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Summary 

TRAIL has been widely studied for the ability to kill cancer cells selectively, but 

resistance has hindered its clinical usefulness. Among the multiple compounds which 

have been identified that sensitize cancer cells to TRAIL-induced apoptosis, LY303511 

(LY30) combined with TRAIL, has shown synergistic (greater than additive) killing of 

multiple cancer cell lines. 

In this thesis, we used computational modeling to study the synergistic killing of LY30 

and TRAIL. The project involves two parts: using previous experimental data to model 

the dynamics of synergy and ROS; and performing new experiments and modeling to 

investigate the casual role of ROS in LY30-induced cell sensitization. In the first part, 

we used ordinary differential equations to model individual effect of LY30 and TRAIL  

on HeLa cells, and then predict the synergy upon combined treatment. Model-based 

predictions were compared with in vitro experiments, and the combination treatment 

model was successful at mimicking the synergistic cell death caused by LY30 and 

TRAIL. However, there were significant failures of the model to mimic upstream 

activation at early time points, particularly the initial increase of caspase-8 activation. 

This flaw led us to perform additional measurements of early caspase-8 activation. 

Surprisingly, caspase-8 exhibited a transient decrease in activity after LY30 treatment, 

prior to strong activation. cFLIP, an inhibitor of caspase-8 activation, was up-regulated 

briefly after 30 minutes of LY30 treatment, followed by a significant down-regulation 
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over prolonged exposure. A further model suggests that LY30-induced fluctuation of 

cFLIP might result from tilting the ratios of two key ROS species, superoxide and 

hydrogen peroxide.  

In the second part of this thesis, to explore the hypothesis that ROS species mediate the 

ability of LY30 to increase death, we measured superoxide and hydrogen peroxide over 

time. Superoxide and hydrogen peroxide had been expected to increase, one after 

another, with similar degree, but we found that hydrogen peroxide, as measured by 

DCFDA, showed a rapid and significant elevation and superoxide did not. To unveil the 

truth beneath the perplexing phenomenon, we studied LY30-induced ROS through a 

close integration of in-vitro experiments and probabilistic modeling using Bayesian 

networks (BN). Bayesian network modeling interpreted the levels of measured species 

to infer that LY30-induced DCFDA fluorescence in HeLa is largely from a nitric oxide 

pathway. Confirming this prediction, our subsequent experiments found that 

LY30-induced death was dependent on peroxynitrite, and surprisingly independent of 

hydrogen peroxide. We also detected that LY30 causes calcium leaking (perhaps 

passive), which together with peroxynitrite, were responsible for 90% of LY30-induced 

cell sensitization to TRAIL. Bases on the phenomenon, we constructed a revised BN 

model to model LY30-regulated complex interaction among ROS, RNS and calcium in 

HeLa. Our results in LY30-induced sensitization of HeLa may be useful for 

understanding cancer sensitization in other cell types or with other similar drugs.  

Furthermore, our work demonstrates that computational modeling can exploit kinetic 
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data to identify novel effects, and to suggest which time intervals or which pathways 

may have transient effects that regulate a phenomenon of interest.   
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1 Introduction to Biological background 

1.1 Cancer and apoptosis  

Cancer is a major cause of worldwide death. It accounts for one in four deaths in the 

United States [1] and one in eight deaths worldwide [2]. According to Cancer Registry 

in Singapore, the proportion of death caused by cancer in Singapore rose steadily from 

14.8% (1972) to 27.1% (2002). The burden of cancer have doubled globally during the 

past decades [3]. In 2008, there is an estimates of over 12 million new cases and 

25 million persons alive with the diagnosis of cancer [4].  

Conventional cancer therapies include surgery, radiology and chemotherapy. As the 

oldest and most common method in cancer treatment, cancer surgeries have become 

less invasive in recent years with the development of techniques. However, the process 

still brings sufferings to the patients physically and emotionally. Chemotherapy refers 

to cancer treatment with an antineoplastic drug or drugs. Because chemotherapy targets 

multiple areas of the body at the same time, it can induce many adverse side-effects 

including depression of the immune system, tendency to bleed and gastrointestinal 

distress and such. Radiation refers to elimination of an entire tumor within a confined 

area and limits the damage to nearby cells. Radiation can cause the reduced white blood 

cells and platelets, which can lead to lower immunity to viruses. However, according to 

statistics in patients, it always followed with high rate of cancer recurrences and 

relapses and may develop resistant phenotype in patients.  
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The term “apoptosis” was coined in 1972 by an Australian pathologist John Kerr, who 

observed a number of common morphologic features in certain dying cells [5]. 

Apoptosis is the process of programmed cell death (PCD), which could occur in 

multicellular organisms [6]. The realization of the key role of apoptosis in 

cancer/malignant phenotype development dates back to the early 1970s that kinetic 

studies of tumor growth predicted that the growth is <5% of that observed cancer 

growth rates [7, 8]. For example, it is now clear that disrupted apoptosis by certain 

oncogenic mutations, such as Bcl-2 [9], p53[10, 11], leading to cancer initiation, 

progression and metastasis. Besides, it is well documented that most cytotoxic 

anticancer agents which are widely applied in chemotherapy-induced apoptosis, thus 

raising the possibility of treatment failure due to defects in apoptotic programs. 

Apoptotic events are characterized by morphological cell changes and finally cell death. 

These changes include cell blebbing, cell shrinkage, chromatin condensation, 

chromosomal DNA fragmentation, chromatin margination, cytoplasmic vacuolization, 

increase in cellular density, nuclear fragmentation, and apoptotic body formation[7].  

Apoptosis is controlled by various cell signals by either extrinsic inducers or intrinsic 

inducers. Extrinsic apoptosis (Figure 1.1.1a), as suggested by its name, begins outside 

of the cells through the activation of pro-apoptotic receptors by its apoptosis ligand on 

cell surface, including Apo2L/TRAIL and CD95L/FasL. The intrinsic pathway (Figure 

1.1.1b) is initiated from within the cell under cellular stress, such as DNA damage and 

hypoxia. 
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Figure1.1.1 Diagram of apoptosis pathway [12]. a) Extrinsic apoptosis pathway 

b) Intrinsic apoptosis pathway  

In extrinsic apoptosis, ligands bind to cell membrane and induce receptor clustering 

and recruitment of the adaptor protein Fas-associated death domain (FADD) and 

initiator caspases 8 and caspase 10, thus forming a death-inducing signaling complex 

(DISC) [13-15]. Formation of the DISC facilitates autocatalytic processing of initiator 

caspases through bringing procaspase molecules into close proximity. Processed 

caspase 8/ caspase 10 are released into the cytoplasm to activate effectors caspases 3, 

caspases 6, and/or caspases 7[12, 16]. As a key step affecting extrinsic apoptosis, 

formation of DISC is modulated by several inhibitory mechanisms, the most famous 

one is c-FLICE inhibitory protein (c-FLIP), which interacts with FADD and block 

initiator caspase activation [17]. 

In intrinsic apoptosis(mitochondrial pathway) pathway, cell fate is tightly controlled by 

the balance between pro-apoptotic group and anti-apoptotic group of the Bcl-2 family 

featured with Bcl-2 homology (BH) domains (BH1, BH2, BH3, and BH4)[17]. 
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Pro-apoptotic Bcl-2 promotes permeabilization of mitochondria membrane while 

anti-apoptotic Bcl-2 acts to prevent it. Anti-apoptotic Bcl-2 members include Bcl-2 and 

Bcl-xL which contain BH1, BH2 and BH3 domain. Based on BH domains, 

pro-apoptotic Bcl-2 proteins are divided into the subgroups which either contains 

several BH domains, e.g. Bax and Bak, or contains only the BH3 domain, like Bid, Bad, 

Bim, and NOXA [17]. Upon mitochondria membrane permeabilization, cytochrome c 

and the pro-apoptotic protein SMAC/DIABLO are then able to translocate from the 

inter-membrane space of the mitochondria into the cytosol [17].
 
SMAC/DIABLO 

protein released from the mitochondria promotes apoptosis by directly interacting with 

inhibitors of apoptosis proteins (IAPs) and disrupting their ability to inactivate the 

caspase [18, 19]. Released cytochrome c binds the adaptor apoptotic protease activating 

factor-1 (Apaf-1), forming a large multiprotein structure known as the apoptosome, 

which leads to catalytic activation of caspase 9 [12], and then activation of the 

downstream effector caspases 3, 6, and 7 [18].  

1.2 TRAIL as an apoptosis trigger 

TRAIL/Apo2L is short for Tumor necrosis factor-related apoptosis-inducing ligand. It 

belongs to the tumor necrosis factor (TNF) family of ligands which are capable of 

initiating extrinsic apoptosis through binding receptors. TRAIL is principally expressed 

by cells of the immune system in healthy organism [20]. TRAIL is a Type II 

transmembrane protein with an extracellular (C-terminus) domain, which can be 

cleaved, resulting in a soluble form. Among the 17 members in TNF family, TRAIL has 

been regarded as the most promising candidate in clinical application. In the following 
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section, we will give a detailed introduction of TRAIL about its pathway, clinical 

application and resistance.  

1.2.1 TRAIL induced apoptosis  

 

Figure 1.2.1 TRAIL induced apoptotic pathway [21]. TRAIL induces direct 

oligomerization of death receptors TRAIL1 (DR4) or TRAIL2 (DR5), which then 

leads to activation of the extrinsic and may also intrinsic pathways.  
activation;  inhibition.  

TRAI- induced apoptosis pathway is illustrated in figure 1.2.1. Upon TRAIL treatment, 

TRAIL receptor 1 (TRAILR1/DR4) or TRAIL receptor 1 (TRAILR2/DR5) bind to 

TRAIL and then form oligomerized receptors. The oligomerized receptors then recruit 

FADD and caspase 8/10 to form DISC. Upon DISC formation, caspase 8/10 is cleaved 

and activated, which in turn can cleave and activate caspase 3. The cells in which 

caspase-3 becomes directly activated by caspase-8 is defined as type I cells. In other 

tumor types, which are considered to be type II cells, the activated initiator caspases can 
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also activate the intrinsic pathway (mitochondrial pathway) [22, 23]. In the intrinsic 

pathway, the mitochondrial membranes permeabilization leads to the release of 

apoptotic factors such as cytochrome c. Upon entry into the cytosol, cytochrome c 

binds the caspase-activating protein Apaf-1 and procaspase-9, forming apoptosome and 

subsequently inducing processing and activation of caspase-9. Therefore, activated 

caspase-9 can cooperate with caspase-8 in the processing and activation of caspase-3, 

leading to the demise of the cell [24].   

1.2.2 TRAIL and its clinical application 

TRAIL has been long regarded as a promising ligand in cancer therapy. Firstly, it has 

been found of wide expression in various cell types. Compared with other members in 

the TNF family, mRNA of TRAIL is detected in wider variety of tissues including 

PBMC, prostate, ovary and such [25]. Besides, TRAIL is shown to induce apoptosis in 

a variety of cancer cell lines through TRAIL receptors DR4 and DR5, which are highly 

expressed on the surface of cancer cells but not in normal cells. Such feature of TRAIL 

favours its clinical application as a therapeutic strategy by selectively targeting of 

cancer cells while sparing normal tissues. TRAIL is currently undergoing phase I/II 

clinical evaluation for a variety of cancers and it holds real promise as a therapeutic 

strategy due to its selective targeting of cancer cells while sparing normal tissues [26, 

27]. 

1.2.3 TRAIL Resistance 
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TRAIL resistance happens due to defects in apoptotic signaling or redundant survival 

mechanisms [28, 29]. 

 

Figure 1.2.2 Mechanisms involved in TRAIL resistance [21]. TRAIL 

resistance can happens at 3 levels of the apoptosis signaling pathway: 1) at the 

DISC level where there are receptors down-regulation/ dysfunction, cFLIP 

upregulation, or caspase 8 down-regulation; 2) at mitochondrial level where there 

is regulation of Bcl-2 family members, and Smac; and 3) at IAP level with 
up-regulation of IAPs.  

According to clinicaltrials.gov, which is a result database for clinical trials, several 

types of human tumor have been reported to be resistant to TRAIL [30], for example, 

majority of breast, prostate, ovarian, and lung carcinoma, and multiple myeloma cells 

are resistant to apoptosis induced by TRAIL [31]. Such resistance can also occur in 

resistant clones of TRAIL-sensitive cells upon continuous TRAIL exposure [32]. 

Moreover, TRAIL have been reported to induce proliferative effects in glioma and 
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small cell lung cancer cell lines [20]. Further research revealed that TRAIL resistance 

can happen at 3 levels: 1) at DISC level, with down-regulation of death receptors or 

increase with cFLIP expression[33, 34]; 2) at mitochondria level with overexpression 

of antiapoptotic proteins of the Bcl-2 family or down-regulation of proapoptotic Bcl-2  

members [35]; and 3) at Inhibitor of Apoptosis Protein (IAP) level with up-regulation 

of IAPs to block caspase cascade [32]. Development of resistance in tumor is a serious 

obstacle to the effective clinical application of TRAIL. Therefore, the effort of 

exploring combination therapies to overcome resistance to TRAIL, or to induce 

re-sensitization to TRAIL, could be extremely important for enabling TRAIL-based 

therapies to succeed [27, 36-38]. 

Table1.1 Mechanisms of resistance in cancer cells to TRAIL-induced apoptosis[21] 
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1.2.3.1 cFLIP and TRAIL resistance 

Cellular FLICE-inhibitory proteins (cFLIP) have been widely regarded as apoptosis 

inhibitors [39, 40]. There are 13 distinct splice variants of cFLIP and three of them are 

expressed as proteins which are cFLIPS (short form at 26 kDa),  cFLIPR (found in Raji at 

24 kDa) and cFLIPL (long form at 55 kDa) [39, 40] (Figure 1.2.3). In these three 

isoforms of proteins, cFLIPL and cFLIPS are widely distributed forms that have been 

well studied in biological research [41]. cFLIPS has a short c-terminal of 20 amino acids 

followed with two death effector domains (DED) and the c-terminal has been regarded 

as crucial for ubiquitination and degradation [46]. cFLIPL has a much longer c-terminal 

than cFLIPS. It shares extensive homology with procaspase-8 but without a functional 

caspase domain [42].   

While the precise mechanism still remains elusive, cFLIPL and cFLIPS has been shown 

with varied regulatory in apoptosis due to the structural differences [43]. cFLIPS has 

been demonstrated to play an crucial role in inhibiting TRAIL-induced apoptosis [40, 

44, 45] through 1) disruption of DISC formation [40, 44, 45], 2) activation of Akt and 

sustained XIAP protein level [46, 47], and 3) inhibition of caspase-8 [46-48] at 

different levels of procaspase-8 processing [49]. cFLIPL, compared to cFLIPs, has been 

reported with dual role in apoptosis. cFLIPL has been shown to inhibit caspase-8 

activation at high levels, but enhance caspase-8 activation at low levels [40, 44]. The 

opposing effect with cFLIPL might reflect the fact that cFLIPL is capable of forming 

heterodimeric enzyme molecules with procaspases-8 and procaspases-10, which can 

cleave and activate the procaspases [44].  
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1.2.3.2 Death Receptors (DR4/5) and TRAIL resistance 

Death receptors belong to the super-family of tumor necrosis factor receptor. They are 

characterized by a cytoplasmic region which enables them to initiate cytotoxic signals 

in the presence of ligands [50]. Interaction of TRAIL with death receptor 4 (DR4) and 

death receptor (DR5) triggers the transduction of TRAIL-induced apoptotic signaling 

via the formation of DISC, allowing for activation of the downstream death executor 

caspases. Therefore, any changes with regard to the total protein level and/or surface 

expression level of DR4 or DR5 have a profound effect on the ability of TRAIL to 

function efficiently as a death-inducing ligand.  

A mutation of DR5 is a frequent event in many cancers and is often associated with 

aggressive cases, such as head and neck squamous, breast cancer cells and 

non-Hodgkin's lymphoma [51-55]. A lack of expression of DR4 in ovarian cancer cells 

was reported to be correlated with resistance to TRAIL-induced apoptosis [56]. 

Similarly, deficient surface expression of DR4 increase the resistance of colon cancer 

cells to TRAIL [57].  

1.2.3.3 Inhibitor of apoptosis (IAP) and TRAIL resistance 

The inhibitor of apoptosis (IAP) family of proteins consists of X-linked inhibitor of 

apoptosis (XIAP), cellular IAP1 (cIAP1), cellular IAP2 (cIAP2) and survivin [58]. All 

IAP proteins are structurally characterized with baculoviral IAP repeat (BIR) domain, a 

70−80 amino acid long motif which is important with its apoptosis inhibitory effect. 

They may contain one or several additional functional domains, such as really 

interesting new gene (RING) domain and the caspase activating and recruitment 

domain (CARD) domain [58]. 
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High IAP expression has been reported to be the cause of resistance to TRAIL in 

pancreatic cancer cells and colon carcinoma [59-62]. Down-regulation of IAP members 

restores cells’ sensitivities to TRAIL-induced apoptosis [63-67]. The inhibitory effect 

by IAPs can be relieved by mitochondrial protein Smac/DIABLO. Smac/DIABLO 

binds to and inhibits IAPs upon its release from the mitochondria during apoptosis, 

eliminating the interaction between caspases and IAPs.  

As TRAIL-induced apoptosis pathway requires proper collaboration of all the species 

involved in the pathway, disturbed balance between anti-apoptotic species and 

pro-apoptotic species, specifically strength tittering towards anti-apoptotic species due 

to either one species or multiple species may result in TRAIL resistance. However, it is 

usually difficult to identify the exact the cause to TRAIL resistance for each tumor type 

through pure biology approach, because it involves a systematic calibration and 

quantification of all the species in the TRAIL pathway.  

1.2.4 TRAIL Sensitization  

A direct solution to overcome TRAIL resistance is to identify the cause of resistance 

and then target at the cause to restore the cells’ sensitivity. However, it is usually costly 

and time consuming to identify the cause for each resistance cancer type. Currently, 

research has been carried out to find an ideal way to tackle cells’ resistance using 

chemical compounds or treatments. Reported effective chemical compounds include 

co-treatment of TRAIL with cycloheximide [68], Quercetin [69, 70], resveratrol [71], 

cucumin [72, 73], LY30 [74, 75] and so on. Effective treatments include radiation of 

ultraviolet B light (UVB) at sub-lethal dose [76], chemotherapy such as ADR, VP-16 
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and vincristine [77]. In addition, several molecule agents, such as Nitric Oxide (NO) 

[78], H2O2 [79], have been tested and confirmed with TRAIL sensitization effect.  

So far, 5 major mechanisms have been reported among all the sensitization methods 

and compounds, which including 1) up-regulation/oligomerization of Death Receptors 

(DR) [74, 75], 2) down-regulation of cFLIP[74, 80, 81], 3) ROS production[75, 82], 4) 

NF_KB inhibition [78], and 5) restoration of caspase-8 expression [83].  

1.3 LY303511 (LY30), a small molecule that re-sensitizes cancer cells 

to TRAIL 

1.3.1 LY30 is an inactive analog of LY29 

 

Figure 1.3.1 Structures comparison among LY303511, LY294002 and Quercetin. 

LY303511 (LY30) and LY294002 (LY29) are both derivative of quercetin which is a 

plant-derived flavonoid widely found in nature [84]. LY29 was developed based on the 

structure of Quercetin with a substitution of a morpholine ring. The morpholine ring of 

greatly enhances LY29’s specificity for PI3K inhibition, and LY29 has been widely 
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used as a specific PI3K inhibitor [85]. As a structural analogue of LY29, LY30 is 

usually employed as a negative control for PI3K inhibitory activity of LY29 [86, 87] 

(Figure 1.2.3).  

Despite a supposedly inactive compound of LY29, recent research has shown that 

LY30, instead of simply being a negative control of LY29, also triggers cellular events 

which may lead to its potential as anti-tumor candidates. This discovery opened a new 

door for TRAIL-sensitization.  

1.3.2 LY30 induces cell sensitization to TRAIL 

The small molecule compound LY30 (LY303511) has been reported to sensitize 

several cancer cell lines to TRAIL-induced apoptosis and vincristine-induced apoptosis 

[88-90]. Poh et al. [74] observed that LY30 can sensitize cervical cancer cell line (HeLa) 

to TRAIL-induced apoptosis in a great extent. LY29 was also reported to sensitize 

HeLa to TRAIL but with less potency. As observed in HeLa under combination 

treatment of LY30 and TRAIL, there is a strong activation of apoptosis cascade 

evidenced with rapid caspase-8 activation, significant mitochondria permeabilization 

and XIAP cleavage. Towards the goal of finding out the mechanism of LY30-induced 

sensitization, Poh et al. conducted extensive experiments to measure possible targets 

for TRAIL sensitization. Among the targets, they detected down-regulation of cFLIP 

and oligomerization of DR5 under LY30 treatment in HeLa. They hypothesized LY30 

induced sensitization in HeLa through cFLIP down-regulation and DR5 

oligomerization. Similar effect of sensitization to TRAIL was also observed in an acute 

T cell leukemia (Jurkat).  
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In an independent study, Shenoy et al. reported that LY30 can greatly sensitize a 

neuroblastoma cell line (SHEP-1) to TRAIL-induced apoptosis [75]. To address the 

question of how LY30 sensitize SHEP-1 to TRAIL, they measured the concentrations 

of death receptors and found that LY30 elevated both of their concentrations by 1 folds 

increase [75], which suggested that LY30 increases sensitivity of SHEP-1 through 

increasing concentrations of death receptors.  

1.3.3 LY30 induces ROS production 

Poh et al. reported that in several cancer cell lines, LY30 also greatly enhanced cell 

death by vincristine (a chemotherapeutic agent) at non-apoptotic concentrations [85]. In 

their work, they also found a significant increase of intracellular ROS as detected by 

DCFDA in LY30-treated cells. As it has been well documented that abnormal ROS 

production affects cell death [91-94], including apoptosis [95, 96], they hypothesized 

that LY30 induced cell sensitization to vincristine through significant H2O2 production.   

Shenoy et al. [75] also observed that LY30 significantly increased ROS level in 

SHEP-1 as evidence with great increase of DCFDA fluorescence insensitivity in 

LY30-treated SHEP-1. Through additional administration of catalase, they were able to 

prevent cell death and block LY30-induced increase of death receptors. They proposed 

that LY30 induces SHEP-1’s sensitization to TRAIL through Hydrogen Peroxide-
 

dependent elevation of death receptor.    

1.3.4 Other findings about LY30 



15 

 

Researches revealed that LY30 is a compound with many interesting effects including 

anti-tumor properties. In a 2003 study, Wasim et al. observed that both LY30 and LY29, 

but not wortmannin, are capable of blocking Kv currents in MIN6 ß cells in a potent 

manner [97]. They reported that LY30 can block Kv channel accurately and directly 

(with current inhibition occurrence within 1 min after introduction) through a pathway 

which is neither PI3-K dependent nor CKII-dependent [97].  

After that, Kristof et al. in 2005 reported that LY30, compared to LY29, has more 

specificity inhibiting mammalian target of rapamycin (mTOR)-dependent cell 

proliferation through inhibiting its downstream effector p70 S6 kinase (S6K). Their 

study revealed that administration of LY30 in both A549 and primary pulmonary artery 

smooth muscle cells leads to significant reduction of proliferation without causing 

apoptosis. Furthermore, they found that LY30 is able to inhibit cell proliferation 

through inhibiting casein kinase 2 (CK2) which regulates reduced G(2)/M progression 

as well as G(2)/M-specific cyclins which is independent of mTOR pathway. The 

anti-proliferation effect of LY30 was confirmed on athymic mice implanted with 

human prostate adenocarcinoma tumor [98].  

1.4 Reactive oxygen species (ROS) and cell viability 

ROS represents a family of chemical species with high reactivities, and they are  

usually formed due to incomplete reduction of oxygen [99]. We will introduce 

intracellular ROS sources, ROS family and ROS scavenge mechanisms in following 

sections. 

http://jpet.aspetjournals.org/search?author1=Arnold+S.+Kristof&sortspec=date&submit=Submit
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1.4.1 Introduction to reactive oxygen species  

Reactive oxygen species (ROS) is a collective term that describes the high reactive 

chemical species which are formed through incomplete reduction of oxygen. ROS can 

be converted from triplet oxygen by either energy transfer or electron transfer reaction. 

The former reaction produces singlet oxygen and the later one results in sequential 

production of superoxide, hydrogen peroxide and hydroxyl radical and so on. Under 

physiological conditions, ROS is continuously produced in cellular organism as a 

by-product of various metabolic pathways localized in different cellular compartments 

[100]. ROS family contains oxygen radicals such as superoxide (O2
•–

), hydroxyl (OH.) 

and nonradicals that are can easily converted into radicals, such as peroxynitrite  

(ONOO
-
), HOCl, and H2O2 ( Table 1.2).  

Table 1.2 ROS species 

 Name Radical Reactivity Half-life 
Statistics from 

Pubmed 

O2
•–

 Superoxide yes Low  microsecond 72418 

OH
.
  

Hydroxyl 

radical 
yes 

extremely 

High 
nanosecond 13328 

H2O2  

hydrogen 

peroxide no Medium minutes 50731 

ONOO
-
 Peroxynitrite  no 

extremely 

high 
milliseconds 6295 

RO2
.
 Peroxyl Radical yes high 

ten 

milliseconds 1179 

RO
.
 Alkoxyl  yes 

extremely 

high 

one 

microsecond 
204 
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1
O2 Singlet oxygen no high  

one 

microsecond 5305 

HOCl- 
Hypochlorous 

acid 
no   minutes 4965 

O3  Ozone  no high minutes  

HO2
.
 Hydroperoxyl  yes high seconds 276 

1.4.2 Sources of ROS 

Mitochondria, especially mitochondria membrane, are the major physiological sources 

of ROS. ROS is formed as “by-product” from Electron-transferring chain(ETC) or 

enzymatic system in mitochondria, which account for 1-2% of total O2 consumption 

[101]. The predominant ROS production sites in mitochondria are Complex I (NADH 

Hydrogenase) [102, 103] and Complex III (Ubiquinol/cytochrome c oxidio-reductase) 

[104] where electrons may leak out of the ETC to partially reduce molecule oxygen, via 

a single electron transfer, to form O2
•–

. Formed O2
•–

 is then converted to H2O2 in the 

presence of high SOD inside mitochondria. 

The Endoplasmic Reticulum (ER) is another membrane-bound ROS production site. In 

smooth ER, cytochrome P-450 and b5 are the enzymes that can oxidize unsaturated 

fatty acids and xenobiotics and at the same time, reduce O2 to O2
•–

 and/or H2O2 [85]. 

Evidence showed that the high oxidative environment in ER create a milieu that favors 

protein folding and secretion [86, 87]. Besides inside ER, Gillette et al. observed ROS 

production on the membrane of ER when supplemented with NADH or NADPH [88]. 

It has been proved that ROS production on ER membrane is related with the residence 

of two newly identified members in NADPH oxidase (NOX) family, NADPH oxidase 



18 

 

4 (NOX4) and NADPH oxidase 5 (NOX5) [89-95], which have been reported to 

produce H2O2 directly.  

Peroxisomes are another important source of total cellular H2O2 production [105]. A 

number of H2O2-generating enzymes have been found in peroxisomes, such as 

glycolate oxidase, L-a-hydroxyacid oxidase, and fatty acyl-CoA oxidase [106, 107]. 

Generated H2O2 in Peroxisomal can oxidize a variety of substrates in “peroxidative” 

reactions, which are important in proper function of liver and kidney cells to detoxify a 

variety of toxic molecules [107].  

ROS is also widely reported to be produced by NOX family which is composed of five 

NOX isoforms (NOX 1–5) and two homologous oxidases (Duox1 and Duox2). These 

NOX members all share the ability to generate O2
•– 

and/or H2O2 through reduction of 

molecule oxygen using NADPH as the electron source .[108] 

In addition to the intracellular organelles that produced ROS, cells also contain a 

number of soluble enzymes in cytosol such as xanthine oxidase and tryptophan 

ioxygenase, which can generate ROS during catalytic cycling. Among the enzymes, 

xanthine oxidase is the most extensively studied one to generate O2
•–

 in vitro with the 

effect of ROS on diverse cellular processes [109]. 

1.4.3 ROS stress and ROS scavenger system 

Although ROS has been traditionally regarded as a detrimental bi-product of cellular 

respiration, accumulating evidence suggests that ROS are not only injurious 

by-products of cellular metabolism but also essential participants in cell signaling and 
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regulation [110]. Generation of H2O2 in response to various pathogens elicits localized 

cell death to limit spread of the pathogen in plant cells [111] and a more systemic 

response with the induction of defence genes [112].  

On the other side, disturbed ROS level may induce cellular stress which is called ROS 

stress. Cellular systems generate oxidative stress in response to a number of adverse 

environmental factors (e.g., photo-oxidations and emissions) [100]. Increased ROS 

levels are known to regulate various biological pathways, including promoting cell 

proliferation through constant activation of transcription factors like NF-kB and AP-1 

[113], activation of associated receptor tyrosine kinases [114], and promoting apoptosis 

by stimulating pro-apoptotic signaling molecules, such as JNK and p38 and so on 

[115]. 

Severe oxidative stress may induce DNA damage that leads to genomic instability, 

which may contribute to cancer. To avoid cellular damage from oxidative stress, cells 

evolved with sophisticated antioxidative defence strategy to tightly control the 

equilibrium of ROS. Roughly, ROS scavenging mechanism can be divided into 

nonenzymatic and enzymatic mechanisms.  

Nonenzymatic antioxidants include major cellular redox buffers ascorbic acid (ASH) 

[116, 117], glutathione (GSH) [219,220], phenolic compounds, alkaloids, non-protein 

amino acids and a-tocopherols [100]. 

