
SOLVING BIG DATA PROBLEMS
from Sequences to Tables and Graphs

FELIX HALIM

Bachelor of Computing

BINUS University

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2012

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Roland Yap

for introducing and guiding me to research. He is very friendly, supportive, very

meticulous and thorough in reviewing my research. He gave a lot of constructive

feedbacks even when the research topic was not in his main areas.

I am glad I met Dr. Panagiotis Karras in several of his lectures on the Ad-

vanced Algorithm class and Advanced Topics in Database Management Systems

class. Since then we have been collaborating in advancing the state of the art

of the sequence segmentation algorithms. Through him, I get introduced to Dr.

Stratos Idreos from Centrum Wiskunde Informatica (CWI) who then offered an

unforgettable internship experience at CWI which further expand my research

experience.

I would like to thank to all my co-authors in my research papers: Yongzheng

Wu, Goetz Graefe, Harumi Kuno, Stefan Manegold, Steven Halim, Rajiv Ram-

nath, Sufatrio, and Suhendry Effendy. As well as the members of the thesis

committee who have reviewed this thesis: Prof. Tan Kian Lee, Prof. Chan Chee

Yong, and Prof. Stephane Bressan.

Last but not least, I would like to thank my parents, Tjoe Tjie Fong and Tan

Hoey Lan, who play very important role in my development into a person I am

today.

i

Contents

Acknowledgements i

Summary v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 The Big Data Problems . 1

1.1.1 Sequence Segmentation . 3

1.1.2 Robust Cracking . 4

1.1.3 Large Graph Processing 6

1.2 The Structure of this Thesis . 7

1.3 List of Publications . 7

2 Sequence Segmentation 11

2.1 Problem Definition . 13

2.2 The Optimal Segmentation Algorithm 14

2.3 Approximations Algorithms . 14

2.3.1 AHistL−∆ . 15

2.3.2 DnS . 16

2.4 Heuristic Approaches . 16

2.5 Our Hybrid Approach . 17

2.5.1 Fast and Effective Local Search 17

2.5.2 Optimal Algorithm as the Catalyst for Local Search 19

2.5.3 Scaling to Very Large n and B 21

2.6 Experimental Evaluation . 24

2.6.1 Quality Comparisons . 26

2.6.2 Efficiency Comparisons . 31

2.6.3 Quality vs. Efficiency Tradeoff 35

2.6.4 Local Search Sampling Effectiveness 36

ii

2.6.5 Segmenting Larger Data Sequences 47

2.6.6 Visualization of the Search 49

2.7 Discussion . 52

2.8 Conclusion . 54

3 Robust Cracking 55

3.1 Database Cracking Background 56

3.1.1 Ideal Cracking Cost . 59

3.2 The Workload Robustness Problem 61

3.3 Stochastic Cracking . 64

3.3.1 Data Driven Center (DDC) 66

3.3.2 Data Driven Random (DDR) 69

3.3.3 Restricted Data Driven (DD1C and DD1R) 70

3.3.4 Materialized Data Driven Random (MDD1R) 70

3.3.5 Progressive Stochastic Cracking (PMDD1R) 73

3.3.6 Selective Stochastic Cracking 74

3.4 Experimental Analysis . 74

3.4.1 Stochastic Cracking under Sequential Workload 75

3.4.2 Stochastic Cracking under Random Workload 78

3.4.3 Stochastic Cracking under Various Workloads 79

3.4.4 Stochastic Cracking under Varying Selectivity 82

3.4.5 Adaptive Indexing Hybrids 82

3.4.6 Stochastic Cracking under Updates 83

3.4.7 Stochastic Cracking under Real Workloads 84

3.5 Conclusion . 85

4 Large Graph Processing 87

4.1 Overview of the MapReduce Framework 89

4.2 Overview of the Maximum-Flow Problem 91

4.2.1 Problem Definition . 91

4.2.2 The Push-Relabel Algorithm 92

4.2.3 The Ford-Fulkerson Method 93

4.2.4 The Target Social Network 93

4.3 MapReduce-based Push-Relabel Algorithm 95

4.3.1 Graph Data Structures for the PRMR Algorithm 95

4.3.2 The PRMR map Function 95

4.3.3 PRMR reduce Function 98

4.3.4 Problems with PRMR . 99

4.3.5 PR2MR: Relaxing the PRMR 100

4.3.6 Experiment Results on PRMR 101

iii

4.3.7 Problems with PRMR and PR2MR 105

4.4 A MapReduce-based Ford-Fulkerson Method 106

4.4.1 Overview of the FFMR algorithm: FF1 108

4.4.2 FF1: Parallelizing the Ford-Fulkerson Method 109

4.4.3 Data Structures for FFMR 112

4.4.4 The map Function in the FF1 Algorithm 114

4.4.5 The reduce Function in the FF1 Algorithm 115

4.4.6 Termination and Correctness of FF1 117

4.5 MapReduce Extension and Optimizations 117

4.5.1 FF2: Stateful Extension for MR 118

4.5.2 FF3: Schimmy Design Pattern 119

4.5.3 FF4: Eliminating Object Instantiations 119

4.5.4 FF5: Preventing Redundant Messages 120

4.6 Approximate Max-Flow Algorithms 120

4.7 Experiments on Large Social Networks 121

4.7.1 FF1 Variants Effectiveness 121

4.7.2 FF1 vs. PR2MR . 124

4.7.3 FFMR Scalability in Large Max-Flow Values 125

4.7.4 MapReduce optimization effectiveness 126

4.7.5 The Number of Bytes Shuffled vs. Runtimes 127

4.7.6 Shuffled Bytes Reductions on FFMR Algorithms 129

4.7.7 FFMR Scalability in Graph Size and Resources 130

4.7.8 Approximation Algorithms 131

4.8 Conclusion . 133

5 Conclusion 135

5.1 The Power of Stochasticity . 135

5.2 Exploit the Inherent Properties of the Data 137

5.3 Optimizations on System and Algorithms 138

Bibliography 139

iv

Summary

Big Data problems arise when the existing solutions become impractical to run

because the amount of resources needed to process the ever increasing amount

of data exceeds the available resources which depend on the context of each

application. Classical problems whose solutions consume resources with more

than linear in complexity will face the big data problem sooner. Thus, such

problems that were considered solved need to be revisited in the context of big

data. This thesis provides solutions to three big data problems and summarizes

the shared important lessons such as stochasticity, robustness, inherent properties

of the underlying data, and algorithm-system optimizations.

The first big data problem is the sequence segmentation problem also known

as histogram construction. It is a classic problem on summarizing a large data

sequence to a much smaller (approximated) data sequence. With limited amount

of resources available, the practical challenge is to construct a segmentation with

as low error as possible and consumes as few resources as possible. This requires

the algorithms to provide good tradeoffs between the amounts of resources spent

versus the result quality. We proposed a novel stochastic local search algorithm

that effectively captures the characteristics of the data sequence and quickly dis-

covers good segmentation positions. The stochasticity makes it robust to be

used for generating sample solutions that can be recombined into a segmentation

with significantly better quality while maintaining linear time complexity. Our

state-of-the-art segmentation algorithms scale well and provide the best tradeoffs

in terms of quality and efficiency, allowing faster segmentation for larger data

sequences than existing algorithms.

In the second big data problem, we revisit the recent work on adaptive index-

ing. Traditional DBMS has been struggling in processing large scientific data.

One major bottleneck is the large initialization cost, that is to process queries

efficiently, the traditional DBMS requires both knowledge about the workload

and sufficient idle time to prepare the physical data store. A recent approach,

Database Cracking [53], alleviates this problem via a form of incremental-adaptive

indexing. It requires little or no initialization cost (i.e, no workload knowledge

or idle time required) as it uses the user queries as advice to refine incremen-

tally its physical datastore (indexes). Thus cracking is designed to quickly adapt

to the user query workload. Database cracking has the philosophy of doing just

enough. That is, only process data that are directly relevant to the query at hand.

This thesis revisits this philosophy and shows that it can backfire as being fully

driven by the user queries may not be ideal in an unpredictable and dynamic

environment. We show that this cracking philosophy has a weakness, namely

v

that it is not robust under dynamic query workloads. It can end up consum-

ing significantly more resources that it should and even worse, it fails to adapt

(according to cracking philosophy). We propose stochastic cracking that relaxes

the philosophy to invest some small computation that makes it an overall robust

solution under dynamic environment while maintaining the efficiency, adaptivity,

design principles, and interface of the original cracking. Under a real workload,

stochastic cracking answered the 1.6 * 105 queries up to two orders of magnitude

faster compared to the original cracking while the full indexing approach is not

even halfway towards preparing a traditional full index.

Lastly, we revisit the traditional graph problems whose solutions have quadratic

(or more) runtime complexity. Such solutions are impractical when faced with

graphs from the Internet due to the large graph size that the quadratic amount

of computation needed simply far outpaces the linear increase of the compute

resources. Nevertheless, most large real-world graphs have been observed to

exhibit small-world network properties. This thesis demonstrates how to take

advantage the inherent property of such graph, in particular, the small diameter

property and its robustness against edge removals, to redesign a quadratic graph

algorithm (for general graphs) into a practical algorithm designed for large small-

world graphs. We show empirically that the algorithm provides a linear runtime

complexity in terms of the graph size and the diameter of the graph. We designed

our algorithms to be highly parallel and distributed which allows it to scale to

very large graphs. We implemented our algorithms on top of a well-known and

well-established distributed computation framework, the MapReduce framework,

and show that it scales horizontally very well. Moreover, we show how to leverage

the vast amount of parallel computation provided by the framework, identify the

bottlenecks and provide algorithm-system optimizations around it.

vi

List of Tables

2.1 Complexity comparison . 25
2.2 Used data sets . 25

3.1 Cracking Algorithms . 66
3.2 Various workloads . 80
3.3 Varying selectivity . 82

4.1 Facebook Sub-Graphs . 94
4.2 Cluster Specifications . 101
4.3 FB0 with |f ∗| = 3043, Total Runtime = 1 hour 17 mins. 104
4.4 FB1 with |f ∗| = 890, Total Runtime = 6 hours 54 mins. 105
4.5 Hadoop, aug proc and Runtime Statistics on FF5 128

vii

List of Figures

1.1 Big Data Problem . 1
1.2 The different scales of the three big data problems 3

2.1 A segmentation S of a data sequence D 13
2.2 AHistL−∆ - Approximating the E(j, b) table 15
2.3 Local Search Move . 18
2.4 GDY algorithm . 19
2.5 GDY DP algorithm . 21
2.6 GDY BDP Illustration . 22
2.7 GDY BDP algorithm . 23
2.8 Quality comparison: Balloon . 26
2.9 Quality comparison: Darwin . 27
2.10 Quality comparison: DJIA . 27
2.11 Quality comparison: Exrates . 28
2.12 Quality comparison: Phone . 29
2.13 Quality comparison: Synthetic . 29
2.14 Quality comparison: Shuttle . 30
2.15 Quality comparison: Winding . 31
2.16 Runtime comparison vs. B: DJIA 32
2.17 Runtime comparison vs. B: Winding 33
2.18 Runtime comparison vs. B: Synthetic 33
2.19 Runtime vs. n, B = 512: Synthetic 34
2.20 Runtime vs. n, B = n

32
: Synthetic 35

2.21 Tradeoff Delineation, B = 512: DJIA 36
2.22 Sampling results on balloon1 dataset 39
2.23 Sampling results on darwin dataset 40
2.24 Sampling results on erp1 dataset 41
2.25 Sampling results on exrates1 dataset 42
2.26 Sampling results on phone1 dataset 43
2.27 Sampling results on shuttle1 dataset 44
2.28 Sampling results on winding1 dataset 45
2.29 Sampling results on djia16K dataset 46
2.30 Sampling results on synthetic1 dataset 47
2.31 Number of Samples Generated . 48
2.32 Relative Total Error to GDY 10BDP 48
2.33 Tradeoff Delineation, B = 64 . 49
2.34 Tradeoff Delineation, B = 4096 50
2.35 Comparing solution structure with quality and time, B = 512: DJIA 51
2.36 GDY LS vs. GDY DP, B = 512: DJIA 53

viii

3.1 Cracking a column . 57
3.2 Basic Crack performance under Random Workload 60
3.3 Crack loses its adaptivity in a Non-Random Workload 62
3.4 Various workloads patterns . 63
3.5 Cracking algorithms in action . 67
3.6 The DDC algorithm . 68
3.7 An example of MDD1R . 71
3.8 The MDD1R algorithm . 72
3.9 Stochastic Cracking under Sequential Workload 76
3.10 Simple cases . 78
3.11 Stochastic Cracking under Random Workload 79
3.12 Various workloads under Stochastic Cracking 81
3.13 Stochastic Hybrids . 83
3.14 Cracking on the SkyServer Workload 84

4.1 The PRMR’s map Function . 96
4.2 The PRMR’s reduce Function 98
4.3 A Bad Scenario for PRMR . 100
4.4 Robustness comparison of PRMR versus PR2MR 101
4.5 The Effect of Increasing the Maximum Flow and Graph Size . . . 102
4.6 The Ford-Fulkerson method . 106
4.7 An Illustration of the Ford-Fulkerson Method 107
4.8 The pseudocode of the main program of FF1 108
4.9 The map function in the FF1 algorithm 114
4.10 The reduce function in the FF1 algorithm 116
4.11 FF1 Variants on FB1 Graph with |f ∗| = 80 122
4.12 FF1 Variants on FB1 Graph with |f ∗| = 3054 123
4.13 FF1 (c) Varying Excess Path Storage 124
4.14 PR2MR vs. FFMR on the FB0 Graph 124
4.15 PR2MR vs. FFMR on FB1 Graph 125
4.16 Runtime and Rounds versus Max-Flow Value (on FF5) 126
4.17 MR Optimization Runtimes: FF1 to FF5 127
4.18 Reduce Shuffle Bytes and Total Runtime (FF5) 128
4.19 Total Shuffle Bytes in FFMR Algorithms 129
4.20 FF5 Scalability with Graph Size and Number of Machines 130
4.21 Edges processed per second vs. number of slaves (on FF5) 131
4.22 FF5 on FB3 Prematurely Cut-off at the n-th Round 132
4.23 FF5A (Approximated Max-Flow) 132
4.24 FF5 with varying α on the FB3 graph 133

ix

x

Chapter 1

Introduction

1.1 The Big Data Problems

We are in the era of Big Data. Enormous amount of data are being collected every-

day in business transactions, mobile sensors, social interactions, bioinformatics,

astronomy, etc. Being able to process big data can bring significant advantage in

making informed decisions, getting new insights, and better understanding the

nature. Processing big data starts to become problematic when the amount of

resources needed to process the data grow larger than the available computing

resources (as illustrated in Figure 1.1). The resources here may represent a com-

bination of available processing time, number of CPUs, memory/storage capacity,

etc.

Figure 1.1: Big Data Problem

There could be many different solutions (i.e., techniques or algorithms) to

solve a given a problem. Different solutions may require different amount of

1

resources. Moreover, different solutions may give different tradeoffs in terms of

amount of resources needed versus quality of result produced. Considering the

limited resources available and rapidly increasing data size, one must carefully

evaluate the existing solutions and pick the one that works within the resources

capacity and provides acceptable result quality in order to scale to large data

sizes. What we considered as big data problems are relative to the amount of

available resources which depends on the type of applications and contexts where

the solutions are applied. That is, on applications with abundance amount of

resources, the solutions may work perfectly fine, however the solutions may face

big data problems under environments with very limited resources. Typically,

solutions that consume more than linear amount of resources in proportion to the

data size will run into the big data problem sooner. Understanding the tradeoffs of

the existing solutions may not be enough because one may require an entirely new

solution as the existing (traditional) solutions becomes too ineffective/inefficient.

It is the role of Data Scientist to deal with these complex analyses and come

up with a solution in solving big data problems. A recent study showed that data

scientist is on high demand for the next 5 years and has outpaced the supply of

talent [3]. In this thesis, we will play the role of a data scientist and evaluate

existing solutions of the three kinds of big data problems, propose new and/or

improve on existing solutions, then summarize the important lessons learned.

This chapter gives a brief overview of the three big data problems. These

problems exists in different scales in terms of number of available resources and

data size as illustrated in Figure 1.2. In the limited scale (a), such as sensor net-

works, we have the sequence segmentation (or histogram construction) problem.

In desktop/server scale (b), we have database indexing problem. In cloud com-

puting scale (c), we have large graph processing problem. The solutions to these

seemingly unrelated big data problems share many common aspects, namely:

• (Sub)Linear in Complexity. The (sub)linear complexity is the ingredient

for scalable algorithms. We designed new algorithms for (a) and (c) that

reduce the complexity to linear and relaxed the algorithm for (b) to give

robust sub-linear complexity.

• Stochastic Behavior. Stochasticity (and/or non-determinism) is used for

(a) and (b) to bring robustness into the algorithms and for (c) to be more

efficient in queue processing.

• Robust Behavior. Algorithm robustness is paramount as without it any

algorithm will fail to achieve whatever goals it set out to achieve.

• Effective exploitation of inherent properties of the data. By exploiting the

2

Figure 1.2: The different scales of the three big data problems

inherent properties of the data, a significantly more efficient algorithm can

be designed for (c). The characteristics of data can also be used to improve

the sampling effectiveness for (a) and to be used as trigger stochastic action

in (b).

1.1.1 Sequence Segmentation

The sequence segmentation is the problem of segmenting a large data sequence

into a (much smaller) number of segments. Depending on the context, the se-

quence segmentation problem can be seen as histogram construction problem or

a problem of creating a synopsis of a large data sequence into a much smaller

(approximated) data sequence. Sequence segmentation problems arise in many

application areas such as mobile devices, database systems, telecommunications,

bioinformatics, medical, financial data, scientific measurements, and in informa-

tion retrieval.

With ever increasing size of the data sequence, sequence segmentation becomes

a big data problem in many application settings. Imagine a mobile device that

requires context awareness capability [52]. Context awareness can be inferred by

analyzing the signals captured by different sensors. These sensors often produce

large time series data sequence that need to be summarized to a much smaller

sequence (which can be seen as a sequence segmentation problem). However,

mobile devices have limited amount of resources to process data produced by the

sensors (i.e., limited battery life and computing power). The optimal sequence

segmentation algorithm quickly becomes impractical due to its quadratic run-

3

time complexity. The existing heuristics are shown (in this thesis) to have poor

segmentation quality. Recent research has revisited the segmentation problem in

the point of view of approximation algorithms. However, it still impractical for

large data sequence and failed to resolve the tradeoffs between efficiency versus

quality.

In this thesis, a novel state-of-the-art sequence segmentation algorithm is pro-

posed which matches or exceeds the quality of existing approximation algorithms

while having performance of existing heuristics. Moreover, we provide extensive

comparisons to the existing various sequence segmentation algorithms measured

on its quality and efficiency on various well known datasets. The proposed algo-

rithm has linear runtime complexity on the size of the data sequence and on the

number of segments generated. The algorithm works by combining the strength

of stochastic local search in consistently generating good samples and the existing

optimal algorithm to recombine them into a final segmentation with significantly

better quality. Our local search algorithm is targeted towards finding good seg-

mentation positions that are relevant to the data. This technique turns out to be

far more effective than the approximation algorithms which are targeted towards

lowering the total error. We show that in practice, the algorithm practically

produces high-quality segmentation on very large data sequences where existing

approximations are impractical and existing heuristics are ineffective.

1.1.2 Robust Cracking

Scientific data tends to be very large both in terms of the number of tuples and

its attributes. For example, a table in the SkyServer dataset has 466 columns

and 270 million rows [64]. New datasets may arrive periodically and the queries

imposed on scientific data are very dynamic (i.e., it do not necessarily follow a

predetermined pattern) and unpredictable (i.e., it may depend on the previous

query result, or it can be arbitrary/exploratory). These characteristics pose as

an interesting challenge in creating efficient query processing system.

Traditional database management systems rely heavily on indexing to speedup

the query performance. However, existing indexing approaches such as offline

and online indexing fail under dynamic query workloads. Offline indexing works

by first preparing the physical data store for efficient access. The preparation

requires knowledge of the query workload beforehand which is scarce in dynamic

environment. Normally, the preparation is tantamount to fully sorting the data

so that queries can be answered efficiently using binary search. This preparation

costs becomes the biggest bottleneck if the number of elements in the data is

extremely large. Moreover, the preparation costs may be overkill if the data is

4

only queried for a few times before the user move on to the next dataset. That

is, it may be better to perform linear scans if there are only a dozen or so queries.

Most online indexing strategies try to avoid these costly preparation cost by

first monitoring the query workload and its performance when processing the

queries. New indexes will be built/updated (or old indexes will be dropped) once

certain thresholds are reached. The downside is that the index updates may

severely affect the query processing performance and existing indexes may be

outdated or become ineffective as soon as the query workload changes and thus

queries may need to be answered without index support until one of the next

thresholds is reached.

In dealing with large scientific data in dynamic workload, efficient computa-

tion becomes an important factor in reducing the processing costs as well as the

preparation costs. One may want to process only the necessary things for the

query at hand, that is, to do just enough. That is the philosophy of the Database

Cracking, a recent indexing strategy [53]. Cracking is designed to work under the

assumption that no idle time and no prior workload knowledge required.

Cracking uses the user queries as advice to refine the physical datastore and

its indexes. The cracking philosophy has the goal of lightweight processing and

quick adaptation to user queries. That is, the response time rapidly improves as

soon as the next query arrives. However, under a dynamic environment, this can

backfire. Blindly following the user queries may create (cracker) indexes that are

detrimental to the overall query performance. This robustness problem causes

cracking fails to adapt and consumes significantly far more resources than needed,

and turn it into a big data problem.

We propose stochastic cracking to relax the philosophy by investing some

resources to ensure that future queries continue to improve on its response time

and thus able to maintain an overall efficient, effective, and robust cracking under

dynamic and unpredictable query workloads. To achieve this robustness property,

stochastic cracking looks at the property of the underlying data as well instead

of blindly following the user query entirely. Stochastic cracking maintains the

sub-linear complexity in query processing and conforms to the original cracking

interface, thus, can be used as a drop in replacement for the original cracking.

In this thesis, we propose several cracking algorithms and present extensive

comparisons among them. Our stochastic cracking algorithm variants manage

to outperform the original cracking by two orders of magnitude faster on a real

dataset and real dynamic query workload while the offline indexing is still halfway

through preparing the indexes.

5

1.1.3 Large Graph Processing

Graphs from the Internet such as the World Wide Web and the online social

networks are extremely large. Analyzing such graphs is a big data problem.

Typically, such large graphs are stored and processed in a distributed manner as

it is more economical to do so rather than in a centralized manner (e.g., using

a super computer with terabytes of memory and thousands of cores). However,

running graphs algorithms that have quadratic runtime complexity or more will

quickly become impractical on such large graphs as the available resources (i.e.,

the number of machines) only scales linearly as the graph size. To solve this big

data problem in practice, one must invent more effective new solutions without

compromising the result quality.

Fortunately, many large real-world graphs have been shown to exhibit small-

world network (SWN) properties (in particular, they have been shown to have

small diameter) and robust. As we shall see in this thesis, we can exploit the

inherent properties of the SWN, in particular, the small diameter property and

robustness against edge removal, to redesign a quadratic graph algorithm such

as the Maximum-Flow (max-flow) algorithm into new parallel and distributed

algorithms. We show empirically that it has a linear runtime complexity in terms

of the graph size. The max-flow problem is a classical graph problem that has

many useful applications in the World Wide Web as well as in the online social

networks such as finding spam sites, building content voting system, discovering

communities, etc.

The performance and scalability of the new algorithms depend on the process-

ing framework. As of this writing, the existing specialized distributed graph pro-

cessing frameworks based on Google Pregel are still under development1. There-

fore, most of current researches on large graph processing are built on top of

the MapReduce framework which has become de facto standard for processing

large-scale data over thousands of commodity machines.

In this thesis, we redesigned, implemented, and evaluated the existing max-

flow algorithms (namely the Push-Relabel algorithm and the Ford-Fulkerson

method) on the MapReduce framework. Implementing these non trivial graph

algorithms on the MapReduce framework has its own challenges. The algorithms

must be represented in the form of stateless map and reduce functions and the

data must be represented in records of 〈key, value〉 pair. The algorithm must

work in a local (or distributed) manner (i.e., only use the information in a lo-

cal record). Moreover, since the cost of fetching the data (from disks and/or

network) far outweigh the costs of computing the data (applying the map or

1Pregel is proprietary to Google while Apache Giraph and Hama are still in incubator phase.

6

reduce functions), the algorithms must be tailored to a new cost model. We de-

scribe the design, parallelization and optimizations needed to effectively compute

max-flow for the MapReduce framework. We believe that these optimizations

are useful as design patterns for MapReduce based graph algorithms as well as

specialized graph processing frameworks such as Pregel. Our new highly par-

allel MapReduce-based algorithms that exploit the small diameter of the graph

are able to compute max-flow on a subset of the Facebook social network graph

with 411 million vertices and 31 billion edges using a cluster of 21 machines in

reasonable time.

1.2 The Structure of this Thesis

The chapters are organized as follows:

• Chapter 1, we discuss Big Data problems and introduce the three problems

and their common solutions in terms of (sub)linear complexity, stochastic/non-

deterministic algorithm, robustness, and exploitation of the inherent prop-

erties of the data.

• Chapter 2, we discuss how to utilize stochastic local-search together with

the optimal algorithm into an effective and efficient segmentation algorithm.

• Chapter 3, we discuss how stochasticity helps to make database cracking

robust under dynamic and unpredictable environment.

• Chapter 4, we discuss strategies to exploit the small diameter property of

the graph and transform a classic maximum flow algorithm into a highly

parallel and distributed algorithm by leveraging the MapReduce framework.

• Chapter 5, we conclude our thesis and summarize the important lessons

learned.

1.3 List of Publications

During the PhD candidature at School of Computing, National University of

Singapore, the author has published the following works which are related to the

thesis (in chronological order):

1. Felix Halim, Yongzheng Wu and Roland H.C. Yap. Security Issues in Small

World Network Routing. In the 2nd IEEE International Conference on

Self-Adaptive and Self-Organizing Systems (SASO 2008). IEEE Computer

Society, 2008.

7

2. Felix Halim, Yongzheng Wu, and Roland H.C. Yap. Small world networks

as (semi)-structured overlay networks. In Second IEEE International Con-

ference on Self-Adaptive and Self-Organizing Systems Workshops, 2008.

3. Felix Halim, Yongzheng Wu, and Roland H.C. Yap. Wiki credibility en-

hancement. In the 5th International Symposium on Wikis and Open Col-

laboration, 2009.

4. Felix Halim, Panagiotis Karras, and Roland H.C. Yap. Fast and effec-

tive histogram construction. In 18th ACM Conference on Information and

Knowledge Management (CIKM), 2009. (best student paper runner-

up)

5. Felix Halim, Panagiotis Karras, and Roland H.C. Yap. Local search in

histogram construction. In 24th AAAI Conference on Artificial Intelligence,

July 2010.

6. Felix Halim, Yongzheng Wu and Roland H.C. Yap. Routing in the Watts

and Strogatz Small World Networks Revisited. In Workshops of the 4th

IEEE International Conference on Self-Adaptive and Self-Organizing Sys-

tems (SASO Workshops 2010), 2010.

7. Felix Halim, Roland H.C. Yap and Yongzheng Wu. A MapReduce-Based

Maximum-Flow Algorithm for Large Small-World Network Graphs. In the

2011 IEEE 31th International Conference on Distributed Computing Sys-

tems (ICDCS’11), IEEE Computer Society, 2011.

8. Felix Halim, Stratos Idreos, Panagiotis Karras and Roland H. C. Yap.

Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-

Memory Column-Stores. In the 38th Very Large Databases Conference

(VLDB), Istanbul, 2012.

9. Goetz Graefe, Felix Halim, Stratos Idreos, Harumi Kuno and Stefan Mane-

gold. Concurrency Control for Adaptive Indexing. In the 38th Very Large

Databases Conference (VLDB), Istanbul, 2012.

The following are the other publications the author has been involved in during

his doctoral candidature (in chronological order):

1. Steven Halim, Roland H. C. Yap, Felix Halim. Engineering Stochastic Lo-

cal Search for the Low Autocorrelation Binary Sequence Problem. Interna-

tional Conference on Principles and Practice of Constraint Programming,

2008.

8

2. Felix Halim, Rajiv Ramnath, YongzhengWu, and Roland H.C. Yap. A

lightweight binary authentication system for windows. International Fed-

eration for Information Processing Digital Library, Trust Management II,

2008.

3. Yongzheng Wu, Sufatrio, Roland H.C. Yap, Rajiv Ramnath, and Felix

Halim. Establishing software integrity trust: A survey and lightweight

authentication system for windows. In Zheng Yan, editor, Trust Modeling

and Management in Digital Environments: from Social Concept to System

Development, chapter 3. IGI Global, 2009.

4. Yongzheng Wu, Roland H.C. Yap, and Felix Halim. Visualizing Windows

system traces. In Proceedings of the 5th International Symposium on Soft-

ware visualization (SOFTVIS’10), ACM, 2010.

5. Suhendry Effendy, Felix Halim and Roland Yap. Partial Social Network

Disclosure and Crawlers. In Proceedings of the International Conference

on Social Computing and its Applications (SCA 2011), IEEE, 2011. (best

student paper)

6. Suhendry Effendy, Felix Halim and Roland Yap. Revisiting Link Privacy in

Social Networks. In Proceeding of the 2nd ACM Conference on Data and

Application Security and Privacy (CODASPY12), ACM, 2012.

9

10

Chapter 2

Sequence Segmentation

A segmentation aims to approximate a data sequence of values by piecewise-

constant line segments, creating a small synopsis of the sequence that effectively

capture the basic features of the underlying data. Sequence segmentation has

wide area of applications. In time series databases, it has been used for context

recognition [52], indexing and similarity search [21]; in bio-informatics for DNA

[79] or genome segmentation [95]; in database systems for data distribution ap-

proximation [61], intermediate join results approximation by a query optimizer

[59, 84], query processing approximation [90, 20], and point and range queries

approximation [45]; the same form of approximation is used in knowledge man-

agement applications as in decision-support systems [11, 63, 106]. An overview

of the area from a database perspective is provided in [60, 61].

In all cases, a segmentation algorithm is employed in order to divide a given

data sequence into a given budget of consecutive buckets or segments [52]. All

values in a segment are approximated by a single representative. Both these

representative values, and the bucket boundaries themselves, are chosen so as to

achieve a low value for an error metric in the overall approximation. Depending on

the application domain, the same approximate representation of a data sequence

is called a histogram [61], a segmentation [104], a partitioning, or a piecewise-

constant approximation [21].

The importance of sequence segmentation becomes more apparent in the con-

text of mobile devices [52]. Recent advances in micro-sensor technology raises

interesting challenges in how to effectively analyze large data sequence in such de-

vices where computation and communication bandwidth are scarce resources [10].

In such limited resources environment, sequence segmentation becomes a big data

problem. An optimal segmentation derived by a quadratic dynamic-programming

(DP) algorithm that recursively examines all possible solutions [15, 65] is imprac-

tical. Thus, heuristic approaches [92, 65] are employed in practice.

Recent research has revisited the problem from the point of view of approxi-

11

mation algorithms. Guha et al. proposed a suite of approximation and streaming

algorithms for histogram construction problems [44]. Of the algorithms proposed

in [44], the AHistL-∆ proves to be the best for offline approximate histogram con-

struction. In a nutshell, AHistL-∆ builds on the idea of approximating the error

function itself, while pruning the computations of the DP algorithm. Likewise,

Terzi and Tsaparas recently proposed DnS, an offline approximation scheme for

sequence segmentation [104]. DnS divides the problem into subproblems, solves

each of them optimally, and then utilizes DP to construct a global solution by

merging the segments created in the partial solutions.

In solving big data problems, one must be wise in spending resources. The

results should be commensurate with the resources spent. Despite their theoreti-

cal elegance, the approximation algorithms proposed in previous research do not

always resolve the tradeoffs between time complexity and histogram quality in a

satisfactory manner. The running time of these algorithms can approach that of

the quadratic-time DP solution. Still, the quality of segmentation they achieve

can substantially deviate from the optimal. Previous research has not examined

how the different approximation algorithms of [44] and [104] compare to each

other in terms of efficiency and effectiveness.

In this chapter, we propose a middle ground between the theoretical elegance

of approximation algorithms on the one hand, and the simplicity, efficiency, and

practicality of heuristics on the other. We develop segmentation algorithms that

run in linear complexity in order to scale to large data sequence. While these

algorithms do not provide approximation guarantees with respect to the optimal

solution, they produce better segmentation quality than the existing algorithms.

We employ stochastic features by way of a local search algorithm. It results in a

segmentation which is very effective in extracting the characteristics of the under-

lying data sequence. Our stochastic local search consistently produces solutions

where its segmentation positions are near if not the same to optimal segmenta-

tion positions and these solutions can be recombined into a significantly better

solution without sacrificing the linear runtime complexity. We demonstrate that

our solution is scalable and provides the best tradeoff between runtime versus

quality that allows them to be employed in practice, instead of the currently

used heuristics, when dealing with the segmentation of very large data sets under

limited resources. We conduct the first, to our knowledge, experimental study

of state-of-the-art optimal, approximation, and heuristic algorithms for sequence

segmentation (or histogram construction). This study demonstrates that our al-

gorithms vastly outperform the guarantee-providing approximation schemes in

terms of running time, while achieving comparable or superior approximation

accuracy.

12

Our work local search algorithm and the hybrid algorithms that use it as

sampling is published in [47] while our analysis on local search for histogram

construction is published in [48].

2.1 Problem Definition

Given a data sequence D = 〈d0, d1, . . . , dn−1〉 of length n. We define a segmen-

tation of D as S = 〈b0, b1, . . . , bB〉 where bi ∈ [0, n − 1]. bi denote the boundary

positions of the data sequence. The first boundary b0 and the last boundary bB

are fixed at position b0 = 0 and bB = n. The intervals [bi−1, bi − 1] | i ∈ [1, B]

are called buckets or segments. Each segment is attributed a representative value

vi, which approximate all values dj where j ∈ [bi−1, bi − 1]. Figure 2.1 gives the

illustration.

Figure 2.1: A segmentation S of a data sequence D

The goal of a segmentation algorithm is to find boundary positions that achieve

a low approximation error for the error metric at hand. A useful metric is the

Euclidean error which in practice works on the sum-of-squared-errors (SSE). Pre-

vious studies [65, 31, 71, 43, 93, 72, 73, 74, 69, 70] have generalized their results

into wider classes of maximum, distributive, Minkowski-distance, and relative-

error metrics. Still, the Euclidean error remains an important error metric (and

the most well known) for several applications, such as database query optimiza-

tion [62], context recognition [52], and time series mining [21].

For a given target error metric, the representative value vi of a bucket that

minimizes the resulting approximation error is straightforwardly defined as a

function of the data values in the bucket. For the average absolute error the best

vi is the median of the values in the interval [104]; for the maximum absolute

error it is the mean of the maximum and minimum value in the interval [75];

an analysis of respective relative-error cases is offered in [45]. For the Euclidean

error that concerns us, the optimal value of vi is the mean of values in the interval

[65].

13

2.2 The Optimal Segmentation Algorithm

The O(n2B) dynamic-programming (DP) algorithm that constructs an optimal

segmentation, called V-Optimal, under the Euclidean error metric is a special case

of Bellman’s general line segmentation algorithm [15]. This was first presented

by Jagadish et al. [65] and optimized in terms of space-efficiency by Guha [42].

Its basic underlying observation is that the optimal b-segmentation of a data

sequence D can be recursively derived given the optimal (b− 1)-segmentations of

all prefix sequences of D. Thus, the minimal sum-of-squared-errors (SSE) E(i, b)

of a b-bucket segmentation of the prefix sequence 〈d0, d1, . . . , di〉 is recursively

expressed as:

E(i, b) = min
b≤j<i

{E(j, b− 1) + E(j + 1, i)} (2.1)

where E(j+1, i) is the minimal SSE for the segment 〈dj+1, . . . , di〉. This error

is easily computed in O(1) based on a few pre-computed quantities (sums of

squares and squares of sums) for each prefix [65]. Thus, this algorithm requires

a O(nB) tabulation of minimized error values E(i, b) along with the selected

optimal last-bucket boundary positions j that correspond to those optimal error

values. As noted by Guha, the space complexity is reducible to O(n) by discarding

the full O(nB) table; instead, only the two running columns of this table are

stored. The middle bucket of each solution is kept track of; after the optimal

error is established, the problem is divided in two half subproblems and the same

algorithm is recursively re-run on them, until all boundary positions are set [42].

