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Summary

This thesis comprises two topics: the selection consistency of the extended Bayesian

Information Criteria (EBIC) and the sequential LASSO procedure in feature se-

lection under small-n-large-p situation in high-dimensional studies.

In the first part of this thesis, we expand the current study of the EBIC to more

flexible models. We investigate the properties of EBIC for linear regression models

with diverging number of parameters, generalized linear regression models with

non-canonical links as well as Cox’s proportional hazards model. The conditions

under which the EBIC remains selection consistent are established and extensive

numerical study results are provided.

In the second part of this thesis, we propose a new stepwise selection procedure,
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sequential LASSO, to conduct feature selection in ultra-high dimensional feature

space. The conditions for its selection consistency and sure screening property

are explored. The comparison between sequential LASSO and its competitors is

provided from both theoretical and computational aspects. Our results show that

sequential LASSO could be a potentially promising feature selection procedure

when the dimension of the feature space is ultra-high.
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CHAPTER 1

Introduction

In this chapter, we give an introduction to feature selection, provide a brief

literature review and sketch the outline of this thesis. The introduction is given

in Section 1.1. The literature review is given in Section 1.2. The objectives and

organization of the thesis are outlined in Section 1.3.
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1.1 Introduction to Feature Selection

Feature Selection, which is also known as variable selection, sparsity or support

recovery, is a fundamental topic in both classical and modern statistical inference

with applications to diverse research areas such as quantitative trait loci (QTL)

mapping and genome wide association studies (GWAS). It aims to recruit the

causal or relevant features ([102]) from the suspected feature space into a regres-

sion model to describe the relationship between an outcome of interest and the

predictors. Because not all these predictors considered initially have important

influence on the outcome in reality, statistical inference based on a full regres-

sion model is inherently unstable and not advised. By conducting a judicious

feature selection, the three-fold objectives can be achieved: an improved predic-

tion performance, more cost-effective predictors, and a better understanding of the

underlying process that generated the data ([82],[83]). The selection consistency

defined in [183] and prediction accuracy are two goals of feature selection. Under

the assumptions where the dimension of the candidate feature space p is fixed and

the sample size n is large enough, these two goals could be achieved simultane-

ously and effectively via criteria such as Akaike’s Information Criterion (AIC) ([1])

and its variants Consistent AIC (CAIC), Consistent AIC with Fisher-Information
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(CAICF) ([17]), Mallow’s Cp ([120]), Cross-Validation (CV) ([154]), the Bayes In-

formation Criterion (BIC) ([144]) and Generalized Cross-Validation (GCV) ([46]).

However, under the small-n-large-p situation in high-dimensional studies, where p

is much larger than n, the occurrence of over-fitting makes it necessary to address

the two goals from a different point of view and to reinvestigate the feasibility of

these criteria.

Recently, we have been buried in enormous amount of data from various fields

such as biotechnology, finance and astronomy because of the expeditious develop-

ment in information technology industry. For instance, in GWAS, it has become

routine to genotype hundreds of thousands single-nucleotide polymorphism (SNP)

markers ([42]). The proliferation of high-dimensional data necessitates the re-

examination of conventional statistical methods because of the violation of their

assumptions and the appearance of novel objectives of statistical analysis ([49]).

Among these issues, feature selection has drawn much attention from statisticians.

Under the small-n-large-p situation in high-dimensional studies, the selection

consistency of feature selection becomes more important and needs more attention

than high prediction accuracy because it is essential to extract the useful informa-

tion considering the noise accumulation and interpretation of the model. Moreover,

the significance of the selection consistency in pragmatic applications scattered in

different disciplines. In QTL mapping, compared with the true QTLs, markers
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which are highly linked to them may have the same or even higher prediction

ability, but they are less favorable in the model because of the lack of biological

interpretation ([22]). In industry, the most influential and vital variables on the

quality of a final product are more concerned by process engineers ([39]). In mod-

ern systems biology, it is important to connect gene expression data with clinical

studies to detect the associated genes for certain disease or life-span of a species

from the whole genome ([13],[43]).

It is important to mention that, in feature selection under the small-n-large-

p situation in high-dimensional studies, an assumption associated with feature

selection in high-dimensional studies is “sparsity” , which refers to the phenomenon

that among those suspicious predictors, only a few of them are causal or relevant

features. Prior information provided by biologists showed that disease related genes

occupy only a small proportion of the genome. For humans, of the approximately

25,000 protein-coding genes, 2,418 are possibly associated with specific diseases

([7]). An accurate detection of possible associated genes inferred from current

data-throughout will benefit the further validation experiments performed in labs.

With the appearance of high or ultra-high feature space, where p or ln p has a

polynomial order of n, the model selection criteria such as Cp, AIC, CV, BIC, GCV

are no longer suitable for feature selection due to the consequent challenges such

as high spurious correlation and “sparsity”. Cp, CV and GCV focus on prediction
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accuracy, they were shown to have the asymptotic optimality in the sense that the

average mean square error tends to its infimum in probability ([113]). AIC and

BIC aim to obtain a model to best approximate the true model based on Kullback-

Leibler divergence and Bayesian posterior probability respectively, the importance

of a tradeoff between prediction accuracy and complexity of the model has been

reflected in these criteria, but applications in high-dimensional studies showed that

AIC and BIC tended to select far more features than the true relevant ones (See

[22],[15],[151]).

In high-dimensional studies, statisticians have made great efforts to develop

new techniques to diminish the impact of high spurious correlation to maintain

the important information in feature selection. Correspondingly, they have also set

up standards to evaluate these techniques. Aside from computational feasibility,

the commonly desired characteristics include the oracle property defined in [58],

selection consistency and sure screening property defined in [61]. These properties

function at different stages of a complete feature selection process.

For a complete feature selection process, a natural direction in the first place is

to release the computation burden efficiently through dimension reduction without

losing important information. Stepwise or greedy searching algorithms such as Sure

Independence Screening (SIS) and Iterative SIS (ISIS) ([61]), Forward Stepwise

Regression (FSR, [54]), Orthogonal Matching Pursuit (OMP) algorithm ([159])
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are commonly applied to vastly reduce the high or ultra-high dimensional feature

space to a lower-dimensional space. However, this lower-dimensional space still

has a much larger dimension than expected (see Theorem 1 in [166], Theorem 4.1

in [97], etc.), which requires further feature selection. The sheer number of all

possible models remains huge, we can not proceed to select from them directly

by all subsets selection methods because of computational intractability of such

undertaking. As formally proved and presented in [93], such a subset selection is

NP-hard. Feasible alternatives are penalized likelihood methods, which stem from

the idea of regularization ([14]). Examples include the Least Absolute Shrinkage

and Selection Operator (LASSO) ([156]), the Smoothly Clipped Absolute Deviation

(SCAD) ([58]) and the adaptive LASSO ([185]), etc. Given a range of tuning

parameters, they can discard the noncontributory models and thus produce a series

of much less candidate models than the total number of all possible models in the

solution paths. Unavoidably, they require an appropriate choice of the tuning

parameters to pinpoint the best model among these sub-models.

Therefore, in high-dimensional studies, an efficient feature selection procedure

usually consists of two stages: a screening stage and a selection stage, where the

second stage involves a penalized likelihood feature selection procedure and a final

selection criterion. Such a two-stage idea has been applied in [61], [168], [34],

[166], [182], [106]. To guarantee the overall selection consistency, the sure screening
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property for the procedure at the first stage, the oracle property for the penalized

technique and the selection consistency for the final selection criterion at the second

stage should be assured.

Apart from this two-stage selection, papers [24], [23], [167], [32] focused on con-

ducting feature selection under the Bayesian decision theory framework. Bayesian

averaging where a number of distinct models and more predictors are involved was

proposed in [25]. In high-dimensional studies, the full Bayes (FB) is too flexible

in selecting prior distributions and the empirical Bayes (EB) is preferable to FB

in practice. Instead of setting hyper-prior parametric distributions on those pa-

rameters in the prior distributions in FB, EB users estimate the parameters from

auxiliary data directly. Unfortunately, there are too many challenges involved in

implementing Bayesian model choice. It was shown in [41] and [145] that there is a

surprising asymptotic discrepancy between FB and EB. Resampling has also been

used in feature selection, such as [76]. The most promising subset of predictors is

identified as those with the highest visited probability for the samples.
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1.2 Literature Review

1.2.1 Feature Selection in Linear Regression Models

Ever since feature selection associated concepts and methods were introduced in

[87], researchers have made significant strides in developing efficient methods for

feature selection and especially in high-dimensional situations lately. Most of these

methods were initially developed based on observations from linear regression mod-

els (LMs), where the error term is usually assumed to be Gaussian.

At the screening stage, the usage of greedy algorithms proposed in [8] is ap-

pealing for their ability in dimension reduction and is appreciated if sure screening

property can be guaranteed. Namely, as the sample size goes to infinity, with proba-

bility tending to 1, the procedure can successfully retain all the important features.

One famous and simple method is based on marginal effects of the predictors. SIS

and ISIS screen important features according to their marginal correlation ranking

in LMs. They were proved to own sure screening property under mild conditions.

The second popular family is the sequential or stepwise feature selection. It was

shown in [166] that for LMs, Forward Selection ( “Forward Stepwise Regression

(FSR)” in [54]) has sure screening property when the dimension of feature space is

ultra-high and the magnitudes of the effects are allowed to depend on the sample
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size. Other screening procedures include OMP ( [159], [30]) etc. They can be easily

implemented, but these reduced models still have sizes much bigger than expected

(see Theorem 1 in [166] and Theorem 3 in [97]). As pointed out in [10], [124],

stepwise procedures or a single-inference procedure may lead to greatly inflated

type I error, or equivalently, a huge proportion of unimportant features will be er-

roneously selected. Furthermore, if the size of the reduced model is too small, SIS

will miss the true predictor which is marginally independent but jointly dependent

of the responses. This disadvantage can be alleviated but not be eliminated by

ISIS or OMP. Forward Selection pursues the minimal prediction error in each step

and thus requires a cautious consideration in high-dimensional situations owing to

high spurious correlation.

The penalized likelihood techniques at the second stage are formulated by

adding a penalty function coupled with a tuning parameter to the likelihood

function([118]), they are lauded for computational efficiency and stability. Co-

variates with “effects” lower than a data-driven threshold are excluded from the

model for a given tuning parameter. The underlying idea is to shrink the smaller

“effects” which are believed to be probably caused by noise to zero through the

penalty function. Along the solution path produced by adjusting the tuning pa-

rameter, what matters for the procedure is the oracle property, meaning that the

model with exactly the true important features is among the sub-models with
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probability tending to 1 as the sample size n increases to infinity.

Among these penalized likelihood feature selection procedures, the LASSO was

most frequently employed for its efficient computation. A relatively comprehen-

sive study has been done on LASSO. Conditions for the existence, uniqueness and

number of non-zero coefficients of the LASSO estimator were detected in [127];

the general path-following algorithm ([138]) and stagewise LASSO ([184]) were

proposed to approximate the LASSO paths; the consistency and limiting distribu-

tions of the LASSO-type estimators were investigated in [109]. Although being a

leading approach in feature selection, the drawback of LASSO lies in the conditions

required for its oracle property, which is described as Irrepresentable Condition in

[183] or Mutual Incoherence Conditions in [165] or Neighborhood Stability in [122].

It essentially requires that the uncausal features should be weakly correlated with

the true causal features. Considering the incomparably large cardinality of un-

causal features, this condition is too strong to be satisfied. Although it was shown

in [123] that when the irrepresentable condition is violated in the presence of highly

correlated variables, the LASSO estimator is still consistent in the L2 norm sense.

Given the focus of feature selection, more work need to be done on LASSO.

Inspired by the spirit of LASSO, its extensions or modified versions arose

quickly. The elastic net proposed in [187] encourages a grouping effect where
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strongly correlated predictors tend to be in or out of the model together. It en-

compasses LASSO as a special case and its oracle property was examined in [101].

It was verified that the oracle property entails similar constraints on the design

matrix as LASSO. Adaptive LASSO was proposed in [185] for fixed p and its

extension to small-n-large-p situation was finished by [92]. The adaptive irrep-

resentable condition was given for its oracle property. The adaptive elastic-net

proposed in [189] has oracle property when 0 ≤ ln p/ lnn < 1 under weak regular

conditions. The SCAD can result in sparse, unbiased and continuous solutions

under mild conditions, but it has computation issues because of the optimizations

involving non-convex objective functions. An efficient fast algorithm was developed

in [107] to implement SCAD when p ≫ n. For other techniques, it was found in

[53] that the Least Angle Regression (LARs) and the forward stagewise regression

were closely related with LASSO in the sense that their resulting graphs are similar

given connected true parameters and they have identical solution paths for certain

designed matrices. LARs and its variants were further examined in [85], [86], [133].

The paper [98] shed light on how the LASSO and Dantzig selector proposed in [31]

are related. We can refer to [62] for more details about other recently developed

approaches such as non-negative garrott estimator proposed in [177].

Despite these encouraging results, it is important to note that, the oracle prop-

erty of most of these procedures hinges on the choice of tuning parameter. In
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practice, the tuning parameter is always chosen by a separately given criterion,

such as cross validation, generalized cross validation, etc. However, whether this

selected parameter satisfies the assumption required for the oracle property or not

is unknown and hard to be testified. It was shown in [112] that when the pre-

diction accuracy is used as the criterion to choose the tuning parameter, certain

procedures are not consistent in terms of feature selection in general. Now it is

necessary to provide a criterion to ensure the consistency of the tuning parameter,

or equivalently, a final consistent selection criterion to identify the best model.

Regarding the final selection criterion, AIC and BIC fail under high-dimensional

situation since they are inclined to engender models with too many misleading

covariates, which are highly correlated with the response due to spurious correlation

with the causal features. For their extensions, it was shown in [180] that, for finite

p, to select the regularization parameter, BIC-type selector is selection consistent

and AIC-type tends to overfit with positive probability. However, their theoretical

behavior under high-dimensional situation remains unknown. The little bootstrap

was proposed in [20] to give almost unbiased estimates for sub-model prediction

error and used these to do sub-model selection. A modified BIC (mBIC) was

proposed in [15] for the study of genetic QTL mapping to address the problem of

likely inclusion of spurious effects. They noticed that epistatic terms appearing in

a model without the related main effects cause BIC to have a strong tendency to
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overestimate the number of interactions and QTL number. It was discovered in

[16] that this mBIC can be connected with the well known Bonferroni correction

for multiple testing. Hypothesis testing was applied in [168] to eliminate some

variables at the final selection stage. A family of extended Bayesian information

criteria (EBIC) was developed in [33] for feature selection in high-dimensional

studies, which asymptotically includes mBIC as a special case. It was also proved

in [33] that EBIC is selection consistent for LMs when the dimension of feature

space is of polynomial order of the sample size and the true parameter vector is

fixed.

Most importantly, we need to be aware that in real applications, cases become

more complicated. For instance, in LMs, it is reasonable to assume diverging

number of relevant features with magnitudes converging to zero (See [49], [166]).

Feature selection under small-n-large-p situation in high-dimensional studies with

non-linear regression models such as logistic regression in Generalized Linear Re-

gression models (GLMs) and Cox’s Proportional Hazards (CPH) models need to

be investigated as well because of the prevalence of these models in case-control

studies and survival analysis.
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1.2.2 Feature Selection in Non-linear Regression Models

Feature selection in non-linear regression models is as prevalent as in LMs. For

example, in cancer research, gene expression data is often reported in tandem with

time to event information such as time to metastasis, death or relapse ([4]).

Given a high-dimensional feature space, feature selection in non-linear models

has more challenges due to the complicated data structure and implicit estimators

compared with LMs ([60]). Most feature selection techniques in these models were

applications of those techniques in LMs, such as [29], [114], [174], [119], [51]. Cer-

tain famous procedures introduced in LMs have been systematically investigated

in many non-linear regression models subsequently.

SIS and ISIS were extended to GLMs in [64], [65] and also to Cox model in

[57]. Their sure screening property was also testified under certain conditions.

The LASSO, the SCAD and the adaptive LASSO were respectively applied in

Cox model for feature selection in [157], [59] and [181]. The asymptotic selection

consistency of L1 and L1+L2 in linear and logistic regression models was proved in

[27]. For the simplicity of computation, an efficient and adaptive shrinkage method

was proposed in [186] for feature selection in the Cox model, which tends to outper-

form the LASSO and the SCAD estimators with moderate sample sizes for n > p
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situation. Other path solution algorithms can be found in [128] (glmpath) and

[74] (glmnet). As a generalization of the likelihood or partial likelihood term in

usual penalized feature selection methods, feature selection in GLMs with Lipschiz

loss functions with LASSO penalty was studied in [141]. Most of these proce-

dures have been proved to possess oracle property under regular conditions. For

more complex models and data structures, the oracle properties of LASSO in non-

parametric regression setting were proved in [28]. In [103], the author proposed

a new LASSO-type method for censored data after one-step imputation and pre-

sented a tremendous new challenge. The analysis performed in [104] reveals the

distinct advantages of the non-concave penalized likelihood methods over tradi-

tional model selection techniques, they also discussed the performance and the

pros and cons of various techniques in large medical data in logistic regression.

For subset or sub-models selection criterion, the authors of [164] extended the

BIC to the Cox model by changing the sample size in the penalty term to the

number of uncensored events. It was also proved that EBIC is selection consistent

for GLMs with canonical link functions in [35] under high dimensional situations.

The consistency of EBIC for Gaussian graphical models was established in [70].

EBIC was used in [106] to determine the final model in finite mixture of sparse

normal linear models in large feature spaces when multiple sub-populations are

available. It can be expected that EBIC could preserve its selection consistency
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for a much broader range of models with high or ultra-high dimensional feature

spaces.

1.3 Objectives and Organizations

The objectives of this thesis include two main parts. The first part focuses on

investigating the selection consistency of a two-stage procedure where EBIC is

utilized as the final selection criterion in LMs, GLMs with general canonical link

functions and CPH models. The second part of this thesis is to introduce a new

feature selection procedure-sequential LASSO and to discuss its properties.

Part I includes Chapters 2, 3, 4, 5. In Chapter 2, we introduce EBIC in

detail. In Chapter 3, we examine the selection consistency of the EBIC in feature

selection in linear regression models under a more general scenario where both the

number of relevant features and their effects are allowed to depend on the sample

size in a high-dimensional or ultra-high dimensional feature space. We give the

conditions under which the EBIC remains selection consistent and provide the

theoretical proof. We also compare these conditions with those imposed for oracle

property in penalized likelihood procedures such as in [183], [165], [107], and our

proposition implies that ours are much weaker. This study in linear regression

models is followed by its extension to GLM in Chapter 4 and CPH in Chapter 5.
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As a preliminary work for CPH, we assume that the dimension of feature space is

of polynomial order of the sample size and the true parameter vector in the model

is independent of the sample size. We believe that for more complex scenarios

as in LMs, the selection consistency of EBIC can be expected and verified with

additional technical details. In each of Chapters 3 to 5, we also conduct extensive

numerical studies to show the finite sample performances of a two-stage procedure

with EBIC as the final selection criteria as supportive evidences of our theories.

Both simulation results and real data analysis on QTL mapping are covered. Our

numerical studies comprise different data structures in linear regression models,

GLMs and CPH. Results showed that in all scenarios, the EBIC perform as well

as in linear regression models under high-dimensional feature space.

Part II includes Chapters 6, 7, 8. In this part, we attempt to overcome the

impact of high spurious correlation among features in feature selection using our

newly developed method-sequential LASSO. In Chapter 6, its underlying theory

and computation issues are stated in detail. Moreover, in Chapter 7, we have

scrutinized the conditions required for its selection consistency. The EBIC as a

stopping rule for sequential LASSO is proposed, the selection consistency of this

integrated procedure is established. We apply this procedure to simulated and real

data analysis. Compared with its competing approaches, sequential LASSO with

EBIC as a stopping rule is shown to be a promising feature selection procedure in
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ultra-high dimensional situations. In Chapter 8, we show that sequential LASSO

enjoys sure screening property under much weaker conditions than Forward Selec-

tion.

In Chapter 9, we provide overall conclusions and discussions on open questions

for future research to complete this thesis.
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Part I

Extended Bayesian Information

Criteria
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In this part, we examine the applicability of the EBIC in more general and

complicated models. A detailed introduction of the EBIC is given in Chapter 2.

The necessary conditions for its selection consistency in LMs, GLMs and CPH

are established in Chapters 3, 4 and 5. Our conclusion for this part is given

after Chapter 5. We also conduct extensive numerical studies to demonstrate the

finite sample performance of the EBIC in these chapters. Moreover, since QTL

mapping is one of the motivations for this thesis, we also provide several real data

applications of EBIC. The comparison between our findings and those in previous

literatures is also given.
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CHAPTER 2

Introduction to EBIC

2.1 Derivation of EBIC

In a parametric regression model, if the number of features (covariates) pn or its

logarithm is of the polynomial order of the sample size n, i.e., pn = O(nκ) or

ln pn = O(nκ) for some positive constant κ, the feature space is referred to as

a high-dimensional or ultra-high dimensional feature space. Regression problems

with high or ultra-high dimensional feature spaces arise in many important fields

of scientific research such as genomics study, medical study, risk management,

machine learning, etc. Such problems are generally referred to as small-n-large-p
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problems.

The EBIC was developed in [33] for feature selection in small-n-large-p prob-

lems. The family of EBIC is indexed by a parameter γ in the range [0, 1], it

includes the original BIC and mBIC as its special cases exactly or asymptotically

when γ = 0 and γ = 1.

The EBIC was motivated from a Bayesian paradigm. Let {(yi, xi) : i =

1, 2, . . . , n} be independent observations. Suppose that the conditional density

function of yi given xi is f(yi|xi,β), where β ∈ Θ ⊂ Rpn , pn being a positive

integer. The likelihood function of β is given by

Ln(β) = f(x;β) =
n∏

i=1

f(yi|xi,β).

Denote Y = (y1, y2, . . . , yn). Let s be a subset of {1, 2, . . . , pn}. Denote by β(s) the

parameter β with those components outside s being set to 0. Let S be the model

space under consideration, i.e, S = {s : s ⊆ {1, 2, · · · , pn}}, let p(s) be the prior

probability of model s. Assume that, given s, the prior density of β(s) is π (β(s)) .

The posterior probability of s is obtained as

p(s|Y ) =
m(Y |s)p(s)∑
s∈S m(Y |s)p(s)

,
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where m(Y |s) is the likelihood of model s, given by

m(Y |s) =
∫
f (Y ;β(s))π (β(s)) dβ(s).

The BIC selects the model that minimizes

BIC(s) = −2 lnLn

(
β̂(s)

)
+ |s| lnn,

where β̂(s) is the maximum likelihood estimator of β(s) and |s| is the number

of components in s. When β̂(s) is
√
n consistent, −2 ln (m(Y |s)) has a Laplace

approximation given by the BIC(s) up to an additive constant. In the derivation

of BIC, this constant p(s) is taken as a constant over all s. With this constant prior,

BIC favors models with larger numbers of features in small-n-large-p problems (see

[22], [15]).

Assume that S is partitioned into ∪pn
j=1Sj, such that models within each Sj have

equal dimension j. Let τ(Sj) be the size of Sj. Assign the prior distribution P (Sj)

proportional to τ ξ(Sj) for some ξ between 0 and 1. For each s ∈ Sj, assign equal

probability, p(s|Sj) = 1/τ(Sj), this is equivalent to P (s) for s ∈ Sj proportional to

τ−γ(Sj) where γ = 1− ξ. This extended BIC family is given by

EBICγ(s) = −2 lnLn

(
β̂(s)

)
+ |s| lnn+ 2γ ln

(
τ(S|s|)

)
, 0 ≤ γ ≤ 1. (2.1.1)
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When the feature space is high-dimensional and the relevant features are fixed,

the selection consistency of EBIC in linear regression models was established in [33]

when pn = O(nκ) and γ > 1− 1
2κ

for any positive constant κ, which suggests that

the original BIC may not be selection consistent when pn is of order higher than

O(
√
n). In the following chapters of this part, we examine the selection consistency

of the EBIC in more general models for a wider application of the EBIC.

2.2 Applications of EBIC in Feature Selection

According to definition (2.1.1), the EBIC of a particular model depends on the set

of features s it contains and the value of γ. Literally, the selection consistency of

EBIC states that with a properly chosen γ, the EBIC corresponding to the true

set of relevant features s0n is the minimum among all subsets of features having

comparable sizes with s0n. Such a property ensures the capability of EBIC for

identifying s0n correctly provided that the candidate sets are not too big and s0n

is included in the candidate sets. Practically, it is impossible to assess all possible

models, especially in the case of high or ultra-high dimensional feature spaces.

It is natural to reduce the dimension of the feature space as the first step and

then to generate a model sequence by using a feasible procedure, see, e.g., [61],

[34], whereafter, a model selection criterion is applied. When the model sequence
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is controlled by a range of tuning parameters, the model selection criterion is

equivalent to the selection of tuning parameters. For the purpose of brevity, we

will incorporate the model selection into the second stage. In this section, a general

two-stage procedure of this nature will be elaborated and applied in succeeding

numerical studies. The procedure is as follows:

(1) Screening stage: Let Fn denote the set of all the features. This stage

screens out obviously irrelevant features by using an appropriate screening proce-

dure and reduces Fn to a small set F ∗
n .

(2) Selection stage: Use a penalized likelihood of the form

ln,λ (X(F ∗
n),β(F

∗
n)) = −2 lnLn(X(F ∗

n),β(F
∗
n)) +

∑
j∈F∗

n

pλ(|βj|),

where Ln(X(F ∗
n),β(F

∗
n)) is the likelihood function of the model with all features in

F ∗
n and pλ(·) is a penalty function with desirable properties including the property

of sparsity. Choose λ by EBIC as follows. Given a range Rλ, for each λ ∈ Rλ, let

snλ be the set of features with non-zero coefficients when ln,λ(X(F ∗
n),β(F

∗
n)) is

minimized. Based on (2.1.1), compute

EBICγ(snλ) = −2 lnLn(X(snλ), β̂(snλ)) + |snλ| lnn+ 2γ ln

(
pn
|snλ|

)
,
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where β̂(snλ) is the maximum likelihood estimate (without penalty) of β(snλ) and

γ is taken to be 1− lnn

C ln pn
for some C > 2. Let λ∗ be the one which attains the

minimum EBICγ(λ). The final selected set of features is snλ∗ .

It is straightforward to see that, suppose under certain conditions, the following

properties hold:

(1) Sure Screening Property of the screening procedure: P (F ∗
n ∈ Fn) → 1,

as n goes to infinity;

(2) Oracle Property of the penalized likelihood procedure: there exists λ0 ∈

Rλ such that P (snλ0 = s0n) → 1, as n goes to infinity;

(3) Selection Consistency of the EBICγ : P

(
EBICγ(s0n) = min

λ∈Rλ

EBICγ(snλ)

)
→

1, as n goes to infinity.

Then the overall selection consistency of the two-stage procedure is attained.

For a specified combination of techniques, for example, SIS followed by SCAD with

EBIC, the coexistence of the conditions for SIS’s sure screening property, SCAD’s

oracle property and EBIC’s selection consistency can be easily verified. In this

part, we will show the finite sample performance of this two-stage feature selection

procedure in LMs, GLMs with non-canonical links and CPHs in sections 3.2, 4.2

and 5.2 respectively.
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When this thesis was almost done, we found that the screening property is no

longer necessary for the realization of regularization such as adaptive LASSO and

SCAD. See [92] and [107]. We believe that better performances can be achieved,

but our focus, the selection consistency of the EBIC will not be influenced.

In order to measure the closeness of a selected set to the true set of rele-

vant features, or equivalently, the selection accuracy of a certain procedure, the

two quantities, positive discovery rate (PDR) and false discovery rate (FDR) are

adopted. Given a data set with n independent observations, suppose s and s0n are

the selected and the true set of relevant features, the empirical versions of PDR

and FDR are defined as follows:

PDRn =
|s ∩ s0n|
|s0n|

, FDRn =
|s ∩ sc0n|

|s|
. (2.2.1)

The simultaneous convergence of PDRn to 1 and FDRn to 0 reflects the asymptotic

selection consistency in the sense that s itself and the true relevant features it

contains both have almost the same sizes as those of s0n. In this thesis, we will use

these two measures for the evaluation of EBIC’s selection consistency in simulation

studies.
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CHAPTER 3

EBIC in Linear Regression

Models

3.1 Selection Consistency of EBIC

In many small-n-large-p problems that the relevant (or causal, true, as referred by

some other authors) features, though sparse, are relatively large in number com-

pared with classical statistical problems, and their effects usually taper off to zero

from the largest to the smallest. To reflect the estimability of the feature effects,

it is reasonable to model the number of relevant features as a diverging sequence
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depending on the sample size. [49] and [63] are among the earliest papers dealing

with diverging number of relevant features. In this subsection, we investigate the

property of the EBIC in feature selection in LMs when the number of relevant

features p0n diverges at the order O(nc) for some 0 < c < 1 and pn = O(nκ) for

any κ or ln pn = O(nκ) for some 0 < κ < 1. We give the conditions under which

the EBIC remains selection consistent and provide the theoretical proof (Theorem

3.1.1).

We denote by pn the number of features under investigation to make its de-

pendence on n explicit. Let (yi, xi1, . . . , xipn), i = 1, . . . , n, be independent obser-

vations. We consider the following linear model

yi =

pn∑
j=1

β0jxij + ϵi, i = 1, . . . , n, (3.1.1)

where ϵi’s are i.i.d. with mean zero and variance σ2. In matrix notation, (3.1.1) is

expressed as

yn = Xnβ0 + ϵn,

where β0 = (β01, . . . ,β0pn)
τ , yn = (y1, . . . , yn)

τ and Xn = (xij) i=1,...,n
j=1,...,pn

. Here

either pn or ln pn is of a polynomial order of n, and β0 is sparse, meaning that only

a few of its components are non-zero.

We first introduce some notations. Let s0n = {j : β0j ̸= 0, j ∈ {1, . . . , pn}}. Let
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s be any subset of {1, . . . , pn}. For convenience, we also refer to s as a submodel.

We denote by X(s) the matrix composed of the columns of Xn with indices in s.

Similarly, β0(s) denotes the vector consisting of components of β0 with indices in

s. Let |s| denote the number of components in s. In particular, let p0n = |s0n|. Let

H0(s) be the projection matrix of X(s), i.e., H0(s) = X(s)[X(s)τX(s)]−1X(s)τ .

Define

∆n(s) = ∥µn −H0(s)µn∥22,

where µn = Eyn = X(s0n)β0(s0n) and ∥ · ∥2 is the L2 norm. First we consider the

following condition which determines the divergence pattern of (n, pn, p0n) and the

constraint on β0 required for the selection consistency of the EBIC.

Consistency Condition: Let kn = kp0n for any fixed k > 1, then

lim
n→∞

min

{
∆n(s)

p0n ln pn
: s0 ̸⊂ s, |s| ≤ kn

}
= ∞.

The restriction |s| ≤ kn is imposed because in practice only the models with size

comparable with the true model or smaller will be considered. Implicitly, the

consistency condition requires that

lim
n→+∞

√
n

p0n ln pn
min{|β0j| : j ∈ s0n} = +∞. (3.1.2)
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This statement can be verified in the following: without loss of generality, we

let s0n = {1, 2, · · · , pn} and s−k = s0n\{k}, then

min

{
∆n(s)

p0n ln pn
: s0 ̸⊂ s, |s| ≤ kn

}
≤ min

{
∆n(s−k)

p0n ln pn
: 1 ≤ k ≤ p0n

}
≤min

{
nβ2

0k

p0n ln pn
: 1 ≤ k ≤ p0n

}
= min{β2

0j : j ∈ s0n}
n

p0n ln pn
.

We now discuss a relationship between the consistency condition above and

the well known Sparse Reisz Condition ([179]). The Sparse Reisz Condition is as

follows:

0 < cmin ≤ min{λmin(
1

n
X(s)τX(s)) : |s| ≤ kn}

≤ max{λmax(
1

n
X(s)τX(s)) : |s| ≤ kn} ≤ cmax <∞,

where λmin and λmax denote the smallest and the largest eigenvalues respectively.

If p0n is fixed, then {β0j : j ∈ s0n} is also fixed, and p0n ln pn = o(n), (3.1.2) is

always true. As shown in [33], the Sparse Reisz Condition implies the consistency

condition. If p0n diverges, then the Sparse Reisz Condition together with (3.1.2)

imply the consistency condition. When p0n diverges, conditions of the type (3.1.2)

are always imposed for selection consistency in penalized likelihood procedures,

see [107], [183]. As the following proposition implies, the Sparse Reisz Condition

together with (3.1.2) are stronger assumptions than the consistency condition.
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Proposition 3.1.1. Assume s0n = {1, 2, . . . , p0n}. Let s−k be the set with the kth

element of s0n removed. Let k(s) = s−k ∪ s. If (3.1.2) is satisfied and

lim
n→+∞

min
s:|s|≤kn,s0n(s

maxk∈s0n {∥[I −H0(k(s))]X({k})∥22}
n

≥ c (3.1.3)

for some constant c > 0, then the consistency condition holds.