Enzymatic ROS scavenging mechanism include superoxide dismutase (SOD), 

glutathinone peroxidast (APX) and catalase (CAT), Glutathione peroxidase (GPX) and 

so on.  
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SOD is widely expressed in all cellular organisms and in all subcellular compartments 

to defend with oxidative stress [118]. According to metal cofactors, SODs are classified 

into three types: the manganese SOD (MnSOD, SOD-2) [119], the copper/zinc SOD 

(Cu/ZnSOD, SOD-1) [120] and the iron SOD (FeSOD) [121], which are mainly 

localized in cytosol, mitochondria and peroxisome, and chloroplast in plants, 

respectively. SOD has been proposed as one of the most effective intracellular 

enzymatic antioxidant that provides the first line of defence against the toxic effects of 

elevated ROS levels. SOD removes O2
•–

 through catalyzing the conversion from O2
•–

 to 

H2O2, which is 10,000 fold faster than spontaneous dismutation  [59].  

Catalase was first identified in 1818 as a potential breakdown substance of H2O2 and 

later was named as catalase by Oscar Loew in 1900 [68]. Catalase has been reported as 

one of the enzymes with highest turnover number. Specifically, one catalase molecule 

is able to scavenge 6 million molecules of H2O2 to H2O and O2 per second [68, 69]. 

Catalase is found to be widely expressed in peroxisome and responsible for removing 

of H2O2 generated in peroxisomes by oxidases [70].  

1.4.4 ROS signaling and cell death 

It is well accepted that ROS, according to the type and concentration, plays key roles in 

diverse signaling pathways to regulate cell proliferation and cell death [122]. For 

example, ROS has been reported in regulating cell-cycle checkpoints, cysteine 

proteases and transcriptional activation or repression, and mitogen-activated protein 

kinases (MAPK) [73]. Excess production of intracellular ROS causes necrotic cell 

death, which is an inflammatory cell death as compared to apoptosis, in fibrosarcoma 
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cells [123]. Oxidative stress with milder elevation of ROS may lead cell to apoptosis 

[124], featured with the activation of the caspases cascade. ROS induced apoptosis 

pathway may involve inhibition of MnSOD, activation of MAP kinase kinase kinase 

(MAPKKK) or both [123]. Reduced concentration of intracellular ROS tends to 

promote cell proliferation with mitogenic responses through tyrosine phosphorylation 

of phosphatises, activation of growth factor receptors or activation of transcription 

factors that control proliferation such as NF-ĸB [125] 

More recent finding revealed that it is specifically the ratio of O2
•–

 to H2O2, in a high 

extent, determines the cell fate of necrosis, apoptosis or proliferation [74-77]. A high 

ratio of O2
•–

 to H2O2 antagonizes apoptosis by triggering pro-survival pathways such as 

PI3K/Akt and ERK [78, 79]. In contrast, a low ratio of O2
–
 to H2O2 promotes apoptosis 

through intracellular acidification [74], activation of caspase-3 and caspase-9 [80], 

down-regulation of cFLIP [81], and down-regulation of NHE-1 [75, 82]. In this thesis, 

we will mainly focus on H2O2 and O2
•–

 as the two species have been received most 

attention. 
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2 Introduction to computational modeling in biology  

2.1 The significance of computational modeling in biology 

With the development of biological techniques, biologists have made amazing 

advances on understanding cellular behaviour such as apoptosis and cell cycle [126, 

127], response to cytokines, growth factors and hormones [128-130], gene regulation 

and expression [131, 132] , ion channels[133, 134] and so on. Although the advances in 

biological approaches towards more accurate and more quantitative experimental 

results will continue, it is well accepted that to obtain an in-depth insight into the 

functioning of biological systems through pure biological techniques is almost 

impossible [135]. Biological system are regarded as “complex systems” which involves 

a large number of functionally diverse sets of elements interact selectively and 

nonlinearly to cooperate in a highly regulated network, thus producing coherent rather 

than complex behaviours [135], and it is difficult to understand the cooperative 

relationship of the cellular components, e.g. synergistic, additive, or exclusive, using 

conventional biological techniques.  

To develop a systematic view of how cells work, how cellular processes are regulated, 

and how cells response to their changing environments, it has motivated the emergence 

of systems biology which seeks to integrate various method to achieve a full picture of 

how the individual bio-molecules interact and evolve in time and space to realize the 

various cellular functions [136]. Systems biology integrates many different disciplines 

including biology, mathematics, computer science, and so on towards the goal of a 
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systematic understanding of a specific biological phenomenon [136]. A basic task is to 

incorporate all the relevant biological processes into a computational model that is able 

to represent a whole cell or even an entire organism [136]. Simulation through various 

computational models provide a way to predict dynamics of the system and thus to test 

the underlying assumption through comparison with experimental observation. In 

detail, computer models are able to predict detailed behaviours of the system based on 

known and assumed interactions. Such predictions are then compared with 

experimental observations. Inconsistency between prediction and observation suggests 

that the assumption under the model is either incomplete or incorrect while models that 

can pass the initial validation can be used for further predictions and experimental 

validation  [135].  

2.2 Methods of computational modeling in biology 

To facilitate studying the complex behaviour of biological pathways, a variety of 

computational models have been proposed ranging from qualitative models that focus 

on the generic properties of biological networks [137] to quantitative models that can 

simulate the time course of biological pathways under various conditions [138]. The 

choice of modelling method, whether qualitative or quantitative, is highly dependent on 

the target of the modelling task and also constraint with data quality and quantity. 

Widely-used biological models include Boolean network models, models that defined 

as a set of Ordinary Differential Equations (ODE), and Bayesian network models [139]. 
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Computational biology has been applied in two major fields of knowledge discovery 

and hypothesis test. In knowledge discovery, hidden patterns or features can be 

extracted from huge quantities of experimental data using sophisticated data mining 

approaches, and thus forming hypotheses. In hypotheses test, various biological 

hypotheses can be verified with in silico experiments, therefore providing reference 

information for in vitro and in vivo studies. 

Knowledge discovery has been applied extensively in bioinformatics to predict protein 

structure from sequence and regulatory networks from gene expression profile. The 

predictions are formed with heuristics methods that often involve sophisticated 

statistical approaches ( hidden Markov models) [135]. 

Model simulation attempts to simulate the dynamics of biological systems in order to 

test the validity of the underlying assumptions through comparison between behaviours 

of computer-executable models and experimental observation. Under the situation of 

inconsistency between simulation and experimental results, we can be informed that 

our knowledge on the system is incomplete and the key points that causes the 

inconsistency may be tested; under the situation of consistency between simulation and 

experimental results, we can utilize the models that survive initial validation for further 

predictions with experiments [135]. 

2.3 Applications of computational modeling in biology  

As an efficient aid in theoretical and experimental study of complex biological 

pathways, a variety of computational models have been constructed ranging from 
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qualitative models [137] and quantitative models [138]. With the development of 

specific techniques of various algorithms and software [140, 141], we are capable of 

answering specific biological questions of varying details that may be not intuitive to 

human brains [142, 143].  

As a promising candidate in cancer therapy, TRAIL has also received a lot of attention 

in the field of pathway modelling. There have been several research groups working on 

TRAIL-induced apoptosis pathway with varied resolutions. This work has uncovered a 

more systematic understanding of the network dynamics.  

The most comprehensive work on modeling TRAIL-induced apoptosis was carried out 

by Albeck et al. [142]. By integrating various experimental assays with sophisticated 

mathematic modeling on apoptosis pathway, they identified that XIAP and degradation 

of effector caspases are the cause that delay the gap between initiator caspase activation 

and mitochondrial outer membrane permeabilization (MOMP) [142]. Their later study 

further demonstrated that Bcl-2 family members, Smac, and the pore assembly on 

mitochondria are all critical for “snap-action switch” of MOMP [143]. More details of 

Albeck’s modelling techniques will be introduced in section 4.1.4. 

Another relevant modeling work focused on the upstream of the TRAIL pathway [144]. 

Zhang et al. [144] looked at the inhibitory effect of decoy receptor (inactive form of 

death receptors) on the apoptosis pathway and confirmed the "pre-ligand binding 

hypothesis" that decoy receptors inhibits TRAIL pathway through pre-occupying with 

death receptors. They also concluded that TRAIL-receptor interactions, the caspase-8 

and caspase-3 activation, the Smac/IAP inhibition, and Bid activation are all the key 

events towards cells’ decision of death [144].   
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To investigate the resistance mechanisms to TRAIL human fibrosarcoma cells, 

Selvarajooa’s group constructed a big network that incorporates apoptosis pathway and 

cell survival pathway [91]. Their finding suggested targeting at p62 may overcome 

TRAIL resistance, which offers a valuable prospective to TRAIL-based cancer therapy 

[91]. 

This thesis is organized as follows: we will describe the details of materials and 

methods of biological assays and mathematic models in chapter 3; in chapter 4, we will 

start with analysis of the dynamics of synergy of LY30 and TRAIL and end with the 

prediction of LY30 induced changes of O2
•–

 and H2O2 ; in chapter 5, we begin with 

testing the predictions that emerged at the end of chapter 4, and identified a variety of 

puzzling results, including species beyond of O2
•–

 and H2O2 that are implicated in death, 

such as nitric oxide (NO) and calcium(Ca
2+

); chapter 6 will apply a probabilistic 

modeling method, Bayesian networks, to the task of interpreting the complex data from 

chapter 5.  Finally we will conclude in chapter 7 with a summary of LY30-induced 

effects. 
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3 Materials and methods 

3.1 Biological Experiments 

3.1.1 Cells and Treatments 

HeLa was purchased from American Type Culture Collection (ATCC, Rockville, MD, 

USA) and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% FBS, 1% L-glutamine, and 1% S-penicillin. HeLa cells were 

plated at 0.125 million cells/well in 24-well plates (and proportionally for other size 

plates) and grown overnight until 80% confluent.   

3.1.2 Chemicals and Reagents 

LY30 was obtained from Alexis Biochemicals (Lausane, Switzerland).  

EGTA-am, BAPTA-am and Thapsigargin were purchased from Invitrogen life science 

(Eugene, Oregon, USA).  

Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt), catalase, crystal 

violet, DMSO, Tween-20, EDTA, DTT, DDC, L-NAME, ATP releasing agent, 

Lucigenin (bis-N-methylacridinium nitrate)  were purchased from Sigma Aldrich (St. 

Louis, MO). 

TMB-8, 2APB were purchased from Calbiochem (Darmstadt, Germany) 
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TRAIL and fluorogenic substrates of caspase-8 (Ac-IETD-AFC), caspase-3 

(Ac-DEVD-AFC) were purchased from Biomol (Plymouth Meeting , PA, USA).  

The Coomassie Blue reagent were purchased from Pierce Biotechnology (Rockford, 

IL,USA).  

Trypsin was purchased from Hyclone, Logan, UT. 

10x PBS, 10 x SDS, Tris HCl buffer (pH 7.4) were purchased from NUMI Media 

Preperation Facility (NUS, Singapore). 

3.1.3 Antibodies 

Rabbit polyclonal Anti-cFLIP, Mouse Monoclonal Anti-β-Actin, Mouse Monoclonal 

Anti-GAPDH were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

Rabbit polyclonal Anti-Caspase-8 was purchased from Cell Signaling Technology, Inc. 

Danvers, MA. 

3.1.4 Flow cytometry or confocal microscopy 

CM-H2DCFDA-am(DCFDA), DAF-FM, DHE (Dihydroethidium), MitoSOX, ER 

tracker, Mito-Tracker were from invitrogen, Fluo-4 AM Calcium Indicators, Fura2-am, 

Fluo-4 NW (no wash) calcium assay kit were purchased from molecule probe, Eugene, 

Oregon, USA.  

bis-N-methylacridinium nitrat (Lucigenin) were purchased from Sigma Aldrich (St. 

Louis, MO).  
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3.1.5 Treatments  

All treatments with LY30 (Alexis, Switzerland) and TRAIL (Biomol, Plymouth 

Meeting, PA, USA) used the methods and doses following Poh’s protocal [88]; all 

combination treatments of LY30 and TRAIL involved pre-incubation of cells with 

25µM LY30 for one hour before adding 20 ng/ml TRAIL.   

Experiments with superoxide scavenger Tiron was applied 10mM to cells 1 hour before 

adding LY30.  Experiments with the H2O2 scavenger catalase (C3511 catalase from 

bovine liver, Sigma-Aldrich) were administrated into wells at doses of 2000 units/ml 

one day before the treatment of LY30. On the second day, cells were changed with 

fresh media and catalase was added again at the same concentration (2000units/ml; 

4000 units/ml) together with LY30 (25uM). Peroxynitrite scavenger FeTPPS was 

administrated into cell samples at concentrations of 25uM, 50uM and 100uM one hour 

before LY30 treatment. Cu/ZnSOD (SOD-1) inhibitor DDC was applied to cells at 

concentrations of 200mM or 400mM with 2 hour pre-incubation before LY30. 

Thapsigagin was applied at the concentrations of 1mM.   

3.1.6 Cell viability assays  

In cell viability assay, HeLa cells were plated in 24 well plates (110
5 

cells/well) 

overnight to reach 80% confluent next day prior to treatment. For single treatment, 

HeLa cells were treated with either LY30 (25uM) or TRAIL (20ng/ml) for 25 hours and 

24 hours (LY30 was added 1 hour earlier to be consistent with combination treatment). 

For combination treatment of LY30 and TRAIL, HeLa were pre-incubated with 25µM 

LY30 for 1 hour and then treated with 20ng/ml of TRAIL for a period of 24 hour. For 
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inhibitory effect, various inhibitors were added into sample wells with optimized 

concentrations specified in Treatment section (section 3.1.5). For example, Tiron was 

added at concentration of 10mM before incubation with LY30. Cytotoxicity was 

determined by the crystal violet assay.  

After drug treatment, cells were first washed with 1xPBS, and then stained with crystal 

violet for 20 minutes. The excess crystal violet solution was washed away using 

distilled water. For quantification, crystal violet was dissolved in 1% SDS and shaked 

for 1 hour before conducting measurement using absorbance at 595nm with a Tecan 

microplate reader.   

3.1.7 Caspase activity assays 

HeLa cells, after the indicated treatments and incubations, were harvested, washed with 

1xPBS, re-suspended in chilled cell lysis buffer (BD Pharmingen, San Diego, CA, 

USA), and incubated on ice for 10 min.  Caspase-3 and Caspase-8 enzyme activities 

were measured using fluorogenic substrates Ac-DEVD-AFC and Ac-IETD-AFC 

respectively as reported previously [88]. 

3.1.8 SDS-PAGE and Western blotting  

HeLa cells were grown in 60mm Petri dishes (6 well-plate) until 80% confluent, and 

treated with LY30 (25uM) for the indicated durations. Cells were harvested and washed 

once with 1xPBS before lysis using cell lysis buffer (150mM NaCl, Tris-HCl 7.4 and 1% 

Nonidet P40) with a cocktail of protease inhibiors (1mM PMSF, 10 µg/ml aprotinin, 20 

µg/ml pepstatin A and 10µg/ml leupeptin). 100µg of cell lysate was then subjected to 
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SDS-PAGE on a 12% polyacrylamide gel before being electro-transferred onto 

Immobilon-P membranes (Millipore Corporation, Bedford, MA). Membranes were 

blocked using 5% non-fat dry milk in TBST (TBS with 0.5% Tween20) and probed 

overnight at 4
o
C with cFLIP antibody (Santa Cruz Biotechnology Inc. Santa Cruz, CA. 

U.S.A). β-actin or GAPDH (both from Santa Cruz Biotechnology Inc. Santa Cruz, CA.) 

was used as a loading control. Primary antibodies were detected using HRP conjugated 

anti-mouse or anti-rabbit antibodies and visualized using enhanced chemiluminescence 

detection (ECL reagents from Roche, Indianapolis, IN, USA). Densities were 

quantified using Image J (http://rsb.info.nih.gov/ij/).  

3.1.9 Flow cytometry measurements 

Data collection  

After specific treatments, cells were firstly washed with 1XPBS, and then loaded with 

fluorescent dyes at 37°C for 15 minutes. After that, cells were washed again with 

1XPBS and then placed under flow cytometry with optimal wave lengths. DCFDA for 

H2O2 and ONOO
-
, DAF for NO, and Fluo-4 am for Ca

2+
 are analyzed with excitation 

wavelength 488 nm and emission 517 nm. For DHE, detection was conducted with 

excitation at 400 nm and emission at 590 nm. For each treatment, at least 10,000 events 

were obtained. 

Data Analysis 

First of all, cell gating is applied to all the cells under Flow cytometry to get rid of 

unhealthy cells according to side scatter (SS) and Forward scatter (FS), which measure 

cell size and optical homogeneity correspondingly. Once a gate is set, it will be applied 

http://rsb.info.nih.gov/ij/
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to all the samples through the experiment. Fluorescence yield in each gated sample is 

visualized through either scatter plot or histogram, and absolute fluorescence is the 

average fluorescence of the gated population. For clear comparison, each sample is 

normalized according to the formula _

_

i measured unstained

i

CTL measured unstained

F F
R

F F





 where Ri is the 

normalized concentration of sample i. Fi_measured is the absolute fluorescence from ith 

sample, Funstained is the absolute fluorescence from unstained control. FCTL_measured is the 

absolute fluorescence from untreated control sample. 

H2O2 measurements 

Intracellular concentration of H2O2 was determined with DCFDA, which is oxidized to 

a fluorescent form by H2O2 and its free radical products. After specific treatments, cells 

were washed with PBS, trypsinized and after that loaded with 5 μmol/L of DCFDA at 

37°C for 15 min, and then placed under flow cytometry using excitation wavelength of 

488 nm and emission of 517 nm. For each treatment, at least 10,000 events were 

obtained and then analyzed using software Submit.   

NO measurement using DAF-FM 

For Nitric Oxide (NO) measurement, NO indicator  is chosen as cell membrane 

permeable indicators DAF-FM diacetate[145]. DAF-FM diacetate is an sensitive 

reagent for quantifying NO concentrations. Its fluorescence yield is reported to increase 

160-folds after reacting with NO.  

After specific treatments, cells were washed with PBS, loaded with 5 μmol/L of 

DAF-FM diacetate at 37°C for 15 min, and then placed under flow cytometry using 

excitation wavelength of 488 nm and emission of 517. For each treatment, at least 
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10,000 events were obtained. Obtained data are then analyzed using software 

SUMMIT.    

O2
•– measurement using DHE and MitoSOX 

For superoxide (O2
•–

) measurement, cell membrane permeable indicators DHE is 

incubated at a concentration of 20uM for 15-20 minutes. It is reported that DHE forms a 

red fluorescent product upon reaction with superoxide anions [146]. Fluorescence of 

DHE is obtained at excitation of 400 nm and emission at 590 nm.  

For specific detection of mitochondrial superoxide, treated cells are stained with 

MitoSOX at concentration of 10uM for 15-20 minutes. Fluorescence is obtained at the 

same wavelength as DHE.  

Ca2+ measurement using Fluo-4 am 

For Ca
2+ 

measurement, cells were firstly washed with 1 x PBS and then stained with 

cell membrane permeable indicators Fluo-4 am at a concentration of 5uM for 30 

minutes. Then, cells were changed to indicator-free medium for another 30 minutes to 

remove any dye that is non-specifically attached on the cell surface. After that, cells 

were placed under flow cytometry for further analysis.  

3.1.10 O2
•– measurement using lucigenin 

Lucigenin is a di-acridinium compound to detect intracellular superoxide. [147, 148]. 

In our experiments, chemoluminescence is obtained after adding lucigenin to fresh cell 

lysate.  
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HeLa cells were seeded in 100-mm tissue culture plates 24 hours before performing the 

experiment. After washed once with lX PBS, the cells are then detached with 1X 

trypsin and transferred to a sample cuvette, and centrifuged at 1200 rpm at 25 ° for 5 

min. The supernatant is removed, and the cell pellet is re-suspended in 400 ml of lx 

ATP releasing buffer at room temperature, after that 100 ul of 850 uM lucigenin stock 

solution was added into cell lysate immediately before the reading. 

3.1.11 Ca
2+

 measurement using Fura-2 

Data collection 

Cells were incubated with Fura-2 AM in calcium measurement buffer at a 

concentration of 5uM for 30 minutes at room temperature, and then they were changed 

into indicator-free buffer (HBSS containing 1mM Ca
2+

) for 30 minutes for 

de-esterification of intracellular AM esters. After that, cells were brought to 

spectrofluorimeter for calcium measurement. Once the baseline ( 380

380

F

F









: fluorescence 

intensity ratio between bound calcium and free calcium) is stable, drugs (LY30 or 

Thapsigargin) were added according to specified concentrations, sequence and 

incubation time. After that, cells were finally treated with 0.05% Triton X-100 for 

calculation of Rmax and 100 mM EGTA (5 mM final) for Rmin.   

Data analysis 

Intracellular free calcium concentration is calibrated through formula:  

2 min

max

( )
[ ]

( )
d

R R
Ca K Q

R R

 



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In this formula, R refers to measured fluorescence ratio between 340 and 380 ( 380

380

F

F









), 

where Rmax and Rmin are calculated maximum fluorescence ration (calculated through 

Triton X-100 treatment) and minimum fluorescence ration (calculated through EGTA 

treatment ). Kd is the Ca
2+

 dissociation constant of the Fura-2, which can be calculated 

with known concentration Ca
2+

. Q is the calculated ratio of Fmin to Fmax at λ2 (~380 nm).  

3.1.12 Ca
2+

 measurement using Spinning Disk Confocal Microscope 

(SDCM) 

Cells are seeded win 8-well chamber with 25000 cells per well and then let them grow 

for 24 hours. On the next day, cells were first washed with warm tyrosin buffer and then 

stained with Fluo-4 am at 25uM and probenecid at 250uM in tyrosin buffer for 1 hour at 

room temperature. After that, they were washed twice before measurement under 

Spinning Disk Confocal Microscope (SDCM). For Calcium measurement with 

Thapsigagin treatment, images were taken for 6 minutes with interval of 2 seconds. For 

calcium measurement with LY30 treatment, images were taken for 45 minutes with 

interval of 15 seconds.  

Data analysis was conducted through fully-automated image processing software 

developed by Fivaz group. Refer to [149] for details and procedure. The algorithm 

description and example demonstration is taken from their published paper and shown 

in Figure 3.1.1.  
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Figure 3.1.1 Algorithm description of Marker-based watershed segmentation 

by Wong et al. [149]. (a) Workflow for cell segmentation algorithm. (b) Raw 

image of cells from confocal microscopy. (c) Binary processed image (d) Image 

processed after “opening-by-reconstruction” and “closing-by-reconstruction”. (e) 

Identification of cell regions. (f) Cell outline (green) after cleaned-up. (g) 

Processed result using segmentation algorithm. (h) Numbered objects from panel 
g.  

HeLa cells were placed under SDCM for image acquisition after stained with Fluo-4 45 

minutes. Refer to materials and method for detail procedure.  Each Treatment was 

carried out at the 5th round of image acquisition. 
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3.1.13 Ca
2+

 measurement using Microplate reader  

HeLa cells were seeded in 96 black well-plate (FluoroNunc™, Themo Scientic, Black 

plates for fluorescence reading with minimum back-scattered light and background 

fluorescence) 25000 cells per well and grew for 24 hours. On the next day, cells were 

washed with 1 x PBS, and were incubated with Fluo-4 NW buffer with probenecid (5 

mM) at 37°C for 30 minutes and then at room temperature for an additional 30 minutes.  

After designed treatments were conducted on the cells, fluorescence intensities were 

obtained through reading of fluorescence emission at 517 nm and excitation at 488nm.  

3.2 Computational Simulations 

3.2.1 ODE model construction and simulation of LY30+TRAIL model 

KroneckerBio  toolbox [150] in MATLAB (Natick, MA, USA) and Copasi [151] were 

used for simulating the ODE models.  In the TRAIL pathway model, synthesis and 

degradation effects were only modeled for caspases. Protein degradations were 

modelled as first-order reactions, and protein synthesis were modelled as zeroth-order 

reactions. Noted that the synthesis rates and degradation rates were estimated so that the 

steady state concentrations of capases will be consistent with that of initial 

concentrations in Albeck model [152].  Monte Carlo simulations were carried out with 

sample size of 10,000 cells with normal distributions of initial concentrations (mean 

equal to the initial concentration in the Albeck model, and variance equal to 40% of the 

mean initial concentration). PLOT [153, 154] was used for visualizing simulations. 
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We converted the simulated absolute caspase numbers into relative caspase activity 

through a weighted function according to the reports in by McStay et al. [155].  

* *_ 0.026 8 0.8 8 0.015 9IETD abs C C C       

_
_

_ untreated

IETD abs
IETD rel

IETD abs


 

* *_ 30.04 3 0.068 3 0.07 9DEVD abs C C C       

_
_

_ untreated

DEVD abs
DEVD rel

DEVD abs


 

Here, IETD_abs refers to absolute IETD fluorescence as measured by IETD which is 

dye used to detect caspase-8 activity. IETD_rel refers to relative fold change of IETD 

fluorescence as compared to that in untreated control. DEVD_abs refers to absolute 

DEVD fluorescence as measured by DEVD which is dye used to detect caspase-3 

activity. DEVD_rel refers to the relative fold change of DEVD fluorescence as 

compared to that in untreated control.  

3.2.2 Bayesian Modeling 

Bayesian network model consists of network structure and conditional probability 

tables. Network structure, which composed of directed arrows from parent species to 

children species, captures cause and effect relationships among the species. Conditional 

probability tables quantitatively describe the impact of parent species on their children 

species. Each Bayesian network model is evaluated with a Bayesian score which 

indicate its consistency with observation.  
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Bayesian network involves data processing including normalization, discretization, 

structure learning, parameter estimation and model inference. Model selection, 

parameter estimation and inference were carried out in Bayesian Network Toolbox 

(BNT) [156, 157] implemented on MATLAB developed by Kevin Murphy. 

3.2.2.1 Data processing 

Normalization: Data are firstly normalized by comparing the concentration of each 

sample to that of untreated control, as described in the formula of  where i

mf  represents 

measured fluorescence intensity of sample i, _un ctl

mf  represents measured fluorescence 

intensity in unstained and untreated control, ctl

mf represents measured fluorescence 

intensity in untreated control, i

normalizedC  represents calculated normalized 

concentration. 

Discretization: Normalized data (DCFDA, DAF, DHE and Fluo-4) were discretized 

into 3 levels (represented by 1, 2 and 3) with equal width interval binning. We chose 3 

intervals as it is likely more true to underlying biological phenomenon of low, medium 

and high concentration. Specifically, the minimum and maximum values of the species 

were first determined and then whole range of values was divided into the 3 intervals of 

equal width. LY30, as the model input, is discretized into 3 levels, which corresponds to 

no incubation (0 minute), brief incubation (0~30 minutes) and long incubation (30 

minutes or longer).  

3.2.2.2 Structure learning  

Structure learning was carried out to select the optimal model which has the highest 

Bayesian score (refer to section 6.2). We used a Markov Chain Monte Carlo (MCMC) 
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algorithm called Metropolis-Hastings (MH) to search the space of possible model 

structures [156]. We set number of steps to take before drawing samples to be 25 and 

number of samples to draw from the chain after burn-in to be 500 in accordance to the 

recommended setting with BNT [156, 157]. To get rid of residual effect with starting 

point, the process was repeated for 10,000 times with random staring points. After 

10,000 repeats, we selected the top 12 models with the highest Bayesian scores. 

3.2.2.4 Parameter estimation in Bayesian networks 

Parameter estimation is to estimate CPT (Conditional Probability Table) for all the 

nodes in a specified network structure given a set of observations, so that there is 

minimum difference between inferred data of the model and observation. For all the 

tasks involved in parameter estimation, we applied function of learn_params_em 

which learns parameters through Expectation-Maximisation principle [158].    

3.2.2.5 Model inference 

Given a Bayesian network model with a specific structure and a set of estimated 

parameters, we are able to infer the values of unmeasured species (also called hidden 

nodes, H) according to the measured species (evidence, E). Model inference is to 

compute the conditional probability of P(Hi | E) for all hidden nodes H (Hi is one 

member of H). We conducted model inference using pearl’s algorithm [159] which can 

fuse and propagate the impact of new evidence.   

3.2.2.6 Model Averaging  

Following the idea of Sachs [160] on model averaging, we averaged among the top 12 

models for the inferred values of hidden nodes (which is DCFDA) given the evidence 
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of LY30 and inhibitors (inhibitor for NO, Ca
2+

 and O2
•–

 specifically). In particular, we 

adopted equal voting in averaging the models so that averaged DCFDA is calculated as

12

12

k

i
k i

averaged

DCFDA

DCFD 


 . Here, k can take values from 1, 2 and 3 corresponding 

to low, medium and high. k

iDCFDA refers to inferred probability of DCFDA at state k 

in model i. Noted that in every model, the sum of inferred DCFDA at states 1, 2, and 3 

is 1.            

In order to compare DCFDA between inferred probability distribution at low, medium 

and high states, and measured fluorescence, we converted the inferred probability 

distributions into a single value according to the formula:  

 
1 2 30.1* 0.4* 0.9*averaged averaged averaged averagedDCFDA DCFDA DCFDA DCFDA  

. 

Here 

1

averagedDCFDA
 

2

averagedDCFDA
and 

3

averagedDCFDA
represented averaged 

probability values of DCFDA in state low, medium and high, respectively.  

3.2.2.7 Extension of model with inhibitors 

Extension of dummy inhibitors: Dummy inhibitors were the inhibitors assumed with 

100% capability in inhibiting the target specifically. Dummy inhibitors includ NO 

inhibitor, Ca
2+

 inhibitor and O2
•–

 inhibitor, which were incorporated into the Bayesian 

network models in section 6.4. Each inhibitor has two states of 1 or 2, corresponding to 

the situation of without or with the inhibitor. When the state of the inhibitor is 1, there is 

no influence on its inhibiting target; when the state of the inhibitor is 2, the parameter is 

adjusted so that its target will be at low concentration only. 
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Extension of real inhibitors: Real inhibitors include DDC, Tiron, FeTPPS, EGTA-am, 

each of which has two states 1 and 2, as similar to dummy inhibitor. For a specific 

inhibitor X, it has n targets Y1, ..., Yn with inhibitory effect at I1, …, In. When X state is 

1, there is no influence on its targets; when its state is 2, it will adjust the probability 

distribution of its targets accordingly. Take Yi for example, its probability will be 

adjusted to Ii (1- Ii)/2, (1- Ii)/2 for low concentration, medium concentration and high 

concentration, respectively.    

