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Summary  

Baculoviruses (BVs) are rod shaped, double stranded DNA viruses infecting 

insects. They have been engineered to deliver genes into mammalian cells for more 

than two decades now. Because of their large cloning capacity, non-pathogenic 

nature, low cytotoxicity and ease of production, they are emerging as a novel and 

promising gene therapy vector for a number of ex vivo and in vivo applications, 

especially for the treatment of brain tumors and are gearing up to enter clinical trials. 

However, there have been reports that BV elicits immune responses in mammalian 

hosts and undergoes inactivation by serum complement system, thus questioning 

their suitability for clinical trials. Mammalian host responses to baculoviral 

transduction or inoculation is not yet completely known, the understanding of which is 

necessary to overcome the obstacles put forth by the immune system. Hence, this 

study aims to assess the host responses to baculoviral inoculation, particularly in the 

brain and develop methods to attenuate them.  

Foreseeing clinical applications for BV, to substantially reduce unwanted 

immune responses due to insect cell culture derived impurities such as host cell 

DNA, proteins and endotoxins in BV formulations, membrane chromatography based 

baculovirus purification method was improvised. Purified BV formulation was 

checked for host responses in mice brains by cDNA microarray gene expression 

profiling. This purification method yielded highly pure in vivo grade BV formulation 

that induced lesser immune responses in mice brains compared to a commonly used 

laboratory method of high-speed centrifugation to purify BV.  

To investigate the host responses to BV purified by membrane 

chromatography, non-human primates - cynomolgous macaques that share a high 

genomic similarity with humans were used. This is the first study to explore the host 



 
8 

response to BV in non-human primates. Analysis of global gene expression profiles 

using cDNA microarray technology upon intracranial administration revealed that rBV 

inoculation caused no major abnormality to the animals but induced anti-viral, 

primarily, innate immune response and complement protein activation as major 

reactions. The humongous data generated from the microarray studies also revealed 

the major pathways of IFN induction in macaque brains thus offering better 

understanding of the primates’ responses to BV and clues to overcome them.  

To overcome the major hurdle of in vivo inactivation of BV by serum 

complement proteins, a novel method of coating rBV with cationic lipids – 

Lipofectamine 2000 and Cellfectin II was developed and tested in vitro. It was 

established that cationic lipid coated BV greatly improved the transduction efficiency 

of BV in the presence of serum though there was not much improvement in the 

absence of serum. These findings together will facilitate the optimization of BV vector 

design and serve as a guide to rational therapeutic applications of BV vectors. 
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1. Introduction 

1.1. Baculoviruses – an overview 

Baculoviruses (BVs) constituting the family Baculoviridae are a very diverse 

group of viruses infecting a wide range of invertebrates of which well documented are 

insects from the orders of Lepidoptera, Dipteria and Hymenoptera. They possess 

double stranded, super-coiled, circular genomes with sizes varying from 80 kb to 

over 180 kb  packed into rod shaped nucleocapsids of dimensions 230-385 nm x 40-

60 nm (Rohrmann, 2011b). Discovered as early as 5000 years ago when the silk 

industry originated, BVs initially received interests because of the threat they posed 

to the silk industry. Later, in 1980s, when it was first demonstrated that BVs can be 

genetically modifed to carry genes of interest, they moved in to the main stream of 

biotechnology for three main reasons. The inherent insecticidal activity of baculovirus 

together with recombinant technology have been exploited in making insecticides 

with enhanced host specificity and killing speed marking a new era in insect selective 

peptide toxin (Inceoglu et al., 2006). Together with insect cells that support post 

translational modifications similar to that in mammalian cells, BV has been utilised to 

make recombinant proteins that serve as vaccines and therapeutics (Drugmand et 

al., in press). Non-replicative nature of BV in mammalian cells together with the wise 

use of promoters has been taken advantage of to develop them as gene delivery 

vectors to a number of mammalian cells and animal models (Hu, 2006). Of these 

varied applications, this section shall focus on the dimension of BV as a gene 

delivery vector gearing up to enter clinical trials. 

More than 20 unique BV genomes have been sequenced so far. The best-

characterized BV, Autographa californica multicapsid nucleo-polyhedrosis virus 
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(AcMNPV) has a genome of 134kb and is estimated to contain 154 genes. BV genes 

are expressed in a transcriptional cascade where each phase is dependent on the 

expression of genes in immediate previous phase. Generally, they can be divided 

into two categories, early genes, which are transcribed by the host RNA polymerase 

and late genes which are transcribed by a virus-specific RNA polymerase. 

Expression of late genes is completely dependent on the expression of early genes 

and is indispensible for the expression of two very late genes, namely polyhedrin 

gene, which encodes the major occlusion body protein, and p10, which encodes a 

small poorly conserved protein that may be involved in occlusion body formation or 

cell lysis. These two proteins are highly expressed due to very strong promoters but 

are not really necessary for infectious virus formation. Replacing these genes with 

foreign genes appended to suitable mammalian cell promoters convert these viruses 

into expression vectors for recombinant protein production and therapeutic gene 

delivery (summarized from Ahrens C H, 1996, Okano et al., 2006, Vlak, 2008). 

1.2. Fate of baculovirus (BV) 

Baculoviruses being insect viruses, their fate in insect cells is different from 

that in mammalian cells. It is these differences that are used to the advantage of the 

researchers to develop them as promising gene delivery vectors that awaits entry 

into clinical trials.  

1.2.1. In insect cells 

In insect cells, BVs follow a complex replication cycle involving two types of 

virions. One is occluded virus (OV) adapted for stability outside the host and for 

infection of the insect midgut cells. Other is the budded virus adapted for cell to cell 

and systemic infection within the host. Based on the morphology of their occlusion 

bodies, BVs can be divided into two major genera – nucleopolyhedrosis viruses 
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(NPVs) characterised by single or multiple virions occluded in polyhedrins and 

granuloviruses (GVs) characterized by single virion occluded in granulin matrix. 

When both genera are widely used as insectides, NPVs are majorly researched as 

gene delivery vectors. Especially Autographa californica multiple nucleopolyhedrosis 

virus (AcMNPV) is revered as widely used gene delivery vector. Upon consumption 

by insects, once inside the midgut, OVs are sensitive to the alkaline insect gut fluid 

containing enzymes that break down the crystalline protein matrix and release the 

occluded virions called occlusion-derived virions (ODVs). The released ODVs fuse 

with the midgut cells releasing nucleocapsids and initiating viral replication. During 

the early stage of infection, nucleocapsids bud through the plasma membrane to 

form budded viruses. These budded viruses help spread the viral infection through 

out the insect. During the later stage of infection, i.e. about 5-7 days after ingestion, 

OVs are formed. After the insect dies, the OVs are ready to infect other larva 

(summarized from Inceoglu et al., 2006, Rohrmann, 2011a). This is summarized in 

Figure 1.1. This inherent lytic capacity of BVs is exploited to develop them as full-

fledged insecticide. 
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Figure 1.1. Fate of BV in insect cells. (A) Occlusion bodies ingested by an insect 
dissolve in the alkaline environment of midgut to release ODVs which then infect 
midgut cells (B) Virions bud out of the cell to initiate infection (C) Early stage infection 
where more budded viruses are produced to spread the infection through out the 
insect (D) Late stage infection where virions are occluded and the cell dies releasing 
them. Image adapted from Rohrmann, 2011a. 

1.2.2. In mammalian cells 

In mammalian cells, BVs cannot replicate because of the transcriptional 

silencing of its major regulatory genes. Unlike in insect cells, occluded viruses have 

no role in mammalian cells. It is the budded baculoviruses accomodating transgenes 

harvested from insect cells that are used as gene delivery vectors for mammalian 

cells. Baculovirus entry into mammalian cells is not yet clearly understood. There are 

evidences for several of the factors and several routes to be involved in its entry. For 

instance, while Duisit et al showed that the entry depended on electrostatic 

interactions and heparan sulfate (Duisit et al., 1999), Tani et al demonstrated it to 

depend on phospholipids (Tani et al., 2001). Clathrin dependent (Matilainen et al., 

2005, Long et al., 2006) and independent endocytosis (Laakkonen et al., 2008), 

!
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macropinocytosis (Matilainen et al., 2005) and phagocytosis (Laakkonen et al., 2008) 

have been demonstrated to be the routes of entry. These diverse data suggest that 

BV might follow different entry routes depending on the cell type. Nevertheless, there 

is a unified notion that the envelope glycoprotein gp64 is essential for its entry as 

blocking it abrogated the transduction efficiency of BV (Abe et al., 2005, Niu et al., 

2008) and also its capacity to activate dendritic cells (Schutz et al., 2006). 

Once inside the cell’s endosome, triggered by the pH change, gp64 fuses 

with the endosomal wall delivering the contents of BV into cytoplasm which is then 

transported to the nucleus where the transgene is transcribed. With the right kind of 

promoters that support replication in mammalian cells, baculoviruses are known to 

express a wide variety of transgenes (Hu, 2006, Chen et al., 2011). This is illustrated 

elaborately in Figure 1.2. Out of the 155 genes that BV codes for, 43  transcripts 

have been detected in BV transduced Hela cells using BV DNA chips (Fujita et al., 

2006, Liu et al., 2007) and overexpression of immediate early genes ie1 and ie2 

increased the number of activated transcripts to 59 in mammalian Vero E6 cells (Liu 

et al., 2007). Also, three immediate early genes from another baculovirus 

Bombyx Mori NPV, BmNPV, were activated in transduced HEK 293 cells (Kenoutis et 

al., 2006). However, there have been no reports of baculovirus replicating in 

mammalian cells (Kost et al., 2005).  
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Figure 1.2. Fate of BV in mammalian cells. Illustrated is the proposed entry and 
intracellular trafficking of a baculovirus vector for expression of a therapeutic gene in 
a mammalian cell. Image adapted from Hu, 2006.  
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1.3. Advantages of BV in comparison with other gene delivery vectors 

Gene delivery vectors can be broadly classified into non-viral and viral 

vectors. Non-viral vectors include nucleotide or amino acid sequences either naked 

or coated with artificially synthesized cationic lipids or polymers. Though they have 

low immunogenicity, they are often restricted by the poor transduction efficiency 

(Boeckle et al., 2006). Viral vectors possess the capacity of high transduction 

efficiency and the flexibility to be genetically modified to attain target specificity. 

Some of the commonly used viral vectors include retroviruses (RV), lentiviruses (LV), 

adenoviruses (Ad) and adeno-associated viruses (AAV). Though several of these 

vectors are already in clinical trials (Edelstein et al., 2007), they are not without 

limitations. For instance, the life cycle of retroviruses include an integrated state in 

the host genome that allows for long-term, stable expression of therapeutic genes. 

The preferential integration of these vectors into transcriptionally active regions of 

host genomes, however, occassionally leads to insertional mutagenesis, oncogene 

activation and cellular transformation, the most severe case being the development 

of leukemia in several children in France and the UK following RV gene therapy for 

SCID-X1 (Hacein-Bey-Abina et al., 2003). Lentiviruses derived from human or simian 

immunodeficiency viruses (HIV or SIV) are emerging as capable gene delivery 

vectors for dividing and non-dividing cells. However, the pathogenic nature of HIV or 

SIV does not eliminate the safety concerns associated with their usage. Ad and AAV 

derived viral vectors have a much lower risk of insertional mutagenesis. However, as 

infectious human viruses, both can activate the human immune system (Jooss et al., 

2003, Bessis et al., 2004, Huang et al., 2009). This is of serious concern in view of 

the possible undesired rejection responses. Pre-existing immunity against adenovirus 

has been detected in the majority of the human population (Jooss et al., 2003, Nayak 
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et al., 2010) and in a worse case, this has brought about death following fever and 

multiple organ failure in an individual who was treated for ornithine transcarbamylase 

partial deficiency with a high dose of adenoviral vector (Bostanci, 2002, Thomas et 

al., 2003). Pre-existing immune responses to AAV vectors are no less than that to Ad 

vectors (Thomas et al., 2003). AAV vectors are efficient in activating B cells (Bessis 

et al., 2004) and specific antibodies against AAV2 are detected in 35 to 80% of 

individuals depending on age group and geographic location (Jooss et al., 2003). The 

unfortunate death events have brought intense scrutiny to the potential risk 

associated with the viral vectors. Even if the pre-existing antiviral immunity does not 

trigger severe pathological changes, it can still inactivate the viral vectors, therefore 

affecting their transduction efficiency. The demerits of various gene transfer vectors 

in dealing with safety and efficacy underscore the importance of the development of 

new vectors. 

In comparison with these vectors, BVs have numerous advantages. The most 

commonly used BV vectors are derived from Autographa californica multiple 

nucleopolyhedrovirus (AcMNPV) and for this reason, all through out this thesis, 

AcMNPV are commonly refered to as BV. As mentioned earlier, BV has the ability to 

enter mammalian cells and express the transgene but, it neither replicates inside the 

transduced cell nor causes obvious toxicity to the cell (Kost et al., 2005). The viral 

DNA degrades over time thus eliminating the possibility of causing side effects to the 

host cells (Ho et al., 2005, Wang et al., 2005b). The vector has a high cloning 

capacity (at least 38 kb) allowing accommodation and delivery of a large functional 

gene or multiple genes (Cheshenko et al., 2001). Unlike many other gene therapy 

viral vectors, BVs can be produced in serum-free cell culture medium, which 

eliminates the potential hazard of serum contamination with viral and prion agents 
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from the donating animal. Most importantly, BVs do not have pre-existing antiviral 

immunity in humans since it is not infectious to them. Strauss et al. have reported 

that none (n=20) of the serum samples tested positive for BV neutralizing antibodies 

while 65% of the samples tested positive for Ad type 5 (Strauss et al., 2007). In the 

same study, pre-existing Ad-specific T cells were detectable but there were no pre-

existing BV-specific T cells in humans. Thus, BV has relatively low immunogenicity 

as indicated by the induction of lesser number of virus-specific T-cells (Strauss et al., 

2007). All these advantages and safety associated with BV have been motivating the 

increasing efforts to employ it for a wide range of applications. 

Vectors Packaging 
capacity Host range Features Clinical 

trials 

Retrovirus 
(RV) Medium 8 kb 

Restricted, 
dividing and 
non-dividing 
cells 

Genome integration, 
long-term expression Yes 

Lentivirus 
(LV) Medium 8 kb 

Broad, 
dividing and 
non-dividing 
cells 

Genome integration, 
long-term expression, 
safety concerns low 
titres, production 
inefficient 

No 

Adenovirus 
(Ad) 

Medium < 7.5 
kb 

Broad, Low 
transduction 
of neurons 

Transient expression, 
strong immunogenicity Yes 

Adeno-
associated 
virus (AAV) 

Low <4 kb 

Broad, infects 
both non-
dividing and 
dividing cells 

Slow expression onset, 
genome integration, 
long-term expression, 
inefficient large scale 
virus production 

Yes 

Baculovirus 
(BV) High ≈ 130 kb 

Broad, 
dividing and 
non-dividing 
cells 

Easy production and 
large cloning capacity, 
safety (lack of pre-
existing immunity) 

No 

Table 1.1. Viral vectors for gene therapy. Adapted from Kim et al., 2009a. 
!
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1.4.  Applications of BV as a gene delivery vector 

Since the first finding in 1995 that BV can transduce mammalian cells, a 

number of studies have demonstrated their capacity to deliver genes in vivo. For 

instance, BV could successfully deliver genes into carotid artery of rabbits (Airenne et 

al., 2000), liver (Huser et al., 2001) and brain (Sarkis et al., 2000, Lehtolainen et al., 

2002, Wang et al., 2005a) of rats, as well as brain (Sarkis et al., 2000), skeletal 

muscle (Pieroni et al., 2001), cerebral cortex, testis (Tani et al., 2003), liver (Hoare et 

al., 2005) and brains of mice (Balani et al., 2009, Wu et al., 2009). In vivo gene 

delivery testing phase using reporter genes was soon replaced by therapeutic gene 

delivery. The following paragraphs will briefly discuss the therapeutic applications of 

BV gene delivery in in vivo studies. 

1.4.1. In vivo studies involving direct injection 

Cancer therapy is one of the major areas in which BV has been widely 

evaluated for its gene delivery and therapeutic efficacy. The suitability of BV for 

cancer gene therapy was first demonstrated in 2006 when recombinant baculovirus 

(rBV) expressing bacterial diphtheria toxin A (DT-A) gene impeded the growth of 

cultured mouse and human glioma cells and glioma xenograft in immune-competent 

rat brains (Wang et al., 2006a). Following that, rBV expressing HSVtk governed by a 

truncated high mobility group box2 (HMGB2) promoter suppressed the growth of 

human glioblastoma xenograft in the presence of the prodrug ganciclovir (GCV) and 

extended the survival in mice models. HMGB2 restricted the expression of the 

suicide gene to the glioma cells thus minimizing the damage to neighboring cells 

(Balani et al., 2009). Alternatively, GFAP promoter active in normal and glioma cells 

was used to govern the HSVtk gene and the target specificity of BV was improved by 
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exploiting the idea of transgene regulation by endogenous micro RNAs (miRNA) 

(Brown et al., 2006, Brown et al., 2007). Target sequences of three miRNA (has-

miR31, has-miR127 and has-miR143) that were down-regulated in gliomas but not in 

normal glial cells and neurons were appended to the 3’ end of HSVtk gene to restrict 

the expression of tk to glioma cells. In the presence of GCV, this rBV effectively 

inhibited human glioma xenograft and imparted negligible toxicity to normal 

astrocytes (Wu et al., 2009).  

rBV could successfully deliver a number of tumor suppressor and apoptotic 

genes to arrest the solid-tumor growth and induce apoptosis. For instance, rBV has 

been used with tumor suppressor genes, p53 to inhibit the growth of U251 glioma cell 

induced subcutaneous tumors, normal epithelial cell specific gene-1 (NES1), to treat 

gastric cancer (Huang et al., 2008b) and programmed cell death 4, Pdcd4 to 

suppress the growth of oral squamous carcinoma xenografts (Kim et al., 2010) and 

apoptotic protein, apoptin to suppress the growth of hepatocellular carcinoma in mice 

models (Pan et al., 2010). Recently, BVs have been used to inhibit angiogenesis, the 

process of formation of new blood vessel that is indispensible for the growth and 

spread of tumors. Hu and colleagues constructed rBVs accommodating anti-

angiogenic fusion protein hEA (human endostatin and angiostatin) with/without 

inverted terminal repeat (ITR) sequences from adeno-associated virus (AAV). In vivo, 

rBV-hEA with AAV-ITR resulted in stronger angiogenic effects, potent tumor growth 

inhibition and prolonged the survival of mice with pancreatic xenograft compared to 

control treated mice and rBV-hEA with no ITR treated mice (Luo et al., 2011b). 

Alternatively, rBV constructed with a hybrid sleeping beauty (SB) transposon not only 

hindered the growth of prostate tumor allografts and human ovarian tumor xenografts 

and extended the survival of animals by inhibiting angiogenesis in vivo but also 
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prolonged the expression up to 77 days without any antibiotic selection (Luo et al., 

2011a). 

rBV has also been used to deliver immunogenic molecules thus marking a 

niche for itself as vaccine for a number of animal and human diseases (Madhan et 

al., 2010) including cancer (Wang et al., 2010a). The concept of baculovirus as a 

vaccine vector was first described by Aoki et al (Aoki et al., 1999) when intramuscular 

immunization of recombinant baculovirus expressing rabies viral glycoprotein B 

induced antibody response specific to that protein. Following that, in 2007, Kim et al 

demonstrated the potential of a pseudotyped baculovirus expressing mTERT, a 

potential tumor associated antigen (TAA) driven by CMV promoter as an anti-cancer 

gene delivery vaccine (Kim et al., 2007) for GL26 glioma cell challenge in mice.  