Proof of Proposition 3.1.1. The first inequality in the proof of Lemma 1 in [33]

implies that

△n(s) ≥max
k∈s0n

β2
nk∥[I −H0(k(s))]X({k})∥22

≥ min
k∈s0n

β2
nk max

k∈s0n

{
∥[I −H0(k(s))]X({k})∥22

}
,

as desired. �

The sparse Riesz condition implies Proposition 3.1.1 because

lim
n→+∞

min
s:|s|≤kn,s0n(s

mink∈s0n {∥[I −H0(k(s))]X({k})∥22}
n

≥ lim
n→+∞

min
s:|s|≤kn,s0n(s

λmin(
1

n
Xτ (s0n ∪ s)X(s0n ∪ s)).

But the inverse is not true, which will be illustrated by two counterexamples in

the following.
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The same as [33], when there is one relevant feature being orthogonal to all the

other features, even if there is serious multi-collinearity, the Proposition 3.1.1 holds

but the sparse Riesz condition fails on the left hand side. Regarding the right hand

side, the sparse Riesz condition fails but the Proposition 3.1.1 still holds. When

all the pairwise correlation coefficients are ρ and all the features have variance 1,

λmax(
1

n
X(s)τX(s)) =1− ρ+ ρ|s|;

∥[I −H0(k(s))]X({k})∥22
n

=(1− ρ)
ρ|s|+ 1

ρ|s|+ (1− ρ)
.

Hence,

max
|s|≤kn

λmax(
1

n
X(s)τX(s)) = (1− ρ) + ρkn;

lim
n→+∞

min
s:|s|≤kn,s0n(s

maxk∈s0n {∥[I −H0(k(s))]X({k})∥22}
n

>
1− ρ

2
.

Condition (3.1.2) determines the divergence pattern of (n, p0n, pn) and the con-

straint on β0. Now consider the high and ultra-high-dimensional feature spaces

separately. If pn = O(nκ) for any fixed κ > 0 and p0n = nc for some 0 < c < κ,

(3.1.2) reduces to
n1−c

lnn
min{|β2

0j| : j ∈ s0n} → ∞. The constraint on β0j is

then min{|β2
0j| : j ∈ s0n} must have a magnitude larger than O(n−(1−c)). Let

b be any number bigger than c and smaller than 1. Then the following provides

a consistency pattern: (n, p0n, pn) = (n,O(nc), O(nκ)), min{|β0j| : j ∈ s0n} =
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O(n−(1−b)/2), 0 < c < κ, c < b < 1. If ln pn = O(nκ) and p0n = nc, then by the

same argument, (3.1.2) induces the following consistency pattern: (n, p0n, ln pn) =

(n,O(nc), O(nκ)), min{|β0j| : j ∈ s0n} = O(n−(1−b)/2), 0 < c, κ < 1, c+ κ < b < 1.

We now state the main result on the selection consistency of the EBIC with

diverging number of parameters and high or ultra-high dimensional feature spaces.

Theorem 3.1.1. Assume model (3.1.1) and the consistency condition. In addition,

assume that p0n ln pn = o(n), p0n lnn = o(n) , ln p0n/ ln pn → δ where 0 ≤ δ < 1.

Let kn = kp0n for any constant k > 1. Then as n tends to +∞,

P

(
min

s:|s|≤kn
EBICγ(s) > EBICγ(s0n)

)
→ 1,

if γ >
1 + δ

1− δ
− lnn

2(1− δ) ln pn
.

The following are immediate corollaries of Theorem 3.1.1.

Corollary 3.1.1. If pn = O(nκ) for any constant κ > 0, p0n = p0 is fixed, the

EBIC is selection consistent with γ > 1− lnn

2 ln pn
= 1− 1

2κ
among all models s with

|s| ≤ kn.

Corollary 3.1.2. If pn = O(nκ) for any constant κ > 0, p0n = O(nc), min{|β0j| :

j ∈ s0n} = O(n−(1−b)/2), 0 < c < κ, c < b < 1, then the EBIC is selection

consistent with γ >
κ+ c− 0.5

κ− c
among all models s with |s| ≤ kn.
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Corollary 3.1.3. If ln pn = O(nκ) for 0 < κ < 1, p0n = O(nc), min{|β0j| : j ∈

s0n} = O(n−(1−b)/2), 0 < c, κ < 1, c + κ < b < 1, the EBIC is selection consistent

with γ > 1− lnn

2 ln pn
among all models s with |s| ≤ kn.

The following two lemmas are needed for the proof of Theorem 3.1.1.

Lemma 3.1.1. If
ln j

ln p
→ δ as p→ +∞, we have

ln(
p!

j!(p− j)!
) = j ln p(1− δ)(1 + o(1)).

Proof of Lemma 3.1.1: Write

p!

j!(p− j)!
=
p(p− 1) . . . (p− j + 1)

j!
=

pj
(
1− 1

p

)
. . .

(
1− j − 1

p

)
j!

.

Note that

(
1− j − 1

p

)j−1

<

(
1− 1

p

)
. . .

(
1− j − 1

p

)
<

(
1− 1

p

)j−1

,

and, see [135], that

√
2πjj+1/2e−j+1/(12j+1) < j! <

√
2πjj+1/2e−j+1/(12j).
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We now have

ln(
p!

j!(p− j)!
) ≤j ln p+ (j − 1) ln(1− 1/p)− (j + 1/2) ln j + j − 1

12j + 1
− ln

√
2π

≤j ln p− (j + 1/2) ln j + j = j ln p[1− (j + 1/2) ln j

j ln p
+

1

ln p
]

=j ln p(1− δ)(1 + o(1));

(3.1.4)

ln(
p!

j!(p− j)!
) ≥j ln p+ (j − 1) ln(1− j − 1

p
)− (j + 1/2) ln j + j − 1

12j
− ln

√
2π

≥j ln p+ (j − 1) ln

(
1− j − 1

p

)
− (j + 1/2) ln j − ln

√
2π

=j ln p

1 +

(j − 1) ln

(
1− j − 1

p

)
j ln p

− (j + 1/2) ln j

j ln p
− ln

√
2π

j ln p


=j ln p(1− δ)(1 + o(1)).

(3.1.5)

Lemma 3.1.1 follows from (3.1.4) and (3.1.5). �

Lemma 3.1.2. Let χ2
k denote a χ2 random variable with degrees of freedom k. If

m→ +∞ and
K

m
→ 0 then

P (χ2
k ≥ m) =

1

Γ(k/2)
(m/2)k/2−1e−m/2(1 + o(1))

uniformly for all k ≤ K.
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Proof of Lemma 3.1.2: Denote F̄k(m) = P (χ2
k ≥ m). By integration by parts, we

obtain a recursive formula,

F̄k(m) =
1

2k/2Γ(k/2)

∫ +∞

m

xk/2−1e−x/2dx =
1

Γ(k/2)
(m/2)k/2−1e−m/2 + F̄k−2(m).

If k is even,

F̄k(m) =
1

Γ(k/2)
(m/2)k/2−1e−m/2[1 +

(k−2)/2∑
i=1

(
(k/2− 1) . . . (k/2− i)

(m/2)i
)].

If k is odd,

F̄k(m) =
1

Γ(k/2)
(m/2)k/2−1e−m/2[1 +

(k−3)/2∑
i=1

(
(k/2− 1) . . . (k/2− i)

(m/2)i
)] + F̄1(m),

where F̄1(m) = P (χ2
1 ≥ m) ≈ 2

exp(−m/2)√
2πm

=
1

Γ(k/2)
(m/2)k/2−1e−m/2 2Γ(k/2)√

2π(m/2)(k−1)/2

when m→ +∞. We can write

F̄k(m) =
1

Γ(k/2)
(m/2)k/2−1e−m/2[1 +R(k,m)].

It is straightforward to see that R(k,m) ≤ R(K,m) → 0 when m→ +∞. �

Proof of Theorem 3.1.1:
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Let s be any submodel. Decompose EBICγ(s)− EBICγ(s0n) as T1 + T2 where

T1 =n ln
yτ
n[I −H0(s)]yn

yτ
n[I −H0(s0n)]yn

= n ln
yτ
n[I −H0(s)]yn

ϵτn[I −H0(s0n)]ϵn

=n ln

{
1 +

yτ
n[I −H0(s)]yn − ϵτn[I −H0(s0n)]ϵn

ϵτn[I −H0(s0n)]ϵn

}
T2 =(|s| − p0n) lnn+ 2γ(ln τ(S|s|)− ln τ(Sp0n)).

(3.1.6)

Case I: s0n ̸⊂ s.

Without loss of generality, assume σ2 = 1. We can write

ϵτn{I −H0(s0n)}ϵn =

n−p0n∑
i=1

Z2
i = (n− p0n)(1 + op(1)) = n(1 + op(1)), (3.1.7)

where Zi’s are i.i.d. standard normal variables, since H0(s0n) is a projection matrix

with rank p0n. We have

yτ
n[I −H0(s)]yn − ϵτn[I −H0(s0n)]ϵn

=∆n(s) + 2µτ
n[I −H0(s)]ϵn + ϵτnH0(s)ϵn − ϵτnH0(s0n)ϵn.

It is trivial that

ϵτnH0(s0n)ϵn = p0n(1 + op(1)). (I)
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We will show

max{ϵτnH0(s)ϵn, |s| ≤ kn} = Op(kn ln pn), (II)

and

|µτ
n[I −H0(s)]ϵn| =

√
∆n(s)Op(kn ln pn), (III)

uniformly for all s with |s| ≤ kn. Under the assumption of the theorem, 2kn ln pn =

o(n). Then, by the asymptotic identifiability condition, (I), (II) and (III) imply

that

yτ
n[I −H0(s)]yn − ϵτn[I −H0(s0n)]ϵn = ∆n(s)(1 + op(1)), (3.1.8)

uniformly for all s with |s| ≤ kn. It then follows from (3.1.7) and (3.1.8) that

T1 = n ln

(
1 +

∆n(s)

n
(1 + op(1))

)
, (3.1.9)

uniformly for all s with |s| ≤ kn.

We now prove (II) and (III) in the following. Let m = 2kn[ln pn + ln(kn ln pn)].

It is obvious that
kn
m

→ 0. Note that we can express ϵτnH0(s)ϵn = χ2
j(s) where
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j = |s|. By the Bonferroni inequality, we have

P (max{ϵτnH0(s)ϵn : |s| ≤ kn} ≥ m)

=P (max{χ2
j(s) : s ∈ Sj, j ≤ kn} ≥ m) ≤

kn∑
j=1

τ(Sj)P (χ
2
j ≥ m).

By the fact that τ(Sj) =
(
pn
j

)
≤ pjn and Lemma 3.1.2, there is some c close to 1,

not depending on j for j ≤ kn, such that

τ(Sj)P (χ
2
j ≥ m) ≈c 1

2j/2−1Γ(j/2)

τ(Sj)

pknn
(kn ln pn)

−knmj/2−1

≤ c

m
(kn ln pn)

−jmj/2 =
c

m

[√
m

(kn ln pn)2

]j
=

c

m
qjn,

where

qn =

√
m

(kn ln pn)2
=

√
2[kn ln pn + kn ln(kn ln pn)]

(kn ln pn)2
(1 + o(1)) ≤ q,

for some q between 0 and 1, when n is large enough, since qn → 0. Thus

P (max{ϵτnH0(s)ϵn : |s| ≤ kn} ≥ m) ≤ c

m

kn∑
j=1

qj ≤ c

m

q

1− q
→ 0; (3.1.10)

that is,

max{ϵτnH0(s)ϵn : |s| ≤ kn} = m(1 + op(1)) = Op(kn ln pn),

which establishes (II).
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For verifying (III), note that we can express

µτ
n{I −H0(s)}ϵn =

√
∆n(s)Z(s),

where Z(s) ∼ N(0, 1). For any s with |s| ≤ kn, we have

|µτ
n{I −H0(s)}ϵn| ≤

√
∆n(s)max{|Z(s)| : |s| ≤ kn}.

Let m be the same as above. Consider P (max{|Z(s)| : |s| ≤ kn} ≥
√
m). We have

P (max{|Z(s)| : |s| ≤ kn} ≥
√
m) =P (max{|Z(s)| : s ∈ Sj, j ≤ kn} ≥

√
m)

≤
kn∑
j=1

τ(Sj)P (Z(s) ≥
√
m) =

kn∑
j=1

τ(Sj)P (χ
2
1 ≥ m)

≤
kn∑
j=1

τ(Sj)P (χ
2
j ≥ m),

since P (χ2
1 ≥ m) < P (χ2

j ≥ m) by Lemma 3.1.2. We have already shown that the

last sum converges to zero. This establishes (III).

Now, putting (3.1.6) and (3.1.9) together, we have

EBICγ(s)− EBICγ(s0n)

=n ln

(
1 +

∆n(s)

n
(1 + op(1))

)
+ (|s| − p0n) lnn+ 2γ(ln τ(S|s|)− ln τ(Sp0n))

≥n ln(1 + c)− p0n(lnn+ 2γ ln pn),
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for some positive c, when n is large enough, by the asymptotic identifiability con-

dition. Under the assumption of the theorem, p0n ln pn = o(n) and p0n lnn = o(n).

Hence the above difference goes to infinity uniformly for all s with |s| ≤ kn for any

bounded γ.

Case II: s0n ⊂ s.

When s0n ⊂ s, {I − H0(s)}X(s0n) = 0. Hence, yT
n{I − H0(s)}yn = ϵTn [I −

H0(s)]ϵn and

ϵTn [I −H0(s0n)]ϵn − ϵTn [I −H0(s)]ϵn = ϵTn{H0(s)−H0(s0n)}ϵn = χ2
j(s),

where χ2
j(s) is a χ

2 random variable depending on s with degrees of freedom j and

j = |s| − p0n. We obtain that

n ln

(
ϵTn [I −H0(s0n)]ϵn
ϵTn [I −H0(s)]ϵn

)
=n ln

{
1 +

χ2
j(s)

ϵTn [I −H0(s0n)]ϵn − χ2
j(s)

}
≤

nχ2
j(s)

ϵTn [I −H0(s0n)]ϵn − χ2
j(s)

.

(3.1.11)

As n→ ∞, n−1ϵTn [I −H0(s0n)]ϵn → σ2 = 1, i.e.,

ϵTn [I −H0(s0n)]ϵn = n(1 + o(1)). (3.1.12)

Let S̃j = {s : s ∈ Sj+p0n , s0n ⊂ s}. Note that τ(S̃j) =
(
pn−p0n

j

)
≤ pjn. Let
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mj = 2j[ln pn + ln(j ln pn)]. In the same way as we derive (3.1.10), we have

P ( max
1≤j≤kn−p0n

max{χ2
j(s) : s ∈ S̃j}
mj

≥ 1) ≤
kn−p0n∑
j=1

P (max{χ2
j(s) : s ∈ S̃j} ≥ mj)

≤
kn−p0n∑
j=1

τ(S̃j)P (χ
2
j ≥ mj) ≤

1

ln pn

kn−p0n∑
j=1

qjj → 0,

where

qj =

√
2

j ln pn
+

2 ln(j ln pn)

j(ln pn)2
≤
√

2

ln pn
(1 + o(1)) → 0.

Thus,

max{χ2
j(s) : s ∈ Sj+p0n , s0n ⊂ s} = mj{1 + op(1)}, (3.1.13)

uniformly for all s with |s| ≤ kn and s0n ⊂ s.

It follows from (3.1.11), (3.1.12) and (3.1.13) that

n ln

(
ϵTn [I −H0(s0n)]ϵn
ϵTn [I −H0(s)]ϵn

)
≤ nmj

[n−mj(1 + op(1))]

≤mj(1 + op(1)) ≤ 2j(1 + δ) ln pn(1 + op(1)),

uniformly for all s with |s| ≤ kn and s0n ⊂ s, noting that mj ≤ 2j[ln pn + ln((kn −

p0n) ln pn)] = 2j(1 + δ) ln pn(1 + op(1)) and mj = 2j(1 + δ) ln pn(1 + op(1)) for

j = kn − p0n. Thus

T1 ≥ −2j(1 + δ) ln pn(1 + op(1)).
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When p0n ≤ |s| ≤ kn we have ln |s|/ ln pn → δ uniformly, hence, by Lemma 3.1.1,

T2 = j lnn+ 2γ(1− δ)j ln pn(1 + o(1)).

Finally we have

EBICγ(s)− EBICγ(s0n)

≥j lnn+ 2γ(1− δ)j ln pn(1 + o(1))− 2j(1 + δ) ln pn(1 + op(1)) > 0,

uniformly for all s with |s| ≤ kn and s0n ⊂ s, if n is big enough, when γ >

1 + δ

1− δ
− lnn

2(1− δ) ln pn
.

�

3.2 Numerical Study

In this section, the performance of the two-stage feature selection procedure dis-

cussed previously is investigated in linear regression models where ln pn = O(nκ)

and β0 depends on n. In the screening stage, the SIS is used and |F ∗
n | is taken to

be 0.5n throughout the simulations. In the selection stage, the penalized likelihood

procedure with the SCAD penalty is used. We also consider the adaptive LASSO

proposed by [185]. The usage of this two methods is due to the oracle property
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both of them enjoy. Since the simulation results of the adaptive LASSO are similar

to those of the SCAD penalized likelihood, only the results with SCAD penalty

are reported in this subsection. The R packages glmpath ([128]) and plus ([178])

are used to compute the penalized likelihood models. We are mainly concerned

about the EBIC with γ slightly bigger than 1− lnn

2 ln pn
(in the simulation we take

γ = 1− lnn

4 ln pn
). But we also consider γ = 0, which corresponds to the original BIC,

and γ = 1, which corresponds to an asymptotic form of mBIC, for the purpose of

comparison.

We take the divergence pattern as (n, p0n, pn) = (n, c[n0.325], [exp(n0.35)]) for

n = 100, 200, 500 and 1, 000, the value of c controls the extent of sparsity, which

results in the table below:

n 100 200 500 1,000

[n0.325] 4 6 8 9

pn 150 595 6,655 74,622

For j ∈ s0n, the parameter β0j is independently generated as β0j = (−1)u(n−0.1625+

|z|) where u ∼ Bernoulli(0.4) and z is a normal random variable with mean 0 and

satisfies P (|z| ≥ 0.1) = 0.25. This ensures, roughly, min{|β0j| : j ∈ s0n} =

O(n−0.1625). The error variance σ2 is determined by setting the following ratio to
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certain values when n = 100 and kept unchanged for other n’s:

h =
E (β0

τΣβ0)

E (β0
τΣβ0) + σ2

, (3.2.1)

where β0 is the true parameter vector and Σ is the covariance matrix of the pre-

dictors. This ratio is called the heritability in broad sense in genetic studies if the

response is a quantitative trait and the covariates are genotypes of quantitative

trait loci. The higher the h, the easier for the relevant features to be detected. In

our simulations, we let h be 0.4, 0.6, 0.8. The following three correlation structures

are considered for the covariates:

Structure I: Power decay correlation. The covariates are generated as series

of normally distributed random variables with mean 0 and correlation coefficient

ρij = 0.5|i−j|.

Structure II: Diagonal block design with equal pairwise correlation. The co-

variance matrix is a diagonal block matrix. Each block except the last one is of

dimension 50×50. The variances in the blocks are all equal to 1 and the off-diagonal

correlations are all equal to ρ = 0.5.

Structure III: Diagonal block design with uniformly distributed eigenvalues. The
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covariance matrix of all the covariates is of the form

Σ =



B . . . . . . . . .

. . . B . . . . . .

. . . . . . . . . . . .

. . . . . . . . . B


.

The block matrix B is of dimension 50×50 and is generated by the following steps:

(1) A positive definite matrix is generated such that it has the smallest eigenvalue 1,

the largest eigenvalue 20 and the other eigenvalues uniformly distributed between 1

and 20; (2) the matrix is converted into a correlation matrix by dividing its entries

with the square roots of its diagonal elements; (3) B is taken as the correlation

matrix.

For each simulation setting, the PDRn and FDRn averaged over 200 replicates

and their standard deviations in the parenthesis are reported in Tables 3.2.1, 3.2.2

and 3.2.3. We can make the following conclusions from results in Tables 3.2.1-

3.2.3: (i) The BIC (EBIC with γ = 0) does not appear to be selection consistent.

Under all the settings, the FDRn of the procedure with BIC does not reduce as n

increases, it is in fact the opposite. (ii) The finite sample performance of the EBIC

closely matches its asymptotic property. That is, under all the three correlation

structures, for the procedure with EBIC with γ = 1 − lnn

4 ln pn
, the PDRn and the
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FDRn approach rapidly to 1 and 0 respectively, as n increases from 100 to 1000,

at all the three h levels. In general, the PDRn of the procedure with BIC is higher

because it always selects much more features. But, as n gets large, the PDRn of

EBIC with γ = 1 − lnn

4 ln pn
quickly becomes comparable with that of the BIC.

(iii) For large n, the mBIC (EBIC with γ = 1) is comparable with EBIC with

γ = 1− lnn

4 ln pn
, which reflects the fact that it is also selection consistent. But for

small n, it loses certain power while overly controlling FDRn.
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Table 3.2.1 Results on the SIS-SCAD-EBIC Procedure with Structure I in LMs

PDRn FDRn

n h γ1 γ2 γ3 γ1 γ2 γ3
c = 1
100 0.4 .726 (.242) .449(.291) .384(.288) .571 (.212) .074 (.205) .050 (.181)

0.6 .861(.187) .700(.271) .633(.301) .478(.216) .080(.169) .044 (.123)
0.8 .973(.089) .921 (.159) .909(.176) .363(.204) .0849 (.147) .056(.119)

200 0.4 .759 (.205) .532(.269) .467(.269) .662 (.177) .034(.101) .017(.071)
0.6 .909(.144) .758 (.256) .711(.282) .574(.185) .079(.145) .038(.098)
0.8 .989(.056) .957(.105) .947(.128) .389(.200) .060(.115) .045(.105)

500 0.4 .826 (.146) .640(.212) .604 (.214) .768 (.099) .037 (.089) .011(.046)
0.6 .943(.099) .863(.164) .836(.181) .659(.133) .066(.128) .028(.079)
0.8 .994 (.035) .983(.060) .980 (.067) .504(.189) .027(.073) .019(.065)

1,000 0.4 1.00(.000) .999 (.008) .999 (.011) .662(.024) .019(.041) .009 (.028)
0.6 1.00 (.000) 1.00(.000) 1.00(.000) .531(.037) .019(.041) .008(.026)
0.8 1.00(.000) 1.00(.000) 1.00(.000) .469(.009) .007(.025) .002(.014)

c = 2
100 0.4 .531(.183) .243(.169) .198(.162) .507(.222) .069 (.204) .041(.172)

0.6 .679(.166) .416 (.213) .349(.206) .447(.187) .074(.173) .026(.093)
0.8 .850(.153) .708 (.225) .628(.248) .373(.163) .118 (.143) .068(.118)

200 0.4 .613(.162) .306 (.164) .260(.161) .619(.162) .028(.096) .009 (.066)
0.6 .720(.148) .518(.211) .456(.207) .545(.181) .036(.082) .018 (.061)
0.8 .895(.125) .745(.199) .703(.217) .447(.164) .086(.117) .053(.096)

5,00 0.4 .732(.129) .425(.174) .371(.166) .774(.076) .014(.054) .004(.025)
0.6 .832(.104) .635(.176) .589(.186) .695(.112) .028(.064) .009(.031)
0.8 .956(.067) .875(.135) .847(.157) .535(.159) .098(.121) .068(.104)

10,00 0.4 .758 (.108) .537(.161) .491(.164) .825(.055) .012(.039) .005(.025)
0.6 .849(.102) .715(.134) .689(.144) .761(.077) .025(.062) .009 (.035)
0.8 .969(.054) .925(.084) .906 (.106) .581 (.146) .095(.109) .072(.095)

The values of γ in EBICγ : γ1 = 0, γ2 = 1− lnn

4 ln pn
, γ3 = 1.
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Table 3.2.2 Results on the SIS-SCAD-EBIC Procedure with Structure II in LMs

PDRn FDRn

n h γ1 γ2 γ3 γ1 γ2 γ3
c = 1
100 0.4 .733(.285) .402(.318) .343(.291) .427(.268 ) .229(.369) .198 (.362)

0.6 .933(.154) .772(.297) .703(.321) .339 (.213) .117(.197) .094(.207)
0.8 .996(.042) .967(.118) .960 (.125) .293(.203) .053(.132) .036(.114)

200 0.4 .868 (.203) .534(.303) .479(.306) .442(.206) .133 (.249) .109(.246)
0.6 .994(.039) .931(.168) .889(.214) .321( .173) .107 (.161) .078 (.143)
0.8 1.00(.000) .996(.031) .994 (.039) .292(.165) .025(.081) .017(.069)

500 0.4 .948 (.093) .754 (.178) .723 (.184) .689( .114) .056(.107) .049 (.103)
0.6 .993(.035) .922(.121) .904(.132) .626 (.127) .031(.080) .019(.064)
0.8 1.00(.000) .997 (.024) .992(.044) .585(.151) .059(.109) .031 (.083)

1,000 0.4 .939(.080) .813(.158) .785(.180) .818(.046) .073(.113) .049(.092)
0.6 .995 (.025) .988 (.041) .986(.043) .739(.066) .039 (.084) .035(.079)
0.8 .999(.010) .998(.017) .996(.024) .653(.107) .024(.069) .017(.061)

c = 2
100 0.4 .430(.239) .193(.174) .173(.164) .449(.294) .310(.411) .295(.408)

0.6 .684 (.234) .389(.236) .343(.224) .343(.220) .164(.235) .150(.253)
0.8 .881(.179) .676(.266) .603(.284) .308(.194) .105(.174) .096(.175)

200 0.4 .489(.206) .199(.142) .165(.133) .416(.235) .134 (.275) .115(.259)
0.6 .727(.192) .421(.227) .356(.214) .351(.195) .065(.144) .055(.132)
0.8 .919(.135) .718(.254) .672(.269) .351(.184) .055(.099) .043(.088)

5,00 0.4 .664(.137) .258(.132) .238(.132) .669(.145) .031(.099) .020(.076)
0.6 .834(.127) .468(.211) .407(.209) .609(.132) .029(.073) .014(.047)
0.8 .944(.094) .804(.244) .778(.266) .485(.198) .084(.108) .068(.095)

1,000 0.4 .675 (.133) .311(.158) .284(.158) .829(.079) .017(.055) .014(.050)
0.6 .882(.134) .551(.234) .496(.239) .744(.115) .060(.108) .033(.073)
0.8 .959 (.078) .884(.195) .877(.202) .616(.178) .069(.099) .061 (.087)

The values of γ in EBICγ : γ1 = 0, γ2 = 1− lnn

4 ln pn
, γ3 = 1.
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Table 3.2.3 Results on the SIS-SCAD-EBIC Procedure with Structure III in LMs

PDRn FDRn

n h γ1 γ2 γ3 γ1 γ2 γ3
c = 1
100 0.4 .915(.146) .667(.302) .564(.327) .428(.191 ) .041(.102) .020(.078)

0.6 .996(.031) .964(.116) .950(.133) .360(.181) .046(.105) .019 (.063)
0.8 1.00(.000) 1.00(.000) 1.00(.000) 0.326(.165) .038(.096) .011(.051)

200 0.4 .993(.037) .865(.206) .811(.252) .575(.162) .049(.101) .024(.073)
0.6 1.00(.000) .999(.014) .999(.014) .536(.129 ) .032(.081) .013(.048)
0.8 1.00(.000) 1.00(.000) 1.00(.000) .457( .138 ) .023(.065) .009 (.042)

500 0.4 1.00(.000) .971(.081) .961(.090) .768(.042 ) .041(.075) .023 (.055)
0.6 1.00 (.000) 1.00(.000) 1.00(.000) .704 (.058) .022(.059) .010 (.043)
0.8 1.00(.000) 1.00(.000) 1.00(.000) .608 (.091) .016(.049) .007(.038)

1,000 0.4 1.00(.000) .999 (.011) .997 (.017) .790(.040) .023(.046) .008(.028)
0.6 1.00(.000) 1.00(.000) 1.00(.000) .740(.038) .018(.041) .005 (.021)
0.8 1.00 (.000) 1.00(.000) 1.00(.000) .705(.051) .005(.022) .002 (.012)

c = 2
100 0.4 .643 (.218) .239(.201) .155 (.179) .409(.206) .071(.185) .028(.128)

0.6 .911 (.141) .589(.298) .461(.302) .346(.168) .092(.163) .045(.129)
0.8 .995(.033) .975 (.100) .964 (.135) .237(.136) .089(.101) .069 (.092)

200 0.4 .801(.147) .307(.210) .209(.179) .536(.136) .049 (.142) .013 (.061)
0.6 .974(.063) .817(.198) .742(.236) .443(.147) .076(.095) .045 (.073)
0.8 .999(.010) .993(.041) .989(.048) .322 (.121) .046 (.074) .034(.063)

500 0.4 .933 (.076) .578 (.204) .451 (.215) .723(.079) .035 (.067) .009 (.036)
0.6 .992(.029) .946 (.073) .929(.094) .642 (.091) .062(.078) .045(.069)
0.8 .999(.005) .998(.016) .997(.017) .498(.105) .023(.044) .014(.036)

1,000 0.4 .969(.049) .779(.169) .688(.207) .809(.051) .042 (.063) .018(.039)
0.6 .997(.013) .976 (.054) .973(.058) .738(.059) .029(.053) .024(.042)
0.8 .999(.004) .998 (.011) .998 (.012) .608(.085) .011(.031) .006(.022)

The values of γ in EBICγ : γ1 = 0, γ2 = 1− lnn

4 ln pn
, γ3 = 1.
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CHAPTER 4

EBIC in Generalized Linear

Regression Models

Generalized linear regression models (GLMs) are much more flexible in describing

the relationship between a given response variable and the predictors. Feature

selection in GLMs becomes naturally important in high-dimensional studies. The

selection consistency of the EBIC for GLMs with canonical links was established

in [35]. As pointed out in [48], the canonical link usually fails to best fit a given

data set. In this chapter, we check the validity of the EBIC for feature selection

in GLMs with general links in small-n-large-p problems and state our main result
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in Theorem 4.1.1.

4.1 Selection Consistency of EBIC

Let (yi,xi), i = 1, . . . , n, be the observations, where yi is a response variable and

xi = (xi1, . . . , xipn)
τ is a pn-vector of covariates. We consider the generalized linear

model below:

yi ∼ f(yi; θi) = exp{θiyi − b(θi)} w.r.t. ν, i = 1, . . . , n,

where ν is a σ-finite measure. From the properties of exponential family, we have

µ(θi) = E(yi) = b
′
(θi), σ

2(θi) = Var(yi) = b
′′
(θi),

where b
′
and b

′′
are the first and the second derivatives of b respectively. The θi is

related to xi through the relationship:

g(µ(θi)) = ηi = xτ
iβ,

where g is a monotone function called link function and β is a pn-dimensional

parameter vector. If g(µ(θi)) = θi, i.e., g = µ−1, the link is called the canonical
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link. Here, we consider general link functions including the canonical link. Because

of the one-to-one correspondence between θi and ηi, there is a function h such that

θi = h(ηi) = h(xτ
iβ). Thus the probability density function of yi can be expressed

as

f(yi;h(x
τ
iβ)) = exp{yih(xτ

iβ)− b(h(xτ
iβ))}.

Suppose that b and g are thrice and twice differentiable respectively, which is

usually the case in practical GLMs, then h is twice differentiable. Suppose its

l−order derivatives h(l)(l = 0, 1, 2) exist and they are continuous and bounded.

Then

b
′
(h(Xτ

i β0)) = µi = E(yi), b(2) (h(Xτ
i β0)) = σ2

i = Var(yi).

For canonical link, h(1) = 1, h(2) = 0.

In the above GLMs, we assume that pn = O(exp{nκ}) for some 0 < κ < 1, and

that only a relatively small number of components of β are nonzero. Throughout

the article, the following notation and convention are used. Denote by s any subset

of the index set S = {1, 2, . . . , pn} and |s| its cardinality. For convenience, s is used

exchangeably to denote both an index set and the set of covariates with indices

in the index set, and is also referred to as a model, i.e., the GLMs consisting of

the covariates in s. Let s0n = {j : β0j ̸= 0, j = 1, . . . , pn} and p0n = |s0n|. The

covariates belonging to s0n are called relevant features and the others irrelevant
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features. s0n is also referred to as the true model. Let Xi be the observation vector

for the ith individual and Xi(s) be its component which includes the covariates in

s, and let β(s) be the corresponding sub vector of β. Let Sj denote the set of
(
pn
j

)
combinations of j indices from S . Denote τ(Sj) =

(
pn
j

)
.

The EBIC of a model s, as defined in [33], is

EBICγ(s) = −2 lnLn

(
β̂(s)

)
+ |s| lnn+ 2γ ln τ(S|s|), γ ≥ 0,

where Ln(β̂(s)) is the maximum likelihood of model s and β̂(s) is the maximum

likelihood estimate (MLE) of β(s).

Denote A0 = {s : s0n ( s; |s| ≤ kp0n},A1 = {s : s0n * s; |s| ≤ kp0n} where

k > 1 and

ln(β) =
n∑

i=1

ln f(yi, θi) =
n∑

i=1

(yiθi − b(θi)) =
n∑

i=1

(yih(X
τ
i β)− b (h(Xτ

i β))) ,

sn(β) =
∂ln(β)

∂β
=

n∑
i=1

(
yi − b

′
(h(Xτ

i β))
)
h(1)(Xτ

i β)Xi,

HE
n (β) =

n∑
i=1

b(2) (h(Xτ
i β))

(
h(1)(Xτ

i β)
)2
XiX

τ
i ,

He
n(β) =

n∑
i=1

(
yi − b

′
(h(Xτ

i β))
)
h(2)(Xτ

i β)XiX
τ
i ,

H0(β) =− ∂2ln(β)

∂β∂βτ = HE
n (β)−He

n(β).