3.2.3 Statistical Analysis  

All experiments were performed at least three times for statistical significance. 

Numerical data were expressed as mean +/- SD. Statistical analysis was performed 

using the one-tailed paired Student’s t-test considering the variances unequal. P-values 

< 0.05 were considered significant. 
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4 Computational Modeling of Pathway Dynamics by LY30 

and TRAIL Revealed non-monotonic effect of LY30 on 

cFLIP 

In this chapter, we analyzed the synergistic effects of LY30 and TRAIL on cell killing 

and caspase dynamics through modelling the signalling pathways with ordinary 

differential equations.  

4.1 Introduction to Ordinary differentiation equation (ODE) 

modeling of biological pathways  

A biological pathway usually involves many species and can be viewed as a network of 

biochemical reactions. In ODE models, the concentration of each species in the 

network will be determined by the rates of reactions that produce or consume this 

species. Reaction rates of each reaction can be derived through physical and chemical 

laws. Once we obtained all the rate equations for in a network, the rate of change of 

each species can then be derived by summing all reaction rates that produce this species 

and subtracting all reaction rates that consume this species [161]. 

Example Take a simple reaction for example, species A and B react together to produce 

AB with forward reaction rate at k1 and reverse reaction rate at k2. The reaction is 

expressed as  
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1

2

k

k
A B AB 

. 

According to mass action law, rate equations of A, B and AB in the reaction are 

expressed as  

[ ]
2*[ ] 1*[ ]*[ ]

d A
k AB k A B

dt
 

, 

[ ]
2*[ ] 1*[ ]*[ ]

d B
k AB k A B

dt
 

, 

[ ]
2*[ ] 1*[ ]*[ ]

d AB
k AB k A B

dt
  

. 

ODE models are composed with model structure, kinetic rate constants and initial 

concentrations three elements. Model structures incorporate all the chemical reactions 

in a network, kinetic rate constants quantify the reaction speeds and initial 

concentrations describe starting concentrations of all the species in the network. Given 

the three elements, an ODE model will calculate a unique solution specifying how the 

system will evolve over time [162]. Choice of parameter values of ODE models, in a 

great extent, controls dynamic behaviour. Therefore, accurate setting of parameters 

values becomes essential in ODE capability. We will introduce parameter estimation 

and sensitivity analysis in the following sections.  

4.1.1 Parameter Estimation in ODEs 

Parameters of ODE models consist of rate constants for reactions and initial 

concentrations for species. Parameters are not easily obtained but usually involve 
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laborious calibration from various biological assays. It was also realized that 

parameters taken from literature are of limited use because they are often inconsistent 

because measured under varied conditions [163] . In addition, parameter values (both 

rate constants and initial concentrations) may vary from cell type to cell type, and such 

variance has also been found to be common in cells within the same cell type [164]. 

Since the accuracy of ODE model is highly dependent on parameter values, we apply 

parameter estimation for an accurate calibration of the parameters[165]. 

In the context of biological pathway modelling, parameter estimation is defined as 

calibrating model to reproduce the experimental results [166]. Parameter estimation is 

formulized as minimizing the difference between model-simulated output and 

corresponding experiment data sets, subject to a series of constrains such as dynamics 

of the system [166, 167]. Mathematically, it is to find p to minimize J, in the formula:  

0

( ( ) ( , ) ( )( ( ) ( , ))

ft

T

msd msdJ y t y p t W t y t y p t dt    
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0 0

( , , , , , ) 0

( )

( , , , ) 0

( , , , ) 0

L U

dx
f x y p v t

dt

x t x

h x y p v

g x y p v

p p p









 

  

where J represent the cost to be minimized; p are the parameters to be estimated; ymsd is 

the experimental measurement of output state variables; y(p, t) is the model prediction f; 

W(t) is a weighting (or scaling) matrix; x is the differential state variables; v represent 
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other parameters which will not be estimated; f is the set of equality constraints 

describing the system dynamics; h and g are the possible equality and inequality 

constraints as additional requirements for the system performance; and p is subject to 

(upper and lower) bounds  [166]. 

Several approaches have been proposed for estimating parameters in biological 

signalling pathways, e.g. genetic algorithm [168], unscented Kalman filter [169], and 

particle filtering [166]. 

4.1.2 Sensitivity analysis in ODEs 

The dependence of a system on its parameter (initial conditions or rate constants) 

values can be addressed through sensitivity analysis, which involves monitoring the 

change of model output with systematically varying parameters [164]. Sensitivity 

analysis is a systematic approach to analyze the change of a system according to the 

change of parameter values [170]. An important feature of sensitivity is that it is able to 

quantitatively describe the influence of a certain parameter on system output.  

The characteristics of sensitivity analysis make it an important tool in ODE modelling 

and understanding of biological phenomenon. Parameter sensitivity analysis can be 

applied to Drug target selection [171], Biomarker selection [172], Model reduction 

[173], Robustness analysis [174] and experiments design [170].  

Sensitivity analysis includes local sensitivity analysis and global sensitivity analysis.  

Local sensitivity analysis is a particular form of sensitivity analysis similar to metabolic 

control analysis [175]. The sensitivity coefficients Sij is defined as first order 
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derivatives of the model output Oi according to model parameter Pj in a normalized 

form of:  

ji
ij

j i

PO
S

P O


 


 

The accuracy of local sensitivities is based on the assumption the actual values of model 

parameters represent the real situation, which, however, is not the case in most of the 

pathway models. An alternative to overcome the limitation of local sensitivity analysis 

is global sensitivity analysis in model analysis [176]. Global sampling composed of 

drawing representative samples from the sampling space, simulating the model with 

each sample, and then calculating the parameters sensitivities through a statistical or 

mathematical analysis of the simulation results. As an example, Monte Carlo scheme is 

one popular methods in global sensitivity analysis [177].  

4.1.3 ODE model of TRAIL-induced apoptosis in HeLa (Albeck et 

al.)[143] 

4.1.3.1 Model description and structure 

In Abeck et al. model, there are 58 species of which 18 are direct gene product and the 

remaining 40 represents complex, cleaved forms. There are 28 reactions and 70 

non-zero rate constants. The four main parts in the model comprises (1) DISC  

formation and the subsequent Caspase-8 activation (C8*); (2) an enzyme  cascade from 

C8* to C3* [178] and then lead to the cleavage of PARP to cPARP [179]; (3) positive 

feedback loop from C3* to C8* through caspase-6 (C6) [180]; and (4) an apoptosis 

signal amplification through mitochondria from C8* to tBid [92, 93, 94]. 
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4.1.3.2 Parameter estimation 

In the model, Albeck et al. obtained a large quantity of single cell and cell population 

data through a large range of TRAIL doses. Single data were obtained through Förster 

resonance energy transfer-based reporter proteins for C3*, C8* and MOMP [143]. Cell 

population data were obtained through Western blot and flow cytometry. All the 

obtained data are integrated for parameter calibration in the equation 

( )/4
( )

1 d st T T

f
c t f

e


 


 where c(t) represent the amount of substrate cleaved at time t, f 

is the cleaved of the reaction, Td is the half-life of substrate, and Ts represents the 

process time to complete effector substrate cleavage. In order to obtain accurate 

parameters, Alebck et al. also studied TRAIL-treated cells perturbed by small 

interfering RNA (siRNA) or protein over-expression.  

4.1.3.2 Contribution 

Besides can accurately reproduce experimental results, the model showed the 

mechanism of "snap-action" switching of apoptosis signal from gradual C8* activation 

in response to death stimuli and the key role of caspase-8 in MOMP delay [142, 143]. 

4.2 Results 

4.2.1 Construction of TRAIL model 
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Figure 4.2.1 Schematic diagram of TRAIL-induced apoptosis. The dashed arrows 

indicate catalytic effects. Solid arrows indicate that the species at the base is consumed 

or translocated. For example, the oligomerization of mitochondrial Bax leads to 

formation of a pore in the mitochondrial outer membrane, which allows release of 

Cytochrome c and Smac into the cytosol. Double-lines in a T indicate inhibitory effects. 

To study the synergy between LY30 and TRAIL, we adapted a previous model of 

TRAIL-induced apoptosis by Albeck as described in 4.1.3 [152], and added reaction 

equations for the impact of LY30 on the network. Although the Albeck model is 

supported by extensive experimental measurements in HeLa cervical carcinoma cells, 

the experiments involved cycloheximide, an inhibitor of protein synthesis. A lack of 

turnover effects in the Albeck model means that even an insignificant pro-apoptotic 

input is able to accumulate without degradation, until the cell eventually dies [181, 182]. 

To permit the system to have a stable steady state other than apoptosis, we included 

complex biological influences, such as synthesis and degradation, by approximating 
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them with mass-action rate equations (Figure 4.2.1). This modification renders the 

model less quantitative (not appropriate for predicting absolute concentrations) but this 

level of simplification is still highly informative for inferring system-level effects. We 

made two further additions to Albeck’s TRAIL model: incorporated the feedback from 

activated caspase-3 to activated caspase-9, and increased initial concentration of 

protein cFLIP, which is particularly sensitive to cycloheximide [183].  

4.2.2 Construction of LY30 model 

 

 

 

 

 

 

Figure 4.2.2 Schematic of how LY30 affects TRAIL-induced apoptosis. The 

receptors alone would have slower reaction rates than the Oligo-Receptors.. 

Poh et al. identified two effects of LY30 that could contribute to its ability to sensitize 

cells to TRAIL [88]: a) clustering of TRAIL receptors, and b) down-regulating the 

pro-survival protein cellular FADD-like interleukin-1β-converting enzyme inhibitory 

protein (cFLIP) [184]. Figure 4.2.2 illustrates how these effects have been modeled. 

Clustering is modeled by an LY30-catalyzed transition in the TRAIL receptor, 

converting the slow-reacting “monomer” form into a faster-reacting form that we call 

“R_oligo”. The cFLIP down-regulation is modeled as an LY30-catalyzed degradation 
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reaction, which is intended to represent a variety of possible mechanisms including 

transcriptional repression, ubiquitylation, etc. In addition, LY30 had previously been 

shown to elevate intracellular hydrogen peroxide (H2O2) [88, 89] which can regulate 

cell death through intracellular acidification , activation of caspase-3 and -9 [186],  

down-regulation of cFLIP [184], and down-regulation of NHE1 [187, 188]. Here we 

model H2O2 as causing low levels of mitochondrial permeability [186, 189], and also 

causing a small amount of death independent of mitochondria [190]. This model is 

specific to TRAIL-induced apoptosis in HeLa cells, and we did not model additional 

phenomena found in other cell types or in other death pathways.   

LY30-induced Receptor oligomerization 

Quantification was conducted on pull down experiments of DR5 in HeLa cells (Figure ). 

Results showed that: 1) the total number of DR5 is the same in LY30-treated cells and 

untreated cells (Figure 4.2.3), and 2) the ratio of concentration of pull-downed DR5 in 

untreated cells and LY30-treated cells is 1:5.8, meaning that on average, each oligomer 

is composed of 5.8 DR5 monomer after LY30 treatment. 

 

Figure 4.2.3. LY30-induced receptor oligomerization. a) experimental results from 

Poh.et al [74].2) quantified results of DR5 using ImageJ 
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Based on the results, we estimated the parameter K_f in reaction below to have 

conversion of monomer receptor to oligomer within 1hour. For the other three 

parameters, K_rr is assumed to be fast so that there is low concentration of intermediate 

product R:LY30, and k_r and k_ff are set to be small compared with K_f  so that there is 

few reverse conversation from oligomer to monomer.   

K_f K_rr
R + LY30  R:LY30 R_oligo+LY30

k_r k_ff

  
         

LY30-facilitated DISC formation upon TRAIL 

It has been reported that TRAIL can induced DISC formation more efficiently through 

pre-oligomerized DRs than DR monomers [74]. The knowledge is incorporated in the 

reactions below, where k1 and k_1 are estimated through the experimental results 

(Figure 4.2.4). 

 

_ _ l KK1
k1

R oligo + TRAIL  R o igo:TRAIL R*
k_1

 
(5)  

 

Figure 4.2.4: Time kinetics of DISC assembly upon LY30+TRAIL treatment. a) 

Western blot experiment of FADD through immuno-precipitated with anti-DR5 in 



53 

 

HeLa cells. HeLa cells were exposed to TRAIL(20ng/ml) for 5 min with or without 
prior addition of LY30(25µM) for one hr [74]. b) Quantified results of FADD in a).  

 LY30-induced cFLIP reduction 

 

Figure 4.2.5. western blot experimental results of cFLIP upon LY30, TRAIL and 

LY30+TRAIL treatment [74] 

The phenomenon of cFLIP down-regulation upon LY30 treatment is represented with 

the LY30-induced FLIP degradation 37
30 30

k
FLIP LY LY  , where the parameter 

k_37 is estimated on previous experimental results (Figure 4.2.5).  

 LY30-induced ROS production 

As we did not know the exact mechanism behind the phenomenon of distinctive ROS 

production upon LY30 treatment, a simple reaction expressing LY30 induces ROS 

production was designed as 35
30 30

k
LY LY ROS  , where LY30 can directly 

induces ROS production. To implement a delay of ROS effect in the pathway, we added 

another reaction 
36

_36
*

k

k
ROS ROS  where the ROS* represents effective form ROS 

that contributes to apoptosis.   

4.2.3 Construction of LY30+TRAIL model  
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The TRAIL model of section 4.2.1 and the LY30 model of section 4.2.2 were combined 

into a single system of ordinary differential equations (ODEs).  To simulate combined 

treatment, we followed the experimental protocol of Poh et al., pre-incubating cells 

with LY30 for one hour before treating with TRAIL. In other words, the initial 

concentration of TRAIL is zero during the first hour, and then the TRAIL level is 

shifted to the delivered dose of 20 ng/mL. 

4.2.4 Modeling Synergy 

Our previous measurements of apoptotic signaling in HeLa cells after treatment with 

LY30 [88] showed that the combination of LY30 and TRAIL induced synergistic 

(greater than additive) activation of the apoptotic pathway at many stages, including 

initiator and executioner caspases. To increase the confidence of the cell death 

quantization, we performed additional measurements of cell death. The pooled dataset 

(Figure 4.2.3) shows cell death occurs synergistically, with the rate of killing 30% 

higher than the rate expected from a purely additive effect.  

Apoptosis proceeds in an all-or-nothing fashion, as a “snap action” switch, preceded by 

a variable time delay [152, 191].  This creates significant discrepancy between the 

concentrations in individual cells, and the average concentrations in a population of 

cells that undergo apoptosis with variable delay. Individual cells exhibit much sharper 

slopes in their activation levels than the population average. Because our model will be 

compared with data from populations of cells (immunoblots and enzyme activity 

assays), we need to model population effects. We used Monte Carlo sampling to 

compute an average trajectory, using simulations of 10,000 instances for each treatment 
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condition, and normally distributed initial concentrations with 40% variance. For each 

cell instance, 50% PARP cleavage is considered as apoptotic. Under this condition, we 

were able to obtain viability percentage under different treatments according to PARP 

cleavage.  

The simulated apoptosis was compared with experimental measurement of cell 

viability (Figure 4.2.6) for each of the treatment combinations. Our simulations were 

successful at recapitulating the observed synergy. This finding provides a “proof of 

plausibility” that death receptor clustering, cFLIP down-regulation and H2O2 

production, are sufficient to facilitate significant sensitization, in cells treated with 

otherwise sublethal doses of TRAIL.  

 

 

 

 

 

Figure 4.2.6 Relative cell viability (crystal violet assay at 24 hrs) after 

treatment with LY30 and/or TRAIL.  

4.2.5 Mismatch of the Model 

After comparing cell viability between simulations and experiments, we further 

inspected the temporal profiles of caspases, which are the key species internal of 

apoptosis pathway. Note that the experimental measurements of caspases are fold 

change relative to control rather than absolute units while our model simulate generates 
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absolute molecule number of activated caspases. In order to resolve the unit difference 

for better comparison, we translate simulated absolute molecule number into relative 

number according to previously published paper. When we inspected the temporal 

profiles of the caspases, we found the simulations did not resemble the experimental 

data. A variety of estimated parameter sets and model optimization efforts were unable 

to alleviate the qualitative divergence between the model and the data.  

 

Figure 4.2.7 Time kinetics of capase-8 activity after treatment with LY30 and/or 

TRAIL. a) Time kinetics of caspase-8 activity after TRAIL treatment. b) Time kinetics 

of caspase-8 activity after LY30 treatment. c) Time kinetics of caspase-8 activity after 

LY30 and TRAIL treatment. Red line represents averaged results of 10,000 Monte 

Carlo simulations and black lines are the measured results from caspase activity assay.   

Fig 4.2.7 (a-c) shows Monte Carlo simulations of caspase-8 compared with 

experimental measurements. Our single drug treatment model of either LY30 or 

TRAIL alone is able to match experiment dynamics. However, simulations predict that 

the synergistic effect of LY30 and TRAIL on caspases begins quickly and increases 
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steeply, relative to the rate at which the caspases get activated by LY30 alone or TRAIL 

alone. In contrast, experiments show the combination treatment resembles the 

individual treatments at early time points, then a sharp rise occurs after a delay, and the 

synergistic effect does not occur at early time points. A milder version of the same 

effect was seen in caspase-3. At later time points, caspase activity measured data 

diverged from simulated results, but the slopes were more comparable between theory 

and experiments at these later times. We hypothesized that the early time points were 

more likely to be the source of the disagreement. 

4.2.6 Experimental Measurements  

 

 

 

Figure 4.2.8 Caspase-8 activity measurement in HeLa cells after different 

duration of LY30 treatments. Each set of measurement consists of cells treated 

with LY30 at 0, 1/2, 1, 2, 3and 4 hours. The result is obtained through 3 

independent set of measurements.  Student’s t-test for whether the observations 

are significantly lower than the untreated case (i.e., time 0) yielded 0.058 for the 

observations at 1 hr, and 0.0034 for the observations at 2 hrs. 

The mismatch between model and experiments for the onset of LY30+TRAIL synergy 

provided us with a narrow specification for the molecules and time points in greatest 

need of clarification. Therefore, we applied new experiments to measure caspase-8 

activity after treatment with LY30. 
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Figure 4.2.8 shows the effect of LY30 on caspase-8 enzymatic activity over time, with 

frequently spaced time-points after treatment. We had expected LY30 to increase 

caspase-8 activity. But this experiment showed unexpected transient behaviors, with 

LY30 causing decreased caspase-8 activity at early time-points. Our model of LY30 

effects (Figure 4.2.2) does not include any possible way for LY30 to delay or inhibit 

apoptosis. This puzzle motivated us to perform more detailed measurements upstream 

of caspase-8 dynamics. 

Some unknown effect of LY30 must occur, and we can infer it to be upstream of 

caspase-8 prior to 3 hours. Knowing that LY30 affects cFLIP and cFLIP has complex 

regulation [192, 193], we repeated the measurements of cFLIP concentration from 1 to 

4 hours with denser intervals during the first 1 hour. Surprisingly, cFLIP-s was initially 

up-regulated by LY30 treatment, and the most significant increase happened around 30 

minutes with p-value <0.05 (Figure 4.2.9).  

 

 

 

 

 

Figure 4.2.9 Western blot analysis of cFLIP-s in HeLa after different 

durations of LY30 treatment. (a) Western blot of time dynamics of cFLIP after 

LY30 treatment (b)  densitometry of three repeats of cFLIP with untreated and 30 

minutes of LY30 treatment.  For each sample in each repeat,  cFLIP is firstly 

normalized to its b-actin as its relative concentration, and then within each repeat, 

both the untreated and treated relative concentration are normalized to untreated 

concentration. Student’s t-test for whether the observations are significantly 

higher than the untreated case yielded p-value less than 0.05. 



59 

 

These up-regulation and down-regulation results demonstrated that the effect of LY30 

on cFLIP is more complex than a simple down-regulation. To find a pathway to explain 

the non-monotonic regulation of cFLIP by LY30, we need to consider upstream 

regulators of cFLIP and downstream effectors of LY30. We next studied ROS effects in 

greater detail because ROS are known to be produced by LY30 [88-90]  and known to 

regulate cFLIP [194].   

LY30 induced significant ROS production as demonstrated by Fluorescent 

measurements of DCFDA, which are the most common way to measure ROS but this 

method does not address subtypes of ROS. ROS is a family of several species, with 

H2O2 (hydrogen peroxide) and O2•
–
 (superoxide) being the most abundant.  In many 

cases, the ratio of O2•
–
 to H2O2 determines whether ROS will promote or hinder 

apoptosis [185, 187, 195, 196]. A high ratio of O2•
–
 to H2O2 antagonizes apoptosis by 

triggering pro-survival pathways such as PI3K/Akt and ERK [197, 198].  In contrast, a 

low ratio of O2•
–
 to H2O2 promotes apoptosis through intracellular acidification [185], 

activation of caspase-3 and caspase-9 [186],  down-regulation of cFLIP [184], and 

down-regulation of NHE1 [187, 188].   

We constructed a simple hypothetical model of O2•
–
 and H2O2 production and 

degradation, emphasizing the specific effects of O2•
– 

and H2O2 on cFLIP (Figure 

4.2.7a).  H2O2 is known to decrease the expression of cFLIP [184]. And we represent 

this effect as H2O2 inhibiting cFLIP production. The impact of O2•
–
 on cFLIP is less 

clear, but O2•
–
 is known to activate NF-κB [199] which would increase cFLIP levels 

[199, 200]. O2•
–
 can also inhibits NO which is known to induce S-nitrosylation of 

cFLIP [201]. This hypothetical possibility is modeled as superoxide blocking cFLIP 
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degradation. Our model (Figure 4.2.7a) includes cFLIP production, cFLIP degradation, 

inhibition of cFLIP degradation by O2•
–
, inhibition of cFLIP production by H2O2, as 

well as O2•
–
 production, O2•

–
 conversion into H2O2, and H2O2 degradation. 

Our model of ROS and cFLIP was then simulated to explore whether the dynamics of 

O2•
–
 and H2O2 would plausibly explain both the cFLIP increase at 30 minutes and the 

cFLIP decrease at 6 hours. Many compounds can cause production of O2•
–  and H2O2, 

and we designed the model to be generally applicable to ROS-producing anti-cancer 

drugs. Simulations (Figure 4.2.7b) show that LY30-induced ROS could cause cFLIP 

levels to rise at 30 minutes and then fall in subsequent hours, due to faster pro-cFLIP 

influences from O2•
– , and slower anti-cFLIP influences from H2O2.   

 

 

 

 

 

Figure 4.2.10 Hypothetical model for LY30 to cause non-monotonic 

regulation of cFLIP via O2
–
 and H2O2. (a) Simplified diagram of LY30’s 

influence on cFLIP. This model is roughly divided into two phases. In the earlier 

phase, O2
–  is produced after LY30 treatment, and the increased O2

–  will block the 

degradation of cFLIP, thus inducing its up-reguation. In the later phase, H2O2 is 

produced by conversion of O2
–
, and inhibits the production of cFLIP, lowering its 

concentration. (b) Simulations of cFLIP, cFLIP_mRNA and degraded 
cFLIP(cFLIP_Deg) over time, as predicted by the model in (4.2.7a).   

Finally we performed preliminary experiments to test the hypothesis of Figure 4.2.10, 

by using anti-oxidant treatments (ROS scavengers) that are specific to certain sub-types 

of ROS. If LY30 is causing cFLIP to go up at 30 minutes via O2•
– , removing O2•

–  via 
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Tiron treatment would be expected to halt the ability of LY30 to raise cFLIP at 30 

minutes. Fig 4.2.11(a) shows that LY30 failed to increase cFLIP at 30 minutes when 

Tiron was present. If LY30 is causing later levels of cFLIP to go down via H2O2, 

removing H2O2 by adding catalase would restore cFLIP levels to the same as untreated. 

Fig 4.2.8(b) shows that cFLIP at 6 hour after treatment with both LY30 and catalase had 

the same relative intensity as in untreated cells.  

 

 

 

 

 

 

Figure 4.2.11 Western blot analysis of cFLIP-s in HeLa by LY30 in the presence 

of ROS scavengers. (a) Western blot of cFLIP-s after 6 hour LY30 treatment in the 

absence/presence of catalase. HeLa is pre-incubated overnight with catalase 4000 

units/ml. (b) Western blot of cFLIP-s after 30 minutes LY30 treatment in the 

absence/presence of Tiron. HeLa is pre-incubated with Tiron with 15mM 1 hour before 
adding LY30.  

4.3 Discussion and summary 

We constructed an ODE model for combining the effects of two anti-cancer compounds, 

LY30 and TRAIL. The TRAIL effects were adapted from a previously published model 

[191], and the LY30 effects were approximated from our previously published 

experiments on LY30 [88-90]. Through a systematic integration of modeling and 

experiments, we found non-monotonic regulation of cFLIP-s which contributes to 
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delayed synergistic activation of caspase-8. Furthermore, we depicted the 

non-monotonic regulation of cFLIP-s as a result of functional variance among different 

ROS species though a revised ODE model. Specifically, O2•
–
reduces cFLIP-s level 

while its downstream H2O2 increases its level. Some effects of LY30 are common to 

multiple drugs, and our model was designed to be maximally generic for similar cases. 

For example, the standard chemotherapeutic drugs doxorubicin and cisplatin both cause 

ROS production and cFLIP down-regulation. Also, resveratrol, the widely-studied 

compound in red wine, causes ROS production and cFLIP down-regulation [33, 202, 

203]. The ability of ROS to affect cFLIP is enormously important for determining 

whether cells are vulnerable to apoptosis[204], because multiple TRAIL-resistant 

cancers have shown re-sensitization to TRAIL after cFLIP-s levels were lowered [184, 

194, 205, 206].  

Every protein signaling network has abundant uncertainty, because every drug can have 

undiscovered effects, and every time-series experiment can have undiscovered peaks or 

dips occurring between the observed time points. Most such effects are minor, but some 

are significant enough to disrupt our ability to reason about system behavior. Any 

modeling research, in addition to its primary goal, can be considered to have an implicit 

surveillance function of checking the consistency of the “known” facts. In building the 

initial model of LY30 effects, we interpolated from a few measured time-points of 

cFLIP, to obtain a simple approximation of LY30-induced decay of cFLIP-s.  When the 

LY30 and TRAIL effects were combined, our inability to simulate the observed 

dynamics of caspase-8 suggested an error in the model. This error proved to be our 

simplistic interpolation of how LY30 affects cFLIP-s. We performed subsequent 
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experiments that showed a non-monotonic, “up-and-down” concentration of cFLIP-s 

after LY30. These effects do not contradict the previous findings, but rather refine the 

kinetics. The new observations of cFLIP-s explain the delayed activation of caspase-8 

and the delayed onset of synergy in the execution of apoptosis, because significant 

concentrations of cFLIP-s inhibit the activation of caspase-8 [207]. Previous studies 

have used kinetic models of signaling pathways to detect mismatches between models 

and observations [208, 209]. This work is among very few that have used pathway 

modeling to guide experiments towards actually confirming a previously unknown 

phenomenon [210].  

The remaining question was how LY30 causes non-monotonic effects on cFLIP-s.  A 

simple explanation would be: LY30 triggers two opposing pathways that regulate 

cFLIP-s in opposite ways. We built a model of “typical” ROS production and 

degradation (Figure 4.2.10a), including the known ability of H2O2 to cause gradual 

down-regulation of cFLIP-s [184], and a hypothetical opposite effect of O2•
–  

on 

cFLIP-s.  In this model, the fundamental upstream-downstream relationship between 

O2•
–  and H2O2, combined with the fast effects of O2•

–  versus the slow-acting effects of 

H2O2, would together cause a time difference between the O2•
–  -dominant phase (early 

cFLIP-s increase) and the H2O2
•–

dominant phase (late cFLIP-s decline) of 

ROS-mediated effects. We performed immunoblots for the plausibility of this model, 

by blocking ROS species and testing if LY30-induced changes in cFLIP-s were 

disrupted. Our model of ROS_FLIP regulation was not falsified by these tests, and 

future work can perform more comprehensive experiments to characterize and validate 

the effects of LY30-induced O2•
–
 and H2O2 on cFLIP-s. 
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If LY30 is unique in causing complex cFLIP-s dynamics, it may be of narrow 

significance, but our model describes a general dynamic of ROS homeostasis. LY30 is 

one of many possible triggers for ROS, which might then cause two opposing effects on 

cFLIP-s. If this model is correct, the predicted trend could occur with other 

ROS-producing drugs. Future work can determine whether the same dynamics occur 

with doxorubicin, cisplatin, and resveratrol. The timing of cell vulnerability to 

apoptosis (“sensitization”) is very important for designing optimal schedules of 

multi-drug treatments.  
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5 LY30-induced ROS production in silico and in vitro 

Followed with the prediction of ROS production by LY30 in chapter 4, we tested the 

prediction through an integration of modelling of mitochondria ROS pathway and 

experiments measurement of ROS production by LY30.     

5.1 LY30 induced DCFDA increase is not through canonical ROS 

pathway with earlier O2
•– production—Naïve Model 

In this chapter, we will discuss the Ordinary Differential Equation (ODE) model of 

canonical ROS production pathway considering mitochondria as the major intracellular 

source of ROS. In the model, LY30 inhibits mitochondrion complex I which leads to 

sequential production of O2•
–
 and H2O2. Predicted dynamics from modelling were 

compared with measured dynamics of ROS after LY30 treatment.  

5.1.1 Modeling ROS production of LY30 through mitochondrial 

superoxide 
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Figure 5.1.1 Hypothesized pathway for LY30 to cause production of ROS 

(reactive oxygen species) in mitochondria. Mitochondrial complexes I–V of the 

electron transport chain are in the inner membrane of the mitochondria. Complexes I 

and II transfer electrons into this chain. Complex II transfers an electron to coenzyme Q 

(Q). Cytochrome c (Cyto c) transfers those electrons from complex III to complex IV. 

On acceptance of the electron, complex IV then converts H
+
 and O2 to water. 

Complexes I to IV pump protons from the matrix to the intermembrane space, which 

causes a charge difference between the matrix and the intermembrane space. This 

charge difference creates a potential which is then used by complex V to convert ADP 

into ATP.  Complex I and III have been reported to produce ROS. We assume that 
LY30 produces ROS through blocking complex I as Rotenone. 

