
Discover Semantics from XML

Li Luochen (HT090442R)

Supervised by Professor Ling Tok Wang

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2012



ii

Discover Semantics from XML

Li Luochen

luochen@comp.nus.edu.sg

Abstract

For years, the ER model and the semantic concepts carried by it such as entity

type, relationship type, attribute and etc., have constituted invaluable leverage for

improving the effectiveness and efficiency of different database applications, includ-

ing query processing, keyword search as well as schema integration and data inte-

gration. For XML database, a similar semantics-rich data model ORA-SS has also

been proposed to capture the corresponding semantic concepts, including the object

class, relationship type, object/relationship attribute, etc. Given these semantic

concepts in XML database, semantics-based approaches for query processing and

keyword search are also proposed to achieve higher efficiency or accuracy. However,

these semantic concepts which are named as ORA-semantics in this thesis are not

always available for inputs. Therefore, we need an automatic semantics discovery

approach for the XML database.

Currently, only a few studies realize the importance of discovering the ORA-

semantics (e.g., object class, object identifier, relationship type, etc.) from XML

database. Even those studies on discovering semantic information from XML

database only focus on the object class in schema level and the object instance in

data level. However, the existing approaches for semantics discovery miss many

other important semantic concepts such as relationship type, object attribute,

relationship attribute, etc. Without identifying these semantic concepts, XML

keyword search approaches may return meaningless results because of not knowing



iii

the relationships between object instances; XML schema integration approaches

may wrongly integrate object classes which have different relationship types with

the same object class together; etc.

In this thesis, we present a novel rule-based approach to automatically dis-

cover the ORA-semantics with XML schema and XML data as inputs. The ORA-

semantics contains following semantic concepts: object class, OID, object attribute,

relationship type, relationship attribute, dependent object class, IDD relationship

type, role name, composite attribute and aggregational node, which aggregates mul-

tiple nodes with identical or similar meaning. For each above semantic concept,

our rule-based approach has the corresponding classification rules or algorithm to

identify it from the XML schema tree with the information provided by the XML

data.

There are mainly three steps in our rule-based approach: (1) internal node

classification, which classifies the internal nodes of an XML schema tree into ob-

ject class, role name, explicit relationship type, aggregational node or composite

attribute; (2) leaf node classification, which classifies the leaf nodes of an XML

schema tree into OID, object attribute or relationship attribute; (3) implicit rela-

tionship type discovery, which identifies the implicit relationship type which is not

explicitly shown as a node in the XML schema tree. Furthermore, the dependent

object class and IDD relationship type can also be discovered in this step.

As pre-processing, we identify the properties of each kind of semantic concept

in the ORA-semantics. These properties are the necessary conditions, describing

hierarchical structures of how it is designed in XML schema tree and constraints

imposed on it by XML data. We also identify a sufficient (but not necessary) con-

dition of how object classes and their OIDs are designed in XML schema tree, and

this sufficient condition can be directly used as a classification rule for identifying



iv

object class and its OID.

In order to identify different semantic concepts, our rule-based approach com-

bines the features of each semantic concept, which can be used to differentiate

it from other semantic concepts, and form classification rules for identifying each

particular semantic concept. For those semantic concepts which cannot be dis-

tinguished from each other only by their properties, we also proposed the related

heuristics to help differentiate them. These heuristics are proposed based on our

observations of the hierarchical structures and linguistic features about how design-

ers usually design different semantic concepts in XML database. Although these

heuristics are neither necessary conditions nor sufficient conditions of the corre-

sponding semantic concept, and they do not guarantee to be 100% correct, we

conduct experiments to show they can help to increase the accuracy of identifying

the corresponding semantic concepts.

After all, we empirically and comparatively evaluate the effectiveness of our rule-

based approach. Extensive experiments have been conducted to show the ORA-

semantics discovered by our approach has high accuracy especially for object class

(i.e., above 95% of precision and recall) with functional/multi-valued dependency

being verified by users.

Furthermore, a demonstration system based on our rule-based approach has

been built to discover the ORA-semantics given an XML data with or without its

corresponding XML schema.



v

ACKNOWLEDGEMENT

During these years of study in School of Computing, National University of Singa-

pore, I have met many challenges in both research and life. I am grateful that I also

met many people who have helped me and supported me on my journey for the

master degree. Without their help and support, this thesis would not be possible.

First of all, I would like to express my sincerest gratitude to my supervisor,

Professor Ling Tok Wang. During my journey of study as his student, he has taught

me not only a wealth of knowledge in my research direction, but also invaluable

knowledge about how to do research. As my supervisor, his insights, knowledge

and experience in database domain as well as his patient guidance in our discussion

all benefit me a lot, and even for my whole life.

I would like to thank Prof. Stephane Bressan and Prof. Lee Mong Li for being

the examiners of my graduate research paper. They have shown me many useful

comments for my research work, and these comments help me to revise my research

work and make my thesis better.

I would also like to show my gratitude to my friends in my lab, especially Wu

Huayu, Bao Zhifeng, Zeng Yong and Thuy Ngoc Le. They have helped me a lot in



vi

my research, and I have come up with many good ideas during the discussion with

them.

Last but not least, I would like to thank my family, especially my wife Ruby. It

is their continuous support and love give me strength to overcome every difficulty

I met during my journey in Singapore.



CONTENTS

Acknowledgement v

1 Introduction 2

1.1 Background on XML database . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 XML schema . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Problem: Semantics Discovery from XML . . . . . . . . . 10

1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Preliminary 17

2.1 What is Semantics ? . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 ORA-semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 ORA-semantics in Other Models . . . . . . . . . . . . . . . . . . . . 25

2.3.1 ORA-SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Relational Model & ER Model . . . . . . . . . . . . . . . . . 28

vii



viii

2.3.3 A Semantic Network-Based Model for XML . . . . . . . . . 30

2.3.4 Object Exchange Model & DataGuide . . . . . . . . . . . . 32

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Related Work 36

3.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Semantics in Ontology . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Resource Description Framework & RDF Schema . . . . . . 37

3.1.3 Ontology Web Language . . . . . . . . . . . . . . . . . . . . 40

3.1.4 Differences: Semantic in Ontology vs. Semantics in XML . 45

3.2 Semantics Discovery in Relational Database . . . . . . . . . . . . . 48

3.2.1 DBRE with Integrity Constraints . . . . . . . . . . . . . . . 49

3.2.2 DBRE with Semantic Dependencies . . . . . . . . . . . . . . 51

3.3 Semantics Discovery in XML Database . . . . . . . . . . . . . . . . 51

3.3.1 Object Class Identification in XML Schema Level . . . . . . 52

3.3.2 Object Identification in XML Data Level . . . . . . . . . . . 54

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Discover Semantics from XML 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Properties (Necessary Conditions) of ORA-semantic Concepts 62

4.2.2 Sufficient Conditions of ORA-semantic Concepts . . . . . . . 63

4.2.3 Heuristics of ORA-semantic Concepts . . . . . . . . . . . . . 64

4.2.4 ORA-semantic Concept: Internal Node vs. Leaf Node . . . . 64

4.3 Internal Node Classification . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Object Class & OID . . . . . . . . . . . . . . . . . . . . . . 69



ix

4.3.2 Object Class vs. Explicit Relationship Type . . . . . . . . . 71

4.3.3 Composite Attribute vs. Explicit Relationship Type . . . . 74

4.3.4 Aggregational Node vs. Explicit Relationship Type . . . . . 76

4.3.5 Role Name vs. Explicit Relationship Type . . . . . . . . . . 78

4.4 Leaf Node Classification . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 OID Discovery . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Object Attribute vs. Relationship Attribute . . . . . . . . . 87

4.5 Implicit Relationship Type Discovery . . . . . . . . . . . . . . . . . 88

4.5.1 Implicit Relationship Type with Relationship Attribute . . . 89

4.5.2 Implicit relationship type with IDREF(S) Attribute . . . . . 91

4.5.3 Identifier Dependency (IDD) Relationship Type . . . . . . . 93

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Performance Study 97

5.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2 Experimental Datasets . . . . . . . . . . . . . . . . . . . . . 98

5.1.3 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.4 Accuracy of Internal Node Classification . . . . . . . . . . . 101

5.1.5 Accuracy of Leaf Node Classification . . . . . . . . . . . . . 103

5.1.6 Accuracy of Implicit Relationship Type Identification . . . . 106

5.2 Impact of Possible Misidentification for XML Applications . . . . . 107

5.2.1 Possible Misidentification: Object Class vs. Composite At-

tribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Possible Misidentification: Dependent Object Class vs. Ob-

ject Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



x

5.2.3 Possible Misidentifications: Explicit Relationship Type vs.

Object Class/Composite Attribute/Aggregational Node . . . 114

5.3 Comparisons with Existing Approaches . . . . . . . . . . . . . . . . 118

5.3.1 Comparisons with Ontology Models . . . . . . . . . . . . . . 118

5.3.2 Comparisons with DBRE Approaches for Relational Database 120

5.3.3 Comparisons with Object Identification Approaches for XML

Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.4 Comparisons Summary . . . . . . . . . . . . . . . . . . . . . 122

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Demonstration System 125

6.1 System Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 ORA-semantics Display . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Future Work: Semantic-based XML Schema Integration and Data

Integration 132

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Existing Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Semantics-based XML Schema Integration and Data Integration . . 134

7.3.1 Schema Fragmentation & Object Classes Matching . . . . . 134

7.3.2 Object Attribute Matching . . . . . . . . . . . . . . . . . . . 135

7.3.3 Relationship Type Matching & Relationship Attribute Match-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.4 Schema Integration & Structural Conflict Resolution . . . . 137

7.3.5 Data Integration & Constraint Conflict Resolution . . . . . . 137



xi

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Conclusion 140



LIST OF FIGURES

1.1 A portion an XML document . . . . . . . . . . . . . . . . . . . . . 4

1.2 The tree structure of the XML document in Fig. 1.1 . . . . . . . . 5

1.3 DTD and XSD of the XML document in Fig. 1.1 . . . . . . . . . . 6

1.4 The tree structure of the XML schema in Fig. 1.3 . . . . . . . . . . 7

2.1 An XML schema tree . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 An ORA-SS schema diagram of SPJ (Project-Supplier-Part) . . . . 28

2.3 An ER diagram of SPJ (Project-Supplier-Part) . . . . . . . . . . . 30

2.4 An semantic network-based diagram of SPJ (Project-Supplier-Part) 32

2.5 An DataGuide diagram of SPJ (Project-Supplier-Part) . . . . . . . 34

3.1 An RDF document describing the resource Grape. . . . . . . . . . . 39

3.2 An RDFS document describing the resources Grape and WineGrape. 39

3.3 An OWL document describing the ontology of Wine. . . . . . . . . 42

3.4 A undirected graph capturing the hierarchical structure of the OWL

document in Fig. 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



xiii

3.5 Two objects with different structures but representing the same real

world entity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 An XML schema tree as our running example . . . . . . . . . . . . 59

4.2 General process of our automatic rule-based semantics discovery ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Decision Tree for Internal Node Classification . . . . . . . . . . . . 68

4.4 Explicit relationship type with FD among its child nodes . . . . . . 73

4.5 Role names and explicit relationship type with IDREF(S) as child

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Precision, Recall and F-measure of Leaf Node Classification

(OA: Object Attribute;

ERA: Relationship Attribute of Explicit Relationship Type;

IRA: Relationship Attribute of Implicit Relationship Type.) . . . . 105

5.2 Precision, recall, F-measure of implicit relationship type identifica-

tion

(IRT: Implicit Relationship Type.) . . . . . . . . . . . . . . . . . . 107

5.3 An XML schema tree . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Explicit Relationship Types Borrow Represented by 5 Different Hi-

erarchical Structures in XML Schema Trees . . . . . . . . . . . . . 115

5.5 Aggregational Node (Courses in (A), Qualifications in (B), All Borrow

in (C) and Borrow in (D)) in XML Schema Trees . . . . . . . . . . 117

6.1 Open dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 ORA-semantics discovered by the system. . . . . . . . . . . . . . . 127

6.3 Node information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 General information. . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xiv

6.5 Dialog for modifying Object ID. . . . . . . . . . . . . . . . . . . . . 129

6.6 Dialog for adding new FD/MVD. . . . . . . . . . . . . . . . . . . . 130

7.1 General process of for XML schema integration and data integration 135



LIST OF TABLES

2.1 ORA-semantic concepts supported in different models . . . . . . . . 35

4.1 Properties (necessary conditions) of different ORA-semantic concepts 65

4.2 Sufficient conditions and heuristics of different ORA-semantic concepts 66

5.1 Statistics of 15 real world data-centric XML datasets . . . . . . . . 100

5.2 Precision, recall and F-measure of internal node classification . . . . 101

5.3 Distribution of different ORA-semantic concepts . . . . . . . . . . . 103

5.4 Top 10 combined features of being OID . . . . . . . . . . . . . . . . 104

5.5 ORA-semantic concepts discovered by (in) existing approaches (model)123

1



CHAPTER 1

INTRODUCTION

1.1 Background on XML database

1.1.1 XML

XML (eXtensible Markup Language) [12] has become a frequently used standard

for information exchange and data storage in the real world. Actors in several

industry sectors such as the automotive industry and the chemical industry are now

commonly using XML to define standards (in the form of XML schemas) for the

representation of technical and business data, and to electronically interchange data

among business partners. Indeed, XML can effectively replace archaic electronic

data interchange formats, which were confusing physical, logical and conceptual

levels in terms of efficiency, and generally hard to be understood by users, thus

creating inflexible information systems. Orthogonal techniques such as compression

can provide the wired efficiency. The conceptual quality is provided by the logical

2



3

nature of the XML data model and the suite of tools it techniques that accompany

it such as keyword search and techniques for schema and data integration.

In Fig. 1.1, we show a portion of an XML Document example for storing data

about a department and the information of the courses, students and professors in

this department. From the XML document we can see the data is stored between a

starting tag and an ending tag, and these tags are not only organized in a hierarchi-

cal structure, but also explicitly store meaningful information in their tag names.

Because of the hierarchical structure of the XML document, it can also be repre-

sented as an order tree. Fig. 1.2 shows the tree structure of the corresponding XML

document in Fig. 1.1. There are two kinds of nodes in any tree structure, internal

node (i.e., the node with at least one child node) and leaf node (the node without

any child node). In the XML data tree (we call the tree structure of XML docu-

ment as XML data tree), the internal nodes represent the elements and attributes

in the corresponding XML document, and the leaf nodes are the data values of

these elements and attributes. Furthermore, the edges in the XML data tree can

represent an element-subelement relationship, an element-attribute relationship, an

element-data value relationship or an attribute-data value relationship.

1.1.2 XML schema

XML schema is designed to capture the schema for an XML document. There are

two frequently used XML schemas for XML documents, Document Type Definition

(DTD) [13] and XML Schema (XSD) [61]. In Fig. 1.3, we show the DTD and XSD

of the corresponding XML document in Fig. 1.1. Both DTD and XSD can also

be represented as tree structures. In Fig. 1.4, we show the tree structure of the

corresponding XML schema in Fig. 1.3, and we call this tree structure as XML

schema tree. XML schema tree also contains two kinds of nodes, internal nodes



4

<Department>
<D_Name>NUS</D_Name>
<Address>Kent Ridge</Address>
<Course>
<Code>CS5201</Code>
<C_Name>AI</C_Name>
<Lecturer>John</Lecturer>
<Student>
<Matric#>HT001</Matric#>
<S_Name>

<S_FirstName>Bill</S_FirstName>
<S_LastName>Smith</S_LastName>

</S_Name>
<Grade>A</Grade>

</Student>
<Student>
<Matric#>HT002</Matric#>
<S_Name>

<S_FirstName>Bob</S_FirstName>
<S_LastName>Hanks</S_LastName>

</S_Name>
<Grade>C</Grade>

</Student>
<Course>
<Course>
<Code>CS5208</Code>
<C_Name>Database</C_Name>
<Lecturer>Tan</Lecturer>
<Student>
<Matric#>HT001</Matric#>
<S_Name>

<S_FirstName>Bill</S_FirstName>
<S_LastName>Smith</S_LastName>

</S_Name>
<Grade>B</Grade>

</Student>
<Course>
<Professor>
…
</Professor>

</Department>

Figure 1.1: A portion an XML document



5

Lecturer

Course

Department

Student

Matric#

Code

Grade

AddressD_Name

S_Name

‘NUS’ ‘Kent Ridge’

‘CS5201’ ‘John’

‘HT001’

‘Bill’

‘A’

Student

Matric# Grade
S_Name

‘HT002’ ‘C’

Lecturer

Course

Student

Matric#

Code

GradeS_Name‘CS5208’
‘Tan’

‘HT001’ ‘B’

Professor

...
C_Name

‘Database’

C_Name

‘AI’

S_FirstName

‘Smith’

S_LastName ‘Bill’

S_FirstName

‘Smith’

S_LastName

‘Bob’

S_FirstName

‘Hanks’

S_LastName

Figure 1.2: The tree structure of the XML document in Fig. 1.1

and leaf nodes. Internal nodes represent elements of an XML schema, while leaf

nodes can be elements or attributes of an XML schema. Attribute nodes in an XML

schema are represented as leaf nodes starting with a symbol ‘@’ in the XML schema

tree to be distinguished from elements. Furthermore, edges in an XML schema tree

can represent element-subelement relationships or element-attribute relationships.

For any two nodes connected by a single edge, we call them as parent and child of

each other, and there is a parent-child (PC) relationship between them. Similarly,

for any two nodes connected by more than one edge in the same path, we call them

as ancestor and descendant of each other, and there is an ancestor-descendant (AD)

relationship between them.

There are many useful semantic concepts, such as object class, OID (object

identifier)1, relationship type, object attribute, relationship attribute and Composite

Attribute, cannot be captured and represented by DTD and XSD. In the following,

we use the example in Fig. 1.4 to illustrate the semantic concepts that DTD and

XSD cannot capture and represent.

1DTD and XSD can only capture and represent object identifier of a portion of object classes.



6

<!ELEMENT root (Department*)>

<!ELEMENT Department
(Address,Course*,Professor*)>
<!ATTLIST Department D_Name ID #REQUIRED>

<!ELEMENT Address (#PCDATA)>

<!ELEMENT Course 
(Code,C_Name,Lecturer,Student*)>

<!ELEMENT Code (#PCDATA)>
<!ELEMENT C_Name (#PCDATA)>
<!ELEMENT Lecturer (#PCDATA)>

<!ELEMENT Student (Matric#,S_Name,Grade)>
<!ELEMENT S_Name (S_FirstName,S_LastName)>

<!ELEMENT Matric# (#PCDATA)>
<!ELEMENT S_FirstName (#PCDATA)>
<!ELEMENT S_LastName (#PCDATA)>
<!ELEMENT Grade (#PCDATA)>

<!ELEMENT Professor 
(P_Name,Book*,Office,Email*)>

<!ELEMENT P_Name (#PCDATA)>
<!ELEMENT Office (#PCDATA)>
<!ELEMENT Email (#PCDATA)>

<!ELEMENT Book (ISBN, Title, BorrowDate)>

<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT BorrowDate (#PCDATA)>

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Department" minOccurs="1" maxOccurs="1">
<xs:key name="DepartmentKey">

<xs:selector xpath="/Department"/>
<xs:field xpath="/Department/@D_Name"/>
</xs:key>
<xs:complexType>
<xs:sequence>
<xs:element name="Address" type="xs:string"/>
<xs:element name="Course" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Code" type="xs:positiveInteger"/>
<xs:element name="C_Name" type="xs:string"/>
<xs:element name="Lecturer" type="xs:string"/>
<xs:element name="Student" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Matric#" type="xs:positiveInteger"/>
<xs:element name="S_Name" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="S_FirstName" type="xs:string"/>
<xs:element name="S_LasttName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Grade" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Professor" minOccurs="0" maxOccurs="unbounded">  
<xs:complexType>
<xs:sequence>
<xs:element name="P_Name" type="xs:string"/>
<xs:element name="Office" type="xs:string"/>
<xs:element name="Email" maxOccurs="unbounded" type="xs:positiveInteger"/>
<xs:element name="Book">
<xs:complexType>
<xs:sequence>
<xs:element name="ISBN" type="xs:string"/> 
<xs:element name="Title" type="xs:string"/> 
<xs:element name="BorrowDate"type="xs:string"/>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="D_Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

(A) DTD (B) XSD

Figure 1.3: DTD and XSD of the XML document in Fig. 1.1



7

Lecturer

Course*

Department

Code

Address

Student*

Matric# GradeS_Name

@D_Name
(ID)

Title

Professor*

P_Name

Office

Book*

ISBN Borrow
Date

Email*

S_FirstName S_LastName

Title

Figure 1.4: The tree structure of the XML schema in Fig. 1.3

For consistency, in the rest of this thesis, object class and relationship type are

used in schema level, and object/object instance and relationship are used in data

level with respect to the semantic concepts.

Object Class

Both DTD and XSD cannot capture and represent the semantic concept ob-

ject class, because there is no way they can distinguish between the object

classes and composite attributes. In DTD and XSD, both of them are repre-

sented as elements having more than one component as their child nodes in

their corresponding XML schema trees.

For example, in Fig. 1.4 we cannot distinguish the internal node Student with

the internal node S Name which are object class and composite attribute

respectively.

OID

In DTD, we can specify the identifier for an element by designing an ID

attribute as its child node. If the element represents an object class, then



8

the ID attribute should be the OID2 of the object class. However, the value

of an ID attribute is required to be unique within the XML document, and

this makes it impossible for some object classes to have ID attributes being

specified in their XML schemas. Furthermore, as ID attribute is a single

attribute, which makes it impossible for an object class to have combined

attributes as its OID.

For example, as shown in Fig. 1.3 (A), because the element Department has

an ID attribute in its DTD as its child node, we know Name is the OID of

the object class Department. However, some other element such as Student,

cannot have ID attribute as its child node, because the same student can take

more than one course, and thus, there will be more than one student element

with the same value of Matric# as shown in Fig. 2.1. Furthermore, composite

attribute S Name cannot be designed as the ID attribute of Student neither,

because ID attribute can only be a single attribute.

In XSD, there is a kind of element node named key element, which is designed

for the same purpose as the ID attribute in DTD. Key element contains a

selector element and a field element. The selector element contains an XPath

expression specifying the set of elements across which the values specified by

the XPath expression of the field element must be unique. The field element

of a key element is similar to the ID attribute in DTD. Although the selector

element limits the scope in which the field element must be unique, it is

still impossible to capture of the OID of some object classes because of the

uniqueness constraint.

For example, in Fig. 1.3 (B), there is a key element named DepartmentKey

2Note OID is a semantic concept meaning the identifier of an object class, which is different
from the ID attribute which is one of the attribute types in DTD.



9

with its selector element as xpath=‘/Department’, and field element as

xpath=‘/Department/@D Name’, which means the value of attribute D Name

must be unique among all instances of Department. However, for element

Student, we cannot specify a key element for it even with the selector el-

ement as xpath=‘/Department/Course/Student’ and the field element as

xpath=‘/Department/Course/Student/@Matric#’, because the scenario that

the same student taking more than one course will violate the uniqueness con-

straint of attribute Matric#.

Relationship Type

The hierarchical structure of an XML schema can be captured and represented

in a tree structure by both DTD and XSD, such as the XML schema tree

in Fig. 1.4. Although the tree structure captures the parent-child (PC)

relationships, without identifying the object classes, there is no way it can

identify whether a PC relationship represent a relationship type between two

object classes. Furthermore, it cannot capture and represent the ternary and

n-nary relationship types without losing semantic information.

For example, in Fig. 1.4, there is a PC relationship between internal nodes

Course and Student, and there is another between internal nodes Student

and S Name. Without further information, there is no way to know there is

a binary relationship type between object classes Course and Student, while

the object class Student has a composite attribute S Name.

Object Attribute & Relationship Attribute

In both DTD and XSD, attributes are represented as simple element or at-

tribute, which are represented as leaf nodes in the XML schema tree. Thus,

it is impossible for them to distinguish object attributes with relationship



10

attributes.

For example, in Fig. 1.4, under the internal node Book, it is impossible to

know that BorrowData is a relationship attribute of the binary relationship

type between Professor and Book, while Title is just an object attribute of

Book.

1.2 Research Problem: Semantics Discovery from

XML

In order to improve the conceptual quality, one needs to discover the intended se-

mantics in the logical XML schemas and data. This requires discovering semantic

information such as object classes, relationship types, OIDs, object attributes and

relationship attributes, as presented in conceptual models for semi-structured data

such as ORA-SS proposed in [22]. We refer to this semantic as the ORA-semantics.

Once discovered, the ORA-semantics is useful not only for users to understand the

data and schemas but also for improving the effectiveness or efficiency of different

applications. In the following, we use the XML data tree in Fig. 1.2 and examples

to illustrate how the availability of such semantics positively impacts different ap-

plications including XML query processing, XML keyword search and XML schema

and data integration.

XML query processing

To process an XPath query, e.g.//Student[Matric# =‘HT001’]/Name in Fig.

1.2, most of the existing approaches match the query pattern to the XML

data to find all matching occurrences. However, if we have the semantics

that Matric# is the OID of object class Student and Matric# functionally



11

determines object attribute Name, after we get the first matching occurrence,

and find a name of the student with his/her matric# being ‘HT001’, we can

stop searching the rest of the data. This is reasonable because each Student

instance should only have one name, and the same student instance may occur

many times in the XML data. With the correct and reasonable functional

dependency between Matric# and Name, we can guarantee that even we

scan the whole data and return all value of Name for that student, all of

them will be the same. Other situations that semantics improves XML query

processing are shown in [67].

XML keyword search

Semantics-based XML keyword search approaches have been proposed to im-

prove search efficiency and quality, such as in [66, 4]. However, the use of

semantics in current studies is still shallow (only on object level, without

touching the relationship). For some queries, e.g., {CS5201, CS5208} in Fig.

1.2, its intuitive meaning is to find the common information of two cours-

es, most existing keyword search approaches in XML domain will return the

LCA [27] (or enhanced LCA such as SLCA [68]) of the two nodes in their

XML data tree. Only by discovering that there is a relationship type between

the object classes Student and Course, one can infer that the meaningful an-

swer of this query should be all the students taking the two courses, e.g., the

student with Matric# of ‘HT001’ is one of the answers. Otherwise, the root

node will be returned, as in most LCA-based XML keyword search approaches

[69, 59, 68]. More details about how semantics can be used to increase the

accuracy of XML keyword search are discussed in [31].

Schema/data integration



12

For XML schema integration, most of the existing approaches (e.g., [3, 35])

match among elements in XML schema and integrate them based on their

structural and linguistic similarities. However, this information is still coarse-

grained, as they do not realize the relationship types between the object

classes, and do not distinguish object attribute with relationship attribute.