The runtime is significantly improved by a simple pruning step [65]; for given i

and b, the loop over (decreasing) j that searches for the min value in Equation

2.1 is broken when E(j+1, i) (non-decreasing as j decreases) exceeds the running

minimum value of E(i, b).

Unfortunately, the quadratic time complexity of V-Optimal renders it inappli-

cable in most real-world applications. Thus, several works have proposed approx-

imation schemes [33, 34, 44, 104].

2.3 Approximations Algorithms

Recent research has revisited the segmentation problem [104] (or histogram con-

struction problem in database context [44]) from the point of view of approxima-

tion algorithms. This section details these approximation approaches.

14

2.3.1 AHistL−∆

Guha et al. have provided a collection of approximation algorithms for the his-

togram construction problem. Out of them, AHistL-∆ is their algorithm of choice

for offline histogram construction [44].

The basic observation underlying the AHistL-∆ algorithm is that the E(j, b−1)

function in Equation 2.1 is a non-decreasing function of j, while its counterpart

function E(j + 1, i) is a non-increasing function of j. Thus, instead of computing

the entire tables of E(j, b) over all values of j, this non-decreasing function is

approximated by a staircase histogram representation - that is, a histogram in

which the representative value for a segment is the highest (i.e., the rightmost)

value in it. In effect, only a few representative values of E(j, b− 1), i.e., the end

values of the staircase intervals, are used. Moreover, the segments of this staircase

histogram themselves are selected so that the value of the E(j, b) function at

the right-hand end of a segment is at most (1 + δ) times the value at the left-

hand end, where δ = ε
2B

. The recursive formulation of Equation 2.1 remains

unchanged, with the difference that the variable j now only ranges over the

endpoints of intervals in this staircase histogram representation of E(j, b). Figure

2.2 illustrates how space can be saved by approximating E(i, b).

Figure 2.2: AHistL−∆ - Approximating the E(j, b) table

On top of this observation, the AHistL-∆ algorithm adds the further insight

that any E(j, b) value that exceeds the final SSE of the histogram under construc-

tion (or even an approximate version of that final error) cannot play a role in the

eventual solution. Since E(j, b) form partial contributions to the aggregate SSE,

only values smaller than the final error ∆ contribute to the solution. Thus, if we

knew the error ∆ of the V-Optimal histogram in advance, then we could eschew

15

the computation of any E(j, b) value that exceeds it. Since ∆ in not known in

advance, we can still work with estimates of ∆ in a binary-search fashion.

The AHistL-∆ algorithm combines the above two insights. In effect, the prob-

lem is decomposed in two parts. The inner part returns a histogram of error less

than (1 + ε)∆, under the assumption that the given estimate ∆ is correct, i.e.,

there exists a histogram of error ∆; the outer part searches for such a well-chosen

value of ∆. The result is an O(n + B3(log n + ε−2) log n)-time algorithm that

computes an (1 + ε)-approximate B-bucket histogram.

2.3.2 DnS

Terzi and Tsaparas correctly observed that a quadratic algorithm is not an ade-

quately fast solution for practical sequence segmentation problems [104]. As an

alternative to the V-Optimal algorithm, they suggested a sub-quadratic constant-

factor approximation algorithm.

The basic idea behind this divide and segment (DnS) algorithm is to divide the

overall segmentation problem into smaller subproblems, solve those subproblems

optimally, and then combine their solutions. The V-Optimal algorithm serves as

a building block of DnS. The problem sequence is arbitrarily partitioned into

smaller subsequences. Each of those is optimally segmented using V-Optimal.

Then, the derived segments are treated as the input elements themselves, and a

segmentation (i.e., local merging) of them into B larger buckets is performed us-

ing the V-Optimal algorithm again. A thorough analysis of this algorithm demon-

strates an approximation factor 3 in relation to the optimal Euclidean error error,

and a worst-case complexity of O(n4/3B5/3), assuming that the original sequence

is partitioned into χ =
(
n
B

)2/3
equal-length segments in the first step. The recur-

sive application of the DnS results in O(nB3loglogn) for χ =
√
n which is slower

than the AHistL-∆.

2.4 Heuristic Approaches

Past research has also proposed several heuristics for histogram construction.

Some of these heuristics are relatively brute-force segmentations; this category

includes methods such as the end-biased [62], equi-width [76], and equi-depth [89,

87] heuristics.

A more elaborate heuristic is the MaxDiff [92] method. According to this

method, the B− 1 points of highest difference between two consecutive values in

the original data set are selected as the boundary points of a B-bucket histogram.

Its time complexity is O(n logB), i.e., the cost of inserting n items into a priority

16

queue of B elements. Poosala and Ioannidis conducted an experimental study

of several heuristics employed in database applications and concluded that the

MaxDiff-histogram was “probably the histogram of choice”. Matias et al. used

this method as the conventional approach to histogram construction for selectivity

estimation in database systems, in comparison to their alternative proposal of

wavelet-based histograms [84].

Jagadish et al. [65] have suggested an one-dimensional variant of the mul-

tidimensional MHIST heuristic proposed by Poosala and Ioannidis [91]. This is

a greedy heuristic that repeatedly selects and splits the bucket with the highest

SSE, making B splits. The same algorithm is mentioned by Terzi and Tsaparas

by the name Top-Down [104]; a similar algorithm has been suggested in the con-

text of multidimensional anonymization by LeFevre et al. [78]. Its worst-case

time complexity is O(B(n + logB), i.e., the cost to create a heap of B items

while updating affected splitting costs at each step. In the pilot experimental

study of [65], MaxDiff and MHIST turn out to be the heuristics of choice; it is

observed that the former performs better on more spiked data, while the latter

is more competitive on smoother data.

2.5 Our Hybrid Approach

Under big data context where the amount of available resources is limited, a seg-

mentation algorithm must give a good justification on the resources spent. It

should provide a satisfactory tradeoff between efficiency and accuracy, thus pro-

viding a significant advantage with respect to both the optimal but not scalable

V-Optimal and to fast but inaccurate heuristics. Approximation schemes with

time super-linear in n and/or B may not achieve this goal. There is a need

for new approaches that can provide the best of the both world by having near-

optimal segmentation quality and near-linear runtime complexity. In this section,

we proposed our algorithms based on local search combined by the existing DP to

produce near ideal segmentation algorithm. Although our local search and exist-

ing heuristics are both greedy-based algorithms, there are important differences.

Our local search algorithms employ iterative improvement and stochasticity. In

contrast, both MaxDiff and MHIST derive a solution in one shot and never modify

a complete B-segmentation they have arrived at.

2.5.1 Fast and Effective Local Search

We first describe a basic local search algorithm called GDY. It starts with an

ad hoc segmentation S0 and makes local moves which greedily modify boundary

17

positions so as to reduce the total L2 error. S0 can be randomly created, or it can

be that of a simple heuristic, for example an equi-width histogram [76]. Each local

move has two components. First a segment boundary whose removal incurs the

minimum error increase is chosen. As this decreases the number of segments by

one, a new segment boundary is added back by splitting the segment which gives

the maximum error decrease. Note that expanding or shrinking a segment by

moving its boundary is a special case of this local move when the same segment

is chosen for removal and splitting. A local minimum on the total error is reached

when no further local moves are possible. Figure 2.3 gives an illustration of a

local move.

Figure 2.3: Local Search Move

We define boundary positions bi where 1 ≤ i ≤ B − 1 as movable boundary

positions. As described in Section 2.1, the first and last boundary positions (b0

and bB) are fixed. To ensure efficient local moves, we keep a min-heap H+ of

movable boundary positions with their associated potential error increase, and

a max-heap H− of all movable segments with the potential error decrease. The

time complexity of GDY is O
(
M
(
n
B

+ logB
))

, where M is the number of local

moves, n
B

for the (average) cost of calculating the optimal split position for a

newly created segment after each move, and logB for the overhead of selecting

the best-choice boundary to remove and segment to split using the heaps.

Figure 2.4 gives the GDY algorithm. The GDY algorithm first takes an input

of a data sequence D and output a segmentation S of B segments. An initial

segmentation S0 is created with randomized B − 1 movable segment boundaries

(Line 1). Populate all B−1 movable boundaries into a min-heap H+ and a max-

heap H−. Do improving local search move until stuck (Line 3-12). We want to

move from solution Si−1 to a new solution Si (Line 4). We take the boundary G

that results in the minimum error increase ∆+Ei from H+ (Line 5). We remove G

from Si and update the error increase and error decrease in the heaps. Note that

the heaps do not support delete operations, however, to simulate the ”update”

18

Algorithm GDY(B)
Input: space bound B, n-data sequence D = [d0, . . . , dn−1]
Output: a segmentation S of B segments
1. S0 = randomized initial segmentation
2. i = 0; Populate H+ and H− with Si;
3. while (H+ is not empty)
4. i = i+ 1; Si = Si−1;
5. G = take boundary with minimum ∆+Ei from H+;
6. Remove G from Si and update H+ and H−;
7. P = take segment with maximum ∆−Ej from H−;
8. if (∆+Ei −∆−Ej >= 0)
9. Undo steps 6 and 7; // G is discarded
10. else
11. Split segment P , add new boundary to Si;
12. Update partitions’ costs in H+ and H−;
13. return Si;

Figure 2.4: GDY algorithm

we can just insert the new boundary and its cost to the heaps and discard invalid

boundary positions upon extracting from the heaps. We can do this since we

know the exact boundary positions of the current segmentation Si. Thus, the

update is still of order O(logB) (Line 6). We then take the segment P with

maximum error decrease ∆−Ej from H− (line 7). If the error increase is bigger

than the error decrease (Line 8), then we undo the steps we did on line 6 and 7.

This will result in one less element for H+ but the size of H− stay constant. If

this keep happening, then after a number of local move, H+ will be empty and

the GDY algorithm stuck in a local optima (Line 3) and the current segmentation

Si is returned (Line 13). Otherwise, if the error increase is less than the error

decrease (Line 10), then we split the segment P in Si adding a new boundary

inside P (Line 11) and the heaps are updated accordingly (Line 12).

According to our experimental analysis, GDY produces segmentation with

better L2 error with on par performance to existing heuristic approaches under

variety of datasets. In the next section, we present a way to significantly boost the

quality (lower the L2 error) without sacrificing much the performance advantages.

2.5.2 Optimal Algorithm as the Catalyst for Local Search

The proposed approximation algorithms AHistL − ∆ [44] and DnS [104] aim to

eschew part of the DP computation without altogether discarding the dynamic-

programming (DP) itself. AHistL-∆ tries to carefully discard from the DP re-

cursion those candidate boundary positions whose error contribution can be ap-

19

proximated by that of their peers [44]. Likewise, DnS attempts to acquire a set

of samples (i.e., candidate boundary positions) by running the DP recursion it-

self in a small scale, within each of the χ subsequences it creates [104], ending

up with χB samples. Thus, DP is applied in a two-level fashion, both at a

micro-scale, within each of the χ subsequences, and at a macro-scale, among the

derived boundaries themselves. While this approach allows for an error guar-

antee, it unnecessarily burdens what is anyway a suboptimal algorithm with

super-linear time complexity. Likewise, in its effort to provide a bounded approx-

imation of every error quantity that enters the problem, AHistL-∆ ends up with

an O(B3(log n+ ε−2) log n) time complexity factor that risks exceeding even the

runtime of V-Optimal itself in practice.

The DP algorithm that aims to discover a good segmentation does not need

to examine every possible boundary position per se; it can constrain itself to

a limited set of candidate boundary positions that are deemed to be likely to

participate in an optimal solution. Thus, the question is how to effectively and

efficiently identify a set of such candidate boundary positions, which we call

samples. We define a sample of candidate boundary position good if it belongs to

at least one of the partition sets of an optimal segmentation and bad otherwise.

We observed that one run of GDY often finds at least 50% of good samples.

Because of the stochasticity of the GDY, if we perform another run of GDY, it

will produce a slightly different set of partitions and find a slightly different set of

50% of good samples. We also observed that running a small number iteration of

GDY produce enough good samples that cover most if not all candidate boundary

positions that participate in a partitions set of an optimal segmentation. This

turns out to be a very efficient and effective way of generating good samples.

All boundary positions collected in this fashion are themselves participants in a

B-segmentation of the input sequence that GDY could not improve further; thus,

they are reasonable candidates for an optimal B-segmentation. We emphasize

that this approach to sample collection contrasts to the one followed in DnS

[104]; the DnS samples do not themselves participate in a global B-segmentation,

but only in local B-segmentations of subsequences. Thus, even though that

methodology allows for the computation of an elegant approximation guarantee,

most of the samples it works with are unlikely to participate in an optimal B-

segmentation. An important point is that unlike DnS, our sampling process is

non-uniform and results in more samples at subspaces where more segments may

be needed, thus reducing error. A similar observation holds for AHistL-∆. This

algorithm endeavors to discard computations related to those boundary positions

that have produced error upper-bounded by that of one of their neighbors in an

examined subproblem; however, it does not aim to work on boundary positions

20

Algorithm GDY DP(B, I)
Input: bound B, number of runs I, n-data sequence [d0, . . . , dn−1]
Output: a segmentation S of B segments
1. S = empty set of sample boundaries
2. loop (I times)
3. P = GDY(B); // run GDY with random initialization
4. S = S ∪ P ;
5. return DP(S, B);

Figure 2.5: GDY DP algorithm

that are more likely to participate in the optimal solution per se.

Utilizing GDY as sample generator, we introduce a new algorithm, GDY DP.

In case B is less than
√
n, we run I iterations of GDY until we collect up to O(

√
n)

samples. We expect that a large percentage of the partitions in the candidate

sample set are also in an optimal solution. Then, we run the V-Optimal DP

segmentation algorithm on this set of samples, in order to select a subset of B

out of them that define a minimum-error segmentation. Since the sample set

has at most IB partitions, it is still O(B), as such selecting the best B out of

the set using dynamic programming costs O(B3) which gives a total runtime of

O(nB) as B ≤
√
n. Thus, dynamic programming is used to provide a high-quality

segmentation without sacrificing the linear time complexity of GDY. Figure 2.5

presents a pseudo-code for this GDY DP algorithm.

2.5.3 Scaling to Very Large n and B

When B is larger than
√
n, GDY DP loses its linear-in-n character, but still

runs faster than both DnS and AHistL-∆. Now, we can no longer use V-Optimal

to recombine the samples to get a guaranteed improvement on the local search

segmentation, while also maintaining a linear time complexity in n because the

time complexity of the DP step in GDY DP becomes too large. We introduce the

GDY BDP algorithm, a batch-processing version of GDY DP to handle this case.

The idea is to process only
√
n samples at a time. That is, we divide the

sorted sequence of collected samples into subsequences of at most
√
n consecutive

samples; we run separate DP segmentations on each those; and we augment

the results into a global B-segmentation. Our approach is reminiscent of the

suggested piecewise application of a summarization scheme in [74]. However, it

combines the batched or piecewise processing approach with a sample selection

mechanism, as in [104]. Thus, it contains the size of the problem in two ways: (i)

it examines only selected samples instead of the whole data; and (ii) it processes

the data in batches.

21

Figure 2.6: GDY BDP Illustration

In more detail, we use an auxiliary segmentation A, which is provided by a

single run of GDY. For each group G of roughly
√
n consecutive samples, we find

two dividers la and ra, among the boundaries in A, that enclose G. We then run

V-Optimal on the set G, so as to produce as many boundaries between la and ra as

the segmentationA has allocated in this interval. Thus, the number of boundaries

in the derived segmentation is kept appropriate, but their positions are bettered

within each
√
n-boundary subinterval. The intuition is that we improve on the

boundary positions derived by GDY in A, but we do so in a more sophisticated

manner than just greedily moving one boundary at a time. Thus, the quality of

the segmentation is improved.

In each group G we are dealing with
√
n samples, while there are O(I × B)

samples in total to deal with, where I the constant pre-selected number of GDY

runs that produces them. Thus, the are O(IB√
n
) groups of

√
n samples each, hence

the algorithm performs as many separate DP runs. Each run chooses a fraction of

the
√
n samples in group G, performing an O(

√
n

3
) = O(n

√
n) DP segmentation

over them. Thus, the overall worst-case time complexity of the GDY DP algorithm

is O(IB√
n

√
n

3
) = O(InB) = O(nB).

Figure 2.6 illustrates the GDY BDP algorithm. The upper figure is a segmen-

tation A produced by one GDY. The small circles are the samples produced by

some I GDY iterations. The samples are divided into 3 groups, each with roughly

of
√
n size. The DP are performed to each group producing the same number of

partitions with the number of partitions from A that resides in that group. For

example, the first group contains samples from A to B and the DP is performed

to produce 4 segments since there are 4 segments in A that resides in [A..B].

Similarly for the second group that contains samples from [B..C]. The last group

only produces 3 segments. Thus, the DP is used to improve the segmentations

inside each group (or batch). Note that the partition at position A,B,C,D are

not optimized by the DP. They are sacrificed as breakpoints.

22

Algorithm GD Batched DP(B, I)
Input: space bound B, number of GDY runs I, n-data sequence [d0, . . . , dn−1]
Output: a segmentation S of B segments
1. S = collect samples by running randomized GDY(B) I times;
2. A = GDY(B); // an auxiliary solution to be improved
3. S = S ∪ A;
4. ls = 0; // left group divider in S
5. la = 0; // left group divider in A
6. while (ls + 1 < |S|)
7. rs = min {|S| − 1, ls +

√
n}; // right divider in A

8. ra = first boundary in A after rs; // right divider in S
9. rs = matching boundary of ra in S; // adjusted right divider in A
10. B̄ = ra − la; G = S[ls..rs];
11. optimalSubPars = DP (G, B̄)
12. Replace A[la..ra] with optimalSubPars
13. ls = rs; la = ra; // update left index for next batch
14. return A; // the improved aux solution

Figure 2.7: GDY BDP algorithm

The rationale behind GDY BDP is that, when the number of boundaries is

large, selecting some breakpoints for them based on a simple GDY solution and

then performing GDY DP within the
√
n-sample intervals defined by these break-

points does not hamper the overall quality too much. On the contrary, it confers

near-optimal quality and allows for near-linear time efficiency. As we shall see,

the quality achieved with GDY BDP is always very close to that of GDY DP, while

GDY BDP is much faster on large B. GDY BDP also avoids a major loophole in

the methodology of DnS. Namely, DnS forces each of the arbitrarily selected sub-

sequences it works on to produce B samples, and then chooses from the total pool

of samples. Thus, it does not pay attention to the actual form of the data. Cases

where some data regions require much denser segmentation than other regions

are not satisfactorily covered by DnS, but they are covered by GDY BDP. To our

knowledge, no other segmentation algorithm scales well in both the input size

n and the number of segments B, while producing, as we will see, near-optimal

quality in terms of error.

Figure 2.7 depicts a pseudo-code for this batch-DP algorithm GDY BDP.

First, the samples are collected by running I iterations of GDY, each with random

initial segmentation (Line 1). We perform another run of GDY as an auxiliary A
which will be improved later by DP in batches (Line 2). The auxiliary is also part

of the samples (Line 3). We initialize the group batch divider for the samples

and the auxiliary (Line 4 and 5). We iterate each group consisting of roughly

23

√
(n) samples (Line 6 - 13). We locate the right breakpoint for this group and

the samples in the group (Line 7-9). We compute the number of partitions B̄ of

A that fall in the group (Line 10). The DP is performed on the group to produce

B̄ partitions based on the samples (Line 11). We replace the auxiliary partition

positions in the group with the optimal subpartitions returned by the DP from

that group (Line 12). We proceed to the next group batch divider (Line 13).

2.6 Experimental Evaluation

This section presents our extensive experimental comparison of known approxima-

tion and heuristic algorithms and the solutions we have proposed. In particular,

we have compared the following algorithms:

• V-Optimal The optimal Euclidean-error histogram construction algorithm

of Jagadish et al. [65]. This algorithm is a specialization of the line-

segmentation technique proposed by Bellman [15]. We add the denotation

2 in the algorithm’s name to indicate the fact that we utilize the simple

pruning suggested in [65].

• DnS The algorithm for sequence segmentation suggested by Terzi and Tsaparas

[104]. This algorithm receives no parameters apart from the number of sub-

sequences it uses, for which the authors of [104] suggest an optimal value,

χ =
(
n
B

)2/3
, which we employ. We utilize the pruning technique with this

algorithm too, hence the denotation 2 in its name.

• AHistL-∆ The algorithm suggested by Guha et al. as the best choice for

fast offline approximate histogram construction [44]. We have used two

versions of AHistL-∆, one for ε = 0.01, and one for ε = 10, in order to

witness how AHistL-∆ resolves the quality-efficiency tradeoff when putting

a premium on quality (former case) or efficiency (latter case). In the figures,

we indicate the employed value of ε as a percentage value next to the legend

name. Thus, AHistL1 denotes the variant of AHistL-∆ for which ε = 0.01.

• MaxDiff The relatively elaborate early histogram heuristic which was seen

as “probably the histogram of choice” by Poosala et al. [92].

• MHIST The one-dimensional adaptation suggested by Jagadish et al. [65]

for the multidimensional heuristic proposed by Poosala and Ioannidis [91],

and also mentioned by Terzi and Tsaparas by the name Top-Down [104].

• GDY Our simple greedy algorithm that iteratively moves a boundary from

one position to another until it reaches a local optimum.

• GDY DP Our hybrid algorithm that combines GDY and the DP algorithm.

In the figures, we indicate the number of iterations of GDY that generates

24

the samples for GDY DP in its legend name; for example, GDY 10DP de-

notes a GDY DP that operates on samples generated by I = 10 GDY runs.

• GDY BDP The variant of our enhanced greedy algorithm that performs the

DP-based selection of optimal boundary-subsets in a batched manner, in

order to maintain the complexity of the DP operation linear in n. As for

GDY DP, the number of runs of GDY that generates the employed samples

is indicated in the legend name.

All algorithms were implemented with gcc 4.3.0, and experiments were run on

a 2 Quad CPU Intel Core 2.4GHz machine with 4GB of main memory running a

64Bit version of Fedora 9. Table 2.1 summarizes the complexity requirements of

these algorithms.

Method Time Ref
V-Optimal O

(
n2B

)
[65]

DnS O
(
n4/3B5/3

)
[104]

AHistL-∆ O(n+B3(log n+ ε−2) log n) [44]
MaxDiff O(n logB) [92]
MHIST O(B(n+ logB)) [65]

GDY O
(
M
(
n
B + logB

))
this

GDY DP O (nB) (B <
√
n) this

GDY BDP O (nB) this

Table 2.1: Complexity comparison

Our quality assessment uses several real-world time series data sets. These

data sets provide a common ground for the comparisons as some of these data

are also used in [104, 44]. Table 2.2 presents the original provenance1 of the data.

We have created aggregated versions of these data sets, i.e., concatenated the time

series in them to create a united, longer sequence. In the following figures, we

denote these aggregated versions by the appellation “-a” in the captioned data

set names.

Name Size Provenance
Balloon 2001 x 2 http://lib.stat.cmu.edu/datasets/

Darwin 1400 x 1 http://www.stat.duke.edu/~mw/ts data sets.html

Exrates 2567 x 12 http://www.stat.duke.edu/data-sets/mw/ts data/all exrates.html

Phone 1708 x 8 http://www.teco.edu/tea/datasets/phone1.xls

Shuttle 1000 x 6 http://www-aig.jpl.nasa.gov/public/mls/time-series/

Winding 2500 x 7 http://www.esat.kuleuven.ac.be/~tokka/daisydata.html

DJIA16K 16384 x 1 http://lib.stat.cmu.edu/datasets/djdc0093 (filtered)

Synthetic 100001 x 10 http://kdd.ics.uci.edu/databases/synthetic/synthetic.html

Table 2.2: Used data sets

1The data are also available at http://felix-halim.net/histogram/.

25

2.6.1 Quality Comparisons

We first direct our attention to a comparison of quality, as measured by the

Euclidean error achieved as a function of the available space budget B. In the

following figures, the dotted line presents the position of 10% off the optimal error

(always achieved by V-Optimal), while the dash-dotted line is the position of 20%

off the optimal.

120 140 160 180 200 220 240 260 280 300
0.05

0.07

0.09

0.11

0.13

0.15

B (number of segments)

E
uc

lid
ea

n
E

rr
or

balloon−a dataset (n=4002)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.8: Quality comparison: Balloon

Figure 2.8 presents the results with the aggregated balloon data set for a se-

lected range of B = 120 . . . 300. We observe that all of DnS, AHistL-∆ for ε = 0.01,

GDY DP, and GDY BDP achieve practically indistinguishable near-optimal error.

There are four outliers. The performance of GDY lies reliably along the 10%-off-

optimal line; this is the best-performing outlier. The second outlier is MHIST;

as expected, it does not produce histograms of near-optimal quality. Still, the

variant of AHistL-∆ for ε = 10 is even worse. This result is significant from the

point of view of the tradeoff between quality and time-efficiency that AHistL-∆

achieves. We shall come back to it later. The MaxDiff heuristic had the worst

performance.

Figure 2.9 shows the error results with the darwin data set for B = 40 . . . 200.

The picture exhibits a pattern similar to the previous one. Still, with this easier

to approximate data set, GDY approaches the quality of the other near-optimal

algorithms. Furthermore, the quality of MHIST now follows the 10%-off line. Now

the MaxDiff heuristic achieves a smaller accuracy gap from the other contenders,

but still has the worst quality. The low-quality version of AHistL-∆ is again an

outlier with unreliable performance. The performance with other values of ε was

26

40 60 80 100 120 140 160 180 200
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

darwin dataset (n=1400)

B (number of segments)

E
uc

lid
ea

n
E

rr
or

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.9: Quality comparison: Darwin

falling in between these two extremes. Naturally, the value of ε can be tuned

so as to allow for quality that matches any of the other algorithms. We do not

present these versions in order to preserve the readability of the graph.

500 550 600 650 700 750 800 850 900 950 1000

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
djia16K dataset (n=16384)

B (number of segments)

E
uc

lid
ea

n
E

rr
or

AHistL1

DnS2

GDY

GDY−10BDP

GDY−10DP

MHIST

VOpt2

Figure 2.10: Quality comparison: DJIA

In Figure 2.10 we present the results for the filtered version of the DJIA data

set, for a range of B = 500 . . . 1000. This version, also used in [43], contains the

first 16384 closing values of the Dow-Jones Industrial Average index from 1900

27

to 1993; a few negative values were removed. The performance evaluation with

this data set follows the same pattern as before. In this case, neither MaxDiff

nor the low-quality version of AHistL-∆ is depicted, as they are outliers. On the

other hand, the MHIST heuristic performs slightly better than it did in previous

cases. Still, our GDY algorithm performs even better, while the performance

of both GDY DP and GDY BDP is almost indistinguishable from that of both

high-performing approximation algorithms in this scale.

20 40 60 80 100 120

0.02

0.04

0.06

0.08

0.1

0.12

0.14

exrates−a dataset (n=30804)

B (number of segments)

E
uc

lid
ea

n
E

rr
or

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.11: Quality comparison: Exrates

Figure 2.11 depicts the quality results with the aggregated exrates data set

for B = 8 . . . 128. This range of B at the lower values of the domain presents an

interesting picture. Not only our advanced greedy techniques, but also the simple

GDY can achieve error very close to the optimal. So does the MHIST heuristic

as well, which follows at a very close distance. Still, MaxDiff and the low-quality

version of AHistL-∆ remain low-performing outliers.

Next, we depict the Euclidean error results with the aggregated phone data set

(Figure 2.12). The relative performance of different techniques appears clearly

in this figure. GDY DP can almost match the optimal error at least as well as

the tight-ε variant of AHistL-∆ and DnS, while GDY BDP and GDY follow closely

behind. MHIST does not perform as well as our algorithms, while the slack-ε

version of AHistL-∆ and MaxDiff are again poor performers.

So far we have presented quality results in terms of Euclidean error as a

function of B, with the range of B zoomed in so as to allow the discernment of

subtle differences. Still, we would also like to get a view of the larger picture: the

28

100 200 300 400 500 600 700 800 900 1000
20

25

30

35

40

45

50

55

60

65
phone−a dataset (n=13664)

B (number of segments)

E
uc

lid
ea

n
E

rr
or

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.12: Quality comparison: Phone

shape of the E = f(B) function, indicating how the Euclidean error varies over a

the full domain of practical B values. We do so with the synthetic data set. This

data set appears highly periodic, but never exactly repeats itself.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

synthetic1 dataset (n=100001)

B (number of segments)

E
uc

lid
ea

n
E

rr
or

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.13: Quality comparison: Synthetic

The results are illustrated in Figure 2.13, plotting the error for a range of

B = 1 . . . 8192 in a logarithmic x-axis. These results reconfirm our previous

micro-scale observation at a larger scale. The performance of the approximation

29

algorithms as well as all versions of our greedy approaches closely follow the

optimal-error performance. MHIST follows them at a discernible distance. On

the other hand, MaxDiff performs poorly, while the slack-ε version of AHistL-∆

performs unreliably. The error function is not even monotonic for the low-quality

AHistL-∆; this defect has also appeared in our earlier graphs.

150 200 250 300 350 400 450 500 550

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

B (number of segments)

E
uc

lid
ea

n
E

rr
or

 D
iff

er
en

ce
 fr

om
 O

pt
im

al

shuttle−a dataset (n=6000)

AHistL1
DnS2
GDY
GDY−10BDP
GDY−10DP

Figure 2.14: Quality comparison: Shuttle

Our results have shown the practical performance of our greedy algorithms in

relation to the optimal error. Still, we would like to gain a clear view at a very

close level of resolution. Thus we measure the actual difference of the Euclidean

error achieved with the tested algorithms from the optimal error. Figure 2.14

presents the results with the shuttle data set, for B = 150 . . . 550. The dotted

line presents the position of 0.1% off the optimal error (achieved by V-Optimal),

while the dash-dotted line traces the position of 1% off the optimal.

What was not clear before becomes apparent in this figure. AHistL-∆ matches

the optimal quality, as its ε value predisposes it to do. The second-best perfor-

mance is that GDY DP, while DnS and GDY BDP follow closely after. Our simple

GDY algorithm does not achieve error as tightly close to the optimal, while the

other heuristics are far-off, and do not fall in this figure. Still, it is remarkable

that our heuristics can match and exceed the quality of DnS.

We elaborate on this line of comparison, presenting the difference from the

optimal error with the aggregated winding data set (Figure 2.15). Now we use a

logarithmic x-axis to present a wider range of B = 16 . . . 2048. We add a dash-

dash line that denotes the position of 10% off the optimal. GDY DP exceeds the

quality of DnS, while GDY BDP comes close. GDY is more far-off, while other

30

16 32 64 128 256 512 1024 2048

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

B (number of segments)

E
uc

lid
ea

n
E

rr
or

 D
iff

er
en

ce
 fr

om
 O

pt
im

al

winding−a dataset (n=17500)

AHistL1
DnS2
GDY
GDY−10BDP
GDY−10DP

Figure 2.15: Quality comparison: Winding

heuristics are distant outliers, not seen in the figure. Thus, the injection of DP

capacity into GDY indeed adds a sophistication that affords performance similar

or superior to that of the guarantee-providing approximation schemes.

2.6.2 Efficiency Comparisons

Now we turn our attention to the other side of the quality-efficiency tradeoff, that

of runtime performance. To get a full picture of the runtime state of affairs, we

measure runtime as a function of B for constant data set size n, for varying data

set size n under constant segmentation size B, as well as for B linearly varying

with n.

Figure 2.16 plots the results with the filtered version of the DJIA data set,

for B = 500 . . . 1000, same as the one used for quality assessment in Figure 2.10.

The time axis is logarithmic. A comparison of Figures 2.10 and 2.16 reveals some

interesting findings. If the quality-efficiency tradeoff were equitably resolved by

all tested techniques, then we would expect the good quality performers to be bad

runtime performers, and vice versa. Still, the presented picture does not follow

such a pattern. On the contrary, some of the best quality performers are also

among the best runtime performers as well. That is, remarkably, our GDY DP

and GDY BDP algorithms, which gave almost optimal quality results, also achieve

satisfactorily low and scalable runtime. Moreover, GDY, which achieves next-to-

optimal quality performance, is also one of the runtime champions, along with

the lower-quality MHIST and the worst-quality MaxDiff heuristic. In contrast,

31

500 550 600 650 700 750 800 850 900 950 1000
0.01

0.1

1

10

100

1000

djia16K dataset (n=16384)

B (number of segments)

T
im

e
(s

ec
on

ds
)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.16: Runtime comparison vs. B: DJIA

it is clear that other high-quality performers such as AHistL-∆ and DnS pay a

high runtime price for the quality they deliver. The same holds for the V-Optimal

algorithm itself. Furthermore, the high-quality variant of AHistL-∆ takes runtime

even higher than that of V-Optimal; the loose-ε variant of AHistL-∆, which does

not perform well on quality, does not gain in runtime from this looseness, and

eventually exceeds the runtime of V-Optimal too. The lines in the figure indicate

the cubic O(B3) complexity factor of AHistL-∆.

Our implementation of V-Optimal, as well as of all algorithms that employ its

DP scheme, follows the simple pruning step suggested in [65] (see Section 2.2).

It is not clear whether the experimental evaluations in [104] and [44] have used

this step. Hence, our runtime results may diverge from those reported in these

works.

Next we illustrate runtimes with the aggregated winding data set (Figure 2.17),

which present the runtime side of the evaluation for which Figure 2.15 shows

the quality side. Axes are logarithmic, while B = 16 . . . 2048. The emerging

picture follows a pattern similar to the previous figure. GDY DP and GDY BDP

achieve a remarkably attractive resolution of the quality-efficiency tradeoff, while

GDY is one of the efficiency champions without sacrificing quality as MHIST and

MaxDiff do. The cubic growth of AHistL-∆ is clear; both variants eventually

exceed the runtime of V-Optimal (which employs pruning), while DnS also pays

a high efficiency cost.

Figure 2.18 displays runtime results with the synthetic data set, i.e., the other

side of the quality evaluation depicted in Figure 2.13, with B = 1 . . . 8192 on

32

16 32 64 128 256 512 1024 2048
0.01

0.1

1

10

100

1000

10000
winding−a dataset (n=17500)

B (number of segments)

T
im

e
(s

ec
on

ds
)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.17: Runtime comparison vs. B: Winding

logarithmic axes. Growth trends are now more accentuated. The growth of DnS,

arising from its O(B5/3) runtime factor, is also apparent; thus, not only AHistL-∆,

but also DnS exceeds the runtime of V-Optimal for large enough B. GDY DP also

assumes an unfavorable growth trend after the pivot point of B =
√
n. GDY BDP

and GDY stand out as scalable algorithms that also achieve high quality.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
0.01

0.1

1

10

100

1000

10000

synthetic1 dataset (n=100001)

B (number of segments)

T
im

e
(s

ec
on

ds
)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.18: Runtime comparison vs. B: Synthetic

We also evaluate the scalability of different techniques with respect to data set

33

size n. Figure 2.19 outlines the runtime results for constant B = 512, on different

prefixes of the same synthetic data set. Both axes are logarithmic. In this case,

the growth of AHistL-∆ is not as severe as it was vs. B, but still stands out as

the least scalable algorithm, surpassing the runtime of V-Optimal and DnS. We

surmise that the O(B3 log2 n) worst-case complexity factor of AHistL-∆, arising

from the burden of approximating the error function itself, works out its impact

more saliently as n grows. On the other hand, the impact of pruning within the

DP in V-Optimal and DnS allows these algorithms to scale better, although not

adequately either. In order to illustrate the impact of pruning, we also include a

version of V-Optimal without the pruning step in this experiment (labelled VOpt

as opposed to VOpt2 in the figure). The non-pruning version exhibits not only

higher runtime, but also more accentuated growth with n. The champions of

scalability in this experiment are again our greedy algorithms, as well as the

heuristics that perform poorly on the quality side.

1024 2048 4096 8192 16384 32768 65536
0.01

0.1

1

10

100

1000

N (B=512)

T
im

e
(s

ec
on

ds
)

synthetic1 dataset (n=100001)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2
VOpt

Figure 2.19: Runtime vs. n, B = 512: Synthetic

Finally, we measure the runtime performance with the synthetic data set when

n and B grow in parallel. Figure 2.20 plots the results on logarithmic axes,

where B = n
32

. The unscalable growth of AHistL-∆ is conspicuous; V-Optimal

and DnS do not scale well either. GDY DP almost parallels the growth of the

poorly scaling algorithms in this figure. On the other hand, the batch version,

GDY BDP, presents affordable runtime growth in this experiment too; its growth

is minimally affected by the growing B, as a comparison of Figures 2.19 and 2.20

indicates, and Figure 2.18 corroborates.