As Mitochondria are a major source of ROS production [211-214], we hypothesized 

that intracellular ROS is mainly produced by LY30 through the mitochondrial Electron 

Respiration Chain (ETC) which is embedded in the inner membrane of Mitochondria 

[215]. In this project, we assumed that LY30 triggers ROS production through 

mitochondria complex I and built an ODE model, named as LY30-ETC model, based 

on reported mitochondrial ROS pathway [211-214]. In the model, LY30 catalyzes the 

conversion from NAQ to reduced NAQ, which leads to superoxide production. The 

produced superoxide would be consequently converted to H2O2 in the presence of 

MnSOD. Finally, H2O2 would be converted into H2O in the presence of GPX. We listed 

the reactions in table 5.1.1. Parameters including initial concentrations and rate 

constants are presented in tables 5.1.2 and 5.1.3 respectively. 
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Table 5.1.1 List of reactions of LY30-ETC model 

Number Reaction Reaction type parameters 

1 CoQ- + O2 = CoQ + O2
•–

  Mass action 

(reversible) 

k1,k_1 

2 Mn3SOD + O2
•–

 = 

Mn3SOD:O2
•–

 

Mass action 

(reversible) 

k2, k_2 

3 Mn3SOD:O2
•–

 = Mn2SOD + 

O2  

Mass action 

(reversible) 

k3, k_3 

4 Mn2SOD + O2
•–

 = 

Mn2SOD:O2
•–

  

Mass action 

(reversible) 

k4, k_4 

5 Mn2SOD:O2
•–

 + 2 H+ = 

Mn3SOD + H2O2 

Mass action 

(reversible) 

k5, k_5 

6 Mn2SOD:O2
•–

 = DEP  Mass action 

(reversible) 

k6,k_6 

7 2 H+ + 2 O2
•–

 = O2 + H2O2 Mass action 

(reversible) 

k7, k_7 

8 GPXr + H2O2 + H+ = GPX0 + 

H2O  

Mass action 

(reversible)  

k8, k_8 

9 GPX0 + GSH = GSGPx + H2O

  

Mass action 

(reversible) 

k9,k_9 

10 GSGPx + GSH = GPXr + 

GSSG + H+  

Mass action 

(reversible)  

k10, k_10 
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11 CoQ- + O2
•–

 + 2 H+ -> CoQ + 

H2O2  

Mass action 

(reversible) 

k11, 

12 CoQ = CoQ-  Mass action 

(reversible) 

k12,k_12 

13 O2 -> Mass action 

(irreversible) 

k13 

14 -> O2  Constant flux 

(irreversible) 

k14 

15 2 GSH = GSSG Mass action 

(reversible) 

k15,k_15 

16 LY30 + CoQ = CoQ - Mass action 

(irreversible) 

k16, variant 

Table 5.1.2 List of parameters in the model 

 Rate 

m³/(mmol*s) 

Reference 

k1  8000 [214] 

k_1  800000 [214] 

k2  1.50E+09 [216, 217] 

k_2  35000(1/s) [216] 

k3  25000(1/s) [216] 

k_3  0 [216] 

k4  1.50E+09 [216, 218] 

k_4      35000(1/s) [216] 

k5  25000 [216] 
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k_5  300 [216] 

k6  650 [216] 

k_6  10 [216] 

k7  240000 [219] 

k_7  0 [219] 

k8  2.10E+07 [217, 220, 

221] 

k_8  0 [217, 220] 

k9  40000 [217, 220] 

k_9  0 [217, 220] 

k10  1.00E+07 [217, 220] 

k_10  0 [217, 220] 

k11 3.00E+06 [222] 

k12         100(1/s)  

k_12   450000(1/s)  

k13 2.50E-06  

k14  0.1  

k15 10000  

K_15 1000  

Table 5.1.3. List of initial concentrations of the species 

Species Initial concentration 

O2 2.49E-05 

O2
•–

 1.23E-11 

Mn3SOD 1.00E-06 
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Mn2SOD 1.00E-06 

Mn3SOD:O2
•–

 3.08E-13 

Mn2SOD:O2
•–

 3.08E-13 

DEP 2.00E-11 

GPX0 1.96E-10 

GPXr 1.00E-06 

H
+
 1 

H2O 55.01695 

GSGPx 7.85E-13 

GSH 0.000981 

GSSG 9.62E-06 

CoQ 0.00045 

CoQ
-
 1.00E-07 

H2O2 3.66E-10 

LY30 1 

5.1.2 Model predictions from LY30-ETC model 

We simulated the LY30-ETC model with constant input of LY30 and varied its 

catalytic influence on conversation from CoQ to CoQ
-
 by adjusting the value of k16. 

Simulated time-course of molecule concentrations of H2O2 and O2
•–

 are shown in 

Figure 5.1.2. The simulated results suggested that k16 linearly affects the fold change 

of O2•
–
 and H2O2. Higher value of k16 resulted in higher steady state of O2

•–
 and H2O2. 

We observed another phenomenon that the steady states of O2•
–
 and H2O2 increased to 
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similar level in the unit of fold change (the trajectory of O2•
–
 and H2O2 is overlapped in 

Figure 5.1.2 a) with hardly detectable delay (0.4 seconds). 

 

Figure 5.1.2 Simulated ROS dynamics in LY30-ETC model. a) ROS (O2
•–

 and 

H2O2) dynamics in the unit of fold change according to varied inhibition of LY30 on 

mitochondria complexes. H2O2 and O2
•–

 were overlapped in each condition. b) Small 

delay between O2
•–

 and H2O2 was observed with increased resolution.  

5.1.3 Experiments testing the LY30-ETC model  

In order to test the hypothesis of the ETC model, we carried out a set of Flow 

Cytometry measurements using fluorescent dyes CM-H2DCFDA (DCFDA) [223] and 

MitoSOX™ Red (MitoSOX) [223, 224], which are used to detect H2O2 and 

Mitochondrial O2•
–
, respectively. To reach statistic significance, we measured in total 

10,000 cells from each sample and obtain averaged fluorescence from the population 

for further analysis. In each set of independent experiments, single untreated sample is 

compared with the LY30-treated samples at all time points. Figure 5.1.3 shows the 

normalized averaged ROS dynamics according to incubation time of LY30 with 4 

independent repeats.  The experimental results in Figure 5.1.3 showed that in HeLa 
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cells, DCFDA levels (solid line) rapidly increases to 1.25 folds after 5 minutes of 

treatment and stays at 1.25 folds till 15 minutes. After that, DCFDA level increases 

again from 1.25 folds to 1.6 folds. MitoSOX dynamics (represented by the dashed line) 

showed a minor increase trend peaked at 1.1 folds after 15 minutes of LY30 as 

compared with DCFDA intensities.  

The experiment observation conflicts with our model prediction in two aspects: 1. the 

model predicted that H2O2 and Mitochondrial superoxide would increase to the similar 

fold change after LY30 treatment. But the experimental data showed that the 

fold-change increase of the DCFDA intensity (H2O2) is much bigger than the MitoSOX 

intensity (mitochondria O2•
–
); 2. The model predicted that the rise of O2•

–
 comes earlier 

than that of H2O2 with very little delay. However, experimental results showed that the 

H2O2 increase occurs earlier than the O2•
–
 increase.  

 

Figure 5.1.3 Experiment results of ROS (O2
•–

 and H2O2) dynamics with 

LY30 incubation. The solid and dotted lines represent the averaged fluorescence 

intensity of DCFDA and MitoSOX, respectively. Each treatment was repeated 

for4 times. 
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To further confirm that the rise of H2O2 is earlier and more significant than that of O2•
–
, 

we double stained each sample with DCFDA and MitoSOX. The purpose of this 

experiment is to track the fluorescence change of DCFDA and MitoSOX in the same set 

of cells. Double stained results are shown in panels of Figure 5.1.4 with x-axis 

representing DCFDA (H2O2) fluorescence level and y-axis representing MitoSOX 

(mitochondrial O2
•–

) fluorescence level with one dot representing one cell. From left to 

right are the sample without drug treatment, sample with LY30 treatment for 5 minutes, 

and sample with LY30 treatment for 15 minutes. A right shift of the cell population (an 

increase in DCFDA signal) occurs in the sample with 5 minutes of LY30 treatment 

compared to the untreated sample. And the amount of rightward shift becomes larger in 

the sample with longer LY30 treatment (15minute). The phenomenon of right shift 

indicated that DCFDA intensity increases in cells with LY30 treatment, suggesting 

intracellular H2O2 production. However, MitoSOX intensity, as indicated by y-axis, 

didn’t show significant increase after LY30 treatment as there is little upward shift.  

 

Figure 5.1.4 Intracellular ROS levels demonstrated by double staining of 

DCFDA (x-axis) and MitoSOX (y-axis). From left to right are panels are the 

ROS levels in untreated sample, LY30-treated sample for 5 minutes, and 
LY30-treated sample for 15 minutes, respectively. 

5.1.4 Sensitivity analysis in LY30-ETC model 
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If Electron Transport Chain (ETC) in mitochondria is the major source of ROS by 

LY30, we would expect LY30 might modify the kinetics in some way which might 

allow the canonical ROS dynamics to be different from predicted ROS kinetics in 

LY30-ETC model. To resolve the conflict, we performed sensitivity analysis on 

LY30-ECT model to understand how the change of each parameter (initial 

concentration and rate constants) affects system outcome (such as O2•
–
 and H2O2). 

Generally, the parameters with negative influence on O2•
–
 and positive influence on 

H2O2 were the potential candidates for further analysis.  

 

Figure 5.1.5 Sensitivity analysis of different parameters on O2
•–

 and H2O2. 

Left panel shows the normalized sensitivity values of parameters on O2
•–

. Right 

panel shows sensitivity values of parameters on H2O2. Red rectangular contains all 

the parameters with both negative values on O2
•–

 and positive values on H2O2.   

According to the sensitivity analysis for H2O2 and O2•
– 

(shown in Figure 5.1.5), we 

identified 6 possible candidates including two species (Mn3SOD and Mn2SOD), and 

four rate constants (k2, k4, k5 and k3). All the 6 targets are involved in the following 4 

reactions.   
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Mn3SOD + O2
•–

 = Mn3SOD:O2
•–

      (1) 

Mn3SOD:O2
•–

 = Mn2SOD + O2     (2) 

Mn2SOD + O2
•–

 = Mn2SOD:O2
•–

     (3) 

Mn2SOD:O2
•–

 + 2 * H+ = Mn3SOD + H2O2   (4) 

Sensitivity results suggested that we should look at the reactions that convert O2
•–

 to 

H2O2. As the change of reactants concentration and change of reaction rates can 

produce similar effect on products of one reaction, we performed parameter scan of 

SOD (including Mn2SOD or Mn3SOD) on O2•
–
 and H2O2 dynamics.  

5.1.5 Parameter scans of SOD 

According to sensitivity analysis of various parameters on ROS, SOD has been selected 

as a key species to affect the ratio between O2•
–
 and H2O2. Therefore, we took the 

assumption in improved model that besides inhibiting ETC, LY30 also affects level or 

activity of MnSOD. Simulated concentrations of ROS (O2•
–
 and H2O2) and 

corresponding SOD (Mn2SOD) concentrations are presented in Figure 5.1.7. 
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Figure 5.1.6 Simulated ROS dynamics (H2O2 and O2
•–

) according to 

MnSOD variation in LY30-ETC model. Different ROS trajectories correspond 

to varying degrees of influence from LY30 on MnSOD. the level of MnSOD was 

changed from 1 fold to 2.2 fold.  

As we can see from the simulated result, increased concentrations of MnSOD 

correspond to increased ratios of H2O2 to O2•
–
. And O2•

–
 may even display decreased 

trend when MnSOD reaches a value to counteract the increasing effect on O2•
–
 from 

LY30. In addition, the model predicted that the change of MnSOD is greater than that 

of H2O2 according to the increasing magnitudes of concentration and increase rate. To 

be more specific, if we observe H2O2 increases to 1.2 fold at 5 minutes, we are supposed 

to observe the increase of MnSOD (activity or concentration) for about 1.5 fold within 

5 minutes. Although we have not done the experiments, a relevant work showed that 

increasing dose of LY30 treatment for up to 1 hour has little effect on SOD enzyme 

activity [225].         

5.2 Literature review of DCFDA sources: involvement of reactive 

nitrogen species (RNS) and free Calcium 
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Since extensive effort was not able to resolve the conflict between model prediction and 

experiment results, we decided to look at other potential cellular sources of ROS, 

reactive nitrogen species (RNS) and free calcium (Ca
2+

).  

5.2.1 Reactive Nitrogen Species (RNS), ROS and cell viability 

It is well established that an intimate relationship exists between RNS family and the 

ROS family [226]. Production of NO has been shown to inhibits complex IV [227] thus 

enhancing ROS generation at QO [228]. ROS and RNS are increasingly recognized to 

interact with each other closely, and contribute to various physiological signaling 

[229].  

5.2.1.1 Reactive Nitrogen Species (RNS) 

Reactive nitrogen species (RNS) are a family of chemical intermediates with 

contrasting and distinct properties derived from nitric oxide (NO) [230] including NO, 

NO
2
, ONOO

-
, ROONO and such. Generally, RNS may be formed either through direct 

reactions of NO with ROS or as results of enzymatic activities [231]. Important insight 

of RNS, regarding its biology, biochemistry and potential contribution to disease, has 

been revealed by recent advances [230].  

In biological systems, the primary source of all RNS is NO. NO is the most interesting 

and typical species among other members of RNS. NO is able to freely cross cell 

membranes and diffuse inside cells and interact with a variety metal centres in proteins 

or with other free radicals and oxygen [230]. Physiological steady state concentration 

of NO is within range of 20 nM-2uM [232]. When the intracellular concentration of NO 
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is higher than 300nM, it will significantly drive the reaction with O2•
–
 towards the 

formation of ONOO
- 
[233].  

As the major source of NO, Nitric oxide synthases (NOS) was first identified and 

described in 1989 [234]. There are three isoforms of NOS, including inducible 

NOS(iNOS), vascular endothelial NOS (eNOS) and neuronal NOS isoform(nNOS). 

iNOS is the inducible isoform that is involved in immune response and is expressed in a 

wide range of cells and tissues; eNOS is the predominant isoform in endothelial cells; 

and nNOS is the predominant isoform in neuronal tissue [234].   

5.2.1.2 RNS and ROS 

Nitric oxide (NO) and its derivatives were known to inhibit mitochondrial respiration 

through a variety of pathways. At low concentrations (nano molar), NO can inhibit 

cytochrome oxidase in a immediate, specific and reversible manner [235]. According to 

in-vitro experiments carried out with isolated mitochondria, high concentrations of NO 

or its derivatives (ONOO
-
) can cause irreversible inhibition of the mitochondria 

respiratory chain [207], uncoupling and even permeability transition [235] .  

Among the complicated interaction between RNS and ROS, reaction between NO and 

O2
•–

 is the most well-studied one. The rapid reactions of NO with superoxide (O2•
–
) to 

form peroxynitrite (ONOO
-
) happen at a rate of 9 1 16.7 10  M Sec   [230, 232, 236], 

which is more than 2-4 times faster than the reaction between O2•
–
 and O2•

–
 dismutase, 

at the rate of 9 1 12.37 0.18 10 M Sec   [237]. NO has been regarded as the only 

biological molecule which is capable of out-competing with O2
•–

 dismutase for O2
•–

. At 

high concentrations, NO often triggers rapid reactions with ROS, e.g. O2
•–

 , to produce 
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excessive RNS including peroxynitrite (ONOO
−
) and nitrogen dioxide (NO2), which 

may trigger cell death processes potentially [238].   

5.2.1.3 Peroxynitrite (ONOO–) 

ONOO
-
 is a short lived and high oxidative species, and it is the only species that 

belongs to both RNS family and ROS family. Among all the derivatives of  NO, 

ONOO– is one of the best characterized species which seems to have the highest 

biological activity [239]. ONOO–
 is formed by the reaction of NO and O2

•–
 at a near 

diffusion-limited rate of 9 1 16.7 10  M Sec   [240]. Although NO is often described to 

be exert highly toxic and reactive effects on cells, many of the toxic effects are more 

likely to be mediated by ONOO
- 
 other than itself.  

Production site of ONOO
-
 is spatially associated with the source of O2

•–
.  ONOO

-
 has 

short half life around 10 milliseconds at physiological pH of 7, resulting in low steady 

state concentration. In spite of short half life and low concentration, ONOO
-
 is able to 

cross cell membrane, targeting with 1 to 2 cell diameters from its generation site.  

5.2.1.4 Peroxynitrite and cell death 

Peroxynitrite has been reported to induce DNA damage and apoptosis in a variety of 

cell types including thymocytes and HL-60 leukaemia cells. Mechanisms of ONOO
-
 

induced cell injury include DNA base modifications, DNA single and double-strand 

breakage [241]. In addition, ONOO
-
 can also trigger mitochondrial dysfunction through 

impairment of mitochondria respiration, suppression of oxygen and induction of 

mitochondria permeability transition [242].  
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Depending on concentration and exposure period, ONOO
-
 can induce necrosis as a 

premature form of cell death as well as apoptosis [242]. High levels of ONOO
-
 lead to 

necrosis partly through activation of the PARP pathway [242]. In contrast, lower 

concentrations of ONOO
-
 can lead to delayed, programmed, apoptotic-type cell death 

through the activation of caspase cascade [242]. 

5.2.2 Calcium and DCFDA and cell viability 

5.2.2.1 Calcium and ROS 

During the last decades, it is well-accepted that significant interactions exist between 

Ca
2+

 and ROS, which lead to modification of a variety of proteins as well as affecting 

cell fate [243]. Extensive study showed that changes in intracellular Ca
2+

 can regulate 

the activity of ROS through RNS-dependent (e.g. mitochondria respiration) [235, 244] 

and RNS-independent (e.g. NOX) pathways [245]. At the same time, alteration in 

intracellular ROS and RNS production can also alter Ca
2+

 signaling networks through 

several post-translational modifications. 

From Calcium to ROS 

Ca
2+

 is known to affect ROS homeostasis by regulating ROS in both the mitochondria 

and the cytosol [235, 244].  

Biologists have not reached a conclusive understanding of the underlying mechanism 

for calcium-induced ROS generation in mitochondria yet. Cadenas et al. proposed that 

calcium-triggered mitochondria depolarization is responsible for the ROS effect [246], 

whereas Sorsa et al. attributed the ROS regulation to the alteration of mitochondrial 

membrane structure by Ca
2+

 [247]. Conducted experiments on isolated mitochondria 
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[248, 249] have demonstrated that in the situation of high concentration Ca
2+

, 

occurrence of MOMP will lead to ROS production. 

In addition to mitochondrial ROS generation, Ca
2+

 can also regulate multiple 

ROS-generating enzymes in the cytosol. In response to intracellular Ca
2+

 concentration 

increase, NADPH oxidase 5 (NOX5) is activated through conformation change [250] 

and generates large amounts of ROS [245]. In addition to its direct interaction with 

catalytic subunits, Ca
2+

 can also control NOX activity by regulating cytosolic 

components of NOX1 and NOX 2 [251, 252]. 

5.2.2.2 Intracellular Ca2+ store 

Endoplasmic Reticulum (ER) is the largest intracellular calcium store. Extracellular 

Ca
2+  

is 1 to 1.4mM [243], ER Ca
2+ 

([Ca
2+

]ER) is around 100–500 uM while cytosolic 

Ca
2+ 

([Ca
2+

]c) is only 50 and 300 nM [253]. ER is a key regulator of cytosolic calcium 

levels through SERCA. SERCA pumps [Ca
2+

]c
 
into ER lumen and calcium channels of 

IP3R. RyR regulate [Ca
2+

]c through pumping ER calcium out of cytosol. Most Ca
2+

 in 

ER
 
is present with bounding proteins such as calsequestrin.  

Mitochondria are another intracellular calcium store. Experiments showed that once a 

physiological stimulus elicits a [Ca
2+

]c rise, a large Ca
2+ 

fluxes occur across the 

mitochondrial membranes [254]. Such flux occurrence is, in a large extent, due to the 

spatially proximity of mitochondria to ER and/or the plasma membrane, allowing them 

to be exposed to Ca
2+

 and thus produces rapid and large accumulation of the Ca
2+

 in the 

matrix [254]. It is now realized that mitochondrial Ca
2+

 also determine mitochondrial 

function and integrity [228]. 
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5.2.2.3  Calcium and apoptosis 

Recognition of Ca
2+

 in cell death dates back to early history of apoptosis, when 

scientists found that molecules capable of transporting Ca
2+

 across membranes are 

highly toxic to cells [5]. Ca
2+

, as a key player in triggering mitotic division in numerous 

cell types, is highly involved in the regulation of cell death [255]. Reports suggested 

that less increase of [Ca
2+

]c promote cell death through apoptosis and [Ca
2+

]c increase at 

very high intracellular levels can induce necrosis [256]. Furthermore, [Ca
2+

]c elevation 

is reported to occur during both early and late stages of apoptosis [257-259] either 

through release from ER or influx through plasma membrane [260]. 

5.3 Measured concentrations of O2
•–, RNS (NO), [Ca

2+
]c under LY30 

treatment 

5.3.1 Total intracellular O2
•–  

To check whether LY30 induced increase of O2
•– 

other than mitochondria O2
•–

, we 

measured intracellular total O2
•–

 after LY30 treatments (5 minutes,10 minutes,15 

minutes, 30 minutes, 120 minutes and 240minutes) with Dihydroethidium (DHE) and 

Lucigenin. Detailed information about procedure on materials and methods are 

available in Materials and Method 3.1.9 and 3.1.10. 
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Figure 5.3.1 Experimental measurement of DHE in HeLa after LY30 treatment. a) 

Structure of DHE. b) Fluorescence shift of DHE under oxidization; c) averaged 
fluorescence intensity of DHE in HeLa of several repeats (n=3). 

Dihydroethidium (DHE, Figure 5.3.1a) is a cell permeant dye and has been used 

extensively to monitor superoxide production [261, 262]. We carried out flow 

cytometry experiment to measure DHE fluorescence level in each sample and then 

normalized it to untreated control. Normalized fluorescence levels are presented in 

Figure 5.3.1c. We observed no significant increase of O2
•–

 in LY30-treated cell samples 

(5-minutes incubation to 240-minutes incubation) compared to that in untreated 

samples.   

In addition to DHE, we used Lucigenin to measure intracellular O2
•–

 by LY30. HeLa 

cell samples were incubated with LY30 for 0, 15, 30, 60, 120 and 240 minutes. 
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Averaged results of 3 replicates were shown in Figure 5.3.2b.  Consistent with the 

results from MitoSOX and DHE assays, Lucigenin experiment didn’t detect any 

significant increase in O2
•–

 after LY30 before 60 minutes. 

 

 

Figure 5.3.2 Mechanism of Lucigenin and measured O2
•–

 concentrations in HeLa 

with LY30 treatment. a)  Structure of Lucigenin before oxidization; b) averaged result 
of Lucigenin of several repeats (n=3).  

5.3.2 Experimental Measurement of RNS and Ca
2+

  

Other pathways that can lead to ROS production include non-mitochondrial O2
-
 

production through Peroxisomes [105], NADPH oxidases 1-4 [108], or Ca
2+

-dependent 

activation of NADPH oxidase 5 [108]; H2O2 production from the Endoplasmic 

Reticulum [263]; and peroxynitrite (ONOO-) production from the combination of 

Nitric Oxide (NO) and O2
-
 [232]. To explain the rapid increase of DCFDA signal 

without distinctive O2
•–

 production (as tested by MitoSOX, DHE and Lucigenin) under 

LY30 treatment, we checked the intracellular change of RNS and Ca
2+

 with LY30 

treatment as they have been frequently linked with ROS [230, 232, 236] and cell death 

[242].  

5.3.3 Intracellular RNS increases in HeLa after LY30 treatment 
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We selected diaminofluorescein DAF-FM (DAF) [264] for quantitative measurements 

of RNS (mainly NO) [265]. From left to right panels in Figure 5.3.3a, we measured 

DAF-FM fluorescence in unstained sample (unstained CTL), sample with DAF 

staining and no treatment (untreated CTL), sample with DAF staining and 

LY30-treatment for 30 minutes (LY30-30minutes), sample with DAF staining and 

LY30-treatment for 60 minutes (LY30-60 minutes). Each panel in the figure is 

represented by a scatter plot of the DAF signal (FITC represented by x-axis) verse cell 

size (Forward Scatter represented by y-axis). A rectangular is drawn for each panel to 

quantify DAF-positive cells in each sample. Compared with Untreated CTL, samples 

of LY30-30 minutes (3
rd

 panel) and LY30-60 minutes (4
th
 panel) showed DAF-positive 

cells at 66% and 67% respectively. NO increase with 22% of the whole cell population. 

In histogram representation of the same samples (Figure 5.3.3b), LY30-treated sample 

(blue and yellow histogram) demonstrated distinctive right shift compared to untreated 

CTL (green histogram). Quantification of the fluorescence intensity of each sample is 

conducted according to the function of
i u

i m m
n c u

m m

F F
f

F F





. Where i

mF  represents measured 

fluorescence for sample i, u

mF  represents measured fluorescence in unstained CTL, 

c

mF  represents mean fluorescence for untreated CTL and i

nf  is the normalized 

fluorescence for sample i. The result of quantified fluorescence (Figure 5.3.3c) showed 

that sample of LY30-30minutes and sample of LY30-60minutes demonstrated 0.3-0.4 

folds increases of NO as compared with untreated CTL.    
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Figure 5.3.3 Intracellular NO measurement through flow cytometry. a) Dot 

plots of DAF fluorescence in cells upon different treatments. From left to right, the 

four panels represent cells without DAF stain, cells with DAF stain without LY30 

treatment, cells with DAF stain and LY30 treatment for 30 minutes and LY30 

treatment for 60 minutes. b) Histgram of DAF fluorescence in 10,000 cells. X-axis 

represents DAF fluorescence and y-axis represents cell number. c) Quantified 
intracellular NO in HeLa according different time of LY30 treatment 

To further confirm the effect, we conducted 3 independent DAF measurements in HeLa 

with more intense time points. Figure 5.3.4 plotted pooled average dynamics of NO in 

HeLa upon LY30 treatment, with x-axis demonstrating cell incubation time with LY30 

and y-axis representing folds change of DAF in each cell sample versus that in 

untreated cell sample. There is approximately 0.5-fold increase of DAF fluorescence 

from 0 minutes to 5 minutes. Such increase of 0.5-fold lasts until 10 minutes, and then a 

drop to 0.25 folds happens at 15 minutes. After that, we observed another rapid increase 

from 1.2 folds at 15 minutes to 1.7 fold at 30 minutes. Such increase is maintained 
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steadily with a less extend to 2 folds at 240 minutes. Statistic analysis of DAF results 

showed significant increase of DAF happen as early as 5 minutes (p= 0.011). 

 

Figure 5.3.4 Averaged NO levels in HeLa upon LY30 treatment. The NO level 

for each specific period is obtained through averaging over measured DAF signals 

of at least 3 replicates (except for NO measurement at 240 minutes is obtained 
through 2 replicates).  

5.3.4 Ratiometric measurement of Intracellular Ca
2+

 increases in 

HeLa after LY30 treatment by Using Fura-2 

To gain a comprehensive understanding of intracellular Ca
2+

 regulation by LY30, we 

carried out Ca
2+

 measurement assays using ratiometric dye Fura-2 [266] and 

non-ratiometric dyes Fluo-4 AM and Fluo4 NW AM [267].  

As a ratiometric dye, Fura2-AM can measure both free Ca
2+

 (cytosolic Ca
2+

) and bound 

Ca
2+

 through collecting emission at 510nm with excitation at wavelengths of 340 nm 

and 380 nm. We selected Thapsigargin (TG) as the positive control in the experiments, 

which is a non-competitive inhibitor of a class of SERCA enzymes. Thapsigargin raises 

cytosolic calcium concentration by blocking the ability of the cell to pump calcium into 
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the sarcoplasmic and endoplasmic reticula which causes these stores to become 

depleted [268]. In the first experiment, HeLa cells were firstly treated with LY30 

(25uM) for 100 seconds and then added with TG at 1mM (Fig 5.3.5).  

Black line and blue line in Figure 5.3.5a represents concentrations of intracellular free 

Ca
2+

 and bound Ca
2+

 corresponding to different treatments specified in x-axis 

respectively. Increase of free Ca
2+

 occurs right after LY30 (black line) without 

distinctive decrease of bound Ca
2+

 (blue line). More significant increase of free Ca
2+

 

and decrease of bound Ca
2+

 were observed with TG. Figure 5.3.5b demonstrate 

calculated ratio between free Ca
2+

 and bound Ca
2+

. Calibrated Ca
2+

 concentration 

(based on measured raw data) is plotted in Figure 5.3.5c according to the function

2 min

max

( )
[ ]

( )
d

R R
Ca K Q

R R

 



. Here, Kd is the dissociation constant of the fura2-Calcium 

binding. R is the measured ratio between free calcium and bound calcium as plotted in 

Figure 5.3.5b. The values of Rmax and Rmin are the ratio values measured under 

conditions of saturating calcium levels and in the absence of calcium respectively. In 

this experiment, slight rise of Ca
2+

 occurs right after LY30 treatment (demonstrated 

with red arrows); TG treatment, as positive control followed LY30, is able to induce 

sharp and tremendous increase of Ca
2+

.  
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Figure 5.3.5 Ratiometric Ca
2+

measurement using Fura-2 demonstrate 

increased ratio of free Ca
2+ 

to bound Ca2+ in HeLa upon LY30 treatment. a) 

Change of fluorescence intensities of Fura-2 given specified treatments. From left 

to right are treatments of LY30, Thapsigargin, LY30, EGTA and Triton, 

respectively. Black line and blue line indicate fluorescence obtained at excitation 

wavelength of 380 and 340, representing free calcium and bound calcium 

respectively. b) Ratio between free Ca
2+

and bound calcium. c) Calibrated free 

Ca
2+

concentration.      