For example, in Fig. 1.4, leaf node Grade is a relationship attribute of the

relationship type between object classes Course and Student. Without this

semantics, when we integrate this XML schema with another similar XML

schema, in which object class Student has an object attribute Grade which

means the year of his/her study in school, existing approaches may wrongly

match and integrate these two different attributes which have the same at-

tribute name Grade and the same parent object class Student, because of

their high structural and linguistic similarities.

Furthermore, without identifying the ORA-semantics during the XML schema

integration, existing approaches may encounter many conflicts including struc-

tural conflicts and constraint conflicts. For example, in Fig. 1.4 the object

class Student is a child node of the object class Course, and has a relationship

attribute Grade as its direct child node. In another similar XML schema tree,

the corresponding objet class Student may be designed as parent node of ob-

ject class Course, and the corresponding relationship attribute Grade may be

designed as the direct child node of object class Course. In this case, there is

an ancestor-descendant conflict among these two XML schema tree, and the

attribute Grade may be replicated without knowing that it is a relationship

attribute. More structural conflicts are discussed in [70].

Although semantics-based XML processing is attracting more and more re-

search attention, unfortunately, most practical applications are still semantics-less.



13

The main issue is the availability of such semantic information. As mentioned be-

fore, most existing XML schema languages used by applications, e.g., DTD and

XSD, cannot fully represent the useful semantics such as object class, relation-

ship type, OID, object attribute and relationship attribute. Despite the existence

of semantically rich XML models, e.g., ORA-SS, which is proposed just to cap-

ture the semantic information rather than discovering them, such model still re-

quires manual provision of semantic information (such as specifying the object

classes and relationship types among them, etc.) from the initial design or dur-

ing model transformation from other semantics-less models. We believe only if

the automatic semantics discovery technique is developed to a satisfactory level,

the research achievements in semantics-based query optimization, semantics-based

keyword search, semantics-based schema/data integration and so on, will be widely

adopted by different applications.

Different from the existing semantics inference approaches in XML database[16,

41], which only identify object instances in XML data or object classes in XML

schema, we consider a more comprehensive set of semantic concepts. In particular,

we also discover OID, relationship type, composite attribute and distinguish be-

tween object attribute and relationship attribute. In our work, we define all these

semantic concepts as the ORA-semantics (formal definition will be given in Chap-

ter 2), and propose a novel step-by-step approach to discover the ORA-semantics

with the following 4 steps (including the pre-processing step):

1. (Pre-processing) We discover the properties of each semantic concept and

propose some related heuristics (if any) based on their characteristics in XML

schema (e.g. DTD and XSD) and XML data. Most of these properties are

captured and represented in the semantic model for XML data, ORA-SS.

2. We use the properties of each semantic concept to distinguish object class



14

from other semantic concepts such as role name, composite attribute, ag-

gregational node (which aggregates multiple nodes with identical or similar

meaning by an internal node) and explicit relationship type (which explicitly

represents the relationship type between object classes as an internal node).

In order to distinguish among role name, aggregational node and explicit

relationship type, we also make use of the related heuristics together with

statistic information of them.

3. Together with properties and heuristics discovered in the pre-processing step,

we utilize the statistic information with data mining techniques to identify

the OID for each identified object class. After that, we use the identified

OIDs to distinguish between object attributes and relationship attributes by

the functional/multi-valued dependency extracted from the XML data;

4. We discover the implicit relationship types including IDD relationship types,

and dependent object classes which can only be discovered after knowing the

OIDs of all object classes. We discover them based on the results from the

previous steps and functional/multi-valued dependencies extracted from the

XML data.

1.3 Our Contributions

The main contributions of our work include:

1. We discover and summarize the properties and related heuristics for differ-

ent semantic concepts (e.g. object class, OID, object attribute, composite

attribute, role name, aggregational node, relationship type, relationship at-

tribute and dependent object class) of XML database based on their charac-



15

teristics when they are designed in XML database, including their hierarchical

structures, constraints and linguistic features. These properties and related

heuristics will be used in our automatic semantics discovery approach.

2. We propose a novel approach to automatically discover semantics from XML

schema and XML data. Different from the existing semantics inference ap-

proaches mentioned in [16, 41], which only identify object instances in XML

data or object classes in XML schema with high recall but low precision, our

approach considers a more comprehensive set of semantic concepts. In par-

ticular, we also discover OIDs, role names, aggregational nodes, composite

attributes, relationship types and distinguish between object attributes and

relationship attributes.

3. To validate our automatic semantic discovery approach, we conduct exper-

iments over 15 real world data-centric XML datasets, 18 synthetic XML

datasets and 5 XML datasets translated from real relational datasets by PhD

students doing research in XML. The results show that the ORA-semantics

(including object classes, OIDs, object attributes, composite attributes, role

names, aggregational nodes, relationship types, relationship attributes and

dependent object classes) discovered by our approach has high precision and

recall (i.e., above 90% of precision and recall for internal node classification,

leaf node classification and implicit relationship type identification).

4. We also develop a demonstration system to show the discovered ORA-semantics

by our automatic semantic discovery approach, given an XML data with/without

its corresponding XML schema (e.g. DTD or XSD). Furthermore, users can

also interact with our demonstration system to verify the discovered results,

which will help the revision of other results.



16

1.4 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we explain the am-

biguous concept ‘semantics’ in different domains, and formally define the semantics

(i.e., ORA-semantics) which is going to be discovered from XML database in this

thesis, as well as how the ORA-semantics can be captured by different semantics

data models. In chapter 3, we compare the semantics represented by Ontology

model with the ORA-semantics. We also review different studies about discover-

ing semantics in both relational database and XML database. In chapter 4, we

present our rule-based semantics discovery approach, and its performance studies

are shown in chapter 5. In chapter 6, we introduce a demonstration system based

on our approach introduced in Chapter 4. Our future work is briefly introduced in

Chapter 7. Conclusion is shown in chapter 8.



CHAPTER 2

PRELIMINARY

2.1 What is Semantics ?

Semantics is the study of meaning. The word semantics itself denotes a range of

meanings for different domains, from linguistics, to computer science, and even psy-

chology. Semantics is easily confused with another word, syntax which is the study

of correct combination of the building blocks (words, phrases, or symbols) of a lan-

guage. For example, in [49] the author defined syntax as the study of the principles

and processes by which sentences are constructed in particular languages. In the

following, we will briefly introduce the semantics in linguistics domain, semantics

in ontology domain, semantics in relational/XML database domain and semantics

in programming language domain:

Semantics in Linguistics Domain

For semantics in linguistics domain, it is the study and interpretation of the

meanings of words and phrases, which are used to understand human expres-

17



18

sion through language. Furthermore, it also studies about the relationship

between different linguistic units such as synonym, homonym, antonym, hy-

pernym, hyponym and so on. Usually, the meaning of a word or a phrase

is built by its contextual relations, which means the meaning of it is usually

highly dependent on and reflected by its context.

Semantics in Ontology Domain

Different semantic models (e.g., Resource Description Framework (RDF) [30],

Resource Description Framework Schema (RDFS) [14], Web Ontology Lan-

guage (OWL) [7], and Semantic Web [8]) have been designed by the World

Wide Web Consortium (W3C) to describe the correct meanings of words

or phrases, as well as to connect those words or phrases with the same or

similar meaning. Usually, these semantic data model are represented by di-

rected graphs in which its nodes represent real world concepts or entities and

the edges represent relationships between them. Furthermore, relationships

such as generalization and specialization between concepts or entities are also

represented by the hierarchical structure of the directed graph.

For example, the Semantic Web is designed based on the World Wide Web

and becomes an extension of it by capturing meanings of component metadata

of the web using semantic data model such as RDF, OWL, etc., so that the

data can be interpreted and processed by machines.

Semantics in Database Domain

The term semantics can also be used in conceptual modeling in database do-

main. For example, the ER model is a conceptual model which can capture

the semantics such as entities, relationships among entity as well as attributes

of entities and attributes of relationships. Similarly, ORA-SS is proposed for



19

semi-structured data to capture the semantics such as object classes, relation-

ship types among object classes as well as object attributes and relationship

attributes. To be more specific, semantics here are used to describe some con-

ceptual concepts in schema level rather than data level, which are designed

to represent extra information of a metadata besides its linguistic meanings,

so that they can help increase efficient/effectiveness of different applications,

such as keyword search, query processing, etc.

For example, the ORA-semantics we are going to discover in this thesis refers

to different types of element nodes in XML schema.

Semantics in Programming Language Domain

In programming language domain, there is another understanding of seman-

tics. For this kind of semantics, it is defined by the designers of programming

languages to represent the meaning of an expression as the computational

result the expression contains when it is executed on machines. To be more

specific, different programming languages may represent the same semantics

with different syntaxes. For example, for the same semantics that stores re-

sult of variable ‘x’ and ‘y’ in the variable ‘x’, different syntaxes are needed for

different programming languages, such as ‘x += y’ or ‘x = x + y’ in ‘C++’

and ‘Java’, ‘ADD x, y’ in Assembly languages, ‘ADD Y TO X GIVING X’

in ‘COBOL’ and so on.

As the semantics in linguistics domain and in programming language domain

are out of the scope of our work, we only consider different semantics in ontology

domain and in database domain. More details about the semantics in these two

domains will be discussed in Chapter 3. In the following, we will formally define

the ORA-semantics, which is the scope of semantic concepts being considered in



20

this thesis, and the results we are going to discover from XML by our approach

introduced in this thesis.

2.2 ORA-semantics

In this section, we will describe the semantic concepts used in this thesis. We

refer to the tree structure derived from an XML schema as an XML schema tree,

which not only captures the data but also their hierarchical structures in the XML

schema. In the XML schema tree, there are two types of node: internal node

which has at least one node as its child node, and leaf node which does not have

any node as its child node. In the following we will introduce 11 semantic concepts

in the XML schema tree: object class, object identifier (OID), object attribute,

explicit relationship type, implicit relationship type, relationship attribute, identifier

dependency (IDD) relationship type, dependent object class, role name, composite

attribute and aggregational node.

We define the above semantic concepts as the ORA-Semantics, which is the

scope of the semantic concepts we consider in this thesis. The ORA-semantics is

based on the semantic concepts captured by the ER model [15] and ORA-SS [22],

especially ORA-SS, which is a semantically rich data model for semi-structured

data. In the next section we will discussed how the ORA-semantics can be captured

and represented by them and other data models.

Concept 1. ORA-semantics (Object-Relationship-Attribute-semantics)

In an XML schema tree, the ORA-semantics is the identification of object class

with its object identifier (OID) and object attributes, explicit/implicit relationship

type with their relationship attributes, dependent object class with its related IDD

relationship type, role name, composite attribute and aggregational node. Each



21

Name

Supplier*

Project *

Part*

Part#

Quantity

Supplier#

Price

Location@Project#
(ID) Funding

Color

Employee*

Name Phone*

ContactInfo

Qualification*

DataDegree University

Qualifications

Address Fax #
Contact #

root

@E#
(ID)

Borrow*

Book

ISBN

Title

Date

Author*

Page
ToC# Page

From

Chapter*

Paper*

PaperID

Name Author*

Year

Has

Child*

Age

Project
Manager

@E#
(IDREF)

Social 
Security #

Name

Figure 2.1: An XML schema tree

particular semantic concept in ORA-semantics is called an ORA-semantic concept.

In the following we will explain each ORA-semantic concept in the ORA-

semantics, and illustrate them using the XML schema tree in Fig. 2.1 which is

derived from a DTD. Among the XML schema tree, each node with a ‘∗’ as its

superscript means it is a repeatable node, which means it can occur multiple times

with the same XPath in its corresponding XML data; each node with a ‘@’ as the

first letter in its tag name means it is defined as an attribute node1 in its DTD; each

node with an ID or IDREF in the last part of its tag name means it is defined as

an ID attribute or IDREF attribute in its DTD.

Object Class, OID & Object Attribute

In the XML schema tree, object class is an internal node which represents

a real world entity or concept. Along with the object class, there are at

least two object attributes as its child nodes or descendant nodes which are

designed to store and describe the information of the object class. Among

the object attributes of each object class, there is an object identifier (OID)

1Recall that in DTD, a node can either be defined as an element node or an attribute node.



22

which is designed to identify the object class, which means the value of the

OID can uniquely identify each object instance of the object class.

For example, in Fig. 2.1 the internal node Project is an object class with its

OID Project# which is defined as an ID attribute in its DTD, and another

two leaf nodes Location and Funding are the object attributes of the object

class Project.

Explicit Relationship Type & Implicit Relationship Type

Two or more object classes may be related to each other through a relationship

type. In the XML schema tree, the relationship type can be divided into two

categories based on their structures: explicit relationship type and implicit

relationship type.

• Explicit relationship type is explicitly designed as an internal node

in the XML schema tree between the object classes, which participate

in this explicit relationship type.

For example, in Fig. 2.1 the internal node Borrow is an explicit re-

lationship type between the object classes Employee and Book, which

describes the relationship that an employee borrowing book(s).

• Implicit relationship type is not explicitly designed as any node, and

it is represented as one or more successive edge(s) in hierarchical order in

the XML schema tree among the object classes, which participate in this

implicit relationship type. However, not every edge in the XML schema

tree represents an implicit relationship type, and we only consider those

edges between the object classes.

For example, among the object classes Project, Supplier and Part, there

is an implicit relationship type describing the relationship type that



23

a supplier supplies part(s) for project(s). However, the edge between

Project and its child node Location, just represents the Location is an

object attribute of the object class Project.

For both explicit relationship type and implicit relationship type, their de-

grees are the number of object classes which participate in them.

Relationship Attribute

Similar to object class and object attribute, a relationship type (both explicit

relationship type and implicit relationship type) may have one or more at-

tribute(s) to store and describe its information. We call these attributes as

relationship attributes. However, relationship attribute is not necessary for a

relationship type.

For explicit relationship type, its relationship attributes are designed as its

child nodes or descendant nodes. On the other hand, for implicit relationship

type, its relationship attributes locates in the lowest level among all the object

classes which participate in the implicit relationship type.

For example, the leaf node Data in Fig. 2.1 is a relationship attribute of the

explicit relationship type Borrow, which is its parent node. For example, in

Fig. 2.1, given the implicit relationship type among the object classes Project,

Supplier and Part, its relationship attributes (if any) will be designed as the

child nodes or descendant nodes of the object class Part, such as the leaf node

Quantity.

Dependent Object Class & IDD Relationship Type

Similar to the relationship between entity and weak entity in the ER mod-

el, dependent object class cannot be identified by its own attributes alone,



24

but has to be identified by its relationship with its parent/ancestor object

class(es), and this relationship is called identifier dependency (IDD) relation-

ship type. In order to uniquely identify each instance of a dependent object

class, the dependent object class needs the OID(s) of its parent/ancestor ob-

ject class(es) which participates in this IDD relationship type together with

its own attributes.

For example, in Fig. 2.1, given the object class Book, the internal node

Chapter is a dependent object class and there is an IDD relationship type

between the dependent object class Chapter and object class Book, because

without specifying a book by its ISBN, there is no way we can uniquely

identify a chapter by its attribute alone, such as chapter number. Thus, the

OID of the dependent object class Chapter is the combination of C# and

ISBN, which is the OID of object class Book.

Role Name

Role name is a specialization of an object class with an alias or a more

specific name of that object class. In the XML schema tree, role name uses

the IDREF(S) attribute of DTD or XSD as its child node to reference the

original object class which stores its full information.

For example, in Fig. 2.1 the internal node ProjectManager is a role name of

the object class Employee by using its child node E#, which is an IDREF

attribute of DTD or XSD to reference the OID of the object class Employee,

which is an ID attribute of DTD or XSD.

Composite Attribute

Composite attribute is a combination of more than one related attributes,

which can be object attributes, relationship attributes. Because of this, in the



25

XML schema tree a composite attribute must contain multiple components as

its child nodes, each of which can be a single attribute or another composite

attribute.

For example, in Fig. 2.1 the internal nodes ContactInfo is a composite at-

tributes which combines three object attributes Address, Contact# and Fax#

for its parent object class Supplier.

Aggregational Node

In the XML schema tree, an aggregational node is an internal node which

aggregates all its child nodes with identical or similar meaning, and the ag-

gregational node serves as a structural node in the XML schema tree without

extra semantics information besides the semantics of its child nodes. An ag-

gregational node can only aggregate a single kind of semantic concept at a

time, and these semantic concepts can be object class, explicit relationship

type or composite attribute.

For example, in Fig. 2.1 the internal node Qualifications is an aggregational

node which aggregates the composite attribute Qualification.

2.3 ORA-semantics in Other Models

Recall that the ORA-semantics is proposed based on the semantic concepts cap-

tured by the ORA-SS and ER model. In order to let readers have a better under-

standing of the ORA-semantics, in this section we will discuss whether and how

these ORA-semantic concepts can be captured and represented by the ORA-SS,

ER model, and other data models.



26

2.3.1 ORA-SS

Essentially, all ORA-semantic concepts (except role name) introduced in Section

2.2 comes from the semantic concepts captured in ORA-SS (Object-Relationship-

Attribute Model for Semi-Structured Data), which is a semantically rich XML

model. ORA-SS is proposed to capture and represent the semantics in XML data

and XML schema. The main idea of ORA-SS is capturing and representing three

main semantic concepts: object classes, relationship types and attributes, as high-

lighted in its name. The ORA-SS model consists of 4 kinds of diagrams, including

ORA-SS schema diagram, functional dependency diagram, ORA-SS instance dia-

gram and ORA-SS inheritance diagram. Here we only focus on the ORA-SS schema

diagram, which is closely related to the ORA-semantics and capable of capturing

the following semantic concepts:

Object Class

• Attributes of object classes;

Relationship Type

• Attributes of relationship types;

• Degree of n-nary relationship types;

Attribute

• Identifier attribute;

• Composite attributes;

In ORA-SS, an object class is represented as a labeled rectangle in the ORA-SS

schema diagram. An object class has a name and a set of attributes to describe and

store the information of this object class. Attributes of an object class are represent-

ed as labeled circles, and there are directed edges pointing from the corresponding

object class to them. Among these attributes, one attribute or a combination of



27

more than one attribute is chosen to be the OID of the corresponding object class,

and the OID is expressed as filled circle.

Two object classes are connected and related to each other through a binary re-

lationship type with degree of 2. In ORA-SS schema diagram, a binary relationship

type is expressed as a labeled diamond which is optional and it is assumed on any

directed edge from a parent object class to a child object class, which both partic-

ipate in the relationship type. The relationship type is labeled with its name, its

degree and the participation constraints of both two object classes. For a ternary

relationship type with degree of 3, there exist a binary relationship type between

two object classes and another relationship type between the other object class

and the binary relationship type. Similar to the attribute of an object class, an

attribute can also belong to a relationship type and be used to store information of

it. The difference between object attribute and relationship attribute is the direct-

ed edge pointing to the relationship attribute (also expressed as a labeled circle)

will be labeled with the name of the corresponding relationship type.

IDD relationship type and dependent object class can also be captured by ORA-

SS. An IDD relationship types is represented in an ORA-SS schema diagram by a

diamond labeled with IDD, and the child node of the diamond is the corresponding

dependent object class. Furthermore, in an ORA-SS schema diagram, a compos-

ite attribute is represented as a labeled circle with directed edge pointing to its

component attributes. Although the ORA-SS model can capture and express a

lot of other information and constraints, such as cardinality of attributes, ordering

of object classes and attributes, etc., we only focus on the ORA-semantics in this

thesis. For more details about ORA-SS, please refer to [22, 39].

Example 2.1: In Fig. 2.2 we show the ORA-SS schema diagram of the XML

schema tree in Fig. 2.1. There is a binary relationship type SP between object



28

Supplier

Supplier#

Part

Part# Color

Name

Employee

E# Book

ISBN
Date

Name

Phone
*

Has,2,0:n,1:1

SP,2,1:n,1:n

Borrow,
2,0:n,0:1

BorrowContactInfo

Address

Contact#

Fax#

Project

LocationProject# Funding
Project

Manager

JP,2,
1:1,1:1

Quantity

JSP

Price

SP

SPJ,3,
1:n,1:n

Qualification*

Degree

Date

University
Title

Author
*

Chapter

C#

PageFrom

PageTo

Paper

PaperID Year

EP,2,
0:n,1,n

Author
*

Name

Child

Social 
Security #

AgeName

SPJE,2,1:1,1:1

SPJ

SPJS,2,1:1,1:1

IDD

2,1:n,1:1

Figure 2.2: An ORA-SS schema diagram of SPJ (Project-Supplier-Part)

classes Supplier and Part with relationship attribute Price; a ternary relationship

type SPJ among object classes Supplier, Part and Project with relationship at-

tribute Quantity. In Fig. 2.2, it also captures the IDD relationship type between

object class Book and dependent object class Chapter by a diamond labeled with

‘IDD’ between them. 2

2.3.2 Relational Model & ER Model

The relational model [17] is a popular used data model for commercial data

management. In the relational model, data is represented and stored in different

relations. Different constraints including primary key constraint, foreign key con-

straint and domain constrain can be captured in the relational model. However,

the relational model does not capture semantic information such as object class,

relationship type and other ORA-semantic concepts introduced in Section 2.2.

On the other hand, ER (Entity-Relationship) model can be an abstract

and conceptual representation of database, which is also designed to capture and

represent the semantics in terms of object classes and the relationship types among



29

them, underlies the data. In an ER diagram, an object class is represented as an

entity with a set of attributes which describes the property of the entity. Among

the attributes of an entity, there is an attribute or a combination of attributes,

which is specified as the primary key of the entity, and the value of this attribute

can uniquely identify any instance of this entity. The primary key of an entity

corresponds to the OID of an object class in the ORA-semantics. In an ER dia-

gram, relationship types are explicit designed as diamond having edges connecting

to entities participating to this relationship type. Thus, by attaching the attributes

to the corresponding entities or relationship types, the ER model can distinguish

attributes of entity and attributes of relationship type. Furthermore, n-nary rela-

tionship types, weak entities with its partial key and ID relationship types can also

be captured and represented by the ER model.

ER model can capture and represent most of the ORA-semantic concepts (ex-

cept aggregational node) just with different terms. Recall that ORA-SS can also

capture and represent most of the ORA-semantic concepts. The main difference

between ER model and ORA-SS is ER model does not capture the hierarchical

structure, while ORA-SS does. This is because ORA-SS is proposed for semi-

structured data, especially for XML, which is represented in hierarchical structure.

Example 2.2:

In Fig. 2.3 we show the corresponding ER diagram of the XML schema tree in

Fig. 2.1. Entities Supplier, Part, Project, Employ, Book and Child are expressed

by rectangles with their primary keys expressed by underlined eclipses in the ER

diagram. Weak entity Chapter and its partial key are expressed by double-lined

rectangle and dot-lined eclipse respectively. Furthermore, the ER diagram also

captures the relationship types by diamonds having edges pointing to their rela-

tionship attributes, such as binary relationship type SP, ternary relationship type



30

Supplier

Part

SP

Supplier#

Name

Price

Degree Data University

Part#

Color

Project

ContactInfo

n

m

SPJ

Quantity

m n Project
Manager

m
Employee E#

Name

Phone

1

Borrow

Book

Date

Title

Author

ISBN
ID

Chapter

C# Page
From

Page
To

m

1
Has

Child

m

1

Social 
Security #

Name

Age

Address Fax#
Contact#

Qualification

Location

Funding

Project#

Figure 2.3: An ER diagram of SPJ (Project-Supplier-Part)

SPJ and ID relationship type between entity Book and weak entity Chapter.

Although this ER diagram cannot capture the aggregational node Qualifications

as in Fig. 2.1, actually it does not loss any semantics information. It is because

Qualifications in Fig. 2.1 is just a structural node representing there can be more

than one qualification for an employee, which can also be well captured by ER

model. 2

2.3.3 A Semantic Network-Based Model for XML

In order to capture and represent the semantics that underlies the XML database,

another semantic networked-based model for XML is proposed in [24]. (Latter

we will show many semantics concepts such as ternary/n-nary relationship type,

relationship attribute, etc., actually cannot be captured.) This model represents

the XML database with the following 4 major components in a directed diagram:



31

• A series of basic nodes and complex nodes, which represent the attributes and

real-world object classes respectively;

• A series of directed edges, which represent the relationship types between the

attribute and object class, and the relationship type between object classes;

• A series of labels, which specify each relationship type as one of the following

4 relationship type: generalization, association, aggregation and of-property ;

• A series of constraints defined to restrict the object classes/relationship types.

In the directed diagram, each object class is represented as a complex node hav-

ing directed edges pointing to a set of basic nodes, which represent the attributes

of this object class. Although uniqueness constraints can be applied to the at-

tributes of an object class, it is not enough to capture the OIDs of object classes

in this model, especially when there are more than one attribute of an object class

restricted by the uniqueness constraint, or when the OIDs is comprised by more

than one attribute of the object class.

Each directed edge in the semantic network-based model represents a relation-

ship type between the two nodes, which are linked by this directed edge (i.e., from

the starting node pointing to the ending node). However, all these relationship

types only capture the connection between two nodes, which means they can only

express binary relationship type. Furthermore, there is no way it can distinguish

the attributes of object class with the attributes of relationship type, as all at-

tributes are expressed as basic node pointed by an object class; IDD relationship

type and dependent object class cannot be captured neither.

Example 2.3: In Fig. 2.4 we show the corresponding semantic network-based

diagram of the XML schema tree in Fig. 2.1. Although this diagram captures

the object classes Project, Supplier, etc., and the binary relationship types between



32

Name

Supplier

Project 

Part*

Part#
(unique)

Quantity

Supplier#
(unique)

Price

Location
Project#
(unique) Funding

Color

Employee

Name

Phone

ContactInfo Qualification

root

E#
(unique)

Book

ISBN
(unique) Title

DateAuthor Chapter

Paper*

PaperID
(unique) Name Author

Year Child*

Social 
Security #
(unique)

Name Age

Project
Manager

E#
(reference 
Employee)

s[1..N]

p

a a
a[1..1]

p

a[1..N]

a

p
a p p

s[1..N]
s[1..1]

a[1..N]
homog
eneous

a[1..N]

p

a

p
a

p

p

a a
[1..N]

a

a

a a

a[1..1] a[1..1]

s[0..N] s[0..N]

s[0..N]

a
[1..N]

a
[1..N]

Figure 2.4: An semantic network-based diagram of SPJ (Project-Supplier-Part)

them, it cannot specify their OIDs by using uniqueness constraint alone. Also, it

cannot capture the ternary relationship type among Project, Supplier as well as

Part, and cannot distinguish between attribute of object class Color and attribute

of relationship type Quantity. Furthermore, the dependent object class Chapter as

well as the IDD relationship type between it and its parent object class Book are

lost by this model. 2

2.3.4 Object Exchange Model & DataGuide

The Object Exchange Model (OEM) [45] is proposed to describe an XML data

with a labeled directed graph. In the OEM, objects are represented as vertices and

relationships are represented as edges. There are two kinds of object in the OEM:

atomic object and complex object. Atomic object does not have any outgoing edge,

but it contains a value from one of the basic atomic data types such as string,

integer, etc.; while complex object has at least one outing edge pointing to other

complex objects or atomic object. The OEM only represents an instance of an XML



33

document, and a DataGuide [26] model can be used to represent the schema of an

OEM instance graph. For an OEM instance graph, the label path of every object

in it is only appear exactly once in its corresponding DataGuide.

