALLY CONTROLLABLE NETWORKS 

 

 

 

NGO THI TU ANH 

(M.Sc., SFU, Russia) 

 

 

 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF MASTER OF SCIENCE 

 

DEPARTMENT OF MATHEMATICS 

 

NATIONAL UNIVERSITY OF SINGAPORE 

 

 

2012 

  



 
 

  



 
 

 
 

  



 
 

 

Acknowledgements 

First of all, I would like to express my sincere gratitude to my supervisor, Professor 

Zhang Louxin, who gave me the opportunity to work on this interesting research 

problem, paid patient guidance to me and gave me much invaluable help and 

constructive suggestion on it. I would also like to thank him for the financial support 

during my M.Sc. candidature. It has been my pleasure being his research student. 

I would next, like to thank Lou Chang, PhD candidate at Department of Mathematics, 

NUS, for his insightful discussions, valuable suggestions and great help. 

My sincere thanks go to all team members in our bioinformatics group and I have 

benefited a lot from them. 

Finally, I would like to thank my family. Without their continuous encouragement and 

support, nothing would have been possible for me. 

Ngo Thi Tu Anh  

August, 2012 

  



 
 

 

  



i 
 

 

 

Table of Contents 

Summary ....................................................................................................................... ii 

List of Tables .............................................................................................................. iii 

List of Figures .............................................................................................................. iv 

Chapter 1 Introduction to Graphs and Networks .................................................... 1 

1.1 Basic Definitions ............................................................................................. 2 

1.2 Cactus Graphs ................................................................................................. 4 

1.3 Maximum Matching ........................................................................................ 7 

1.4  Key Types of Networks................................................................................. 13 

Chapter 2 Controllability and Structural Controllability ..................................... 16 

2.1  Controllability ............................................................................................... 16 

2.2  Structural Controllability............................................................................... 18 

2.3  Lin’s Theorem ............................................................................................... 21 

2.4  Minimum Input Theorem. ............................................................................. 23 

Chapter 3 Spanning Cacti for Structurally Controllable Networks ..................... 27 

3.1  Minimum Spanning Cacti Problem ............................................................... 27 

3.2  Algorithm for Finding Minimum Spanning Cacti......................................... 28 

3.2.1  Identifying the Minimum Set of Driver Nodes ...................................... 28 

3.2.2  Building the Controlled Network and Finding the Spanning Cacti ....... 31 

3.2.3  Algorithm MSC and Its Correctness ...................................................... 37 

3.3  One-Input Controllable Networks with Minimal Modification .................... 39 

3.3.1  One-Input Controllable Networks.......................................................... 40 

3.3.2  Constructing One-Input Controllable Networks with Minimal 

Modification ......................................................................................................... 41 

Chapter 4 Experimental Results............................................................................... 44 

4.1  Random Network .......................................................................................... 45 

4.2  Real Networks ............................................................................................... 49 

References ................................................................................................................... 56 

Appendix   Code Listing  .................................................................................... 58 

 

  



ii 
 

 

Summary 

Finding the minimal spanning cacti for structurally controllable networks is an 

interesting problem. In this research work, we designed and implemented an 

algorithm for the problem. The algorithm is based on the Minimum Input Theorem 

and Lin’s theorem. The Minimum Input Theorem, proved by Liu et al., establishes 

that the minimum number of inputs needed to control a directed network equals to the 

number of unmatched nodes from any maximum matching in the network. Lin's 

theorem states that, a controllable network is spanned by cacti. 

Specifically, in order to control the network of a system, we first need to identify the 

set of nodes that, if driven by different signals, can offer full control over the network. 

Those nodes are called “driver nodes”. We use the maximum matching algorithm to 

find the minimum set of driver nodes. After that, the controlled network is built by 

introducing one input node for each driver node. Moreover, with the help of the 

maximum matching, we can identify the basic cactus components such as stems and 

cycles in this controllable network. Finally, the spanning cacti is built by properly 

connecting those components. 

We also address the question how to add extra links into a directed network to make it 

controllable with only one input. The minimum number of extra links needed to 

construct an one-input controllable network can also be determined by the maximum 

matching in the original network. 

In this thesis, we discuss the controllability and structural controllability of directed 

networks. We introduce the problem of minimum spanning cacti for structurally 

controllable networks, as well as propose an algorithm to find it. We also conduct 

experiments applying our algorithm on several computer generated and real networks. 

The algorithm is an analytical tool for studying the network controllability of real 

systems. 
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Chapter 1  

Introduction to Graphs and Networks 

Graphs are mathematical structures that are used to model the pair-wise relations 

between objects from a certain collection. The study of graphs started in the 18th 

century, and graph theory is a prime area in discrete mathematics. Graph theory 

becomes a very useful technique for solving real-world problems. One part of graph 

theory is the network theory, which studies the networks of real systems. Networks 

are applied in numerous disciplines. Its applications span from internet to biological 

systems. 

This chapter gives a basic introduction to graphs and networks, the matching problem, 

as well as cactus graphs.  
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1.1 Basic Definitions 

To formalize our discussion on graph theory, we shall introduce some basic concepts. 

We start with simple graphs, i.e., undirected, unweighted graphs without multiple 

edges. 

Definition 1.1  A graph or undirected graph G = (V, E) is an ordered pair of finite 

set V and finite set E, where elements of V are called vertices or nodes, and elements 

of       are called edges or arcs. We call V the vertex set of G, with E being the 

edge set. The cardinality of V is called the order of G, and the cardinality of E is 

called the size of G. 

One can label a graph by attaching labels to its vertices. If             is an edge of 

a graph G = (V;E), we say that    and     are adjacent vertices. The edge          is 

also said to be incident with the vertices     and   . 

Definition 1.2  A directed edge is an edge such that one vertex incident with it is 

designated as the head vertex and the other incident vertex is designated as the tail 

vertex. A directed edge       is said to be directed from its tail   to its head  . A 

directed graph or digraph G is a graph such that each edge is directed. The in-degree 

of a vertex        counts the number of edges such that   is the head of these 

edges. The out-degree of a vertex         is the number of edges such that v is the 

tail of edges. 

It is important to distinguish a graph G as being undirected or directed. If G is 

undirected and            then       and       represent the same edge. In case 

G is a digraph, then       and       are different directed edges. Another important 

type of undirected graph, which will be discussed in this chapter, is bipartite graph. 

Definition 1.3  A graph G is called bipartite, if       is partitioned into two disjoint 

and nonempty subsets A and B such that each edge           connects a vertex of 

set A and a vertex of set B. In this case     ) is a bipartition of G and G is      -

bipartite. 

Note that, the definitions above concern simple graphs, i.e. multiple edges and self-

loops (edges incident to same vertices) are not allowed. In a simple graph, the edges 
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form a set, rather than a multi set, and each edge is a pair of distinct vertices. A 

general graph can have self-loops, as well as multiple edges. 

A path in a graph is a sequence of vertices such that from each of its vertices there is 

an edge to the next vertex in the sequence, possibly excluding the terminate vertex. A 

path may be infinite even if the graph is finite. But a finite path always has a start 

vertex and an end vertex. When vertices in a path are not repeated, the path is called 

simple path. If the starting vertex and the ending vertex of a path are the same, then it 

is a closed path or cycle. A cycle whose vertices are all distinct is called simple cycle. 

For directed graphs, simple paths and simple cycles are called elementary paths and 

elementary cycles, respectively, and defined as follows. 

Definition 1.4  For a general directed graph, an elementary path is a series of 

oriented edges {                           }  where all vertices 

           are distinct. When     coincides with   , it is called elementary cycle. 

Two vertices in a graph are said to be connected if there is a path between them. A 

graph is said to be connected if any two of its vertices are connected. A graph is 

called a weighted graph if each of its edges is assigned a number (or weight). Such 

weights may represent, for example, strengths, lengths, costs or capacities of the 

edges. In literature, weighted graphs are often referred to as networks. The model of 

weighted graphs has many applications, in which the core problem is to optimize the 

total weight of some graph properties. For example, the famous traveling salesman 

problem can be modeled as a problem of finding a closed path in a weighted graph of 

cities (weights are the distances between pairs of cities) which contains all vertices 

while achieving the minimum total weight.  

 

  



 

4 
 

1.2 Cactus Graphs 

A well-known graph structure is the cactus graph. It is sometimes called cactus, as 

well. For undirected graphs, the definition of cactus is the following. 

Definition 1.5  An undirected connected simple graph is called an undirected cactus 

if any two simple cycles have at most one vertex in common. Equivalently, every edge 

of such graph belongs to at most one cycle. 

Example of a cactus graph is given in Figure 1.1. 

 
 

Figure 1.1 Example of an undirected cactus graph 

Proposition 1.1 [22] An undirected cactus with n vertices can have at most 
   

 
 

cycles. 

Proof Suppose the number of cycles is    Let    is the number of vertices in the i
th

 

cycle. Since two cycles have at most one vertex in common, then there are at most 

    vertices that counted 2 times. Thus, we have: ∑          
 . But       

because each undirected cycle in simple graph (no multiple edges are allowed) must 

have at least 3 vertices. Hence, ∑        
  So,           or   

   

 
  

Proposition 1.2 [22] An undirected cactus with n vertices can have at most 
 

 
      

edges. 

Proof  Since a cycle of   vertices contains   edges, while a path of   vertices 

contains only     edges. Hence, the number of edges in the cactus with   vertices 

is maximum when the cactus contains a maximum number of cycles. By previous 
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proposition, the maximum number of cycles is 
   

 
 ; and this can happen when all 

cycles are triangles. Thus, the maximum number of edges for a cactus with n vertices 

is 
 

 
        

Directed cactus graphs have been less studied than undirected cactus graphs. In fact, 

the definitions of directed cactus graphs vary in literature. For example, in [21], a 

directed cactus graph is defined as a strongly connected, directed graph in which each 

edge is contained in at most (and thus, exactly) one directed cycle. This definition 

looks similar to the undirected cactus definition, except that edges are directed, and 

the graph is strongly connected, i.e. there is a directed path between any two vertices. 

Such directed cactus contains only cycles. However, in [2], Lin defined a directed 

cactus as a strict combination of paths (stems) and cycles (buds). In our work, we 

consider only directed graphs, and we follow the definition given by Lin. An example 

of a general directed cactus is shown in Figure 1.2. 

Definition 1.6  A stem is an elementary path. The initial (or terminal) vertex of a stem 

is called the root (or top) of the stem. 

Definition 1.7  A bud is an elementary cycle C plus an additional edge e that ends, 

but not begins, in a vertex of the cycle. This additional edge e is called the 

distinguished edge of the bud. 

Definition 1.8  A general directed cactus is a digraph defined recursively as follows. 

A stem is a cactus. Given a stem    and buds          , then            

  is a cactus if for every i (      ) the initial vertex of the distinguished edge of 

  is not the top of    and is the only vertex belonging at the same time to   and 

               . 
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Figure 1.2 Example of a directed cactus graph 

Proposition 1.3 The number of edges in a general directed cactus with n vertices is: 

                 

where       is the number of buds in the cactus. 

Proof The above formula can be derived by mathematical induction for       as 

follows: 

Let P(     ) is the statement “                 ” 

 Basic step:      = 0, the cactus contains no buds, and then it contains only one 

stem. Hence, the number of edges is     . Therefore, the statement holds 

for        . 

For         , the cactus contains one bud. Suppose the bud contains k nodes, 

then the stem contains n-k nodes (with n-k-1 edges). The bud has k edges in the 

cycle and one distinguished edge. Hence, the total number of edges is: (n-k-

1)+k+1 = n-1 +      . Therefore, the statement holds for        . 



 

7 
 

 Inductive step: 

Show that if P(k) holds, then also P(k+1) holds. This can be done as follows. 

        , the total number of edges is             . We will show that 

it’s correct for          . Suppose the         bud contains p nodes. The 

cactus without the         bud contains (n-p) nodes and (n-p-1+k) edges. The 

        bud introduces p edges in the cycle and one distinguished edge. Hence, 

the total number of edges of the cactus is: 

                                      .  

1.3 Maximum Matching  

Matching in graph theory refers to a set of edges that do not share common vertices. 

Matching has attracted the interest of researchers for more than 20 years. The notion 

of matching is one of the key points to understand the Minimum Input Theorem, 

which is presented in the next chapter. This section gives an introduction on matching 

in graphs, as well as algorithms to find a maximum matching.  

Definition 1.9  For an undirected graph, a matching M is an independent edge set, 

i.e. a set of edges without common vertices. A vertex is matched if it is incident to an 

edge in the matching. Otherwise, the vertex is unmatched. Similarly, an edge of G is 

matched if it is in M, otherwise, it is unmatched. 

For a bipartite graph G(V,E), and we often denote it as G (A, B, E), where (A, B) is a 

partition of V. The definition of matching for a bipartite graph is similar to that of an 

undirected graph. 

The generalized definition for directed graphs follows. 

Definition 1.10  For a digraph G = (V,E), a matching M is a subset of E that no two 

edges in M share a common starting vertex or a common ending vertex. A vertex is 

matched if it is the ending vertex of an edge in the matching M. Otherwise, it is 

unmatched. Similarly, an edge of G is matched if it is in M, otherwise, it is 

unmatched. 
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For all types of graphs (undirected, bipartite or directed), a matching that cannot be 

extended is called maximal, i.e. upon adding to M any edge not in M, it is no longer a 

matching. A matching that contains the largest possible number of edges is called 

maximum matching. A perfect matching is the matching that all vertices are 

matched. A perfect matching is obviously a maximum matching. 

We are interested in the maximum matching problem, i.e., given a graph G, find a 

matching M of maximum size. The bipartite case is simpler in structure; and will be 

first considered as it helps us to illustrate the basic ideas involved in solving the 

maximum matching problem. In this section, we present and analyze algorithms for 

this problem when the underlying graph is bipartite.  

The general approach for the matching problem can be considered as an instance of 

the concept of augmentation. Let’s start with concepts of alternating paths and 

augmenting paths. 

Consider a bipartite graph             and a matching M in it. Let p be a path 

consists of edges                               where the vertices are distinct. The 

path p can simply be represented as               . 

Definition 1.11  An alternating path is a path in which the edges belong alternatively 

to the matching and not to the matching. 

Definition 1.12  A path                is called augmenting if it is an alternating 

path and both    and    are unmatched.  

Obviously, an augmenting path has an even number of vertices; its starting and ending 

vertices are unmatched. An example of a bipartite graph and a matching is presented 

in Figure 1.3. 

Let P be the set of edges on an augmenting path                in G with respect 

to the matching M. The operation     denotes the symmetric difference of M and 

P, i.e.                . The most interesting property of an augmenting 

path P with respect to a matching M is that if we set M′ =   , then we get a new 

matching M′ and moreover, the size of M′ is one unit larger than the size of M. That is, 

we can form a larger matching M′ from M by taking the edges of P not in M and 
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adding them to M′ while removing from M the edges that are also in the path p. 

 

Figure 1.3 Example of a bipartite graph and a matching in it. The path [1,4,2,6,3] is an 

alternating path. The path [3,6,2,5] is an augmenting path. If we “augment” this path, we get a 

maximum matching: {(1,4),(2,5),(3,6)}. 

The key of most algorithms for finding maximum matching in a graph is based on the 

following theorem, stated by Berge [6]. 

Theorem 1.1  A matching M in a graph G is a maximum matching if and only if there 

is no augmenting path in G with respect to M. 