(4.1.1)
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When s0n ⊆ s,

sn(β0(s)) =
n∑

i=1

(yi − µi)h
(1)(Xτ

i β0)Xi(s),

HE
n (β0(s)) =

n∑
i=1

σ2
i

(
h(1)(Xτ

i β0)
)2
Xi(s)X

τ
i (s),

He
n(β0(s)) =

n∑
i=1

(yi − µi)h
(2)(Xτ

i β0)Xi(s)X
τ
i (s).

(4.1.2)

The following assumptions are imposed for the selection consistency of EBIC.

Except C1, all the other assumptions are almost similar to those in [35] when the

canonical link is considered.

C1 ln(pn) = O(nκ), p0n = O(nb) where b ≥ 0, κ > 0 and b+ κ < 1/3;

C2 minj∈s0n |β0j| ≥ Cn−1/4 for some constant C > 0;

C3 For any s, the interior of B(s) = {β :
∫
exp(h(Xτ

i (s)β)y)dν < ∞, i =

1, 2, . . . , n} is nonempty. Let β0 denote the true parameter of the GLMs.

If |s| ≤ kp0n, where k > 1, then β0(s) is in the interior of B(s).

C4 There exist positive c1 and c2 such that for all sufficiently large n,

c1n ≤ λmin(H
E
n (β0(s ∪ s0n))) ≤ λmax(H

E
n (β0(s ∪ s0n))) ≤ c2n

for all s with |s| ≤ kp0n, where λmin and λmax denote respectively the smallest
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and largest eigenvalues;

C5 For any given ξ > 0, there exists a δ > 0 such that when n is sufficiently large,

(1− ξ)HE
n (β0(s ∪ s0n)) ≤ HE

n (β(s ∪ s0n)) ≤ (1 + ξ)HE
n (β0(s ∪ s0n)),

(1− ξ)He
n(β0(s ∪ s0n)) ≤ He

n(β(s ∪ s0n)) ≤ (1 + ξ)He
n(β0(s ∪ s0n))

whenever ∥β(s ∪ s0n)− β0(s ∪ s0n)∥2 ≤ δ for all s with |s| ≤ kp0n;

C6 The quantities |xij|, |h
′
(Xτ

i β0)|, |h
′′
(Xτ

i β0)|, i = 1, . . . , n; j = 1, . . . , pn are

bounded from above, and σ2
i , i = 1, . . . , n are bounded both from above

and below away from zero. Furthermore,

max
1≤j≤pn;1≤i≤n

x2ij[h
′
(Xτ

i β0)]
2∑n

i=1 σ
2
i x

2
ij[h

′(Xτ
i β0)]

2
= o(n−1/3),

max
1≤i≤n

[h
′′
(Xτ

i β0)]
2∑n

i=1 σ
2
i [h

′′(Xτ
i β0)]

2
= o(n−1/3).

The positive definiteness of the information matrix Hn(β) is fulfilled naturally

for canonical links but not definitely for non-canonical links. Readers can find a

thorough relevant study in [169]. This assumption is regular and can guarantee

the existence and uniqueness of β̂(s) for all s with |s| ≤ kp0n where k > 1. For

non-canonical links, C6 are easily satisfied by all the examples given in [169]. The

verification of C6 is given in the Appendix.

We now state our main result in the following theorem:
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Theorem 4.1.1. Under Conditions C1-C6, as n→ +∞, we have

(1) P (mins∈A1 EBICγ(s) ≤ EBICγ(s0n)) → 0 for any γ > 0;

(2) P (mins∈A0 EBICγ(s) ≤ EBICγ(s0n)) → 0 for any γ >
1

1− ξ

[
1− lnn

2 ln pn

]
,

where ξ is an arbitrarily small positive constant.

The proof of this theorem requires the following corollaries of Lemma 1 in [35],

which is stated as follows. To avoid redundancy, this lemma is referred to Lemma

1 unless otherwise stated.

Lemma 1: Let Yi, i = 1, 2, · · · , n be independent random variables following

exponential family distributions with natural parameters θi. Let µi, σ
2
i denote the

mean and variance of Yi respectively. Suppose that {θi : i = 1, 2, · · · , n} is con-

tained in a compact subset of the natural space Θ. Let ani, i = 1, 2, · · · , n be real

numbers such that
n∑

i=1

a2niσ
2
i = 1 and max1≤i≤n{|ani|} = o(n−1/6). Then for any

m = O(n1/3), we have

P (
n∑

i=1

ani(yi − µi) >
√
2m) ≤ exp(−m(1− ξ))

for any positive ξ when n is sufficiently large.
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Corollary 4.1.1. Under Conditions C1-C6,

P ( max
s∈A0,j∈s

s2n,j(β0(s)) ≥ Cn4/3) = o(1).

Proof of Corollary 4.1.1: Let ani = xi,jh
(1) (Xτ

i (s)β0(s)) /

√
n∑

i=1

σ2
i x

2
i,j (h

(1)(Xτ
i (s)β0(s)))

2
,

when s ∈ A0, X
τ
i (s)β0(s) = Xτ

i β0, From Lemma 1 and C6, we have

P
(
snj (β0(s)) ≥ Cn2/3

)
=P

 n∑
i=1

ani(yi − µi) > Cn2/3/

√√√√ n∑
i=1

σ2
i x

2
i,j (h

(1)(Xτ
i β0))

2


≤P

(
n∑

i=1

ani(yi − µi) > Cn1/6

)
≤ exp(−Cn1/3).

The first inequality holds because of the boundedness of xi,j and h
(1). Consequently,

when kp0n ln pn + ln p0n = o(n1/3), which is satisfied by C1, we have

∑
s∈A0

∑
j∈s

P
(
snj (β0(s)) ≥ Cn2/3

)
≤ kp0np

kp0n
n exp(−Cn1/3)

= k exp(ln p0n + kp0n ln pn − Cn1/3) = o(1).

That is,

P

(
max

s∈A0,j∈s
s2n,j (β0(s)) ≥ Cn4/3

)
= o(1). (4.1.3)

�
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Corollary 4.1.2. Under Conditions C1-C6, we have

P

(
max

s∈A0,∥u∥2=1,∥β(s)−β0(s)∥2≤δ

uτHe
n(β(s))u ≥ Cp0nn

2/3

)
= o(1),

P

(
max

s∈A1,∥u∥2=1,∥β(s∪s0n)−β0(s∪s0n)∥2≤δ

uτHe
n(β(s ∪ s0n))u ≥ Cp0nn

2/3

)
= o(1).

(4.1.4)

Proof of Corollary 4.1.2: Since A0 = {s ∪ s0n : s ∈ A1, 0 < |s| ≤ (k − 1)p0n}, for

all s ∈ A1, consider s̃ = s ∪ s0n. Let

ani = h(2) (Xτ
i (s̃)β0(s̃)) sign(yi − µi)/

√√√√ n∑
i=1

σ2
i (h

(2) (Xτ
i (s̃)β0(s̃)))

2
,

since Xτ
i (s̃)β0(s̃) = Xτ

i β0, from Lemma 1 and C6, we have

P

(
n∑

i=1

|(yi − µi)h
(2) (Xτ

i (s̃)β(s̃)) | ≥ Cn2/3

)
≤ 2 exp(−Cn1/3).

For any unit vector u with length |s̃|,

uτHe
n(β0(s̃))u =

n∑
i=1

(yi − µi)h
(2) (Xτ

i (s̃)β0(s̃)) (u
τXi(s̃))

2

≤
n∑

i=1

|(yi − µi)h
(2) (Xτ

i (s̃)β0(s̃)) |∥Xi(s̃)∥22

≤Ckp0n
n∑

i=1

|(yi − µi)h
(2) (Xτ

i (s̃)β0(s̃)) |
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The last inequality holds because all x′i,js are bounded. Therefore,

P

(
max

s∈A0,∥u∥2=1,∥β(s)−β0(s)∥2≤δ

uτHe
n (β(s))u ≥ Cp0nn

2/3

)

≤P
(

max
s∈A0,∥u∥2=1

uτHe
n (β0(s))u ≥ C(1 + ξ)−1p0nn

2/3

)
≤2 exp(kpon ln pn − Cn1/3) = o(1).

Similarly, we can derive the second inequality for the case s ∈ A1. �

Corollary 4.1.3. Under Conditions C1-C6, for any s ∈ A1, ∥u∥2 = 1, dim(u) =

|s ∪ s0n|, uniformly, when ∥β(s ∪ s0n)− β0(s ∪ s0n)∥2 ≤ δ,

uτHn (β(s ∪ s0n))u = uτHE
n (β(s ∪ s0n))u (1 + op(1)) . (4.1.5)

This is true when s ∪ s0n is replaced by s, ∀s ∈ A0.

Proof of Corollary 4.1.3: This corollary can be seen from Corollary 4.1.2 and as-

sumption C4. �

This corollary is important in connecting general link functions to canonical link

functions. In a neighborhood of the true parameter β0, H
e
n(β(s)) is negligible in

Hn(β(s)), which implies that Hn(β(s)) is asymptotically locally positive definite.

Theorem 4.1.2. Under Conditions C1-C6, as n → +∞, ∥β̂(s) − β0(s)∥2 =
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Op(n
−1/3), uniformly for s ∈ A0.

Proof of Theorem 4.1.2: For any unit vector u, let β(s) = β0(s) + n−1/3u. Denote

T =

{
max

s∈A0,∥u∥2=1
uτHe

n (β(s))u ≤ Cp0nn
2/3

}
,

then Corollary 4.1.2 implies

P (Ln (β(s))− Ln (β0(s)) > 0 : for some u, s ∈ A0)

=P (Ln (β(s))− Ln (β0(s)) > 0 : for some u, s ∈ A0; T ) + o(1).

(4.1.6)

With T , when n is large enough, for all s ∈ A0, uniformly, we have

Ln (β(s))− Ln (β0(s)) =n
−1/3uτsn (β0(s))−

1

2
n1/3uτ

(
n−1HE

n

(
β̃(s)

))
u

− 1

2
n−2/3

(
uτHe

n

(
β̃(s)

)
u
)

=n−1/3uτsn (β0(s))− c1(1− ξ)n1/3/2 +O(p0n)

≤n−1/3uτsn (β0(s))− cn1/3.

Hence, for some positive constant c, we have

P (Ln (β(s))− Ln (β0(s)) > 0 for some u)

≤P
(
uτsn (β0(s)) ≥ cn2/3 for some u

)
,
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which is less than

∑
j∈s

P
(
sn,j (β0(s)) ≥ cn2/3

)
+
∑
j∈s

P
(
−sn,j (β0(s)) ≥ cn2/3

)
.

From Corollary 4.1.1,
∑
i∈A0

∑
j∈s

P
(
sn,j (β0(s)) ≥ cn2/3

)
= o(1). The same for the

second term. Therefore,

P (Ln (β(s))− Ln (β0(s)) > 0 : for some u, s ∈ A0) = o(1). (4.1.7)

Because Ln (β(s)) is a concave function for any s with probability tending to 1, the

maximum likelihood estimator β̂(s) exists and falls within an n−1/3 neighborhood of

β0(s) uniformly for s ∈ A0. Thus, we have P
(
∥β̂(s)− β0(s)∥2 = O(n−1/3)

)
→ 1.

�

Proof of Theorem 4.1.1: According to the definition of EBIC, for any model s,

EBICγ(s) ≤ EBICγ(s0n) if and only if

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ (|s| − p0n) lnn/2 + γ

(
ln τ(S|s|)− ln τ(Sp0n)

)
.

(4.1.8)

To prove the selection consistency of EBIC, or mathematically,

P

(
min

s:|s|≤kp0n,s ̸=s0n
EBICγ(s) ≤ EBICγ(s0n)

)
→ 0 as n→ +∞,
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it suffices to show that inequality (4.1.8) holds with a probability converging to 0

as the sample size goes to infinity uniformly for all s ∈ A0∪A1. This is completed

by dealing with s ∈ A0 and A1 separately.

(1) When s ∈ A1, inequality (4.1.8) implies that

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ −p0n(lnn/2 + γ ln pn). (4.1.9)

Therefore, if we can show as n→ +∞,

P

(
sup
s∈A1

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ −p0n(lnn/2 + γ ln pn)

)
→ 0,

(4.1.10)

then we will have

P

(
min
s:s∈A1

EBICγ(s) ≤ EBICγ(s0n)

)
→ 0 as n→ +∞.

The key becomes to assess the order for sups∈A1
lnLn

(
β̂(s)

)
−lnLn

(
β̂(s0n)

)
.

For any s ∈ A1, let s̃ = s∪ s0n and β̆(s̃) be β̂(s) augmented with zeros cor-

responding to the elements in s̃\s. It can be seen that

lnLn (β0(s̃)) = lnLn (β0(s0n)) ≤ lnLn

(
β̂(s0n)

)
, lnLn

(
β̂(s)

)
= lnLn

(
β̆(s̃)

)
,
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which leads to

sup
s∈A1

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≤ sup

s∈A1

lnLn

(
β̆(s̃)

)
− lnLn (β0(s̃)) .

(4.1.11)

And also

∥β̆(s̃)− β0(s̃)∥2 ≥ ∥β0(s0n\s)∥2 > min
j∈s0n

{|β0j|} > Cn−1/4.

The asymptotic positive definiteness ofHn(β), or the concavity of lnLn(β(s̃))

in β(s̃) implies

sup
s∈A1

lnLn

(
β̆(s̃)

)
− lnLn (β0(s̃))

≤ sup{lnLn (β(s̃))− lnLn (β0(s̃)) : ∥β(s̃)− β0(s̃)∥2 ≥ n−1/4, s ∈ A1}

≤ sup{lnLn (β(s̃))− lnLn (β0(s̃)) : ∥β(s̃)− β0(s̃)∥2 = n−1/4, s ∈ A1}.

(4.1.12)

To derive the order of the right hand side in the above inequality, we take
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the Taylor Expansion of lnLn (β(s̃))− lnLn (β0(s̃)) as follows:

lnLn (β(s̃))− lnLn (β0(s̃))

= (β(s̃)− β0(s̃))
τ sn (β0(s̃))−

1

2
(β(s̃)− β0(s̃))

τ HE
n (β⋆(s̃)) (β(s̃)− β0(s̃))

+
1

2
(β(s̃)− β0(s̃))

τ He
n (β

⋆(s̃)) (β(s̃)− β0(s̃))

(4.1.13)

where β⋆(s̃) is between β(s̃) and β0(s̃). By conditions C4 and C5,

(β(s̃)− β0(s̃))
τ HE

n (β⋆(s̃)) (β(s̃)− β0(s̃)) ≥ c1n(1− ξ)∥β(s̃)− β0(s̃)∥22.

Corollary 4.1.3 implies that, for any β(s̃) such that ∥β(s)−β(s0n)∥2 = n−1/4,

uniformly, there exists 0 < c < c1 such that, with probability tending to 1

as n goes to +∞,

lnLn (β(s̃))− lnLn (β0(s̃)) ≤ n−1/4∥sn(β0(s̃))∥+∞− c

2
n1/2(1− ξ). (4.1.14)

The uniform rate for the components in the score function sn(β0) in Corol-

lary 4.1.1 implies, the right hand side of (4.1.14) is less than c1n
5/12−c2n1/2,
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which is less than −Cn1/2 for some constant C > 0. Combined with inequal-

ities (4.1.11) and (4.1.12) , this leads to

sup
s∈A1

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≤ −Cn1/2.

Since under C1, p0n lnn = o(n1/3), p0n ln pn = o(n1/3), we have proved in-

equality (4.1.10).

(2) When s ∈ A0, let m = |s|− |s0n|, Lemma 3.1.1 implies that, asymptotically,

as n→ +∞, EBICγ(s) ≤ EBICγ(s0n) if and only if

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ m[0.5 lnn+ γ ln pn]. (4.1.15)

Therefore, it suffices to show, as n→ +∞,

P

(
sup
s∈A0

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≥ m[0.5 lnn+ γ ln pn]

)
→ 0

(4.1.16)

to obtain

P

(
min
s:s∈A0

EBICγ(s) ≤ EBICγ(s0n)

)
→ 0 as n→ +∞.
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Note that Corollary 4.1.3 implies

lnLn

(
β̂(s)

)
− lnLn

(
β̂(s0n)

)
≤ lnLn

(
β̂(s)

)
− lnLn (β0(s0n)))

=(β̂(s)− β0(s))
τsn(β0(s))−

1

2
(β̂(s)− β0(s))

τHn(β̃(s))(β̂(s)− β0(s))

≤(β̂(s)− β0(s))
τsn(β0(s))−

1− ϵ

2
(β̂(s)− β0(s))

τHE
n (β̃(s))(β̂(s)− β0(s)),

(4.1.17)

where ξ is any arbitrarily small positive constant. The applicability of C5

to simplify the right hand side of this inequality requires sups∈A0
∥β̂(s) −

β0(s)∥2 be approaching 0 as n goes to infinity, which is already verified in

Theorem 4.1.2. Now we can apply C5. The right hand side of (4.1.17) can

be upper bounded by

(β̂(s)− β0(s))
τsn(β0(s))−

(1− ξ)(1− ϵ)

2
(β̂(s)− β0(s))

τHE
n (β0(s))(β̂(s)− β0(s))

≤ 1

2(1− ξ)
sτn(β0(s)){HE

n (β0(s))}−1sn(β0(s)),

where ξ is an arbitrarily small positive value. Hence, the left hand side of
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(4.1.16) is no more than

P

(
1

2(1− ξ)
sτn(β0(s)){HE

n (β0(s))}−1sn(β0(s)) ≥ m[0.5 lnn+ γ ln pn]

)
≤|A0| exp(−m(1− ξ)[0.5 lnn+ γ ln pn])

≤ exp

(
m[(ln(pn − p0n)− (1− ξ)γ ln pn −

(1− ξ)

2
lnn]

)
.

(4.1.18)

It converges to 0 when γ >
1

1− ξ

[
1− lnn

2 ln pn

]
.

�

4.2 Numerical Study

Simulation Results

In this subsection, we aim to evaluate the performance of a two-stage procedure

in GLMs with non-canonical links. It was shown in [35] that the EBIC is selection

consistent for GLMs with canonical links. As a complementary work, we have

theoretically verified the selection consistency of the EBIC in the presence of non-

canonical links in Section 4.1.



70 Chapter 4. EBIC in Generalized Linear Regression Models

Following LMs, the studies on screening and penalized likelihood procedures in

feature selection in GLMs have been accomplished recently. However, to the best

of our knowledge, the realization of regularization approaches such as adaptive

LASSO and SCAD for GLMs with non-canonical links is unavailable. At this

stage, we replace them by Forward Selection, where at each step, the variable

leading to the greatest increment of the log likelihood (or equivalently, the greatest

decrease of EBIC) is added into the model. The procedure continues until the

total number of covariates reaches an empirically selected value. Since exhaustive

searching is involved, when pn is above 1000, the sure independence screening

procedure based on the maximum marginal estimator (MMLE) proposed in [65] is

applied to conduct dimension reduction before the Forward Selection. A sequence

of nested models is hence generated. The one with the minimum EBIC among the

model sequence is recognized as the best set of relevant features. This procedure

merely requires greedy fitting of the GLMs, which can be obtained by the glm.fit

function in R.

We consider the ultra-high dimensional feature space with diverging number

of true features. Specifically, (n, pn, p0n) = (n, [40 exp(n0.2)], [5n0.1]) and n =

100, 200, 500 are assumed in our simulation. γ in EBIC are chosen to be (γ1, γ2, γ3, γ4) =

(0, 0.5− lnn

4 ln pn
, 1− lnn

4 ln pn
, 1). We considered binomial data with complementary

log-log link function. That is, in population, given X = x, Y follows a binomial
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distribution with probability of success p(x) = 1− exp(− exp(xτβ0)). The settings

of the covariates are adapted from S1 and S3 in [65].

Structure I: Let q = 15, which is much smaller than [pn
3
], where [x] denotes

the largest integers not greater than x, denote X = (X1, · · · ,Xpn) = (X i,j).

(X1, · · · ,Xq) ∼ N(0,Σρ), where Σρ stands for a q × q matrix with diagonal

elements 1 and off-diagonal elements ρ. In our simulation study, ρ = 0, 0.3, 0.5, 0.7

are considered. (Xq+1, · · · ,X [ pn
3
]) ∼ N(0, I). X i,j, 1 ≤ i ≤ n, [pn

3
] + 1 ≤ j ≤ [2pn

3
]

are i.i.d copies from Laplace distribution with location zero and scale 1. X i,j, 1 ≤

i ≤ n, [2pn
3
] + 1 ≤ j ≤ pn are i.i.d copies from a mixture normal distribution from

N(−1, 1), N(1, 0.5) with equal mixture proportion. The true coefficient vector β0

satisfies β0,L∗j = 1 and 1.3 for odd and even j ∈ {1, 2, · · · , p0n} respectively and 0

otherwise. Here L = 10.

Structure II: The only difference between setting 2 and setting 1 is L = 5. In

setting 1, all the true features are statistically independent while in setting 2, three

of them have pairwise linear correlation ρ, ρ = 0.3, 0.5 are considered.

Structure III: Let q = 50, L = 10, where q is much smaller than pn and pn − q

is much bigger than the maximum index for causal features, L ∗ p0n. Let the com-

ponents of {Xj}pn−q
j=1 and {ξk}

pn
k=pn−q+1 be independent standard normal random
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variables and

Xk =

p0n∑
j=1

XL∗j(−1)j+1/5 +
√

25− p0n/5ξk, k = pn − q + 1, · · · , pn.

The true coefficient vector β0 satisfies β0,L∗j = 1 and 1.3 for odd and even j ∈

{1, 2, · · · , p0n} respectively and 0 otherwise. In this setting, all the causal fea-

tures are statistically independent, q highly correlated uncausal features have weak

marginal but strong overall correlation with the causal features.

For each simulation setting, the PDRn and FDRn averaged over 200 replicates

and their standard deviations in the parenthesis are reported in Tables 4.2.1, 4.2.2

and 4.2.3. The following conclusions can be made from the results in Tables 4.2.1,

4.2.2 and 4.2.3: (i) with all the four γ values, the PDRn increases as n gets larger,

(ii) with γ1 and γ2 (which are below the lower bound of the consistent range),

the FDRn does not show a trend to decrease while, with γ3 and γ4 (which are

within the consistent range), the FDRn reduces rapidly towards zero, (iii) though

the PDRn with γ3 and γ4 are lower than those with γ1 and γ2 when sample size

is small, but they become comparable as the sample size increases, and (iv) the

FDRn with γ4 is lower than that with γ3 when sample size is small, however, the

PDRn is also lower, as sample size gets larger, both the PDRn and FDRn with

γ3 and those with γ4 become comparable. These findings demonstrate that the

selection consistency of EBIC is well realized in the finite sample case.
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Real Data Analysis: Leukemia Data

In this subsection, we analyze a famous Leukemia data set published in [80] aiming

at detecting genes which affect the category of Leukemia. It is available in R

packages Biobase and golubEsets. This data set consists of expression levels of

7129 genes from 47 patients with acute lymphoblastic leukemia (ALL) and 25 with

myeloid leukemia (AML). We compare our result with the findings in [80] and

[111](probit model based), [115] (logistic model based) in two different ways.

Firstly, the 7129 genes are reduced to 300 genes by adopting the method in

[65] to enter forward selection based on the log-likelihood of the fitted models. We

then compare the top 19 genes with those in [115], the top 27 genes with those

in [111] and the top 50 genes with those in [80]. The result is displayed in Table

4.2.4, ∗,△, ⋆ on the upper right represents the common gene with [115], [111] and

[80] respectively. From Table 4.2.4, we can see that genes with ID 1834, 1882, 6855

are all detected as important genes by these four different methods.

Secondly, we use EBIC with (γ1, γ2, γ3, γ4, γ5) = (0, 0.3795, 0.8795, 1, 2) where

the second and the third corresponds to 0.5− lnn

4 ln pn
, 1− lnn

4 ln pn
to determine the

best model among the top 60 models produced by forward selection. The result

is displayed in Table 4.2.5. We can see that when γ ∈ [0, 1], in models with logit,
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probit, cauchit, EBIC can retain one of the common important genes reported in

[115], [111] and [80], while in model with complementary log-log link, EBIC can

retain two of the common important genes.

We also used 8-fold cross validation to select the optimal link function among

these four links. In detail, we randomly split the samples into 8 groupsG1, G2, · · · , G8,

the mean prediction error is defined to be

MSE =
1

8

8∑
j=1

∑
i∈Gj

(
y
(j)
i − ŷ

(j)
i

)
, (4.2.1)

where ŷji is the fitted response value in the model which is selected based on

observations excluding Gj. The variables included in the model are selected in two

different ways: (1) under each link function, two important features are selected,

their union is taken into the model; (2) selecting the top fifty important features

for each link, a feature is included in the model if it belongs to at least two of

these four sets. For this Leukemia data set, the optimal link function is logit for

these two methods. We note that, when all the samples are applied to select the

genes responsible for the classification of Leukemia, for all the link functions, the

one with logit link has the maximum log likelihood among the four.
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Table 4.2.1 Results on the FS-EBIC procedure with Structure I in GLMs
with Cloglog Link

γ1 γ2 γ3 γ4
ρ n PDRn FDRn PDRn FDRn PDRn FDRn PDRn FDRn

0 100 .736 .375 .735 .362 .646 .193 .481 .074
(.281) (.292) (.284) (.291) (.382) (.228) (.453) (.141)

200 .930 .272 .918 .223 .879 .127 .862 .078
(.220) (.252) (.253) (.215) (.311) (.147) (.337) (.108)

500 .971 .408 .963 .371 .939 .079 .936 .026
(.135) (.181) (.163) (.152) (.231) (.119) (.238) (.062)

0.3 100 .708 .407 .708 .398 .621 .196 .471 .081
(.298) (.296) (.298) (.306) (.384) (.230) (.442) (.152)

200 .933 .281 .924 .239 .889 .143 .855 .083
(.202) (.248) (.232) (.212) (.303) (.161) (.344) (.111)

500 .969 .428 .959 .354 .938 .047 .933 .014
(.130) (.169) (.177) (.138) (.238) (.091) (.247) (.048)

0.5 100 .712 .401 .711 .383 .632 .201 .451 .080
(.293) (.295) (.294) (.292) (.385) (.223) (.447) (.146)

200 .929 .281 .923 .243 .881 .128 .858 .084
(.219) (.257) (.236) (.223) (.313) (.130) (.343) (.110)

500 .967 .434 .959 .371 .939 .043 .933 .006
(.142) (.166) (.168) (.147) (.235) (.085) (.249) (.031)

0.7 100 .674 .432 .674 .414 .606 .244 .430 .092
(.291) (.289) (.291) (.287) (.365) (.241) (.432) (.144)

200 .931 .292 .926 .248 .888 .148 .874 .112
(.196) (.246) (.218) (.207) (.295) (.146) (.314) (.125)

500 .970 .427 .966 .365 .937 .032 .934 .010
(.134) (.173) (.150) (.150) (.234) (.072) (.240) (.038)

(γ1, γ2, γ3, γ4) = (0, 0.5− lnn

4 ln pn
, 1− lnn

4 ln pn
, 1).
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Table 4.2.2 Results on the FS-EBIC procedure with Structure II in GLMs
with Cloglog Link

γ1 γ2 γ3 γ4
ρ n PDRn FDRn PDRn FDRn PDRn FDRn PDRn FDRn

0.3 100 .662 .424 .660 .409 .594 .233 .492 .132
(.272) (.287) (.276) (.286) (.350) (.237) (.392) (.195)

200 .931 .256 .926 .231 .891 .111 .881 .068
(.199) (.245) (.212) (.222) (.281) (.137) (.295) (.101)

500 .973 .401 .967 .339 .946 .041 .941 .018
(.127) (.173) (.149) (.134) (.209) (.089) (.217) (.055)

0.5 100 .571 .489 .570 .478 .521 .304 .442 .189
(.259) (.274) (.261) (.276) (.303) (.265) (.337) (.230)

200 .918 .272 .910 .239 .888 .121 .869 .081
(.204) (.256) (.230) (.231) (.267) (.148) (.293) (.122)

500 .970 .402 .964 .351 .946 .056 .942 .021
(.129) (.183) (.148) (.153) (.199) (.115) (.212) (.062)

(γ1, γ2, γ3, γ4) = (0, 0.5− lnn

4 ln pn
, 1− lnn

4 ln pn
, 1).

Table 4.2.3 Results on the FS-EBIC procedure with Structure III in
GLMs with Cloglog Link

γ1 γ2 γ3 γ4
n PDRn FDRn PDRn FDRn PDRn FDRn PDRn FDRn

100 .586 .506 .586 .484 .524 .332 .387 .198
(.258) (.252) (.258) (.253) (.316) (.252) (.366) (.239)

200 .796 .414 .791 .386 .767 .285 .746 .221
(.261) (.282) (.274) (.273) (.311) (.247) (.334) (.228)

500 .946 .479 .936 .416 .912 .195 .896 .171
(.167) (.165) (.197) (.150) (.248) (.185) (.269) (.176)

(γ1, γ2, γ3, γ4) = (0, 0.5− lnn

4 ln pn
, 1− lnn

4 ln pn
, 1).
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Table 4.2.4 Leukemia Data: The Top 50 Genes Selected by Forward Selection
under GLMs with Different Link Functions

Link Function Genes ID
logit 1834∗,⋆,△, 4438, 4951, 6539⋆, 155, 2181, 1882∗,⋆,△, 6472, 65, 1953

3692, 706, 1787, 5191⋆, 1239, 3119, 2784, 1078, 3631, 6308
6373⋆, 1909⋆, 4153, 1685△, 6855⋆,△, 7073, 5539, 2830, 4819, 6347

1081, 1095, 5328, 4279, 4373, 5737, 4366, 5280, 3307, 284
6676, 4291, 1945, 4079, 3722, 668, 782, 4196⋆, 25, 4389⋆

probit 1834∗,⋆,△, 4438, 4951, 155, 5585, 5466, 706, 7119⋆, 3119, 4480
6201△, 490, 6895, 1882∗,⋆,△, 1809, 2855, 3123, 4211∗, 2020∗,⋆, 3631

5823, 1953, 1745⋆,△, 65, 997, 1928⋆, 3307, 1787, 538, 5539
4107, 2385, 1087, 1909⋆, 5376, 5552, 6005, 1604, 3391, 5442
6702, 6309, 2348⋆, 4282, 4925, 6167, 2323, 1779, 5122, 3847⋆

cauchit 1882∗,⋆,△, 4951, 6281⋆, 4499, 4443, 6539⋆, 5107, 1834∗,⋆,△, 4480, 6271
6378, 3631, 2111⋆, 6201△, 6373⋆, 1800, 4780, 321, 4107△, 1779△

6277, 1544, 5254⋆, 1928⋆, 1745⋆,△, 3163, 7073, 310, 4389⋆, 5146
1927, 885, 3137, 2258, 4334, 6657, 2733, 5336, 5972, 6167
4229, 4328⋆, 715, 4149, 5191⋆, 6283, 200, 6702, 5794, 4190

cloglog 1834∗,⋆,△, 6855∗,⋆,△, 4377, 5122, 2830, 4407, 4780, 6309, 4973⋆, 715
5376, 930, 1800, 1882∗,⋆,△, 5794, 4399, 4389⋆, 922, 1962, 4267
1926, 4229, 5254⋆, 770, 2141, 6923, 7073, 2828, 4847⋆, 698
1779, 1928⋆, 4049, 876, 6857, 6347, 6376⋆, 2361, 4664, 758
3631, 6308, 4499, 4480, 5971, 6510, 5300, 3475, 3932, 6801

Table 4.2.5 Leukemia Data: The Genes Selected by EBIC under GLMs with
Different Link Functions

Link Function Genes ID
γ1 γ2 γ3 γ4 γ5

logit 1834∗,⋆,△, 4438 1834, 4438 1834, 4438 1834 NULL
(logLik=-2.296e-08) (-2.296e-08) (-2.296e-08) (-9.786)

probit 1834∗,⋆,△, 4438 1834, 4438 1834, 4438 1834 NULL
(logLik=-3.022e-08 ) (-3.022e-08 ) (-3.022e-08 ) ( -9.5)

cauchit 1882∗,⋆,△, 4951 1882, 4951 1882, 4951 1882, 4951 NULL
(logLik=-2.122e-06) (-2.122e-06) (-2.122e-06) (-2.122e-06)

cloglog 1834∗,⋆,△, 6855∗,⋆,△ 1834, 6855 1834, 6855 1834, 6855 NULL
(logLik=-6.908e-08) (-6.908e-08) (-6.908e-08) (-6.908e-08)

(γ1, γ2, γ3, γ4, γ5) = (0, 0.5, 1− lnn

4 ln pn
, 1, 2).
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CHAPTER 5

EBIC in Cox’s Proportional

Hazards Models

In this chapter, we prove the selection consistency of the EBIC in Cox model as

stated in Theorem 5.1.3. Meanwhile, we gave a large deviation result on the score

function in Theorem 5.1.1 and a uniform convergence rate for the partial likelihood

estimator in Theorem 5.1.2. The last two theorems were derived not only to assist

the proof of our main theorem, but are also very important in high-dimensional

studies.
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5.1 Selection Consistency of EBIC

Let T and C denote the survival and censoring times, they have cumulative distri-

bution functions F and G with associated density functions f and g respectively,

and they are assumed to be conditionally independent given the covariate vector

Z. Z may depend on time t.

In the right-censored model, the observations from n independent individu-

als are triplets (Xi, δi,Zi)
n
i=1, where Xi = min(Ti, Ci), δi = I(Ti ≤ Ci),Zi =

(zi,1, zi,2, · · · , zi,pn). Currently, we assume the dimension of the full covariates space

pn = O(nκ) for some κ > 1. Suppose there are no ties in the observation times.