To check the source of Ca
2+ 

increase in HeLa by LY30, we treated HeLa with TG 

(1mM) firstly to deplete ER Ca
2+

 before adding LY30. As TG is known to deplete ER 

Ca
2+

, we would expect to observe no further increase of Ca
2+

 with LY30 treatment if 

LY30 increases intracellular Ca
2+

 through ER. As demonstrated in Figure 5.3.6, TG 

treatment induces a sharp elevation of Ca
2+

 while the following LY30 treatment doesn’t 

show distinctive increase of Ca
2+

. Interestingly, LY30 treatment caused a brief, sharp 

decrease of Ca
2+

, followed by a sharp increase (similar or slightly higher) to the original 

level. We hypothesized the phenomenon may be related with physiological pH change 

from the LY30.  
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Figure 5.3.6 Ratiometric Ca
2+

 measurement using Fura-2 demonstrated 

pretreatment of thapsigargin is able to abolish LY30 induced Ca2+ increase. 
a) Change of fluorescence intensities of Fura-2 given different treatments. Black 

line and blue line indicate fluorescence obtained at excitation wavelength of 380 

and 340, representing free calcium and bound calcium respectively. LY30 is 

added into cells after TG. b) Ratio between free calcium and bound calcium. c) 
Calibrated free calcium concentration.  

5.3.5 Non-Ratiometric measurement of Ca
2+

 

Besides checking Ca
2+

 concentration using Ratiometric dye Fura-2, we also tracked 

intracellular Ca
2+

 change using a non-ratiometric dye Fluo-4 AM (Fluo-4),  which was 

reported to specifically picks cytosolic free Ca
2+

 ([Ca
2+

]c) [267]. Towards a 

comprehensive understanding of LY30-induced [Ca
2+

]c dynamics, we used Flow 

Cytometry, spinning disk confocal microscopy (SDCM) and microplate reader to 

assess [Ca
2+

]c levels from different aspects. Specifically, flow cytometry measures 

[Ca
2+

]c levels for a large cell population at a single time point; SDCM [149] enables us 

to visualize and quantify [Ca
2+

]c dynamics in every single cell; microplate reader, as a 

low-cost alternative to SDCM, can calibrate total [Ca
2+

]c fluorescence from cell 

samples with varied treatments in parallel.  
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5.3.5.1 Flow cytometry experiments showed significant Ca2+ increase in 

HeLa upon LY30 treatment 

We measured fluorescence in cell samples of unstained untreated control, stained 

untreated control, and LY30 treated sample for 5 minutes, 10 minutes, 15 minutes and 

30 minutes. Scatter plot of each sample is presented in Figure 5.3.7, where x-axis 

represents Fluo-4 intensity and y-axis represents cell size. We saw a distinctive right 

shift of Fluo-4 signal in LY30-treated sample (90.5%) compared with untreated sample 

(3
rd

 upper panel in Figure 5.3.7a). Furthermore, 95%, 98.5%, 98.7% positive cells were 

observed in LY30-treatment at 10 minutes, 15 minutes and 30 minutes, respectively. 

We quantified fluorescence intensity for the whole population as shown by the 

histogram in figure 5.3.7b and time-kinetics in figure 5.3.7c. Note that in the plot, the 

fluorescence intensities on the y-axis are normalized using the function described in 

figure 5.3.7c. From the plot, we can see that Fluo-4 intensity increases steadily from 

1-fold to 3-fold from untreated to 30 minutes of treatment with LY30 (25uM).   
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Figure 5.3.7 Fluo-4 experiment in HeLa measured by flow cytometry showed 

significant increase of Ca
2+

 by LY30. a) Dot plots for Fluo-4 in each treatment; b) 

overlapped histogram of Fluo-4 in all treatments. c) Dynamics of normalized 

intensity of Fluo-4 according to LY30 treatment. 

To confirm the dynamics of Ca
2+

 increase with LY30 showed in Figure 5.3.7, we 

carried out 3 more repeats for Fluo-4 flow and the averaged dynamics are shown in 

Figure 5.3.8a.  
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As we know, increase of [Ca
2+

]c may come from either extracellular calcium through 

plasma membrane (plasma membrane Ca
2+

 ATPase (PMCA)) [269] or intracellular 

calcium store (e.g. ER, mitochondria) through various calcium channels (e.g. IP3R, 

Ryanodine receptor [270]). To test whether extracellular calcium is involved, we 

conducted another sets of [Ca
2+

]c measurement in calcium-free media. To be more 

specific, the experiment is carried out in the same conditions (e.g. Fluo-4 staining and 

drug treatment) as the experiment shown in Figure 5.3.8a except that the media is 

always kept as calcium free. The averaged results of 3 replicates are shown in 5.3.8b. 

By comparing fluorescence intensity in normal media and calcium free media (5.3.8a 

verse 5.3.8b), we found that LY30 induces 1 fold increase of [Ca
2+

]c in both normal 

media and calcium-free media in 5 minutes, and then the increase sustained until LY30 

treatment for 20 minutes. Difference of fluorescence between normal media and 

calcium-free media arise from 20 minutes. We observed a further increase of 

fluorescence occurring from 2.5 to 3 folds in normal medium, which however, is not 

seen in calcium-free medium. 
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Figure 5.3.8 Averaged dynamics of [Ca2+]c in HeLa with LY30 treatments 

using flow cytometry. a) LY30 triggered [Ca
2+

]c dynamics in normal medium. b) 

LY30 triggered [Ca
2+

]c dynamics in calcium-free medium. 

Under the same experiment condition, we also did [Ca
2+

]c measurement with TG 

treatment (incubation of HeLa cells with TG at 1mM and 2mM for 5 minutes). 

Measured result is presented in the form of scatter plot and histogram (Figure 5.3.9). 

Scatter plot shows that sample with TG treatment at 1mM had 80.2% Fluo-4- positive 

concentration (2
nd

 panel) and 86% positive concentration at 2mM (3
rd

 panel). 

Compared with untreated control which showed 77.99% cells with fluo4-positive, there 

is about 2.2% and 8% increase, much lower than the increase of LY30. In the histogram, 
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we observed little increase of average fluoresce of the whole cell population with TG 

treatment compared with untreated control.     

 

Figure 5.3.9 Flow cytometry failed to demonstrate obvious increase of Ca2+ 

increase in HeLa by thapsigargin. a) From left to right panels are dot plots of 

Fluo-4 fluorescence in HeLa upon no treatement, TG 1mM and TG 2mM. b) 
histgram of Fluo-4 intensity corresponding to treatments shown in a). 

5.3.5.2 Spinning Disk Confocal Microscopy showed a slow and steady 

increase of Ca2+ induced by LY30 in HeLa  

In addition to flow cytometry, we obtained [Ca
2+

]c data through direct imaging from 

spinning disk confocal microscope (SDCM) and a fully-automated image processing 

software developed by Dr. Marc [149]. 
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[Ca
2+

]c is measured independently with DMSO (0.25ul/ml calculated according to the 

LY30 concentration), Thapsigargin (1mM) and LY30 (25uM). TG was used as a 

positive control because it has been well-studied to induce [Ca
2+

]c increase within 

seconds. DMSO is the negative control since it is the dissolvent of both LY30 and TG. 

Figure 5.3.10c shows the raw images of Fluo-4 fluorescence in the same set of cells 

before/after LY30 treatment. The cell samples underwent same preparation before 

treated with DMSO for 45 minutes (designed to be consistent with LY30 treatment), 

TG for 6 minutes (designed according to previous calcium measurement with TG) and 

LY30 for 45 minutes, respectively. After obtaining raw image of each sample with the 

specific treatment, we quantified fluorescence intensity for each treatment according to 

a automated image processing software [149] and plotted time-intensity of every single 

cell in Figure 5.3.10b with thin blue line. The averaged result is represented by thick red 

line with calculated error bar of the whole cell population at the specific time point. For 

clearer visualization, Figure 5.3.10b demonstrated only the averaged fluorescence for 

the cell population of a specific treatment. DMOS treatment (1
st
 panel of figure 5.3.10b) 

did not induce any observable increase of calcium. TG (2
nd

 panel of figure 5.3.10b) 

induces rapid and significant increase of [Ca
2+

]c and then restore it back to basal level in 

about 6 minutes. LY30 treatment (3
rd

 panel of figure 5.3.10b), compared with DMSO, 

produced more [Ca
2+

]c. Compared with TG, it induces [Ca
2+

]c in a steady and slowing 

manner. We also plotted raw image of the cell population with LY30 treatment in 

Figure 5.3.10c. It shows that Fluo-4 fluorescence level in the same cell population is 

significant increased after LY30 treatment compared with before treatment. 
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Figure 5.3.10 LY30 induces significant increase of Fluo-4 intensity in HeLa. a) 

dynamics of quantified fluorescence intensity in every single cell. From left to 

right are cells treated with DMSO for 45 minutes, thapsigargin for 6 minutes and 

LY30 for 45 minutes. b) averaged dynamics of Fluo-4 fluorescence intensity of 

the entire individual cells upon same treatments, corresponding to similar 

treatment in a). c)image of Fluo-4 fluorescence in a large number of cells, left 

panel is taken from cells before LY30 treatment and the right panel is taken from 

the same set of cells after LY30 treatment for 45 minutes; 

To test the involvement of ER in the increase of [Ca
2+

]c, we carried out experiments 

with sequential and reverse administration of TG (1mM for 6 minutes) and LY30 

(25uM for 10 minutes). If LY30 induces [Ca
2+

]c from ER, we would expect there is no 

further increase of [Ca
2+

]c with LY30 following TG, as TG will deplete [Ca
2+

]E store 

from ER in 6 minutes. The reverse administration of LY30 and TG is to confirm the 

phenomenon of [Ca
2+

]c increase with LY30 treatment shown before. In the experiment 

with early TG and later LY30 treatment (Figure 5.3.11b), we can no longer observe 
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increase of [Ca
2+

]c. The experiments with early LY30 and later TG showed that LY30 

induces steady [Ca
2+

]c increase in HeLa, which is in consistent with results presented in 

Figure 5.3.10.  

 

Figure 5.3.11 Quantified Ca
2+

 concentration with sequential administration 

of thapsigargin and LY30 or reverse. a) Fluo-4 dynamics in cells treated with 

TG treatment for 6 minutes followed by Ly30 10 minutes; b) Fluo-4 dynamics in 

cells with LY30 for 10 minutes followed by TG for 6 minutes 

5.3.5.3 Microplate reading of Ca2+  

Fluo-4 NW (No-Wash) Calcium Assay is introduced as no-wash dye for calcium 

measurement under microplate reader. It offers a proper assay formulation that requires 

neither a wash step nor a quencher dye, which makes the measurement convenient. The 
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Fluo-4 NW assay is claimed to reach larger fluorescence intensity increases compared 

to Fluo-3 and Fluo-4 [271]. We chose to measure [Ca
2+

]c with microplate reader as it is 

a cheaper alternative of SDCM. Another advantage of microplate reader for [Ca
2+

]c 

measurement is its high-throughput screening capability. It is able to simultaneously 

measure fluorescence intensities from multiple wells which correspond to various 

treatments.  

To test the feasibility of microplate reader with Fluo-4 NW assay in [Ca
2+

]c 

measurement, we firstly generated time-series plots for cell samples treated with either 

TG (1mM: positive control) or DMSO (0.25 ul/ml: negative control) measured at 

488nm for 6 minutes with time interval of 5 seconds. Measured fluorescence intensity 

of each time point is normalized to the fluorescence intensity of the same sample before 

treatment. From the normalized dynamics shown in Figure 5.3.13b, we can see that TG 

induced significant increase and decrease of [Ca
2+

]c, which qualitatively, is in 

agreement with the results from SDCM in figure 5.3.10 and 5.3.11. After confirmed the 

feasibility of the assay, we measured [Ca
2+

]c dynamics in HeLa cells with LY30 

treatment at 25uM for 30 minutes. As we can see, cell sample treated with LY30 

showed a steady increase of [Ca
2+

]c , the trend of which is consistent with the kinetics 

shown in Figure 5.3.12. Compared with SDCM, microplate is not as sensitive as 

microplate. But it is still able to capture the dynamics of the calcium signals.  
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Figure 5.3.12 Microplated reader showed significant increase of Fluo-4 

fluorescence under TG treatment and LY30 treatment. a) Absolute intensities 

of Fluo-4 in cells with/without tg treatment. b) Normalized intensities of Fluo-4 

correspond to results obtained from a). c) Absolute intensities of Fluo-4 in cells 

with/without LY30 treatment. d) Normalized intensities of Fluo-4 correspond to 

data in c).   

5.4 Discussion and Summary 

5.4.1 ODE model of canonical O2
•– to H2O2 pathway is inconsistent 

with experimental observations 

According to computational system study of LY30-induced sensitization to TRAIL, we 

found the non-monotonic regulation of cFLIP by LY30 in HeLa. Further investigation 

suggested that the non-monotonic regulation might root in the opposing pathways of 

H2O2 and O2
•–

 induced by LY30. In order to characterize and verify the effect, we 

constructed an Ordinary Differential Equation (ODE) model which incorporated the 



101 

 

hypothesized effect of LY30 into a well-studied ROS pathway (Figure 5.1.1). The 

model predicted an earlier production of O2
•–

 to that of H2O2 (Figure 5.1.2 b) while the 

experiments showed that H2O2 (as detected by DCFDA) increased earlier than O2
•– 

(as 

detected by MitoSOX). In addition, the model predicted that the steady states 

concentrations of H2O2 and O2
•–

 in LY30-treated samples will increase to the same 

level relative to that of untreated sample (Figure 5.1.2 a) while the experiment data 

showed a more significant increase of the steady state of H2O2 (around 1.6 folds) than 

that of O2
•– 

( Figure 5.1.3). 

In order to verify the experiment observations with O2
•–

 and H2O2, we further employed 

double staining to measure intracellular O2
•–

 and H2O2 in parallel. Compared with 

single staining which can only measure single fluorescence in one set of cell sample, 

double staining has the advantage of tracking the change of O2
•–

 and H2O2 

simultaneously within the same set of cell sample. With the method of double staining 

of O2
•–

 and H2O2, we observed that LY30 induced increase of H2O2 happened earlier 

than that of O2
•– 

(Figure 5.1.4), which is consistent with the dynamics of H2O2 and O2
•–

 

with single staining (Figure 5.1.3)   

As model predictions can be greatly affected by its parameters, we performed 

sensitivity analysis on the model in order to find the sensitive parameters which have 

high influence on H2O2 and O2
•–

. By adjusting the “sensitive parameters” in the model, 

we tried to harmonize the model prediction with our experimental results. However, we 

were unable to unify our model and experiments though extensive adjustments of 

parameters (Figure 5.1.7). Our extensive effort to recapitulate observations using the 
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canonical ROS pathway suggested that ROS induced by LY30 doesn’t follow the 

canonical ROS pathway with superoxide and then hydrogen peroxide. 

5.4.2 LY30 does not induce significant O2
•– increase in HeLa 

Considering that MitoSOX detects only mitochondrial O2
•–

, we used DHE (Figure 5.3.1) 

and lucigenin (Figure 5.3.2) to measure the change of total O2
•–

 caused by LY30. In 

both experiments, we were unable to observe increase of O2
•–

 prior to the increase of 

H2O2. Instead, both experiments demonstrated an unexpected effect on O2
•– 

: starting 

with an initial drop (0.8-fold from 5 to30 minutes) and later an increase (1.2-fold at 60 

minutes) and finally another decrease (0.8 fold at 120 minutes). This non-canonical 

effect on O2
•–

 further supports the alternative hypothesis that in LY30-induced ROS 

production, O2
•–

 is not the upstream source of the observed ROS signal (DCFDA 

fluorescence).  

5.4.3 LY30 induces NO increase in HeLa 

It has been reported that NO and Ca
2+

 are closely linked to ROS production. NO could 

be an upstream cause of the observed ROS signal (DCFDA fluorescence) because NO 

interacts with O2
•–

 to form the reactive species peroxynitrite (ONOO
-
) at a rate of 

6.7*10
9
M

–1
sec

–1
, which is about 2-4 folds faster than the rate of catalysis of O2

•–
 by 

superoxide dismutase (CuZn-SOD) [232, 272]. LY30-treated cells showed increased 

DAF fluorescence compared with untreated cells, which indicates increased NO 

concentration in LY30-treated cells (Figure 5.3.3). In order to confirm the observation 

of LY30-induced NO increase, we repeated DAF measurement with more time points 
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after LY30 treatment. The averaged results showed that there is a rapid increase of NO 

concentration, followed by a slight decrease, and then another increase till a steady state 

around 2 folds (Figure 5.3.4). The observations confirmed that LY30 treatment 

increases intracellular NO concentration.   

The phenomenon of NO increase has been reported in Quercetin-treated hypobaric 

hypoxic rats [273] and conducted clinical trials of Quercetin treatment in 12 healthy 

men [274]. In contrast, research in IL-1ß–stimulated hepatocytes showed that 

Quercetin inhibits NO production through the inhibition of inducible nitric oxide 

synthase (iNOS) expression [275]. Most research consider LY29 as a NOS inhibitor 

through inhibition of NF-kappaB ( NF-KB) activation [276], while Boscá L. showed 

that LY29 can also trigger iNOS and the synthesis of nitric oxide [277]. 

As NO is synthesized by a family of NO-synthases (NOS), eNOS, iNOS and nNOS in 

mammals, increased NO suggests that LY30 activates one or multiple isoforms of NOS 

in a short time. The mechanism of NO effects by LY30 in HeLa remains to be clarified. 

Our inability to decrease NO production through L-NAME may be the result of 

technical problems or it might imply the involvement of iNOS activation by LY30. 

Future work could knock-down individual NOS isoforms to determine which are 

activated by LY30. In addition to a significant increase of NO, we also observed that 

the dynamic trajectory of NO is similar to that of ROS measured by DCFDA, 

suggesting there may be a causal link between LY30-induced NO and LY30-induced 

DCFDA fluorescence.  

5.4.4 LY30 induced an increase in cytosolic Ca
2+

 



104 

 

Calcium could also be an upstream cause of ROS because increased intracellular free 

Ca
2+

 is known to induce O2
•–

-dependent ROS production through mitochondrial 

respiration [261, 278, 279], and O2
•–

-independent ROS production through NOX 

activation [108, 280]. Based on these findings, we carried out experiments to measure 

the intracellular change of NO and [Ca
2+

]c by LY30.  

Measurement of [Ca
2+

]c is a difficult experiment because it requires fast speed and high 

accuracy to capture the transient dynamics of [Ca
2+

]c. In this research, we used four 

assays to measure the change of [Ca
2+

]c in HeLa upon LY30 treatment: ion 

measurement, flow cytometry, microplate reading, and imaging with a spining disk 

confocal microscope.  

Our [Ca
2+

]c measurement using the ratiometric dye Fura-2 (Figure 5.3.5) showed an 

immediate and small (compared with the high increase with Thapsigargin treatment) 

elevation of [Ca
2+

]c upon LY30 treatment. Such immediate elevation of cytosolic Ca
2+

 

was followed by a slow and steady increase.  

Our Ca
2+

 measurement using flow cytometry with Fluo-4 showed that the cytosolic 

Ca
2+

 concentration in LY30-treated cells (5 minutes) was about 1.2 fold higher than that 

in untreated cells (Figure 5.3.7). Longer incubation of LY30 (30minutes) increased the 

concentration to 3 folds of the basal level before any treatment. In the experiment, we 

failed to observe significant increase of Fluo-4 fluorescence with Thapsigargin 

treatment (Figure 5.3.9).   

Under spinning disk confocal microscopy (SDCM), we observed a steady and slow 

increase of cytosolic Ca
2+

 in LY30-treated cells (Figure 5.3.10). An independent image 
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of Fluo-4 with Thapsigargin (TG) showed a sharp and dramatic increase of Ca
2+

, 

demonstrating that the assay can accurately capture the dynamics of Ca
2+

.  

Compared with SDCM, [Ca
2+

]c measuring Fluo-4-NW fluorescence with a microplate 

reader produced data with less resolution. But it produced similar dynamics of [Ca
2+

]c 

under various treatments. Consistently, there was no distinctive change of Ca
2+

 under 

DMSO treatment; there was a slow and steady increase of [Ca
2+

]c under LY30 

treatment; and there was a sharp and high-magnitude increase of [Ca
2+

]c under TG 

treatment (Figure 5.3.12).  

The results of ion measurement using Fura-2, confocal microscopy with Fluo-4, 

together with microplate reading with Fluo-4 showed a sharp and high elevation of 

[Ca
2+

]c after TG treatment, which reproduced the reported phenomenon that TG can 

deplete the [Ca
2+

]E stores within seconds. The results confirmed that the three assays 

are capable of capturing the dynamics of [Ca
2+

]c correctly. All the three assays 

consistently demonstrated a slow and steady increase of [Ca
2+

]c. We observed that the 

increase of [Ca
2+

]c accumulated to 0.6 fold higher than the basal level within 45 minutes 

of LY30 treatment, which is more than half of the total [Ca
2+

]E
 
storage (as observed in 

Figure 5.3.10b with the peak value of 1-fold- increase under TG treatment).     

Interestingly, our fluorescence measurement with flow cytometry (Figure 5.3.8a) 

showed a much more significant increase of cytosolic Ca
2+

 with short LY30 incubation 

(1.2 folds increase was observed with 5 minutes incubation Figure 5.3.8s) than the 

increase of longer LY30 incubation in the other three assays (0.5 folds increase was 

observed with 45 minutes Figure 5.3.10). Under the same protocol with flow cytometry, 

we were not able to observe distinctive [Ca
2+

]c
 
increase in HeLa with TG treatment 
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(Figure 5.3.9). Our speculation about the difference between the results from flow 

cytometry versus other experimental assays resides in the preparation procedure. For 

[Ca
2+

]c measurement using flow cytometry, we treated HeLa cells with LY30 for a 

specific period, say 5 minutes before staining the cells with Fluo-4 for 1 hour (followed 

the Ca
2+

 measurement protocol using flow cytometry of Invitrogen website); the 

staining introduces a delay in the experiment, and it is highly possible that there could 

be a further accumulation of cytosolic Ca
2+

 during the staining procedure. For [Ca
2+

]c 

measurements using the ion-measurement machine, SDCM and microplate reader, we 

stained the HeLa cells with Ca
2+

 dyes prior to LY30 treatment. Although we washed 

away extra LY30 from the LY30-treated cells with PBS and changed fresh media for 

Fluo-4 staining, the portion of LY30 that had already entered the cells continued to 

increase [Ca
2+

]c. In that case, the measured [Ca
2+

]c concentration corresponds to LY30 

treatment with the specified drug incubation (5 minutes) time plus the dye incubation 

(longer than 1 hour). Therefore, a higher elevation of [Ca
2+

]c was observed with flow 

cytometry. The explanation also applied to TG treatment where the significant [Ca
2+

]c 

increases that were recorded with the three assays was not observed under flow 

cytometry.   

5.4.5 LY30 may induce passive calcium leakage in HeLa  

TG, a known SERCA pump inhibitor, induced a very fast and sharp increase of Fluo-4 

fluorescence, which goes back to basal level in about 6 minutes. LY30, in contrast, 

induced a slow and steady rise of Fluo-4 fluorescence which lasted for more than 45 

minutes. One possible explanation for this difference is that LY30 causes a passive 

increase of [Ca
2+

]c and TG causes an active increase of [Ca
2+

]c. To determine the source 
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of [Ca
2+

]c, we firstly emptied the [Ca
2+

]E store with TG and then measured the 

dynamics of [Ca
2+

]c by LY30. After the pre-treatment of TG, we no longer observed 

LY30-induced fluorescence increase (Figure 5.3.11a). The results demonstrated that 

LY30-induced increase of [Ca
2+

]c is from the Endoplasmic Reticulum. These results 

were consistent with the possibility that LY30 causes passive calcium leakage from the 

ER.  

Passive calcium leakage is a graded and continuous process which  does not completely 

empty calcium stores [281]. Leak rates vary in different cell lines and with different 

treatments from 10uM/mins to 400uM/mins [282]. Although the exact mechanism and 

nature of calcium leakage is still an enigma, researchers have found that it is not 

affected by ryanodine receptors or IP3 receptors, but is responsive to ATP levels [283] 

and to the Bcl-2 family [284]. In our experiments, we found that application of neither 

IP3 inhibitor 2-APB nor RYR inhibitor TMB8 was capable of reducing LY30-induced 

[Ca
2+

]c, which is consistent with LY30 causing passive Ca
2+

 leakage. 
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6 Bayesian networks for LY30-induced ROS production and 

sensitization to death  

In this chapter, we applied Bayesian Network to learn LY30-induced signaling pathway 

in order to explain the significant fluorescence increase of DCFDA, DAF and Fluo-4 

am upon treatment of LY30.   

6.1 Introduction to Bayesian network  

A Bayesian network is a type of probabilistic graphical model which depicts the 

dependencies among variables (such as proteins or genes in a cellular network) through 

a series of probability distributions. While Ordinary Differential Equations (ODE) has 

been widely applied in well-studied cellular networks [142, 143, 173], Bayesian 

network is more suitable for learning and inferring cellular networks where the network 

is less-understood and the models have too many parameters relative to the data. Many 

applications in biological studies have taken advantage of Bayesian networks, such as 

gene expression analysis [285, 286], cellular network [287] and pathway modelling 

[288, 289].  

6.1.1 Bayesian Network and relevant terms 

Firstly, several key terms are explained as below before introducing Bayesian network 

and its applications. 
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Variable 

Variables here refer to biological entities, including LY30 and species in the pathway 

such as proteins or genes, to be studied in the network. In Bayesian network, each 

variable is represented as one node.  

Dependency 

Dependency specifies the causality between variables through an acyclic directed graph. 

Each acyclic arrow in dependency graph links two variable starting from parent (P) to 

its child (C): PC, meaning that C is dependent on P. In other words, P can induce C. 

One variable depends on all the variables that point to it.  

Conditional Probability Distribution (CPD) 

Dependency depicts the causality among all variables. Conditional probability 

distribution (CPD) describes the influence from parent(s) to its direct child in a 

quantitative way. This relationship is represented in the form of P(C=xi|Pa=yj), where 

Pa and C refer to parent and child, xi and yi are the elements of the assigned values sets 

for C and Pa, respectively. It means the probability of C being xi given that Pa is yj (the 

vertical bar ‘|’ means given that). Note that the conditional probabilities are constrained 

to be a probability distribution, meaning they are non-negative and the sum of 

probability of C under all conditions given a known condition of Pa is 1: 

( ( | ) 1i

i

p C x Pa y   ). 

Generally, variables in a Bayesian network can be either continuous or discrete. In this 

thesis, we consider only the discrete situation and use only multinomial distributions. 

Thus, CPD can be represented by conditional probability tables (CPTs). For a node 
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which has parent(s) in the network, CPT is the table that records the strength of its 

dependencies on all its parents. From the CPT, we can look up the probability of the 

node given the value(s) of its parent(s). High values of P(C=xi|Pa=yj) means there is 

high probability that the child will be xi whenever the parent is yi, and vice versa. If 

there are several parents of C, say {Pa1,…,Pak}, the conditional probability of C is 

specified as P(C=xi|Pa1=yj1,…,Pak=yjk) in multi-nominal conditions for all the nodes. 

The conditional probability distribution (CPD or CPT) is described by a vector of 

parameters θ (we will use θ later to represent parameters). 

Joint probability 

Given Xi as one node in the network, its parents are denoted as Pa(Xi). Assuming Xi has 

n parents, each of which are independent, the joint probability of Xi in the network can 

be expressed as the product of its conditional probability on each parent. Expressed as 

P(Xi|Pa1(Xi),...,Pan(Xi))=
1

( | ( ))
n

i j i

j

P X Pa X


  . 

Bayes’ rule 

As a central theorem in probability theory, Bayes' rule expresses how a subjective 

degree of belief should rationally change to account for evidence.  

Bayes rule [290] specifies the relationship between the probability of parameter θ (P(θ)) 

and the observations O (P(O)) in the form of 
( | ) ( )

( | )
( )

P O P
P O

P O

 
 

. 

In the equation, 

P(θ) is the prior of parameter θ, which specifies the initial belief in θ; P(O) is the 

probability of observation; P(θ |O) is the calculated posterior which represents belief of 

parameters θ given observation O.  
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Bayesian network 

A Bayesian network is a graphical structure together with a family of Conditional 

Probability Distributions (CPD) that describes a set of random variables and their 

probabilistic dependence (causalities) [291]. A Bayesian network is composed of a set 

of nodes (variables), a directed acyclic graph (DAG) specifying direct dependence 

among the nodes and a conditional probability distribution (CPD) for each node given 

its parents specified in the graph. In the case of multi-nomial conditions, the CPD can 

be simplified into a conditional probability table (CPT).   

As demonstration of Bayesian network, we illustrated a small Bayesian network in 

figure 6.1.1. In this network, there are 4 nodes (variables) A, B, C and D. The 

dependence relationship among the 4 nodes are specified through the arrows AB; 

AC; {B, C}D, meaning that variable B and C are dependent on variable A, and 

variable D is dependent on B and C. The CPDs that define the causalities among the 

species are shown in the right panel of the figure, noted that we assumed A, B, C and D 

are Boolean variables which can only take on values 0 and 1,.   

 

Figure 6.1.1 demonstration of Bayesian network with a simple example. A) 

Network structure. A is the root of the network and it is the parent of B and C. B 
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and C are both the parents of D. b), c), d) and e) are parameters of conditional 
probability for A, B, C and D, respectively.  

Bayesian networks has three advantages in modelling biological pathways(refer to [292] 

for more details about advantages of Bayesian network): 1) Bayesian networks are 

capable of modeling incomplete data sets; 2) Bayesian networks enable us to learn 

about causal relationships, which are a direct representations of our beliefs; and 3) 

Bayesian network together with Bayesian statistic techniques facilitate the integration 

of knowledge and data [293]. 

In the task of explaining the significant fluorescence increase of intracellular DCFDA 

(H2O2) without distinctive increase of O2
•–

 after LY30 treatment, we chose Bayesian 

network among the modelling techniques due to the following two limitations. Firstly, 

there is lack of information on LY30 induced ROS pathway, including the source of 

ROS, the species get involved and reactions and the parameters describe the reactions. 