Similar observations hold for GDY, MHIST and MaxDiff. Still, given their

34

2048 4096 8192 16384 32768 65536
0.01

0.1

1

10

100

1000
synthetic1 dataset (n=100001)

N (B=n/32)

T
im

e
(s

ec
on

ds
)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff
VOpt2

Figure 2.20: Runtime vs. n, B = n
32

: Synthetic

respective quality performance, GDY BDP emerges from our assessment as the

algorithm of choice.

2.6.3 Quality vs. Efficiency Tradeoff

In the previous sections we have measured the performance of the examined al-

gorithms in both quality and runtime, and we have inferred that some algorithms

resolve this tradeoff in a more satisfactory manner than others. In particular,

we have argued that algorithms like AHistL-∆ do not address this tradeoff in an

attractive manner; that is, a benefit in quality comes at a high cost of runtime,

while a reduction of runtime requires a severe sacrifice in quality. Still, we would

like to trace this tradeoff more concretely. In this section we plot both the quality

and runtime performance of examined algorithms on the same graph.

Figure 2.21 traces the quality-efficiency tradeoff with the DJIA data set and

B = 512. The runtime axis is logarithmic, so that small runtime increases in the

lower part of the y-axis are rendered noticeable. Single-version techniques are

represented by a single dot. For AHistL-∆, each variant for a different value of ε

gets its own dot. Lower values of ε allow for higher accuracy at the price of extra

runtime. Likewise, several variants of GDY DP and GDY BDP are presented,

based on the number I of iterations of GDY that they use for collecting sample

boundaries. More available samples enable these algorithms to achieve higher

quality at the cost of efficiency. For I = 1 the histogram given by both these

schemes is reduced to that of GDY, since one iteration produces only B samples

35

1.91 1.92 1.94 1.98 2.06
0.01

0.1

1

10

100

1000

Euclidean Error (B = 512)

T
im

e
(s

ec
on

ds
)

djia16K dataset (n=16384)

AHistL

DnS2

GDY−I−BDP

GDY−I−DP

GDY

MHIST

VOpt2

 I = 1

I = 4

 I = 8

 e = 0.01

 e = 0.08
 e = 0.16

 e = 0.32 e = 0.64 e = 1.28

 I = 16
 I = 32

 I = 64
I = 2

Figure 2.21: Tradeoff Delineation, B = 512: DJIA

to choose from.

This figure reconfirms that AHistL-∆ performs poorly at resolving the quality-

efficiency tradeoff. An attempt to gain quality by lowering ε renders the runtime

higher than that of V-Optimal; an effort to improve time-efficiency by increasing

ε is not effective in its objective, while it deteriorates quality. DnS dominates

almost all versions of AHistL-∆ in runtime and quality. In contrast, GDY DP and

GDY BDP resolve the tradeoff attractively, while they can improve on quality by

investing the extra time required by (slightly) higher values of I.

2.6.4 Local Search Sampling Effectiveness

We define a set of partitions (or candidate boundary positions) as samples. The

DP can be run on the samples to produce the final segmentation of size B. V-

Optimal includes all n possible partitions as samples and run DP to select B out

of n partitions to produce the final segmentation which entails O(n2B) runtime

complexity. As mentioned in Section 2.5.2, we can effectively reduce the number

of samples from n down to O(IB) = O(B) by running a (small) constant number

of iterations I of the GDY algorithm where each run produces B samples. In this

section, we want to measure the effectiveness of GDY as a sampling algorithm.

To measure the effectiveness of the samples, we look at the proximity of the

samples in respect to the optimal set of partitions positions which produces the

lowest total error, as well as the number of samples generated. We note that

in all the experiments we conduct in this section, there is only one (unique)

36

optimal set of partitions. We can verify this by modifying the DP to show the

number of unique optimal solutions. Thus, by inspecting the locations of the

samples generated by several iterations of GDY in respect to the locations of the

optimal partitions, we can visually measure its effectiveness. We also note that

it is possible that several GDY runs produces overlapping partitions. We only

collect distinct partitions positions produced by the GDY runs, thus the number

of samples may be less than IB.

As explained in Section 2.3.2, DnS uses uniform sampling to collect samples

from the subproblems. We compare our GDY sampling with DnS uniform sam-

pling in terms of number of samples generated and its proximity in respect to the

optimal partitions. We show the samples of the GDY on different number of iter-

ations I ∈ {1, 2, 4, 8, 16, 32}. We also compare the total error of both algorithms.

All the experiments in this section are using GDY DP algorithm.

Figures 2.22 to 2.30 show the GDY sampling effectiveness on varying datasets.

The components of each figure are explained as follow. The top left graph shows

the number of samples vs. the number of segments. The number of samples

produced by DnS is χB = (n/B)2/3B = n2/3B1/3. The number of samples pro-

duced by GDY I = 1 is exactly B and for I > 1 is at most IB (as duplicates

are removed). The vertical red dotted line denotes the B =
√
n. The corre-

sponding total error ratio relative to the optimal error segmentation is given as

percentage error ratio in the top right graph. The percentage error ratio is com-

puted as (A/B − 1) ∗ 100% where A is the total error of the algorithm and B

is the optimal total error given by the V-Optimal. The next two graphs at the

bottom are the proximity graphs. The proximity graph shows the proximity of

the samples and the optimal partition positions. The top most oscillating blue

line is the visualization of the data sequence from left to right. The red vertical

lines are the positions of the (unique) optimum partitions (or the optimal seg-

mentation). The red horizontal line lie small red circles denoting the positions

of the samples produced by the DnS. The green horizontal line lie small green

circles denoting the positions of the samples produced by I = 32 runs of GDY.

We call a candidate boundary position in the samples that lies at exactly at one

of the optimum partition positions a hit and a miss otherwise. We discover that

a single run of GDY on the tested datasets, more than 50% of the produced sam-

ples are a hit. Running the GDY multiple times rapidly improves the percentage

further. If the percentage reaches 100%, then running DP on the aggregated

samples will produce the optimal segmentation. The figures show that our GDY

samples partitions near or even exactly at the optimum partitions positions. A

miss is denoted by a circle drawn slightly above the horizontal samples’ line of

the algorithm in the proximity graph. The number of input data sequence n,

37

segments B, samples, misses, the total error, as well as the percentage error ratio

relative to V-Optimal of the algorithms are stated in the proximity graphs above

the red and green horizontal lines. 2

The reduction on the number of samples because of duplicate partitions can

be seen in the figures by comparing the black dash-dotted lines which represent

a line where the number of samples is 32 ∗ B with the GDYI = 32 line. The

distinct number of samples generated for GDYI = 32 vary as the datasets vary.

On the other hand, the uniform sampling performed by DnS generates an order

magnitude more samples. This contributes to the high runtime of DnS without

gaining much quality improvement. In most of the tested datasets, GDY DP

with I = 32 produces optimal segmentations for all the range of B in test with

significantly less number of samples than that of DnS.

We observe that on certain number of buckets the number of samples produced

by the GDY runs are less than the other number of buckets. By observing the

error ratio relative to the optimal total error, our hypothesis is that the on certain

number of buckets, it is easy or obvious to the GDY algorithm to pinpoint the

best positions for the partitions, yielding smaller number of samples. On cases

where the data sequence is very smooth (i.e., the shuttle1 dataset), the GDY

produces large number of samples since it is not clear or obvious for the best

positions. Nevertheless, in such case, any single GDY run produces near optimal

segmentation. Thus, our GDY can be tuned to produce less samples on such case

where the samples gets very large very quick.

The effectiveness of GDY in producing samples is due to its focus in finding

segmentation positions that are relevant to the data sequence. GDY correctly pro-

duce samples on the important regions of the data sequence. Due to the stochastic

nature of GDY, it consistently produces good samples that within a few dozen

iterations it managed to discover most if not all of the optimal segmentation

positions. Our GDY effectively extracts the characteristics of the data sequence

which naturally leads to better segmentation quality. In some sense, it ”learns”

the good segmentation positions from the data sequence itself. This technique

turns out to be far more effective and efficient than existing algorithms that are

not focused on the data. In contrast, AHistL-∆ focuses on the total error and

discards insignificant elements in the data sequence. DnS focuses on the approx-

imation guarantees which leads to performing uniform sampling. The heuristic

approaches are deterministic and thus may not give robust segmentation quality:

MaxDiff performs better on more spiked data sequence, while MHIST performs

better on smoother data sequence [65].

2 A more comprehensive visualizations on the proximity graphs are available in the website:
http://felix-halim.net/histogram

38

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

B (number of segments)

N
um

be
r

of
 S

am
pl

es

balloon1 dataset (n=2001)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128
0

1

2

3
4

8

16

32

64

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

balloon1 dataset (n=2001)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: balloon1 (n = 2001, B = 4)

DnS: 253 samples (1 miss) DnS Total Error: 44.0923851 (0.004%)

GDY_32DP: 9 samples (0 miss) GDY_32DP Total Error: 44.0902322 (0.000%)

Dataset: balloon1 (n = 2001, B = 64)

DnS: 577 samples (2 miss) DnS Total Error: 14.0486731 (0.020%)

GDY_32DP: 175 samples (0 miss) GDY_32DP Total Error: 14.0457671 (0.000%)

Figure 2.22: Sampling results on balloon1 dataset

Figure 2.22 shows that the number of samples produced by GDY I = 32 is significantly lower than IB = 32B.
Depending on the dataset, doubling the I does not results in twice the number of samples generated. On the
other hand, doubling the I significantly decreases the percentage error ratio by (often more than) twice. MaxDiff
and MHIST heuristics have poor error ratio which increases as the number of segments increases. GDY DP I = 32
error ratio is on par with that of DnS over all ranges of B in test. The proximity graph for B = 4 shows that the
uniform sampling of DnS is not effective. It generates 253 samples and yet misses 1 optimal partition position.
On the other hand, I = 32 runs of GDY remarkably only produce 9 samples with no miss and thus produces
an optimal segmentation. Increasing the number of segments to B = 64 do increase the number of samples
generated by the GDY. However, the proximity of the GDY samples are near that of the optimal partition
positions.

39

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

B (number of segments)

N
um

be
r

of
 S

am
pl

es
darwin dataset (n=1400)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128
0

1

2

3

4

8

16

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

darwin dataset (n=1400)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: darwin1 (n = 1400, B = 4)

DnS: 197 samples (0 miss) DnS Total Error: 9309.24989 (0.000%)

GDY_32DP: 22 samples (0 miss) GDY_32DP Total Error: 9309.24989 (0.000%)

Dataset: darwin1 (n = 1400, B = 128)

DnS: 513 samples (27 miss) DnS Total Error: 4610.66995 (1.495%)

GDY_32DP: 330 samples (0 miss) GDY_32DP Total Error: 4542.73760 (0.000%)

Figure 2.23: Sampling results on darwin dataset

Figure 2.23 shows that GDY I = 32 produces samples close to the 32B line which means
that the GDY is having a hard time in guessing the locations of the optimal partitions.
Interestingly, the error ratio graph shows that GDY DP I = 4 error ratio is on par with
that of DnS and GDY DP I = 32 has perfect error ratio of zero across all ranges of B
in test. This result suggests that the sampling quality of our GDY outperform that of
DnS on hard dataset like darwin. The proximity graph shows that both GDY and DnS
roughly uniformly samples across the entire sequence. However, the number of misses
for DnS is far higher.

40

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

B (number of segments)

N
um

be
r

of
 S

am
pl

es

erp1 dataset (n=6400)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128
0

1

2

3

4

8

16

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

erp1 dataset (n=6400)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: erp1 (n = 6400, B = 4)

DnS: 545 samples (0 miss) DnS Total Error: 1924.12031 (0.000%)

GDY_32DP: 10 samples (0 miss) GDY_32DP Total Error: 1924.12031 (0.000%)

Dataset: erp1 (n = 6400, B = 32)

DnS: 1089 samples (9 miss) DnS Total Error: 821.989534 (0.247%)

GDY_32DP: 68 samples (0 miss) GDY_32DP Total Error: 819.957987 (0.000%)

Figure 2.24: Sampling results on erp1 dataset

Figure 2.24 shows that erp1 is an easy dataset for GDY. Over all ranges of B in test,
the number of samples for GDY is relatively small. That is, multiple iterations of GDY
produces many overlapping partitions (duplicates are removed). The error ratio of
GDY DP I = 8 is on par with that of DnS while GDY DP I = 32 always give optimal
segmentations. GDY I = 32 generates significantly less samples than that of DnS. The
error ratio for MaxDiff and MHIST are significantly higher than a single run of GDY.
The proximity graph shows the high quality of GDY sampling that the 68 samples of
I = 32 runs of GDY reside close to the optimal partition positions without any miss.

41

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

B (number of segments)

N
um

be
r

of
 S

am
pl

es
exrates1 dataset (n=2567)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128
0

1

2

3
4

8

16

32

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

exrates1 dataset (n=2567)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: exrates1 (n = 2567, B = 4)

DnS: 297 samples (0 miss) DnS Total Error: 1.85575386 (0.000%)

GDY_32DP: 5 samples (0 miss) GDY_32DP Total Error: 1.85575386 (0.000%)

Dataset: exrates1 (n = 2567, B = 32)

DnS: 577 samples (7 miss) DnS Total Error: 0.17152785 (0.259%)

GDY_32DP: 55 samples (0 miss) GDY_32DP Total Error: 0.17108390 (0.000%)

Figure 2.25: Sampling results on exrates1 dataset

Figure 2.25 shows similar results with Figure 2.24 that exrates1 is another
friendly dataset for GDY. We consistently see that for very small value for
B = 4, GDY has no difficulty in finding near optimal or optimal partitions
positions.

42

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

B (number of segments)

N
um

be
r

of
 S

am
pl

es

phone1 dataset (n=1708)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128
0

1

2

3
4

8

16

32

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

phone1 dataset (n=1708)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: phone1 (n = 1708, B = 4)

DnS: 187 samples (1 miss) DnS Total Error: 1780.47194 (0.175%)

GDY_32DP: 5 samples (0 miss) GDY_32DP Total Error: 1777.36174 (0.000%)

Dataset: phone1 (n = 1708, B = 32)

DnS: 345 samples (2 miss) DnS Total Error: 406.393944 (0.337%)

GDY_32DP: 46 samples (0 miss) GDY_32DP Total Error: 405.027709 (0.000%)

Figure 2.26: Sampling results on phone1 dataset

Figure 2.26 shows the (surprising) power of GDY. A single run of GDY manages
to produce optimal segmentation, thus it outperforms the other algorithms for
small B ∈ 2, 4, 8, 16. For B >= 32, I = 4 is on par with DnS. Again, the
proximity graph shows the precision and efficiency of the GDY samples.

43

1 2 4 8 16 32 64
10

0

10
1

10
2

B (number of segments)

N
um

be
r

of
 S

am
pl

es
shuttle1 dataset (n=1000)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64
0

1

2
3
4

8

16

32

64

128

256

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

shuttle1 dataset (n=1000)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: shuttle1 (n = 1000, B = 4)

DnS: 157 samples (3 miss) DnS Total Error: 4.84738284 (0.062%)

GDY_32DP: 8 samples (0 miss) GDY_32DP Total Error: 4.84435703 (0.000%)

Dataset: shuttle1 (n = 1000, B = 64)

DnS: 385 samples (25 miss) DnS Total Error: 0.01692181 (1.479%)

GDY_32DP: 402 samples (1 miss) GDY_32DP Total Error: 0.01667518 (0.000%)

Figure 2.27: Sampling results on shuttle1 dataset

Figure 2.27 shows that shuttle1 is a tricky dataset for GDY. A smooth progression data sequence can explode
the number of samples generated by GDY. We see that for B >= 16, the number of samples grow large very
quick and exceeds the number of samples that of DnS for B = 64. The proximity graph shows that many of
the GDY samples are spent on the smooth progression of data sequence. The shuttle1 is another hard dataset
besides the darwin dataset. However, both cases shows that if the number of samples becomes very large very
quick, it is reasonable to decrease the number of iterations I. In the darwin dataset (see Figure 2.23), with I = 4
already give a good segmentation with similar error ratio with that of DnS. In the shuttle1 dataset (see Figure
2.27), with I = 2, it outperform DnS over all ranges of B in test. Our hypothesis is that if the dataset is hard
(i.e., GDY sampling degenerates to uniform sampling), the number of samples generated by GDY will get large
very quick, however, the error ratio will be already small enough. Thus, we can prematurely stop the sampling
process once the number of samples exceeds some threshold and yet we still have a fairly good segmentation
quality.

44

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

B (number of segments)

N
um

be
r

of
 S

am
pl

es

winding1 dataset (n=2500)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128
0

1

2

3
4

8

16

32

64

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

winding1 dataset (n=2500)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: winding1 (n = 2500, B = 8)

DnS: 369 samples (1 miss) DnS Total Error: 1613.51353 (0.033%)

GDY_32DP: 17 samples (0 miss) GDY_32DP Total Error: 1612.97280 (0.000%)

Dataset: winding1 (n = 2500, B = 64)

DnS: 705 samples (9 miss) DnS Total Error: 661.059797 (0.331%)

GDY_32DP: 112 samples (0 miss) GDY_32DP Total Error: 658.879066 (0.000%)

Figure 2.28: Sampling results on winding1 dataset

Figure 2.28 shows similar results with Figure 2.23 on the darwin dataset. The
number of samples grows in the B ∈ [8, 64] range, and the error ratio gets bigger
as B gets higher. On the contrary, in the proximity graph for B = 8, MaxDiff
that is supposed to be better on spiked data perform poorly in this dataset.
Unfortunately for MaxDiff, for some number of segments (i.e., B = 8), the optimal
partition positions do not even nearly lie on the highest difference between two
consecutive values in the data sequence.

45

1 2 4 8 16 32 64 128 256 512
10

0

10
1

10
2

10
3

10
4

B (number of segments)

N
um

be
r

of
 S

am
pl

es
djia16K dataset (n=16384)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128 256 512
0

1

2
3
4

8

16

32

64

128

256

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

djia16K dataset (n=16384)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Dataset: djia16K1 (n = 16384, B = 8)

DnS: 1289 samples (6 miss) DnS Total Error: 8290225.79 (0.035%)

GDY_32DP: 9 samples (0 miss) GDY_32DP Total Error: 8287292.52 (0.000%)

Dataset: djia16K1 (n = 16384, B = 32)

DnS: 2049 samples (10 miss) DnS Total Error: 1594848.38 (0.071%)

GDY_32DP: 91 samples (0 miss) GDY_32DP Total Error: 1593704.76 (0.000%)

Figure 2.29: Sampling results on djia16K dataset

Figure 2.29 shows a larger data sequence with n = 16384. With bigger dataset
size, DnS requires more samples since the number of samples produced by DnS
is dependent on both n and B, which is n2/3B1/3. For B = 8 we see that DnS
produces more than two order magnitude more samples than GDY I = 32 and
yet they produce the same error ratio. MaxDiff gets even worse as the dataset
and the number of segments gets larger. As shown in the proximity graphs, GDY
maintains its conciseness in sampling large data sequence without any miss, as if
it already knows where the optimal partitions positions reside.

46

1 2 4 8 16 32 64 128 256 512 10242048
10

0

10
1

10
2

10
3

10
4

B (number of segments)

N
um

be
r

of
 S

am
pl

es

synthetic1 dataset (n=100001)

DnS2
GDY I=1
GDY I=2
GDY I=4
GDY I=8
GDY I=16
GDY I=32
32*B
sqrt(n)

1 2 4 8 16 32 64 128 256 512 10242048
0

1

2

3
4

8

16

32

B (number of segments)

(P
er

ce
nt

ag
e)

 E
rr

or
 R

at
io

 R
el

at
iv

e
to

 V
O

pt
2

synthetic1 dataset (n=100001)

DnS2
GDY_1DP
GDY_2DP
GDY_4DP
GDY_8DP
GDY_16DP
GDY_32DP
MHIST
MaxDiff

Figure 2.30: Sampling results on synthetic1 dataset

Figure 2.30 shows the result of an even larger data sequence n = 100, 001. In-
teresting phenomenon occurs on B ∈ [32, 128]. The number of samples decreases
significantly on those ranges. We could not provide the proximity graphs for the
synthetic1 dataset due to its size. However, we conjecture that the decrease of
number of samples for B ∈ [32, 128] is due to the easiness/hardness part of the
dataset. The error ratio graph shows that for B ∈ [32, 128], the error ratio is very
small. Which suggest it is easy for GDY to locate the optimal partition positions
on those ranges. GDY DP with I = 4 is on par with DnS. MaxDiff and MHIST
performs very poor in this dataset.

2.6.5 Segmenting Larger Data Sequences

To demonstrate the scalability of the algorithms, we combine the 10 Synthetic

datasets into a longer data sequence of length n = 1, 000, 010. In this experiment

we only have a time resources up to 10,000 seconds thus algorithms that need

more than 10,000 seconds are considered impractical. We note that most mobile

applications have far significantly lower resources. Figure 2.31 shows the runtime

performance of the algorithms. The approximation algorithm AHistL − ∆ and

DnS practically work only for B less than several hundreds. GDY performance

is relatively better than MHIST for large enough B. While MaxDiff achieves the

fastest runtime, it produces the worst segmentation quality. GDY DP as expected

is only practical for B ≤
√
n while GDY BDP is scalable for very large B.

To compare the quality of the segmentation among the algorithms, we use the

segmentation produced by the GDY 10BDP algorithm as the base comparison.

Figure 2.32 shows the relative error difference to the GDY 10BDP. AHistL-∆, DnS,

GDY 10DP give a very close total error to GDY 10BDP on all practically runnable

values for B. GDY and MHIST give poor quality on B ∈ [32, 4096], however as

B gets very large, both starts to give better quality. This supports our intuition

(mentioned in Section 2.5.3) that the larger the B, the less the significance of the

47

1 2 4 8 16 32 64 128 256 512 1024 4096 16384 65536
0.01

0.1

1

10

100

1000

10000

B (number of segments)

T
im

e
(s

ec
on

ds
)

synthetic−a dataset (n=1,000,010)

AHistL1
AHistL1000
DnS2
GDY
GDY−10BDP
GDY−10DP
MHIST
MaxDiff

Figure 2.31: Number of Samples Generated

individual samples in its contribution to the total error. MaxDiff is an outlier (it

has far bigger error than MHIST) and not shown in the graph.

1 2 4 8 16 32 64 128 256 512 1024 4096 16384 65536

−0.0001
0.0001

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

B (number of segments)

E
uc

lid
ea

n
E

rr
or

 D
iff

er
en

ce
 fr

om
 G

D
Y

−
10

B
D

P

synthetic−a dataset (n=1,000,010)

AHistL1
DnS2
GDY
GDY−10DP
MHIST

Figure 2.32: Relative Total Error to GDY 10BDP

We give the same tradeoff graph as in Figure 2.21 for the combined synthetic-a

dataset. Figure 2.33 shows the tradeoff for B = 64 while Figure 2.34 shows the

tradeoff for B = 4096.

For B = 64, we see that GDY DP and GDY BDP has similar quality as well as

48

performance. DnS on the other hand shows worse performance than AHistL-∆.

AHistL-∆ still does not give satisfactory tradeoff for different value of ε. MHIST

gives fast runtime but poor quality.

For B = 4096, we are not able to practically run the DnS and AHistL-∆

algorithm. With large B, we see that GDY DP performance starts to drop. As

expected GDY BDP manages to keep good performance while maintaining the

segmentation quality over different I. Nevertheless, GDY BDP requires more

iteration (I = 32) to achieve the segmentation quality of GDY DP (with I = 8).

Finally, GDY has both better runtime and quality compared to MHIST.

Overall, GDY BDP gives the best compromise on quality and performance in

processing a very large data sequence.

0.090 0.091 0.092 0.093 0.094 0.095
0.1

1

10

100

1000

10000

Euclidean Error (B = 64)

T
im

e
(s

ec
on

ds
)

synthetic_a dataset (n=1000010)

AHistL
DnS2
GDY−I−BDP
GDY−I−DP
GDY
MHIST

 e = 0.08 e = 0.16

 I = 8

 I = 2 I = 1

 e = 0.01

 e = 0.04

 e = 0.02
I = 32

I = 16

I = 4

Figure 2.33: Tradeoff Delineation, B = 64

2.6.6 Visualization of the Search

In the foregoing study, we have assessed the degree to which a given segmenta-

tion S approximates the optimal one S∗ in terms of the Euclidean error metric.

Another way of assessing the convergence towards the optimal segmentation is

to count the amount of bucket boundary positions that S and S∗ do not have in

common, or its distance to S∗. The optimal solution is achieved when the dis-

tance is 0. The advantage of this distance metric is that it conveys an intuitive

representation of how far a given segmentation is from the optimal one, in a way

that an error value does not.

In this Section, we present our evaluation of the algorithms we study in terms

49

0.0061 0.0062 0.0063 0.0064 0.0065 0.0066
1

10

100

1000

10000

Euclidean Error (B = 4096)

T
im

e
(s

ec
on

ds
)

synthetic_a dataset (n=1000010)

GDY−I−BDP

GDY−I−DP

GDY

MHIST

I = 16

I = 4

I = 32

 I = 2
 I = 1

 I = 4

 I = 8

 I = 2

 I = 1

Figure 2.34: Tradeoff Delineation, B = 4096

of the distance metric. Let a segmentation S be expressed as the set of B bound-

ary positions that define it. Then distance between two segmentations S1 and

S2 is defined as d = B − |S1 ∩ S2|. A distance value d indicates that S1 has d

boundaries that do not match any boundary in S2, and vice versa.

[50, 51] proposed a novel visualization, Fitness Landscape Search Trajectory

(FLST), for visualizing the behavior of local search. We have adopted this tech-

nique to visualize the progress of GDY DP as it collects samples from GDY runs.

Figure 2.35 shows a two dimensional visualization which shows how different

solutions from the different algorithms compare in terms of the distance to S∗

as well as pair-wise distance among them. The visualization is intended to give

an approximation to the distance between solutions – solutions with small d are

close, while those with a larger d value are further apart. The indicated value of

d is the distance of that solution compared to S∗ (Vopt2) which is in the middle.

The error ratio percentage from the optimal Euclidean error for each algorithm

is also shown. The visualization depicts: two GDY DP runs, for I = 2 and I = 8;

eight different GDY runs; AHistL-∆ with ε = 0.16; and DnS. The runtime of

each algorithm is presented in the lower graph which is aligned with the upper

diagram and the time axis uses a logarithmic scale.

With respect to S∗, it is noteworthy that each of the 8 GDY runs achieves

distance of around 58-74 out of a maximum possible value of 512. In other

words, a single run of GDY manages to discover ∼85% positions that belong to the

optimal segmentation positions. This is a fairly good result, comparable to that of

50

Figure 2.35: Comparing solution structure with quality and time, B = 512: DJIA

DnS. By exploiting only two different GDY runs, GDY DP with I = 2 manages to

decrease the distance to 32 (discovered ∼94% optimal segmentation positions),

which is similar to the distance achieved by AHistL-∆. GDY DP with I = 8

moves much closer to S∗ with minimal runtime increase and found ∼98% optimal

segmentation positions (d = 10). When I = 32, the 32 GDY runs discovers

all optimal segmentation positions and thus GDY DP achieves the exact optimal

solution with runtime less than 1 second.

The visualization shows that the solutions from different GDY are distributed

around the graph which indicates that the GDY runs constitute a diverse set

centered around S∗. This diversity is needed in order for GDY DP to be able

51

to take advantage of a multitude of sample boundaries. As we have discussed,

the diversity is not solutions being different due to randomness. Rather all GDY

solutions, while different from each other, are valid solutions which are relatively

close to the optimal one.

The visualization also shows that the approximation algorithms (AHistL-∆

and DnS) do not optimize on the distance as in our GDY algorithm. Both AHistL-

∆ and DnS have large distance (32 and 58) to the S while having very low

error (0.06% and 0.17% off from V-Optimal). This shows that the approximation

algorithms are not focusing on the segmentation positions that are relevant to

the data sequence. Thus they do not take advantage from the characteristics of

the underlying data sequence.

2.7 Discussion

Our study has led to some findings not noticed by the numerous literatures in

segmentation. First, despite their elegance, approximation schemes with robust

error guarantees do not achieve an attractive resolution of the tradeoff between

efficiency and quality. Among the proposed schemes, DnS achieves a slightly bet-

ter tradeoff than AHistL-∆. Worse still, both can be superseded in time efficiency

by V-Optimal, which they are meant to approximate, due to their super-linear

dependence on B. Secondly, by employing a local search that exploits the opti-

mal dynamic programming segmentation and sampling, we address the tradeoff

much more satisfactorily. Our best performing algorithm, GDY BDP, consistently

achieves near-optimal quality in linear time.

In developing a good local search algorithm, one needs to be creative in de-

signing heuristics to guide the local moves. Such local search tuning is known to

be tedious and very time consuming and often requires an involved experimenta-

tion and evaluation process. Furthermore, the approaches taken are customized

to a particular instance of the problem, which makes it hard to generalize to other

unrelated domains.

We present an alternative improvement strategy for problems where there is

an efficient (and in our case, optimal) algorithm for a sub-problem. In this case,

local search is used to collect a diversified set of solutions. One has to devise the

local search to give sufficiently good quality (which GDY achieves). The efficient

improvement algorithm can improve part of the solution using the collected solu-

tions from local search. Thus, we show that local search can be effective not just

on intractable problems but also in polynomially solvable problems that present

a premium in terms of efficiency. Such problems arise frequently in the fields of

data mining and data engineering. We show that the “unreasonable effectiveness

52

of local search” also succeeds here. Furthermore, any improvements/tuning/new

heuristics in the local search would likely automatically translate to improve-

ments in the overall algorithm as it could be employed to get better samples or

run more efficiently.

Our solution employs a novel local search which maintains a population of so-

lutions and uses a recombination of those solutions. It also exploits careful use of

an optimal polynomial time optimization procedure. We think that the strategy

used here may also be applicable to other problems with pseudo-polynomial opti-

mization algorithms. Such a strategy may allow for effective scalable algorithms

that exploit a synergy between local search and an optimal, but more expensive,

pseudo-polynomial time algorithm.

To understand the difference between our approach and more typical local

search approaches, we compare GDY DP against a pure stochastic local search

version, GDY LS, which runs GDY runs for I iterations starting with a random

initial partition. The difference between the two is that GDY LS selects the best

solution found within some iteration, while GDY DP recombines solutions found

in the previous iterations using V-Optimal. Our experiments use the same random

seed, hence the ith iteration in both GDY LS and GDY DP produce exactly the

same ith solution.

1.91 1.92 1.94 1.98
0.01

0.1

1

10

100

Euclidean Error (B = 512)

T
im

e
(s

ec
on

ds
)

djia16K dataset (n=16384)

GDY_DP
GDY_LS
VOpt2

 I = 1

 I = 16

 I = 128

 I = 1024

 I = 8192

I = 4

 I = 32

 I = 16

 I = 8

Figure 2.36: GDY LS vs. GDY DP, B = 512: DJIA

Figure 2.36 shows the performance of GDY LS compared to GDY DP. The

pure local search, GDY LS, takes many more iterations (hence, computation

53

time) when compared with GDY DP which reaches the same quality as the opti-

mal algorithm, VOpt2, in 32 iterations. We can see also that changing GDY LS

to a cleverer local search (perhaps utilizing some problem specific domain opti-

mizations) can lower the number of iterations required, giving smaller times or

lower error or both. The optimal algorithm thus serves as a catalyst for building

variants of local search.

2.8 Conclusion

In this chapter we offer a fresh approach to sequence segmentation or histogram

construction that addresses a critical gap in scalability versus quality which is im-

portant in justifying the resources spent, especially in environment with limited

amount of resources available. To the best of our knowledge, it is the first work

to develop segmentation algorithms that are both fast and scalable (i.e., linear)

in terms of time efficiency, and effective in terms of the quality they achieve, as

measured in terms of Euclidean error. Moreover, we have conducted the first, to

our knowledge, experimental comparison of proposed heuristics and approxima-

tion schemes for sequence segmentation. In the future, we may want to expand

the comparisons to include wavelet based histogram / segmentation.

Our best-performing method is based on an application of stochastic local

search that generates sample boundaries which effectively capture the character-

istics of the underlying data sequence. These sample boundaries are then used

as input points for the dynamic-programming segmentation algorithm that re-

combines an optimal subset among them. In order to scale to very large data

sequence, we processes the candidates in batches, so that its time complexity is

kept constrained while maintaining its quality. By combining all these techniques,

we addressed a Big Data problem in sequence segmentation where existing so-

lutions become impractical to run as the data sequence grows beyond a certain

size or fail to deliver satisfactory quality. In the next chapter, we will address

another type of Big Data problem where the existing solution fails due to it not

being robust.

54

Chapter 3

Robust Cracking

Scientific data tends to be very large both in terms of the number of tuples and

its attributes. For example, a table in the SkyServer dataset has 466 columns

and 270 million rows [64]. Moreover, new datasets may arrive periodically and

the queries imposed on scientific data are very dynamic and unpredictable (i.e.,

it does not necessarily follow a pre-determined pattern, and may depend on the

previous query result, or the queries may be arbitrary/exploratory). These char-

acteristics pose as an interesting challenge in creating efficient query processing

system (detailed in the next section).

Having limited resources, to process such scientific data, it is paramount to

have algorithms that can conserve and spend resources wisely. One recent ad-

vances in database research has a philosophy of always do just enough, namely

Database Cracking [53]. To conserve resources, cracking strictly process only the

necessary/relevant data for the query at hand. However, as we shall see, this

philosophy fails under dynamic query workloads because it does not consider the

underlying properties of the data. Since cracking uses the queries as advice to

reorganize the physical store of the data, blindly following the queries may lead

to an unfavorable physical store. Thus, under dynamic query workloads, cracking

fails to conserve resources and spends resources significantly more than it should.

Learning from the previous chapter, we propose to relax the philosophy and

invest some resources to focus on the current properties of the data and factor

in stochasticity. Our new stochastic cracking algorithms manage to maintain the

sub-linear runtime complexity per query and achieve an overall efficient, effective,

and robust behavior under dynamic and unpredictable query workloads. Our

stochastic cracking outperforms the original cracking by two orders of magnitude

faster on a real dataset and query workload. The rest of the chapter elaborates

the details of the robustness problem in original cracking and the solutions. Our

work on stochastic cracking is published in [46].

55

3.1 Database Cracking Background

The goal of database cracking is to a build self-organizing database system that

will continuously and automatically refine its physical data store to rapidly im-

prove future queries’ response time (i.e., adapt to query workloads). It is achieved

by incrementally building indexes as a side effect of query processing, taking the

queries as advice to reorganize its physical data store. The philosophy behind

database cracking is to always do just enough [53]. That is, it tries to minimize

the amount of resources used to answer just the current query at hand.

To understand the motivation behind database cracking, we first briefly recap

the two traditional approaches to indexing and tuning: offline indexing and online

indexing.

Offline indexing assumes the users have the workload knowledge which can be

sampled and analyzed (offline) from the past query logs or other knowledge about

queries. Offline indexing also requires sufficient idle time to analyze and prepare

the physical design before answering the queries. While this may work very well

for most small to medium sized databases, it is problematic for large databases

under dynamic environments where workload knowledge is minimal and idle time

is a scarce resources. For example, in scientific databases, new data arrives on

a daily or even hourly basis, while query patterns follow an exploratory path as

the scientists try to interpret the data and understand the patterns observed;

there is no time and knowledge to analyze and prepare a different physical design

every hour or even every day. Furthermore, with the dynamic nature of the

(exploratory) query workloads, any offline decision may soon become invalid.

Online indexing strategies aim to tackle the problem posed by such dynamic

workloads. A number of recent efforts attempt to provide viable online indexing

solutions[19, 97, 18, 81]. Their main common idea is to apply the basic concepts

of offline analysis online: the system monitors its workload and performance while

processing queries, probes the need for different indexes and, once certain thresh-

olds are passed, triggers the creation of such new indexes and possibly drops old

ones. However, online analysis may severely overload individual query processing

during index creation and several queries may run without index support. Ap-

proaches such as soft indexes [81] try to exploit the scan of relevant data (e.g., by

a select operator) and send this data to a full-index creation routine at the same

time. This way, data to be indexed is read only once. Still, the problem remains

that creating full indexes significantly penalizes individual queries.

In summary, traditional indexing presents three fundamental weaknesses: (a)

the workload may have changed by the time we finish tuning; (b) there may be

no time to finish tuning properly; and (c) there is no indexing support during

56

from R
where R.A > 10

and R.A < 14

select *

Q2:
select *
from R
where R.A > 7

and R.A <= 16

Q1:
1
3
6
7
9
8
13
12
11
14
16
19 Piece 5: 16 < A

Piece 3: 10 < A < 14

Piece 1: A <= 7

Piece 2: 7 < A <= 10

Piece 4: 14 <= A <= 16

Cracker column of A Cracker column of A

10 < A < 14

14 <= A

A <= 10
Piece 1:

Piece 3:

Piece 2:

(in−place)(copy)

Q1 Q2

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2

Figure 3.1: Cracking a column

tuning. These drawbacks motivate the invention of a novel adaptive indexing

strategy, the prime example of which is database cracking [53].