The complete likelihood of the observed data set is

L =
∏
i:δi=1

f(Xi|Zi)
∏
i:δi=0

(1− F (Xi|Zi)) =
∏
i:δi=1

h(Xi|Zi)
n∏

i=1

(1− F (Xi|Zi)) ,

(5.1.1)

where

h(t|z) = lim
∆t↓0

P (t ≤ T < t+∆t|T ≥ t,Z = z) = f(t|z)/ (1− F (t|z)) (5.1.2)

is the conditional hazard function of T given Z = z.



80 Chapter 5. EBIC in Cox’s Proportional Hazards Models

The Cox’s proportional hazards model assumes

h(t|z) = h0(t) exp(z
τβ), (5.1.3)

where h0(t) is the baseline hazard rate with cumulative baseline hazard function

H0(t) =

∫ τ

0

h0(s)ds. (5.1.4)

Without loss of generality, we assume that the support of h0(t) is [0, 1] and
∫ 1

0
h0(t)dt <

+∞.

Let t01 < t02 < · · · < t0N be the ordered distinct observed failure times. Let (j)

index its associated covariates Z(j) and R(t) be the risk set: R(t) = {i : Xi ≥

t}. Partial likelihood estimation in Cox’s model considers the “least informative”

nonparametric modeling for H0(t) : H0(t) =
N∑
j=1

hjI(t
0
j ≤ t). Take the partial

differential of lnL with respect to hj, the maximizers hj can therefore be given by

ĥj(β) =

 ∑
i∈R(t0j )

exp(Zτ
i β)

−1

. (5.1.5)

Partial likelihood estimate for the true vector β0 is the maximizer of

ln(β) =
N∑
j=1

Zτ
(j)β − ln

 ∑
i∈R(t0j )

exp(Zτ
i β)

 . (5.1.6)
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For Cox’s proportional hazards model, β̂(s) in the EBIC (2.1.1) refers to the

partial likelihood estimator given covariates contained in s.

For convenience, we denote by s0n the set of nonzero predictors in β0 with size

p0n. For the present, we assume β0 is independent of sample size n. Let kn = Cp0n

for some C > 1. Define

A0 = {s : s0n ⊂ s; |s| ≤ kn} A1 = {s : s0n * s; |s| ≤ kn}. (5.1.7)

Beyond these, the following notations are used throughout this subsection. For

the readability, most of them are consistent with those in [69]. Define

Ni(t) =I(Xi ≤ t, δi = 1), Yi(t) = I(Xi ≥ t);

F (n)
t =σ {Ni(u), I(Xi ≤ u, δi = 0) : 0 ≤ u ≤ t, 1 ≤ i ≤ n} .

(5.1.8)

For any s ⊆ {1, 2, · · · , pn}, define Z(s), β(s) as the sub-vectors of Z, β with in-

dices contained in s. For vectors a = (a1, a2, · · · , ap), b = (b1, b2, · · · , bp), we write

a⊗b for the p×p matrix aτb with (i, j)th element aibj. For the convenience of pre-

sentation, we will use C1, C2, C to represent positive constants without specifying

their values.
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For a given index set s ⊆ {1, 2, · · · , pn}, define

S(0)
n (β(s), t) =

1

n

n∑
i=1

Yi(t) exp (Zi(s)
τβ(s)) ; S(1)

n (β(s), t) =
1

n

n∑
i=1

Zi(s)Yi(t) exp (Zi(s)
τβ(s)) ,

S(2)
n (β(s), t) =

1

n

n∑
i=1

Zi(s)
⊗2Yi(t) exp (Zi(s)

τβ(s)) ,

En(β(s), t) =
S
(1)
n (β(s), t)

S
(0)
n (β(s), t)

, V (β(s), t) =
S
(2)
n (β(s), t)

S
(0)
n (β(s), t)

− En (β(s), t)
⊗2

(5.1.9)

and their asymptotic versions as s(j)(β(s), t), j = 0, 1, 2; e(β(s), t) and v(β(s), t).

Then the partial likelihood function given covariates in s is ln (β(s)) = ln (β(s), 1) ,

where

ln (β(s), t) =
n∑

i=1

∫ t

0

Zτ
i (s)β(s)dNi(u)−

∫ t

0

ln
(
nS(0)

n (β(s), u)
)
dN̄(u),

U (β(s), t) =
n∑

i=1

∫ t

0

(Zi(s)− En (β(s), u)) dMi(u), where

Mi(t) =Ni(t)−
∫ t

0

Yi(u) exp (Z
τ
i (s)β(s))h0(u)du

is a martingale with respect to {F (n)
t : t ≥ 0}, N̄ =

n∑
i=1

Ni.

I (β(s), t) = − ∂ln (β(s), t)

∂β(s)∂β(s)τ
= n

∫ t

0

V (β(s), w)S(0)
n (β(s), w)h0(w)dw,

Σ (β(s), t) =

∫ t

0

v (β(s), w) s(0) (β(s), w)h0(w)dw.

(5.1.10)

Assumption 5.1.1. There exists a compact neighborhood B of β0 such that the



5.1 Selection Consistency of EBIC 83

following conditions are satisfied,

A(5.1.1.1) There exists positive constants C0, C1 such that ∀β ∈ B,

P

(
sup
t∈[0,1]

∣∣S(0)
n (β, t)− s(0)(β, t)

∣∣ ≥ C1un√
n

)
≤ C0

un
exp

(
−u

2
n

2

)

P

(
sup
t∈[0,1]

∣∣∣S(1)
n,j(β, t)− s

(1)
j (β, t)

∣∣∣ ≥ C1un√
n

)
≤ C0

un
exp

(
−u

2
n

2

)

hold for any positive un such that un → +∞, n−1/6un → 0 as n→ +∞.

A(5.1.1.2) The functions s(0), s(1), s(2) are element-wise bounded and s(0)

is bounded away from 0, the family of functions s(j)(·, t), 0 ≤ t ≤ 1 is an

equi-continuous family at β0;

A(5.1.1.3) The process Y (t) = (Y1(t), · · · , Yn(t))τ is left continuous with

right hand limits and satisfies P (Y (t) = 1, 0 ≤ t ≤ 1) > 0;

A(5.1.1.4) The covariate vector Z(t) is left continuous.

Conditions A(5.1.1.1) is a more elaborated version of Condition (2.2) in Section

8.2 of [69]. Note that S
(l)
n , ; l = 0, 1, 2 are summations of i.i.d random variables.

It was verified in [68] that when the associated random variable satisfies Cramer

Condition, we will have such tail probabilities. Moreover, with condition A(5.1.1.2),

it can be deduced that

P

(
sup
t∈[0,1]

|Enj(β0, t)− ej(β0, t)| ≥
C1un√
n

)
≤ C0

un
exp

(
−u

2
n

2

)
(5.1.11)
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and

P

(
sup
t∈[0,1]

∣∣∣∣Ii,j (β0, t)

n
− Σi,j (β0, t)

∣∣∣∣ ≥ C1un√
n

)
≤ C0

un
exp

(
−u

2
n

2

)
. (5.1.12)

A(5.1.1.2) is condition (2.5) in Section 8.2 of [69] for fixed pn, A(5.1.1.3) and

A(5.1.1.4) are assumed in Theorem 4.1 in [3].

Assumption 5.1.2. Let εi,j =
∫ 1

0
(Zi,j(t)− ej(β0, t)) dMi(t), where ej(β0, t) is the

jth component of e(β0, t). For any set s ∈ A0 and any |s|−dimensional vector a

which satisfies

V ar(
n∑

i=1

∑
j∈s

ajεi,j/
√
n) = 1,

suppose the Cramer Condition in [68] holds for the linear combination of
∑

j∈s ajεi,j,

i.e, for any positive un such that un → +∞, n−1/6un → 0 as n → +∞, there exist

positive constants C0 and C1 such that

P

(∣∣∣∣∣
n∑

i=1

∑
j∈s

ajεi,j

∣∣∣∣∣ ≥ √
nun

)
≤ C0

un
exp

(
−u

2
n

2

)
. (5.1.13)

Without loss of generality, we assume all the diagonal elements of Σ (β0, 1) are

1. Then when aj = 1 for any fixed j and 0 otherwise, (5.1.13) reduces to

P

(∣∣∣∣∣
n∑

i=1

εi,j

∣∣∣∣∣ ≥ √
nun

)
≤ C0

un
exp

(
−u

2
n

2

)
, ∀j ∈ {1, 2, · · · , pn}. (5.1.14)
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Theorem 5.1.1. (Large Deviation of the Score Function) Under Assump-

tions 5.1.1 and 5.1.2, for any positive un such that un → +∞, n−1/6un → 0, lnn =

o(u2n) as n→ +∞, there exist positive constants c0 such that

P
(
|Uj (β0, 1) | >

√
nun

)
≤ c0 exp

(
−(1− ε)u2n

2

)
(5.1.15)

and for any unit vector u and s ∈ A0,

P
(∣∣uτΣ−1/2 (β0(s), 1)U (β0(s), 1)

∣∣ > √
nun

)
≤ c0 exp

(
−(1− ε)u2n

2

)
(5.1.16)

for any arbitrary ε > 0 and j ∈ {1, 2, · · · , pn}.

Proof of Theorem 5.1.1. Here we decompose the jth component of the score func-

tion as

ξj(t) =
n∑

i=1

∫ τ

0

(Zi,j − ej (β0, u)) dMi(u)−
n∑

i=1

∫ τ

0

(En,j (β0, u)− ej (β0, u)) dMi(u)

=ξ1j(t)− ξ2j(t)

(5.1.17)

To avoid confusion, let ξj = ξj(1), ξ1j = ξ1j(1), ξ2j = ξ2j(1). For any fixed s ∈ A0,
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let a = uτΣ−1/2(β0(s), 1). Then

uτΣ−1/2 (β0(s), 1)U (β0(s), 1) =
∑
j∈s

ajξ1j −
∑
j∈s

ajξ2j. (5.1.18)

The large deviation result of
∑

j∈s ajξ1j is already given in Assumption 5.1.2, now

it suffices to show the large deviation of
∑

j∈s ajξ2j: Let un be of the same order

as required and ∥x∥+∞ be the maximum absolute value in x, then

P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun

)

=P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun, ∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≥ C1un√

n

)

+ P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun, ∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≤ C1un√

n

)

=P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun, ∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≥ C1un√

n

)

+ P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun, ∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≤ C1un√

n
,

sup
u∈[0,1]

|S(0)(β0, u)− s(0)(β0, u)| ≥
C1un√
n

)

+ P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun, ∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≤ C1un√

n
,

(5.1.19)
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sup
u∈[0,1]

|S(0)(β0, u)− s(0)(β0, u)| ≤
C1un√
n

)

≤P

(
∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≥ C1un√

n

)

+ P

(
sup

u∈[0,1]
|S(0)(β0, u)− s(0)(β0, u)| ≥

C1un√
n

)

+ P

(∣∣∣∣∣∑
j∈s

ajξ2j

∣∣∣∣∣ > √
nun | C

)

=P2,1 + P2,2,1 + P2,2,2,

(5.1.20)

where

C =

{
∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≤ C1un√

n
, sup

u∈[0,1]
|S(0)(β0, u)− s(0)(β0, u)| ≤

C1un√
n

}

Equation (5.1.11) and A(5.1.1.1) show that

P2,1 ≤ C0 exp

(
−u

2
n

2
+ κ lnn− lnun

)
; P2,2,1 ≤ C0 exp

(
−u

2
n

2
− lnun

)
.

(5.1.21)

We can verify that condition on C , the new martingale
∑

j∈s ajξ2j(t) has

bounded jumps by following the steps in the proof of Theorem 3.1 in [18]. Let

M̄(t) =
n∑

i=1

Mi(t), N̄(t) =
n∑

i=1

Ni(t), then |△(M̄(t))| = |△(N̄(t))| ≤ 1.
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Firstly,

∣∣△ (n−1/2ξ2j(t)
)∣∣ ≤ n−1/2∥ sup

u∈[0,1]
[En (β0, u)− e (β0, u)]∥+∞ ≡ n−1/2cn ≤ C1un

n
,

(5.1.22)

therefore,

∣∣∣∣∣△
(
n−1/2

∑
j∈s

ajξ2j(t)

)∣∣∣∣∣ ≤∑
j∈s

|aj|
∣∣△ (n−1/2ξ2j(t)

)∣∣ ≤ |s|C1un
n

. (5.1.23)

Secondly, the predictable quadratic variation of n−1/2ξ2j(t), denoted by
⟨
n−1/2ξ2j(t)

⟩
is bilinear and satisfies that

⟨
n−1/2ξ2j(t)

⟩
=n−1

∫ τ

0

(En,j (β0, u)− ej (β0), u))
2 d
⟨
M̄(u)

⟩
=

∫ τ

0

(En,j (β0, u)− ej (β0, u))
2 S(0)(β0, u)h0(u)du

≤∥ sup
u∈[0,1]

[En (β0, u)− e (β0, u)]∥2+∞

∫ τ

0

S(0)(β0, u)h0(u)du ≡ b2n(t).⟨
n−1/2

∑
j∈s

ajξ2j(t)

⟩
≤|s|

∑
j∈s

a2
j

⟨
n−1/2ξ2j(t)

⟩
≤ |s|2b2n(t).

(5.1.24)

Obviously, b2n(t) ≤ b2n(1) ≤ c2n
∫ 1

0
S(0)(β0, u)h0(u)du. Note that

∫ 1

0

S(0)(β0, u)h0(u)du ≤
∫ 1

0

s(0)(β0, u)h0(u)du+ sup
u∈[0,1]

|S(0)(β0, u)−s(0)(β0, u)|
∫ 1

0

h0(u)du.

(5.1.25)
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A(5.1.1.2) and equation (5.1.23) implies that

sup
t∈[0,1]

b2n(t) ≤ c2n

(
C1 + C2

C1un√
n

)
≤ C

u2n
n
. (5.1.26)

That is, when |s| = O(1), condition on C , there exist constants b2 = O

(
u2n
n

)
, K =

O(
un
n
) such that

∣∣∣∣∣△
(
n−1/2

∑
j∈s

ajξ2j(t)

)∣∣∣∣∣ ≤ K;

⟨
n−1/2

∑
j∈s

ajξ2j(t)

⟩
≤ b2. (5.1.27)

According to Lemma 2.1 in [140], when n−1/6un → 0, un → +∞, we have

P2,2,2 ≤ 2 exp

(
− u2n
2(Kun + b2)

)
≤ C1 exp

(
−u

2
n

2

)
.

Hence, when n−1/6un → 0, un → +∞, lnn = o(u2n), there exists a positive

constant c0 independent of j and an arbitrarily small positive ε such that

P
(∣∣uτΣ−1/2 (β0(s), 1)U (β0(s), 1)

∣∣ > √
nun

)
≤ c0 exp

(
−(1− ε)u2n

2

)
.
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Let a = (· · · ,aj, · · · ), when aj = 1 and 0 otherwise, we have

P
(
|Uj (β0, 1) | >

√
nun

)
≤ c0 exp

(
−(1− ε)u2n

2

)

over j ∈ {1, 2, · · · , pn}.

�

Assumption 5.1.3. Assume the following conditions,

A(5.1.3.1) Let λmin denote the smallest eigenvalue of a square matrix, there

exists a positive constant λ1 such that

λ1,n = inf
son(s,|s|≤kn+p0n

λmin (I (β0(s), 1)) ≥ nλ1. (5.1.28)

A(5.1.3.2) For any given ε > 0, there exists a constant δ > 0 such that,

when n is sufficiently large,

I (β(s), 1) ≥ (1− ε)I (β0(s), 1)

for all β(s) such that |s| ≤ kn and ∥β(s) − β0(s)∥2 ≤ δ. Here, matrices

A ≥ B means A−B is semi-positive definite.

The counterpart of A(5.1.3.1) in linear regression models is the Sparse Riesz
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Condition. Similar conditions were also assumed in [35] for generalized linear

regression models. As was relaxed technically in linear regression models, a weaker

version of A(5.1.3.1) can be expected in Cox models.

Theorem 5.1.2. (Uniform Convergence of the Partial Likelihood Esti-

mator) Under Assumptions 5.1.1,5.1.2 and 5.1.3, with probability tending to 1 as

n→ +∞,

∥β̂(s)− β0(s)∥2 = O(ψn)

uniformly for s ∈ A0, where

λ1,nψn√
n

→ +∞,
λ1,nψn

n2/3
→ 0, lnn = o(

λ21,nψ
2
n

n
). (5.1.29)

Proof of Theorem 5.1.2. For any unit vector w(s), let β(s) = β0(s) + ψnw(s).

Under Assumption 5.1.3, for all s ∈ A0,

ln(β(s))− ln(β0(s)) =ψnw(s)τU(β0(s), 1)−
1

2
ψ2
nw(s)τ{I(β̃(s), 1)}w(s)

≤ψnw(s)τU(β0(s), 1)−
1− ε

2
λ1,nψ

2
n.

Hence, for some positive constant c, we have

P (ln(β(s))−ln(β0(s) > 0 for some w(s)) ≤ P

(
max

j∈s,s∈A0

|Uj(β0(s), 1)| ≥
1− ε

2
√
kn
λ1,nψn

)
.
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By noting that kn = O(1), pn = O(nκ) and letting un =
1− ε

2
√
nkn

λ1,nψn, under

(5.1.29), according to equation (5.1.15), it follows that

P

(
max

j∈s,s∈A0

|Uj(β0(s), 1)| ≥
1− ε

2
√
kn
λ1,nψn

)
≤

∑
j∈s,s∈A0

P

(
|Uj(β0(s), 1)| ≥

1− ε

2
√
kn
λ1,nψn

)

≤knpknn C0 exp

(
−C1

λ21,nψ
2
n

n

)
≤C̃0 exp

(
−C1

λ21,nψ
2
n

n
+ C2κ lnn

)

for some positive constants C0, C1, C2, C̃0. It converges to 0 as n goes to infinity.

Because ln (β(s)) is a concave function for any β(s), we get the desired result.

�

Theorem 5.1.3. Under Assumptions 5.1.1, 5.1.2 and 5.1.3, as n→ +∞, we have

(1) P (mins∈A1 EBICγ(s) ≤ EBICγ(s0n)) → 0 for any γ ≥ 0;

(2) P (mins∈A0,s ̸=s0n EBICγ(s) ≤ EBICγ(s0n)) → 0 for any γ > 1− 1

2κ
.

It can be expected that under regular conditions, the original BIC, which cor-

responds to γ = 0, may not be selection consistent in Cox model with high dimen-

sional feature space where κ > 1.
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Proof of Theorem 5.1.3. Since by Lemma 3.1.1, ln τ(Sj) = jκ lnn(1 + o(1)),

EBICγ(s0n)− EBICγ(s) = 2
(
ln(β̂(s))− ln(β̂(s0n))

)
+ (1 + 2γκ) (|s0n| − |s|) lnn,

(5.1.30)

EBICγ(s) ≤ EBICγ(s0n) implies

ln(β̂(s))− ln(β̂(s0n)) ≥ −1 + 2γκ

2
(|s0n| − |s|) lnn. (5.1.31)

(1) When s ∈ A1, consider s̃ = s ∪ s0n and β(s̃) near β0(s̃). Taylor expansion

shows that

ln (β(s̃))− ln (β0(s̃)) ≤ (β(s̃)− β0(s̃))
τ U(β0(s))−

(1− ε)λ1,n
2

∥β(s̃)− β0(s̃)∥
2
2

Let β̆(s̃) be augmented β̂(s) with components in s̃ ∩ sc being 0, then

ln

(
β̂(s)

)
= ln

(
β̆(s̃)

)
and ∥β̆(s̃) − β0(s̃)∥2 ≥ |β0,min|, where |β0,min| =

min
{
|β0,j| : j ∈ s0n

}
.

The concavity of ln (β(s)) implies

Mn =sup
{
ln (β(s̃))− ln (β0(s̃)) : s ∈ A1, ∥β(s̃)− β0(s̃)∥2 ≥ |β0,min|

}
≤ sup

{
ln (β(s̃))− ln (β0(s̃)) : s ∈ A1, ∥β(s̃)− β0(s̃)∥2 = |β0,min|

}
.
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Since for any fixed s̃, when ∥β(s̃)− β0(s̃)∥2 = |β0,min|,

ln (β(s̃))− ln (β0(s̃)) ≤ |β0,min|∥Uj(β0(s̃))∥+∞ − β2
0,min

(1− ε)λ1,n
2

Therefore,

P

(
Mn ≥ −β2

0,min

(1− ε)λ1,n
4

)
≤ knp

kn
n P

(
∥Uj(β0(s̃))∥+∞ ≥

|β0,min|(1− ε)λ1,n

4

)
.

When n1/6−δ = O

(
λ1,n√
n

)
for some 0 < δ < 1/6,

P

(
ln(β̂(s))− ln(β̂(s0n)) ≥ −1 + 2γκ

2
(|s0n| − |s|) lnn

)
≤P (Mn ≥ −C lnn) ≤ P

(
Mn ≥ −β2

0,min

(1− ε)λ1,n
4

)
≤knpknn P (∥Uj(β0(s̃))∥+∞ ≥

√
nn1/6−δ) ≤ c0 exp

(
−c1n1/3−2δ + κ lnn

)
.

It converges to 0 when n goes to ∞. The desired result can be obtained.

(2) When s ∈ A0 and s ̸= s0n, let m = |s| − |s0n|,EBICγ(s) ≤ EBICγ(s0n) if

and only if

ln(β̂(s))− ln(β̂(s0n)) ≥m[0.5 lnn+ γ ln pn]

≈m(1 + 2γκ) lnn

2
.

(5.1.32)
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From the assumptions, we can see that

ln(β̂(s))− ln(β̂(s0n)) ≤ln(β̂(s))− ln(β(s0n)) = ln

(
β̂(s)

)
− ln (β0(s))

≤ 1

2n(1− ε)
U τ (β0(s), 1) [

I (β0(s), 1)

n
]−1U (β0(s), 1) ,

(5.1.33)

where ε is an arbitrary positive value. Denote

T1 =

{
max
s∈A0

∥[I (β0(s), 1)

n
]−1 − Σ−1 (β0(s), 1) ∥+∞ ≤ C1un√

n

}
T2 =

{
max
s∈A0

U τ (β0(s), 1)U (β0(s), 1)

|s|
≤ nu2n

}
.

Equations (5.1.12) and (5.1.15) show that

P (T c
1 ) ≤

C0

un
exp

(
−u

2
n

2
+ 2κ lnn

)
P (T c

2 ) ≤ c0 exp

(
−(1− ε)u2n

2
+ κ lnn

)
.

Therefore, P (maxs∈A0 EBICγ(s) ≤ EBICγ(s0n)) is no more than

P

(
max
s∈A0

(
ln(β̂(s))− ln(β̂(s0n))

)
≥ m(1 + 2γκ) lnn

2

)
≤P

(
max
s∈A0

U τ (β0(s), 1) [
I (β0(s), 1)

n
]−1U (β0(s), 1) ≥ mn(1− ε)(1 + 2γκ) lnn

)
≤P

(
max
s∈A0

U τ (β0(s), 1) [
I (β0(s), 1)

n
]−1U (β0(s), 1) ≥ mn(1− ε)(1 + 2γκ) lnn | T1,T2

)
+
C0

un
exp

(
−u

2
n

2
+ 2κ lnn

)
+ c0 exp

(
−(1− ε)u2n

2
+ κ lnn

)
.

(5.1.34)
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Since under T1,T2,

max
s∈A0

[
U τ (β0(s), 1)

∣∣∣∣[I (β0(s), 1)

n
]−1 − Σ−1 (β0(s), 1)

∣∣∣∣U (β0(s), 1)

]
≤C

√
nu3n = C

(n−1/6un)
3

lnn
(n lnn) = o(n lnn),

the second and the third term in the right hand side of (5.1.34) both converge

to 0 as n goes to +∞ and the first term can be upper bounded by

P

(
max
s∈A0

U τ (β0(s), 1)Σ
−1 (β0(s), 1)U (β0(s), 1) ≥ mn(1− ε)(1 + 2γκ) lnn | T1,T2

)
≤CP

(
max
s∈A0

uτΣ−1/2 (β0(s), 1)U (β0(s), 1) ≥ (1− δ)
√
mn(1− ε)(1 + 2γκ) lnn | T1,T2

)
,

where ∥u∥2 = 1, δ is an arbitrary positive value. According to equation

(5.1.16), it can be further bounded by c⋆0 exp

[
−1− ε⋆

2
(1 + 2γκ)m lnn+mκ lnn

]
where c⋆0 is a positive constant. It converges to 0 when γ >

1

1− ε⋆
− 1

2κ
,

where ε⋆ is an arbitrary positive value. The result is obtained.

�
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5.2 Numerical Study

Simulation Results

In this subsection, the examination on the performance of SIS-Adaptive Lasso-

EBIC procedure in Section 3.2 is extended to Cox proportional hazards model

(CPH) where the dimension of feature space is assumed to be high. In our study, we

let pn = n1.25 for n = 100, 150, 200, 250. Correspondingly, pn = 316, 524, 752, 994.

We concentrated on investigating the performances of EBIC in CPHs with different

censoring proportions in our simulation study. The data structure is adapted from

the set-up in [59] and [186].

1. The survival time T is generated as lnT = −Zβ0 + ln ξ, where ξ ∼ exp(1),

therefore, h(t|X) = exp(Xτβ0). The censoring time is simulated from an

exponential distribution with mean U exp(Xτβ0), where U ∼ Uniform(1, L).

2. The predictors are normally distributed with mean 0 and the covariance

matrix satisfies Σi,j = 0.5|i−j|.

3. The true parameter vector satisfies β01 = β09 = 0.8,β04 = β0,12 = 1,β07 =

β0,15 = 0.6 and 0 otherwise.
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4. Let γ in EBIC be the following five values,

(γ1, γ2, γ3, γ4, γ5) =

(
0, 0.5, 1− lnn

4 ln pn
, 1, 2

)
.

Different L leads to different censoring proportions in the data. Here the averaged

censoring proportions with standard deviations in the parenthesis simulated from

200 replicates are summarized as follows:

L n = 100 n = 150 n = 200 n = 250

2 .469 (.061) .471 (.043) .467 (.042) .468 (.037)

3 .448 (.065) .451 (.048) .446 (.047) .448 (.042)

4 .433 (.068) .435 (.051) .429 (.051) .432 (.046)

For each simulation setting, the PDRn and FDRn averaged over 200 replicates

and their standard deviations in the parenthesis are reported in Table 5.2.1. From

Table 5.2.1, we can see the similar trend as in LMs and GLMs for EBIC with

different γ values: (i) EBIC with γ = 0 (BIC) and γ = 0.5 achieve both higher

PDRn and FDRn, (ii) as n increases, EBIC with γ = 1 − lnn

4 ln pn
has comparable

PDRn with γ = 0 and γ = 0.5, but the FDRn is satisfactory, (iii) EBIC with γ = 1

and γ = 2 both over controlled PDRn, especially for γ = 2 when the sample size

is small.
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Real Data Analysis: DLBCL Data

In this subsection, we apply our proposed procedure in Chapter 2 to select genes

related to diffuse large B-cell lymphoma (DLBCL). The data set was published and

analyzed in [137] and it has also been studied in [81],[147]. In the data set, 240

patients were monitored using a Lyphochip cDNA microarray with 7399 probes.

In the gene expression measurements of the 7399 genes (genes sharing the same

name but having different predictors values will be considered to be different), a

large number of them are missing. In our study, we apply the technique in [160] to

impute the missing values. That is, they are imputed by the averaged expression

levels of their nearest 8 neighboring genes according to Euclidean distance. The

neighboring genes of a certain gene are constrained to the genes with all complete

predictors and the components in the distance will be chosen as those which are

complete in the particular gene.

In practice, after obtaining the solution path {sk : 1 ≤ k ≤ K} of a penalized

likelihood procedure, for 1 ≤ k ≤ K, compute EBICγ(sk), then select the set s∗k

that minimizes EBIC among {sk : 1 ≤ k ≤ K}. We tried different ways to get

the solution path {sk : 1 ≤ k ≤ K}. (i) LASSO is conducted on all the genes; (ii)

Screening the first 0.6n genes according to their log-likelihoods in univariate fitted

models, the partial likelihood estimate in the fitted Cox model with all these 0.6n
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genes is used as the initial value in the adaptive-Lasso, and the adaptive-Lasso is

conducted on these 0.6n genes. The results are almost the same and are displayed

in Table 5.2.2. When γ ≤ 0.7, we identified HLA-DQα from Major histocom-

patibility complex, class II, which is also the second important gene selected by

LARS-Cox procedure in [81] and one of the representative genes in [137]. Gene

HLA-DPα was also detected in [147] and [137], but not in [81]. Moreover, we

detected one important gene (∥∥ ∗ AA824616∥Hs.143964∥ESTs25099) belonging

to the proliferation group.
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Table 5.2.1 Results on the SIS-Adaptive-LASSO-EBIC Procedure with
Different Censoring Proportions in CPH

n = 100 n = 150 n = 200 n = 250
L γ PDRn FDRn PDRn FDRn PDRn FDRn PDRn FDRn

γ1 .713 .551 .873 .488 .953 .425 .969 .422
(.183) (.176) (.135) (.193) (.082) (.184) (.067) (.196)

γ2 .496 .312 .755 .255 .907 .243 .948 .182
(.260) (.245) (.222) (.185) (.127) (.162) (.094) (.138)

2 γ3 .345 .192 .659 .170 .844 .174 .933 .151
(.269) (.275) (.267) (.164) (.186) (.142) (.104) (.129)

γ4 .241 .115 .600 .132 .811 .148 .902 .122
(.256) (.242) (.285) (.174) (.211) (.143) (.138) (.118)

γ5 .009 .000 .113 .019 .339 .010 .648 .037
(.051) (.000) (.211) (.128) (.329) (.054) (.331) (.100)

γ1 .728 .539 .883 .469 .951 .407 .964 .399
(.179) (.197) (.128) (.197) (.105) (.197) (.075) (.198)

γ2 .536 .291 .778 .246 .915 .222 .953 .170
(.257) (.228) (.214) (.179) (.133) (.158) (.089) (.136)

3 γ3 .384 .204 .683 .172 .871 .173 .936 .133
(.289) (.282) (.259) (.186) (.174) (.142) (.099) (.122)

γ4 .275 .099 .628 .127 .838 .143 .916 .111
(.279) (.228) (.270) (.164) (.198) (.133) (.121) (.112)

γ5 .017 .000 .152 .021 .405 .020 .705 .034
(.067) (.000) (.238) (.132) (.354) (.071) (.312) (.072)

γ1 .737 .523 .893 .460 .957 .414 .972 .418
(.182) (.195) (.134) (.196) (.093) (.193) (.068) (.202)

γ2 .555 .296 .798 .235 .922 .212 .954 .161
(.251) (.228) (.205) (.185) (.121) (.157) (.087) (.137)

4 γ3 .398 .202 .712 .170 .882 .167 .938 .133
(.296) (.281) (.251) (.178) (.165) (.139) (.102) (.123)

γ4 .309 .121 .664 .136 .849 .132 .925 .112
(.289) (.236) (.267) (.163) (.187) (.128) (.117) (.115)

γ5 .020 .000 .181 .019 .462 .026 .739 .041
(.074) (.000) (.272) (.128) (.362) (.080) (.294) (.079)

(γ1, γ2, γ3, γ4, γ5) = (0, 0.5, 1− lnn

4 ln pn
, 1, 2).
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Table 5.2.2 DLBCL Data: Genes Selected via the EBIC in CPH

GenBank ID Signature γ ∈ R1 γ ∈ R2 γ ∈ R3 γ ∈ R4

AA278718 + + − −

AA004687 + + − −

LC 24432 Proli + + − −

AA824616 Proli + + + −

X00452 MHC + + + −

AA490586 Germ + − − −

AA731721 + − − −

X02530 Lymph + − − −

AA193262 + + − −

AA469973 + − − −
1R1 = {0, 0.1}, R2 = {0.2}, R3 = {0.3, 0.4, 0.5, 0.6, 0.7}, R4 = {0.8, 0.9, 1};
2Germ=Germinal-cancer B-cell signature; MHC=MHC class II signature;

Lymph=Lymph-node signature; Proli=Proliferation signature.
3+ / − represent the corresponding gene is included/ excluded via the EBIC with

γ valued in the first row of the column.
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Conclusion for Part I

Model Selection is crucial in high-dimensional studies. Under the regularization

framework, researchers are capable of extracting a series of candidate models from

all subsets for further statistical inference. When the purpose is prediction, model

selection criteria based on minimizing prediction error such as Cross Validation

(CV) are appreciated because of good prediction performance. However, this road

is made by selecting a much bigger model than the true model, which curtails its

prevalence when the identification of the sparse set of relevant features becomes

the most significant task. The selection consistency of EBIC were proved under

moderate conditions on the design matrix in different regression models, which

makes EBIC more popular in high-dimensional studies.
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Part II

Sequential LASSO in Feature

Selection
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In this part, we propose a novel procedure, sequential LASSO, for feature selec-

tion in linear regression models. In Chapter 6, the detailed procedure of sequential

LASSO and its basic properties are given. In Chapter 7, we establish its selection

consistency with ultra-high dimensional feature space and both the number and

effects of causal features are allowed to depend on the sample size, the ensembles

of the design matrix are either deterministic or random. Afterwards, we provide

some special cases where the conditions required for the sequential LASSO to be

selection consistent are satisfied but the conditions for the original LASSO are vi-

olated. We propose to employ the EBIC introduced in Chapter 2 as a stopping

rule specifically for sequential LASSO. The selection consistency of the whole pro-

cedure is shown. Extensive simulation study results as well as an application in

QTL mapping to compare sequential LASSO with other prevalent feature selection

techniques are given in this chapter too. The sure screening property of sequential

LASSO is provided in Chapter 8.
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CHAPTER 6

Sequential LASSO and Its Basic

Properties

6.1 Introduction to Sequential LASSO

Consider the linear regression model below:

yi = β0 +

pn∑
j=1

β0jxij + ϵi, i = 1, . . . , n, (6.1.1)

where ϵi’s are i.i.d. normal variables with mean zero and variance σ2, the xij’s

are called features which are either deterministically determined or observed at

random. The following particular natures are assumed for the above model. (a)
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The dimensionality of the feature space is assumed as ln pn = O(nκ) for κ > 0

(ultra-high). (b) Let s0n = {j : β0j ̸= 0} and let p0n denote the cardinality of

s0n. It is assumed that p0n = O(nc) for some 0 < c < 1. (c) The magnitude of

β0j, j ∈ s0n, is allowed to vary with n. In matrix notation, (6.1.1) is expressed as

yn = Xnβ0 + ϵn,

where β0 = (β01, . . . ,β0pn)
τ , yn = (y1, . . . , yn)

τ and Xn = (xij) i=1,...,n
j=1,...,pn

and

ϵn = (ϵ1, . . . , ϵn)
τ . Let the columns of Xn be normalized such that

1

n

∑n
i=1 xij = 0

and
1

n

∑n
i=1 x

2
ij = 1 for all j. Let S denote the set of indices {1, 2, . . . , pn}. The

sequential LASSO is described as follows. At initial step, sequential LASSO mini-

mizes the following penalized sum of squares:

l1 = ∥yn −Xnβ∥22 + λ1
∑
j∈S

|βj|,

where ∥ · ∥2 is the L2 norm of a vector and λ1 is the largest value of the penalty

parameter such that at least one of the βj’s will be estimated to be non-zero. The

set of indices of nonzero βj’s is denoted by s∗1 and referred to as the active set. For

k ≥ 1, let s⋆k be the index set of the features selected until step k. At step k + 1,
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sequential LASSO minimizes the following partially penalized sum of squares:

lk+1 = ∥yn −Xnβ∥22 + λk+1

∑
j∈sc∗k

|βj|,

where no penalty is imposed on the βj’s for j ∈ s⋆k and λk+1 is the largest value of

the penalty parameter such that at least one of the βj, j /∈ s⋆k’s will be estimated

non-zero. The selected set is then updated to s⋆k+1. The sequential LASSO ensures

that the feature will always remain in the model, see the basic properties below.