Baculoviruses engineered to express antigens on their surface are much more potent 

in eliciting antigen-specific immune responses than those that express immunogenic 

molecules upon transduction. The capsid protein VP39 and viral envelope 

glycoprotein gp64 are the most commonly exploited proteins for this purpose. 

Recently, BV engineered to express a fragment of ovalbumin (OVA) on the capsid 

protein VP39 was found to have adjuvant activity and efficiently deliver OVA antigens 

to potentiate anti-tumor immune response in melanoma mice models (Molinari et al., 

2011). Several different antigens have been expressed as a fusion protein with gp64 

and have proved successful as vaccines against infections by foot and mouth 

disease virus, Plasmodium berghei, malaria, H5N1 and bovine herpesvirus-1 (BHV-

1) (Madhan et al., 2010). However, the efficiency of this site for TAA display remains 

unexplored. Also, the natural immunogenicity of BV that elicits non-specific immune 

responses have certified them as adjuncts for antiviral and anti-tumor therapies 

(Kitajima et al., 2008). 
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1.4.2. Ex vivo transduction of cells by BV for cancer therapy and regenerative 
medicine 

Besides being directly used as gene delivery vectors, rBVs have been used to 

transduce cells ex vivo and used in cell-based cancer therapies and tissue and bone 

regeneration. Bone marrow-derived DCs (BMDCs) transduced with wild type 

baculovirus ex vivo and administered intravenously suppressed the growth of  lung 

cancer and melanoma in mouse models and improved their cell survival. The anti-

tumor activity could be contributed partly to the induction of CD8+ T cell- and NK cell-

dependent, CD4+ T cell-independent antitumor immunity. Interestingly, the 

intravenous injection did not bring about significant damage to the liver and kidney as 

revealed by the minimal disturbance to the serum alanine aminotransferase (ALT), 

aspartate aminotransferase (AST) and creatine levels (Suzuki et al., 2010). Other 

cells used in cancer therapy and at the same time possessing tumor tropism are 

stem cells like mesenchymal stem cells (MSCs) and neural stem and precursor cells 

(NSCs/NPCs) that respond to inflammatory mediators secreted from tumor cells and 

migrate to tumor tissues. These stem cells engineered to carry therapeutic genes 

have been exploited for delivering gene products to main tumor mass as well as 

metastatic tumors. BV vectors have not only been demonstrated to successfully 

transduce stem cells, including human embryonic stem cells (hESCs) (Zeng, 2007, 

Du et al., 2010), hESC derived stem cells (Zhao et al., 2011), and human bone 

marrow-derived MSCs (BMSCs) (Ho et al., 2005, Ho et al., 2006) without significant 

changes in their stemness and characteristics but exhibit cancer therapeutic efficacy. 

Tail vein injection of BMSCs transduced with BV expressing HSVtk significantly 

repressed human glioma xenograft in the presence of GCV and prolonged the 

survival of animals (Bak et al., 2010). BV-tk transduced MSC like cells (Bak et al., 

2011) and NSC like cells (Zhao et al., 2011) derived from hESCs also exhibited 
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similar therapeutic effect on glioma bearing mice models in the presence of GCV and 

extended the survival of tumor bearing mouse. BVs have also been used to direct 

BMSCs differentiation ex vivo into specific lineage by delivering appropriate growth 

factors. For example, BMSCs transduced with BV accommodating bone 

morphogenic protein-2 (BMP-2) differentiated into osteoblasts in vitro (Chuang et al., 

2007). Administration of these cells into mice (Chuang et al., 2007) and rats (Chuang 

et al., 2010) resulted in progressive mineralization and ectopic bone formation. BVs 

have also been used to transduce adipose-derived stem cells (ASCs), another 

promising stem cell source for regenerative medicine (Lo et al., 2009). ASCs 

requiring sustained expression of growth factors promoting osteogenesis and 

angiogenesis for successful differentiation into osteoblasts were transduced with dual 

baculoviral vector system containing flippase recombination enzyme in one and bmp-

2 or vegf in another flanked by the flippase recognition target sequences to acquire 

persistent gene expression for more than 28 days. BV transduced ASCs accelerated 

the healing, improved the bone quality and angiogenesis for repairing large 

segmental bone defects (Lo et al., 2009).  

1.4.3. Other applications 

Apart from applications as vaccines and cancer gene delivery vectors, BV, 

because of its efficient gene delivery have found use as RNA interference mediator. 

BV mediated delivery of shRNA has been shown to effectively inhibit the replication 

of porcine reproductive and respiratory syndrome virus (PRRSV) (Lu et al., 2006), 

peste des petits ruminants virus (PPRV) (Nizamani et al., 2011) and Hepatitis B virus 

(HBV) (Starkey et al., 2009) in vitro.  BV mediated miRNA delivery has also been 

demonstrated to knock down the target gene in vitro thus implicating their potential 

for antiviral therapy (Chen et al., 2011). Also, several recombinant proteins produced 
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in baculovirus expression vector system (BEVS) are being tested in clinical trials as 

vaccines with Cervarix® (a product of GSK) managing to reach the market first as an 

effective prophylactic vaccine for cervical cancer and other HPV infections. Cervarix 

is a formulation of L1 proteins from human papilloma viruses (HPV) 16 and 18 

produced in BEVS and ASO4, an adjuvant containing 3-O-desacyl-4'- 

monophosphoryl lipid A (MPL) adsorbed on aluminium hydroxide and hydrated 

(Al(OH)3). Cervarix gives rise to better immunogenicity by inducing higher serum 

neutralizing antibody titers and has a safe profile on patients compared to the 

GARDASIL (a product of Merck), another vaccine containing L1 proteins produced in 

yeast for HPV infections and cervical cancer (Einstein et al., 2009). Another product 

with proteins raised in BEVS is the vaccine Provenge for advanced, metastatic, 

asymptomatic hormone refractory prostate cancer (HRPC) that is recently approved 

by the US FDA. Provenge is a product of Dendreon Corporation consisting of 

autologous dentritic cells (DCs) loaded ex-vivo with a recombinant fusion protein 

consisting of prostatic acid phosphatase (PAP) linked to granulocyte-macrophage 

colony-stimulating factor produced in BEVS. Shortly after FDA approval, Provenge 

was added to compendium of cancer treatment published by National 

Comprehensive Cancer Network as the highest recommended drug for HRPC. 

1.5. Host responses to BV 

Despite all these successes as a gene delivery vector, BV has certain 

limitations that delay its advancement into clinical trials. Among them, the most 

crucial are the host immune responses to BV, susceptibility of BV to the host 

complement system and the purification and concentration methods of active BV 

particles.  
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1.5.1. Immune responses to BV 

BV is capable of eliciting immune responses in mammalian cells and 

conferring antiviral and anti-tumor protection in animal models. This has been 

exploited in making vaccines. However, only a few definitive findings have been 

reported on such use. In vitro, in mammalian cells, they have been demonstrated to 

induce the expression or promote the release of inflammatory cytokines including 

interferons (IFNs), tumor necrosis factor – alpha (TNF-α), interleukin (IL)-1α, IL-1β, 

IL-6, IL-8 and IL-12 (Abe et al., 2010). In vivo, they could elicit significant innate 

immune responses which were exploited to protect animals from lethal 

encephalomyocarditis virus (Gronowski et al., 1999) and influenza virus (Abe et al., 

2003). They can also stimulate natural-killer (NK) cell mediated increase in serum 

levels of IFN-γ that is involved in antiviral and antitumor effects and demonstrate 

antitumor immunity (Kitajima et al., 2008). Apart from cytokine production, they can 

activate mouse dendritic cells (DCs) through their interaction with Toll-like receptor 9 

(Abe et al., 2005) and also human DCs (Schutz et al., 2006) thus leading to the 

induction of adaptive immunity. They were also demonstrated to potentiate adaptive 

immune responses by inducing IFN-α and IFN-β (Hervas-Stubbs et al., 2007). 

Previous studies from our lab demonstrated that BV could mount immune responses 

in “immune privileged” brains in rats by activating the TLR signaling pathway and IFN 

α/β signaling pathway (Boulaire et al., 2009). However, the precise mechanism of 

elicitation of immune responses by BV remains unclear. A clear understanding of this 

is essential to make maximal use of the advantageous and promising baculovirus as 

gene delivery vectors. 
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1.5.1.1.  Components of BV responsible for eliciting immune responses 

Given the production of proinflamatory cytokines and type I IFNs upon BV 

administration, they are believed to possess immuno-stimulatory capacity. However, 

the exact component responsible for immune stimulation is not yet known. 

Grownowski et al demonstrated that only live BV could elicit immune responses but 

not the inactivated BV or dsRNA, DNA or lipopolysaccharides derived from BV 

preparation (Gronowski et al., 1999). Particularly, gp67, probably identical to gp64 

was shown to be responsible for the IFN production in cultured cells and protection 

from a lethal encephalomyocarditis virus infection in mice. Addition of monoclonal 

antibodies raised against gp67 bound to them tightly and neutralized their IFN 

inducing capacity (Gronowski et al., 1999). As mentioned previously, the envelope 

glycoprotein gp64 is believed to play a major role in the entry of BV into mammalian 

cells. Since BV is amplified in insect cells and proteins derived from insect cells do 

not pass through N-linked oligosaccharides to form complexes containing outer-chain 

galactose and sialic acid residues, gp64 contains mannose, fucose and N-acetyl 

glucosamine but no detectable galactose or terminal sialic acid residues like those in 

mammalian cell derived proteins (Jarvis et al., 1995). Mannose receptors are 

primarily expressed on the immune competent cells like macrophages and dendritic 

cells and play a key role in host defense and induce an innate immune response. It is 

suggested that the mannose residues on gp64 may be recognised by the mannose 

receptor (MR) and contribute to the immune responses. However, Abe et al 

demonstrated that recombinant gp64 produced in insect cells produced no pro-

inflammatory cytokines and type-I IFNs in mouse macrophage cell lines (Abe et al., 

2005) suggesting that viral component other than gp64 may participate in the 

immune activation by BV. The same study also demonstrated that the genomic DNA 
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of BV with amounts of bioactive CpG sequences similar to that in E.coli or herpes 

simplex virus (HSV) was recognized by the pathogen recognition receptors (PRRs), 

toll-like receptors (TLRs) or TLR independent cytoplasmic recognition (Abe 2005 and 

2009). Another study by Jordan et al demonstrated that BV infected insect cells 

expressing MHC peptide complexes have been recognised, processed and 

presented by host antigen presenting DCs which further generate functional antigen 

specific CD8+ T cell responses (Jordan et al., 2008). This emphasizes the 

contribution of unwanted insect cells and proteins to the elicitation of immune 

responses by the host. Thus, several components of BV formulation are known to 

elicit immune responses. 

1.5.2.1. Involvement of various PRRs in IFN production upon BV recognition 

TLRs 

Once inside the immune competent cell, BVs are recognized by pathogen 

recognition receptors (PRRs) like membrane bound toll-like receptors (TLRs) and 

cytoplasmic RIG-1 like receptors (RLRs). TLRs are the most well studied PRRs with 

respect to viral infections (Kawai et al., 2008). Upon infection, TLRs follow MyD88 

dependent pathway to activate NFkB and c-Jun, the transcriptional regulators of a 

number of chemokines and cytokines responsible for cellular immune response 

(Wang et al., 2001). BVs are known to induce type I interferons (IFNs) in immune 

cells like peritoneal macrophages (PECs), splenic CD11c+ DCs and murine 

macrophage line RAW264.7 through TLR-9/MyD88-dependent pathway (Abe et al., 

2005). However, IFN production was not completely restricted upon BV inoculation in 

cells derived form MyD88 or TLR-9 deficient mice or in PECs treated with endosomal 

inhibitors, suggesting the existence of TLR-9 and endocytosis independent signaling 
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pathways (Abe et al., 2005, Abe et al., 2009). Recently, Chen and colleagues 

reported that BVs can induce type I IFN production in mesenchymal stem cells 

through TLR-3 dependent pathway (Chen et al., 2009a). Our laboratory has 

demonstrated through microarray studies that neurons, which do not possess TLR-9, 

respond to BV transduction by inducing IFN signaling pathway involving STAT1 and 

STAT2 through TLR-3 dependent pathway. In rat brains, TLR2 is involved in IFN 

production (Boulaire et al., 2009).  

RLRs 

RLRs are a second class of PRRs including RNA helicases like RIG-1, MDA5 

and LGP2 that reside in the cytoplasm of immune and non-immune cells and 

recognize viral dsRNA species produced in the cytoplasm. RLRs are known to induce 

type I IFN production through an adaptor molecule IPS-1 that localizes in the 

mitochondria (Kawai et al., 2005). LGP2 serves as a negative or positive regulator of 

RIG-1 and MDA-5 depending on the type of RNA viruses (Venkataraman et al., 

2007). Though not many studies have demonstrated the involvement of RLRs in BV 

transduction, a recent study has noted that RIG-1 and MDA5 mRNA levels were 

elevated in BV-transduced cells (Wang et al., 2010b). Involvement of RLR signaling 

pathway in BV transduction is a relatively new field ready for exploration.  

Cytosolic DNA sensors 

Apart from TLR and RLR signaling pathways, there are evidences for other 

pathways involving cytosolic DNA sensors to participate in IFN production. Recently, 

Abe et al, upon examining the molecular mechanism of type I IFN induction by BV in 

a number of immune and non-immune cells found that type I IFN production in PECs 
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was TLR independent but did not involve RLRs. At the same time, pretreatment with 

endocytosis inhibitors did not affect the IFN production significantly suggesting the 

involvement of cytoplasmic recognition of BV by TLR-independent immune sensors 

(Abe et al., 2009). Recently, several receptors for cytoplasmic DNA sensors such as 

DNA-dependent activator of IRFs (DAI) and stimulator of IFN genes (STING) have 

been identified to play roles in IRF3 activation and thus IFN production in response to 

dsNDA derived from viruses, bacteria and synthetic analogues (Takaoka et al., 2007, 

Ishikawa et al., 2008, Zhong et al., 2008) Though interrupting the function of DAI 

produced sufficient amounts of type I IFN in response to bacterial DNA and synthetic 

B-form DNA (Charrel-Dennis et al., 2008, Ishii et al., 2008), MEFs deficient in STING 

that positively regulates RLR mediated type I IFN production suffered severe 

impairment in IFN production (Ishikawa et al., 2009). These studies suggest a role for 

the cytoplasmic DNA sensors DAI and STING in type I IFN induction.  

Though these immune responses are used to the advantage of researchers in 

making vaccines against a number of human and animal diseases (Madhan et al., 

2010), there are evidences that these immune responses interfere with the transgene 

expression. For example, intramuscular injection of BV in mice stimulated the 

production of neutralizing antibodies and this is suspected to be the reason for 

clearance of transduced muscle fibers (Pieroni et al., 2001). Also there are chances 

for these immune responses to further prevent efficient transduction upon repeated 

injections of BV. The effect of immune responses on transduction upon repeated BV 

administration is yet to be studied.  

1.5.2. BV susceptibility to complement-mediated lysis 

A major hurdle to in vivo BV transduction is its inactivation as a consequence 
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of virus recognition by complement proteins, a major component of innate immune 

system. BV activates both classical (Hofmann et al., 1998) and alternate (Hoare et 

al., 2005) pathways of the complement system and naturally occurring IgM 

antibodies with affinity for BV may be partially responsible for complement activation 

(Hoare et al., 2005).  Activation of the complement system leads to the inactivation of 

viruses or the lysis of infected cells. In the case of virus-based gene transfer, 

activation of the complement system can dramatically reduce gene transfer efficiency 

and occassionally eliminate transgene expression. Sometimes, excessive 

complement activation can result in serious tissue damage and systemic 

inflammatory responses (Kiang et al., 2006). To overcome the barrier imposed by the 

complement system to BV-mediated in vivo gene transfer, immune privileged organs 

that possess intrinsic ability to prevent the activation of innate and adaptive immune 

responses were chosen. These include brain, eye and testis (Simpson, 2006). BV 

administration by stereotaxic injection into the brain (Sarkis et al., 2000, Lehtolainen 

et al., 2002, Tani et al., 2003, Li et al., 2004, Li et al., 2005, Wang et al., 2005a, Liu 

et al., 2006, Wang et al., 2006b), intrathecal injection into the spinal cord (Wang et 

al., 2005c) subretinal injection (Haeseleer et al., 2001) and intravitreal injection 

(Haeseleer et al., 2001, Li et al., 2004, Luz-Madrigal et al., 2007) into the eye and 

injection via the efferent ductules that resulted in efficient transgene expression in 

basal and Sertoli cells of the testis (Tani et al., 2003)serve as examples for this 

strategy.  

BV was also genetically manipulated to accommodate the complement-

regulatory protein human decay-accelerating factor (DAF) incorporated into its 

envelope, which improved the efficiency of BV transduction in complement-sufficient 

neonatal rats after direct injection of the viruses into the liver parenchyma (Huser et 
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al., 2001). However, the presence of DAF protein in the envelope interfered with the 

BV replication cycle and the systemic use of the modified virus was not reported 

(Tani et al., 2003, Hoare et al., 2005). BVs possessing vesicular stomatitis virus 

envelope glycoproteins (VSV-G) were also produced for this purpose. Although these 

viruses exhibited greater resistance to inactivation by animal sera than unmodified 

BV in vitro, there was no detectable transgene expression following injection of VSV-

G pesudotyped BV into mice by the intravenous, intraperitoneal, or intrahepatic route 

(Tani et al., 2003). Another approach is to inhibit the complement proteins at the site 

of BV injection. Co-administration of the soluble complement inhibitor 1 (sCR1) with 

intraportal injection of BV vectors led to a small amount of transgene expression in 

the liver parenchyma, but no detectable transgene expression after tail vein injection 

(Hofmann et al., 1999, Hoare et al., 2005). Other inhibition strategies that were able 

to increase the survival of BV include treatment of human serum with cobra venom 

factor that inhibits the complement component C3 and a functional antibody blocking 

complement component 5 (C5) that are involved in both classical and alternative 

pathways (Hofmann et al., 1998).  

Chemical modification offered another promising approach to overcome the 

problem of complement inactivation. Previous studies have reported enhancement of 

transgene expression when synthetic polymers were used to modify adenoviral 

vectors, retroviral vectors and AAV vectors. As demonstrated in adenovirus, 

modification with synthetic polymers reduces innate immune responses, evades pre-

existing anti-Ad antibodies, and allows for repeated vector delivery, thus serving as 

an effective strategy in overcoming barriers to in vivo delivery of viral vectors 

(Kreppel et al., 2008). It is worth investigating in future whether polymer modification 

of BV can reduce immune recognition, thus allowing a significant level of transgene 
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expression upon repeated administration of BV vectors. 

1.5.3. Purification and concentration of active viral particles 

In vivo gene therapy demands highly pure, heavy doses of viral vectors to 

achieve therapeutic effects, necessitating the development of efficient scalable 

purification and concentration methods. Current purification and concentration 

methods for BV involve ultracentrifugation of virus supernatants harvested from the 

insect cell culture. Budded BV obtains its envelope and glycoprotein gp64, a protein 

enabling infection and transduction of BV, from the host insect cell membrane and 

these lipid and protein components are vulnerable to mechanical forces. The high 

speed associated with ultracentrifugation causes a significant loss of virus infectivity 

due to the damage of viral envelope by hydrodynamic shear stress and often results 

in badly aggregated viral particles. Another limitation with ultracentrifugation 

procedure is the small volume capacity of ultra-high speed rotors, making the scale 

up process difficult.  