In addition, our measured data (RNS, O2
•–

, Ca
2+

 and DCFDA) are so called 

low-resolution data regarding quantity and quality: 1) they were measured at different 

time and from different cell samples; 2) they were obtained with different methods . For 

example, we used flow cytometry for RNS, O2
•–

 and H2O2, but SDCM for Ca
2+

; and 3) 

data quantity is low as we have at most 8 timepoints measurement for each species. 

These limitations make Bayesian network a good choice.  

6.1.2 Parameter Estimation in Bayesian networks 

We are given a network structure G and a set of observations 1 2{ , ,..., }iO o o o
, 
the task 

of parameter estimation is to find an estimate of parameters   (consists of a set of 
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conditional probability distributions) of G, denoted as finding a 


, which maximize the 

possibility of observation denoted as arg max P (D= O| )


 . Here, D is the data, O is 

the observation, arg max


 is a mathematical expression that indicates the value of   

which causes the subsequent function to be maximized. There are several methods 

available for parameter estimation, including Maximum likelihood Estimation (MLE), 

Bayesian estimation for complete datasets and the Expectation-Maximization 

algorithm for incomplete datasets.  

Maximum likelihood estimation (MLE)  

Maximum likelihood estimation (MLE), as suggested by its name, is to maximize the 

probability of 


 given O. MLE is a standard method of parameter estimation given 

complete observation of all the variables and its algorithms is described as the 

following.  

Step1: define likelihood functions for the observations given the model 

1 2 1 2( , ,..., ) ( | ) ( | )... ( | )i if o o o f o f o f o      

Step 2: Exchange in identity of θ and O as “variable” and “parameters”. Consider the 

observed values 1 2, ,..., io o o to be fixed "parameters" of this function, and θ to be the 

function's variable. From this point of view, this distribution function will be called the 

likelihood. 

1 2 1 2( | , ,..., ) ( , ,..., | ) ( | )i i n

n

L o o o f o o o f o     
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Step 3: Estimation of 


. Maximum likelihood is applied to find 


 for observations

1 2, ,..., io o o , such that the likelihood of 


 is maximized: 

 
1 2arg max ( | , ,..., )iL o o o


 



.
 

MLE has the advantages of 1) providing an adaptable methods of parameter estimation 

over a large variety of estimation situations; and 2) being able to generate parameters 

with minimum bias and narrow confidence intervals given a large sample size [294].  

At the same time, the application of MLE is also restricted by the following features 

[294]: 1) it is often difficult to solve the estimation numerically and 2) it may produce 

poor estimation of models if there is not enough training data [294]. 

Bayesian estimation 

Before introducing Bayesian estimation, we will first review several key terms 

including prior, posterior and Bayes’ rule. 

Prior 

Prior probability distribution P(θ) [294, 295] is the probability distribution expressing 

one's initial beliefs about the values of parameter θ, before any data has been observed 

(observation O). Prior distributions are often uniform (equal probability for each 

possibility) to represent a parameter that is totally unknown at the start of the 

experiment. 
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Posterior 

Posterior [296] or posterior probability distribution ( | )P O , is the conditional 

probability assigned to parameter θ when evidence (O) is taken into account. 

Bayesian estimation  

Bayesian estimation was proposed to overcome the limitation of MLE in the condition 

of small sample size through introducing prior distributions. Bayesian estimation 

assumes that the parameter θ has a distribution P(θ). If we observe data O, the posterior 

probability for θ is computed according to Bayes’ rule: 

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )

P O P P O P
P O

P O P O P d

   


  
 

 . 

Here, ( | )P O is the posterior distribution of parameter θ in the presence of observations 

O; P(θ) is the prior distribution of θ; P(O) is the probability distribution of the 

observation; and P(O| θ) is the dependent distribution of observation O given a 

particular value for parameter θ.  

Bayesian estimation enables people to incorporate knowledge about a particular 

hypothesis. In addition, quantitative computation of prior and posterior (conditional) 

probabilities allows people to infer conclusions in the presence of multiple alternative 

hypotheses, models, observations, or assumptions. One of the disadvantages of a 

Bayesian approach is that we may get very different posterior distributions by changing 

the priors of parameters [297]..  
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In this thesis, we use multinomial distribution [298] for data and Dirichlet prior [299] 

for our parameter estimation using Bayesian method.  

Expectation-Maximization algorithm (EM) 

The Expectation-Maximization (EM) algorithm is a statistical method to estimate 

parameters θ, where the model depends on unobserved variables.  

In the condition of parameter estimation with missing data, we have a statistical model 

consisting of observed data (O), a set of unobserved data or missing data(M) , and a 

vector of unknown parameters (θ) , along with a likelihood function L(θ;O,M)=P(O,M| 

θ). The EM algorithm seeks to find the optimum estimation of θ by iteratively 

calculating expectation and maximization [300]. 

In the step of expectation, we will first calculate the expected value of log likelihood 

function with respect to the conditional distribution of M given O and parameter ( )t

(parameter estimated in t
th
 round) as ( )

( )

| ,
( | ) (log ( ; , ))t

t

M O
Q E L O M


   . Noted that 

log likelihood function is log(L(θ;O,M)). 

In the step of maximization, we will then find parameter θ that can maximize the 

expected value as 
( 1) ( )arg max ( | )t tQ



    . 

6.1.3 Structure Learning  

Bayesian network structure learning, in the context of a biological pathway, is to learn 

the causal influence (or the interaction) relationships among various species given a set 

of measured quantities of the species. In another word, the task of structure learning is 
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to search the space of possible graphs (or structures) to find the one that can best 

capture the probabilistic relationships among the variables that comprise the cellular 

network. 

The learned relationship is demonstrated as an acyclic directed graph, where the nodes 

represent the species and the edges represents the causal influence among the species. 

As introduced in dependence, each arrow in the graph points from a parent node to its 

child node, meaning that the parent can influence child (directly or indirectly). One 

child can have multiple parents.   

Bayesian network has been regarded as an optimal tool in structure learning according 

to the following aspects: 1) Bayesian network is capable of reconstructing the network 

with incomplete data [301]; and 2) Bayesian networks and its related statistical methods 

can avoid over-fitting to the training data during learning process [302]. Over-fitting 

refers to the condition that the model describes measurement noise instead of the 

underlying relationship.   

The structures are typically learned through combing a search method, an exhaustive or 

heuristic search procedure over possible network structures, with a scoring method (e.g. 

Bayesian score) to find the optimal modelling network [303].  

Bayesian Score (BS)  

Bayesian Score (BS) is a scoring method used in Structure learning to evaluate each 

structure. BS is calculated for each structure as an indication of the fitness between the 

structure M and observation O as:  

( , ) ( | ) ( )BS M O P O M P M   or 
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( , ) log( ( | )) log( ( ))BS M O P O M P M   

P(M) represents the prior probability distribution over the model M; P(O) represents 

data distribution; P(O|M) is the marginal likelihood of observation O given model M.   

Exhaustive search 

A naive idea to search for the best structure is to explore the whole sample space which 

includes all the possible parent-child networks. Given the number of variables n, the 

size of sample space (number of directed acyclic graphs) is s(n), which is determined 

according to the formula
( )1 ( 1) 2

1

( ) ( 1) 2 ( 1)
O n

n
i i i

i

n
s n s n n

i

 



 
    

 
  [304]:  

Table 6.1 illustrates how the number of possible networks s(n) increases with respect to 

the number of variables n. The large sample size makes it impossible to take exhaustive 

search for a big variable number n. 

Table 6.1 Sample size of network according to the number of variables 

Variable(n) 1 2 3 4 5 6 7 8 

sample 
size(s(n) ) 1 3 25 543 29,281 3,781,503 1.10E+09 7.80E+11 

Heuristic search  

In structure learning, an alternative to exhaustive search is heuristic search, which 

searches the sample space through experience. For example, one would expect to find 

high-scoring graphs in the vicinity of where you already found some high-scoring 

graphs. This is one of most popular heuristics called “locality”. Heuristic search usually 

gets better scoring answers more quickly than exhaustive search. A lot of heuristic 
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algorithms have been discussed, including Markov Chain Monte-Carlo (MCMC), K2, 

Hill-climbing. In this thesis, we learn the causality between intracellular signals (e.g. Ca, 

NO, H2O2) based on observed levels of these signals, for different durations of LY30 

treatment using a MCMC algorithm called Metropolis–Hastings algorithm [305, 306]. 

6.1.4 Inference  

Inference, also called model evaluation, is the process of evaluating the probabilities of 

missing values of the hidden species H (the variables that we didn’t measured) based 

upon the causality dependence in the model G and the observed variables, O (which 

have been measured). Inference is to answer the question like what the probabilities of 

missing values H is, given the observation (O) and Model (M). The task can be 

formulized as ( | , )P H O M . For a predefined structure and a set of data, parameter 

estimation will generate a unique set of CPT, which can be easily computed using the 

chain rule [307]. 

We take a simple pathway (Figure 6.1.2) as the example to demonstrate inference. This 

pathway consists of a stimulant (ST) and a signal (SI) which are connected through an 

arrow from ST to SI. ST has “present” and “not present” two states and SI has “high”, 

“low” and “medium” three states. The concentration of SI is determined by SI 

according to the parameters (CPT on the right panel of figure). In this network, 

inference can be applied to answer question regarding the probability of any species at 

any state given the state of the other species. For example, what is the probability of ST 

is present given SI is high? To infer the probability of ST=present, we can calculate the 
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posterior probability of ST given SI according to:

( | ) ( )
( | )

( )

P SI high ST present P ST present
P ST present SI high

p SI high

  
  


. 

Noted that

( ) ( | ) ( )
st

P SI high P SI high st P st  
.    

 

Figure 6.1.2. A simple example to demonstrate inference in Bayesian network. 

In the example, ST represents the stimulant which has present and not present two 

states and SI represents the signal with low, medium and high three states. Inferred 
probabilities of ST given SI are demonstrated in the table.  

6.1.5 Our application of Bayesian Network 

We applied Bayesian network(BN) strategies including structure leaning(6.1.3), 

parameter estimation(6.1.2) and inference (6.1.4) to reconstruct and describe the 

underlying pathway of  LY30-induced ROS production (measured by DCFDA) and 

cell sensitization (measured by cell viability).   

Our Bayesian network learning of LY30 pathway is conducted in Bayes Net 

Toolbox(BNT) developed by Kevin P.Murphy [308] using measured kinetic data of 

RNS, O2
•–

, Ca
2+

 and DCFDA (H2O2, ONOO
-
). Before modelling the pathway, we 

firstly pre-processed the data through normalization and discretization. Then, we 

conducted the model structure of the causality dependence among the nodes through a 
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MCMC algorithm called Metropolis–Hastings [305, 306]. After structure learning, we 

estimated parameters for the models to specify the quantitative dependence among the 

species through Expectation-Maximization (EM) algorithm.  

6. 2 Model learning for a Bayesian network with measured data  

6.2.1 Data Preprocessing  

Measured [Ca
2+

]c (Fluo-4am), RNS(DAF), O2
•–

(DHE), ROS(DCFDA), were processed 

with normalization and discretization before structure learning. 

Normalization 

We normalized the concentration of each species by normlize the measured 

concentration of treated sample to that of untreated sample after subtracting 

background noise according to the formula: 
_

_

i un ctl
i m m
normalized ctl un ctl

m m

f f
C

f f





.

 Noted that i

mf  is 

the measured fluorescence intensity of sample i after certain treatment; _un ctl

mf  is the 

measured fluorescence intensity of unstained and untreated control, which represents 

background noise; ctl

mf is the measured fluorescence intensity in untreated control, 

which represents base level; and i

normalizedC  is the normalized concentration. Normalized 

results for [Ca
2+

]c, [RNS], [O2
•–

] and [DCFDA] were shown in Figure 6.2.1. 
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Figure 6.2.1. Normalized experimental data of Fluo-4, DAF, DHE and 

DCFDA obtained from HeLa after LY30 treatment. For each panel, x-axis 

represents incubation time after LY30, y-axis represents fold change of 

fluorescence intensity of each measured fluorescence according to untreated 

control.  

Discretization 

All the data were discretized into three levels with equal interval, low, medium, and 

high concentrations. The method of equal interval into three levels has been reported in 

many previous researches on cellular signaling [288]. As the input of the network, 

LY30 is discretized into three levels according to its incubation time, corresponding to 

the condition of “no LY30 treatment” (treatment period=0), “brief LY39 treatment” (5 

minutes~30 minutes) and “long LY30 treatment” (30 minutes~ 240 minutes) (Figure 

6.2.2).  
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Figure 6.2.2. Processed data using discretization on Fluo-4, DAF, DHE, DCFDA 

and incubation time of LY30 

6.2.2 Model learning 

We utilized Bayesian networks to represent possible networks of causality downstream 

of LY30 and upstream of DCFDA. The node for LY30 was constrained to be the causal 

“root” of the tree, upstream of all other variable nodes. The node for DCFDA was 

constrained to be the downstream output of the system, upstream of nothing. We 

selected three additional variables— O2•
–
, RNS and Ca

2+
 — to be additional variable 

nodes in network, and we required the values of these variable nodes to be discretized 

into 3 states representing low, medium, and high levels of the species. The LY30 
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variable was divided into three possible values representing the duration of treatment: 

untreated, brief, and long incubation times (see 6.2.1). Not knowing the cause/effect 

relationships of O2•
–
, RNS and Ca

2+
 towards each other or toward DCFDA, we did not 

impose any constraints on the placement or relative connectivity of the O2•
–
, RNS and 

Ca
2+

 nodes in the network (including dead-ends with no impact on DCFDA). Instead, 

we used a computational strategy to search among the 12,800 possible combinations of 

directed edges for the whole network, using the Bayesian Network Toolbox (BNT) 

[156, 157]. The resulting process will identify network configurations that agree with 

experimental observations.  

The Metropolis-Hastings (MH) algorithm was chosen for generating and testing 

possible network structures, and the Bayesian score (refer to section 6.1.3) [309] was 

used for evaluating the agreement of each network structure with the training dataset. 

We took the 12 network structures with highest Bayesian scores to be our candidate 

models (Figure 6.2.5).  For each candidate model, contingency table parameters were 

estimated using the Expectation-Maximization algorithm (EM, refer to section 6.1.2).  

6.2.2.1 Use of Metropolis-Hastings (MH) to explore the sample space  

A key process in MH is the tuning phase which consists of a number of loops in order to 

achieve a “satisfying” distribution. An evaluation of the efficiency of MH sampling is 

through acceptance ratio [310]. A high acceptance ratio suggests that most new samples 

occur right around the current data point while a low acceptance rate means that most of 

searched samples are often rejected. Therefore, an efficient MH sampler should have an 

acceptance neither too high nor too low. It has been proved that the optimal acceptance 

probability for the Markov chain should be around 0.45 [311].  
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To demonstrate the convergence of MH sampling, the acceptance ratio according to 

rounds of sampling is plotted in Figure 6.2.3a (denoted as “number of rounds”). 

Acceptance ratio converges to 0.45 after 100 rounds of sampling, suggesting that the 

algorithm can efficiently explore the sample space.  

Posteriors of the selected models with BS>threshold were plotted in Figure 6.2.3b. 

Among the selected models, certain models demonstrated higher posteriors than the 

rest, meaning that the models may better represent the LY30-induced signalling 

pathway.  

 

Figure 6.2.3 Demonstration of the efficiency of Metropolis-Hastings 

algorithm in structure learning. a) Convergence of the algorithm in finding new 

models. X-axis is number of loops in sample searching; y-axis is the acceptance 

ratio.  b) Posterior of selected models during one round. X-axis is the model index 

and y-axis is the posterior of each selected model. The posterior of a model 

structure is calculated through counting the frequency of the model among all the 

selected models.  

6.2.2.2 Model selection after repeated MCMC 

Residual effect is a common limitation of MCMC approach [312]. In order to avoid 

residual effect, we repeated the searching process for large number rounds each of 
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which started with random starting points. After 10,000 rounds of MCMC, 375 model 

structures were selected as “high scoring models” according to evaluated BSs.  

Topology analysis  

Topology analysis was conducted through counting the total number of all the directed 

edges from any other nodes to DCFDA, e.g. RNS to DCFDA, [Ca
2+

]c to DCFDA (later, 

we will use Ca
2+

 for short) and O2
•–

 to DCFDA among the 375 “high scoring models”. 

The total in-degree of DCFDA over all the selected models are presented in Figure 

6.2.4. From the figure, we observed most links from NO to DCFDA, lowest links from 

O2
•–

 to DCFDA. 

 

Figure 6.2.4. Topological information about sources of DCFDA. Each bar in 

the figure represents counted number of arrows from the node (specified by x-axis) 
to DCFDA node according to all the “high scoring” models.  

6.2.3 Inferences from the models 

To represent the consensus of the selected models, we calculated the marginal of 

DCFDA from the top 12 models (Figure 6.2.5). All the parameters of the top models are 

evaluated through Expectation Maximum algorithm.  
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Figure 6.2.5 Structures of the top 12 models selected through model learning 

6.2.3.1 Model inference with LY30 treatment  

For the 12 top-scoring candidate networks, we simulated the probabilities for the RNS, 

Ca
2+

, O2•
–
 and DCFDA variables, under 3 conditions: no LY30 treatment, brief LY30 

incubation, and long LY30 incubation.  The averages of these probabilities were taken 

as our consensus, and plotted in Figure 6.2.6. For example, the Figure 6.2.6 simulations 

show 100% probability that RNS levels would be low after no LY30 treatment, 28% 

probability RNS would be low and 72% probability that RNS would be medium with 

brief LY30 incubation, and over 90% probability that RNS would be high with long 

LY30 incubation. The simulated consensus probabilities for the levels of RNS, Ca
2+

, 

O2•
–
 and DCFDA in Figure 6.2.6 are consistent, at low resolution, with the 

experimental observations in Figure 6.2.2. For example, simulation showed RNS will 

be at high probability in low, medium and high concentrations upon no LY30, brief 

LY30 and long LY30 treatment while RNS showed low, medium and high 
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concentration under corresponding treatments. This consistency indicates that our 

modelling has “learned” [313] the information in the training dataset, but it does not 

indicate whether the Bayesian modelling has predictive ability beyond the training set it 

was given, nor whether the causal linkages are correct. 

 

Figure 6.2.6 Inferences generated from the Top-scored models according to 

no LY30 incubation, brief LY30 incubation and long LY30 incubation three 

situations. a) probability of NO at low, medium and high concentrations with 

different treatments of LY30; b) probability of Ca
2+

 at low, medium and high 

concentrations in three concentrations of LY30;c) probability of O2
•–

 at low, 

medium and high concentrations in three concentrations of LY30; d) probability 

of H2O2 at low, medium and high concentrations in three concentrations of LY30.  

6.2.4.2 Model inference of DCFDA with combination treatment of LY30 and 

dummy inhibitors 

Next we predicted the causal contribution (not the correlation) of each intermediate 

variable (O2•
–
, RNS and Ca2+) toward DCFDA fluorescence, by simulating the levels 

of DCFDA in the 12 top-scoring models after virtual experiments inhibiting each 

variable individually (blocking RNS, chelating Ca
2+

, scavenging O2•
–
, or media). For 

the three possible LY30 treatment durations (no treatment, brief incubation, and long 
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incubation), we simulated the probability of low, medium or high DCFDA levels, 

yielding a total of (4 scavengers)*(3 incubation times) * (3 levels of DCFDA) = 36 

probabilities. Figure 6.2.7a illustrates how the Bayesian network probability 

distributions can be interpreted as pie charts. Figures 6.2.7b-d shows the averaged 

inferences for all 12 (4 scavengers*3 incubation times) probabilities.   

The most significant inference from these probability distributions is that RNS 

blockage would cause the “high DCFDA” state to decrease from 75% to 12% probable 

(dark blue versus light blue bars in the “long incubation” row of Figure 6.2.7 d).  In 

other words, the modelling predicted that scavenging RNS would show a strong 

inhibitory effect on the DCFDA signal, particularly for LY30 treatments >30 minutes. 

Note that in 10 of the 12 top-scoring models, RNS was a direct, positive mediator from 

LY30 to DCFDA, explaining the importance of RNS in the averaged inferences.   

Another inference from the simulations was that Ca
2+

 chelation would cause the 

“medium DCFDA” state to decrease from 45% to 37% under brief LY30 treatments.  

Finally, O2•
–
 was predicted to have no significant effect on DCFDA, but interestingly, 

this inference was not based on DCFDA being independent of O2•
–
.  Observe that 9 of 

the top 12 modes predicted antagonism between RNS and O2•
–
 (with uncertainty about 

whether the antagonism was from RNS to O2•
–
 or vice versa), and 4 of those 9 models 

predicted that the RNS-O2
•–

 antagonism would be upstream of DCFDA.  In sum, the 

modelling predicts O2•
–
 to have an antagonistic relationship with NO, but little impact 

on DCFDA. 
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Figure 6.2.7. The predicted intensities of DCFDA, expressed as conditional 

probabilities from the Bayesian networks. a) An example of how to read tabulated 

probabilities is demonstrated by comparing with a familiar pie chart.  The conditional 

probabilities for each context will always sum to 100%.   The probability that DCFDA 

signal intensity will be (b) low, (c) medium and (d) high, was predicted by simulating 

the 12 top models (Figure 2) and averaging the results. Each predicted probability 

(vertical axis) corresponded to a combination of LY30 treatment duration (untreated, 

brief, and long) and inhibitor treatment (Control media, RNS inhibitor, Ca
2+ 

inhibitor, 
or O2

•–
 inhibitor) along the horizontal axes.   

For each dummy inhibitor, we selected the model which shows most differences of the 

combination treatment (LY30 plus the inhibitor) compared to LY30 treatment alone. 

The model selected for the inhibitor is called “typical model” and the inferred 

probability distribution of DCFDA from the typical model is called “typical result”. We 

plotted the typical results in Figure 6.2.7.  
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Compared the combination treatment of NO inhibitor and LY30 with LY30 alone, the 

probabilities of DCFDA at low concentration are elevated with short LY30 incubation 

(about 20%) and long incubation (60%). The probabilities of DCFDA at medium 

concentration dropped with short LY30 incubation (about 20%) and increased with 

long LY30 incubation (about 15%). The probabilities of DCFDA at high concentration 

dropped to zero with long LY30 incubation. Such a typical phenomenon is observed in 

10 models out of 12.  

Compared the combination treatment of Ca
2+

 inhibitor and LY30 with LY30 alone, the 

probability of DCFDA at low concentration is elevated with short LY30 treatment 

(about 40%), but the probability is not change with long LY30 treatment. The 

probability of DCFDA at medium concentration is dropped with short LY30 incubation 

(about 40%, which is the same amount of probability increased at low concentration). 

With long LY30 treatment, the probability of DCFDA to be high is dropped about 60% 

with same amount of probability increase in DCFDA to be medium concentration. Such 

a typical phenomenon for [Ca
2+

]c inhibitor is observed in 10 models out of 12.  

Compared between the combination treatment of O2
•–

 inhibitor and LY30 and LY30 

treatment alone, there is little change of probability distribution of DCFDA among all 

the 12 models. 

Given the observations, we speculated that LY30-induced DCFDA signal in HeLa may 

arise as the following (Figure 6.2.8b):  

1) RNS (NO) inhibition can greatly inhibit DCFDA fluorescence. DCFDA is known to 

detect various ROS species, among which two main species are H2O2 and ONOO
-
. NO 
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is reported to produce ONOO
-
 through reacting with H2O2 or O2

•– 
[232, 272, 314], 

meaning increased NO induces increased ONOO
-
 while decreasing H2O2 and O2

•–
. In 

this case, testing experiments of NO effect can be carried out through either NO 

inhibition or direct inhibition of ONOO
-
. 

2) Inhibition of Ca
2+

 slightly decreases DCFDA. Ca
2+

 has been reported to increase 

H2O2 through NOX activation [250]. To test the influence of Ca
2+

 on DCFDA, 

experiments were carried out through inhibiting Ca2+ or inhibiting NOX.     

3) Inhibition of O2
•–

 may exert little influence on DCFDA signal.    

 

Figure 6.2.8 Predicted pathway of DCFDA signal under LY30 treatment. a) 

Constructed LY30 model through structure learning. In the network, LY30 can 

directly induce Ca
2+

, NO and O2
•–

. NO negatively affect O2
•–

 and positively affect 

Ca
2+

. Both O2
•– 

and Ca
2+ 

up-regulate DCFDA level. b) Hypothesized downstream 

mechanism of LY30 on DCFDA activation in a) with pulished biological 

knowledge. Solid arrow represents the connection that is supported by the models. 

Thickness of the line indicates the strength of support from the models. Dashed 

arrows means the connection is not well supported by the models.  
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6.3 Testing model predictions experimentally  

Experimental tests to determine the causal contributions of RNS, Ca
2+

 and O2
•–

 to 

LY30-induced DCFDA were conducted using FeTPPS to scavenge ONOO
-
, EGTA-am 

to chelate Ca
2+

, and Tiron to scavenge O2
•– 

. 

6.3.1 Pre-incubating FeTPPS confirmed the hypothesis of late ONOO
-
  

To test the hypothesis of NO induces DCFDA through ONOO
-
 by LY30, we pre-treated 

HeLa cells with FeTPPS (50uM) for one hour before administration of LY30 (25uM). 

As we can see from Figure 6.3.1, LY30 consistently raised DCFDA fluorescence 

intensity in HeLa cells, and pre-treatment of FeTPPS can greatly decreased DCFDA 

fluorescence and the significant decrease happen at 60 minutes and 180 minutes (from 

2 folds to 1.3 folds with 60 minutes treatment of LY30; from 2.5 folds to 1.1 folds with 

180 minutes treatment of LY30). The experiment results suggested that long incubation 

of LY30 produces a lot of ONOO
-
 in HeLa and ONOO

-
 being produced is the major 

species that oxidize DCFDA.  
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Figure 6.3.1. Inhibitory effect of FETPPS on LY30-induced DCFDA signal. 

HeLa cells are treated with for 5 mins, 30 minis, 60 mins and 180 mins. To see the 

inhibitory effect, cells are pre-incubated with FEPTTS(100uM) for 1 hour.** 

means p-value<0.01 

6.3.2 L-NAME experiments were inconclusive 

In order to further confirm the involvement of NO, we carried out experiment with 

L-NAME which is a known Nitric Oxide Synthase Inhibitor. Our measured result 

shown in figure 6.3.2, however, failed to reflect inhibitory effect of L-NAME in either 

DAF fluorescence or DCFDA fluorescence. Further effect is incapable of 

demonstrating the inhibitory effect of L-NAME with optimizing dose and incubation 

time. Previous work reported several cases that L-NAME is unable to inhibit NO 

increases [315, 316] related with different NOS isoforms. 

 

Figure 6.3.2. No inhibitory effect of L-NAME on either DAF or DCFDA. a) 

Averaged DAF signal with LY30 treatment, L-NAME treatment or both. b) 
Averaged DCFDA signal with LY30, L-NAME or both.  

6.3.3 EGTA-am, as a Ca
2+

 chelator, is able to block the early 

LY30-induced increase in DCFDA fluorescence  

We firstly tested the efficiencies of EGTA-am on chelating Ca
2+

. Experiments were 

carried out to compare the Fluo-4 fluorescence between cells with combination 

treatment of LY30 (25uM) plus EGTA-am (50uM). EGTA-am was administrated into 
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cells 15 minutes prior to LY30 treatment and cells with LY30 alone. Cells with 

EGTA-am pre-treatment showed a reduction from 2 folds to 1.25 folds with short LY30 

treatment; and a reduction from 2.5 folds to 1.3 folds with long incubation of LY30 

(Figure 6.3.3a). Similar effect was confirmed with microplate reader (Figure 6.3.3a). 

The experimental results demonstrated that EGTA-am is able to diminish LY30 

induced Fluo-4 increase in HeLa, suggesting EGTA-am in our system has high 

efficiency on chelating Ca
2+

.  

To test the effect of Ca
2+

 on ROS, we then measured DCFDA fluorescence in HeLa 

cells by pre-treating the cells with EGTA-am. As shown in the figure 6.3.3c, EGTA-am 

is able to significantly reduce the increased DCFDA fluorescence with short LY30 

treatment (reduced from 1.5 folds to 1.2 folds), and such decrease is not observed in 

long period.   
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Figure 6.3.3 Inhibitory effect of EGTA-am on Fluo-4 and DCFDA. a) 

Fluorescence intensity of FLUO-4 with LY30 and EGTA-am treatments using 

flow cytometry. b) Fluorescence intensity of FLUO-4 with LY30 and EGTA-am 

treatments using microplate reader. c) DCFDA signal with LY30 and EGTA-am 
or both.  

6.3.3.1 NOX experiments suggests that Ca2+ can increase DCFDA 

fluorescence through NOX-5 mediated H2O2 production 

Ca
2+

 has been reported to induce H2O2 production through (NADPH) oxidase (NOX). 

Among the 5 NOX members, NOX5 has been identified as a unique homolog of 

directly Ca
2+

 sensitive and direct H2O2 production [280].  

In order to test the involvement of NOX, we measured general NOX activity. In the first 

step, NOX activity is measured and compared in untreated cells, LY30-treated 5 

minutes cells and LY30 treated 0 minutes cells. As shown in figure 6.3.4a, slope of each 

line reflects intracellular NOX activity. Higher slope meaning higher NOX activity and 

vice versa. We observed significant increase of NOX activity in the LY30 treated 

sample to untreated sample. Furthermore, the increase of NOX activity gets bigger with 

longer treatment of LY30.  

In the second experiment, we tested whether NOX activation is Ca
2+

 dependent through 

pre-treating cells with Ca
2+

 inhibitor EGTA-am. Measurement is carried in untreated 

cells, cells treated with LY30 for 30 minutes and cells treated with LY30 for 30 minutes 

in the presence of EGTA-am. The experiment showed a reduction of the slop of the line 

corresponding to LY30 plus EGTA-am treatment compared with the line 

corresponding to LY30 treatment alone (Figure 6.3.4 b).   
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Figure 6.3.4 Measurements of NOX activity and inhibitory effect of 

EGTA-am on NOX activity. a) NOX activity measured in cell samples with no 

treatment, LY30 treatment for 15 minutes and LY30 treatment for 30 minutes. B) 

NOX activity measured in cell samples with no treatment, LY30 treatment for 30 

minutes and LY30 treatment for 30 minutes with EGTA-am pre-incubation. Cells 

are preincubated with EGTA-am(25uM) for 15 minutes before adding 

LY30(25uM).  