Proof 

(⇒) Let P be the set of edges on an augmenting path p with respect to M. Set M′ = 

   . Then M′ is a matching with cardinality greater than M. This contradicts the 

maximality of M. 

(⇐) If M is not maximum, let    be a maximum matching, i.e.          (note that 

   is a matching with largest size and that    may or may not contain M). Let Q = 

    . Then we have the following. 

Q has more edges from    than from M (since          implies that         

      ). Each vertex is incident to at most one edge in       and at most one 

edge in     . Thus Q is composed of cycles and paths that alternate between edges 

from M  and   . 

Therefore, there exists a path with more edges from    than from M (all cycles will 

be of even length and have the same number of edges from   and M). This path is an 

augmenting path with respect to M. Hence, there exists an augmenting path with 

respect to M, which is also a contradiction.   

1 

2 

3 

4 

5 

6 

 matched node  unmatched node 

matched edge unmatched edge 

A B 
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In fact, all known matching algorithms for general graphs are based on the idea of 

finding augmenting paths. Start with any matching M, say the empty matching. 

Locate an augmenting path p with respect to M, then augment M along p, and replace 

M by the resulting matching. This procedure is repeated until no more augmenting 

path exists. By the above theorem, we are guaranteed a maximum matching.  

The main challenge for maximum matching is how to find an augmenting path with 

respect to the current matching M of G. In the case when the graph is bipartite, finding 

these augmenting paths can be done efficiently, for example, by breadth-first search 

(BFS). Firstly, a search for augmenting paths must start by constructing alternating 

paths from the unmatched nodes. Since an augmenting path must have one endpoint 

in node set A and the other in node set B, without loss of generality, we start the 

search only from unmatched nodes in set A. For example, choose an unmatched node  

   from A, with BFS we may search for alternating paths by considering all vertices 

adjacent to    . Since    is an unmatched node then all its incident edges are 

unmatched edges. The second step is a straightforward step, from the adjacent nodes 

of   , we look for the matched edges. If there is no matched edges, then all these 

adjacent nodes are unmatched, hence an augmenting path has been found. Otherwise, 

we add these matched edges into our alternating path, and we repeat the first step by 

searching from our new added nodes. 

Algorithm for finding a maximum matching in bipartite graphs 

Given a current matching M in a bipartite graph G(A,B,E) (initially M is empty), we 

can speed up the BFS idea above by searching for the next nodes from the set A only, 

ignoring the nodes in set B. The new idea is the following. We start searching for an 

augmenting path from an unmatched node    in A. Since in the augmenting path, the 

node adjacent to    must be a matched node    in the set B;   must have a “mate” in A 

by current matching M (we say node x is a mate of node y if the edge (x,y) is matched 

in the current matching). Let’s denote the mate of    as   . Then, instead of 

continuing the search from    , we look for    and continue the search directly 

from   , ignoring the node   . To do this efficiently, we construct an auxiliary graph 

G1 = (A, E1), where (     )     if and only if   is adjacent to the mate of    with 

respect to current matching M. Now the BFS procedure is performed directly on the 
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auxiliary graph G1. 

Using the above idea, Papadimitriou gives an algorithm for finding a maximum 

matching in bipartite graphs [7], which is presented in Figure 1.4. 

This algorithm terminates when there is no path with unmatched node from the set A. 

By the construction of the auxiliary graph, this means that there is no augmenting path 

with respect to current matching. Hence, the current matching is maximum. 

For time-complexity of the algorithm, we see that the maximum matching contains at 

most min(|A|,|B|) edges. Since each augmentation increases the number of matched 

edges by 1, then the number of stages the algorithm loops is at most min(|A|,|B|) 

times. Building the auxiliary graph takes O(|E|) time; finding augmenting path in A by 

breadth-first search takes at most O(|E|) time. Hence, for each stage, finding 

augmenting path requires O(|E|) time. The augmentation procedure requires at most 

O(min(|A|,|B|) time. Hence, overall, the algorithm takes O                   time. 
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Algorithm 1.1 BIPARTITE MAXIMUM MATCHING ALGORITHM  

Input: A bipartite graph G = (A,B,E) 
Output: The maximum matching of G, represented by the array mate. 

 
begin 

 for all       mate[v] = 0;  // initialize 

 stage: begin 

 for all     do unmatched[v] = 0; 

 // construct auxiliary graph (A,E1) 

      
 for all           do 

 if mate[u] = 0 then unmatched[v] := u 

 else 

 if            then E1 := E1   (v, mate[u]); 

 //initialize the queue Q for breath-first search: 

 Q :=    

 for all      do 
 if mate[v] = 0 then begin 

   label[v] := 0; 

   Q := Q  {v} 

 end; 

 // start BFS for augmenting path 

 while     do begin 

 let v be a node in Q; 

 remove v from Q; 

 if unmatched[v]  0 then begin // found an augmenting path 

   augment(v); 

   goto stage;  // restart from beginning 

 end 

 else 

 for all unlabeled v’ such that (v,v’)   E1 do begin 

   label[v’] := v; 

   Q := Q   {v’} 

 end 
 end;// of while 

end; // of stage 

end;// of algorithm. 

//=======================// 

procedure augment(v) 

begin 

 if label[v] = 0 then begin 

 mate[v] := unmatched[v]; 

 mate[unmatched[v]] :=v; 

 end 

 else begin 

 unmatched[label[v]] := mate[v]; 

 mate[v] := unmatched[v]; 

 mate[unmatched[v]] :=v; 

 augment(label[v]); 

 end; 

end;// of procedure augment() 

 
Figure 1.4 Algorithm for maximum matching problem in bipartite graphs 
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 1.4  Key Types of Networks 

Networks are nothing else but graphs. In general, the notion of graphs often refers to a 

theoretical model, while networks are often used to represent practical models arising 

from natural and technological processes. The terms network and graph can be used 

interchangeably in most contexts. However, in literature networks are often directed 

and weighted graphs.  

The study of networks – network theory, is a part of graph theory which emerges as 

an important area in computer science. It has numerous applications in statistical 

physics, computer science, economics, biology, sociology, and operation research. 

Many types of networks have been intensively studied, such as, flow networks, 

semantic networks, technological networks, biological networks, social networks, and 

random networks. 

Recently, a branch of network theory that studies complex networks has emerged. 

Complex networks are networks with non-trivial topological features, i.e. the features 

that do not appear in simple graphs such as lattices or random graphs, but often occur 

in real networks. For example, the structural feature of power-law degree distribution 

characterizes the scale-free networks, while short path lengths and high clustering are 

specific features of small-world networks. Some key types of networks such as 

technological, social and biological networks also display substantial non-trivial 

features, such as heavy tail degree distribution, high clustering coefficient among 

vertices, community structure and hierarchical structure. Those networks are 

examples of complex networks. 

Technological networks 

Technological networks are networks designed for manipulating technological 

processes. One of the main purposes of these networks is to distribute information and 

resources for human activities. Some examples of technological networks are 

computer networks, power grid networks, high way networks, airport networks. One 

of the most complex networks is the internet, which is the global network of 

computers, interconnected by communication channels that allow sharing of resources 

and information. It serves both as information and telecommunication network. The 

internet network is the scale-free and has small-world properties.  
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One type of technological networks that is analyzed in our work is the network of 

sequential logic electronic circuits [9]. In these circuits, the nodes represent the logic 

gates and the flip-flops. A directed link from node u to node v is established if the 

value at the gate (or the flip-flop) v depends on the value at u. For example, for the 

circuit s402, the network has 252 nodes and 399 directed edges [see Table 4.3 and 

Table 4.4].  

Biological networks 

Biological networks are networks arising from biological systems. Informally, a 

biological network is a network of biological entities, in which these entities interact 

or link to each other as a whole system. For examples, species are linked into a food 

web, or proteins interact to each other to form a protein interaction network (PIN). 

Key types of biological networks include PINs, food webs, metabolic networks, gene 

regulatory networks, etc. In a PIN, nodes are all the proteins of a cell, and edges are 

the interactions between them. A PIN is an undirected network. It shows the scale-

free and small-world properties. Another type of biological networks is the network of 

metabolic reactions. Chemical compounds inside a living cell are connected by 

enzymatic reactions that transform one compound into another during the metabolic 

processes of the cell. These reactions are catalyzed by enzymes, which are also 

biochemical compounds. Hence, all these compounds form a network of biochemical 

reactions, which is called a metabolic network. Metabolic networks are also shown to 

be complex networks with scale-free and small-world features [16]. 

Furthermore, at a higher level in biology, organisms also form a network, since they 

depend on each other: they eat or are eaten by others. The network of those bait and 

prey links is called a food web. In our work, several food webs are analyzed (see 

Table 4.3 and Table 4.4), including food webs in Little Rock Lake [15], in Grassland 

[13] and in St. Marks Seagrass [14]. 
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Social networks 

A social network is a graph model of social entities and their relationships. Entities in 

sociology are often called individual actors, which may be persons, groups, 

organizations, web sites, scholarly publications, etc. The relationships between these 

entities may be friendship, sexual relationship, email sending–receiving relationship, 

web links, etc. Social network is a very useful tool for analyzing the structure of 

social entities as a whole. The study of such structural features often uses social 

network analysis to find out the common local and global patterns, identify the social 

entities that are the most influential, examine the network dynamics, analyze the 

networks’ behavior, and evaluate the networks’ controllability.  

Several social networks are analyzed in our work, including WWW network of 

political web-blogs [10], trust networks of college students and prison inmates [17], 

and intra-organizational networks. For example, the network of email sending–

receiving relationship between employees in a consulting company in [11] contains 

46 nodes and 879 links. The nodes represent persons, while a link from person X to 

person Y is established if X received emails from Y. In the point of view of network’s 

controllability (which is the main subject of our work), this network in [11] is easily 

controllable. It can be fully controlled by controlling only 2 nodes (which are called 

driver nodes) of the network (see Table 4.4 and Figure 4.4(a)). 
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Chapter 2  

Controllability and Structural Controllability  

Controllability is one of the fundamental concepts in modern mathematical control 

theory. This is a qualitative property of control systems and is of particular 

importance in control theory. Systematic study of controllability started at the 

beginning of 1960s and the theory of controllability is based on the mathematical 

description of the dynamical system. 

This section includes most of the basic principles about controllability and structural 

controllability. 

2.1  Controllability 

Controllability describes the ability to move the system around in its entire 

configuration space using only certain admissible manipulations. Specifically, a 

dynamic system is controllable if it can be “driven” from any initial state to any 

desired final state in finite time with a suitable choice of inputs. 

In real life system, most natural and technological systems are organized into 

networks of components, and the whole systems are governed by some underlying 

dynamical processes. For example, metabolism is the basic process of any living cell. 

In this process, cells exchange energy. They grow and build their structures and 

respond to the environment. Inside a living cell, metabolites are transformed by a 
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series of reactions that are catalyzed by enzymes. These reactions form a scale-free 

metabolic network. A cell may “control” its metabolism by controlling the 

concentration of its enzymes. 

The controllability of a real system is affected by two independent factors: 

1) The system's architecture, represented by the weighted and directed network 

describing the connections of system's components with each other. 

2) The dynamical rules that describe the time-dependent interactions between the 

components. 

Consider the linear dynamic system: 

     

  
                               

where                       presents the state of system of N nodes at time t. 

                      is the input vector. 

   is the     matrix which describes the system’s wiring and the interaction 

strength between components (for example: matrix A represents the traffic on 

individual communication links, or the strength of regulatory interactions in a 

regulatory network). 

 B is the     input matrix describing the nodes that are controlled by the 

outside controllers. 

In order to determine the controllability of system (1), R.E Kalman gave an algebraic 

criterion, which depends only on matrices A and B, called Kalman Rank Condition 

[1]. 

Kalman Rank Condition: 

A necessary and sufficient condition for system (1) to be controllable is 

                                 

C is called Kalman’s controllable matrix of size     . 
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Example 2.1: Consider a network in Figure 2.1: 

 

Figure 2.1 An example of a controllable network 

The linear dynamics shown above can be written as follows: 

 ̇  [
   
   
   

]    [
  
  
  

]   

The controllability matrix for this third-order system is given by: 

             

  [
  
  
  

 
    
    
    

     ] 

Since the first three columns are linearly independent, we conclude that          . 

Hence there is no need to compute     since it is well known from linear algebra that 

the row rank of the given matrix is equal to its column rank. Thus,           

  implies that the system under consideration is controllable. 

2.2  Structural Controllability 

To test the controllability of a network of arbitrary system using Kalman's rank 

condition, all the values of matrices A and B are required. However, for most real 

complex networks, the exact values of all entries of A are often unknown. In addition, 

checking the rank of C is computationally difficult, especially for large networks. In 

order to address those difficulties, Lin introduced the concept of structural 

controllability [2] which will be discussed below. 

Now the controlled system (1) is also denoted by a pair (      
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Definition 2.1  Two pairs (   ) and          of the same dimensions, have the same 

structure if all non-zero entries of one pair correspond to those of the other pair, and 

vice versa. 

Definition 2.2  The pair (   ) of a linear system is called structurally controllable if 

there exists a controllable pair (     ) which has the same structure as     ). 

An observation of Lee and Markus [3] is that, the set of all controllable pairs for (1) is 

open and dense in the space of all pairs       with standard matrix metric. Hence, if 

the initial pair (     ) is not controllable, then for every      there is a controllable 

pair (     ) such that ‖     ‖    and ‖     ‖   . 

The concept of structural controllability also has practical meaning, since in reality 

the non-zero parameters of the system's model may be noisy, yet the model still has 

the same structure with the underlying system. Furthermore, if a system is structurally 

controllable then it is controllable (in the usual sense with Kalman's rank 

condition            ) for almost all parameter values, except for some 

pathological cases with zero measure [2]. Those cases happen when some certain 

accidental constraints are satisfied. In other words, structurally controllability implies 

controllability in practice. 

Thus, the concept of structural controllability helps us to overcome the imperfect 

measurement of the exact values of the system parameters. Without precise 

knowledge of those parameters, the controllability of the system can still be evaluated. 

Definition 2.3  A system is said to be strongly structurally controllable if its 

controllability is independent of the system parameters, as long as they are non-zero. 

Examples of strongly structurally controllable systems are shown in Fig. 2.3 A and C. 

The graph of a pair (A, B) 

Let G(A) denote the directed network of system (1) in which nodes represent the 

system states, edges are determined by the state matrix A. The adjacency matrix of 

G(A) is described by the following way: if the entry       then there is no link from 

node j to node i in G(A); if       there is a directed link from node j to node i. If all 
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non-zero     equal to 1, then the matrix A represents the transposition of the 

adjacency matrix of G(A). By mathematical notation, we have                

where    {       } is the set of state vertices;    {(     )      } is the set of 

edges. 

The controlled network, denoted by the pair (A,B), can be represented by a directed 

graph             , where          is the vertex set;          is the 

edge set;    {       } is the set of input vertices;    {(     )      } is the 

set of controlled edges, connecting input vertices to state vertices. The M input 

vertices are also called the origins of the digraph G(A,B). The state vertices that 

connect to the origins are called controlled nodes. Note that, one input can be 

connected to several controlled nodes. 

Example 2.2: Given a pair (   ) such that: 

  [
     
     

   
] and B = [

 
 
  

]. where all the entries denoted by zeros are fixed and 

all the other  entries are not fixed. The graph of this pair has a form of a stem (to be 

defined in next section). This pair is easily seen to be structurally controllable [see 

Figure 2.2]. 