Database cracking assumes no idle time is available for preparation and as-

sumes that the query workload is unpredictable as in dynamic environments.

The user queries are used as advice to continuously, incrementally (and partially)

build the indexes as part of query processing and thus it requires minimal tool-

ing or administrator effort to function. The cracking philosophy ensures that

only those tables, columns, and key ranges that are queried are being optimized.

The more often a key range is queried, the more its representation is optimized.

Non-queried columns remain non-indexed, and non-queried key ranges are not

optimized.

Figure 3.1 shows an example of database cracking in action. For simplicity,

assume we have a column A which consists of integer values. The first query, Q1,

arrives and would like to select a range of values between 10 and 14 (exclusive).

The first time column A gets accessed, the contents of column A are copied once

to a cracker column A. From here on, the cracker column A is used to answer the

queries. The physical store of the cracker column A will be refined as the side

effect of query processing. Initially, the cracker column A has no index. Thus to

process Q1, the entire column must be examined to find the tuples that qualifies

the query. In addition to that, the tuples will be reorganized on the cracker

column A that uses Q1 as advice on how data should be stored. That is it will

move all tuples that are less than or equal to 10 to the upper part (beginning) of

the cracker column A and all tuples that are bigger or equal to 14 to the bottom

part (end) of the cracker column A. This reorganization separates the column

into three pieces. These pieces are stored as cracker indexes to speed-up the

subsequent queries. The qualified tuples for Q1 are clustered in a contiguous area

57

in the middle piece (Piece 2). When the second query Q2 arrives, it can take

advantage of the existing cracker indexes. Q2 only needs to examine and refine

the first piece and last piece (i.e., it doesn’t need to examine the entire column.

In this case, it doesn’t need to examine the second piece since we know that the

second piece already qualifies) and enhances the cracker indexes further.

A cracking DBMS maintains cracker indexes showing which piece holds which

value range, in a tree structure; original cracking uses AVL-trees [54]. These

trees are meant to be bounded by a small depth by restricting the number of

entries (or the minimum size of a cracking piece); thus, the cost of reorganizing

data becomes the dominant part of the whole cracking cost. We can concretely

identify this cost as the amount of data the system has to touch for every query,

i.e., the number of tuples cracking has to analyze during a select operator. For

example, in Figure 3.1 Q1 needs to analyze all tuples in the column in order to

achieve the initial clustering, as there is no prior knowledge about the structure

of the data. The second query, Q2, can exploit the knowledge gained by Q1 and

avoid touching part of the data. With Q1 having already clustered the data into

three pieces, Q2 needs to touch only two of those, namely the first and third piece.

That is because the second piece created by Q1 already qualifies for Q2 as well.

Generalizing the above analysis, we infer that, with such range queries (select

operators), cracking needs to analyze at most two (end) pieces per query, i.e., the

ones intersecting with the query’s value range boundaries. As more pieces are

created by every query that does not find an exact match, pieces become smaller.

The terminology “cracking” reflects the fact that the database is partitioned

(cracked) into smaller and manageable pieces. Cracking gradually improves data

access; as the size of the pieces that need to be examined gradually becomes

smaller, it eventually leads to a significant speed-up in query processing, thus,

adapts to the workload [54, 56]. Database cracking relies on a number of modern

column-store design characteristics. Column-stores store data one column at a

time in fixed-width dense arrays [83, 102, 17]. This representation is the same

both on disk and in memory and allows for efficient physical reorganization of

arrays. Similarly, column-stores rely on bulk and vector-wise processing. Thus,

a select operator typically processes a single column in vector format at once,

instead of whole tuples one at a time. In effect, cracking performs all physical

reorganization actions efficiently in one go over a column. For example, the

cracking select operator physically reorganizes the proper pieces of a column to

bring all qualifying tuples (or values) in a contiguous area and then returns a view

of this area as the result. To date, all work on cracking and adaptive indexing

has focused on main memory environments; persistent data may be on disk but

the working data set for a given query (operator in a column-store) should fit in

58

memory for efficient query processing. Cracking was proposed in the context of

modern column-stores and has been hitherto applied for boosting the performance

of the select operator [54], maintenance under updates [55], and arbitrary multi-

attribute queries [56]. In addition, more recently these ideas have been extended

to exploit a partition/merge -like logic [57, 40, 41].

3.1.1 Ideal Cracking Cost

The ideal performance comes when analyzing fewer tuples. Such a disposition

is workload-dependent; it depends not only on the nature of queries posed but

also on the order in which they are posed. As in the analysis of the quicksort

algorithm, Crack achieves the best-case performance (assuming a full column

is relevant for the total workload) if each query cracks a piece of the column

in exactly two half pieces: the first query splits the column in two equally sized

pieces; the second and third query split it in four equal pieces, and so on, resulting

in a uniform clustering of the data and gradual improvement of access patterns.

Assuming the general case where the whole value range of a given column will

be touched, then the following simple analysis shows the optimal performance

and the cost of an arbitrary cracking query.

Say that each query performs a single two-piece cracking action. Then, each

crack splits a piece of the column into two new pieces of the same size, while

each subsequent query symmetrically cracks the column into smaller pieces. For

example, the first query will crack the whole column into two equal pieces p1a and

p1b, the second query will crack p1a again into two equal pieces p2a and p2b, the

third query will crack p1b into two equal pieces p2c and p2d. The fourth query will

crack p2a, the fifth query will crack p2b and so on. Then, the cost for a sequence

of queries cracking a column of N values becomes as follows.

N + N
2

+ N
2

+ N
4

+ N
4

+ N
4

+ N
4

+ N
8

+ N
8

+ N
8

+ N
8

+ N
8

+ N
8

+ N
8

+ N
8

+ . . .

The above cost is expressed in terms of data accesses, i.e., how many of the

column values the crack algorithm needs to touch/analyze for each query. For

example, the very first query needs to analyze every single value in the column

and since cracking is a single pass algorithm the cost becomes N data accesses.

Given that we assume that we always crack a piece in half, the second query will

need to touch N
2

values and so on. This way, the cost of the i-th query in such a

sequence becomes as follows.

Ci = N
2floor(log2(i)) , where log2(i) = log(i)

log(2)
.

59

Similar to the randomized quicksort analysis, we argue that cracking is ex-

pected to perform reasonably close to ideal in random workload. Figure 3.2 shows

a performance example where cracking (Crack) is compared against a full index-

ing approach (Sort), in which we completely sort the column with the first query.

The data consists of N = 108 tuples of random unique integers in range from 0

to N − 1, while the query workload is completely random (the ranges requested

have a fixed selectivity of 10 tuples per query but the actual bounds requested are

random). This scenario assumes a dynamic environment where there is no work-

load knowledge or idle time in order to pre-sort the data, i.e., our very motivating

example for adaptive indexing.

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Random Workload

Crack
Sort
Scan

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Random Workload

Crack
Sort
Scan

Figure 3.2: Basic Crack performance under Random Workload

As Figure 3.2 (left) shows, once the data is sorted with the first query, from

then on the Sort performance is extremely fast as we only need to perform a

binary search over the sorted column to satisfy each select operator request.

Nevertheless, the problem is that we overload the first query. On the other hand,

Crack continuously improves performance without penalizing individual queries.

Eventually, its performance reaches the levels of Sort. We also compare against

a plain Scan approach where data is always completely scanned. Naturally, this

has a stable behavior; interestingly, Crack does not significantly penalize any

query more than the default Scan approach. We emphasize that while Crack and

Sort can simply return a view of the (contiguous) qualifying tuples, Scan has to

materialize a new array with the result. Figure 3.2(right) shows in cumulative

response time that while Crack has finished answering 104 queries, Sort has not

yet answered a single query. Moreover, even after answering 104 queries, Sort

has not amortized its initialization overhead over Crack. This result shows the

60

principal advantage of database cracking: its lightweight adaptation.

3.2 The Workload Robustness Problem

Existing cracking scheme interprets queries as a hint on how to organize the data

store and the remainder of the data remains non-indexed until a query expresses

interest therein. This cracking philosophy brings instant and lightweight adapta-

tion to user query workloads. This section will show that the same philosophy

could destroy the adaptive feature it set out to achieve.

Existing cracking schemes faithfully and obediently follow the hints provided

by the queries in a workload, without examining whether these hints make good

sense from a broader view. This approach fares quite well with random work-

loads, or workloads that expose consistent interest in certain regions of the data.

However, in other realistic workloads, this approach can fail. For example, con-

sider a workload where successive queries ask for consecutive items, as if they

sequentially scan the value domain; we call this workload pattern sequential. Fig-

ure 3.4 shows an example of such a sequential workload among many others (see

Figure 3.4 for the details). If we assume that the column has N tuples with

unique integers, then the first query will cost N comparisons, the second query

will cost N − 20, the third N − 40 and so on, causing such a workload to exhibit

a very slow adaptation rate. By contrast, in the ideal case where the first query

splits the column into two equal parts, the second query already had a reduced

cost down to N/2.

Applying existing cracking methods on this sequential workload would re-

sult into repeatedly reorganizing large chunks of data with every query; yet this

expensive operation confers only a minor benefit to subsequent queries. Thus,

existing cracking schemes fail in terms of workload robustness. Such a workload

robustness problem emerges with any workload that focuses in a specific area of

the value domain at a time, leaving (large) unindexed data pieces that can cause

performance degradation if queries touch this area later on. Such workloads occur

in exploratory settings; for example, in scientific data analysis in the astronomy

domain, scientists typically “scan” one part of the sky at a time through the

images downloaded from telescopes.

Figure 3.3 shows the results with such a workload. As in Figure 3.2, we test

Crack against Scan and Sort. The setup is exactly the same as before, i.e., the

data in the column, the initial status, and the query selectivity are the same as in

the experiment for Figure 3.2; the only difference is that this time queries follow

the sequential workload. We observe that Sort and Scan are not affected by the

kind of workload tested; their behavior with random and sequential workloads do

61

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Sequential Workload

Crack
Sort
Scan

10
0

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

10
7

10
8

N
um

be
r

of
 T

up
le

s
T

ou
ch

ed

Query Sequence

Random Workload
Sequential Workload

Figure 3.3: Crack loses its adaptivity in a Non-Random Workload

not deviate significantly from each other. This is not surprising, as the Scan will

always scan N tuples no matter the workload, while the full indexing approach

will always pay for the complete sort with the first query and then exploit bi-

nary search. A slight improvement observed in the Scan performance is due to

the short-circuiting in the if statement checking for the requested range. Like-

wise, there is slight improvement for the Sort strategy after the first query due

to caching effects of the binary search in successive short ranges. By contrast,

Figure 3.3 clearly shows that Crack fails to deliver the performance improvements

seen for the random workload in Figure 3.2. Now its performance does not out-

perform that of Scan, whereas with the random workload performance improved

significantly already after a handful of queries.

To elaborate on this result, Figure 3.3(right) shows the number of tuples each

cracking query needs to touch with these two workloads. With the sequential

workload, Crack touches a large number of tuples, which falls only negligibly as

new queries arrive, whereas with the random workload the number of touched tu-

ples drops swiftly after only a few queries. With less data to analyze, performance

improves rapidly.

In the rest of the chapter, we lay out our cracking schemes that satisfy the

workload-robustness imperative. To do so, we re-examine the underlying assump-

tions of existing schemes and propose a significantly more resilient alternative.

We show that original cracking relies on the randomness of the workloads to

converge well; we argue that, to succeed with non-random workloads, cracking

needs to introduce randomness on its own. Our proposal introduces arbitrary and

random, or stochastic, elements in the cracking process; each query is still taken

as a hint on how to reorganize the data, albeit in a lax manner that allows for

62

11
/9

/1
1

w
or

klo
ad

.h
tm

l

1/
1

file
://

lo
ca

lh
os

t/U
se

rs
/s

tra
to

s/
D

ro
pb

ox
/S

to
ch

as
tic

 A
da

pt
ive

 In
de

xin
g/

w
or

klo
ad

.h
tm

l

W
o
r
k
l
o
a
d

[
l
o
w

b
o
u
n
d
,

h
i
g
h

b
o
u
n
d
)

f
o
r

i
-
t
h

q
u
e
r
y

s
e
q
u
e
n
c
e

Ra
nd
om
:

[a
,
a+
S)
,
wh
er
e
a
=
R%
(N
-S
)

Sk
ew
:

[a
,
a+
S)
,
wh
er
e
a
=
R%
(N
*0
.8
-S
)
fo
r
i
<
Q*
0.
8,

ot
he
rw
is
e
a
=
N*
0.
8
+
R%
(N
*0
.2
-S
)

Se
qR
an
do
m:

[i
*J
,
i*
J+
R%
(N
-i
*J
))

Se
qZ
oo
mI
n:

[L
+K
,
L+
W-
K)
,
wh
er
e
L
=
(i
 d
iv
 1
00
0)
*W
,
K=
(i
%1
00
0)
*J

Pe
ri
od
ic
:

[a
,
a+
S)
,
wh
er
e
a
=
(i
*J
)%
(N
-S
)

Zo
om
In
:

[N
/2
-W
/2
+i
*J
,
N/
2+
W/
2-
i*
J)

Se
qu
en
ti
al
:
[a
,
a+
S)
,
wh
er
e
a
=
i*
J

Zo
om
Ou
tA
lt
:
[a
,
a+
S)
,
wh
er
e
a
=
x*
i*
J
+
M,
 M
 =
 N
/2
,
x
=
(-
1)
^i

Zo
om
In
Al
t:

[a
,
a+
S)
,
wh
er
e
a
=
x*
i*
J
+
(N
-S
)*
(1
-x
)/
2,
 x
 =
 (
-1
)^
i

V
a
r
i
a
b
l
e
s
:

Q
=
nu
mb
er
 o
f
qu
er
y
se
qu
en
ce
s

J
=
ju
mp
 f
ac
to
r

 R
 =
 g
en
er
at
es
 a
 r
an
do
m
in
te
ge
r

S
=
qu
er
y
se
le
ct
iv
it
y

 W
 =
 i
ni
ti
al
 w
id
th

N
o
t
e
s
:
Th
e
da
ta
se
t
is
 N
=1
0^
8
un
iq
ue
 i
nt
eg
er
s
in
 r
an
ge
 [
0,
N)
.

Op
er
at
or
 %
 i
s
fo
r
mo
du
lo
,
d
i
v
 i
s
fo
r
in
te
ge
r
di
vi
si
on
.

Th
e
wo
rk
lo
ad
s
in
 t
he
 f
ig
ur
e
ar
e
or
de
re
d
fr
om
 l
ef
t
to
 r
ig
ht

by
 S
to
ch
as
ti
c
Cr
ac
k'
s
ga
in
 o
ve
r
Cr
ac
k'
s
in
 i
nc
re
as
in
g
or
de
r.

Se
qR
ev
er
se
,
Zo
om
Ou
t,
 S
eq
Zo
om
Ou
t
wo
rk
lo
ad
s
ar
e
id
en
ti
ca
l
to

Se
qu
en
ti
al
,
Zo
om
In
,
Se
qZ
oo
mI
n
ru
n
in
 r
ev
er
se
 q
ue
ry
 s
eq
ue
nc
e.

Sk
ew
Zo
om
Ou
tA
lt
 i
s
Zo
om
Ou
tA
lt
 w
it
h
M
=
N*
9/
10
.

Attribute value domain

Ra
nd
om

Q
ue

ry
 s

eq
ue

nc
e

Sk
ew

Q
ue

ry
 s

eq
ue

nc
e

Se
qR
an
do
m

Q
ue

ry
 s

eq
ue

nc
e

Se
qZ
oo
m
In

Q
ue

ry
 s

eq
ue

nc
e

Pe
rio
di
c

Q
ue

ry
 s

eq
ue

nc
e

Zo
om

In

Q
ue

ry
 s

eq
ue

nc
e

Se
qu
en
tia
l

Q
ue

ry
 s

eq
ue

nc
e

Zo
om

O
ut
Al
t

Q
ue

ry
 s

eq
ue

nc
e

Zo
om

In
Al
t

Q
ue

ry
 s

eq
ue

nc
e

F
ig

u
re

3.
4:

V
ar

io
u
s

w
or

k
lo

ad
s

p
at

te
rn

s
A

q
u
er

y
is

re
p
re

se
n
te

d
b
y

a
p
ai

r
of

b
la

ck
an

d
w

h
it

e
ci

rc
le

.
T

h
e

b
la

ck
is

th
e

lo
w

b
ou

n
d

of
th

e
q
u
er

y
an

d
th

e
w

h
it

e
ci

rc
le

is
th

e
h
ig

h
b

ou
n
d

of
th

e
q
u
er

y.

63

reorganization steps not explicitly dictated by the query itself. While we intro-

duce such auxiliary actions, we also need to maintain the lightweight character of

existing cracking schemes. To contain the overhead brought about by stochastic

operations, we introduce progressive cracking, in which a single cracking action

is completed collaboratively by multiple queries instead of a single one. Our ex-

perimental study shows that stochastic cracking preserves the benefits of original

cracking schemes, while also expanding these benefits to a large variety of realistic

workloads on which original cracking fails.

Overall, the workload robustness requirement is a major challenge for future

database systems [38]. While we know how to build well-performing specialized

systems, designing systems that perform well over a broad range of scenarios and

environments is significantly harder. We emphasize that this workload robustness

imperative does not imply that a system should perform all conceivable tasks

efficiently; it is accepted nowadays that “one size does not fit all” [101]. However,

it does imply that a system’s performance should not deteriorate after changing

a minor detail in its input or environment specifications. The system should

maintain its performance and properties when faced with such changes. The

whole spectrum of database design and architecture should be re-investigated

with workload robustness in mind [38], including, e.g., optimizer policies and

low-level operator design.

3.3 Stochastic Cracking

Having discussed the robustness problem, we now present our proposal in a se-

ries of incrementally more sophisticated algorithms that aim to achieve the de-

sired workload robustness while maintaining the adaptability of existing cracking

schemes.

In Section 3.2, we have shown that the cost of a query (select operator) with

cracking depends on the amount of data that needs to be analyzed for physi-

cal reorganization. The sequential workload which we have used as an example

to demonstrate the weakness of original cracking, forces cracking to repeatedly

analyze large data portions for consecutive queries.

This effect is due to the fact that cracking treats each query as a hint on

how to reorganize data in a blinkered manner: it takes each query as a literal

instruction on what data to index, without looking at the bigger picture. It is

thanks to this literalness that cracking can instantly adapt to a random workload;

yet, as we have shown, this literal character can also be a liability.

With a non-ideal workload, strictly adhering to the queries and reorganizing

the array so as to collect the query result, amounts to an inefficient quicksort-like

64

operation; small successive portions of the array are clustered, one after the other,

while leaving the rest of the array unaffected. Each new query, having a bound

inside the unindexed area of the array, reanalyzes this area all over again.

To address this problem, we venture to drop the strict requirement in original

cracking that each individual query be literally interpreted as a re-organization

suggestion. Instead, we want to force reorganization actions that are not strictly

driven by what a query requests, but are still beneficial for the workload at large.

To achieve this outcome, we propose that reorganization actions be partially

driven by what queries want, and partially arbitrary in character. We name the

resulting cracking variant stochastic, in order to indicate the arbitrary nature of

some of its reorganization actions. We emphasize that our new variant should not

totally forgo the query-driven character of original cracking. An extreme stochas-

tic cracking implementation could adopt a totally arbitrary approach, making

random reorganizations along with each query (we discuss such naive cracking

variants in Section 3.4). However, such an approach would discard a feature of

cracking that is worth keeping, namely the capacity to adapt to a workload with-

out significant delays. Besides, as we have seen in Figure 3.2, cracking barely

imposes any overhead over the default scan approach; while the system adapts,

users do not notice significantly slower response times; they just observe faster

reaction times later. Our solution should maintain this lightweight property of

original cracking too.

Our solution is a sophisticated intermediary between totally query-driven and

totally arbitrary reorganization steps performed with each query. It maintains

the lightweight and adaptive character of existing cracking, while extending its

applicability to practically any workload. In the rest of this section, we present

techniques that try to strike a balance between (a) adding auxiliary reorganiza-

tion steps with each query, and (b) remaining lightweight enough so as not to

significantly (if at all) penalize individual queries.

All our stochastic cracking algorithms are proposed as replacements for the

original cracking physical reorganization algorithm [54]. The various cracking

algorithms proposal are summarized in Table 3.1. The stochastic cracking al-

gorithms are underlined while the rest are used for comparisons. From a high

level point of view, nothing changes, i.e., stochastic cracking maintains the design

principles for cracking a column-store. As in original cracking [54], in stochastic

cracking the select operator physically reorganizes an array that represents a sin-

gle attribute in a column-store so as to introduce range partitioning information.

Meanwhile, a tree structure maintains structural knowledge, i.e., keeps track of

which piece of the clustered array contains which value range. This way, the

general setting is as follows. As new queries arrive, the select operators therein

65

trigger cracking actions. Each select operator requests for a range of values on

a given attribute (array) and the system reacts by physically reorganizing this

array, if necessary, and collecting all qualifying tuples in a continuous area. The

difference we introduce with stochastic cracking is that, instead of passively re-

lying on the workload to stipulate the kind and timing of reorganizations taking

place, it exercises more control over these decisions.

Acronym Description Section
DDC Data Driven Center (O(log(N)) auxiliary cracks) 3.3.1
DDR Data Driven Random (O(log(N)) auxiliary cracks) 3.3.2
DD1C DDC with at most 1 auxiliary crack 3.3.3
DD1R DDR with at most 1 auxiliary crack 3.3.3

MDD1R Materialized DD1R (pure stochastic cracking) 3.3.4
P(X)% Progressive MDD1R limited to X% reorganizations 3.3.5
Mon(X) Triggers stochastic crack on X touches to a piece 3.3.6
Sel(X)% Perform stochastic cracking X% of the time 3.3.6

Naive (X)th Perform a naive random crack on every X-th query 3.4.1
Naive (X)R Perform X naive random cracks on every query 3.4.1

Table 3.1: Cracking Algorithms

3.3.1 Data Driven Center (DDC)

Our first algorithm, the Data Driven Center algorithm (DDC), exercises its own

decision-making without using random elements; we use it as a baseline for the

subsequent development of its genuinely stochastic variants. The motivation

for DDC comes from our analysis of the ideal cracking behavior in Section 3.1.1;

ideally, each reorganization action should split the respective array piece in half, in

a quicksort-like fashion. DDC recursively halves relevant pieces on its way to the

requested range, introducing several new pieces with each new query, especially

for the first queries that touch a given column. The term “Center” in its name

denotes that it always tries to cut pieces in half.

The other component in its name, namely “Data Driven”, contrasts it to the

query-driven character of default cracking; if a query requests the range [a, b],

default cracking reorganizes the array based on [a, b] regardless of the actual

data. By contrast, DDC takes the data into account. Regardless of what kind

of query arrives, DDC always performs specific data-driven actions, in addition

to query-driven actions. The query-driven mentality is maintained, as otherwise

the algorithm would not provide good adaptation.

Given a query in [a, b], DDC recursively halves the array piece where [a, b] falls,

until it reaches a point where the size of the resulting piece is sufficiently small.

66

Cracking

Initial Array

low high

Initial array contains values in [0-k], Query asks for range [low-high]
0 k

0 k

DDC
low high0 kc1c2

DDR
low high0 kr1r2

DD1C
low high0 kc1

DD1R
low high0 kr1

MDD1R
0 kr1

low high

Figure 3.5: Cracking algorithms in action

Then, it cracks this piece based on [a, b]. As with original cracking, a request for

[a, b] in an already cracked column will in general result in two requests/cracks;

one for [a,) and one for (, b] (as for Q2 in Fig. 3.1).

A high-level example for DDC is given in Figure 3.5. This figure shows the end

result of a simplifying example of data reorganization with the various stochastic

cracking algorithms that we introduce, as well as with original cracking. An

array, initially uncracked, is queried for a value range in [low, high]. The initially

uncracked array, as well as the separate pieces created by the various cracking

algorithms, is represented by continuous lines. We emphasize that these are only

logical pieces, since all values are still stored in a single array; however, cracking

identifies (and incrementally indexes) these pieces and value ranges.

As Figure 3.5 shows, original cracking reorganizes the array solely based on

[low, high], i.e., exactly what the query requested. On the other hand, DDC

introduces more knowledge; it first cracks the array on c1, then on c2, and only

then on [low, high]. The bound c1 represents the median that cuts the complete

array into two pieces with equal number of tuples; likewise, c2 is the median

that cuts the left piece into two equal pieces. Thereafter, the newly created piece

is found to be small enough; DDC stops searching for medians and cracks the

piece based on the query’s request. For the sake of simplicity, in this example

both low and high fall in the same piece and only two iterations are needed to

reach a small enough piece size. In general, DDC keeps cutting in half pieces

until the minimum allowed size is reached. In addition, the request for [low, high]

is evaluated as two requests, one for each bound, as in general each of the two

bounds may fall in a different piece.

Figure 3.6 gives the DDC algorithm. Each query, DDC(C,a,b), attempts to

67

Algorithm DDC(C, a, b)
Crack array C on bounds a, b.
1. positionLow = ddc crack(C, a)
2. positionHigh = ddc crack(C, b)
3. result = createView(C,positionLow, positionHigh)

function ddc crack(C, v)
4. Find the piece Piece that contains value v
5. pLow = Piece.firstPosition()
6. pHgh = Piece.lastPosition()
7. while (pHgh - pLow > CRACK SIZE)
8. pMiddle = (pLow+pHgh) / 2;
9. Introduce crack at pMiddle
10. if (v < C[pMiddle]) pHgh = pMiddle
11. else pLow = pMiddle
12. position=crack(C[pLow, pHgh],v)
13. result=position

Figure 3.6: The DDC algorithm

introduce at least two cracks: on a and on b on column C. At each iteration, it

may introduce (at most log(N)) further cracks. Function ddc crack describes the

way DDC cracks for a value v. First, it finds the piece that contains the target

value v (Lines 4-6). Then, it recursively splits this piece in half while the range

of the remaining relevant piece is bigger than CRACK SIZE (Lines 7-11). Using

order statistics, it finds the median M and partitions the array according to M

in linear time (Line 9).

For ease of presentation, we avoid the details of the median-finding step in

the pseudocode; the general intuition is that we keep reorganizing the piece until

we hit the median, i.e., until we create two equal-sized pieces. At first, we sim-

ply cut the value range in half and try to crack based on the presumed median.

Thereafter, we continuously adjust the bounds until we hit the correct median.

The median-finding problem is a well-studied problem in computer science, with

approaches such as BFPRT [16] providing linear complexity. We use the Introse-

lect algorithm [88], which provides a good worst-case performance by combining

quickselect with BFPRT. After the starting piece has been split in half, we choose

the half-piece where v falls (Lines 10-11). If that new piece is still large, we keep

halving, otherwise we proceed with regular cracking on v and return the final

index position of v (Lines 12-13).

In a nutshell, DDC introduces several data-driven cracks until the target piece

is small enough. The rationale is that, by halving pieces, we contain the cases

unfavorable to cracking (i.e., the repeated scans) to small pieces. Thus, the

68

repercussions of such unfavorable cases become negligible. We found that the

size of L1 cache as piece size threshold provides the best overall performance.

Still, DDC is also query-driven, as it introduces those cracks only on its path

to find the requested values. As seen in Lines 7-11 of Figure 3.6, it recursively

cracks those pieces that contain the requested bound, leaving the rest of the array

unoptimized until some other query probes therein. This logic follows the original

cracking philosophy, while inseminating it with data-driven elements for the sake

of workload robustness. We emphasize that DDC preserves the original cracking

interface and column-store requirements; it performs the same task, but adds

extra operations therein. As Figure 3.5 shows, DDC collects all qualifying tuples

in a piece of [low, high], as original cracking does.

3.3.2 Data Driven Random (DDR)

The DDC algorithm introduced several of the core features and philosophy of

stochastic cracking, without employing randomness. The type of auxiliary oper-

ations employed by DDC is center cracks, always pivoted on a piece’s median for

optimal partitioning. However, finding these medians is an expensive and data-

dependent operation; it burdens individual queries with high and unpredictable

costs. It is critical for cracking, and any adaptive indexing technique, to achieve

a low initialization footprint. Queries should not be heavily, if at all, penalized

while adapting to the workload. Heavily penalizing a few queries would defeat

the purpose of adaptation [39].

Original cracking achieves this goal by performing partitioning and reorga-

nization following only what queries ask for. Still, we have shown that this is

not enough when it comes to workload robustness. The DDC algorithm does

more than simply following the query’s request and thus introduces extra costs.

The rest of our algorithms try to strike a good tradeoff between the auxiliary

knowledge introduced per query and the overhead we pay for it.

Our first step in this direction is made with the Data Driven Random algo-

rithm (DDR), which introduces random elements in its operation. DDR differs

from DDC in that it relaxes the requirement that a piece be split exactly in half.

Instead, it uses random cracks, selecting random pivots until the target value v

fits in a piece smaller than the threshold set for the maximum piece size. Thus,

DDR can be thought of as a single-branch quicksort. Like quicksort, it splits a

piece in two, but, unlike quicksort, it only recurses into one of the two resulting

pieces. The choice of that piece is again query-driven, determined by where the

requested values fall.

Figure 3.5 shows an example of how DDR splits an array using initially a

69

random pivot r1, then recursively splits the new left piece on a random pivot r2,

and finally cracks based on the requested value range to create piece [low, high].

Admittedly, DDR creates less well-chosen partitions that DDC. Nevertheless, in

practice, DDR makes substantially less effort to answer a query, since it does

not need to find the correct medians as DDC does, while at the same time it

does add auxiliary partitioning information in its randomized way. In a worst-

case scenario, DDR may get very unlucky and degenerate to O(N2) cost; still,

it is expected that in practice the randomly chosen pivots will quickly lead to

favorable piece sizes.

3.3.3 Restricted Data Driven (DD1C and DD1R)

By recursively applying more and more reorganization, both DDC and DDR

manage to introduce indexing information that is useful for subsequent queries.

Nevertheless, this recursive reorganization may cause the first few queries in a

workload to suffer a considerably high overhead in order to perform these auxiliary

operations. As we discussed, an adaptive indexing solution should keep the cost

of initial queries low [39]. Therefore, we devise two variants of DDC and DDR,

which eschew the recursive physical reorganization. These variants perform at

most one auxiliary physical reorganization. In particular, we devise algorithm

DD1C, which works as DDC, with the difference that, after cutting a piece in

half, it simply cracks the remaining piece where the requested value is located

regardless of its size. Likewise, algorithm DD1R works as DDR, but performs

only one random reorganization before it resorts to plain cracking.

DD1C corresponds to the pseudocode description in Figure 3.6, with the mod-

ification that the while statement in Line 7 is replaced by an if statement. Fig-

ure 3.5 shows a high-level example of DD1C and DD1R in action. The figure

shows that DD1C cuts only the first piece based on bound c1 and then cracks

on [low, high]; likewise, DD1R uses only one random pivot r1. In both cases, the

extra steps of their fully recursive siblings are avoided.

3.3.4 Materialized Data Driven Random (MDD1R)

Algorithms DD1C and DD1R try to reduce the initialization overhead of their

recursive siblings by performing only one auxiliary reorganization operation, in-

stead of multiple recursive ones. Nevertheless, even this one auxiliary action can

be visible in terms of individual query cost, especially for the first query or the

first few queries in a workload sequence. That is so because the first query will

need to crack the whole column, which for a new workload trend will typically

be completely uncracked.

70

After N Queries

Initial Array

Initial array contains values in [0-k]
Query asks for range [low-high] where low in[v2,v3] and high in [v5,v6]

0 k

0 k

Current Query
low

v1 v2 v3 v4 v5 v6 v7 v8

0 kv1 v2 v3 v4 v5 v6 v7 v8R1 R2

v3 v5 highview

Figure 3.7: An example of MDD1R

Motivated to further reduce the initialization cost, we devise algorithm MDD1R,

where “M” stands for materialization. This algorithm works like DD1R, with the

difference being that it does not perform the final cracking step based on the query

bounds. Instead, it materializes the result in a new array. Thus, all the cracks

performed are pure stochastic cracks (no cracks based on the query bounds).

DD1R and DD1C perform two cracking actions: (1) one for the center or

random pivot cracking and (2) one for the query bounds. In contrast, regular

cracking performs a single cracking action, only based on the query bounds. Our

motivation for MDD1R is to reduce the stochastic cracking costs by eschewing

the final cracking operation. Prudently, we do not do away with the random

cracking action, as this is the one that we have introduced aiming to achieve

workload robustness. Thus, we drop the cracking action that follows the query

bounds. However, we still have to answer the current query (select operator).

Therefore, we choose to materialize the result in a new array, just like a plain

(non-cracking) select operator does in a column-store. To perform this material-

ization step efficiently, we integrate it with the random cracking step: we detect

and materialize qualifying tuples while cracking a data piece based on a random

pivot. Otherwise, we would have to do a second scan after the random crack,

incurring significant extra cost. Besides, we materialize only when necessary, i.e.,

we avoid materialization altogether when a query exactly matches a piece, or

when qualifying tuples do not exist at the end pieces.

Figure 3.5 shows high-level view of MDD1R in action. Notably, MDD1R

performs the same random crack as DD1R, but does not perform the query-

based cracking operation as DD1R does; instead, it just materializes the result

tuples. A pseudocode for the MDD1R algorithm is shown in Figure 3.8.

Figure 3.7 illustrates a more detailed example on a column that has already

been cracked by a number of preceding queries. In general, the two bounds that

define a range request in a select operator fall in two different pieces of an already

cracked column. MDD1R handles these two pieces independently; it first operates

71

Algorithm MDD1R(C, a, b)
Crack array C on bounds a, b.
1. Find the piece P1 that contains value a
2. Find the piece P2 that contains value b
3. if (P1 == P2)
4. result = split and materialize(P1,a,b)
5. else
6. res1 = split and materialize(P1,a,b)
7. res2 = split and materialize(P2,a,b)
8. view = createView(C,P1.lastPos+1, P2.f irstPos-1)
9. result = concat(res1, view, res2)

function split and materialize(Piece,a,b)
10. L=Piece.firstPosition
11. R=Piece.lastPosition
12. result=newArray()
13. X = C[L + rand()%(R-L+1)]
14. while (L <= R)
15. while (L <= R and C[L] < X)
16. if (a <= C[L] && C[L] < b) result.Add(C[L])
17. L = L + 1
18. while (L <= R and C[R] >= X)
19. if (a <= C[R] && C[R] < b) result.Add(C[R])
20. R = R - 1
21. if (L < R) swap(C[L],C[R])
22. Add crack on X at position L

Figure 3.8: The MDD1R algorithm

solely on the leftmost piece intersecting with the query range, and then on the

rightmost piece, introducing one random crack per piece. In addition, notice that

the extra materialization is only partial, i.e., the middle qualifying pieces which

are not cracked are returned as a view, while only any qualifying tuples from the

end pieces need to be materialized. This example also highlights the fact that

MDD1R does not forgo its query-driven character, even while it eschews query-

based cracking per se; it still uses the query bounds to decide where to perform

its random cracking actions. In other words, the choice of the pivots is random,

but the choice of the pieces of the array to be cracked is query-driven.

We do a number of optimizations over the algorithm shown in Figure 3.8. For

example, we reduce the number of comparisons by having specialized versions of

the split and materialize method. For instance, a request on [a, b) where a and b

fall in different pieces, P1 and P2, will result in two calls, one in P1 only, checking

for v > a, and one on P2 only, checking for v ≤ b.

72

3.3.5 Progressive Stochastic Cracking (PMDD1R)

Our next algorithm, Progressive MDD1R (PMDD1R) is an even more incremen-

tal variant of MDD1R which further reduces the initialization costs. The rationale

behind cracking is to build indexes incrementally, as a sequence of several small

steps. Each such step is triggered by a single query, and brings about physical re-

organization of a column. With PMDD1R we introduce the notion of progressive

cracking; we take the idea of incremental indexing one step further, and extend

it even at the individual cracking steps themselves. PMDD1R completes each

cracking operation incrementally, in several partial steps; a physical reorganiza-

tion action is completed by a sequence of queries, instead of just a single one.

The goal is to significantly reduce the cost of cracking and make it as invisible as

possible for the end user.