Chromatography-based purification schemes are viewed as the most versatile 

methods for virus purification and concentration, with a great potential for large-scale 

manufacturing of high-purity virus stocks for clinical applications (Burova et al., 2005, 

Segura et al., 2006). Several chromatographic methods have been reported for 

concentrating and purifying BV vectors. However, the peculiar rod shape of BV, 

unlike the usual spherical or hexagonal shape of other viral vectors makes its 

recovery from the column very difficult. A cation exchange column based 

chromatographic method used to concentrate baculovirus earlier in 1999 reported a 

recovery rate close to 79% of the starting viruses (Barsoum, 1999). In a method 

using immobilized metal affinity chromatography, BV was modified to display 
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hexahistidine (His6) tags on the envelope so that the tagged viruses can be purified 

by the affinity chromatography (Hu et al., 2003). The purity was up to 87% but the 

recovery by this method was only 2-3%. When a size exclusion chromatography 

method was used, a final virus recovery of 25% was achieved (Transfiguracion et al., 

2007). However, the purity of the BV preparation obtained by this method was 

significantly lower than sucrose gradient purified viruses. More recently, Con A 

chromatography has been used for BV purification (Chen et al., 2009b). As 

baculovirus is strongly bound to the column, >99% of protein impurities can be 

washed away, achieving 16% of recovery after elution. Another new process 

comprises three steps for BV purification - depth filtration, ultra/diafiltration and 

membrane sorption achieving the recovery yield of 40% and the purity over 98% 

(Vicente et al., 2009). We have developed a scalable cation exchange membrane 

chromatographic method to purify BV (Wu et al., 2007). The procedure allowed for a 

final recovery of 78% of infective viral particles from the original supernatant with 

satisfactory purity. Membrane chromatography characterized by faster flow rates and 

easy scalability promises further investigation for scale-up of our method. 

1.6. Aims and Objectives 

Having discussed the major limitations of BV that pose problems for them 

entering clinical trials, the need for more studies to address these issues can be 

realized. Therefore, the aim of this thesis is to understand the host responses to BV 

inoculation in brains of animal models, especially non-human primates that better 

reflect the human responses and develop methods to reduce them or mask BV from 

the host immune system. Three lines of investigation were pursued in this study. 

1. In chapter 3, membrane chromatography based method to purify BV was 
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improvised to obtain in vivo grade BV formulation. The method was validated for 

reducing immune responses in mice brains compared to a high speed centrifugation 

method by high throughput cDNA microarray gene expression profiling. 

2. In chapter 4, the host responses to BV purified by membrane 

chromatography method was evaluated by high throughput cDNA microarray gene 

expression profiling in non-human primates’ brains. Toxicology of BV to the host 

brains was also evaluated by various analyses.  

3. In chapter 5, a novel method involving coating BV with cationic lipids – 

Lipofectamine 2000 and Cellfectin II to reduce its inactivation by the complement 

system, a major host response, was developed and tested in vitro.  

Findings from this investigation, for the first time, revealed the molecular level 

responses and the pathways activated in non-human primate brains upon BV 

inoculation and highlighted the differences in the response of mice and macaque to 

BV inoculation thus serving as a guide to rational therapeutic application of 

baculoviral vectors in the central nervous systems. Furthermore, the findings 

demonstrated the usefulness of a purification method in terms of immune responses 

and the suitability of cationic lipids in offering serum protective effect to BV. 
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2. Materials and Methods 

2.1. Cell lines 

Spodoptera frugiperda (Sf9) insect cells preadapted to Sf-900 II SFM (serum-

free medium) were purchased from Invitrogen (Carlsbad, CA) and grown in T175 

flasks at 27.5º C. Sf9 cells were passaged when ≈ 80-90% confluent and used for 

experiments. U87MG glioma cells were obtained from the American Type Culture 

Collection (ATCC, Manassas, VA) and maintained in Dulbecco’s Modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 

units/ml), and streptomycin (100 μg/ml). U87MG cells were passaged when ≈ 80% 

confluent and used for experiments within 20 passages from the time of initiation of 

the culture. 

2.2. Recombinant plasmids/baculoviral (BV) vector production 

pFastBac1 plasmid vectors containing the reporter genes encoding luciferase 

(luc) enzyme and enhanced green fluorescent protein (EGFP) under the control of 

cytomegalovirus (CMV) enhancer/promoter were constructed as described previously 

(Wang and Wang 2006). These vectors were used to produce recombinant 

baculovirus (rBV) accommodating luc and EGFP genes respectively in accordance 

with the Bac-to Bac baculovirus expression system (Invitrogen). P3 baculovirus 

containing herpes simplex virus thymidine kinase (HSVtk) therapeutic gene under the 

control of CMV enhancer-glial fibrillary acidic protein promoter (CMV E/GFAP), an 

engineered cell type specific promoter were constructed as described previously 

(Wang et al., 2006b, Wu et al., 2009). Sf9 cells were infected with various P3 rBV at 

an MOI of 0.05 at 50% confluence in 175-cm2 tissue culture flasks. Supernatants 
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containing rBVs were collected 72 hr post infection.  

2.3. Determination of infectious titer and total viral particles 

Infectious viral titres were determined by plaque assay. Sf9 cells were seeded 

in 6-well plates at 50% confluence. One ml of different dilutions (10-3 to 10-8) of 

baculovirus supernatants in Sf-900 II SFM was added to each well. After 1 hour of 

incubation at room temperature, medium containing virus was aspirated and 1% 

nutrient agarose was overlaid on to Sf9 cells. Plaques were counted after 7-10 days. 

Total viral particles were determined by quantitative real-time PCR (qRT-PCR) assay. 

Viral genomic DNA was isolated from 200 μl of budded virus using High Pure Viral 

Nucleic Acid kit (Roche Diagnostics, Penzberg, Germany) according to the 

manufacturer's protocol. qRT-PCR reactions to quantify baculovirus copy number 

was carried out in a final volume of 25 μl. Each reaction contained 12.5 μl of iQ 

supermix (Biorad, Hercules, CA), 100 nM of forward primer (5'- 

AAAGCAACCTCATAACCACCATG), 100 nM of reverse primer (5'- 

CCAATTCGCCTTCAGCCATG) and 100 nM of Taqman probe (6-FAM-5'-

CAGACTGGTGCCGACGCCGCC-BHQ1). DNA amplification was carried out using 

iCycler iQ™ Real Time PCR Detection system (Bio-rad) in triplicates with the 

following cycling conditions: 1) 95 °C for 3 minutes 2) 40X of 95 °C for 15 seconds 

and 60 °C for 1 minute. For each run, triplicates of five 10 fold dilutuions (103 to 108 

copies of gp64) of the viral standard DNA (pFastBac-CMV-gp64), viral DNA samples 

and non-template controls were subjected for analysis.  

2.4. Virus purification  

Budded viruses harvested from Sf9 cells were clarified by centrifugation at 

1000 g for 5 minutes and filtered through 0.45 μm filter to remove cell debris. rBVs 
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were then purified and concentrated by two methods- one involving a single step of 

high-speed centrifugation (HS) and the other comprising two steps – membrane 

chromatography for purification and high speed centrifugation for concentration 

(MC+HS).  

2.4.1. HS - High-speed centrifugation method 

Baculoviral supernatant was centrifuged at a high speed of 28000 g for 1 hour 

at 4º C in Avanti™ J-25 centrifuge (Beckman Coulter, Leeds, UK). The supernatant 

was aspirated out and the pellet was resuspended in appropriate volumes of 1X PBS 

with a salt concentration of 150 mM NaCl  and pH 7.4. The concentrated virus 

formulation was put on Stuart orbital shaker (Bibly Scienctific, Staffordshire, UK) for 

at least 1 hour for even dispersion. 

2.4.2. MC+HS - Membrane chromatography + high speed centrifugation 
method  

Acrodisc chromatography unit with a Mustang S cation exchange membrane 

(Pall Corporation, Port Washington, NY) was preconditioned with 5 ml of 0.2 N NaOH 

and equilibrated with 10 ml of 25 mM MES buffer (pH 6.0). Ten ml of viral 

supernatant either at room temperature or 4º C was passed through the membrane 

chromatography unit at a flow rate of 3 ml/min. The membrane was washed with 5 ml 

of equilibration buffer. Baculovirus was eluted first with 5 ml of PBS-150 mM NaCl 

and later with PBS-500 mM NaCl at pH 7.4. The combined eluate was subjected to 

high-speed centrifugation at conditions mentioned previously and the pellet was 

dissolved in appropriate volume of 1X PBS with a salt concentration of 150 mM NaCl  

at pH 7.4. The concentrated virus formulation was evenly dispersed by placing it on 

orbital shaker for at least 1 hour. 
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2.5. Protein gel electrophoresis, western blot and silver staining 

Western Blot for gp64, the major envelope glycoprotein of baculovirus, was 

performed to check for the presence of baculovirus in the purified formulation. Mock 

infected Sf9 cell cultured medium, baculovirus containing supernatant, flow-through, 

wash and collected elution fractions were mixed with 4X LDS sample buffer 

(Invitrogen) and 10X sample reducing agent (Invitrogen) and heated at 70º C for 10 

minutes for denaturing the proteins. Samples (40 μl) and SeeBlue® Pre-Stained 

Standard (Invitrogen) were loaded on to precast 4-12% NuPAGE Novex Bis-Tris 

polyacrylamide gels (Invitrogen) and electrophoresed in MES running buffer for 2 

hours at 80 V.  Following electrophoresis, separated proteins on the gel were 

transferred onto a nitrocellulose membrane using the iBlot transfer stack on an iBlot 

dry blotting system (Invitrogen) following the manufacturer’s instructions. Complete 

transfer of protein was assessed by the visible transfer of ladder proteins. 

Membranes were blocked in blocking solution [5% (w/v) non fat dry milk, 0.1% (v/v) 

TritonX-100 in PBS] for 1 hr at room temperature. After blocking, membranes were 

incubated with baculoviral gp64 antibody (sc-65499, Santacruz Biotechnology, Santa 

Cruz, CA) raised in mouse (dilution - 1:1000) in blocking solution, overnight at 4 °C 

on an orbital shaker. After incubation with primary antibody, membranes were 

washed 3 times for 10 mins each on an orbital shaker in PBST [0.1% (v/v) TritonX-

100 in PBS] at room temperature. Membranes were then incubated with the 

appropriate horseradish peroxidase (HRP) conjugated secondary antibody, diluted in 

PBST, for 1 hr at room temperature. After incubation, membranes were washed 3 

times for 10 mins each in PBST with shaking. Visualization of bound antibody was 

done using ECL Plus western blotting detection reagent (GE Healthcare, Amersham 

Place, Little Chalfont, Buckinghamshire). Resulting chemiluminescent signal was 



 
43 

detected with CL-XPosure Film (Thermo Scientific, Rockford, IL). Exposed films were 

imaged on FluorChem HD Gel Doc System using white light transillumination (Alpha 

Innotech, Santa Clara, CA).  

Silver staining was used to analyse the purity of the virus formulation. SDS-

PAGE for various virus samples was carried out as described earlier and the gels 

were stained with silver iodide solution in accordance with the Silver Quest Silver 

staining kit protocol (Invitrogen). Stained gels were imaged on FluorChem HD Gel 

Doc System using white light transillumination (Alpha Innotech).  

2.6. Determination of transduction efficiency 

The transduction efficacy was determined on the basis of baculoviral 

transduction of human U87MG cells with BV-luc and BV-EGFP. Cells were seeded at 

the count of 10000/well in 96-well plates and after attachment, equal number of BV-

luc viruses corresponding to MOI 50 from various samples were used in transduction 

in serum free medium. After incubation at 37 ºC for 4 hours, the medium containing 

viruses was replaced with 10% FBS containing fresh growth medium. After 36-48 

hours, when luciferase gene expression stablised, the cells were lysed by freeze-

thaw in Reporter Cell Lysis Buffer (Promega, Madison, WI) and luciferase activities 

were measured with a Berthold Lumat LB detecting 9507 luminometer (Berthold 

Detection Systems, Pforzheim, Germany). Protein concentrations were quantified 

using DC protein assay kit (Bio-Rad). For quantification, 5 μl of protein lysates were 

mixed with 25 μl working Reagent A and 200 μl Reagent B in a 96-well plate and 

incubated for 15 mins at room temperature. Absorbance was measured at 750 nm in 

a microplate reader (Bio-Rad). Concentration of protein lysates was obtained from a 

standard curve produced with dilutions of bovine serum albumin solution (BSA) 
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prepared in Reporter Cell Lysis Buffer (Promega), ranging from 0.125 - 2 mg/ml 

protein concentration. 

For measuring transduction efficiency of BV-EGFP, cells were seeded at a 

density of 2x106 per well in 6-well plates and imaged after 36-48 hours using 

fluorescence microscopy (Olympus). Percentage of EGFP positive cells was 

determined by flow cytometry using FACSCalibur (BD Biosciences). Cells from each 

well were trypsinized, washed with PBS twice and resuspended in 1 ml of PBS 

containing 5% FBS and transferred to appropriate tubes (5 ml polystyrene tubes from 

BD Falcon) for flow cytometry analysis. Fluoresecent measurements were taken on 

the FL-2 channel for at least 10, 000 events gated for EGFP positive cells. 

2.7. In vivo studies 

2.7.1. Virus inoculation into mouse brains 

For in vivo viral vector inoculation into mouse brains, three adult male 

immunocompetent BalB/c mice were used for each group of Mock-, MC+HS- and 

HS- purified BV injections. 10 μl of BV-HSVtk (108 viral particles) was injected 

stereotaxically into each side of the striatum of the mouse brain (anteroposterior: 0.0 

mm, mediolateral: +2.0 mm, and dorsoventral: −3.0 mm from bregma and dura) 

using a 10 μl Hamilton syringe connected with a 30G needle. Brain samples around 

the injection sites were collected 2 days (≈ 48 hours) after virus inoculation and 

stored in RNA Later (Ambion, Austin, TX) at 4 ºC until used for RNA extraction. 

Studies on mice were performed following the Guidelines on the Care and Use of 

Animals for Scientific Purposes issued by National Advisory Committee for 

Laboratory Animal Research, Singapore. The experimental protocols of the current 

study were approved by the Institutional Animal Care and Use Committee (IACUC), 
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National University of Singapore (NUS) and Biological Research Centre (BRC), the 

Agency for Science, Technology and Research (A*STAR), Singapore.  

2.7.2. Virus inoculation into macaque brains 

For studying the host response and toxicology to recombinant baculovirus in 

non-human primates, 3 adult male cynomolgous macaques (Macaca fascicularis) 

weighing approximately 3-4 kg were used. BV-HSVtk (108 viral particles in 10 μl per 

injection site) purified by MC+HS was administered as 4 separate intrastriatal 

microinjections into the left hemisphere (anteroposterior: 0.0. mm and +3.0. mm to 

the bi-lateral commissural line targeting the centre of caudate and putamen) (Figure 

2.1). The right hemisphere was injected with mock virus preparation. Mock virus 

preparation refers to Sf9 culture medium containing no baculovirus subjected to 

purification by MC+HS method.  Brain samples were collected approximately after 2 

days (≈ 48 hours) of virus inoculation and stored in RNA Later at 4º C unti further use 

in RNA extraction. Real time PCR for gp64 was used to verify the successful injection 

of BV-HSVtk into the animal brains. Samples for real-time PCR were collected in dry 

tubes and stored at -80 ºC until further use in genomic DNA extraction. Studies on 

macaques was performed following the IACUC protocol of Maccine Pte Ltd and to 

the standards of GLP though not formally monitored by Maccine Quality Assurance. 
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Figure 2.1. Virus inoculation into macaque brains. (A) BV-tk purified by MC+HS 
was administered as 4 separate intrastriatal microinjections into the left hemisphere 
and mock into the right at sites marked on the skull (B) shows the injection sites after 
collecting brain 48 hours from the time of injection (C) shows the slicing procedure 
and (D) shows the sampling of injected sites from sliced brain samples. 

2.8. Sample preparation for cDNA microarray analysis 

2.8.1. Total RNA isolation 

Total RNA comprising all RNAs including mRNAs, rRNAs and small RNAs 

was isolated using Trizol (Invitrogen) reagent according to the manufacturer’s 

instructions. Precisely, tissues up to 100 mg were lysed and homogenized in 1 ml of 

Trizol reagent using Vibra-cell sonicator (Sonics & Materials, Newtown, CT). 

Following lysis, all samples were processed for phase separation after adding the 

recommended amounts of chloroform. RNA in the aqueous phase was carefully 

removed and precipitated using appropriate amounts of 100% ethanol. The gel-like 

RNA pellet was washed with 75% ethanol, dried thoroughly for ≈ 10 minutes to 
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remove as much ethanol as possible and resuspended in 50 μl RNAse free water. 

The amount and purity of isolated RNA samples were determined by measuring 

absorbance at 230 nm (A230), 260 nm (A260), 280 nm (A280) with a NanoDrop ND-

1000 Spectrophotometer (Thermo Scientific, Waltham, MA). An A260/A280 ratio of 

1.8-2.0 and A230/A260 ratio of 1.9-2.2 indicated RNA free of contaminants and was 

used for subsequent procedures. RNA was stored at -80 °C until use and freeze-

thawing was limited to less than 5 times.  

2.8.2. RNA clean up 

Total RNA was cleaned up to remove RNAs < 200 nucleotides (usually 5.8S 

rRNA, 5S rRNA, and tRNAs) and enriched for mRNAs using RNeasy mini kit 

(Qiagen, Hilden, Germany). Precisely, total RNA isolated by Trizol method was made 

up to 100 μl and mixed with 350 μl of buffer RLT and 250 μl of 100% ethanol to 

constitute 35% v/v ethanol in the mixture. The mixture was loaded on to the RNeasy 

spin column. At this concentration of ethanol, the RNeasy spin column binds only 

RNA > 200 nucleotides (otherwise only mRNAs). The bound mRNAs were washed 

twice with Buffer RPE and eluted using 30-50 μl RNase free water. Cleaned up RNA 

was again quantified using a NanoDrop ND-1000 spectrophotometer.  

2.8.3. RNA amplification and labeling 

RNA amplification and labeling was done using Kreatech’s RNA ampULSe 

amplification and labeling kit (Kreatech, Amsterdam, The Netherlands). Starting with 

one μg of good quality RNA (i.e. A260/A280 > 2.0 and A230/A260 > 2.1) in 10 μl, first 

strand cDNA was synthesized using T7 oligo dT primer following the instruction 

manual. The reaction mixture for first strand cDNA synthesis additionally contained 

diluted eukaryotic poly(A) RNA controls (Affymetrix) as recommended by Affymetrix 
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protocol to serve as controls for all steps of sample preparation and array 

hybridization. The end product of first strand cDNA synthesis was entirely used for 

second strand cDNA synthesis using DNA polymerase and purified according to the 

instruction manual. Double stranded cDNA obtained at the end of this process was 

used as a template in a 4 hour in vitro transcription process performed at 37 ºC for 

synthesizing amplified RNA (aRNA). aRNA was purified using columns provided in 

the kit. The yield and purity of aRNA was determined using NanoDrop. Thirty μg of 

aRNA was labeled with 5 μl biotin-coupled ULS for 30 mins at 85 °C. Following this, 

unincorporated biotin-ULS was removed using KREApure bead columns as 

recommended. Purified labeled RNA (20 μg) was then fragmented using RNA 

fragmentation reagent (Ambion, Foster city, CA) following the manufacturer’s 

instructions. 

2.8.4. Hybridisation, washing and scanning 

A hybridisation mix of total volume 300 μl was prepared as follows: 

Component Volume 
(μl) Source 

Fragmented and Labeled aRNA 30 Product of amplification and 
labeling (Kreatech) 

Control Oligonucleotide B2 (3nM) 5 Affymetrix 

20X Eukaryotic Hybridization 
Controls 15 Affymetrix 

2X Hybridization mix 150 Affymetrix 
Krea Bloc 75 Kreatech 
Nuclease free water 25 Promega 

For mouse brain samples, GeneChip Mouse Genome 430A 2.0 Array and for 

macaque brain samples, GeneChip Rhesus Macaque Genome Array were used. The 

arrays were pre-hybridized with 200 μl Prehybridization mix (Affymetrix) for 10 mins 
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at 45 °C with rotation. Meanwhile, the hybridization mix was heated to 99°C and 

centrifuged to pellet insoluble materials, as recommended by Affymetrix hybridization 

protocol. Finally, 200 μl of each hybridization mix was hybridized to a GeneChip 

array for 16 hours at 45 ºC. Array washing and staining was done on the GeneChip 

Fluidics Station 450 (Affymetrix) following the recommended protocol. For washing 

and staining, the fluidics protocol FS450_0004 was used. Scanning of arrays was 

done on the GeneChip Scanner 3000. Array quality was determined from the signal 

intensities of internal control and the percentage of absent and present calls made by 

the GeneChip Operating Software for each array. 

2.9. Data analysis  

2.9.1. By Genespring GX 11 

Data from the chips were acquired using the GCOS software and all data files 

were exported using the Data Transfer Tool (DTT). Data files in .CHP format were 

transferred to GeneSpring GX 11 (Agilent) software. The files were normalized using 

the default setting of the software i.e to the median of percentile target (75.0) of all 

samples and were applied a baseline transformation to median of all samples. 

Replicates (at least 3 per group) were grouped together based on treatment (virus 

injected/mock injected) and the probes in the normalized data were subjected to 

quality control based on expression and flags. Probes with either present or marginal 

flags in at least 2/3 of the samples in both control and experimental samples were 

then filtered such that there is a fold change of at least 2 in experimental samples 

pooled together against the control samples pooled together and then subjected to 

statistical analysis by t-test with a p-value of 0.05.  
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2.9.2. Genelists analysis by web-based services 

To understand the biological meaning of the list of genes significantly 

modified by baculovirus injection against the mock injection in brain samples, 

Metacore™ (GeneGo) and Database for Annotation, Visualization and Integrated 

Discovery (DAVID) v6.7 Bioinformatics Resources (Huang et al., 2008a) 

(http://david.abcc.ncifcrf.gov/) were used. The list of both upregulated and 

downregulated genes were analysed together in Metacore or DAVID using their 

default settings for obtaining the Gene Ontology (GO) processes and pathways 

affected.  

2.10. Quantitative real time-PCR of mRNAs  

A portion of the total RNA isolated was used for the validation of microarray 

data using quantitative Real Time-PCR.    

2.10.1. DNAse treatment of RNA samples 

Total RNA was DNAse-treated to remove traces of genomic DNA 

contamination that would contribute to subsequent PCR amplification product. 

Typically, two μg of total RNA was treated with 1 μl (2 units) of Turbo DNAse 

(Ambion) in 20 μl volume for 30 min at 37 °C, followed by addition of another 1 μl of 

Turbo DNAse to the sample for further 30 minutes incubation at 37 °C. At the end of 

the incubation, 4 μl (0.2 volumes of 20 μl) of DNAse inactivation reagent was added 

to the sample and incubated at 25 °C for 5 minutes, with repeated dispersal of the 

inactivation reagent every minute by flicking the tube. For removal of DNAse 

inactivation reagent, tubes were centrifuged at 10,000 x g for 1.5 mins and ≈ 15 μl of 

DNAse treated sample was carefully removed without disturbing the inactivation 
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reagent pellet, and transferred to a fresh tube.  

First strand cDNA was synthesized from 1 μg of DNAse-treated total RNA 

using Superscript III reverse transcriptase (Invitrogen). cDNA was diluted 10-fold 

before amplification in a 25 μl reaction with iQ5 SYBR-Green PCR Mix (Biorad). Each 

reaction consisted of 2 μl diluted cDNA, 1 μl (2.5 μM) of the RT2 qPCR Primers 

corresponding to each gene (SABiosciences, Fredrick, MD), 9.5 μl nuclease-free 

water and 12.5 μl PCR mix. The cycling conditions included an initial denaturation 

step of 10 minutes at 95°C, followed by 40 cycles of 15 seconds at 95 °C and 30 

seconds at 60 °C. All reactions were done in triplicates on Bio-Rad iCycler. 

Expression levels were normalized to mouse and rhesus glyceraldehyde-3-

phosphate dehydrogenase (GAPDH)  for mouse and macaque mRNA samples 

respectively. For each primer pair, negative control PCR reaction with nuclease-free 

water was performed in duplicates. Relative gene expression level was obtained by 

triplicate experiments from each of the mouse brain samples and at least two of the 

monkey brain samples. The fold changes between the experimental and control 

samples were calculated according to instructions in the manual. 

2.11. Preparation of cationic lipids coated BV  

rBV coding for luciferase enzyme (BV-luc) were coated with either of the two 

cationic lipids - Lipofectamine 2000 and Cellfectin II (both from Invitrogen). 

Lipofectamine 2000 is an advanced version of Lipofectamine, a 3:1 (w/w) liposome 

formulation of the polycationic lipid 2,3-dioleyloxy -N- [2(sperminecarboxamido)ethyl]-

N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA) and the neutral lipid 

dioleoyl phosphatidylethanolamine (DOPE) in membrane-filtered water majorly used 

in the transfection of DNA into cultured eukaryotic cells. Cellfectin II reagent is the 
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improved Cellfectin, a 1:1.5 (M/M) liposome formulation of the cationic lipid N, NI, NII, 

NIII-Tetramethyl- N, NI, NII, NIII-tetrapalmityl-spermine (TM-TPS), and dioleoyl 

phosphatidylethanolamine (DOPE) in membrane-filtered water used in the 

transfection of DNA into insect and mammalian cells especially Sf9 insect cells. Both 

cationic lipids are available in stock solutions of 1mg/ml. For coating, the cationic 

lipids were diluted in PBS to the required concentrations (104 - 107 molecules/particle 

BV), mixed with BV-luc concentrated by HS method and incubated at room 

temperature for 20-30 minutes.  

2.12. Size and zeta potential characterization of uncoated and cationic-
lipid coated BV 

Uncoated and cationic lipid coated BV-luc in distilled water were 

characterized for their size by dynamic light scattering (DLS) and zeta potential by 

electrophoresis using Zetasizer Nano-ZS (Malvern Instruments, Malvern, UK). 

Precisely, 750 μl of the uncoated or coated BV-luc were loaded into folded capillary 

cell using 1 ml syringe. Care was taken to see that no air bubbles were introduced 

while loading. A minimum of 5x109 particles/per sample was used for size and zeta 

potential measurements. Data were exported in .csv format to excel and graphs were 

plotted using Graphpad Prism 5. 

2.13. Cytotoxicity assay 

Cytotoxicity of cationic lipid coated BV was assessed using CellTiter 96 

AQueous One Solution Cell Proliferation Assay System (MTS) (Promega) on U87MG 

glioma cells as a representative mammalian cell line. U87 cells were seeded in 96 

well plates at a confluency of 50% and allowed to attach overnight. Uncoated and 

coated BV (104 - 107 molecules/BV particle) at an MOI (multiplicity of infection) of 10, 
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50, 100 and 500 were added to the cells in serum free and antibiotic free medium. 

After 4 hours of incubation, medium containing uncoated and coated BV were 

removed and cells were replenished with serum containing medium. After 48 hours of 

incubation, 40 μl of the MTS reagent (20 μl MTS solution/100 μl of medium) was 

added directly to the medium, incubated at 37º C for 2-3 hours and absorbance was 

measured at 490 nm in a microplate reader (Bio-rad). 

2.14. Transmission electron microscopy (TEM) 

Changes in the morphology of uncoated/ coated baculovirus when treated 

with serum complement were observed using transmission electron microscopy 

(TEM). Baculovirus (uncoated/coated and serum treated/noserum treated) samples 

were prepared in deionised water. 4 μl of the various samples were placed on 

Formvar/Carbon coated Copper 200 mesh (Polysciences, Warrington, PA) for a 

minute and the remaining solution was wiped off using a filter paper. The grid was 

washed with 4 μl deionized water  once for 1 minute and the sample was stained with 

4 μl of 2% phosphotungstic acid (PTA). Excess stain was washed away using 

deionized water. The grid was air dried for a few minutes and imaged under a 200kV 

TEM (FEI, Hillsboro, OR). 

2.15. Complement assays and in vitro transduction studies 

The protective effect of cationic lipid coating on BV-luc against serum 

complement system was tested in vitro using mouse, rat and human serum 

complement. Balb/C mouse and Wistar rat serum complement were obtained from 

Innovative Research (Sarasota, FL). Lyophilized powders of human serum (S-1764) 

were obtained from Sigma Aldrich (St. Louis, MO) and reconstituted in 1 ml of sterile 

deionised water. For inactivation treatment, mouse, rat or human serum complement 
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were mixed with coated/uncoated baculoviruses in the ratio of 1:1 (volume not 

exceeding 5% of the medium in a 96 well plate) for 30 minutes at 37 ºC. Transduction 

efficacy of serum treated, uncoated and coated BV-luc were tested on U87 glioma 

cells as described earlier and compared against no serum treated uncoated/coated 

BV as positive controls. 
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3. Purification of BV by Membrane Chromatography Method 
Reduces Immune Responses in Mouse Brains 

3.1. Introduction and Aims  

With growing applications of baculovirus (BV) in various fields including 

pesticide development, recombinant protein production and gene therapy vectors, 

several circumstances require the use of concentrated and purified BV. For instance, 

large scale protein production in insect cells require highly concentrated and pure BV 

inoculum. In vivo gene therapy applications require a high titre of BV in a small 

volume of physiological buffer.  BVs being insect viruses and are propagated in 

insect cells, the chances of contamination of recombinant BV (rBV) formulation with 

insect cell DNA and proteins are high. Insect cells infected with rBV expressing MHC 

peptide complexes have been shown to be recognised, processed and presented by 

host antigen presenting dendritic cells (DCs) which further generate functional 

antigen specific CD8+ T cell responses (Jordan et al., 2008). This highlights the 

contribution of insect cells and proteins to the immune responses of the host and 

underscores the necessity to remove the unwanted insect cell contaminants when 

rBV are used as gene therapy vectors for in vivo studies.  

Several different methods have been developed so far for purifying rBV. Each 

method has its own pros and cons. For example, immobilized metal affinity 

chromatography improved the purity of BV up to 87% but compromised the final 

recovery yield which was only 2-3% (Hu et al., 2003). Size exclusion chromatography 

resulted in recovery of 25% of total virus particles but the purity was compromised as 

judged by the SDS-PAGE results (Transfiguracion et al., 2007). While 

concanavalin A affinity chromatography resulted in 29.3% overall recovery (Chen et 

al., 2009b), a multistep downstream processing involving anion exchange 
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chromatography resulted in  an overall recovery of 38% (Vicente et al., 2009). 

Making use of the easy scalability and faster processing times associated with 

membrane chromatography (Zuo et al., 1999), previous studies in our laboratory 

demonstrated cation exchange membrane chromatography to provide good purity 

and 78.1% recovery of rBV (Wu et al., 2007). However, none of these studies 

demonstrated the biosafety associated with the material purified from these methods 

in vivo, particularly, in terms of immune responses in the host upon delivery of rBV 

prepared by various methods. With DNA microarrays becoming increasingly popular 

to monitor host responses to virus and virus-derived gene therapy vectors (Piersanti 

et al., 2004), the task of evaluating molecular impact by different formulations on the 

host is much easier. Therefore, this chapter  aims to improvise the existing cation 

exchange membrane chromatography purification protocol (Wu et al., 2007) in order 

to substantially improve the purity of BV to generate in vivo grade formulation and 

demonstrate the biosafety associated with this method in vivo in mouse brains using 

global gene expression profiling.  

3.2. Recovery of rBV from cation exchange membrane chromatography 
unit 

The cation exchange membrane chromatography unit preconditioned with 

0.2 N NaOH was equilibrated with 25 mM MES buffer, the working pH range of which 

accommodates rBV-supernatant of pH ~6. Virus supernatant at room temperature 

was passed through the membrane chromatography unit and the flow through (FT) 

was collected. The chromatographic unit was washed with MES buffer of same pH to 

remove unbound proteins and viruses. PBS of pH 7.4 with NaCl of concentrations -

150 mM and 500 mM were used to elute the virus. Real-time PCR assay for gp64 

was performed on rBV supernatant, FT, wash and eluates to calculate the 
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percentage recovery.  Most of the viruses bound to the membrane as evidenced from 

lesser percentage of viral particles in FT and wash (Table 3.1), thus indicating a 

strong interaction between viruses and the membrane. The first two eluates (E1-150 

and E2-150) in PBS-150 mM NaCl contained 25% and the first two eluates (E1-500 

and E2-500) in PBS-500 mM NaCl contained 47% of the viral particles. Totally, 72% 

of the viral particles were recovered in 2 ml of the eluate (Table 3.1). Recovery could 

be further improved to ≈ 90% by applying more elution buffer. A representative data 

set presenting recovery by real-time PCR and plaque assay is provided in Table 3.1. 

However, the recovery was not always as high as 90% and drastically varied 

with the temperature of the rBV-supernatant passed through the membrane 

chromatography unit. When cold (≈ 4 ºC) rBV-supernatant was passed through the 

acrodisc unit, most of the viral particles bound to the unit as evidenced by the lesser 

percentage of rBV particles in FT (Figure 3.1). But, only ≈ 40% of virus particles were 

recovered in the eluate suggesting too strong an interaction between viruses and the 

membrane making it difficult for the elution buffer to break it. These data underscored 

the importance of temperature of rBV-supernatant in obtaining high recovery. 



 

Sample Volume 
(ml) 

Real Time PCR Plaque assay 
VP/ml Total VP1 % recovery2 PFU/ml Total PFU1 % recovery2 

BV Load 10 1.60E+09 1.60E+10  5.20E+07 5.20E+08 !Flow through (FT) 10 1.19E+08 1.19E+09 7.43 - - !Wash 5 2.23E+07 1.11E+08 0.70 - - !
! ! ! ! ! ! ! !E1-150 0.5 5.58E+09 2.79E+09 17.40 - - !E2-150 0.5 2.30E+09 1.15E+09 7.17 - - !E1-500 0.5 1.09E+10 5.47E+09 34.16 - - !E2-500 0.5 4.21E+09 2.10E+09 13.12 - - !
E1-150+E2-150 
+E1-500+E2-500 2  1.15E+10 71.86 - - !

       !Total Eluate  10 1.44E+09 1.44E+10 90.12 4.49E+07 4.49E+08 86.35 

Table 3.1. Recovery of recombinant baculoviruses after purification by membrane chromatography.VP - viral particles; PFU – plaque 
forming units; 1-Total viral particles (TVP) and Total PFU was calculated by multiplying viral particles and PFU respectively with volume; 2 - 
Recoveries were calculated by normalizing the data against the loaded sample;  E1, E2 – First and second elute; 150, 500 – Concentration of 
NaCl (mM) in PBS. Total Eluate (combined) – Virus eluted in PBS-150 mM +Virus eluted in PBS-500 mM. 
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Figure 3.1. Effect of temperature of rBV-supernatant on recovery from 
membrane chromatography method. rBV-supernatant at 4 ºC and room 
temperature (RT) were passed through the membrane chromatography unit and 
eluted using PBS-150 mM and 500 mM NaCl. Using real-time PCR for gp64, the 
major BV envelope glycoprotein, number of rBV particles in eluate and flow through 
were measured and expressed as % recovery by normalizing against those in loaded 
samples.  

3.3. Transduction efficiency of recovered rBV 

To test the transducing ability of rBV purified by membrane chromatography 

method, rBV encoding reporter genes – luciferase and enhanced green fluorescent 

protein (EGFP) were used.  rBV eluates were collected in fractions and 5 μl of each 

fraction was used for analysing the transduction efficiency on U87 cells in a 96 well 

plate. Reporter gene expression was analyzed after 48 hours of transduction. BV-luc 

eluted with PBS-150 mM NaCl, (E1-150 and E2-150) showed higher luciferase 

expression (Figure 3.2A) than non-concentrated load sample. This could be 

attributed to the increased number of viral particles in the eluates. Further fractions 

collected using PBS-150 mM NaCl did not show better luciferase expression than 

that used to load the chromatographic unit (data not shown) which might be because 

of the lesser number of rBV particles present in them.
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Figure 3.2. Transduction efficiency of rBV expressing reporter genes purifed 
by cation exchange membrane chromatography. Luciferase (A) and EGFP (B) 
gene expression for various virus fractions were measured after 48 hours on U87 
cells transduced with BV-luc and BV-EGFP respectively. FT-Flow through; E1, E2 – 
first and second elute; 150, 500 – Concentration of NaCl (mM) in PBS.. 
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Similar trend was observed with fractions eluted using PBS-500 mM NaCl. Precisely, 

first two eluates (E1-500 and E2-500) displayed higher luciferase expression than 

load sample whereas the eluates obtained later showed lesser luciferase expression. 

Consistent with the number of viral particles recovered, U87 cells transduced with 

E1-500 and E2-500 expressed more luciferase than E1-150 and E2-150.  

The same set of experiments were performed with rBV encoding enhanced 

green fluorescent protein (EGFP) encoding gene and similar expression patterns 

were observed under fluorescence microscope (Figure 3.2B).  

3.4. Analysis of purity for recovered rBV 

To examine the purity of the virus samples eluted from membrane 

chromatography unit, eluted virus fractions together with mock supernatant (Sf9 

cultured supernatant not infected with BV), rBV load, FT and wash were denatured 

by boiling in 1% SDS sample buffer and proteins were resolved on SDS-PAGE and 

viewed using silver iodide staining (Figure 3.3A). As expected, virus supernatant 

contained an enormous amount of contaminating proteins. Comparison with the 

proteins in the lane of mock supernatant indicated that most of the proteins in BV-

load were of insect cell origin thus, emphasizing the need to remove them for 

minimizing the immune responses to rBV as a gene therapy vector. Minimal amounts 

of gp64 and large amounts of other contaminating proteins could be spotted on FT 

lane. This indicated the strong interaction between rBV and the cation exchange 

membrane at pH 6. Relatively lesser contaminating proteins and trace amounts of 

gp64 were present in wash thus proving helpful in washing away some of the 

contaminating proteins. Far lesser contaminating proteins and enrichment for gp64 

characterized the lanes containing eluates. This indicated the successful elution of 
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rBV at pH 7.4. Abundant proteins studded on the lane – proteins on the membrane 

indicated the retainment of humongous amounts of proteins on the membrane even 

after elution of ≈ 90% of the rBV particles thus indicating the selectivity of pH to elute 

only rBV from the membrane. A western blot analysis for gp64 performed on various 

samples reconfirmed the presence of rBV. The results were in agreement with the 

findings from real-time PCR and SDS-PAGE (Figure 3.3B). Thus, these results 

provide evidences for the usefulness of membrane chromatography method in 

purifying BV without considerable loss in recovery and transduction efficiency. 

3.5. Concentration of rBV 

Though purification by membrane chromatography method offered better 

purity, in an attempt to maximize the elution to ~90% by increasing the volume of 

elution buffer, the concentration was compromised. To concentrate BV, a second 

step involving centrifugation of the eluate fractions at a high speed of 28,000 g at 

4 ºC for one hour was included. The pellet was dissolved in appropriate amounts of 

PBS (pH 7.4) containing 150 mM NaCl. To examine if the two step purification 

process affected virus quality, the prepared formulation was tested for recovery, 

transduction efficiency and purity and compared against virus formulation purified by 

the commonly used laboratory method involving only high speed centrifugation (HS) 

at 28,000 g for 1 hour at 4 ºC. This will be discussed in the following sections. 
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Figure 3.3. Analysis of rBV formulation before and after purification by 
membrane chromatography. Various virus fractions were electrophoresed on 
sodium dodecyl sulphate-polyacrylamide gels and total proteins were viewed using 
silver iodide staining (A) and gp64 viewed by western blot (B). denotes gp64. Note 
the lesser amount of total proteins in eluates indicated by fewer and lighter protein 
bands compared to BV-load and abundant amounts of total proteins in the last lane 
indicating the removal of much of the proteins from the BV load. 
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3.6. Comparison of rBV purification methods for recovery, transduction 
efficiency and purity  

Purification by high-speed centrifugation (HS) method yielded a final recovery 

of ~55% by real time PCR assay for gp64 and the two-step purification process 

(MC+HS) yielded a final recovery of 29% ± 5 (represented as Mean ± SD of three 

independent sets of purification). Since the high speed centrifugation method of 

purifying baculovirus is always associated with a loss of ~50%, it was not surprising 

that the recovery by MC+HS dropped to ~30%. A representative run of BV 

purification by MC+HS and HS method is given in Table 3.2. 

Method 
Sample 

Voulme 
(ml) 

VP/ml Total VP1 
% 

recovery2 

BV-luc  10 6.08E+09 6.08E+10  

HS HS 0.3 1.12E+11 3.35E+10 55 

MC+HS 
Step1 

E-150 5 8.08E+09 4.04E+10 66 

E-500 5 2.71E+09 1.35E+10 22 

Step 2 MC+HS 0.5 3.91E+10 1.95E+10 32 

Table 3.2. Summary of total BV yield and final recovery after purification by 
High Speed Centrifugation and Membrane Chromatography+high speed 
centrifugation. VP- viral particles; 1-Total viral particles (TVP) was calculated by 
multiplying viral particles with volume; 2 - Recoveries were calculated by normalizing 
the data against the loaded BV-luc sample E-150- BV eluted with PBS-150mM NaCl 
at pH 7.4; E-500- BV eluted with PBS-500mM NaCl at pH 7.4. 

The reverse of this process, that is, purification of baculovirus by 

centrifugation at high speed followed by membrane chromatography was also tried 

(data not shown). However, when membrane chromatography was used as the 

second step, virus could not be efficiently eluted using a smaller volume of elution 

buffer and the concentration was compromised when trying to maximize the recovery 

yield. To check the effect of purification procedures on the transduction efficiency, 
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equal number (MOI 50) of purified BV-luc from both methods and BV-luc supernatant 

were tested for their transduction activity. Transduction by MC+HS-purified BV-luc 

resulted in transgene expression comparable to that resulted from transduction by 

HS-purified BV. Though there were slight differences in luciferase gene expression 

between transduction by MC+HS purified and HS-purified BV, the variations were not 

statistically significant. (Figure 3.4A). The purity of the samples were assessed by 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) followed 

by silver staining. As shown in Figure 3.4B, BV-luc supernatant collected from Sf9 

cell cultures, clarified by centrifugation at 1000 g for 5 minutes and filtered through 

0.45 μm pore sized filter contained abundant proteins. MC+HS purified virus 

formulation displayed a single major band of molecular mass ≈ 64 kDa correlating to 

gp64 whereas HS purified virus formulation displayed a major band of gp64 together 

with other protein bands indicating the presence of contaminating proteins. The 

presence of BV in various formulations were confirmed by western blot for gp64 

(Figure 3.4C). These results suggested that MC+HS purification method offered 

better purity virus formulation with little or no loss in transduction efficiency. 
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Figure 3.4. Transduction efficiency and purity of BV-luc purified by membrane 
chromatography + high speed centrifugation (MC+HS) method and high speed 
centrifugation (HS) method alone. (A) Comparison of transduction efficiency of BV-
luc before and after purification by the two methods. Luciferase activities were 
measured after 24 and 48 hours. Each group consisted of at least three repeats and 
values are expressed as mean + SD. Note that there is no significant differences in 
luciferase expression (B) Purity of virus preparations before and after MC+HS and 
HS purification by silver staining. Note that MC+HS lane has a single band of 
proteins corresponding to molecular weight of ≈ 64 kDa as against multiple protein 
bands in other lanes. denotes gp64. (C) Confirmation of the presence of BV in 
MC+HS- and HS-purified formulations by western blot for gp64. 
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3.7. Comparison of rBV purification methods for immune responses in 
mice brains by cDNA microarray analysis 

3.7.1. rBV formulations prepared by MC+HS and HS methods considerably 
alters gene expression in mice brains 

To verify the usefulness of MC+HS method in adding to the biosafety profile 

of BV for treating CNS disorders, microarray analysis on mice brain striatum 

inoculated with MC+HS-purified rBV was performed and compared with those 

inoculated with HS-purified rBV using Affymetrix GeneChip Mouse Genome 430 2.0 

Array. rBV accommodating HSVtk gene under the control of GFAP promoter and 

appended to three repeats of three micro RNA sequences (hsa-miR-31, hsa-miR-127 

and hsa-miR-143) shortly referred to as BV-tk that were used to treat gliomas in mice 

models (Wu et al., 2009) were used for this purpose. The chip offers a 

comprehensive analysis of genome wide expression on a single array comprising of 

45,000 probe sets for over 39,000 well characterized mouse genes. At least three 

mice brain samples from separate animals, each injected with mock, MC+HS-purified 

and HS-purified viruses were collected for microarray analysis. We observed 

approximately 61.3%, 59.37% and 60.1% of gene probes on the chip being flagged 

as present in MC+HS-purified BV-, HS purified BV- and mock - injected mouse brain 

samples respectively. GenespringGX 11.5 from Agilent Technologies was used for 

microarray data analysis. Using a two fold difference in normalized expression level 

and a t-test p-value of ≤ 0.05 as an arbitrary cut off value against the mock injected 

brain samples, we observed 379 probes (0.84%) in MC+HS purified BV injected 

brain samples and 431 probes (0.94%) in HS purified BV injected brain samples to 

be altered. The set of 379 gene probes from MC+HS purified BV injected brain 

samples represented 351 up regulated and 28 down regulated probes with a total of 
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378 IDs available in Database for Annotation, Visualization and Integrated Discovery 

(DAVID) bioinformatics resources 6.7 and the set of 431 gene probes from HS 

purified BV injected brain samples represented 406 up regulated and 25 down 

regulated probes with a total of 429 IDs available in DAVID. This is summarized in 

Table 3.3. These data indicate that rBV formulations prepared by both purification 

methods bring about alterations in considerable number of genes. 

 HS  MC+HS  

Microarray Chip Used 

Affymetrix 
GeneChip 

Mouse Genome 
430 2.0 Array 

Affymetrix 
GeneChip 

Mouse Genome 
430 2.0 Array 

Total No. of Transcripts 
present 45101 45101 

Total No. of transcripts 
examined (present/marginal) 27438 27004 

Probes modified (2 fold 
change+p<0.05) 431 379 

Probes Up regulated 406 351 
Probes Down regulated 25 28 

% of modified genes 0.94 0.84 

Table 3.3. Summary of microarray data analysis on mice brains inoculated with 
HS and MC+HS purified BV by Genespring GX11. 

3.7.2. Validation of microarray results by real-time PCR assay 

To validate the fold changes in expression from microarray analysis, 8 

significantly modified (fold changes >= 2 and t-test p-value <= 0.05) genes 

participating in important KEGG pathways were analyzed by real-time PCR assay. 

The various KEGG pathways and the genes tested are as follows: 
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RIG-1 like receptor signaling pathway - MDA5, Isg15 and Irf7  

Antigen presentation and processing - Tap1 and Tapbp  

Chemokine signaling pathway - RANTES, CXCL11 and CXCL12  

Mouse glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as 

an internal normalization control. All of the selected genes displayed similar trend in 

up or down regulation consistent with those from the microarray analysis even 

though the actual fold changes were not identical (Figure 3.5). Due to the intrinsic 

differences in the techniques used and normalization methodology, absolute values 

could be different between the results obtained with microarray and real-time PCR 

assay. For example, it is likely that pixel saturation occurs when the pixel intensity 

exceeds a threshold in a microarray, thus compressing the true induction magnitude 

of transcription (Dodd et al., 2004). 
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Figure 3.5. Validation of fold changes in expression by microarray results 
using quantitative real time PCR assay for mouse genes. Eight (seven 
upregulated – MDA5, Isg15, Irf7, Tap1, Tapbp, RANTES, Cxcl11 and one 
downregulated - Cxcl12) of the significantly modified (fold changes >= 2 and t-test p-
value <= 0.05) genes from MC+HS (A) and HS (B) purified BV-tk injected mouse 
brain samples were analyzed. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as internal normalization control. 
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3.7.3. Molecular responses in mice brains to MC+HS- and HS-purified BV  

Molecular responses to rBV in mouse brains were analyzed using three 

different softwares – Genespring GX11.5, Metacore™ and DAVID Bioinformatics to 

gain insight into different issues. To obtain the list of genes differentially expressed 

between MC+HS and HS lists, Genespring GX 11.5 was used. For convenience, the 

probe lists containing significantly modified genes (fold change >= 2 and t-test P-

value <=0.05) in MC+HS- and HS-purified BV injected mouse brains will hereafter be 

mentioned as MC+HS and HS probe lists. Of the significantly modified probes in 

MC+HS and HS lists, a large number (353) were common to both as expected since 

BV is the major component of both formulations. Of the 353 probe IDs, one way 

Anova test with unequal variance followed by Tukey HSD post hoc test revealed 19 

probes (corresponding to 18 genes) to be differentially regulated (Table 3.4). The fold 

changes of these differentially regulated genes in HS probe list were remarkably 

higher compared to that in MC+HS probe list. Using DAVID, Gene Ontology – 

Biological Processes (GO-BP) that these genes participate in were obtained. Upon 

using Amigo Visualize Tool (http://amigo.geneontology.org/cgi-

bin/amigo/amigo?mode=visualize) on these GO-BPs, antiviral immune responses 

were found to be the major responses (Figure 3.6).  

Other than the commonly affected probes, there were 35 probes in MC+HS 

list and 77 probes in HS list. To gather information about the difference that the 

changes in these probes make to the host, Metacore from GeneGO was used. 

Metacore is an integrated software suite based on a manually curated database for 

functional and comparative analysis of microarray data across gene lists. Both lists 

were subjected to comparative enrichment analysis for various ontologies in 
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Metacore. Comparative enrichment analysis option in Metacore allows for the 

analysis of contribution of common and unique genes across the two gene lists to 

various ontologies. We restricted our focus to Gene Ontology (GO) processes and 

GeneGO pathways. Top 10 significantly affected GO processes and GeneGO 

pathways in MC+HS and HS are listed along with the contribution of common and 

unique genes to various ontologies in terms of negative log (P-value) in Figure 3.7A. 

The more the negative log (P-values), the stronger and more reliable are the chances 

for the ontology to be affected. The over represented GO processes with the most 

significant P-values included immune response, immune system response, defense 

response, cellular response to cytokine stimulus, response to cytokine stimulus, 

response to other organism, innate immune response, response to biotic stimulus, 

cytokine-mediated signaling pathway and multi-organism process. The fact that they 

were listed among the top 10 GO processes indicated that these were the most 

important biological changes that define the host responses to BV transduction in 

mouse brains. This is similar to our previously published results defining the 

responses of BV inoculation in the rat brain, human astrocytes and neurons (Boulaire 

et al., 2009).  

Comparative enrichment analysis for affected GeneGO pathways also 

revealed the top 10 significant pathways to be related to immune responses. 

Complement activation pathways topped the list across the two gene lists. 

Complement system consists of nearly 30 small proteins that can be activated 

through three pathways namely classical, alternate and lectin-binding complement 

pathway (Taylor et al., 1998). All three pathways were activated across the two lists. 

Other pathways significantly affected were involved in eliciting innate immune 

response to viral infection and resulting in interferon signaling and production 
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followed by antigen presentation by MHC class I molecules. The list of genes 

affected across various significant pathways and their fold changes are given in 

Table 3.5. Most of the genes from MC+HS were modified by lesser fold changes 

compared to those from HS. 

A close scrutiny at the graphs revealed that the contributions of the large 

number of genes common to both MC+HS and HS list towards the P-values of both 

GO processes and GeneGO pathways were highly significant. Apart from them, 

those genes unique to HS list contributed significantly to all top 10 GO processes. 

However, genes unique to MC+HS either did not contribute or contributed to a 

smaller extent to the P-values of GO processes compared to those genes unique to 

HS. Of the 10 significant GeneGO pathways, genes unique to HS contributed to the 

complement activation pathways, IFN alpha/beta signaling pathways and antigen 

presentation by MHC class I whereas genes unique to MC+HS did not participate in 

these pathways. These results suggested that genes from MC+HS list give rise to 

same immune responses elicited by the genes common to both MC+HS and HS list 

and the genes unique to MC+HS did not contribute to immune responses unlike the 

unique genes from HS list thus confirming the safety associated with this method.



 
Gene 

Symbol 
Fold Change  

HS vs Mock MC+HS vs Mock 
9530028C05 15.64 10.4 
BC013712 3.02 2.51 
C2 2.76 2.38 
Ctsc 3.79 3.04 
Gbp2 12.5 10.29 
Ifit2 18.78 13.02 
Igtp 16.41 12.11 
Tor3a 3.03 2.4 
Parp12 8.05 5.76 
Parp14 6.06 4.65 
Parp9 7.54 5.73 
Plac8 15.02 12.08 
Rsad2 18.53 12.92 
Slfn8 9.96 7.56 
Stat1 10.6 7.77 
Trim25 4.63 3.72 
Ugt1a 3.86 3.09 
Zc3hav1 5.66 3.95 

Table 3.4. Differentially expressed genes across HS and 
MC+HS gene lists and their fold changes. Probes common to HS 
and MC+HS list were analyzed by Genespring GX 11.5 for 
differentially expressed genes by one way Anova test with unequal 
variance followed by Tukey HSD post hoc. Fold changes of the 
various differentially expressed genes are represented. 

 

Figure 3.6. Treeview of Gene Ontology Biological Processes 
(GO-BP) that the differentially expressed genes in HS and 
MC+HS involved inSignificantly affected GO-BP from DAVID 
enrichment analysis were fed into Amigo Visualization Tool for 
obtaining the GO tree view. The P-values of the affected terms are 
given below each term. 
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Figure 3.7. Comparative enrichment analysis for GO processes and GeneGO 
pathways for significantly modified mouse genes. Significantly affected GO 
processes (A) and GeneGO pathways (B) indicated major host responses to 
baculovirus purified by the two methods. Significantly modified genes are those with 
fold changes ≥ 2 and t-test p-value ≤ 0.05. 
!
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GeneGO Pathways  

Fold Changes 
MC+HS HS 

Complement Pathways   
C3a/C3b/C3dg/C5 convertase/iC3b 13.88 18.81 
alpha-M/beta-2 integrin - 2.04 
alpha-X/beta-2 integrin - 2.04 
C5AR 2.90 2.72 
Factor B 8.71 7.62 
C1 inhibitor 5.61 6.15 
C1 - 2.07 
C1q - 2.07 
C1qRp 3.04 3.34 
C3 convertase (C2aC4b) 3.47 4.08 
C4b 2.72 2.97 
IgM -2.15 -2.20 
IFN a/b signaling pathway- P-value   
SOCS1 - 2.38 
SHP-1 2.09 2.45 
STAT2 2.58 2.62 
PML 2.18 2.75 
IRF9 3.65 4.26 
ISGF3 3.85 5.24 
STAT1/STAT2 3.85 5.24 
STAT1 3.85 5.24 
ISG15 10.22 11.25 
USP18 10.39 11.87 
ISG54 8.88 13.02 
Antigen presentation by MHC class I   
Immunoproteasome (11S regulator) 2.14 2.48 
Tapasin 2.62 3.52 
Beta-2-microglobulin 2.63 2.65 
TAP2 (PSF2) 7.25 8.17 
Immunoproteasome (20S core) 7.66 8.80 
TAP1 (PSF1) 8.69 8.31 
MHC class I 9.22 9.82 
PSME1 - 2.19 
PSME2 2.14 2.48 
PSMB8(LMP7) 7.66 8.80 
Antiviral actions of Interferons   
STAT2 2.58 3.25 
IRF9 3.65 4.26 
PKR 4.92 5.18 
STAT1 6.30 7.58 
ISGF3 6.30 7.58 
2'-5'-oligoadenylate synthetase 7.80 8.53 
OAS1 5.16 5.76 
OAS2 7.80 8.53 
HLA-A 9.22 9.82 
MHC class I 9.22 9.82 
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Oncostatin M signaling via JAK-Stat & MAPK in mouse and human cells 
OSM receptor 2.74 3.05 
SOCS3 4.86 5.38 
TIMP1 5.82 6.04 
STAT1 6.30 7.58 
SERPINA3 (ACT) 5.03 5.15 
CCL2 9.53 12.68 
Innate immune response to RNA viral infection  
I-kB 2.46 3.11 
RIG-I 4.18 6.42 
IRF7 6.06 6.26 
MDA-5 6.62 9.25 
LGP2 8.15 11.23 
TLR3 3.46 4.12 

Table 3.5. Significantly affected GeneGO pathways in MC+HS and HS purified 
BV innoculated mouse brains. Significantly modified genes (fold changes >= 2 and 
t-test p-value <= 0.05) from MC+HS and HS were subjected to comparative 
enrichment analysis for GeneGO pathways. Note the lesser number of genes and 
lesser fold changes of the affected genes in MC+HS compared to HS. 

3.8. Discussion 

The overriding objective of this chapter was to develop an efficient purification 

method for BV which can minimize insect cell contaminants thus eliminating much of 

the unwanted immune responses. The main finding of our study is that immune 

responses to BV decreased as the purity of the formulation increased. The method 

we developed met our objective as the purity of BV formulation in MC+HS method as 

shown by SDS-PAGE was much better than that obtained by HS method. It also 

yielded a decent recovery of more than 30% of total viral particles after the two-step 

purification process.  Recovery after purification by membrane chromatography was 

up to 94% in one of our experiments. Such high recoveries are possible only with 

membrane chromatography because it uses absorptive membranes with highly 

porous structures and active chemical groups attached to the surface of the 

membrane. The greater pore size offers more active surface area for binding of 

particles as large as viruses unlike column chromatography with resins or beads with 
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active surface areas contained within the small pores of the matrix. Also, the 

membranes are associated with shorter diffusion times compared to the resins or 

beads which are usually closely packed (Charcosset, 2006). Also, membrane 

chromatography allows for easy scale up. The mustang S cation exchange 

membrane chromatography unit used in this study has an open pleat of 16 layers of 

polyethersulfone (PES) membrane with pendant sulfonic functional groups and pore 

size of 0.8 μm which is larger than the size of BV. The binding of BV to the cationic 

membrane was mainly through gp64 protein (Wu et al., 2007). At slightly acidic pH of 

the endosomes, BV envelope is known to fuse with the host cell triggered by the 

conformational changes in gp64 (Blissard et al., 1992, Zhou et al., 2006). The same 

principle might apply here. At pH ≈ 6 (the pH of the Sf9 supernatant containing BV), 

gp64 protein is in its native conformation. When passed through the membrane, virus 

bound to it through gp64 proteins in its native conformation. Upon passing PBS of pH 

7.4, change in pH caused conformational changes in gp64 thus allowing the elution 

of BV. Since this method utilizes the conformational changes of BV gp64 for 

purification, besides BV purification, it can also be applied to purify other viruses 

psedotyped with gp64.  

However, the recovery varied largely depending upon the temperature of the 

BV supernatant passed through the chromatography unit. Maximum recovery could 

be obtained when the supernatant was at room temperature and the recovery 

decreased with the decrease in temperature suggesting that binding of virus to the 

membrane chromatography unit was stronger at lower temperatures thus decreasing 

the elution whereas the binding at room temperature was weak enough for the elution 

buffer to recover most of the viruses. Similar trend in baculoviral supernatant 

temperature playing a role in virus binding and  elution has been reported before in 
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concanavalin A chromatography for baculovirus purification (Chen et al., 2009b). The 

second step of high speed centrifugation not only concentrated the virus but also 

purified them by removing more proteins (Figure 3.4). Also, the lesser speeds used 

for centrifugation (28000 g) as against the ultra high speed of 80,000 g in sucrose 

gradient ultracentrifugation method resulted in little loss in infectivity. This method 

could be used for virus volumes up to 40 ml without much changes in recovery and 

scaling up to larger volumes awaits further investigation.  

Although other purification methods like size exclusion chromatography and 

multistep downstream processing involving the use of anion exchange membranes 

yield an overall recovery of   ~67% (Transfiguracion et al., 2007) and ≈ 38% (Vicente 

et al., 2009) respectively, our study is the first to establish the biosafety associated 

with a purification method in vivo using global gene expression profiling. MC+HS 

method brought significant changes only to 379 probes as against the 431 probes in 

HS method. Further analysis of these gene lists, in general, resulted in highly 

enriched immune response related GO processes and GeneGO pathway maps (as 

denoted by lower P-values) for genes in HS list than in MC+HS list. The lower the p-

value, the higher is the confidence that the effect is true and not by chance. In 

particular, BV purified by MC+HS method resulted in the elicitation of lesser number 

of genes with lesser fold changes in the complement pathways, interferon signaling 

pathway and antigen presentation by MHC class I (Table 3.5) suggesting that 

removal of contaminating proteins could be the reason for this. Thus, this chapter 

demonstrated the usefulness of MC+HS purification method in reducing the immune 

responses in vivo. 
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4. Host Responses to rBV inoculation into brains of non-
human primates  

4.1. Introduction and Aims 

With the successful demonstration of therapeutic effect of rBV expressing 

diptheria toxin A gene (Pieroni et al., 2001, Wang et al., 2006a) or HSV-tk gene  

under the control of cell-specific promoters (Balani et al., 2009, Wu et al., 2009) on 

rodent glioma xenograft models, hopes on rBV as gene delivery vectors for the 

treatment of gliomas or other central nervous system (CNS) disorders continue to be 

increasing. However, reports that baculovirus elicits immune responses in hosts (Abe 

et al., 2010) that sometimes nullify the transgene expression (Pieroni et al., 2001) 

question their suitability as gene delivery vectors for clinical trials. A complete 

understanding of the baculovirus-host interactions has not yet been established. The 

fact that limited information is available so far on the effects of baculoviral vectors on 

transduced mammalian cells at the molecular level necessitates the usage of high 

throughput analysis to clarify virus-host interactions. DNA microarray based gene 

expression profiling is one such technology that has been suggested to characterize 

host responses to viral-vector mediated transduction (Piersanti et al., 2004). The 

humungous data generated from microarray studies allow for the recognition of major 

pathways of virally induced responses and thus risk assessment of the vectors and 

identification of new target genes for specific viruses. Our laboratory has been 

applying DNA microarray technology that allows global gene expression profiling as a 

systems level approach in exploring host-BV interactions in human cell lines and rat 

models (Boulaire et al., 2009). Though rodents have been the experimental model for 

majority of the research groups to provide an insight into various research problems, 

especially the immune system, because of the differences in the time of evolution, 
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size and lifespan, they are not the same as humans. Variations in the structure, 

general characteristics, innate and adaptive immunity between mice and man have 

been reviewed in detail to caution the researchers about the possible differences in 

outcome (Mestas et al., 2004). This underscores the necessity of valid animal models 

to accurately evaluate the safety and efficacy of vectors designed for treatment of 

patients. 

 

Figure 4.1. Cynomolgous monkey (Macaca fascicularis).This macaque sharing 
high genome similarity with humans has become an important model for preclinical 
evaluation of viral-based gene therapy vectors. 

Non-human primates (NHPs), with their greater immunological and biological 

similarities to humans are in great demand as models for preclinical evaluation of 

highly specific biological therapeutics (t'Hart et al., 2003, Fiandaca et al., 2010). The 

most commonly used NHPs in research are Old World monkey species especially, 

rhesus and cynomolgus macaques (Macaca mulatta and M. fascicularis (Figure 4.1)), 

the common ancestor of which and man dates back to 25 million years ago (Gibbs et 

al., 2007). This evolutionary proximity has reflected a high degree of similarity 

between man and macaques at the level of polymorphic gene families, such as those 

encoding major histocompatibility complex or T-cell receptor molecules or 
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immunoglobulins, and also leukocyte surface molecules and immune regulatory 

molecules, such as cytokines and chemokines (Bontrop et al., 1995, Bontrop et al., 

1999). Also, the draft genome sequence of rhesus macaque published in 2007 

(Gibbs et al., 2007) transforms the animal from a physiological model in to a “whole-

organism system”. Together with these, the fact that both humans and NHPs can be 

infected with similar types of viruses and that infections often follow a similar course 

makes NHPs important models to study virus-based constructs for gene therapy. 

Thus, envisaging the advancement of baculoviral vectors into clinical trials as gene 

delivery vectors to treat CNS disorders, this chapter aims to understand baculovirus-

host interactions at the molecular level in non-human primates’ brains and evaluate 

the toxicology of BV upon acute central administration. 

4.2. BV-tk inoculation into macaque brains considerably alters gene 
expression 

Three cynomolgous monkeys (Macaca fascicularis) – 5A5C, 557A and 5D0D 

were used for this study. Having verified the improved safety associated with MC+HS 

purification method and the therapeutic efficacy of recombinant baculovirus 

accommodating HSVtk gene under the control of GFAP promoter and appended to 

three repeats of three micro RNA sequences (hsa-miR-31, hsa-miR-127 and hsa-

miR-143) shortly referred to as BV-tk to treat gliomas in mice models (Wu et al., 

2009), BV-tk purified by MC+HS method was used to assess the host responses 

upon acute central administration into macaque brains. Four injections each 

containing 108 pfu of test virus was injected into right hemisphere against the mock 

supernatant purified by MC+HS method into the left hemisphere. After 48 hours, the 

samples were collected and successful injection of virus into macaque brains was 

verified by real time PCR for gp64 on one of the four test virus injected brain samples 
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against its corresponding control in each animal (Figure 4.2). All three virus injected 

brain samples tested positive for gp64 but with varying copy numbers. Differences in 

the copy number may be attributed to the differences in the sample collection (a bit 

further away from the injection site) or processing of the tissues for measuring gp64 

copy number. 

 

Figure 4.2. Confirmation of successful injection of rBV-tk into macaque brains 
by real time-PCR analysis for gp64. In all three animals, one of the four BV-tk 
injected brain samples and their corresponding control brain samples were analyzed 
for the presence of virus. 

Gene expression profiling in response to BV-tk inoculation in to macaque 

brains was examined using Affymetrix GeneChip Rhesus Macaque Genome Array 

that provides a comprehensive coverage of the transcribed rhesus genome, 

comprising 52,024 probe sets for approximately 47,000 Macaca mulatta transcripts. 

Two pairs of samples, BV-tk-injected and mock-injected brain tissues from each 

animal with a total of 6 samples each in BV-tk-injected and mock-injected category 

were collected for microarray analysis. Approximately 53.5% and 50.43% of the gene 
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probes on the chips were called present in the virus-injected and mock-injected brain 

samples. After performing quality control based on expression and flags, 205 probes 

(0.39%) were observed to show two or more folds difference in expression and to be 

statistically significant (t-test, p-value ≤ 0.05) between the BV-tk-injected and mock-

injected samples. This set of genes represented 184 up regulated and 21 down 

regulated probes with 171 IDs recognized by DAVID Bioinformatics 6.7. Microarray 

data analysis by GenespringGX 11.5 from Agilent Technologies is summarized in 

Table 4.1. 

Microarray Chip Used 
Affymetrix GeneChip 

Rhesus Macaque Genome 
Array 

Total No. of Transcripts present 52,865 

Total No. of transcripts examined 
(present/marginal) 25491 

Probes modified (2 fold 
change+p<0.05) 205 

Probes Upregulated 184 
Probes Downregulated 21 
% of modified genes 0.39 

Table 4.1. Summary of Microarray Data Analysis on macaque brains inoculated 
with MC+HS purified BV by Genespring GX11.5 

4.3. Validation of microarray results by real time PCR assay 

To validate the findings from microarray analysis, real time PCR assays were 

carried out on 9 genes – MDA5, ISG-15, IL-15, TAP-1, MAMU-A, MAMU -E, MAMU-

F, C1S and FCGR3. The selection was made in such a way that genes from 

important KEGG pathways were validated. The various KEGG pathways involving 

these genes are as follows: 
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RIG-1 like receptor signaling pathway – MDA5, ISG-15 and IL-15 

Antigen presentation and processing - TAP1, MAMU-A, MAMU -E and MAMU -F 

Complement and coagulation cascades – C1S 

Fc gamma R-mediated phagocytosis – FCGR3 

Rhesus GAPDH was used as an internal normalization control. All of the 

selected genes displayed similar trend in up or down regulation (Figure 4.3) 

consistent with those from the microarray analysis even though the actual fold 

changes were not identical. 

 

Figure 4.3. Validation of fold changes in expression by microarray using 
quantitative real time PCR assay for macaque genes. Nine of the significantly 
modified (fold changes >= 2 and t-test p-value <= 0.05) genes from macaque brains 
participating in different KEGG pathways were analyzed. Genes in purple - RIG-1 like 
receptor signaling, genes in red -  Antigen Presentation and Processing, genes in 
green - Complement and Coagulation Cascades, genes in blue - Fc gamma R-
mediated phagocytosis. Rhesus glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as internal normalization controls. 
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4.4. rBV inoculation into macaque brains elicits antiviral immune 
responses 

To obtain the biological meaning of significantly modified genes in MC+HS 

purified BV-tk injected macaque brains, the web-based services, DAVID 

Bioinformatics Resources v6.7 and Metacore from GeneGO were used. The resultant 

probe list containing 205 IDs was fed into Metacore to gather insights into the GO 

processes and GeneGO pathways responsive to BV-tk inoculation in macaque 

brains. The top 10 significantly affected GO processes included immune response, 

defense response, immune system process, innate immune response, type I 

interferon-mediated signaling pathway, cellular response to type I interferon, 

response to type I interferon, interferon-gamma-mediated signaling pathway, 

cytokine-mediated signaling pathway and cellular response to interferon-gamma.  

Upon visualizing them on Amigo Visualize tool (http://amigo.geneontology.org/cgi-

bin/amigo/amigo?mode=visualize), all 10 GO processes were eventually either a 

response to stimuli or a part of immune system process (Figure 4.4). Also, in an 

attempt to map the significantly affected genes to various GeneGO pathways, seven 

out of the top 10 significantly affected pathways were observed to be involved in 

immune response elicitation (Figure 4.5). The pathways included Lectin induced 

complement pathway, classical complement pathway, antiviral actions of IFNs, IFN 

alpha/beta signaling pathway, innate immune response to RNA viral infection, 

antigen presentation by MHC class I and IL-5 signaling.  These results indicated that 

antiviral immune responses were the major responses to BV inoculation in the brains 

of non-human primates.  

Upon using DAVID to map significantly genes to KEGG pathways, three 

immune response related pathways namely antigen presentation and processing (P-
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value= 4.30E-05), RIG-1 like receptor signaling pathway (P-value= 2.81E-03) and 

cytokine-cytokine interactions (P-value= 6.50E-02) were found to be majorly elicited. 

In agreement with the notion that astrocytes and microglial cells of the brain present 

antigens and stimulate T-cells (Aloisi et al., 2000), 13 genes from antigen processing 

and presentation pathway were found to be upregulated (Table 4.3). RIG-1 like 

receptors (RLRs) are a class of pathogen recognition receptors (PRRs) including 

RNA helicases like RIG-1, MDA5 and LGP2 that reside in the cytoplasm of immune 

and non-immune cells and recognize viral RNA species produced in the cytoplasm. 

RLRs are known to induce type I interferon (IFN) production through an adaptor 

molecule IPS-1 that localizes in the mitochondria (Kawai et al., 2005). LGP2 serves 

as a negative or positive regulator of RIG-1 and MDA-5 depending on the type of 

RNA viruses (Venkataraman et al., 2007). In macaque brains, five of the RLR 

pathway genes were up regulated and one down regulated (Table 4.2). Apart from 

IFN production, activation of PRRs in antigen presenting cells also leads to the 

production of immunologic messenger molecules - cytokines and chemokines, that 

interact with their respective receptors to bring about more innate and adaptive 

immune responses. Four cytokine genes were found to be upregulated in macaque 

brains (Table 4.3). 



 

 

 

Figure 4.4. Tree view of 
significantly affected Gene 
Ontology - Biological 
Processes (GO-BP) in 
MC+HS purified BV-tk 
injected macaque brains 
samples. Top 10 significantly 
affected GO-BP from 
GeneGO enrichment analysis 
were fed into Amigo 
Visualization Tool for 
obtaining the GO tree view. 
The P-values of the affected 
terms are given below each 
term. 
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Figure 4.5. Significantly affected GeneGO pathways in BV-tk injected macaque 
brain samples. List of significantly affected genes in macaque brain upon BV 
inoculation was fed into Metacore for enrichment analysis using the default threshold 
for P-values. Top 10 significantly affected GeneGO pathways are presented here 
along with their negative log P-values.* indicates immune response related 
pathways. Note that immune response related pathways are dominant in the top ten 
pathways. 

4.5.  Differential responses to rBV inoculation in macaque and mouse 
brains 

Though BV-tk elicited immune responses in macaque and mouse brains, 

remarkable differences were observed in the type of immune responses and 

interferon production pathways, which are discussed below 

4.5.1.  Interferon production pathway 

In both macaque and mouse, interferon (IFN) production pathways were 

activated as an innate immune response to BV-tk inoculation. Induction of interferon 

production can occur as a result of activation of different PRRs. A close scrutiny of 

genes involved in the GeneGO pathway – Innate Immune responses to RNA viral 
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infection across macaque and mouse MC+HS gene list revealed that none of the 

TLR genes were significantly modified in eliciting innate immune responses in 

macaque brains (Table 4.3). This may suggest that TLR independent pathway may 

be involved in the induction of IFN production. To gain insight into the particular 

pathways that result in IFN induction, mouse and macaque gene lists were mapped 

to various KEGG pathways using DAVID bioinformatics. Significantly modified genes 

(fold change ≥2 and P-value ≤0.05) from mouse mapped to three interferon 

production inducing pathways namely Toll-like receptor (TLR) signaling, RIG-1 like 

receptor (RLR) signaling and cytosolic DNA sensing pathway whereas, gene list from 

macaque mapped only to RLR pathway (Figure 4.6) suggesting that RLR signaling is 

the major pathway of interferon production upon rBV inoculation in macaque brains. 

 

Figure 4.6. Interferon production pathways affected in mouse and macaque 
brains upon BV-tk innoculation. Significantly modified genes from mouse and 
macaque brains were subjected to DAVID analysis for enriched KEGG pathways. 
Note that only RIG-1 like receptor signaling pathway was affected in macaque brains 
whereas three pathways were affected in mouse brains upon BV-tk injection. 
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Gene Symbol Mouse Macaque 
RIG-1 like receptor signaling pathway p-value  3.62E-04 2.81E-03 
CXCL10 15.46 - 
IL-8 - 2.21 
IRF7 6.06 - 
ISG15 10.22 12.19 
LGP2 8.15 - 
MDA5 6.62 3.99 
POLR3C - -2.13 
RIG1 3.77 3.85 
STING 2.02 - 
TRIM25 3.42 2.69 
Cytosolic DNA-sensing pathway p-value  9.38E-05   
RIG1 4.18 

 IFI202B 19.29 
 STING 2.02 
 IRF7 6.06 Pathway 

not affected PYCARD 2.23 
CCL5 (RANTES) 55.13 

 DAI 12.99 
 CXCL10 15.46 
 Toll-like receptor signaling pathway p-value  3.36E-03!   

MYD88 2.01 
 IRF7 6.06 
 TLR2 2.44 
 TLR3 3.46 Pathway 

not affected TLR4 2.12 
CCL5 55.13 

 STAT1 4.93 
 CXCL10 15.46   

Table 4.2. Interferon production pathways affected in mouse and macaque 
brains upon BV-tk innoculation. Significantly modified genes (expression level ≥ 
two-fold and t-test p-value of ≤ 0.05) from mouse and macaque brains were 
subjected to DAVID analysis for enriched KEGG pathways.  Fold changes of the 
various genes affected in the mentioned KEGG pathways are represented. 

4.5.2. Major histocompatibility molecules 

BV-tk induced antigen processing and presentation pathway in both macaque 

and mice brains. In macaque brains, antigen processing and presentation pathway 

involved both class I and II molecules of major histocompatibility molecules (MHC) 
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whereas in mouse brains, it involved only MHC class I molecules. Analysis by DAVID 

Bioinformatics for enriched KEGG pathways revealed this. The list of significantly 

modified genes involved in these pathways together with their fold changes are listed 

in Table 4.3. 

4.5.3. Cytokines and chemokines 

Another remarkable difference between mice and macaque responses to BV-

tk inoculation was in the type and number of cytokines and chemokines. Chemokines 

are a class of small cytokines secreted by immune cells with immunomodulatory and 

chemo-attractive properties to recruit immune cells to the site of viral infection. In 

mice, 13 chemokine and 7 chemokine receptor genes were significantly up regulated 

suggesting the effective amplification of chemokine genes to recruit immune cells to 

the site of infection. However, in macaque brains, only four cytokines were 

significantly up regulated (Table 4.3).  

These results suggested that macaque brains respond to BV by inducing 

interferon production through a TLR-independent RLR signaling pathway and that the 

injected dose of baculovirus per injection site did not elicit stronger immune 

responses and produced only fewer cytokines than in mouse. 
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Gene Symbol Mouse Macaque 
RIG-1 like receptor signaling pathway (GeneGO pathway) 
I-kB 2.46 - 
IL-8 - 2.21 
IRF7 6.06 - 
LGP2 8.15 - 
MDA-5 6.62 4 
RIG-I 4.18 3.35 
TLR3 3.46 - 
Antigen Processing and Presentation (KEGG pathway) 

MHC class 1 

(H2-Q6/H2-Q7)/HLA-B 13.4 2.52 
(H2-T10/H2-T22)/- 6.09 - 
B2m/B2M 2.52 - 
Cd74/CD74 - 3.42 
H2-D1/HLA-C 6.41 2.52 
H2-Ea/HLA-DRA - 2.86 
H2-K1/HLA-C 6.87 2.52 
H2-M3/HLA-G 2.91 5.21 
H2-M5/MAMU-F - 2.21 
H2-Q8/- 6.87 - 
H2-Q10/MAMU-B18 - 3.21 
H2-Q10/MAMU-I - 3.36 
H2-T23/MAMU-E 7.5 3.18 
H2-T24/- 3.62 - 
H2-T9/- 13.4 - 
H2-Dma/LOC717870 - 2.12 
Psme2/- 2.14 - 
Tap1/TAP1 8.69 3.29 
Tapbp/- 2.41 - 
Tap2/TAP2 7.25 - 

MHC class II 

H2-Dma/LOC717870 - 2.12 
H2-Ea/HLA-DRA - 2.86 
Ifi30/LOC719379 - 2.4 
Cytokines-Cytokine receptor interaction 
CCL12 (MCP-5) 9.53 - 
CCL2 (MCP-1) 12.5 - 
CCL5 (RANTES) 55.13 - 
CCL6 (MRP-1) 2.61 - 
CCL9 (MRP-2) 3.24 - 
CCR6 (CD196) -2.04 - 
CLCF1 (BSF-3) 2.71 - 
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CSF1 (MCSF) 2.17 - 
CSF2RB2 (IL-3R) 2.19 - 
CXCL10 (IP-10) 15.46 - 
CXCL12 -2.32 - 
CXCL13 (BCA-1) 3.99 - 
CXCL16 2.47 - 
CXCL2 (MIP-2) 3.24 - 
IL2RG 4.94 - 
IL4RA 2.72 - 
OSMR 2.74 - 
TNFRSF12A 2.21 - 
TNFRSF1A 2.03 - 
TNSF10 2.07 

!IL15 - 2.44 
CXCL11 - 5.29 
TNFSF13B - 4.53 
IL8 - 2.21 

Table 4.3. Differential Responses of mouse and Macaque brains to baculoviral 
transduction. Fold changes are shown for genes with expression level >= two-fold 
difference between baculovirus injected mouse and Macaque brains samples and 
corresponding control samples and a t-test p-value <= 0.05. 
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4.6. Toxicology and behavioral assessment of rBV vectors in non-
human primates 

To evaluate the toxicology and behavioral effects of rBV-tk following acute 

central administration in macaques, the animals were observed for various tests 

listed in Table 4.4 before and after virus injection. During the observation period of 48 

hours after test virus injection, there was no death, abnormal clinical signs or 

behavioral changes in any animal (Table 4.5). There were no major changes in body 

weights (Table 4.6). Gross pathological findings also showed no detectable 

abnormality (Table 4.7). Urinalyses performed pre and post injection just before 

necropsy showed no abnormality (Table 4.8). Blood, liver and kidney samples tested 

negative for baculovirus by real time PCR assay for gp64 (data not shown). Also, 

histopathology report revealed no rBV-associated lesions in any of the tissues 

examined including brain (Figure 4.7). These data suggest that baculovirus has a 

good safety profile with minimal to no toxicity in macaque. 



Observations Results – 
 3 Macaque 

Mortality None 
Clinical 
Observations No abnormality 

Body weight 
Measurement data No major change 

Haematology and 
Coagulation Normal 

Clinical Chemistry Normal 
Urinalysis Normal 
Gross pathology No abnormality 

Histopathology No test article associated 
histopathologic lesions 

Table 4.4. Summary of toxicology assessment of 
BV-tk vectors in macaque brains. 

 

Figure 4.7. Representative images of 
Haematoxylin and Eosin stained brain sections 
around the mock and BV-tk injected sites. 

 

Animal No. 
Observation 

Day 1 Day 2 
5A5C NA NA 
557A NA NA 
5D0D NA NA 

NA - No Abnormality Noted 

Table 4.5. Clinical Observations of Individual Animals 

Animal No. 
Body Weights (kg) 

Pre-Dose Day 2 
5A5C 2.98 2.86 
557A 2.99 2.87 
5D0D 2.67 2.73 

Table 4.6. Body Weight Measurements 

Animal 
Number Findings 

5A5C NAD 
557A NAD 
5D0D NAD 

No Abnormality Detected 

Table 4.7. Gross Pathological Findings 

Mock-injected ! BV-tk-injected !

500 µm! 500 µm!
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Pre-Dose 

Animal 
# 

Urinalysis 

Appearance VOL (ml) SG pH PROT GLU KET BIL ERY UBG LEU 
(Leu/ul) 

5A5C Light yellow 
/ clear 5.5 1.015 9 neg norm neg neg neg norm 25 

557A Straw / 5.5 1.006 8 neg norm neg neg neg norm neg sl turbid 

5D0D Light yellow 
/ sl turbid 5 1.01 6 neg norm neg neg neg norm neg 

Day 2- Post Dose 
          

Animal 
# 

Urinalysis 

Appearance VOL (ml) SG pH PROT GLU KET BIL ERY UBG LEU 
(Leu/ul) 

5A5C Light yellow 
/ clear 11 1.019 8 neg norm neg neg 25 norm neg 

557A Straw / 5.5 1.013 9 neg norm neg neg neg norm neg sl turbid 

5D0D Light yellow 
/ sl turbid 5.5 1.012 9 neg norm neg neg neg norm neg 

Table 4.8. Urinanalysis pre and post rBV dose.  
VOL – Volume; SG - Specific Gravity; PROT – Protein; GLU – Glucose; KET – Ketone; BIL – Bilirubin; ERY - Blood Pigments; UBG – 
Urobilinogen; LEU - White Blood Cells; norm – normal & neg- negative 
!
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4.7. Discussion 

The primary objective of this study was to understand the host responses and 

evaluate the toxicity in macaque brains to BV innoculation. Once inside the immune 

competent cell, BVs are recognized by pathogen recognition receptors (PRRs) like 

membrane bound TLRs and cytoplasmic RLRs. TLRs are the most well studied PRRs 

with respect to viral infections (Kawai et al., 2008). Upon infection, TLRs follow MyD88 

dependent pathway to activate NFκB and c-Jun, the transcriptional regulators of a number 

of chemokines and cytokines responsible for cellular immune response (Wang et al., 

2001). Endosomal TLRs (TLR-3, 7, 8 and 9) are traditionally associated with viral 

recognition (Brennan et al., 2010) while cell membrane bound receptors TLR-2 and TLR-4 

are involved in interacting with the viral envelope glycoproteins (Barton, 2007). 

Baculoviruses are known to induce type I IFNs in immune cells like peritoneal 

macrophages (PECs), splenic CD11c+ DCs and murine macrophage line RAW264.7 

through TLR-9/MyD88-dependent pathway (Abe et al., 2005). However, treatment of 

PECs with endosomal inhibitors failed to stop type I IFN production suggesting the 

existence of TLR-9 independent pathways (Abe et al., 2009). Recently, Chen and 

colleagues reported that baculoviruses can induce type I IFN production in mesenchymal 

stem cells through TLR-3 dependent pathway (Chen et al., 2009a). We have 

demonstrated through microarray studies that neurons, which do not possess TLR-9, 

respond to BV inoculation by producing IFNs through TLR-3 dependent pathway. In rat 

brains, TLR2 is involved in IFN production (Boulaire et al., 2009). In this study, TLR-2, 3 

and 4 were up regulated in the mouse brain (Table 4.2) suggesting the recognition of 

envelope glycoproteins by TLR-2 and TLR-4 and genomic DNA or transcribed RNA 

products by TLR-3. IFN-β secreted as a result of TLR induction acts on neighboring cells 

and activates Jak-STAT pathway via IFN receptor to induce the expression of IFN 
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regulatory factor 7 (IRF7) which may result in the amplification of type I IFN through a 

positive feedback mechanism (reviewed in Kawai et al., 2008). STAT1 and IRF7 were 

also up regulated in this study (Table 4.2). However, none of the TLRs were significantly 

modified in virus injected macaque brain samples (Table 4.2 & Table 4.3) suggesting the 

involvement of a TLR independent pathway in the induction of IFN production in the 

macaque brains. 

RLRs are a second class of PRRs including RNA helicases like RIG-1, MDA5 and 

LGP2 that reside in the cytoplasm of immune and non-immune cells and recognize viral 

RNA species produced in the cytoplasm. RLRs are known to induce type I IFN production 

through an adaptor molecule IPS-1 that localizes in the mitochondria (Kawai et al., 2005). 

LGP2 serves as a negative or positive regulator of RIG-1 and MDA-5 depending on the 

type of RNA viruses (Venkataraman et al., 2007). In this study, RIG-1 (DDX58), LGP2 

(DHX58) and several other genes in RLR pathway were found to be up regulated (Table 

4.3) suggesting its involvement in IFN production upon baculoviral transduction in mouse 

brains. In macaque brains, STAT1 (fold change = 2.17) and RLR pathway genes - RIG-1, 

ISG15, MDA5, IL-8, POLR3C and TRIM25 were up regulated. This may suggest that RLR 

pathway is the major IFN production pathway in macaque brains. Though not many 

studies have demonstrated the involvement of RLRs in baculoviral transduction, a recent 

study has noted that RIG-1 and MDA5 mRNA levels were elevated in baculovirus-

transduced cells (Wang et al., 2010b). Involvement of RLR signaling pathway in BV 

transduction is a relatively new field ready for exploration.  

TLR-3 and RLR signaling have so far been associated with the recognition of 

double and single stranded RNA. A common query that would strike any researcher is 

how baculovirus accommodating double stranded DNA could be recognized by PRRs 

recognizing RNA molecules. One possible explanation given by Chen and colleagues was 
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that the immediate early gene products expressed by baculovirus upon entry into 

mammalian cells could be recognized by RNA recognizing PRRs (Chen et al., 2009a). 

Recently, RLR pathway was demonstrated to contribute to IFN responses activated by 

cytosolic DNA as well (Kim et al., 2009a). The two RLRs - RIG-1 and MDA-5 act as non-

redundant cytosolic DNA receptors resulting in the direct activation of IRF3 leading to the 

induction of IFN. This suggests that RLRs can recognize BV DNA as such excluding the 

need for the transcribed immediate early gene to elicit immune responses. Furthermore in 

mice, other cytosolic DNA sensors like DNA-dependent activators of IRFs (DAI) and 

stimulator of IFN genes(STING) which have been identified to play roles in IRF activation 

and IFN production (Choi et al., 2009) were upregulated. 

PRR triggering leads to the production of different immunologic messenger 

molecules like IFNs, cytokines and chemokines. Chemokines are secreted by immune 

cells and possess immunomodulatory and chemo-attractive properties to recruit immune 

cells to the site of viral infection. In the current study, as a result of BV inoculation, 13 

cytokines and 7 cytokine receptors have been up regulated in mouse brains and 4 

cytokines in macaque brains, suggesting that active recruitment of immune cells to the 

site of infection is low for the given dose of 108 pfu BV per injection site and over the given 

observation period of 48 hours. Upregulation of IL-2Rγ in mouse brains and IL-15 in 

macaque brains may indicate the induction of host adaptive immune responses to BV 

inoculation. IL-2Rγ is shared by cytokines IL-2 and IL-15 both of which are T-cell growth 

factors. IL-2 plays an important role in adaptive immunity by generating and maintaining 

Treg cells whereas IL-15 is involved in maintaining the survival of CD8+ memory T cells 

(Commins et al., 2010). BV transduction of bone marrow derived DCs has been shown to 

up regulate MHC class I and II molecules and co-stimulatory molecules CD40, CD80 and 

CD86 (Suzuki et al., 2010).  Signals sent out by these molecules can eventually induce 
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the simultaneous secretion of IL-2 and the expression of high-affinity IL-2R on the effector 

T-cells (Thornton et al., 2004) thus inducing adaptive immune responses.  

In spite of all these immune responses, baculoviruses are generally viewed as 

gene delivery vectors with a good safety profile compared to other vectors and 

experimental evidences for the same have been mounting for years now. Even though 

baculoviruses co-exist with humans in close proximity, so far, there are no evidences for 

them to infect hosts other than insects. No baculovirus neutralizing antibodies were 

detected in human serum samples whereas adenovirus neutralizing antibodies were 

detected in 65% of the humans tested. Also, the immunogenicity of baculovirus is 

relatively lower as indicated by the induction of lower number of T-cells compared to 

adenovirus (Strauss et al., 2007). Feeding or intraperitoneal injection of live nuclear 

polyhedrosis viruses (NPVs) and granulosis viruses (GV) to mice and hamsters did not 

cause chromosomal aberrations or sister chromatid exchanges in rapidly dividing bone 

marrow cells unlike other mammalian viral vectors (Reimann et al., 1982). In another 

study, guinea pigs and mice tested with high doses of polyhedral or free baculovirus rods 

for intradermal allergenicity, intranasal and intravenous administration confirmed the 

safety associated with these viruses (Heimpel, 1966). NPVs tested for propagation, 

immune reactions and acute infections in pigs of commercial and agricultural importance 

demonstrated a good safety profile (Doller et al., 1983). A recent study evaluated the 

safety of Bombyx mori (another widely known baculovirus)-based vaccines in rhesus 

macaques and reported its safety even at high doses (Jin et al., 2008). However, 

toxicology studies of replication defective adenoviral vectors was associated with lethargy 

and death within 1 hour post-high dose upon intravenous injection in rats (Morrissey et al., 

2002b) and acute cardiovascular and hemodynamic effects upon intrahepatic injection in 

pigs (Morrissey et al., 2002a). Moreover, our study to assess the toxicology of AcMNPV in 
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macaque brains has also guaranteed its biosafety profile in spite of the immune 

responses mounted against baculovirus at the molecular level. Significant modifications in 

0.39% of the total probes did not bring about any behavioral changes thus highlighting the 

safety associated with them. Also, considerably less immune response were elicited in 

macaque brains for the same dose of 108 pfu/injection site compared to mouse brains 

suggesting that BV may be safer to higher animal models than rodent models. 

In this study, however, we have observed the response in macaque brains only 

upon single injection of BV for a time span of 48 hours. This pilot study may not be 

sufficient to provide a comprehensive understanding of the host brain response to BV. For 

instance, single higher dosing or multiple dosing of viral vector to achieve the therapeutic 

effect may activate the immune system more, eventually compromising the therapeutic 

effect. The degradation time of BV in macaque brains can be figured out only by 

observing the animals for a longer time period. Also, the toxicity may vary upon repeated 

injections. To answer these unknowns and to further the understanding of host brain 

response to BV, in future, a dose-dependent (4x108 pfu/ml and 4x109 pfu/ml) study for 

extended time point (14 days) and multiple dosing (3 BV inoculations at an interval of 2 

weeks) study will be carried out. 
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5. Cationic Lipid Coating Improves Serum-Resistance in 
Recombinant Baculovirus 

5.1. Introduction 

Despite the efficient transducing ability in a wide variety of quiescent and non-

quiescent mammalian cells including embryonic stem cells (ESCs) and induced 

pluripotent stem cells (iPS), in vivo gene delivery by recombinant baculovirus (rBV) is 

known to be hampered by its susceptibility to complement-mediated inactivation (Sandig 

et al., 1996, Hofmann et al., 1998, Hofmann et al., 1999, Kaikkonen et al., 2011). 

Complement system consists of nearly 30 small proteins contributing to specific or non-

specific immune reactions. Upon encountering foreign bodies like viruses, the 

complement system initiates a series of enzymatic reactions eventually resulting in their 

inactivation and lysis of infected cells. In the case of BV based gene delivery, 

complement-mediated immune reactions either reduced or shut down the transgene 

expression (Hofmann et al., 1995, Sandig et al., 1996, Pieroni et al., 2001). Sometimes, 

the immune reactions may be too strong resulting in serious tissue damage and systemic 

immune response. Therefore, to achieve efficient transduction and minimize the immune 

reactions, it is necessary to improve the serum resistance of rBV or camouflage it from 

the complement system. 

Several strategies have been developed to overcome this hurdle and improve the 

serum-resistant capacity of rBV vectors. This is discussed in (Kaikkonen et al., 2011). 

One of the commonly used strategies to prepare rBV capable of withstanding the serum 

complement system is the genetic modification of BV. Genetically modifed BV with the 

complement regulatory protein - human decay accelerating factor (DAF) incorporated into 

its envelope had improved transduction efficiency in complement sufficient neonatal rats 
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upon direct injection into the liver parenchyma (Huser et al., 2001). However, the injection 

did not bring about successful transduction in adult rats and BV-DAF could not be 

produced in sufficient titres as the DAF protein in the envelope interfered with its normal 

replication cycle (Huser et al., 2001, Hoare et al., 2005). Also, genetically modified BV 

possessing vesicular stomatitis virus envelope glycoprotein  (VSVG) demonstrated 

increased resistance to inactivation by animal sera in vitro but failed in in vivo studies 

upon intravenous, intraperitoneal or intrahepatic routes (Tani et al., 2003). Second 

commonly used strategy is the inhibition of complement proteins at the site of virus 

delivery. Though the use of soluble complement inhibitor (sCR1) increased the survival of 

BV in human serum (Hoare et al., 2005), suppressing the immune system might lead to 

other complications.  

Recently, the use of hybrid vectors formed by merging viral and non-viral vectors 

has been suggested as the best possible solution to overcome the viral-vector associated 

hurdles (Boeckle et al., 2006). Hybrid vectors are an attempt to merge the complementary 

strengths of viral vectors – the high transduction efficiency and that of non-viral vectors - 

low immunogenicity and high systemic potential. Formation of hybrid vectors can 

otherwise be called as chemical modification of viruses as it involves the use of non-viral 

vectors like polymers or lipids that are chemicals. Hybrid vectors have proved successful 

in producing synergistic effects (Boeckle et al., 2006). Especially, when the non-viral 

component of the hybrid vector is conjugated to a ligand having receptors on target cells, 

enhanced targeting is taken care of while the viral component looks after the enhanced 

transduction efficiency (Wagner et al., 1992, Kim et al., 2009b). rBV have been used with 

polymers like polyethylene glycol (PEG) and polyethyleneimine (PEI) in vitro and in vivo to 

achieve enhanced transduction efficiency and resistance to serum complement system. 

Evidences that cationic lipids enhance adenoviral infection efficiency of several cell lines 
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including primitive human hematopoietic cells (Byk et al., 1998) and augment gene 

transfer to cerebral arteries in vivo (Toyoda et al., 2001) turned our attention towards them 

as the non-viral counterparts to merge with rBV to form hybrid vectors that can evade the 

complement mediated attack. With the improvised versions of cationic lipids - 

Lipofectamine 2000 and Cellfectin II that can deliver genes into mammalian cells in the 

presence of serum, we reasoned that coating rBV with these lipids could help rBV escape 

the complement mediated inactivation and achieve efficient transduction. Therefore, this 

chapter aims to test this hypothesis. 

5.2. Formation of cationic lipid coated BV 

 

Figure 5.1. Schematic representation of cationic lipid coating on recombinant 
baculovirus. The electrostatic interaction between the negatively charged viruses and 
positively charged cationic lipids results in the hybrid vector formation. 

Hybrid vectors combining rBV and cationic lipids were formed by mixing rBV and 

appropriate amounts of cationic lipids and incubating for 20-30 minutes at room 

temperature. The electrostatic interaction between the negatively charged BV and the 

+

Cationic lipids Baculovirus (BV)
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positively charged cationic lipids aided in the hybrid vector formation. 

Schematic representation of the interaction between BV and cationic lipids is represented 

in Figure 5.1. 

5.3. Zeta potential and size characterization of uncoated/cationic lipids 
coated BV  

rBV encoding luciferase gene (BV-luc) was used all through out the experiments of 

this chapter and the terms rBV and BV-luc are used interchangeably. To understand the 

interaction between rBV and cationic lipids - Cellfectin II and Lipofectamine 2000 and to 

optimize the amount of lipids to coat rBV, uncoated/cationic lipids coated BVs were 

characterized for their zeta potential using laser Doppler electrophoresis and size using 

dynamic light scattering (DLS) on a Zetasizer. At neutral pH, BV in water was negatively 

charged with a zeta potential of ~-20 mV. As the number of molecules of cationic lipids 

used to coat BV increased, the zeta potential of the samples moved towards zero and 

increased further to ~+15 mV and ~+22 mV at 107 molecules of Cellfectin II and 

Lipofectamine 2000 respectively per rBV particle (Table 5.1). This drastic change in zeta 

potential upon addition of cationic lipids indicated the strong electrostatic interaction 

between them and the virus particles. 

Uncoated rBV measured a hydrodynamic diameter of ~407 nm. This was more 

than the dimension of BV in the literature which is  ~300 nm. This difference could be 

explained by the fact that hydrodynamic diameter of the virus particle is influenced by 

hydration and solvation effects unlike size measurements using transmission electron 

microscopy (TEM), where the virus sample is a dehydrated hard sphere. Upon addition of 

varying amount of cationic lipids, the size of the complex increased gradually indicating 

the coating of lipids on to BV. Z.average (intensity weighted harmonic mean size) peaked 

at ~5557 d.nm for Cellfectin II coated BV at a ratio of 7.5x106 molecules/virus particle and  
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~8262 d.nm for Lipofectamine 2000 coated BV at a ratio of 2.5x106 molecules/virus 

particle. This sharp increase in size was an indication of particle aggregation. Particles 

with zeta potential in the range of -20 mV to +20 mV tend to aggregate and the degree of 

aggregation depends on the proximity of zeta potential value to neutral zeta potential 

value. When the amount of cationic lipids was increased further, the size decreased, 

following the increased zeta potential that increased the electrostatic repulsion to form 

well - dispersed cationic lipid coated BV complexes. 

# molecules/ 
BV particle 

Hydrodynamic 
diameter (Z.ave 

d.nm) 
Polydispersity 

Index (PDI) 
Zeta Potential 
(mV) in Water 

BV-luc 
   0 407.07 ± 5.5 0.42 ± 0.03 -19.7 ± 0.5 

BV-luc-Cellfectin II 
  1.00E+05 430.63 ± 30.66 0.4 ± 0.03 -19.93 ± 0.31 

1.00E+06 1159.67 ± 42.36 0.44 ± 0.03 -13.93 ± 0.23 
2.50E+06 2757.67 ± 83.39 0.45 ± 0.01 -9.31 ± 0.25 
5.00E+06 3988.33 ± 207.37 0.45 ± 0.04 -4.98 ± 0.31 
7.50E+06 5557.33 ± 344.92 0.53 ± 0.01 1.24 ± 0.37 
1.00E+07 637.43 ± 71.21 0.6 ± 0.02 15.63 ± 0.32 

BV-luc-Lipofectamine 2000 
  1.00E+05 544.77 ± 24.58 0.46 ± 0.01 -16.73 ± 0.31 

1.00E+06 7007.33 ± 273.43 0.53 ± 0.02 -6.67 ± 0.19 
2.50E+06 8262 ± 868.88 0.65 ± 0.04 7.14 ± 0.41 
5.00E+06 2573 ± 87.5 0.87 ± 0.01 16.83 ± 0.42 
7.50E+06 644.47 ± 25.41 0.7 ± 0.13 20.87 ± 0.5 
1.00E+07 376.6 ± 37.35 0.65 ± 0.17 22.17 ± 0.42 

Table 5.1. Characterization of uncoated/cationic lipid coated BV-luc for size and 
zeta potential. Cationic lipids – Cellfectin II and Lipofectamine 2000 complexed with BV-
luc (1e4 – 1e7 molecules/BV particle) for 30 minutes and uncoated BV-luc particles were 
measured for size and zeta potential. Note the increase in the charge and size of rBV 
upon addition of increasing amounts of cationic lipids. Also note the fall in size of the 
complexes with increasing amounts of cationic lipids due to the electrostatic repulsion 
between the complexes. The values are expressed as the Mean ± SD for at least 3 
readings. 
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5.4. Cytotoxicity of cationic lipid coated BV 

Cellfectin II, as a transfection reagent, is known to have low cytotoxicity compared 

to most other cationic lipid based transfection reagents whereas Lipofectamine 2000 is 

relatively more cytotoxic to mammalian cells. Therefore, it was important to test the 

cytoxicity of these cationic lipids coated BV-luc on mammalian cells. Consistent with our 

previous studies, BV transduction did not result in significant cytotoxicity on cultured U87 

cells at MOI up to 100. Even at MOI 500, the cell viability decreased only to ~62% (Figure 

5.2). BV coated with varying amounts (105-107 molecules/per virus particle) of Cellfectin II 

and Lipofectamine 2000 showed cell viability not less than 57% even at at MOIs 500. 

5.5. Effect of cationic lipids on BV transduction 

Lipofectamine 2000 and Cellfectin II have been reported to improve adenoviral 

infection efficiency of several cell lines including primitive human hematopoietic cells (Byk 

et al., 1998). To test if the cationic lipid coating has a similar effect on BV transduction of 

U87 cells, BV-luc coated with varying amounts of cationic lipids (104 – 107 particles/BV) for 

30 minutes were added to U87 cells. Based on the cytotoxicity assay performed, BV-luc 

of MOI 50 was used for this study. Luciferase activities were measured after 48 hours. No 

significant alterations were noted in luciferase expression when Cellfectin II of 

concentration up to 106 molecules/BV particle and Lipofectamine 2000 of concentration up 

to 2.5x106 molecules/BV were used. However, beyond these concentrations, coating with 

Cellfectin II and Lipofectamine 2000 significantly reduced luciferase expression (Figure 

5.3). Thus, these results show that cationic lipids do not improve but interfere with the 

transduction efficiency of BV vectors at higher concentrations. 
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Figure 5.2. Cytotoxicty of Cellfectin II (A) and Lipofectamine 2000 (B) coated BV-luc 
on U87 glioma cells. Cellfectin II and Lipofectamine 2000 (1e4 – 1e7 molecules/BV 
particle) molecules complexed with BV-luc of MOI 50, 100 and 500 for 30 minutes were 
added to U87 cells and the % viability was measured after 48 hours.  Values are shown 
as mean ± SD of at least 3 wells. 
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Figure 5.3. Effect of cationic lipids coating on BV-luc transduction of U87 cells. BV-
luc complexed with varying amounts of Cellfectin II and Lipofectamine 2000 for 30 
minutes were added to U87 cells and luciferase gene expression was measured after 48 
hours. The values are represented as mean ± SD of at least 3 readings. Statistical 
analysis was done by one way ANOVA followed by Tukey’s multiple comparison tests. † - 
p < 0.05; ¥ - p < 0.01; * - p < 0.001. 

5.6. Serum protective effect of cationic lipids on BV 

Several reports have been published to demonstrate that BV is inactivated by the 

serum complement system (Sandig et al., 1996, Hofmann et al., 1998, Hofmann et al., 

1999, Kaikkonen et al., 2011). Significant reduction in BV transduction efficiencies were 

especially observed with sera from humans, rats and guinea pigs (Tani et al., 2003). 

These results were confirmed when the luciferase expression by U87 cells upon 

transduction with BV-luc significantly decreased in the presence of human (by ≈ 1000 

fold) and rat serum (by ~300-500 fold) but not by mouse serum (Figure 5.4). Therefore, 
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the serum protective effect of cationic lipids on BV was tested against rat and human 

serum in subsequent experiments. 

 

Figure 5.4. Effect of serum on BV transuction in U87 cells. BV-luc treated with sera 
from mouse, rat and human for 30 minutes at 37 ºC were added to U87 cells. Transgene 
expression was measured after 48 hours. Values are presented as Mean ± SD. Note the 
considerable decrease in transgene expression upon treatment of BV-luc with rat and 
human serum. Statistical analysis were carried out by one-way ANOVA followed by 
Tukey’s multiple comparison test. * - P value < 0.001 against no serum treated sample. 

To examine whether cationic lipids – Cellfectin II and Lipofectamine 2000 coated 

BV-luc offered better transduction in the presence of serum complement system, BV 

coated with varying amounts of these lipids (104-107 molecules/per virus particle) 

preincubated with 50% human/rat serum were assayed for luciferase expression in U87 

cells after 48 hours. Based on the cytotoxicity assay performed, MOI 50 was chosen to 

study the serum protective effect. Luciferase expression that reduced by ≈ 1000 fold in the 

presence of human serum and ≈ 500 fold in the presence of rat serum gradually 

increased with the increase in the amount of cationic lipid used for coating BV. Cellfectin II 

coating increased the transduction efficiency significantly between concentrations 2.5x106 

and 7.5x106/BV particle reaching the maximum increase of ≈ 24 fold at 5x106/BV particle 

in the presence of human serum. In the presence of rat serum, the transduction efficiency 

significantly increased between 1x106 and 2.5x106/BV particle reaching the maximum 
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increase of ≈ 180 fold at 2.5x106/BV particle (Figure 5.5). Lipofectamine 2000 coating 

increased the transduction efficiency significantly between concentrations 1x106 and 

5x106/BV particle by ≈ 10 fold in the presence of human serum whereas in the presence 

of rat serum, the transduction efficiency significantly increased at 1x106 by ≈ 13 fold 

(Figure 5.5). Thus, Cellfectin II coated on rBV at a concentration of 2.5x106/BV particle 

and Lipofectamine 2000 coated on rBV at a concentration of 1x106/BV particle offered the 

maximum serum protective effect in the presence of human and rat sera and  Cellfectin II 

was observed to offer better protection to rBV than Lipofectamine 2000 from the serum 

complement system in vitro. 

To gain insights in to the morphological changes that occurred upon coating rBV 

with cationic lipids and how the coating offers serum protective effect, transmission 

electron microscopy (TEM) was used (Figure 5.6). Coating ratio of 2.5x106 molecules of 

the cationic lipids/BV particle that offered maximum serum protective effect on BV in vitro 

and 50% human serum were chosen for this investigation against uncoated BV. Electron 

micrographs of the uncoated, no-serum treated samples displayed rod shaped particles of 

length 200-250 nm and width ≈ 50 nm complying with BV dimensions in the literature. 

Human serum treated uncoated BV samples were observed to have slightly swollen, 

distorted and disrupted envelope structure providing evidence for the action of 

complement proteins on BV. When BV coated with cationic lipids did not differ much in 

morphology from the uncoated BV, serum-treated, Cellfectin II and Lipofectamine 2000 

coated BV seemed to have an extra uneven layer around the normal rod shaped 

morphology and an increase in size. This may be due to the coating of cationic lipids on to 

rBV thus, suggesting that cationic lipid coating provided protection against complement-

mediated rBV inactivation. 



 
113 

 

Figure 5.5. Serum Protective effect of cationic lipids on BV-luc. Uncoated and 
cationic lipid coated BV-luc were pre-treated with (A) human and (B) rat serum and tested 
for transduction efficiency against no-serum treated sample. Luciferase activities were 
measured after 48 hours. Note the increase in the luciferase expression peaking at 
2.5x106 molecules of Cellfectin II/BV particle and at 1x106 molecules of Lipofectamine 
2000/BV particle in the presence of human and rat sera. The values are represented as 
Mean ± SD of atleast three values. Statistical analysis was done by one way ANOVA 
followed by Tukey test. † - p < 0.05; ¥ - p < 0.01; * - p < 0.001. 
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Figure 5.6. Transmission electron microscopic analysis of uncoated/coated rBV 
without or with serum treatment. Uncoated no serum treated rBV showed clear rod-
shaped particles with dimensions, 200 – 250 nm in length and 50 nm in width whereas 
uncoated serum treated BV showed rod shaped BV particles with disrupted envelope 
(upper panel). Cationic lipid coated BV showed similar morphology like uncoated rBV 
whereas serum treated cationic lipid coated rBV showed increase in size and an extra 
layer around the rod shape indicating the efficient coating and protection from serum 
complement proteins (middle and bottom panels). 
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5.7. Discussion 

One of the major obstacles that hinder the progress of BV into clinical trials is its 

inactivation mediated by the complement system in the blood (Hofmann et al., 1998) and 

organs (Hofmann et al., 1995, Sandig et al., 1996). To prevent this, rBV has been used to 

deliver genes to immune privileged sites like eye, brain and testis or used in ex vivo 

transduction of cells and tissues. However, to fully exploit the advantages associated with 

BV, strategies to improve their serum resistance of BV need to be devised and this 

chapter addressed this issue. The major findings of this study include the following: firstly 

there is a strong electrostatic interaction between recombinant BV vectors and the 

cationic lipids – Lipofectamine 2000 and Cellfectin II which can be tapped to optimize the 

size of the virus-cationic lipid complex. Secondly, in the absence of serum complement, 

the coating of these cationic lipids on rBV does not improve the transgene expression but 

at higher concentrations, negatively affect it. Thirdly, in the presence of 50% serum 

complement in vitro, cationic lipid coating augment the transgene expression thus, 

demonstrating the suitability of using cationic lipids with baculoviruses for enhanced gene 

delivery in the presence of serum complement in vitro and opening up the possibility to 

test them in vivo.  

Cationic lipids and polymers have widely been used for in vitro and in vivo non-

viral gene delivery. Several gene delivery protocols using cationic lipids have entered 

clinical trials (summarized in Zhang et al., 2012). Among them, lipofectamine has been 

reported as vectors for gene transfer in vivo in blood vessels (Muller et al., 1994) and 

cerebral arteries (Toyoda et al., 2001) and is involved in almost 7% of the world wide 

gene therapy trials (Zhang et al., 2012). Also, Lipofectamine 2000 and Cellfectin II have 

been improvised to deliver genes in vitro in the presence of serum. Therefore, we 

reasoned that merging BVs and cationic lipids will result in hybrid vectors possessing 
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advantages of both. Because this strategy involved no genetic modifications but exploited 

the electrostatic interaction between the cationic lipids and BV, the fear of reduced 

transduction efficiency was almost eliminated.  

Of the two cationic lipids used, Cellfectin II was observed to form complexes of 

smaller diameter compared to Lipofectamine 2000. These could be attributed to the 

smaller size of the hydrophobic region of Cellfectin II compared to Lipofectamine 2000 

and higher charge of +4 at the cationic end that aids in its strong and tight binding to BV. 

Both the cationic lipids neither seemed to affect nor improve the transduction efficiency 

much at lower concentrations but affected the transduction efficiency negatively at higher 

concentrations (> 5x106 molecules/BV particle). This could be because the extremely high 

concentration of cationic lipids may be toxic to the cells (Figure 5.2) or may result in 

aggregation of virus particles (Table 5.1) making it difficult for them to enter the cells. 

Similar problems have been reported with cationic lipid coated adenovirus (Toyoda et al., 

2001). Hence, it was important to characterize the cationic lipid coated BV for optimal 

transduction efficiency. 

In the presence of serum complement, Cellfectin II seemed to offer better 

transgene expression than Lipofectamine 2000. One of the reasons for this could be 

differences in the route of entry of cationic lipid coated BV. Cellfectin II as a gene delivery 

vector enters the cells via a direct route through the cell cytosol (Wagner et al., 1993) as 

opposed to endocytosis by lipofectamine.  Transmission electron micrographs to gain 

insight into the morphological changes that occur upon serum complement treatment 

revealed similar morphology (increased size and presence of cationic lipid coating) for 

Lipofectamine 2000 and Cellfectin II coated BV. However, it does not provide any 

information about whether cationic lipid coating brought about any changes in the 

pathway of uptake of BV. Further in vitro experiments blocking the usual routes of BV 
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intake and cyro TEM will help gain better insight into the mechanism behind serum 

protective effect of cationic lipids.  Furthermore, since BV is capable of eliciting innate and 

adaptive immune responses (Abe et al., 2010) that have been tapped to produce BV-

based vaccines (Madhan et al., 2010), it is worth investigating whether modification of rBV 

with these cationic lipids can suppress cellular and humoral immune responses and add 

to the biosafety profile of BV like how the polyethylene glycol (Kreppel et al., 2008) 

coating modified responses to intravenously delivered adenoviruses.  

In summary, rBV coated with cationic lipids can effectively escape complement-

mediated inactivation in vitro to qualify as an efficient gene transfer vector in an 

environment containing complement components. With further evidences of its success in 

vivo, this simple technique of coating with biomaterial will aid in overcoming other hurdles 

to BV gene delivery such as elicitation of immune responses thus reinforcing the 

applications of BV in clinical gene therapy. 
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6. Conclusion  

The prime objective of this thesis is to understand the host responses to 

baculovirus in the brains of mice and macaques and develop methods to mask them from 

the host immune system. The main findings of this study include the following - (1) 

immune responses reduce with the reduction in the impurities of BV formulation (2) BV 

can mount antiviral immune responses in the brains which are generally considered to be 

immune privileged organs and (3) cationic lipid coating can effectively camouflage BV 

from the host complement system in vitro.  

In chapter 3, it was demonstrated that membrane chromatography purification 

method (MC+HS) offered in vivo grade BV formulation. In comparison with the widely 

used laboratory method of purifying baculovirus - high speed centrifugation, though the 

yield was lesser by MC+HS (≈ 30% against ≈ 55% from HS), purity was highly improved 

and there was little or no compromise in the transducing ability of BV. Scaling up of this 

method to purify large volumes of BV will be tested in the near future. The cDNA 

microarray gene expression profiling to investigate the immune responses elicited by BV 

prepared by the two methods – MC+HS and HS provided evidence in support of MC+HS 

method for providing in vivo grade BV formulation. The humongous data generated from 

the microarray studies also offered insights into the various means of IFN induction and 

production in mouse brains.  

In chapter 4, the first evidence for antiviral immune responses in macaque brains 

to BV was demonstrated by high throughput cDNA gene expression profiling. BV 

inoculation brought about significant changes in the expression of fewer number of probes 

(205 or 0.39% of all probes on the microarray chip) compared to mice brains (379 or 0.84 

of all probes on the microarray chip) suggesting that BV inoculation might not elicit 
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stronger immune responses in non-human primates than in rodents. Further experiments 

to test the host responses by varying the dose and time of observation can further our 

knowledge about the responses in non-human primates’ brain to BV inoculation. 

Significant fold changes in the genes belonging to RIG-1 like receptor signaling pathway 

but not other PRR signaling pathways in BV inoculated macaque brains compared to the 

control injected macaque brains suggests RIG-1 like receptor signaling to be the major 

pathway of IFN induction. The effects of higher doses or repeated doses of BV on eliciting 

other IFN induction pathways are yet to be studied.  Findings from the toxicology studies 

demonstrate the safety profile of BV for use as gene delivery vectors in higher animal 

models.   

In chapter 5, methods to avoid the most common problem of complement 

mediated BV inactivation were developed. rBV coated with cationic lipids – lipofectamine 

2000 and cellfectin II were demonstrated to effectively escape complement-mediated 

inactivation in vitro to qualify as an efficient gene transfer vector in an environment 

containing complement components. With further evidences of its success in vivo, this 

simple technique of coating with biomaterial will aid in overcoming other hurdles to 

baculovirus gene delivery such as elicitation of immune responses thus reinforcing the 

applications of baculovirus in clinical gene therapy. 

To conclude, the findings from this thesis help in gaining better understanding of 

BV responses in rodent and non-human primate brains that would allow for the facilitation 

of optimization of baculoviral vector design to escape the hurdles and successfully deliver 

genes into the CNS and also serve as a guide to rational therapeutic applications of 

baculoviral vectors for other organs. 
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