Example 2.3: Another basic example 

  [
     
     

     
] and B=[

 
 
  

].The graph of this pair has a form of a bud (to be 

defined in next section). This pair is easily seen to be structurally controllable. 

 
Figure 2.2 Examples of graph of pair (A,B). (a) Graph of pair (A,B) in example 2.2. This is 

a stem. (b) Graph of pair (A,B) in example 2.3. This is a bud. 

 

Examples of controlled systems that are uncontrollable, structurally controllable, and 

strongly structurally controllable are shown in Figure 2.3.  

b3 
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Figure 2.3 Some simple controlled networks. Here, x1, x2, x3, x4 are state nodes; aij are 

values of the connections between system components; u1 is the input node, with input signal 

b1. (A) This system is completely controllable, or in other words, strongly structurally 

controllable: its controllability is independent of the actual values of b1 and aij, as long as they 

are non-zero. (B) The network is uncontrollable. To control it, we need to inject one more 

input into either node x2 or x3.  (C) This system is strongly structurally controllable. 

Changing the system configuration by adding a self-loop at node x3 makes the new system 

controllable, although its original form in (B) is not controllable.  (D) This system is 

structurally controllable. It is uncontrollable when the system parameters aij accidentally 

satisfy the constraint      
        

 . But after slightly changing parameters off those 

pathologic cases, the system becomes controllable. 

2.3  Lin’s Theorem 

Lin’s approach to the controllability problem (1) was graph theoretic and required a 

lengthy series of definitions to derive the condition for structural controllability which 

is a purely algebraic statement. 

For the controlled system denoted by the pair (A,B), we consider its graph 

representation. That is, the directed graph G(A,B). For this digraph, the definition of a 

stem is slightly different from Definition 1.6, while definitions of buds and cacti 

remain the same. The new definition of a stem is the following. 

Definition 2.4  A stem in G(A,B) is an elementary path originating from an input 

vertex. The initial (or terminal) vertex of a stem is called the root (or top) of the stem. 

This new definition differs from Definition 1.6 by the presence of the input vertex of a 

controlled network. The definition of a bud is the same as in definition 1.7. From 

now, we use the word stem to denote the stem in the controlled network G(A,B), 

unless otherwise specified. Examples of a stem and a bud are shown in Figure 2.2. 

Definition 2.5  A cactus  in G(A,B) is a digraph defined recursively as follows. A stem 

is a cactus. Given a stem    and buds          , then              is a 
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cactus if for every i (      ) the initial vertex of the distinguished edge of   is not 

the top of    and is the only vertex belonging at the same time to    and       

         . A set of vertex-disjoint cacti is called a cacti. 

Note that, by this definition, a cactus in G(A,B) is always originated from an input 

vertex. In our work, we use the word cactus to denote cactus in G(A,B), unless 

otherwise specified. 

Definition 2.6  A state vertex    in the digraph G(A,B) is called inaccessible if and 

only if there is no directed path reaching    from any of the input vertices (origins). 

Definition 2.7  The digraph G(A,B) contains a dilation if and only if there is a subset 

     (where    is the set of states vertices) such that             Here, the 

neighborhood set T(S) of S is defined to be the set of all vertices    such that there 

exists an oriented edge from    to a vertex in S, i.e      {   (     )  

         }. The origins are not allowed to belong to S but may belong to T(S). |S| 

or |T(S)| is the cardinality of set S or T(S), respectively;    is the set of states 

vertices      is set of edges. 

Propositions 2.1 [5] 

1. An isolated node with self-edge is not a dilation. But all isolated nodes are 

inaccessible. 

2. Cactus (or cacti) is the minimal structure which contains neither inaccessible 

nodes nor dilations. That is, removing an arbitrary edge will cause either 

inaccessibility or dilation. 

Theorem 2.1 (Lin’s Theorem on Structural Controllability [2]) The following 

three statements are equivalent: 

1. A linear control system (A,B) is structurally controllable. 

2. i) The digraph G(A,B) contains no inaccessible nodes. 

ii) The digraph G(A,B) contains no dilation. 

3. The digraph G(A,B) is spanned by cacti. 

The proof of this theorem is clearly presented in Lin’s paper [2]. 

According to [5], some explanations are given as the following. A system is 
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structurally uncontrollable if its digraph G(A,B) contains either inaccessible nodes or 

dilations. In the case when inaccessible nodes are present, these nodes cannot be 

controlled by input vertices since the input vertices cannot access to them. For 

example, a node that has in-degree zero (meaning that no other nodes point to it) 

cannot get any control signal from input vertices. Another naive example is the 

isolated nodes. In the case when dilations are present, the system is also 

uncontrollable. Each dilation forms a sub-graph in which there are more nodes to be 

pointed to or “controlled” by fewer other nodes. In other words, there are more 

“subordinates” (nodes under control) than “superiors” (nodes that control other nodes).  

Consequently, to get full control of the network, dilations and inaccessible nodes must 

be removed. This means that, each node of the controlled network must have its own 

“superior”. If a node has no superior, then it is inaccessible, we lose control of it. If it 

shares superior with other nodes then dilation is formed. In both cases the system is 

uncontrollable.  

2.4  Minimum Input Theorem. 

Recently, Liu et al. established a theorem called “Minimum Input Theorem” [5], 

which provides a simple way to determine the minimal set of nodes (called driver 

nodes) needed to fully control a dynamic network G(A). In this section, the Minimum 

Input Theorem will be given and proved. we first start with a basic definition of 

controlled nodes and driver nodes. 

Definition 2.8  In the controlled network G(A,B), the state vertices that are directly 

connected to input vertices (or origins) are called controlled nodes. Those controlled 

nodes which do not share input vertices are called driver nodes. 

Examples of controlled nodes and driver nodes are shown in Figure 3.5 (B) and (C). 

Note that, driver nodes are subset of controlled nodes. They are both from the digraph 

G(A), although they are directly connected to input vertices, which belong to G(A,B) 

only. Hence, to find the minimum number of inputs that are sufficient for fully 

controlling the systems, we can alternatively find the minimum set of driver nodes. 

  



 

24 
 

Minimum Input Theorem 

We show the relationship between the maximum matching in the digraph G(A) of a 

system and the minimum number of driver nodes needed to fully control it. This 

relationship is the content of the Minimum Input Theorem below. 

Consider the directed network G(A) with N nodes, and denote the size of a maximum 

matching M in it by |M|. 

Theorem 2.2 (Minimum Input Theorem [5]) The minimum number of inputs (NI) 

or equivalently the minimum number of driver nodes (ND) needed to fully control a 

network G(A) is one if there is a perfect matching in G(A). (In this case, any single 

node can be chosen as the driver node.) Otherwise, it equals to the number of 

unmatched nodes with respective to any maximum matching. (In this case, the driver 

nodes are just the unmatched nodes.) 

N
I
= N

D
 = max {N - |M|, 1} 

Proof  

Case 1. There is a perfect matching, i.e. |M| = N 

Since there is a perfect matching in the digraph G(A), all state vertices are matched. 

This means that every state vertex must belong to one of the cycles. By introducing 

one input vertex, connecting it to all cycles to form buds, and modifying any bud to a 

stem (by deleting the edge that point to the common vertex of the cycle and its 

distinguished edge), we construct a cactus that spans the controlled network G(A,B). 

By Lin's theorem, the system (A,B) is structurally controllable, with one input vertex. 

Hence, ND = 1. 

Case 2: There is no perfect matching, i.e. |M| < N 

Since there is no perfect matching in G(A), there are some nodes that are unmatched. 

The number of unmatched nodes is N - |M|. 

Consider an unmatched node x. There is no edge in M pointing to x. The unmatched 
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node x must be the starting node of an elementary path in M. Now, we can connect 

one input vertex to each of unmatched nodes, and form N-|M| stems. This requires N-

|M| input vertices.  

Exclude all the nodes that belong to elementary paths in M, any of the other nodes of 

G(A) must belong to one of cycles in M. For any cycle R in M, if there is an 

edge      ) in G(A) that connects node p of any stem to node q of R, then 

{ }     forms a bud. If there is no such edge e, we can introduce new edge e' (belongs 

to G(A,B)) from any of  the above N-|M| input vertices to any node of R. In this case 

{  }     also forms a bud. Thus, forming buds does not require extra inputs. 

Now we have a cacti (a cacti is a set of vertex-disjoint cacti) from those stems and 

buds which spans the controlled network G(A,B).The construction requires N-|M| 

inputs. According to Lin's theorem, the system is structurally controllable.  

Furthermore, we will show that, ND is the lower bound of the number of inputs 

needed, that is, less than ND number of inputs could not fully control the network. 

Indeed, let M be the maximum matching in G(A), |M| is the size of M,     

     {         }. The case       is trivial, since we cannot control the network 

with less than 1 input. Let us consider the case when              1. 

Suppose that G(A) is fully controlled by        number of inputs, i.e., there exists a 

structurally controllable network G(A,B) with        number of inputs. By Lin’s 

theorem, there exists a cacti C that spans G(A,B) and C contains        number of 

vertex-disjoint cacti. We will construct a new matching M’ in G(A) from the cacti C, 

with the size larger than that of M, as follows. 

For each cactus c of C, its stem originates from the input uc. Note that, a cactus has 

one and only one stem. Let xc be the node in the stem that uc connects to. Let Mc be 

the set of remaining edges of c after removing all the distinguished edges and the 

edges from uc. We have that, Mc contains an elementary path started from xc, and all 

cycles of c. Thus, Mc can also be considered as a matching in G(A), in which the node 
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xc is unmatched, and all other nodes of Mc are matched. 

Let     ⋃       , then     is also a matching in G(A), which contains    number of 

unmatched nodes. Since C spans G(A,B), every node of G(A) appears in M’. The 

number of matched nodes in    is obviously    –   , hence the size of matching    is 

also          –        –         . This means that, the matching   is not the 

maximum matching, a contradiction. 

Hence,             {         } is the minimum number of inputs needed to 

fully control the network G(A) ■ 
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Chapter 3 .  

Spanning Cacti for Structurally Controllable Networks 

We first introduce the problem of minimum spanning cacti for structurally 

controllable network and propose an algorithm to find it. Then, we introduce the one-

input controllable networks, as well as a simple way to reconstruct them. For both 

problems, our approaches are based on Lin’s theorem and the Minimum Input 

Theorem presented in Chapter 1.  

3.1  Minimum Spanning Cacti Problem 

First we define the minimum spanning cacti as the following: 

Definition 3.1  A minimum spanning cacti on G(A,B) is a spanning cacti containing 

the smallest number of inputs. 

The minimum spanning cacti problem is formulated in the following. 

Problem  Given a directed network G(A) of a system, build the structurally 

controllable network G(A,B) with the minimum number of inputs, and span it by cacti. 

In other words, given a directed network G(A), find a minimum spanning cacti for the 

structurally controllable  network G(A,B). 

In order to solve this problem, we first apply the Minimum Input Theorem, which 

gives us the minimum number of inputs needed to fully control the network G(A). 

This is a simple and straightforward approach, in which the set of input nodes is 
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determined by the maximum matching. From this result, we can build the controlled 

network G(A,B) and find the spanning cacti for G(A,B). Thus, for a linear dynamic 

system which is represented by G(A), we can build a structurally controllable network 

G(A,B) with minimum number of inputs, as well as its minimum spanning cacti.  

The minimum spanning cacti problem can be considered as a direct application of 

Lin’s Theorem and Minimum Input Theorem. Moreover, the solution of this problem 

would be an analytical tool for studying the controllability of complex networks of 

natural and technological systems [4]. 

3.2  Algorithm for Finding Minimum Spanning Cacti  

The general pipeline for solving the above problem is described as the following: 

1. From the given network G(A), find the minimum set of driver nodes using 

maximum matching; 

2. Build the controlled network G(A,B); 

3. Find the spanning cacti on G(A,B). 

We describe the first step separately, and then the two last steps are described 

together. The overall algorithm – algorithm MSC (which stands for minimum 

spanning cacti) is presented in the last section. 

3.2.1  Identifying the Minimum Set of Driver Nodes 

According to the Minimum Input Theorem, to find the minimum set of driver nodes, 

we need to find a set of unmatched nodes of the maximum matching in the directed 

network G(A). Since G(A) is directed, we need to represent it by the bipartite 

representation in order to apply the maximum matching algorithm we described 

previously. 

The bipartite representation of a directed graph is defined in the following way: 

Definition 3.2  Given a directed graph G(A) = (V,E), where   {            },its 

bipartite representation is a graph: 
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where  V+ is the set of N plus nodes    {  
    

        
 } 

V-is the set of N minus nodes  -  {  
-
   

-
       

-
} 

Γ is the set of edges   {   
    

-
           }. 

Example of the bipartite graph-representation is illustrated in Figure 3.1. 

 
 

Figure 3.1 The bipartite representation of a directed graph and a matching in it. A 

vertex in directed graph G(A) is represented as a pair of a plus node and a minus node in 

bipartite graph BP(A); an oriented edge is represented as an undirected edge from the 

corresponding plus node to the corresponding minus node. The matching is shown in red; 

matched (or unmatched) nodes are shown in blue (or white), respectively. 

Note that, each edge of the bipartite representation of a directed graph always contains 

a plus node and a minus node. Let BP(A) be the bipartite representation of a directed 

graph G(A). For each edge    
    

-
   of BP(A), the corresponding directed edge in G(A) 

is        ; and conversely, for each directed edge          of G(A), the 

corresponding edge in BP(A) is    
    

-
   

Let   be a matching in BP(A). We construct the set  ′  of edges in G(A) 

corresponding to   as follows. If the edge    
    

-
  belongs to the matching  , we 

include the corresponding edge        into  ′. Thus,  ′  {           
    

-
   }. 

Note that.  ′      

Proposition 3.1   ′ is a matching in G(A).  ′ is called the corresponding 

matching in G(A) of  . 

Proof Firstly,  ′ is a subset of E.  
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Secondly, since M is a matching in BP(A), for each of its edge    
    

-
   , there is 

no other edge of M that is adjacent to   
 . Hence, the corresponding edge 

       in  ′does not share the starting vertex    with any other edge of  ′. Similarly, 

there is no other edge of M that is adjacent to   
-
; hence, the edge         of  ′ does 

not share the ending vertex    with any other edge of   ′, as well. So,  ′ is the subset 

of E in which no pair of edges shares the same starting or ending vertex. In other 

words,  ′ is a matching in G(A)  

Conversely, given a matching  ′  {       } in G(A), we can construct its 

corresponding matching   in BP(A) as the following:   {   
    

-
            }. 

Note that       ′ .Similarly, it is easy to show that    is also a matching in 

BP(A).   is called the corresponding matching in BP(A) of  ′. 

Now we will show that the corresponding matching of a maximum matching is also 

maximum. 

Proposition 3.2 If a matching   in BP(A) is a maximum matching, then its 

corresponding matching  ′in G(A) is maximum. 

Proof.  

Since  ′ is the corresponding matching in G(A) of M, we have  ′       

Suppose that  ′  is not the maximum matching in G(A), that means there is a 

matching   in G(A) such that       ′ . Let   
′  is the corresponding matching in 

BP(A) of   . We have |  
′ |      . Since   is the maximum matching in BP(A), we 

have     |  
′ |  Here we have a contradiction: | ′|      |  

′ |         ′ .  