In our design of progressive cracking, we introduce a restriction on the number

of physical reorganization actions a single query can perform on a given piece of

an array; in particular, we control the number of swaps performed to change the

position of tuples.

The resulting algorithm is even more lightweight than MDD1R; like MDD1R,

it also tries to introduce a single random crack per piece (at most two cracks

per query) and materializes part of the result when necessary. The difference

of PMDD1R is that it only gradually completes the random crack, as more and

more queries touch (want to crack) the same piece of the column. For example,

say a query q1 needs to crack piece pi. It will then start introducing a random

crack on pi, but will only complete part of this operation by allowing x% swaps

to be completed (x% of the number of tuples in the piece); q1 is fully answered

by materializing all qualifying tuples in pi. Then, if a subsequent query q2 needs

to crack pi as well, the random crack initiated by q1, resumes while executing

q2. Thus, PMDD1R is a generalization of MDD1R; MDD1R is PMDD1R with

allowed swaps x = 100%.

We emphasize that the restrictive parameter of the number of swaps allowed

per query can be configured as a percentage of the number of tuples in the current

piece to be cracked. We will study the effect of this parameter later. In addition,

progressive cracking occurs only as long as the targeted data piece is bigger than

the L2 cache, otherwise full MDD1R takes over. This provision is necessary in

order to avoid slow convergence; we want to use progressive cracking only on large

array pieces where the cost of cracking may be significant; otherwise, we prefer

to perform cracking as usual so as to reap the benefits of fast convergence.

73

3.3.6 Selective Stochastic Cracking

Another alternative to reduce the overhead of stochastic actions is to selectively

eschew stochastic cracking for some queries; such queries are answered using

original cracking. One approach, which we call Det50%, deterministically applies

stochastic cracking 50% of the time, i.e., only every other query. Still, as we will

see, this approach encounters problems due to its deterministic elements, which

forsake the robust probabilistic character of stochastic cracking. We propose the

probabilistic variant, Sel50%, in which the choice of whether to apply stochastic

cracking or original cracking for a given query is itself a probabilistic one.

In addition to switching between original and stochastic cracking in a periodic

or random manner, we also design a monitoring approach, MonX. MonX initiates

query processing via original cracking but it also logs all accesses in pieces of a

crack column. Each piece has a crack counter that increases every time this piece

is cracked. When a new piece is created it inherits the counter from its parent

piece. Once the counter for a piece p reaches a threshold X, then the next query

that touch the piece p will use stochastic cracking to crack p, while resetting its

counter. This way, MonX monitors all actions on individual pieces and applies

stochastic cracking only when necessary and only on problematic data areas with

frequent accesses.

Finally, an alternative selective stochastic cracking approach triggers stochas-

tic cracking based on size parameters, i.e., switching from stochastic cracking to

original cracking for all pieces in a column which become smaller than L1 cache;

within the cache the cracking costs are minimized.

3.4 Experimental Analysis

In this section we demonstrate that Stochastic Cracking solves the workload ro-

bustness problem of original cracking.

We implemented all our algorithms in C++, using the C++ Standard Tem-

plate Library for the cracker indices. All experiments ran on an Intel(R) Core(TM)

i7 CPU 960 @ 3.20GHz machine with 12GB RAM running Fedora 12 (64-bit). As

in past adaptive indexing work, our experiments are all main-memory resident,

targeting modern main-memory column-store systems. We use several synthetic

workloads as well as a real workload from the scientific domain. The synthetic

workloads we use are presented in Figure 3.4. For each workload, the figure

illustrates graphically and mathematically how sequences of queries touch the

attribute value domain of a single column. The same setup is used as in Section

3.1.1; that is the initial values in the column consists of N = 108 random unique

74

integers in range 0 to N − 1.

3.4.1 Stochastic Cracking under Sequential Workload

We first study the behavior of Stochastic Cracking on a sequential workload.

Figure 3.9 shows the results. Each graph depicts the cumulative response time,

for one or more of the Stochastic Cracking variants, over the query sequence, in

logarithmic axes. In addition, each graph shows the plot for original cracking and

full indexing (Sort) so as to put the results in perspective. For plain cracking and

Sort, the performance is identical to the one seen in Section 3.1.1: Sort has a high

initial cost and then provides good search performance, while original cracking

fails to improve.

Figure 3.9(a) depicts the results for DDR and DDC. Our first observation is

that both Stochastic Cracking variants manage to avoid the bottleneck that orig-

inal cracking falls into. They quickly improve their performance and converge to

response times similar to those of Sort, producing a quite flat cumulative response

time curve. This result demonstrates that, auxiliary reorganization actions can

dispel the pathological effect of leaving large portions of the data array completely

unindexed.

Comparing DDC and DDR to each other, we observe that DDR carries a

significantly smaller footprint regarding its initialization costs, i.e., the cost of

the first few queries that carry an adaptation overhead. In the case of DDC, this

cost is significantly higher than that of plain cracking (we reiterate that the time

axis is logarithmic). This drawback is due to the fact that DDC always tries to

find medians and recursively cut pieces into halves. DDR avoids these costs as it

uses random pivots instead. Thus, the cost of the first query with DDR is roughly

twice faster than that of DDC, and much closer to that of plain cracking.

In order to demonstrate the effect of the piece size chosen as a threshold for

Stochastic Cracking (i.e., if the size of the piece is bigger than the threshold

X, it performs stochastic cracking otherwise the original cracking is performed).

Figure 3.9(f) shows how it affects DDC. Piece size X = L1 cache size provides

the best option to avoid cracking actions deemed unnecessary; larger threshold

sizes cause performance to degrade due to the increased access costs on larger

uncracked pieces. For a threshold even bigger than L2 cache size, performance

degrades significantly as the access costs are substantial.

Figure 3.9(b) depicts the behavior of DD1R and DD1C. As with the case

of DDR and DDC, DD1R similarly outperforms DD1C by avoiding the costly

median search. Furthermore, by observing Figure 3.9(a) and (b), we see that

the more lightweight Stochastic Cracking variants (DD1R and DD1C) reduce the

75

10
0

10
1

10
2

10
3

1

10

100
C

um
ul

at
iv

e
R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

Query Sequence

(a) DDC and DDR

Crack
Sort
Scan
DDC
DDR

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

(b) DD1C and DD1R

Crack
Sort
Scan
DD1C
DD1R

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

(c) Progressive Cracking

Crack
Sort
Scan
P1%
P5%
P100%

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

(d) Monitoring

Crack
Sort
Mon2
Mon10
Mon100

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

(e) Probabilistic Selective Cracking

Crack
Sort
Sel20%
Sel50%
Sel80%

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

(f) DDC (X = Piece Size Limit)

Crack
Sort
X=L1/2
X=L1
X=L2
X=L3

Figure 3.9: Stochastic Cracking under Sequential Workload

76

initialization overhead compared to their heavier counterparts (DDC and DDR).

This is achieved by reducing the number of cracking actions performed with a

single query. Naturally, this overhead reduction affects convergence, hence DDR

and DDC (Figure 3.9(a)) converge very quickly to their best-case performance

(i.e., their curves flatten) while DD1R and DD1C (Figure 3.9(b)) require a few

more queries to do so (around 10). This extra number of queries depends on the

data size; with more data, more queries are needed to index the array sufficiently

well.

Figure 3.9(c) depicts the performance of progressive Stochastic Cracking, as

a function of the amount of reorganization allowed. For instance, P5% allows

for 5% of the tuples to be swapped per query. P100% is the same as MDD1R,

imposing no restrictions. The more we constrain the amount of swaps per query,

the more lightweight the algorithm becomes; thus, P1% achieves a first query

performance similar to that of original cracking. Eventually (in this case, after

20 queries), the performance of P1% improves and then quickly converges (i.e., the

curve flattens). The other progressive cracking variants obtain faster convergence

as they impose fewer restrictions, hence their index reaches a good state much

more quickly. Besides, especially in the case of the 5% variant, this relaxation

of restrictions does not have a high impact on initialization costs. In effect, by

imposing only a minimal initialization overhead, and without a need for workload

knowledge or a priori idle time, progressive Stochastic Cracking can tackle this

pathological workload.

Figure 3.9(d) shows the performance of MonX as described in Section 3.3.6.

Mon2, Mon10, Mon100 will perform stochastic crack if the piece counter reaches

2, 10, and 100 respectively. The figure shows that the bigger the threshold,

the worse the performance. The obvious reason is that before the piece counter

reaches the threshold, the first few queries suffer in the same way with the original

crack. This suggests that under pathological workload, it is prudent to always

perform stochastic cracking.

Figure 3.9(e) shows the performance of probabilistic selective cracking as

described in Section 3.3.6. Sel20%, Sel50%, Sel80% probabilistically performs

stochastic cracking 20%, 50%, 80% of the time respectively. The performance

of the selective cracking is on par with the progressive cracking. Both show

promising results to further reduce the initialization cost and quickly adapt in

the pathological workload.

Naive Approaches

A natural question is why we do not simply impose random queries to deal with

robustness. The next experiment studies such approaches using the same set-up

77

as before with the sequential workload.

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Sequential Workload

Crack
Sort
Scan
Naive 1R
Naive 2R
P100%

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)
Query Sequence

Sequential Workload

Crack
Sort
Naive 1th
Naive 4th
Naive 8th
P100%

Figure 3.10: Simple cases

In the alternatives shown in Figure 3.10, Naive 1R and Naive 2R forces 1

and 2 random queries respectively for every user query. The less aggressive naive

approaches: Naive 1th, Naive 4th, and Naive 8th force 1 random query every 1, 4,

and 8 user queries. Notably, all these approaches improve over original cracking

by one order of magnitude in cumulative cost. However, Stochastic Cracking

(P100% or any other Stochastic Cracking variants in Figure 3.9) gains another

order of magnitude, as it integrates its stochastic cracking actions within its query-

answering tasks. This rationale is the same as that in original cracking: physical

refinement is not an “afterthought”, an action merely triggered by a query; it is

integrated in the query processing operators and occurs on the fly. Furthermore,

Stochastic Cracking quickly converges to low response times (its curve becomes

flat), while naive approaches do not converge even after 103 queries.

3.4.2 Stochastic Cracking under Random Workload

We have now shown that Stochastic Cracking manages to improve over plain

cracking with the sequential workload. Still, it remains to be seen whether it

maintains the original cracking properties under a random workload as well.

Figure 3.11 repeats the experiment of Section 3.1.1 for the random workload,

but adds Stochastic Cracking in the picture. The performance of plain cracking

and Sort is as in Section 3.1.1; while Sort has a high initialization cost, plain

cracking improves in an adaptive way and converges to low response times. Fig-

ure 3.11 shows that all our Stochastic Cracking algorithms achieve a performance

similar to that of original cracking, maintaining its adaptability and good proper-

78

10
0

10
1

10
2

10
3

10
4

0.5

1

2

4

8

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Random Workload

Crack
Sort
Scan
DDC
DDR
P100%

Figure 3.11: Stochastic Cracking under Random Workload

ties regarding initialization cost and convergence. Moreover, the more lightweight

progressive Stochastic Cracking alternative approaches the performance of orig-

inal cracking quite evenly. Original cracking is marginally faster during the ini-

tialization period, i.e., during the first few queries, when the auxiliary actions of

Stochastic Cracking operate on larger data pieces, hence are more visible. How-

ever, this gain is marginal; with efficient integration of progressive stochastic

and query-driven actions, we achieve the same adaptive behavior as with original

cracking. DDC and DDR manage to perform better than the original cracking

due to more cracker indexes (pieces) introduced per query, thus they have faster

convergence and better total cumulative response time in the long run.

3.4.3 Stochastic Cracking under Various Workloads

Table 3.2 presents the relative cumulative time from the best algorithm to run 104

queries under various workloads. The value 1.00 represents the best cumulative

time with ratio one. The other values bigger than 1.00 represent the amount of

factor slower than the best. The values enclosed by a square bracket denote the

worst ratio. The column Det50% represents the selective cracking that deter-

ministically perform stochastic cracking every two queries (explained in Section

3.3.6). In addition to individual workload patterns, Table 3.2 also depicts results

for a Mixed workload representing a mixture of all workloads studied so far; it

randomly switches between each workload in every 1000 queries.

We observe that Stochastic Cracking (DDR, DD1R, P100%) maintains its

79

Cracking strategy (relative ratio to the best strategy)
Workload Crack Sort DDR DD1R P100% Sel20% Sel50% Sel80% Det50%
Random 1.41 [1.64] 1.02 1.00 1.47 1.40 1.43 1.54 1.43
Sequential [1051.44] 10.43 1.00 1.31 1.45 1.75 1.70 1.55 1.80
SeqInv [3027.23] 18.44 1.17 1.43 1.00 6.38 2.85 1.12 1.10
SeqRand 1.56 [1.77] 1.02 1.00 1.39 1.36 1.43 1.46 1.31
SeqNoOver [1055.27] 10.47 1.00 1.32 1.46 1.71 1.73 1.53 1.79
SeqAlt [1214.41] 9.18 1.02 1.00 1.51 3.85 1.56 1.51 14.73
ConsRandom 1.17 [2.10] 1.00 1.01 1.73 1.33 1.45 1.68 1.43
ZoomIn [224.49] 6.84 1.12 1.00 2.72 1.17 1.08 2.92 1.19
ZoomOut [843.00] 8.41 1.13 1.04 1.61 2.42 1.38 1.87 1.00
SeqZoomIn 2.31 [8.38] 1.00 1.23 1.38 1.59 1.18 1.55 2.13
SeqZoomOut [805.84] 11.62 1.25 1.65 1.78 1.00 1.44 1.82 1.95
Skew 1.04 [1.74] 1.07 1.00 1.60 1.25 1.40 1.62 1.33
ZoomOutAlt [517.66] 7.83 1.00 1.06 1.42 2.20 1.35 1.63 208.68
SkewZOA [1538.13] 18.81 1.16 1.57 1.00 4.89 2.53 1.08 579.09
Periodic [4.38] 2.62 1.00 1.02 1.54 1.72 1.52 1.49 2.14
Mixed [30.10] 3.92 1.04 1.00 1.65 1.53 1.49 1.56 4.19
SkyServer [62.32] 2.18 1.00 1.06 1.45 2.99 1.91 1.59 1.71

Table 3.2: Various workloads

robust behavior across various workloads. On the other hand, original cracking

fails significantly with most of them, being two or more orders of magnitude

slower than Stochastic Cracking. Sort becomes the worst where original cracking

performs better. Original cracking behaves well only for the workloads that con-

tain enough random elements by themselves. The table shows the most robust

stochastic cracking variants under various workloads are DDR and DD1R.

Comparing Stochastic Cracking with its selective variants, we observe that the

deterministic selective cracking Det50% behaves rather well in many scenarios,

but still fails in some of them, i.e., it is not robust. This is due to the fact that

it follows a query-driven logic with every second query; thus, it is vulnerable to

patterns that happen to create big column pieces during (some of the) odd queries.

On the other hand, the probabilistic selective cracking strategies (Sel20%, Sel50%,

Sel80%) provides an overall robust solution, i.e., it does not fail in any of the

workloads. By randomizing the decision on whether to apply Stochastic Cracking

or not for every query, it avoids the deterministic bad access patterns that may

appear with each workload. In the SkyServer workload, selective cracking can be

up to two orders of magnitude slower than the pure Stochastic Cracking. This

is due to the fact that selective cracking may fall into bad access patterns (even

if only a few), as it eschews stochastic operations where it should not. None of

the Selective Stochastic Cracking variants manage to present an overall better

performance than pure Stochastic Cracking.

Figure 3.12 shows a more detailed per query cumulative response time of the

various workloads from Figure 3.4. We only show the DD1R variant to avoid

clutter (DDR and MDD1R perform similarly with DD1R). Stochastic cracking

performs robustly across the whole spectrum of workloads. On the other hand,

original cracking fails in many cases; in half of the workloads, it loses the low

80

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Sequential Random

Crack
Sort
DD1R

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Sequential Alternate

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Constrained Random

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Zoom In

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Zoom Out

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Zoom Out Alternate

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Sequential Zoom In

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Sequential Zoom Out

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Skew

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Skew Zoom Out Alt

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Periodic

10
0

10
1

10
2

10
3

10
4

1

10

100

Query Sequence

Mixed

Figure 3.12: Various workloads under Stochastic Cracking

81

initialization advantage over full indexing, and performs significantly worse than

both Stochastic Cracking and full indexing over the complete workload. For those

workloads where original cracking does not fail, Stochastic Cracking follows a

similar behavior and performance.

3.4.4 Stochastic Cracking under Varying Selectivity

Table 3.3 shows how Stochastic Cracking maintains its workload robustness with

varying selectivity. It shows the cumulative time (seconds) required to run 104

queries. Stochastic cracking maintains its advantage for all selectivity with the

sequential workload. We observe that DD1R achieves better cumulative times,

while progressive Stochastic Cracking sacrifices a bit more in terms of cumulative

costs to allow for a smaller individual query load at the beginning of a workload

query sequence (see also Figure 3.9). Furthermore, higher selectivity factors cause

Scan and progressive cracking to increase their costs, as they have to materialize

larger results (whereas the other strategies return non-materialized views as they

collect all result tuples in a contiguous area). For progressive cracking, that is

only a slight extra cost, as it only has to materialize tuples from the array pieces

(at most two) not fully contained within a query’s range.

Random Workload Sequential Workload
selectivity % selectivity%

Algor. 10−7 10−5 10−2 10 50 Rand 10−7 10−5 10−2 10 50 Rand

Scan 2886 2881 3017 3864 4658 4163 957 957 1108 2058 4360 3187
Sort 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3

Crack 6.3 6.3 5.8 5.8 5.9 5.8 943 652 652 652 653 6.0
DD1R 5.6 5.7 5.8 5.8 5.8 5.8 1.1 1.2 1.3 1.3 1.3 5.5
P10% 9.3 9.4 10.3 10.3 10.8 11.0 1.5 1.5 1.6 2.8 2.7 9.5

Table 3.3: Varying selectivity

3.4.5 Adaptive Indexing Hybrids

In recent work, cracking was extended with a partition/merge logic [57]. There-

with, a column is split into multiple pieces and each piece is cracked indepen-

dently. Then, the relevant data for a query is merged out of all pieces.

These partition/merge-like algorithms improve over original cracking by al-

lowing for better access patterns. However, as they are still based on what we call

the blinkered query-driven philosophy of original cracking, they are also expected

to suffer from the kind of workload robustness problems that we have observed.

Figure 3.13(left) demonstrates our claim, using the sequential workload. We use

82

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Sequential Workload

Crack
AICC
AICC1R

10
0

10
1

10
2

10
3

1

10

100

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Sequential Workload with HFLV Updates

Crack
DD1R

Figure 3.13: Stochastic Hybrids

the Hybrid Crack-Crack (AICC) method from [57]. It fails to improve on its

performance, as it blindly follow the workload. Besides, due to the extra merging

overhead imposed by the sequential workload, AICC is slightly slower than orig-

inal cracking. In order to see the effect and application of Stochastic Cracking

in this case as well, we implemented the basic stochastic cracking logic inside

AICC, in the same way we did for DD1R. The same figure, above, shows the

performance of AICC1R, namely our algorithm, which, in addition to the crack-

ing and partition/merge logic, also incorporates DD1R-like stochastic cracking in

one go during query processing. Our stochastic AICC variant gracefully adapts

to the Sequential Workload, quickly converging to low response times. Thereby,

we demonstrate that the concept of stochastic cracking is directly applicable and

useful to the core cracking routines, wherever these may be used.

3.4.6 Stochastic Cracking under Updates

Figure 3.13(right) shows the Stochastic Cracking performance under updates.

Given that stochastic cracking maintains the core cracking architecture, the up-

date techniques proposed in [55] apply here as well. Updates are marked and

collected as pending updates upon arrival and will only be merged to the cracker

column when a query request values that intersect with the values in the pend-

ing updates. The presence of updates do not help in bringing robustness to the

original cracking as they have no influence in refining the physical data store.

The figure presents the performance with the Sequential workload when updates

interleave with queries. We test a high-frequency low-volume (HFLV) update

83

scenario where 10 random updates arrive every 10 queries. Stochastic Cracking

maintains its robust behavior, while the original cracking still fails to adapt. We

obtained the same behavior with varying update frequency (as in [55]).

3.4.7 Stochastic Cracking under Real Workloads

In our next experiment, we test Stochastic Cracking under the SkyServer work-

load [64]. The SkyServer contains data from the astronomy domain and provides

public database access to individual users and institutions. We used a 4 Terabyte

SkyServer data set. To focus on the effect of the select operator, which mat-

ters for Stochastic Cracking, we filtered the selection predicates from queries and

applied them in exactly the same chronological order in which they were posed

in the system. Figure 3.14(b) depicts the exact workload pattern logged in the

SkyServer for queries using the “right ascension” attribute of the “Photoobjall”

table. The Photoobjall table contains 500 million tuples, and is one of the most

commonly used ones. Overall, we observe that all users/institutions pose queries

following non-random patterns. The queries focus in a specific area of the sky be-

fore moving on to a different area; the pattern combines features of the synthetic

workloads discussed in Section 3.4.3. As with those workloads, here too, the fact

that queries focus on one area at a time creates large unindexed areas. Figure

3.14(a) shows that plain cracking fails to provide robustness in this case as well,

while Stochastic Cracking maintains robust performance throughout the query

sequence; it answers all 160 thousand queries in only 21 seconds, while original

cracking needs more than 1000 seconds. When the stochastic cracking finished

answering all the queries, a full indexing approach (Sort) is not even halfway

preparing its physical data store and has not yet answered a single query. Sort

needs 70 seconds to answer all the queries which is three times more than the

stochastic cracking, while a plain scan more than 8000 seconds. These results

establish the advantage of Stochastic Cracking with a real workload.

1 40K 80K 120K 160K
1

10

100

1000

C
um

ul
at

iv
e

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Query Sequence

Crack
Sort
DD1R

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 40K 80K 120K 160K

A
tt
ri
b
u
te

 V
a
lu

e
 d

o
m

a
in

Query sequence

access pattern

Figure 3.14: Cracking on the SkyServer Workload

84

3.5 Conclusion

We have witnessed the importance of investing a small computation to give an

overall robust algorithm under dynamic environments while maintaining the orig-

inal algorithm efficiency. Stochastic cracking spends an effort in observing the

underlying physical data store (i.e., the piece size) and perform stochastic crack(s)

with minimal overhead. Stochastic cracking clearly improves over original crack-

ing by being robust in workload changes while maintaining sub-linear algorithm

complexity and all original cracking features when it comes to adaptation. Fur-

thermore, we have established that, given the unpredictability of dynamic work-

loads, there is no “royal road” to workload robustness, i.e., no easy way out of

the necessity to apply stochastic cracking operations with every single query.

85

86

Chapter 4

Large Graph Processing

Large graphs naturally arise from the web, social networks, biology, etc. These

graph instances are unique, have many special properties which are hard to

synthesize, and have intrinsic values that fascinate researchers to analyze them

deeper. Unfortunately, these graphs can easily reach hundreds of gigabytes in size

with hundred millions of vertices and billions of edges. Analyzing such graphs is a

big data problem. Consider the Facebook social network graph. Currently, it has

more than 800 million users (and growing) with an average user has 130 friends

[4]. This means that a plain adjacency-list graph data structure alone would need

at least 800×106×130×8 bytes ≈ 832 GB space. Additional data structures will

increase the space requirement further. Processing/analyzing such large graphs

becomes challenging as the computation, storage, and memory required exceeds

the capacity of a single machine. Classical sequential algorithms that are used to

process such graphs simply fail because the input dataset is too large to fit into

the main memory. The recent Graph 500 ranking for evaluating supercomputers

to complement the Top 500 using data-intensive graph problems including social

networks [5, 6] is also indicative of the importance of processing large graphs as

HPC workloads.

While it is possible to use a very large and expensive machine with TB-

sized memory, currently it is more economical and practical to use a cluster

of commodity machines [1] or use cloud computing. This requires the graph

to be partitioned and distributed to a cluster of machines to be processed in

parallel. This naturally requires dealing with distributed computing issues (e.g.

data partitioning and distribution, load balancing, scheduling, fault tolerance,

communication, etc) which are not trivial and difficult to be realized without

a well established framework. Recently, the MapReduce (MR) [25] framework

was introduced by Google to abstract the above issues away from the user. MR

provides a simple programming model and quickly becomes de facto standard for

processing very large datasets over thousands of commodity machines. Soon after,

87

Hadoop, an open source implementation of MR framework emerged [7] which is

widely used by companies to process large scale data such as Facebook, Amazon,

Yahoo, etc. Adopting a new platform such as MR entails retrofitting/reinventing

existing algorithms to comply with the constraints of the new platform. The most

difficult challenge in developing an algorithm in the MR framework is that the

algorithm must be written in the form of a map function and a reduce function.

Both of which have to work in local and stateless manner. This means that

sequential algorithms which make use of global state may not be so easily turned

into its MR counterpart. Moreover, the performance cost metric of operating

in MR platform is different than the traditional complexity metric. One has to

take into account the I/O and communication overheads which are not captured

in the usual algorithm complexity analysis. In practice, they can dominate the

computation. With the large scale of the graph to be processed and the limited

choice of the available framework, the questions that can be asked to the graph

become limited.

Among many graph problems, we are interested in those that have solutions

with quadratic (or more) runtime complexity. In this chapter, we look at how

we can redesign classical graph algorithms, in particular the Maximum-Flow

(max-flow) algorithms, which has quadratic runtime complexity into practical

MapReduce-based algorithms that perform in linearly in practice. Existing max-

flow algorithms (for integer capacity flow) have about quadratic (or more) runtime

complexity [35]. The challenge is whether real-world graphs with ∼109 vertices

and ∼1011 edges (or more) can be effectively processed.

Fortunately, many real-world graphs (such as social networks, the World Wide

Web, Wikipedia, etc.) inherently have small-world properties [13, 86, 12, 100],

e.g. the graphs have small diameter. That is, the length of the shortest-path

between any two vertices in the graph is expected to be small [85]. The small

diameter property allows us to design new max-flow algorithms that scale linearly

in practice in terms of graph size and its diameter. We develop and evaluate new

MapReduce algorithms based on two well known existing max-flow algorithms,

the Push-Relabel algorithm and the Ford-Fulkerson method, on their efficiency in

processing very large real-world social network graphs using the MR framework.

We discovered that while the Push-Relabel algorithm works in local manner (i.e.,

each vertex only requires information about its neighbors), it is not suitable in the

MR settings due to the arbitrary large number of MR rounds needed. On the con-

trary, we found that algorithms based on the Ford-Fulkerson method have a large

potential for parallelization. By utilizing the high potential for parallelization of

the Ford-Fulkerson method and exploiting the small-world property, we design

and develop a new and practical MapReduce-based Maximum-Flow algorithm

88

for processing large small-world network graphs / social networks. We are able

to process very large real-world graphs with 411 million vertices and 31 billion

edges using a cluster of 21 machines. We show that our algorithm is scalable in

terms of the max-flow value, the graph size, and the number of machines. We also

devised novel algorithm-system optimizations which improve the performance of

the initial design by a factor of up to 14x (see Sec. 4.5). We believe that the

techniques presented in this chapter can give new insights for scaling other graph

related algorithms.

Our work on the techniques in parallelizing the Ford-Fulkerson method that

take advantage of the small diameter property of the graph, its design, imple-

mentation, and evaluation on top of the MapReduce framework is published in

[49].

4.1 Overview of the MapReduce Framework

The MapReduce (MR) framework was introduced by Google [25] as a simple

programming model to run distributed computation on very large datasets using

large clusters of commodity machines. MR requires the input dataset to be a

series of (independent) records consisting of 〈key, value〉 pairs. Each record must

be designed so that it can be processed in isolation, i.e., local to the record itself.

This allows a very large number of (independent) records to be partitioned and

distributed across machines and processed in parallel. The input records are

stored in a distributed file system (DFSMR) – Google’s MR uses GFS [32] while

Hadoop uses HDFS [99]. Our implementations use Hadoop, the open source

implementation of MR.

The MR framework manages the nodes in a cluster. In Hadoop, one node

is designated as the master node and the rest are the slave nodes. An MR job

consists of the input records and the user’s specified map and reduce func-

tion. When an MR job is submitted for execution, the master node schedules

a number of map and reduce tasks. The slave nodes will spawn a number of

workers to execute (in parallel) the tasks scheduled by the master node. Each

input record will be processed by a worker, called a mapper, that applies the

map function possibly outputting a number of intermediate records, also in the

form of 〈key, value〉 pairs. After all mappers are finished, the reduce phase be-

gins. Intermediate records having the same key are grouped together (which may

require sending/shuffling the intermediate records between workers in different

slave nodes). Each group of intermediate records having the same key is then

processed by a worker, called a reducer, that applies the reduce function possi-

bly outputting a number of records which are the final result of the MR job. The

89

map and reduce functions need to be stateless in the MR framework as they

only take the input record(s) and produce (intermediate) records.

Executing an MR job incurs large overheads as the main operations involve

reading and writing to the DFSMR and shuffling data between nodes – resulting

in large amounts of disk I/O and network traffic, roughly proportional to the data

size. For large enough data, the cost of fetching and shuffling the data may be

much larger than the computation cost of executing the user’s map and reduce

functions. Hence, optimizations to reduce MR overheads are necessary.

MR allows the total size of the input to be far larger than the total available

memory of the slave nodes in the cluster. Each slave node can run a number of

mappers and reducers concurrently. However, the number of workers is limited

by the number of processors and memory in the node as well as the memory re-

quirement of a worker when processing records. In MR, the memory requirement

to process one (or more) record(s) by a mapper (or reducer) is expected to be far

smaller than the memory capacity of any node in the cluster. This allows workers

in MR to process an arbitrarily (large) number of input records as long as the

total memory requirement of the running workers is within the node’s memory

capacity.

MR provides some special aggregation operations which have some state such

as counters. However, these counters are meant to be read after the MR job

has finished. While map and reduce are meant to be stateless from the MR

perspective, we shall see in Sec. 4.5.1 that a form of state can be effective – using

an external stateful process which is contacted from inside the map or reduce

function.

For simple uses of MR (see [25]), a single MR job is sufficient. However, in

complex applications such as computing the diameter of a large graph [67] or

computing max-flow (this thesis), several MR jobs are chained together – the

output of the current MR job becomes the input of the next MR job. We refer a

single MR job as an MR round and a chain of MR jobs as a multi-round MR.

Given the large overheads incurred as part of the execution of an MR job,

together with the synchronization between rounds in a multi-round MR, we will

argue for and show that an appropriate measure of the complexity of a multi-

round MR is the number of rounds rather than more traditional algorithmic

complexity measures. We also show that performance gain can be achieved by

lowering the number of rounds and increasing the parallelism in each round,

getting more work done in each round and avoid spilling the work to the next

round.

Recently, Google proposed a new specialized framework for processing large-

scale graphs based on a bulk synchronous parallel model, called Pregel [82] which

90

is proprietary and unavailable for use outside Google. The open source imple-

mentations, Apache Hama and Giraph, are still in development [2]. This limits

our choice to MapReduce. Nevertheless, we believe that the ideas presented in

this paper are also applicable to the bulk-synchronous parallel model.

4.2 Overview of the Maximum-Flow Problem

The maximum-flow (max-flow) problem, namely, to find the maximum-flow in

a directed graph from source to sink given edge capacity constraints is a classic

combinatorial optimization problem. In the context of Internet scale graphs, max-

flow problems arise in problems such as discovering spam sites [94], community

identification [29, 58], preventing Sybil attacks [27] in P2P networks [107], honest

online content vote counting [105], etc. However, due to the rapid growth of online

communities and social networks, the size of real-world graphs has grown far

larger than the amount of available memory in conventional machines. Such large

graphs create a big data problem on how to scale existing max-flow algorithms.

Our objective is to effectively compute the max-flow for such Internet scale graphs,

in particular, large social networks.

In the MR framework, some large graph algorithms have been developed such

as s-t graph connectivity, MST [68], estimating the approximate graph diameter

[67], social content matching [24], centrality [66], etc [9]. There also exist some

design patterns such as in-mapper combining, schimmy, and graph partitioning

[80] to improve MR performance. Optimizations that take into account the clus-

ter’s intra and inter-node bandwidth to partition the graph have been proposed

[22]. In contrast, this thesis addresses the design and optimization issues in devel-

oping a complex MR algorithm. We give a novel way of transforming a sequential

algorithm into a highly parallel MR algorithm using speculative execution and

introduce new MR-optimizations: a stateful extension for MR and space versus

time optimizations.

In this section, we will give a brief overview of the general maximum-flow

problem and two well known maximum-flow algorithms, Push-Relabel algorithm

and the Ford-Fulkerson method. In the next sections, we will elaborate in de-

tail on our MapReduce-based design, implementation, and evaluation on both

algorithms.

4.2.1 Problem Definition

A flow network G = (V,E) is a directed graph where each edge (u, v) ∈ E has

a non-negative capacity c(u, v) ≥ 0. There are two special vertices in a flow

91

network: the source vertex s and the sink vertex t. Without loss of generality,

we can assume there is only one source and sink vertex, which we call s and t

respectively. A flow is a function f : V × V → R satisfying the following three

constraints:

• Capacity Constraint: f(u, v) ≤ c(u, v) for all u, v ∈ V ,

• Skew Symmetry: f(u, v) = −f(v, u) for all u, v ∈ V , and

• Flow Conservation:
∑
f(u, v) = 0 for u ∈ V − {s, t} and v ∈ V .

The flow value of the network is
∑
f(s, v) for all v ∈ V . In the max-flow

problem, we want to find a flow f ∗ such that |f ∗| has maximum value over all

such flows. Two important concepts used in flow networks are the following.

• Residual Network. For a given flow network G = (V,E) with a flow

f associated to it, the residual network Gf = (V,Ef) is the set of edges

Ef that have positive residual capacity cf . That is, Ef = {(u, v) ∈ E :

cf (u, v) = c(u, v)− f(u, v) > 0}.

• Augmenting Path. An augmenting path is a simple path from s to t in

the residual network.

There are two well known solutions to the max-flow problem namely the Push-

Relabel algorithm [37] and Ford-Fulkerson method [30] .

4.2.2 The Push-Relabel Algorithm

Let the height and the excess flow of a vertex u be hu and xu. The height of s

and t are fixed to hs = |V | and ht = 0. The Push-Relabel algorithm uses the

following two operations [37]:

• Push(u, v) is performed if (u, v) ∈ Ef and v has height equal to hu−1. The

excess flow xu and f(v, u) will be decreased by δ where δ = min(xu, cf (u, v))

while xv and f(u, v) will be increased by δ,

• Relabel(u) is performed when all v ∈ V, (u, v) ∈ Ef have height hu ≤ hv.

Relabel sets hu to 1 +min{hv : (u, v) ∈ Ef}.

Initially, the excess flow of each vertex is 0 except for s which has infinite excess

flow. A preflow is created by pushing the excess flow of s to all v : (s, v) ∈ Ef .
Push or relabel operations can then be performed in any order for all u ∈ V −{s, t}
and xu > 0 until no more push nor relabel operations can be performed in which

case the maximum flow is the amount of excess flow arriving at t. Although push

92

and relabel can be performed in any order, the ordering impacts performance.

In practice, the distance and gap relabeling heuristics [23] can make a significant

difference. The Push-Relabel algorithm works in a localized manner, that is,

when processing a vertex, it only requires the information of the vertex and its

neighbors, making the algorithm suitable for distributed processing. Since there is

no dependency between push and relabel operations, the Push-Relabel algorithm

can be executed in parallel. The operations can be applied arbitrarily as long as

the pre-conditions hold.

Parallel Push-Relabel max-flow implementations have been developed for SMP

architectures [14]. There is also a parallel max-flow algorithm without locks [98]

but it is for a PRAM-like computation model which is not practical in a clus-

ter/cloud setting. Classical max-flow algorithms [35] require the entire graph to

be fit in memory. In contrast, our goal is to compute max-flow on real small-world

graphs (rather than arbitrary graphs) which are far larger than the available ma-

chine memory using the MR framework. We develop a new MR algorithm based

on the Push-Relabel algorithm and evaluate its performance in Section 4.3.

4.2.3 The Ford-Fulkerson Method

The idea of the Ford-Fulkerson method is to find an augmenting path p. The

flow value of G is then increased by augmenting the flow along path p. This

is then repeated until no more augmenting paths can be found, in which case,

the max-flow is obtained [30]. A basic implementation of this method runs in

O(|f ∗|E), that is a depth-first search is run |f ∗| times to find |f ∗| augmenting

paths. Major improvements have been discovered in the past decades based on

the Ford-Fulkerson method [36]. The Edmonds-Karp algorithm [28] implements

the Ford-Fulkerson method by always augmenting the shortest augmenting path

in the residual network, giving a running time of O(V E2), while Dinic’s algorithm

implements using the level graph and blocking flow which run in O(V 2E) [26]. It

turns out that we can design highly parallelizable algorithms based on the Ford-

Fulkerson method. We present our design, implementation and evaluation of our

new MR max-flow algorithms based on the Ford-Fulkerson method in Section 4.4.