Given an OEM instance graph with its corresponding DataGuide, let us discuss

how they can capture the semantic concepts in the ORA-semantics. Because there

are only two kinds of node in OEM and DataGuide: atomic object and complex

object, although the semantic concept object class in our ORA-semantics can be

represented by the complex object in DataGuide, it still cannot distinguish the

object class with some other semantic concepts such as composite attribute, ag-

gregational node and dependent object class in the ORA-semantics. Similarly, all

attributes are represented as the atomic object in OEM and DataGuide, which

make it not possible to distinguish object attribute and relationship attribute in

the ORA-semantics. For relationship type, only the binary relationship type be-

tween two complex objects can be captured by OEM and DataGuide, while the

ternary and n-nary relationship type, as well as the OID and IDD relationship

type are not possible to be captured by OEM and DataGuide.

Example 2.4: In Fig. 2.5 we show the corresponding DataGuide of the XML

schema tree in Fig. 2.1. The DataGuide captures the hierarchical structure of

the XML schema. However, as mentioned above, it cannot distinguish among the

object class Supplier, composite attribute ContactInfo, aggregational node Qual-

ifications and the dependent object class Chapter ; it cannot identify the ternary

relationship type among Project, Supplier and Part as well as the IDD relationship

type between object classes Book and dependent object class Chapter ; it cannot

distinguish between the object attribute Color with relationship attributes Quan-

tity and Price. 2



34

Na
m

e

Su
pp

lie
r

Part

Pa
rt#

Q
uantity

Supplier#

Price

Location

Project# Funding

C
ol

or

Employee

Name

Phone

C
ontactInfo

D
at

a

Deg
re

e University

Qualific
ations

Q
ua

lif
ic

at
io

n

Address

Fax #

C
on

ta
ct

 #

Project 

E#

Bo
ok

Title
ISBN

Date

Author

PageTo

C#

Pa
ge

Fr
om

C
ha

pt
er

N
am

ePaperID

Paper
Author

Year

Child

N
am

e

So
ci

al
 S

ec
ur

ity
 #

Age

ProjectManager

E#

1

2

4
5

6

7

17

19
18

20

8

21

35

36
37

38
39 40

41

3

9

10

11

22

43
42

44

12

13

23

26

2524 27

46

45

47

15
14

29

28

30

31
34

32

33

Figure 2.5: An DataGuide diagram of SPJ (Project-Supplier-Part)

2.4 Chapter Summary

In this chapter, after clarifying the ambiguous world ‘semantics’ in different do-

mains, we introduce 11 semantic concepts which will be used in this thesis: object

class, object identifier (OID), object attribute, explicit relationship type, implicit

relationship type, relationship attribute, identifier dependency (IDD) relationship

type, dependent object class, role name, composite attribute and aggregational

node. We define them as the ORA-semantics, and call each single semantic con-

cept included in ORA-semantics as an ORA-semantic concept.

The ORA-semantics is proposed based on the semantics concepts captured and

represented in ER model and ORA-SS. Different from the ER model, ORA-SS can

also capture the hierarchical structure of the underlying data. Another semantic

network-based model for XML is proposed to capture the semantics that underlies

the XML data and XML schema, many ORA-semantic concepts cannot captured by



35

this model, such as OID, ternary/n-nary relationship type, relationship attribute,

etc. Object exchange model and DataGuide are proposed to capture the hierar-

chical structure XML data and XML schema. However, they only distinguish two

kinds of nodes, atomic object and complex object. It is far from enough to dis-

tinguish between object class and composite attribute, and DataGuide also cannot

capture the ternary/n-nary relationship type as well as relationship attribute.

To summarize the above discussion, we list ORA-semantic concepts and show

whether they can be captured and represented by the above 4 models. (i.e., ER

model, ORA-SS, semantic network-based model, and DataGuide) in Table 2.1.

Table 2.1: ORA-semantic concepts supported in different models

Semantic
ER Model ORA-SS Network-based DataGuide

Model

Object Class 3 3 38 38

OID 3 3 8 8

Object Attribute 3 3 38 38

Binary Relationship Type 3 3 38 38

N-nary Relationship Type 3 3 8 8

Relationship Attribute 3 3 8 8

IDD Relationship Type 3 3 8 8

Dependent Object Class 3 3 8 8

Role Name 3 8 8 8

Composite Attribute 3 3 3 8

Aggregational Node 8 3 8 8

Note that ‘38’ means although the corresponding ORA-semantic concept can

be represented in this model, but it also represents many other ORA-semantic

concepts with the same notation. For example, although object class can be rep-

resented as a complex object in OEM & DataGuide, other ORA-semantic concept

such as composite attribute is also represented as a complex object in this model.



CHAPTER 3

RELATED WORK

As discussed in Chapter 2, in this thesis we only consider the semantics in ontology

domain as well as the semantics in database domain. In this chapter, we will review

the semantics captured and represented in different ontology languages (i.e., RDF,

RDFS and OWL), and compare them with the semantics captured by our ORA-

semantics in XML database.

Furthermore, because of the structural flexibility of XML, discovering semantics

in XML is very challenging and attracts little attention from researchers. We will

also review the related works about discovering semantics from relational database

and related works about discovering semantics from XML database in this chapter.

36



37

3.1 Ontology

3.1.1 Semantics in Ontology

In order to make information more easily understood and accessed by machines,

different ontology languages (such as RDF, RDFS, OWL, etc.) have been pro-

posed to model the real world concepts using the corresponding ontologies with

their semantics being explicitly captured in the corresponding semantic models.

For example, the World Wide Web is constructed and organized by billions of un-

structured documents, which makes it can be easily understood by human being

but cannot be understood and accessed by machines. In order to solve this prob-

lem, the Semantic Web has been proposed by the W3C to organize the information

in the World Wide Web with a more machine-friendly way, by building the web on

the RDF, which is a framework for describing Web resources.

Usually, related ontologies are designed in a huge knowledge base in a partic-

ular domain, and they must be designed by some domain experts to ensure their

accuracy. For example, the Gene Ontology Project 1 is a huge knowledge base

of bioinformatics and it is proposed and designed to standardize the representa-

tion of genes of different species; the TGDdataset 2 is a knowledge base about the

association among traditional Chinese medicine, genes and diseases.

In the following we will introduce 3 frequently used ontology languages: RDF,

RDFS and OWL.

3.1.2 Resource Description Framework & RDF Schema

Resource Description Framework (RDF) [30] is a W3C standard proposed to de-

scribe Web resources, such as the color, year, and type of a wine. RDF was proposed

1http://www.geneontology.org/
2http://code.google.com/p/junsbriefcase/wiki/TGDdataset



38

to provide a way for describing information for computer applications to understand

and process, rather than for human being. RDF documents are published in XML

format so that they can be exchanged between different applications easily.

RDF uses a triple to describe any resource, and the triple contains a resource,

a property and a property value.

• A Resource is a thing which can have a URI (Uniform Resource Identifier),

such as ‘http://www.w3.org/RDF/’.

• A Property is a thing which is used to describe the resource, such as the

name of a resource.

• A Property Value is the value of a property.

Example 3.1: In Fig. 3.1, we show a simple RDF document describing a wind.

Recall that RDF documents are written in XML, in Fig. 3.1, <rdf:RDF> is con-

sidered as the root node of this RDF document, and xmlns:rdf and xmlns:food

specify the namespaces for elements with prefixes rdf and food respectively. The el-

ement <rdf:Description> describes the resource Grape identified by the attribute

rdf:about and elements <food:color> and <food:year> describe the properties

color and year with their corresponding property values of the resource. 2

With the triple (resource, property, property value), the ontology language RDF

can be used to describe any resources in the real world. Although RDF can capture

the binary relationship type between resources by indicating the relationship type

and another resource using the property and property value respectively, it cannot

capture the ternary or n-nary relationship types. Furthermore, RDF can only

describes resources in data instance level, and cannot represent these resources in

a higher level, the schema level, so that it can be designed and understood more

easily.



39

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:food=""http://www.w3.org/TR/2003/owl/food#">

<rdf:Description rdf:about="resource="http://www.w3.org/TR/2003/owl/wine">
<food:color>Red</food:color>
<food:year>1998</food:year>

</rdf:Description>

</rdf:RDF>

Figure 3.1: An RDF document describing the resource Grape.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Wine" />

<rdfs:Class rdf:ID="WineGrape">
<rdfs:subClassOf rdf:resource="#Wine"/>

</rdfs:Class>

</rdf:RDF>

Figure 3.2: An RDFS document describing the resources Grape and WineGrape.

RDF schema (RDFS) [14] is proposed as an extension to RDF for capturing

the semantics in schema level and let designer design a set of classes with the same

properties in any particular application domain. Classes in RDFS are similar to

the classes in object oriented programming languages and XML schemas in XML

database. With the ontology language RDFS, resources can be defined as instances

of classes, as well as subclass/superclass of other classes.

Example 3.2: In Fig. 3.2, we show a RDFS document describing 2 classes Grape

and WineGrape with element <rdfs:Class>, and uses element <rdfs:subClassOf>

as a child node of class WineGrape to define it as a subclass of class Grape. 2

Besides defining classes and subclasses, RDFS language can also define sub-

property of a defined property with element <rdfs:subPropertyOf>, as well as



40

specifying the domain and value range of a property with <rdfs:domain> and

<rdfs:range> respectively. With these elements, RDFS can represent the hierar-

chical structure of different classes, similar to DTD or XSD capturing the hierar-

chical structure of XML schema. However, although the hierarchical structure of

classes can be captured by RDFS, it still cannot fully capture the relationship types

between classes, especially for ternary and n-nary relationship types. The only re-

lationship types can be captured are those directly represented in the hierarchical

structure. To be more precise, the hierarchical structure only captures the binary

relationship type such as class-subclass relationship type between two classes which

are directly connected with each other in the corresponding hierarchical structure

of the RDFS document.

3.1.3 Ontology Web Language

Ontology Web Language (OWL) [7] is proposed based on RDF/RDFS and to ex-

tend the description ability of RDF/RDFS to better describe the ontologies. In

order to be compatible with RDF/RDFS, OWL is also written in XML format,

and it inherits many predefined elements in RDF/RDFS such as <rdf:resource>,

<rdfs:subClassOf>, <rdfs:subPropertyOf>, <rdfs:domain> and <rdfs:range>,

etc.

Different from the triples in RDF, OWL model uses two basic components class

and property to capture the semantics in schema level. Correspondingly, OWL uses

instances of class and relationship between these instances to capture and represent

the semantics in the real world in data level. Similar to RDF and RDFS, the gold

of OWL is to make the data easier for machine to understand. In the following,

we will introduce the two basic components of OWL language, class and property,

and corresponding examples will be given based on the OWL document shown in



41

Fig. 3.33. Furthermore, in Fig 3.4 we show an undirected graph which captures

the hierarchical structure of the OWL document in Fig. 3.3.

Class

For a real world concept or entity, it is defined and represented as class by the

element <owl:Class> in OWL. OWL also inherits the element <rdfs:subClassOf>

from RDFS to capture the superclass-subclass relationship types among classes.

Similar to the object instances of an object class in ORA-semantics, in OWL a

class can also has its instances, which are called individuals in OWL.

Example 3.3: In Fig. 3.3, the OWL document defines the classes Food, Wine,

Grape, WineGrape, VintageYear, WineDescriptor and WineColor in line 1, 2, 5,

8, 12, 24 and 25. Furthermore, as is shown in Fig. 3.4, it also defines class

WineGrape as a subclass of class Grape, which is also a subclass of class Food, and

class WineColor as a subclass of class WineDescriptor. 2

Property

In OWL, there are two kinds of properties, datatype property and object prop-

erty. For a datatype property, defined by an element <owl:DatatypeProperty>

in OWL, it describes the relation between a class and a RDF literals/an XSD

datatype. The corresponding class is specified by a subelement of datatype prop-

erty <rdfs:domain>, while the RDF literals/XSD datatype, which contains built-

in simple datatypes such as string, boolean, integer, etc., is specified by another

subelement <rdfs:range>. Essentially, the datatype property is designed to rep-

resent the attribute-value relation, similar to the attribute in our ORA-semantics.

3For simplicity, we ignore the document header and namespace specification.



42

1.  <owl:Class rdf:ID="Food"/>
2.  <owl:Class rdf:ID="Wine">
3.   <rdfs:subClassOf rdf:resource="&Food"/>
4.  </owl:Class>
5.  <owl:Class rdf:ID="Grape"/>
6.    <rdfs:subClassOf rdf:resource="&Food" />
7.  </owl:Class>
8.  <owl:Class rdf:ID="WineGrape">
9.    <rdfs:subClassOf rdf:resource="&Grape" />
10. </owl:Class>
11. <WineGrape rdf:ID="CabernetSauvignonGrape" />
12. <owl:Class rdf:ID="VintageYear" />
13. <owl:DatatypeProperty rdf:ID="yearValue">
14.   <rdfs:domain rdf:resource="#VintageYear" />
15.   <rdfs:range rdf:resource="&xsd;positiveInteger"/>
16. </owl:DatatypeProperty>
17. <VintageYear rdf:ID="Year1998">
18.   <yearValue rdf:datatype="&xsd;positiveInteger">1998</yearValue>
19. </VintageYear>
20. <owl:ObjectProperty rdf:ID="madeFromGrape">
21.   <rdfs:domain rdf:resource="#Wine"/>
22.   <rdfs:range rdf:resource="#WineGrape"/>
23. </owl:ObjectProperty>
24. <owl:Class rdf:ID="WineDescriptor" />
25. <owl:Class rdf:ID="WineColor">
26.   <rdfs:subClassOf rdf:resource="#WineDescriptor" />
27. </owl:Class>
28. <owl:ObjectProperty rdf:ID="hasWineDescriptor">
29.   <rdfs:domain rdf:resource="#Wine" />
30.   <rdfs:range rdf:resource="#WineDescriptor" />
31. </owl:ObjectProperty>
32. <owl:ObjectProperty rdf:ID="hasColor">
33.   <rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
34.   <rdfs:range rdf:resource="#WineColor" />
35. </owl:ObjectProperty>
36. <owl:ObjectProperty rdf:ID="hasVintageYear">
37.   <rdfs:domain rdf:resource="#WineGrape" />
38.   <rdfs:range rdf:resource="#VintageYear" />
39. </owl:ObjectProperty>

Figure 3.3: An OWL document describing the ontology of Wine.



43

<owl:Class rdf:ID="Food"/>

<owl:Class rdf:ID="Wine"> <owl:Class rdf:ID="Grape"/>

<owl:Class rdf:ID="WineGrape">

<owl:Class rdf:ID="VintageYear" />

<owl:ObjectProperty 
rdf:ID="madeFromGrape">

<owl:DatatypeProperty 
rdf:ID="yearValue">

Range

Domain

<owl:Class rdf:ID="WineDescriptor" />

<owl:Class rdf:ID="WineColor">

SubClassOf SubClassOf

SubClassOf

SubClassO
f

<owl:ObjectProperty 
rdf:ID="hasWineDescriptor">

Domain
R

an
ge

<owl:ObjectProperty 
rdf:ID="hasColor">

SubPropertyOf

Range

D
om

ain

<owl:ObjectProperty 
rdf:ID="hasVintageYear">

D
om

ai
n

R
an

ge

Figure 3.4: A undirected graph capturing the hierarchical structure of the OWL
document in Fig. 3.3

Example 3.4: In Fig. 3.3, given a class VintageYear being defined in the OWL

document, in line 13-16 a datatype property yearValue is being defined with its

domain as class VintageYear and its range as positiveInteger, which is a basic

XSD datatype. This datatype captures the semantics that class VintageYear has

a property yearValue with its value as a positive integer. The same semantics can

be captured using our ORA-semantics by defining an object class with an object

attribute, whose value is a positive integer. 2

Another property in OWL is called object property, represented as an ele-

ment <owl:ObjectProperty> in OWL. Object property is proposed to describes

the relationship type between two classes, which are specified by the elements

<rdfs:domain> and <rdfs:range>. To be more precise, the domain element of

an object property specifies the class that can have this kind of object property,

and the range of an object property specifies the class that having a relationship



44

type with the class specified by the domain element. Similar to the class in OWL,

OWL also inherits the element <rdfs:subPropertyOf> from RDFS to define a sub-

property of an object property. If the sub-property does not redefine its domain

and range, it will inherit the domain and range of its super-property.

Example 3.5: In Fig. 3.3, line 20-23 define an object property named made-

FromGrape with its domain being defined as Wine and range being defined as

WineGrape, it means there is a binary relationship type between class Wine and

class WineGrape with the semantics that wine is make from wine grape, as is shown

in Fig. 3.4. Line 32-35 define an object property hasColor which is a sub-property

of another object property hasWineDescriptor. Because hasColor only redefines

its range as class WineColor, it will inherit the domain Wine from its parent ob-

ject property hasWineDescriptor, and represent a binary relationship type between

class Wine and class WineColor. 2

Although OWL uses object properties to capture the binary relationship type

between classes, there is impossible for it to capture the ternary and n-nary relation-

ship types between classes, as the object property can only connect to two classes

by its subelement domain and range. Furthermore, OWL also cannot capture the

relationship attribute, because attributes are represented by datatype properties

in OWL, while these datatype properties can only connect to classes. This means

in OWL the object attributes and relationship attributes are mixed together, and

there is no way it can distinguish them.



45

3.1.4 Differences: Semantic in Ontology vs. Semantics in

XML

From the previous introduction about ontology languages, especially OWL, it seems

that the semantics captured by ontology model, which is the semantic model built

with ontology languages (e.g. OWL), is similar to the semantics in our ORA-

semantics (such as object class and relationship type). This makes the semantic

model built by ontology languages seems be more informative and can be more

applicable for different applications. However, the XML data model and the ORA-

semantics hidden in XML cannot be replaced by them for the following two reasons:

The design purposes of ontology model and XML model are different

Ontology model is frequently used to design knowledge bases in different domains.

First of all, because of the design purpose of an ontology knowledge base is to create

an authoritative, organized, and huge collection of data in a particular domain for

different people or applications to share and utilize. Thus, it is usually designed to

be as complete as possible, trying to capture as much concepts and relationships

as possible in the corresponding domain, which makes the corresponding ontology

model complex and huge. The existing ontology knowledge bases are also domain

specified, such as the Gene Ontology Project and TGDdatase mentioned in Section

3.1.1. Furthermore, there is a high accuracy requirement for ontology knowledge

base, and in order to ensure the accuracy of an ontology knowledge base, it is

usually manually designed by the domain experts, which makes creating an ontology

knowledge base becomes very costly. Because of all the above features of ontology

models, there are much less ontology documents than XML documents in the real

world, and ontologies are not always available in any domain.

Most of the famous frequently used ontology documents are built on some spe-



46

cific domains, such as the domain of gene information, the domain of medicines

and diseases, etc. In these domains, with a well-defined ontology model designed

by the domain experts, the machine can work on these ontologies to access and

discover knowledge (such as meaningful sequences of particular gene pairs, identi-

fying which kinds of medicine is suitable for a particular kind of disease, identifying

diseases based on particular symptoms, etc.) by machine reasoning. However, for

XML model, it is much more frequently used in the real world and especially for

exchanging information in the Internet. Most of the time, the XML document does

not need to contain complete information of a whole domain, and it only need to

contain information that user cares about. Furthermore, an XML document is not

domain specified.

The semantics in ontology model and ORA-semantics are different

Object class and relationship type among object classes are two important concepts

in our ORA-semantics. Although both ontology model and XML model can define

object class (class in OWL model) and relationship type among object classes

(object property in OWL model, which only capture binary relationship type),

they are not exactly the same. In the following, we use OWL as a representative

of ontology model to compare the object classes, relationship types and attributes

captured by OWL and our ORA-semantics.

(I) Object Class in ORA-Semantics & Class in OWL

In ontology model, class is a more general concept than the object class in

our ORA-semantics. In OWL, any real world concept can be defined as a

class, and any defined class is a sub-class of the class <owl:Thing>, which

means any concept can be defined as a class in OWL, even some concepts

(such as name, age, etc.), which should be defined as attributes of a class to



47

describe its properties, are also defined as classes in OWL.

For example, in Fig. 3.3, both Wine and VintageYear are defined as classes.

However, for the object class in our ORA-semantics, it is defined as a real

world entity or concept which has a set of attributes describing the properties

of this entity or concept. Based on this, Wine is reasonable to be defined as

an object class if it also has a set of attributes to describe properties of the

wine, such as Brand, Type, etc. However, for VintageYear, it should not be

defined as an object class in XML model, and it is more reasonable to be

defined as an attribute of object class Wine to describe the year on which

the wine is vintaged.

(II) Relationship Type in ORA-Semantics & Object Property in OWL

OWL uses object properties to represent the relationship type between two

classes. As mentioned above, some object attributes in ORA-semantics (e.g.

VintageYear) are also defined as classes in OWL. In consequence, the object

property in OWL also captures the relationship types between a class and

some of its object attributes.

For example, the hasVintageYear represents a binary relationship type be-

tween classes Wine and VintageYear in OWL, which will not be considered

as relationship type in ORA-semantics, but the object class Wine having an

object attribute VintageYear.

The object property in OWL can only capture the binary relationship type

between two classes, while with ORA-semantics we can capture ternary and

n-nary relationship types among more than two object classes. Furthermore,

OWL also cannot capture the relationship attribute.



48

(III) Attribute in ORA-Semantics & Data Property in OWL

Another difference between the semantics captured by OWL and ORA-semantics

is that ORA-semantics distinguishes between object attribute and relation-

ship attribute in XML, while OWL cannot. This is because an attribute

is captured by a dataproperty in OWL, which is associated with a defined

class, and a class does not distinguish whether this attribute is describing the

property of it or describing the relationship type it participates in.

3.2 Semantics Discovery in Relational Database

Currently, relational database has been popularly deployed and used for commercial

data storage and data management. However, an ER diagram which captures the

corresponding semantics information such as entities (object classes), relationship

types, and distinction between attributes of entity and attributes of relationship

type, of a relational database is not always available. With these semantic infor-

mation, the meaning of the database can be better comprehended, which largely

facilitate data processing and data management, even further database mainte-

nance will be much easier.

In order to discover semantic information from relational database, database

reverse engineering (DBRE) has been proposed to reconstruct a higher level of

abstraction (such as conceptual schema) of a database in form of an entity rela-

tionship diagram in ER model or an extended entity relationship diagram in EER

model, or other extension of ER models. In [28] the authors proposed a framework

for DBRE, which contains a two-step process containing:

1. Data structure extracting, which extracts the DBMS-dependent data

structure;



49

2. Data structure conceptualization, which discovers the semantics from

the data structure and expresses it with a high level data model.

In the following, we introduce different approaches on DBRE for extracting an

ER model or EER model from a relational database.

3.2.1 DBRE with Integrity Constraints

In the early stage, many approaches [48, 44, 55] for transforming a relational

database to a conceptual model usually assume that the correct functional/multi-

valued dependencies, inclusion dependencies, even primary keys and foreign keys

are provided at the beginning of the process, which is not always the case.

In [2], the authors proposed an approach for extracting the conceptual mod-

el (ERC+ data model [56], which is an extension of ER model by capturing

multi-valued, complex objects and multi-instantiation) schema given a relation-

al database. This approach extracts the semantic information such as entities and

relationships. The authors in [2] analyze the results of join clauses from user queries

to identify those semantically connected attributes in different relations by links.

To be more precise, given a relational database, equal-joins are used to discover

those attributes that represent references between relations. From these equal-join

conditions, keys of different relations can also be inferred by some heuristics. For

example, those involved attributes in a cyclic join, which means attributes join

with themselves, cannot be the key. With the analysis of these equal-join clauses,

a connected diagram can be built with relations as nodes and joint attributes as

edges/links between them. Functional dependencies and inclusion dependencies

can also be extracted from the data. The authors in [2] use id-independency prop-

erties of different relations, which are determined by analyzing the correspondences

of references and keys of relations, to identify the entity types, relationship types



50

and even weak entity types and form the corresponding conceptual model.

In [2], the authors require relational schemas in third normal form (3NF), which

makes sure that each relation corresponds to a unique entity/object class. How-

ever, because of the implementation and maintenance concern, some commercial

databases are directly built in 1NF or 2NF, or denormalized for efficiency require-

ment. Furthermore, this approach also heavily depends on the links discovered

between attributes of different relations, and these links may be built between the

attributes with accidentally unique values. Thus, user interaction is still needed for

verifying the intermediate result (such as the discovered functional dependencies

and inclusion dependencies) during the process.

In [50], the authors proposed a approach to deal with the database reverse engi-

neering with denormalized relational schemas, which means the relational schemas

are necessary to be in 3NF beforehand. The first step of this approach is to de-

compose a denormalized relational schema into 3NF schemas by functional depen-

dencies, which has been studied in [9]. After this, each relation in 3NF maps one

entity/object class. Similar to [2], this approach also discovers the key constraints,

referential integrity constraints, and the relationship (links) between entities by an-

alyzing the equal-join queries. Nevertheless, as the dependencies (including func-

tional dependencies, and inclusion dependencies) discovered from the data may not

be meaningful because of the small data problem (i.e. as dependencies are merely

constraints imposed in the current data, whenever the dataset is small, meaning-

less dependencies may also be discovered.), user interaction is still necessary in this

approach to validate the presumptions on the discovered dependencies.



51

3.2.2 DBRE with Semantic Dependencies

Although above approaches try to identify relationships between relations mainly

through integrity constraints and dependency constraints with the flat underly-

ing data, they cannot identify ternary relationships and n-nary relationships as

well as the corresponding relationship attributes. Furthermore, many other se-

mantics concepts hidden in the underlying data such as multi-valued attributes,

ISA relationships, and recursive relationships, etc., are also not considered in these

approaches.