Thus,  ′ is also the maximum matching in G(A)   

Return to our problem of finding minimum driver node set. Given a maximum 

matching M in the directed graph G(A), the set of driver nodes can be identified as 

follows. If M is a perfect matching, i.e., all nodes in G(A) are matched, then we can 

choose any node to be the driver node. In our approach, we choose the node with the 

highest degree as the driver node. If M is not a perfect matching, then we identify the 

set of unmatched nodes. These unmatched nodes are chosen as driver nodes. 
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Steps for finding minimum set of driver nodes    in directed network G(A) can be 

summarized as the following (Figure 3.2). 

Input: Directed graph G(A); 
Output: Minimum set of driver nodes   
Step1: Build the bipartite graph BP(A) from the directed network G(A), using 

Definition 3.2; 

Step2: Find the maximum matching from bipartite graph BP(A), using Algorithm 

1.1, and build its corresponding maximum matching M in G(A); 

Step3: Identify the minimum set of driver nodes D from the maximum matching M. 

Figure 3.2 Steps for finding minimum set of driver nodes. 

3.2.2  Building the Controlled Network and Finding the Spanning Cacti 

i) Build the controlled network 

With the set of driver nodes  , we can easily build the controlled network by just 

introducing        input vertices: {           
} and connecting them to driver 

nodes one by one. However, this initial controlled network, denoted as G0(A,B), may 

be still uncontrollable, due to the fact cycles in this network may be inaccessible from 

the inputs (see Figure 3.5 (B) for illustration). It will become controllable if more 

control connections are added from inputs to these cycles. If we introduce all possible 

new connections from inputs to all cycles, the controlled network will definitely be 

structurally controllable, but many of these connections may be redundant. Thus, we 

just build the initial controlled network G0(A,B) first, then we modify it to be 

structurally controllable by properly adding new connections. We identify these 

proper connections while constructing the spanning cacti based on G0(A,B). 

Build the initial controlled network 

An initial controlled network G0(A,B) is built from the set of driver nodes D and the 

network G(A) = (VA,EA) as follows. First, a set    of ND number of inputs are 

introduced. Then, for each input, we connect it to a driver node, if the driver node is 

not connected by any input. These new edges are assigned to the set of initial 

controlled edges EB. The network G0(A,B) is the combination of G(A) with VB and EB. 

The proof of Minimum Input Theorem presented in the Chapter 2 gives a way to 

construct stems and buds from the maximum matching. That is, each of the 

unmatched nodes initiates an elementary path; each elementary path forms a stem. 
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Beside, all the matched nodes excluding nodes in elementary paths are clustered into 

cycles of matched nodes; those cycles can further be modified into buds. 

ii) Finding the spanning cacti 

Now we move on to build the spanning cacti, at the same time we add more 

controlled edges into G0(A,B) to get the structurally controllable network. To do that, 

we first find all stems and buds. An example of building a spanning cacti is illustrated 

in Figure 3.5. 

Finding stems  

A stem is an elementary path that originates from an input node. Thus, the root of a 

stem is an input node; the node that the root points to is a driver node. A driver node 

is an unmatched node with respect to the maximum matching M in the directed 

network G(A). Given the set of driver nodes, from each of the driver nodes we can 

find an elementary path. After that, we add the corresponding input node into the path. 

Since there are ND driver nodes (and ND input nodes as well), there will be ND stems 

in total. 

Note that, stems belong to the network G(A,B), but the paths from driver nodes, 

including driver nodes themselves, belong to the network G(A). Only the input nodes 

do not belong to G(A). The algorithm for finding all stems is presented in Figure 3.3. 

Algorithm 3.1: FINDING STEMS FROM MATCHING 

Input: Maximum matching represented by array mate[]; set of driver node D; 
Output: List of ND stems STEM1, STEM2, …, STEMND 

begin 

 for each nj in D do begin 

  STEMj = {}; // empty 

  x = nj; 

  while (mate[x] != 0) do begin // x has its mate 

   STEMj = STEMj   (x, mate[x]) ; 

   x = mate[x]; 

  end; 

  STEMj = (uj, nj)   STEMj; 

 end; 

end; 

Figure 3.3 The algorithm for finding stems 

Finding Cycles 

A bud is an elementary cycle with a distinguished edge. Here we describe a procedure 



 

33 
 

to find the elementary cycles. The procedure for finding a distinguished edge for each 

cycle is described in the next section of finding the spanning cacti. As we know 

previously, all the matched nodes excluding those nodes on stems are clustered into 

cycles. And those cycles can be easily found from the matching as well. Let W be the 

set of matched nodes excluding all the nodes on stems: 

W = {matched nodes} \ {nodes on stems} 

The procedure for finding cycles of matched nodes in G(A) is the following (Figure 

3.4): 

Algorithm 3.2:FINDING CYCLES OF MATCHED NODES 

Input: set of nodes W; maximum matching represented by array mate[] 
Output: set of cycles C; 

begin 

 for each v in W do visited[v] = false; // initialize 

 for each v in W do 

  if (not visited[v]) then begin 

   visited[v] = true; x = v; 

   aCycle = {}; // empty 

   repeat 
    aCycle = aCycle   (x, mate[x]); 

    x = mate[x]; 

    visited[x] = true; 

   until x = v; // meet the first node – form a cycle 

   C = C   aCycle; 

  end; 

end; 

Figure 3.4 The algorithm for find cycles of matched nodes 

Finding the spanning cacti 

From the maximum matching in the directed network G(A), we can find stems and 

cycles. To build the spanning cacti, we just need to connect cycles to stems properly. 

In other words, we need to find a distinguished edge for each cycle. 

Case 1 There are only stems, no cycles 

Since a stem is also a cactus. Hence, the spanning cacti is the combination of all stems. 

The initial controlled network G0(A,B) is structurally controllable, there is no any new 

edge to be introduced. 

Case 2 There are both stems and cycles 

We need to connect each cycle c to one of the stems. To do that, we can use one of the 

available connections of G(A) or introduce a new connection to c. 
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Distance from a stem s to the cycle c is defined as the length of the shortest path from 

any node of s to any node of c. If that distance is 1, then we say the stem s directly 

connects to cycle c. The edge e that connects s to c is called the direct connection 

edge. 

 There is a direct connection edge e from one of the stems to the cycle c. In 

this case, we simply connect e to c. The edge e becomes the distinguished 

edge for c, and      { }  becomes a bud. Note that, there may be many such 

direct connections; we can choose any of them. A procedure for building cacti 

using available connections is presented in Figure 3.6 phase 1. 

 There is no direct connection edge from any stem to the cycle c. In this case, 

we need to introduce new edge e from one of the input nodes to the cycle c. 

The issue here is which input node to choose. 

From the original graph G(A,B), we identify all the connected components. If 

the cycle c belongs to the same connected component with some stems s1, 

s2, …,sk  , then among them we identify the stem sj that the distance from sj to 

a node x of c is minimum. We connect the origin uj (input node) of sj to node 

x of c. The edge e = (uj,x) is the distinguished edge for c. 

If the cycle c is isolated from any stem, then we can choose any input node u, 

and connect u to any node x of the cycle c. The edge e = (u,x) is the 

distinguished edge for c. However, to avoid building a cactus of large size, 

we suitably choose the input node u that currently rooted in a cactus of least 

size. 

A procedure for building cacti using new connections is presented in Figure 

3.7 phase 2. 

Case 3 There are only cycles, no stems 

In this case, we know that the structurally controllable network G(A,B) will contain 

only one input node; and its spanning cacti contains one stem. Hence, we just need to 

modify one of the cycles into a stem, and thus, reduce this case into case 2 above. We 

can choose any cycle c, and delete any edge e = (x,v) of c. The cycle c now becomes 

an elementary path which starts from node v. The node v becomes the only driver 

node of G(A). The only stem in G(A,B) is formed by introducing an input node u, and 
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connecting u to the driver node v. 

 

Figure 3.5 Example of building the spanning cacti for a directed network. (A) An 

example network G(A). (B) Stems and cycles in the initial controlled network G0(A,B). 

Matched nodes are in light blue, driver nodes d
1
 and d

2
 are in red; input nodes u

1
 and u

2
 are in 

green. Applying the maximum matching algorithm, we find the set of driver nodes {d1, d2}. 

Then 2 input nodes u1 and u2 are introduced. After that, 2 stems and 6 cycles are constructed 

by algorithms 3.1 and 3.2. Note that, this initial controlled network is not controllable, 

because cycles are isolated from input nodes (hence, they are inaccessible). (C) Building cacti 

by connecting cycles and stems. Edges that shown in green are new edges introduced for 

G(A,B). In the original network G(A), the cycle c1 is in the same connected component with 

both two driver nodes. Then for building the cactus, it is connected to input node u1, since it is 

nearer. The isolated cycle c
2
 is connected to input node u2, since currently the cactus of u

2
 is 

smaller in size. 

For all cases, when a distinguished edge is found, if it previously does not exist in 

G0(A,B), it is included into the initial controlled network G0(A,B). After the spanning 

cacti is found, the network G0(A,B) becomes structurally controllable.  

Note that, both case 1 and case 3 are sub-cases of the case 2. Hence, for building the 

spanning cacti, we can use the two procedures described in case 2 (Figure 3.6 and 

Figure 3.7) as follows. In phase 1, we build the initial spanning cacti using available 



 

36 
 

connections. And then, in phase 2, we complete building the spanning cacti by 

introducing new connections. 

Algorithm 3.3: Building cacti using available connections 

Input: set of cycles C, set of stems ST, the di-graph G(A) 
Output: initial cacti representing by array CACTI; 

begin 

 for j = 1 .. ND do CACTIj := STEMj; 

 Find connected components in G(A); 

 Calculate distance between any cycles in C to any stems in ST; 

  for each c in C do begin 

  for each s in ST do 

  if distance(c,s) = 1 then begin 

   Let e be the distinguished edge connects s to c; 

   CACTIs := CACTIs   c   e; 

  end; 

 end; 

end; 

Figure 3.6 Building the initial cacti using available connections (phase 1). Note that 

finding connected components and calculating distances between cycles and stems can be 

done using breath-first search, with time-complexity              where |  | is the number 

of nodes in G(A). 

Let C' be the set of remaining cycles after phase 1. 

Algorithm 3.4: Building cacti using new connections. 

Input: Initial cacti, set of remaining cycles C' after phase 1, initial controlled network G0(A,B); 

Output: Minimum spanning cacti, controlled network G(A,B). 

begin 

 G(A,B) := G0(A,B); 

 for eachc in C' do begin 

  ifc is isolated then begin //c is an isolated cycle 

   Let s be the cactus currently has least number of nodes; 

   Let v be any node in c; 

   CACTIs := CACTIs   c   (us,v); // us is root of cactus s;  

   Add the edge (us,v) into G(A,B);   

  end; 
  else begin// c is in the same connected component with some cacti 

   Let s be the cacti such that distance(c,s) is minimum; 

   Let v be any node in c; 

   CACTIs := CACTIs   c   (us,v); 

   Add the edge (us,v) into G(A,B); 

  end; 

 end; 

end; 

Figure 3.7 Connecting remaining cycles to cacti using new connections (phase 2). This 

procedure can be done in O(C'). In the results, the array CACTI stores the minimum spanning 

cacti for controlled network G(A,B). 

Note that, in the second phase described above, we build the spanning cacti, and at the 

same time, build the controllable network G(A,B). 
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3.2.3  Algorithm MSC and Its Correctness 

Algorithm for minimum spanning cacti (MSC) 

Using all the procedures described in previous sections, we develop a simple 

algorithm for solving minimum spanning cacti problem. The algorithm MSC is 

summarized as the following (Figure 3.8): 

Algorithm MSC 

Input: A directed network G(A) = (VA,EA) of the system under control; 

Output: Minimum spanning cacti for controlled network G(A,B); 

begin 

Step1: Build the bipartite graph BP(A) from the directed network G(A), using 

Definition 3.2; 

Step2: Find maximum matching from bipartite graph BP(A), using Algorithm 1.1, 

and build its corresponding maximum matching M in G(A); 

Step3: Identify the minimum set of driver nodes D from the maximum matching M; 

Step4: Building the initial controlled network G0(A,B); 

Step5: Finding stems and cycles from the matching M, using Algorithm 3.1 and 

Algorithm 3.2; 

Step6:  Building cacti using available connections of G(A) by Algorithm 3.3; 

Step7: Completing building spanning cacti and controllable  network G(A,B), using 

Algorithm 3.4; 

end; 

Figure 3.8  Algorithm MSC for solving minimum spanning cacti problem 

The correctness and time-complexity of MSC algorithm is given in the following 

theorem: 

Theorem 3.1  The MSC algorithm correctly solves the minimum spanning cacti 

problem. It runs in           
 
       . 

Proof  The correctness 

We will show that the network G(A,B) built by MSC is structurally controllable, and it 

contains the smallest possible number of input nodes. Alternatively, we will show that 

MSC correctly builds a spanning cacti for G(A,B), and the spanning cacti is minimum. 

Consider the given network G(A) = (  ,  
 

). Denote the resulting network G(A,B) as 

G(A,B) = (V,E). We have                      , where    and    are built 

by MSC, that is,    is the set of input nodes, and     is the set of newly introduced 
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edges by MSC. Denote the resulting cacti by  . 

The cacti   spans G(A,B) 

We will show that any node of G(A,B) is included in the cacti C, and any edge of C is 

an edge of G(A,B). Indeed, consider any node x of G(A,B). The node x is either an 

input node, or a node of G(A). If x is an input node, then it is the root of a stem, 

according to step 5 and Algorithm 3.1 (finding stems). If x is a node of G(A),       , 

then it is either a matched node or an unmatched node with respect to the matching M. 

Hence, x must belong to either an elementary path or a cycle, according to step 5. In 

other words, x is in the cacti C. 

On the other hand, consider any edge e of the cacti C. The edge e must belong to a 

stem, a cycle, or it is a distinguished edge. If e belongs to a stem or a cycle of the cacti, 

it must come from the matching M in G(A), according to Algorithms 3.1 and 3.2 

(finding stems and cycles). If e is a distinguished edge then either it is an available 

connection found by step 6 (Algorithm 3.3) or it is newly introduced by step 7 

(Algorithm 3.4). In the former, e comes from   , while in the later, it is included in 

  . Thus, for all cases, e is an edge of G(A,B). 

The cacti C is the minimum spanning cacti 

We have previously shown that the Algorithm 1.1 correctly finds a maximum 

matching for the bipartite graph BP(A) – the bipartite representation of G(A). Hence, 

step 1 and step 2 correctly find a maximum matching M for the directed network G(A). 

Since the matching M contains the largest possible number of matched nodes, the 

number of unmatched nodes is minimum. In other words, the number of driver nodes 

is a minimum (by step 3 and the Minimum Input Theorem). 

According to step 4, for each driver node, we introduce one input node. From each 

input node we build a stem and from each stem, we build a cactus. Hence, the cacti C 

contains the smallest possible number of cacti. C is a minimum spanning cacti. 

Therefore, the MSC algorithm correctly find the minimum spanning cacti for G(A,B). 