This differs from the ordinary LASSO where a feature included in an earlier stage

could be left out in a later stage in the solution path.

Let s be any subset of S. Denote by X(s) the matrix consisting of the

columns of Xn with indices in s. Similarly, let β(s) denote the vector con-

sisting of the corresponding components of β. Let R(s) be the linear space

spanned by the columns of X(s) and H0(s) denote its projection matrix, i.e,

H0(s) = X(s)[Xτ (s)X(s)]−1Xτ (s). Let I be the identity matrix with order n× n.

Some basic properties and computation algorithm of the sequential LASSO are

given in the following section.

6.2 Basic Properties and Computation Algorithm

Proposition 6.2.1. For k ≥ 1 and any l ∈ sc∗k, if X({l}) ∈ R(s∗k) then l ̸∈ s∗k+1.
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Proof of Proposition 6.2.1: If X({l}) ∈ R(s∗k) then there exists an ak such that

X({l}) = X(s∗k)ak and hence

lk+1 = ∥yn −X(s∗k)(β(s∗k) + βlak)−X(sc∗k/{l})β(sc∗k/{l})∥22 + λ(|βl|+
∑

j∈sc∗k/{l}

|β|j)

= ∥yn −X(s∗k)β̃(s∗k)−X(sc∗k/{l})β(sc∗k/{l})∥22 + λ(|βl|+
∑

j∈sc∗k/{l}

|β|j)

≥ ∥yn −X(s∗k)β̃(s∗k)−X(sc∗k/{l})β(sc∗k/{l})∥22 + λ
∑

j∈sc∗k/{l}

|β|j.

Thus when lk+1 is minimized, there must be βl = 0, i.e., l ̸∈ sk+1. �

Proposition 6.2.1 implies that, for any k, the matrix X(s∗k) is of full column rank.

It also suggests that, in the sequential LASSO procedure, any feature that is highly

correlated with the features selected already will have little chance to be selected

subsequently. This nature of the sequential LASSO is favorable when it is used

for feature selection in ultra-high dimensional feature space where high spurious

correlations present, see [61].

Proposition 6.2.2. For k ≥ 1, the minimization of lk+1 is equivalent to the min-

imization of

∥[I −H0(s∗k)][yn −X(sc∗k)β(s
c
∗k)]∥22 + λ

∑
j∈sc∗k

|βj|.
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Proof of Proposition 6.2.2: Differentiating lk+1 with respect to β(s∗k), we have

∂lk+1

∂β(s∗k)
= −2Xτ (s∗k)yn + 2Xτ (s∗k)X(s∗k)β(s∗k) + 2Xτ (s∗k)X(sc∗k)β(s

c
∗k).

Setting the above derivative to zero, we obtain

β̂(s∗k) = [Xτ (s∗k)X(s∗k)]
−1Xτ (s∗k)[yn −X(sc∗k)β(s

c
∗k)]. (6.2.1)

Substituting (6.2.1) into ∥yn −Xnβ∥22 we have

lk+1 = ∥yn −X(s∗k)β(s∗k)−X(sc∗k)β(s
c
∗k)∥22 + λ

∑
j∈sc∗k

|βj|

= ∥[yn−X(sc∗k)β(s
c
∗k)]−X(s∗k)[X

τ(s∗k)X(s∗k)]
−1Xτ(s∗k)[yn−X(sc∗k)β(s

c
∗k)]∥22+λ

∑
j∈sc∗k

|βj|

= ∥[I −H0(s∗k)][yn −X(sc∗k)β(s
c
∗k)]∥22 + λ

∑
j∈sc∗k

|βj|.

�

As a by-product of the above proof, the components of β̂(s∗k) are almost surely

nonzero since yn is a vector of continuous random variables. This implies that, in

the sequential LASSO, we have s∗1 ⊂ s∗2 ⊂ · · · ⊂ s∗k ⊂ . . . ; that is, the models

selected in the sequential steps are nested.

For a general k, let ỹn = [I−H0(s∗k)]yn, X̃n = [I−H0(s∗k)]X(sc∗k), β̃ = β(sc∗k)

and νk̄ = |sc∗k|. Then by Proposition 6.2.2, the minimization of lk+1 is equivalent
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to the minimization of

l̃k+1 = ∥ỹn − X̃nβ̃∥22 + λ

νk̄∑
j=1

|β̃j|. (6.2.2)

The following proposition is the Karush-Kuhn-Tucker (KKT) condition for the

solution of the above minimization problem.

Proposition 6.2.3 (KKT condition). Let

∂|x| =


1, if x > 0,

−1, if x < 0,

r, if x = 0,

where r is an arbitrary number with |r| ≤ 1. Let ∂∥β̃∥1 = (∂|β̃1|, . . . , ∂|β̃νk̄ |)
τ .

Then β̃ is a minimizer of (6.2.2) if

2X̃τ
n(ỹn − X̃nβ̃) = λ∂∥β̃∥1.

Proof of Proposition 6.2.3: We only need to verify that the form of ∂∥β̃∥1 given

above is the sufficient and necessary condition for a sub gradient of ∥β̃∥1. First,

for any ξ, we have

∥ξ∥1 − ∥β̃∥1 =
∑

j:ξj ̸=β̃j

(|ξj| − |β̃j|)
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≥
∑

j:ξj ̸=β̃j

∂|β̃j|(ξj − β̃j) = ∂∥β̃∥τ1(ξ − β̃).

Thus by definition ∂∥β̃∥1 is a sub gradient.

Next, let w be any sub gradient of ∥β̃∥1. We show that

wj =


1, if β̃j > 0,

−1, if β̃j < 0,

r, if β̃j = 0.

Suppose β̃j = 0 and assume |wj| > 1. Then we can define a new vector ξ such that

ξj = sign(wj) and ξi = β̃i for i ̸= j. Then we have ∥ξ∥1−∥β̃∥1 = 1 < wτ (ξ− β̃) =

|wj|, contradicting to that w is a sub gradient.

Now suppose β̃j ̸= 0. For a positive number δ < |β̃j|, define ξ1 and ξ2 such

that ξ1j = β̃j + δsign(β̃j), ξ2j = β̃j − δsign(β̃j) and ξ1i = ξ2i = β̃i, i ̸= j. Since w is

a sub gradient we must have

∥ξ1∥1 − ∥β̃∥1 = δ ≥ wτ (ξ1 − β̃) = δwjsign(β̃j),

∥ξ2∥1 − ∥β̃∥1 = −δ ≥ wτ (ξ2 − β̃) = −δwjsign(β̃j),

which implies wjsign(β̃j) = 1 and hence wj = sign(β̃j). �

Proposition 6.2.4. Let sTEMP =
{
j : j ∈ sc⋆k, |ỹn

τxj| = maxl∈sc⋆k |ỹn
τxl|

}
. If
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sTEMP is a singleton, then the xj with j ∈ sTEMP is the only feature with non-zero

estimated coefficient in the minimization of (6.2.2); otherwise, the minimization

of (6.2.2) is equivalent to the minimization of

∥ỹ − X̃TEMP β̃TEMP∥22 + λk+1

∑
j∈sTEMP

|βj|,

where X̃TEMP consists of x̃ with j ∈ sTEMP , β̃TEMP is the corresponding coefficient

vector.

This proposition follows from Proposition 6.2.3 and the proof of Theorem 7.1.1.

Proposition 6.2.4 gives rise to the following simple computation algorithm for the

sequential LASSO procedure.

Computation Algorithm:

• Initial Step: Standardize yn,xj, j = 1, 2, · · · , p such that yτ
n1 = 0,xτ

j1 = 0

and yτ
nyn = n,xτ

jxj = n. Compute yτxj for j ∈ S. Let

sTEMP =

{
j : |xτ

jyn| = max
l∈S

|xτ
jyn|

}
.

If sTEMP is a singleton, let s⋆1 = sTEMP , otherwise, apply glmpath to yn and

X(sTEMP ) and extract the first feature with non-zero coefficient in the solution

path, and let s⋆1 be its active set.

• General Step: For k ≥ 1, compute ỹn
τ x̃j for j ∈ sc⋆k where ỹn = [I −
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H0(s⋆k)]yn, x̃j = [I −H0(s⋆k)]xj. Let

sTEMP =

{
j : |x̃τ

j ỹn| = max
l∈sc⋆k

|x̃τ
j ỹn|

}
.

If sTEMP is a singleton, let s⋆k+1 = s⋆k ∪ sTEMP , otherwise, apply glmpath to

ỹ and X̃(sTEMP ) and extract the first feature with non-zero coefficient in the

solution path, and let s⋆k+1 be s⋆k union the active set. The procedure stops when

EBICγ(s⋆k) with γ = 1− lnn/2/ ln pn begins to increase.

For more details on the stopping rule, see Section 7.3.1. The matrix I −

H0(s⋆k+1) can be updated from I − H0(s⋆k) recursively. Suppose there are K

active features with indices jl : l = 1, ..., K at step k+1. Denote by Jl = j1, · · · , jl.

Let J0 = ∅. The recursive formula is given by

I −H0(s∗k ∪ Jl) = [I −H0(s∗k ∪ Jl−1)]

(
I −

XjlX
τ
jl
[I −H0(s∗k ∪ Jl−1)]

Xτ
jl
[I −H0(s∗k ∪ Jl−1)]Xjl

)
.

The amount of computation in the above algorithm is minimal. The computation

of the projection matrices does not involve any matrix inversion. The call for

glmpath is in fact seldom invoked.
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CHAPTER 7

Selection Consistency of

Sequential LASSO

We establish in this chapter the selection consistency of the sequential LASSO

when the dimension of the feature space is ultra-high, i.e., ln pn = O(nκ), κ > 0,

under two different settings of the feature matrix Xn: (i) Xn is deterministic and

(ii) Xn is random. The deterministic case is dealt with in Section 7.1 and the

random case in Section 7.2. The EBIC used as the stopping rule in the procedure

of sequential LASSO is proposed in Section 7.3. The selection consistency of this

whole procedure is established in Section 7.3.1 and demonstrated by extensive

simulation studies and real data analysis in Section 7.3.2.
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7.1 Selection Consistency with Deterministic Fea-

ture Matrix

In the deterministic case, the columns of Xn are normalized such that the sample

mean and variance of each feature are 0 and n respectively. We now introduce

some notations. For s ⊂ S, let s− = sc ∩ s0n. Recall that s0n is the set of indices

of the nonzero β0j’s. If s ⊂ s0n then s− is the complement of s in s0n. For s ⊂ s0n,

define

γn(j, s,β) =
1

n
Xτ ({j})[I −H0(s)]Xnβ.

In fact, γn(j, s,β) only depends on β(sc). But for the ease of notation, β and

β(sc) will be used interchangeably. Unless otherwise stated, β also denotes the

unknown true value of the parameter vector. The selection consistency of the

sequential LASSO in the case of deterministic feature matrix is established under

the following assumptions.

A1 maxj∈sc0n |γn(j, s,β)| < qmaxj∈s− |γn(j, s,β)|, for some 0 < q < 1.

A2 (Partial positive cone condition). Let

As = {j̃ : j̃ ∈ sc, |γn(j̃, s,β)| = max
j∈sc

|γn(j, s,β)|}

and X̃(As) = [I − H0(s)]X(As). Then [X̃τ (As)X̃(As]
−11 > 0, where 1 is
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the vector with all components 1.

A3

√
n

ln pn
λmin

[
1

n
Xτ (s0n)X(s0n)

]
minj∈s0n |β0j| → +∞, as n → ∞, where λmin

denotes the smallest eigenvalue.

Assumption A1 is implied by the following condition

∥X̃τ
j X̃(s−)[X̃τ (s−)X̃(s−)]−1∥1 < 1− η,∀j ∈ sc0n, (7.1.1)

where X̃j = [I −H0(s)]X({j}) and 0 < η < 1. The claim above follows because

|γn(j, s,β)| =
1

n
|Xτ ({j})[I −H0(s)]µn|

= |X̃τ
j X̃(s−)[X̃τ (s−)X̃(s−)]−1 1

n
X̃τ (s−)[I −H0(s)]µn|

≤ ∥X̃τ
j X̃(s−)[X̃τ (s−)X̃(s−)]−1∥1

1

n
∥X̃τ (s−)[I −H0(s)]µn∥∞

< (1− η)
1

n
∥X̃τ (s−)[I −H0(s)]µn∥∞ = (1− η)

1

n
max
j∈s−

|Xτ ({j})[I −H0(s)]µn|

= (1− η)max
j∈s−

|γn(j, s,β)|,

where the strict inequality holds by (7.1.1).

Under assumption A1, the As in A2 is a subset of s0n. Assumption A2 holds if

and only if

X̃τ
j X̃(As\{j})[X̃τ (As\{j})X̃(As\{j})]−11 < 1,∀j ∈ As. (7.1.2)
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We establish the equivalence of A2 and (7.1.2) below. Let A = X̃(As\{j}) and

b = X̃j. Since a permutation of the rows and columns does not change the sum

of the rows, it suffices to verify that the sum of the last row of

AτA Aτb

bτA bτb


−1

is positive if and only if bτA(AτA)−11 < 1. Let E = I − A(AτA)−1Aτ and F =

I − b(bτb)−1bτ . By the formula for the inverse of blocked matrices, we have

AτA Aτb

bτA bτb


−1

=

 (AτFA)−1 −(AτA)−1Aτb(bτEb)−1

−(bτb)−1bτA(AτFA)−1 (bτEb)−1


and

(AτFA)−1 = [AτA− Aτb(bτb)−1bτA]−1

= (AτA)−1 + (AτA)−1Aτ (bτEb)−1bτA(AτA)−1.

Substituting the expression of (AτFA)−1 into the first block of the last row of the

above matrix, we obtain

−(bτb)−1bτA(AτFA)−1 = −(bτEb)−1bτA(AτA)−1.

Thus the sum of the last row becomes

(bτEb)−1 − (bτEb)−1bτA(AτA)−11 = (bτEb)−1[1− bτA(AτA)−11]



7.1 Selection Consistency with Deterministic Feature Matrix 119

which is greater than 0 if and only if bτA(AτA)−11 < 1.

Condition (7.1.1) is a conditional version of ERC conditioning on the sub-

set s of the relevant features. Condition (7.1.2) is similar to but much weaker

than the irrepresentable condition ([183]). The above arguments suggest that

Conditions A1 and A2 might be weaker than the ERC and the irrepresentable

condition. This is indeed the case. We will demonstrate this by special cases

in the below where the conditions for the selection consistency of the sequen-

tial LASSO hold but the ERC and the irrepresentable condition are not satisfied.

If λmin

(
1

n
Xτ (s0n)X(s0n)

)
is bounded away from zero, which is a common as-

sumption in the case of ultra-high dimensional feature space, then Condition A3

is equivalent to

√
n

ln pn
minj∈s0n |β0j| → ∞. If ln pn = O(nκ) with κ < 1/2 and

minj∈s0n |β0j| ≥ Cn−δ for some constant C and δ < 1/2− κ, A3 is then satisfied.

We now state and prove the major theorem in the following.

Theorem 7.1.1. Suppose that assumptions A1-A3 hold. Let ln pn = O(nκ), where

κ < 1/2. Then the sequential LASSO is selection consistent in the sense that

P (s∗k∗ = s0n) → 1, as n→ ∞,

where s∗k∗ is the set of features selected at the k∗th step of the sequential LASSO

such that |s∗k∗ | = p0n, s0n is the set of relevant features and p0n = |s0n|.
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Proof of Theorem 7.1.1: By Proposition 6.2.3, at the (k+1)st step of the sequential

LASSO, the solution β̂ satisfies

2X̃τ (ỹn − X̃nβ̂) = λ∂∥β̂∥1, (7.1.3)

where ỹn = [I−H0(s∗k)]yn, X̃n = [I−H0(s∗k)]X(sc∗k), and ∂∥β̂∥1 is a sub gradient

of ∥β∥1 at β̂ whose components are 1,−1 or a number with absolute value less

than or equal to 1 according as the components are positive, negative or zero. For

k = 0, s∗0 is taken as the empty set ϕ. Obviously, s∗0 ⊂ s0n. Assume that s∗k ⊂ s0n

and |s∗k| < p0n. Let

γ̂n(j, s∗k,β) =
1

n
Xτ ({j})[I−H0(s∗k)]yn = γn(j, s∗k,β)+

1

n
Xτ ({j})[I−H0(s∗k)]ϵn.

Define

Ak = {j : |γ̂n(j, s∗k,β)| = max
j∈sc∗k

|γ̂n(j, s∗k,β)|}.

We are going to show that, with probability converging to 1, Ak ⊂ s0n and that

Ak is the set of non-zero elements of the solution to equation (7.1.3). We first

show that Ak ⊂ s0n, which is implied by |γ̂n(j, s∗k,β)| > maxl∈sc0n |γ̂n(l, s∗k,β)| for

j ∈ s−∗k with probability converging to 1. The statement is established by showing

(i):
1

n
Xτ ({j})[I −H0(s∗k)]ϵn = Op(n

−1/2 ln pn) uniformly for all j ∈ sc∗k.

(ii): For j ∈ s−∗k, maxj∈s−∗k
|γn(j, s∗k,β)| ≥ Cnn

−1/2 ln pn for Cn → ∞.
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Note thatXτ ({j})[I−H0(s∗k)]ϵn ∼ N(0, σ2∥X̃j∥22) where ∥X̃j∥22 ≤ ∥X({j})∥22 =

n. Hence

P

(
1

n
|Xτ ({j})[I −H0(s∗k)]ϵn| > σn−1/2 ln pn

)
= P (|Xτ ({j})[I −H0(s∗k)]ϵn| > σn1/2 ln pn)

≤ P (|Xτ ({j})[I −H0(s∗k)]ϵn| > σ∥X̃j∥2 ln pn)

= P (|z| > ln pn) ≤
2

ln pn
exp

{
−(ln pn)

2

2

}
,

where z is a standard normal random variable. Thus, by Bonferroni inequality,

P

(
max
j∈sc∗k

1

n
|Xτ ({j})[I −H0(s∗k)]ϵn| > σn−1/2 ln pn

)
≤ 2

ln pn
exp

{
−(ln pn)

2

2
+ ln pn

}
→ 0.

(7.1.4)

Thus (i) is proved.

Let ∆(s∗k) = µτ
n[I − H0(s∗k)]µn where µn = Xnβ0. We have the following

inequalities:

∆(s∗k) =
∑
j∈s−∗k

βjX
τ ({j})[I −H0(s∗k)]µn ≤ n∥β(s−∗k)∥1 max

j∈s−∗k
|γn(j, s∗k,β)|, (7.1.5)
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and

∆(s∗k) =βτ (s−∗k)X
τ (s−∗k)[I −H0(s∗k)]X(s−∗k)β(s

−
∗k)

≥λmin

(
Xτ (s−∗k)[I −H0(s∗k)]X(s−∗k)

)
∥β(s−∗k)∥

2
2

≥λmin (X
τ (s0n)X(s0n)) ∥β(s−∗k)∥

2
2.

(7.1.6)

The second inequality above follows since s∗k∪s−∗k = s0n and (Xτ (s−∗k)[I−H0(s∗k)]X(s−∗k))
−1

is a sub-matrix of (Xτ (s0n)X(s0n))
−1 by the formula of the inverse of blocked ma-

trices. Combining (7.1.5) and (7.1.6) yields

max
j∈s−∗k

|γn(j, s∗k,β)| ≥ λmin(
1

n
Xτ (s0n)X(s0n))

∥β(s−∗k)∥22
∥β(s−∗k)∥1

≥ λmin(
1

n
Xτ (s0n)X(s0n)) min

j∈s0n
|β0j|

≡ Cnn
−1/2 ln pn, say,

with Cn =
n1/2

ln pn
λmin

(
1

n
Xτ (s0n)X(s0n)

)
minj∈s0n |β0j|. The second inequality

above holds since |s−∗k|∥β0(s
−
∗k)∥22 ≥ ∥β0(s

−
∗k)∥21 ≥ |s−∗k|minj∈s0n |β0j|∥β0(s

−
∗k)∥1. By

A3, Cn → ∞. Thus (ii) is proved.

By A1 and (ii),

|max
j∈s−∗k

|γn(j, s∗k,β)| −max
j∈sc0n

|γn(j, s∗k,β)||

> (1− q)max
j∈s−∗k

|γn(j, s∗k,β)| ≥ (1− q)Cnn
−1/2 ln pn.
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This fact and (i) then imply that γ̂n(j, s∗k,β) must attain the maximum within

s−∗k. Therefore, Ak ⊂ s−∗k ⊂ s0n.

Without loss of generality, assume that γ̂n(j, s∗k,β) > 0 for all j ∈ Ak. Consider

γ̂n(j, s∗k, ξ) as a function of ξ. Since the function is continuous, for each j ∈ Ak,

there exists a neighborhood Nj = {ξ : ∥ξ − β∥2 ≤ δj} and a constant cj > 0

such that, for all ξ ∈ Nj, γ̂n(j, s∗k, ξ) − maxl∈A c
k
|γ̂n(l, s∗k, ξ))| > cj. Here A c

k

denotes the complement of Ak in sc∗k by an abuse of notation. Let N = {ξ :

∥ξ − β∥2 ≤ δ} where δ = min δj. Then for all ξ ∈ N , minj∈Ak
γ̂n(j, s∗k, ξ) −

maxl∈A c
k
|γ̂n(l, s∗k, ξ))| > C, where C = max cj.

Now construct β̂ as follows. Let β̂(Ak) = ω[X̃τ (Ak)X̃(Ak)]
−11 and β̂(A c

k ) = 0,

where ω > 0. By A2, β̂(Ak) > 0. Take ω small enough such that β − β̂ ∈ N .

Thus we have minj∈Ak
γ̂n(j, s∗k,β− β̂) > maxl∈A c

k
|γ̂n(l, s∗k,β− β̂))|. On the other

hand, for any j ∈ Ak,

γ̂n(j, s∗k,β − β̂) = max
j∈sc∗k

γ̂n(j, s∗k,β)− ω
1

n
X̃τ

j X̃(Ak)[X̃
τ (Ak)X̃(Ak)]

−11

= max
j∈sc∗k

γ̂n(j, s∗k,β)−
ω

n
.

Let λ = 2n
[
maxj∈sc∗k γ̂n(j, s∗k,β)−

ω

n

]
. Then, we have

2X̃τ
j (ỹn − X̃nβ̂) = λ, for j ∈ Ak,

2X̃τ
j (ỹn − X̃nβ̂) < λ, for j ̸∈ Ak.
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Let ∂|β̂j| = 2X̃τ
j (ỹn−X̃nβ̂)/λ for j ̸∈ Ak, and 1 for j ∈ Ak. Then ∂∥β̂∥1 with these

components is a sub gradient of ∥β∥1 at β̂ and β̂ solves equation (7.1.3). From

the construction of β̂, all the features corresponding to the non-zero components

of β̂ belong to s0n. Hence s∗k+1 ⊂ s0n. Thus we have shown that, given s∗k ⊂ s0n,

s∗k+1 ⊂ s0n with probability converging to 1.

If p0n is bounded then we have already established the selection consistency

of the sequential LASSO. If p0n diverges as n → ∞, we need to show that

s∗k ⊂ s0n, k = 1, . . . , p0n, simultaneously, with probability converging to 1. Note

that, under the assumptions, s∗k+1 ⊂ s0n is equivalent to minj∈Ak
γ̂n(j, s∗k,β) >

maxl∈A c
k
|γ̂n(l, s∗k,β))|, which is implied by

P

(
max
j∈sc∗k

1

n
|Xτ ({j})[I −H0(s∗k)]ϵn| > σn−1/2 ln pn

)
→ 0.

Therefore, when p0n is divergent, the selection consistency is established if

P

 max
0≤k<p0n
j∈sc∗k

1

n
|Xτ ({j})[I −H0(s∗k)]ϵn| > σn−1/2 ln pn

→ 0, as n→ ∞.

It follows from (7.1.4) and the Bonferroni inequality that

P

 max
0≤k<p0n
j∈sc∗k

1

n
|Xτ ({j})[I −H0(s∗k)]ϵn| > σn−1/2 ln pn


≤ 2p0n

ln pn
exp

{
−(ln pn)

2

2
+ ln pn

}
≤ 2

ln pn
exp

{
−(ln pn)

2

2
+ 2 ln pn

}
→ 0,
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since p0n < pn. The proof is completed. �

7.2 Selection Consistency with Random Feature

Matrix

Instead of consideringX as a fixed design matrix, we now assume xi = (xi1, . . . , xipn)
τ ,

i = 1, . . . , n, are i.i.d. copies of a random vector z = (z1, . . . , zpn)
τ . Without loss

of generality, assume that Ez = 0 and Var(z) = Σ with diagonal elements 1 and

off-diagonal elements independent of n. Assume that

a1 The off-diagonal elements of Σ are bounded by a constant less than 1; that is,

the correlation between any two features are bounded below from −1 and

above from 1.

a2 σmax ≡ max1≤j,k≤pn σ(zjzk) <∞ where σ(zjzk) denotes the standard deviation

of zjzk.

a3 max1≤j,k≤pn E exp(tzjzk) and max1≤j≤pn E exp(tzjϵ) are finite for t in a neigh-

borhood of zero.

For any s, s̃ ⊂ S, denote by Σss̃ the sub matrix of Σ with row indices in s and

column indices in s̃. Define

Γ(j, s,β) = (ΣjS − ΣjsΣ
−1
ss ΣsS)β.
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The following assumptions are imposed:

A1
′
For any s ⊂ s0n, s ̸= s0n, maxj∈sc0n |Γ(j, s,β)| < maxj∈s− |Γ(j, s,β)|.

A2
′
Let As = {j : j ∈ sc, |Γ(j, s,β)| = maxl∈sc |Γ(l, s,β)|}. Then

(ΣAsAs − ΣAssΣ
−1
ss ΣsAs)

−11 > 0.

A3
′ n1/2

ln pn
λmin(Σs0ns0n)(minj∈s0n |β0j|) → +∞ as n→ +∞.

The assumptions A1
′
- A3

′
are in fact the assumptions A1-A3 with the empirical

variances and covariances of the features replaced by their theoretical counterparts.

In order to establish the selection consistency of the sequential LASSO in the case of

random feature matrix, we need to pass from assumptions A1
′
- A3

′
to assumptions

A1-A3. The following lemma ensures that if A1
′
- A3

′
hold then A1-A3 hold with

probability converging to 1 as n goes to infinity.

Lemma 7.2.1. Under assumptions a1-a3,

(i) P (max1≤j,k≤pn

∣∣∣∣ 1n∑n
i=1 xijxik − Σjk

∣∣∣∣ > n−1/3σmax) → 0.

(ii) P (max1≤j≤pn

∣∣∣∣ 1n∑n
i=1 xijϵi

∣∣∣∣ > n−1/3σ) → 0.

(iii) Let Σjl|s = Σjl − ΣjsΣ
−1
ss Σsl and Σ̂jl|s = X({j})τ [I −H0(s)]X({l})/n. Then

max
1≤j,l≤pn

max
s:|s|≤p0

|Σ̂jl|s − Σjl|s| = op(1).
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Proof of Lemma 7.2.1. : For any j, k ∈ {1, 2, . . . , pn} it follows from Fill (1983)

that

P (|
n∑

i=1

xijxik − nΣjk| >
√
nσ(zjzk)ψn) ≤ C[1− Φ(ψn)] exp[

ψ3
n√
n
λ(
ψn√
n
)] (7.2.1)

where C is a constant, Φ(·) is the cumulative distribution function of standard

normal distribution, λ(·) is the Cramer series for the distribution of zjzk which

converges in a neighborhood of zero under assumption a3, and ψn is a sequence

satisfying ψn = o(n1/2) and ψn → ∞.

Now take ψn = n1/6−δ for 0 < δ <
1

6
− κ

2
. Then λ(

ψn√
n
) is bounded and

ψ3
n√
n

goes to 0 as n converges to ∞. Thus (7.2.1) leads to

P (|
n∑

i=1

xijxik − nΣjk| > n2/3−δσmax) ≤ P (|
n∑

i=1

xijxik − nΣjk| > n2/3−δσ(zjzk))

≤ C1[1− Φ(n1/6−δ)] ≤ C1

n1/6−δ
exp(−1

2
n1/3−2δ),

where C1 is a generic constant. Let pn = exp(anκ) where a > 0 and κ <
1

3
. By

Bonferroni inequality,

P ( max
1≤j,k≤pn

∣∣∣∣∣
n∑

i=1

xijxik − nΣjk

∣∣∣∣∣ > n2/3−δσmax) = o(n−1/6+δ) → 0.

Hence (i) is proved. The proof of (ii) is similar and is omitted.
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Note that, for X({j}), X({l}) and X(s),

1

n
Xτ ({j})(I −X(s)[Xτ (s)X(s)]−1Xτ (s))X({l})

is a continuous function of the means
1

n

∑n
i=1 xijxil,

1

n

∑n
i=1 xijxik,

1

n

∑n
i=1 xilxik

and
1

n

∑n
i=1 xikxim, k,m ∈ s. Let X̄jls denote the vector consisting of these means

and µjls its expectation. The function depends on |s| but not on n. Let g|s|(X̄jls)

denote this function. We then have g|s|(µjls) = Σjl|s.

By assumption a1, the range of µjls for all j, l, s with fixed |s| is compact. Hence

g|s| is also uniformly continuous for all (j, l, s) with fixed |s|. Thus for any η > 0

there is a ζ > 0 such that if ∥X̄jls − µjls∥∞ ≤ ζ then |g|s|(X̄jls) − g|s|(µjls)| ≤ η,

where ζ does not depend on (j, l, s). From the proof of (i), we can choose an n0

such that when n > n0,

P ( max
1≤j,k≤pn

∣∣∣∣∣ 1n
n∑

i=1

xijxik − Σjk

∣∣∣∣∣ > ζ) = o(n−1/6+δ).