In [36, 37], the authors claimed that the functional/multi-valued dependencies

and inclusion dependencies are only constraints to enforce database integrity, and

cannot imply any semantic relationship between two sets of attributes. Based on

this, the authors proposed a concept named semantic dependency to specify a se-

mantic relationship between two sets of attributes. With the semantic dependency,

in [37] they proposed an approach to convert the relational schema to the corre-

sponding ER schema in two steps. Firstly, they use a semi-automatized approach

to semantically enrich the relational schema (i.e., identifying semantic dependen-

cies in the relational schema). The second step is converting the relational schema

to the corresponding ER schema with the previous semantic dependencies.

However, although with the semantic dependencies we can better discovery the

semantic relationship underlies the data. Necessary user input/interaction is still

necessary during the semantically enrich step.

3.3 Semantics Discovery in XML Database

As discussed in Chapter 1, because of the limitations of XML schema language

(e.g. DTD and XSD), many important semantic concepts (such as object class,



52

relationship type, etc.) cannot be captured and represented by them. Because of

this, the ORA-SS is proposed to capture and represent different semantic concepts

for semi-structured data, especially for XML. However, as discussed in Chapter 2,

ORA-SS is proposed to capture the semantic concepts rather than discovering them,

and it still requires manual provision of semantic information (such as specifying

the object classes and relationship types among them, etc.) from the initial design

or during model transformation from other semantics-less models. In consequence,

the semantics discovery approach for XML we are going to introduce in this thesis

can be used as an important component for building an semantic model (such

as ORA-SS) for a given data-centric XML document, or transforming it from a

semantics-less XML model to a semantics-rich model.

Currently, because of the structural flexibility of XML document, discovering

semantics in XML is still very challenging and attracts little attention from re-

searchers. Most of the existing related works only focus on the topic of object

identification [41, 74, 16]. The problem of object identification in XML has been

understood differently by different researchers. The one which is closely related to

our semantics discovery approach is identifying the object class in XML schema lev-

el or identifying object instance in XML data level. To the best of our knowledge,

few researchers have frontally addressed the problem of automatically discovering

the implicit semantics embedded in XML schema and XML data, such as object

class, relationship type and relationship attribute, etc.

3.3.1 Object Class Identification in XML Schema Level

In some XML applications, researchers try to identify the object classes from XML

schema to serve their applications. For example, in the context of view design,

all internal nodes in the XML schema tree are considered as object classes in [16].



53

Obviously it is not always correct since the internal nodes can also be semantic

concepts such as relationship type, composite attribute or aggregational node as

well. XSeek [41] and MaxMatch [74] infer semantics from the XML schema to

identify return nodes/relevant matches. They identify all repeatable nodes as object

classes, and recall that repeatable nodes are nodes which can occur more than once

with the same XPath in their XML data tree. However, other semantic concepts

such as composite attributes can also be designed as repeatable nodes in their XML

schema.

All the above approaches try to identify the object class based on some partic-

ular structural properties of object class about how it is designed by the designer.

However, as we can see, these are far from enough to identify all object class with

high accuracy in term of both precision and recall. Although they can achieve high

recalls, which means most of the object classes can be identified by them. These ap-

proaches also suffer from low precisions, because many elements belonging to other

semantic concepts rather than object class are also identified as object classes by

them.

Furthermore, these approaches only focus on the identification of object class,

while the ORA-semantics we are going to discover in this thesis also contains OID,

object attributes, explicit/implicit relationship type, relationship attributes, de-

pendent object class, IDD relationship type, role name, composite attribute and

aggregational node. All these ORA-semantic concepts also contain much semantic

information, which can also help increasing efficiency or effectiveness for different

applications such as XML keyword search, XML query processing, etc. as shown

in Chapter 1.



54

<country>
<name>United States of America</name>
<cities>New York, Los Angeles, Chicago</cities>
<lakes>

<name>Lake Michigan</name>
</country>

<country>
United States
<city>New York</city>
<city>Los Angeles</city>
<lakes>

<lake>Lake Michigan</lake>
</lakes>

</country>

Figure 3.5: Two objects with different structures but representing the same real
world entity.

3.3.2 Object Identification in XML Data Level

Another understanding of object identification is inherited from the correspond-

ing topic in relational database, entity identification. Entity identification in re-

lational database is also named record linkage and record matching, which has

been well-studied for years. Some approaches [63, 64] have been proposed to solve

the corresponding problem for semi-structured data. In these approaches, their

goals are to compare objects/records for identifying those objects/records with d-

ifferent representations (such as with different names, with different hierarchical

structures or with different attributes describing the objects), but with the same

meaning/semantics and representing the same real world entity.

For example, in Fig. 3.5, both two country elements are describing the same

real work entity, Unite State of America, but with different hierarchical structures

in the XML data.

The above approaches focus on comparing among objects, but ignore the diffi-

culty of identifying these objects. They consider XML elements with subelements

or attributes as objects. In [64], the authors propose a framework named DOG-



55

MATIX, which extracts data from XML document and stores them in form of

relations, which is called object descriptions. Each object description contains

many tuples to describe different aspects of this object, which is similar to the

object attributes, and different tuples may be identified as similar or contradicto-

ry with each other based on their properties (such as their string edit distances,

their value range, and other constraints). Finally, DOGMATIX uses the number

of contradictory or similar tuples to determine the similarity of different object

descriptions.

In [51], the authors improve the DOGMATIX approach by also considering

nested objects and naming them as descendants. To be more precise, these nested

objects are captured by the PC (parent-child) and AD (ancestor-descendant) rela-

tionship by XML hierarchical structure. They use bottom-up approach to compare

objects level by level. In this way, the similarity of objects in lower levels can also

be considered as a factor when comparing objects in upper levels. To be more

precise, the similarity of two objects is affected by whether their descendants are

also similar to each other.

However, although these approaches capture the binary relationship between

objects by their hierarchical structures (ternary/n-nary relationship cannot be cap-

tured), these is not enough. All relationships they captured do not carry any se-

mantics. They only realize that two objects are related to each other, but never

with how they are related and they are related to each other by which relationship.

Furthermore, these approaches also do not realize the OID of objects, which is

designed by designer to uniquely identify the objects. With OIDs of objects being

identifying, identical objects can be discovered easily.

In [53], the authors introduce an approach to identify object with approximate

joins. In [63], XML objects are compared using string comparison functions to



56

detect duplicate objects. Semantics discovered in these works is very limited. First,

as mentioned, these approaches only discover objects, rather than other ORA-

semantic concepts, such as object identifier, relationship type, object attribute,

relationship attribute, etc. Second, these approaches heavily depend only on XML

data they have, which may cause wrong discoveries when the datasets are small.

Besides object identification, in many web-based applications, inference of dif-

ferent semantic concepts is actually done by user corroboration, i.e., manual effort

[21, 58]. For the sake of conciseness, we do not continue this catalogue raisonné

of works that address elements of the question but do not provide a global and

satisfactory solution. The originality and significance of our work reside in that it

addresses and solves the problem holistically and independently from any specific

type of target processing.

3.4 Chapter Summary

In this chapter, we introduced the ontology languages (including RDF, RDFS and

OWL) and the semantics captured by them. We show that the semantics cap-

tured and represented by ontology languages is essentially different from our ORA-

semantics. Ontology model formed by ontology languages are usually proposed

to construct and represent knowledge base in a particular domain, while XML

documents are domain independent and are frequently used for data information

exchange. Furthermore, ontology models at most can only capture and represent

binary relationship type, and cannot capture the relationship attribute.

We also review different research works about discovering semantics in both

relational database and XML database.

For relational database, DBRE (database reverse engineering) has been well



57

studies for decades. Many approaches [2, 50] discover the object classes by the

assumption that the input relational schemas are in 3NF so that each relation

corresponds to a unique object class. Relationship type between object classes

are discovered by the primary key/foreign key constraints and functional/inclusion

dependencies. As the above constraints are only for enforcing database integrity

and cannot imply any semantic relationship between two sets of attributes, those

approaches cannot guarantee discovering the semantics information with high ac-

curacy, especially when the dataset is small. Other approaches [36, 37] have also

been proposed for discovering semantic dependencies to specify the semantic rela-

tionships underlies the data.

Although above DBRE approaches claims that they can discover most of the

important semantic information underlies the data, such as object class, OID, rela-

tionship types, relationship attribute, etc., user supports/interactions for the nec-

essary information is still needed.

On the other hand, some research works [41, 74, 16] have also been done on XML

database to discovery semantic information. However, these approaches mainly

focus on discovery the object classes in schema level and object instances in data

level. Furthermore, they can only identify the binary relationship types according

the hierarchical structure of the XML schema and XML data. The discovery of

many other semantic concepts such as ternary/n-nary relationship, relationship

attribute, dependent object class as well as IDD relationship type are ignored by

these approaches.

For more details, after we introduce our rule-based semantics discovery approach

for XML which will be introduced in Chapter 4, we will compare it with the above

semantics discovery approaches in Section 5.3.



CHAPTER 4

DISCOVER SEMANTICS FROM XML

4.1 Introduction

In this chapter, we propose an automatic rule-based approach for discovering ORA-

semantics from XML data and XML schema. We use properties of ORA-semantics,

heuristics and data mining techniques to discover the ORA-semantics with XML

schema and XML data as inputs. The properties used in our rule-based approach

conform to the design of the corresponding ORA-SS, and the heuristics are summa-

rized based on the characteristics and our observations of different ORA-semantic

concepts.

The inputs of our automatic rule-based approach for semantics discovery are

the XML schema and XML data. For the XML schema, what we need are the

hierarchical structural information and the tag name information in the XML

schema. However, the corresponding XML schema is not always available with

each XML data. To resolve this issue, XML schema summarization/extraction has

58



59

Name

Supplier*

Project *

Part*

Part#

Quantity

Supplier#

Price

Location@Project#
(ID) Funding

Color

Employee*

Name Phone*

ContactInfo

Qualification*

DataDegree University

Qualifications

Address Fax #
Contact #

root

@E#
(ID)

Borrow*

Book

ISBN

Title

Date

Author*

Page
ToC# Page

From

Chapter*

Paper*

PaperID

Name Author*

Year

Has

Child*

Age

Project
Manager

@E#
(IDREF)

Social 
Security #

Name

Figure 4.1: An XML schema tree as our running example

been studied in [72, 29, 19, 43], in case an XML schema is not available alongside

the corresponding XML data. For the XML data, what we need are values of differ-

ent element/attribute nodes and meaningful functional/multi-valued dependencies

(FDs/MVDs) being imposed in the data.

The FD and MVD in XML data, defined in [34], are not exactly the same as the

FD/MVD in relational data. In XML data, a FD/MVD is valid only under a header

path, which is a path expression starting at the root and ending at the common

ancestor node of all nodes involved in the FD/MVD, which means all nodes involved

in the FD/MVD share the same prefix, which is the header path. To discover

FDs/MVDs in XML data, many approaches have been proposed [54, 71, 73, 23].

For simplicity, in the rest of this thesis, given a FD/MVD in an XML schema tree,

we use the XPath of the lowest common ancestor node of all nodes involved in the

FD/MVD as its header path, and do not show it explicitly.

Example 4.1: For example, in Fig. 4.11, given a header path /root/Project/Supplier,

if we have the following FD:

• {Supplier#} → {Name};
1For consistency and ease of reference, this figure duplicates the XML schema tree in Fig. 2.1



60

It means among all the Supplier nodes with the XPath /root/Project/Supplier in

the corresponding XML data, the value of Supplier# node can uniquely determine

the values of Name node, which are both descendant nodes of the same Supplier

node. However, for other nodes whose XPaths do not have /root/Project/Supplier

as their prefixes will not be considered, such as the Name under Employee.

Given a FD/MVD involving a set of nodes such as Supplier#, Part# and Price,

we can infer the header path is the XPath of their lowest common ancestor in the

XML schema tree (i.e., /root/Project/Supplier). 2

However, as FDs/MVDs are only constraints imposed in the data, and they do

not carry semantic information with them, many meaningless FDs/MVDs (such as

the Contact# node may be able to functionally determine the Address node in Fig.

4.1) will be discovered from the XML data, especially when the XML data is small.

(For more details about semantic dependency, please refer to [38].) Because only

those meaningful FDs/MVDs are useful to our rule-based approach, our rule-based

approach uses the feedbacks and verifications from users/designers to prune out

those meaningless FDs/MVs. Furthermore, based on the structural features of the

nodes in FDs/MVDs, we also propose different heuristics from our observations and

statistic information to rank different FDs/MVs and utilize the FDs/MVDs with

the highest rank. More details about how we utilize FDs/MVDs in our rule-based

approach will be discussed in Section 4.4.1.

The general process of our rule-based approach is shown in Fig. 4.2. As men-

tioned before, our rule-based approach can be separated into four steps:

1. Pre-processing It is a one-time effort, and we summarize the properties and

heuristics for each ORA-semantic concept in this step.

2. Internal node classification We use bottom-up approach to classify all in-



61

Object Class

Explicit 
Relationship Type

Aggregational Node

Composite Attribute

Object ID

Object Attribute

Relationship 
Attribute

Implicit 
Relationship Type

XML 
Schema 

XML
Data Pre-processor

Step by Step Processes

Role Name

Figure 4.2: General process of our automatic rule-based semantics discovery ap-
proach

ternal nodes (i.e., from the lowest level internal nodes to their parent/ancestor

nodes which are internal nodes) in the XML schema tree into one of the follow-

ing categories of ORA-semantic concepts: object class, role name, composite

attribute, aggregational node and explicit relationship type;

3. Leaf node classification We use a top-down approach to identify OID for

each object class (i.e. identifying the OID for highest level object classes

first, and then their child/descendant nodes which are object classes), and

then distinguish between object attributes and relationship attributes using

the identified OIDs;

4. Implicit relationship type identification We identify implicit relationship

types, which are not represented in XML schema with those ORA-semantic

concepts being discovered in internal node classification and leaf node classi-

fication.



62

4.2 Pre-processing

4.2.1 Properties (Necessary Conditions) of ORA-semantic

Concepts

In this section, we extract and summarize the properties for each ORA-semantic

concept from its XML schema and XML data, and these properties contains hier-

archical structures of how different ORA-semantic concepts are designed in their

XML schema tree and constraints imposed on them by the XML data. Properties

of an ORA-semantic concept are also necessary conditions of it, which means giv-

en an identified ORA-semantic concept, it must satisfy its properties. Recall the

semantic model ORA-SS, which is proposed and designed to capture and repre-

sent the semantic concepts in XML database. As discussed in Chapter 2, most of

the ORA-semantic concepts can also be captured by ORA-SS. In consequence, the

properties of those ORA-semantic concepts which can be captured in ORA-SS, are

also satisfied in ORA-SS.

Example 4.2: For ORA-semantic concept object class, it has a property that ‘It

is an internal node in its XML schema tree’, because as discussed in Chapter 2,

object class in our ORA-semantics is a real world entity or concept with at least

two object attributes as its child nodes or descendant nodes to store and describe

its information, such as the object class Part is an internal node in Fig. 4.1. This

property is also a necessary condition of object class, which means each object class

must be an internal node in its XML schema tree. Furthermore, this property also

conforms to the design of object class in ORA-SS model. 2



63

4.2.2 Sufficient Conditions of ORA-semantic Concepts

Besides the properties (necessary conditions) of each ORA-semantic concept, we

also propose the sufficient conditions for ORA-semantic concepts, which means by

satisfying this sufficient condition, we can surely identify an input element as a

particular ORA-semantic concept.

Example 4.3: For ORA-semantic concept object class, it has a sufficient condition

that ‘It has an ID attribute specified in its XML schema (XML DTD in particular)

as its child node in its XML schema tree.’, because ID attribute in DTD is designed

to specify the identifier of its parent node, and we can identify this parent node

as an object class by having an ID attribute as its child node, such as the internal

node Project which has an ID attribute Project# as its child node in Fig. 4.1 can

be directly identified as an object class. 2

With the corresponding sufficient conditions of some ORA-semantic concepts,

they can be easily identified from their XML schema, but not all ORA-semantic

concepts have sufficient conditions. Furthermore, even we have sufficient condition

for a certain ORA-semantic concept, we cannot guarantee that all occurrences of

this ORA-semantic concept can be identified, because it is not a sufficient and

necessary condition, e.g., we can use the sufficient condition in Example 4.2.2 to

identify some object classes from their XML schema, but not all of them.

Based on the logic, we can easily identify that an input element must not be

a particular ORA-semantic concept by violating at least one property (necessary

condition) of that ORA-semantic concept.



64

4.2.3 Heuristics of ORA-semantic Concepts

In this section, we will also propose some heuristics related to different ORA-

semantic concepts. All of these heuristics are summarized and proposed based

on the characteristics (such as linguistic feature, etc.) and our observations of

these ORA-semantic concepts from the datasets in the real world. Some of these

characteristics are directly discovered from the XML schema based on the common

way of designing the XML schema, and some are discovered from the XML data

using data mining techniques and statistic information.

Example 4.4: For ORA-semantic concept object identifier (OID), it has a heuristic

that ‘It only contains one element/attribute in its XML schema tree.’, which means

the OID is a single attribute rather than a combined attribute, such as the Project#

in Fig. 4.1 which is the OID of object class Project. Although this heuristic cannot

guarantee 100% correctness, it is correct for OIDs of most of the object classes. It

is because OIDs are designed to uniquely identify any instance of object classes,

and when the designer designs the OID for an object class, most of the time he/she

will design it as a single attribute for easily access, processing and management.

2

4.2.4 ORA-semantic Concept: Internal Node vs. Leaf Node

In Table 4.12 and Table 4.2, for each ORA-semantic concept considered in our rule-

based approach, we list its properties (necessary conditions), sufficient conditions

(if any), related heuristics (if any) and example instances. Some properties may

be shared by more than one ORA-semantic concept. All properties/sufficient con-

ditions/heuristics related to the structure mean the structure in the corresponding

2The EDLN inside the table means Exclusive Descendant Leaf Node, which will be formally
defined in Section 4.3.



65

Table 4.1: Properties (necessary conditions) of different ORA-semantic concepts

P_O1) It is an internal node in its XML schema tree; Supplier
P_O2) It has more than one child node in its XML schema tree; Employee
P_O3) It has at least one FD/MVD among its EDLNs; Part

Book
Paper

P_R1) It is an internal node in its XML schema tree; Landlord
P_R2) It has only one child node in its XML schema tree; Tenant
P_R3) Its only child node is not a repeatable node in its XML schema tree;
P_R4) Its only child node is an IDREF(S) attribute in its XML schema tree;
P_E1) It is an internal node in its XML schema tree; Borrow

Has
RentBy

Buy

P_E4) Its EDLN which is not an IDREF(S)  attribute is a relationship attribute;
P_A1) It is an internal node in its XML schema tree; Qualifications
P_A2) It has only one child node in its XML schema tree;
P_A3) Its only child node is a repeatable node in its XML schema tree;
P_C1) It is an internal node in its XML schema tree; Qualification
P_C2) It has more than one child node in its XML schema tree;
P_C3) It does not have FD/MVD among its EDLNs;

P_OID1) It is a leaf node in its XML schema tree; Project#
Supplier#

ISBN
P_OA1) It is a leaf node in its XML schema tree; Location

Address
Age

P_OA3) Its lowest ancestor object class is the object class it belongs to; Location
P_RA1) It is a leaf node in its XML schema tree; Quantity

Price

P_IDR1) It is a leaf node in its XML schema tree; ProjectManager

P_W1) It is an internal node in its XML schema tree; Chapter
P_W2) It has more than one child node in its XML schema tree;

Examples

Object Class

P_O4) Not all nodes in the LHS of each of its FDs/MVDs are IDREF attribute or role name;

P_C4) It does not has any object class, IDREF(S) attribute or role name as its descendant node in
XML schema tree;

Role Name

Explicit Relationship
Type P_E3) If it has at least one FD/MVD among its EDLN(s), then all nodes in the LHS of each of

its FDs/MVDs are IDREF attributes or role names;

ORA-semantics  Properties (Necessary Conditions)

P_OID2) Together with the OID(s) of some (zero or more) of its ancestor object class(es), they
can functionally/ multi-valued determine all  EDLN(s) of the object class;

IDREF(S) Attribute

P_W4) It has a child node which cannot functional/multi-valued determine other EDLN(s) of the
dependent object class, but with the OID of its lowest ancestor object class, they can functional/
multi-valued determine all  EDLN(s) of the weak object class;

P_RA2) It cannot be functionally/ multi-valued  determined by the OID of its lowest ancestor
object class in its XML schema tree;;

P_E2) It has at least one object class, IDREF(S) attribute or role name as its descendant node in
its XML schema tree;

P_W3) It does not has any object class, IDREF(s) attribute or role name as its descendant node
in its XML schema tree;

P_IDR2) Its value range is a subset of the value range of the OID of the object class(es) which it
references.

Dependent Object
Class

Relationship
Attribute

P_RA3) It can be functionally/ multi-valued  determined by  OIDs of all object classes involved
in the relationship type to which the relationship attribute belongs;

P_RA4) It is an EDLN of an explicit relationship type or an EDLN of the lowest object class
which involves in an implicit relationhsip type to which the relationship attribute belongs;

OID of object class

Object Attribute
P_OA2) It can be functionally/ multi-valued  determined by the OID of its lowest ancestor object
class in its XML schema tree;

Aggregational Node

Composite Attribute



66

Table 4.2: Sufficient conditions and heuristics of different ORA-semantic concepts

Supplier
Employee

Part
Landlord

Tenant

H_E1) Its tag name can be a verb form. Borrow
Has

BoughtBy
Buy

Qualifications

H_OID1) It is a single attribute; Project#
Supplier#

Part#
PaperID

E#
ISBN

Quantity
Price

ProjectManager

H_OID3) It contains substring 'Identifier', 'Number', 'Key'
or their abbreviations in its tag name;

H_OID4) It has numeric as (part of) its value, and the
numerical part is in sequence;

H_E2) The number of binary relationship type is more
than the number of ternary relationship type, and the
number of ternary realtionship type is more than the
number of 4-nary relationship type, and so on.

H_OID2) It contains the first child nodeof the
corresponding object class;

IDREF(S)
Attribute

H_IDR) Its tag name shares high linguistic similarity with
or being a specialization of the tag name of the object
class which it references, or the corresponding OID.

Relationship
Attribute

H_RA) The number of relationship attribute of binary
relationship type is more than the number of relationship
attribute of ternary relationship type, and the number of
relationship attribute of ternary realtionship type is more
than the number of relationship attribute of 4-nary
relationship type, and so on.

OID of object
class

SC_2) It is specified as ID
attribute in its XML schema;
(E.g. Project # )

Aggregational
Node

H_A) Its tag name is the plural form of the tag name of its
only child node;

Role Name
H_R) Its tag name shares high linguistic similarity with or
being a specialization of the tag name of the object class
which the IDREF(S) attribute references;

Explicit
Relationship

Type

Sufficient  Conditions Heuristics / Observations Examples

Object Class
SC_1) It has ID attribute / key
element in its XML schema;
(E.g. Project )

H_O) The number of the object classes without
relationship attribute is more than the number of object
classes with relationship attributes

XML schema tree, and the examples are from Fig. 4.1 and Fig. 4.4.

In an XML schema tree, each node must be either an internal node or a leaf

node. Based on this property of each ORA-semantic concept (i.e. whether it is an

internal node or a leaf node in its XML schema tree), all ORA-semantic concepts

can be grouped into two groups:

• Group 1: It is an internal node in its XML schema tree, which includes

object class, role name, composite attribute, aggregational node, explicit re-

lationship type and dependent object class;

• Group 2: It is a leaf node in its XML schema tree, which includes OID,



67

object attribute and relationship attribute.

We will identify these two groups of ORA-semantic concepts in Section 4.3 and

Section 4.4 respectively. Furthermore, there is another ORA-semantic concept,

implicit relationship type, which is not explicitly shown in the XML schema or

XML schema tree, and we will identify it in Section 4.5.

4.3 Internal Node Classification

The inputs of this step are the internal nodes3 in the XML schema tree, which

can be easily obtained from any XML schema. Based on the design in ORA-SS

model and ER model, we classify the internal nodes of the XML schema tree into

five categories: object class, role name, aggregational node, composite attribute,

and explicit relationship type. The goal of this step is classifying all input internal

nodes into one of the above five categories.

Note that the dependent object class is also an internal node but cannot be

identified in this step. This is because without knowing the OIDs of other object

classes in XML schema, there is no way we can identify dependent object class.

Furthermore, OIDs of object classes can only be identified after all object classes

being identified in this step. More details about dependent object class will be

given in Section 4.5.3.

In order to classify the internal nodes, we build a decision tree (shown in Fig.

4.3) using properties, sufficient conditions (if any) and related heuristics (if any) of

each ORA-semantic concept listed in Table 4.1 and Table 4.2 as building blocks. In

the decision tree, properties and sufficient conditions are represented by bold line

rectangles; while related heuristics are represented by dotted line rectangles. As

3The root node will not be considered in the input.



68

It has ID Attribute as it child node.

T F

T

It has more than one child nodes.
FObject Class

(Rule 1)

T

Its only child node is a 
repeatable node.

T

Its tag name is the plural 
form of the tag name of 

its only child node.

Aggregational
Node

(Rule 4)

F

Its tag name shares high linguistic 
similarity with the tag name of its only 
child node, or being a specialization of 

the tag name of its only child node.

T
Role Name

(Rule 5)

F

Its tag name can be 
a verb form.

FT
Explicit 

Relationship Type 
(Rule 4)

Aggregational
Node

(Rule 4)

T

It has at least one FD/MVD among its 
exclusive descendent leaf nodes.

F

FT

Composite 
Attribute
(Rule 3)

T

Object Class
(Rule 2)

F

It has no object class, role 
name or IDREF(S) attribute 

as its child node.

Not all nodes in the LHS of each 
of its FD/MVD are IDREF(S) 
attributes or role names.

Explicit
Relationship Type 

(Rule 2)

Explicit
Relationship Type 

(Rule 3)

F

F

Its tag name can be 
a verb form.

Role Name
(Rule 5)

Explicit
Relationship Type 

(Rule 5)

T

Properties/
Sufficient Condition

Heuristics

Figure 4.3: Decision Tree for Internal Node Classification

discussed before, the sufficient condition can be directly used as a classification rule

for identifying the corresponding ORA-semantic concept. Thus, in our decision

tree, we put the sufficient condition in the first level. The differences between

properties and heuristics are:

1. Properties are necessary conditions for the corresponding ORA-semantic con-

cepts, which can be used to filter out incorrect categories of ORA-semantic

concept for each input internal node. For heuristics, they are just the charac-

teristics of the corresponding ORA-semantic concepts or some naming con-

vention summarized from observations, which can only be used to increase the

probability of an internal node being correctly classified as an ORA-semantic

concept when the properties are not enough to distinguish it from others.

2. Properties/sufficient conditions should be correct for the corresponding ORA-

semantic concepts, while heuristics are not guaranteed to be 100% correct.