To exploit the involvement of NOX in the increase of DCFDA intensity, we measured 

the change of DCFDA fluorescence with LY30 treatment in NOX5 knock-out HeLa 

cells. Through comparing the DCFDA fluorescence in HeLa with NOX5 knock out 

(si-NOX5) and HeLa without NOX5 knock out (negative silence control, si-neg), we 

observed a distinctive reduction of DCFDA fluorescence in si-NOX5 knock down cells 

compared to the DCFDA fluorescence in s-neg sample with short LY30 incubation (0.9 

folds verse 1.5 folds). We did not observe any change of DCFDFA fluorescence with 

long LY30 treatment in si-NOX5 cell sample to si-neg cell sample (Figure 6.3.5a).  

To test whether NOX5 is involved in LY30 induced Ca
2+

 release, we measured the 

Fluo-4 fluorescence in HeLa cells with/without si-NOX5. Results (Figure 6.3.5b) 

showed little difference of Fluo-4 fluorescence by LY30 between si-NOX5cell sample 

and si-neg cell sample.  
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Figure 6.3.5 Involvement of NOX in LY30 induced DCFDA signal and not in 

FLUO-4 signal. a) DCFDA fluorescence measurement with LY30 with/without 

NOX-5 knock-out; b) Fluo-4 measurement with LY30 with/without NOX-5 knock 
out.   

6.3.4 Inhibition of O2•– by Tiron is also able to reduce DCFDA 

fluorescence level 

BN models predict that O2
•–

 has little influence on DCFDA (as shown in Figure 6.2.9). 

In order to test the hypothesis, we conducted DCFDA measurement with administration 

of O2
•–

 inhibitor Tiron together with LY30. Results showed that Tiron significantly 

reduced DHE signal with 2 hour incubation of LY30 (Figure 6.3.6 a), confirming that 

Tiron is able to scavenge superoxide. We omitted DHE measurement with shorter 

LY30 treatment since we are not able to observe significant increase. Figure 6.3.6 b) 

showed Tiron also abolish DCFDA increase significantly with both short LY30 

treatment and long LY30 treatment. No additional DCFDA increase is observed with 

LY30 from short incubation to long incubation in the presence of Tiron. The 

experiment results were inconsistent with model prediction that inhibition of O2
•–

 with 

Tiron would have little effect on DCFDA fluorescence.   



139 

 

 

Figure 6.3.6 Measurements of LY30-induced DHE and LY30-induced DCFDA in 

the presence of Tiron. a) Normalized DHE signal with LY30 (25uM) treatment 

with/without Tiron ( 10mM).  Tiron is applied to cell 1 hour before adding LY30. 

DCFDA fluorescence after 2 hours treatment of LY30 is measured as long. b) 

Normalized DCFDA signal with similar dose of LY30 (25uM) with/without Tiron. 

Short refers to averaged results from 5 minutes to 30 minutes and long referes to 

averaged result after 30 minutes.   

6.3.5 DDC is able to reduce LY30-induced DCFDA fluorescence  

Besides the selected inhibitors/scavengers above, we also conducted measurements of 

DCFDA with DDC, which is a common inhibitor of MnSOD. Therefore, DDC can 

decrease intracellular H2O2 and increase intracellular O2
•–

 through inhibiting 

conversion from O2•
–
 and H2O2. Since NO is known to interact with O2•

–
 rapidly 

( 9 1 16.7 10  M Sec  ) [317] and there is significant production of NO, we would expect 

to see that after adding DDC, there is more significant ONOO
-
 production during late 

period. H2O2 being produced though Calcium-dependent NOX5 would not be affected 

in the early period.   
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Figure 6.3.8. Hypothesized pathway diagrams from O2•– to DCFDA 

with/without DDC. a) Increased O2•– leads to increased DCFDA signal through 

either H2O2 or ONOO-. NOX 5 can directly contribute to H2O2 and DCFDA 

fluorescence.  b)  In the prescence of DDC, conversion from O2•– to H2O2 is 

blocked and there is more production of ONOO-, which leads to more DCFDA 

increase. Thicker arrow represents stronger conversion.  

In order to test the hypothesis, DCFDA fluorescence measurement is carried out in 

HeLa with LY30 in the presence/absence of DDC. As we can see from Figure 6.3.9a, 

the increasing slope from 0 minutes to 5 minutes is similar in HeLa cells with LY30 

alone or combination treatment of LY30 and DDC. This phenomenon supports 

previous results that NOX5 contributes to initial increase of DCFDA through H2O2 

production. However, DDC fails to induce further increase of ONOO
-
 measured by 

DCFDA with long incubation of LY30 late DCFDA fluorescence. On the contrary, 

DDC seems to decreases its level at late period. For demonstration, we conducted more 

repeats of DCFDA measurement in HeLa with DDC treatment. Pooled results s(Figure 

6.3.9b) demonstrated significant decrease of DCFDA signal with DDC at later period, 

less inhibitory effect is also observed during early period.  
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Figure 6.3.8 Measurement of influence of DDC on DCFDA fluorescence induced 

by LY30. a) One set of comparison experiment between HeLa with LY30 treated alone 

and combination treatment of DDC together with LY30. Cell are pre-treated with DDC 

(200uM) for 2 hours before adding LY30.b) pooled average results of DCFDA between 

LY30 alone and combination treatment.  

 To investigate the cause of the mismatch between hypothesis and results, we 

conducted experiment to measure the two upstream of ONOO
-
, intracellular NO and 

O2
•–

 in the presence of DDC. Result showed that DDC increase O2
•–

 distinctively in the 

presence of LY30 (figure 6.3.9a), which is in consistent with previous report of DDC. 

Figure 6.3.9b showed that DAF fluorescence decreases obviously in the presence of 

DDC, suggesting that DDC possesses high potency in reducing NO. 

 

Figure 6.3.9 Measured effect of DDC on O2
•–

 and NO. a) Normalized level of 

DHE fluorescence with either LY30 treatment or combination treatment of DDC 
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with LY30. b) Normalized level of DAF fluorescence with either LY30 treatment 

or combination treatment of DDC with LY30. For combination treatment, cells are 

pre-treated with DDC (400uM) for 2 hours before adding LY30.  

6.3.6. Consistency between model inference and experimental 

measurement 

To facilitate the comparison between time-series measurements of fluorescent dyes, 

and simulated probabilities of discrete high/medium/low states, we constructed the 

following plot: the experimental observations were converted into 3 categories of LY30 

treatment based on time of incubation (Figure 6.3.7a); and the Bayesian probability 

distributions of DCFDA concentrations (Figure 6.2.7) were heuristically converted into 

predicted concentrations (Figure 6.3.7b), as explained in the figure caption.  In addition, 

error bars were constructed for the modeled concentrations in Figure 6.3.7b, based 

levels of disagreement among the top-12 models. Small error bars suggest agreements 

among all the models and big error bars indicate disagreements in the results. 

The peroxynitrite scavenger FeTPPS (100µM) decreased DCFDA fluorescence slightly 

for short LY30 incubations (p=0.048), and very strongly for long LY30 incubations 

(p=0.03), suggesting that ONOO- is responsible for much of the DCFDA fluorescence 

caused by LY30, particularly at later time-points. The FeTPPS experiments agreed with 

the computational prediction, except for the magnitude of the effect after brief LY30 

incubations.   

Experiments showed that the Ca
2+

 chelator EGTA-am was able to block the early 

increase in DCFDA fluorescence induced by brief LY30 incubations (from 1.5-fold to 

1.2-fold with p=0.03), but this effect was not observed with long incubations in 

consensus of the models according to a big error bar.  This is in agreement with the 
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model inference that a Ca
2+

-dependent pathway of ROS production contributed to the 

initial rise in DCFDA after LY30 treatment.    

The O2•
–
 scavenger Tiron (10mM) caused a slight decrease in DCFDA fluorescence 

(from 1.45-fold to 1.38-fold p=0.047) for short incubations, and a significant decrease 

(from 1.89-fold to 1.53-fold with p=0.02) for long incubations, suggesting that O2•
–
 

plays a causal role in LY30-induced ROS production, especially at late time points.  

The significant decrease of DCFDA after Tiron treatment would seem to refute the 

inference that O2•
–
 would not significantly affect DCFDA.  

Overall, the comparison between modelling and experiments (Figure 6.3.7) showed 

that Bayesian modelling was capable of reproducing the experimental effects of 

ONOO
-
-dependent late ROS production, and Ca

2+
-dependent early ROS production, 

but it underestimated the impact of Tiron.  

 

Figure 6.3.7. Comparison between simulated DCFDA and measured DCFDA, for 

scavenger/chelator experiments.  a) The probability distribution of DCFDA from 

figure 4 has been plotted as fold-change relative to untreated control. The predicted 

probability distributions of DCFDA at low, medium and high levels have been 

converted into absolute concentration using the formula 

1 2 30.1* 0.4* 0.9*averaged averaged averaged averagedDCFDA DCFDA DCFDA DCFDA   , where 1

averagedDCFDA , 2

averagedDCFDA  and 

3

averagedDCFDA  represented averaged probability distributions of DCFDA at low, medium 

and high levels, respectively. averagedDCFDA  is the absolute DCFDA level after 
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conversion, and it is then normalized to the calculated DCFDA levels for untreated 

control.  The error bars represent standard deviations for each average of the top 12 

models. b) DCFDA intensity was measured after HeLa treatment with various 

scavenger/chelator compounds plus LY30, and Tiron was used as O2•
–
 scavenger.   

6.3.6 Effects of inhibitors in LY30-induced cell sensitization to TRAIL 

We have thus far studied LY30 effects on ROS but not on cell viability.  To understand 

how LY30 induces HeLa cell sensitization to TRAIL-induced apoptosis, we measured 

cell viability after LY30+TRAIL treatment, in cells that had been pre-treated with one 

of the following scavengers/inhibitors: FeTPPS, EGTA-am, Tiron, DDC, or Catalase 

(Figure 6.3.10).  DDC is an inhibitor of SOD (superoxide dismutase), and it causes 

increased O2•
–
 accumulation.  Catalase is an antioxidant enzyme that specifically 

scavenges H2O2.  

HeLa cells treated with LY30+TRAIL exhibited 40% viability, compared with 

untreated HeLa (100% viability).  Pre-treatment with FeTPPS (100µM) improved cell 

viability from 40% to 65% (25% rescue with p=0.0063), and the inactive analogue 

FeCl3 had no effect (Figure 6.3.11), suggesting an essential role for ONOO
-
 in 

LY30-induced sensitization to apoptosis. Quantified cell viability showed that 

EGTA-am, Tiron and DDC were also able to rescue cell death significantly (18% and 

20% and 28%, respectively).  Interestingly, catalase did not cause significant rescue of 

cell death, so we measured whether catalase decreased LY30-induced ROS.  Catalase 

suppressed a significant fraction of DCFDA fluorescence induced by 5 minutes of 

LY30 treatment, but it had no significant impact on the DCFDA levels induced by 

longer incubations of LY30. This suggests that H2O2 is not a significant fraction of 

LY30-induced ROS in HeLa, except at very early time points. 
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Figure 6.3.10 Cell viability of HeLa cells under LY30+TRAIL treatment 

with/without inhibitors. a) Cell viability with/without FETPPS (100uM), b) Cell 

viability with/without EGTA-am(50uM), c) Cell viability with/without Tiron (10mM), 

d) Cell viability with/without DDC(200uM), e) Cell viability with si-NOX at 50uM, f) 

Cell viability with/without catalase 2000 units/ml and 4000 units/ml.  
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Figure 6.3.11 Measured cell viability with treatment of LY30, LY30+TRAIL 

in the presence of FeTPPS and its inactive form FeCl3. FeTPPS was added 

with varied levels of 25uM, 50uM and 100uM. Fecl3 was added at 100uM, which 

is equal to the highest level of FeTPPS. * represents P<0.05.   

6.4 Extension of the LY30 model with inhibitors/chelators/scavengers 

and cell sensitization  

In section 6.2, we modelled DCFDA in Bayesian network as one node because the dye 

DCFDA has been reported to be unspecific to H2O2. Since Bayesian network model 

helped us find out that LY30 triggered ONOO
-
 and H2O2 production, we expanded the 

model (Figure 6.2.9) with ONOO
-
 and H2O2 accordingly. After that, we added cell 

sensitization to TRAIL (“Sensit”) as an output of the model to represent cell sensitivity 

to TRAIL.  

6.4.1 Construction of comprehensive Bayesian network model of 

LY30-induced pathway LY30-induced DCFDA & sensitization model 

(LDSM)  
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6.4.1.1 Extension with H2O2 and ONOO- 

To include H2O2 and ONOO
-
 into the model, we dissected the time-course of DCFDA 

levels into H2O2 and ONOO
-
 through inhibitory results with si-NOX/catalase and 

FeTPPS. For example, LY30-induced H2O2 is calculated through subtracting the 

DCFDA levels of LY30+catalase treatment from that of LY30 treatment, and 

LY30-induced ONOO
- 

is calculated through subtracting the DCFDA levels of 

LY30+FeTPPS treatment from that of LY30 treatment. The processed dynamics of the 

two species were presented in figure 6.4.2. By conducting parameter estimation, we 

extended the previous table with H2O2 and ONOO
-
, each having three states of low, 

medium and high.  

 

Figure 6.4.1 Dataset of H2O2 and ONOO- based on DCFDA fluorescence with 

ROS scavengers of catalase and FeTPPS. a) Normalized DCFDA fluorescence 

intensisty in HeLa with administration of LY30/catalase/LY30+catalase for time 

specified in x-axis, b) Normalized DCFDA fluorescence intensisty in HeLa with 
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administration of LY30/FeTPPS/LY30+FeTPPS for time specified in x-axis; c) 

discretized H2O2 data based on catalase+LY30 data shown in a); d) discretized 

ONOO- data based on FeTPPS+LY30 data shown in b). 

In the extended model, DCFDA was modelled as a child node of both H2O2 and ONOO
-
. 

The original link from NO to DCFDA was replaced by the link from NO to ONOO
-
 and 

the original link from Ca
2+

 to DCFDA is replaced by the link from Ca
2+

 to H2O2. In 

order to incorporate the knowledge of the involvement of O2
•–

 in the production of 

ONOO
-
 [239], we included a direct link from O2

•–
 to ONOO

-
; to represent the 

conversion from O2
•–

 to H2O2 [318], we added a directed link from O2
•–

 to H2O2. The 

new parameters were estimated using Expectation-Maximum algorithm with extended 

data table. After extension with H2O2 and ONOO
-
 in the model, we got the structure of 

the extended model as shown in Figure 6.4.2.  

 

Figure 6.4.2 Comparison between the original model and the extended model 

from experimental evidence. a) In the original model, LY30 induces NO 

increase, Ca
2+

 increase and O2
•–

 increase, NO inhibits O2
•–

, both Ca
2+

 and NO 

contributes to DCFDA signal. b) In the extended model, H2O2 and ONOO- are the 

two parents of DCFDA, Ca
2+

 induces H2O2 through NOX, NO affects ONOO
-
 

through interaction with O2
•–

.  
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6.4.1.2 Extension with biological inhibitors and TRAIL sensitivity —final 

stage of LY30-induced DCFDA & sensitization model (LDSM) 

To represent our best current understanding of LY30 effects in HeLa, the Bayesian 

modelling consensus from Figures 6.4.2 was extended as follows.  The consensus links 

between RNS, O2•
–
, Ca

2+
 and DCFDA were retained (depicted as straight, solid lines in 

Figure 6.4.2a), and RNS was renamed nitric oxide (NO) because its training data came 

from the NO-specific dye DAF.  New variable nodes were created for ONOO-, H2O2, 

and cell sensitization to TRAIL (“Sensit”). Then, to connect the new variables with the 

network, possible pathways (dotted arcs in Figure 6.4.3) were added manually based on 

published literature. Directed edges were inserted from O2•
–
 and NO to the ONOO- 

variable node because O2•
–
 and NO react strongly to produce ONOO-. Additional 

“dotted” arrows were added from Ca
2+

 to H2O2, and from O2•
–
 to H2O2, and from most 

of the species to apoptosis sensitization.  Finally, exogenous binary variables 

(present/absent) were created for the inhibitors FeTPPS, EGTA-am, Tiron, DDC, and 

catalase. Negative influences were added for FeTPPS towards ONOO-, for EGTA-am 

towards Ca
2+

, and for catalase towards H2O2. The obvious effect of DDC on superoxide 

was added, as well as the published side-effect that DDC can suppress NO levels. A 

negative effect of Tiron on superoxide was added, along with the published side-effect 

that Tiron can decrease ONOO
-
. The “exogenous” variables (the inhibitors and 

scavengers) and their causal links are shaded grey in Figure 6.4.3. 
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Figure 6.4.3. Extended model structure with H2O2, ONOO
-
 and various 

inhibitors. 

Cell sensitization has two states in the model, 0 represents the cell is resistant to TRAIL 

and it is viable, while 1 represents the cell is sensitive to TRAIL and it is dead. Since 

H2O2, ONOO
-
, Ca

2+
 and O2

•–
 have all been widely reported to affect cell, we modelled 

sensitization as the child node of H2O2, Ca
2+

, ONOO
-
 and O2

•–
. Specifically, rise of 

intracellular level of H2O2, Ca
2+

 or ONOO
-
 promotes cell death [5, 94, 242] and 

increase of intracellular O2
•–

 inhibits cell death by activating cell survival pathway 

[319].  

To estimate the conditional probability table of sensitization on its parents, we used the 

measured cell viability under 8 different conditions: no treatment, LY30 treatment, 

LY30+catalase treatment, LY30+Tiron treatment, LY30+EGTA-am treatment, LY30 

+ FeTPPS treatment, LY30 + DDC treatment, and LY30 + si-NOX treatment.  

As we known, the size of CPT is determined by the states of its parents in the form of

m

i

i

Child Parent . Since the “Sensit” node in the network has four parents (m=4) 

and each parent has 3 states (Parent=3), the size of the estimated CPT will be 3
4
=81. 
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Fitting the big CPT of 81 conditions with available dataset of 8 conditions will result in 

serious problem of under-fitting. In order to solve the problem, , we reduced 3 states 

(low, medium and high) to 2 states (low and high) for each parent node of “Sensit” 

according to the conversion table( Table 6.1).    

Table 6.1 conversion table of species from 3 states to 2 states 

Parent Child Probability 

1 1 1 

1 2 0 

2 1 0.5 

2 2 0.5 

3 1 0 

3 2 1 

To be consistent to measured viability and simulated viability, we randomly generated 

50 samples using binomial sampling for each treatment. CPT table for sensitivity is 

then estimated using Expectation Maximum algorithm implemented in Bayes Net 

Toolbox.  

After extension of the model with the procedures above, we built a comprehensive 

Bayesian network named LY30-induced DCFDA & sensitization model (LDSM, 

Figure 6.4.4) which incorporates a comprehensive pathway from LY30 to DCFDA, 

from LY30 to cell sensitization and variable biological inhibitors. 
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Figure 6.4.4. Comprehensive pathway model describing effect of LY30 on 

HeLa. LY30 is the input of the system, DCFDA fluorescence and cell 

sensitization are represented with green ovals are two outputs of the system. 

Besides LY30, DCFDA and sensitization, there are another five variables in the 

pathway, Ca
2+

, NO, O2
•–

 , H2O2, and ONOO-. Solid arrows between the variables 

are the ‘learned’ effect from selected BN models and dashed lines are the ‘reported’ 

relationship by literature. Inhibitors like EGTA-am, si-NOX, catalase, DDC, 

Tiron and FeTPPS are also included into the model with their targets specified 

above. 

6.4.2 LY30-induced DCFDA & sensitization model (LDSM) predicts 

the correct output under conditions of single treatment and 

combination treatments   

6.4.2.1 Inference of internal nodes: NO, Ca2+, O2
•–, H2O2, ONOO- with single 

inhibitor  

To test the accuracy of the mode, we conducted inference on LDSM of internal nodes as 

well as outputs upon combinational treatment of LY30 and various inhibitors. Noted 

that the internal nodes refer to the nodes which are neither inputs nor output, for 

example, H2O2, ONOO
-
, Ca

2+
, NO and O2

•–
. The outputs refer to DCFDA and 
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sensitization. Inhibitors include EGTA-am, FeTPPS, Tiron, DDC and catalase, each of 

which has “on” and “off” two states.    
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Figure 6.4.5 simulated probability distributions of internal nodes NO, Ca
2+

, 

O2
•–

, H2O2 and ONOO- under combined treatments of LY30 with single 



155 

 

inhibitors. a) simulated level of NO with short incubation of LY30 with/without 

inhibitors; b) simulated level of NO with long incubation of LY30 with/without 

inhibitors; c) simulated level of Ca
2+

 with short incubation of LY30 with/without 

inhibitors; d) simulated level of Ca
2+

 with long incubation of LY30 with/without 

inhibitors; c) simulated level of O2
•–

 with short incubation of LY30 with/without 

inhibitors; d) simulated level of O2
•–

 with long incubation of LY30 with/without 

inhibitors; e) simulated level of H2O2 with short incubation of LY30 with/without 

inhibitors; f) simulated level of H2O2 with long incubation of LY30 with/without 

inhibitors; g) simulated level of ONOO
-
 with short incubation of LY30 

with/without inhibitors; h) simulated level of ONOO
-
 with long incubation of 

LY30 with/without inhibitors; 

For inferences of concentration levels of internal nodes, we included short LY30 

incubation and long LY30 incubation in order to be consistent with experimental 

conditions.  Predicted levels of internal nodes with the treatment specified on x-axis 

were shown in Figure 6.4.5 showed.  

EGTA-am is able to reduce LY30-induced Ca
2+

 increase. As shown in Figure 6.4.5c, 

combination treatment of EGTA-am and short LY30 incubation, compared with short 

LY30 incubation alone, can reduce the probability of  Ca
2+

 at medium level about 60% 

and increase of the probability at low level about 60%.  Greater reduction of Ca
2+

 level 

by EGTA-am was observed with long LY30 incubation. With long LY30 treatment, 

EGTA-am reduces the probability of Ca
2+

 at high level from 85% to about 5%. 

Furthermore, LDSM showed that EGTA-am changes H2O2 level from medium to low 

with short and long LY30 incubation. Little effect was observed under EGTA-am 

treatment on NO, O2
•–

 and ONOO
-
. 

FeTPPS: According to the inferred result of ONOO
-
 from LSDM (Figure 6.4.5j), 

FeTPPS can decrease LY30-induced ONOO
-
 production. In Figure 6.4.5j, we observed 

a reduction of 40% of ONOO
-
 at medium level with combination treatment of 

LY30+FeTPPS compared to single treatment of LY30. More distinctive reduction was 
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observed with long LY30 incubation, where there was a 60% reduction at high level 

and 30% reduction of ONOO
-
 at medium level. Little effect of FeTPPS was observed in 

other species.   

Tiron can reduce the levels of three species, H2O2, ONOO
-
 and O2

•–
 according to 

LSDM. Tiron decreased the level of O2
•–

. Compared to long LY30 treatment alone, 

combination treatment of LY30 and Tiron led to about 30% reduction at medium level 

and high level (Figure 6.4.5i, j). Besides, Tiron decreased the level of H2O2 (Figure 

6.4.5g and 6.4.5h). Combination treatment of Tiron and LY30, compared to LY30 

treatment alone, slightly decreased the level of H2O2 at medium level (about 10% with 

short LY30 incubation and 20% with long incubation). Tiron also reduced the level of 

ONOO
-
. It decreased the probability of ONOO

-
 at medium about 30% with short LY30 

incubation (Figure 6.4.5i, 6.4.5j), and decreased the probability at high level about 

50%.  

Catalase: As shown in figure 6.4.5g, catalase specifically reduced H2O2 about 30% at 

medium level with short and long LY30treatment.   

DDC: is predicted to affect NO, O2
•–

, H2O2 and ONOO
-
. With long incubation of LY30, 

addition of DDC decreased level with 70% reduction at high level (Figure 6.4.5b). 

Besides, DDC increased O2
•–

. With short and long incubation of LY30, addition of 

DDC increased O2
•–

 to 100% high level (Figure 6.4.5e, 6.4.5f). DDC decreased H2O2. 

With short and long incubation of LY30, addition of DDC decreased H2O2 with 30% 

reduction at medium level (Figure 6.4.5h). DDC decreased ONOO
-
. With short 

incubation of LY30, addition of DDC didn’t change the level of ONOO
-
 much (20% 

increase at high level and 20% reduction at medium level) (Figure 6.4.5i). With long 
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incubation of LY30, addition of DDC decreased the level of ONOO
-
 15% at medium 

level and 60% at high level (Figure 6.4.5j). 

6.4.2.2 Inference of DCFDA and viability from LDSM with single inhibitor 

To be consistent with our biological experiments, we predicted DCFDA upon short and 

long incubation of LY30 while sensitivity is predicted with only long incubation of 

LY30. Inputs include LY30, LY30+EGTA-AM, LY30+FeTPPS, LY30+Tiron, 

LY30+catalase, and LY30+DDC.   

Combination treatments of LY30+EGTA-am or LY30+catalase or LY30+FeTPPS, 

compared to LY30 treatment alone, reduced the DCFDA levels 10% at high level and 

medium level (Figure 6.4.6). Addition of Tiron increased high level about 10% and 

decreased medium level about 10%. Addition of DDC showed 10% increase at high 

level and about 20% reduction at medium level.  

To evaluate the accuracy of the model, we compared the inferred DCFDA levels with 

the measured DCFDA level (Figure 6.4.7). Noted we inferred DCFDA levels from 

LDSM as probability distributions in low, medium and high levels, respectively. For a 

direct comparison between experiments and models, the inferred probability 

distributions at three levels are converted to a unique concentration according to the 

formula 0.1* 0.4* 0.8*low medium highDCFDA P P P   . Here, DCFDA is the estimated 

concentration of DCFDA. lowP , mediumP , and highP indicates the inferred probabilities of 

DCFDA at low level, medium level, and high level, respectively.    

In the condition of short LY30 incubation, LSDM predicted that compared with 

DCFDA in untreated sample, DCFDA levels were at 1.4 folds 1.2 folds, 1.25 folds, 1.4 
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folds, 1.23 folds and 1.27 folds, upon treatment of LY30, LY30+EGTA-am, 

LY30+FeTPPS, LY30+Tiron, LY30+catalase and LY30+DDC, respectively (black 

bars in Figure 6.4.7a). The predicted DCFDA levels in LDSM were able to reproduce 

the experiment measurements (grey bars in Figure 6.4.6a).  

In the condition of long LY30 incubation, LSDM predicted that, compared to the level 

with LY30 treatment alone (2 folds), the inhibitors (EGTA-am, FeTPPS, Tiron, 

catalase and DDC) reduced the DCFDA level for about 0, 0.64, 0.53, 0 and 0.57 folds. 

The inferred DCFDA level (black bars in Figure 6.4.6b) is able to reproduce the 

experiment measurements (grey bars in Figure 6.4.6b). 

 

Figure 6.4.6 Simulated result of level of model output including DCFDA and 

Viability with combined treatment of LY30 and various inhibitors. a) 

Simulated early DCFDA with treatment of LY30 with/without inhibitors; b) 

Simulated late DCFDA with long incubation of LY30 with/without inhibitors.   
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Figure 6.4.7 Comparison of DCFDA levels between model predictions and 

experimental measurements. a) Early DCFDA with treatment of LY30 

with/without inhibitors;  b) Late DCFDA with long incubation of LY30 

with/without inhibitors. Black bars represent simulated levels of DCFDA after 

conversion function; grey bars represent measured DCFDA levels averaged from 

3 independent experiments.    

Cell sensitization rate, as represented by “Sensi” node in LSDM, showed that FeTPPS, 

EGTA, Tiron and DDC can greatly reduced the cell death whereas no obvious cell 

rescue is observed with pre-treatment of catalase (black bars in Figure 6.4.8). The 

model inference is consistent with experimental results (grey bars in Figure 6.4.8).  
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Figure 6.4.8 Measured and simulated cell viability from LSDM with 

combined  treatment of LY30 and TRAIL together with various inhibitors. 
Black bars represent simulated cell viabilities under specified treatments in x-axis 

together with TRAIL and grey bars represent averaged cell viabilities measured 
from 3 repeats under the same treatment as simulations.  

6.4.2.3 Inference of cell viability with double inhibitors  

Our simulated cell sensitivity (viability) from LDSM demonstrated consistent results 

with experimental measurement with the 5 inhibitors (Figure 6.4.8). To test the 

interplay of the internal species on LY30-induced cell sensitization, we further inferred 

cell viability under the combination treatment of LY30 with double inhibitors, which 

include all the possible combination among EGTA, FeTPPS, EGTA, Tiron and DDC. 

Figure 3.5.6-a shows predicted intracellular DCFDA levels with all the defined 

treatments.  

Inference of cell sensitivity: Interestingly, LDSM predicted that double inhibitors of 

EGTA together with other inhibitor (FeTPPS, Tiron and DDC) were able to rescue 

more than 40% of cell death, much higher than the rescue with any of the single 
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inhibitor. However, other 3 combinations like FeTPPS+Tiron, FeTPPS+DDC and 

DDC+Tiron showed only around 20% cell rescue, which is similarly to single inhibitor.    

 

Figure 6.4.9 Inferred cell viability with combined treatment of LY30 and 

double inhibitors. Black bars represent probability distribution of sensitivity at 0 

and white bars represent probability distribution of sensitivity at 1.  