4.2.4 The Target Social Network

Our focus is on computing Max-Flow using MR on large real-world graphs which

represent graphs on the online communities, the world-wide-web, social networks,

etc. One important property of such graphs is the small world properties, in par-

ticular, having a small average diameter. We chose the Facebook social network

for our experiments because it is perhaps the largest real social network avail-

93

able and the graph has been shown to have a very small average diameter (e.g,

4.7) [13]. We crawled Facebook using a strategy which creates small-world-like

subgraphs [96]. The crawler algorithm crawls the next user that has the most

number of connections to the currently crawled users. We crawled in stages and

created a checkpoint when the graph grows into certain sizes then we continue

crawling. This way, we created several versions of the graph with different sizes

where the smaller graph is the subset of the larger graph. We store the crawled

graph into several subsets, FB1 to FB6, where FBi is a subgraph of FBj for i < j.

Based on the number of Facebook users and average degree [4], we estimate that

the FB6 graph is about half the number of users of the full Facebook network.

Graph Vertices Edges Size
FB0 5 M 52 M 157 MB
FB1 21 M 112 M 587 MB
FB2 73 M 1,047 M 6 GB
FB3 97 M 2,059 M 13 GB
FB4 151 M 4,390 M 30 GB
FB5 225 M 10,121 M 69 GB
FB6 411 M 31,239 M 238 GB

Table 4.1: Facebook Sub-Graphs

Table 4.1 shows the 6 sub-graphs. The Size column gives the size of the graph

as it is stored in HDFS in SequenceFile format as a list of vertices with the data

structure described in Sec. 4.4.3. During the execution, the size of the graph may

expand as more information is stored in a vertex.

Note that Facebook sets a limit of 5000 friends. If a vertex has too many

edges, without loss of generality, it can be decomposed into several vertices of

smaller degree to maintain the maximum degree of a vertex. Thus, throughout

our MR-based algorithm described in this chapter, we assume each vertex in the

graph has degree at most C = 5000. In case a vertex has X edges where X > C

edges, the vertex can be decomposed into a complete graph of Y = dX/Ce
vertices and edges with infinite capacities connecting them. The original edges

attached to X are then distributed evenly among the Y vertices. This process can

be repeated until all the vertices has at most C edges. Each transformation may

cause the diameter to enlarge by one, however, it will not change the max-flow

value. Imposing the graph structure to have at most C edges is useful because

each map (and reduce) function will have to load the vertex and its edges

into machine’s memory. It may be the case the vertex has so many edges that

it can exceed memory capacity. As such, this transformation is important for

MR algorithms to keep the maximum record size small to maintain low memory

requirement for the workers (see Section 4.1).

94

4.3 MapReduce-based Push-Relabel Algorithm

As described in Section 4.2.2, the Push-Relabel algorithm seemed to fit in the

MR framework as it is able to work in local manner and able to be executed

in parallel. In this section we develop a new MapReduce-based Push-Relabel

algorithm which we call the PRMR algorithm. In particular, we have to express

the Push-Relabel algorithm in terms of stateless map and reduce functions to

operate on a graph which is represented by a set of records of 〈key, value〉 pair.

Before we jump to the core of the map and reduce function, we first describe

how we represent a graph in PRMR.

4.3.1 Graph Data Structures for the PRMR Algorithm

In MR, a graph is represented as a series of records. We assume that every vertex

in the graph is represented by an unique identifier (ID) which can be used as

a key. Thus, we model each vertex u and its edges as a 〈key, value〉 pair where

the key is the vertex ID of u and the value is the vertex internal data structure

containing all the information about vertex u of the form 〈hu, xu, Eu〉 where hu

and eu are the height and excess flow respectively of vertex u (see Section 4.2.2).

The edges of u, Eu, is a list of tuples where each tuple represents an edge which

consists of 〈ev, eh, ef , ec, ed, em〉. ev is the ID of the neighboring vertex of the

edge. eh is the height of the neighboring vertex ev. ef is the value of the flow

from u to ev. ec is the capacity of the edge. ed is the distance of vertex ev to t.

em is the distance’s timestamp of ed. We define er to be the edge residue where

er = ec− ef . We note that some of the values in Eu are redundant to ensure that

a vertex can operate on local information alone, e.g. the height of a vertex u is

stored in vertex u and also in each of u’s neighbors’ edge to u.

4.3.2 The PRMR map Function

To compute the max-flow, the PRMR algorithm requires several rounds of MR

jobs. In each round of a MR job, the map phase applies the PRMR’s map function

in parallel for each record from the previous round (or from original input dataset,

if this is the first round). The map function produces a set of intermediate

records which are then shuffled across machines, grouped by vertex ID and applied

the reduce function. The output of the reduce function is written to the

distributed file system (DFSMR) to be used in the next round of PRMR.

Figure 4.1 and Figure 4.2 give the map and reduce functions for PRMR.

The emit-intermediate operation is used in the map function for emitting

intermediate records and the emit is used in the reduce function for emitting

95

function mapPR(u, 〈hu, xu, Eu〉)
1. if (round = 0 and u = s)
2. hu = N // initial height for source = |V |
3. foreach (e ∈ Eu) do
4. ef = ef + er // Pre-Flow Push
5. emit-intermediate(ev, 〈0, er, 〈〈u, hu,−er, 0, 0, 0〉〉〉)
6. if (u = t) // Generate New Distance Label
7. foreach (e ∈ Eu : ef > −ec) do
8. emit-intermediate(ev, 〈0, 0, 〈〈u, 0, 0, 0, 0, round+ 1〉〉〉)
9. else // Propagate Distance Label
10. mu = {max(em)|e ∈ Eu} // u’s timestamp
11. du = {min(ed) + 1|e ∈ Eu : em = mu}
12. foreach (e ∈ Eu : ef > −ec) do
13. emit-intermediate(ev, 〈0, 0, 〈〈u, 0, 0, 0, du,mu〉〉〉)
14. while (u 6= s and u 6= t and xu > 0) // Discharge Vertex u
15. incr(’discharge count’)
16. Es = sort Eu by ev ↓, ed ↑, eh ↑, er ↓
17. foreach (e ∈ Es : er > 0, hu > eh, xu > 0) do
18. // Push Operation
19. δ = min(xu, er)
20. xu = xu − δ; fi = fi + δ
21. emit-intermediate(ev, 〈0, δ, 〈〈u, 0,−δ, 0, 0, 0〉〉〉)
22. if (xu > 0) // Relabel Operation
23. newh = 1 + {min(eh)|e ∈ Eu, er > 0}
24. ∆h = newh − hu; hu = newh
25. foreach (e ∈ Eu) do // notify ∆h to neighbors
26. emit-intermediate(ev, 〈0, 0, 〈〈u,∆h, 0, 0, 0, 0〉〉〉)
27. emit-intermediate(u, 〈hu, xu, Eu〉)

Figure 4.1: The PRMR’s map Function

the final output records for the current MR job. The variables s, t, N , and round

(which are the source s, sink t, number of vertices |V |, and the round number of

the current MR job) are given as read-only parameters to the map and reduce

functions. MR provides distributed event counters and operation incr(c) means

to increment counter c. However, these counters are only accurate to the master

node after the current MR job finishes. We use the notation g : i to denote line

i in function g. The mapPR function does three tasks (see the pseudocode in

Figure 4.1):

• Initializes the source vertex’s height and push a pre-flow in the first round

(mapPR:1-5);

• Updates the distance label heuristics of each vertex and propagate to its

neighbors (mapPR:6-13); and

96

• Discharges the excess for all vertices except s and t by pushing its excess

to the neighbors and relabels its height as necessary (mapPR:14-26).

In the first round of MR, the source vertex height is set to N (mapPR:2) and

a pre-flow will be pushed from s to its neighbors (mapPR:3-5). Since each vertex

(tuple) works in isolation, the neighbors of s have to be notified about the s’s

height and the increase of excess of the pre-flow. This is done by outputting an

intermediate tuple with s’s height delta increase and excess delta increase of the

neighboring vertex as well as the reverse flow (mapPR:5).

We use a distance labelling heuristic to reorder the priority of the push oper-

ation to guide the excess flow in a vertex to be pushed towards the sink vertex t

[23]. Without such a good heuristic, the Push-Relabel algorithm will have poor

performance. Since we cannot have global information about the distance, each

vertex has its own copy of the distance label as well as its neighbors’ distance

label. Each round, the residual network may change whenever there are changes

in edges’ flow, causing some distance label to become invalid (saturated). We

associate the distance label of each vertex with a timestamp to distinguish which

distance label is the latest. We use the current MR round number as the times-

tamp.

The distance label and the timestamp are continuously updated and propa-

gated to stay up-to-date (mapPR:6-13). Each round, the sink vertex t disseminates

to its neighbors new distance labels with a larger timestamp (mapPR:6-8). The

rest of the vertices can calculate their own distance label by selecting the largest

timestamp from its neighbor (mapPR:10). The distance of vertex u is equal to 1 +

the smallest distance label with the newest timestamp (mapPR:11). The newest

timestamp and distance label of vertex u is then propagated to its neighbors

(mapPR:12-13).

The push or relabel operation can be applied in any order for vertices other

than s and t with positive excess. If vertex u satisfies the condition above, then

it is possible to exhaust all of u’s excess using a sequence of push and relabel

operation on vertex u. This process is called discharge (mapPR:14-26). An event

counter, ’discharge count’, is incremented whenever the discharge subroutine is

executed (mapPR:15). The discharge process first reorders the edge list by de-

creasing timestamp, increasing distance label, increasing height, and decreasing

edge residue (mapPR:16). Discharge then pushes excess xu of the current vertex u

to its neighbors until it is exhausted (mapPR:17-21). The push operation employs

priorities based on the sorted edge list. It first pushes the excess to an edge that

has the newest timestamp with the smallest distance label, i.e., closest to the sink.

A push operation (mapPR:19-21) to an edge e first calculates the maximum excess

flow δ that can be pushed through the edge. This flow amount δ is subtracted

97

from the excess xu and added to the edge’s flow (mapPR:20). A notification is

sent to neighboring vertex ev to increase its excess by δ and decrease its edge flow

by δ (mapPR:21). The push operation will exhaust either all the edge residue er

or the u’s excess xu.

If xu is still positive after all the push operations, the relabel operation is

performed (mapPR:22-26). Relabel first calculates the new height for u which is

equal to 1 + the minimum height of the neighboring vertex where the connecting

edge has positive residue (mapPR:23). The ∆h increase in the height is recorded

and the current height of u is updated (mapPR:24). All the neighboring vertices

are then notified of the increase of vertex u’s height (mapPR:25-26). Discharging

continues until xu = 0. Lastly, the vertex u and its value is emitted to carry it

to the next round of MR (mapPR:27).

4.3.3 PRMR reduce Function

function reducePR(u, values)
1. hu = xu = 0
2. Eu = 〈〉
3. foreach (〈hv, ev, Ev〉 ∈ values) do
4. hu = hu + hv
5. xu = xu + xv
6. foreach (e ∈ Ev) do
7. g = Eu.get(ev)
8. if (g 6= ∅) // Merge edge g with e
9. gh = gh + eh
10. gf = gf + ef
11. gc = gc + ec
12. if (gm < em or (gm = em and gd > ed))
13. gm = em
14. gd = ed
15. else
16. Eu = Eu ∪ e
17. emit(u, 〈hu, xu, Eu〉)

Figure 4.2: The PRMR’s reduce Function

The intermediate records emitted by the map function during the map phase

will be grouped by its key (vertex ID) and each group which then consists of a

list of values is applied the reduce function in the reduce phase. In the sense,

the map function is responsible for disseminating messages/information (in the

form of intermediate records) from one vertex to its neighbors and the reduce

function is responsible to collect all the messages for each vertex and merge it to

the vertex’s main record that was emitted at (mapPR:27).

98

reducePR takes in a key representing a vertex ID u, with a list of interme-

diate record values of vertices having the same vertex ID u. It then merges all

those vertices into a single value for vertex u. First, it initializes the vertex u’s

height, excess, and edge list (reducePR:1-2). Then each vertex in the values is

added/merged to the vertex u (reducePR:3-16). All the delta heights along with

the original height for the vertex u are summed together (reducePR:4), so is its

excess (reducePR:5). For the edges, an edge will be added to the current list of

edge Eu if Eu doesn’t contain ev (reducePR:16), otherwise the edge will be merged

with the existing edge (reducePR:9-14). Finally, the key and the merged values

are emitted as the final output record for the current MR job (reducePR:17).

At the end of each MR round, the ’discharge count’ counter value is examined.

If the value of this counter is zero, discharging was not possible, which means all

the excess flow in the network has either gone to t or back to s. The max-flow

algorithm then terminates.

4.3.4 Problems with PRMR

Although the PRMR algorithm fits within MR, we discovered that the fit with MR

is not as good as it initially appears. Firstly, the amount of parallelism decreases

as more excess flows are admitted. This leads to only a few active vertices [77] in

an MR job. Given the way MR works, it is not possible to selectively process only

the active vertices. The entire graph still needs to be read, processed, and written

back to the distributed file system, making PRMR inefficient. Secondly, an excess

flow may be transferred from u to other vertices and get trapped (i.e., no residual

edge to the sink from those vertices because of the residual network changes) and

thus the excess flows need to flow back to u so that it can flow out again. In MR,

each vertex can only apply a map function once per MR round which means one

excess flow transfer requires one MR round. Hence, any trapping behavior in the

residual network can lead to very high number of MR rounds.

Figure 4.3 illustrates a bad scenario for PRMR. The graph initially starts with

all vertices having zero height except s and each edge has capacity 1 and zero

flow. The sink distance is zero and undefined for other vertices. In the first MR

round, a pre-flow will be pushed with flow 1 from source to the neighbor. In

round 2, the distance label has not yet propagated to the node with the excess

flow. Thus the node holding the excess flow has no information on where to push

the excess flow. If the excess is pushed upwards then it will be trapped. It will

cause the excess to visit all the vertices on the upper part of the graph because

the height restriction prevents pushing excess flow to the previous vertex which

is now has higher height. In round 18, the excess can then be pushed downwards

99

Figure 4.3: A Bad Scenario for PRMR

back to the s’s neighbor and then pushed rightwards to t completing in a total of

21 MR rounds. This example also illustrates the two problems of PRMR. It has

very low parallelism as there is only one excess flow in the graph. Each MR job

only processes a small fraction of the graph and the rest of the graph is processed

without giving any contribution towards task completion. A wrong excess flow

leads to O(|V |) MR rounds which is not practical given that a single MR job is

costly in terms of I/O and network resources.

4.3.5 PR2MR: Relaxing the PRMR

As shown earlier, although Push-Relabel algorithm fits with MR in terms of state-

less processing, it can be inefficient. The source of inefficiency seems to come from

the height constraint for the push operation. This prevents the push operation

to push backwards until all the unvisited vertices in the forward directions are

tried which leads to huge number of MR rounds.

We propose a more relaxed algorithm, PR2MR which does away with the

height. The excess flow will be guided solely based on the distance heuristic label

of the neighboring vertices. That is, the excess flows are pushed towards vertices

that are closer to t. PR2MR is resilient against the bad situation as depicted in

Figure 4.3. Moreover, PR2MR is robust and has overall significantly less number

of MR rounds required compared to that of PRMR.

The original Push-Relabel algorithm terminates when all the excess flows

either reach t or flown back to s. Our modified PR2MR terminates when no more

excess flow can be pushed towards t (i.e., stuck) and no update can be performed

for the distance labelling heuristics due to no more residual path connecting s to

100

Cluster Nodes CPU Memory Hard Disk
A 5 Xeon E5540 @ 2.83GHz x 8 16GB 73GB SAS
B 7 Opteron @ 2.2GHz x 4 2GB 73GB SCSI

Table 4.2: Cluster Specifications

t. Both of these conditions can be detected via event counters. To relate to the

original Push-Relabel algorithm, the stuck excess flows will eventually flow back

to s and the algorithm terminates. Our PR2MR does not require the stuck excess

flows to be returned to s thus saving a number of MR rounds.

4.3.6 Experiment Results on PRMR

We used Hadoop (0.20.1). Experiments were run using a heterogeneous cluster

consisting of two kinds of nodes, A and B shown in Table 4.2. In this section, we

evaluate the robustness and scalability of both our PRMR and PR2MR algorithms.

PR2MR Robustness

As mentioned in Section 4.3.4, PRMR algorithm can get into a bad situation when

the excess flows are trapped because of push in wrong directions which leads to

useless work and more MR rounds. We were only able to run PRMR on the FB0

graph. We selected 6 pairs of randomly selected source s and sink t vertexes from

the FB0 graph.

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

Maximum Flow Value

T
ot

al
 R

un
tim

e
(H

ou
rs

)

FB0 :: N=5M; E=52M

PR

MR

PR2
MR

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

Maximum Flow Value

N
um

be
r

of
 M

R
 R

ou
nd

s

FB0 :: N=5M; E=52M

PR

MR

PR2
MR

Figure 4.4: Robustness comparison of PRMR versus PR2MR

Figure 4.4 shows the runtime and the number of MR rounds needed to com-

pute the max-flow value for each of the 6 max-flow runs with different s and

t pairs. We plot the 6 runs by increasing max-flow value on the x-axis. This

experiment shows that the performance PRMR can be poor. One of 6 runs of

PRMR exceeds the cut-off runtime of 24 hours (the PRMR run for the max-flow

101

value of 1328 is still not complete within 24 hours). On the other hand, PR2MR,

shows better runtimes by consistently finishing in less than 6 hours and less than

80 MR rounds for all the 6 runs.

PR2MR Flow Scalability

This experiment tests the effect of increasing the max-flow value on runtime and

the number of MR rounds using the FB1 graph. In our graphs, the edge capacity

is one for all edges and each vertex in the Facebook graph has at most 5000 edges.

This gives an upper bound on the maximum-flow value from s to t which cannot

be larger than the minimum degree of s and t.

We modified the graph to have a larger maximum flow. To create much

bigger max-flow values, we select w vertices and connect them to a super source

s. Similarly, we select another set of w vertices and connect them to a super sink

t. The edge capacity from s and t to their connected vertices is set to infinity. To

measure the effect of the max-flow value on runtime and the number of required

MR rounds, we created several tests varying w from 1, 2, 4, 8, 16, 32, 64, and

128 vertices. The more the number of vertices w that are connected to s and t,

the larger the max-flow value from s to t.

2^12 2^14 2^16 2^18
1

2

3

4

5

T
ot

al
 R

un
tim

e
(H

ou
rs

)

Maximum−Flow Value

PR2MR on FB0 :: N=5M; E=52M

2^12 2^14 2^16 2^18
20

40

60

80

100

T
ot

al
 N

um
be

r
of

 M
R

 R
ou

nd
s

Total Runtime
Total MR Rounds

2^12 2^14 2^16 2^18
6

8

10

12

14

16

T
ot

al
 R

un
tim

e
(H

ou
rs

)

Maximum−Flow Value

PR2MR on FB1 :: N=21M; E=112M

2^12 2^14 2^16 2^18
20

40

60

80

100

T
ot

al
 N

um
be

r
of

 M
R

 R
ou

nd
s

Total Runtime
Total MR Rounds

Figure 4.5: The Effect of Increasing the Maximum Flow and Graph Size

Figure 4.5 plots the runtime and MR rounds against the max-flow values on

a logarithmic scale (x-axis). It shows the effects on the runtime and MR round

as the graph size increases. The graph size of FB0 (left graph) and FB1 (right

graph) is given in the Facebook subgraph table 4.1. We can see the scalability

of the PR2MR as the graph increases is quite good. FB1 has 6 times the number

of vertices and 4 times the number of edges, however the number of MR rounds

required increases less than twice. The runtime increase proportionally as the

graph size (roughly 4 times increase). We remark that we are using rather large

flow values with very large graphs. If we had not used the special construction

which gives arbitrary large flows, the runtimes would have been smaller given the

102

maximum degree limit of 5000 in Facebook. The number of required MR rounds

does not seem to increase as fast as the graph gets larger. This may suggest that

the larger the graph, the smaller the diameter which is also consistent with the

findings in [67]. It also gives evidence that choosing to minimize the number of

rounds is well suited for the kinds of real world graphs which come from social

networks.

MR Resource usage on the FB0 and FB1

We measured the resources used while running the PR2MR on the FB0 and FB1

graphs. The measurements are extracted from the Hadoop output terminal while

the MR job is running. The output consists of values of all counters in the MR

job. Some counters are defined by the user and the others are built in counters

from Hadoop. The user counters are incremented during the execution of the

user defined map function and reduce function while the Hadoop counters are

incremented by Hadoop internally during the run. These counters can be read

at the end of the MR job by the master node and can be used for termination

conditions or monitoring.

We display the output of each MR round into a table to show the resources

and the progress of each round. Among all the counters we are interested in

the number of map input bytes (mrmib), map output bytes (mrmob), reduce

shuffle bytes (mrrsb), our own counter SINK EXCESS (ex), and the time

to complete the round (time). Table 4.3 gives the counter values for each MR

rounds when calculating the maximum-flow for a pair of vertices in the FB0

graph.

For our smaller graph, FB0, the original input size graph is about 157 MB

which consists of 5 million vertices and 52 million edges. We can see this in the

first row (r = 0) on mrmib column. This shows that the map function read input

of 157 MB. However, the output of the map function exploded to 1.6 GB which

can be seen on the mrmob column. This is expected since the original graph, FB0,

contains only a pure list of uni-directed edges and the output of map function

will annotate each vertex with additional attributes such as excess, timestamp,

distance, and each edges will be turned into bi-directed edges with additional

attributes such as id, flow, capacity, timestamp, and distance. Such additional

data structures are required to run the PRMR and the PR2MR algorithm.

The mrrsb shows the number of bytes that are being shuffled across the com-

pute nodes. The shuffled records are the intermediate key-value pairs that are

produced by the map function. The records are compressed using gzip compres-

sion to lower the network traffic.

We can see the progress being made each round by observing the amount of

103

Table 4.3: FB0 with |f ∗| = 3043, Total Runtime = 1 hour 17 mins.

excess flow that arrived at t in ex event counter. The sink excess counter will

be incremented whenever there is an excess that reaches the sink vertex. The

first three rounds, no excess arrived to the sink vertex. In the fourth round there

are 10 excesses reaches the sink vertex and the next round another 7 excesses

arrives and so on. When the timestamp (along with the distance labels) has

been propagated to all vertices and there is no more excess flow movements, the

PR2MR algorithm terminates and the latest value of the ex counter (the sink

excess flow amount at t) is the maximum-flow value.

Table 4.4 shows the counter values for the FB1 graph. The FB1 graph initial

size is 300 MB with 30 million vertices and 214 million edges. When the graph

is annotated with the PR2MR data structure, it grows as large as 3 to 6 GB. We

can see that the time per round increased linearly with the graph. FB1 has 4

times the number of edges compared to FB0 and the runtime for FB1 roughly 4

times slower than FB0.

104

Table 4.4: FB1 with |f ∗| = 890, Total Runtime = 6 hours 54 mins.

4.3.7 Problems with PRMR and PR2MR

Although the Push-Relabel algorithm would appear to fit into a distributed paral-

lel computing setting, we found it unsuitable for MR for two main reasons. First,

Push-Relabel appears to have low available parallelism when there are only a few

active elements (i.e., nodes with positive excess flow) left in the graph [77], which

can be common. In the MR setting, this means that if we have thousands of

mappers and reducers running in parallel, only a small fraction of them might be

doing useful work (i.e., only a few workers contribute in excess flow transfer). The

remaining workers will perform unproductive work (i.e., serializing/deserializing

the records without any contribution to the completion of the task). Second, the

Push-Relabel algorithm relies heavily on heuristics to decide which vertices to

push the excess flow to [23]. A wrong push can lead to a long chain of excess

flow transfer (i.e., the excess flow can wander around in a dead-end subgraph).

In an MR setting, a vertex can only push information in one round. It cannot

request or pull the state of other vertices. Thus, excess flow transfer from one

105

vertex to another would take one MR round which is expensive in MR. A long

chain of excess flow transfer directly increase the number of required MR rounds.

While we were able to minimize the number of rounds by relaxing the height

constraint as in PR2MR algorithm, it still not practical to be used in processing

much larger graph sizes. To scale to far larger graph sizes, we designed our own

MapReduce-based max-flow algorithms based on the Ford-Fulkerson method.

In the next section, we detail our designs, implementations, optimizations and

evaluations of our MR-based max-flow algorithms based on the Ford-Fulkerson

method.

4.4 A MapReduce-based Ford-Fulkerson Method

As briefly mentioned in Section 4.2.3, the sequential Ford-Fulkerson method works

by successively finding an augmenting path from vertex s to vertex t. Each time

an augmenting path is found, the flow along the path is augmented. When an

augmenting path is augmented, the flow of the edges along the path will be

increased by the minimum residual capacity of the edges along the path and the

reverse flow of the edges will be decreased by the same amount. This will change

the flow in the residual network, it can possibly cause some edges to be saturated

and removed from the residual network (and conversely, some edges can become

un-saturated and added back to the residual network). This is repeated until

no more augmenting paths can be found. The pseudocode is given in Figure

4.6 and an example of finding the max-flow using the Ford-Fulkerson method is

illustrated in Figure 4.7.

while true do
P = find an augmenting path in Gf

if (P does not exist) break
Augment the flow f along the path P

Figure 4.6: The Ford-Fulkerson method

One way to find an augmenting path in the current residual network is to run

a Breadth-First Search (BFS) traversal from s, visiting vertices level by level. In

the first level, the neighbors of the source s are visited. In the second level, the

neighbors of the neighbors of s are visited and so on. The search keeps track

of the path from s to the visited vertex, so that when vertex t is visited, an

augmenting path is found. In a MR setting, each level of BFS can be done in

a single round. If the residual network has diameter D, then a MR-based BFS

from s takes O(D) rounds to complete.

106

Figure 4.7: An Illustration of the Ford-Fulkerson Method

Figure 4.7 shows an example of finding the max-flow using the Ford-Fulkerson

method. At the top left corner is the initial residual network (1). The edges in

the graph represent the residual edges and the weight of the edge is the residual

capacity of the edge. Initially, all the edges have zero flow, therefore the residual

capacity of all the edges are equal to its capacity. The residual network labeled (2)

shows an augmenting path P is found and (3) shows the updated residual network

after P has been augmented with flow amount δ = 6. The next augmenting path

is found on the updated residual network (4) and augmented (5) with δ = 7.

Finally, the last augmenting path is found (6) and augmented with δ = 1. The

107

Ford-Fulkerson method terminates with the max-flow value |f ∗| = 14.

The kinds of real-world graphs that we consider have small-world properties

(i.e., small expected diameter D) which allows us to effectively use MR graph

algorithms based on BFS. Nevertheless, a direct conversion of Ford-Fulkerson

method to MR can lead to O(|f ∗|D) rounds since for each flow increase, O(D)

rounds1 might be needed. This is not practical for large max-flow values. Consider

a real small-world graph with 1 billion edges, running Hadoop on 5 machines in

our cluster requires at least 10 minutes to complete one round. Assuming D ≈ 10

and a max-flow value of ∼400K, it would require about ∼4M rounds and ∼75

years to finish on our cluster. In this section, we show how we can parallelize

the Ford-Fulkerson method by incrementally finding augmenting paths and then

further increase parallelism with bi-directional search and multiple excess paths.

We show how to extract large amounts of parallelism, so that we are able to find

many augmenting paths in a single round and also in subsequent rounds. This

reduces the number of required rounds tremendously. In the 1 billion edge graph

example, our MR algorithm requires only 9 rounds and ∼2 hours (see Figure

4.20).

We call the initial design of our max-flow MR algorithm given in this section,

FF1. Later in Sec. 4.5, we optimize further to get other variants, FF2 to FF5. We

emphasize that we are interested in average rather than the worst case complexity

as we want to obtain practical max-flow implementations on actual real-world

graph instances, i.e., the growing graph of a social network such as Facebook.

4.4.1 Overview of the FFMR algorithm: FF1

1. round = 0
2. while true do
3. job = new Job() // create a new MapReduce job
4. set the job’s map and reduce class, input
5. and output path, the number of reducers, etc.
6. job.waitForCompletion() // submit the job and wait
7. c = job.getCounters() // event counters
8. som = c.getValue(”source move”);
9. sim = c.getValue(”sink move”);
10. if (round > 0 ∧ (som = 0 ∨ sim = 0)) break
11. round = round + 1

Figure 4.8: The pseudocode of the main program of FF1

1D is not constant as the residual network may change in each round. We assume the
underlying graph is robust and dense enough that the diameter stays small. This properties
will be evaluated in our experiments Section 4.7.

108

We start with an overview of the main program of the FF1 algorithm in

Fig. 4.8 which performs a number of rounds of MR jobs. For each round, a

new MR job is created. The job is assigned a map and a reduce function,

input/output path in the DFSMR, etc. (line 4-5). After the job is configured, it

is sent to the master node to be scheduled for execution (line 6) and the main

program blocks until the job is finished. During the job, custom counters are

created and incremented inside map or reduce which are available to the main

program after the job is finished (line 7). Counters are used as sentinels, or for

changing the strategy in the next round.

We use the first round of MR to convert the input graph into our graph data

structure (see Sec. 4.4.3), make the edges bi-directional and initialize the flow

and capacity of each edge. Round #1 onwards use the map and reduce function

given in Sec. 4.4.4 and Sec. 4.4.5. After round #0, the input for the current MR

round is taken from the output of the previous round.

4.4.2 FF1: Parallelizing the Ford-Fulkerson Method

Several issues need to be addressed in designing an effective multi-round MR

max-flow algorithm. First, as performing one round is expensive, we want to

reduce the number of rounds (i.e., find and augment as many augmenting paths

as possible in a round and in subsequent rounds). Second, recall that in MR

model, each vertex can only push information to another vertex in one round.

Each vertex will receive the information pushed from other vertices in the next

round. Hence, we want to use the information in the current round effectively,

rather than deferring its computation to the next round. Third, for jobs with

large data sizes (e.g. MR jobs), it is common that the compute time is less than

the time to fetch the data. We define a vertex to be active if it has something to

compute. In executing an MR job, all vertices will be read, shuffled, and written

back to disk regardless of whether they are active or not. Thus, a vertex should

be active to get useful computation from the map and reduce. Ideally, we want

the MR algorithm to scale linearly as we add more machines. However, this would

only happen if the algorithm has sufficiently high available parallelism, i.e., we

want the number of active vertices (or active elements [77]) to be large compared

to the available computing resources (number of mappers/reducers).

We solve the parallelism problem by using speculative execution. The idea is

to organize for a map on a vertex to try to do some work. In this case, to always

try to extend a path. This is speculative since some of the work (i.e., finding

excess or augmenting paths) may be discarded at a later time. The significance

of the speculation is that it both increases parallelism by making more vertices

109

active and shifts work which may otherwise happen in later rounds to earlier

rounds.

FF1, our initial design, speculatively finds augmenting paths concurrently

which can significantly reduce the number of rounds required to compute max-

flow, it then increases the available parallelism with bi-directional search as well

as maintaining the high degree parallelism with multiple excess paths.

FF1 (a) : Finding Augmenting Paths Incrementally

To find an augmenting path, we need to find a path from s to t in the residual

network. We define an excess path of a vertex as a path from s to that vertex.

Initially, vertex s is the only vertex which has an excess path. Each round, each

vertex that has an excess path will extend it to its neighbor (avoiding cycles).

By definition, a vertex that has an excess path is an active vertex because it

has something to compute (i.e., to push information to its neighbors). When

an excess path is extended to t, an augmenting path is found. In a round, it

is possible that several neighbors of t send their excess path to t, thus t may

receive more than one augmenting path. The reducer processing vertex t decides

(locally) whether to accept/reject these augmenting paths. We want to accept

as many augmenting paths as possible in one round to avoid spilling the work to

the next round. At the end of the round, all augmenting paths that are accepted

by t are augmented.

Augmenting paths that are augmented in the current round change the flow of

some edges. For each vertex to have a consistent view of the residual network, the

flow changes must be broadcast to every vertex in the next round. This can be

achieved by distributing a list of the augmented edges and its ∆ flow (generated

by the reducer processing t in the current round) to all the mappers in the next

round. The size of the list is proportional to the flow changes and is expected

to be much smaller than size of the graph. We implement the list as an external

file, rather than as MR output as it can be viewed as global data generated from

the current round which all mappers read in the next round. The mappers in the

next round apply the flow changes in parallel to each affected edge in the residual

network. The flow changes may cause some excess paths to be saturated (i.e.,

some edges in the path becomes saturated). Non-saturated excess paths on a

vertex can continue to be extended to its neighbors while saturated excess paths

are removed from the vertex.

The above technique incrementally updates the residual network in subsequent

rounds by reusing the computation of the previous round rather than starting

anew, thus maintaining high parallelism in MR (i.e., keeping the number of active

vertices high in subsequent rounds) allows augmenting paths to be found more

110

rapidly in the subsequent rounds. We expect the incremental update to find

augmenting paths continuously in the subsequent rounds thus may lower the

number of rounds from O(|f ∗|D) down to O(|f ∗|) rounds.

The incremental finding of augmenting paths speculatively extends excess

paths of each vertex to all of its neighbors. This rapidly increases the amount

of active vertices in subsequent rounds which contributes to the highly parallel

nature of the algorithm. Moreover, it is also used to decide on the termination

of the algorithm when no more excess paths can be extended (see Section 4.4.6).

FF1 (b) : Bi-directional Search

In the first few rounds, only the source vertex s and its neighbors are active (few

active vertices compared to the total number of vertices). To increase parallelism,

we introduce an analogous excess path from the sink vertex t. We define a source

excess path of a vertex as a path from source s to the vertex in the residual

network. Similarly, a sink excess path of a vertex is defined as a path starting

from the vertex to sink t in the residual network. In the first round, s starts

extending its source excess path, while t starts extending its sink excess path.

Bi-directional search helps in doubling the amount of available parallelism as the

use of the sink excess doubles the number of active vertices, at least for the first

few rounds. Moreover, it may halve the total number of rounds as we do not need

to wait until a source excess path reaches t to find an augmenting path.

Using bi-directional search, any vertex u may have both a source and sink

excess path, thus can generate an augmenting path. This allows a huge num-

ber of augmenting paths generated in a round. Combined with the incremental

updates strategy (FF1 (a)), the expected complexity of using the bi-directional

search is O(|f ∗|/A) rounds, where A is the average number of augmenting paths

accepted per round. With this, the bi-directional search becomes the most im-

portant search strategy towards making the FF1 practical as it effectively lower

the number of rounds required down to O(D) (see Section 4.7.1).

FF1 (c) : Multiple Excess Paths

Whenever an augmenting path is accepted in the previous round, some (source /

sink) excess paths belonging to some vertices in the current round are dropped

as some of the edges in the excess path is saturated. Thus, some vertices could

lose excess paths making them inactive for the current round as they wait for an

excess path from their neighbours (if any). To avoid such loss of parallelism (i.e.,

prevent a vertex from losing all of its source/sink excess paths), we allow each

vertex to store multiple source and sink excess paths. We avoid space explosion

111

by limiting the maximum number of excess paths stored in each vertex to k and

employ an accumulator (see Sec. 4.4.3) to decide locally which excess paths are

stored. The larger the k, the less likely a vertex will become inactive when the

residual network changes, however, the overhead for reading, writing, updating

the excess paths also increases. We decided to only pick one of the k excess

paths to be extended as experiments show that extending more than one excess

path incurs overhead without much benefit. Multiple excess paths amplify the

effectiveness of the previous strategies (FF1 (a) and FF1 (b)) by making vertices

active for a longer time and contribute towards lowering the number of rounds

further (see Section 4.7.1).

4.4.3 Data Structures for FFMR

We model the flow network as 〈key, value〉 records in the DFSMR where records

represent vertex data structures. The key is the vertex ID (identifier) of a vertex

u and the value is the tuple 〈Su, Tu, Eu〉 consisting of: a list of source excess

paths Su; a list of sink excess paths Tu; and a list of edges Eu connecting u to

its neighbors where each edge in Eu is a tuple 〈ev, eid, ef , ec〉 consisting of the

vertex ID of the neighbor connected through the edge ev, the edge ID eid
2, the

flow amount ef from u to ev, and the capacity of the edge ec. The source excess

paths Su is a list of excess paths from s to u. Similarly, sink excess paths Tu is a

list of excess paths from u to t. Each excess path in Su and Tu is a list of edges

containing a sequence of edge IDs along with the flow and capacity of the edges

along the sequence.