69

The pseudo code of our internal node classification is given in Algorithm 1. We

use bottom-up approach (i.e., we classify lowest level internal nodes first then their

parent internal nodes till the root node.) in our algorithm so that the category of an

internal node can be used to help identifying the category of its parent internal node.

Furthermore, the decision tree also shows that our rule-based approach for internal

node classification is complete, which means all internal nodes in an XML schema

tree can be classified into one of the above five categories. For ease of description,

we represent and explain the decision tree using the following classification rules

and the number in the leaf node of the decision tree is the corresponding rule

number that can identify this ORA-semantic concept.

Algorithm 1: Internal Node Classification
Input: Internal nodes N in an XML schema tree, except the root node;

XML data;
Output: Identified object classes O;

Identified role name R;
Identified composite attributes C;
Identified aggregational nodes A;
Identified explicit relationship type ER;

1 foreach internal node n ∈ N in bottom-up order do
2 Put n into the decision tree;
3 The decision tree returns the classification of n as object class, role name, composite attribute,

aggregational node or explicit relationship type.

4.3.1 Object Class & OID

Rule 1. [Object Class] Given an XML schema tree, if an internal node has an

ID attribute4 specified in its XML schema as its child node, then this internal node

is classified as an object class, and the ID attribute is the OID of the object class.

Rule 1 is a sufficient condition for object class, which means each internal node

having an ID attribute specified in its corresponding XML schema as its child node

4ID attribute is specified in DTD. In XSD there is a similar concept, key element, which can
also be used to identify object class and its OID. For simplicity, Rule 1 is illustrated using ID
attribute, but key element also applies.



70

must be an object class. ID attribute in DTD is used to specify a unique identifier

for an element. However, some element may not or cannot have ID attribute in the

corresponding XML schema because of the limitation of XML schema language.

The definitions of some XML schema languages (such as DTD) only allow single

element to be specified as ID attribute. However, some designers may want to

design an object class with composite OID. Furthermore, as discussed in Chapter

1, the value of an ID attribute is required to be unique for the corresponding object

class in the whole data, which makes it impossible for some object classes to have

ID attribute being specified in their XML schemas.

Example 4.5: In the XML schema tree shown in Fig. 4.1, internal node Project

is classified as an object class because its child node Project# is specified as an ID

attribute. Project# becomes the OID of object class Project. However, internal

nodes Supplier and Part cannot have ID attributes as their child nodes. Otherwise,

a supplier can only supply one project and a part can only be supplied by one

supplier, because of the limitation that the value of an ID attribute cannot appear

more than once in the same XML data for the same object class. 2

Besides DTD, XSD (XML Schema) is another kind of XML schema language

which is also frequently used in XML applications. As discussed in Chapter 1, in

XSD, there is a kind of element node named key element, which is designed for the

same purpose as ID attribute in DTD. Key element must contain a selector element

and a field element in order. The selector element contains an XPath expression

specifying the set of elements across which the values specified by field element must

be unique, and correspondingly, each field element contains an XPath expression

specifying the values that must be unique in the set of elements specified by the

selector element. However, similar to ID attribute in DTD, the value of each field

element is required to be unique for the corresponding object class among the set



71

of elements specified by the selector element. Although the selector element largely

reduces the range in which the field element must be unique, it will still encounter

the same problem as mentioned in the previous example under some schemas.

Next, we use the following classification rules to classify the rest of the internal

nodes, including those object classes without ID attribute or key element being

specified in their XML schemas.

4.3.2 Object Class vs. Explicit Relationship Type

Before we introduce the other classification rules, let us introduce a concept named

Exclusive Descendant Leaf Node (EDLN):

Concept 2. Exclusive Descendant Leaf Node (EDLN) In XML schema

tree, an exclusive descendant leaf node of an internal node i is a leaf node, which

is also a descendant node of i, but not a descendant node of another object class

o, such that o is also a descendant node of i.

The intuitive meaning of EDLN is: given an internal node i, each EDLN of i is

a leaf node under i, but there is no other object class between the EDLN and i.

Example 4.6: In Fig. 4.1, given object classes Project and Supplier, the EDLNs

of Project include: Location and Funding. The leaf node Name is not an EDLN of

Project, because there is another object class Supplier between Name and Project.

2

In order to identify the object class without any ID attribute being designed

as its child node, we use of the properties of object class. By comparing them to

the properties of other ORA-semantic concepts in Table 4.1, we have following two

conflict statements:

(I) An object class has more than one child node in its XML schema tree ([P O2]



72

in Table 4.15); while both aggregational nodes and role names have only one

child node in their XML schema tree ([P A2] and [P R2]).

(II) An object class has at least one FD/MVD among its EDLNs ([P O3)]; while

composite attributes do not have any FD/MVD among its EDLNs ([P C3]).

With (I) and (II), we can distinguish object class from role name, aggregational

node and composite attribute. However, we still cannot uniquely identify an object

class, because some explicit relationship types also satisfy the properties of object

class mentioned in (I) and (II).

Example 4.7:

In Fig. 4.1, internal node Part has 4 child nodes Part#, Color, Quantity and

Price. Assume there is a FD under internal node Part : (Recall that we use the

XPath of the lowest common ancestor node of all nodes involved in the FD/MVD

as its header path, and do not show it explicitly)

• {Part#} → {Color};

From the above information, we know internal node Part can never be an

aggregational node, a role name or a composite attribute. However, in Fig. 4.4,

internal node Buy also has more than one child node C ID, P ID as well as Price,

and it has FD:

• {C ID, P ID} → {Price}.

With above information, we still cannot identity Part as an object class and

Buy as an explicit relationship type, if we do not know their semantic meanings.

2

In order to distinguish object class and explicit relationship type, we note that

the difference between object class and explicit relationship type is:

5For simplicity, we use property labels such as [P O2] to indicate the corresponding properties
in Table 4.1 in the rest of this thesis.



73

Customer

Root

Product
Buy

P_ID
(ID)Name

Contact #C_ID
(ID)

Contact # NameP_ID
(IDREF)

C_ID
(IDREF)

Price

Figure 4.4: Explicit relationship type with FD among its child nodes

(III) Not all nodes in the left-hand-side (LHS) of each FD/MVD of an object class

are IDREF attribute or role name ([P O4)]; while all nodes in the LHS of each

FD/MVD of an explicit relationship type are IDREF attributes or role names

([P E3]).

This is because the FD/MVD among EDLNs of an explicit relationship type

must involve the relationship attribute, which is functionally/multi-valued deter-

mined by the OIDs of all participating object classes, and these OIDs can only

be represented as IDREF attributes or role names if it is an EDLN of the explicit

relationship type. On the other hand, for the FD/MVD among EDLNs of an object

class, its LHS should contain the OID of this object class, which should not be an

IDREF attribute or role name.

Recall the two FDs in Example 4.7, the LHS of the FD under Part is neither

an IDREF attribute nor a role name, while the LHS of the FD under Buy are both

IDREF attribute. Based on these, we can finally identity Part as an object class

and Buy as an explicit relationship type.

With the above analysis, we have the following classification rule for object class

and explicit relationship type using (I), (II) and (III):

Rule 2. [Object Class vs. Explicit Relationship] Given an XML schema tree,

let i be an internal node with more than one child node and there is at least one

FD or MVD among its EDLNs; if not all left-hand-side (LHS) nodes of those FDs



74

or MVDs are IDREF(S) attributes or role names, then i is classified as an object

class, else i is classified as an explicit relationship type.

4.3.3 Composite Attribute vs. Explicit Relationship Type

Besides object class and explicit relationship type, composite attribute is another

ORA-semantic concept which should have more than one child node in its XML

schema tree. By definition, composite attribute is a special kind of attribute which

combines more than one attribute, and it should not have any FD/MVD among its

exclusive descendant leaf nodes in its XML schema tree according to its property

P C3. In consequence, we can distinguish a composite attribute with other ORA-

semantic concepts with the following conflict statement:

(IV) A composite attribute has more than one child node in its XML schema tree

([P C2]); while both aggregational nodes and role names have only one child

node in their XML schema tree ([P A2] and [P R2]).

Recall the (II) in Section 4.3.2, which can be used to distinguish composite

attribute and object class by checking whether they have any FD/MVD among

their EDLNs. Thus, with (II) and (IV) we can distinguish composite attribute

from object class, role name and aggregational node.

Because of the flexible structure of explicit relationship type, some explicit

relationship types also satisfy the properties of composite attribute in (II) and

(IV). We distinguish composite attributes with explicit relationship types with the

following conflict statement:

(V) A composite attribute should not has any object class, IDREF(S) attribute

or role name as its descendant node in its XML schema tree ([P C4]); while



75

an explicit relationship type should has at least one object class, IDREF(S)

attribute or role name as its descendant node in its XML schema tree ([P E2]).

A composite attribute is still an attribute, and an attribute should not have

any object class, IDREF(S) attribute or role name as its descendant node. On the

other hand, an explicit relationship type needs object class, IDREF(S) attribute or

role name as its descendant node to represent the object classes participating in it.

Example 4.8: In Fig. 4.1, the internal node Qualification has 3 child nodes Degree,

Data and University, and assume there is no FD/MVD among these nodes under

Qualification. From these information, we know that Qualification cannot be an

aggregational node, a role name or an object class. Although internal node Borrow

in Fig. 4.1 also has 2 child nodes Book and Date, and no FD/MVD among them.

We can identify Qualification as a composite attribute by all its child nodes are not

object class, IDREF(S) attribute or role name, while Borrow has an object class

Book as its child node. (Recall we uses bottom-up approach to classify internal

nodes, so that when we classify the internal node Borrow, its child node Book has

already been classified as an object class.) 2

Based on the above analysis, we construct the following classification rule for

composite attribute and explicit relationship type using (II), (IV) and (V):

Rule 3. [Composite Attribute vs. Explicit Relationship Type] Given an

XML schema tree, let i be an internal node with more than one child node and

there is no FD/MVD among its exclusive descendant leaf nodes; if i does not have

object class, role name or IDREF(S) attribute as its child node, then i is classified

as a composite attribute, else i is classified as an explicit relationship type.



76

4.3.4 Aggregational Node vs. Explicit Relationship Type

Recall the (I) in Section 4.3.2 and (IV) in Section 4.3.3, they can be used to dis-

tinguish aggregational node with object class and composite attribute respectively.

Based on the properties of aggregational node, we can use the following conflict

statement to distinguish aggregational node with role name:

(VI) The only child node of an aggregational node is a repeatable node6 ([P A3]);

while the only child node of a role name is not a repeatable node ([P R3]).

However, with all properties of aggregational node, we still cannot distinguish

between aggregational node and explicit relationship type. In consequence, we need

related heuristics in Table 4.2 to help to distinguish between them.

By definition of aggregational node in Chapter 2, it is a structural node for ag-

gregating its repeatable child nodes without extra semantics besides the semantics

of its child nodes. It only appears in some XML document and it is not common in

relational database and ER diagram. Based on this characteristic of aggregational

node, it is reasonable to have the following heuristic [H A] for aggregational node:

[H A ] Its tag name should be the plural form7 of the tag name of its child node.

On the other hand, based on our observations, relationship types are usual-

ly designed with the purpose of representing certain action between more than

one object classes, especially for explicit relationship type. In consequence, it is

reasonable to have the following heuristic [H E1] for explicit relationship type:

[H E1 ] Its tag name can be a verb form.8

6Recall that repeatable node is the node which can occur multiple times with the same XPath
in the corresponding XML data.

7Plural form also includes appending ’s’ to an abbreviation, such as quals as the plural form
of qual, which is the abbreviation of qualification.

8We cannot say ‘its tag name is a verb form’, because many words can be both verb form and
noun form, such as ‘book’.



77

Example 4.9: In Fig. 4.1, both internal nodes Qualifications and Has has only

one child node and both of the child nodes are repeatable nodes, which make them

cannot be object classes, composite attributes or role names. However, the tag

name of Qualifications is the plural form of the tag name of its only child node

Qualification, while the tag name of Has is a verb form. With above information,

we can identify Qualifications as an aggregational node, which aggregates its child

node Qualification, and Has is an explicit relationship type. 2

In order to determine whether we should test [H A] or [H E1] first in our classifica-

tion rule/decision tree for classifying aggregational node and explicit relationship

type, we adopt the measurement of splitting-attribute selection in ID3 [52] (i.e.

choosing the splitting-attribute (i.e., [H A] or [H E1]) which has higher information

gain). We collect a training data with 125 internal nodes from 18 XML schema

trees with their ORA-semantic concepts being correctly specified by users. Results

show that [H A] returns higher information gain than [H E1]. Thus, we put [H A] as

condition in a higher level than [H E1] as condition in our decision tree as shown

in Fig. 4.3, and test [H A] first in our classification rule for aggregational node and

explicit relationship type.

It is possible that there are some internal nodes which satisfy the properties of

aggregational node in (I), (IV) and (IV), but satisfy neither [H A] nor [H E1] (i.e., An

internal node having only one child node, and the only child node is a repeatable

node, and its tag name is not the plural form of the tag name of its child node, and

its tag name cannot be a verb form.). In this case, we classify them as aggregational

node because among the training data which satisfy the above conditions, there are

66.7% of aggregational node and 33.3% of explicit relationship type.

Note that by considering heuristics of different ORA-semantic concepts for clas-

sifying internal nodes, our approach cannot guarantee to be 100% correct. In order



78

to increase the accuracy of our classifications, if user feedback or user verification

is available, we will ask user for verification of these internal nodes.

With the above analysis, we have the following classification rule for aggrega-

tional node and explicit relationship type using (I), (IV), (IV), [H A] and [H E1]:

Rule 4. [Aggregational Node vs. Explicit Relationship Type] Given an

XML schema tree, let i be an internal node, which has only one child node c and

c is a repeatable node; if i is not the plural form of the tag name of c, and the tag

name of i can be a verb form, then i is classified as an explicit relationship type,

else i is classified as an aggregational node.

4.3.5 Role Name vs. Explicit Relationship Type

Another kind of internal node we have not considered is role name. Similar to the

others, we compare the properties of role name to the properties of other ORA-

semantic concepts in Table 4.1. Recall the (I) in Section 4.3.2, (IV) in Section 4.3.3

and (VI) in Section 4.3.4, they can be used to distinguish role name with object

class, composite attribute and aggregational node respectively.

However, the properties of role name listed in Table 4.1 are not enough to

distinguish it from explicit relationship type, and we need to use related heuristics

in Table 4.2 to distinguish between them.

For role name, being the node with an alias of a certain object class, it is

designed based on the fact that both the role name and the corresponding object

class are representing the same concept. This makes it reasonable for role name to

have the following heuristic:

[H R ] Tag name of a role name and tag name of the corresponding object class

which the role name references share high linguistic similarity, or tag name of

the role name is a specialization of tag name of the corresponding object class.



79

HouseForRent

Landlord

@Person
(IDREF)

Address

Person

Tenant

@Person
(IDREFS)

@NRIC
(ID)

Age

Root

Sex

HouseForSell

BoughtBy

@Person
(IDREF)

Contact# Address Price

Figure 4.5: Role names and explicit relationship type with IDREF(S) as child nodes

Example 4.10: In Fig. 4.5, object class Person has an ID attribute NRIC being

designed as its child node. NRIC is referenced by two IDREF attributes and one

IDREFS attribute with the same tag name Person, which are child nodes of internal

nodes Landlord, Tenant and BoughtBy respectively. Both Landlord, Tenant and

BoughtBy have only one child node, and their child nodes are both not repeatable

nodes. Because object class and composite attribute require having more than

one child node and aggregational node requires its child node to be a repeatable

node, both Landlord, Tenant and BoughtBy can only be role names or explicit

relationship types.

Note that both words ‘Landlord’ and ‘Tenant’ are specialization of the word

‘Person’, while ‘BoughtBy’ contains a verb ‘Bought’. With the heuristic [H R] of

role name and heuristic [H E1] of explicit relationship type, we can identify Landlord

and Tenant as role names and BoughtBy as explicit relationship type. 2

In order to compare the similarity between two tag names, some researches

[47, 65, 60] have already been done on comparing linguistic similarity between

different words, such as using the information from WordNet9 for linguistic and

semantic comparisons. We can also check whether a given word can be a verb form

from WordNet. In our rule-based approach, for simplicity, we calculate the edit

9http://wordnet.princeton.edu/



80

distance between two words for their linguistic similarity.

In order to identifying generalization and specialization, we maintain a database

including pairs of general and specialized concepts such as ‘person’ and ‘customer’,

‘employee’ and ‘manager’, etc. This database will be incrementally updated with

user feedbacks and verifications.

Similar to the process in Section 4.3.4, we use the same training data to calculate

the information gain of [H R] and [H E1] respectively. Based on the results, we

determine to put [H R] as condition in a higher level than [H E1] as condition in our

decision tree as shown in Fig. 4.3, and test [H R] first in our classification rule for

role name and explicit relationship type.

It is also possible that there are some internal nodes which satisfy the properties

of role name in (I), (IV), (VI), but satisfy neither [H R] nor [H E1 ]. In this case,

we classify them as role name because among the training data which satisfy the

above conditions, there are all role names.

In order to increase the accuracy of our classification, if user feedback or user

verification is available, we will ask user for verification for these internal nodes.

With the above analysis, we have the following classification rule for role name

and explicit relationship type using (I), (IV), (VI), [H R] and [H E1 ]:

Rule 5. [Role Name vs. Explicit Relationship Type] Given an XML schema

tree, let i be an internal node, that has only one child node c and c is not a

repeatable node; if i does not share high linguistic similarity with the tag name of

c or not being a specialization of the tag name of c, and the tag name of i can be

a verb form, then i is identified as an explicit relationship type, else i is identified

as a role name.



81

4.4 Leaf Node Classification

4.4.1 OID Discovery

After processing internal nodes in the previous step, our next step is to identify

OID for each identified object class. As stated in Rule 1, OID can be explicitly

specified in the XML schema using ID attribute, and this is also a sufficient con-

dition to identify the ID attribute as OID of the corresponding object class. In

this section, we consider the case that the single-attributed OID is not specified in

XML schema (e.g., ISBN of object class Book in Fig. 4.1), or the OID contains

multiple attributes.

In an XML schema tree, the attributes under an object class may be its object

attributes or attributes of some relationship types in which it participates. Based

on the definition of OID, only its object attributes can be functionally/multi-valued

determined by its OID, while relationship attributes cannot. Our rule-based ap-

proach identifies OID for each identified object class based on this property.

Super OID

Before we explain how we identify OIDs, we first introduce another concept named

Super OID, which can be used to discovered OID of an object class.

Concept 3. Super OID A super OID of an object class o is a minimal set of

nodes which contains a subset of the exclusive descendant leaf nodes (EDLN) of

o and the OIDs of some ancestor object classes of o, such that this super OID

functionally/multi-valued determines all EDLNs of o.

Recall that given an internal node i, each EDLN of i is a leaf node under i, but

there is no other object class between the EDLN and i.



82

Example 4.11: Assume in our internal node classification step, internal nodes

Part in Fig. 4.1 has been classified as an object class, with its EDLN as {Part#,

Color, Quantity, Price}. Project and Supplier are also classified as object classes

with their OIDs as Project# and Supplier#. In the following we list the full FDs

related to the EDLNs of Part :

• {Part#} → {Color};

• {Supplier#, Part#} → {Price};

• {Project#, Supplier#, Part#} → {Quantity};

With above information, we know {Project#, Supplier#, Part#}, {Supplier#,

Part#, Quantity#} and {Part#, Price#, Quantity#} are both super OID of object

class Part, because they both can functionally determine all EDLNs of Part. 2

In an XML schema tree, given an object class o, its EDLNs may be object

attributes of o, or relationship attributes of some relationship type which o partic-

ipates in. Based on the definition of super OID and the properties of OID, object

attribute and relationship attribute (i.e. [P OID2], [P OA2], [P RA2] and [P RA3] in

Table. 4.1), a super OID of o should be able to functionally/multi-valued determine

both object attributes and relationship attribute (if any) of o, while the OID of o

can only functionally/multi-valued determine the object attributes of o.

Discover Candidate OIDs with Super OID

The rationale of our rule-based approach to identify OIDs is that given an object

class o, there is an attribute set S formed by the OID of o and the OIDs of some of

the ancestor object classes of o, and S should functionally/multi-valued determine

all EDLNs of o (including both object attributes and relationship attributes). In

case of no relationship attribute being EDLN of o, no OID of ancestor object class



83

of o will be included in S. Recall the definition of super OID, and the attribute

set S should be a super OID of o, which is also a superset of the OID of o. Thus,

this shows us a way to identify the OID of an object class through its super OIDs.

Note that for an identified object class, its super OID may not be unique (as is

shown in Example 4.11). By excluding all OID(s) of the ancestor object class(es)

of an input object class from each of its super OID, and what is left should be one

of its candidate OIDs.

Based on the above analysis, we proposed a top-down approach (shown in Al-

gorithm 2) to identify candidate OIDs of each identified object class without ID

attribute being specified in its XML schema. The reason why we use top-down

approach is the OID of an ancestor object class is needed for identifying the OIDs

of its descendant object classes.

Given an object class o, we create a set SupEDLNo, which is a superset of its

EDLNs, denoted as EDLN(o). SupEDLNo also includes OIDs of all its ancestor

object classes. In SupEDLNo, we identify all super OIDs of o, which are minimal

subsets of SupEDLNo that functionally/multi-valued determine all elements in

EDLN(o). As there may be more than one minimal subset of SupEDLNo that

satisfies the above condition, there may be more than one super OID of o being

generated by our Algorithm 2, and more than one candidate OID being returned.

Example 4.12: Here we continue our example in Example 4.11, and show how

Algorithm 2 discovers the candidate OIDs for three identified object classes Project,

Supplier and Part in Fig. 4.1.

Object Class Project

We identify Project# as OID of object class Project by Rule 1, because it is

specified as an ID attribute of Project.



84

Algorithm 2: Candidate OID Discovery
Input: Identified object classes O;

Exclusive descendant leaf nodes EDLN(o) for each identified object class o ∈ O;
Output: Candidate OID ido for each identified object class o ∈ O

1 foreach identified object class o ∈ O do
2 SupEDLNo=EDLN(o);
3 foreach oi ∈ O, which is ancestor object class of o do
4 SupEDLNo = SupEDLNo ∪ idoi; //idoi is the OID of object class oi

5 foreach SIDo ⊂ SupEDLNo do
6 if ∀e ∈ EDLN(o), such that SIDo → e or SIDo � e then
7 if @S ⊂ SIDo, such that ∀e ∈ EDLN(o), such that S → e or S � e then
8 foreach e ∈ SIDo do
9 if e ∈ EDLN(o) then

10 e ∈ ido;

11 return ido as a candidate OID of o.

Object Class Supplier

The EDLNs of object class Supplier are {Supplier#, Name, Address, Contact#,

Fax#}. Assume we have the following full FDs:

• {Supplier#} → {Name};

• {Supplier#} → {Address};

• {Supplier#} → {Contact#};

• {Supplier#} → {Fax#};

As the single attribute Supplier# functionally determines all EDLNs of object

class Supplier, we identify Supplier# as its OID, the same as its super OID.

Object Class Part

The EDLNs of object class Part are {Part#, Color, Quantity, Price}. Assume

we have the following full FDs (same as the FDs in Example 4.11):

• {Part#} → {Color};

• {Supplier#, Part#} → {Price};

• {Project#, Supplier#, Part#} → {Quantity};



85

We combine the EDLNs of Part and OIDs of its ancestor object classes Sup-

plier and Project, and discover the minimal subsets that functionally/multi-

valued determine all its EDLNs to be its super OID, which are {Project#,

Supplier#, Part#}, {Supplier#, Part#, Quantity} and {Part#, Quantity,

Price}. In consequence, we get {Part#}, {Part#, Quantity} and {Part#,

Quantity, Price} as candidate OIDs of object class Part by deleting those

OIDs of ancestor object classes of Part from those super OIDs.
2

Determine OID from Candidate OIDs with Heuristics

As is shown in Example 4.12, Algorithm 2 may return more than one candidate

OID. However, if we do not consider the linguistic meanings of those candidate

OIDs from their tag names, we cannot determine which candidate OID is better.

Different candidate OIDs show us different ORA-semantics.

Example 4.13: In this example, we consider those 3 candidate OIDs for object

class Part mentioned in Example 4.12. In order to avoid the influence of linguistic

meanings of those candidate OIDs from their tag names, we replace all their tag

names with meaningless characters.

For object class O, Algorithm 2 returns 3 candidate OIDs for it, {A, B, C}, {A,

B} and {A}. If {A, B, C} is the correct OID for object class O, it means object

class O does not have any relationship attribute; If {A, B} is the correct OID for

object class O, it means object class O has one relationship attribute C ; If {A} is

the correct OID for object class O, it means object class O has two relationship

attributes B and C. 2

In consequence, we use some related heuristics (shown in Table 4.2) summarized

from our observations to help to identify the best OID from all candidate OIDs

returned by Algorithm 2.



86

Observation 1. [OID] In XML schema, given an object class o, its OID ido is

likely to be designed with some of the following features:

(1) ido is a single attribute of o;

(2) The first child node of o is (part of) ido;

(3) ido contains substring ‘Identifier’, ‘Number’, ‘Key’, etc., or their abbreviations

in its tag name;

(4) ido has numeric as (part of) its value, and the numerical part is in sequence.

Observation 2. [Relationship Attribute] In XML schema, we have the follow-

ing heuristics/observations about relationship attributes:

(1) the number of the object classes without relationship attribute is more than the

number of object classes with relationship attribute;

(2) the number of relationship attributes of binary relationship type is more than

the number of relationship attributes of ternary relationship type, and so on.

Observation 1 is summarized and proposed based on our observation of the

structural and linguistic characteristics of OIDs designed in the real world; while

Observation 2 is summarized and proposed based on our observation of the statistic

information of relationship types and relationship attributes. The reason for Ob-

servation 2 is in the real world, the probability of a relationship type being designed

is less and less with more and more object classes participating in it. Furthermore,

there are also a lot of relationship types being designed in the XML schema but

without any corresponding relationship attribute. Thus, given an identified object

class, the chance of having its super OID, being the same as its OID is higher than

containing the OID of only one its ancestor object class, and the case of containing

OID of only one its ancestor object class is higher than the case of containing OIDs

of two or more its ancestor object classes.

Given an identified object class, we use a ranking model to rank all its candidate



87

OIDs. The ranking score is based on statistic data about the features of how the

OID of an object class should look like in term of those characters mentioned in

Observation 1 and Observation 2.

We collect 122 object classes, each of which has more than one candidate OIDs.