Thus we have

P (max
j,l

|g|s|(X̄jls)− g|s|(µjls)| > η) = o(n−1/6+δ).



7.2 Selection Consistency with Random Feature Matrix 129

By Bonferroni inequality,

P (max
j,l

max
s:|s|≤p0n

|g|s|(X̄jls)− g|s|(µjls)| > η) ≤ o(n−1/6+δ)p0n → 0,

for p0n = O(n1/6−δ). (iii) is proved.

�

Theorem 7.2.1. Let ln pn = O(nκ), κ < 1/3, and p0n = O(nc), κ/2 < c < 1/6.

The sequential LASSO is selection consistent with random feature matrices that

satisfy conditions a1-a3 and A1
′
-A3

′
.

Theorem 7.2.1 is in fact a corollary of Lemma 7.2.1. It follows from the lemma

immediately that if a1-a3 and A1
′
-A3

′
are satisfied then A1-A3 hold with prob-

ability converging to 1. Thus the selection consistency of the sequential LASSO

with random feature matrix is established.

In the following, we provide two special cases where the conditions for the

selection consistency of the sequential LASSO can be directly verified. The first

special case concerns constant positive correlation among the features. In this case,

for the irrepresentable condition to be satisfied, some restriction must be imposed.

But such restriction is not needed for sequential LASSO. The second special case

deals with a correlation structure under which the irrepresentable condition is

violated.
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Special case I: Let the correlation matrix of z be given by

Σ = (1− ρ)I + ρ11τ ,

where I is the identity matrix of dimension pn, 1 is a pn-vector of all elements 1,

and 0 < ρ ≤ ρ0 < 1. Note that ρ is allowed to depend on n. But for the ease of

notation we do not make this dependence explicit. In this case, the assumptions

A1
′
-A3

′
are satisfied with minj∈s0n |β0j| = Cn−1/2+δ for some constant C and an

arbitrarily small positive δ. The claim is verified in the following.

For any s ⊂ S, the sub correlation matrix Σss has eigenvalues 1−ρ and 1+(|s|−

1)ρ with multiplicities |s|− 1 and 1 respectively. The eigenvector corresponding to

1 + (|s| − 1)ρ is 1 with dimension |s|. The smallest eigenvalue is 1− ρ. Thus A3
′

follows immediately.

Now suppose s ⊂ s0n. For any j, k ∈ sc, we have

Σjk − ΣjsΣ
−1
ss Σsk = Σjk − ρ21τΣ−1

ss 1 = Σjk −
ρ2|s|

1 + (|s| − 1)ρ

=


(1− ρ)(ρ|s|+ 1)

1 + (|s| − 1)ρ
≡ a, if j = k

ρ(1− ρ)

1 + (|s| − 1)ρ
≡ b, if j ̸= k.
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Therefore,

γn(j, s,β) =
∑
k∈s−

βk(Σjk − ΣjsΣ
−1
ss Σsk)

=


(a− b)βj + b

∑
k∈s− βk = b

∑
k∈s− βk + (1− ρ)βj, for j ∈ s−,

b
∑

k∈s− βk, for j ∈ sc0n.

Thus

max
j∈s−

|γn(j, s,β)| =


|b
∑

k∈s− βk|+ (1− ρ)maxj∈s− βj if
∑

k∈s− βk > 0,

|b
∑

k∈s− βk|+ (1− ρ)|minj∈s− βj| if
∑

k∈s− βk < 0.

Obviously, maxj∈s− |γn(j, s,β)| > maxj∈sc0n |γn(j, s,β)| and hence A1
′
is satisfied.

Finally, we have

ΣAsAs − ΣAssΣ
−1
ss ΣsAs

= (1− ρ)I + ρ11τ − ρ211τΣ−1
ss 11

τ

= (1− ρ)I + ρ11τ − ρ2|s|
1 + (|s| − 1)ρ

11τ

= (1− ρ)I +
ρ(1− ρ)

1 + (|s| − 1)ρ
11τ .
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Let ν be the number of elements in As. The eigenvalue of the above matrix

corresponding to the eigenvector 1 is

1− ρ+
νρ(1− ρ)

1 + (|s| − 1)ρ
= a+ (ν − 1)b.

Hence

(ΣAsAs − ΣAssΣ
−1
ss ΣsAs)

−11 =
1

a+ (ν − 1)b
1 > 0,

i.e., A2
′
holds.

Note that, in the above argument, we only need ρ = ρn ≤ ρ0 < 1. But, for the

irrepresentable condition to hold, the following restriction must be in place:

ρn <
1

1 + c|s0n|

for some constant c, see [183]. If |s0n| → ∞, ρn must go to zero, i.e., eventually,

all the features must be statistically uncorrelated.

Special case II. Without loss of generality, let s0n = {1, . . . , p0n}. Assume that

(i) |β01| > |β02| > · · · > |β0p0n| = Cn−1/2+δ for some constant C and an arbitrarily

small positive δ;
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(ii) The correlation matrix Σ has the following structure:

Σs0ns0n = I, Σjs0n =
1

p0n
signβτ

0, for j ∈ sc0n.

In the following, we show that in this case the irrepresentable condition is vio-

lated but conditions A1
′
-A3

′
hold, and if in addition a2 and a3 are assumed, the

sequential LASSO is selection consistent. Obviously, for any j ∈ sc0n,

Σjs0nΣ
−1
s0ns0n

signβ(s0n) = 1,

i.e., the irrepresentable condition does not hold. Let s∗0 = ϕ. Suppose s∗k =

{1, . . . , k} for k < p0n. For any j ∈ sc0n,

Γ(j, s∗k,β) = [(Σjs∗k ,Σjs−∗k
,Σjsc0n

)− Σjs∗kΣ
−1
s∗ks∗k

(Σs∗ks∗k ,Σs∗ks
−
∗k
,Σs∗ks

c
0n
)]


β(s∗k)

β(s−∗k)

β(sc0n)


= Σjs−∗k

β(s−∗k) =
∑
j∈s−∗k

|βj|/p0n < |βk+1| = Γ(k + 1, s∗k,β)

= max
j∈s−∗k

|Γ(j, s∗k,β).

Thus A1
′
is satisfied. The validity of A2

′
is obvious since As∗k contains only one

element for each k < p0n. A3
′
reduces to

√
n

ln pn
minj∈s0n |β0j| → ∞ which holds

obviously. a1 follows from (ii). Then, when a2 and a3 are also satisfied, the
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sequential LASSO is selection consistent.

7.3 Application of Sequential LASSO in Feature

Selection

7.3.1 EBIC as a Stopping Rule

In real applications, when there is no prior information on p0n, an appropriate

criterion to halt the sequential LASSO procedure is demanding. We propose to

employ the EBIC (2.1.1) introduced in Chapter 2 as a stopping rule. In detail, we

let sequential LASSO stop at the k̂th step, where k̂ = min{k : k ≥ 1,EBICγ(s⋆k) <

EBICγ(s⋆k+1)}. In this section, we will show that sequential LASSO with this

stopping rule is selection consistent. That is, limP (s⋆k̂ = s0n) → 1. This main

result is expressed in a different manner in Theorem 7.3.1.

Recall that s⋆k denotes the selected set of features after k steps in sequential

LASSO. With the selection consistency of sequential LASSO, we assume s⋆p̃0 = s0n.

For k ≥ 1, define

EBICγ(k) =n ln

(
∥ [I −H0(s⋆k)]yn∥22

n

)
+ k lnn+ 2γ ln

pn
k


≈n ln

(
∥ [I −H0(s⋆k)]yn∥22

n

)
+ k (lnn+ 2γ ln pn) , γ ≥ 0.

(7.3.1)
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The second approximation applies when ln pn = O(nκ) for some κ > 0 and k is

of a polynomial order of n (see Lemma 3.1.1). For simplicity, we shall use this

approximation in our following theorems.

A4 minj∈s0n |β0j| ≥ Cn−κ.

Theorem 7.3.1. Under the assumptions in Theorem 7.1.1 or 7.2.1, when A4

holds, we have the following conclusions,

(i) ∀0 ≤ k < p̃0, lim
n→+∞

P (EBICγ(k) > EBICγ(k + 1)) = 1 when γ > 0.

(ii) lim
n→+∞

P

(
min

p̃0≤k≤cp0n
EBICγ(k) ≥ EBICγ(p0n)

)
= 1 for any fixed constant c > 1

when γ > 1− lnn

2 ln pn
.

The proof of (ii) was already provided in the second part of the proof of Theorem

3.1.1 and hence is omitted here.

Proof of (i) in Theorem 7.3.1. For any subset J of {1, 2, · · · , pn}, let µn = Xnβ0,

define

△µ (J) =µτ
n [I −H0(J)]µn,

△ϵ (J) =ϵτn [I −H0(J)] ϵn,

△µ,ϵ (J) =µτ
n [I −H0(J)] ϵn.

(7.3.2)

Suppose J1,J2 are two subsets of {1, 2, · · · , pn}, decompose EBICγ(J1)−EBICγ(J2)



136 Chapter 7. Selection Consistency of Sequential LASSO

as T1 + T2 where

T1 =n ln

{
1 +

(∥ [I −H0(J1)]yn∥22 − ∥ [I −H0(J2)]yn∥22)
∥ [I −H0(J2)]yn∥22

}
=n ln

{
1 +

{△µ (J1)−△µ (J2)}+ 2 {△µ,ϵ (J1)−△µ,ϵ (J2)}+ {△ϵ (J1)−△ϵ (J2)}
△µ (J2) + 2△µ,ϵ (J2) +△ϵ (J2)

}
;

T2 =(|J1| − |J2|)(lnn+ 2γ ln pn).

(7.3.3)

Now we aim to prove EBICγ(k) ≤ EBICγ(k+1) occurs with probability tending

to 0 for any 0 ≤ k < p̃0. Let Ak be the one defined in the proof of Theorem 7.1.1.

Note that when J1 = s⋆k, J2 = s⋆k+1, T2 = −|Ak|(lnn + 2γ ln pn). It suffices to

show that, uniformly for 0 ≤ k < p̃0,

P (T1 ≤ |Ak| (lnn+ 2γ ln pn)) → 0. (7.3.4)

(1) If k < p̃0 − 1, s0n ∩ sc⋆k+1 ̸= ∅ and thus Ak+1 ̸= ∅. Targeting at simplifying T1,

firstly, we prove the following two important conclusions:

(I) : max
0≤k≤p̃0−1

(△ϵ(s⋆k)−△ϵ(s⋆k+1)) = Op(lnn);

(II) : max
0≤k≤p̃0−1

△µ,ϵ(s⋆k)−△µ,ϵ(s⋆k+1)

△µ(s⋆k)−△µ(s⋆k+1

= op(1).
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Proof of (I): For x > 0, since Ak ⊆ s0n,

P

(
max

0≤k≤p0n−1
(△ϵ(s⋆k)−△ϵ(s⋆k+1)) ≥ x

)
=P ( max

0≤k≤n−1,1≤j≤s0n
Zk,j ≥ x) where Zk,j ∼ χ2(|Ak|)

≤np0nP (χ2(1) ≥ x) by Bonferroni Inequality

=2np0n(1− Φ(
√
x)) ≤ C√

x
exp(−x

2
+ lnn+ ln p0n),

Let x = 4 (lnn+ ln p0n) = O(lnn), the right hand side of the inequality

converges to 0 as n→ +∞, the result follows.

Moreover, the following inequality will be proved in the Appendix:

△µ (s⋆k)−△µ (s⋆k+1)

lnn
→ +∞. (7.3.5)

Now we prove (II): since
△µ,ϵ(s⋆k)−△µ,ϵ(s⋆k+1)√
△µ(s⋆k)−△µ(s⋆k+1)

can be expressed as a stan-

dard normally distributed random variable, by following the same arguments

as in the proof of (I), we know that with probability tending to 1,

max
k≤p̃0−1

△µ,ϵ(s⋆k)−△µ,ϵ(s⋆k+1)

△µ(s⋆k)−△µ(s⋆k+1)
=

√
Op(lnn)

△µ(s⋆k)−△µ(s⋆k)
= op(1).

Then (II) holds.
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The conclusions (I) and (II) together with (7.3.5) imply

T1 ≥ n ln

{
1 +

△µ(s⋆k)−△µ(s⋆k+1)

2max{△µ(s⋆k+1),△ϵ(s⋆k+1)}
(1 + op(1))

}
. (7.3.6)

We also proved in the Appendix the following inequality:

∀0 ≤ k < p̃0 − 1,△µ(s⋆k)−△µ(s⋆k+1) ≥
△µ(s⋆k+1)

2

(1 + λ0)2n∥β(s−⋆k+1)∥21
, (7.3.7)

where λ0 is a constant larger than 1. Now we investigate (7.3.6) by looking

into two situations separately,

a. If max{△µ(s⋆k+1),△ϵ(s⋆k+1)} = △µ(s⋆k+1), plug this inequality into (7.3.6),

from inequality (7.1.6), we have, with probability tending to 1,

T1
ln pn

≥ n

ln pn
ln

{
1 +

△µ(s⋆k+1)

2(1 + λ0)2n∥β(s−⋆k+1)∥21

}
≥ n

ln pn
ln

{
1 +

λmin (X
τ (s0n)X(s0n))minj∈s0n |β0j|

2(1 + λ0)2n

}
.

Note that
λmin (X

τ (s0n)X(s0n))minj∈s0n |β0j|
(1 + λ0)2n

is upper bounded by a

positive constant, hence there exists a constant C > 0 such that the

right hand side is larger than

C
n

ln pn

λmin (X
τ (s0n)X(s0n))minj∈s0n |β0j|

(1 + λ0)2n
,
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which is larger than C

√
nCn

(1 + λ0)2
where Cn → +∞ according to A3.

Inequality (7.3.4) is proved.

b. If max{△µ(s⋆k+1),△ϵ(s⋆k+1)} = △ϵ(s⋆k+1), which is n(1 + op(1)),

T1
ln pn

≥ n

ln pn
ln

{
1 +

△µ(s⋆k+1)
2

2(1 + λ0)2n2∥β(s−⋆k+1)∥21

}
≥ n

ln pn
ln

{
1 +

λ2min (X
τ (s0n)X(s0n))min3

j∈s0n |β0j|
2(1 + λ0)2n2

}

≥C n

ln pn

λ2min (X
τ (s0n)X(s0n))min3

j∈s0n |β0j|
2(1 + λ0)2n2

≥
C2

n ln pnminj∈s0n |β0j|
2(1 + λ0)2

,

where Cn → +∞. Under A4, we can easily obtain inequality (7.3.4).

(2) If k = p̃0 − 1, △µ(s⋆k+1) = 0, and

△µ(s⋆k) ≥ λmin (X
τ (s0n)X(s0n)) min

j∈s0n
|β0j|2.

Therefore, under A3, with probability tending to 1,

T1
ln pn

≥ n

ln pn
ln

{
1 +

λmin (X
τ (s0n)X(s0n))minj∈s0n |β0j|2

n
(1 + op(1))

}
≥C

λmin (X
τ (s0n)X(s0n))minj∈s0n |β0j|2

ln pn
≥ Cn

√
n min

j∈s0n
|β0j|,

where Cn → +∞. Under A4, inequality (7.3.4) is obtained.

�
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7.3.2 Numerical Study

Simulation Results

In this subsection, we report our simulation study results on the comparison of the

following methods with our proposed sequential LASSO where EBIC is used as the

stopping rule as introduced in Subsection 7.3.1:

(1) ALasso+CV: adaptive LASSO with 5-fold cross validation criterion to select

the final set and for adaptive Lasso, the marginal effect of each covariate is

the initial estimator, as described in [92];

(2) SCAD + CV: the same as ALasso+ CV except the regularization method is

changed to SCAD, as recommended in [175];

(3) SIS+SCAD + CV: as described in [61];

(4) SLasso+ EBIC: sequential LASSO with EBIC where γ = 1 − lnn

2 ln pn
as the

stopping rule;

(5) FSR+ EBIC: the same as SLasso+ EBIC except the sequential method is

changed to Forward Selection.

The R packages parcor, ncvreg, SIS are applied for the realization of ALasso

+ CV, SCAD+CV, SIS+SCAD+CV. The model path from SLasso can also be

obtained by updating the penalty.factor in function glmnet.
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In addition to the selection accuracy, we also consider the prediction error of the

model selected by sequential LASSO and its competitors in this section, which is

computed in the following way. For each replication, we simulate two independent

data sets under the same data structure with the same sample size n, one set is used

to conduct the feature selection and estimate the coefficients in the linear regression

model. For each method, if the estimator is already calculated simultaneously, it

will be used directly. Otherwise, the Least Squares Estimate (LSE) will be the

alternative. Another data set is used to compute the predicted MSE (PMSE),

which is defined as ∥yn − ŷn∥22/n, where ŷn is the fitted observations for this data

set from the selected model. The lower PMSE means better prediction ability.

We consider two different scenarios for the parameters in the regression model

in our simulation. In scenario I, we stick to the diverging pattern in our theoretical

results in Simulation Study A and Simulation Study B. In scenario II, there is no

diverging pattern and examples are borrowed from the literatures, which are in

Simulation Study C and Simulation Study D.

In scenario I, the diverging pattern of pn and p0n are (p0n, pn) = ([4n0.16], [5 exp(n0.3)]).

We let n = 100, 200 and ρ = 0.5. Two types of coefficients for causal features are

considered.

Type I: The coefficients are generated as independent random variables dis-

tributed as (−1)u(4n−0.15 + |z|), where u ∼ Bernoulli(0.4) and z is a normal

random variable with mean 0 and satisfies P (|z| ≥ 0.1) = 0.25. The coefficients
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take both positive and negative values and are roughly of order O(n−0.15).

Type II: The coefficient are generated as 2j0.5n−0.15, 1 ≤ j ≤ p0n. The coeffi-

cients are all positive and the minimum magnitude has order O(n−0.15) while the

maximum magnitude has order O(n−0.07). Once this β is generated, it will be fixed

for all the replications.

Once the true coefficient vector β and Σ, the covariance matrix of X is fixed,

the error variance σ2 is determined by the following equality:

h =
βτΣβ

βτΣβ + σ2
= 0.8.

Simulation Study A Four commonly adopted data structures are considered:

Structure A1: All the pn features are statistically independent with mean zero

and variance 1. Structure A2: The Σ satisfies Σij = ρ|i−j| for all i, j = 1, 2, · · · , pn

and s0n = {1, 2, · · · , p0n}. Structure A3: The Σ satisfies Σij = ρ|i−j| for all i, j =

1, 2, · · · , pn. The true features are scattered in clusters. Specifically, for n =

100, 200,

n p0n s0n

100 8 {19, 20, 21; 39, 40, 41; 60, 61}

200 9 {19, 20, 21; 39, 40, 41; 59, 60, 61}

Structure A4: The Xi,j and ϵi,j are generated independently from a shifted expo-

nential distribution Exp(1)− 1.
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Simulation Study B Instead of the identical correlation structure for the relevant

and irrelevant features in Simulation Study A, we distinguish them in Simulation

Study B. In detail, three different structures are considered:

Structure B1: Let Z1, · · · , Zpn and , W1, · · · ,Wp0n be i.i.d. random vectors

with distribution N(0, I). The feature vectors are generated as:

Xj =
Zj +Wj√

2
, for j ∈ s0n; Xj =

Zj +
∑

k∈s0n Zk√
1 + p0n

for j /∈ s0n.

Structure B2: The features in s0n have constant pairwise correlation. Let

Xj, j ∈ s0n be the causal feature vectors generated accordingly. For j ̸∈ s0n,

the feature vectors are generated as:

Xj = ϵj +

∑
k∈s0n Xk

p0n
,

where ϵj’s are independent vectors from N(0, 0.08 ∗ In). Here the variance of ϵj is

set to 0.08 in order for the second term, which is correlated with causal features,

to dominate the variance.

Structure B3: The features are generated in the same way as in Structure B2

except that the causal features are generated according to the covariance matrix

Σ with Σij = ρ|i−j| and s0n set to {1, 2, · · · , p0n}.
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Simulation Study C In this study, we consider variants of the settings in [92].

For all the examples, the standard deviation of the error term is σ = 1.5 and

(n, pn, p0n) = (100, 200, 15). Instead of positive signs for all the relevant features

as in [92], we assume that the signs of the coefficients are i.i.d samples from (−1)u,

where u ∼ Bernoulli(p). Intuitively, compared with the original data settings, in

these new examples, the marginal effect of each relevant feature and the total effect

of all the relevant features are both weakened. The number of replication is 500.

Structure C1: Σ =

Σ1 0

0 Σ2

, where Σ1,Σ2 have order 15 × 15, (pn − 15) ×

(pn − 15). They both have diagonal elements 1 and off-diagonal elements ρ = 0.2.

The true coefficient vector is β0j = 2.5 for 1 ≤ j ≤ 5, 1.5 for 6 ≤ j ≤ 10, 0.5 for

11 ≤ j ≤ 15 and 0 otherwise. Structure C2: The same as Structure C1 except

that ρ = 0.5. Structure C3: Σ has the same structure as Structure C1 except that

Σ1,Σ2 has order 25 × 25, (pn − 25) × (pn − 25) and Σij = ρ|i−j| in both Σ1,Σ2.

β0j = 2.5 for 1 ≤ j ≤ 5, 1.5 for 11 ≤ j ≤ 15 and 0 otherwise. ρ = 0.2. Structure

C4: The same as Structure C3 except that ρ = 0.5. Structure C5: The same as

Structure C1 except that Σ1,Σ2 has order pn × pn, 0. Structure C6: The same as

Structure C5 except that ρ = 0.5.

Simulation Study D In this study, the examples are adapted from those given

in [97], which are briefly summarized as follows: in the linear model yi = Xiβ+ ϵi

for 1 ≤ i ≤ n.
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Structure D1: For 1 ≤ j ≤ pn, Xi,j = di,j + ηwi, where di,j’s are i.i.d

from distribution N(0, 1), wi’s are i.i.d from N(0, 1), ϵi’s are i.i.d from N(0, σ2).

di,j, wi, ϵi are mutually independent. The parameters are (β01,β02,β03,β04,β05) =

(3,−3.5, 4,−2.8, 3.2) and β0j = 0 for j > 5. (n, pn, σ, η) = (100, 1000, 1, 2).

Structure D2: The same as D1 except that β0j = 3.2 for j = 1, 2, 3, 4; 4.4, for j =

5, 6; 3.5 for j = 7, 8, 9 and (n, pn, σ, η) = (100, 1000, 1.5, 1).

Structure D3: For 1 ≤ j ≤ 10, Xi,j’s are i.i.d from N(0, 1), Xi,j = 0.25Zi,j +

√
0.75

10∑
t=1

Xi,t for j > 10, where Zi,j’s are i.i.d from N(0, 1) and are independent of

Xi,j, 1 ≤ j ≤ 10. The true coefficient vector is

(β01,β02, · · · ,β0,10) = (3, 3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9, 9.75)

and (n, pn, σ) = (100, 1000, 1).

It was verified in [97] that, for Structures D1 and D2, all the irrelevant features

are weakly correlated with the relevant features in terms of ∥Σ−1
s0n,s0n

Σs0n,j∥1 < 1 for

all j /∈ sc0n, but the sparse Riesz Condition was violated because max
1≤|s|≤ν

λmax (Σs,s) =

1 + νη2

1 + η2
, which is not bounded when |s| diverges with n. In Structure D3,

|Σj,s0nΣ
−1
s0n,s0n

Sign(β)|1 > 1
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for all j /∈ sc0n and mini/∈s0n |E(Xτ
i y)| ≥ maxi∈s0n |E(Xτ

i y)|. That is, the conditions

for the selection consistency of sequential LASSO are violated.

The averaged PDRn and FDRn and their standard deviations in the parenthesis

are reported in the Tables 7.3.1, 7.3.3, 7.3.2, 7.3.4, 7.3.5 and 7.3.6. Here are the

conclusions we draw by investigating the results in Tables 7.3.1-7.3.6.

If the selection accuracy of the relevant features is of interest, for general cases,

where all the features have a unique covariance structure as in simulation study

A and cases where partially orthogonality condition is satisfied, as in simulation

study C. No matter whether the signs of the signals’ effects are consistent or not,

SLasso+EBIC and FSR+EBIC are comparably the best two methods in terms of

high PDR and low FDR. When the model is very sparse, like in simulation study

A, SCAD+CV tends to select 6 to 7 more features (p0n = 8) than the true size

of relevant features. When the model becomes less sparse, like in simulation C,

where p0n = 15, pn = 200, SCAD+CV is much better. ALasso+CV selects too

many features into the model for all the cases, they have very high PDRs and also

high FDRs, while SIS+SCAD is too conservative, especially when the model is less

sparse. For examples within which uniform constant ρ or power decay correlation

ρ|i−j| is one of the parameters, we also conduct simulations when ρ = 0.3, 0.5, our

findings are similar as ρ = 0.5, which is presented here.

Structure A2 with Type II coefficient is one exception in which SIS+SCAD

is among the top three best methods. In this situation, each relevant feature is
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weakly or at most moderately correlated with at most two relevant features. Also,

there are at most two irrelevant features which are weakly or at most moderately

correlated with only one or two relevant features. The marginal effect of each

relevant feature is also strengthened.

In simulation study B, all the irrelevant features have weak marginal but strong

overall correlation with the relevant features. SLasso + EBIC is better than

FSR+EBIC in terms of higher PDR and lower FDR, and the differences are quite

significant. The same pattern prevails under all three structures B1, B2 and B3.

But SCAD+CV performs slightly better than SLasso+EBIC. It is also remarkable

to notice that in structure D3 of simulation study D, even when the sufficient con-

ditions for the selection consistency of sequential Lasso is violated, SLasso+EBIC

still has the best performance among all the methods.

As a stepwise feature selection procedure, the selection consistency of Forward

Selection (FSR) is still unknown. In [166], the author proved the sure screening

property of FSR with EBIC, which results in a good starting point for adaptive

Lasso and SCAD with EBIC to determine the final model. The proposed procedure

in [166] selects the model with minimum EBIC from the top n models generated

from FSR. Consistent with [97], we find that this procedure always chooses the

largest model under consideration if the model sequence is close to n. In principle,

FSR serves as a screening procedure in [166]. Since adaptive Lasso in [92] and

SCAD in [107] are capable of handling the ultra high feature space directly without
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losing their oracle properties, the screening becomes less necessary. Our simulation

result shows that the selection consistency of FSR with a certain stopping rule can

be expected.

If prediction error is of interest, we can see that SCAD + CV has the smallest

PMSE as well as small model size (MSize) for almost all the settings. ALasso+CV

is comparable with SCAD + CV and is only slightly worse than SCAD + CV in

terms of PMSE but has a much larger MSize. FSR+EBIC and SLasso+EBIC,

which are specifically devised for the identification of relevant features, have much

larger PMSE than the other three methods in all the settings, but their MSize are

in general smaller. They themselves are comparable while SLasso+EBIC is slightly

better than FSR+EBIC. The performance of SIS+SCAD+CV is between the two

extremes. The simulation study demonstrates that, for the purpose of prediction,

SCAD+CV is the best method, and that FSR + EBIC and SLasso+EBIC are not

good for prediction.

Real Data Analysis: Rat Data

In this subsection, we apply the methods we are considering in Section 7.3.1 to

a data set published in [143]. The original data set consists of expression levels

of 120 rats from 31099 probes, including TRIM 32, which was recently found to

cause Bardet-Biedl syndrom ([37]) and was the response variable in our analysis.

It is important to detect the genes which are related to TRIM 32, such study has
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been done by statisticians in various literatures such as [92], [107], [94], [56], [155]

and [91]. Instead of the 31098 probes presented in the data, we will focus on the

18975 probes which are differently expressed as in all the above-mentioned articles.

All the probes are standardized to have mean 0 and standard deviation 1 before

further analysis.

Table 7.3.8 displays the genes detected by all the considered methods when the

top 3000 probes with the largest variances are considered. It is worthy to note

that, the only two genes, 1383110 at, 1392692 at, selected by SLasso+ EBIC, are

also simultaneously selected by FSR+EBIC and ALasso+CV. One of these two,

1383110 at is detected by all the six methods (three different methods: Lasso+CV,

Scaled Lasso, Scaled MC+, with two different p for each method) in [155], it was

also reported in [92] for Lasso+CV and ALasso+CV. Another one, 1392692 at is

also reported as one detected by Lasso+CV in [155].

For the purpose of comparison, we follow the ideas in the references, select

3000 probes with the largest variances firstly, then select the top p covariates with

the largest correlation coefficients with TRIM32. These p covariates are used for

computing the averaged model size and predictive mean square errors. For each

replication, the 120 rats are randomly partitioned into two groups with sample size

100 and 20 respectively, they are referred to training data set and testing data.

The number of replication is 100 and p is set to be 1000,2000,3000. The results

are listed in Table 7.3.9. Compared with the findings in previous studies, we find
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that our method detects much less genes.