Since G(A,B) is spanned by cacti C, according to Lin's theorem, it is structurally 

controllable. Thus, MSC algorithm correctly solves the minimum spanning cacti 

problem. 
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Time-complexity 

For time-complexity, we observe that, the running time of MSC is dominated by the 

step 2 (Algorithm 1.1). Running time for all other steps is small compared to that of 

finding the maximum matching. The algorithm in step 2 takes           
 
   time, 

thus, overall MSC takes           
 
   time.▄ 

Note that, we can improve the running time for MSC algorithm by applying the 

maximum matching algorithm that uses max-flow approach. That algorithm takes 

only              
 
   time. Hence, we can improve MSC to run in              

 
   

time. 

3.3  One-Input Controllable Networks with Minimal Modification 

In chapter 2, we presented the work of both Lin (1974) and Liu et al. (2011) on 

structural controllability. Lin’s theorem gives the sufficient and necessary conditions 

of structural controllability for linear dynamic systems. The conditions are described 

by the cactus representation of the systems’ networks. Liu et al give a qualitative 

measure on the difficulty of controlling a network via the number of inputs needed to 

fully control it. In these works, given a fixed network G(A) of a underlying system, 

the controllability of the controlled network G(A,B) is evaluated. A particular interest 

is that, given G(A), one wants to build G(A,B) with a minimum number of inputs such 

that G(A,B) is structurally controllable. 

As the structural controllability suggests, adding more links into the network never 

weakens its controllability. In fact, the Minimum Input Theorem gives an upper 

bound on the minimum number of inputs needed to control a network with missing 

links [5]. With more links added, the number of inputs needed may be fewer, i.e. the 

network becomes easier to control. 

Moreover, in practice, the configurations of some human designed systems may 

change over time, such as computer networks, telecommunication networks and other 

technological networks. Thus, the network G(A) in reality may be changed. If we are 

allowed to modify the network G(A) by adding more links, one question that can be 

asked is: what is the minimum number of extra links needed for G(A) so that one 

can control it with only one input? As it turns out, this problem is equivalent to the 
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problem of adding more edges into a directed graph to get a perfect matching. 

Furthermore, it can be also answered by directly applying the Minimum Input 

Theorem.  

We call a network that can be controlled by one input as an one-input controllable 

network. This section presents the one-input controllable networks, their properties, 

and how to construct them. 

3.3.1  One-Input Controllable Networks 

We introduce the notions of one-input and n-input controllability to describe the level 

of difficulty in controlling directed networks.  

Definition 3.3  A network G(A) is called one-input controllable if the minimum 

number of input needed to fully control it is one. Otherwise, it is called n-input 

controllable.  

Examples of one-input and n-input controllable networks are shown in Figure 3.9.  

 

Figure 3.9 Examples of one-input and n-input controllable networks. (a) Network is one-

input controllable, since we can control it by introducing one input and connecting this input 

to x and y. (b) Network is also one-input controllable; we can control it by one input 

connecting to node x. This network also can be spanned by a general directed cactus graph. 

The cactus can be formed by deleting the edge from y to z. (c) This is a 2-input controllable 

network. We cannot control all three nodes x, y, z by one input. To control this network, we 

need at least two inputs connecting to x and either to y or to  z. 

Note that, an one-input controllable network is covered by a cactus. A general 

directed cactus graph is one-input controllable. Some properties of one-input 

controllable networks are expressed in following propositions. 

(a) 

x 

y 

x 
y z 

(b) (c) 

x 
y 

z 
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Proposition 3.3  A directed network G(A) is one-input controllable if and only if 

there is a cactus that spans G(A,B). 

Proof. If G(A) is one-input controllable, then it can be controlled by one input. Thus, 

the controlled network G(A,B) is controllable with one input. By Lin’s theorem, 

G(A,B) is spanned by a cactus. 

On the other hand, if there is a cactus that spans G(A,B), then by Lin’s theorem, 

G(A,B) is controllable. Since a cactus in G(A,B) originates from an input, this means 

that G(A) can be controlled by one input, hence, it is one-input controllable ■  

Let N denote the number of node in the network G(A). 

Proposition 3.4  A directed network G(A) is one-input controllable if and only if the 

maximum matching in G(A) has the size of at least N-1. 

Proof  Let M be a maximum matching in G(A), its size is denoted as |M|. 

Suppose G(A) is an one-input controllable network, i.e., it can be controlled by only 

one input. By Minimum Input Theorem, the minimum number of inputs needed to 

fully control G(A) is         {         } . Hence,     {         }  = 1. In 

other words, either M is a perfect matching or the number of unmatched node in M is 

1. Thus, the maximum matching in G(A) must have the size at least N-1. 

On the other hand, suppose M has the size of at least N-1. Then by Minimum Input 

Theorem, the minimum number of inputs needed to control G(A) is    

     {         }   . Thus, G(A) is an one-input controllable network ■ 

3.3.2  Constructing One-Input Controllable Networks with Minimal 

Modification 

Come back to our question of how to modify the network G(A) into an one-input 

controllable network. In general, this question is meaningful for human-designed 

networks, since one may want to build the system which is simple to control or easy 

to manipulate. The modification here is made by adding more links into the original 

networks without adding nodes. The question can be addressed in the following 

theorem. 
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Consider a network G(A) with N nodes, and a maximum matching M in G(A) with the 

size of |M|. 

Theorem 3.2   The minimum number of extra links    needed to modify G(A) into an 

one-input controllable network is zero if there is a perfect matching in G(A); 

otherwise, it equals            , where |M| is the size of a maximum matching in 

G(A).  

      {           } 

Proof 

By the proposition 4.2, if there is a perfect matching in G(A), or a matching with size 

at least N -1, then G(A) is an one-input controllable, and vice versa. In that case, no 

extra link is needed.  

Consider the case when the maximum matching M in G(A) has the size less than N-1. 

By Liu et al., the minimum number of inputs needed to fully control the network G(A) 

is:         {       }       . By Lin’s theorem, the controlled network 

G(A,B) can be controllable with NI  inputs; and G(A,B) can be spanned by NI vertex 

disjoint cactuses, in which each input connects to a driver node on a stem.  

We can introduce          extra links as follows. For each two stems s1 and s2, 

connect the top node of s1 to the driver node of s2. After   –   such modifications, 

only one stem is left. So, the new network now can be controlled with only one input. 

We will show that, less than      extra links cannot modify G(A) into one-input 

controllable networks. Indeed, suppose G’(A) is the one-input controllable network 

after adding           extra links into G(A). Let M0 be a maximum matching in 

G’(A), we have          , by proposition 4.2. Let M1 be a matching after 

removing such    links of G’(A). We have M1 is a matching in G(A) with the size: 

                                     –              

Hence, M1 is the matching with a lager size than M, a contradiction with the fact that 

M is a maximum matching in G(A) ■ 
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Constructing One-Input Controllable Networks 

The above proof gives a way to construct the one-input controllable network from the 

original network G(A). Steps for such construction are summarized as the following. 

1. Find a maximum matching M of G(A) using bipartite representation. 

2. Find stems and cycles from the matching M. 

3. Merge all stems into one, using NS – 1 extra links, each link connects a top 

node of a stem to the root node of another stem, where NS is the original 

number of stems.  

4. The resulting network after adding NS – 1 links is one-input controllable. 
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Chapter 4  

Experimental Results 

In the previous chapter, we presented the MSC algorithm for solving the minimum 

spanning cacti problem. In this chapter, we will present our experimental results. The 

main purpose of our experiments is to use the MSC algorithm for finding the 

minimum spanning cacti, and exploring the properties of the structural controllability 

of several computer-generated networks and real networks.  

For each of these networks, we first ran MSC to build the structurally controllable 

network G(A,B) and to find the spanning cacti. After that, we analyzed the result by 

calculating some statistics on the minimum spanning cacti, e.g. the number of stems 

and buds in the cacti, number of the driver nodes, the ratio of driver nodes over the 

total number of nodes. We also constructed the one-input controllable networks from 

the original networks. Finally, we visualized the cacti, the original networks and the 

one-input controllable networks by Cytoscape [8] – a network visualization software. 

 

  



 

45 
 

4.1  Random Network 

In our experiments, two types of random networks are generated, including Erdos–

Renyi random network model. 

1. Type 1: Uniformly generated n nodes and m edges. The network is chosen 

uniformly at random from collection of all networks that have   nodes and   

edges. 

2. Type 2: Erdos–Renyi probabilistic random network. The network is generated 

by randomly connecting   nodes. Each edge has a probability   to be 

included, independently from the other edges. 

Given a number of nodes   and a number of edges   , the random network of type 1 

is generated by the following procedure (Figure 4.1): 

Algorithm 4.1 Random network  - type 1  

Input: Number of nodes n, number of edges             

Output: random network of type 1; 

begin 

 if          then           ; 

 Node_set = {1..n};    // initialize 

 Edge_set = {}; 

 for i = 1..m do begin 

  repeat 

   u = random number in [1..n]; 

   v = random number in [1..n]; 

   if       and       is not in Edge_set then begin 

    Edge_set = Edge_set +        

    break; 

   end; 

  until false; 

 end; 

end; 

Figure 4.1 Procedure for generating a random network of type 1 
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Given a number of nodes n and a probability p, the random network of type 2 is 

generated by following procedure (Figure 4.2): 

Algorithm 4.2 Random network – type 2 

Input: number of nodes n, probability p; 

Output: random network of type 2 

begin 

 Node_set = {1..n}; // initialize 

 Edge_set = {}; 

 for u = 1..n do 

 for v = 1..n do 

 if (   ) and       is not in Edge_set then begin 

  r = random number in [0..1]; 

  if       then  

   Edge_set = Edge_set +        

 end; 

end; 

Figure 4.2 Procedure for generating a random network of type 2 

 

Note that, all these networks are directed networks. Furthermore, there is no self-loop 

and no repeated edges are generated. For each type of networks, we performed the 

experiment for 100 times, and then averaged the result. 

Results 

We note that, the number of driver nodes, ND, always equals the number of cactuses, 

since each cactus is built from an input node. This is explained as a consequence of 

the Minimum Input Theorem. Furthermore, the number of stems is exactly the same 

as the number of cacti in the spanning cacti, which can be derived by definition of 

cacti. 

Table 4.1 and Table 4.2 show the results by running MSC for type 1 and type 2 

random networks, respectively. As can be seen, the number of stems or equivalently, 

the number of driver nodes    decreases as the number of network edges increases. 

When the network is sparse, it requires more input nodes to become structurally 

controllable. On the other hand, when the number of edges is large in comparison 

with the number of nodes (for example                                    ). 
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The number of driver nodes is very small and in most cases, is only 1. This suggests 

that the dense networks are easier to control. Thus, the result presented here is 

consistent with Liu et al result [4].  

 
Table 4.1 Result of running MSC on random network of type 1. For each network of type 

1, we show the number of nodes (N); the number of edges (  ); the average number of stems 

(<      >); the average number of buds (       ) and the average ratio of the number 

of driver nodes over the total number of nodes           

N    <Nstems> <Nbuds> <ND/N> 

50 2*N 9 2 0.18 

5*N 1 4 0.02 

10*N 1 2 0.02 

20*N 1 2.8 0.02 

     

100 2*N 29 1 0.29 

5*N 1 5 0.01 

10*N 1 1.1 0.01 

20*N 1 1.6 0.01 

     

200 2*N 41.2 0.4 0.206 

5*N 1.4 3.4 0.007 

10*N 1 4.6 0.005 

20*N 1 3.1 0.005 

     

500 2*N 108.5 0.6 0.217 

5*N 5.5 3.6 0.011 

10*N 1 3.3 0.002 

20*N 1 4.5 0.002 

     
 

Furthermore, for random networks of type 2, when the probability p increases, the 

number of buds also increases. This may suggest that, the maximum matching found 

for random networks of this type tends to form more cycles of matched nodes than 

stems. These cycles become buds of the spanning cacti. 

Currently in this work, we limited the number of nodes for random network by 500. 

For further analysis, we may need to check for larger networks as well. Nevertheless, 

we believe that the results will have the same trend. 
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Table 4.2 Results of running MSC on random network of type 2. For each network of 

type 2, we show the number of nodes (N); the probability (p) an edge to be included into the 

network; the average number of edges (<  >); the average number of stems (<Nstems>); the 

average number of buds (<Nbuds>) and the average ratio of the number of driver nodes over 

the total number of nodes (<ND/N>) 

N p <  > <Nstems> <Nbuds> <ND/N> 

50 0.01 64 16 1 0.32 

0.02 87 13 3 0.26 

0.05 157 5 3 0.1 

0.1 282 1 4 0.02 

      

100 0.01 212.4 20.9 0 0.209 

0.02 298 9 1 0.09 

0.05 567 1 2 0.01 

0.1 1061.6 1 4.2 0.01 

      

200 0.01 788.6 5.6 2 0.028 

0.02 1211.6 1.5 4 0.008 

0.05 2375.7 1 4.6 0.005 

0.1 4384.3 1 5.6 0.005 

      

500 0.01 4997.5 1 4.5 0.002 

0.02 7527.7 1 5.2 0.002 

0.05 14986.2 1 7.4 0.002 

0.1 27500.6 1 15.4 0.002 
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4.2  Real Networks 

We ran MSC on several real networks, including technological networks (electronic 

circuits), social networks (World Wide Web, trust, intra-organizational networks) and 

biological networks (food webs, and metabolic networks). 

The datasets are the subset of those that were analyzed in Liu et al [4], except for two 

networks Enron [18] and Macaque brain [19], marked with (*). Our datasets are 

downloaded from http://hal.elte.hu/~enys/data.htm [20]. The features of these datasets 

are summarized in the Table 4.3.  

Table 4.3 Features of the real networks analyzed in this work. For each network, we show 

its type, name, number of nodes (N), edges (NE), meaning of each directed edge, and the data 

source references. 

Type Name N 𝐍𝐄 Meaning of an edge 𝑿  𝒀 Re f e re nc e 

Electronic circuits s208 122 189 Value at Y depends on value at 

X 
[9] 

s420 252 399 [9] 

      
WWW Political blogs 1224 19025 Y has link to X [10] 

      
Intra-

organizational 

Consulting 46 879 X received emails from Y [11] 

Freemans-2 34 830 Y knows X [12] 

Manufacturing 77 2228 X received emails from Y 

X received emails from Y 
[11] 

Enron (*) 
 

156 1669 [18] 

      
Food web Little Rock 183 2494 X prays on Y [15] 

Grassland 88 137 [13] 

Seagrass 49 226 [14] 

      
Metabolic E.coli 2275 5763 X controls Y [16] 

S.cerevisiae 1511 3833 [16] 

C.elegans 1173 2864 [16] 

      
Trust College student 32 96 Y trusts in X [17] 

Prison inmate 67 182 [17] 

      
Other Macaque brain 

(*) 

45 463 

 

Area X is connected to area Y [19] 

Table 4.4 shows the result of running MSC on these networks. We noted that our 

results are consistent with results presented in Liu et al [4]. That is, we get the same 

results for the ratio      of the number of driver nodes over total number of nodes. 

http://hal.elte.hu/~enys/data.htm
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In addition to calculating that ratio for each network, we find the number of stems and 

buds of the spanning cacti. We also construct the spanning cactus for the one-input 

controllable network. 

Table 4.4 Results of running MSC on real networks. For each network, we show its name; 

the number of nodes (N) and edges (NE), the ratio of the number of driver nodes over the total 
number of nodes (ND/N), the number of stems (Nstems) and buds (Nbuds). The networks 

marked with (*) are not included in Liu et al. dataset. 