6.4.3 Experimental validation of cell viability with double inhibitors 

 

Figure 6.4.10 Comparison of model predicted cell viability and experiment 

generated cell viability treated with EGTA-am, FeTPPS or their combination 

together with LY30+TRAIL. Experiment result of cell viability is obtained after 

24 hours treatment of LY30+TRAIL with/without FETPPS, EGTA-am and their 

combination. For FETTPS, HeLa cells were incubated with FETTPS (50uM) one 

hour before adding LY30. For EGTA-am, cells were added with EGTA at level of 

50uM 15 minutes before adding LY30. For combined  inhibitors treatment, 
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FETPPS was added in specific well with chosen level, after 45 minutes, EGTA-am 
was added and wait for 15 minutes before adding LY30.  

To test the prediction of LDSM with double inhibitors, specifically with EGTA-am and 

FeTPPS which showed with the highest rescue of 45%, we conducted cell viability 

assay with FeTPPS and EGTA-am, together with LY30 and TRAIL. We expected to 

observe that the two inhibitors together are able to rescue cell percentage of the sum of 

percentage of the cells rescued by single inhibitors by LY30+TRAIL. As shown in 

figure 6.4.10, we observed that a quantitative agreement of cell viabilities between 

experiments measurement and model predictions under all the treatments specified in 

x-axis.  

6.5 Discussion and summary 

6.5.1 Probabilistic inference using Bayesian networks identified causal 

roles for NO and Ca
2+

 in LY30-induced ROS.  

Computational modeling provides visualization of complex dynamics in biological 

pathways that may be unintuitive to biologists. Many studies adopt ordinary differential 

equation (ODE) for model construction [142, 143, 173], but this format requires 

extensive knowledge of network structure and parameters from published literature. 

This requirement does not apply in our system as little published evidence is available 

about either the model structure or the parameters. Therefore, we chose to use Bayesian 

networks to model LY30-induced ROS pathways, due to several reasons. Firstly, the 

flexible architecture of Bayesian networks enables us to test and generate many 

hypotheses very quickly. Secondly, adding additional reactions to a Bayesian networks 
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does not require elaborate re-estimation of model parameters, in contrast to an ODE 

model [320, 321]. Thirdly, the inferences derived with a Bayesian model are qualitative 

and thus are less sensitive to changes in parameter values [322].  

We took the following strategies to study the unknown pathway from LY30 to ROS 

using Bayesian network. Firstly, we chose a Markov Chain Monte Carlo (MCMC) [323] 

algorithm called Metropolis-Hastings to learn the model structure. As we know, 

Bayesian network model consists of network structure and conditional probability 

tables (also called “contingency tables”). Network structure, which composed of 

directed arrows from parent species to children species, captures cause and effect 

relationships among the species. Conditional probability tables quantitatively describe 

the impact of parent species on their children species. Each Bayesian network model is 

evaluated with a score (Bayesian score) which indicate its consistency with observation. 

Compared with other structure learning methods, such as K2, MCMC is capable of 

selecting a collection of “high-scoring” models (Figure 6.2.5) instead of picking the 

“highest-scoring” model. Since measurement noise is unavoidable in biological 

experiments [324], there is a high chance of over-fitting if we only choose a single 

‘highest-scoring’ model to match the noisy data. Through selecting the common 

features with topological analysis (Figure 6.2.4) and model inference (Figure 6.2.6) that 

existed among most of the “high-scoring” models, we can improve the accuracy of the 

inference by reducing the interference from data noise. The strategy, called ‘model 

averaging’, was adopted to study the pathway of key phosphorylated proteins in human 

T cell signaling [160]. Secondly, we imposed two constraints on structure learning 

based on biological relevance. One was that LY30 must be the input of the system, 

meaning it is a parent or ancestor for the other species in the network. The other 
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constraint was that DCFDA must be the model output, meaning it must have parents in 

the network but no children. Thirdly, we applied 10,000 random repeats in MCMC 

algorithm to avoid bias from the random initial guess.  

6.5.1.1 Topological analysis through model averaging suggested a close 

link from NO to DCFDA 

Topological analysis based on data structure [325] was performed to score different 

directed edges to DCFDA. In topological analysis, the node with higher score has 

higher probability of causing a direct influence on DCFDA. According to topological 

analysis through model averaging (Figure 6.2.4), we observed that NO, compared with 

LY30, O2
•–

 and Ca
2+

, has a higher score for the directed edge to DCFDA, suggesting the 

change of DCFDA level has high dependence on the NO level. To link the gap between 

NO and DCFDA, we hypothesized an intermediate formation of ONOO
-
 between the 

increase of NO and the increase of DCFDA, which including 1) ONOO
-
 is a 

downstream product of Nitric Oxide; and 2) ONOO
-
 production could account for the 

DCFDA fluorescence increase. 

In addition, topological analysis also showed a high score for the direct edge from NO 

to O2
•–

 with inverse correlation, meaning that high level of NO will cause high 

probability of O2
•–

 at low level. It is consistent with the idea that LY30 increases NO 

which then decreases pre-existing O2
•–

 in the reaction of ONOO
-
 formation, which 

causes DCFDA activation. This further supports the hypothesis of ONOO
-
 production 

downstream of NO.  

Since O2
•–

 is an essential reactant in the production of ONOO
-
, we would expect to 

observe high score of the direct edge from O2
•–

 to DCFDA. On the contrary, averaged 
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results among the “high scoring” models demonstrated a low occurrence of the edge. 

We speculated the low score is due to the lack of correlation between intracellular NO 

levels and intracellular O2
•–

 levels. Intracellular O2
•–

 has been reported to be 2-10 uM, 

and intracellular NO level to be less than 0.2 uM [232]. Such a difference in level gap 

implies that ONOO
-
 production would be less sensitive to O2

•–
 than to NO. The equal 

stoichiometry of O2
•–

 and NO in producing ONOO
-
 would therefore not be expected to 

cause equally weighted edges between O2
•–

 and NO in a Bayesian network. This is 

consistent with our findings, that the causal link from NO to ONOO
-
 had high score and 

the causal link from O2
•–

 to ONOO
-
 had low score in topological analysis.    

6.5.1.2 Predicted effects of inhibitors suggested the involvement of Ca2+ 

and NO in DCFDA signaling 

Among the “high scoring” models, we firstly tested whether they were able to 

reproduce the known intracellular changes in LY30-treated cells. Approximate levels 

of NO, Ca
2+

, O2
•–

 and DCFDA were inferred from the high-scoring models, and 

comparison with observed levels showed the high-scoring models were consistent with 

observations (Figure 6.2.6). This success is not remarkable because these same 

observations were utilized for building the models. A side effect of the model-building 

process is the construction of causal models which predict the mediator(s) of Ca
2+ 

LY30-induced DCFDA increase.   

An important benefit of computational modeling is the potential to provide in silico 

predictions of novel experiments. We next predicted how various additional inhibitors 

would affect LY30-induced DCFDA fluorescence. The “high scoring” models from the 

initial Bayesian network MCMC search were extended to include three specific 
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inhibitors, targeting NO, Ca
2+

 or O2
•–

. The extended models (Figure 6.4.3) predicted the 

following. 

1) In cells with long-term (more than 30 min) LY30 treatment, inhibition of NO 

would show a higher inhibitory effect on the DCFDA signal, compared with the other 

two inhibitors. 

2) Shortly after LY30 treatment (less than 30 min), inhibition of Ca
2+

 would show the 

highest inhibitory effect on the DCFDA increase, compared with the other two 

inhibitors.  

3) Inhibition of O2
•–

 showed little inhibitory effect on DCFDA increase, with either 

short or long incubation of LY30.  

Seeking to interpret these predictions, we speculate that NO could affect DCFDA 

because NO can lead to production of ONOO
-
 [242, 326], which is an effective trigger 

for DCFDA fluorescence [242, 326]. If NO and ONOO
-
 are indeed a cause of DCFDA 

fluorescence (in contexts with more than 30 minutes of LY30 treatment), such an effect 

might be confirmed using an ONOO
-
 scavenger and observing whether it causes a 

decrease in LY30-induced DCFDA levels. Regarding prediction for Ca
2+

, we speculate 

that Ca
2+

 could affect DCFDA through mitochondria pathway which, however has been 

disputed with LY30-ETC model, or it could affect DCFDA by direction production of 

H2O2 through Ca
2+ 

dependent NOX activation [108]. If Ca
2+

 does indeed mediate the 

short-term rise of DCFDA after LY30 treatment, such an effect might be confirmed 

using NOX activity assay in LY30-treated cells or using NOX knock-out to block NOX 

activity. 
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Given the inferred DCFDA levels with various inhibitors, we hypothesized that  

1) There is a significant ONOO
-
 increase with long LY30 incubation; 

2) There is mild H2O2 production through Ca
2+

 with short LY30 incubation;  

3) The LY30-induced increase in DCFDA is a combination effect of early H2O2 

production, and late-peaking ONOO
-
 production. 

6.5.2 Biological experiments confirmed the role of NO and Ca
2+

 in 

LY30-induced DCFDA signaling 

6.5.2.1 FeTPPS treatment confirmed the role of ONOO- in late DCFDA 

activation 

To verify the intracellular ONOO
-
 production by LY30, we treated cell samples with 

FeTPPS, which is a ferric porphyrin complex that catalytically scavenges peroxynitrite. 

As a potent ONOO
-
 scavenger, FeTPPS was able to significantly reduce LY30-induced 

increase of DCFDA fluorescence, with > 80% of the total fluorescence increase in 

HeLa with long incubation of LY30 (120 minutes, 240 minutes Figure 6.3.1), 

confirming the model prediction about LY30-induced late ONOO
- 
production. DCFDA 

measurement also showed that FeTTPS scavenged only < 30% of the total fluorescence 

increase with short LY30 incubation (5 minutes, 15 minutes Figure6.3.1), supporting 

the prediction of “significant ONOO
-
 increase with long LY30 incubation”.   

6.5.2.2 EGTA-am treatment confirmed the role of Ca2+ in early DCFDA 

activation 

To verify the hypothesized role of Ca
2+

 in contributing to early DCFDA increase by 

LY30, we incubated HeLa cells with a specific Ca
2+

 chelator EGTA-am. After 
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confirming EGTA-am can efficiently chelate free Ca
2+

 using flow cytometry (Figure 

6.3.3a) and microplate reader (Figure 6.3.3b), we compared DCFDA fluorescence 

between LY30+EGTA-treated sample and LY30-treated sample (Figure 6.3.3c).  HeLa 

samples with LY30+EGTA treatment, compared with LY30-treated samples, showed 

decreased DCFDA fluorescence with short LY30 treatment and slight increase with 

long LY30 treatment compared with time zero, confirming the contribution of Ca
2+

 on 

increased DCFDA fluorescence with short LY30 incubation.  

To ascertain the involvement of H2O2, we tested the effect of catalase on LY30-induced 

DCFDA. Lower fluorescence in catalase+LY30-treated sample than in LY30-treated 

sample (Figure 6.4.1a) was observed, confirming that H2O2 accounts for much of the 

early DCFDA increase.    

Elevated cytosolic Ca
2+

 has been reported to trigger NOX activation, and it is highly 

possible that NOX5 could produce H2O2 directly [108]. To test a causal link from Ca
2+

 

release to DCFDA fluorescence increase, we first checked NOX activity under LY30 

treatments. Compared to untreated sample, increased NOX activity was observed in 

LY30 treated sample (Figure 6.3.4a) and the increase could be blocked by EGTA-am 

pre-treatment (Figure 6.3.4b), indicating that LY30 triggered Ca
2+

-dependent NOX 

activation.  

To verify the causality from the NOX activation to ROS production, we then tested the 

effect of NOX5 knock down (si-NOX5) on LY30-induced DCFDA increase. In the 

sample with NOX5 knock down, we observed no increase of DCFDA fluorescence 

under short LY30 treatment (Figure 6.3.5a), indicating that NOX-5 knock down can 

block LY30-induced DCFDA increase. In other words, NOX activation leads to 
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DCFDA increase in LY30-treated cells. This would likely occur through H2O2, because 

NOX-produced superoxide is constitutively converted into H2O2, and H2O2 is a prime 

signal for DCFDA [108]. Our experimental results of measured NOX activity, together 

with measured DCFDA during NOX knock down and EGTA-am treatment, illustrated 

that LY30 induced Ca
2+

-dependent early H2O2 production through NOX5. 

Our in-vitro experiments with EGTA-am, si-NOX and catalase supported that “LY30 

induced Ca
2+

-dependent early H2O2 production through NOX5”, reconfirming the 

conclusion that LY30 doesn’t induced ROS production through the canonical 

Mitochondria ROS pathway.  

6.5.2.3 ONOO- and H2O2 contributed to DCFDA fluorescence 

DCFDA, reported in 1965 by A.S. Keston and R. Brandt, was initially regarded as a 

specific assay for the measurement of H2O2 in the presence of peroxidise [327]. The 

fluorogenic compound DCFDA has been utilized extensively as a marker for oxidative 

stress, and is suggested to reflect the overall oxidative status of the cell [146, 328]. 

Subsequent work has shown that DCFDA is not specific for H2O2, but it can detect 

many other ROS/RNS, especially ONOO
-
 species with higher oxidation rate [329].  

Through a system investigation method, we identified combined contribution of 

ONOO
-
 and H2O2 in the increase intensity of DCFDA fluorescence. In addition, our 

work dissects the production of ONOO
-
 and H2O2 into late and early period after LY30 

treatment.  

Lack of specificity is not a unique problem for DCFDA. In fact, a lot of chemicals has 

been reported to issues. Another example is that commonly used caspase inhibitors 
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designed based on substrate specificity profiles lack selectivity. Therefore, caution 

need to be taken with various chemicals in future in order to avoid wrong conclusion. 

6.5.3 ONOO
-
 and Ca

2+
 were the two key modeled players in LY30 

induced sensitization 

To study the sensitization mechanism with LY30, we used the “averaged model” 

(Figure 6.2.5) generated from “high scoring models” to create an extended model with 

several inhibitors and with two output nodes, sensitization and DCFDA. The extended 

model was trained with experimental viability data, with and without inhibitors. The 

inhibitors included FeTPPS, EGTA-am, catalase, Tiron and DDC, which were 

combined with LY30 and TRAIL. They were found to rescue cell death with 25%, 20%, 

0%, 20% and 28%, respectively (Figure 6.3.10).  

The trained model was used to predict the cell viability treated with different pairs of 

inhibitors (Figure 6.4.8). The pair of inhibitors with highest predicted effect was 

EGTA-am and FeTPPS together. Compared with other pairs of inhibitor, its rate of cell 

rescue was 45% (Figure 6.4.9), compared with 25% rescue from FeTPPS alone and 20% 

with EGTA-am alone (Figure 6.3.10). Note that our extended model predicted an 

additive effect of FeTPPS and EGTA-am on cell recue. 

To test the prediction, we conducted in-vitro experiments to measure the effect of 

EGTA-am and FeTPPS on cell viability by LY30+TRAIL. The measured viability 

(Figure 6.4.10) showed around 40% rescue of cell death with the pair of inhibitor 

compared with that without inhibitor. As the measured result is consistent with model 



171 

 

prediction, we concluded that, in LY30-treated HeLa, increased cytosolic Ca
2+

 and 

increased ONOO
-
 contribute to cell sensitization to TRAIL in an additive manner.   

6.5.4 ONOO
-
 rather than H2O2 contributed to cell sensitization in 

HeLa 

Exposure to high levels of ONOO
-
 usually leads to rapid cell death as necrosis due to 

acute and severe cellular damage [242]. In contrast, low levels of ONOO
-
 can lead to 

delayed cell death in the form of apoptosis. We saw a strong effect from ONOO
-
 but 

that doesn’t necessarily mean we have a high level of ONOO
-
 with LY30 since cell 

death with LY30+TRAIL treatment occurs as typical apoptosis according to the 

evidence of increased sub-G1 population using PI staining [74] and complete cell 

rescue with Z-VAD-FMK (a pan inhibitor of caspases)  [74].  

Our cell viability assay conducted in HeLa of combination treatment of LY30 and 

TRAIL together with si-NOX5 (Figure 6.3.10e), or catalase (Figure 6.3.10f) showed 

little cell rescue, suggesting that H2O2 may not be an important player in LY30-induced 

sensitization to TRAIL. In addition, treatment with NAC (N-acetylcysteine), which 

replenishes glutathione as a major intracellular antioxidant, also could not prevent 

LY30-induced sensitization to TRAIL. These observations are in consistent with 

previous result (supplementary of [74]) where overexpression of catalase in HeLa 

failed to prevent apoptosis from combined treatment of LY30 and TRAIL. Therefore, 

we confirmed that H2O2 is not a key player in long-term LY30-induced sensitization to 

TRAIL-induced apoptosis in HeLa.  
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Based on the current evidence and discussion, we come to the conclusion that ONOO
-
 

instead of H2O2 is the major driver of LY30-induced cell sensitization in HeLa. 

However, LY30 does cause significant H2O2 production, especially at early time points. 

That raises the question of why LY30-induced H2O2 does not contribute significantly to 

cell death. The apoptosis-inducing effect of LY30-induced H2O2 may be masked by the 

high levels of ONOO
-
 which cause death more rapidly than H2O2. Thus it would not be 

surprising if there exist low-NO cell types in which LY30 sensitizes to death, more 

slowly, through H2O2. Our previous work in SHEP-1 neuroblastoma cells, which have 

lower iNOS levels [330], showed that catalase is able to reduce both DCFDA levels and 

cell viability, in LY30 treatment and LY30+TRAIL treatments, respectively. To 

explain the different phenomenon in the two cell lines, we may need to look at the NOS 

and NOX levels and activations respectively. We speculate that LY30 induces more 

NO production in HeLa than in SHEP-1, and/or that LY30 induces more NADPH 

oxidase function in SHEP-1 than in HeLa. Lower NO levels would cause less ONOO
-
 

and less peroxynitrite-dependent death. Future work should compare the expression of 

NOS isoforms and NOX isoforms in different cell lines, to understand the differential 

regulation of sensitization in these cell lines. 

6.5.5 Superoxide was involved in LY30-induced DCFDA increase and 

cell sensitization  

Tiron is a SOD mimetic which has been widely applied to scavenge superoxide anion 

[331]. Although the result through “model averaging” predicted a weak influence from 

O2
•–

 to DCFDA, our measured fluorescence of DCFDA showed that Tiron is able to 

reduce LY30-induced DCFDA (Figure 6.3.6b). We speculated that the inconsistency 
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between the model prediction and experiment results may be due to the intracellular 

level different between NO and O2
•–

. As reported, intracellular O2
•–

 level is around 2-10 

uM and the intracellular NO level is less than 0.2 uM [232]. Such difference between 

their levels makes NO the bottleneck in ONOO
-
 production. In other words, ONOO

-
 

(and the increase of DCFDA fluorescence) should be less sensitive to O2
•–

 than to NO. 

Therefore, increased level of NO triggered by LY30 can greatly drive the rapid reaction 

with O2
•–

 towards ONOO
-
 formation. In the presence of Tiron, the level of O2

•–
 is 

greatly reduced and may no longer be available in excess of LY30-induced NO. In 

other words, Tiron may cause O2
•–

 to become a new bottleneck in the system, and may 

decrease ONOO
-
 production. Similar effect on DCFDA is also observed with 

incubation of Tempo, another SOD mimic [332].   

To examine the role of superoxide in sensitization, we administrated Tiron or Tempol 

in HeLa cells, together with LY30 and TRAIL, and then measured cell viability. Cell 

viability results shows that Tiron can significantly rescue 20% cell death (Figure 

6.3.10), suggesting an essential role of O2
•–

 in LY30-induced cell sensitization to 

TRAIL. Similar cell rescue was also observed with Tempol at 4mM. We reasoned that 

both Tiron and Tempo rescued peroxynitrite-dependent cell death through scavenging 

O2
•–

, which is in light with previous reports that Tempo can attenuate 

peroxynitrite-induced stress [333], and cells pre-treated with Tiron showed a decreased 

apoptotic response with iNOS inducer [334]. The interpretation of our experiments 

with Tiron and Tempol is more complex, however, because Tiron and Tempol also bind 

Ca
2+

 [335], causing calcium-dependent effects independent of O2
•–

. Our cytometry 

measurements showed some impact of Tiron on Ca
2+

 levels, but the effect was not 

statistically significant.  We conclude that Tiron and Tempol have a significant impact 
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on LY30-induced sensitization, but we cannot conclude whether some of this effect 

may be partially mediated by a calcium scavenging effect.   

6.5.6 DDC decreased ROS production through NO inhibition.  

N,N-Diethyldithiocarbamate (DDC), an inhibitor of superoxide dismutase[336], 

significantly blocked the LY30-induced DCFDA increase (Figure 6.3.8). This 

phenomenon is in contrary to our initial expectation. As DDC can greatly elevate the 

level of O2
•–

 and the increase of O2
•–

 can push forward the production of ONOO
-
, we 

would expect to observe increased DCFDA with DDC.  

To address this dilemma, we first measured the levels of both O2
•–

 and NO with DDC 

treatment. We observed a significant increase in O2
•–

 level, which was expected (Figure 

6.3.9), but we also observed a surprising decrease in the levels of NO (Figure 6.3.9). 

Seeking to confirm the impact of DDC on NO, we found several studies showed DDC 

can reduce intracellular NO through inhibiting inducible NO synthase (iNOS) [337, 

338]. If this mechanism occurs in our system, then DDC would block LY30-induced 

ONOO
-
 increase in HeLa. Therefore, we concluded that DDC reduces DCFDA 

increase and reduces cell death through inhibition on NO. 

6.5.7 Bayesian Network modeling suggests revised hypothesis for 

cFLIP-ROS model: NO may increase cFLIP expression and ONOO- 

may accelerate cFLIP degradation  

We now revisit the topic of cFLIP regulation from chapter 4, in light of our Chapter 4 

results about LY30-induced effects in HeLa. Based on the non-monotonic dynamics of 
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cFLIP by LY30, we hypothesized that 1) LY30 induces sequential increase of O2
•–

 and 

H2O2 levels, and 2) increased O2
•–

 concentration leads to early cFLIP up-regulation and 

increased H2O2 leads to late cFLIP down-regulation. Our measurement of intracellular 

O2
•–

 and H2O2, however, does not support the proposed kinetics of sequential increase 

of O2
•–

 and H2O2 by LY30 (Figure 4.2.7). Through Bayesian network modeling and 

experiments, we interpret LY30-induced effects to include early NO production and 

H2O2 production, and late ONOO
-
 production.  

Although our result about H2O2 and O2
•–

 is inconsistent with the initial hypothesized 

explanation of cFLIP regulation, the following finding of sequential production of NO 

and ONOO
-
 by LY30 can well explain the fluctuation of cFLIP. Previous work has 

established that NO blocks cFLIP degradation through s-nitrosylation of its 

caspase-like domain [339, 340]. Levrand et al. showed that ONOO
- 
is a potent inhibitor 

of NF-kB [341], which has been well-established to induce cFLIP expression [342], 

meaning that ONOO
-
 reduce cFLIP expression through inhibiting NF-KB. In light of 

these RNS-dependent effects, it is logical that LY30 regulation of cFLIP would occur 

first through NO-dependent up-regulation and subsequently through 

peroxynitrite-dependent down-regulation. 

Our work provided a modified hypothesis that LY30 initially up-regulated cFLIP 

through nitrosylation by NO and late down-regulation through ubiquination by ONOO
- 

(Figure 6.5.1). Further work can be pursued to test the role of NO and ONOO
-
 in the 

regulation of cFLIP. 
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Figure 6.5.1 Hypothetical model for LY30 to cause non-monotonic regulation of 

cFLIP via NO and ONOO
-
. Simplified diagram of LY30’s influence on cFLIP. This 

model is roughly divided into two phases. In the earlier phase, NO is produced after 

LY30 treatment, and the increased NO will block the degradation of cFLIP, thus 

inducing its up-reguation. In the later phase, ONOO
-
 is formed from NO, and inhibits 

the production of cFLIP, lowering its concentration.   

6.5.8 Bayesian network modeling predicted causal effects in complex 

system with uncertain network structure 

Bayesian Network is a mathematically unbiased method to integrate experimental 

evidence. Our study to uncover LY30-induced pathways of ROS production and 

TRAIL sensitization demonstrated the power of Bayesian network modeling for 

interpreting data in a complex system. The complexity arises because everything can 

potentially affect everything, individually or in higher-order combinations, with great 

uncertainty [160]. Another benefit of using Bayesian networks is that non-specific 

effects were spontaneously discovered by the model. For example, DCFDA is a marker 

for H2O2 but Bayesian models of DCFDA induction (Figure 6.2.5) showed a stronger 

causal link from NO to DCFDA than from H2O2 to DCFDA. Although we never 

provided any input information to the model about potential activation of DCFDA by 

RNS, the model inferred this causality based on the patterns of correlation in the data. 
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As defined, Bayesian network is capable of encoding all the possible relationship 

through probabilistic causality [343]. Bayesian networks can discover negative as well 

as positive results. For example, when building the model of Figure 6.4.4, we initially 

input that H2O2, Ca
2+

, and ONOO
-
 should have a causal link to cell death. The 

parameter estimation for the strength of the causal links interpreted the data to conclude 

that that H2O2 has negligible effect on cell death, and essentially removed the incorrect 

relationship that we had assumed would be present. These features enables Bayesian 

network to "correct" the prior knowledge with provided data [343]. 

The decision whether to use BN for cell signaling depends on the presence of sufficient 

data to make inferences. Our system is a good application for BNs because it has a 

relatively small number of key species (small number of nodes in the network), many 

datapoints (due to measuring the same species in different experiments and timepoints), 

and enormous uncertainty about the causal relationships between the measured species.  

A large pathway, or a small pathway with better-known causality, would not stand to 

gain as much from a BN approach. With the growing popularity of high-throughput 

measurement methods such as multi-parameter flow cytometry and protein assays [160, 

289], we would expect that Bayesian network modelling will become applicable to 

more and more cell signaling questions.  

Another of the limitations of application of Bayesian network is that they are restricted 

to be acyclic, meaning devoid of feedback loops (positive or negative). Feedback loops 

are common in biological pathways, and blindness to such relationships can causes 

mistaken inferences. Indeed, our inference missed the influence of O2
•–

 on NO while 

capturing the negative influence from NO to O2
•–

. The true relationship between NO 
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and O2
•–

 is mutual, and therefore, by definition, could never be accurately captured in 

any BN model. Extended BN technologies such as Dynamic Bayesian networks can 

capture such effects, but the disadvantage of Dynamic BNs is that they require 

significantly more data to be collected.   
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7 Conclusion 

Our study uses a computational systems biology approach by coupling biological 

assays (e.g., Western blot, flow cytometry, confocal microscopy) with various 

mathematical modelling techniques (e.g., ODEs, Bayesian networks and related 

toolboxes) to investigate LY30-induced effects in HeLa cells, including significant 

increases of DCFDA fluorescence and efficient TRAIL-induced apoptosis. Through 

comparing model predictions and biological data, we identified several non-intuitive 

facts, including:  

 Non-monotonic regulation of cFLIP by LY30. Inspired by the inconsistency of 

caspase-8 dynamics between model simulations and experimental results, our 

Western blot of cFLIP showed that LY30 induces an initial increase and later 

decrease of cFLIP.   

 Non-canonical production of ROS by LY30. Our study demonstrated that 

LY30-ETC model cannot match measured ROS levels, suggesting that LY30 

triggers ROS production through other pathways instead of canonical 

mitochondria ROS pathway.  

 Non-specific oxidation of DCFDA, not by H2O2. Indeed, our experiments showed 

that catalase didn’t rescue death, even though LY30 causes massive H2O2 and 

H2O2 is normally understood to be a strong inducer of apoptosis.  

These non-intuitive facts led us pursue further verification and thus revealed interesting 

biological phenomenon, including: 
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1) Significant increase of NO and ONOO
-
 by LY30; 2) Passive leaking of Ca

2+
 by 

LY30; 3) NOX5 activation by LY30 through Ca
2+

 increase;4) Additive contribution of 

Ca
2+

 and ONOO
-
 to additive cell death; and 5) Additive contribution of ONOO

-
 and 

H2O2 to DCFDA increase. 

Through this approach, we were able to uncover a much more complicated pathway of 

LY30-induced ROS production and TRAIL sensitization (Figure 7.1a) than our initial 

hypothesized pathway (Figure 7.1b). We found that the production of H2O2 and ONOO
-
 

together contributes to the significant DCFDA signal. Furthermore, we also identified 

intracellular ONOO
-
 formation and free Ca

2+
 release as the two key players in 

LY30-induced cell sensitization to TRAIL. Significant DCFDA signal and cell 

sensitization are connected through ONOO
-
 which has been demonstrated to play an 

essential role in both signals.   

 

 

 

 

 

 

 

 

Figure 7.1 Comparison of original LY30 models and proposed new LY30 models. 

a) In the original model, LY30 induces O2
•–

, which then converts to H2O2. The 

increased H2O2 is responsible for both cell viability and DCFDA signal. b) In the 

current model, LY30 induces Ca
2+

 release, NO increase, and O2
•–

 increase. NO and O2
•–

 

interact to form ONOO
-
. Ca

2+
 release leads to H2O2 production (may through NOX5 
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activation). Both H2O2 and ONOO
-
 increases are responsible for DCFDA signal. Ca

2+
 

and ONOO
-
 are responsible for cell viability in the combination treatment of LY30 and 

TRAIL. 

Our application of a systems biology approach provided a platform for analyzing 

complex indirect evidence about the function of LY30 in HeLa. The approach could 

also be extended to other cell lines, or repeated with other compounds. Note that 

LNCAP, SHEP-1 and Jurkat exhibit LY30-induced sensitization to TRAIL-induced 

apoptosis, but recent evidence (unpublished work) suggests the mechanisms may be 

different what we found for HeLa. It might be possible to use some of HeLa causality as 

a starting model for other cell types and then with collection of data in other cell lines, 

allow MCMC search to suggest modifications of the network topology, or allow BN 

parameter estimation process to infer the relative importance (or irrelevance) of the 

causal links for that cell type.   

Another interesting goal for future work would be to measure the levels of NOS and 

NOS isoforms, particularly in different cell lines, and to test whether the mechanism of 

death is altered, in parallel with the capacity to produce different forms of reactive 

species, ROS and RNS. This might help understand the differential regulation of 

sensitization in these cell lines, and ultimately in different forms of cancer. 
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