Table 7.3.1 Results on Comparisons of SLasso and its Competitors: Structure A and
Type I Coefficients with Size n = 100

Methods Structure MSize PDR FDR MSE
ALasso+CV A1 37.78 (12.54) .999 (.009) .767(.072) 13.714 (2.837)
SCAD+CV 14.9 (3.77) .998 (.022) .43(.142) 1.523 (2.943)
SIS+SCAD 4.99 (.07) .488 (.098) .219(.157) 25.135 (5.091)
FSR+EBIC 8.26 (1.37) .963 (.149) .063(.098) 67.973 (9.563)

SLasso+EBIC 8.39 (1.31) .968 (.134) .071(.098) 68.06 (9.541)

ALasso+CV A2 26.77 (15.81) .861 (.112) .674(.142) 17.07 (3.334)
SCAD+CV 13.69 (6.08) .724 (.189) .513(.179) 18.178 (4.162)
SIS+SCAD 4.89 (.31) .484 (.066) .21(.086) 16.68 (3.142)
FSR+EBIC 4.96 (1.73) .579 (.201) .057(.104) 36.975 (8.388)

SLasso+EBIC 4.57 (1.59) .511 (.176) .091(.133) 36.939 (8.254)

ALasso+CV A3 31.15 (13.18) .967 (.063) .706(.129) 18.632 (3.99)
SCAD+CV 15.02 (5.24) .851 (.138) .498(.161) 20.583 (5.519)
SIS+SCAD 4.85 (.39) .347 (.069) .427(.106) 23.728 (5.129)
FSR+EBIC 6.24 (1.74) .726 (.201) .064(.096) 39.126 (8.956)

SLasso+EBIC 5.98 (1.72) .674 (.188) .088(.116) 38.868 (8.885)

ALasso+CV A4 37.29 (14.74) .998 (.018) .756(.087) 14.857 (4.042)
SCAD+CV 14.45 (4.13) .996 (.021) .403(.169) 12.207 (4.161)
SIS+SCAD 4.96 (.21) .49 (.103) .208(.168) 24.89 (5.388)
FS+EBIC 8.39 (1.39) .964 (.132) .072(.088) 65.511 (11.288)

SLasso+EBIC 8.37 (1.55) .958 (.145) .075(.092) 65.289 (11.232)
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Table 7.3.2 Results on Comparisons of SLasso and its Competitors: Structure A
and Type II Coefficients with Size n = 100

Methods Structure MSize PDR FDR MSE
ALasso+CV A1 35.46 (13.15) .977 (.05) .75(.091) 14.568 (3.117)
SCAD+CV 14.59 (3.753) .967 (.063) .438(.136) 12.027 (2.702)
SIS+SCAD 4.96(.21) .431 (.082) .303(.132) 21.122 (4.93)
FSR+EBIC 7.54 (1.42) .888 (.146) .055(.104) 20.48 (4.174)

SLasso+EBIC 7.72 (1.26) .902 (.111) .056(.081) 20.278 (3.575)

ALasso+CV A2 21.66 (11.71) .951 (.065) .565(.187) 28.646 (5.42)
SCAD+CV 12.05 (4.92) .744 (.129) .431(.218) 34.789 (7.02)
SIS+SCAD 4.94 (.24) .532 (.065) .139(.097) 32.129 (5.174)
FSR+EBIC 5.36 (1.19) .617 (.117) .067(.106) 40.529 (8.624)

SLasso+EBIC 5.04 (1.26) .572 (.122) .077(.116) 42.224 (9.458)

ALasso+CV A3 25.78 (11.28) .968 (.058) .646(.139) 20.92 (3.59)
SCAD+CV 14.09 (4.66) .827 (.112) .479(.175) 23.117 (5.111)
SIS+SCAD 4.86 (.38) .323 (.083) .469(.128) 27.779 (6.898)
FSR+EBIC 6.31 (1.17) .733 (.131) .063(.101) 42.073 (8.191)

SLasso+EBIC 6.16 (1.47) .692 (.148) .089(.106) 43.327 (8.517)

ALasso+CV A4 35.98 (13.44) .978 (.054) .756(.082) 15.535 (4.129)
SCAD+CV 14.13 (3.62) .96 (.07) .423(.143) 13.594 (4.358)
SIS+SCAD 4.89 (.34) .425 (.088) .304(.134) 22.682 (6.318)
FS+EBIC 7.72 (1.32) .886 (.124) .073(.093) 21.45 (5.584)

SLasso+EBIC 7.81 (1.34) .893 (.127) .078(.097) 21.516 (5.653)
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Table 7.3.3 Results on Comparisons of SLasso and its Competitors: Structure A
and Type I Coefficients with Size n = 200

Methods Structure MSize PDR FDR MSE
ALasso+CV A1 49.05 (17.96) 1.00 (.000) .791(.077) 10.937 (1.463)
SCAD+CV 13.65 (4.79) 1.00 (.000) .283(.183) 8.638 (.897)
SIS+SCAD 8.74 (.46) .793 (.077) .181(.086) 12.355 (3.309)
FSR+EBIC 9.37 (.65) 1.00 (.000) .035(.06) 58.279 (6.013)

SLasso+EBIC 9.37 (.66) 1.00 (.000) .035(.061) 58.282 (6.012)

ALasso+CV A2 40.57 (19.77) .941 (.072) .735(.14) 15.297 (2.03)
SCAD+CV 23.71 (7.32) .931 (.11) .612(.127) 14.159 (2.928)
SIS+SCAD 8.06 (.79) .661 (.028) .255(.076) 14.715 (1.715)
FSR+EBIC 7.92 (1.69) .846 (.179) .035(.07) 36.3 (6.372)

SLasso+EBIC 7.83 (2.09) .796 (.19) .073(.1) 35.832 (6.151)

ALasso+CV A3 62.88 (19.69) 1.00 (.000) .845(.042) 9.816 (1.41)
SCAD+CV 14.53 (5.37) .999 (.008) .313(.201) 7.569 (1.237)
SIS+SCAD 7.85 (.96) .437 (.068) .495(.081) 15.528 (1.858)
FSR+EBIC 9.11 (.99) .977 (.096) .032(.059) 41.214 (4.95)

SLasso+EBIC 8.96 (1.62) .941 (.162) .051(.079) 40.37 (5.611)

ALasso+CV A4 50.23 (16.35) 1.00 (.000) .801(.068) 11.27 (2.001)
SCAD+CV 13.86 (4.00) 1.00 (.000) .303(.173) 9.294 (1.788)
SIS+SCAD 8.69 (.56) .764 (.086) .206(.097) 13.558 (3.708)
FS+EBIC 9.61 (.94) 1.00 (.000) .056(.078) 59.198 (6.788)

SLasso+EBIC 9.56 (.84) 1.00 (.000) .052(.074) 59.174 (6.799)
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Table 7.3.4 Results on Comparisons of SLasso and its Competitors: Structure A
and Type II Coefficients with Size n = 200

Methods Structure MSize PDR FDR MSE
ALasso+CV A1 47.8 (16.98) .995 (.023) .79(.072) 12.646 (1.796)
SCAD+CV 15.99 (6.20) .988 (.034) .375(.195) 10.653 (1.317)
SIS+SCAD 8.27 (.86) .648 (.083) .288(.106) 13.92 (3.073)
FSR+EBIC 9.04 (.78) .966 (.051) .034(.058) 18.349 (2)

SLasso+EBIC 9.03 (.78) .966 (.051) .033(.058) 18.329 (1.996)

ALasso+CV A2 26.4 (13.25) .972 (.05) .593(.18) 27.529 (3.399)
SCAD+CV 19.08 (7.67) .837 (.109) .54(.189) 30.767 (4.664)
SIS+SCAD 8.5 (.56) .796 (.061) .156(.051) 24.9 (2.518)
FSR+EBIC 7.11 (1.14) .754 (.108) .04(.073) 35.261 (4.272)

SLasso+EBIC 6.86 (1.34) .709 (.113) .06(.085) 36.411 (4.734)

ALasso+CV A3 34.24 (15.34) .986 (.037) .693(.125) 19.966 (2.312)
SCAD+CV 18.42 (6.77) .895 (.081) .508(.166) 20.096 (2.766)
SIS+SCAD 8.39 (.63) .576 (.069) .384(.05) 17.891 (2.17)
FSR+EBIC 7.76 (.91) .829 (.09) .034(.063) 38.836 (4.236)

SLasso+EBIC 7.73 (1.17) .802 (.098) .058(.083) 39.176 (4.492)

ALasso+CV A4 47.08 (16.78) .995 (.023) .787(.072) 12.931 (2.468)
SCAD+CV 15.76 (4.71) .986 (.038) .39(.168) 11.115 (2.159)
SIS+SCAD 8.32 (.85) .641 (.089) .301(.107) 14.62 (3.599)
FS+EBIC 9.25 (1.08) .959 (.06) .059(.08) 18.815 (2.653)

SLasso+EBIC 9.26 (1.03) .962 (.057) .058(.079) 18.797 (2.645)
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Table 7.3.5 Results on Comparisons of SLasso and Its Competitors: Structure B
with Type I coefficients

Methods Structure MSize PDR FDR MSE
n = 100

ALasso+ CV B1 15.12 (8.12) .999 (.009) .356(.242) 4.676 (.82)
SCAD+CV 8.09 (.69) .979 (.099) .029(.099) 4.45 (.933)
SIS+SCAD 4.97 (.26) .543 (.068) .126(.1) 17.033 (3.178)
FSR+EBIC 8.15 (.83) .745 (.19) .27(.169) 68.821 (9.704)

SLasso+EBIC 8.25 (.96) .932 (.153) .092(.143) 64.088 (8.149)

ALasso+ CV B2 11.17 (5.16) 1.00 (.000) .188(.225) 2.312 (.419)
SCAD+CV 7.99 (.07) .999 (.009) .000(.000) 2.582 (1.049)
SIS+SCAD 4.87 (.36) .527 (.076) .132(.115) 10.02 (2.652)
FSR+EBIC 6.69 (3.45) .779 (.398) .049(.086) 32.469 (8.603)

SLasso+EBIC 6.54 (3.46) .784 (.409) .028(.059) 31.718 (8.4)

ALasso+ CV B3 11.21 (5.17) 1.00 (.000) .19(.226) 5.196 (.842)
SCAD+CV 7.99 (.1) .999 (.012) .000(.000) 5.147 (1.031)
SIS+SCAD 4.98 (.14) .504 (.034) .19(.046) 10.324 (1.601)
FSR+EBIC 7.29 (1.8) .782 (.167) .124(.104) 39.785 (11.271)

SLasso+EBIC 7.54 (1.71) .911 (.188) .027(.057) 35.651 (7.288)

n = 200
ALasso+ CV B1 25.53 (15.91) .956 (.071) .507(.283) 4.205 (.539)
SCAD+CV 9.09 (1.09) .972 (.121) .031(.124) 3.963 (.62)
SIS+SCAD 8.92 (.39) .864 (.064) .128(.046) 4.498 (1.987)
FSR+EBIC 9.19 (.91) .708 (.206) .311(.183) 58.925 (6.083)

SLasso+EBIC 9.22 (.99) .873 (.209) .148(.19) 55.636 (5.817)

ALasso+ CV B2 13.3 (6.41) 1.00 (.000) .215(.242) 2.186 (.267)
SCAD+CV 9 (0) 1.00 (.000) .000(.000) 2.32 (.753)
SIS+SCAD 8.72 (.74) .449 (.064) .535(.061) 3.327 (1.679)
FSR+EBIC 9.33 (.61) .993 (.043) .037(.074) 31.14 (4.188)

SLasso+EBIC 9.25 (.56) 1.00 (.000) .023(.052) 30.799 (3.538)

ALasso+ CV B3 15.68 (9.54) .986 (.044) .276(.284) 5.303 (.622)
SCAD+CV 8.99 (.100) .999 (.011) .000(.000) 5.199 (.71)
SIS+SCAD 7.77 (.83) .681 (.066) .206(.07) 7.975 (1.258)
FSR+EBIC 9.37 (.59) .943 (.086) .091(.1) 35.593 (4.762)

SLasso+EBIC 9.26 (.59) 1.00 (.000) .024(.054) 33.636 (3.546)
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Table 7.3.6 Results on Comparisons of SLasso and its Competitors: Structure C

Methods Structure MSize PDR FDR MSE
ALasso+CV C1 39.59(8.37) .956 (.048) .621(.085) 3.918 (.689)
SCAD+CV 10.81 (1.01) .687 (.041) .042(.064) 5.392 (1.288)
SIS+SCAD 5 (0) .333 (0) 0(0) 10.802 (1.129)
FSR+EBIC 11.49 (1.09) .755 (.061) .012(.038) 58.15 (4.487)

SLasso+EBIC 10.97 (1.77) .708 (.101) .027(.059) 58.613 (5.778)

ALasso+CV C2 50.71 (13.19) .846 (.078) .735(.062) 4.645 (.863)
SCAD+CV 12.07 (2.26) .711 (.064) .1(.102) 3.843 (1.077)
SIS+SCAD 2.78 (.63) .145 (.035) .201(.163) 20.282 (1.403)
FSR+EBIC 10.22 (2.15) .672 (.138) .011(.036) 54.249 (8.709)

SLasso+EBIC 9.10 (3.11) .589 (.194) .022(.054) 49.325 (13.343)

ALasso+CV C3 54.69 (11.14) .909 (.045) .741(.05) 7.041 (1.381)
SCAD+CV 17.52 (4.09) .838 (.053) .25(.147) 4.141 (.943)
SIS+SCAD 5 (0) .332 (.009) .004(.028) 18.665 (1.569)
FSR+EBIC 12.43 (1.67) .773 (.115) .067(.09) 41.013 (3.291)

SLasso+EBIC 10.81 (3.15) .639 (.206) .115(.121) 40.565 (4.267)

ALasso+CV C4 56.49 (14.67) .881 (.077) .752(.059) 6.802 (1.371)
SCAD+CV 17.12 (3.95) .792 (.065) .277(.136) 3.858 (.997)
SIS+SCAD 4.75 (.55) .259 (.041) .175(.127) 15.327 (2.527)
FSR+EBIC 10.93 (2.22) .696 (.128) .04(.062) 58.294 (4.162)

SLasso+EBIC 10.52 (2.63) .66 (.155) .053(.073) 57.878 (4.517)

ALasso+CV C5 47.77 (9.03) .873 (.064) .717(.053) 8.05 (1.131)
SCAD+CV 14.05 (2.96) .708 (.095) .223(.13) 8.104 (1.4)
SIS+SCAD 5 (0) .241 (.038) .276(.114) 20.799 (2.507)
FSR+EBIC 11.6 (1.76) .693 (.093) .097(.085) 52.102 (4.754)

SLasso+EBIC 11.41 (2.14) .655 (.101) .128(.097) 51.154 (5.147)

ALasso+CV C6 45.34 (13.43) .858 (.072) .695(.079) 5.514 (.853)
SCAD+CV 13.00 (2.82) .731 (.078) .135(.115) 4.237 (.893)
SIS+SCAD 3.03 (.67) .198 (.042) .016(.062) 21.581 (1.881)
FSR+EBIC 11.19 (1.29) .705 (.066) .05(.067) 55.287 (3.741)

SLasso+EBIC 11.19 (2.07) .677 (.109) .083(.082) 54.693 (5.639)
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Table 7.3.7 Results on Comparisons of SLasso and its Competitors: Structure D

Methods Structure MSize PDR FDR MSE
ALasso+ CV D1 28.92 (8.75) 1.00 (.000) .807(.077) 3.241 (2.227)
SCAD+CV 4.88 (.33) .975 (.066) .000(.000) 7.333 (9.033)
SIS+SCAD 3.07 (.84) .366 (.075) .378(.163) 34.422 (5.55)
FSR+EBIC 5.26 (.74) .992 (.08) .047(.088) 267.434 (37.092)

SLasso+EBIC 5.09 (.96) .972 (.147) .035(.082) 264.058 (44.554)

ALasso+ CV D2 45.71 (7.34) 1.00 (.000) .798(.034) 8.956 (6.331)
SCAD+CV 9.00 (.19) .998 (.016) .002(.022) 15.109 (11.959)
SIS+SCAD 4.98 (.16) .136 (.112) .754(.205) 239.719 (63.737)
FSR+EBIC 11.5 (2.16) .942 (.205) .254(.19) 61.597 (38.211)

SLasso+EBIC 12.38 (2.87) .871 (.297) .373(.224) 77.068 (64.969)

ALasso+ CV D3 69.64 (5.92) .852 (.051) .877(.012) 7.893 (4.293)
SCAD+CV 8.77 (2.57) .583 (.104) .308(.125) 28.737 (10.868)
SIS+SCAD 4.29 (.71) .000 (.000) 1.00(.000) 58.334 (10.717)
FSR+EBIC 18.15 (2.98) .785 (.122) .561(.075) 45.766 (15.38)

SLasso+EBIC 9.82 (3.49) .754 (.31) .262(.146) 85.231 (33.219)

Table 7.3.8 Rat Data: The Gene Probes Selected by All Considered Methods

Methods Probes ID
ALasso+CV 1387060 at, 1388538 at, 1380070 at, 1370052 at, 1382452 at, 1379079 at,

1397489 at, 1374131 at, 1383110 at, 1389584 at, 1392692 at, 1379971 at
1385687 at, 1369353 at, 1374106 at, 1383673 at, 1379495 at, 1383749 at

1382835 at, 1395415 at, 1383996 at.

SCAD+CV 1394689 at, 1370434 a at, 1375724 at, 1378765 at, 1375139 at, 1388538 at
1370052 at, 1382452 at, 1377781 at, 1383841 at, 1380311 at, 1379460 at,
1385921 at, 1384886 at, 1384136 at, 1387111 at, 1390789 at, 1376693 at,

1389584 at, 1389231 at, 1390788 a at 1367741 at, 1374106 at, 1387455 a at,
1383749 at, 1379803 at, 1383996 at, 1382633 at

SIS+SCAD 1377546 at, 1396809 at, 1381430 at, 1393543 at, 1372481 at

FSR+EBIC 1383110 at, 1392692 at, 1389584 at

SLasso+EBIC 1383110 at, 1392692 at
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Table 7.3.9 Rat Data: The Averaged Number of Selected Genes
and Prediction Error with Different Numbers of The Considered Genes

p = 1000 p = 2000 p = 3000
Methods MSize MSE MSize MSE MSize MSE

ALasso+CV 46.27 .507 45.61 .525 40.78 .552
(21.17) (.375) (30.17) (.399) (29.34) (.428)

SCAD+CV 14.56 .61 16.25 .628 15.64 .635
(4.91) (.456) (5.89) (.465) (6.21) (.489)

SIS+SCAD 4.08 .566 4.08 .566 4.08 .566
(.8) (.337) (.8) (.337) (.8) (.337)

FSR+ EBIC 3.27 .871 3.06 .888 2.91 .907
(.89) (.463) (.89) (.465) (.81) (.473)

SLasso+EBIC 2.94 1.069 2.61 1.025 2.45 1.03
(1.09) (.501) (.96) (.463) (.87) (.47)
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CHAPTER 8

Sure Screening Property of

Sequential LASSO

When the dimension of the predictor space is ultra-high or the number of true

features diverges as sample size increases, some researchers may argue that it is

unrealistic to guarantee the selection consistency for a stepwise feature selection

algorithm ([61], [166]). In this chapter, we will show that sequential LASSO can

also serve as an efficient screening procedure as SIS and Forward Selection for its

sure screening property stated in Theorem 8.0.2. For simplicity, we assume that

the variables enter the model one by one.

Assumption 8.0.1. We assume that all the predictors are standardized to have

mean 0 and standard deviation 1 and the following conditions are satisfied,
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(A1.) There exists p0 > 0, a ≥ 0, 0 ≤ b < 0.5, Lβ, Uβ > 0 such that

p0n ≤ p0n
a; β0,min ≥ Lβn

−b; β0,max ≤ Uβ,

where β0,min = min
j∈s0n

|β0j|, β0,max = max
j∈s0n

|β0j|.

(A2.) There exists c1 > 0 such that λmax(X
τ (s0n)X(s0n)) ≤ nc1.

(A3.) Define

λm = min
|s|≤m

λmin (X
τ (s ∪ s0n)X(s ∪ s0n)) ,

where λmin refers to the minimum eigenvalue, there exists c2 > 0 such that

min{λm : m = O(na+2b)} ≥ nc2.

Parallel to the selection consistency of sequential LASSO, our results in The-

orem 8.0.2 apply to both deterministic and randomly generated design matrices.

For random design matrix, assume the covariance matrix of the covariates is Σ. As

a corollary of Lemma 1 in [166], assume there exists a constant p and κ > 0 such

that

ln(pn) ≤ pnκ, κ+ 3a+ 6b < 1,

then (A3.) in Assumption 8.0.1 holds if λmin(Σ) > c for some constant c > 0.
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Theorem 8.0.2. Under Assumption 8.0.1, let λ0 be the value defined in the Ap-

pendix, define

K =

[
(1 + λ0)

2c1U
2
βp0

c22L
2
β

na+2b

]
+ 1,

where [·] denotes the integer part of a real number, we have

P (∃{λ⋆i }ni=1 such that s0n ⊆ s⋆K) → 1.

Proof of Theorem 8.0.2. By examining the proof of inequality (7.3.7), we can easily

find that this inequality holds for any k as long as s−⋆k ̸= ∅. Therefore, if s−⋆K ̸= ∅,

when 0 ≤ i ≤ K − 1,

△µ(s⋆i+1)
2

(1 + λ0)2n∥β0(s
−
⋆i+1)∥21

≥
λ2K∥β0(s

−
⋆i+1)∥42

(1 + λ0)2n|s−⋆i+1|∥β0(s
−
⋆i+1)∥22

=
λ2K∥β0(s

−
⋆i+1)∥22

(1 + λ0)2n|s−⋆i+1|

≥(
λ2K

(1 + λ0)2n
)

(
∥β0(s

−
⋆i+1)∥1

|s−⋆i+1|

)2

≥
(λKβ0,min)

2

(1 + λ0)2n
.

(8.0.1)

Therefore,

△µ(S)−△µ(s⋆K) =
K−1∑
i=0

(△µ(Si)−△µ(s⋆i+1)) ≥
K(λKβ0,min)

2

(1 + λ0)2n
. (8.0.2)

On the other hand,

△µ(S)−△µ(s⋆K) ≤ △µ(S) ≤ nc1∥β0∥22 ≤ c1np0n(β0,max)
2.
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Under Assumption 8.0.1, by plugging in the K which is defined in Theorem 8.0.2,

we have

K(λKβ0,min)
2

(1 + λ0)2n
≥ c1np0n(β0,max)

2.

It is a contradiction. Therefore, s−⋆K = ∅. Equivalently, all the true causal features

are covered in the first K steps. �

For the purpose of comparison, let K be the smallest number of steps Forward

Selection needs to bring in all the true causal features, a, b, κ has the same meaning

as we defined in Assumption 8.0.1. If λmin(Σ) > c is assumed, the following

relationship is needed in [166]:

a ≤ 2b; κ+ 6a+ 12b < 1; K = O(n2a+4b).

We can see from Theorem 8.0.2 that there is indeed a remarkable improvement for

sequential LASSO compared with Forward Selection.

After successfully selecting all the relevant features, we make use of EBICγ to

define a subset ŝ of s⋆K by

ŝ = {j : EBICγ(s⋆K − {j}) > EBICγ(s⋆K), j ∈ s⋆K} . (8.0.3)

Theorem 8.0.3. Under Assumption 8.0.1, suppose ln pn = O(nκ), when κ < 1−2b
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and γ > 0, we have

lim
n→+∞

P (ŝ = s0n) = 1.

Proof of Theorem 8.0.3. By definition (8.0.3), we have

P (ŝ ̸= s0n) =P
(
∃j ∈ s⋆K , |β0j| = 0,EBICγ(s⋆K − {j}) > EBICγ(s⋆K)

)
+ P

(
∃j ∈ s⋆K , |β0j| ̸= 0,EBICγ(s⋆K − {j}) < EBICγ(s⋆K)

)
=P1 + P2.

(8.0.4)

Now we calculate P1, P2 separately: note that s0n ⊂ s⋆K , hence △µ(s⋆K) = 0,

let J1 = s⋆K ,J2 = s⋆K − {j}, T2 in (7.3.3) equals to lnn+ 2γ ln pn.

1. If |β0j| = 0, by noting s0n ⊂ s⋆K − {j}, we know that △µ(s⋆K − {j}) = 0.

Therefore, T1 in (7.3.3) equals to

n ln

{
1− △ϵ(s⋆K − {j})−△ϵ(s⋆K)

△ϵ(s⋆K − {j})

}
.

By using similar techniques as in Proof of (I) in Theorem 7.3.1, we know that

max
j∈s⋆K

(△ϵ(s⋆K − {j})−△ϵ(s⋆K)) = Op(lnn),

min
j∈s⋆K

△ϵ(s⋆K − {j}) = n (1 + op(1)) .
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By noting that lim
x→0

ln(1− x)

−x
= 1 and

lnn

n
→ 0, we have T1 + T2 > 0 with

probability tending to 1 when γ > 0, that is, P1 → 0.

2. If |β0j| ̸= 0, denote

Aj,s = Xτ
j [I −H0(s− {j})]Xj Bj,s = Xτ

j [I −H0(s− {j})]ϵn.

Note that max1≤j≤pn (△ϵ(s⋆K − {j})−△ϵ(s⋆K)) = Op(ln pn), therefore,

−T1 =n ln

{
1 +

β2
0jAj,s⋆K + 2β0jBj,s⋆K +△ϵ(s⋆K − {j})−△ϵ(s⋆K)

△ϵ(s⋆K)

}

=n ln

1 +
β2

0jAj,s⋆K + 2
√

β2
0jAj,s⋆KOp(lnn) +Op(ln pn)

n

 .

By definition and A3,

Aj,s⋆K ≥ λmin (X
τ (s⋆K)X(s⋆K)) ≥ nc2.

Therefore, we know that there exists a positive constant C such that

−T1 ≥ n ln
{
1 + Cn−2b

}
≥ C ′n1−2b ≥ T2.

when γ > 0 and κ+ 2b < 1. Hence, T1 + T2 < 0 with probability tending to

1, which means P2 → 0.
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�

Theorem 8.0.2 together with Theorem 8.0.3 provides a different way of sequen-

tial LASSO coupled with EBIC to achieve selection consistency. Intuitively, this

new procedure requires much weaker assumptions than Theorems 7.1.1 and 7.2.1

because it allows irrelevant features to enter the model in the stepwise selection

process. However, it is challenging to find a feasible way to approach K. We leave

this work to the future.
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Conclusion and Discussion for

Part II

Stepwise feature selection procedures are appealing for their computational ad-

vantages. In this part, we proposed a new stepwise feature selection procedure,

sequential LASSO and explored its properties.

In the literature, Efron et al proposed a sequential procedure called least angle

regression (LAR) in [53]. With slight modification, the algorithm of LAR can

also compute the solution path of LASSO sequentially, which made LASSO more

popular. The classical forward stepwise regression (FSR) has been recently re-

examined in [166] on its properties in feature selection with ultra-high dimensional

feature space. A different version of forward stepwise regression referred to as
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forward selection in [170] has been re-considered recently and dubbed as orthogonal

matching pursuit (OMP), see [158], [159], [30]. Their differences can be seen from

numerical study results in Section 7.3.2. We can also analyze these differences

theoretically.

First, consider the difference between the sequential LASSO and FSR. After

the sub model s∗k is selected, the sequential LASSO selects the next feature among

the features that maximize

g1(j) = |Xτ ({j})[I −H0(s∗k)]yn|,

see the proof of Theorem 7.1.1. The FSR selects the next feature by minimizing

RSS(j) = yτ
n[I −H0(s∗k ∪ {j})]yn which is equivalent to maximizing

g2(j) =
|Xτ ({j})[I −H0(s∗k)]yn|√
Xτ ({j})[I −H0(s∗k)]X({j})

.

The equivalence is established by the following identity,

I −H0(s∗k ∪ {j}) = [I −H0(s∗k)]

(
I − X({j})Xτ ({j})[I −H0(s∗k)]

Xτ ({j})[I −H0(s∗k)]X({j})

)
.

The sequential LASSO selects the next feature that has the highest correlation

with the current residual [I − H0(s∗k)]yn, but the FSR selects the next feature

that has the highest inflated correlation with an inflating factor [Xτ ({j})[I −
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H0(s∗k)]X({j})]−1/2. If X({j}) is orthogonal to R(s∗k), the factor is a constant

(note that the X({j})’s are standardized), but larger than the constant otherwise.

The more correlated the X({j}) is with the features in s∗k, the larger the inflat-

ing factor. If two features have the same absolute correlation with the current

residual, the FSR will select the one that is more correlated with the features in

s∗k. If one feature has a lower correlation with the current residual but is more

correlated with the features in s∗k than another feature, it might turn out that

this feature has a higher inflated correlation and is selected by FSR. Obviously,

this is a disadvantage of FSR, especially when high spurious correlations present

in small-n-large-p problems.

The OMP selects the next feature (or features) maximizing g1(j). At steps

where there is only one feature that maximizes g1(j), the sequential LASSO and

the OMP select the same next feature. But at steps where there are more than one

features that maximize g1(j), there is a difference between the sequential LASSO

and the OMP. The OMP selects all those features. But the sequential LASSO se-

lects them all subject to a partial positive cone condition, see the proof of Theorem

7.1.1. If the partial positive cone condition is not satisfied, the sequential LASSO

generally does not select all those features. The sequential LASSO can be easily

extended as a sequential penalized likelihood method for generalized linear models

but there is no obvious way by which the OMP can be extended.

Under the well-known irrepresentable condition, the LASSO has been shown in
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[183] to possess the property of selection consistency while the penalty parameter

is properly chosen . If the covariance matrix of the vector of the covariates has

eigenvalues bounded both from above and away from zero in addition to some other

assumptions, it is established in [166] that the FSR has the sure screening property

when the procedure is carried out at a certain step before the number of steps

reaches the sample size. The OMP has been studied under conditions called Exact

Recovery Condition (ERC) in [31],[158] and Mutual Incoherence Property (MIP)

in [30]. The ERC is similar to the irrepresentable condition but much stronger.

The MIP is the condition that ρmax <
1

2k − 1
where ρmax is the largest absolute

correlation among all pairs of covariates and k is the number of causal covariates.

The ERC implies MIP, see [158], [30]. Both the sure screening property and the

selection consistency of OMP have been examined in [30] under MIP together

with other conditions. Our theories suggest that the conditions for the sequential

LASSO to be selection consistent may be much weaker than the original LASSO

(Theorems 7.1.1 and 7.2.1).

The sequential LASSO bears some similarity with OMP. At steps where a par-

tial positive cone condition is satisfied, the sequential LASSO selects new features

with the same criterion as OMP. The properties established for the sequential

LASSO then apply to OMP. Thus, we reveal some new properties of OMP other

than those discovered in [158], [159] and [30]. The stopping rule is given by the

extended BIC (EBIC) proposed in [33]. The selection consistency of EBIC in the
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same situation is established in Section 3.1. The selection consistency of this whole

procedure is shown and provided in Theorem 7.3.1. Thus, coupled with EBIC the

sequential LASSO provides a practically applicable selection consistent method for

feature selection in small-n-large-p problems.

For the ultra-high dimensional case, generally, from the proof of Theorem 7.1.1,

we note that the tuning parameter λ in each step of sequential LASSO has to

be of order O(n), which is the same as ∥yn − X(S)β(S)∥22. It means that the

penalty on the complexity of the model is as important as the prediction error,

which is one major difference between sequential LASSO and forward regression.

It also indicates that we have to sacrifice the prediction error to single out only one

causal feature, which is acceptable if we only concentrate on the selection of causal

features. In [109], the authors showed theoretically that the LASSO estimator and

the least squares estimator have ignorable bias if and only if λ = o(n).
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CHAPTER 9

Conclusions and Future Work

9.1 Conclusions of This Thesis

In Part I of this thesis, we extended the current study of EBIC to more complex

models such as linear regression models with ultra-high dimensional space, gen-

eralized linear regression models with non-canonical links and Cox’s proportional

hazard models. We proved the selection consistency of EBIC in these models under

acceptable conditions and applied EBIC to a general feature selection procedure

in high-dimensional studies. Our extensive numerical study strongly recommends

that in high dimensional studies, EBIC with a proper chosen γ is effective in model

selection.
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In Part II of this thesis, we managed to overcome the impact of high spu-

rious correlation among features in feature selection using our newly proposed

method-sequential LASSO. As argued by many researchers, high spurious correla-

tion among features is an intrinsic phenomenon in feature selection and it is difficult

to avoid. This thesis provides a promising and feasible direction for future research.

Our theory verified that the assumptions to avoid spurious correlation in previous

studies can be relaxed a lot for sequential LASSO being selection consistent.

The finite sample performance of a feature selection procedure is assessed by

the positive discovery rate (PDR) and false discovery rate (FDR) as defined in

[33]. Equivalently, the asymptotic property of selection consistency means that

PDR converges to 1 and FDR converges to 0 simultaneously as the sample size

goes to infinity. When EBIC’s selection consistency was evaluated, we compared

its performance mainly with BIC and mBIC in simulation studies because EBIC

is an extension of BIC and mBIC. It manifests from the simulation study results

that the finite sample performance of the EBIC closely matches its asymptotic

property. Under all data structures and models, for the EBIC with a theoretically

suggested γ value, the PDR and the FDR approach rapidly to 1 and 0 respectively,

as the sample size increases. The BIC does not appear to be selection consistent

and mBIC loses certain power while overly controlling FDR when the sample size

is small.
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Extensive simulation studies were conducted to show comparisons between se-

quential LASSO and other techniques. Instead of imposing the unique correlation

structure on all predictors, we distinguish the linear relationships among the true

causal features from those between true features and uncausal features. PDR

and FDR are applied to show the selection consistency of sequential LASSO with

EBIC as the stopping rule. Prediction errors are provided as well. We can see

that sequential LASSO has the best behavior from the aspect of identifying rele-

vant features. It can screen out the uncausal features even when they are strongly

correlated with the true causal features. But it is not strongly recommended if

pursuing high prediction accuracy is the goal of study.

Feature selection in regression problems under high or ultra-high feature spaces

arise in many important fields of scientific research. Our study provides an inte-

grated approach to conduct feature selection in these regression problems.

9.2 Open Questions for Future Research

In conclusion, we have made contributions in feature selection under high or ul-

trahigh dimensional feature spaces. For this forefront and challenging problem,

more effort is indispensable in the future. Firstly, since our main objective was to

develop a good statistical method, especially suitable for QTL mapping, real data

analysis is not extensively conducted in our work. To make our statements more
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convincing and persuasive, future work should involve more diverse applications,

such as QTL mapping in etiological studies and eQTL mapping in micro-array

data analysis. Secondly, our current work mainly focused on single response. Con-

sequently, it is a natural question to check the applicability of these procedures

when we are facing multiple responses.

Being a preliminary work, for survival models, our work is limited to a repre-

sentative model-Cox proportional hazards model. Moreover, our work on CPH is

constrained to the situation where dimension of the feature space is of polynomial

order of sample size and constant number of true features. Like in linear regres-

sion models, a direct extension of this work would be to consider more general

parameter settings and models.

In our simulations in Section 7.3.2, we can see that for ALasso+CV and SCAD+CV,

their high PDRn’s confirm the screening property of the determined set. More

generally, it is much easier to ensure the screening property for many greedy al-

gorithms or regularization methods. Note that for most situations, their averaged

model sizes are much less than the sample size, which motivates us to apply EBIC

based methods to conduct further trimming to achieve a much lower FDRn without

sacrificing the PDRn significantly. Specifically, for a reduced set s,

Method I: define

R1(s) = {j : EBICγ(s− {j}) > EBICγ(s), j ∈ s} ; (9.2.1)
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Method II: define

D1(s) =

{
j : EBICγ(s− {j}) = min

j∈s
EBICγ(s− {j})

}
,

· · · · · ·

Dk(s) =

{
j : EBICγ(s−

k−1∪
j=1

D j(s)− {j}) = min
j∈s

EBICγ(s−
k−1∪
j=1

D j(s)− {j})

}
.

R2(s) =

{
s−

t∪
j=1

D j(s) : EBICγ

(
s−

t∪
j=1

D j(s)

)
= min

1≤t≤|s|
EBICγ

(
s−

t∪
j=1

D j(s)

)}
.

(9.2.2)

R1(s),R2(s) are the final sets of selected features. These two trimming methods

are closely related. Note that event {s0n = R1(s)} is equivalent to

{
min
j∈s0n

EBICγ(s− {j}) > EBICγ(s)

}∩{
max
j∈sc0n

EBICγ(s− {j}) ≤ EBICγ(s)

}
⊆
{
min
j∈s0n

EBICγ(s− {j}) > max
j∈sc0n

EBICγ(s− {j})
}

⊆
{
D1(s) ⊆ sc0n

}
.

That is, if Method I is selection consistent for any s0n ⊆ s0 ⊆ s, then Method II

is selection consistent if EBICγ(s0n) = min
s0n⊆s

EBICγ(s). However, Method I takes

much less time in computation. Our preliminary simulation results shows that

Method I works as well as expected. More works are required to make this result

persuasive.

It is persuasive through our theoretical and numerical studies that sequential

LASSO is stable in identifying the relevant features with complex data features
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in LMs. Another possible avenue of future work is to incorporate similar ideas in

feature selection in GLMs and survival models, sparse graphical models, multire-

sponse linear regression models, and so on.
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[122] Meinshausen, N., and Bühlmann, P. (2006). High-dimensional graphs and

variable selection with the Lasso. Ann. Statist., 34, 1436-1462.