Name N NE ND/N Nstems Nbuds 

s208 122 189 0.2377 29 2 

s420 252 399 0.2341 59 4 

Political blogs 1224 19025 0.3562 436 35 

Consulting 46 879 0.0435 2 3 

Freemans-2 34 830 0.0294 1 6 

Manufacturing 77 2228 0.0130 1 5 

Enron (*) 156 1669 0.0321 5 15 

Little Rock 183 2494 0.5410 99 5 

Grassland 88 137 0.5227 46 0 

Seagrass 49 266 0.2653 13 0 

C.Elegans 1173 2864 0.3017 354 25 

S.Cerevisiae 1511 3833 0.3289 497 31 

E.Coli 2275 5763 0.3824 870 54 

College student 32 96 0.1875 6 2 

Prison inmate 67 182 0.1343 9 9 

Macaque brain (*) 45 463 0.0222 1 5 

Among those networks, the two food webs (Little Rock [15] and Grassland [13]) are 

the most difficult to control. To fully control each of the two networks, it is necessary 

to control more than 50% of the nodes. This contradicts our general intuition that the 

food webs are easy to control, since we expect that if we control some resources, we 

can control all the food webs. The controllability here is a property of the network 

itself, describing its ability to move around the state-space. So, manipulating some 

resources of the food webs may break the food webs, but a majority of resources are 

needed for the evolution of the food webs over time. On the other hand, the result 

shows that the intra-organizational networks are much easier to control. This dispels 
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the expectation that these networks are resistant to control because they are quite 

dense: in the networks, each individual connects to many others, thus the 

controllability is believed to have no role. Yet the structural controllability suggests 

that in principle, a few individuals can fully control the whole network.  

After running MSC, we used Cytoscape [8] to visualize the spanning cacti. Some 

cacti are shown in the following figures. The input nodes are shown in red; the driver 

nodes are in yellow; nodes of stems are in blue; nodes of buds are in green. The 

controlled edges are shown in red, edges of stems are in blue, edges of buds are in 

green, and distinguished edges are in orange. 

(a) 

 

(b) 

 

Figure 4.3 Visualizations of the intra-organizational network Freemans-2. (a) The 

original network (directed). (b) The minimum spanning cacti for the controllable network. 

The input node is 35; it was introduced to control the network and it is the root of the cactus. 

Note that, this original network is an example of one-input controllable networks.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.4 Visualizations of the intra-organizational network Consulting. (a) The original 

directed network with 2 driver nodes shown in yellow. (b) The spanning cacti of the 

controllable network. (c) Spanning cactus of the one-input controllable network. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.5 Visualizations of the trust network Prison inmate. (a) The original network 

with 9 driver nodes shown in yellow. (b) The spanning cacti of the controllable network. The 

inputs are shown in red. (c) Spanning cactus of the one-input controllable network. 
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(a) 

 

(b) 

 

Figure 4.6 Visualizations of the intra-organizational network Manufacturing. (a) The 

original network with one driver node shown in yellow. (b) The minimum spanning cacti for 

the controllable network. The input node is 78 controls the network and it is the root of the 

cactus. The original network is also an one-input controllable network. 
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(a) 

 

(b) 

 

Figure 4.7 Visualizations of the network Macaque brain. (a) The original network with 

one driver node shown in yellow. (b) The minimum spanning cacti for the controllable 

network. The input node 46 was introduced to control the network and it is the root of the 

cactus. The original network is also an one-input controllable network. 
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Appendix    

Code Listing 

File main.cpp 
 

/** 

   @file       main.cpp 

   @author     Ngo Thi Tu Anh, ngotuanh@gmail.com 

   @date       July, 2012 

 

   @section    Description 

   This program implements the MSC algorithm to find the spanning cacti for a given 

directed network. It first reads in a network, transforms it into bipartite 

representation, finds the maximum matching in bipartite representation. It then finds 

the basic stems and cycles from the maximum matching, and properly connects them 

together to form the spanning cacti. It also finds the spanning cactus for the one-

input controllable network. It outputs the cacti, controllable networks, as well as 

the node and edge attribute files for cytoscape visualization. 

 

*/ 

#include <iostream> 

#include <sstream> 

#include <vector> 

#include <fstream> 

#include <math.h> 

#include <stdlib.h> 

#include <list> 

#include <iomanip> 

#include <set> 

#include <queue> 

//my header files: 

#include "di_graph.h" 

#include "bipartite_graph.h" 

 

using namespace std; 

 

class Cactus{ 

    public: 

    int ControlNode; 

    vector<int> Stem; 

    vector<vector<int> > Cycles; 

    vector<int> CycleControl; 

    vector<int> CycleRoot; 

    // Constructors 
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    Cactus(){} 

    Cactus(int cNode, vector<int> aStem){ 

        ControlNode = cNode; 

        Stem.assign(aStem.begin(), aStem.end()); 

    } 

    // Utils 

    void PrintCactus(){ 

        cout <<"    Control Node = u"<<ControlNode; 

        cout <<"    Stem : "; 

        for (int j = 0; j<Stem.size(); ++j) 

            cout <<Stem[j]<<" "; 

        cout <<endl; 

        cout <<"    Number of cycles "<<Cycles.size()<<endl; 

        for (int j = 0; j<Cycles.size(); ++j){ 

            cout <<"        Cycle "<<j+1<<" (connected from node "<<CycleControl[j]<<" 

of the stem to node "<<CycleRoot[j]<<" of cycle) : "; 

            for (vector<int>::iterator v = Cycles[j].begin(); v != Cycles[j].end(); 

++v) 

                cout <<*v<<" "; 

            cout <<endl; 

        } 

    }// 

}; 

 

vector<Cactus> Cacti; 

 

// vars for matching algorithm: 

vector<int> mate; 

vector<int> exposed; 

vector<int> label; 

 

vector<vector<int> > Stems; 

vector<vector<int> > Cycles; 

vector<bool> AddedCycle; 

 

vector<int> MarkCycle; 

 

vector<int> DrNodes; 

vector<vector<int> > DistFromDrNode; 

 

void InitEverything(){ 

    Cacti.clear(); 

    Stems.clear(); 

    Cycles.clear(); 

    AddedCycle.clear(); 

    MarkCycle.clear(); 

    DrNodes.clear(); 

    DistFromDrNode.clear(); 

} 

 

/**Matching:*/ 

void InitMaxBPMatch(Bipartite_Graph BG){ 

    mate.resize(BG.N*2+2,0); 

    exposed.resize(BG.N*2+2,0); 

    label.resize(BG.N*2+2,0); 

} 

 

//recursive retrieve augmenting path and flip 

void augment(int v){ 

    //cout <<" aug "<<v<<endl; 

    if (label[v] ==0){ 

        mate[v] = exposed[v]; 

        mate[exposed[v]] = v; 

    } 

    else { 

        exposed[label[v]] = mate[v]; 

        mate[v] = exposed[v]; 

        mate[exposed[v]] = v; 

        augment(label[v]); 

    } 

}// augment procedure 

 

void MaxBipartiteMatching(Bipartite_Graph BG){ 
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    set<pair<int, int> > A; // set of two different Plus nodes u,v that there is a 

Minus node x, 

                            // such that: (v, x) is an edge and mate[x] is u 

    //init: 

    vector<int>::iterator it; 

    for (it = BG.Plus.begin();  it != BG.Plus.end(); ++it) 

        mate[*it] = 0; 

    for (it = BG.Minus.begin(); it != BG.Minus.end(); ++it) 

        mate[*it] = 0; 

 

    list<pair<int,int> >::iterator ip; 

    while (true){   // loop to find all augmenting paths 

        for (vector<int>::iterator v = BG.Plus.begin(); v != BG.Plus.end(); ++v) 

       exposed[*v] = 0; 

        A.clear(); 

        // for each edge: 

        for (ip = BG.EdgeList.begin(); ip != BG.EdgeList.end(); ++ip){ 

            int v = ip->first; 

            int u = ip->second; 

            if (mate[u]==0) 

                exposed[v] = u; 

            else { 

                if (mate[u] != v) 

                    A.insert(pair<int,int>(v, mate[u])); 

            } 

        }// for each edge of BG 

 

        queue<int> Q; //queue for breadth-first-search 

        while (!Q.empty()) Q.pop(); 

 

        for (vector<int>::iterator v = BG.Plus.begin(); v != BG.Plus.end(); ++v){ 

            if (mate[*v] == 0){ 

                Q.push(*v); 

                label[*v] = 0; 

            }; 

            label[*v]=0; 

        } 

 

        //BFS for find augmenting path 

        int found = false; 

        int xxx = 0; 

 

        // Check queue: 

        while (!Q.empty() ){ 

            int v = Q.front(); 

            Q.pop(); 

            xxx++; 

            if (exposed[v] != 0){   // found new augmenting path! 

                augment(v); 

                found = true; 

                break; 

            }// found new 

            else{ 

            for (vector<int>::iterator u = BG.Plus.begin(); u != BG.Plus.end(); ++u) 

                if ( (label[*u]==0)and(A.find ( pair<int,int>(v,*u) ) != A.end() ) ){ 

                    label[*u] = v; 

                    Q.push(*u); 

                } 

            } 

 

            if (found) break;// break the BFS 

        }// while queue is not empty 

 

        // if not found any augmenting path, then exit: 

        if (!found) break; 

    }// end of main loop 

 

//--------- result:----------- 

    //cout <<endl<<"Matching result: "<<endl; 

        int cnt = 0; 

        set<int> Remain; 

        Remain.insert(BG.Plus.begin(), BG.Plus.end()); 

        for (int i = 0; i<mate.size(); ++i){ 

            if ((mate[i]!= 0) and (mate[i]>BG.N)){ 
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                //cout <<setw(4)<<i<<" -- "<<setw(4)<<mate[i] - BG.N<<endl; 

                cnt++; 

                Remain.erase(mate[i]-BG.N); 

            } 

        }// for i in mate[] 

        for (set<int>::iterator it = Remain.begin(); it != Remain.end(); ++it){ 

            //cout <<*it<<" "; 

            DrNodes.push_back(*it); 

        } 

 

// CASE PERFECT MATCHING: no driver node, then choose random node as driver node: 

        if (DrNodes.size() <1){ 

            DrNodes.push_back(BG.Plus[0]); 

            //cout<<" Number of driver nodes after modifying: "<<DrNodes.size()<<endl; 

        } 

}// end of matching 

 

//Procedures for finding cacti:/ 

void Find_Stems_Cycles(Di_Graph G){ 
    //cout <<endl<<"Finding stems and cycles... "<<endl; 

    vector<bool> Marked; 

    Marked.assign(G.N+1, false); 

    MarkCycle.assign(G.N+1, -1); 

 

    // Find stems: 

    int x; 

    Stems.clear(); 

    Stems.resize(DrNodes.size()); 

    for (int i = 0; i<DrNodes.size(); ++i){ 

        x = DrNodes[i]; 

        while(!Marked[x]){ 

            Stems[i].push_back(x); 

            Marked[x] = true; 

            if (mate[x]!=0) x= mate[x] - G.N; 

            else break; 

        } 

    } 

    // print stems: 

    /** 

    for (int i = 0; i<Stems.size(); ++i){ 

        cout <<"Stem number "<<i+1<<": "; 

        for (int j = 0; j<Stems[i].size(); ++j) 

            cout <<Stems[i][j]<<" "; 

        cout <<endl; 

    } 

    //*/ 

    // Find Cycles: 

    Cycles.clear(); 

    vector<int> ACycle; 

    int cycCnt = 0; 

    for (int u = 1; u <= G.N; ++u) 

        if (!Marked[u]){ 

            //new cycle: 

            cycCnt++; 

            ACycle.clear(); 

            int v  = u; 

            while (true){ 

                Marked[v] = true; 

                MarkCycle[v] = cycCnt -1; 

                ACycle.push_back(v); 

                v = mate[v] - G.N; 

                if (v==u) break; 

            }// end of new cycle; 

            Cycles.push_back(ACycle); 

        } 

    // print Cycles: 
    /** 

    cout <<endl<<"Number of cycles: "<<Cycles.size()<<endl; 

    for (int i = 0; i < Cycles.size(); ++i){ 

        cout <<"  Cycle "<<i+1<<" : "; 

        for (int j = 0; j < Cycles[i].size(); ++j) 

            cout <<Cycles[i][j]<<" "; 

        cout <<endl; 

    } 

    //*/ 

} 

 

void BuildInitialCacti(Di_Graph G){ 
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    // Add each stem to a cactus: 

    Cacti.clear(); 

    for (int i = 0; i < Stems.size(); ++i){ 

        Cactus ACactus(G.N+1 + i, Stems[i]);  

        Cacti.push_back(ACactus); 

    } 

 

    // Add distance-1 cycles to a cactus.  

    AddedCycle.assign(Cycles.size(),false);  

    for (int i = 0; i<Cacti.size(); ++i){// for each cactus i 

        for (int j = 0; j< Cacti[i].Stem.size() - 1; ++j){// for each stem node  

            int x = Cacti[i].Stem[j];  

            for (list<int>::iterator v = G.AdjList[x-1].begin(); v != G.AdjList[x-

1].end(); ++v){//for each node v on adjcent list of x; 

                if ((MarkCycle[*v] != -1) and (!AddedCycle[MarkCycle[*v]])){  

                    Cacti[i].Cycles.push_back(Cycles[MarkCycle[*v]]); 

                    Cacti[i].CycleControl.push_back(x); 

                    Cacti[i].CycleRoot.push_back(*v); 

                    AddedCycle[MarkCycle[*v]] = true; 

                } 

            }// for each node v on adjcent list of x; 

        } // for each node x on the stem 

    } // for each cactus 

 

    // Result: 

    /*** 

    cout <<endl<<"  CACTI "<<endl; 

    cout <<"Number of cacti(flural of cactus) in the Cacti "<<Cacti.size()<<endl; 

    for (int i = 0; i < Cacti.size(); ++i){ 

        cout <<"Cactus "<<i+1<<" :"<<endl; 

        Cacti[i].PrintCactus(); 

        cout <<endl; 

    } 

    */ 

} 

 

vector<int> DistanceFromNode(Di_Graph G, int v){    //BFS 

    vector<int> Dist; 

    Dist.assign(G.N+1, -1); 

    vector<bool> Marked; 

    Marked.assign(G.N+1, false); 

    queue<int> Q; 

    Dist[v] = 0; 

    Marked[v] = true; 

    Q.push(v); 

    while (!Q.empty()){ 

        int u = Q.front(); 

        Q.pop(); 

        for (list<int>::iterator x = G.UAdjList[u-1].begin(); x != G.UAdjList[u-

1].end(); ++x) 

            if (!Marked[*x]){ 

                Dist[*x] = Dist[u] + 1; 

                Marked[*x] = true; 

                Q.push(*x); 

            } 

    } 

    return Dist; 

} 

 

 

void CalcDistanceFromDrNode(Di_Graph G){ 

    DistFromDrNode.resize(DrNodes.size()); 

    vector<int> ADist; 

    for (int i = 0; i<DrNodes.size(); ++i){ 

        int v = DrNodes[i]; 

        ADist = DistanceFromNode(G, v); 

        DistFromDrNode[i] = ADist; 

    } 

}// end calculation Distance from Driver Nodes; 

 

//complete building cacti: 

void AddCylcesToCacti(Di_Graph G){ 

    for (int i = 0; i<Cycles.size(); ++i){  
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        if (!AddedCycle[i]){     