The advantage of modelling a record as a vertex is that it is in line with the

recently proposed graph processing framework based on the bulk synchronous

parallel model [82] which is also a vertex-centric processing. The disadvantage of

modelling a record as a vertex is that there can be huge variability in the degree

of the vertices. In small-world graphs, there can be vertices with arbitrarily large

degrees which cause huge variations in the workloads for the workers. However,

as we mentioned in Section 4.2.4, vertices with degree larger than C can be

decomposed into a number of vertices such that every vertices have degree at

most C without affecting the max-flow value.

Another way of modelling is to store each edge as a record (i.e., edge-list

data structure). While this has the advantage that each edge record will have

roughly identical size, it is difficult or even impossible to process such structure

2 We require an efficient way to identify each edge by ID for fast lookup to determine
whether an excess path contains a certain edge. We give each edge (u,v) an unique ID that
is the concatenation of the vertex IDs of both endpoints in lexicographic order. Determining
whether an edge exists in an excess path can be done in O(1) using a hash-table.

112

because of the lack of useful information. That is, how does an edge extends its

excess path/flow to its neighbors without having a list of neighbors? If the list

of neighbors is included for every edge, then it will have the same disadvantage

of the degree variability problem as in the vertex-based model. Thus, we argue

that vertex-based data structure is the most suitable model.

It has been shown that a poor choice of augmenting paths “can lead to severe

computational cost” [28]. An optimization such as selecting the shortest aug-

menting paths can give a strongly polynomial algorithm O(V E2) . Moreover, by

building a layered network to quickly find the flows of all shortest augmenting

paths (blocking flow), a better complexity O(V 2E) [26] can be achieved.3 Un-

fortunately, these optimizations require a global view of the graph and are not

compatible with the MR model which requires a local view. Nevertheless, our

strategies presented in Sec. 4.4.2 are related to ideas in [28, 26] as shorter/earlier

augmenting paths found will be augmented before the longer ones.

A number of candidate augmenting paths can be found in one MR round,

but it might not be possible for all of them to be augmented due to conflicting

augmenting paths. Two augmenting paths conflict if there is a common edge

shared by the two augmenting paths such that if both augmenting paths are

augmented, the flow of the edge will violate the capacity constraint (i.e., the edge

flow becomes larger than its capacity). In this case, only one of the conflicting

augmenting paths can be augmented. The other augmenting paths have to be

rejected. For a similar reason, storing multiple conflicting excess paths in a vertex

is ineffective, hence, the excess paths in a vertex should be conflict-free.

The Accumulator

The decision to reject an excess/augmenting paths can be made locally (i.e., it

does not require the global state of the graph) since all vertices have the same

and consistent view of the current residual graph. We introduce an accumulator

data structure for this task. It greedily “accepts” non-conflicting excess paths on

a first-come-first-serve basis. Initially, the accumulator is empty and it is later

filled in by excess paths that are accepted. To test whether an excess path can be

accepted, the accumulator uses the currently accepted excess paths and checks

for capacity constraint violation. If no violation is detected4, the excess path will

3[36] gets a complexity of O(min(V 2/3, E1/2)E log(V 2/E) log U) where U is the maximum
edge capacity with residual flow upper bounds.

4 For example, consider an augmenting path s− a− b− c− d− t and another augmenting
path s− u− b− c− v − t. Each edge along the augmenting paths has residual capacity of one,
so only one of the augmented paths can be accepted, otherwise edge b − c will be used twice
which violates the capacity constraint. However, there is no problem with accepting another
augmenting path s− c− b− t after one of the above augmenting paths is accepted since b− c
and c− b are in opposite directions. They cancel the flow of the edge, thus, do not violate the

113

be accepted and stored in the accumulator. The same accumulator can be used to

decide the acceptance of candidate augmenting paths since an augmenting path

is just a special excess path from s to t. We remark that it does not make sense

to have an “ideal accumulator” that accepts as many excess/augmenting paths

as possible since each vertex can only have a local view of the graph. To ensure

all possible excess/augmenting paths are explored, each vertex will have to keep

generating excess/augmenting paths in subsequent rounds.

4.4.4 The map Function in the FF1 Algorithm

The map function for FF1 is given in Fig. 4.9. Its job is (a) to update the current

residual network based on the previous round’s flow changes, (b) to generate new

augmenting path candidates based on the updated residual graph as well as (c)

extending excess paths in each vertex to its neighbors. We use tuple notation

(〈〉 denotes the empty set) to represent sets since the sets are stored as tuples in

MR records. The notation a|b means concatenate path a with path b. The map

function takes a record (representing a vertex) with key = u, value = 〈Su, Tu, Eu〉
and performs three operations:

function mapFF1(u, 〈Su, Tu, Eu〉)
1. foreach (e ∈ Su, Tu, Eu) do // update all edges
2. a = AugmentedEdges[round-1].get(eid)
3. if (a exists) ef = ef + af // update edge flow
4. Remove saturated excess paths in Su and Tu
5. A = new Accumulator() // local filter
6. foreach (se ∈ Su, te ∈ Tu) do
7. if (A.accept(se|te)) // se|te is an augmenting path
8. emit-intermediate(t, 〈〈se|te〉, 〈〉, 〈〉〉)
9. if (Su 6= 〈〉) // extend source excess path if it exists
10. foreach (e ∈ Eu, ef < ec) do
11. se = pick one source excess path from Su
12. emit-intermediate(ev, 〈〈se|e〉, 〈〉, 〈〉〉)
13. if (Tu 6= 〈〉) // extend sink excess path if it exists
14. foreach (e ∈ Eu, −ef < ec) do
15. te = pick one sink excess path from Tu
16. emit-intermediate(ev, 〈〈〉, 〈e|te〉, 〈〉〉)
17 emit-intermediate(u, 〈Su, Tu, Eu〉)

Figure 4.9: The map function in the FF1 algorithm

Update All Edge Flows (mapFF1:1-4). A vertex has a collection of edges

in Su, Tu, and Eu. All the edge flows are updated according to the ∆ flow

capacity constraint.

114

changes collected from the previous round’s augmented edges using a Augment-

edEdges hash-table (read-only in mappers) to lookup its edge ID, eid (mapFF1:2).

If AugmentedEdges returns an edge a (containing the ∆ flow of edge a), edge e

will be augmented using a’s flow (mapFF1:3). After all edges in the vertex have

been updated, some excess paths in Su or Tu may be saturated and are removed

(mapFF1:4).

Generate Augmenting Paths (mapFF1:5-8). If a vertex has at least one source

and sink excess path, then concatenating them together gives an augmenting path

(mapFF1:6-7). We use an accumulator to locally reject augmenting paths whose

acceptance will violate the capacity constraint. The accepted augmenting paths

are sent to t (mapFF1:8) as candidate paths which may be rejected further in the

reduce phase if they conflict with other augmenting paths from other mappers.

Extending Excess Paths (mapFF1:9-16). If a vertex has source excess paths,

some of them will be extended to all neighboring vertices (mapFF1:9-12). We pick

a source excess path and ensure no cycle is formed if it is to be extended with

edge e (mapFF1:11). The neighboring vertex (ev) is notified of the extended source

excess path (mapFF1:12). Sink excess paths are extended similarly (mapFF1:13-

16).

Each vertex is represented as a record. We call the record representing a

vertex, i.e., containing the vertex edges, source and sink excess paths, the master

vertex record (or simply, the master vertex). When the map function processes

a master vertex, it emits intermediate records which we call vertex fragments

(or simply, fragments) (mapFF1:8,12,16) which are designated to other vertices.

Vertex fragments do not contain edge information. The master vertex itself is

also emitted (mapFF1:17). Both master and fragment records will be output as

intermediate records. We can think of the map phase as a way to push information

from one vertex to other vertices by emitting vertex fragments.

4.4.5 The reduce Function in the FF1 Algorithm

The reduce function in FF1 given in Fig. 4.10 processes all fragments of each

vertex with its master emitted during the map phase. If the current vertex being

processed is the sink t, then all the augmenting paths candidates generated during

the map phase will be re-checked for conflicts then the accepted augmenting paths

are augmented. In addition, a file (the AugmentedEdges hash-table) containing

the flow changes in the current round is generated to be used by mappers in the

next round to update the residual graph.

reduce aggregates all intermediate records having the same key that are

output by mapFF1. The aggregation iterates through the list of values 〈Sv, Tv, Ev〉

115

function reduceFF1(u, values)
1. Ap, As, At = new Accumulator()
2. Sm = Tm = Su = Tu = Eu = 〈〉
3. foreach (〈Sv, Tv, Ev〉 ∈ values) do
4. if (Ev 6= 〈〉) Sm = Sv, Tm = Tv, Eu = Ev
5. foreach (se ∈ Sv) do // merge / filter Sv
6. if (u = t) Ap.accept(se) // se = augmenting path
7. else if (|Su| < k ∧ As.accept(se)) Su = Su ∪ se
8. foreach (te ∈ Tv) do // merge / filter Tv
9. if (|Tu| < k ∧ At.accept(te)) Tu = Tu ∪ te
10. if (|Sm| = 0 ∧ |Su| > 0) incr(’source move’)
11. if (|Tm| = 0 ∧ |Tu| > 0) incr(’sink move’)
12. if (u = t) // collect all augmented edges in Ap
13. foreach (e ∈ Ap) do
14. AugmentedEdges[round].put(eid, ef)
15. emit(u, 〈Su, Tu, Eu〉)

Figure 4.10: The reduce function in the FF1 algorithm

containing the (master) vertex and its fragments emitted by other vertices during

the map phase. The master vertex is differentiated from a vertex fragment as it

has at least one edge (reduceFF1:4). When sink t is reduced, all excess path ∈
Sv are augmenting path candidates. Conflicting augmenting path candidates

get filtered by an accumulator Ap (reduceFF1:6). For vertices other than t, an

accumulator As is used to locally reject and store at most k non-conflicting source

excess paths (reduceFF1:7). Merging the sink excess paths is similar to merging

source excess paths using an accumulator At (reduceFF1:8-9).

We define movement of source excess path to denote when a vertex does not

have a source excess path (or all its source excess paths are saturated due to

residual graph changes) at the beginning of the round and gains at least one

source excess path at the end of the round. Sink excess path movement is defined

similarly. We employ two event counters to record movement, ’source move’ and

’sink move’ (reduceFF1:10-11), which are used to determine when to terminate

the algorithm (Fig. 4.8:10). The ’source move’ counter is incremented (using the

MR operation incr) when the master vertex u does not have any source excess

path before merging is done (reduceFF1:4) and acquires at least one source excess

path after merging with its fragments (reduceFF1:10) . The ’sink move’ counter

is computed similarly.

The reducer processing the sink vertex t finalizes the acceptance of the aug-

menting paths in this round. The edges of accepted augmenting paths (stored

in accumulator Ap) are added to the AugmentedEdges hash-table for this round

(reduceFF1:12-14). This hash-table associates the edge ID eid with its ∆ flow ef

116

and is stored as a file in DFSMR which is written when the reducer for sink

t finishes. It is only read by the mapFF1 function of the next round. Fi-

nally, the updated vertex u is emitted as the final output record for this round

(reduceFF1:15), which will be used as the input for the next round.

4.4.6 Termination and Correctness of FF1

The maximum flow is reached when no more augmenting paths can be found in

the residual network [30]. While our algorithm works by finding augmenting paths

locally from the vertex’s local view, we also ensure that all possible augmenting

paths are explored by tracking the local movements of the excess paths via the

MR event counter in each round. FF1 terminates when either the source move

or sink move counter is zero at the end of a round (see Fig. 4.8). In the former,

it means that no source excess path can be extended and similarly, no sink excess

paths can be extended for the latter. If neither a source nor sink excess path can

be extended, it means that no more augmenting paths can be produced. Thus,

the algorithm terminates with the maximum-flow.

In the MR reduce phase, records having the same intermediate key will go to

the same reducer. The reducer that processes vertex t will be the only worker

that decides which augmenting paths to be accepted. The decision to accept the

augmenting paths is done sequentially, hence, there are no data races. However,

this reducer becomes the bottleneck as the number of augmenting path candidates

becomes very large. We address this bottleneck in the next section.

4.5 MapReduce Extension and Optimizations

Job execution in MapReduce involves overheads from the framework itself. The

overhead from reading/writing to DFSMR and the shuffle/sort between mappers

and reducers is non-trivial and possibly larger than the computation in the map-

pers/reducers. In this section, starting with the baseline FF1 algorithm, we iden-

tify bottlenecks and design more optimizations to make MR more efficient and to

increase parallelism. To summarize the MR optimizations from the baseline FF1:

FF2 uses a stateful accumulator process outside MR which can be thought of as

an “extension” for the MR framework; FF3 uses a variant of the schimmy design

pattern [80]; FF4 eliminates object instantiations; and FF5 exploits the tradeoffs

between storage versus number of rounds and number of intermediate records.

We remark that the ideas of these optimizations may be applied for other graph

algorithms for MR.

117

4.5.1 FF2: Stateful Extension for MR

The philosophy of MR is that the map and reduce functions should be designed

to be stateless to allow easy distribution and scalability. In the Ford-Fulkerson

method, stateful execution is needed when determining whether an augmenting

path should be accepted. For simplicity in a distributed system, FF1 used a

sequential and stateful augmenter for deciding augmenting paths acceptance.

The FF1 augmenter works by sending all augmenting paths found during the

map phase to the sink vertex t. We use “send” informally to mean mappers and

reducers interacting through (intermediate) records. During the reduce phase

(reduceFF1:6 in Fig. 4.10), only the reducer operating on vertex t will receive

all augmenting paths found in that round. It then processes the acceptance se-

quentially using the accumulator data structure. As the number of augmenting

paths increases, the reducer handling vertex t will become a processing bottle-

neck – completing much later than the other reducers. Moreover, the memory

requirement for that reducer can be far higher than the rest of the reducers since

arbitrarily large number of augmenting paths can arrive from any vertex in the

residual network.

In the FF2 algorithm, we mitigate this problem by using an external process,

called aug proc, specially for accepting augmenting paths. Candidate augmenting

paths can be generated in any vertex that has both source and sink excess path

(mapFF1:6-8 in Fig. 4.9). Rather than generating it in the map function as in

FF1, FF2 generates it in the previous round’s reduce function. Each reducer

establishes a persistent connection5 to aug proc and the reduce function sends

augmenting paths found to aug proc as soon as they are found. aug proc receives

augmenting paths and inserts them to a processing queue and returns immediately

to avoid delaying the reducer. It has a thread that consumes augmenting paths

from the processing queue to decide on acceptance using the accumulator. Thus,

any vertex being processed by a reducer that has an augmenting path contacts

the remote aug proc directly rather than sending it via MR intermediate records

through vertex t.

The advantages of using a dedicated process (aug proc) outside MR are:

• Shrinks the size of the largest record. The record with key = t can be ex-

tremely large as it contains all the augmenting path candidates (e.g. > 105

augmenting paths). With aug proc, we can exclude storing the augmenting

path candidates from vertex t’s record, thus significantly shrink the size of

the record t. Reducing the size of the biggest record lowers the memory

requirements for the workers allowing more workers to run on a machine in

5Implemented using Java RMI

118

parallel.

• More augmenting paths can be send to the stateful accumulator. This is

because we are no longer restricted to the excess paths limit k for vertex t

(as in FF1). This may increase the number of augmenting paths accepted

in a round, which in turn, increases the likelihood of needing fewer rounds

to find the max-flow.

• Removes the FF1 bottleneck in accepting augmenting paths. Incoming

augmenting path candidates are generated (uniformly) throughout the re-

duce phase across the workers and get processed soon after it is enqueued in

aug proc. Our experiments show that even with extremely large augmenting

path candidates, the maximum queue size in aug proc manages to stay small

(see Table 4.5). aug proc is not a bottleneck as it finishes immediately after

the last reducer. aug proc also eliminates the need to shuffle intermediate

records (containing augmenting paths) to vertex t, which substantially re-

duces the MR shuffle-and-sort overheads. Any overhead from communicat-

ing with external resources (aug proc) from the (isolated) reduce function

is offset by the benefits.

4.5.2 FF3: Schimmy Design Pattern

We added an optimization step using the schimmy design pattern [80] which

prevents the master vertices of the graph from being emitted as intermediate

records during the map phase (see the mapFF1 function in Fig. 4.9 line 17) thus

reducing the MR-shuffle overhead. In the reduce phase, the reducers use the

“schimmy” technique to merge the master vertices with the intermediate records.

[80] also proposed to use in-mapper combining to reduce the MR-shuffle overhead

but this not applicable in our case as the size of the intermediate records can far

exceed the mapper’s memory. Moreover, we do not use any combiners as we

found worse performance.6

4.5.3 FF4: Eliminating Object Instantiations

In implementing map and reduce, it is important to avoid instantiating new

objects with short lifetime as it burdens the garbage collection process. This is

particularly relevant for Hadoop as the MR map and reduce functions are in

Java. The FF4 algorithm achieves this by allocating the necessary data struc-

tures with fixed sizes and pre-allocating all objects. In map and reduce, the

6 As a rule of thumb, combiners are only cost-effective if the map output can be aggregated
sufficiently, i.e., by 20-30%. [8].

119

current record being processed replaces the content of the pre-allocated objects.

Experiments in Sec. 4.7.4 show 1.1x - 1.4x runtime improvements depending on

how many objects are created during in all rounds.

4.5.4 FF5: Preventing Redundant Messages

In FF1, we stored a limited number (k) of excess paths in a vertex to prevent

space explosion, which causes the need for the excess paths to be re-sent in every

round. Suppose a vertex V1 wants to extend one of its excess path P1 to its

neighbor V2. It is possible for P1 to be rejected by V2 simply because V2 already

accepted k excess paths from its other neighbors and therefore has no space left

to store P1. However, in the next round, some of the excess paths in V2 may get

saturated and V2 will then have some space. Since V1 doesn’t know the status of

V2’s storage (i.e., V1 doesn’t know whether P1 was accepted or not), V1 will have

to re-send P1 (or any other excess path) to V2 at every round. This generates

redundant messages increasing communication overhead in subsequent rounds.

There are two strategies we can employ to prevent the redundant messages.

The first is to have V2 notify V1 whether it has accepted P1, but this confirmation

will cost additional one MR round and a communication message overhead. The

second strategy is to set k to be the number of incoming edges of the vertex. This

ensures that whenever a vertex extends one of its excess paths to its neighbor,

there will be a space to accept. However, V1 will have to remember which excess

paths have been extended and to which neighbors to avoid re-send any other

excess paths in the subsequent rounds. The cost is a small additional state flag

for each excess path. V1 will have to monitor all of its extended excess paths

for saturation. If V1 discovers that P1 (which has been extended to V2) has been

saturated, then V1 can pick another of its unsaturated excess paths (if any) and

extend it to V2.

In FF5, we employ the second strategy to prevent redundant messages as

the overhead of the second strategy is far lower. This optimization significantly

reduces the MR-shuffle overhead by preventing redundant intermediate records

being shuffled across machines in subsequent rounds at the expense of a small

increase in record sizes for the state information (see Sec. 4.7.6).

4.6 Approximate Max-Flow Algorithms

If we have limited resources, we want to be able to gracefully decrease the amount

of computation needed without sacrificing much results quality. Thanks to the

small expected diameter of small-world graphs, a huge number of short augment-

120

ing paths can be found in the first few rounds. According to our experiment

results (see Section 4.7.8), most of augmenting paths are found in round D/2.

Thus, cutting of the number of rounds to D/2 rounds may be good enough in

approximating the max-flow value.

Another approximation strategy is to limit the excess paths length. We denote

α as the maximum excess path length generated. The bigger the α, the more

accurate the max-flow value and the longer the runtime and the bigger the number

of rounds needed. Setting α >= D makes the algorithm to give the exact max-

flow value. We evaluate the effectiveness of both approximation algorithms in

Section 4.7.8.

4.7 Experiments on Large Social Networks

In all the experiments, we assume the graph to be bi-directional with each edge

having a capacity of one. We used Hadoop version 0.21-RC-0 in a cluster of 21

machines connected with 1 Gigabit Ethernet. Each machine has 24 GB memory,

8-cores Hyper-threaded (2 × Intel E5520 @2.27GHz), 3 hard disks (@500GB

SATA) and run Centos 5.4 (64-bit). One machine is used as the master node

(also runs the aug proc) and 20 machines as slave nodes.

In all of our experiments, we process the raw input graph in round #0 using

MR to make the graph bi-directional and initialize unit edge capacities. For sim-

plicity, unit capacities are used in the experiments but our algorithm supports

rational numbers for the edge capacities. We modify some Hadoop configuration

parameters such as: the number of maximum map and reduce tasks to 15 (up to

30 concurrent threads/node); the mapper/reducer memory limit to 640 MB; dis-

able speculative execution for map and reduce (as it interferes with the schimmy

optimization); DFS replication to 2; and vary the DFS block size (depending

on the size of the graph). We did not do any other parameter tuning for the

experiments.

4.7.1 FF1 Variants Effectiveness

FF1 is our initial design of the MR-based max-flow algorithm based on the Ford-

Fulkerson method. As explained in Section 4.4.1, FF1 is composed of three

composable techniques to improve the parallelism and to effectively reduce the

number of rounds.

• FF1(a) employs incremental updates to alter the residual network in par-

allel (in the next round) after an augmenting path is found and augmented.

121

• FF1(b) employs bi-directional search which halves the number of rounds,

doubles the amount of available parallelism by doubling the number of

active vertices, and allows any vertex to generate augmenting paths which

in turn allows many augmenting paths to be generated in one round yielding

tremendous savings in number of rounds.

• FF1(c) employs multiple excess paths which maintains the number of active

vertices high throughout the rounds which gets more work done in each

round and decrease the number of rounds further.

We evaluate these techniques by running each technique on FB1 graph. Note

that FF1(b) includes the FF1(a) technique and FF1(c) includes both FF1(a)

and FF1(b) techniques.

1 2 4 8 16 32 64 128
0

20

40

60

80

100

MR Round Number

%
 M

ax
−

F
lo

w
 V

al
ue

 C
om

pl
et

ed

FB1 :: N=21M; E=112M; |f*|=80

FF1 (a)

FF1 (b)

FF1 (c)

FF1 (a) FF1 (b) FF1 (c)
0

1

2

3

4

5

6

FF1 Parallelization Strategies

T
ot

al
 R

un
tim

e
(H

ou
rs

)
FB1 :: N=21M; E=112M; |f*|=80

Figure 4.11: FF1 Variants on FB1 Graph with |f ∗| = 80

Figure 4.11 shows one run of max-flow on FB1 on a random source s and

sink t yielding a max-flow value of 80. The left graph shows the percentage of

completion vs. the number of rounds. FF1 (a) spends more than 100 rounds and

yet it has not complete the max-flow computation. FF1 (a) accepts around 1

augmenting path every 2 rounds. We suspect that there are a lot of congestion

of excess paths that are being forwarded to t. We note that the naive translation

of the Ford-Fulkerson method into MapReduce as described in Section 4.4 will

accept 1 augmenting path every D rounds where D is the diameter of the graph.

FF1 (b) frees the congestion by allowing any vertex in the graph to forward its

augmenting paths directly to t. FF1 (b) accepts up to 63 augmenting paths in

round 5 which gives a significant reduction in number of rounds needed. FF1 (c)

further reduce the number of rounds and accept up to 70 augmenting paths in

round 5. The right graph shows the total runtime in hours for each FF1 variants.

Note that FF1 (a) is not yet complete. Since the runtime is proportional to the

number of rounds, we see a tremendous savings in the FF1 (b) variant as it allows

accepting a larger number of augmenting paths in a round. We observe that the

122

number of rounds required to compute max-flow on the Facebook graph is very

small, close to the diameter of the graph. We will elaborate this in the following

experiments on larger graphs.

1 2 4 8 16 32 64 128
0

20

40

60

80

100

MR Round Number

%
 M

ax
−

F
lo

w
 V

al
ue

 C
om

pl
et

ed

FB1 :: N=21M; E=112M; |f*|=3054

FF1 (a)

FF1 (b)

FF1 (c)

FF1 (a) FF1 (b) FF1 (c)
0

5

10

15

FF1 Parallelization Strategies

T
ot

al
 R

un
tim

e
(H

ou
rs

)

FB1 :: N=21M; E=112M; |f*|=3054

Figure 4.12: FF1 Variants on FB1 Graph with |f ∗| = 3054

Figure 4.12 shows another run of max-flow on FB1 on a random source s and

sink t yielding a large max-flow value of 3054. We see more dramatic differences

among the FF1 variants. FF1 (a) is now performing very poorly as it accepts 1

augmenting path about every 2 rounds which is impractical as even after more

than 100 rounds no significant progress has been made towards completion. FF1

(b) completes the max-flow computation in 63 rounds, thanks to the high number

of augmenting paths accepted per round (up to 866). FF1 (c) cuts the number

of rounds down further to only 10 rounds.

We investigate the effectiveness of the multiple excess paths optimization (FF1

(c) in Sec. 4.4.2) in reducing the number of rounds. The larger the number of

excess paths stored in a vertex, the higher the available parallelism for finding

augmenting paths as changes from augmented ∆ flows is less likely to cause all

excess paths in the vertex to be dropped which would make it inactive and not

perform work for that round.

Fig. 4.13 shows the total runtime and the number of rounds required to com-

pute the max-flow on the FB1 graph versus the number of excess paths stored (k).

We see a significant drop in number of rounds as k increases. The results show

a strong correlation between the number of rounds and runtime. An interesting

situation happens when k gets larger. We might expect that as we increase the

number of excess paths stored, it might be slower due to greater runtime over-

heads. However, the experiment shows that the number of rounds (and runtime)

decreases as k increases even for large k. The overhead from storing more excess

paths in a vertex is far smaller than the benefit of having fewer rounds.

In this section we have shown that each technique in the FF1 variants is crucial

in designing a practical MR-based algorithm for small world network graphs.

123

1 2 4 8 16 32 64 128 256 512
0hr

1hr

2hr

3hr

4hr

T
ot

al
 R

un
tim

e

Maximum Number of Excess Paths Stored

FB1 :: N=21M; E=112M; |f*|=3138

0

20

40

60

80

N
um

be
r

of
 R

ou
nd

sTotal Runtime

Number of Rounds

Figure 4.13: FF1 (c) Varying Excess Path Storage

2^12 2^14 2^16 2^18
0

20

40

60

80

T
ot

al
 N

um
be

r
of

 M
R

 R
ou

nd
s

Maximum−Flow Value

FB0 :: N=5M; E=52M

PR2MR

FF1MR

2^12 2^14 2^16 2^18
0

1

2

3

4

5
T

ot
al

 R
un

tim
e

(H
ou

rs
)

Maximum−Flow Value

FB0 :: N=5M; E=52M

PR2MR

FF1MR

Figure 4.14: PR2MR vs. FFMR on the FB0 Graph

Experiments in the following sections will refer FF1 (c) as the FF1 variant as it

combines all the techniques of FF1 (a) and FF1 (b).

4.7.2 FF1 vs. PR2MR

In this section, we compare our FF1 algorithm with the relaxed PRMR algorithm

described in Section 4.3.5. We made an exception for this experiment that we

follow the cluster setup as described in Section 4.3.6. In this experiment, we

compare the number of rounds as well as the total runtime for FF1 algorithm

and PR2MR algorithm on computing max-flow on both FB0 and FB1. We do

not compare against the PRMR algorithm since it has been shown to perform less

well than PR2MR (see Section 4.3.6). We use the same s and t pairs for testing

the flow scalability of PR2MR in Section 4.3.6. There are 8 s and t pairs which

represents tests with varying values for w from 1, 2, 4, 8, 16, 32, 64, and 128.

The larger the w, the larger the max-flow value as there are more connections to

the super source s and super sink t.

Figure 4.14 shows the comparisons on the FB0 graph. The left graph shows

124

2^10 2^12 2^14 2^16 2^18
0

20

40

60

80

100

T
ot

al
 N

um
be

r
of

 M
R

 R
ou

nd
s

Maximum−Flow Value

FB1 :: N=21M; E=112M

PR2MR

FF1MR

2^10 2^12 2^14 2^16 2^18
0

5

10

15

T
ot

al
 R

un
tim

e
(H

ou
rs

)

Maximum−Flow Value

FB1 :: N=21M; E=112M

PR2MR

FF1MR

Figure 4.15: PR2MR vs. FFMR on FB1 Graph

the number of rounds vs. 8 runs in increasing max-flow values. FF1 consistently

need a much smaller number of rounds across all max-flow values in the test. FF1

behaves more robustly as the spikes on certain max-flow values are far less sharp

than that of PR2MR. The FF1 runtimes are slightly faster but this becomes very

much so with the next larger graph.

Figure 4.15 shows the comparison on the FB1 graph. We see a clear separation

on both number of rounds and the total runtime. FF1 manages to keep the

number of rounds small despite the large max-flow values. In Section 4.7.3 we

show that this is still true for far larger graph size. PR2MR algorithm is only

practical for FB1-sized graph or smaller while FFMR (and its optimized versions)

is robust and far more scalable.

4.7.3 FFMR Scalability in Large Max-Flow Values

This experiment tests the effect of increasing the max-flow value of our optimized

FFMR algorithm, FF5, on runtime and the number of rounds using the largest

graph, FB6. Since each vertex in the Facebook graph has at most 5000 edges,

this limits the upper bound on the max-flow value from s to t to be at most the

minimum number of edges connected to both s and t. To create a much bigger

max-flow value, we use the same approach described in Section 4.3.6, we select

w random vertices that have a sufficiently large number of edges (at least 3000

edges) and connect them to a super source s. Similarly, we select another set of

w vertices and connect them to a super sink t. The edge capacity from s and t to

their connected vertices is set to infinity. To measure the effect of the max-flow

value on runtime and the number of required rounds, we created several tests

varying w. The larger the number of vertices w connected to s and t, the larger

the potential max-flow value from s to t.

Figure 4.16 plots the runtime and rounds against the max-flow values for

125

4 8 16 32 64 128 256 512
7hr

8hr

9hr

10hr

11hr

T
o
ta

l
R

u
n
ti
m

e

Maximum−Flow Value (in thousands)

FB6 :: N=411M, E=31B

6

7

8

9

10

N
u
m

b
e
r

o
f
R

o
u
n
d
sTotal Runtime

Number of Rounds

Figure 4.16: Runtime and Rounds versus Max-Flow Value (on FF5)

each w value from {1, 2, 4, 8, 16, 32, 64, 128}. We see that the total runtime

only increases slowly with max-flow value |f ∗| as the x-axis is logarithmic. A

surprising result is that the number of rounds required to complete the max-flow

is relatively small – almost constant for any max-flow value tested. This result also

suggests that the diameter D of the graph stays small despite the huge changes

in the residual network due to large number of accepted augmenting paths. We

believe this is due to the robustness of the small-world network. In practice, our

algorithm design is effective in reducing the number of rounds close to D. The

FF5 algorithm needs only as few as 8 rounds to compute max-flow even with a

value as large as |f ∗| = 521551. We estimate the value of D is between 7 to 14

for FB6 using a MR-based BFS from s. This experiment shows the feasibility of

computing max-flow on very large small-world graphs with large max-flow values.

4.7.4 MapReduce optimization effectiveness

In Sec. 4.5, we introduce four further optimized versions of FFMR. We show the

effectiveness of the accumulated optimizations for each version in Fig. 4.17. Note

that the runtime is in logarithmic scale and the number of rounds is labelled

as ‘R’. We tested the 5 versions of our FFMR algorithms on two graphs: FB1

(smaller) and FB4 (bigger) to see the effectiveness of each version as the graph

gets larger. FF1 is our baseline Ford-Fulkerson method on MR framework which

already has many optimizations. The results for BFS (a simple graph traversal)

are given as a comparison for a lower bound on the total runtimes.

The trend is that each successive algorithm reduces the runtime. FF2 gives

∼1.85× improvement over FF1 on FB1 graph by having an external process

aug proc specially to handle the acceptance of augmenting paths. The improve-

ment becomes more significant (∼3.41×) with a larger graph (FB4) for reasons

explained in Section 4.5.1. FF3 gives ∼1.25× improvement over FF2 on FB1 with

126

the schimmy design pattern. The improvement gets larger (∼1.74×) as the graph

gets larger (on FB4). FF4 gives ∼1.16-1.41× improvement over FF3 by avoiding

object instantiations. FF5 gives ∼1.68× improvement over FF4 by increasing

the number of excess paths stored k up to the Facebook limit together with an

optimization to prevent the re-sending of redundant excess paths in subsequent

rounds. This reduces the number of rounds as well as overheads from record

storage, shuffling and processing per round. The improvement is even bigger for

larger graphs (∼2.07× for FB4). As the graph gets large, each one round of MR

also has more overhead, thus a small reduction in number of rounds performed

can give a significant runtime improvement.

Overall, the FF5 improvement is ∼5.43× faster than the original FF1 on the

small FB1 graph and ∼14.22× on the larger FB4 graph.

FF1 FF2 FF3 FF4 FF5 BFS
7.5min

15min

30min

1hr

2hr

4hr

8hr

16hr

T
o

ta
l
R

u
n

ti
m

e

Maximum−Flow Algorithms and BFS

20R

11R

15R

10R

15R

8R

14R

8R

13R

8R

6R

7R

FB1 :: |f*|=262134

FB4 :: |f*|=478977

Figure 4.17: MR Optimization Runtimes: FF1 to FF5

4.7.5 The Number of Bytes Shuffled vs. Runtimes

Hadoop maintains internal counters during the execution of an MR job. In our

FFMR algorithms, whenever we run one MR job for each round and we can also get

statistics of each round from the Hadoop internal counters. We are interested in

particular counters that can give us information about the bottlenecks in MR, i.e.,

counters that correlate with the runtime. The external accumulator (aug proc)

process also maintains counters for the number of augmenting paths and the

maximum processing queue size.

Table 4.5 shows the statistics of the FF5 algorithm on the FB6 graph with

w = 256. FF5 requires 8 rounds (excluding round #0) to compute max-flow.

Statistics for each round is given as a row in the table. The columns in the table

are the round number (R), the number of augmenting paths accepted by aug proc

(A-Paths), the maximum size of the queue of aug proc during the round (MaxQ),

the number of intermediate records emitted by the mappers (Map Out), the

127

R A-Paths MaxQ Map Out Shuffle(KB) Runtime
0 - - 21,512 M 291,134,017 1:36:37
1 - - 909 572 14:58
2 138,552 3 2 M 22,977 13:50
3 801,825 5,872 974 M 16,323,118 35:25
4 71,931 2,381 2,738 M 58,871,195 1:00:33
5 1,861 319 896 M 22,177,030 27:30
6 1 1 11,348 M 315,750,801 2:40:48
7 - - 19,090 M 639,620,390 5:06:00
8 - - 430 M 17,959,975 1:16:06

Table 4.5: Hadoop, aug proc and Runtime Statistics on FF5

number of bytes shuffled across machines in kilobytes (Shuffle), and the running

time of the round (Runtime).

0 1 2 3 4 5 6 7 8
0hr

2hr

4hr

6hr

T
ot

al
 R

un
tim

e

Round Number

FB6 :: N=411M, E=31B, |f*|=1014170

0

2

4

6

x 10
11

R
ed

uc
e

S
hu

ffl
e

B
yt

esTotal Runtime

Reduce Shuffle Bytes

Figure 4.18: Reduce Shuffle Bytes and Total Runtime (FF5)

Figure 4.18 plots the Shuffle and Runtime from Table 4.5. We can see a

strong correlation between the runtime and the number of shuffled bytes. The

Shuffle column shows a large amount of data being shuffled between machines.

The result is what we would expect – the more the intermediate records and

size of data shuffled, the more the runtime. There is an approximately linear

relationship (graph not shown) between Shuffle and runtime. In round #0, each

vertex sends a message to each of its neighbors to establish bi-directional edge,

hence the number of shuffled bytes is very large, but the size of the record is

smallest. Round #1 has the smallest number of intermediate records and only a

tiny fraction of the graph being changed (vertices s, t and their neighbors). Thus

∼15 minutes spent in round #1 is mostly due to MR overheads. In round #6

and #7, the number of bytes shuffled gets large because excess paths are being

expanded very rapidly to visit new vertices.

Augmenting paths are found as early as round #2 (see the A-Paths col-

128

umn). The augmenting paths found are sent remotely to the processing queue in

aug proc, increasing the queue size. A thread in the aug proc consumes the queue,

decreasing the queue size. The experiment shows that the maximum queue size

(MaxQ) is at most several thousand at any round which is hardly a bottleneck,

hence, speculative execution is successful in finding many augmenting paths.