We ask users to manually specify their OIDs from all their candidate OIDs, and uses

all these candidate OIDs as our training data. We extract the statistic information

covered in Observation 1 and Observation 2. Using such statistic information,

we adopt the Bayes’ Theorem to calculate the posterior probability of each kind

of candidate OID to be the correct OID of its corresponding object class, with

different degree of satisfactions of the heuristics in Observation 1 and Observation

2. Then we rank all candidate OIDs for each object class based on their posterior

probabilities, and choose the highest one as its OID. More detail of the Bayes’

Theorem is given in [25].

Example 4.14: Recall the candidate OIDs for object class Part discovered in

Example 4.12 are {Part#}, {Part#, Quantity} and {Part#, Quantity, Price}.

{Part#} gets the highest ranking with our Bayes’ ranking model. One main reason

of why {Part#} gets the highest ranking is the statistic data conforms with our

heuristic that OID with single attribute occurs more often than OID with multiple

attributes. Thus, {Part#} is identified as the OID of object class Part. 2

4.4.2 Object Attribute vs. Relationship Attribute

After identifying the OID for each identified object class, our next step is to classify

all leaf nodes except those being identified as OIDs in XML schema trees to be

object attributes or relationship attributes.

For an explicit relationship type (discovered in Section 4.3), we identify its

EDLNs (exclusive descendant leaf nodes) as its relationship attributes, because



88

relationship attributes are designed to store and describe information about rela-

tionship types.

For implicit relationship type, its relationship attributes should appear as an

EDLNs of the lowest object class which participates in the relationship type, togeth-

er with the object attributes of that object class. Thus, based on these properties,

we propose Rule 6 to distinguish object attributes and relationship attributes a-

mong the EDLNs of each identified object class. We use the properties that object

attribute should be functionally/multi-valued determined by the OID of the object

class it belongs to, while relationship attribute should not, to differentiate them.

Rule 6. [Object Attribute vs. Relationship Attribute] Given an object class

o and its OID, if an EDLN e of o is functionally/ multi-valued determined by the

OID of o, then e is identified as an object attribute of o. Otherwise, e is identified

as a relationship attribute of certain relationship type which o participates in.

Example 4.15: In Figure 4.1, given the object class Part with its OID Part#, its

child node Color is functionally dependent on its OID, while Quantity and Price are

not. Thus, we identify Color as an object attribute of Part, while Quantity, Price

as relationship attributes of some implicit relationship types that Part participates

in. We will determine the implicit relationship types in next section. 2

4.5 Implicit Relationship Type Discovery

Recall that explicit relationship type can be identified by Rule 2, 3, 4 and 5 in

Section 4.3. However, there are some implicit relationship types which are not

explicitly represented as any node in its XML schema tree. In this section, we are

going to present our approach to identify the implicit relationship types which fall

into any of following 3 categories:



89

1. Implicit relationship type with at least one relationship attribute;

2. Implicit relationship type with IDREF(S) attribute;

3. IDentifier Dependency (IDD) Relationship Type [22].

Note that except for the IDD relationship type, the other implicit relationship

types discovered by our approach can be binary relationship type, ternary relation-

ship type and n-nary relationship type.

4.5.1 Implicit Relationship Type with Relationship Attribute

For each relationship attribute discovered in Section 4.4.1 (except those EDLNs of

explicit relationship type), there must be an implicit relationship type it belongs to.

Recall that relationship attribute should be functionally/multi-valued determined

by the OIDs of all object classes participating in the implicit relationship type, to

which the relationship attribute belongs. Therefore, for each relationship attribute

identified in previous step, we use a bottom-up approach, Algorithm 3, to identify

the corresponding implicit relationship type with its degree, and all participating

object classes.

The bottom-up strategy of our approach for discovering implicit relationship

type with relationship attribute means we process the relationship attribute in the

lowest level of an XML schema tree first. Furthermore, for a given relationship

attribute, we also use bottom-up approach to test whether an object class partici-

pates in the relationship type to which the relationship attribute belongs, and then

test its parent/ancestor object classes.

In Algorithm 3, we use r(C) to represent the implicit relationship type among

object classes in C, and degree of the implicit relationship type is represented as

|C|, which is the number of object classes in C.



90

For each relationship attribute ra, Algorithm 3 creates a set SemIDra contain-

ing the OID of its lowest ancestor object class idoi. We use a bottom-up approach

so that in each iteration we add the OID of the lowest ancestor object class, which

has not been considered along the path from ra to the root, into SemIDra. When-

ever the SemIDra functionally/multi-valued determines ra, we identify the implicit

relationship type r(C), to which ra belongs, and return the participating object

classes as those object classes whose OIDs are in SemIDra and the degree of the

implicit relationship type as the number of participating object classes.

Algorithm 3:
Implicit Relationship Type with Relationship Attribute

Input: Identified relationship attribute A;
Identified object classes O with their OIDs;
XML schema tree;
XML data;

Output: Implicit relationship type r(C) with its participating object classes C and degree |C|, for each
relationship attribute in A

1 foreach relationship attribute ra ∈ A do
2 oi = the lowest ancestor object class of ra.
3 C = {oi};
4 SemIDra = idoi; //idoi is the OID of object class oi;
5 foreach object class oj ∈ O, along the path from oi to the root in its XML schema tree in bottom-up

order do
6 SemIDra = SemIDra ∪ idoj ; //idoj is the OID of object class oj;
7 C = C ∪ {oj};
8 if SemIDra → ra or SemIDra � ra; then break;

9 return implicit relationship type r(C) to which ra belongs, with object classes in C as its
participating object classes and |C| as its degree;

Example 4.16: Recall that in Example 4.12 and Example 4.15, we have 3 object

classes Project, Supplier and Part, with their OIDs as Project#, Supplier# and

Part# respectively in Fig. 4.1. We also discovery two relationship attributes Price

and Quantity under object class Part, with following related full FDs:

1. {Supplier#, Part#} → {Price};

2. {Project#, Supplier#, Part#} → {Quantity};

Given above full FD (1), we identify that there is an implicit binary relationship

type between object classes Supplier and Part, with relationship attribute Price.



91

For another relationship attribute Quantity, with above full FD (2), we identify an

implicit ternary relationship type among object classes Project, Supplier and Part,

with relationship attribute Quantity. 2

4.5.2 Implicit relationship type with IDREF(S) Attribute

In XML schema, some designers may design an implicit relationship type by speci-

fying an IDREF(S) attribute for an object class, which references the ID attribute

of another object class. Based on this hint, if an object class has a child node being

specified as an IDREF(S) attribute in XML schema, we identify there is an implicit

relationship type between the object class having this IDREF(S) attribute and the

object class having an ID attribute being referenced by the IDREF(S) attribute.

For some XML schema language (e.g., DTD), they do not specify which ID

attribute an IDREF(S) attribute references. Thus, we propose a four-step method

to discover the ID attribute which is referenced by an IDREF(S) attribute, and

identify the corresponding implicit relationship type:

1. Filter ID Attributes by Value Range

There is a necessary condition for IDREF(S) attribute and the ID attribute

being referenced by it. That is the value range of an IDREF(S) attribute

in its XML data must be a subset of the value range of the ID attribute it

references. We use this necessary condition to filter out those ID attributes

which is impossible to be referenced by a given IDREF(S) attribute.

2. Identify Candidate ID Attribute by Tag Name Similarity

IDREF(S) attribute is designed to reference an object class with the same real

world entity/concept, or reference a more general object class. Therefore, it is

reasonable that an IDREF attribute satisfies any of the following conditions:



92

1. The tag name of an IDREF(S) attribute shares high linguistic similarity

with the tag name of the ID attribute it referencing;

2. The tag name of an IDREF(S) attribute is a specialization of the tag

name of the ID attribute it referencing;

3. The tag name of an IDREF(S) attribute shares high linguistic similarity

with the tag name of the object class whose ID attribute it referencing;

4. The tag name of an IDREF(S) attribute is a specialization of the tag

name of the object class whose ID attribute it referencing;

To compare the similarity between two tag names, or determine whether they

are generalization/specialization of each other, we use the approach which we

use to classify role name in Section 4.3.5 (i.e., using the lexical database,

WordNet).

3. Determine ID attribute by User Verification

Our method cannot guarantee what we discover is 100% correct. Therefore,

given an IDREF(S) attribute with XML data, we still need user to verified

the ID attribute discovered by our approach.

4. Identify Corresponding Implicit Relationship Type

Given an IDREF(S) attribute with the corresponding ID attribute being dis-

covered, we can identify an implicit relationship type between the object class

having this IDREF(S) attribute and the object class having an ID attribute

being referenced by the IDREF(S) attribute.

Example 4.17: Given two object classes Department and Staff with their ID

attributes Dept# and Staff# respectively, there is an IDREF attribute under object



93

class Staff with its tag name as Dept#. For the corresponding XML data, we

assume the value range of IDREF attribute Dept# is a subset of the value range of

the ID attribute Dept#. As the IDREF attribute shares the same tag name with the

ID attribute of object class Department, we guest the IDREF attribute references

the ID attribute of object class Department. Therefore, with user verification, we

identify there is an implicit relationship type between Department and Staff ; 2

Note that if the designer does not specify the ID attribute and/or IDREF(S)

attribute in the XML schema, we can still apply our four-step method to discover

implicit relationship types. We use leaf nodes in XML schema tree as input, and

each time we assume one of them as an IDREF attribute, and use our four-step

method to identify the corresponding ID attribute. In this case, the user verifica-

tion becomes more important. It is because without ID attribute and IDREF(S)

attribute being specified in the XML schema, our method is heavily depend on the

XML data, which may suffer from the limitations of small size and error data.

4.5.3 Identifier Dependency (IDD) Relationship Type

Recall that in Chapter 2 we introduce a special kind of relationship type called

identifier dependency (IDD) relationship type, which means there is a dependent

object class, which is a special kind of object class whose instance can only be

identified together with an instance of its lowest ancestor object class or lowest

ancestor dependent object class.

As discussed in 4.3, although dependent object classes are internal nodes in

its XML schema tree, without knowing the OIDs of other object classes in XML

schema, there is no way we can identify dependent object class. Furthermore, OIDs

of object classes can only be determined after all object classes (excluding depen-

dent object class) have been identified. Thus, we can only identify dependent object



94

class after the first step of our rule-based approach, internal node classification and

the second step leaf node classification.

In this section we use a top-down approach with the following identification

rule to identify dependent object classes and IDD relationship types. Top-down

approach means we examine each internal node with the following identification

rule for dependent object class, and then examine its child/descendant internal

node.

Rule 7. [Dependent Object Class and IDD Relationship Type] In an XML

schema tree, given an internal node i and OID ido of its lowest ancestor object

class or lowest ancestor dependent object class o, if ∃ e, e is an EDLN (exclusive

descendant leaf node) of i such that:

(1) i has more than one child node;

(2) e cannot functionally/multi-valued determine any other EDLN of i;

(3) e and ido together can fully functionally/multi-valued determine all EDLNs of i;

Then i is identified as a dependent object class and there is an IDD relationship

type between object class/dependent object class o and dependent object class i.

The intuitive meaning of Rule 7 is that, for a dependent object class i, there

must be an EDLN of i which is the local OID of i, and the value of this local OID

alone cannot uniquely identify each instance of this dependent object class (i.e.,

the local OID cannot functionally/multi-valued determine any other EDLNs of i).

However, together with the OID of an object class or another dependent object

class o, which is the lowest ancestor object class/descendant object class of i, the

value of this local OID is able to uniquely identify each instance of this dependent

object class (i.e., they together can functionally/multi-valued determine all EDLNs

of i). Note that as we use top-down approach to identify dependent object classes,

when we are examining whether internal node i is a dependent object class, all its



95

ancestor dependent object classes (if any) have beed identified with their OIDs.

Furthermore, there is an IDD relationship type between the identified dependent

object class i and its lowest ancestor object class/dependent object class o.

Example 4.18:

In Fig. 4.1, given an identified object class Book with its OID ISBN, it has a

child node Chapter, which is an internal node. Chapter is identified as a composite

attribute based on Rule 3 in our step of internal node classification, because Chapter

has more than one child node, C#, PageFrom and PageTo; there is no FD/MVD

among its child node; there is no IDREF(S) attribute, object class, or role name as

its child node. Assume we only have the following FDs related to the child nodes

of Chapter :

1. {ISBN, C#} → {PageFrom};

2. {ISBN, C#} → {PageTo};

Based on Rule 7, we identify internal node Chapter as a dependent object

class with its local OID as C#, and there is an IDD relationship type between

object class Book and dependent object class Chapter. This is because C# does

not functionally/multi-valued determine any other EDLNs of Chapter, but C#

together with ISBN, which is OID of its parent object class Book, {C#, ISBN }

can functionally determine all EDLNs of Chapter.

The intuition meaning of this example is given an instance of Chapter, even

with its C#, there is no way we can uniquely identify a particular chapter without

knowing to which Book it belongs. 2



96

4.6 Chapter Summary

In this chapter, we proposed an automatic rule-based approach for discovering

ORA-semantics from XML data and XML schema. Our rule-based approach is

mainly based on the properties and heuristics of different ORA-semantic concepts,

and uses them to distinguish among different ORA-semantic concepts. For some

ORA-semantic concepts such as object class, composite attribute, explicit rela-

tionship type etc., we proposed classification rules to identify them based on their

properties and heuristics; for some other ORA-semantic concepts such as OID, we

proposed algorithms which also consider its properties, heuristics as well as statistic

information to identify it.



CHAPTER 5

PERFORMANCE STUDY

5.1 Experiment

5.1.1 Introduction

In this section, we experimentally evaluate the proposed rule-based approach for

discovering the ORA-semantics from XML. Both XML schema and XML data are

the inputs for our rule-based approach. As the ORA-semantics is identified from

XML schema, we assume that the corresponding XML schemas for all experiment

datasets are available for our rule-based approach either provided as inputs or ex-

tracted and summarized from the corresponding XML data. Furthermore, the cor-

responding FDs and MVDs are also available either specified by the users/designers

or being extracted from the corresponding XML data with user verifications.

As discussed in Chapter 3, there is no existing research work for XML database,

which can discovery the ORA-semantic concepts as our rule-based semantics dis-

97



98

covery approach does. The closest research works to our work are those object

identification approaches [16, 41, 74], which try to identify object classes in XML

schemas. However, these approaches only focus on one ORA-semantic concept,

while our rule-based semantics discovery approach can identify 11 different ORA-

semantic concepts.

Therefore, in this section, we will not compare the experimental results of our

rule-based semantics discovery approach with other existing research works. In-

stead, we will compare the semantic concepts discovered by our rule-based seman-

tics discovery approach with existing works related to semantics (including ontology

model, DBRE (database reverse engineering) approaches and object identification

approaches) in Section 5.3.

5.1.2 Experimental Datasets

Our experimental data contains 15 real world data-centric XML datasets (includ-

ing their XML data1 and XML schemas ), including the auction dataset2, the

university courses datasets3, the SIGMOD records dataset4, the baseball 1998 s-

tatistic dataset5, the Mondial dataset6, the Market Place dataset7, the XMark

dataset8,the Purchase Order dateset9, and the TPoX dataset10. Details about

these XML datasets (including the height of XML schema trees, the number of

internal node, and the number of leaf node in their corresponding XML schema

1For those XML datasets without XML data, users will proved the FDs and MVDs information
for our rule-based approach as input.

2http://www.cs.washington.edu/research/xmldatasets/www/repository.html#auctions
3http://www.cs.washington.edu/research/xmldatasets/www/repository.html#courses
4http://www.cs.washington.edu/research/xmldatasets/www/repository.html#sigmod-record
5http://www.cafeconleche.org/examples/baseball/1998statistics.xml
6http://www.cs.washington.edu/research/xmldatasets/www/repository.html#mondial
7http://www.prosper.com/tools/DataExport.aspx
8http://www.xml-benchmark.org
9http://disi.unitn.it/ accord/Schemas/CIDX Excel.xml

10http://tpox.sourceforge.net



99

trees) are listed in Table 5.1. We also asked 8 PhD students study XML to design

18 synthetic XML schemas11 with related FDs and MVDs being specified.

Note that most practical databases are still in relational model and much XML

data are actually translated from relational data and published/exchanged in XML

format. In order to enlarge our experimental data, we also collected 5 relational

datasets including the IMDB data12, the TPC-H data13, the Basketball data14, the

Baseball data15, and the Music Brainz data16. We asked 8 PhD students study XML

to reasonably design the corresponding XML schemas based on those 5 relational

datasets.

In a word, all our experimental dataset contains 15 real world data-centric XML

datasets, 18 synthetic XML datasets and 5 data-centric datasets transformed from

read world relational datasets. Among all XML datasets for our experiments, some

of them come with complex structure such as XMark, which contains 145 internal

nodes, 173 leaf nodes and a maximal depth of 8 in its XML schema tree.

5.1.3 Ground Truth

To evaluate the accuracy of our rule-based approach, we measure precision, recall

and F-measure17 against the ground truth provided by 8 evaluators, who are all

PhD students study XML. In order to handle the case that different evaluators

may have different understandings of what a node in an XML schema should be

identified as, we adopt the probability theory and use the probability of a node being

identified as each ORA-semantic concept as its ground truth rather than using only

11The XML schema trees of all synthetic XML schemas can be found in the following address:
https://dl.dropbox.com/u/11334632/SyntheticXMLSchemas.vsd

12http://www.imdb.com/interfaces
13http://www.tpc.org/tpch
14http://www.basketballreference.com
15http://seanlahman.com/baseball-archive/statistics
16http://musicbrainz.org/doc/MusicBrainz Database/Schema
17F-measure = 2 * precision * recall/(precision + recall)



100

Table 5.1: Statistics of 15 real world data-centric XML datasets

Height of Number of Number of
XML Schema Tree Internal Node Leaf Node

eBay 5 6 25
Course Reed 4 3 12

SIGMOD 7 5 7
Mondial 6 29 109

NBA 6 5 10
Baseball 6 4 26

MarketPlace 4 14 108
BookStore 6 4 11

XMark 8 145 173
Course UWM 5 4 15
Course WSU 4 3 16
Accord PO 4 10 37

Accord RDB 3 13 65
Accord Star 3 5 34

TpoX 5 12 42
Total - 262 690

Average 5 18 46

one ORA-semantic concept as ground truth for each node being identified.

For example, the ground truth of an internal node may be having 75% to be an

object class and 25% to be a composite attribute as a result of among 8 evaluators,

6 of them identify it as an object class and 2 of them identify it as a composite

attribute. Thus, both object class and composite attribute will be considered as

the ground truth with different probabilities by using their expected values in our

calculation of precision, recall and F-measure (i.e. score 0.75 for object class, and

score 0.25 for composite attribute.).



101

Table 5.2: Precision, recall and F-measure of internal node classification

Object Role Explicit Aggregational Composite Overall
Class Name Relationship Node Attribute

Type
Precision 99.4% 85.0% 82.9% 81.0% 96.3% 94.7%

Recall 98.4% 94.4% 69.4% 94.4% 96.3% 94.7%
F-measure 98.9% 89.7% 76.2% 87.7% 96.3% 94.7%

5.1.4 Accuracy of Internal Node Classification

Except the dependent object classes18, there are totally 512 internal nodes in XM-

L schemas of all our experimental datasets. We ask our 8 evaluators to label

them with their ORA-semantics (i.e., object class, role name, explicit relationship

type, aggregational node or composite attribute). Table 5.2 shows that using all

above 512 internal nodes as inputs, the overall accuracy19 of our classification rules

achieves almost 95% of precision, recall and F-measure. The relative low precisions

for role name and aggregational node as well as the relative low recall for explicit

relationship type are because their corresponding classification rules contain some

related heuristics and these heuristics are not as accurate as the properties being

used in other classification rules.

As discussed in Section 4.3, properties of aggregational node and explicit re-

lationship type are not enough to distinguish them with each other. Role name

and explicit relationship type cannot be distinguished with each other by their

properties either. Therefore, we use the following heuristics to identify them:

Aggregational Node The tag name of an aggregational node should be the plural

form of the tag name of its child node;

Explicit Relationship Type The tag name of an explicit relationship type is

18Recall in Section 4.5.3, the dependent object class cannot be identified during this step.
19Overall accuracy means we do not distinguish among different ORA-semantic concepts for

their precisions, recalls and F-measures.



102

likely to be a word with verb form;

Role Name Tag name of a role name share high linguistic similarity with or being

a specialization of the tag name of the object class it being the role name of.

However, as heuristics are not 100% correct, there are still aggregational nodes,

explicit relationship types and role name which do not satisfy the above heuristics.

Example 5.1: In XML schema of XMark dataset, there is an internal node Mail-

Box, which has a child node MailBox. Apparently, MailBox is not a plural form

of Mail, and our rule-based approach cannot identify it as an aggregational node

using the above heuristic.

In XML schema of XMark dataset, another internal node InCategory also can-

not be correctly identified as explicit relationship type by above heuristic because

its tag name is combined by multiple words, which makes our rule-based approach

cannot identify whether its tag name can be a verb form or not.

Internal node Interest in the schema of XMark dataset also cannot be identified

as role name because its low linguistic similarity with its child node Category. 2

Another reason for the low precision of role name is because of its small per-

centage among all the internal nodes, which makes a single misidentification of

it affect its precision heavily. In Table 5.3, we show the number and percentage

of each ORA-semantic concept in all 512 input internal nodes. Obviously, object

class is one of the most important ORA-semantic concepts needed to be identified,

and its identification helps many XML applications to increase their efficiencies or

effectiveness as introduced in Chapter 1. There are 311 object classes among all

512 internal nodes, which take up around 60% of all the internal nodes. Thus, it

is especially important for a semantics discovery approach to have a high accuracy

for identifying object class. Our rule-based approach achieves more than 98% of

both precision and recall for identifying object class. On the other hand, other



103

Table 5.3: Distribution of different ORA-semantic concepts

Object Role Explicit Aggregational Composite Total
Class Name Relationship Node Attribute

Type

Number 311 18 49 54 80 512
of Node

Percentage 60.7% 3.5% 9.6% 10.5% 15.6% 100%

ORA-semantic concepts only take up a small percentage of all the internal nodes,

especially for role name, which only takes up less than 4% of all the internal nodes.

5.1.5 Accuracy of Leaf Node Classification

As discussed in Section 4.4.1, Algorithm 2 in rule-based semantics discovery ap-

proach may return more than one candidate OID for each identified object class.

Therefore, as discussed in Section 4.4.1, in order to choose the best OID from all

candidate OIDs, we adopt the Bayes’ Theorem [25] to calculate their probabilities

of being the best OID, and rank them to return the highest ranked candidate as

the OID of the corresponding object class.

We collect 122 correctly identified object classes, each of which has more than

one candidate OIDs returned by the Algorithm 2 in Section 4.4.1. For all 122

object classes, we ask our evaluators to manually specify their OIDs from all their

candidate OIDs, and use all these candidate OIDs as our training data. For each

node in the training dataset, we extract the statistic information of the related

features mentioned in Observation 1 and Observation 2, which are discussed in

Section 4.4.1. We then adopt the Bayes’ Theorem to calculate the probability of

a candidate OID with particular feature being the best OID for its corresponding

object class based on the statistic information. In Table 5.4, based on the features

mentioned in Observation 1 and Observation 2 in Section 4.4.1, we show the top



104

Table 5.4: Top 10 combined features of being OID

Number Number of Contains Contains Numerical Probability
of Participating First Certain Value of

Involved Object Child Keyword with Being
Attributes Classes Node Substring Pattern OID

1 1 1 T T T 0.432
2 1 1 T T F 0.172
3 1 2 T T T 0.068
4 2 1 T F F 0.045
5 1 1 F T T 0.038
6 1 1 F T F 0.038
7 1 1 T F T 0.030
8 1 2 T F T 0.030
9 1 1 F F T 0.016
10 1 2 T T F 0.016

10 probabilities of the candidate OID with different features being the best OID of

its corresponding object class.

Recall the general process (Fig. 4.2 in Section 7.2) of our rule-based semantics

discovery approach, our approach is also a step by step approach. Therefore, some

outputs of the previous step will work as the inputs for a latter step. E.g., object

classes identified by internal node classification step will be inputs of leaf node

classification step. In consequence, the accuracy of the latter step is affected by

the accuracy of its previous step(s).

In order to show the accuracy of each step separately, we conduct two groups

of experiments with all our experimental XML datasets to evaluate the precision,

recall and F-measure of our rule-based semantics discovery approach for leaf node

classification: one with user verification, which means all object classes have been

correctly labeled in the corresponding XML schemas; and one without user verifi-

cation, which means the object classes is the results from the step of internal node

classification of our rule-based semantics discovery approach.



105

(a) Precision (b) Recall (c) F-measure

Figure 5.1: Precision, Recall and F-measure of Leaf Node Classification
(OA: Object Attribute;
ERA: Relationship Attribute of Explicit Relationship Type;
IRA: Relationship Attribute of Implicit Relationship Type.)

Fig. 5.1 shows that our rule-based semantics discovery approach for leaf node

classification gets around 95% of overall precision, recall and F-measure20 with or

without user verifications. Even without user verification, the precision and recall

of our rule-based approach only drop slightly (except for precision of relationship

attribute of explicit relationship type, which will be explained later.).

The precision for identifying relationship attribute of implicit relationship type

is a little bit lower than the precisions for identifying OID and object attribute. It

is because given an implicit relationship type, if the OID of any participating object

class is identified wrongly, many object attributes of participating object classes will

be identified as relationship attributes of the implicit relationship type (because the

incorrect OID may not be able to functionally/multi-valued determine those object

attributes). Although the identification of object attribute is also affected by the

identification of OID, as there are much more object attributes than relationship

attributes in XML database, relationship attributes of implicit relationship type

are more heavily affected by the identification of their corresponding OIDs.

For relationship attribute of explicit relationship type, the precision of its iden-

20Recall that overall means we do not distinguish among different ORA-semantic concepts for
their precisions, recalls and F-measures.



106

tification is heavily depend on whether the corresponding explicit relationship type

is correctly identified. It is because all EDLNs (exclusive descendant leaf nodes) of

an explicit relationship type will be identified as its relationship attributes by our

rule-based approach. Therefore, its low precision is because the misidentification

of other ORA-semantic concepts as explicit relationship types which cause many

object attributes being identified as relationship attributes. With user verification

of the identification of explicit relationship types, its precision increases largely.

5.1.6 Accuracy of Implicit Relationship Type Identification

Last, we conduct our experiment on our rule-based approach for implicit relation-

ship type discovery. Recall that all explicit relationship types have been discovered

by our Rule 2, 3, 4, 5 in Section 4.3, and its accuracy has been shown in Table

5.2. Similar to leaf node classification, we also conduct two groups of experiments

with all our experimental XML datasets to evaluate the accuracy of our rule-based

approach for implicit relationship type identification, one with user verification,

which means all object classes with their OIDs, object attributes and relationship

attributes have been correctly labeled in the corresponding XML schemas, and one

without user verification, which means the input our implicit relationship type i-

dentification is the results of our previous two steps: internal node classification

and leaf node classification.

Fig. 5.2 shows the precision, recall and F-measure for identifying implicit re-

lationship types (including IDD relationship type) in XML schemas. For implicit

relationship type, when there is no user verification, its misidentification is because

of the wrongly identified relationship attribute from the previous step, leaf node

classification. Recall that in our rule-based semantics discovery approach, for each

identified relationship attribute, we will identify an implicit relationship type it



107

(a) Precision (b) Recall (c) F-measure

Figure 5.2: Precision, recall, F-measure of implicit relationship type identification
(IRT: Implicit Relationship Type.)

belongs to (discussed in Section 4.5.1). Therefore, those object attributes, which

have been wrongly identified as relationship attributes, make our approach generate

wrong implicit relationship types.

On the other hand, our rule-based semantics discovery approach also identifies

implicit relationship types by IDREF(S) attributes (discussed in 4.5.2). However,

as discussed before, for some XML schemas (such as DTD), they do not specify

the the object class or corresponding OID the IDREF(S) reference. Thus, some

implicit relationship types may be lost.

5.2 Impact of Possible Misidentification for XML

Applications

As our rule-based semantics discovery approach not uses only the properties of

different ORA-semantic concepts but also their related heuristics to distinguish

among them, which are not guaranteed to be 100% correct. This will reduce the

accuracy of our rule-based approach. Moreover, the rule-based semantics discovery

approach also uses the FDs and MVDs imposed in the corresponding XML data.

However, in XML database even relational database, their FDs and MVDs are

both constraints imposed in the corresponding data, and do not carry any semantic



108

information with them. Thus, if there is no user verification or specification for the

discovered FDs and MVDs, there may be some unexpected/meaningless FDs and

MVDs returned by those FDs/MVDs summarization approaches, especially when

the size of the dataset is small. These unexpected/meaningless FDs and MVDs

will reduce the accuracy of our rule-based approach.

In this section we will discuss what kind of possible misidentification our rule-

based semantics discovery approach may make, and if our rule-based semantics

discovery approach returns wrong semantic information, how these wrongly iden-

tified semantics affects the effectiveness or efficiency of XML applications such as

XML keyword search. Finally, we will show that even if our rule-based approach

identifies some ORA-semantic concepts wrongly, the applications can still get their

results no worse than those without any ORA-semantics being discovered.

In the following, for the first two subsections, we will focus on two possible

misidentifications of our rule-based semantics discovery approach: object class vs.

composite attribute, and dependent object class vs. object class. These two possi-

ble misidentifications are mainly caused by the unexpected FDs and MVDs due to

the small size of datasets. Furthermore, possible misidentifications may also caused

by the fact that some ORA-semantic concepts share some of their properties, and

they may be difficult to be distinguished with each other, such as object class vs.

explicit relationship type, composite attribute vs. explicit relationship type, aggre-

gational node vs. explicit relationship type. In the last subsection, we will discuss

that these misidentifications seldom occur in our rule-based semantics discovery

approach, because we have at least one property to distinguish between them for

each of the above misidentifications.



109

5.2.1 Possible Misidentification: Object Class vs. Compos-

ite Attribute

Recall the decision tree of our rule-based semantics discovery approach shown in

Fig. 4.3 and the property table shown in Table 4.1, in XML schema, the ob-

ject class and the composite attribute share a lot of properties in term of their

structural features in their corresponding XML schema tree. Both object class

and composite attribute are internal nodes with more than one child node in their

XML schema trees. The only difference between object class and composite at-

tribute is whether there is any FD/MVD among their exclusive descendant leaf

nodes (EDLNs). However, as mentioned above, if the size of XML data is too

small, unexpected FDs/MVDs will be discovered even for a composite attribute.

Thus, it is easy for a composite attribute being identified as an object class by our

rule-based approach.

In the following, we will show examples of XML keyword search by applying

an existing LCA-based XML keyword search approach such as [59, 68], given an

XML data with its XML schema, and keyword queries from users. With the ORA-

semantics being discovered by our rule-based approach (even we wrongly identified

some composite attributes as object classes), the query results are no worse than

the results returned by applying the same XML keyword search approach without

any ORA-semantics being identified.

In Fig. 5.3, our rule-based semantics discovery approach will wrongly identi-

fy composite attribute ContactInfo as an object class if we discover any FD/MVD

among its EDLNs. Based on how the existing LCA-based keyword search approach-

es return the answers, we discuss the following two keyword queries by examples.

Note that all processing are conducted on XML data in the rest of this section.



110

Name

Supplier*

Project *

Part*

Part#

Quantity

Supplier#

Price

Location@Project#
(ID)

Funding

Color

Employee*

Name
Phone*

ContactInfo

Address Fax #
Contact #

SPJ

@E#
(ID)

Borrow*

Book

ISBN

Title

Date

Author*

Page
ToC# Page

From

Chapter*

Figure 5.3: An XML schema tree

Example 5.2: [Keyword Query: {Suppler, 10 Stanford Road}]

Based on the XML schema tree in Fig. 5.3, the query keyword ‘Supplier ’

matches the internal node Supplier and assume the query keyword ‘10 Stanford

Road ’ matches the value of leaf node Address. Without ORA-semantics, existing

LCA-based approach will return the lowest common ancestor (LCA) of these two

matching nodes and the subtree roots at this LCA node, which is an instance of the

internal node Supplier with its Address as ‘10 Stanford Road ’. Note that the subtree

rooted at an instance of the internal node Supplier also contains all instances of Part

which are under this particular Supplier instance. If this supplier instance supplies

many parts, e.g. 1000, the query results will contain all information about these

1000 parts, which will overwhelm the users and may not be the query intention of

the users.

On the other hand, for the same keyword query, our discovered ORA-semantics

show that the internal node Supplier and Part are object classes and Supplier# and

Part# are their OIDs respectively. Assume the composite attribute ContactInfo



111

is misidentified as an object class by our rule-based approach. With above ORA-

semantics, the keyword search approach will still return the subtree rooted at an

object instance of Supplier with its Address as ‘10 Stanford Road ’. By identifying

Part as an object class, the query result will not show all the object instances

of Part, but represent these object instances by their OID values only. For the

instance of ContactInfo, it will be represented only by its ‘fake’ OID value similar

to the object class Part, as it is misidentified as an object class. However, the user

can always expand the instance of ContactInfo for more information. This also

applies to other object instances such as object instances of Part as long as it is

not the root node because all information about the root node has already been

expanded and shown in the query result. 2

In Example 5.2.1, we show that the results of keyword search approach with

ORA-semantics are no worse than those without ORA-semantics. Furthermore,

by representing object instances with their OIDs, the results with ORA-semantics

give users a more clear and simple view of the results without overwhelming the

users with unnecessary information.

Example 5.3: [Keyword Query: {Contact#, 75862549}]

Based on the XML schema tree in Fig. 5.3, the query keyword ‘Contact#’

matches the leaf node Contact# and assume the query keyword ‘75862549 ’ matches

the value of Contact#. Without the ORA-semantics, existing LCA-based keyword

search approach will return the LCA of the corresponding matching nodes and the

subtree roots at it, which is an instance of the internal node ContactInfo. According

to the keyword query, we can guess the user intention is to query the information

whoever/whatever have its Contact# as ‘75862549 ’. In our XML data, it should

be the supplier with its contact# as ‘75862549 ’. However, the subtree returned

by the existing LCA-based keyword search approach only contains the information



112

under an instance of ContactInfo, which is incomplete and meaningless.

On the other hand, for the same keyword query, assume the composite attribute

ContactInfo is misidentified as an object class by our rule-based approach. With

these ORA-semantics, the keyword search approach will also return the subtree

roots at an instance of ContactInfo with its Contact# as ‘75862549 ’ thinking it as

an object instance. Although this answer is also incomplete, the result is no worse

than the result without ORA-semantics being identified as discussed above. 2

Therefore, we have shown that even if our rule-based semantics discovery ap-

proach wrongly identified composite attribute as object class, the returned results

for XML keyword search are no worse than those without using any ORA-semantics.

5.2.2 Possible Misidentification: Dependent Object Class

vs. Object Class

Similar to a composite attribute being misidentified as an object class, a dependent

object class is also possibly misidentified as an object class when the XML data is

not large enough to rule out those unexpected FDs and MVDs.

Recall that dependent object class is identifier depend on another object class,

e.g., in Fig. 5.3, the dependent object class Chapter is identifier depend on object

class Book. In order to uniquely identify an instance of dependent object class,

an instance of its ancestor object class(es) is also necessary. For example, we can

only uniquely identify an instance of Chapter by also providing an instance of

Book. Thus, in the application of XML keyword search, similar to the composite

attribute, it is meaningless to only return the instance of a dependent object class.

Example 5.4: [Keyword Query: {Database Management, Chapter 01}]

Based on the XML schema tree in Fig. 5.3, and assume the query keywords



113

‘Database Management ’ and ‘Chapter 01 ’ match the value of leaf nodes Title and

C# respectively. Without ORA-semantics, existing LCA-based approach will re-

turn a Book instance whose title is ‘Database Management ’. Note that the result

also contains all Chapter instances under this Book instance with their attributes.

On the other hand, for the same keyword query, our discovered ORA-semantics

show that the internal node Book is an object class with its OID ISBN. Assume

the dependent object class Chapter is misidentified as an object class. With above

ORA-semantics, the keyword search approach will still return a Book instance

whose title is ‘Database Management ’. For instances of Chapter under this Book

instance, they will be represented only by their ‘fake’ OID value, as it is misiden-

tified as an object class. However, the user can always expand the instance of

Chapter for more information. 2

Example 5.5: [Keyword Query: {C#, Chapter 01}]

Based on the XML schema tree in Fig. 5.3, the query keyword ‘C#’ matches

the leaf node C# and assume the query keyword ‘Chapter 01 ’ matches the value

of C#. For this keyword query, no matter whether the keyword search approach

consider the ORA-semantics or not, the answer would be a Chapter instance whose

C# is ‘Chapter 01 ’. As Chapter should be identified as a dependent object class,

it is incomplete to return just the Chapter instance without showing which Book

instance it belongs to. 2



114

5.2.3 Possible Misidentifications: Explicit Relationship Type

vs. Object Class/Composite Attribute/Aggregational

Node

Recall that in our rule-based semantics discovery approach, we use a decision tree

constructed by the properties and heuristics of different ORA-semantic concepts for

classifying each internal node in XML schema tree into an ORA-semantic concept.

As is mentioned in Section 4.3, the structural characteristics of explicit relationship

type are flexible. Because of this, explicit relationship type may share lots of

properties with other ORA-semantic concepts, including object class, composite

attribute and aggregational node. In the following, we will show what is the key

differences between them, and how our rule-based semantics discovery approach

can distinguish between them.

Explicit Relationship Type vs. Object Class

For explicit relationship type and object class, their key difference is: there is no

OID for any explicit relationship type, but there must be an OID for each object

class. In XML schema, we can distinguish most of the explicit relationship types

from object class by checking whether they have any FD/MVD among their

exclusive descendant leaf nodes(EDLNs). Recall the intuitive meaning of

EDLN is: given an internal node i, each EDLN of i is a leaf node under i, but there

is no other object class between the EDLN and i. In the following, we will use an

example to illustrate how to distinguish explicit relationship type and object class:

Example 5.6: In Fig. 5.4, we show the XML schema trees representing the borrow

relationship between two object classes Student and Book by an explicit relationship

type Borrow in 5 different designs. According to the definition of EDLN:



115

Matric #

Student

...Borrow*

...ISBN Title

Name

Book

Matric #

Student

...Borrow*

...ISBN Title

Name

Book
Borrow

Date

Matric #

Student

...Borrow*

...ISBN Title

Name

Book

Borrow

Date

Matric #

Student

...
Borrow*

Name

Borrow

Date

...ISBN

(ID)

Title

Book

Root

Book

(IDREF)

Matric #

(ID)

Student

...

Borrow*

Name

Borrow

Date
...ISBN

(ID)

Title

Book

Root

Book

(IDREF)

Student

(IDREF)

(A) (B) (C)

(D) (E)

Figure 5.4: Explicit Relationship Types Borrow Represented by 5 Different Hier-
archical Structures in XML Schema Trees

• The explicit relationship type Borrow in (A)21 and (B) both do not have any

EDLN;

• The explicit relationship type Borrow in (C) has only 1 EDLN: BorrowData;

• The explicit relationship type Borrow in (D) has 2 EDLNs: Book and Bor-

rowData;

• The explicit relationship type Borrow in (E) has 3 EDLNs: Student(IDREF),

Book(IDREF) and BorrowData;

It is obviously that for the explicit relationship type Borrow in (A)(B)(C)(D),

there is no FD/MVD among their EDLNs. However, for object classes such as

Student and Book, because there must be an OID among its EDLNs for each

object class, there should have at least one FD/MVD among their EDLNs, e.g.,:

21Recall that each node with a ‘∗’ as its superscript in the XML schema tree means it is a
repeatable node, and repeatable node is the node which can occur multiple times with the same
XPath in the corresponding XML data.



116

• {Matric#} → {Name};
• {ISBN} → {Title};

On the other hand, as is shown in Fig. 5.4 (E), it is also possible for an

explicit relationship type to have FD/MVD among its EDLNs (Student(IDREF)

and Book(IDREF) are both IDREF attributes referring to OIDs of object classes

Student and Book, i.e., Matric# and ISBN ):

• {Student(IDREF), Book(IDREF)} → {BorrowDate};

However, we find out that the left hand side (LHS) of the above FD/MVD are

all IDREF attributes. Similarly, we can distinguish explicit relationship type with

object class by checking whether the LHS of all FD/MVD among their EDLNs

are IDREF attribute or role name. If the answer is yes, it should be an explicit

relationship type. This is because for explicit relationship type with FD/MVD

among its EDLN, the object class under it in the XML schema tree can only be

represented as IDREF attribute or role name. Otherwise, its designs will be similar

to Fig. 5.4 (A)(B)(C)(D), and there will not be any FD/MVD among its EDLNs.

On the other hand, for object class, the LHS of the FD/MVD among its EDLNs

should contain its own OID, which is not an IDREF attribute or a role name. 2

Explicit Relationship Type vs. Composite Attribute

For explicit relationship type and composite attribute, both of them can have more

than one child node in their XML schema tree, and it is possible that both of them

do not have any FD/MVD among their child nodes (e.g., Borrow in Fig. 5.4 (A))).

The key difference between them is there should be at least one object class, role

name, or IDREF(S) attribute as the child node of an explicit relationship type

(e.g., any explicit relationship type Borrow in Fig. 5.4), but there should never be

any of them as the child node of a composite attribute.



117

Matric #

Student

Qualifications

...Degree Data

Name

Qualification*

(B)

...
Matric #

Student

All_Borrow

...ISBN Name

Name

Book

(C)

...
Matric #

Student

Courses

...Code Name

Name

Course*

(A)

...
Matric #

Student

Borrow

...ISBN Name

Name

Book*

(D)

...

Borrow*

Borrow

Date

Borrow

Date

Figure 5.5: Aggregational Node (Courses in (A), Qualifications in (B), All Borrow
in (C) and Borrow in (D)) in XML Schema Trees

Explicit Relationship Type vs. Aggregational Node

The key difference between explicit relationship type and aggregational node in

both XML schema and XML data is: for explicit relationship type, although its

hierarchical structures may be different (e.g., explicit relationship types Borrow

in Fig. 5.4), any explicit relationship type is representing a relationship between

two or more object classes; while for aggregational node, it aggregates its child

notes together for presentation purpose, so that user can have a easier and clearer

understanding.

As we defined aggregational node in Section 2.2, it is an internal node in both

XML schema tree and XML data tree which aggregates its child nodes with identical

or similar meaning. Aggregational node can aggregates object class (e.g., aggrega-

tional node Courses in Fig. 5.5 (A)), composite attribute (e.g., aggregational node

Qualifications in Fig. 5.5 (B)), and even relationship type, which can be explicit

relationship type (e.g., aggregational node All Borrow in Fig. 5.5 (C)) and implicit

relationship type (e.g., aggregational node Borrow in Fig. 5.5 (D)). Notice that in

Fig. 5.5 (D) there is an implicit relationship type between object classes Student

and Book with a relationship attribute BorrowData.

We have shown that even if our rule-based semantics discovery approach wrongly



118

identified dependent object class as usual object class, the returned results for XML

keyword search are no worse than those without using any ORA-semantics.

Furthermore, as discussed in Chapter 1 and [31], whenever the ORA-semantics

is correctly identified, this ORA-semantics can largely increase the accuracy for

XML keyword query.

5.3 Comparisons with Existing Approaches

Recall in Chapter 3 we reviewed the semantics captured and represented by differ-

ent ontology models, which are the semantic models built with ontology languages

(such as RDF, RDFS and OWL). We also reviewed existing approaches for discov-

ering semantics from relational database and existing approaches for discovering

semantics from XML database.

In the following subsections, we will compare the semantics discovered by our

rule-based approach with the semantics captured by ontology models and the se-

mantics discovered by existing approaches for relational database (i.e., database

reverse engineering (DBRE) approaches [2, 50, 36, 37]) and semantics discovered

by existing approaches for XML database (i.e., object identification approaches

[63, 64, 16, 41]). For ontology model, we use OWL [7] as its ontology language as

it is proposed based on RDF [30] and RDFS [14] to capture more semantics, and

other otology models share similar characteristics.

5.3.1 Comparisons with Ontology Models

For the ORA-semantics, it includes the semantic concepts such as object class,

OID, object attribute, relationship type, relationship attribute, etc. However, for

ontology model [7], as discussed in Chapter 3, although it can also represent the



119

class class and relationship type in schema level, their underlying meanings are

not exactly the same with the corresponding semantic concepts in ORA-semantics.

To more more precise, objects in ontology model can be any ‘thing’ in the real

world, even such as VintageYear with only one attribute yearValue as discussed in

Example 3.3 of Chapter 3. However, in the ORA-semantics, object class is defined

to represent a real world entity or concept with attributes to describe and store its

information. For the above VintageYear and yearValue, they would be represented

as an object attribute and its value in ORA-semantics.

Furthermore, ontology model can at most capture and represented binary rela-

tionship type. This is because ontology model can only capture relationship type

using ObjectProperty with its Domain and Range which can only specifies two

object classes. For ternary relationship type and n-nary relationship type, as well

as relationship attribute, ontology model also cannot capture and represent them.

Example 5.7: For the XML schema tree shown in Fig. 5.3, the ontology mod-

el such as OWL must manually translate the XML data and schema into OWL

document by domain experts, indicating the object class such as Project, Supplier,

Part, Employee, Book, and binary relationship types such as the relationship type

between object classes Project and Supplier, and the explicit relationship type Bor-

row between Employee and Book. However, as ontology model cannot capture and

represent many other semantic concepts such as composite attribute, dependent

object class, both ContactInfo and Chapter will be wrongly represented as object

classes in ontology model. Furthermore, the ternary relationship type among the

object classes Project, Supplier and Part, as well as the relationship attributes

Price, Quantity and Data cannot be captured and represented in ontology model

neither. 2

In term of semantics discovery, the semantics such as object classes and rela-



120

tionship types in ontology model are usually designed based on the manually effort

by domain experts, which will be very costly. Ontology model cannot take XML

data or schema as input and automatically return the discovered semantics as we

did in our rule-based semantics discovery approach.

5.3.2 Comparisons with DBRE Approaches for Relational

Database

For DBRE approaches [2, 50], they are proposed to discover semantic information

from an relational database and represent them in ER model or its variants. The

gold of these approaches are similar with our rule-based approach, excepting that

we are working on XML database. We both try to discover the semantic concepts

such as object class, OID, object attribute, relationship type, relationship attribute,

as well as dependent object class and IDD relationship type, etc. These semantic

concepts can be well captured by ER model and ORA-SS for relational database

and XML database respectively.

The difference between ORA-SS and ER model is the hierarchical structure

which can be captured and represented by ORA-SS, but cannot by ER model.

This difference also applies to relational database and XML database. Thus, for

the DBRE approaches, they mainly use the constraints extracted and summarized

from the relational data, such as primary key - foreign key constraints, functional

dependencies, multi-valued dependencies, etc. However, as shown by the authors in

[36, 37], that the functional dependencies and multi-valued dependencies are only

constraints to enforce database integrity and does not contain semantic information.

Authors in [36, 37] has proposed the semantic dependency, which can capture

the relationship, rather than integrity constraints between two sets of attributes.

However, necessary user feedbacks and interactions are still necessary for these



121

approaches during the relational to ER schema translation. However, there are

still some semantic concepts which cannot be discovered by these approaches, such

as aggregational node, which is not represented by ER model. This is because the

aggregational node is just a structural node, which does not contain any semantic

information, while ER model is proposed as a conceptual model which does not

capture the hierarchical structure.

On the other hand, our rule-based semantics discovery approach considers not

only the functional/multicalue dependencies, but also the hierarchical structure of

the XML data and XML schema. To be more precise, we extract and summarize

the properties (describing their hierarchical structures and functional/multicalue

dependencies) of different ORA-semantic concepts, and use these properties to

distinguish between different ORA-semantic concepts.

5.3.3 Comparisons with Object Identification Approaches

for XML Database

For the object identification approaches, authors in [16, 41, 74] focus on discovering

the object classes in schema level and object instances in data level; while authors

in [63, 64] focus on identifying the identical object instances in XML data. Both

of them ignore many other equivalently important semantic concepts such as OID,

relationship type, relationship attribute as well as dependent object class and IDD

relationship type, etc.

Furthermore, these approaches discover the corresponding semantics merely

based on some basic linguistic information (such as tag name of element nodes,

etc.) and structural information (such as whether an element node is an internal

node or a leaf node; whether an element node is a repeatable node22, etc.), which

22Recall that repeatable node is the node which can occur multiple times with the same XPath



122

are far from enough to identify all ORA-semantic concepts.

Example 5.8: Using the XML schema tree shown in Fig. 5.3 as input, in [41, 74]

the authors identify all repeatable nodes as object classes. Although object class-

es Project, Supplier, Part, Employee and Book can be correctly identified, these

approaches will also wrongly identify other semantic concepts such as composite

attribute ContactInfo, explicit relationship type Borrow and dependent object class

Chapter as object classes. Furthermore, many other semantic concepts such as rela-

tionship type, relationship attribute, etc. cannot be identified by these approaches.

2

On the other hand, as mentioned many times, our rule-based semantics dis-

covery approach collects not only properties of different ORA-semantic concepts

but also their heuristics summarized from statistics information from both XML

schema and XML data. Among the properties and heuristics we collected for i-

dentifying different ORA-semantic concepts, they include not only the structural

features, but also linguistics features as well as constraints such as functional de-

pendency extracted from the XML data. Furthermore, our approach can discover

much richer semantics including not only object class, but also OID, relationship

type, object attribute, relationship attribute, etc.

5.3.4 Comparisons Summary

Similar to Chapter 2, to summarize the above discussion, we also list all ORA-

semantic concepts and show whether they can be discovered by (in) ontology model,

DBRE approaches and object identification approaches in Table 5.5.

Note that ‘3’ means the corresponding ORA-semantic concept can be discov-

ered by (in) this approach (model) correctly, assuming there is no unexpected/

in the corresponding XML data.



123

Table 5.5: ORA-semantic concepts discovered by (in) existing approaches (model)

Rule-based Ontology Object
Semantics Model DBRE Identification
Discovery (OWL) Approaches Approach
Approach

Object Class 3 38 3 38

OID 3 38 3 8

Object Attribute 3 38 3 38

Binary Relationship Type 3 38 3 38

N-nary Relationship Type 3 8 3 8

Relationship Attribute 3 8 3 8

IDD Relationship Type 3 8 3 8

Dependent Object Class 3 8 3 8

Role Name 3 8 8 8

Composite Attribute 3 8 3 8

Aggregational Node 3 8 8 8

meaningless FD/MVD because of the small size of input dataset; ‘8’ means the

corresponding ORA-semantic concept cannot be discovered by (in) this approach

(model), or it is not captured/represented in this model; while ‘38’ means the

corresponding ORA-semantic concept can only be partially discovered by (in) this

approach (model), or it may also wrongly discovers other ORA-semantic concepts

as the corresponding ORA-semantic concept.

In ontology model, as discussed before, although it can capture object classes,

it also represents many object attributes in ORA-semantics as object classes. For

object identification approaches, although they can correctly identify object classes

by identifying all internal nodes/repeatable nodes as object classes, they may also

wrongly identify composite attributes, role names or aggregational nodes as object

classes. For DBRE approaches, although they can identity most of the ORA-

semantics concepts, these approaches also heavily depend on user interactions and

some strong assumptions (such as relational schemas in 3NF, etc.).



124

5.4 Chapter Summary

Extensive experiments have been conducted in 15 real data-centric XML datasets

to show that our rule-based approach gets high accuracy for discovering ORA-

semantics (almost 95% of overall precision, recall and F-measure). However, FDs

and MVDs are important factors for our rule-based approach. Meaningless and

unexpected FDs/MVDs because of the small dataset will reduce the accuracy of

our rule-based approach of identify the correct ORA-semantic concepts (such as

composite attribute and dependent object class).

We discussed the impact for XML applications such as XML keyword search,

when our rule-based approach misidentifies ORA-semantics. We showed that even

our rule-based approach returns some incorrect answers (i.e., wrongly identify com-

posite attributes and dependent object classes as object classes), the results for

XML keyword search will not worse than those without any ORA-semantics being

identified.

In this chapter, we also compared the ORA-semantics discovered by our rule-

based approach with the semantics captured and represented in ontology model.

We show that there many important ORA-semantic concepts which cannot be

captured and represented by ontology model, such as ternary/n-nary relationship

type, dependent object class, etc. Furthermore, we also compared our rule-based

semantics discovery approach with other existing semantics discovery approaches

for relational database (i.e., DBRE approaches) or for XML database (i.e., object

identification approaches). We showed that DBRE approaches still need necessary

user interactions and our rule-based approach can identify much more semantic

concepts (such as OID, relationship attribute, etc.) than those object identification

approaches.



CHAPTER 6

DEMONSTRATION SYSTEM

Based on the rule-based approach for discovering ORA-semantics we proposed in

Chapter 4, we have built an ORA-semantics Discovery System. Our system takes

XML files as input, and will discover the ORA-semantics automatically by making

use of the XML data. DTD or XSD is also part of the input but it is optional.

Because the schema information we need in the process can be derived from the

XML data itself. Finally the semantics we discovered will be present in a user-

friendly and interactive way.