            // find nearest driver node u: 

            int minDist = G.N+1;  

            int minU=-1, minRoot = Cycles[i][0]; 

            for (int u = 0; u < DrNodes.size(); ++u){ 

                for (vector<int>::iterator v = Cycles[i].begin(); v != 

Cycles[i].end(); ++v){ 

                    if (DistFromDrNode[u][*v] >-1) 

                    if (minDist > DistFromDrNode[u][*v]) { 

                        minDist = DistFromDrNode[u][*v]; 

                        minU = u; 

                        minRoot = *v; 

                    } 

                } 

            } 

 

            if (minU = -1) {// find smallest cacti so far: 

                int minNumOfCircles = G.N+1; 

                minU = 0; 

                for (int u = 0; u < DrNodes.size(); ++u){ 

                    if (minNumOfCircles > Cacti[u].Cycles.size()){ 

                        minNumOfCircles = Cacti[u].Cycles.size(); 

                        minU = u; 

                    } 

                } 

            } 

            // Add this cycle to the cactus of the nearest driver node just found: 

            Cacti[minU].Cycles.push_back(Cycles[i]); 

            Cacti[minU].CycleControl.push_back(Cacti[minU].ControlNode); 

            Cacti[minU].CycleRoot.push_back(minRoot); 

        }// still not added 

    }// for each Cycle 

}// end procedure 

 

//Merge two cactuses: 

Cactus MergingTwoCactuses(Cactus C1, Cactus C2){ 

    Cactus C; 

    //merging stem: 

    C.Stem.clear(); 

    for (vector<int>::iterator it = C2.Stem.begin(); it != C2.Stem.end(); ++it ) 

        C.Stem.push_back(*it); 

    for (vector<int>::iterator it = C1.Stem.begin(); it != C1.Stem.end(); ++it ) 

        C.Stem.push_back(*it); 

    //merging cycles: 

    C.Cycles.clear(); 

    C.CycleControl.clear(); 

    C.CycleControl.clear(); 

    for (int i = 0; i < C2.Cycles.size(); ++i){ 

        C.Cycles.push_back(C2.Cycles[i]);  

        C.CycleControl.push_back (C2.CycleControl[i]); 

        C.CycleRoot.push_back(C2.CycleRoot[i]); 

    }; 

    for (int i = 0; i < C1.Cycles.size(); ++i){ 

        C.Cycles.push_back(C1.Cycles[i]); 

        C.CycleControl.push_back (C1.CycleControl[i]); 

        C.CycleRoot.push_back(C1.CycleRoot[i]); 

    }; 

    //merging control node: 

    C.ControlNode = C2.ControlNode; 

 

    //modify cyclecontrol node: 

    for (int i = 0; i<C.CycleControl.size(); ++i){ 

        if (C.CycleControl[i] == C1.ControlNode)  

C.CycleControl[i] = C.ControlNode; 

    } 

 

    return C; 

} 

 

//Find cactus for one-input controllable network: 

void FindCactusForOneInputControllable (vector<Cactus> *newCacti){ 

    newCacti->clear(); 

    Cactus C2 = Cacti[Cacti.size()-1]; 
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    Cactus C = C2; 

    for (int i = Cacti.size()-2; i >=0; --i){ 

        Cactus C1 = Cacti[i]; 

        C = MergingTwoCactuses(C1,C2); 

        C2 = C; 

    } 

    newCacti->push_back(C2); 

} 

 

// print statistics of the cacti 

void PrintStatistics(Di_Graph G){ 

    cout <<"=====Input:====="<<endl; 

    cout <<"    N = "<<G.N<<endl; 

    cout <<"    E = "<<G.E<<endl; 

    cout <<"=====Statistic of minimum cacti====="<<endl; 

    cout <<"    Number of stems "<<Cacti.size()<<endl; 

    int nCycles = 0; 

    for (int i = 0; i <Cacti.size(); ++i){ 

        nCycles +=Cacti[i].Cycles.size(); 

    } 

    cout <<"    Number of buds "<<nCycles<<endl; 

    double averDegree = 0; 

    for (int i = 0; i <Cacti.size(); ++i){ 

        averDegree += G.getDegree(Cacti[i].Stem[0]); 

    } 

    averDegree = averDegree / Cacti.size(); 

    cout <<"    Average degree of driver nodes = "<<averDegree<<endl; 

    cout <<"    average degree of the input network = "<<G.E / G.N<<endl; 

} 

 

// Print cacti into SIF format for Cytoscape: 

int Cacti2SIF(vector<Cactus> Cacti, string fn){ 

    ofstream MyFile(fn.c_str()); 

    if (!MyFile.is_open()){ 

        cerr <<"Cannot open this file "<<fn<<endl; 

        return -1; 

    } 

    cout <<"Write cactus graph into .SIF file: "<<fn<<endl; 

    for (int i = 0; i <Cacti.size(); ++i){ 

        Cactus C = Cacti[i]; 

        //Print stem: 

            MyFile<<C.ControlNode<<" controls "<<C.Stem[0]<<endl; 

        for (int j = 0; j < C.Stem.size()-1; ++j) 

            MyFile << C.Stem[j]<<" stem "<<C.Stem[j+1] <<endl; 

        // Print cycles: 

        for (int c = 0; c < C.Cycles.size(); ++c){ 

            // stem to cycle edge: 

            MyFile <<C.CycleControl[c]<<" stem_to_cycle "<<C.CycleRoot[c]<<endl; 

            //cycle: 

            for (int j = 0; j <C.Cycles[c].size()-1; ++j) 

                MyFile << C.Cycles[c][j]<<" cycle "<<C.Cycles[c][j+1]<<endl; 

            MyFile<<C.Cycles[c][C.Cycles[c].size()-1] <<" cycle 

"<<C.Cycles[c][0]<<endl; 

        }// all cycle 

    }// all cacti 

 

    MyFile.close(); 

    cout <<"    Done!"<<endl; 

} 

 

int Cacti2NOA(vector<Cactus> Cacti, string fn){  // node attributes 

    ofstream MyFile(fn.c_str()); 

    if (!MyFile.is_open()){ 

        cerr <<"Cannot open this file "<<fn<<endl; 

        return -1; 

    } 

    cout <<"Write cactus graph node attribute file: "<<fn<<endl; 

    MyFile <<"NodeType (class = java.lang.String)"<<endl; 

    for (int i = 0; i <Cacti.size(); ++i){ 

        Cactus C = Cacti[i]; 

        //Print stem: 

        MyFile<<C.ControlNode<<" =  CONTROL_NODE"<<endl; 

        MyFile << C.Stem[0]<<" = driver_node "<<endl; 
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        for (int j = 1; j < C.Stem.size(); ++j) 

            MyFile << C.Stem[j]<<" = stem_node "<<endl; 

        // Print cycles: 

        for (int c = 0; c < C.Cycles.size(); ++c){ 

            //cycle: 

            for (int j = 0; j <C.Cycles[c].size(); ++j) 

                MyFile << C.Cycles[c][j]<<" = cycle_node "<<endl; 

        }// all cycle 

    }// all cacti 

 

    MyFile.close(); 

    cout <<"    Done!"<<endl; 

} 

 

void PrintRes(int N, int E, int Nbuds, int Nstems, int times, double averDegreeDr, 

double averDegreeNW){ 

    string fn; 

    stringstream SS; 

    SS <<N<<"_"<<E<<".txt"; 

    SS>>fn; 

 

    ofstream MyFile(fn.c_str()); 

    if (!MyFile.is_open()){ 

        cerr <<"Cannot open this file "<<fn<<endl; 

        return; 

    } 

 

    MyFile<<"number of repeating times "<<times<<endl; 

    MyFile<<"total number of stems "<<Nstems<<endl; 

    MyFile<<"total number of buds " <<Nbuds<<endl; 

    MyFile<<"average degree of driver nodes " <<(averDegreeDr+0.0)/(times+0.0)<<endl; 

    MyFile<<"average degree of all nodes" <<(averDegreeNW+0.0)/(times+0.0)<<endl; 

 

    MyFile.close(); 

 

} 

 

void PrintRes(int N, double P, int Nbuds, int Nstems, int times, double averDegreeDr, 

double averDegreeNW){ 

    string fn; 

    stringstream SS; 

    SS <<N<<"_"<<P<<".txt"; 

    SS>>fn; 

 

    ofstream MyFile(fn.c_str()); 

    if (!MyFile.is_open()){ 

        cerr <<"Cannot open this file "<<fn<<endl; 

        return; 

    } 

 

    MyFile<<"number of repeating times "<<times<<endl; 

    MyFile<<"total number of stems "<<Nstems<<endl; 

    MyFile<<"total number of buds " <<Nbuds<<endl; 

    MyFile<<"average degree of driver nodes " <<(averDegreeDr+0.0)/(times+0.0)<<endl; 

    MyFile<<"average degree of all nodes" <<(averDegreeNW+0.0)/(times+0.0)<<endl; 

 

    MyFile.close(); 

 

} 

 

 

int main()//int argc, char  *argv[]) 

{ 

/***For running on specific networks:*/ 

string pwd = "data/"; 

vector <string> fileNames; 

fileNames.push_back(pwd+ "brain_macaque.ncol"); 

fileNames.push_back(pwd+ "org_Enron_core.ncol"); 

fileNames.push_back(pwd+ "food_Seagrass.ncol"); 

fileNames.push_back(pwd+ "food_LittleRock.ncol"); 

fileNames.push_back(pwd+ "food_Grassland.ncol"); 

fileNames.push_back(pwd+ "circuit_s208a.ncol"); 

fileNames.push_back(pwd+ "circuit_s420a.ncol"); 



 

66 
 

fileNames.push_back(pwd+ "trust_CollegeStudents_rd.ncol"); 

fileNames.push_back(pwd+ "trust_PrisonInmates_rd.ncol"); 

fileNames.push_back(pwd+ "org_Consulting.ncol"); 

fileNames.push_back(pwd+ "org_Freemans_2.ncol"); 

fileNames.push_back(pwd+ "org_Freemans_1.ncol"); // different data 

fileNames.push_back(pwd+ "org_Manufacturing.ncol"); 

fileNames.push_back(pwd+ "metabolic_SCerevisiae.ncol"); 

fileNames.push_back(pwd+ "metabolic_CElegans.ncol"); 

fileNames.push_back(pwd+ "metabolic_EColi.ncol"); 

fileNames.push_back(pwd+ "regulatory_TRN_Yeast_2.ncol"); 

fileNames.push_back(pwd+ "www_Polblogs_rd.ncol"); 

 

//Run for each input file: 

for (vector<string>::iterator fn = fileNames.begin(); fn != fileNames.end(); ++fn){ 

    cerr <<endl<<(int)(fn - fileNames.begin() ) + 1 <<" Running for "<<*fn<<endl; 

    InitEverything(); 

    Di_Graph aG; 

    aG.ReadEdgeFile(*fn,"0"); // note: vertices are from 1 instead of 0; 

    aG.ExpandUndirected(); 

    Bipartite_Graph myBG(aG); 

 

    cerr <<"=====MATCHING...====="<<endl; 

    InitMaxBPMatch(myBG); 

    MaxBipartiteMatching(myBG); 

    cerr <<"=====MATCHING... DONE!====="<<endl<<endl; 

 

    cerr <<"=====STEM and CYCLE FINDING...====="<<endl; 

    Find_Stems_Cycles(aG); 

    cerr <<"=====STEM and CYCLE FINDING... DONE====="<<endl<<endl; 

 

    cerr <<"=====Initial Cacti BUILDING...====="<<endl; 

    BuildInitialCacti(aG); 

    cerr <<"=====Initial Cacti BUILDING... DONE====="<<endl<<endl; 

 

    cerr <<"=====Distance from Driver Nodes: CALCULATING...====="<<endl; 

    CalcDistanceFromDrNode(aG); 

    cerr <<"=====Distance from DrNode CALCULATING...DONE====="<<endl<<endl; 

 

    cerr <<"=====ADDING Cycles to Cacti...====="<<endl; 

    AddCylcesToCacti(aG); 

    cerr <<"=====ADDING Cycles to Cacti...DONE====="<<endl<<endl; 

 

//PRINT OUT RESULT: 

    cout <<endl<<"=====RESULT: the CACTI ====="<<endl; 

    cout <<"Number of cacti(flural of cactus) in the Cacti "<<Cacti.size()<<endl; 

    for (int i = 0; i < Cacti.size(); ++i){ 

        cout <<"Cactus "<<i+1<<" :"<<endl; 

        Cacti[i].PrintCactus(); 

        cout <<endl; 

    }; 

//Find spanning cactus for one-input controllable 

    vector<Cactus> myCacti; 

    FindCactusForOneInputControllable(&myCacti); 

 

// Write cytoscape attribute files: 

    Cacti2SIF(Cacti, *fn+".sif");     Cacti2NOA(Cacti, *fn+".noa");     

Cacti2SIF(myCacti, *fn+".one-input.sif");     Cacti2NOA(myCacti, *fn+".one-

input.noa");  

} 

 return 0; 

//***/ 

 

/***For random networks*/ 

 

int  NN[5] = {10,50,100,200,500}; 

int  EE[4] = {2,5,10,20}; 

double PP[4] = {0.01,0.02,0.05,0.1}; 

 

for (int ii = 0; ii<5; ++ii) 

for (int jj = 0; jj<4; ++jj) 

{//begin 

    cout <<" ii = "<<ii<<" jj= "<<jj<<endl; 

    int Nbuds = 0, Nstems = 0, times = 100; 
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    double AllaverDegree = 0, AllaverDegreeNW = 0; 

 

    for (int i = 0; i<times; ++i){ 

        InitEverything(); 

        Di_Graph newG; 

        //aG.RandomGenerator1(NN[ii],NN[ii]*EE[jj]);    //type 1 

        newG.RandomGenerator(NN[ii],PP[jj]);                 //type 2 

 

        //=====Core procedure: 

        newG.ExpandUndirected();      // Clone 1 un-directed graph NEEDED! 

        //aG.PrintUndirectedGraph(); 

        Bipartite_Graph myNewBG(newG); 

        //cout <<" print bi-graph: "<<endl; 

        //myBG.PrintGraph(); 

 

        cerr <<"=====MATCHING...====="<<endl; 

        InitMaxBPMatch(myNewBG); 

        MaxBipartiteMatching(myNewBG); 

        cerr <<"=====MATCHING... DONE!====="<<endl<<endl; 

        cerr <<"=====STEM and CYCLE FINDING...====="<<endl; 

        Find_Stems_Cycles(newG); 

        cerr <<"=====STEM and CYCLE FINDING... DONE====="<<endl<<endl; 

        cerr <<"=====Initial Cacti BUILDING...====="<<endl; 

        BuildInitialCacti(newG); 

        cerr <<"=====Initial Cacti BUILDING... DONE====="<<endl<<endl; 

        cerr <<"=====Distance from Driver Nodes: CALCULATING...====="<<endl; 

        CalcDistanceFromDrNode(newG); 

 

        cerr <<"=====Distance from DrNode CALCULATING...DONE====="<<endl<<endl; 

        cerr <<"=====ADDING Cycles to Cacti...====="<<endl; 

        AddCylcesToCacti(newG); 

        cerr <<"=====ADDING Cycles to Cacti...DONE====="<<endl<<endl; 

        //=====End of core procedures 

 

        //PRINT OUT: 

        //PrintStatistics(aG); 

        Nstems += Cacti.size(); 

        int nCycles = 0; 

        for (int x = 0; x <Cacti.size(); ++x){ 

            nCycles +=Cacti[x].Cycles.size(); 

        } 

 

        Nbuds += nCycles; 

        double averDegree = 0; 

        for (int x = 0; x <Cacti.size(); ++x){ 

            averDegree += newG.getDegree(Cacti[x].Stem[0])+0.0; 

        } 

        averDegree = (averDegree+0.0) / (Cacti.size()+0.0); 

        AllaverDegree += averDegree; 

 

        AllaverDegreeNW += (newG.E+0.0)/(newG.N+0.0); 

    }// for repeating time; 

 

    //PrintRes(NN[ii],NN[ii]*EE[jj],Nbuds, Nstems, times, AllaverDegree, 

AllaverDegreeNW); // type 1 

    PrintRes(NN[ii],PP[jj],Nbuds, Nstems, times, AllaverDegree, AllaverDegreeNW);   

//type 2 

 

}//end; of NN EE 

return 0; 

//***/ 

 

}// end of main 

 

 

File di_graph.h 
 

/** 

   @file       di_grahp.h 

   @author     Ngo Thi Tu Anh, ngotuanh@gmail.com 

   @date       July, 2012 

 

   @section    Description 
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   Header file for the Di_Graph class. 

 

*/ 

#ifndef DI_GRAPH_H 

#define DI_GRAPH_H 

 

#include <list> 

#include <vector> 

#include <set> 

#include <string> 

 

using namespace std; 

 

class Di_Graph 

{ 

    public: 

        int N; 

        // nodes start from 1; 

        vector <list<int> > AdjList;// Adjacent list of a node u is AdjList[u-1]; 

        vector <list<int> > UAdjList;// Adjacent list of a node u is UAdjList[u-1]; 

        set<pair<int, int> > EdgeSet; 

        int E; 

 

        //constructors 

        Di_Graph(); 

        Di_Graph(string); 

 

        // Utility Functions: 

        int getDegree(int anode); 

        void ReadFile(string); // Read from file 

        void ReadEdgeFile(string fn);   // read from list of edge file 

        void ReadEdgeFile(string fn, string type);   // node start from 0 

        void PrintGraph(); 

        void ExpandUndirected(); 

        void PrintUndirectedGraph(); 

        void RandomGenerator(int, int); 

        void RandomGenerator1(int N, int E); 

        void RandomGenerator(int, double); 

        void WriteFile(string); 

 

    protected: 

    private: 

        list<int>       LineParserList(string); 

        vector<int>     LineParserVector(string); 

        void            CreateFromEdgeSet(); 

}; 

 

#endif // DI_GRAPH_H 
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File di_graph.cpp 
/** 

   @file       di_graph.cpp 

   @author     Ngo Thi Tu Anh, ngotuanh@gmail.com 

   @date       July, 2012 

 

   @section    Description 

   Implementation of Di_Graph class. 

 

*/ 

 

#include "di_graph.h" 

#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <stdlib.h> 

#include <time.h> 

#include <set> 

 

using namespace std; 

 

//Contructors: 

Di_Graph::Di_Graph(){// empty 

} 

 

/* Constructor: Init graph from file*/ 

Di_Graph::Di_Graph(string fn){ 

    this->ReadFile(fn); 

} 

 

/*  Utility Functions: */ 

int Di_Graph::getDegree(int anode){ 

    return AdjList[anode-1].size(); 

} 

 

void Di_Graph::ReadFile(string fn){ 

    int n=1,e=0; 

    vector <list<int> > AdjList; 

    string  st; 

    ifstream MyFile (fn.c_str()); 

    list<int> AList; 

    if (MyFile.is_open()) 

        {   getline(MyFile,st); 

            n = atoi(st.c_str()); 

            for (int i = 0; i<n; ++i){ getline(MyFile, st); 

                AList = LineParserList(st); 

                AdjList.push_back(AList); 

                e += AList.size(); 

            } 

        } 

    this->N = n; 

    this->AdjList = AdjList; 

    this->E = e; 

    this->ExpandUndirected(); 

} 

 

void Di_Graph::ReadEdgeFile(string fn){ 

    string  st; 

    ifstream MyFile (fn.c_str()); 

    if (!MyFile){ 

        std::cerr << "Error: File "<<fn<<" could not be opened! "<<endl; 

        exit(1); 

    } 

    vector<int> APair; 

    while (getline(MyFile,st)){ 

        APair = LineParserVector(st); 

        EdgeSet.insert(pair<int,int>(APair[0], APair[1])); 

    }// done reading file 

    cerr << " Read "<<EdgeSet.size()<<" edges from file "<<fn<<endl; 

 

    CreateFromEdgeSet(); 

} 
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void Di_Graph::ReadEdgeFile(string fn, string type){ 

    string  st; 

    ifstream MyFile (fn.c_str()); 

    if (!MyFile){ 

        std::cerr << "Error: File "<<fn<<" could not be opened! "<<endl; 

        exit(1); 

    } 

    vector<int> APair; 

    while (getline(MyFile,st)){ 

        APair = LineParserVector(st); 

        EdgeSet.insert(pair<int,int>(APair[0] +1, APair[1] +1)); 

    }// done reading file 

    cerr << " Read "<<EdgeSet.size()<<" edges from file "<<fn<<endl; 

 

    CreateFromEdgeSet(); 

} 

 

void Di_Graph::WriteFile(string fn){ 

    ofstream MyFile(fn.c_str()); 

    if (MyFile.is_open()){ 

        MyFile <<N<<endl; 

        for (int i = 0; i<N; ++i){ 

        if (AdjList[i].size() >0){ 

        for (list<int>::iterator j = AdjList[i].begin(); j != AdjList[i].end(); ++j) 

            MyFile << *j<<" "; 

        } 

        else MyFile <<0; 

            MyFile <<endl; 

        } 

    } 

    MyFile.close(); 

} 

 

void Di_Graph::ExpandUndirected(){ 

        UAdjList.clear(); 

        UAdjList.resize(N); 

        for (int i = 0; i<AdjList.size(); ++i){ 

        for (list<int>::iterator v = AdjList[i].begin(); v != AdjList[i].end(); ++v) 

            if (*v != 0){ 

                UAdjList[i].push_back(*v); 

                UAdjList[*v-1].push_back(i+1); 

            } 

            UAdjList[i].unique(); 

        } 

}// expand to undirected graph 

 

void Di_Graph::PrintGraph(){ 

    cout <<" Directed Graph:"<<endl; 

    cout <<" Number of nodes: "<<N<<endl; 

    cout <<" Number of edges: "<<E<<endl; 

    cout <<" Adjcent List:"<<endl; 

    int i, j; 

    for (i = 0; i< AdjList.size(); ++i){ 

        cout <<"list "<<i+1<<": "; 

        for (list<int>::iterator v = AdjList[i].begin(); v != AdjList[i].end(); ++v) 

            cout <<*v<<" "; 

         cout <<endl; 

    } 

} 

 

void Di_Graph::PrintUndirectedGraph(){ 

        cout <<" Un-Directed Graph:"<<endl; 

        cout <<" Number of nodes: "<<N<<endl; 

        cout <<" Adjcent List:"<<endl; 

        int i, j; 

        for (i = 0; i< UAdjList.size(); ++i){ 

            cout <<"list "<<i+1<<": "; 

            for (list<int>::iterator v = UAdjList[i].begin(); v != UAdjList[i].end(); 

++v)         cout <<*v<<" "; 

             cout <<endl; 

        } 

} 

 



 

71 
 

// Randomly generating graph with number of nodes and average outdegree 

void Di_Graph::RandomGenerator(int NodeCnt, int AverOutDegree){ 

    this->N = NodeCnt; 

    if (AverOutDegree >=N) AverOutDegree = N-1; 

    this->E = NodeCnt * AverOutDegree; 

    int cnt = 0; 

    this->AdjList.resize(NodeCnt); 

    int u, v; 

    set <pair<int, int> > EdgeSet;   

    srand(time(NULL)); 

 

    while (cnt < this->E){   

        u = rand()%N;        

        v = rand()%N;        

        if (u != v) 

        if (EdgeSet.find(pair<int,int>(u,v)) == EdgeSet.end()){  

            ++cnt; 

            AdjList[u].push_back(v+1); 

            EdgeSet.insert(pair<int,int>(u,v));  

        } 

    }// while 

    this->EdgeSet = EdgeSet; 

    this->ExpandUndirected(); 

} 

 

 

void Di_Graph::RandomGenerator1(int N, int E){ 

    if (E > N*(N-1)) { 

        cerr<<"Can not generate more than "<<N*(N-1)<<" edges"<<endl; 

        cerr<<"Set number of edges = "<< N*(N-1)<<endl; 

        E = N*(N-1); 

    } 

 

    this->N = N; 

    this->E = E; 

    this->AdjList.clear(); 

    this->AdjList.resize(N); 

 

    int u, v; 

    set <pair<int, int> > EdgeSet;   

    srand(time(NULL)); 

 

   for(int i = 0; i<E; ++i){   

        u = rand()%N;        

        v = rand()%N;        

        if (u != v) 

        if (EdgeSet.find(pair<int,int>(u,v)) == EdgeSet.end()){  

            AdjList[u].push_back(v+1); 

            EdgeSet.insert(pair<int,int>(u,v));  

        } 

    } 

    this->EdgeSet = EdgeSet; 

    this->ExpandUndirected(); 

} 

 

//Generator type 2: 

void Di_Graph::RandomGenerator(int NodeCnt, double p){ 

    this->N = NodeCnt; 

    this->AdjList.resize(NodeCnt); 

 

    int Ecnt = 0; 

    srand(time(NULL)); 

 

    for (int u = 0; u<N; ++u) 

    for (int v = 0; v<N; ++v) 

        if (u != v) 

            if (rand()%100 < p*100){// there is an directed edge from u to v: 

               AdjList[u].push_back(v+1); 

               Ecnt++; 

            } 

    this->E = Ecnt; 

    this->ExpandUndirected(); 

} 
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// Private utility: 

list<int> Di_Graph::LineParserList(string st){ 

    //1 3 6 7 

    istringstream MyISS(st);   

    int node; 

    list <int> AVec; 

    while(MyISS >> node){ 

        AVec.push_back(node); 

    } 

    return AVec; 

} 

// Private utility: 

vector<int> Di_Graph::LineParserVector(string st){ 

    //1 3 6 7 

    istringstream MyISS(st);   

    int node; 

    vector <int> AVec; 

    while(MyISS >> node){ 

        AVec.push_back(node); 

    } 

    return AVec; 

} 

 

void Di_Graph::CreateFromEdgeSet(){ 

    set<int> NodeSet; 

    //get nodes: 

    for (set<pair<int, int> >::iterator p = EdgeSet.begin(); p != EdgeSet.end(); ++p){ 

        NodeSet.insert((*p).first); 

        NodeSet.insert((*p).second); 

    } 

    // create adjlist: 

    AdjList.clear(); 

    AdjList.resize(NodeSet.size()); 

    for (set<pair<int, int> >::iterator p = EdgeSet.begin(); p != EdgeSet.end(); ++p){ 

        int u = (*p).first - 1; 

        int v = (*p).second; 

        AdjList[u].push_back(v); 

    } 

    this->N = NodeSet.size(); 

    this->E = EdgeSet.size(); 

    this->ExpandUndirected(); 

 

    cerr << "#Edges "<< E<<endl; 

} 
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File bipartite_graph.h 
 

/** 

   @file       bipartite_graph.h 

   @author     Ngo Thi Tu Anh, ngotuanh@gmail.com 

   @date       July, 2012 

 

   @section    Description 

   Header file for Bipartite_Graph class. 

 

*/ 

 

#ifndef BIPARTITE_GRAPH_H 

#define BIPARTITE_GRAPH_H 

 

#include "di_graph.h" 

#include <list> 

#include <vector> 

 

const int PLUS  = +1; 

const int MINUS = -1; 

 

class Bipartite_Graph{ 

    public: 

        int N; 

        vector<int> Plus; 

        vector<int> Minus; 

        vector<vector<int> > AdjList; 

        list<pair<int, int> > EdgeList; 

        // constructors: 

        Bipartite_Graph(); 

        Bipartite_Graph(Di_Graph); 

        // Utility Functions: 

        void PrintAdjList(vector<vector<int> > , int ); 

        void PrintGraph(); 

 

    protected: 

    private: 

}; 

 

#endif // BIPARTITE_GRAPH_H 

 

 

 

File bipartite_graph.cpp 
 

/** 

   @file       bipartite_graph.cpp 

   @author     Ngo Thi Tu Anh, ngotuanh@gmail.com 

   @date       July, 2012 

 

   @section    Description 

   Implementation of Bipartite_Graph class. 

 

*/ 

 

#include "bipartite_graph.h" 

#include <iostream> 

#include <iomanip> 

 

// Constructors: 

Bipartite_Graph::Bipartite_Graph(){    //ctor 

} 

 

Bipartite_Graph::Bipartite_Graph(Di_Graph g){ 

    N = g.N; 

    for (int i = 1; i<=N; ++i){ 

        Plus.push_back(i); 

        Minus.push_back(i + N); 

    } 

    AdjList.resize(N+N+2); 

    // create Edges from adjcent list 

    int i; 
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    list<int>::iterator j; 

    int u,v; 

    for (i = 0; i<g.AdjList.size(); ++i){ 

        u = i+1; 

        for (j = g.AdjList[i].begin(); j!= g.AdjList[i].end(); ++j){ 

            if (*j != 0){ 

                v = g.N + (*j); 

                this->AdjList[u].push_back(v); 

                this->AdjList[v].push_back(u); 

                this->EdgeList.push_back (pair<int,int>(u,v)); 

                this->EdgeList.push_back (pair<int,int>(v,u)); 

            } 

        } 

    } 

}// construct from a directed graph 

 

// Utility Functions 

void Bipartite_Graph::PrintAdjList (vector<vector<int> > L, int side){ 

        int i; 

        vector<int>::iterator j; 

        int st=1, ed=N; 

        if (side == MINUS){ 

            st = N+1; ed = 2*N; 

        } 

        for (i = st; i<=ed; ++i){ 

            cout <<"adj of "<<i<<": "; 

            for (j = L[i].begin(); j != L[i].end(); ++j){ 

                    cout <<*j<<" "; 

            } 

            cout <<endl; 

        } 

} 

 

void Bipartite_Graph::PrintGraph(){ 

    cout <<" Bipartite Graph:"<<endl; 

    cout <<" Plus nodes: "; 

    for (vector<int>::iterator it=Plus.begin();it!=Plus.end();++it) cout <<*it<<" "; 

    cout <<endl; 

    cout <<" Adjcent List of Plus Nodes: "<<endl; 

    PrintAdjList(AdjList, PLUS); 

    cout <<" Minus nodes: "; 

    for (vector<int>::iterator it=Minus.begin();it!=Minus.end();++it) cout <<*it<<" "; 

    cout <<endl; 

    cout <<" Adjcent List of Minus Nodes: "<<endl; 

    PrintAdjList(AdjList, MINUS); 

    cout <<endl<<"List of edges: "<<EdgeList.size()<<" edges"<<endl; 

    list<pair<int,int> >::iterator it; 

    for (it = EdgeList.begin(); it != EdgeList.end(); ++it){ 

        cout <<setw(4)<<it->first<<" -- "<<setw(4)<<it->second<<endl; 

    } 

} 

 