4.7.6 Shuffled Bytes Reductions on FFMR Algorithms

As we saw in Section 4.7.5 that the payload size correlates with the runtime of an

MR job. Thus, it is important to design the algorithm to emit as small payload

as possible. We improve our baseline FF1 algorithm design towards this goal of

minimizing the number of shuffled bytes. In FF2 we extract out augmenting path

from getting shuffled to t by sending directly to the remote accumulator program.

In FF3, we apply the schimmy design pattern [80] and we prevent re-transmitting

redundant excess paths in FF5.

0 5 10 15 20
0

2

4

6

8

10

12

x 10
9

R
e
d
u
c
e
 S

h
u
ff

le
 B

y
te

s

Round Number

FB1 :: N=21M, E=111M, |f*|=262134

FF1

FF2

FF3

FF5

Figure 4.19: Total Shuffle Bytes in FFMR Algorithms

Figure 4.19 shows the reduction in the number of shuffled bytes on various

versions of our FFMR algorithms. Each successive algorithm reduces the total

shuffled bytes. FF2 has far fewer number of shuffled bytes compared to FF1 in

round 3 to 9 because of the exclusion of augmenting paths from the intermediate

records as they are sent directly to aug proc. Since the storage of the augmenting

paths is not handled by MR, the number of shuffle bytes becomes similar to FF1

again from round 10 onwards. FF3 has a consistently smaller number of shuffled

bytes compared to FF2 due to the schimmy design pattern that prevents the

master vertices from being shuffled. FF4 does not affect the number of shuffled

bytes hence it is not shown. FF5 has far fewer number of shuffled bytes compared

to FF3 after round 7 because it remembers the excess paths sent in the previous

round and avoids re-sending them in subsequent rounds.

129

4.7.7 FFMR Scalability in Graph Size and Resources

We tested the scalability of our best FFMR, FF5, against 6 different graph sizes

(FB1 to FB6) as well as different number of slave nodes (5, 10, 20 slaves). For each

graph size, the same random w = 128 vertices are used to have consistent results

with different numbers of slave nodes. However, obviously the set of randomly

selected w vertices need to be different for different graph sizes

0.125 0.25 0.5 1 2 4 8 16 32
3.75min

7.5min

15min

30min

1hr

2hr

4hr

8hr

16hr

32hr

64hr
FB1

10R

6R

354,820
FB2

9R

8R

457,633
FB3

8R

8R

450,321
FB4

8R

7R

476,310
FB5

7R

7R

493,872

FB6

7R

9R

512,366

T
o
ta

l
R

u
n
ti
m

e

Number of Edges (in billion)

FF5 (5m)

FF5 (10m)

FF5 (20m)

BFS (20m)

Figure 4.20: FF5 Scalability with Graph Size and Number of Machines

Figure 4.20 shows the scalability of our FF5 algorithm with different graph

sizes, measured in terms of its number of edges. The maximum flow value for

each graph FBi is given underneath each FBi label. Max-flow algorithms based on

the Ford-Fulkerson method have complexity quadratic with respect to the graph

size. Our FFMR algorithm, however, shows near linear runtimes with the graph

size. We conjecture that this is due to the small world nature of the Facebook

social network. This result suggests that complex graph algorithms can still be

applicable to process very large small world network graphs. The figure also shows

the linear scalability in terms of number of machines used (5, 10, 20 machines)

across different graph sizes. We highlight that our FFMR algorithm is comparable

in terms of number of rounds performed and only a constant factor (a few times)

slower than the BFS algorithm in MR.

Figure 4.21 is another view of Figure 4.20 where the y-axis is the number of

edges processed per second. The larger the graph size, the better our algorithm

is in utilizing the slave machines. This suggests that the MR algorithm gives

good scalability when the input size is large enough. Note that FB1 is a small

graph (only 0.5G) – it is already at the lower limit for a MR job as it can be

processed in-memory sequentially at one node. This also explains why there is

130

5 10 15 20

1

2

3

4

5

6

7

8

x 10
5

of

 e
dg

es
 p

ro
ce

ss
ed

 p
er

 s
ec

on
d

Number of Slave Machines

FB1

FB2

FB3

FB4

FF5

FB6

Figure 4.21: Edges processed per second vs. number of slaves (on FF5)

little differences on runtime for FB0 (see Section 4.7.2).

4.7.8 Approximation Algorithms

Table 4.5 shows that the last several rounds are the most expensive rounds in our

algorithm and yet provides very little contribution in finding the max-flow values

as in the last 3 rounds, there is little or no more augmenting paths accepted. The

last 2 rounds are spent mainly on expanding excess paths to unvisited vertices to

guarantee the optimal termination condition.

If we are willing to approximate the max-flow, the performance can be im-

proved. The upper bound of a max-flow value can be computed as the sum of the

capacity of the edges that are connected to the source vertex s (or t whichever is

lesser). In the case of s is a super source, then the upper bound is the s neighbors’

total edge capacity (similarly if t is a super sink). With the upperbound, we can

vote to stop on the rounds when the max-flow value reaches a certain percentage

from the upperbound.

Another alternative as mentioned in Section 4.6 is to limit the length of the

excess path to α. We investigate both options in these experiments.

Figure 4.22 shows how the cut-off approximation algorithm perform. The left

graph shows the runtime of the algorithm if it were cut-off at the n-th round.

The right graph shows the percentage of max-flow value completed according to

the computed upper bound. If we set the cut off to be at least 90% of the upper

bound, then the algorithm will terminate on the 4th round in 49 minutes. If we

set the cut off to be at least 60% of the upper bound, then the algorithm will

131

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Cut Off at Round Number

T
ot

al
 R

un
tim

e
(M

in
ut

es
)

FB3 :: N=97M; E=2B

Runtime

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

Cut Off at Round Number

%
 M

ax
−

F
lo

w
 V

al
ue

 C
om

pl
et

ed

FB3 :: N=97M; E=2B

% Completed

Figure 4.22: FF5 on FB3 Prematurely Cut-off at the n-th Round

terminate on the 3rd round in 32 minutes.

0.125 0.25 0.5 1 2 4 8 16 32
3.75min

7.5min

15min

30min

1hr

2hr

4hr

8hr

16hr

32hr

64hr
FB1

354,820
FB2

457,633
FB3

450,321
FB4

476,310
FB5

493,872

FB6
512,366

T
ot

al
 R

un
tim

e

Number of Edges (in billion)

FF5 (5m)

FF5 (10m)

FF5 (20m)

BFS (20m)

FF5A (20m)

Figure 4.23: FF5A (Approximated Max-Flow)

Figure 4.23 shows FF5A algorithm that produces approximate max-flow value

up to 90% from the upper bound. Due to the dense graph, the approximate max-

flow algorithm, FF5A, finds more than 90% of the flows as early as 5 rounds thus

giving performance comparable to that of BFSMR.

Figure 4.24 shows the total runtime, number of rounds required, and the

percentage of max-flow completed on different limit on the length of the excess

path (α). We can see similar results that on 4th round, the max-flow is complete.

The runtime trend is also similar with that of cut-off based approximation on the

upper bound.

132

1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

alpha

T
ot

al
 R

un
tim

e
(M

in
ut

es
)

FB3 :: N=97M; E=2B

Runtime

1 2 3 4 5 6 7
0

20

40

60

80

100

alpha

%
 M

ax
−

F
lo

w
 V

al
ue

 C
om

pl
et

ed

FB3 :: N=97M; E=2B

% Completed

Figure 4.24: FF5 with varying α on the FB3 graph

4.8 Conclusion

In this chapter, we develop what we believe to be the first effective and practical

max-flow algorithms for MapReduce. The algorithms employ techniques such as

incremental updates, bi-directional search, and multiple excess paths that take

advantage of the inherent properties of the graphs which allows it to run effectively

and efficiently in practice.

While the best sequential max-flow algorithms have more than quadratic run-

time complexity, we show it is still possible to compute max-flow efficiently and

effectively on very large real-world graphs with billions of edges. We achieve this

by designing FFMR algorithms that exploit the small diameter property of such

real-world graphs while providing large amounts of parallelism to scale well with

the number of resources. We note that if the input graph is an arbitrary large

graph (i.e., the graph does not have small world network properties), it may hit

the worst case limit which might not be practically processable. Fortunately, we

are not interested in such worst case graphs, rather the problem is to be solved

for existing real world graph instances.

We identified bottlenecks in the system and present novel algorithm-system

optimizations that significantly improve the initial design. These optimizations

require understanding in both the algorithms and how MR works. The opti-

mizations aim to minimize the number of rounds (which is the metric we use

to evaluate our MR-algorithms complexity), the number of intermediate records

to reduce network I/O overheads, and the size of the biggest record to reduce

memory requirements to allow more workers to run in parallel.

Our experiments show a promising algorithm that scales linearly (in terms of

graph size and number of machines) to compute max-flow for very large real-world

sub-graphs such as those from Facebook.

133

134

Chapter 5

Conclusion

In this thesis, we study three problems that deal with big data. In this chapter, we

present three important lessons that we learned in designing efficient and effective

algorithms for big data problems. In all the algorithms, we maintain near-linear

or sub-linear runtime complexity in order to scale to large data size with the

rationale that the number of available resources can only be increased linearly

as the free lunch is over [103]. Also, we must ensure our algorithms are robust

across various datasets and workloads to consistently maintain the (sub)linear

resource consumption. The first lesson is the importance of introducing stochas-

tic behavior in the algorithm. The second is the exploitation of the inherent

properties of the data being processed. The third is that the knowledge of both

the system framework and the algorithms that run on top of it are important for

optimizations.

5.1 The Power of Stochasticity

In chapter 2, we present our GDY algorithm which produces better segmentation

quality than the heuristics (MHIST and MaxDiff). The GDY algorithm is based

on stochastic local search (this is unusual since stochastic local search usually

used in NP-hard problems). It starts with a random solution and continuously

moves greedily to another solution until it stuck in a local optima. Thus, if we

were to re-run the GDY algorithm again (using the same input), it may produce a

slightly different result with similar quality. This stochasticity allows us to use the

GDY algorithm as a sampling algorithm that consistently generates good sample

solutions. In contrast, the heuristics MHIST and MaxDiff are deterministic which

will produce the exact same result everytime it run (using the same input) which

makes it unsuitable as a sampling algorithm.

The various solutions produced by multiple runs of GDY can be harnessed

further by recombining those (already good) solutions to form the final solution.

135

In this sense, it is similar to a Genetic Algorithm that recombines bits and pieces

from the solutions of a population to produce a new and better set of solutions.

Fortunately, there already exists an optimal (albeit quadratic) segmentation al-

gorithm which can be used in conjunction with GDY. Therefore, we can use the

optimal segmentation to recombine the solutions produced by multiple runs of

GDY into a significantly far better solution. In our experimental results, running

several dozens of GDY runs is enough to produce a population which can be re-

combined into the optimal solution. Thus, we can effectively find solutions that

are very close or match the optimal solutions in linear time O(nB) rather than

quadratic O(n2B) (using the optimal segmentation algorithm).

The role of the stochastic behavior in our segmentation algorithm is to con-

sistently produce good solutions that can be recombined into significantly better

solutions which outperform existing segmentation algorithms in both quality and

performance.

In chapter 3, we expose the vulnerability of the database cracking philosophy

that do just enough. We show that this philosophy fails under dynamic and unpre-

dictable user query workloads. To do just enough, database cracking exclusively

process the user queries by optimizing the physical datastore and cracker indexes

that are strictly relevant to the queries. That is, it does not try to optimize the

regions that are not touched by a query. While this brings a very lightweight

adaptation to the user queries, it may severely penalize future queries because

of bias in the user queries. Thus the original cracking may fail to adapt to user

queries if the queries follow certain workloads. To mitigate this robustness issue,

we introduce stochastic crack(s) for each user query. This ensures that no matter

what the query workloads imposed by the user queries, the database cracking

will introduce its own stochastic cracks to maintain the performance and quick

adaptations to the future queries.

In chapter 4, a form of stochasticity (or non-determinism) allows processing

large number of items in a streaming fashion and run concurrently with the MR

job execution. In the FF2 variant 4.5.1, when augmenting paths are found in

the middle of an MR job, they are immediately sent to the external accumulator

process. The augmenting paths may arrive in any order. The external accumu-

lator, immediately augment the paths as they arrive (i.e., first in first serve) in a

streaming fashion. If an incoming augmenting path conflicts with the currently

accepted augmenting paths, it will be rejected (discarded) otherwise it will be

merged to the accepted augmenting paths. It is possible, however, to wait until

all augmenting paths are received and then optimally select the maximum num-

ber of augmenting paths to be accepted. The downside is that it will require

significantly larger memory resources and become a system bottleneck as it is not

136

run in parallel with the MR job (i.e., it is run after the MR job completes).

5.2 Exploit the Inherent Properties of the Data

In chapter 2, our stochastic local search algorithm, GDY, effectively captures the

characteristics of the data sequence. The local search quickly finds segmentation

positions that near or matches the optimal segmentation positions. Each run

of GDY consistently discovers more than 50% of the optimal segmentation posi-

tions. Thus, within a few dozen runs of GDY, it manages to find almost all if

not all optimal segmentation positions. When GDY DP recombines the segmen-

tation positions found by running GDY for several iterations, it produces a final

segmentation that near if not matches the total error of the optimal segmentation.

In chapter 3, we showed that the original cracking has a robustness problem

due to its philosophy that always do just enough. That is, it optimizes the physical

data stores that are strictly relevant to the user queries without looking at the

current properties of the data. To solve the robustness problem, we relaxed the

cracking philosophy to also consider the current data property, in particular the

piece size, and do more by performing stochastic cracks on the pieces that are

relevant to the queries. Stochastic cracks are performed on pieces which sizes

are more than the L1 cache size. This effectively reduces the robustness problem

down to negligible levels.

In chapter 4, we are dealing with a seemingly intractable situation where the

size of the data is so large and the existing algorithms have quadratic running

time. Renting thousands of machines may not help in practically solving this big

data problem since the amount of resources required can far outpace the amount

of available resources.

In chapter 4, we give an example problem of computing a Maximum-Flow

(max-flow) value in a large small-world network graph. The current state of the

art max-flow algorithm is at least quadratic to the number of vertices in the graph

and the graphs that arise from the Internet (such as online social network and

the World Wide Web) can easily reach hundred millions vertices or more. In this

situation, it may be tempting to resort to approximation algorithms which give

approximate results. However, we discovered that we can exploit the inherent

property of large real-world graphs to design a much more practical algorithm

without sacrificing the result quality.

Most large real-world graphs have been shown to exhibit small-world network

properties. In particular, they have a small diameter (i.e., the expected shortest

distance between any two vertices in the graph is small). With the small diam-

eter property, we can redesign a general purpose max-flow algorithm that have

137

quadratic runtime in terms of number of vertices into a very much linear run-

time in terms of number of vertices and linear in terms of the expected diameter.

Nevertheless, the robustness of this algorithm depends highly on the robustness

of the graph itself. That is, since our algorithm alters the graph structure as the

algorithm progresses, it is crucial that the expected diameter stays small even af-

ter large number of edge removals. We showed empirically that the online social

network graph found in the Internet such as the Facebook graph is robust enough

and we can practically compute max-flow in such graph effectively.

5.3 Optimizations on System and Algorithms

In chapter 4, we develop our max-flow algorithm on top of a distributed system

framework called the MapReduce framework. It turns out that in order to opti-

mize the overall processing, one needs a deep understanding in both the system

framework and the algorithm that runs on top of it. The same algorithm can be

tweaked to run an order magnitude faster by examining the systems/frameworks

bottlenecks. The tweaks require deep understanding of both the algorithm and

the framework limitations.

For example, in Section 4.5.4, we were trying to minimize the number of inter-

mediate records being shuffled across machines since it is the biggest bottleneck

of the MapReduce framework. We did this by adding an additional flag vari-

able in our data structure to tell whether an excess path has been extended to

which neighbor so that in the next MapReduce rounds, it can avoid re-sending

unnecessary excess paths to that neighbor. In exchange, it requires each vertex to

monitor all its extended excess paths for saturation and re-send new excess paths

appropriately to the correct neighbors. Therefore, we made a tradeoff between

no monitoring and re-sending excess path each round vs. monitoring saturated

excess paths that have been extended and re-send as necessary. We discover that

a significant amount of network resources can be saved by using monitoring and

selective excess path extensions. Another example is that a significant disk I/O

resources can be saved by employing the Schimmy method that avoids shuffling

the master vertices as detailed in Section 4.5.2.

In the MapReduce framework, if one of record has very large size, it may

create a load balance problem where all workers have long finished except the

unlucky one that is processing the record with very large size. Unfortunately, in

our case, we cannot split the record into two with smaller sizes since the record

need to be processed atomically. As detailed in Section 4.5.1, we solved this load

balance problem from a system improvement perspective by processing the record

with very large size in a separate, dedicated stateful process.

138

Bibliography

[1] Amazon EC2 Pricing.

http://aws.amazon.com/ec2/#pricing.

[2] Apache Giraph.

http://incubator.apache.org/giraph/.

[3] Data Scientist Study.

http://marketaire.com/2012/01/17/demand-for-data-scientists/.

[4] Facebook Statistics.

http://www.facebook.com/press/info.php?statistics.

[5] Graph 500.

http://www.graph500.org.

[6] Graph 500.

http://www.oracle.com/technology/events/hpc consortium2010/

graph500oraclehpcconsortium052910.pdf.

[7] Hadoop.

http://hadoop.apache.org.

[8] Hadoop Combiners.

http://developer.yahoo.com/blogs/hadoop/posts/2010/08/

apache hadoop best practices a/.

[9] Mapreduce and Hadoop Algorithms in Academic Papers.

http://atbrox.com/2011/11/09/mapreduce-hadoop-algorithms-in-

academic-papers-5th-update.

[10] Serge Abiteboul, Rakesh Agrawal, Phil Bernstein, Mike Carey, Stefano

Ceri, Bruce Croft, David DeWitt, Mike Franklin, Hector Garcia Molina, Di-

eter Gawlick, Jim Gray, Laura Haas, Alon Halevy, Joe Hellerstein, Yannis

Ioannidis, Martin Kersten, Michael Pazzani, Mike Lesk, David Maier, Jeff

Naughton, Hans Schek, Timos Sellis, Avi Silberschatz, Mike Stonebraker,

139

Rick Snodgrass, Jeff Ullman, Gerhard Weikum, Jennifer Widom, and Stan

Zdonik. The lowell database research self-assessment. Communications of

the ACM, 48:111–118, May 2005.

[11] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-

maswamy. Join synopses for approximate query answering. In ACM SIG-

MOD International Conference on Management of Data, New York, NY,

USA, 1999. ACM Press.

[12] R. Albert, H. Jeong, and A.L. Barabasi. The diameter of the world wide

web. In Nature, 1999.

[13] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebas-

tiano Vigna. Four degrees of separation. ACM CoRR Computing Research

Repository, abs/1111.4570, 2011.

[14] David.A Bader and Vipin Sachdeva. A cache-aware parallel implementation

of the push-relabel network flow algorithm and experimental evaluation of

the gap relabeling heuristic. In International Conference on Parallel and

Distributed Computing Systems, 2005.

[15] Richard Bellman. On the approximation of curves by line segments using

dynamic programming. Communications of the ACM, 4(6):284, 1961.

[16] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and

Robert Endre Tarjan. Linear time bounds for median computations. In

ACM Symposium on Theory of computing, pages 119–124, 1972.

[17] Peter Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-

pipelining query execution. In Conference on Innovative Data Systems

Research, pages 225–237, 2005.

[18] Nicolas Bruno and Surajit Chaudhuri. To tune or not to tune? a lightweight

physical design alerter. In International Conference on Very Large Data

Bases, pages 499–510, 2006.

[19] Nicolas Bruno and Surajit Chaudhuri. An online approach to physical

design tuning. In International Conference on Data Engineering, pages

826–835, 2007.

[20] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok

Shim. Approximate query processing using wavelets. VLDB Journal, 10(2-

3):199–223, 2001.

140

[21] Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael Paz-

zani. Locally adaptive dimensionality reduction for indexing large time

series databases. ACM Transactions on Database Systems, 27(2):188–228,

2002.

[22] R. Chen, X. Weng, B. He, and M. Yang. Large graph processing in the

cloud. In ACM SIGMOD International Conference on Management of

Data, 2010.

[23] Boris V. Cherkassky and Andrew V. Goldberg. On implementing push-

relabel method for the maximum flow problem. Algorithmica, 19:390–410,

1994.

[24] Gianmarco De Francisci Morales, Aristides Gionis, and Mauro Sozio. Social

content matching in mapreduce. International Conference on Very Large

Data Bases, 4:460–469, April 2011.

[25] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing

on large clusters. In Symposium on Operating System Design and Imple-

mentation, 2004.

[26] E.A. Dinic. Algorithm for solution of a problem of maximum flow in net-

works with power estimation. In Soviet Math. Dokl., 1970.

[27] John Douceur. The sybil attack. In 1st International Workshop on Peer-

to-Peer Systems, pages 251–260, 2002.

[28] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic effi-

ciency for network flow problems. In Journal of the ACM, 1972.

[29] Gary William Flake, Steve Lawrence, and C. Lee Giles. Efficient identifica-

tion of web communities. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 150–160, 2000.

[30] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian

Journal of Mathematics, pages 399–404, 1956.

[31] Minos Garofalakis and Amit Kumar. Wavelet synopses for general error

metrics. ACM Transactions on Database Systems, 30(4):888–928, 2005.

[32] S. Ghemawat, H. Gobioff, and S.T. Leung. The google file system. In

Symposium on Operating Systems Principles, 2003.

141

[33] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental

maintenance of approximate histograms. ACM Transactions on Database

Systems, 27(3):261–298, 2002.

[34] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukr-

ishnan, and Martin J. Strauss. Fast, small-space algorithms for approximate

histogram maintenance. In ACM Symposium on Theory of computing, New

York, NY, USA, 2002. ACM Press.

[35] Andrew V. Goldberg. Recent developments in maximum flow algorithms.

In Scandinavian Workshop on Algorithm Theory, 1998.

[36] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition bar-

rier. In IEEE FOCS Symposium on Foundations of Computer Science,

1997.

[37] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the max-

imum flow problem. In ACM Symposium on Theory of computing, pages

136–146, New York, NY, USA, 1986. ACM.

[38] Goetz Graefe. Robust query processing. In International Conference on

Data Engineering, page 1361, 2011.

[39] Goetz Graefe, Stratos Idreos, Harumi Kuno, and Stefan Manegold. Bench-

marking adaptive indexing. In Technology Conference on Performance

Evaluation and Benchmarking, pages 169–184, 2010.

[40] Goetz Graefe and Harumi Kuno. Adaptive indexing for relational keys. In

Self-Managing Database Systems, pages 69–74, 2010.

[41] Goetz Graefe and Harumi Kuno. Self-selecting, self-tuning, incrementally

optimized indexes. In Conference on Extending Database Technology, pages

371–381, 2010.

[42] Sudipto Guha. On the space-time of optimal, approximate and streaming

algorithms for synopsis construction problems. VLDB Journal, 17(6):1509–

1535, 2008.

[43] Sudipto Guha and Boulos Harb. Approximation algorithms for wavelet

transform coding of data streams. IEEE Transactions on Information The-

ory, 54(2):811–830, 2008.

[44] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and

streaming algorithms for histogram construction problems. ACM Trans-

actions on Database Systems, 31(1):396–438, 2006.

142

[45] Sudipto Guha, Kyuseok Shim, and Jungchul Woo. REHIST: Relative error

histogram construction algorithms. In International Conference on Very

Large Data Bases, pages 300–311, 2004.

[46] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H.C. Yap.

Stochastic database cracking: Towards robust adaptive indexing in main-

memory column-stores. In International Conference on Very Large Data

Bases, 2012.

[47] Felix Halim, Panagiotis Karras, and Roland H.C. Yap. Fast and effective

histogram construction. In ACM Conference on Information and Knowl-

edge Management, 2009.

[48] Felix Halim, Panagiotis Karras, and Roland H.C. Yap. Local search in his-

togram construction. In AAAI Conference on Artificial Intelligence, 2010.

[49] Felix Halim, Roland H.C. Yap, and Yongzheng Wu. A mapreduce-based

maximum-flow algorithm for large small-world network graphs. In Interna-

tional Conference on Distributed Computing Systems, 2011.

[50] Steven Halim and Roland H.C. Yap. Designing and tuning sls through ani-

mation and graphics: an extended walk-through. In Engineering Stochastic

Local Search Algorithms, pages 16–30, 2007.

[51] Steven Halim, Roland H.C. Yap, and Hoong C Lau. Viz: A visual analysis

suite for explaining local search behavior. In ACM Symposium on User

Interface Software and Technology, pages 57–66. ACM Press, 2006.

[52] Johan Himberg, Kalle Korpiaho, Heikki Mannila, Johanna Tikanmäki, and

Hannu Toivonen. Time series segmentation for context recognition in mobile

devices. In IEEE International Conference on Data Mining, Washington,

DC, USA, 2001. IEEE Computer Society.

[53] Stratos Idreos. Database Cracking: Towards Auto-tuning Database Kernels.

PhD thesis, Centrum Wiskunde en Informatica, 2010.

[54] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking.

In Conference on Innovative Data Systems Research, pages 68–78, 2007.

[55] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a

cracked database. In ACM SIGMOD International Conference on Man-

agement of Data, pages 413–424, 2007.

143

[56] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing

tuple reconstruction in column stores. In ACM SIGMOD International

Conference on Management of Data, pages 297–308, 2009.

[57] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. Merg-

ing what’s cracked, cracking what’s merged: Adaptive indexing in main-

memory column-stores. International Conference on Very Large Data

Bases, 4(9):585–597, 2011.

[58] N. Imafuji and M. Kitsuregawa. Finding web communities by maximum

flow algorithm using well-assigned edge capacities. In IEICE Transactions

on Information and Systems, 2004.

[59] Yannis E. Ioannidis. Universality of serial histograms. In International

Conference on Very Large Data Bases, 1993.

[60] Yannis E. Ioannidis. Approximations in database systems. In International

Conference on Database Theory, 2003.

[61] Yannis E. Ioannidis. The history of histograms (abridged). In International

Conference on Very Large Data Bases, 2003.

[62] Yannis E. Ioannidis and Viswanath Poosala. Balancing histogram optimal-

ity and practicality for query result size estimation. In ACM SIGMOD

International Conference on Management of Data, pages 233–244, 1995.

[63] Yannis E. Ioannidis and Viswanath Poosala. Histogram-based approxima-

tion of set-valued query-answers. In International Conference on Very Large

Data Bases, pages 174–185, 1999.

[64] M. Ivanova, N. Nes, R. Goncalves, and M. Kersten. Monetdb/sql meets

skyserver: the challenges of a scientific database. Scientific and Statistical

Database Management Conference, 2007.

[65] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Ken-

neth C. Sevcik, and Torsten Suel. Optimal histograms with quality guaran-

tees. In International Conference on Very Large Data Bases, pages 275–286,

1998.

[66] U. Kang, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong. Centrali-

ties in large networks: Algorithms and observations. In SIAM International

Conference on Data Mining, pages 119–130, 2011.

144

[67] U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos,

and Jure Leskovec. Hadi: Fast diameter estimation and mining in massive

graphs with hadoop. Technical Report CMU-ML-08-117, 2008.

[68] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of com-

putation for mapreduce. In Symposium on Discrete Algorithms, 2010.

[69] Panagiotis Karras. Multiplicative synopses for relative-error metrics. In

Conference on Extending Database Technology, New York, NY, USA, 2009.

ACM.

[70] Panagiotis Karras. Optimality and scalability in lattice histogram construc-

tion. In International Conference on Very Large Data Bases, 2009.

[71] Panagiotis Karras and Nikos Mamoulis. One-pass wavelet synopses for

maximum-error metrics. In International Conference on Very Large Data

Bases, 2005.

[72] Panagiotis Karras and Nikos Mamoulis. The Haar+ tree: a refined syn-

opsis data structure. In International Conference on Data Engineering,

Washington, DC, USA, 2007. IEEE Computer Society.

[73] Panagiotis Karras and Nikos Mamoulis. Hierarchical synopses with opti-

mal error guarantees. ACM Transactions on Database Systems, 33(3):1–53,

2008.

[74] Panagiotis Karras and Nikos Mamoulis. Lattice histograms: a resilient

synopsis structure. In International Conference on Data Engineering, 2008.

[75] Panagiotis Karras, Dimitris Sacharidis, and Nikos Mamoulis. Exploiting

duality in summarization with deterministic guarantees. In ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New

York, NY, USA, 2007. ACM Press.

[76] Robert Kooi. The Optimization of Queries in Relational Databases. PhD

thesis, Case Western Reserve University Cleveland, 1980.

[77] M. Kulkarni, M. Burtscher, R.Inkulu, K.Pingali, and C.Cascaval. How

much parallelism is there in irregular applications? In Symposium on Prin-

ciples and Practice of Parallel Programming, 2009.

[78] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Mondrian

multidimensional k-Anonymity. In International Conference on Data En-

gineering, Washington, DC, USA, 2006. IEEE Computer Society.

145

[79] Wentian Li. Dna segmentation as a model selection process. In Proceed-

ings of the fifth annual international conference on Computational biology,

RECOMB ’01, pages 204–210, New York, NY, USA, 2001. ACM.

[80] Jimmy Lin and Michael Schatz. Design patterns for efficient graph al-

gorithms in mapreduce. In Mining and Learning with Graphs Workshop,

2010.

[81] Martin Lühring, Kai-Uwe Sattler, Karsten Schmidt, and Eike Schallehn.

Autonomous management of soft indexes. In Self-Managing Database Sys-

tems, pages 450–458, 2007.

[82] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: a system for large-scale graph processing. In

ACM Symposium on Principles of Distributed Computing, 2009.

[83] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing

database architecture for the new bottleneck: memory access. VLDB Jour-

nal, 9(3):231–246, 2000.

[84] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based his-

tograms for selectivity estimation. In ACM SIGMOD International Con-

ference on Management of Data, 1998.

[85] Stanley Milgram. The small world problem. In Psychology Today, 1967.

[86] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,

and Bobby Bhattacharjee. Measurement and analysis of online social net-

works. In ACM/USENIX Internet Measurement Conference, 2007.

[87] M. Muralikrishna and David J. DeWitt. Equi-depth histograms for esti-

mating selectivity factors for multi-dimensional queries. In ACM SIGMOD

International Conference on Management of Data, New York, NY, USA,

1988. ACM Press.

[88] David R. Musser. Introspective sorting and selection algorithms. Software:

Practice and Experience, 27(8):983–993, 1997.

[89] Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the

number of tuples satisfying a condition. In ACM SIGMOD International

Conference on Management of Data, New York, NY, USA, 1984. ACM

Press.

146

[90] Viswanath Poosala, Venkatesh Ganti, and Yannis E. Ioannidis. Approxi-

mate query answering using histograms. IEEE Data Engineering Bulletin,

22(4):5–14, 1999.

[91] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without

the attribute value independence assumption. In International Conference

on Very Large Data Bases, pages 486–495, 1997.

[92] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J.

Shekita. Improved histograms for selectivity estimation of range predicates.

In ACM SIGMOD International Conference on Management of Data, pages

294–305, 1996.

[93] Frederick Reiss, Minos Garofalakis, and Joseph M. Hellerstein. Compact

histograms for hierarchical identifiers. In International Conference on Very

Large Data Bases. VLDB Endowment, 2006.

[94] H. Saito, M.Toyoda, M.Kitsuregawa, and K.Aihara. A large-scale study

of link spam detection by graph algorithms. In Adversarial Information

Retrieval on the Web, 2007.

[95] Marko Salmenkivi, Juha Kere, and Heikki Mannila. Genome segmentation

using piecewise constant intensity models and reversible jump MCMC. In

European Conference on Computational Biology, 2002.

[96] Oskar Sandberg. Distributed routing in small-world networks. In Algorithm

Engineering and Experiments, 2006.

[97] K. Schnaitter et al. Colt: Continuous on-line database tuning. In ACM

SIGMOD International Conference on Management of Data, pages 793–

795, 2006.

[98] Y. Shiloach and U. Vishkin. An o(n2 log n) parallel max-flow algorithm.

In Journal of Algorithms 3, 1982.

[99] K. Shvachko, H. Kuang, S. Radia, and R.Chansler. The hadoop distributed

file system. In Storage Conference, 2010.

[100] S. Spek, E. Postma, and H.J.V.D. Herik. Wikipedia: organisation from a

bottom-up approach. In Wikisym, 2006.

[101] Michael Stonebraker. One size fits all: An idea whose time has come and

gone. In International Conference on Data Engineering, pages 869–870,

2005.

147

[102] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch

Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Eliz-

abeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store:

a column-oriented DBMS. In International Conference on Very Large Data

Bases, pages 553–564, 2005.

[103] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency

in software. Dr. Dobb’s Journal, 2005.

[104] Evimaria Terzi and Panayiotis Tsaparas. Efficient algorithms for sequence

segmentation. In SIAM International Conference on Data Mining, 2006.

[105] Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan Subrama-

nian. Sybil-resilient online content voting. In Symposium on Networked

System Design and Implementation, 2009.

[106] Jeffrey Scott Vitter and Min Wang. Approximate computation of multi-

dimensional aggregates of sparse data using wavelets. In ACM SIGMOD

International Conference on Management of Data, 1999.

[107] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flax-

man. Sybilguard: Defending against sybil attacks via social networks. In

ACM Special Interest Group on Data Communication, pages 267–278. ACM

Press, 2006.

148

	Acknowledgements
	Summary
	List of Tables
	List of Figures
	Introduction
	The Big Data Problems
	Sequence Segmentation
	Robust Cracking
	Large Graph Processing

	The Structure of this Thesis
	List of Publications

	Sequence Segmentation
	Problem Definition
	The Optimal Segmentation Algorithm
	Approximations Algorithms
	AHistL-
	DnS

	Heuristic Approaches
	Our Hybrid Approach
	Fast and Effective Local Search
	Optimal Algorithm as the Catalyst for Local Search
	Scaling to Very Large n and B

	Experimental Evaluation
	Quality Comparisons
	Efficiency Comparisons
	Quality vs. Efficiency Tradeoff
	Local Search Sampling Effectiveness
	Segmenting Larger Data Sequences
	Visualization of the Search

	Discussion
	Conclusion

	Robust Cracking
	Database Cracking Background
	Ideal Cracking Cost

	The Workload Robustness Problem
	Stochastic Cracking
	Data Driven Center (DDC)
	Data Driven Random (DDR)
	Restricted Data Driven (DD1C and DD1R)
	Materialized Data Driven Random (MDD1R)
	Progressive Stochastic Cracking (PMDD1R)
	Selective Stochastic Cracking

	Experimental Analysis
	Stochastic Cracking under Sequential Workload
	Stochastic Cracking under Random Workload
	Stochastic Cracking under Various Workloads
	Stochastic Cracking under Varying Selectivity
	Adaptive Indexing Hybrids
	Stochastic Cracking under Updates
	Stochastic Cracking under Real Workloads

	Conclusion

	Large Graph Processing
	Overview of the MapReduce Framework
	Overview of the Maximum-Flow Problem
	Problem Definition
	The Push-Relabel Algorithm
	The Ford-Fulkerson Method
	The Target Social Network

	MapReduce-based Push-Relabel Algorithm
	Graph Data Structures for the PRMR Algorithm
	The PRMR map Function
	PRMR reduce Function
	Problems with PRMR
	PR2MR: Relaxing the PRMR
	Experiment Results on PRMR
	Problems with PRMR and PR2MR

	A MapReduce-based Ford-Fulkerson Method
	Overview of the FFMR algorithm: FF1
	FF1: Parallelizing the Ford-Fulkerson Method
	Data Structures for FFMR
	The map Function in the FF1 Algorithm
	The reduce Function in the FF1 Algorithm
	Termination and Correctness of FF1

	MapReduce Extension and Optimizations
	FF2: Stateful Extension for MR
	FF3: Schimmy Design Pattern
	FF4: Eliminating Object Instantiations
	FF5: Preventing Redundant Messages

	Approximate Max-Flow Algorithms
	Experiments on Large Social Networks
	FF1 Variants Effectiveness
	FF1 vs. PR2MR
	FFMR Scalability in Large Max-Flow Values
	MapReduce optimization effectiveness
	The Number of Bytes Shuffled vs. Runtimes
	Shuffled Bytes Reductions on FFMR Algorithms
	FFMR Scalability in Graph Size and Resources
	Approximation Algorithms

	Conclusion

	Conclusion
	The Power of Stochasticity
	Exploit the Inherent Properties of the Data
	Optimizations on System and Algorithms

	Bibliography

