

SPANNING CACTI FOR

STRUCTURALLY CONTROLLABLE NETWORKS

NGO THI TU ANH

NATIONAL UNIVERSITY OF SINGAPORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48656843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SPANNING CACTI FOR

STRUCTURALLY CONTROLLABLE NETWORKS

NGO THI TU ANH

(M.Sc., SFU, Russia)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2012

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Professor

Zhang Louxin, who gave me the opportunity to work on this interesting research

problem, paid patient guidance to me and gave me much invaluable help and

constructive suggestion on it. I would also like to thank him for the financial support

during my M.Sc. candidature. It has been my pleasure being his research student.

I would next, like to thank Lou Chang, PhD candidate at Department of Mathematics,

NUS, for his insightful discussions, valuable suggestions and great help.

My sincere thanks go to all team members in our bioinformatics group and I have

benefited a lot from them.

Finally, I would like to thank my family. Without their continuous encouragement and

support, nothing would have been possible for me.

Ngo Thi Tu Anh

August, 2012

i

Table of Contents

Summary ... ii

List of Tables .. iii

List of Figures .. iv

Chapter 1 Introduction to Graphs and Networks .. 1

1.1 Basic Definitions ... 2

1.2 Cactus Graphs ... 4

1.3 Maximum Matching .. 7

1.4 Key Types of Networks... 13

Chapter 2 Controllability and Structural Controllability 16

2.1 Controllability ... 16

2.2 Structural Controllability... 18

2.3 Lin’s Theorem ... 21

2.4 Minimum Input Theorem. ... 23

Chapter 3 Spanning Cacti for Structurally Controllable Networks 27

3.1 Minimum Spanning Cacti Problem ... 27

3.2 Algorithm for Finding Minimum Spanning Cacti... 28

3.2.1 Identifying the Minimum Set of Driver Nodes 28

3.2.2 Building the Controlled Network and Finding the Spanning Cacti 31

3.2.3 Algorithm MSC and Its Correctness .. 37

3.3 One-Input Controllable Networks with Minimal Modification 39

3.3.1 One-Input Controllable Networks.. 40

3.3.2 Constructing One-Input Controllable Networks with Minimal

Modification ... 41

Chapter 4 Experimental Results... 44

4.1 Random Network .. 45

4.2 Real Networks ... 49

References ... 56

Appendix Code Listing .. 58

ii

Summary

Finding the minimal spanning cacti for structurally controllable networks is an

interesting problem. In this research work, we designed and implemented an

algorithm for the problem. The algorithm is based on the Minimum Input Theorem

and Lin’s theorem. The Minimum Input Theorem, proved by Liu et al., establishes

that the minimum number of inputs needed to control a directed network equals to the

number of unmatched nodes from any maximum matching in the network. Lin's

theorem states that, a controllable network is spanned by cacti.

Specifically, in order to control the network of a system, we first need to identify the

set of nodes that, if driven by different signals, can offer full control over the network.

Those nodes are called “driver nodes”. We use the maximum matching algorithm to

find the minimum set of driver nodes. After that, the controlled network is built by

introducing one input node for each driver node. Moreover, with the help of the

maximum matching, we can identify the basic cactus components such as stems and

cycles in this controllable network. Finally, the spanning cacti is built by properly

connecting those components.

We also address the question how to add extra links into a directed network to make it

controllable with only one input. The minimum number of extra links needed to

construct an one-input controllable network can also be determined by the maximum

matching in the original network.

In this thesis, we discuss the controllability and structural controllability of directed

networks. We introduce the problem of minimum spanning cacti for structurally

controllable networks, as well as propose an algorithm to find it. We also conduct

experiments applying our algorithm on several computer generated and real networks.

The algorithm is an analytical tool for studying the network controllability of real

systems.

iii

List of Tables

Table 4.1 Result of running MSC on random network of type 1 47

Table 4.2 Results of running MSC on random network of type 2. 48

Table 4.3 Features of the real networks analyzed in this work.. 49

Table 4.4 Results of running MSC on real networks.. ... 50

iv

List of Figures

Figure 1.1 Example of an undirected cactus graph ... 4

Figure 1.2 Example of a directed cactus graph ... 6

Figure 1.3 Example of a bipartite graph and a matching in it. 9

Figure 1.4 Algorithm for maximum matching problem in bipartite graphs 12

Figure 2.1 An example of a controllable network .. 18

Figure 2.2 Example of graph of pair (A,B).. ... 21

Figure 2.3 Some simple controlled networks.. 21

Figure 3.1 The bipartite representation of a directed graph and a matching in it.. 29

Figure 3.2 Steps for finding minimum set of driver nodes. .. 31

Figure 3.3 The algorithm for finding stems .. 32

Figure 3.4 The algorithm for find cycles of matched nodes 33

Figure 3.5 Example of building the spanning cacti for a directed network.. 35

Figure 3.6 Building the initial cacti using available connections (phase 1).. 36

Figure 3.7 Connecting remaining cycles to cacti using new connections (phase 2).. . 36

Figure 3.8 Algorithm MSC for solving minimum spanning cacti problem 37

Figure 3.9 Examples of one-input and n-input controllable networks.. 40

Figure 4.1 Procedure for generating a random network of type 1 45

Figure 4.2 Procedure for generating a random network of type 2 46

Figure 4.3 Visualizations of the intra-organizational network Freemans-2................ 51

Figure 4.4 Visualizations of the intra-organizational network Consulting 52

Figure 4.5 Visualizations of the trust network Prison inmate 53

Figure 4.6 Visualizations of the intra-organizational network Manufacturing.. 54

Figure 4.7 Visualizations of the network Macaque brain ... 55

1

Chapter 1

Introduction to Graphs and Networks

Graphs are mathematical structures that are used to model the pair-wise relations

between objects from a certain collection. The study of graphs started in the 18th

century, and graph theory is a prime area in discrete mathematics. Graph theory

becomes a very useful technique for solving real-world problems. One part of graph

theory is the network theory, which studies the networks of real systems. Networks

are applied in numerous disciplines. Its applications span from internet to biological

systems.

This chapter gives a basic introduction to graphs and networks, the matching problem,

as well as cactus graphs.

2

1.1 Basic Definitions

To formalize our discussion on graph theory, we shall introduce some basic concepts.

We start with simple graphs, i.e., undirected, unweighted graphs without multiple

edges.

Definition 1.1 A graph or undirected graph G = (V, E) is an ordered pair of finite

set V and finite set E, where elements of V are called vertices or nodes, and elements

of are called edges or arcs. We call V the vertex set of G, with E being the

edge set. The cardinality of V is called the order of G, and the cardinality of E is

called the size of G.

One can label a graph by attaching labels to its vertices. If is an edge of

a graph G = (V;E), we say that and are adjacent vertices. The edge is

also said to be incident with the vertices and .

Definition 1.2 A directed edge is an edge such that one vertex incident with it is

designated as the head vertex and the other incident vertex is designated as the tail

vertex. A directed edge is said to be directed from its tail to its head . A

directed graph or digraph G is a graph such that each edge is directed. The in-degree

of a vertex counts the number of edges such that is the head of these

edges. The out-degree of a vertex is the number of edges such that v is the

tail of edges.

It is important to distinguish a graph G as being undirected or directed. If G is

undirected and then and represent the same edge. In case

G is a digraph, then and are different directed edges. Another important

type of undirected graph, which will be discussed in this chapter, is bipartite graph.

Definition 1.3 A graph G is called bipartite, if is partitioned into two disjoint

and nonempty subsets A and B such that each edge connects a vertex of

set A and a vertex of set B. In this case) is a bipartition of G and G is -

bipartite.

Note that, the definitions above concern simple graphs, i.e. multiple edges and self-

loops (edges incident to same vertices) are not allowed. In a simple graph, the edges

3

form a set, rather than a multi set, and each edge is a pair of distinct vertices. A

general graph can have self-loops, as well as multiple edges.

A path in a graph is a sequence of vertices such that from each of its vertices there is

an edge to the next vertex in the sequence, possibly excluding the terminate vertex. A

path may be infinite even if the graph is finite. But a finite path always has a start

vertex and an end vertex. When vertices in a path are not repeated, the path is called

simple path. If the starting vertex and the ending vertex of a path are the same, then it

is a closed path or cycle. A cycle whose vertices are all distinct is called simple cycle.

For directed graphs, simple paths and simple cycles are called elementary paths and

elementary cycles, respectively, and defined as follows.

Definition 1.4 For a general directed graph, an elementary path is a series of

oriented edges { } where all vertices

 are distinct. When coincides with , it is called elementary cycle.

Two vertices in a graph are said to be connected if there is a path between them. A

graph is said to be connected if any two of its vertices are connected. A graph is

called a weighted graph if each of its edges is assigned a number (or weight). Such

weights may represent, for example, strengths, lengths, costs or capacities of the

edges. In literature, weighted graphs are often referred to as networks. The model of

weighted graphs has many applications, in which the core problem is to optimize the

total weight of some graph properties. For example, the famous traveling salesman

problem can be modeled as a problem of finding a closed path in a weighted graph of

cities (weights are the distances between pairs of cities) which contains all vertices

while achieving the minimum total weight.

4

1.2 Cactus Graphs

A well-known graph structure is the cactus graph. It is sometimes called cactus, as

well. For undirected graphs, the definition of cactus is the following.

Definition 1.5 An undirected connected simple graph is called an undirected cactus

if any two simple cycles have at most one vertex in common. Equivalently, every edge

of such graph belongs to at most one cycle.

Example of a cactus graph is given in Figure 1.1.

Figure 1.1 Example of an undirected cactus graph

Proposition 1.1 [22] An undirected cactus with n vertices can have at most

cycles.

Proof Suppose the number of cycles is Let is the number of vertices in the i
th

cycle. Since two cycles have at most one vertex in common, then there are at most

 vertices that counted 2 times. Thus, we have: ∑
 . But

because each undirected cycle in simple graph (no multiple edges are allowed) must

have at least 3 vertices. Hence, ∑
 So, or

Proposition 1.2 [22] An undirected cactus with n vertices can have at most

edges.

Proof Since a cycle of vertices contains edges, while a path of vertices

contains only edges. Hence, the number of edges in the cactus with vertices

is maximum when the cactus contains a maximum number of cycles. By previous

5

proposition, the maximum number of cycles is

 ; and this can happen when all

cycles are triangles. Thus, the maximum number of edges for a cactus with n vertices

is

Directed cactus graphs have been less studied than undirected cactus graphs. In fact,

the definitions of directed cactus graphs vary in literature. For example, in [21], a

directed cactus graph is defined as a strongly connected, directed graph in which each

edge is contained in at most (and thus, exactly) one directed cycle. This definition

looks similar to the undirected cactus definition, except that edges are directed, and

the graph is strongly connected, i.e. there is a directed path between any two vertices.

Such directed cactus contains only cycles. However, in [2], Lin defined a directed

cactus as a strict combination of paths (stems) and cycles (buds). In our work, we

consider only directed graphs, and we follow the definition given by Lin. An example

of a general directed cactus is shown in Figure 1.2.

Definition 1.6 A stem is an elementary path. The initial (or terminal) vertex of a stem

is called the root (or top) of the stem.

Definition 1.7 A bud is an elementary cycle C plus an additional edge e that ends,

but not begins, in a vertex of the cycle. This additional edge e is called the

distinguished edge of the bud.

Definition 1.8 A general directed cactus is a digraph defined recursively as follows.

A stem is a cactus. Given a stem and buds , then

 is a cactus if for every i () the initial vertex of the distinguished edge of

 is not the top of and is the only vertex belonging at the same time to and

 .

6

Figure 1.2 Example of a directed cactus graph

Proposition 1.3 The number of edges in a general directed cactus with n vertices is:

where is the number of buds in the cactus.

Proof The above formula can be derived by mathematical induction for as

follows:

Let P() is the statement “ ”

 Basic step: = 0, the cactus contains no buds, and then it contains only one

stem. Hence, the number of edges is . Therefore, the statement holds

for .

For , the cactus contains one bud. Suppose the bud contains k nodes,

then the stem contains n-k nodes (with n-k-1 edges). The bud has k edges in the

cycle and one distinguished edge. Hence, the total number of edges is: (n-k-

1)+k+1 = n-1 + . Therefore, the statement holds for .

7

 Inductive step:

Show that if P(k) holds, then also P(k+1) holds. This can be done as follows.

 , the total number of edges is . We will show that

it’s correct for . Suppose the bud contains p nodes. The

cactus without the bud contains (n-p) nodes and (n-p-1+k) edges. The

 bud introduces p edges in the cycle and one distinguished edge. Hence,

the total number of edges of the cactus is:

 .

1.3 Maximum Matching

Matching in graph theory refers to a set of edges that do not share common vertices.

Matching has attracted the interest of researchers for more than 20 years. The notion

of matching is one of the key points to understand the Minimum Input Theorem,

which is presented in the next chapter. This section gives an introduction on matching

in graphs, as well as algorithms to find a maximum matching.

Definition 1.9 For an undirected graph, a matching M is an independent edge set,

i.e. a set of edges without common vertices. A vertex is matched if it is incident to an

edge in the matching. Otherwise, the vertex is unmatched. Similarly, an edge of G is

matched if it is in M, otherwise, it is unmatched.

For a bipartite graph G(V,E), and we often denote it as G (A, B, E), where (A, B) is a

partition of V. The definition of matching for a bipartite graph is similar to that of an

undirected graph.

The generalized definition for directed graphs follows.

Definition 1.10 For a digraph G = (V,E), a matching M is a subset of E that no two

edges in M share a common starting vertex or a common ending vertex. A vertex is

matched if it is the ending vertex of an edge in the matching M. Otherwise, it is

unmatched. Similarly, an edge of G is matched if it is in M, otherwise, it is

unmatched.

8

For all types of graphs (undirected, bipartite or directed), a matching that cannot be

extended is called maximal, i.e. upon adding to M any edge not in M, it is no longer a

matching. A matching that contains the largest possible number of edges is called

maximum matching. A perfect matching is the matching that all vertices are

matched. A perfect matching is obviously a maximum matching.

We are interested in the maximum matching problem, i.e., given a graph G, find a

matching M of maximum size. The bipartite case is simpler in structure; and will be

first considered as it helps us to illustrate the basic ideas involved in solving the

maximum matching problem. In this section, we present and analyze algorithms for

this problem when the underlying graph is bipartite.

The general approach for the matching problem can be considered as an instance of

the concept of augmentation. Let’s start with concepts of alternating paths and

augmenting paths.

Consider a bipartite graph and a matching M in it. Let p be a path

consists of edges where the vertices are distinct. The

path p can simply be represented as .

Definition 1.11 An alternating path is a path in which the edges belong alternatively

to the matching and not to the matching.

Definition 1.12 A path is called augmenting if it is an alternating

path and both and are unmatched.

Obviously, an augmenting path has an even number of vertices; its starting and ending

vertices are unmatched. An example of a bipartite graph and a matching is presented

in Figure 1.3.

Let P be the set of edges on an augmenting path in G with respect

to the matching M. The operation denotes the symmetric difference of M and

P, i.e. . The most interesting property of an augmenting

path P with respect to a matching M is that if we set M′ = , then we get a new

matching M′ and moreover, the size of M′ is one unit larger than the size of M. That is,

we can form a larger matching M′ from M by taking the edges of P not in M and

9

adding them to M′ while removing from M the edges that are also in the path p.

Figure 1.3 Example of a bipartite graph and a matching in it. The path [1,4,2,6,3] is an

alternating path. The path [3,6,2,5] is an augmenting path. If we “augment” this path, we get a

maximum matching: {(1,4),(2,5),(3,6)}.

The key of most algorithms for finding maximum matching in a graph is based on the

following theorem, stated by Berge [6].

Theorem 1.1 A matching M in a graph G is a maximum matching if and only if there

is no augmenting path in G with respect to M.

Proof

(⇒) Let P be the set of edges on an augmenting path p with respect to M. Set M′ =

 . Then M′ is a matching with cardinality greater than M. This contradicts the

maximality of M.

(⇐) If M is not maximum, let be a maximum matching, i.e. (note that

 is a matching with largest size and that may or may not contain M). Let Q =

 . Then we have the following.

Q has more edges from than from M (since implies that

). Each vertex is incident to at most one edge in and at most one

edge in . Thus Q is composed of cycles and paths that alternate between edges

from M and .

Therefore, there exists a path with more edges from than from M (all cycles will

be of even length and have the same number of edges from and M). This path is an

augmenting path with respect to M. Hence, there exists an augmenting path with

respect to M, which is also a contradiction.

1

2

3

4

5

6

 matched node unmatched node

matched edge unmatched edge

A B

10

In fact, all known matching algorithms for general graphs are based on the idea of

finding augmenting paths. Start with any matching M, say the empty matching.

Locate an augmenting path p with respect to M, then augment M along p, and replace

M by the resulting matching. This procedure is repeated until no more augmenting

path exists. By the above theorem, we are guaranteed a maximum matching.

The main challenge for maximum matching is how to find an augmenting path with

respect to the current matching M of G. In the case when the graph is bipartite, finding

these augmenting paths can be done efficiently, for example, by breadth-first search

(BFS). Firstly, a search for augmenting paths must start by constructing alternating

paths from the unmatched nodes. Since an augmenting path must have one endpoint

in node set A and the other in node set B, without loss of generality, we start the

search only from unmatched nodes in set A. For example, choose an unmatched node

 from A, with BFS we may search for alternating paths by considering all vertices

adjacent to . Since is an unmatched node then all its incident edges are

unmatched edges. The second step is a straightforward step, from the adjacent nodes

of , we look for the matched edges. If there is no matched edges, then all these

adjacent nodes are unmatched, hence an augmenting path has been found. Otherwise,

we add these matched edges into our alternating path, and we repeat the first step by

searching from our new added nodes.

Algorithm for finding a maximum matching in bipartite graphs

Given a current matching M in a bipartite graph G(A,B,E) (initially M is empty), we

can speed up the BFS idea above by searching for the next nodes from the set A only,

ignoring the nodes in set B. The new idea is the following. We start searching for an

augmenting path from an unmatched node in A. Since in the augmenting path, the

node adjacent to must be a matched node in the set B; must have a “mate” in A

by current matching M (we say node x is a mate of node y if the edge (x,y) is matched

in the current matching). Let’s denote the mate of as . Then, instead of

continuing the search from , we look for and continue the search directly

from , ignoring the node . To do this efficiently, we construct an auxiliary graph

G1 = (A, E1), where () if and only if is adjacent to the mate of with

respect to current matching M. Now the BFS procedure is performed directly on the

11

auxiliary graph G1.

Using the above idea, Papadimitriou gives an algorithm for finding a maximum

matching in bipartite graphs [7], which is presented in Figure 1.4.

This algorithm terminates when there is no path with unmatched node from the set A.

By the construction of the auxiliary graph, this means that there is no augmenting path

with respect to current matching. Hence, the current matching is maximum.

For time-complexity of the algorithm, we see that the maximum matching contains at

most min(|A|,|B|) edges. Since each augmentation increases the number of matched

edges by 1, then the number of stages the algorithm loops is at most min(|A|,|B|)

times. Building the auxiliary graph takes O(|E|) time; finding augmenting path in A by

breadth-first search takes at most O(|E|) time. Hence, for each stage, finding

augmenting path requires O(|E|) time. The augmentation procedure requires at most

O(min(|A|,|B|) time. Hence, overall, the algorithm takes O time.

12

Algorithm 1.1 BIPARTITE MAXIMUM MATCHING ALGORITHM

Input: A bipartite graph G = (A,B,E)
Output: The maximum matching of G, represented by the array mate.

begin

 for all mate[v] = 0; // initialize

 stage: begin

 for all do unmatched[v] = 0;

 // construct auxiliary graph (A,E1)

 for all do

 if mate[u] = 0 then unmatched[v] := u

 else

 if then E1 := E1 (v, mate[u]);

 //initialize the queue Q for breath-first search:

 Q :=

 for all do
 if mate[v] = 0 then begin

 label[v] := 0;

 Q := Q {v}

 end;

 // start BFS for augmenting path

 while do begin

 let v be a node in Q;

 remove v from Q;

 if unmatched[v] 0 then begin // found an augmenting path

 augment(v);

 goto stage; // restart from beginning

 end

 else

 for all unlabeled v’ such that (v,v’) E1 do begin

 label[v’] := v;

 Q := Q {v’}

 end
 end;// of while

end; // of stage

end;// of algorithm.

//=======================//

procedure augment(v)

begin

 if label[v] = 0 then begin

 mate[v] := unmatched[v];

 mate[unmatched[v]] :=v;

 end

 else begin

 unmatched[label[v]] := mate[v];

 mate[v] := unmatched[v];

 mate[unmatched[v]] :=v;

 augment(label[v]);

 end;

end;// of procedure augment()

Figure 1.4 Algorithm for maximum matching problem in bipartite graphs

13

 1.4 Key Types of Networks

Networks are nothing else but graphs. In general, the notion of graphs often refers to a

theoretical model, while networks are often used to represent practical models arising

from natural and technological processes. The terms network and graph can be used

interchangeably in most contexts. However, in literature networks are often directed

and weighted graphs.

The study of networks – network theory, is a part of graph theory which emerges as

an important area in computer science. It has numerous applications in statistical

physics, computer science, economics, biology, sociology, and operation research.

Many types of networks have been intensively studied, such as, flow networks,

semantic networks, technological networks, biological networks, social networks, and

random networks.

Recently, a branch of network theory that studies complex networks has emerged.

Complex networks are networks with non-trivial topological features, i.e. the features

that do not appear in simple graphs such as lattices or random graphs, but often occur

in real networks. For example, the structural feature of power-law degree distribution

characterizes the scale-free networks, while short path lengths and high clustering are

specific features of small-world networks. Some key types of networks such as

technological, social and biological networks also display substantial non-trivial

features, such as heavy tail degree distribution, high clustering coefficient among

vertices, community structure and hierarchical structure. Those networks are

examples of complex networks.

Technological networks

Technological networks are networks designed for manipulating technological

processes. One of the main purposes of these networks is to distribute information and

resources for human activities. Some examples of technological networks are

computer networks, power grid networks, high way networks, airport networks. One

of the most complex networks is the internet, which is the global network of

computers, interconnected by communication channels that allow sharing of resources

and information. It serves both as information and telecommunication network. The

internet network is the scale-free and has small-world properties.

14

One type of technological networks that is analyzed in our work is the network of

sequential logic electronic circuits [9]. In these circuits, the nodes represent the logic

gates and the flip-flops. A directed link from node u to node v is established if the

value at the gate (or the flip-flop) v depends on the value at u. For example, for the

circuit s402, the network has 252 nodes and 399 directed edges [see Table 4.3 and

Table 4.4].

Biological networks

Biological networks are networks arising from biological systems. Informally, a

biological network is a network of biological entities, in which these entities interact

or link to each other as a whole system. For examples, species are linked into a food

web, or proteins interact to each other to form a protein interaction network (PIN).

Key types of biological networks include PINs, food webs, metabolic networks, gene

regulatory networks, etc. In a PIN, nodes are all the proteins of a cell, and edges are

the interactions between them. A PIN is an undirected network. It shows the scale-

free and small-world properties. Another type of biological networks is the network of

metabolic reactions. Chemical compounds inside a living cell are connected by

enzymatic reactions that transform one compound into another during the metabolic

processes of the cell. These reactions are catalyzed by enzymes, which are also

biochemical compounds. Hence, all these compounds form a network of biochemical

reactions, which is called a metabolic network. Metabolic networks are also shown to

be complex networks with scale-free and small-world features [16].

Furthermore, at a higher level in biology, organisms also form a network, since they

depend on each other: they eat or are eaten by others. The network of those bait and

prey links is called a food web. In our work, several food webs are analyzed (see

Table 4.3 and Table 4.4), including food webs in Little Rock Lake [15], in Grassland

[13] and in St. Marks Seagrass [14].

15

Social networks

A social network is a graph model of social entities and their relationships. Entities in

sociology are often called individual actors, which may be persons, groups,

organizations, web sites, scholarly publications, etc. The relationships between these

entities may be friendship, sexual relationship, email sending–receiving relationship,

web links, etc. Social network is a very useful tool for analyzing the structure of

social entities as a whole. The study of such structural features often uses social

network analysis to find out the common local and global patterns, identify the social

entities that are the most influential, examine the network dynamics, analyze the

networks’ behavior, and evaluate the networks’ controllability.

Several social networks are analyzed in our work, including WWW network of

political web-blogs [10], trust networks of college students and prison inmates [17],

and intra-organizational networks. For example, the network of email sending–

receiving relationship between employees in a consulting company in [11] contains

46 nodes and 879 links. The nodes represent persons, while a link from person X to

person Y is established if X received emails from Y. In the point of view of network’s

controllability (which is the main subject of our work), this network in [11] is easily

controllable. It can be fully controlled by controlling only 2 nodes (which are called

driver nodes) of the network (see Table 4.4 and Figure 4.4(a)).

16

Chapter 2

Controllability and Structural Controllability

Controllability is one of the fundamental concepts in modern mathematical control

theory. This is a qualitative property of control systems and is of particular

importance in control theory. Systematic study of controllability started at the

beginning of 1960s and the theory of controllability is based on the mathematical

description of the dynamical system.

This section includes most of the basic principles about controllability and structural

controllability.

2.1 Controllability

Controllability describes the ability to move the system around in its entire

configuration space using only certain admissible manipulations. Specifically, a

dynamic system is controllable if it can be “driven” from any initial state to any

desired final state in finite time with a suitable choice of inputs.

In real life system, most natural and technological systems are organized into

networks of components, and the whole systems are governed by some underlying

dynamical processes. For example, metabolism is the basic process of any living cell.

In this process, cells exchange energy. They grow and build their structures and

respond to the environment. Inside a living cell, metabolites are transformed by a

17

series of reactions that are catalyzed by enzymes. These reactions form a scale-free

metabolic network. A cell may “control” its metabolism by controlling the

concentration of its enzymes.

The controllability of a real system is affected by two independent factors:

1) The system's architecture, represented by the weighted and directed network

describing the connections of system's components with each other.

2) The dynamical rules that describe the time-dependent interactions between the

components.

Consider the linear dynamic system:

where presents the state of system of N nodes at time t.

 is the input vector.

 is the matrix which describes the system’s wiring and the interaction

strength between components (for example: matrix A represents the traffic on

individual communication links, or the strength of regulatory interactions in a

regulatory network).

 B is the input matrix describing the nodes that are controlled by the

outside controllers.

In order to determine the controllability of system (1), R.E Kalman gave an algebraic

criterion, which depends only on matrices A and B, called Kalman Rank Condition

[1].

Kalman Rank Condition:

A necessary and sufficient condition for system (1) to be controllable is

C is called Kalman’s controllable matrix of size .

18

Example 2.1: Consider a network in Figure 2.1:

Figure 2.1 An example of a controllable network

The linear dynamics shown above can be written as follows:

 ̇ [

] [

]

The controllability matrix for this third-order system is given by:

 [

]

Since the first three columns are linearly independent, we conclude that .

Hence there is no need to compute since it is well known from linear algebra that

the row rank of the given matrix is equal to its column rank. Thus,

 implies that the system under consideration is controllable.

2.2 Structural Controllability

To test the controllability of a network of arbitrary system using Kalman's rank

condition, all the values of matrices A and B are required. However, for most real

complex networks, the exact values of all entries of A are often unknown. In addition,

checking the rank of C is computationally difficult, especially for large networks. In

order to address those difficulties, Lin introduced the concept of structural

controllability [2] which will be discussed below.

Now the controlled system (1) is also denoted by a pair (

19

Definition 2.1 Two pairs () and of the same dimensions, have the same

structure if all non-zero entries of one pair correspond to those of the other pair, and

vice versa.

Definition 2.2 The pair () of a linear system is called structurally controllable if

there exists a controllable pair () which has the same structure as).

An observation of Lee and Markus [3] is that, the set of all controllable pairs for (1) is

open and dense in the space of all pairs with standard matrix metric. Hence, if

the initial pair () is not controllable, then for every there is a controllable

pair () such that ‖ ‖ and ‖ ‖ .

The concept of structural controllability also has practical meaning, since in reality

the non-zero parameters of the system's model may be noisy, yet the model still has

the same structure with the underlying system. Furthermore, if a system is structurally

controllable then it is controllable (in the usual sense with Kalman's rank

condition) for almost all parameter values, except for some

pathological cases with zero measure [2]. Those cases happen when some certain

accidental constraints are satisfied. In other words, structurally controllability implies

controllability in practice.

Thus, the concept of structural controllability helps us to overcome the imperfect

measurement of the exact values of the system parameters. Without precise

knowledge of those parameters, the controllability of the system can still be evaluated.

Definition 2.3 A system is said to be strongly structurally controllable if its

controllability is independent of the system parameters, as long as they are non-zero.

Examples of strongly structurally controllable systems are shown in Fig. 2.3 A and C.

The graph of a pair (A, B)

Let G(A) denote the directed network of system (1) in which nodes represent the

system states, edges are determined by the state matrix A. The adjacency matrix of

G(A) is described by the following way: if the entry then there is no link from

node j to node i in G(A); if there is a directed link from node j to node i. If all

20

non-zero equal to 1, then the matrix A represents the transposition of the

adjacency matrix of G(A). By mathematical notation, we have

where { } is the set of state vertices; {() } is the set of

edges.

The controlled network, denoted by the pair (A,B), can be represented by a directed

graph , where is the vertex set; is the

edge set; { } is the set of input vertices; {() } is the

set of controlled edges, connecting input vertices to state vertices. The M input

vertices are also called the origins of the digraph G(A,B). The state vertices that

connect to the origins are called controlled nodes. Note that, one input can be

connected to several controlled nodes.

Example 2.2: Given a pair () such that:

 [

] and B = [

]. where all the entries denoted by zeros are fixed and

all the other entries are not fixed. The graph of this pair has a form of a stem (to be

defined in next section). This pair is easily seen to be structurally controllable [see

Figure 2.2].

Example 2.3: Another basic example

 [

] and B=[

].The graph of this pair has a form of a bud (to be

defined in next section). This pair is easily seen to be structurally controllable.

Figure 2.2 Examples of graph of pair (A,B). (a) Graph of pair (A,B) in example 2.2. This is

a stem. (b) Graph of pair (A,B) in example 2.3. This is a bud.

Examples of controlled systems that are uncontrollable, structurally controllable, and

strongly structurally controllable are shown in Figure 2.3.

b3

a12
x3

a23

a31 x1

x2
b3 a23 a12

x1 x2 x3
u

u

(a) (b)

21

Figure 2.3 Some simple controlled networks. Here, x1, x2, x3, x4 are state nodes; aij are

values of the connections between system components; u1 is the input node, with input signal

b1. (A) This system is completely controllable, or in other words, strongly structurally

controllable: its controllability is independent of the actual values of b1 and aij, as long as they

are non-zero. (B) The network is uncontrollable. To control it, we need to inject one more

input into either node x2 or x3. (C) This system is strongly structurally controllable.

Changing the system configuration by adding a self-loop at node x3 makes the new system

controllable, although its original form in (B) is not controllable. (D) This system is

structurally controllable. It is uncontrollable when the system parameters aij accidentally

satisfy the constraint

 . But after slightly changing parameters off those

pathologic cases, the system becomes controllable.

2.3 Lin’s Theorem

Lin’s approach to the controllability problem (1) was graph theoretic and required a

lengthy series of definitions to derive the condition for structural controllability which

is a purely algebraic statement.

For the controlled system denoted by the pair (A,B), we consider its graph

representation. That is, the directed graph G(A,B). For this digraph, the definition of a

stem is slightly different from Definition 1.6, while definitions of buds and cacti

remain the same. The new definition of a stem is the following.

Definition 2.4 A stem in G(A,B) is an elementary path originating from an input

vertex. The initial (or terminal) vertex of a stem is called the root (or top) of the stem.

This new definition differs from Definition 1.6 by the presence of the input vertex of a

controlled network. The definition of a bud is the same as in definition 1.7. From

now, we use the word stem to denote the stem in the controlled network G(A,B),

unless otherwise specified. Examples of a stem and a bud are shown in Figure 2.2.

Definition 2.5 A cactus in G(A,B) is a digraph defined recursively as follows. A stem

is a cactus. Given a stem and buds , then is a

a43

x4
a42 a32

x1

x2

x3

a21

u1

b1

a31

x1

x2 x3
a21

u1

b1

a43

x4
a42

a31

x1

x2 x3

a21

u1

b1

a33
a32

a31

x1

x2 x3
a21

u1

b1

a23

(A) (B) (C) (D)

22

cactus if for every i () the initial vertex of the distinguished edge of is not

the top of and is the only vertex belonging at the same time to and

 . A set of vertex-disjoint cacti is called a cacti.

Note that, by this definition, a cactus in G(A,B) is always originated from an input

vertex. In our work, we use the word cactus to denote cactus in G(A,B), unless

otherwise specified.

Definition 2.6 A state vertex in the digraph G(A,B) is called inaccessible if and

only if there is no directed path reaching from any of the input vertices (origins).

Definition 2.7 The digraph G(A,B) contains a dilation if and only if there is a subset

 (where is the set of states vertices) such that Here, the

neighborhood set T(S) of S is defined to be the set of all vertices such that there

exists an oriented edge from to a vertex in S, i.e { ()

 }. The origins are not allowed to belong to S but may belong to T(S). |S|

or |T(S)| is the cardinality of set S or T(S), respectively; is the set of states

vertices is set of edges.

Propositions 2.1 [5]

1. An isolated node with self-edge is not a dilation. But all isolated nodes are

inaccessible.

2. Cactus (or cacti) is the minimal structure which contains neither inaccessible

nodes nor dilations. That is, removing an arbitrary edge will cause either

inaccessibility or dilation.

Theorem 2.1 (Lin’s Theorem on Structural Controllability [2]) The following

three statements are equivalent:

1. A linear control system (A,B) is structurally controllable.

2. i) The digraph G(A,B) contains no inaccessible nodes.

ii) The digraph G(A,B) contains no dilation.

3. The digraph G(A,B) is spanned by cacti.

The proof of this theorem is clearly presented in Lin’s paper [2].

According to [5], some explanations are given as the following. A system is

23

structurally uncontrollable if its digraph G(A,B) contains either inaccessible nodes or

dilations. In the case when inaccessible nodes are present, these nodes cannot be

controlled by input vertices since the input vertices cannot access to them. For

example, a node that has in-degree zero (meaning that no other nodes point to it)

cannot get any control signal from input vertices. Another naive example is the

isolated nodes. In the case when dilations are present, the system is also

uncontrollable. Each dilation forms a sub-graph in which there are more nodes to be

pointed to or “controlled” by fewer other nodes. In other words, there are more

“subordinates” (nodes under control) than “superiors” (nodes that control other nodes).

Consequently, to get full control of the network, dilations and inaccessible nodes must

be removed. This means that, each node of the controlled network must have its own

“superior”. If a node has no superior, then it is inaccessible, we lose control of it. If it

shares superior with other nodes then dilation is formed. In both cases the system is

uncontrollable.

2.4 Minimum Input Theorem.

Recently, Liu et al. established a theorem called “Minimum Input Theorem” [5],

which provides a simple way to determine the minimal set of nodes (called driver

nodes) needed to fully control a dynamic network G(A). In this section, the Minimum

Input Theorem will be given and proved. we first start with a basic definition of

controlled nodes and driver nodes.

Definition 2.8 In the controlled network G(A,B), the state vertices that are directly

connected to input vertices (or origins) are called controlled nodes. Those controlled

nodes which do not share input vertices are called driver nodes.

Examples of controlled nodes and driver nodes are shown in Figure 3.5 (B) and (C).

Note that, driver nodes are subset of controlled nodes. They are both from the digraph

G(A), although they are directly connected to input vertices, which belong to G(A,B)

only. Hence, to find the minimum number of inputs that are sufficient for fully

controlling the systems, we can alternatively find the minimum set of driver nodes.

24

Minimum Input Theorem

We show the relationship between the maximum matching in the digraph G(A) of a

system and the minimum number of driver nodes needed to fully control it. This

relationship is the content of the Minimum Input Theorem below.

Consider the directed network G(A) with N nodes, and denote the size of a maximum

matching M in it by |M|.

Theorem 2.2 (Minimum Input Theorem [5]) The minimum number of inputs (NI)

or equivalently the minimum number of driver nodes (ND) needed to fully control a

network G(A) is one if there is a perfect matching in G(A). (In this case, any single

node can be chosen as the driver node.) Otherwise, it equals to the number of

unmatched nodes with respective to any maximum matching. (In this case, the driver

nodes are just the unmatched nodes.)

N
I
= N

D
 = max {N - |M|, 1}

Proof

Case 1. There is a perfect matching, i.e. |M| = N

Since there is a perfect matching in the digraph G(A), all state vertices are matched.

This means that every state vertex must belong to one of the cycles. By introducing

one input vertex, connecting it to all cycles to form buds, and modifying any bud to a

stem (by deleting the edge that point to the common vertex of the cycle and its

distinguished edge), we construct a cactus that spans the controlled network G(A,B).

By Lin's theorem, the system (A,B) is structurally controllable, with one input vertex.

Hence, ND = 1.

Case 2: There is no perfect matching, i.e. |M| < N

Since there is no perfect matching in G(A), there are some nodes that are unmatched.

The number of unmatched nodes is N - |M|.

Consider an unmatched node x. There is no edge in M pointing to x. The unmatched

25

node x must be the starting node of an elementary path in M. Now, we can connect

one input vertex to each of unmatched nodes, and form N-|M| stems. This requires N-

|M| input vertices.

Exclude all the nodes that belong to elementary paths in M, any of the other nodes of

G(A) must belong to one of cycles in M. For any cycle R in M, if there is an

edge) in G(A) that connects node p of any stem to node q of R, then

{ } forms a bud. If there is no such edge e, we can introduce new edge e' (belongs

to G(A,B)) from any of the above N-|M| input vertices to any node of R. In this case

{ } also forms a bud. Thus, forming buds does not require extra inputs.

Now we have a cacti (a cacti is a set of vertex-disjoint cacti) from those stems and

buds which spans the controlled network G(A,B).The construction requires N-|M|

inputs. According to Lin's theorem, the system is structurally controllable.

Furthermore, we will show that, ND is the lower bound of the number of inputs

needed, that is, less than ND number of inputs could not fully control the network.

Indeed, let M be the maximum matching in G(A), |M| is the size of M,

 { }. The case is trivial, since we cannot control the network

with less than 1 input. Let us consider the case when 1.

Suppose that G(A) is fully controlled by number of inputs, i.e., there exists a

structurally controllable network G(A,B) with number of inputs. By Lin’s

theorem, there exists a cacti C that spans G(A,B) and C contains number of

vertex-disjoint cacti. We will construct a new matching M’ in G(A) from the cacti C,

with the size larger than that of M, as follows.

For each cactus c of C, its stem originates from the input uc. Note that, a cactus has

one and only one stem. Let xc be the node in the stem that uc connects to. Let Mc be

the set of remaining edges of c after removing all the distinguished edges and the

edges from uc. We have that, Mc contains an elementary path started from xc, and all

cycles of c. Thus, Mc can also be considered as a matching in G(A), in which the node

26

xc is unmatched, and all other nodes of Mc are matched.

Let ⋃ , then is also a matching in G(A), which contains number of

unmatched nodes. Since C spans G(A,B), every node of G(A) appears in M’. The

number of matched nodes in is obviously – , hence the size of matching is

also – – . This means that, the matching is not the

maximum matching, a contradiction.

Hence, { } is the minimum number of inputs needed to

fully control the network G(A) ■

27

Chapter 3 .

Spanning Cacti for Structurally Controllable Networks

We first introduce the problem of minimum spanning cacti for structurally

controllable network and propose an algorithm to find it. Then, we introduce the one-

input controllable networks, as well as a simple way to reconstruct them. For both

problems, our approaches are based on Lin’s theorem and the Minimum Input

Theorem presented in Chapter 1.

3.1 Minimum Spanning Cacti Problem

First we define the minimum spanning cacti as the following:

Definition 3.1 A minimum spanning cacti on G(A,B) is a spanning cacti containing

the smallest number of inputs.

The minimum spanning cacti problem is formulated in the following.

Problem Given a directed network G(A) of a system, build the structurally

controllable network G(A,B) with the minimum number of inputs, and span it by cacti.

In other words, given a directed network G(A), find a minimum spanning cacti for the

structurally controllable network G(A,B).

In order to solve this problem, we first apply the Minimum Input Theorem, which

gives us the minimum number of inputs needed to fully control the network G(A).

This is a simple and straightforward approach, in which the set of input nodes is

28

determined by the maximum matching. From this result, we can build the controlled

network G(A,B) and find the spanning cacti for G(A,B). Thus, for a linear dynamic

system which is represented by G(A), we can build a structurally controllable network

G(A,B) with minimum number of inputs, as well as its minimum spanning cacti.

The minimum spanning cacti problem can be considered as a direct application of

Lin’s Theorem and Minimum Input Theorem. Moreover, the solution of this problem

would be an analytical tool for studying the controllability of complex networks of

natural and technological systems [4].

3.2 Algorithm for Finding Minimum Spanning Cacti

The general pipeline for solving the above problem is described as the following:

1. From the given network G(A), find the minimum set of driver nodes using

maximum matching;

2. Build the controlled network G(A,B);

3. Find the spanning cacti on G(A,B).

We describe the first step separately, and then the two last steps are described

together. The overall algorithm – algorithm MSC (which stands for minimum

spanning cacti) is presented in the last section.

3.2.1 Identifying the Minimum Set of Driver Nodes

According to the Minimum Input Theorem, to find the minimum set of driver nodes,

we need to find a set of unmatched nodes of the maximum matching in the directed

network G(A). Since G(A) is directed, we need to represent it by the bipartite

representation in order to apply the maximum matching algorithm we described

previously.

The bipartite representation of a directed graph is defined in the following way:

Definition 3.2 Given a directed graph G(A) = (V,E), where { },its

bipartite representation is a graph:

29

where V+ is the set of N plus nodes {

 }

V-is the set of N minus nodes - {
-

-

-
}

Γ is the set of edges {

-
 }.

Example of the bipartite graph-representation is illustrated in Figure 3.1.

Figure 3.1 The bipartite representation of a directed graph and a matching in it. A

vertex in directed graph G(A) is represented as a pair of a plus node and a minus node in

bipartite graph BP(A); an oriented edge is represented as an undirected edge from the

corresponding plus node to the corresponding minus node. The matching is shown in red;

matched (or unmatched) nodes are shown in blue (or white), respectively.

Note that, each edge of the bipartite representation of a directed graph always contains

a plus node and a minus node. Let BP(A) be the bipartite representation of a directed

graph G(A). For each edge

-
 of BP(A), the corresponding directed edge in G(A)

is ; and conversely, for each directed edge of G(A), the

corresponding edge in BP(A) is

-

Let be a matching in BP(A). We construct the set ′ of edges in G(A)

corresponding to as follows. If the edge

-
 belongs to the matching , we

include the corresponding edge into ′. Thus, ′ {

-
 }.

Note that. ′

Proposition 3.1 ′ is a matching in G(A). ′ is called the corresponding

matching in G(A) of .

Proof Firstly, ′ is a subset of E.

30

Secondly, since M is a matching in BP(A), for each of its edge

-
 , there is

no other edge of M that is adjacent to
 . Hence, the corresponding edge

 in ′does not share the starting vertex with any other edge of ′. Similarly,

there is no other edge of M that is adjacent to
-
; hence, the edge of ′ does

not share the ending vertex with any other edge of ′, as well. So, ′ is the subset

of E in which no pair of edges shares the same starting or ending vertex. In other

words, ′ is a matching in G(A)

Conversely, given a matching ′ { } in G(A), we can construct its

corresponding matching in BP(A) as the following: {

-
 }.

Note that ′ .Similarly, it is easy to show that is also a matching in

BP(A). is called the corresponding matching in BP(A) of ′.

Now we will show that the corresponding matching of a maximum matching is also

maximum.

Proposition 3.2 If a matching in BP(A) is a maximum matching, then its

corresponding matching ′in G(A) is maximum.

Proof.

Since ′ is the corresponding matching in G(A) of M, we have ′

Suppose that ′ is not the maximum matching in G(A), that means there is a

matching in G(A) such that ′ . Let
′ is the corresponding matching in

BP(A) of . We have |
′ | . Since is the maximum matching in BP(A), we

have |
′ | Here we have a contradiction: | ′| |

′ | ′ .

Thus, ′ is also the maximum matching in G(A)

Return to our problem of finding minimum driver node set. Given a maximum

matching M in the directed graph G(A), the set of driver nodes can be identified as

follows. If M is a perfect matching, i.e., all nodes in G(A) are matched, then we can

choose any node to be the driver node. In our approach, we choose the node with the

highest degree as the driver node. If M is not a perfect matching, then we identify the

set of unmatched nodes. These unmatched nodes are chosen as driver nodes.

31

Steps for finding minimum set of driver nodes in directed network G(A) can be

summarized as the following (Figure 3.2).

Input: Directed graph G(A);
Output: Minimum set of driver nodes
Step1: Build the bipartite graph BP(A) from the directed network G(A), using

Definition 3.2;

Step2: Find the maximum matching from bipartite graph BP(A), using Algorithm

1.1, and build its corresponding maximum matching M in G(A);

Step3: Identify the minimum set of driver nodes D from the maximum matching M.

Figure 3.2 Steps for finding minimum set of driver nodes.

3.2.2 Building the Controlled Network and Finding the Spanning Cacti

i) Build the controlled network

With the set of driver nodes , we can easily build the controlled network by just

introducing input vertices: {
} and connecting them to driver

nodes one by one. However, this initial controlled network, denoted as G0(A,B), may

be still uncontrollable, due to the fact cycles in this network may be inaccessible from

the inputs (see Figure 3.5 (B) for illustration). It will become controllable if more

control connections are added from inputs to these cycles. If we introduce all possible

new connections from inputs to all cycles, the controlled network will definitely be

structurally controllable, but many of these connections may be redundant. Thus, we

just build the initial controlled network G0(A,B) first, then we modify it to be

structurally controllable by properly adding new connections. We identify these

proper connections while constructing the spanning cacti based on G0(A,B).

Build the initial controlled network

An initial controlled network G0(A,B) is built from the set of driver nodes D and the

network G(A) = (VA,EA) as follows. First, a set of ND number of inputs are

introduced. Then, for each input, we connect it to a driver node, if the driver node is

not connected by any input. These new edges are assigned to the set of initial

controlled edges EB. The network G0(A,B) is the combination of G(A) with VB and EB.

The proof of Minimum Input Theorem presented in the Chapter 2 gives a way to

construct stems and buds from the maximum matching. That is, each of the

unmatched nodes initiates an elementary path; each elementary path forms a stem.

32

Beside, all the matched nodes excluding nodes in elementary paths are clustered into

cycles of matched nodes; those cycles can further be modified into buds.

ii) Finding the spanning cacti

Now we move on to build the spanning cacti, at the same time we add more

controlled edges into G0(A,B) to get the structurally controllable network. To do that,

we first find all stems and buds. An example of building a spanning cacti is illustrated

in Figure 3.5.

Finding stems

A stem is an elementary path that originates from an input node. Thus, the root of a

stem is an input node; the node that the root points to is a driver node. A driver node

is an unmatched node with respect to the maximum matching M in the directed

network G(A). Given the set of driver nodes, from each of the driver nodes we can

find an elementary path. After that, we add the corresponding input node into the path.

Since there are ND driver nodes (and ND input nodes as well), there will be ND stems

in total.

Note that, stems belong to the network G(A,B), but the paths from driver nodes,

including driver nodes themselves, belong to the network G(A). Only the input nodes

do not belong to G(A). The algorithm for finding all stems is presented in Figure 3.3.

Algorithm 3.1: FINDING STEMS FROM MATCHING

Input: Maximum matching represented by array mate[]; set of driver node D;
Output: List of ND stems STEM1, STEM2, …, STEMND

begin

 for each nj in D do begin

 STEMj = {}; // empty

 x = nj;

 while (mate[x] != 0) do begin // x has its mate

 STEMj = STEMj (x, mate[x]) ;

 x = mate[x];

 end;

 STEMj = (uj, nj) STEMj;

 end;

end;

Figure 3.3 The algorithm for finding stems

Finding Cycles

A bud is an elementary cycle with a distinguished edge. Here we describe a procedure

33

to find the elementary cycles. The procedure for finding a distinguished edge for each

cycle is described in the next section of finding the spanning cacti. As we know

previously, all the matched nodes excluding those nodes on stems are clustered into

cycles. And those cycles can be easily found from the matching as well. Let W be the

set of matched nodes excluding all the nodes on stems:

W = {matched nodes} \ {nodes on stems}

The procedure for finding cycles of matched nodes in G(A) is the following (Figure

3.4):

Algorithm 3.2:FINDING CYCLES OF MATCHED NODES

Input: set of nodes W; maximum matching represented by array mate[]
Output: set of cycles C;

begin

 for each v in W do visited[v] = false; // initialize

 for each v in W do

 if (not visited[v]) then begin

 visited[v] = true; x = v;

 aCycle = {}; // empty

 repeat
 aCycle = aCycle (x, mate[x]);

 x = mate[x];

 visited[x] = true;

 until x = v; // meet the first node – form a cycle

 C = C aCycle;

 end;

end;

Figure 3.4 The algorithm for find cycles of matched nodes

Finding the spanning cacti

From the maximum matching in the directed network G(A), we can find stems and

cycles. To build the spanning cacti, we just need to connect cycles to stems properly.

In other words, we need to find a distinguished edge for each cycle.

Case 1 There are only stems, no cycles

Since a stem is also a cactus. Hence, the spanning cacti is the combination of all stems.

The initial controlled network G0(A,B) is structurally controllable, there is no any new

edge to be introduced.

Case 2 There are both stems and cycles

We need to connect each cycle c to one of the stems. To do that, we can use one of the

available connections of G(A) or introduce a new connection to c.

34

Distance from a stem s to the cycle c is defined as the length of the shortest path from

any node of s to any node of c. If that distance is 1, then we say the stem s directly

connects to cycle c. The edge e that connects s to c is called the direct connection

edge.

 There is a direct connection edge e from one of the stems to the cycle c. In

this case, we simply connect e to c. The edge e becomes the distinguished

edge for c, and { } becomes a bud. Note that, there may be many such

direct connections; we can choose any of them. A procedure for building cacti

using available connections is presented in Figure 3.6 phase 1.

 There is no direct connection edge from any stem to the cycle c. In this case,

we need to introduce new edge e from one of the input nodes to the cycle c.

The issue here is which input node to choose.

From the original graph G(A,B), we identify all the connected components. If

the cycle c belongs to the same connected component with some stems s1,

s2, …,sk , then among them we identify the stem sj that the distance from sj to

a node x of c is minimum. We connect the origin uj (input node) of sj to node

x of c. The edge e = (uj,x) is the distinguished edge for c.

If the cycle c is isolated from any stem, then we can choose any input node u,

and connect u to any node x of the cycle c. The edge e = (u,x) is the

distinguished edge for c. However, to avoid building a cactus of large size,

we suitably choose the input node u that currently rooted in a cactus of least

size.

A procedure for building cacti using new connections is presented in Figure

3.7 phase 2.

Case 3 There are only cycles, no stems

In this case, we know that the structurally controllable network G(A,B) will contain

only one input node; and its spanning cacti contains one stem. Hence, we just need to

modify one of the cycles into a stem, and thus, reduce this case into case 2 above. We

can choose any cycle c, and delete any edge e = (x,v) of c. The cycle c now becomes

an elementary path which starts from node v. The node v becomes the only driver

node of G(A). The only stem in G(A,B) is formed by introducing an input node u, and

35

connecting u to the driver node v.

Figure 3.5 Example of building the spanning cacti for a directed network. (A) An

example network G(A). (B) Stems and cycles in the initial controlled network G0(A,B).

Matched nodes are in light blue, driver nodes d
1
 and d

2
 are in red; input nodes u

1
 and u

2
 are in

green. Applying the maximum matching algorithm, we find the set of driver nodes {d1, d2}.

Then 2 input nodes u1 and u2 are introduced. After that, 2 stems and 6 cycles are constructed

by algorithms 3.1 and 3.2. Note that, this initial controlled network is not controllable,

because cycles are isolated from input nodes (hence, they are inaccessible). (C) Building cacti

by connecting cycles and stems. Edges that shown in green are new edges introduced for

G(A,B). In the original network G(A), the cycle c1 is in the same connected component with

both two driver nodes. Then for building the cactus, it is connected to input node u1, since it is

nearer. The isolated cycle c
2
 is connected to input node u2, since currently the cactus of u

2
 is

smaller in size.

For all cases, when a distinguished edge is found, if it previously does not exist in

G0(A,B), it is included into the initial controlled network G0(A,B). After the spanning

cacti is found, the network G0(A,B) becomes structurally controllable.

Note that, both case 1 and case 3 are sub-cases of the case 2. Hence, for building the

spanning cacti, we can use the two procedures described in case 2 (Figure 3.6 and

Figure 3.7) as follows. In phase 1, we build the initial spanning cacti using available

36

connections. And then, in phase 2, we complete building the spanning cacti by

introducing new connections.

Algorithm 3.3: Building cacti using available connections

Input: set of cycles C, set of stems ST, the di-graph G(A)
Output: initial cacti representing by array CACTI;

begin

 for j = 1 .. ND do CACTIj := STEMj;

 Find connected components in G(A);

 Calculate distance between any cycles in C to any stems in ST;

 for each c in C do begin

 for each s in ST do

 if distance(c,s) = 1 then begin

 Let e be the distinguished edge connects s to c;

 CACTIs := CACTIs c e;

 end;

 end;

end;

Figure 3.6 Building the initial cacti using available connections (phase 1). Note that

finding connected components and calculating distances between cycles and stems can be

done using breath-first search, with time-complexity where | | is the number

of nodes in G(A).

Let C' be the set of remaining cycles after phase 1.

Algorithm 3.4: Building cacti using new connections.

Input: Initial cacti, set of remaining cycles C' after phase 1, initial controlled network G0(A,B);

Output: Minimum spanning cacti, controlled network G(A,B).

begin

 G(A,B) := G0(A,B);

 for eachc in C' do begin

 ifc is isolated then begin //c is an isolated cycle

 Let s be the cactus currently has least number of nodes;

 Let v be any node in c;

 CACTIs := CACTIs c (us,v); // us is root of cactus s;

 Add the edge (us,v) into G(A,B);

 end;
 else begin// c is in the same connected component with some cacti

 Let s be the cacti such that distance(c,s) is minimum;

 Let v be any node in c;

 CACTIs := CACTIs c (us,v);

 Add the edge (us,v) into G(A,B);

 end;

 end;

end;

Figure 3.7 Connecting remaining cycles to cacti using new connections (phase 2). This

procedure can be done in O(C'). In the results, the array CACTI stores the minimum spanning

cacti for controlled network G(A,B).

Note that, in the second phase described above, we build the spanning cacti, and at the

same time, build the controllable network G(A,B).

37

3.2.3 Algorithm MSC and Its Correctness

Algorithm for minimum spanning cacti (MSC)

Using all the procedures described in previous sections, we develop a simple

algorithm for solving minimum spanning cacti problem. The algorithm MSC is

summarized as the following (Figure 3.8):

Algorithm MSC

Input: A directed network G(A) = (VA,EA) of the system under control;

Output: Minimum spanning cacti for controlled network G(A,B);

begin

Step1: Build the bipartite graph BP(A) from the directed network G(A), using

Definition 3.2;

Step2: Find maximum matching from bipartite graph BP(A), using Algorithm 1.1,

and build its corresponding maximum matching M in G(A);

Step3: Identify the minimum set of driver nodes D from the maximum matching M;

Step4: Building the initial controlled network G0(A,B);

Step5: Finding stems and cycles from the matching M, using Algorithm 3.1 and

Algorithm 3.2;

Step6: Building cacti using available connections of G(A) by Algorithm 3.3;

Step7: Completing building spanning cacti and controllable network G(A,B), using

Algorithm 3.4;

end;

Figure 3.8 Algorithm MSC for solving minimum spanning cacti problem

The correctness and time-complexity of MSC algorithm is given in the following

theorem:

Theorem 3.1 The MSC algorithm correctly solves the minimum spanning cacti

problem. It runs in

 .

Proof The correctness

We will show that the network G(A,B) built by MSC is structurally controllable, and it

contains the smallest possible number of input nodes. Alternatively, we will show that

MSC correctly builds a spanning cacti for G(A,B), and the spanning cacti is minimum.

Consider the given network G(A) = (,

). Denote the resulting network G(A,B) as

G(A,B) = (V,E). We have , where and are built

by MSC, that is, is the set of input nodes, and is the set of newly introduced

38

edges by MSC. Denote the resulting cacti by .

The cacti spans G(A,B)

We will show that any node of G(A,B) is included in the cacti C, and any edge of C is

an edge of G(A,B). Indeed, consider any node x of G(A,B). The node x is either an

input node, or a node of G(A). If x is an input node, then it is the root of a stem,

according to step 5 and Algorithm 3.1 (finding stems). If x is a node of G(A), ,

then it is either a matched node or an unmatched node with respect to the matching M.

Hence, x must belong to either an elementary path or a cycle, according to step 5. In

other words, x is in the cacti C.

On the other hand, consider any edge e of the cacti C. The edge e must belong to a

stem, a cycle, or it is a distinguished edge. If e belongs to a stem or a cycle of the cacti,

it must come from the matching M in G(A), according to Algorithms 3.1 and 3.2

(finding stems and cycles). If e is a distinguished edge then either it is an available

connection found by step 6 (Algorithm 3.3) or it is newly introduced by step 7

(Algorithm 3.4). In the former, e comes from , while in the later, it is included in

 . Thus, for all cases, e is an edge of G(A,B).

The cacti C is the minimum spanning cacti

We have previously shown that the Algorithm 1.1 correctly finds a maximum

matching for the bipartite graph BP(A) – the bipartite representation of G(A). Hence,

step 1 and step 2 correctly find a maximum matching M for the directed network G(A).

Since the matching M contains the largest possible number of matched nodes, the

number of unmatched nodes is minimum. In other words, the number of driver nodes

is a minimum (by step 3 and the Minimum Input Theorem).

According to step 4, for each driver node, we introduce one input node. From each

input node we build a stem and from each stem, we build a cactus. Hence, the cacti C

contains the smallest possible number of cacti. C is a minimum spanning cacti.

Therefore, the MSC algorithm correctly find the minimum spanning cacti for G(A,B).

Since G(A,B) is spanned by cacti C, according to Lin's theorem, it is structurally

controllable. Thus, MSC algorithm correctly solves the minimum spanning cacti

problem.

39

Time-complexity

For time-complexity, we observe that, the running time of MSC is dominated by the

step 2 (Algorithm 1.1). Running time for all other steps is small compared to that of

finding the maximum matching. The algorithm in step 2 takes

 time,

thus, overall MSC takes

 time.▄

Note that, we can improve the running time for MSC algorithm by applying the

maximum matching algorithm that uses max-flow approach. That algorithm takes

only

 time. Hence, we can improve MSC to run in

time.

3.3 One-Input Controllable Networks with Minimal Modification

In chapter 2, we presented the work of both Lin (1974) and Liu et al. (2011) on

structural controllability. Lin’s theorem gives the sufficient and necessary conditions

of structural controllability for linear dynamic systems. The conditions are described

by the cactus representation of the systems’ networks. Liu et al give a qualitative

measure on the difficulty of controlling a network via the number of inputs needed to

fully control it. In these works, given a fixed network G(A) of a underlying system,

the controllability of the controlled network G(A,B) is evaluated. A particular interest

is that, given G(A), one wants to build G(A,B) with a minimum number of inputs such

that G(A,B) is structurally controllable.

As the structural controllability suggests, adding more links into the network never

weakens its controllability. In fact, the Minimum Input Theorem gives an upper

bound on the minimum number of inputs needed to control a network with missing

links [5]. With more links added, the number of inputs needed may be fewer, i.e. the

network becomes easier to control.

Moreover, in practice, the configurations of some human designed systems may

change over time, such as computer networks, telecommunication networks and other

technological networks. Thus, the network G(A) in reality may be changed. If we are

allowed to modify the network G(A) by adding more links, one question that can be

asked is: what is the minimum number of extra links needed for G(A) so that one

can control it with only one input? As it turns out, this problem is equivalent to the

40

problem of adding more edges into a directed graph to get a perfect matching.

Furthermore, it can be also answered by directly applying the Minimum Input

Theorem.

We call a network that can be controlled by one input as an one-input controllable

network. This section presents the one-input controllable networks, their properties,

and how to construct them.

3.3.1 One-Input Controllable Networks

We introduce the notions of one-input and n-input controllability to describe the level

of difficulty in controlling directed networks.

Definition 3.3 A network G(A) is called one-input controllable if the minimum

number of input needed to fully control it is one. Otherwise, it is called n-input

controllable.

Examples of one-input and n-input controllable networks are shown in Figure 3.9.

Figure 3.9 Examples of one-input and n-input controllable networks. (a) Network is one-

input controllable, since we can control it by introducing one input and connecting this input

to x and y. (b) Network is also one-input controllable; we can control it by one input

connecting to node x. This network also can be spanned by a general directed cactus graph.

The cactus can be formed by deleting the edge from y to z. (c) This is a 2-input controllable

network. We cannot control all three nodes x, y, z by one input. To control this network, we

need at least two inputs connecting to x and either to y or to z.

Note that, an one-input controllable network is covered by a cactus. A general

directed cactus graph is one-input controllable. Some properties of one-input

controllable networks are expressed in following propositions.

(a)

x

y

x
y z

(b) (c)

x
y

z

41

Proposition 3.3 A directed network G(A) is one-input controllable if and only if

there is a cactus that spans G(A,B).

Proof. If G(A) is one-input controllable, then it can be controlled by one input. Thus,

the controlled network G(A,B) is controllable with one input. By Lin’s theorem,

G(A,B) is spanned by a cactus.

On the other hand, if there is a cactus that spans G(A,B), then by Lin’s theorem,

G(A,B) is controllable. Since a cactus in G(A,B) originates from an input, this means

that G(A) can be controlled by one input, hence, it is one-input controllable ■

Let N denote the number of node in the network G(A).

Proposition 3.4 A directed network G(A) is one-input controllable if and only if the

maximum matching in G(A) has the size of at least N-1.

Proof Let M be a maximum matching in G(A), its size is denoted as |M|.

Suppose G(A) is an one-input controllable network, i.e., it can be controlled by only

one input. By Minimum Input Theorem, the minimum number of inputs needed to

fully control G(A) is { } . Hence, { } = 1. In

other words, either M is a perfect matching or the number of unmatched node in M is

1. Thus, the maximum matching in G(A) must have the size at least N-1.

On the other hand, suppose M has the size of at least N-1. Then by Minimum Input

Theorem, the minimum number of inputs needed to control G(A) is

 { } . Thus, G(A) is an one-input controllable network ■

3.3.2 Constructing One-Input Controllable Networks with Minimal

Modification

Come back to our question of how to modify the network G(A) into an one-input

controllable network. In general, this question is meaningful for human-designed

networks, since one may want to build the system which is simple to control or easy

to manipulate. The modification here is made by adding more links into the original

networks without adding nodes. The question can be addressed in the following

theorem.

42

Consider a network G(A) with N nodes, and a maximum matching M in G(A) with the

size of |M|.

Theorem 3.2 The minimum number of extra links needed to modify G(A) into an

one-input controllable network is zero if there is a perfect matching in G(A);

otherwise, it equals , where |M| is the size of a maximum matching in

G(A).

 { }

Proof

By the proposition 4.2, if there is a perfect matching in G(A), or a matching with size

at least N -1, then G(A) is an one-input controllable, and vice versa. In that case, no

extra link is needed.

Consider the case when the maximum matching M in G(A) has the size less than N-1.

By Liu et al., the minimum number of inputs needed to fully control the network G(A)

is: { } . By Lin’s theorem, the controlled network

G(A,B) can be controllable with NI inputs; and G(A,B) can be spanned by NI vertex

disjoint cactuses, in which each input connects to a driver node on a stem.

We can introduce extra links as follows. For each two stems s1 and s2,

connect the top node of s1 to the driver node of s2. After – such modifications,

only one stem is left. So, the new network now can be controlled with only one input.

We will show that, less than extra links cannot modify G(A) into one-input

controllable networks. Indeed, suppose G’(A) is the one-input controllable network

after adding extra links into G(A). Let M0 be a maximum matching in

G’(A), we have , by proposition 4.2. Let M1 be a matching after

removing such links of G’(A). We have M1 is a matching in G(A) with the size:

 –

Hence, M1 is the matching with a lager size than M, a contradiction with the fact that

M is a maximum matching in G(A) ■

43

Constructing One-Input Controllable Networks

The above proof gives a way to construct the one-input controllable network from the

original network G(A). Steps for such construction are summarized as the following.

1. Find a maximum matching M of G(A) using bipartite representation.

2. Find stems and cycles from the matching M.

3. Merge all stems into one, using NS – 1 extra links, each link connects a top

node of a stem to the root node of another stem, where NS is the original

number of stems.

4. The resulting network after adding NS – 1 links is one-input controllable.

44

Chapter 4

Experimental Results

In the previous chapter, we presented the MSC algorithm for solving the minimum

spanning cacti problem. In this chapter, we will present our experimental results. The

main purpose of our experiments is to use the MSC algorithm for finding the

minimum spanning cacti, and exploring the properties of the structural controllability

of several computer-generated networks and real networks.

For each of these networks, we first ran MSC to build the structurally controllable

network G(A,B) and to find the spanning cacti. After that, we analyzed the result by

calculating some statistics on the minimum spanning cacti, e.g. the number of stems

and buds in the cacti, number of the driver nodes, the ratio of driver nodes over the

total number of nodes. We also constructed the one-input controllable networks from

the original networks. Finally, we visualized the cacti, the original networks and the

one-input controllable networks by Cytoscape [8] – a network visualization software.

45

4.1 Random Network

In our experiments, two types of random networks are generated, including Erdos–

Renyi random network model.

1. Type 1: Uniformly generated n nodes and m edges. The network is chosen

uniformly at random from collection of all networks that have nodes and

edges.

2. Type 2: Erdos–Renyi probabilistic random network. The network is generated

by randomly connecting nodes. Each edge has a probability to be

included, independently from the other edges.

Given a number of nodes and a number of edges , the random network of type 1

is generated by the following procedure (Figure 4.1):

Algorithm 4.1 Random network - type 1

Input: Number of nodes n, number of edges

Output: random network of type 1;

begin

 if then ;

 Node_set = {1..n}; // initialize

 Edge_set = {};

 for i = 1..m do begin

 repeat

 u = random number in [1..n];

 v = random number in [1..n];

 if and is not in Edge_set then begin

 Edge_set = Edge_set +

 break;

 end;

 until false;

 end;

end;

Figure 4.1 Procedure for generating a random network of type 1

46

Given a number of nodes n and a probability p, the random network of type 2 is

generated by following procedure (Figure 4.2):

Algorithm 4.2 Random network – type 2

Input: number of nodes n, probability p;

Output: random network of type 2

begin

 Node_set = {1..n}; // initialize

 Edge_set = {};

 for u = 1..n do

 for v = 1..n do

 if () and is not in Edge_set then begin

 r = random number in [0..1];

 if then

 Edge_set = Edge_set +

 end;

end;

Figure 4.2 Procedure for generating a random network of type 2

Note that, all these networks are directed networks. Furthermore, there is no self-loop

and no repeated edges are generated. For each type of networks, we performed the

experiment for 100 times, and then averaged the result.

Results

We note that, the number of driver nodes, ND, always equals the number of cactuses,

since each cactus is built from an input node. This is explained as a consequence of

the Minimum Input Theorem. Furthermore, the number of stems is exactly the same

as the number of cacti in the spanning cacti, which can be derived by definition of

cacti.

Table 4.1 and Table 4.2 show the results by running MSC for type 1 and type 2

random networks, respectively. As can be seen, the number of stems or equivalently,

the number of driver nodes decreases as the number of network edges increases.

When the network is sparse, it requires more input nodes to become structurally

controllable. On the other hand, when the number of edges is large in comparison

with the number of nodes (for example).

47

The number of driver nodes is very small and in most cases, is only 1. This suggests

that the dense networks are easier to control. Thus, the result presented here is

consistent with Liu et al result [4].

Table 4.1 Result of running MSC on random network of type 1. For each network of type

1, we show the number of nodes (N); the number of edges (); the average number of stems

(< >); the average number of buds () and the average ratio of the number

of driver nodes over the total number of nodes

N <Nstems> <Nbuds> <ND/N>

50 2*N 9 2 0.18

5*N 1 4 0.02

10*N 1 2 0.02

20*N 1 2.8 0.02

100 2*N 29 1 0.29

5*N 1 5 0.01

10*N 1 1.1 0.01

20*N 1 1.6 0.01

200 2*N 41.2 0.4 0.206

5*N 1.4 3.4 0.007

10*N 1 4.6 0.005

20*N 1 3.1 0.005

500 2*N 108.5 0.6 0.217

5*N 5.5 3.6 0.011

10*N 1 3.3 0.002

20*N 1 4.5 0.002

Furthermore, for random networks of type 2, when the probability p increases, the

number of buds also increases. This may suggest that, the maximum matching found

for random networks of this type tends to form more cycles of matched nodes than

stems. These cycles become buds of the spanning cacti.

Currently in this work, we limited the number of nodes for random network by 500.

For further analysis, we may need to check for larger networks as well. Nevertheless,

we believe that the results will have the same trend.

48

Table 4.2 Results of running MSC on random network of type 2. For each network of

type 2, we show the number of nodes (N); the probability (p) an edge to be included into the

network; the average number of edges (< >); the average number of stems (<Nstems>); the

average number of buds (<Nbuds>) and the average ratio of the number of driver nodes over

the total number of nodes (<ND/N>)

N p < > <Nstems> <Nbuds> <ND/N>

50 0.01 64 16 1 0.32

0.02 87 13 3 0.26

0.05 157 5 3 0.1

0.1 282 1 4 0.02

100 0.01 212.4 20.9 0 0.209

0.02 298 9 1 0.09

0.05 567 1 2 0.01

0.1 1061.6 1 4.2 0.01

200 0.01 788.6 5.6 2 0.028

0.02 1211.6 1.5 4 0.008

0.05 2375.7 1 4.6 0.005

0.1 4384.3 1 5.6 0.005

500 0.01 4997.5 1 4.5 0.002

0.02 7527.7 1 5.2 0.002

0.05 14986.2 1 7.4 0.002

0.1 27500.6 1 15.4 0.002

49

4.2 Real Networks

We ran MSC on several real networks, including technological networks (electronic

circuits), social networks (World Wide Web, trust, intra-organizational networks) and

biological networks (food webs, and metabolic networks).

The datasets are the subset of those that were analyzed in Liu et al [4], except for two

networks Enron [18] and Macaque brain [19], marked with (*). Our datasets are

downloaded from http://hal.elte.hu/~enys/data.htm [20]. The features of these datasets

are summarized in the Table 4.3.

Table 4.3 Features of the real networks analyzed in this work. For each network, we show

its type, name, number of nodes (N), edges (NE), meaning of each directed edge, and the data

source references.

Type Name N 𝐍𝐄 Meaning of an edge 𝑿 𝒀 Re f e re nc e

Electronic circuits s208 122 189 Value at Y depends on value at

X
[9]

s420 252 399 [9]

WWW Political blogs 1224 19025 Y has link to X [10]

Intra-

organizational

Consulting 46 879 X received emails from Y [11]

Freemans-2 34 830 Y knows X [12]

Manufacturing 77 2228 X received emails from Y

X received emails from Y
[11]

Enron (*)

156 1669 [18]

Food web Little Rock 183 2494 X prays on Y [15]

Grassland 88 137 [13]

Seagrass 49 226 [14]

Metabolic E.coli 2275 5763 X controls Y [16]

S.cerevisiae 1511 3833 [16]

C.elegans 1173 2864 [16]

Trust College student 32 96 Y trusts in X [17]

Prison inmate 67 182 [17]

Other Macaque brain

(*)

45 463

Area X is connected to area Y [19]

Table 4.4 shows the result of running MSC on these networks. We noted that our

results are consistent with results presented in Liu et al [4]. That is, we get the same

results for the ratio of the number of driver nodes over total number of nodes.

http://hal.elte.hu/~enys/data.htm

50

In addition to calculating that ratio for each network, we find the number of stems and

buds of the spanning cacti. We also construct the spanning cactus for the one-input

controllable network.

Table 4.4 Results of running MSC on real networks. For each network, we show its name;

the number of nodes (N) and edges (NE), the ratio of the number of driver nodes over the total
number of nodes (ND/N), the number of stems (Nstems) and buds (Nbuds). The networks

marked with (*) are not included in Liu et al. dataset.

Name N NE ND/N Nstems Nbuds

s208 122 189 0.2377 29 2

s420 252 399 0.2341 59 4

Political blogs 1224 19025 0.3562 436 35

Consulting 46 879 0.0435 2 3

Freemans-2 34 830 0.0294 1 6

Manufacturing 77 2228 0.0130 1 5

Enron (*) 156 1669 0.0321 5 15

Little Rock 183 2494 0.5410 99 5

Grassland 88 137 0.5227 46 0

Seagrass 49 266 0.2653 13 0

C.Elegans 1173 2864 0.3017 354 25

S.Cerevisiae 1511 3833 0.3289 497 31

E.Coli 2275 5763 0.3824 870 54

College student 32 96 0.1875 6 2

Prison inmate 67 182 0.1343 9 9

Macaque brain (*) 45 463 0.0222 1 5

Among those networks, the two food webs (Little Rock [15] and Grassland [13]) are

the most difficult to control. To fully control each of the two networks, it is necessary

to control more than 50% of the nodes. This contradicts our general intuition that the

food webs are easy to control, since we expect that if we control some resources, we

can control all the food webs. The controllability here is a property of the network

itself, describing its ability to move around the state-space. So, manipulating some

resources of the food webs may break the food webs, but a majority of resources are

needed for the evolution of the food webs over time. On the other hand, the result

shows that the intra-organizational networks are much easier to control. This dispels

51

the expectation that these networks are resistant to control because they are quite

dense: in the networks, each individual connects to many others, thus the

controllability is believed to have no role. Yet the structural controllability suggests

that in principle, a few individuals can fully control the whole network.

After running MSC, we used Cytoscape [8] to visualize the spanning cacti. Some

cacti are shown in the following figures. The input nodes are shown in red; the driver

nodes are in yellow; nodes of stems are in blue; nodes of buds are in green. The

controlled edges are shown in red, edges of stems are in blue, edges of buds are in

green, and distinguished edges are in orange.

(a)

(b)

Figure 4.3 Visualizations of the intra-organizational network Freemans-2. (a) The

original network (directed). (b) The minimum spanning cacti for the controllable network.

The input node is 35; it was introduced to control the network and it is the root of the cactus.

Note that, this original network is an example of one-input controllable networks.

52

(a)

(b)

(c)

Figure 4.4 Visualizations of the intra-organizational network Consulting. (a) The original

directed network with 2 driver nodes shown in yellow. (b) The spanning cacti of the

controllable network. (c) Spanning cactus of the one-input controllable network.

53

(a)

(b)

(c)

Figure 4.5 Visualizations of the trust network Prison inmate. (a) The original network

with 9 driver nodes shown in yellow. (b) The spanning cacti of the controllable network. The

inputs are shown in red. (c) Spanning cactus of the one-input controllable network.

54

(a)

(b)

Figure 4.6 Visualizations of the intra-organizational network Manufacturing. (a) The

original network with one driver node shown in yellow. (b) The minimum spanning cacti for

the controllable network. The input node is 78 controls the network and it is the root of the

cactus. The original network is also an one-input controllable network.

55

(a)

(b)

Figure 4.7 Visualizations of the network Macaque brain. (a) The original network with

one driver node shown in yellow. (b) The minimum spanning cacti for the controllable

network. The input node 46 was introduced to control the network and it is the root of the

cactus. The original network is also an one-input controllable network.

56

References

[1] R. E. Kalman, Mathematical description of linear dynamical systems. J. Soc.

Indus. Appl. Math. Ser. A 1, 152-192(1963).

[2] C. T. Lin, Structural controllability. IEEE Trans. Automat. Contr. 19, 201-208

(1974).

[3] E. B. Lee & L. Markus, Foundations of Optimal Control Theory. (New York:

Wiley, 1967).

[4] Y. Y. Liu, J. J. Slotine & A. L. Barabasi, Controllability of complex networks.

Nature, 473, 167-173 (2011)

[5] Y. Y. Liu, J. J. Slotine & A. L. Barabasi, Controllability of complex networks –

Supplementary information. Nature, (2011)

[6] C. Berge. Two Theorems in Graph Theory. Proc. Nat. Acad. Sci. U.S.A., 43, 449-

844(1957).

[7] C. H. Papadimitriou & K. Steiglitz, Combinatorial optimization: algorithms and

complexity. (Dover Publications, 1998).

[8] P. Shannon et al. Cytoscape: a software environment for integrated models of

bio-molecular interaction networks. Genome Research,13 (11):2498-504(2003).

[9] R. Milo et al., Network Motifs: Simple Building Blocks of Complex Networks.

Science, 298, 824-827 (2002).

[10] L. A. Adamic & N. Glance, The political blogosphere and the 2004 U.S. election,

Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005).

[11] R. Cross & A. Parker, The Hidden Power of Social Networks. (Harvard Business

School Press,Boston, MA, 2004)

57

[12] S. Freeman and L. Freeman, Social Science Research Reports 46. University of

California, Irvine, CA.(1979)

[13] J. A. Dunne, R. J. Williams, & N. D. Martinez, Food-web structure and network

theory: The role of connectance and size. PNAS 99, 12917-12922 (2002).

[14] R. R. Christian & J. J. Luczkovich, Organizing and understanding a winter’s

seagrass foodweb network through effective trophic levels. Ecological Modelling 117,

99-124 (1999).

[15] N. Martinez, Artifacts or attributes? Effects of resolution on the Little Rock Lake

food web. Ecological Monographs 61, 367-392 (1991).

[16] H. Jeong et al., The large-scale organization of metabolic networks. Nature 407,

651-654 (2000).

[17] R Miloet al., Superfamilies of designed and evolved networks. Science, 303,

1538-42 (2004).

[18] J. Leskovec, K. Lang, A. Dasgupta, & M. Mahoney, Community structure in

large networks: Natural cluster sizes and the absence of large well-defined clusters.

Internet Mathematics, 6(1), 29-123 (2009).

[19] L. Négyessy, T. Nepusz, L. Kocsis and F. Bazsó, Prediction of the main cortical

areas and connections involved in the tactile function of the visual cortex by network

analysis. Eur. J. Neurosci. 23(7):1919-1930 (2006).

[20] Network Dataset http://hal.elte.hu/~enys/data.htm (accessed 24 July 2012).

[21] Anna Palbom. Complexity of the directed spanning cactus problem. Discrete

Applied Mathematics 146(1): 81-91 (2005).

[22] Arindam Pal, Efficient algorithms for generating all minimum cuts and the cactus

representation of a graph, A Project Report, Indian Institute of Science, Bangalore.

(2002)

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1460-9568.2006.04678.x
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1460-9568.2006.04678.x
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1460-9568.2006.04678.x
http://hal.elte.hu/~enys/data.htm

58

Appendix

Code Listing

File main.cpp

/**

 @file main.cpp

 @author Ngo Thi Tu Anh, ngotuanh@gmail.com

 @date July, 2012

 @section Description

 This program implements the MSC algorithm to find the spanning cacti for a given

directed network. It first reads in a network, transforms it into bipartite

representation, finds the maximum matching in bipartite representation. It then finds

the basic stems and cycles from the maximum matching, and properly connects them

together to form the spanning cacti. It also finds the spanning cactus for the one-

input controllable network. It outputs the cacti, controllable networks, as well as

the node and edge attribute files for cytoscape visualization.

*/

#include <iostream>

#include <sstream>

#include <vector>

#include <fstream>

#include <math.h>

#include <stdlib.h>

#include <list>

#include <iomanip>

#include <set>

#include <queue>

//my header files:

#include "di_graph.h"

#include "bipartite_graph.h"

using namespace std;

class Cactus{

 public:

 int ControlNode;

 vector<int> Stem;

 vector<vector<int> > Cycles;

 vector<int> CycleControl;

 vector<int> CycleRoot;

 // Constructors

59

 Cactus(){}

 Cactus(int cNode, vector<int> aStem){

 ControlNode = cNode;

 Stem.assign(aStem.begin(), aStem.end());

 }

 // Utils

 void PrintCactus(){

 cout <<" Control Node = u"<<ControlNode;

 cout <<" Stem : ";

 for (int j = 0; j<Stem.size(); ++j)

 cout <<Stem[j]<<" ";

 cout <<endl;

 cout <<" Number of cycles "<<Cycles.size()<<endl;

 for (int j = 0; j<Cycles.size(); ++j){

 cout <<" Cycle "<<j+1<<" (connected from node "<<CycleControl[j]<<"

of the stem to node "<<CycleRoot[j]<<" of cycle) : ";

 for (vector<int>::iterator v = Cycles[j].begin(); v != Cycles[j].end();

++v)

 cout <<*v<<" ";

 cout <<endl;

 }

 }//

};

vector<Cactus> Cacti;

// vars for matching algorithm:

vector<int> mate;

vector<int> exposed;

vector<int> label;

vector<vector<int> > Stems;

vector<vector<int> > Cycles;

vector<bool> AddedCycle;

vector<int> MarkCycle;

vector<int> DrNodes;

vector<vector<int> > DistFromDrNode;

void InitEverything(){

 Cacti.clear();

 Stems.clear();

 Cycles.clear();

 AddedCycle.clear();

 MarkCycle.clear();

 DrNodes.clear();

 DistFromDrNode.clear();

}

/**Matching:*/

void InitMaxBPMatch(Bipartite_Graph BG){

 mate.resize(BG.N*2+2,0);

 exposed.resize(BG.N*2+2,0);

 label.resize(BG.N*2+2,0);

}

//recursive retrieve augmenting path and flip

void augment(int v){

 //cout <<" aug "<<v<<endl;

 if (label[v] ==0){

 mate[v] = exposed[v];

 mate[exposed[v]] = v;

 }

 else {

 exposed[label[v]] = mate[v];

 mate[v] = exposed[v];

 mate[exposed[v]] = v;

 augment(label[v]);

 }

}// augment procedure

void MaxBipartiteMatching(Bipartite_Graph BG){

60

 set<pair<int, int> > A; // set of two different Plus nodes u,v that there is a

Minus node x,

 // such that: (v, x) is an edge and mate[x] is u

 //init:

 vector<int>::iterator it;

 for (it = BG.Plus.begin(); it != BG.Plus.end(); ++it)

 mate[*it] = 0;

 for (it = BG.Minus.begin(); it != BG.Minus.end(); ++it)

 mate[*it] = 0;

 list<pair<int,int> >::iterator ip;

 while (true){ // loop to find all augmenting paths

 for (vector<int>::iterator v = BG.Plus.begin(); v != BG.Plus.end(); ++v)

 exposed[*v] = 0;

 A.clear();

 // for each edge:

 for (ip = BG.EdgeList.begin(); ip != BG.EdgeList.end(); ++ip){

 int v = ip->first;

 int u = ip->second;

 if (mate[u]==0)

 exposed[v] = u;

 else {

 if (mate[u] != v)

 A.insert(pair<int,int>(v, mate[u]));

 }

 }// for each edge of BG

 queue<int> Q; //queue for breadth-first-search

 while (!Q.empty()) Q.pop();

 for (vector<int>::iterator v = BG.Plus.begin(); v != BG.Plus.end(); ++v){

 if (mate[*v] == 0){

 Q.push(*v);

 label[*v] = 0;

 };

 label[*v]=0;

 }

 //BFS for find augmenting path

 int found = false;

 int xxx = 0;

 // Check queue:

 while (!Q.empty()){

 int v = Q.front();

 Q.pop();

 xxx++;

 if (exposed[v] != 0){ // found new augmenting path!

 augment(v);

 found = true;

 break;

 }// found new

 else{

 for (vector<int>::iterator u = BG.Plus.begin(); u != BG.Plus.end(); ++u)

 if ((label[*u]==0)and(A.find (pair<int,int>(v,*u)) != A.end())){

 label[*u] = v;

 Q.push(*u);

 }

 }

 if (found) break;// break the BFS

 }// while queue is not empty

 // if not found any augmenting path, then exit:

 if (!found) break;

 }// end of main loop

//--------- result:-----------

 //cout <<endl<<"Matching result: "<<endl;

 int cnt = 0;

 set<int> Remain;

 Remain.insert(BG.Plus.begin(), BG.Plus.end());

 for (int i = 0; i<mate.size(); ++i){

 if ((mate[i]!= 0) and (mate[i]>BG.N)){

61

 //cout <<setw(4)<<i<<" -- "<<setw(4)<<mate[i] - BG.N<<endl;

 cnt++;

 Remain.erase(mate[i]-BG.N);

 }

 }// for i in mate[]

 for (set<int>::iterator it = Remain.begin(); it != Remain.end(); ++it){

 //cout <<*it<<" ";

 DrNodes.push_back(*it);

 }

// CASE PERFECT MATCHING: no driver node, then choose random node as driver node:

 if (DrNodes.size() <1){

 DrNodes.push_back(BG.Plus[0]);

 //cout<<" Number of driver nodes after modifying: "<<DrNodes.size()<<endl;

 }

}// end of matching

//Procedures for finding cacti:/

void Find_Stems_Cycles(Di_Graph G){
 //cout <<endl<<"Finding stems and cycles... "<<endl;

 vector<bool> Marked;

 Marked.assign(G.N+1, false);

 MarkCycle.assign(G.N+1, -1);

 // Find stems:

 int x;

 Stems.clear();

 Stems.resize(DrNodes.size());

 for (int i = 0; i<DrNodes.size(); ++i){

 x = DrNodes[i];

 while(!Marked[x]){

 Stems[i].push_back(x);

 Marked[x] = true;

 if (mate[x]!=0) x= mate[x] - G.N;

 else break;

 }

 }

 // print stems:

 /**

 for (int i = 0; i<Stems.size(); ++i){

 cout <<"Stem number "<<i+1<<": ";

 for (int j = 0; j<Stems[i].size(); ++j)

 cout <<Stems[i][j]<<" ";

 cout <<endl;

 }

 //*/

 // Find Cycles:

 Cycles.clear();

 vector<int> ACycle;

 int cycCnt = 0;

 for (int u = 1; u <= G.N; ++u)

 if (!Marked[u]){

 //new cycle:

 cycCnt++;

 ACycle.clear();

 int v = u;

 while (true){

 Marked[v] = true;

 MarkCycle[v] = cycCnt -1;

 ACycle.push_back(v);

 v = mate[v] - G.N;

 if (v==u) break;

 }// end of new cycle;

 Cycles.push_back(ACycle);

 }

 // print Cycles:
 /**

 cout <<endl<<"Number of cycles: "<<Cycles.size()<<endl;

 for (int i = 0; i < Cycles.size(); ++i){

 cout <<" Cycle "<<i+1<<" : ";

 for (int j = 0; j < Cycles[i].size(); ++j)

 cout <<Cycles[i][j]<<" ";

 cout <<endl;

 }

 //*/

}

void BuildInitialCacti(Di_Graph G){

62

 // Add each stem to a cactus:

 Cacti.clear();

 for (int i = 0; i < Stems.size(); ++i){

 Cactus ACactus(G.N+1 + i, Stems[i]);

 Cacti.push_back(ACactus);

 }

 // Add distance-1 cycles to a cactus.

 AddedCycle.assign(Cycles.size(),false);

 for (int i = 0; i<Cacti.size(); ++i){// for each cactus i

 for (int j = 0; j< Cacti[i].Stem.size() - 1; ++j){// for each stem node

 int x = Cacti[i].Stem[j];

 for (list<int>::iterator v = G.AdjList[x-1].begin(); v != G.AdjList[x-

1].end(); ++v){//for each node v on adjcent list of x;

 if ((MarkCycle[*v] != -1) and (!AddedCycle[MarkCycle[*v]])){

 Cacti[i].Cycles.push_back(Cycles[MarkCycle[*v]]);

 Cacti[i].CycleControl.push_back(x);

 Cacti[i].CycleRoot.push_back(*v);

 AddedCycle[MarkCycle[*v]] = true;

 }

 }// for each node v on adjcent list of x;

 } // for each node x on the stem

 } // for each cactus

 // Result:

 /***

 cout <<endl<<" CACTI "<<endl;

 cout <<"Number of cacti(flural of cactus) in the Cacti "<<Cacti.size()<<endl;

 for (int i = 0; i < Cacti.size(); ++i){

 cout <<"Cactus "<<i+1<<" :"<<endl;

 Cacti[i].PrintCactus();

 cout <<endl;

 }

 */

}

vector<int> DistanceFromNode(Di_Graph G, int v){ //BFS

 vector<int> Dist;

 Dist.assign(G.N+1, -1);

 vector<bool> Marked;

 Marked.assign(G.N+1, false);

 queue<int> Q;

 Dist[v] = 0;

 Marked[v] = true;

 Q.push(v);

 while (!Q.empty()){

 int u = Q.front();

 Q.pop();

 for (list<int>::iterator x = G.UAdjList[u-1].begin(); x != G.UAdjList[u-

1].end(); ++x)

 if (!Marked[*x]){

 Dist[*x] = Dist[u] + 1;

 Marked[*x] = true;

 Q.push(*x);

 }

 }

 return Dist;

}

void CalcDistanceFromDrNode(Di_Graph G){

 DistFromDrNode.resize(DrNodes.size());

 vector<int> ADist;

 for (int i = 0; i<DrNodes.size(); ++i){

 int v = DrNodes[i];

 ADist = DistanceFromNode(G, v);

 DistFromDrNode[i] = ADist;

 }

}// end calculation Distance from Driver Nodes;

//complete building cacti:

void AddCylcesToCacti(Di_Graph G){

 for (int i = 0; i<Cycles.size(); ++i){

63

 if (!AddedCycle[i]){

 // find nearest driver node u:

 int minDist = G.N+1;

 int minU=-1, minRoot = Cycles[i][0];

 for (int u = 0; u < DrNodes.size(); ++u){

 for (vector<int>::iterator v = Cycles[i].begin(); v !=

Cycles[i].end(); ++v){

 if (DistFromDrNode[u][*v] >-1)

 if (minDist > DistFromDrNode[u][*v]) {

 minDist = DistFromDrNode[u][*v];

 minU = u;

 minRoot = *v;

 }

 }

 }

 if (minU = -1) {// find smallest cacti so far:

 int minNumOfCircles = G.N+1;

 minU = 0;

 for (int u = 0; u < DrNodes.size(); ++u){

 if (minNumOfCircles > Cacti[u].Cycles.size()){

 minNumOfCircles = Cacti[u].Cycles.size();

 minU = u;

 }

 }

 }

 // Add this cycle to the cactus of the nearest driver node just found:

 Cacti[minU].Cycles.push_back(Cycles[i]);

 Cacti[minU].CycleControl.push_back(Cacti[minU].ControlNode);

 Cacti[minU].CycleRoot.push_back(minRoot);

 }// still not added

 }// for each Cycle

}// end procedure

//Merge two cactuses:

Cactus MergingTwoCactuses(Cactus C1, Cactus C2){

 Cactus C;

 //merging stem:

 C.Stem.clear();

 for (vector<int>::iterator it = C2.Stem.begin(); it != C2.Stem.end(); ++it)

 C.Stem.push_back(*it);

 for (vector<int>::iterator it = C1.Stem.begin(); it != C1.Stem.end(); ++it)

 C.Stem.push_back(*it);

 //merging cycles:

 C.Cycles.clear();

 C.CycleControl.clear();

 C.CycleControl.clear();

 for (int i = 0; i < C2.Cycles.size(); ++i){

 C.Cycles.push_back(C2.Cycles[i]);

 C.CycleControl.push_back (C2.CycleControl[i]);

 C.CycleRoot.push_back(C2.CycleRoot[i]);

 };

 for (int i = 0; i < C1.Cycles.size(); ++i){

 C.Cycles.push_back(C1.Cycles[i]);

 C.CycleControl.push_back (C1.CycleControl[i]);

 C.CycleRoot.push_back(C1.CycleRoot[i]);

 };

 //merging control node:

 C.ControlNode = C2.ControlNode;

 //modify cyclecontrol node:

 for (int i = 0; i<C.CycleControl.size(); ++i){

 if (C.CycleControl[i] == C1.ControlNode)

C.CycleControl[i] = C.ControlNode;

 }

 return C;

}

//Find cactus for one-input controllable network:

void FindCactusForOneInputControllable (vector<Cactus> *newCacti){

 newCacti->clear();

 Cactus C2 = Cacti[Cacti.size()-1];

64

 Cactus C = C2;

 for (int i = Cacti.size()-2; i >=0; --i){

 Cactus C1 = Cacti[i];

 C = MergingTwoCactuses(C1,C2);

 C2 = C;

 }

 newCacti->push_back(C2);

}

// print statistics of the cacti

void PrintStatistics(Di_Graph G){

 cout <<"=====Input:====="<<endl;

 cout <<" N = "<<G.N<<endl;

 cout <<" E = "<<G.E<<endl;

 cout <<"=====Statistic of minimum cacti====="<<endl;

 cout <<" Number of stems "<<Cacti.size()<<endl;

 int nCycles = 0;

 for (int i = 0; i <Cacti.size(); ++i){

 nCycles +=Cacti[i].Cycles.size();

 }

 cout <<" Number of buds "<<nCycles<<endl;

 double averDegree = 0;

 for (int i = 0; i <Cacti.size(); ++i){

 averDegree += G.getDegree(Cacti[i].Stem[0]);

 }

 averDegree = averDegree / Cacti.size();

 cout <<" Average degree of driver nodes = "<<averDegree<<endl;

 cout <<" average degree of the input network = "<<G.E / G.N<<endl;

}

// Print cacti into SIF format for Cytoscape:

int Cacti2SIF(vector<Cactus> Cacti, string fn){

 ofstream MyFile(fn.c_str());

 if (!MyFile.is_open()){

 cerr <<"Cannot open this file "<<fn<<endl;

 return -1;

 }

 cout <<"Write cactus graph into .SIF file: "<<fn<<endl;

 for (int i = 0; i <Cacti.size(); ++i){

 Cactus C = Cacti[i];

 //Print stem:

 MyFile<<C.ControlNode<<" controls "<<C.Stem[0]<<endl;

 for (int j = 0; j < C.Stem.size()-1; ++j)

 MyFile << C.Stem[j]<<" stem "<<C.Stem[j+1] <<endl;

 // Print cycles:

 for (int c = 0; c < C.Cycles.size(); ++c){

 // stem to cycle edge:

 MyFile <<C.CycleControl[c]<<" stem_to_cycle "<<C.CycleRoot[c]<<endl;

 //cycle:

 for (int j = 0; j <C.Cycles[c].size()-1; ++j)

 MyFile << C.Cycles[c][j]<<" cycle "<<C.Cycles[c][j+1]<<endl;

 MyFile<<C.Cycles[c][C.Cycles[c].size()-1] <<" cycle

"<<C.Cycles[c][0]<<endl;

 }// all cycle

 }// all cacti

 MyFile.close();

 cout <<" Done!"<<endl;

}

int Cacti2NOA(vector<Cactus> Cacti, string fn){ // node attributes

 ofstream MyFile(fn.c_str());

 if (!MyFile.is_open()){

 cerr <<"Cannot open this file "<<fn<<endl;

 return -1;

 }

 cout <<"Write cactus graph node attribute file: "<<fn<<endl;

 MyFile <<"NodeType (class = java.lang.String)"<<endl;

 for (int i = 0; i <Cacti.size(); ++i){

 Cactus C = Cacti[i];

 //Print stem:

 MyFile<<C.ControlNode<<" = CONTROL_NODE"<<endl;

 MyFile << C.Stem[0]<<" = driver_node "<<endl;

65

 for (int j = 1; j < C.Stem.size(); ++j)

 MyFile << C.Stem[j]<<" = stem_node "<<endl;

 // Print cycles:

 for (int c = 0; c < C.Cycles.size(); ++c){

 //cycle:

 for (int j = 0; j <C.Cycles[c].size(); ++j)

 MyFile << C.Cycles[c][j]<<" = cycle_node "<<endl;

 }// all cycle

 }// all cacti

 MyFile.close();

 cout <<" Done!"<<endl;

}

void PrintRes(int N, int E, int Nbuds, int Nstems, int times, double averDegreeDr,

double averDegreeNW){

 string fn;

 stringstream SS;

 SS <<N<<"_"<<E<<".txt";

 SS>>fn;

 ofstream MyFile(fn.c_str());

 if (!MyFile.is_open()){

 cerr <<"Cannot open this file "<<fn<<endl;

 return;

 }

 MyFile<<"number of repeating times "<<times<<endl;

 MyFile<<"total number of stems "<<Nstems<<endl;

 MyFile<<"total number of buds " <<Nbuds<<endl;

 MyFile<<"average degree of driver nodes " <<(averDegreeDr+0.0)/(times+0.0)<<endl;

 MyFile<<"average degree of all nodes" <<(averDegreeNW+0.0)/(times+0.0)<<endl;

 MyFile.close();

}

void PrintRes(int N, double P, int Nbuds, int Nstems, int times, double averDegreeDr,

double averDegreeNW){

 string fn;

 stringstream SS;

 SS <<N<<"_"<<P<<".txt";

 SS>>fn;

 ofstream MyFile(fn.c_str());

 if (!MyFile.is_open()){

 cerr <<"Cannot open this file "<<fn<<endl;

 return;

 }

 MyFile<<"number of repeating times "<<times<<endl;

 MyFile<<"total number of stems "<<Nstems<<endl;

 MyFile<<"total number of buds " <<Nbuds<<endl;

 MyFile<<"average degree of driver nodes " <<(averDegreeDr+0.0)/(times+0.0)<<endl;

 MyFile<<"average degree of all nodes" <<(averDegreeNW+0.0)/(times+0.0)<<endl;

 MyFile.close();

}

int main()//int argc, char *argv[])

{

/***For running on specific networks:*/

string pwd = "data/";

vector <string> fileNames;

fileNames.push_back(pwd+ "brain_macaque.ncol");

fileNames.push_back(pwd+ "org_Enron_core.ncol");

fileNames.push_back(pwd+ "food_Seagrass.ncol");

fileNames.push_back(pwd+ "food_LittleRock.ncol");

fileNames.push_back(pwd+ "food_Grassland.ncol");

fileNames.push_back(pwd+ "circuit_s208a.ncol");

fileNames.push_back(pwd+ "circuit_s420a.ncol");

66

fileNames.push_back(pwd+ "trust_CollegeStudents_rd.ncol");

fileNames.push_back(pwd+ "trust_PrisonInmates_rd.ncol");

fileNames.push_back(pwd+ "org_Consulting.ncol");

fileNames.push_back(pwd+ "org_Freemans_2.ncol");

fileNames.push_back(pwd+ "org_Freemans_1.ncol"); // different data

fileNames.push_back(pwd+ "org_Manufacturing.ncol");

fileNames.push_back(pwd+ "metabolic_SCerevisiae.ncol");

fileNames.push_back(pwd+ "metabolic_CElegans.ncol");

fileNames.push_back(pwd+ "metabolic_EColi.ncol");

fileNames.push_back(pwd+ "regulatory_TRN_Yeast_2.ncol");

fileNames.push_back(pwd+ "www_Polblogs_rd.ncol");

//Run for each input file:

for (vector<string>::iterator fn = fileNames.begin(); fn != fileNames.end(); ++fn){

 cerr <<endl<<(int)(fn - fileNames.begin()) + 1 <<" Running for "<<*fn<<endl;

 InitEverything();

 Di_Graph aG;

 aG.ReadEdgeFile(*fn,"0"); // note: vertices are from 1 instead of 0;

 aG.ExpandUndirected();

 Bipartite_Graph myBG(aG);

 cerr <<"=====MATCHING...====="<<endl;

 InitMaxBPMatch(myBG);

 MaxBipartiteMatching(myBG);

 cerr <<"=====MATCHING... DONE!====="<<endl<<endl;

 cerr <<"=====STEM and CYCLE FINDING...====="<<endl;

 Find_Stems_Cycles(aG);

 cerr <<"=====STEM and CYCLE FINDING... DONE====="<<endl<<endl;

 cerr <<"=====Initial Cacti BUILDING...====="<<endl;

 BuildInitialCacti(aG);

 cerr <<"=====Initial Cacti BUILDING... DONE====="<<endl<<endl;

 cerr <<"=====Distance from Driver Nodes: CALCULATING...====="<<endl;

 CalcDistanceFromDrNode(aG);

 cerr <<"=====Distance from DrNode CALCULATING...DONE====="<<endl<<endl;

 cerr <<"=====ADDING Cycles to Cacti...====="<<endl;

 AddCylcesToCacti(aG);

 cerr <<"=====ADDING Cycles to Cacti...DONE====="<<endl<<endl;

//PRINT OUT RESULT:

 cout <<endl<<"=====RESULT: the CACTI ====="<<endl;

 cout <<"Number of cacti(flural of cactus) in the Cacti "<<Cacti.size()<<endl;

 for (int i = 0; i < Cacti.size(); ++i){

 cout <<"Cactus "<<i+1<<" :"<<endl;

 Cacti[i].PrintCactus();

 cout <<endl;

 };

//Find spanning cactus for one-input controllable

 vector<Cactus> myCacti;

 FindCactusForOneInputControllable(&myCacti);

// Write cytoscape attribute files:

 Cacti2SIF(Cacti, *fn+".sif"); Cacti2NOA(Cacti, *fn+".noa");

Cacti2SIF(myCacti, *fn+".one-input.sif"); Cacti2NOA(myCacti, *fn+".one-

input.noa");

}

 return 0;

//***/

/***For random networks*/

int NN[5] = {10,50,100,200,500};

int EE[4] = {2,5,10,20};

double PP[4] = {0.01,0.02,0.05,0.1};

for (int ii = 0; ii<5; ++ii)

for (int jj = 0; jj<4; ++jj)

{//begin

 cout <<" ii = "<<ii<<" jj= "<<jj<<endl;

 int Nbuds = 0, Nstems = 0, times = 100;

67

 double AllaverDegree = 0, AllaverDegreeNW = 0;

 for (int i = 0; i<times; ++i){

 InitEverything();

 Di_Graph newG;

 //aG.RandomGenerator1(NN[ii],NN[ii]*EE[jj]); //type 1

 newG.RandomGenerator(NN[ii],PP[jj]); //type 2

 //=====Core procedure:

 newG.ExpandUndirected(); // Clone 1 un-directed graph NEEDED!

 //aG.PrintUndirectedGraph();

 Bipartite_Graph myNewBG(newG);

 //cout <<" print bi-graph: "<<endl;

 //myBG.PrintGraph();

 cerr <<"=====MATCHING...====="<<endl;

 InitMaxBPMatch(myNewBG);

 MaxBipartiteMatching(myNewBG);

 cerr <<"=====MATCHING... DONE!====="<<endl<<endl;

 cerr <<"=====STEM and CYCLE FINDING...====="<<endl;

 Find_Stems_Cycles(newG);

 cerr <<"=====STEM and CYCLE FINDING... DONE====="<<endl<<endl;

 cerr <<"=====Initial Cacti BUILDING...====="<<endl;

 BuildInitialCacti(newG);

 cerr <<"=====Initial Cacti BUILDING... DONE====="<<endl<<endl;

 cerr <<"=====Distance from Driver Nodes: CALCULATING...====="<<endl;

 CalcDistanceFromDrNode(newG);

 cerr <<"=====Distance from DrNode CALCULATING...DONE====="<<endl<<endl;

 cerr <<"=====ADDING Cycles to Cacti...====="<<endl;

 AddCylcesToCacti(newG);

 cerr <<"=====ADDING Cycles to Cacti...DONE====="<<endl<<endl;

 //=====End of core procedures

 //PRINT OUT:

 //PrintStatistics(aG);

 Nstems += Cacti.size();

 int nCycles = 0;

 for (int x = 0; x <Cacti.size(); ++x){

 nCycles +=Cacti[x].Cycles.size();

 }

 Nbuds += nCycles;

 double averDegree = 0;

 for (int x = 0; x <Cacti.size(); ++x){

 averDegree += newG.getDegree(Cacti[x].Stem[0])+0.0;

 }

 averDegree = (averDegree+0.0) / (Cacti.size()+0.0);

 AllaverDegree += averDegree;

 AllaverDegreeNW += (newG.E+0.0)/(newG.N+0.0);

 }// for repeating time;

 //PrintRes(NN[ii],NN[ii]*EE[jj],Nbuds, Nstems, times, AllaverDegree,

AllaverDegreeNW); // type 1

 PrintRes(NN[ii],PP[jj],Nbuds, Nstems, times, AllaverDegree, AllaverDegreeNW);

//type 2

}//end; of NN EE

return 0;

//***/

}// end of main

File di_graph.h

/**

 @file di_grahp.h

 @author Ngo Thi Tu Anh, ngotuanh@gmail.com

 @date July, 2012

 @section Description

68

 Header file for the Di_Graph class.

*/

#ifndef DI_GRAPH_H

#define DI_GRAPH_H

#include <list>

#include <vector>

#include <set>

#include <string>

using namespace std;

class Di_Graph

{

 public:

 int N;

 // nodes start from 1;

 vector <list<int> > AdjList;// Adjacent list of a node u is AdjList[u-1];

 vector <list<int> > UAdjList;// Adjacent list of a node u is UAdjList[u-1];

 set<pair<int, int> > EdgeSet;

 int E;

 //constructors

 Di_Graph();

 Di_Graph(string);

 // Utility Functions:

 int getDegree(int anode);

 void ReadFile(string); // Read from file

 void ReadEdgeFile(string fn); // read from list of edge file

 void ReadEdgeFile(string fn, string type); // node start from 0

 void PrintGraph();

 void ExpandUndirected();

 void PrintUndirectedGraph();

 void RandomGenerator(int, int);

 void RandomGenerator1(int N, int E);

 void RandomGenerator(int, double);

 void WriteFile(string);

 protected:

 private:

 list<int> LineParserList(string);

 vector<int> LineParserVector(string);

 void CreateFromEdgeSet();

};

#endif // DI_GRAPH_H

69

File di_graph.cpp
/**

 @file di_graph.cpp

 @author Ngo Thi Tu Anh, ngotuanh@gmail.com

 @date July, 2012

 @section Description

 Implementation of Di_Graph class.

*/

#include "di_graph.h"

#include <iostream>

#include <fstream>

#include <sstream>

#include <stdlib.h>

#include <time.h>

#include <set>

using namespace std;

//Contructors:

Di_Graph::Di_Graph(){// empty

}

/* Constructor: Init graph from file*/

Di_Graph::Di_Graph(string fn){

 this->ReadFile(fn);

}

/* Utility Functions: */

int Di_Graph::getDegree(int anode){

 return AdjList[anode-1].size();

}

void Di_Graph::ReadFile(string fn){

 int n=1,e=0;

 vector <list<int> > AdjList;

 string st;

 ifstream MyFile (fn.c_str());

 list<int> AList;

 if (MyFile.is_open())

 { getline(MyFile,st);

 n = atoi(st.c_str());

 for (int i = 0; i<n; ++i){ getline(MyFile, st);

 AList = LineParserList(st);

 AdjList.push_back(AList);

 e += AList.size();

 }

 }

 this->N = n;

 this->AdjList = AdjList;

 this->E = e;

 this->ExpandUndirected();

}

void Di_Graph::ReadEdgeFile(string fn){

 string st;

 ifstream MyFile (fn.c_str());

 if (!MyFile){

 std::cerr << "Error: File "<<fn<<" could not be opened! "<<endl;

 exit(1);

 }

 vector<int> APair;

 while (getline(MyFile,st)){

 APair = LineParserVector(st);

 EdgeSet.insert(pair<int,int>(APair[0], APair[1]));

 }// done reading file

 cerr << " Read "<<EdgeSet.size()<<" edges from file "<<fn<<endl;

 CreateFromEdgeSet();

}

70

void Di_Graph::ReadEdgeFile(string fn, string type){

 string st;

 ifstream MyFile (fn.c_str());

 if (!MyFile){

 std::cerr << "Error: File "<<fn<<" could not be opened! "<<endl;

 exit(1);

 }

 vector<int> APair;

 while (getline(MyFile,st)){

 APair = LineParserVector(st);

 EdgeSet.insert(pair<int,int>(APair[0] +1, APair[1] +1));

 }// done reading file

 cerr << " Read "<<EdgeSet.size()<<" edges from file "<<fn<<endl;

 CreateFromEdgeSet();

}

void Di_Graph::WriteFile(string fn){

 ofstream MyFile(fn.c_str());

 if (MyFile.is_open()){

 MyFile <<N<<endl;

 for (int i = 0; i<N; ++i){

 if (AdjList[i].size() >0){

 for (list<int>::iterator j = AdjList[i].begin(); j != AdjList[i].end(); ++j)

 MyFile << *j<<" ";

 }

 else MyFile <<0;

 MyFile <<endl;

 }

 }

 MyFile.close();

}

void Di_Graph::ExpandUndirected(){

 UAdjList.clear();

 UAdjList.resize(N);

 for (int i = 0; i<AdjList.size(); ++i){

 for (list<int>::iterator v = AdjList[i].begin(); v != AdjList[i].end(); ++v)

 if (*v != 0){

 UAdjList[i].push_back(*v);

 UAdjList[*v-1].push_back(i+1);

 }

 UAdjList[i].unique();

 }

}// expand to undirected graph

void Di_Graph::PrintGraph(){

 cout <<" Directed Graph:"<<endl;

 cout <<" Number of nodes: "<<N<<endl;

 cout <<" Number of edges: "<<E<<endl;

 cout <<" Adjcent List:"<<endl;

 int i, j;

 for (i = 0; i< AdjList.size(); ++i){

 cout <<"list "<<i+1<<": ";

 for (list<int>::iterator v = AdjList[i].begin(); v != AdjList[i].end(); ++v)

 cout <<*v<<" ";

 cout <<endl;

 }

}

void Di_Graph::PrintUndirectedGraph(){

 cout <<" Un-Directed Graph:"<<endl;

 cout <<" Number of nodes: "<<N<<endl;

 cout <<" Adjcent List:"<<endl;

 int i, j;

 for (i = 0; i< UAdjList.size(); ++i){

 cout <<"list "<<i+1<<": ";

 for (list<int>::iterator v = UAdjList[i].begin(); v != UAdjList[i].end();

++v) cout <<*v<<" ";

 cout <<endl;

 }

}

71

// Randomly generating graph with number of nodes and average outdegree

void Di_Graph::RandomGenerator(int NodeCnt, int AverOutDegree){

 this->N = NodeCnt;

 if (AverOutDegree >=N) AverOutDegree = N-1;

 this->E = NodeCnt * AverOutDegree;

 int cnt = 0;

 this->AdjList.resize(NodeCnt);

 int u, v;

 set <pair<int, int> > EdgeSet;

 srand(time(NULL));

 while (cnt < this->E){

 u = rand()%N;

 v = rand()%N;

 if (u != v)

 if (EdgeSet.find(pair<int,int>(u,v)) == EdgeSet.end()){

 ++cnt;

 AdjList[u].push_back(v+1);

 EdgeSet.insert(pair<int,int>(u,v));

 }

 }// while

 this->EdgeSet = EdgeSet;

 this->ExpandUndirected();

}

void Di_Graph::RandomGenerator1(int N, int E){

 if (E > N*(N-1)) {

 cerr<<"Can not generate more than "<<N*(N-1)<<" edges"<<endl;

 cerr<<"Set number of edges = "<< N*(N-1)<<endl;

 E = N*(N-1);

 }

 this->N = N;

 this->E = E;

 this->AdjList.clear();

 this->AdjList.resize(N);

 int u, v;

 set <pair<int, int> > EdgeSet;

 srand(time(NULL));

 for(int i = 0; i<E; ++i){

 u = rand()%N;

 v = rand()%N;

 if (u != v)

 if (EdgeSet.find(pair<int,int>(u,v)) == EdgeSet.end()){

 AdjList[u].push_back(v+1);

 EdgeSet.insert(pair<int,int>(u,v));

 }

 }

 this->EdgeSet = EdgeSet;

 this->ExpandUndirected();

}

//Generator type 2:

void Di_Graph::RandomGenerator(int NodeCnt, double p){

 this->N = NodeCnt;

 this->AdjList.resize(NodeCnt);

 int Ecnt = 0;

 srand(time(NULL));

 for (int u = 0; u<N; ++u)

 for (int v = 0; v<N; ++v)

 if (u != v)

 if (rand()%100 < p*100){// there is an directed edge from u to v:

 AdjList[u].push_back(v+1);

 Ecnt++;

 }

 this->E = Ecnt;

 this->ExpandUndirected();

}

72

// Private utility:

list<int> Di_Graph::LineParserList(string st){

 //1 3 6 7

 istringstream MyISS(st);

 int node;

 list <int> AVec;

 while(MyISS >> node){

 AVec.push_back(node);

 }

 return AVec;

}

// Private utility:

vector<int> Di_Graph::LineParserVector(string st){

 //1 3 6 7

 istringstream MyISS(st);

 int node;

 vector <int> AVec;

 while(MyISS >> node){

 AVec.push_back(node);

 }

 return AVec;

}

void Di_Graph::CreateFromEdgeSet(){

 set<int> NodeSet;

 //get nodes:

 for (set<pair<int, int> >::iterator p = EdgeSet.begin(); p != EdgeSet.end(); ++p){

 NodeSet.insert((*p).first);

 NodeSet.insert((*p).second);

 }

 // create adjlist:

 AdjList.clear();

 AdjList.resize(NodeSet.size());

 for (set<pair<int, int> >::iterator p = EdgeSet.begin(); p != EdgeSet.end(); ++p){

 int u = (*p).first - 1;

 int v = (*p).second;

 AdjList[u].push_back(v);

 }

 this->N = NodeSet.size();

 this->E = EdgeSet.size();

 this->ExpandUndirected();

 cerr << "#Edges "<< E<<endl;

}

73

File bipartite_graph.h

/**

 @file bipartite_graph.h

 @author Ngo Thi Tu Anh, ngotuanh@gmail.com

 @date July, 2012

 @section Description

 Header file for Bipartite_Graph class.

*/

#ifndef BIPARTITE_GRAPH_H

#define BIPARTITE_GRAPH_H

#include "di_graph.h"

#include <list>

#include <vector>

const int PLUS = +1;

const int MINUS = -1;

class Bipartite_Graph{

 public:

 int N;

 vector<int> Plus;

 vector<int> Minus;

 vector<vector<int> > AdjList;

 list<pair<int, int> > EdgeList;

 // constructors:

 Bipartite_Graph();

 Bipartite_Graph(Di_Graph);

 // Utility Functions:

 void PrintAdjList(vector<vector<int> > , int);

 void PrintGraph();

 protected:

 private:

};

#endif // BIPARTITE_GRAPH_H

File bipartite_graph.cpp

/**

 @file bipartite_graph.cpp

 @author Ngo Thi Tu Anh, ngotuanh@gmail.com

 @date July, 2012

 @section Description

 Implementation of Bipartite_Graph class.

*/

#include "bipartite_graph.h"

#include <iostream>

#include <iomanip>

// Constructors:

Bipartite_Graph::Bipartite_Graph(){ //ctor

}

Bipartite_Graph::Bipartite_Graph(Di_Graph g){

 N = g.N;

 for (int i = 1; i<=N; ++i){

 Plus.push_back(i);

 Minus.push_back(i + N);

 }

 AdjList.resize(N+N+2);

 // create Edges from adjcent list

 int i;

74

 list<int>::iterator j;

 int u,v;

 for (i = 0; i<g.AdjList.size(); ++i){

 u = i+1;

 for (j = g.AdjList[i].begin(); j!= g.AdjList[i].end(); ++j){

 if (*j != 0){

 v = g.N + (*j);

 this->AdjList[u].push_back(v);

 this->AdjList[v].push_back(u);

 this->EdgeList.push_back (pair<int,int>(u,v));

 this->EdgeList.push_back (pair<int,int>(v,u));

 }

 }

 }

}// construct from a directed graph

// Utility Functions

void Bipartite_Graph::PrintAdjList (vector<vector<int> > L, int side){

 int i;

 vector<int>::iterator j;

 int st=1, ed=N;

 if (side == MINUS){

 st = N+1; ed = 2*N;

 }

 for (i = st; i<=ed; ++i){

 cout <<"adj of "<<i<<": ";

 for (j = L[i].begin(); j != L[i].end(); ++j){

 cout <<*j<<" ";

 }

 cout <<endl;

 }

}

void Bipartite_Graph::PrintGraph(){

 cout <<" Bipartite Graph:"<<endl;

 cout <<" Plus nodes: ";

 for (vector<int>::iterator it=Plus.begin();it!=Plus.end();++it) cout <<*it<<" ";

 cout <<endl;

 cout <<" Adjcent List of Plus Nodes: "<<endl;

 PrintAdjList(AdjList, PLUS);

 cout <<" Minus nodes: ";

 for (vector<int>::iterator it=Minus.begin();it!=Minus.end();++it) cout <<*it<<" ";

 cout <<endl;

 cout <<" Adjcent List of Minus Nodes: "<<endl;

 PrintAdjList(AdjList, MINUS);

 cout <<endl<<"List of edges: "<<EdgeList.size()<<" edges"<<endl;

 list<pair<int,int> >::iterator it;

 for (it = EdgeList.begin(); it != EdgeList.end(); ++it){

 cout <<setw(4)<<it->first<<" -- "<<setw(4)<<it->second<<endl;

 }

}