In the following, we use the XML data (Fig. 1.1) and XML schema (Fig. 1.4)

showed in Chapter 1 to demonstrate how the system offers a new and visual way

to discover the ORA-semantics given an input, and how it greatly enhances user

experience by:

1. Showing the ORA-semantics in a graphical interface;

2. Providing an interactive way for users to explore and improve the ORA-

semantics discovered.

125



126

6.1 System Input

When the system is launched, an open dialog is shown to the users, prompting

them to specify the input files. The input includes:

1. An XML data file;

2. DTD or XSD (optional);

3. A file specifying functional dependencies (FDs) and multi-value dependencies

(MVDs) imposed in the XML data (optional).

Fig. 6.1 shows the welcome dialog of our system. It provides three options

for users to start the process, namely ‘DTD + XML Data’, ‘XSD + XML Data’

and ‘XML Data’. This is because the schema information we need for the process

can be derived from the XML data itself, which makes the DTD/XSD an optional

input. Besides, FD/MVDs of the XML data is also option because users can also

specify FD/MVD one by one later. As mentioned in section 7.2, there are many

existing works on deriving FDs/MVDs from XML data. As it is not the main focus

of our work, we let users provide this information.

Figure 6.1: Open dialog.



127

When the files are ready, users can click the ‘OK’ button at the bottom of Fig.

6.1 to start discovering the ORA-semantics from input files. After the discovery

process is completed, results will be displayed to the users.

6.2 ORA-semantics Display

When the system finish the discovery process, the ORA-semantics discovered will

be displayed in a window. Nodes are classified into different categories and shown

in a tree structure. Fig. 6.2 shows the ORA-semantics discovered by our system.

An XML schema tree is displayed in the window. Each node is represented as a

rectangle. The ORA-semantic concepts discovered are shown in rectangle of each

node. Information of different node categories is shown at the upper right corner

of the window.

Figure 6.2: ORA-semantics discovered by the system.

Each node in the schema tree is foldable. Users can click on the ‘+’ (‘-’) sign

beside each node to unfold (fold) the subtree. Folded nodes are represented as

yellow rectangles while unfolded nodes are represented as blue nodes. So the ORA-

semantics can be managed in a neat way even when the schema tree is huge.



128

6.3 User Interaction

Apart from the XML schema tree view which displays the discovered ORA-semantics,

the system also provides an interactive way for users to explore the semantic infor-

mation and improve the ORA-semantics discovered by the system.

Figure 6.3: Node information.

When a user clicks on any node in Fig. 6.2, a new window showing the detailed

information of the node will pop up, as shown in Fig. 6.3. In the figure, detailed

information about the node is displayed, including node type, node name, OID (if

any), Object Attribute (if any), etc. Note that some information is not available

for a specific node, so the information will be grey.

Users can also change the node type discovered by the system if it is not properly

identified. Users can easily do it by choosing another type from the drop down menu

on the top of Fig. 6.3 and click the ‘Update’ button at the bottom. E.g., if a node

is classified to be an OC (Object Class) by mistake, users can change it to some

other node types, like Composite Attribute, etc.

Besides, users can also see all nodes being identified as a particular node type

by clicking the ‘General Information’ button at the bottom of Fig. 6.3, then Fig.

6.4 will pop up. Other nodes of the same node type are shown in the window.



129

Figure 6.4: General information.

Figure 6.5: Dialog for modifying Object ID.



130

Users can click the ‘Modify OID’ button in Fig. 6.3 for the case when an OID

is wrongly identified. Then users can choose a new OID in Fig. 6.5. Users can

choose one or multiple node from all EDLNs (exclusive descendant leaf nodes) of

an object class. To further enhance user experience, we also provide all candidate

OIDs which is discussed in Section 4.4.1 to the users, as shown in Fig. 6.5.

Figure 6.6: Dialog for adding new FD/MVD.

Sometimes users may want to add FDs/MVDs to the system. Users can simply

click the ‘New FD’ button in Fig. 6.3 to add in new FDs/MVDs. Fig. 6.6 shows the

dialog for adding FDs/MVDs. At the left side of the dialog, users choose the left-

hand-side (LHS) nodes for a FD/MVD. To choose more than one node, users have

to press the ‘Control’ button on the keyboard to select the second node onwards.

In the middle of the window, users choose whether a FD or a MVD is added to the

system. At the right side of the dialog, users can choose the right-hand-side (RHS)

node for the FD/MVD. After that, users can click the ‘Add’ button to update the

FD/MVD into the system.



131

6.4 Chapter Summary

In this chapter, we introduced a user-friendly system for discovering ORA-semantics

for XML. This system is built based on our rule-based semantics discovery approach

for XML discussed in Chapter 4. We showed a step-by-step tutorial to illustrate

how users input a XML data file with/without its corresponding XML schema file

(in DTD or XSD); how the discovered ORA-semantics is displayed to users; and

how users can interact with our system to improve our accuracy of ORA-semantics

discovery from XML.



CHAPTER 7

FUTURE WORK: SEMANTIC-BASED

XML SCHEMA INTEGRATION AND

DATA INTEGRATION

7.1 Introduction

XML document has been frequently created and exchanged by business and en-

terprise, and there is an increasing need for accurate and efficient XML schema

integration and data integration. Moreover, with more and more XML documents

being generated, heterogeneous data sources may need to be integrated for cen-

tralized management. With a general unified query interface for all heterogeneous

data sources, users can easily access the information with information from differ-

ent data sources and with redundancies being processed and removed. All these

make XML schema integration and data integration become an important topic.

132



133

In the following, after reviewing some existing works on schema integration and

data integration for both relational database and XML database. We proposed the

framework of a step-by-step semantics-based approach for XML schema integration

and data integration, which fully considers the ORA-semantics discovered in this

thesis (Chapter 4) and uses them to help increasing the efficiency or effectiveness

of the XML schema integration and data integration.

7.2 Existing Works

Schema integration has been well studied in the last decade. For relational database,

a detail and comprehensive survey [6] has been done to analyze the methodologies

for database schema integration. In [32, 33], the authors pointed out that many

existing approaches such as [5, 57] lose valuable semantics information or FDs

(functional dependencies) during their integrations because of the structural con-

flicts and constraint conflict they will encounter during the integration. To be more

precise, an entity type in one schema may be modeled as a relationship type in an-

other schema. If they integrate them together by transforming the relationship

type into an entity type, lot of information will be lost because they split a rela-

tionship type into two or more. The semantics, cardinalities, identifier of these new

relationship types will be uncertain, and even some FDs imposed in the previous

relationship type will be lost. Thus, conflict resolution is an important step, which

should be considered by any schema integration and data integration approach.

For XML database, many XML schema matching and XML schema integration

approaches have also been proposed. Some of them use linguistic and hierarchi-

cal structural information to match and integrate among element nodes in XML

schemas [35, 46]; some of them also use information from XML data [10, 1]; some



134

of them use Natural Language Processing (NLP) techniques to extract useful infor-

mation [42, 11]; some of them match and integrate element nodes by representing

them using ontology model [18, 62].

However, none of these approaches consider the ORA-semantics discovered in

Chapter 4, especial the ORA-semantic concepts such as object class, relationship

type, object attribute and relationship attribute. Without considering these ORA-

semantics, they may wrongly match and integrate different element nodes together

with high linguistic similarity/hierarchical structural similarity, but actually with

totally different semantics, such as object attribute and relationship attribute.

7.3 Semantics-based XML Schema Integration and

Data Integration

The general process of our approach, and the ORA-semantics needed in each step,

are shown in Fig.7.1. In the following, we will briefly describe each step separately.

7.3.1 Schema Fragmentation & Object Classes Matching

Firstly, we fragment all local XML schemas into substructures using the object

classes discovered in Chapter 4. We match among these substructures, each of

which represents an object class. In order to match among the object classes, we

can use the structural information (e.g., parent/ancestor/sibling/child/descendant

nodes, etc.), linguistic information (e.g., tag name similarity, synonyms, homonyms,

etc.) and ontology information (i.e., the meaning of the tag names) of each internal

node representing an object class. Also many matchers proposed in some existing

schema matching approaches [3, 20] can be adopted here.



135

1.Fragment Local XML 
Schemas into Substructures

3.Match Among Object Attributes of 
Semantically Equivalent Object Class

2.Match Among
object classes

Local XML Schemas

4.Match Among Relationship Types 
Involving Semantically Equivalent Object 
Classes and Their Relationship Attributes

5.XML Schema Integration 
(Resolve Structural Conflicts 

and Remove Redundancy)

6.XML Data Integration 
(Resolve Constraint Conflicts)

Relationship Types

Object Attributes

Global XML Schema

Global XML Data

Relationship 
Attributes

Object Classes

Local XML Data

Figure 7.1: General process of for XML schema integration and data integration

Furthermore, we need a score function to calculate similarities among object

classes and a threshold, which can be adjusted by users, to determine whether

the quality of a matching is good enough. Only those object classes with higher

similarity than the threshold will be considered matched.

7.3.2 Object Attribute Matching

Next step is to match among object attributes of those semantically equivalent1

object classes, which have been matched in Section 7.3.1. An object attribute a

of object class O can be matched with object attribute a’ of object class O’ only

when O and O’ are matched in the previous step. Thus, given O matches with

O’, for each object attribute of O, we only compare it with object attributes of O’,

rather than each node in the local XML schema as they do in other approaches.

This makes our approach more efficient than the others. However, when object

1Two ORA-semantic concepts are semantically equivalent means they are representing the
same thing/concept and should be matched and integrated together.



136

classes are wrongly matched together, all their object attributes will be matched

wrongly. To resolve this problem, as shown in Fig. 7.1, we can use the matchings

results of object attributes to refine the matchings of object classes. To be more

precise, given two sets of object attributes, if they can hardly matched together

(i.e., with low similarities), we know the object classes they belong to may be

wrongly matched.

7.3.3 Relationship Type Matching & Relationship Attribute

Matching

In Chapter 4, we identified the relationship types among object classes with their

degrees, participating object classes, and their relationship attributes. To match

among relationship types, we also need to know their semantic meanings when two

or more relationship types involve semantically equivalent object classes. To iden-

tify whether they should be matched together, we consider the similarity between

their relationship attributes. In case of both relationship types have relationship at-

tributes, there are three kinds of correlation between them: (1) positive correlated;

(2) negative correlated; (3) not correlated. If the relationship attributes are posi-

tively correlated, the corresponding relationship types should be matched together,

while if the relationship attributes are negatively correlated or not correlated, the

corresponding relationship types should not be matched together.

For example, If two relationship types with their participating object classes

having been matched with each other, and they both have a relationship attribute

BorrowData and PurchaseData respectively. By analyzing the correlation between

these two relationship attributes, we know their corresponding relationship types

represent different semantic meanings and should not be matched together. In order

to identify the correlations information, we can use some existing lexical databases,



137

such as WordNet mentioned in Chapter 4.

7.3.4 Schema Integration & Structural Conflict Resolution

After matching object classes, relationship types and their attributes, we merge

them together and form a global integrated schema. During the integration, we

may encounter different structural conflicts, such as:

Object Attribute vs. Object Class Conflict The same concept may be mod-

eled as an object attribute in one schema, and be modeled as an object class

in another schema. This conflict can be resolved by transforming the object

attribute to an object class.

Generalizations vs. Specializations Conflict It happens when an object class

in one schema is a general concept of an object class in another schema. This

conflict can be resolve by including the generalization ISA hierarchy in the

global integrated schema.

There are many other structural conflicts such as ancestor-descendant conflic-

t, relationship type conflict (i.e., conflict among different relationship types with

different degree), etc. These conflicts have been well studied and resolved in [70].

7.3.5 Data Integration & Constraint Conflict Resolution

During data integration, we may also encounter many constraint conflicts, such as

domain constraint conflicts (domain mismatch), cardinality conflicts, etc.

Domain Mismatch It means the domains of two matched element nodes are not

equivalent, i.e., their domain are with set relations: SUBSET, OVERLAP

or DISJOINT, rather than EQUAL. With different set relations, we need to

handle it differently to avoid or reduce losing information.



138

Cardinality Conflicts It means the cardinalities of matched element nodes are

not consistent, an attribute as single value attribute in one local schema and

as a multi-valued attribute in another local schema.

There are also many other constraint conflicts caused by partial/inconsistent

information, caused by local OID or local FDs/MVDs. For more details about these

constraints, please refer to those research works on resolving constraint conflicts for

relational database [32, 33, 40]. They can be adopted for XML database in our

semantic-based approach for XML schema and XML data integration.

7.4 Chapter Summary

In this chapter, we proposed a step-by-step semantic-based approach for XML

schema integration and data integration. Our approach fully considers the ORA-

semantics discovered in this thesis (Chapter 4) and uses them to help increasing the

efficiency and effectiveness of integration process. Based on the object classes iden-

tified from local schemas, we fragment the local schemas into subtrees, each of which

represents an object class. We match these object classes based on their linguis-

tic/structural information, and then match their object attributes. The matching

results for object attributes can also be used to refine the matching of the object

classes they belong to. Furthermore, we only match the relationship types whose

participating object classes have been matched together correspondingly. By using

object class as basic unit for comparison and matching, our schema integration

approach largely reduce the searching space for matching process.

As discussed before, there are still many challenges we may encounter during the

integration process, such as how to determine whether two object classes is correctly

matched together. If we match two object classes wrongly, we will also wrongly



139

match their object attributes and relationship types they participate in. That is

why we introduce the feedback/refinement process so that if most of the object

attributes of two object classes can only be matched together with low similarity,

we use this information to refine the matching of the corresponding object classes.

Furthermore, during the schema integration and data integration, we also need

to consider the structural conflicts and constraints conflicts we may encounter. The

resolutions for these conflicts can be adopt and modified from the corresponding

resolutions for schema integration and data integration for relational database.



CHAPTER 8

CONCLUSION

The availability of a conceptual XML schema for a given XML database constitute

invaluable leverage for improving the effectiveness or efficiency of many XML ap-

plications including XML query processing, XML keyword search as well as XML

schema integration and data integration. However, XML data and XML schema

are instances and schemas of a logical model that fail to explicitly represent the

intended semantics.

In order to capture and discover the semantic information underlies the XML

schema and XML data, we formally defined them as ORA-semantics. We also

define each semantic concept included in ORA-semantics as an ORA-semantic con-

cept (i.e., object class, object identifier (OID), object attribute, explicit relation-

ship type, implicit relationship type, relationship attribute, aggregational node, role

name, composite attribute, dependent object class and identifier dependent (IDD)

relationship type). We have shown that many ORA-semantic concepts such as ob-

ject class, OID, (implicit/explicit) relationship type, relationship attribute, etc.,

140



141

are proposed based on the corresponding semantic concepts captured and repre-

sented in ER model and ORA-SS. However, no existing approach can discover all

ORA-semantics directly from XML data and XML schema.

In this thesis we have presented a rule-based semantics discovery approach to

discover ORA-semantics implicitly embedded in XML. The input of our rule-based

approach is XML data with/without XML schema, which can be extracted from

XML data. Our rule-based approach leverages a set of classification rules based

on properties and heuristics of different ORA-semantic concepts to identify object

classes, role name, explicit relationship types, aggregational nodes and composite

attributes from internal nodes of an XML schema tree. Our rule-based approach

uses properties, heuristics and statistic information based on our observations from

existing XML data to identify OID for each object class. Identified OIDs are used

to distinguish between object attributes and relationship attributes from leaf nodes

of an XML schema tree. Our rule-based approach can also discover the implicit

relationship types among object classes.

We have empirically evaluated the effectiveness of our rule-based approach using

15 real world data-centric XML datasets. The experiments showed that our rule-

based approach can achieve almost 95% overall precision, recall and F-measure.

We also showed that in the application of XML keyword search, even with some

ORA-semantic concepts being wrongly identified (such as dependent object class

or composite attribute being wrongly identified as object class), the XML keyword

search approach can still work no worse than those approaches without considering

any ORA-semantics.

Based on our rule-based semantics discovery approach, we have developed a

demonstration system. Given a XML data with/without its XML schema, our

system can discovery the ORA-semantics and present it to users in a user-friendly



142

way. Users can also interact with the system through feedback to achieve higher

accuracy for discovering the ORA-semantics.



BIBLIOGRAPHY

[1] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan.

Designing and refining schema mappings via data examples. In SIGMOD

Conference, pages 133–144, 2011.

[2] Martin Andersson. Extracting an entity relationship schema from a relational

database through reverse engineering. In ER, pages 403–419, 1994.

[3] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. Schema

and ontology matching with COMA++. In SIGMOD Conference, pages 906–

908, 2005.

[4] Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, Liang Xu, and Huayu Wu. An

effective object-level xml keyword search. In DASFAA (1), pages 93–109,

2010.

[5] Carlo Batini and Maurizio Lenzerini. A methodology for data schema integra-

tion in the entity relationship model. IEEE Trans. Software Eng., 10(6):650–

664, 1984.

143



144

[6] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative

analysis of methodologies for database schema integration. ACM Comput.

Surv., 18(4):323–364, 1986.

[7] Sean Bechhofer. Web ontology language (owl) reference version 1.0. W3C.

Technical report, 2004.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. VLDB J.,

pages 34–43, 2001.

[9] Philip A. Bernstein. Synthesizing third normal form relations from functional

dependencies. ACM Trans. Database Syst., 1(4):277–298, 1976.

[10] Alexander Bilke and Felix Naumann. Schema matching using duplicates. In

ICDE, pages 69–80, 2005.

[11] Philip Bohannon, Eiman Elnahrawy, Wenfei Fan, and Michael Flaster. Putting

context into schema matching. In VLDB, pages 307–318, 2006.

[12] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup

language (xml) 1.0. W3C. Technical report, 1997.

[13] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup

language (xml) 1.0. 2nd edition. W3C. Technical report, 2000.

[14] Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf

schema. W3C. Technical report, 2004.

[15] Peter P. Chen. The entity-relationship model - toward a unified view of data.

ACM Trans. Database Syst., 1(1):9–36, 1976.

[16] Ya Bing Chen, Tok Wang Ling, and Mong-Li Lee. Designing valid XML views.

In ER, pages 463–478, 2002.



145

[17] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, 1970.

[18] Isabel F. Cruz, Huiyong Xiao, and Feihong Hsu. An ontology-based framework

for xml semantic integration. In IDEAS, pages 217–226, 2004.

[19] Alin Deutsch, Mary F. Fernández, and Dan Suciu. Storing semistructured

data with stored. In SIGMOD Conference, pages 431–442, 1999.

[20] Robin Dhamankar, Yoonkyong Lee, Anhai Doan, Alon Halevy, and Pedro

Domingos. iMAP: discovering complex semantic matches between database

schemas. In in: Proceedings of the 2004 ACM SIGMOD International Con-

ference on Management of Data, ACM. Press, 2004.

[21] AnHai Doan, Raghu Ramakrishnan, Fei Chen 0002, Pedro DeRose, Yoonkyong

Lee, Robert McCann, Mayssam Sayyadian, and Warren Shen. Community

information management. IEEE Data Eng. Bull., 29(1):64–72, 2006.

[22] Gillian Dobbie, Xiaoying Wu, Tok Wang Ling, and Mong Li Lee. ORA-SS:

An object-relationship-attribute model for semistructured data. In TR21/00

Technique Report, 2000.

[23] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering con-

ditional functional dependencies. IEEE Trans. Knowl. Data Eng., 23(5):683–

698, 2011.

[24] Ling Feng, Elizabeth Chang, and Tharam S. Dillon. A semantic network-based

design methodology for xml documents. ACM Trans. Inf. Syst., 20(4):390–421,

2002.

[25] Nir Friedman, Dan Geiger, and Moisés Goldszmidt. Bayesian network classi-

fiers. Machine Learning, 29(2-3):131–163, 1997.



146

[26] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation

and optimization in semistructured databases. In VLDB, pages 436–445, 1997.

[27] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

XRANK: Ranked keyword search over XML documents. In SIGMOD Confer-

ence, pages 16–27, 2003.

[28] Jean-Luc Hainaut. Database reverse engineering: Models, techniques, and

strategies. In ER, pages 729–741, 1991.

[29] Jan Hegewald, Felix Naumann, and Melanie Weis. Xstruct: Efficient schema

extraction from multiple and large XML documents. In ICDE Workshops,

page 81, 2006.

[30] Graham Klyne and Jeremy J. Carroll. Resource description framework (rdf):

Concepts and abstract syntax. W3C. Technical report, 2004.

[31] Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, and Luochen Li. From revisiting

the LCA-based approach to a new semantics-based approach for XML keyword

search. Technical Report TRB5/11, School of Computing, National University

of Singapore, May 2011, 2011.

[32] Mong-Li Lee and Tok Wang Ling. Resolving structural conflicts in the inte-

gration of entity relationship schemas. In OOER, pages 424–433, 1995.

[33] Mong-Li Lee and Tok Wang Ling. Resolving constraint conflicts in the inte-

gration of entity-relationship schemas. In ER, pages 394–407, 1997.

[34] Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Designing functional depen-

dencies for XML. In EDBT, pages 124–141, 2002.



147

[35] Mong-Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang. XClust: clustering

XML schemas for effective integration. In CIKM, pages 292–299, 2002.

[36] Tok Wang Ling and Mong-Li Lee. Relational to er schema translation using

semantic dependencies and inclusion dependencies. In Journal of Integrated

Computer-Aided Engineering, 1994.

[37] Tok Wang Ling and Mong-Li Lee. Semantic dependencies in data modelling

and database reverse engineering. In Int. Symp. on Advanced Database Tech-

nologies and their Integration, pages 47–54, 1994.

[38] Tok Wang Ling and Mong Li Lee. Relational to entity-relationship schema

translation using semantic and inclusion dependencies. Integr. Comput.-Aided

Eng., 2(2):125–145, June 1995.

[39] Tok Wang Ling, Mong Li Lee, and Gillian Dobbie. Semistructured Database

Design. Springer, 2005.

[40] Mengchi Liu and Tok Wang Ling. A data model for semistructured data with

partial and inconsistent information. In EDBT, pages 317–331, 2000.

[41] Ziyang Liu and Yi Chen. Identifying meaningful return information for XML

keyword search. In SIGMOD Conference, pages 329–340, 2007.

[42] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon Y. Halevy.

Corpus-based schema matching. In ICDE, pages 57–68, 2005.

[43] Jakub Marciniak. Xml schema and data summarization. In ICAISC (2), pages

556–565, 2010.



148

[44] Victor M. Markowitz and Johann A. Makowsky. Identifying extended entity-

relationship object structures in relational schemas. IEEE Trans. Software

Eng., 16(8):777–790, 1990.

[45] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer

Widom. Lore: A database management system for semistructured data. SIG-

MOD Record, 26(3):54–66, 1997.

[46] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flooding:

A versatile graph matching algorithm and its application to schema matching.

In ICDE, pages 117–128, 2002.

[47] Satoshi Mizuta and Keishin Hanya. Specifications of word set in linguistic

approach for similarity estimation. In BICoB, pages 25–29, 2010.

[48] Shamkant B. Navathe and A. M. Awong. Abstracting relational and hierar-

chical data with a semantic data model. In ER, pages 305–333, 1987.

[49] 2002 Noam Chomsky. Syntactic Structures. Springer, 2002.

[50] Jean-Marc Petit, Farouk Toumani, Jean-François Boulicaut, and Jacques K-

ouloumdjian. Towards the reverse engineering of denormalized relational

databases. In ICDE, pages 218–227, 1996.

[51] Sven Puhlmann, Melanie Weis, and Felix Naumann. XML duplicate detection

using sorted neighborhoods. In EDBT, pages 773–791, 2006.

[52] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,

1986.

[53] Leonardo Ribeiro and Theo Härder. Entity identification in XML documents.

In Grundlagen von Datenbanken, pages 130–134, 2006.



149

[54] Hang Shi, Toshiyuki Amagasa, and Hiroyuki Kitagawa. Fast detection of

functional dependencies in XML data. In XSym, pages 113–127, 2010.

[55] Peretz Shoval and Nili Shreiber. Database reverse engineering: From the

relational to the binary relationship model. Data Knowl. Eng., 10:293–315,

1993.

[56] Stefano Spaccapietra, Ecole Polytechnique Fdrale, and Christine Parent. ER-

C+: an object based entity relationship approach, 1992.

[57] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model independent

assertions for integration of heterogeneous schemas. VLDB J., 1(1):81–126,

1992.

[58] Amanda Spink. A user-centered approach to evaluating human interac-

tion with web search engines: an exploratory study. Inf. Process. Manage.,

38(3):401–426, 2002.

[59] Chong Sun, Chee Yong Chan, and Amit K. Goenka. Multiway SLCA-based

keyword search in XML data. In WWW, pages 1043–1052, 2007.

[60] Yongchuan Tang and Jiacheng Zheng. Linguistic modelling based on se-

mantic similarity relation among linguistic labels. Fuzzy Sets and Systems,

157(12):1662–1673, 2006.

[61] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.

Xml schema part 1: Structures. W3C. Technical report, 2001.

[62] Oguzhan Topsakal and Joachim Hammer. Schema matching with report anal-

ysis. In VLDB, 2005.



150

[63] Melanie Weis and Felix Naumann. Detecting duplicate objects in XML docu-

ments. In IQIS, pages 10–19, 2004.

[64] Melanie Weis and Felix Naumann. Dogmatix tracks down duplicates in xml.

In SIGMOD Conference, pages 431–442, 2005.

[65] Dongrui Wu and Jerry M. Mendel. A vector similarity measure for linguistic

approximation: Interval type-2 and type-1 fuzzy sets. Inf. Sci., 178(2):381–

402, 2008.

[66] Huayu Wu and Zhifeng Bao. Object-oriented XML keyword search. In ER,

pages 402–410, 2011.

[67] Huayu Wu, Tok Wang Ling, and Bo Chen. VERT: A semantic approach for

content search and content extraction in XML query processing. In ER, pages

534–549, 2007.

[68] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest

LCAs in XML databases. In SIGMOD Conference, pages 537–538, 2005.

[69] Yu Xu and Yannis Papakonstantinou. Efficient lca based keyword search in

XML data. In EDBT, pages 535–546, 2008.

[70] Xia Yang, Mong-Li Lee, and Tok Wang Ling. Resolving structural conflicts in

the integration of XML schemas: A semantic approach. In ER, pages 520–533,

2003.

[71] Cong Yu and H. V. Jagadish. Efficient discovery of XML data redundancies.

In VLDB, pages 103–114, 2006.

[72] Cong Yu and H. V. Jagadish. Schema summarization. In VLDB, pages 319–

330, 2006.



151

[73] Cong Yu and H. V. Jagadish. XML schema refinement through redundancy

detection and normalization. VLDB J., 17(2):203–223, 2008.

[74] Xiaohua Zhou, Xiaodan Zhang, and Xiaohua Hu. Maxmatcher: Biological

concept extraction using approximate dictionary lookup. In PRICAI, pages

1145–1149, 2006.