Bibliography 187

[123] Meinshausen, N. , and Yu, B. (2009). Lasso-type of sparse representations

for high-dimensional data. Ann.Statist., 37,246-270.

[124] Mundry, R., and Nunn, C.L.(2009). Stepwise Model Fitting and Statistical

Inference: Turning Noise into Signal Pollution. Am. Nat., 173, 119-123.

[125] Mykland, P.A. (1993). Asymptotic expansions for martingales. Ann. Probab.,

21, 800-818.

[126] Osborne, M.R., Presnell, B., and Turlach, B.A.(1998). Knot selection for re-

gression splines via the Lasso. In Dimension Reduction, Computational Com-

plexity, and Information, ed. S. Weisberg, Vol. 30. of Computing Science and

Statistics, Fairfax Station, VA: Interface Foundation of North America, Inc.,

pp. 44-49.

[127] Osborne, M.R, Presnell, B., and Turlach, B.A. (2000).On the Lasso and its

dual. J. Comput. Graph. Stat., 9, 319-337.

[128] Park, M.Y., and Hastie, T. (2007). L1-regularization path algorithm for gen-

eralized linear models.J. R. Statist. Soc. Ser. B., 69, 659 - 677.

[129] Pen̈a Victor H., Lai, T., and Shao, Q.M. (2009). Self-normalized processes.

Limit theory and statistical applications. Chapter9. Martingale Inequalities

and related tools.

[130] Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting: fast, incremental

feature selection by gradient decrescent in function space. J. Mach. Learn.

Res., 3, 1333-1356.

[131] Pinelis, I. (2006). Binomial upper bounds on generalized moments and tail

probabilities of (super)martingales with differences bounded from above.IMS

Lecture Notes Monograph Series, High Dimensional Probability., 51, 3352.

[132] Presnell, B., Turlach, B.A., and Osborne, M.R.(2000). A new approach to

variable selection in least squares problems. IMA J. Numer. Anal., 20, 389-

403.

[133] Radchenko, P., and James, G.M. (2011). Improved variable selection with

forward-lasso adaptive shrinkage. Ann. Appl. Stat., 5, 427-448.



188 Bibliography

[134] Rao, C. R., and Wu, Y. H. (1989). A strongly consistent procedure for model

selection in a regression problem. Biometrika , 76, 369-374.

[135] Robbins, H. (1955). A Remark on Stirlings Formula.Am. Math. Mon., 62,

26-29.

[136] Rolando Rebolledo. (1980). Central Limit Theorem for Local Martingales.

Probab. Theory. Rel., 51, 269-286.

[137] Rosenwald, A. et al .(2002). The use of molecular profiling to predict survival

after chemotherapy for diffuse large-B-cell lymphoma. New Engl J Med ., 346,

1937-1947.

[138] Rosset, S.(2004).Tracking curved regularized optimization solution paths.

Adv. Neural. Inf. Process. Syst.

[139] Rosset, S. , and Zhu, J. (2007). Piecewise linear regularized solution paths.

Ann.Statist., 35, 1012-1030.

[140] Sara A. Van de Geer. (1995). Exponential inequalities for martingales,

with application to maximum likelihood estimation for counting processes.

Ann.Statist., 23, 1779-1801.

[141] Sara A. Van de Geer. (2008). High-dimensional generalized linear models and

the lasso.Ann. Statist., 36, 614-645.

[142] Sauerbrei, W., and Schumacher, M. (1992). A bootstrap resampling proce-

dure for model building: Application to the cox regression model. Stat. Med.,

11, 2093-2109.

[143] Scheetz, T.E. , Kim, K.-Y.A. , Swiderski, R.E., Philip1,A.R., Braun, T.A. ,

Knudtson, K.L. , Dorrance, A.M., DiBona, G.F., Huang, J., Casavant. T,L.,

Sheffield, V.C., and Stone, E.M. (2006). Regularization of gene expression

in the mammalian eye and its relevance to eye disease. Proc.Natl.Acad.Sci.

U.S.A., 103, 14429-14434.

[144] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6,

461-464.



Bibliography 189

[145] Scott, J.G., and Berger,J.O. (2010). Bayes and empirical-bayes multiplicity

adjustment in the variable selection problem. Ann.Statist., 38, 2587-2619.

[146] Serfling, R. J.(1980). Approximation theorems of mathematical statistics,

New York: Wiley. 33.

[147] Sha, N. J , Tadesse, M. G., and Vannucci, M. (2006). Bayesian variable

selection for the analysis of microarray data with censored outcomes. Bioin-

formatics, 22, 2262-2268.

[148] Shao, J. (1997). An asymptotic theory for linear model selection. Statistica

Sinica , 7, 221-264.

[149] Shao, J., and Chow, S-C. (2007). Variable screening in predicting clinical

outcome with high-dimensional microarrays. J. Multivariate. Anal., 98, 1529-

1538.

[150] Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate

normal distributions. J. Am. Statist. Assoc., 62, 626-633.

[151] Siegmund, D. (2004). Model selection in irregular problems: Applications to

mapping quantitative trait loci. Biometrika , 91, 785-800.

[152] Sinha, D., Chen, M. H., and Ghosh, S. K. (1999). Bayesian analysis and

model selection for interval censored survival data. Biometrics , 55, 585-590.

[153] Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Prediction, and

Search. New York: Springer-Verlag.

[154] Stone, M. (1974). Cross-validatory choice and assessment of statistical pre-

dictions (with discussion). J. R. Statist. Soc. Ser. B., 39, 111-147.

[155] Sun, T.N. , and Zhang, C.H. (2011). Scaled sparse linear regression.

[156] Tibshirani , R. (1996). Regression shrinkage and selection via the LASSO. J.

R. Statist. Soc. Ser. B., 58, 267-288.

[157] Tibshirani , R. (1997). The Lasso method for variable selection in the Cox

model. Stat. Med., 16, 385-395.



190 Bibliography

[158] Tropp, J. A. (2004). Greed is good: Algorithmic Results for Sparse Approx-

imation. IEEE Trans. Inf. Theory., 50,1-21.

[159] Tropp, J. A., and Gilbert, A.C.(2007). Signal recovery from random mea-

surements via orthogonal matching pursuit. IEEE Trans. Inf. Theory., 53,

4655-4666.

[160] Troyanskaya et al (2001). Missing value estimation methods for DNA mi-

croarrays. Bioinformatics, 17, 520-525.

[161] Tsiatis, A.A. (1981). A large sample study of Cox’s regression model.

Ann.Statist., 9, 93-108.

[162] van der Vaart, A.W. , and Wellner, J.A. (1996). Weak convergence and

empirical processes. New York: Springer.

[163] Variyath, A.M. , Chen, J.H., and Abraham,B. (2009).Empirical likelihood

based variable selection. J. Stat. Plan. Inf., 140, 971-981.

[164] Volinsky, C.T., and Raftery, A.E. (2000). Bayesian Information Criterion for

Censored Survival Models. Biometrics , 56, 256-262.

[165] Wainwright, M.J.(2009). Sharp thresholds for high-dimensional and noisy

sparsity recovery using l1−constrained quadratic programming(Lasso). IEEE

Trans. Inf. Theory., 55, 2183-2202.

[166] Wang, H.S. (2009). Forward Regression for Ultra-High Dimensional Variable

Screening. J.Am. Statist. Assoc., 105, 1512-1524.

[167] Wasserman, L. (2000). Bayesian Model Selection and Model Averaging.J.

Math. Psychol., 44, 92-107.

[168] Wasserman, L., and Roeder, K. (2009). High-dimensional variable selection.

Ann.Statist., 37, 2178-2201.

[169] Wedderburn, R.W.M. (1976). On the existence and uniqueness of the max-

imum likelihood estimates for certain generalized linear models. Biometrika,

63, 27-32.

[170] Weisberg, S. (1980). Applied Linear Regression. Wiley, New York.



Bibliography 191

[171] Wellner, J.A. (1992).Empirical Processes in Action: A Review. Int. Stat.

Rev., 60, 247-269.

[172] Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for

testing composite hypotheses. Ann. Statist., 9, 60-62.

[173] Woodroofe, M. (1982).On model selection and the arc sine laws. Ann.Statist.,

10, 1182-1194.

[174] Wu, Y., and Liu, Y. (2009). Variable selection in quantile regression. Statist.

Sinica , 19, 801-817.

[175] Xie, H.L., and Huang, J. (2009). Scad-penalized regression in high-

dimensional partially linear models. Ann. Statist., 37, 673-696.

[176] Yao, Y. C. (1988). Estimating the number of change-points via Schwartz’

criterion. Statist. Probab. Lett., 6, 181-189.

[177] Yuan, M., and Lin, Y.(2007). On the non-negative garrote estimator. J. R.

Stat. Soc. Ser. B., 69, 143-161.

[178] Zhang, C. H. (2010). Nearly unbiased variable selection under minimax con-

cave penalty. Ann.Statist., 38, 894-942.

[179] Zhang, C. H., and Huang, J. (2008). The sparsity and bias of the LASSO

selection in high-dimensional linear regression.Ann.Statist., 36, 1567-1594.

[180] Zhang, Y.Y, Li, R.Z. , and Tsai, C.L. (2010). Regularization Parameter

Selections via Generalized Information Criterion. J.Am.Statist.Assoc., 105,

312 - 323.

[181] Zhang, H. H. , and Lu, W. (2007). Adaptive lasso for coxs proportional

hazards model.Biometrika , 94, 691-703.

[182] Zhao, J. Y. , and Chen, Z. H. (2012). A Two-Stage Penalized Logistic Regres-

sion Approach to Case-Control Genome-Wide Association Studies .J. Prob.

Statist., 2012, 1-15.

[183] Zhao, P., and Yu, B. (2006). On model selection consistency of LASSO. J.

Mach. Learn. Res., 7, 2541-2567.



192 Bibliography

[184] Zhao, P., and Yu, B. (2007). Stagewise LASSO. (old title: Boosted Lasso).

J. Mach. Learn. Res., 8, 2701-2726.

[185] Zou, H. (2006). The adaptive lasso and its oracle properties.J. Am. Statist.

Assoc., 101, 1418-1429.

[186] Zou, H. (2008). A note on path-based variable selection in the penalized

proportional hazards model. Biometrika , 95, 241-247.

[187] Zou, H., and Hastie, T. (2005). Regularization and variable selection via the

elastic net.J. R. Stat. Soc. Ser. B., 67, 301-320.

[188] Zou, H. , and Li, R.Z. (2008). One-step sparse estimates in nonconcave pe-

nalized likelihood models.Ann.Statist., 36, 1509-1533.

[189] Zou, H., and Zhang, H. (2009). On the adaptive elastic-net with a diverging

number of parameters.Ann.Statist., 37, 1733-1751.



Appendix 193

Appendix A: The Verification of C6 in Section 4.1

In this Appendix, we will check Condition C6 in Section 4.1 by looking at the

common GLMs with non-canonical link functions when σ2
i are assumed to be away

from 0 and finite. For the ease of reference, condition C6 is given below:

C6 The quantities |xij|, |h
′
(Xτ

i β0)|, |h
′′
(Xτ

i β0)|, i = 1, . . . , n; j = 1, . . . , pn are

bounded from above, and σ2
i , i = 1, . . . , n are bounded both from above and below

away from zero. Furthermore,

max
1≤j≤pn;1≤i≤n

x2ij[h
′
(Xτ

i β0)]
2∑n

i=1 σ
2
i x

2
ij[h

′(Xτ
i β0)]

2
= o(n−1/3),

max
1≤i≤n

[h
′′
(Xτ

i β0)]
2∑n

i=1 σ
2
i [h

′′(Xτ
i β0)]

2
= o(n−1/3).

The common GLMs were considered in [169]. In particular, we consider the

following exponential families and their corresponding link functions:

(1) Poisson Distribution: η = ln(µ) or η = µγ where 0 < γ < 1;

(2) Binomial Distribution: η = µ, η = arcsin(µ), η = ln( µ
1−µ

), η = ln (− ln(1− µ)) , η =

Φ−1(µ);

(3) Gamma Distribution (G(1, µ)): η = lnµ or η = µγ where −1 ≤ γ < 0.

Since for poisson distribution, binomial distribution and gamma distribution, (θ, b(θ)) =(
ln(µ), eθ

)
,
(
ln( µ

1−µ
), ln(1 + eθ)

)
,
(
− 1

µ
,− ln(−θ)

)
respectively, the above can be

rewritten as follows:
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(1) Poisson Distribution: θ = η or θ = 1
γ
ln η where 0 < γ < 1;

(2) Binomial Distribution: θ = ln η
1−η

, θ = ln sin(η)
1−sin(η)

, θ = η, θ = ln (exp(eη)− 1) , θ =

ln
(

Φ(η)
1−Φ(η)

)
.

(3) Gamma Distribution: θ = −e−η or θ = −η−
1
γ .

Poisson Distribution

η = µγ where 0 < γ < 1: assume µi ∈ [a, b] for all i. Under this situation,

h
′
(η) =

1

γη
, h

′′
(η) = − 1

γη2
, σ2 = η

1
γ .

Hence under the assumption, ∀1 ≤ i ≤ n,

|h′
(xτ

iβ0)| ∈ [
1

γbγ
,

1

γaγ
], σ2

i ∈ [a, b], |h′′
(xτ

iβ0)| ∈ [
1

γb2γ
,

1

γa2γ
],

x2i,j
(
h

′
(xτ

iβ0)
)2

n∑
i=1

σ2
i x

2
i,j (h

′(xτ
iβ0))

2
=

b2γ

a2γ+1
O

 x2i,j
n∑

i=1

x2i,j

 ,

(
h

′′
(xτ

iβ0)
)2

n∑
i=1

σ2
i (h

′′(xτ
iβ0))

2
=

b4γ

a4γ+1
O(n−1).

When 0 < a < b < +∞, C6 is true if max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).

Binomial Distribution
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For binomial distribution, σ2
i = µi(1− µi) =

eθi

(1 + eθi)2
. Here we assume

min
1≤i≤n

(µi ∧ (1− µi)) ≥ c where 0 < c ≤ 1/2. (A.1.1)

This implies, c2 ≤ min1≤i≤n σ
2
i ≤ max1≤i≤n σ

2
i ≤ 1/4. Therefore,

x2i,j
(
h

′
(xτ

iβ0)
)2

n∑
i=1

σ2
i x

2
i,j (h

′(xτ
iβ0))

2
= O

 x2i,j
(
h

′
(xτ

iβ0)
)2

n∑
i=1

x2i,j (h
′(xτ

iβ0))
2


(
h

′′
(xτ

iβ0)
)2

n∑
i=1

σ2
i (h

′′(xτ
iβ0))

2
= O


(
h

′′
(xτ

iβ0)
)2

n∑
i=1

(h′′(xτ
iβ0))

2

 .

(1) µ = η, 0 < η < 1 :

h
′
(η) =

1

η(1− η)
, h

′′
(η) =

2η − 1

η2(1− η)2
, σ2 = η(1− η).

Under assumption (A.1.1),

4 ≤ h
′
(xτ

iβ0) ≤
1

c2
;
∣∣∣h′′

(xτ
iβ0)

∣∣∣ ≤ 1− 2c

c4

for all 1 ≤ i ≤ n. C6 holds when

max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).



196 Appendix

(2) η = arcsinµ :

h
′
(η) =

cos η

sin η(1− sin η)
, h

′′
(η) =

sin η

1− sin η
− cos2 η

sin2 η
, σ2 = sin η(1− sin η).

Under assumption (A.1.1),

4
√
2c− c2 ≤

∣∣∣h′
(xτ

iβ0)
∣∣∣ ≤ √

1− c2

c2
;

3c− c2 − 1

(1− c)2c
≤
∣∣∣h′′

(xτ
iβ0)

∣∣∣ ≤ 1− c2 − c

c2(1− c)

for all 1 ≤ i ≤ n. C6 holds when

max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).

(3) η = g(µ) = ln {− ln(1− µ)} or η = g(µ) = ln {− ln(µ)} .

For the first link function, complementary log-log link, we have

θ = ln(
µ

1− µ
) = h(η) = ln {exp(eη)− 1} , σ2 =

exp(eη)− 1

exp(2eη)
. (A.1.2)

Therefore, the first and second order derivatives of h(·) are

h
′
(η) =

eη+eη

eeη − 1
; h

′′
(η) =

eη+eη [ee
η − eη − 1]

{eeη − 1}2
. (A.1.3)
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It is easy to see that eη ≤ h
′
(η) ≤ ee

η
. Now let us look at h

′′
(η). It is

straightforward that |h′′
(η)| ≤ |h′

(η)| ≤ ee
η
. Consider the function f(x) =

ex(ex − x− 1)

(ex − 1)2
on (0,+∞). Since

lim
x→0

f(x) = lim
x→1

x2/2

x2
=

1

2
; lim

x→+∞
f(x) = lim

x→+∞

1− x

ex
− 1

ex

(1− 1

ex
)2

= 1, (A.1.4)

there exists a positive constant C1, C2 independent of x such that C1 ≤

f(x) ≤ C2. That is, C1e
η ≤ h

′′
(η) ≤ C2e

η. When σ2
i ∈ [a, b] for some

0 < a ≤ b ≤ 1/4, for 1 ≤ i ≤ n, we have

1 +
√
1− 4b

2b
≤ exp(eηi) ≤ 1 +

√
1− 4a

2a
or

1−
√
1− 4a

2a
≤ exp(eηi) ≤ 1−

√
1− 4b

2b
.

That is, |h′
(ηi)| and |h′′

(ηi)| are both bounded away from 0 and finite. C6

holds when

max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).

The same argument applies to the second link function by changing η to

−η.
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(4) η = Φ−1(µ) :

h
′
(η) =

f(η)

Φ(η)(1− Φ(η))
, h

′′
(η) =

f
′
(η)

Φ(η)(1− Φ(η))
+ f 2(η)[

1

(1− Φ(η))2
− 1

Φ2(η)
]

σ2 = Φ(η)(1− Φ(η)).

Under assumption (A.1.1), Φ−1(c) ≤ |xτ
iβ0| ≤ Φ−1(1− c). Note that

1− Φ(t) ≤ f(t)

t
,∀t > 0,

therefore, we have

4cΦ−1(c) ≤ 4f (xτ
iβ0) ≤

∣∣∣h′
(xτ

iβ0)
∣∣∣ ≤ 1

c2
f (xτ

iβ0) ≤
1√
2πc2

;

4f
′
(xτ

iβ0) ≤
∣∣∣∣ f

′
(xτ

iβ0)

Φ(xτ
iβ0)(1− Φ(xτ

iβ0))

∣∣∣∣ ≤ 1

c2
f

′
(xτ

iβ0) ≤
Φ−1(1− c)√

2πc2
;∣∣∣∣f 2(xτ

iβ0)[
1

(1− Φ(xτ
iβ0))

2
− 1

Φ2(xτ
iβ0)

]

∣∣∣∣ ≤ |2c− 1|
c2(1− c)2

f 2(xτ
iβ0) ≤

|2c− 1|
2πc2(1− c)2

for all 1 ≤ i ≤ n. C6 holds when

max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).

Gamma Distribution

(1) η = ln(µ) : h
′
(η) = e−η, h

′′
(η) = −e−η, σ2 = e2η. When σ2

i is away from 0
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and finite, |h′|, |h′′| are bounded. C6 holds when

max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).

(2) η = µγ where −1 ≤ γ < 0. Let γ̃ = − 1
γ
, then 0 < γ̃ ≤ 1. Then

h
′
(η) = −γ̃ηγ̃−1, h

′′
(η) = γ̃(1− γ̃)ηγ̃−2, σ2 = η2γ̃.

When σ2
i is away from 0 and finite, |h′|, |h′′| are bounded. C6 holds when

max
1≤j≤pn

max
1≤i≤n


x2i,j
n∑

i=1

x2i,j

 = o(n−1/3).

Appendix B: Proofs of Equations (7.3.5) and (7.3.7)

In this section, we provide proofs of Equations (7.3.5) and (7.3.7). Let s⋆k be the

set of selected features at the kth step of sequential LASSO, △µ (s⋆k) = ∥[I −

H0(s⋆k)]y∥22 and β be the true coefficient vector in the linear model. The contents

of these inequalities are as follows:

Equation (7.3.5):
△µ (s⋆k)−△µ (s⋆k+1)

lnn
→ +∞.
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Equation (7.3.7): ∀0 ≤ k < p̃0 − 1,△µ(s⋆k)−△µ(s⋆k+1) ≥ △µ(s⋆k+1)
2

(1+λ0)2n∥β(s−⋆k+1)∥
2
1

.

For k ≥ 0, let Ak be the index set of the variables with bounded size (or the

only variable) being added at the (k + 1)th step of sequential LASSO, we assume

that there exists constants L, λ0 such that

max
0≤k<p̃0

|Ak| ≤ L, max
0≤k<p̃0

λmax

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
λmin

(
Xτ

Ak
[I −H0(s⋆k)]XAk

) ≤ λ0.

Lemma A.2.1. Use the notation ∂ in Proposition 6.2.3, then there exists a vector

β̂
(k+1)

Ak
with componentwise nonzero elements such that

|∂(β̂
(k+1)

j )| ≤ 1, ∀j ∈ sc⋆k+1, where (A.2.1)

∂
(
β̂

(k+1)

j

)
=2(Xτ

j [I −H0(s⋆k+1)]yn)(λ
⋆
i+1)

−1

+Xτ
j [I −H0(s⋆k]XAk

{
Xτ

Ak
[I −H0(s⋆k]XAk

}−1
∂(β̂

(k+1)

Ak
)

=2(Xτ
j [I −H0(s⋆k+1)] ϵn)(λ

⋆
i+1)

−1

+ 2(Xτ
j [I −H0(s⋆k+1)]µn)(λ

⋆
i+1)

−1

+Xτ
j [I −H0(s⋆k]XAk

{
Xτ

Ak
[I −H0(s⋆k]XAk

}−1
∂(β̂

(k+1)

Ak
)

def
=N1 +N2 +N3;

∂
(
β̂

(k+1)

Ak

)
=∂
(
Xτ

Ak
[I −H0(s⋆k)]yn

)
.

(A.2.2)

Proof of Lemma A.2.1. Denote by Q(β) the objective function at the (k+1)th step

in sequential LASSO. From Proposition 6.2.2 and the Karush-Kuhn-Tucker(KKT)
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conditions in Proposition 6.2.3, we know that Q(β) can reach its minimum at β̂ if

and only if

2Xτ (sc⋆k) [I −H0(s⋆k)] (yn −X(sc⋆k)β̂) = λ∂(β̂). (A.2.3)

Note that ∂(β̂)τ β̂ = ∥β̂∥1, the tuning parameter λ can be solved as follows imme-

diately,

λ =
2(yn −X(sc⋆k)β̂)

τ [I −H0(s⋆k)])X(sc⋆k)β̂

∥β̂∥1
. (A.2.4)

Plugging λ back into equation (A.2.3), we have

(y −X(sc⋆k)β̂)
τ [I −H0(s⋆k)])X(sc⋆k)β̂

∥β̂∥1
∂(β̂) = X(sc⋆k)

τ [I −H0(s⋆k)] (y−X(sc⋆k)β̂).

(A.2.5)

Specially, if XAk
is the set of variables (or the unique variable) being added in the

(k+1)th step, that is, equation (A.2.3) holds for some β̂ = (0, · · · , 0, β̂
(k+1)

Ak
, 0, · · · , 0)τ

and |∂(β̂
(k+1)

j )| ≤ 1, ∀j ∈ sc⋆k+1. Let λ
⋆
k+1 be the corresponding λ in (A.2.4) for

this β̂. The following equation can be derived directly from (A.2.5) after plugging

this particular β̂ in (A.2.4),

β̂
(k+1)

Ak
=
{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
{
Xτ

Ak
[I −H0(s⋆k)]y −

λ⋆k+1

2
∂(β̂

(k+1)

Ak
)

}
.

(A.2.6)
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Similarly, by plugging into (A.2.5), we have the following equation for j ∈ sc⋆k+1,

∂(β̂
(k+1)

j ) =
2

λ⋆k+1

Xτ
j [I −H0(s⋆k)] (y −XAk

β̂
(k+1)

Ak
)

=− 2
Xτ

jQ
⋆k+1
i

λ⋆k+1

y +Xτ
j [I −H0(s⋆k]XAk

{
Xτ

Ak
[I −H0(s⋆k]XAk

}−1
∂(β̂

(k+1)

Ak
).

(A.2.7)

where

Q⋆k+1
i = [I −H0(s⋆k)]

(
XAk

{
Xτ

Ak
[I −H0(s⋆k)])XAk

}−1
Xτ

Ak
[I −H0(s⋆k)]− I

)
.

By applying the identity (4.17) in [97], it follows that Q⋆k+1
i = − [I −H0(s⋆k+1)] .

Then plug back into equation (A.2.7), we can obtain the desired result. �

Proof of (7.3.5). We prove this conclusion by contradiction. Assume there exists

some k ≤ p̃0 such that △µ(s⋆k) −△µ(s⋆k+1) = O(lnn). Let s− = s0n ∩ sc for any

set s. When k < p̃0 − 1, sc⋆k+1 ̸= ∅, define

Xk+1⋆ = argmax
m∈s−⋆k+1

|γn (m, s⋆k+1,β) |,

where the definition of γn(·) is given in Theorem 7.1.1. We remark here that if

this Xk+1⋆ is not unique, we let it be one of the representatives. This will not

influence our results. Also, Xk+1⋆ could be a candidate of features being selected
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at the (k+2)th step. Denote by N1, N2, N3 the three terms of ∂(β̂
(k+1)
k+1⋆ ) in equation

(A.2.2), we have the following convergence rate from (ii) in the proof of Theorem

7.1.1,
√
n|γn (k + 1⋆, s⋆k+1,β) |

ln pn
≥ Cn → +∞. (A.2.8)

To see more clearly about the convergence rate of the terms in N1, N2, N3, we need

the following relationships, which can be easily verified through calculation:

yτ [I −H0(s⋆k)]XAk

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
Xτ

Ak
[I −H0(s⋆k)])y

=[△µ(s⋆k)−△µ(s⋆k+1)]− 2[△µ,ϵ(s⋆k)−△µ,ϵ(s⋆k+1)] + [△ϵ(s⋆k)−△ϵ(s⋆k+1)]

=[(△µ(s⋆k)−△µ(s⋆k+1))] +Op(∥(H0(s⋆k)−H0(s⋆k+1))µn∥2) +Op(lnn)

≥∥yτ [I −H0(s⋆k)]XAk
∥22λ−1

max

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
;

µτ
n [I −H0(s⋆k)]XAk

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
Xτ

Ak
[I −H0(s⋆k)])µn

=△µ (s⋆k)−△µ(s⋆k+1)

≥∥µτ
n [I −H0(s⋆k)]XAk

∥22λ−1
max

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
;

∥(H0(s⋆k)−H0(s⋆k+1))µn∥22 = △µ(s⋆k)−△µ(s⋆k+1).

(A.2.9)

Multiplying ∂(β̂
(k+1)
Ak

) by both sides of equation(A.2.6), from the third equation in
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Lemma A.2.1, we know that the positivity on the left hand side implies

λ⋆k+1 <
2yτ [I −H0(s⋆k)]XAk

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
Xτ

Ak
[I −H0(s⋆k)])y

∂(β̂
(k+1)
Ak

)τ
{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
∂(β̂

(k+1)
Ak

)∥Xτ
Ak

[I −H0(s⋆k)])y∥1

=2∥Xτ
Ak

[I −H0(s⋆k)])y∥1.

(A.2.10)

If (△µ(s⋆k)−△µ(s⋆k+1)) = O(lnn), (A.2.9) implies

∥Xτ
Ak

[I −H0(s⋆k)])y∥2 =λmax

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
Op(lnn) = Op(n lnn),

∥Xτ
Ak

[I −H0(s⋆k)])µn∥2 =λmax

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
Op(lnn) = Op(n lnn).

(A.2.11)

Because of the bounded size of XAk
, we know that ∥Xτ

Ak
[I −H0(s⋆k)])y∥2 and

∥Xτ
Ak

[I −H0(s⋆k)])y∥1 have exactly the same order, this also applies toXτ
Ak

[I −H0(s⋆k)])µn

and Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
. Hence, the following inequalities can be obtained

from (A.2.8),(A.2.9),(A.2.10),(A.2.11) for ∂
(
β̂

(k+1)

k+1⋆

)
:

|N2| >
nγn (k + 1⋆, s⋆k+1,β)

∥Xτ
Ak

[I −H0(s⋆k)])y∥1
= +∞;

|N1|
|N2|

=Op(
∥ [I −H0(s⋆k+1)])Xk+1⋆∥2
nγn (k + 1⋆, s⋆k+1,β)

) ≤ Op(
1

Cn ln pn
) = op(1).

(A.2.12)
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Note that

Xk+1⋆ [I −H0(s⋆k)]XAk

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
Xτ

Ak
[I −H0(s⋆k)]Xk+1⋆

= [∥I −H0(s⋆k)]Xk+1⋆∥22 − [∥I −H0(s⋆k+1)]Xk+1⋆∥22

≥∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
∥22λ−1

max

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
≥n−1|Ak|−1∥Xk+1⋆ [I −H0(s⋆k)]X

τ
Ak
∥22

(A.2.13)

Hence, ∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
∥2 = O(n). Moreover, for a matrix A with order

m1 × m2, denote ∥A∥r = supx̸=0

∥Ax∥r
∥x∥r

(r = 1, 2), then
1

√
m1

∥A∥1 ≤ ∥A∥2 ≤

√
m2∥A∥1, this leads to

|N3| ≤∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1 ∥1

≤∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
∥1∥
{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1 ∥1

≤|Ak|∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
∥2∥
{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1 ∥2

≤|Ak|∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
∥2∥λ−1

min

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
≤Cn−1∥Xk+1⋆ [I −H0(s⋆k)]X

τ
Ak
∥2 = O(1).

(A.2.14)

Therefore, we have ∂(β̂
(k+1)

k+1⋆ ) = |N1 + N2 + N3| = +∞, which is a contradiction

according to Lemma A.2.1. That is, (7.3.5) is proved. �

Proof of (7.3.7). Use the same notations as in the Proof of (7.3.5), again, we focus
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on the three terms in ∂
(
β̂

(k+1)

k+1⋆

)
: (i) and (ii) in the Proof of Theorem 7.1.1 lead to

|N1 +N2| = |N2|(1 + op(1)).

From equations (A.2.9) and (7.3.5), we have

yτ [I −H0(s⋆k)]XAk

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1
Xτ

Ak
[I −H0(s⋆k)])y

= [△µ(s⋆k)−△µ(sAk
)] (1 + op(1))

≥∥yτ [I −H0(s⋆k)]XAk
∥22λ−1

max

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
≥n−1|Ak|−1∥yτ [I −H0(s⋆k)]XAk

∥22.

(A.2.15)

Therefore, by expanding µ as summation from parts s⋆k+1 and s
c
⋆k+1, after a direct

comparison, we have, with probability tending to 1,

|N2| ≥
n|γn (k + 1⋆, s⋆k+1,β) |
∥yτ [I −H0(s⋆k)]XAk

∥1
≥ n|γn (k + 1⋆, s⋆k+1,β) |

|Ak|
√
n(△µ(s⋆k)−△µ(s⋆k+1))

>
△(s⋆k+1)

|Ak|∥β(s−⋆k+1)∥1
√
n(△µ(s⋆k)−△µ(s⋆k+1))

= rk,n.

(A.2.16)
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From the middle two terms of (A.2.13) and (A.2.15),

∥Xτ
Ak

[I −H0(s⋆k)])y∥1∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1 ∥1
|Ak|

≤∥Xτ
Ak

[I −H0(s⋆k)])y∥2∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak

{
Xτ

Ak
[I −H0(s⋆k)]XAk

}−1 ∥2

≤∥Xτ
Ak

[I −H0(s⋆k)])y∥2∥Xk+1⋆ [I −H0(s⋆k)]X
τ
Ak
∥2λ−1

min

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
≤
√
n(△µ(s⋆k)−△µ(s⋆k+1))

λmax

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
λmin

(
Xτ

Ak
[I −H0(s⋆k)]XAk

) def
= λ0,k

√
n(△µ(s⋆k)−△µ(s⋆k+1)),

where

C ≥ λ0,k =
λmax

(
Xτ

Ak
[I −H0(s⋆k)]XAk

)
λmin

(
Xτ

Ak
[I −H0(s⋆k)]XAk

) ≥ 1.

Consequently, we have

|N2|
|N3|

≥ n|γn (k + 1⋆, s⋆k+1,β) |
λ0,k
√
n(△µ(s⋆k)−△µ(s⋆k+1))

≥ rk,n
λ0,k

(A.2.17)

by combining with the first inequality in (A.2.14) together with the first inequality

in (A.2.16). If rk,n → +∞, we have ∂(β̂
(k+1)

k+1⋆ ) → +∞; if λ0,k < rk,n < +∞, we

have |N3| ≤
λ0,k
rk,n

|N2| ≤ |N2|, therefore,

1 ≥ |∂(β̂
(k+1)

k+1⋆ )| ≥ |N2| − |N3| ≥ (1− λ0,k
rk,n

+ op(1))|N2| ≥ rk,n − λ0,k,

and 0 < rk,n < λ0,k + 1. Plugging into the definition of rk,n in (A.2.16), then we

have our desired result (7.3.7). �


