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SUMMARY 

Container transportation at sea is fulfilled by liner shipping, which has regularly 

serviced ship routes with fixed port rotations. The volume of containerized cargo reaches 

124 million twenty-foot equivalent units (TEUs) in 2009 as a consequence of the growth 

of the world’s economy and trade. With such a large volume, it can be expected that 

mathematical optimization tools can bring significant cost reductions for liner shipping 

companies. 

In this dissertation, four tactical-level decision problems for liner shipping 

companies are addressed: fleet deployment, sailing speed optimization, ship route 

schedule design, and liner shipping network design. These decision problems focus on 

different aspects of liner shipping services with different inputs and outputs. However, 

their common objective is to minimize the total cost, or, to maximize the total profit, for 

liner shipping companies. 

The fleet deployment problem aims to determine the type and number of ships to 

assign to each ship route, in order to fulfil a given container shipment demand at 

minimum cost. It is formulated as a mixed-integer linear programming model which 

captures container transshipment operations. This model adopts origin-based container 

flow variables, resulting in much fewer decision variables and thereby higher 

computational efficiency.  

The sailing speed optimization problem seeks the optimal sailing speed of ships on 

each voyage legs to minimize the total operating cost including the bunker cost. The 

significance of the problem is due to the large proportion of the bunker cost in the total 

operating cost and the high sensitivity of the bunker consumption with speed. Before 
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optimizing the sailing speed, the bunker consumption - sailing speed relation is calibrated 

using historical data. Unlike the fleet deployment problem, the sailing speed optimization 

problem is formulated as a mixed-integer nonlinear programming model. In view of the 

convexity, non-negativity, and univariate properties of the bunker consumption function, 

an efficient outer-approximation method is proposed to obtain an ε-optimal solution with 

a predetermined optimality tolerance level ε.  

The ship route schedule design problem determines the arrival time of a ship at each 

port of call on a ship route and the sailing speed function on each voyage leg by taking 

into account time uncertainties at sea and at port. A mixed-integer nonlinear stochastic 

programming model is developed to minimize the ship cost and expected bunker cost 

while maintaining a required transit time service level. An exact cutting-plane based 

solution algorithm is proposed to solve the model.  

The liner shipping network design problem mainly determines the port rotations of 

each ship route while considering practical operations and features, including multi-type 

containers, container transshipment operations, empty container repositioning, origin-to-

destination transit time constraint, consistent services with the current network, and joint 

services with other liner shipping companies. Due to the difficulty of the problem, a 

successive optimization heuristic is proposed to solve practical-sized problems. 

All the above models and algorithms are tested based on realistic data provided by a 

global liner shipping company. The applicability of the models and the efficacy of the 

algorithms are demonstrated. Managerial insights from the computational results are 

obtained. 
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CHAPTER 1. INTRODUCTION 

1.1 Classification of Maritime Transportation 

Maritime transportation is the backbone of international trade. UNCTAD (2010) 

estimates the 2009 international seaborne trade at 7.8 billion tons of goods loaded. There are 

generally three modes of shipping operations in maritime transportation: industrial, tramp, 

and liner (Lawrence, 1972). In industrial shipping, the cargo owners control the ships and 

seek to ship their cargo at minimal cost. Tramp shipping resembles taxis. The ships are sent 

where cargo is available and usually the cargo is a whole shipload, with one origin and one or 

two destinations. Liner shipping companies publish their service routes, which have fixed 

sequence of ports of call, schedule, service frequency and deployed ships, to attract cargo. 

Liner shipping can hence be likened to bus services. A definition of liner shipping is 

provided in Stopford (2009): A liner service is a fleet of ships, with a common ownership or 

management, which provides a fixed service, at regular intervals, between named ports, and 

offer transport to any goods in the catchment area served by those ports and ready for transit 

by their sailing dates. A fixed itinerary, inclusion in a regular service, and the obligation to 

accept cargo from all comers and to sail, whether filled or not, on the date fixed by a 

published schedule are what distinguish the liner from the tramp. Liner shipping is the focus 

of this study. Table 1-1 lists the nomenclature used in this study. 
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Table 1-1  Nomenclature 

Nomenclature Definition/explanation 

Fleet size and mix The types of ships and the number of ships of each type in the ship fleet 
Ports of call A port visited by a ship together with its calling sequence. For example, if 

a ship visits Hong Kong, Singapore, Colombo, Singapore, and returns to 
Hong Kong, then the 2nd port of call refers to the call at Singapore after 
Hong Kong, and the 4th port of call refers to the call at Singapore after 
Colombo. Both ports of call refer to the same port. However, they are 
considered to be different ports of call because of the sequence. 

Itinerary = loop = port 
rotation = sequence of ports 
of call 

Port calling sequence in a ship’s round-trip journey  

Liner service route = liner 
service = liner ship route = 
ship route 

A port rotation with deployed ships 

Liner shipping service 
network = liner shipping 
network = liner network 

A set of ship routes 

Fleet deployment Assignment of ships to port rotations 
Schedule    The arrival and departure time at each port call 
Frequency = service 
frequency   

The headway (days) between two adjacent ships on a ship route, or the 
round-trip time if there is only one ship deployed on the ship route 

Transshipment = relay The shipment of containers to an intermediate destination, and then from 
there to yet another destination. For example, containers from Australia to 
Europe may first be transported to Singapore by a small ship. After that, 
the containers are reloaded to a large ship that sails from Singapore to 
Europe. The handling operation at Singapore is transshipment. 

Bunker   The fuel that the main engine of a ship burns 
 

1.2 Significance and Characteristics of Liner Shipping  

Liner shipping mainly involves the transportation of containerized cargo. From the 

report of UNCTAD (2009), container trade volumes increased to 137 million twenty-foot 

equivalent units (TEUs) in 2008. The share of containerized trade in the world’s total dry 

cargo increased from 5.1 per cent in 1980 to 25.4 per cent in 2008. The value of world 

maritime container trade grew from $2 trillion in 2001 to $4 trillion in 2008 accounting for 

around one in every $14 of global economic output. Figure 1-1 presents the world’s 

containerized cargo trade from 1986 to 2008. The rapid growth in containerized cargo over 

the last three decades is the result of globalization and increasing world trade volume, 

dedicated purpose-built large containerships, improved handling facilities in ports, and the 
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rising amount of cargo being containerized. At the same time, the lower cost, fast speed, 

reliable schedule, and less damage and pilferage of container liner shipping also gives 

impetus to world trade (UNCTAD, 2009). 

 

 

Source: UNCTAD (2008) 

Figure 1-1 International containerized trade volume from 1986 to 2008 (million tons) 

 

Because of the global recession, container trade recorded its first absolute contraction in 

2009 ever since containerization began. The container trade volume in 2009 fell sharply by 

9.0 per cent, with the overall volume totaling 124 million TEUs (UNCTAD, 2010). This 

contraction does not indicate that the liner shipping industry begins to go down at all. 

Compared to tramp shipping and other transport modes, liner shipping has a number of 

unique characteristics: 
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(a)  Liner shipping mainly involves transportation of containerized cargo.  

For example, on the trade lanes between the three major market regions (Asia-Europe, 

Trans-Pacific and Trans-Atlantic), between 75 per cent and 90 per cent of the containerisable 

cargo is containerised (Fleming, 2003). Containerization not only protects cargo from 

damage and pilferage, but also facilitates the handling operations at intermodal terminals 

(including ports). As a consequence, the oceanic transportation and the inland transportation 

which includes rail, truck, and inland waterway can be seamlessly connected. Thus, cargo 

can be transported efficiently from its origin to its destination in the intermodal transportation 

network. 

(b)  Liner shipping services have fixed schedules.  

Liner shipping companies publish their services in advance to attract cargo from the spot 

market. A liner service route forms a round-trip; hence no origins or destinations can be 

defined. Usually a string of ships are deployed on a ship route to maintain a fixed schedule 

(normally weekly services). Ships can pick up and deliver cargo at any port of call, and the 

ship may never be empty during the voyage. Compared with tramp shipping, each one of the 

shippers of liner shipping usually has far less than a full shipload of cargo, and liner ships 

have to maintain the published departure date even when a full payload is not available.  

(c)  A number of containers are transshipped from their origins to their destinations.  

Transshipment enables cargo consolidation for the deployment of large container ships. 

Transshipment also expands the service scope of liner shipping companies as any port-to-port 

delivery service is feasible even if there is no ship route connecting these two ports. At the 

same time, transshipment has the disadvantage of expensive double-handling, increased 

operational risk, and (possibly) longer transit time than direct shipment. Transshipment is an 
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important feature that must be considered in all levels of planning problems. For example, at 

Singapore port, one of the world’s busiest ports, more than 80 per cent of containers handled 

are transshipped containers (Petering, 2011). About 28 per cent of the world’s port container 

throughput is transshipped containers (Vernimmen et al., 2007).  

1.3 Liner Shipping Network 

A liner shipping company provides shipping services over its liner shipping network. 

The liner shipping service network consists of a number of ports connected by a number of 

ship routes. The liner shipping company deploys container ships on these ship routes to 

transport containers from one port to another. 

There are several decision issues faced by the liner shipping company regarding the liner 

shipping network in a medium-term planning horizon (three to six months). (i) Which type of 

ship and how many ships to deploy on each ship route (fleet deployment)? (ii) How to 

determine the optimal sailing speed of container ships? (iii) How to design the schedule (on 

which day to call at which port) for each service route, in order to fulfill a given level of 

service in terms of port-to-port transit time? (iv) How to design a liner shipping network? 

These decision issues are very important for liner shipping companies because once the liner 

shipping network is established, most of the operating costs (ship cost, port charge, bunker 

cost) are also determined. Also, these problems are challenging because liner shipping 

companies control a comprehensive ship fleet and operate global shipping services due to 

merger, consolidation and alliance. Therefore, the traditional planning approach through 

experience is insufficient to manage the problems. Liner shipping companies are in urgent 

need of tools that combine operations research and computing techniques in order to 

optimize their liner shipping services.  
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Nevertheless, the analysis of liner shipping service network has attracted much fewer 

research efforts than other transportation areas, such as public transit analysis, airline 

management, and general vehicle routing problems (Psaraftis, 1999). One reason is that 

many of the road-, rail-, and air-based services transport passengers, who are more concerned 

about service quality. Another reason is visibility; the number of trucking companies and 

airlines is large as compared with shipping operators. Furthermore, the existing reviews 

(Ronen, 1983, 1993; Christiansen et al., 2004, 2007) on ship routing and scheduling mainly 

focus on industrial and tramp shipping. The far lower number of studies on liner shipping can 

be attributed to the even lower visibility of liner shipping operations: liner services are 

basically provided by a few global companies. Moreover, despite the fact that liner shipping 

services and container terminal operations are intimately related, container terminal 

operations have attracted much more attention from researchers. This might be a 

consequence of the ownership structure; a government is usually the owner of a port, 

whereas liner shipping companies are privately owned and sometimes the ownership changes. 

In addition, the liner shipping industry is more conservative than other transportation 

industries, such as the airline industry, and global liner shipping companies have been 

reluctant to share their data and concerns with researchers in the past. However, several 

leading liner shipping companies have recently sought operations research methods to make 

better decisions because of increased container shipment market competition and bunker 

prices.  

1.4 Objectives 

The objective of this thesis is to cover the gap between the needs of liner shipping 

industry and the scarce relevant literature on liner shipping networks. In detail, the above-
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mentioned four decision issues – fleet deployment, speed optimization, schedule design, and 

liner shipping network design - for a liner shipping company will be examined. Both 

mathematical optimization models and solution algorithms will be proposed. The models and 

algorithms will be tested on real-case problems. 

1.5 Organization of the Thesis 

Chapter 1 provides a general introduction to the three shipping modes especially liner 

shipping, and decision issues associated with the liner shipping network. Furthermore, 

objectives and organization of the thesis are outlined.  

Chapter 2 introduces the liner shipping network in detail. The elements in a liner 

shipping network are first described and the four decision issues are subsequently elaborated.  

Chapter 3 presents a comprehensive literature review on research relevant to fleet 

deployment, sailing speed optimization, schedule design, and liner shipping network design. 

Limitations of existing studies are examined and research objectives are highlighted. 

Chapter 4 investigates the liner ship fleet deployment (FD) problem with the container 

transshipment operations. An origin-based nonlinear programming model is developed for 

the FD problem to capture the practical operations and factors in liner shipping. This model 

is subsequently transformed into an equivalent mixed-integer linear programming model. 

Computational studies on instances derived from a realistic Asia-Europe-Oceania shipping 

network of a global liner shipping company as well as randomly generated large-scale 

shipping networks demonstrate that the proposed model is able to address fleet deployment 

problems encountered in practice. 

Chapter 5 seeks to optimize the sailing speeds of ships in a liner shipping network. First, 

it calibrates the bunker consumption - sailing speed relation for container ships using 
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historical operating data from a global liner shipping company. It proceeds to investigate the 

optimal sailing speed of container ships on each leg of each ship route in a liner shipping 

network while considering transshipment and container routing. This problem is formulated 

as a mixed-integer nonlinear programming model. In view of the convexity, non-negativity, 

and univariate properties of the bunker consumption function, an efficient outer-

approximation method is proposed to obtain an ε-optimal solution with a predetermined 

optimality tolerance level ε. The proposed model and algorithm is applied to a real case study 

for a global liner shipping company. 

Chapter 6 deals with the liner ship route schedule design problem which aims to 

determine the arrival time of a ship at each port of call on a ship route and the sailing speed 

function on each voyage leg. The time uncertainties at sea and at port are taken into 

consideration. It first derives the optimality condition for the sailing speed function with sea 

contingency and subsequently demonstrates the convexity of the bunker consumption 

function. A mixed-integer nonlinear stochastic programming model is developed for the 

proposed liner ship route schedule design problem by minimizing the ship cost and expected 

bunker cost while maintaining a required transit time service level. In view of the special 

structure of the model, an exact cutting-plane based solution algorithm is proposed. 

Numerical experiments on real data provided by a global liner shipping company 

demonstrate that the proposed algorithm can efficiently solve real-case problems. 

Chapter 7 studies a realistic liner shipping network design problem while considering 

practical operations and features, including multi-type containers, container transshipment 

operations, empty container repositioning, origin-to-destination transit time constraint, 

consistent services with the current network, and joint services with other liner shipping 
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companies. It first examines the laden and empty container shipment demand. It proceeds to 

investigate the routing of laden containers while considering the transit time constraint. Two 

approaches are proposed. The first one is based on global and regional hubs. It generates 

container routes efficiently whereas cannot guarantee optimality. The second one is reliant on 

the construction of a liner shipping operational network and an integer linear programming 

model. It is an exact algorithm while the computational time is longer. Given a set of 

candidate ship routes, including ship routes that must be used, ship routes that a minimum 

number of them must be used, and ship routes that are completely optional, a mixed-integer 

linear programming model is presented, which gives the ship routes that should be used and 

the laden and empty container flow in the resulting network. After that, the resulting network 

is further improved by changing existing ship routes, adding new ship routes, and removing 

ship routes. Finally, a real case study based on the global shipping network of a liner 

shipping company, consisting of 166 ports, is reported. 

Chapter 8 draws conclusions and recommends future research work. 
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CHAPTER 2. PRELIMINARIES 

In this chapter we first introduce the three major elements in a liner shipping network: 

ports, ships, and containers. Based on this introduction, we detail the decision problems for a 

liner shipping company, especially the four tactical-level decision issues associated with liner 

shipping network. 

2.1 Elements in a Liner Shipping Network  

A typical liner shipping service network operated by a liner shipping company is shown 

in Figure 2-1. The network consists of a group of ports denoted by the set P . The liner 

shipping company operates a number of ship routes denoted by the set R  between these 

ports. There are a total of 46 ports in Figure 2-1, scattered in Asia, Europe and Oceania. We 

will frequently refer to this network in subsequent chapters as the Asia-Europe-Oceania 

shipping network. 

 

 

Figure 2-1 An Asia-Europe-Oceania liner shipping service network 
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2.1.1 Ports and port rotations of ship routes 

A container port p∈P  is the interface between inland and maritime transportation. Its 

main function is container handling and temporary storage. Port productivity usually refers to 

the number of container moves per hour. Among other factors, port productivity depends on 

the length of the container ship because a longer ship allows more quay cranes to work 

simultaneously. Let pvM  be the average productivity (moves/hour) at port p  for ship type v . 

Denote by pvt  (hours/TEU) the average container handling time of one TEU for ship type v  

at port p , 1/pv pvt M= . A port also has a maximum draft at its berths. A ship whose draft is 

larger than the port draft cannot be accommodated by the port. 

 Container handling is very expensive. Container handling cost is an important variable 

cost for liner shipping companies and the main revenue for container terminal operators. Let 

pc  (USD/TEU) be the container transshipment cost charged by a particular port p∈P . It is 

usually smaller than the sum of load cost ˆpc  (USD/TEU) and discharge cost pc  (USD/TEU) 

because most port operators encourage container transshipment activities by providing more 

competitive transshipment prices. 

The itineraries of practical ship routes, such as those currently operated by the major 

liner shipping companies such as OOCL (2010) and Maersk (2010), form loops. A ship route 

r∈R  can be expressed by its port calling sequence:  

 1 2 1rr r rN rp p p p→ → → →  (2.1) 

where rN  is the number of ports of call on the itinerary and rip  is the thi  port of call on route 

r , 1, 2, , ri N=  . Eq. (2.1) gives a ship route coding scheme and it also describes the loop 

characteristics of a ship route with a predetermined port calling sequence. Let rI  be the set of 
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port calling indices of the ship route r ,  {1,2, , }r rN=I  . Since two different port indices 

shown in Eq. (2.1) may refer to the same port, let rpI  be the set of port indices on ship route 

r  that refer to a particular port p∈P , rp r⊂I I . For example, Figure 2-2 illustrates a real 

ship route. A ship deployed on this ship route visits Busan (BS), Shanghai (SH), Yantian 

(YT), Hong Kong (HK), Singapore (SG), Yantian (YT) , Hong Kong (HK), and returns to 

Busan (BS). It can be coded as follows: 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 3 4 5 6

7 1

BS SH YT HK SG YT

HK BS
r r r r r r

r r

p p p p p p

p p

→ → → → → →

→
 (2.2) 

Eq. (2.2) implies that the number of ports of call 7rN =  and Yantian port is served by a ship 

for two times during a round-trip, namely, ,YT {3,6}r =I . 

 

Busan  
(BS)

Shanghai 
(SH)

Yantian 
(YT)

Hong Kong 
(HK)

Singapore 
(SG)  

Figure 2-2 The itinerary of a ship route 

 

Defining , 1 1:
rr N rp p+ = , the voyage between port rip  and port , 1r ip +  is referred to as leg i  

of ship route r∈R , which can be denoted by the pair of ordered ports , 1,ri r ip p +< > , Iri∈ . 

As for the service route shown in Eq. (2.2), it has 7 legs - leg 1: 1 2 < (BS),  (SH)>r rp p , leg 2: 

2 3(SH), (YT)r rp p< > , leg 3: 3 4(YT), (HK)>r rp p< , leg 4: 4 5(HK), (SG)>r rp p< , leg 5: 

5 6(SG), (YT)>r rp p< , leg 6: 6 7(YT), (HK)>r rp p<  and leg 7: 7 1(HK), (BS)>r rp p< .  
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2.1.2 Container ships 

The liner shipping company deploys container ships on each ship route to transport 

containers. These ships are categorized into different types denoted by the set V  according 

to their load capacities, sailing speeds, operating costs and other ship-specific characteristics. 

The type of ships to deploy on a ship route is mainly dependent on the required shipping 

capacity. The volume capacity of a ship with type rv∈V  is represented by Capv  (TEUs) and 

the weight capacity is denoted by Weiv  (tons). The liner shipping company tends to use 

fewer large container ships rather than more small ones. The number of ships required for a 

ship route depends on the regular service frequency and the round-trip time of the route. 

Since most major liner shipping companies in practice provide weekly services, we assume 

that each ship route has to provide a weekly service frequency. Hence, if the round-trip time 

is 28 days, then 4 container ships are required to maintain a weekly service. We further 

represent by pV  the set of types of ships that port p∈P  has enough draft to accommodate. 

The round-trip time includes sailing time and port time. The sailing time depends on the 

sailing speed riv   (knot) and the oceanic distance riL   (n mile) of each leg i  of each ship 

route r . Port time is composed of the standby time for pilotage in and out of port and the 

time ships spend at berth for container handling. Sometime for the ease of exposition, the 

sailing time on leg i  of ship route r  may include the standby time for pilotage out at the 

th( 1)i −  port of call and the standby time for pilotage in at the thi  port of call, and the port 

time is tantamount to the berth time. The berth time is a function of the number of containers 

handled. Therefore the round-trip time of a ship route depends on the port rotation, type of 
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ships deployed, sailing distance, sailing speed, the pilotage efficiency at port, the number of 

containers handled and the container handling efficiency. 

The following cost components are associated with ships in type v∈V . (i) Fixed 

operating cost per week for a particular ship, including cost for crew, repair and maintenance, 

insurance, stores and lubricants, fuel for auxiliary power and administration, denoted by opr
vc  

(USD/week). Note that opr
vc  is independent of voyages and is incurred as long as the ship is in 

operation. (ii) Fixed port charges when ships visit a port. (iii) Berth occupancy charges at 

port p∈P , denoted by ber
pvc  (USD/hr). (iv) Bunker cost, which depends on the bunker price 

bunα (USD/ton), sailing distance and sailing speed. (v) Canal dues (transit fees) when ships 

transverse e.g. Suez Canal and Panama Canal. 

2.1.3 Containers 

The liner shipping company provides liner services to transport containers from one port 

to another. Since liner services are published in advance, the liner shipping company can 

only design liner services based on predicted container shipment demand. The liner shipping 

company forecasts its container shipment demand on the basis of contracted orders, historical 

data and other affecting factors. Let {( , ) , }o d o d⊆ ∈ ∈W P P  be the set of origin-

destination (O-D) port pairs with container shipment demand. Let odn  (TEUs) represent the 

weekly container shipment demand for port pair ( , )o d ∈W . odn  actually incorporates 

containers of many types. For example, we can consider a 40-ft container as two TEUs. If 

more details are to be captured, then the container shipment demand for each type of 

containers must be provided. 
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The prevailing container transshipment operations enable the liner shipping company to 

transport containers originating from one particular port and destined for another one even if 

these two ports are not on one ship route. In other words, these containers will be 

transshipped at an intermediate port. A large proportion of containers are transshipped during 

the trip from origin port to destination and transshipment is an important feature of liner 

shipping. 

The liner shipping company predetermines a set of container routes to deliver containers 

between an O-D port pair ( , )o d ∈W , denoted by odH , in accordance with the given set of 

ship routes R . Define ( , )
od

o d ∈= WH H  to be the set of all container routes for all O-D 

port pairs. A container route odh∈H  is either a part of one particular ship route or a 

combination of several ship routes to deliver containers from the original port o∈P  to the 

destination port d ∈P . Container transshipment operations should be involved in a container 

route with several ship routes. For instance, three container routes 1h , 2h  and 3h  for the liner 

shipping network in Figure 2-3, can be defined as follows: 

 Ship Route 1
1 13 11(SG) (HK)h p p= →  (2.3) 

 Ship Route 2
2 25 21(SG) (HK)h p p= →  (2.4) 

 Ship Route 2 Ship Route 3
3 22 24 31 32(XM) (CB) (CB) (CN)h p p p p= → →  (2.5) 

Container route 1h  is used to directly deliver containers from Singapore to Hong Kong which 

are loaded at the 3rd port of call of the ship route 1 (Singapore) and discharged at the 1st port 

of call of the ship route 1 (Hong Kong). Containers along the container route 2h  are delivered 

by ship route 2. Container route 3h  involves container transshipment operations: Containers 

are first loaded at the 2nd port of call of the ship route 2 (Xiamen) and delivered to the 4th 
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port of call of the ship route 2 (Colombo). At Colombo, these containers are discharged and 

reloaded (transshipped) to a ship deployed on the ship route 3, and transported to the 

destination Chennai. 

 

Ship Route 1: 
HK→JK→SG→HK

Ship Route 2: 
HK→XM→SG→CB→SG→HK

Ship Route 3: 
CB→CN→CC→CB

Colombo 
(CB)

Hong Kong 
(HK)

Singapore 
(SG)

Jakarta 
(JK)

Xiamen 
(XM)

Chennai 
(CN)

Cochin 
(CC)

 

Figure 2-3 An illustrative liner shipping network 

 

2.2 Decision Problems for Liner Shipping Companies 

As shown in Figure 2-4, there are three decision-making levels for liner shipping 

companies: strategic, tactical, and operational (Pesenti, 1995). At the strategic level, a liner 

shipping company makes long-term decisions such as ship fleet size and mix, targeted 

service areas (e.g., intra-Asia, Asia-Europe, etc.), and alliance strategies. Tactical-level 

decisions are made every three to six months in view of the changed container shipment 

demand. A liner shipping company needs to identify the sequence of ports of call, deploy 

ships on the itineraries, determine the sailing speed of ships, and design schedules. At the 

operational level, a liner shipping company determines whether to accept or reject a certain 

cargo, how to route the accepted cargo, and how to re-route or re-schedule ships to cope with 

unexpected incidents such as adverse weather and sea conditions or port congestion. There is 
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interplay between decisions made at the three different planning levels. For example, fleet 

size and mix are necessary inputs for ship fleet deployment, and cargo routing is subject to 

the shipping services.  

Strategic
S1. Fleet size and mix;
S2. Service area;
S3. Alliance strategy.

Tactical

T1. Network design;
T2. Fleet deployment;
T3. Speed optimization;
T4. Schedule design.

Operational
O1. Cargo routing;
O2. Cargo booking;
O3. Rescheduling.

 

Figure 2-4 Three levels of decision-making for liner shipping companies 

 

Strategic planning problems are mostly business issues, and they cannot be easily 

addressed simply through operations research methods because of the high levels of 

uncertainty in the future shipping market. Still, there are a few studies on the fleet size and 

mix problem (Xinlian et al., 2000; Meng and Wang, 2011) and alliance strategies (Song and 

Panayides, 2002; Agarwal and Ergun, 2010). Some studies describing tactical problems also 

consider ship fleet composition by having a variable fleet; see, for example, Cho and Perakis 

(1996), Fagerholt (1999), and Alvarez (2009). For a general review of fleet composition, see 

Hoff et al. (2010). Tactical decisions are very important for liner shipping companies because 

once the liner shipping services are established, most of the operating costs (ship costs, port 
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charges, bunker costs) are also determined. By contrast, the operational-level plans do not 

impact total cost as much as tactical decisions. Moreover, operational planning problems are 

less organized and hence less amenable to mathematical representations. As a result, there is 

not much literature on operational-level planning problems.  

This study focuses on tactical-level decisions faced by liner shipping companies. Since 

most global liner shipping companies provide a weekly service frequency, the service 

frequency is not a decision problem in most studies; for exceptions, see for example, Bendall 

and Stent (2001) and Alvarez (2009). Of course, to provide better services, especially for 

connection with mainline services, some feeder services are twice or thrice weekly. Four 

major decision issues at the tactical planning level are listed in Table 2-1. It should be 

mentioned that the sailing speed determination problem may also happen at the operational 

level by setting appropriate speeds considering weather and current conditions. Port rotation 

is a major input of fleet deployment, sailing speed determination, and schedule design, and a 

major output of network design. 

 
Table 2-1  Tactical-level decision issues  

Problem              Major input              Major output 
Fleet deployment • Port rotation • Type and number of ships 

deployed on each ship route 
Sailing speed 
determination 

• Port rotation 
• Type of ships to deploy on 

each route 

• Number of ships deployed 
on each route 

• Sailing speed on each leg 
Schedule design • Port rotation 

• Type of ships to deploy on 
each route 

• Maximum port-to-port 
transit time 

• Arrival day at each port of 
call on each route 

Network design • Container shipment 
demand 

• Ship fleet 
• Inland transportation 

system 

• Liner shipping service 
routes with deployed ships 
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2.2.1 Fleet deployment 

A liner shipping company deploys container ships on each ship route to transport 

containers. This decision problem is termed as the fleet deployment (FD) problem. The liner 

shipping company makes fleet deployment decisions every three to six months in order to 

cope with the seasonal variation of the container shipment demand. Since the daily operating 

cost of a containership is usually as high as tens of thousands of dollars, fleet deployment 

decisions determine a large proportion of the total cost of a liner shipping company. 

Consequently, to maximize its profit, a liner shipping company needs to assess the trade-off 

between the cost and capacity of ships. 

Not all the ships can be deployed on a specific ship route r∈R  because of those 

physical constraints imposed on the ship route such as limited port draft, and we denote by 

r ⊆V V   the set of ship types available for ship route r . It is reasonable as well as practical 

to assume that the string of ships deployed on a specific ship route is of the same ship type. 

For one reason, it is difficult for ships with different sailing speeds to keep a constant and 

stable service frequency. For another reason, the operational homogeneity could be decreased 

if ships of different capacities are deployed.  

The number of ships required for a ship route depends on the regular service frequency 

and the round-trip time of the route. The term “service frequency” is often used to denote the 

time in terms of days between sailings from a port of call on a given route. Most literature 

imposes a weekly service frequency because global liner shipping companies normally 

operate weekly services. We believe that the dominance of weekly services cannot be 

changed within a short time for three reasons. First, a weekly service is a trade-off between 

the shipper’s needs for frequent services in order to reduce the inventories, and carrier’s 
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needs for cargo accumulation so as to utilize large container ships for economies of scale. 

Second, a weekly service is easy for consigners and consignees to arrange their plans for 

production and/or sales. Third, since most liner shipping companies operate weekly services, 

container terminal operators also allocate the berth time on a weekly basis. If a ship route has 

a 10-day service frequency, for example, then ships on the route arrive at a certain port at 

different time in each week and the container terminal operator would have difficulty in berth 

allocation. Some feeder services do not operate on a regular basis since the container 

shipment demand is very low and has a large fluctuation. These feeder services do not follow 

the weekly convention and their scheduling problems mostly occur at the operational level. 

We require weekly services for all liner routes in this study. The round-trip time depends on 

the round-trip distance, the sailing speed, and the port time. If the round-trip time is 28 days, 

then 4 container ships should be deployed to maintain the weekly service. 

The type of ships to deploy on a liner service route is mainly dependent on the required 

shipping capacity. Nevertheless, this problem is not straightforward since containers can be 

transshipped at any port of call during the trip from their origin port to their destination. In 

sum, transshipment brings a great challenge for making the optimal fleet deployment 

decisions. At the same time, transshipment offers opportunities for maximizing fleet 

utilization and increased load factor for large ships. 

2.2.2 Sailing speed optimization 

The sailing speed (SS) of container ships has a significant impact on the total operating 

cost. On one hand, an increase in sailing speed with just a few knots already results in a 

dramatic increase of bunker consumption (Notteboom and Vernimmen, 2009), see Figure 2-5. 
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On the other hand, the bunker cost accounts for a large proportion of the total operating cost, 

e.g., 20% to 60% according to Ronen (1993).  

 

 
Source: Notteboom and Vernimmen (2009) 

Figure 2-5 Daily fuel consumption for four types of container ships at different speeds 

 
Liner shipping companies generally sail ships at the normal service speed. Bunker 

consumption can be reduced with a slow sailing speed, whereas more container ships may be 

needed to provide the same shipping capacity. As a result, liner shipping companies choose a 

slow speed in order to save the bunker cost under two circumstances: (i) when the bunker 

price is extremely high, or (ii) when there is a large excess shipping capacity. For example, 

both the Grand Alliance and CMA CGM each decided to add a ninth ship to one of their 

respective Asia-Europe routes during the summer of 2006 to cope with the high bunker price. 

The resulting fuel cost savings generated by each of the other eight vessels more than 

compensated for the cost of hiring and operating the ninth vessel (Vernimmen et al., 2007). 
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Another example is that in 2009, to deal with the decreased container shipment demand and 

the large container ship fleet, liner shipping companies took measures including slow or 

super slow steaming (at half speed of around 13 knots) in an attempt to curb shipping 

capacity and thus boost the freight rate (UNCTAD, 2010). The major obstacle to design an 

optimal sailing speed is the nonlinear relationship between service speed and bunker 

consumption, which poses difficulties for designing a proper solution algorithm. 

2.2.3 Schedule design 

Transit time from the origin port to the destination port is an important service factor in 

liner shipping because shippers demand fast services to reduce their inventories. Offering 

short transit time is a competitive factor, in particular when the goods involved are time 

sensitive (Notteboom, 2006). However, the benefit of shorter transit time to a liner shipping 

company is difficult to quantify since the customers to serve are from various industries. 

The schedule of a liner service route is the arrival date at each port of call on the route. 

The schedules of services in the liner shipping network determine the transit time from the 

origin port to the destination port. When containers are delivered from the origin port to the 

destination port without transshipment, the port-to-port transit time is basically dependent on 

the intermediate ports of call and the sailing speed. When containers are transshipped, their 

O-D transit time not only depends on the time onboard ships (port-to-port sailing time), but 

also the connection time at the transshipment port(s). The connection time is the wait time 

depending on the schedules of the two connecting ship routes. For instance, the connection 

time is one day if the incoming ship arrives on Monday and the outgoing ship arrives on 

Tuesday, and the connection time is six days in the converse case due to the weekly service 

frequency. 
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Therefore, the schedule design problem comes when the liner shipping company aims to 

improve its services by providing short transit time, either because other companies are 

providing shorter transit time than it does, or because it seeks to outperform its competitors. 

The company will define a maximum allowable transit time for each port pair and thereby 

design the schedules of the service routes to satisfy the transit time constraint. Apparently the 

sailing speed optimization is part of the schedule design issue. 

The sailing speeds of ships may be adjusted in practice as a hedge against a number of 

uncertain factors that liner shipping services are subject to, in order to maintain the integrity 

of ship route schedules. The uncertainties can be classified into two categories: uncertainty at 

sea (adverse weather conditions such as rain, snow, winds, low visibility, tornado, hurricane, 

and thunderstorm and sea conditions including currents and tides) and uncertainty at port 

(lack of navigation experience of the ship master; insufficient berth planning system; 

fluctuation of quay crane handling efficiency; and variation of the number of containers 

handled in each week). To cope with the uncertainty at sea, liner shipping companies build 

some buffer time (sea contingency) for each voyage leg. A ship sails at a higher speed at the 

beginning of the voyage on a leg to ensure that it has enough time to hedge against possible 

adverse weather and sea conditions it may encounter. The ship can slow down when 

approaching the destination port because a shorter residual voyage distance means less 

possibility of adverse weather and sea conditions. The uncertainty at port affects the port time 

and thereby the available sailing time for the subsequent voyage leg. As a consequence, the 

sailing speed function for the subsequent voyage leg has to be adjusted accordingly. Thus, 

sea contingency time and uncertain port time must be taken into consideration in the schedule 



Chapter 2 Preliminaries 

25 

design. To design the schedules with consideration of the uncertain environment under which 

ships are operating is no easy task, whereas this topic is worth research efforts. 

 

2.2.4 Liner shipping network design 

In the aforementioned three issues of fleet deployment, sailing speed optimization, and 

schedule design, the port rotations of the ship routes are already known. Liner shipping 

companies may need to design new ship routes or altering existing ship routes in order to 

optimize its shipping operations. As a result of the regular shipping services, a large 

proportion of the total operating cost is determined at the shipping network design stage. 

Therefore, it is important for a liner shipping company to design a cost-effective intermodal 

liner shipping service network. 

 A liner shipping company has to redesign its service network whenever there are 

significant changes in container shipment demand. It first examines the current network and 

then determines whether to introduce a new service, or change portcall sequence of an 

existing service, or remove a portcall, or add a portcall, or deploy a larger/smaller type of 

ship, or make other alterations. A liner shipping company cannot change its whole network 

overnight because ships are located all over the world and the liner shipping company tries to 

provide consistent services.  

 A liner shipping company must deliver containers to the destination port within a 

certain time because longer transit time of containers means higher inventory cost and 

depreciation. Shippers are generally not concerned about the intermediate transfer points as 

long as containers can be delivered to the destination on the designated date. Thus, the 
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shipping network has to be designed such that the requirement of origin-to-destination transit 

times of containers is satisfied.  

 When designing the liner services, a liner shipping company must bear in mind that 

there are many types of containers, such as dry TEU (twenty-foot equivalent unit), dry FEU 

(forty-foot equivalent unit), reefer TEU, and reefer FEU. Different types of containers are 

different in volume and port handling cost. Besides laden containers, a liner shipping 

company has to reposition its empty containers due to the imbalance in international trade. 

Take the trans-Pacific trade lane for example: container flow from Asia to North America is 

estimated at 15.4 million TEUs in 2007, while in the opposite westbound direction, the flow 

is only 4.9 million TEUs (UNCTAD, 2008). This imbalance leads to the empty container 

accumulation in import-dominant areas (North America) and shortage in export-dominant 

ones (Asia). Hence, empty containers have to be repositioned from the former to the latter. 

Empty containers are different from laden containers in that (i) they are not so time-sensitive, 

and (ii) they do not have fixed destinations. The flexibility in the choice of destinations for 

empty containers facilitates the repositioning operations while posing challenges for shipping 

service network design.  

It is clear that the design of liner shipping service network may nest fleet deployment, 

sailing speed optimization, and schedule design as special cases. Hence, the network design 

problem is a even more challenging task. 

2.3 Summary 

A liner shipping network consists of ports, ships, and containers. Ships are deployed on 

fixed port rotations at a certain speed following published schedules to transport containers 

from their origin port to their destination port. Under different circumstances, a liner shipping 
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company needs to make different decisions associated with its liner shipping network. These 

decisions determine, to a large extent, the services (shipping capacity, transit time, and 

schedule integrity) and the operating costs (fixed ship operating cost, bunker, fixed port 

calling fees, berth occupancy charges, canal dues, and container handling charges). 

Consequently, an in-depth analysis, modeling and optimization of these issues has practical 

significances for a liner shipping company. 
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CHAPTER 3. LITERATURE REVIEW 

This chapter first reviews the studies on fleet deployment, sailing speed optimization, 

schedule design, and liner shipping network design. These problems are interrelated and 

some studies address more than one topic and consequently are discussed in more than one 

subsection. The limitations of the existing studies are outlined. Finally, the research 

objectives of this thesis are presented. 

3.1 Literature search methods and summary 

We use a computerized literature search approach to find all the relevant studies. First 

the databases of Scopus, the Sciences Citation Index and Google Scholar were searched with 

the following key words: “liner”, “container”, “shipping”, “(maritime or sea or waterway) 

and (transportation or transport)”, and “(ship or vessel) and (routing or schedule or 

scheduling)”. We also looked at the personal websites of researchers active within maritime 

transportation and reviewed our own research. We also retrieved studies by tracking the 

references cited in papers we had already found. We identified 41 papers using operations 

research methods to examine liner shipping management and operations. Table 3-2 lists these 

papers and the country/region of the affiliation of the corresponding authors, the problems 

solved and main concerns, and the model and solution approach.  

Researchers from Singapore, Denmark, and Norway are the most active in investigating 

liner shipping management and operations using operations research methods (Figure 3-1), 

most likely because the maritime industry plays such an important role in the national 

economy of these three countries. Although researchers from the United States have a 

slightly larger number of publications, there are also many more universities and research 

institutes in the United States. It is interesting to note that all of the 41 publications originate 
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from a coastal country/region. In addition, there are a number of descriptive and qualitative 

studies on liner shipping that we did not include in our review because they are not the focus 

of this study. Considerable research efforts have been devoted solely to the repositioning of 

empty containers, but they also are not included in our review. Although the number of 

studies on mathematical modeling of liner shipping operations is small, this research topic 

has begun to draw more academic attention in recent years. In particular, the number of 

publications has increased considerably since 2006 (Figure 3-2), most likely because many 

leading liner shipping companies have recently started to collaborate with the research 

community to develop better decision support systems and the increasing volume of 

containerized trade resulting from an increasingly globalized economy. 

 

Table 3-1  Summary of literature on liner shipping routing and scheduling 

Paper and country/region Problem and major considerations Approach 

Álvarez (2009) NO Shipping network design; transshipment; 
heterogeneous fleet; container routing; speed 
determination 

Column generation 

Álvarez (2012) NO Dwell time at transshipment ports Analytical 
Agarwal and Ergun 

(2008)  
US Shipping network design; transshipment; 

heterogeneous fleet; container routing 
Space time network; 

Benders decomposition 
Agarwal and Ergun 

(2010)  
US Alliance strategy  Game theory 

Bell et al. (2011)  UK Container routing; random ship arrivals LP 
Bendall and Stent 

(2001) 
AU Flexible demand MIP 

Brouer et al. (2011)  DK Container routing; empty containers LP 
Cho and Perakis 

(1996)  
US Fleet deployment; container routing MIP 

Corbett et al. (2010)  US Speed optimization; green shipping Analytical 
Du et al. (2011) CN Speed optimization Second-order cone 

programming 
Fagerholt (1999) NO Feeder network design; homogeneous fleet MIP 
Fagerholt (2004) NO Feeder network design; heterogeneous fleet  MIP 

Fagerholt et al. 
(2009) 

NO Fleet deployment Multi-start local search 
heuristic 

Fagerholt and 
Lindstad (2000) 

NO Feeder network design IP 

Gelareh and Meng 
(2010)    

SG Fleet deployment; speed optimization; transit time MIP 
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Gelareh et al. 
(2010)    

DK Liner hub-and-spoke network design Lagrangian relaxation 

Gelareh and 
Pisinger (2011)    

DK Liner hub-and-spoke network design; main ship route 
design 

Benders decomposition 

Golias et al. (2010)  US Speed optimization GA 
Halvorsen-Weare 

and Fagerholt  
(2011) 

NO Robust feeder network design IP 

Jaramillo and 
Perakis (1991)    

US Fleet deployment LP 

Jepsen et al. (2011) DK Liner shipping network design, aggregated demands, 
green logistics 

Column generation 

Karlaftis et al. 
(2009)   

GR Feeder network design; heterogeneous fleet; pickup 
and delivery; time window 

Hybrid GA 

Løfstedt (2010) DK Liner shipping network design Construction heuristic 
Løfstedt et al. 

(2010) 
DK Liner shipping network design MIP 

Meng and Wang 
(2010)   

SG Fleet deployment; uncertain container shipment 
demand; level of service  

MIP 

Meng and Wang 
(2011)   

SG Fleet planning; fleet deployment Dynamic 
programming; MIP 

 

Mourão et al. 
(2001)  

PT Fleet deployment; hub-and-spoke network; 
transshipment; weekly service frequency; inventory 
cost 

MIP  

Perakis and 
Jaramillo (1991) 

US Fleet deployment LP  

Powell and Perakis 
(1997)   

US Fleet deployment IP  

Rana and Vickson 
(1988)   

CA Single liner route design; fixed port calling sequence; 
single ship 

Lagrangian relaxation, 
decomposition 

 

Rana and Vickson 
(1991)   

CA Multiple liner route design; fixed port calling 
sequence; heterogeneous fleet; container routing 

Lagrangian relaxation, 
decomposition 

 

Reinhardt and 
Pisinger 

(2012) 

DK Container routing; transshipment B&C  

Ronen (2011)  US Sailing speed Analytical  
Sambracos et al. 

(2004)  
GR Feeder network design; homogeneous fleet Meta-heuristic  

Shintani et al. 
(2007)   

JP Single liner route design; empty containers  GA  

Song and Panayides 
(2002) 

UK Alliance strategy Game theory  

Ting and Tzeng 
(2003) 

TW Ship scheduling Dynamic programming  

Wu et al. (2009) CN Time reliability Simulation  
Xinlian et al. (2000) CN Fleet planning Dynamic programming  

Yan et al. (2009) TW Schedule design; container routing; transshipment Space time network; 
Lagrangian relaxation 

 

Yao et al. (2012) SG Speed optimization MIP  
Note: Countries SG: Singapore; DK: Denmark; NO: Norway; CN: Mainland China; GR: Greece; 

PT: Portugal; JP: Japan; TW: Taiwan; AU: Australia; CA: Canada. Methods MIP: mixed-integer linear 
programming; B&B: branch-and-bound; B&C: branch-and-cut; LP: linear programming; IP: integer 
linear programming; GA: genetic algorithm;  

 

http://forskningsbasen.deff.dk/Search.external?operation=search&search-query=au:%22L%C3%B8fstedt+Berit%22
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Figure 3-1 Classification of publications on mathematical modeling of liner shipping by 

country/region 

 

 

Figure 3-2 Number of publications on mathematical modeling of liner shipping by year 
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3.2 Fleet Deployment 

Fleet deployment (FD) seeks to assign ships to liner service routes to maximize profit or 

minimize cost. Port rotation is one of the prime inputs for liner ship fleet deployment. A 

number of pure or mixed-integer linear programming models for the FD problem have been 

developed to account for various restrictions arising in liner shipping operations, as shown in 

Table 3-2. 

 

Table 3-2  Literature on liner ship fleet deployment 

Paper 

Problem and major considerations 

Method Flexible container 
routing 

Allow 
transshipment at 

some ports 

Allow transshipment 
at any port 

Perakis and Jaramillo 
(1991) and Jaramillo 
and Perakis (1991)    

   LP 

Powell and Perakis 
(1997)   

   IP 

Cho and Perakis 
(1996)  

√   MIP 

Gelareh and Meng 
(2010)    

   MIP 

Meng and Wang 
(2010)   

   MIP 

Mourão et al. (2001)   √  MIP 
Fagerholt et al. 
(2009) 

   Multi-start 
local search 

heuristic 
 

In a pioneering modeling work on FD, Perakis and Jaramillo (1991) and Jaramillo and 

Perakis (1991) built a linear programming model incorporating ship capacity constraints, 

minimum service frequency requirements, and ship chartering issues. The objective of this 

linear programming model is to minimize the total fleet’s operating costs, including fuel 

consumption costs, daily operating costs, port charges, and canal fees. It implicitly and 

unrealistically assumes that the number of ships allocated to a service route is a continuous 
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rather than an integer decision variable. To remedy this unrealistic assumption, Powell and 

Perakis (1997) presented an integer linear programming model. These three studies all 

assume a service route based port-to-port shipment demand pattern; the number of containers 

between a pair of ports on each service route is known a priori. To relax this assumption, Cho 

and Perakis (1996) formulated a mixed-integer linear programming model for the FD 

problem, in which the container shipment demand between two specific ports can be served 

by any service route passing through both ports. Because the sailing speed of ships has direct 

implications on bunker consumption, Gelareh and Meng (2010) developed a mixed-integer 

linear programming model for the FD problem in which the sailing speed of a ship is a 

decision variable. Unlike the aforementioned models with deterministic container shipment 

demand, Meng and Wang (2010) developed a chance constrained programming model for 

the FD problem with uncertain container shipment demand. They assumed that a certain level 

of service for each route has to be maintained. The level of service is defined as the 

probability that all container shipment demand on the service route can be fulfilled. The 

chance constraints can be transformed into equivalent deterministic linear constraints.  

In most of the above models, containers must be delivered from their origin port to their 

destination port by direct services, and transshipment is not allowed. In the literature that 

takes into account container transshipment operations, Mourão et al. (2001) proposed a 

simple model for a specific FD problem defined on a small hub-and-spoke network 

consisting of two routes—a feed route and a main route—and one pair of ports by assuming 

that all containers must be transshipped at the hub port in the feeder route.  

In addition, Fagerholt et al. (2009) developed an FD model that requires ships to fulfill a 

given number of voyages without explicitly considering the container flow. They further 
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integrated the model into a decision support system. Compared with the network design 

problem, FD is easier since the number of ship types is limited and not all ship types are 

compatible with each port rotation due to commercial and physical restrictions. Even though 

the fleet deployment topic has been extensively investigated, modeling and solving real size 

problems, especially richer versions of the problem, remain a challenge. 

3.3 Sailing Speed Optimization 

The sailing speed of ships has a significant impact on the total operating cost because an 

increase of just a couple of knots results in a dramatic increase in bunker consumption 

(Notteboom and Vernimmen, 2009), and bunker costs account for a large proportion of the 

total operating cost, for example, 20–60 percent according to Ronen (1993). Higher speed 

means shorter transit time and fewer ships required to maintain weekly services, but it also 

mean higher bunker consumption. Sailing speed is an important decision for all levels of 

decision making. At the strategic level, there is a tradeoff between fleet composition and the 

speed of the ships; fewer ships means that each ship must sail faster. When there is flexibility 

in the duration of the trades that are serviced, speed decisions become important in the fleet 

deployment phase. At the operational level, weather and currents greatly influence speed. We, 

however, review the optimal sailing speed problem at the tactical level, which is challenging 

because of the nonlinear relation between sailing speed and bunker consumption. Most 

studies have assumed that ships sail at a predetermined speed. Some researchers (Perakis and 

Jaramillo, 1991; Corbett et al., 2010; Meng and Wang, 2010; Ronen, 2011) have derived the 

optimal sailing speed by assuming that the sailing speed is constant during the voyage and 

considering one ship route. To optimize the sailing speed in a more general setting, different 

approaches have been used. The first approach bypasses the nonlinearity by assuming that 
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bunker consumption varies linearly with sailing speed (Lang and Veenstra, 2010). This 

approach is a good approximation only when the possible speed range is very narrow. The 

second approach is to use heuristic methods, such as the genetic algorithm used in Golias et 

al. (2010), which cannot guarantee optimality. In the third approach presented by Gelareh 

and Meng (2010) and Yao et al. (2012), the sailing speed is discretized into many small 

intervals and additional binary decision variables are introduced to indicate the adopted 

sailing speed interval. Nevertheless, the addition of these binary decision variables 

significantly increases the computational burden. Du et al. (2011) proposed a fourth approach 

by exploiting the property of the power relation between sailing speed and bunker 

consumption. They transformed the constraints with power functions to second-order cone 

programming (SOCP) constraints and took advantage of state-of-art solvers to solve the 

SOCP problem. This exact algorithm is efficient when the power of speed in the sailing 

speed–bunker consumption function takes specific values, such as 3.5, 4.0, or 4.5. When the 

power takes other values, for example, 3.31, each power function constraint has to be 

represented by a substantial number of SOCP constraints and the problem can no longer be 

solved efficiently.  

Sailing speed optimization is related to a number of other decision problems, for 

example, network design (e.g., Alvarez, 2009), fleet deployment (e.g., Gelareh and Meng, 

2010), and schedule design, which is described in the next subsection. Due to increased 

environmental awareness, CO2 emissions, which are related to bunker consumption, should 

also be formulated in optimization models. The determination of optimal speed with 

consideration of CO2 emissions is an interesting research topic. 
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3.4 Schedule Design 

Transit time (on a port-to-port basis or on a door-to-door basis) is an important service 

factor in liner shipping because shippers demand fast service to reduce their inventories. 

Offering short transit time is a competitive factor, particularly when the goods involved are 

time sensitive (Notteboom, 2006). When containers are delivered from the load port to the 

discharge port without transshipment, the port-to-port transit time is basically only dependent 

on the intermediate port calls and the sailing speed. Karlaftis et al. (2009), Gelareh and Meng 

(2010) considered the transit time constraint for direct deliveries without transshipment. Bell 

et al. (2011) formulated a container routing model to minimize the total transit time of 

containers by assuming that ships arrive at ports randomly. In the aforementioned model by 

Mourão et al. (2001), the feeder route has two possible schedules: Tuesday and Thursday 

departures from the hub. The two schedules are examined on the basis of inventory cost. 

Ting and Tzeng (2003) proposed a dynamic programming model for scheduling decisions 

under time window restrictions. Yan et al. (2009) investigated the schedules at the 

operational level in a space-time network. Alvarez (2012) formulated the connection time at 

a transshipment port for regular shipping services. 

Schedule design for liner service routes may not have attracted much attention because 

liner schedules are subject to a number of uncertain factors. For example, port congestion, 

weather conditions or mechanical problems at sea, delay when transiting canals, unexpected 

wait time at bunkering sites, and cascading effects from previous ports of call. It would be 

worthwhile for future research efforts to address these uncertainties. 

To summarize, schedule design for liner service routes has not attracted much attention. 

There are two explanations for this. First, the maximum wait time at transshipment port is 
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one week with weekly serviced liner routes. Second, a carefully designed schedule may be 

hampered by possible delay at port and at sea (e.g., port congestion, adverse weather). 

Despite these two reasons, an optimized schedule is still meaningful because the inventory 

cost of containerized cargo for one week cannot be neglected (0.5 per cent the value of a 

container per day according to Bakshi and Gans, 2010) and liner shipping companies may try 

to keep the schedule integrity by steaming fast in case of delay. All the prior literature with 

consideration of schedules assumes that ships sail at a constant speed on each voyage leg and 

that the port time is deterministic (may depend on the number of containers handled). The 

designed schedules under such assumption may easily be undermined by the uncertain and 

uncontrollable external factors. To design the schedules with consideration of the uncertain 

environment under which ships are operating is no easy task, whereas this topic is worth 

research efforts. 

3.5 Liner Shipping Service Network Design 

The aim of liner shipping network design is to determine which ports to visit and in what 

order they should be visited. The network design problem is associated with the other 

tactical-level problems and thus cannot be investigated in isolation. Most existing literature is 

devoted to itinerary design and ship deployment by assuming a fixed sailing speed and 

weekly service frequency, and does not consider schedules. 

The liner shipping network design problem is NP-hard (Agarwal and Ergun, 2008), and 

we cannot expect to find a polynomial-time algorithm that obtains the optimal solution for a 

general liner shipping network design problem. Research on liner shipping network design 

can be classified into four categories, and illustrative networks for these four categories are 

shown in Figure 3-3. The first category examines the feeder shipping network design 
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problem, which consists of a hub port and many feeder ports, as shown in Figure 3-3 (a). 

Containers either originate from or are destined for the hub port and transshipment is 

excluded within the feeder network. Fagerholt (1999) contributed a pioneering study in this 

category. He proposed a set-partitioning model by enumerating all possible shipping service 

routes and combining these single shipping service routes into multiple shipping service 

routes if possible. This model relies on the assumption that all ships have the same sailing 

speed. Fagerholt (2004) extended the set-partitioning model to address a heterogeneous ship 

fleet with a given cost structure, capacity, and in particular, sailing speed, for each type of 

ship. Results on 40 ports and 20 ships are reported. Fagerholt and Lindstad (2000) formulated 

an integer programming model to optimize the service of offshore installations from an 

onshore depot. Unlike Fagerholt (1999, 2004) where each feeder port is serviced once each 

week, this model requires that each offshore installation be serviced at least a minimum 

number of times. Halvorsen-Weare and Fagerholt (2011) extended the model of Fagerholt 

and Lindstad (2000) by taking into consideration the impact of weather at sea. Note that the 

above four models on liner shipping are not dedicated to the transportation of containerized 

cargo, but the models and algorithms are applicable to container liner shipping. Sambracos et 

al. (2004) carried out a case study on the feeder ship route design to dispatch small containers 

in the Aegean Sea, from one depot port (Piraeus) to 12 other ports (islands). They assumed a 

homogeneous fleet to meet container shipment demand with minimum operating costs, 

including fuel consumption and port charges. They used a list-based threshold acceptance 

meta-heuristic method. Results show that at least a 5.1 percent cost savings may be realized 

over current shipping practices. This problem was later generalized by Karlaftis et al. (2009) 

to account for container pickup and delivery operations as well as time deadlines. They 
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formulated this extended problem as a vehicle routing problem with pickup and delivery and 

time windows and used a hybrid genetic algorithm to solve the problem. 

(a) a feeder network (b) ship routes without transshipment

(c) a hub-and-spoke network (d) a general liner shipping network

hub port

feeder port

port

ship route

connection 
between ports  

Figure 3-3 Liner shipping service network design categories 

 

The second category aims to design one or a few liner service routes without container 

transshipment operations, as shown in Figure 3-3 (b). In this category of research, Rana and 

Vickson (1988) contributed a seminal work by building a mixed-integer linear programming 

model for a single ship route design problem. Rana and Vickson (1991) later extended this 

model to design multiple ship routes. They employed Lagrangian relaxation to solve the 

mixed-integer linear programming model. Both models assume that the port calling sequence 
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by a ship is predetermined. Shintani et al. (2007) relaxed the assumption of port calling 

precedence relations and also considered empty container repositioning to design a single 

ship route. They employed a genetic algorithm to solve the problem.  

The third group of studies seeks to design a hub-and-spoke liner shipping network 

similar to airline and telecommunication systems, as shown in Figure 3-3 (c). Gelareh et al. 

(2010) developed a mixed-integer programming formulation for the liner shipping hub-and-

spoke network design problem. Based on this work, Gelareh and Pisinger (2011) further 

designed a main liner ship route connecting the hubs. 

The fourth line of research investigates the general liner shipping network design 

problem, which usually involves more ports in the network and allows for container 

transshipment operations, as shown in Figure 3-3 (d). Agarwal and Ergun (2008) proposed a 

multi-commodity-based space-time network model for the liner shipping service network 

design problem with cargo routing. This model covers a heterogeneous fleet, a weekly 

service frequency, multiple ship routes, and cargo transshipment operations, but 

transshipment cost is not considered in the network design stage. Results on 20 ports and 100 

ships are reported. Alvarez (2009) formulated the transshipment cost in network design and 

introduced the notion of “run”, defined as a combination of vessel type, speed, and ports of 

call, to facilitate model formulation. He also applied a column generation-based heuristic to 

design the service network with 120 ports and 5 types of ships. Løfstedt (2010) and Løfstedt 

et al. (2010) developed constructive heuristic methods to design liner shipping service 

networks. Reinhardt and Pisinger (2012) presented a model that allows a port to be visited 

twice in a route, stating that such butterfly routes are common in real-world situations. Their 
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model also incorporates transshipment costs and route dependent capacities. An exact 

branch-and-cut algorithm is developed to solve instances with up to 15 ports.  

Obtaining data on liner shipping is not a trivial matter, and the various authors have used 

different sources or artificial data for their test cases. To make comparisons of future solution 

methods for the liner shipping network design problem easier, Løfstedt et al. (2010) proposed 

a general model and a suite of benchmark instances based on real-world data. The model is 

similar to Alvarez’s (2009) model and is used to clearly define the problem and to compare 

various solution methods. 

Because of their inherent complexity, most liner shipping network design problems 

cannot be solved to optimality. Also, there is no report on the comparison between the 

designed network and the existing one using real cases for general network design problems. 

One possible reason is the high sensitivity of commercial data for liner shipping companies. 

Still, some companies, such as COSCO, OOCL, and Maersk Line, have started to work with 

academia to improve their shipping network designs. 

3.6 Limitations of the Existing Literature 

Despite the above mentioned advancements in the research on liner shipping network, 

there are still a number of practically significant issues that have seldom been touched. In this 

section we examine these issues and suggest some future research directions.  

(a) The container transshipment operation is not fully addressed. 

Transshipment is a unique feature of liner shipping. As a comparison, in tramp shipping 

the cargo volume between each port pair is very large, and hence cargo consolidation at hubs 

is unnecessary. Transshipment arises as a result of the improved handling operations at ports 

and the requirement for deploying large containerships. In spite of the importance of 
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transshipment in liner shipping, not enough efforts have been devoted to modelling the 

transshipment operations. The relay cost, container handling time, and wait time at 

transshipment port have attracted the least attention. Apart from the special problem 

characteristics (e.g., feeder network) in some studies, the most important reason that 

transshipment is not extensively investigated is the modelling difficulty. Transshipment 

makes the liner shipping problems much more difficult than similar transportation problems, 

e.g., vehicle routing problems (VRPs). 

(b)  Optimization of sailing speed is not well investigated. 

Notwithstanding the importance of the sailing speed to the operating cost, existing 

models are either too simplistic or inefficient to address realistic speed optimization problems. 

The nonlinear speed-bunker consumption relation is the major challenge for modelling and 

algorithm design. It should be mentioned that nearly all problems with liner ship routing and 

scheduling have integer decision variables. Hence it may be difficult to apply the traditional 

nonlinear programming method (e.g., Frank-Wolfe method) directly to address the sailing 

speed optimization problem. In order to attack this problem, one might use linear 

formulations to approximate the nonlinear speed-bunker consumption relation and take 

advantage of the progress of state-of-art MIP solvers. 

(c)  Very few studies have considered liner service schedules with O-D transit time 

constraints.  

There are studies on the port-to-port transit time without transshipment. However, the 

port-to-port time with transshipment is not well established. Both the port-to-port transit time 

and the connection time at transshipment ports are determined by the schedules. Hence the 

transit time issue is in fact the design of liner service schedules. To investigate the service 
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schedule and thereby the transit time issue, the sailing speed problem cannot be circumvented. 

Moreover, to build a robust liner service schedule, uncertainty at sea and uncertainty at port 

must be accounted for. This further complicates the schedule design problem. 

(d)  Many practical issues are missing in the existing liner shipping network design 

models. 

Liner shipping has many practical and important operations and features, including 

multi-type containers, container transshipment operations, empty container repositioning, 

origin-to-destination transit time constraint, consistent services with the current network, and 

joint services with other liner shipping companies. Existing studies usually assume that there 

are only one type of containers – TEU, or transform all types of containers to TEU. For 

example, a dry 40’ container is equivalent to two TEUs. While this is acceptable in terms of 

the ship slot used, it is no longer true in terms of the handling cost because the handling cost 

of a dry 40’ container should be less than two times the handling cost of a dry 20’ container. 

Transshipment operations and empty container repositioning are not accounted for in all the 

research. O-D transit time constraint, consistent services with the current network, and joint 

services with other liner shipping companies are hardly investigated by the literature. 

3.7 Commercial Software 

Liner shipping companies must have some optimization software for their shipping 

services. For instance, one can log on the website of a liner shipping company, and search for 

available services from one port to another within a specified time range. The liner shipping 

company will provide all practical services, including combination of services with 

transshipment. However, such software is confidential. We have investigated a global liner 

shipping company, and found that it has dedicated tools for optimizing the flow of containers 
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based on manually designed container routes. However, the design of container routes and 

port rotations cannot be automated. The deployment of ships, speed, and schedule are 

designed from experience. We are also aware of a liner shipping management tool: Round 

Trip Simulation System (TRIPS), developed by Institute of Shipping Economics and 

Logistics, Germany. Given a simple configuration of shipping service networks, TRIPS 

could calculate the resulting costs, which works an a decision support tool for liner shipping 

companies. In sum, liner shipping companies are in need of optimization-based decision 

support tools. 

3.8 Research Objectives 

The objective of this research is to examine the tactical-level decision problems 

associated with liner shipping networks in order to cover the gap between industrial 

requirement and academic research. In detail, the following four issues will be investigated:  

(a)  Fleet deployment with container transshipment operations; 

(b)  Ship speed optimization in liner shipping networks; 

(c)  Ship route schedule design with sea contingency time and port time uncertainty; 

(d)  Large-scale liner shipping network design; 

We will apply operations research methods to analyze these issues. Each issue is first 

formulated as a mathematical optimization model. Then efficient solution algorithms based 

on optimization theory, liner shipping characteristics, and state-of-art computer technology, 

are designed. The models and algorithms are tested for real-case problems and managerial 

insights for the liner shipping company are provided. 
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CHAPTER 4. FLEET DEPLOYMENT WITH TRANSSHIPMENT 

This chapter first proposes a realistic ship fleet deployment problem (FDP) arising in the 

liner shipping industry while considering practical operations and features, including 

container transshipment operations, transshipment cost, and container flow dependent port 

time. Second, an interesting origin-based mixed-integer linear programming model for the 

proposed FDP is developed. This formulation allows container transshipment operations at 

any port, any number of times, without explicitly defining the container transshipment 

variables. Experiments on the Asia-Europe-Oceania shipping network of a global liner 

shipping company show that more than one third (17 to 22 ports) of the total 46 ports have 

transshipment throughputs. Computational studies based on randomly generated large-scale 

shipping networks demonstrate that the proposed model can be solved efficiently by CPLEX. 

4.1 Problem Statement  

  Given a set of ports P , a set of weekly-serviced ship routes R , and the container 

shipment demand odn  (TEUs), ( , )o d ∈W , the liner shipping company aims to determine 

the type of ship and number of ships to deploy on each ship route, in order to fulfill the 

container shipment demand while minimizing the total cost. 

4.1.1 Ship Fleet 

The liner shipping company deploys both owned and chartered-in ships on its ship routes 

within the medium-term planning horizon. These ships are categorized into different types 

denoted by the set V  according to their load capacities, sailing speeds, operating costs and 

other ship-specific characteristics. For a particular ship type v∈V , let own
vN  be the number 

of owned ships by the liner shipping company, in
vN  be the maximum number of ships that 
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the liner shipping company can charter in from the leasing market, and in
vc  (USD/week) be 

the price for chartering in one ship for one week. It is assumed that all the unused ships will 

be chartered out, and let out
vc  (USD/week) be the weekly profit of chartering out one ship in 

type v . Because of the overhead of making a ship-chartering deal, it is obvious and practical 

that: 

 out in ,v vc c v< ∈V  (4.1) 

4.1.2 Ship Assignment  

The liner shipping company deploys ships on its ship routes within the medium-term 

planning horizon to fulfill the container shipment demand at minimum cost. Not all the ships 

can be deployed on a specific ship route r∈R  because of those physical constraints 

imposed on the ship route such as limited port draft, and we denote by r ⊆V V   the set of 

ship types available for ship route r . It is reasonable as well as practical to assume that the 

string of ships deployed on a specific ship route is of the same ship type. For one reason, it is 

difficult for ships with different sailing speeds to keep a constant and stable service 

frequency. For another reason, the operational homogeneity could be decreased if ships of 

different capacities are deployed.  

Assuming that the sailing speed of a ship on a leg of a particular service route r∈R  is 

already specified, the sailing time of a ship with type rv∈V   deployed on the service route, 

denoted by fix
rvτ  (hours), is also determined. For the sake of presentation, fix

rvτ  also includes the 

standby time for pilotage in and out at all the ports of call. Port time here only includes the 

time ships spend at berth for container handling, and it is thus a function of the number of 

containers handled.  
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The operating cost of a ship route r  deployed with rm  ships of type v  can be classified 

into three portions: cost associated with ships, which can be calculated by the term opr
r vm c ; 

cost related to the voyage (including bunker cost, canal dues, and fixed charges of calling at 

ports), denoted by fix
rvc  (USD/week), which depends only on the ship type v  (note that since 

the port rotation of ship route r  and sailing speed of ships of type v  are known, fix
rvc  is also 

determined); cost charged for berth occupancy, which is based on the ship type and time 

spent at berth. Besides the operating cost of the ship routes, the total fleet’s operating cost 

also includes the container handling cost. 

The FDP faced by the liner shipping company can be described as follows: Given a set 

of liner ship routes with fixed port rotations, fixed sailing speed of ships between any two 

ports, and known weekly container shipment demand, determine the type and number of 

ships to deploy on each ship route, in order to minimize the total fleet’s operating cost while 

allowing container transshipment operations and fulfilling the container shipment demand.  

4.2 Origin-Based Mathematical Formulation  

4.2.1 Origin-based decision variables 

There are three types of interrelated decision variables for the proposed FD problem. 

The first type relate to the ships that are chartered in and chartered out, the second concerns 

ship fleet deployment, and the third is container flow with container transshipment operations. 

The first two types of decision variables are straightforward and specified as follows: 

in
vn :  Number of chartered in ships of type v∈V ; 

out
vn :  Number of chartered out ships of type v∈V ; 

rm :  Number of ships deployed on route r∈R ;      
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rvx :  A binary variable which takes value 1 if route r∈R  is deployed with ships of type v , 

rv∈V , and 0 otherwise; 

Containers loaded and/or discharged at a particular port can be classified into three 

categories. The first category consists of those containers originating from this port, the 

second comprises those containers originating from other ports in the shipping network and 

destined for this particular port, and the third category is composed of those containers being 

transshipped at this port. To describe these three categories of containers, we differentiate 

them according to their origin ports, by defining the following three sets of decision variables, 

which we refer to as origin-based container flow variables: 

ˆo
riz :  Number of containers (TEUs/week) originating from port o∈P  and loaded at the thi  

port of call on route r∈R ; 

o
riz :  Number of containers (TEUs/week) originating from port o∈P  and discharged at 

the thi  port of call on route r∈R ; 

o
rif :  Number of containers (TEUs/week) originating from port o∈P  and stowed onboard 

ships sailing on the thi  leg of route r∈R .  

As there are two container handling operations―discharging and loading―for one 

container being transshipped at a particular port p∈P , the number of transshipped 

containers at this port equals the difference between the total number of containers handled at 

the port and the number of containers originating from or destined for this port, divided by 2. 

Let p ⊆R R  be the set of ship routes containing port p . The number of containers 

transshipped at a particular port p∈P  can thus be calculated by 
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  (4.2) 

Eq. (4.2) implies that the number of transshipped containers can be implicitly represented by 

the origin-based container flow variables, without explicitly introducing variables indicating 

the number of containers transshipped from one ship route to another. 

We could alternatively represent the aforementioned container flows according to their 

origin and destination ports, that is, using O-D container flow variables. However, the 

number of O-D container flow variables is much greater than the number of origin-based 

container flow variables. For instance, the Asia-Europe-Oceania liner shipping service 

network that will be used in the subsequent case study consists of 46 ports (origin ports), as 

shown in Figure 2-1, and a total of 652 O-D port pairs between these 46 ports have container 

shipment demand. Assuming that there are 10 ship routes and each ship route has 10 legs, in 

contrast to a total of 3×10×10×652=195,600 O-D based container flow variables, the number 

of origin-based container flow variables is 3×10×10×46=13,800. Therefore, the origin-based 

container flow representation, without variables explicitly representing transshipment 

decisions, is more suitable for our model building. For the sake of presentation, let vector x  

denote all the decision variables, namely: 

 in out ˆ( , , , , , , | , , , )o o o
v v r rv ri ri ri rn n m x z z f r v i o= ∈ ∈ ∈ ∈x R V I P  (4.3) 

4.2.2 Mathematical models 

For a given decision vector x , the total cost (USD/week) for the liner shipping company, 

denoted by TC( )x , can be expressed as: 
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Eq. (4.4) has six terms: the first is the total cost associated with operating ships and voyages, 

the second term is the total berth occupancy charge, the third is the total container 

transshipment cost, the fourth is the total loading and discharge cost, the fifth term is the cost 

of chartering in ships, and the sixth is profit from chartering out ships.  

Define 0 :
r

o o
r rNf f= . The container flows involved in the given vector of decision variables 

x  should fulfill the fundamental flow conservation equations: 

 , 1 ˆ , , ,o o o o
r i ri ri ri rf z f z r i o− + = + ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.5) 

 ˆ( ) , ( , )
d rd

o o
ri ri od

r i
z z n o d

∈ ∈

− = ∀ ∈∑ ∑
R I

W


 (4.6) 

Eq. (4.5) guarantees that the number of incoming containers is equal to the number of 

outgoing containers at each port of call on each ship route. Eq. (4.6) enforces that the 

container shipment demand is fulfilled.  

Let v ⊆R R  be the set of ship routes accommodating ship type v∈V , that is, 

: { | , }v rr r v= ∈ ∈R R V . The proposed FDP can be formulated as the following mixed-

integer nonlinear programming model, named fleet deployment model 1 (FDM1): 

[FDM1] 

 min TC( )
x

x  (4.7) 

subject to: 
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 fix ˆ168 [ ( )],
ri

r r
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 , 1 ˆ , , ,o o o o
r i ri ri ri rf z f z r i o− + = + ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.11) 
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d rd

o o
ri ri od
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∈ ∈
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 (4.12) 

 , 10, , ,o
ri r r if r i o p += ∀ ∈ ∀ ∈ =R I  (4.13) 

 0, , ,o
ri r riz r i o p= ∀ ∈ ∀ ∈ =R I  (4.14) 

 in out own ,
v

r rv v v v
r

m x n n N v
∈

− + = ∀ ∈∑
R

V


 (4.15) 

 in in ,v vn N v≤ ∀ ∈V  (4.16) 

 {0,1}, ,rv rx r v∈ ∀ ∈ ∀ ∈R V  (4.17) 

 ,rm r+∈ ∀ ∈R   (4.18) 

 ˆ 0, , ,o
ri rz r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.19) 

 0, , ,o
ri rz r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.20) 

 0, , ,o
ri rf r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.21) 

 in out, {0},v vn n v+∈ ∀ ∈V   (4.22) 

Constraints  (4.8) impose the condition that exactly one type of ship is deployed on each ship 

route. Constraints (4.9) ensure that the number of ships deployed on a ship route is large 

enough to maintain a weekly service frequency, where 168 is the number of hours in a week. 

Constraints (4.10) are the capacity constraints on each leg of each ship route. Constraints 
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(4.11) and (4.12) enforce flow conservation at each port of call on each ship route. 

Constraints (4.13) require that containers originating from a given port o  do not return to 

this port. Constraints (4.14) require that containers originating from a given port o  are not 

discharged at this port. Constraints (4.15) are the ship number conservation equations. 

Constraints (4.16) are the upper bound constraints on the number of chartered in ships. 

Finally, constraints (4.17)-(4.22) define non-negativity and/or integer attributes of the 

decision variables. 

FDM1 is a mixed-integer optimization model with nonlinear terms r rvm x  and 

ˆ( )o o
rv ri rix z z+  . We can transform FDM1 to an equivalent and solvable mixed-integer linear 

programming model, by introducing vector x̂ : 

 ˆ ( , , , )rv riv r rm z r v i= ∈ ∈ ∈x R V I  (4.23) 

where rvm  denotes the number of ships of type v  deployed on ship route r  and rivz  denotes 

the number of containers handled (loaded and discharged, including containers originating 

from all ports) for a ship of type v  at the thi  port of call on ship route r . Both rvm  and rivz  

are zero when 0rvx = . The FDM1 can be transformed into the following mixed-integer 

linear programming model, called FDM2, by means of the big-M modeling method: 

[FDM2]   
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subject to: 
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 1 , ,rv rv rm M x r v≤ ∀ ∈ ∀ ∈R V  (4.26) 
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 3 , , ,riv rv r rz M x r i v≤ ∀ ∈ ∀ ∈ ∀ ∈R I V  (4.31) 
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 , 10, , ,o
ri r r if r i o p += ∀ ∈ ∀ ∈ =R I  (4.34) 

 0, , ,o
ri r riz r i o p= ∀ ∈ ∀ ∈ =R I  (4.35) 

 in in ,v vn N v≤ ∀ ∈V  (4.36) 

 {0,1}, ,rv rx r v∈ ∀ ∈ ∀ ∈R V  (4.37) 

 {0}, ,rv rm r v+∈ ∀ ∈ ∀ ∈R V  (4.38) 

 ˆ 0, , ,o
ri rz r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.39) 

 0, , ,o
ri rz r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.40) 

 0, , ,o
ri rf r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.41) 

 0, , ,riv r rz r i v≥ ∀ ∈ ∀ ∈ ∀ ∈R I V  (4.42) 
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 in out0, 0,v vn n v≥ ≥ ∀ ∈V  (4.43) 

ˆTC( , )x x  in the objective function (4.24) is an equivalent formulation for TC( )x . Constraints 

(4.26)-(4.27) are the weekly service frequency constraints. Eqs. (4.31)-(4.32) define rivz  

because constraints (4.32) must be binding in the optimal solution if 1rvx = . 1M  to 4M  can 

be determined from practical considerations. A round trip seldom exceeds 15 weeks in 

practice; hence, we can set 1 15M =  and 2 15 168 hours / week 2520M = × = . Both 3M  and 

4M  could be set to 2 max{Cap , }v v× ∀ ∈V , accounting for the extreme case that a full 

shipload of containers is discharged, and another full shipload is loaded, at a given port. The 

integrality constraint (4.22) is relaxed in Eq. (4.43) as a consequence of the following 

proposition.  

Proposition 4-1: Let *( )in
vn  and *( )out

vn  denote the optimal solution for in
vn  and out

vn  in FDM2, 

respectively. Both *( )in
vn  and *( )out

vn  take integer values. 

Proof: We prove the proposition by contradiction. Let a    be the maximum integer not 

greater than a . Suppose that *( )in
vn  is not an integer for a particular ship type v , i.e., 

* *( ) ( )in in
v vn n  <  . As a result of constraints (4.33) and the integrality property of rvm  and 

own
vN , * *( ) ( )out out

v vn n  <  . The converse also holds.  

Due to the condition (4.1), the optimal value of FDP2 can be decreased if we use 

*( )in
vn    and *( )out

vn    in place of *( )in
vn  and *( )out

vn , respectively, while satisfying all the 

constraints. Therefore *( )in
vn  and *( )out

vn  are not the optimal solution. □ 
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We note that for pratcial-sized instances, the proposed mixed-integer linear 

programming model FDM2 can be solved efficiently using off-the-shelf optimization solvers 

such as CPLEX. 

4.3 Practical Considerations  

In this section, we introduce how to handle other practical considerations in the model 

FDM2. In fact, FDM2 can easily accommodate these additional constraints. 

First, the container flow conservation equations (4.11) and (4.12) cannot ensure that the 

origin-based container flow on a leg of a particular ship route, o
rif , reflects the actual 

container flow. For example, assuming that the ship route in Figure 2-2 has only one TEU 

shipped from Busan to Shanghai, the actual container flow is shown in Figure 4-1 (a). 

However, given a positive integer number δ , Figure 4-1 (b) is also a possible optimal flow, 

as long as the ship capacity constraint is not violated. Although the case in Figure 4-1 (b) has 

no effect on fleet deployment decisions, the leg container flow o
rif  (or rather, ship utilization, 

which is defined as the ratio between the leg flow and the ship capacity) is an important 

criterion when a liner shipping company is evaluating a ship fleet deployment decision. In 

order to obtain the actual container flow, we first solve FDM2 to obtain the optimal decisions, 

denoted by *in
vn , *out

vn , *
rvm , *

rvx , *ˆ o
riz , *o

riz , and *
rivz , and subsequently solve the following 

linear programming model to obtain the optimal actual origin-based leg container flows:  

 min
o rri

o
rir i of

f
∈ ∈ ∈∑ ∑ ∑R I P

 (4.44) 

subject to 

 * *
, 1 ˆ , , ,o o o o

r i ri ri ri rf z f z r i o− + = + ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.45) 

 0, , ,o
ri rf r i o≥ ∀ ∈ ∀ ∈ ∀ ∈R I P  (4.46) 
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Figure 4-1 Actual container flow and a possible container flow by FDM2 

 
Second, the liner shipping company may not transport all containers using its own 

services. Instead, it can buy ship slots from its shipping alliances. To incorporate slot-buying 

operations in FDM2, we define ody  (TEUs/week) as the number of containers shipped for 

port pair ( , )o d ∈W  along the ship routes operated by the liner shipping company. Thus, 

od odn y−  is the number of containers outsourced to other liner shipping companies. We 

further define odg  (USD/TEU) as the freight rate charged by other liner shipping companies 

for shipping one container for port pair ( , )o d ∈W . FDM2 can thus be reformulated as: 

[FDM3]   
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 (4.47) 

subject to: 
 ˆ( ) , ( , )

d rd

o o
ri ri od

r i
z z y o d

∈ ∈

− = ∀ ∈∑ ∑
R I

W


 (4.48) 

 0 , ( , )od ody n o d≤ ≤ ∀ ∈W  (4.49) 
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and relevant constraints. The objective function (4.47) is similar to the objective function 

defined by Eq. (4.24). The last term in Eq. (4.47) is the freight rate charged by other liner 

shipping companies. Constraints (4.48)-(4.49) denote the fact that some containers can be 

delivered by other liner shipping companies. 

The liner shipping company may be reluctant to predict the freight rate odg  for FDM3 

because it might be difficult to obtain a good prediction. Alternatively, the company may 

require that at least a fraction, 1−α , of its total demand must be fulfilled by its own services, 

with 1−α  taking a value of 95 per cent, for example. FDM2 is now reformulated as: 

[FDM4]   
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 (4.50) 

subject to: 
 ˆ( ) , ( , )

d rd

o o
ri ri od

r i
z z y o d
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− = ∀ ∈∑ ∑
R I

W


 (4.51) 

 
( , ) ( , )

(1 )od od
o d o d

y d
∈ ∈

≥ −α∑ ∑
W W

 (4.52) 

 0 , ( , )od ody n o d≤ ≤ ∀ ∈W  (4.53) 

and relevant constraints. 

Third, the liner shipping company may have committed to some port operators that at 

least a certain number of container moves (loading or discharging operations) would be 

conducted at their port, in order to obtain a preferential container handling price. For example, 
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if, at a particular port p∈P , at least pβ  container moves per week are required, then we can 

add the following constraints to FDM2:  

 ˆ( ) ,
p rp

o o
ri ri p

r i o
z z p

∈ ∈ ∈

+ ≥ β ∀ ∈∑ ∑∑
R I P

P


 (4.54) 

Conversely, suppose that the loading, discharge, and transshipment prices at port p∈P  

are ˆpc′ , pc′ , and pc′ , respectively, if the liner shipping company does not commit to a 

particular volume of container moves; if the company has committed to a volume of at least 

pβ  moves per week, and the volume is achieved, then the company enjoys preferable prices 

of ˆpc , pc , and pc , respectively; however, if the committed volume is not achieved, the 

corresponding penalty prices are ˆpc′′ , pc′′ , and pc′′ , respectively. Hence, p p pc c c′′ ′> > , 

p p pc c c′′ ′> >   , and p p pc c c′′ ′> > . We can thus use binary decision variables, pw , to indicate 

whether the liner shipping company should commit to a minimum container move volume at 

port p  ( 1pw = ) or not ( 0pw = ). We further represent, by pu  and pu′ , the number of 

transshipment operations at port p  at prices pc  and pc′ , respectively. pu  and pu′  cannot both 

be non-negative at port p . Let 5M  and 6M  be two large numbers. Then, FDM2 is rewritten 

as: 

[FDM5]   
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 (4.55) 

subject to: 
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 (4.57) 

 6 ,p pu M w p≤ ∀ ∈P  (4.58) 

 6 (1 ),p pu M w p′ ≤ − ∀ ∈P  (4.59) 

 0, 0, {0,1},p p pu u w p′≥ ≥ ∈ ∀ ∈P  (4.60) 

and relevant constraints. 

Fourth, if the liner shipping company needs to determine whether a particular ship route 

r∈R  should be operated, it can simply add a dummy ship type dummyv  with zero capacity 

and zero cost to the set of candidate ship types rV . If, under the optimal solution, the dummy 

ship type is chosen, then ship route r  should not be operated.  

Fifth, the empty container repositioning issue can also be integrated into FDM2 by using 

flow variables similar to ˆo
riz , o

riz , and o
rif . The main difference is that empty containers do 

not have fixed destinations and all empty containers can be considered as a single special 

type of container. Suppose that the number of surplus empty containers at port p∈P  is EMP
pn  

(TEUs/week). EMP 0pn <  means that port p  has a deficit of empty containers and EMP 0pn =  

means that port p  has a balance between incoming and outgoing empty containers. Let 

EMP: { : 0}pp n+ = ∈ >P P , 0 EMP: { : 0}pp n= ∈ =P P , and EMP: { : 0}pp n− = ∈ <P P . We need the 

following decision variables: 

EMPˆriz :  Number of empty containers (TEUs/week) loaded at the thi  port of call on ship route 

r∈R ; 
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EMP
riz :  Number of empty containers (TEUs/week) discharged at the thi  port of call on ship 

route r∈R ; 

EMP
rif :  Number of empty containers (TEUs/week) stowed on board ships sailing on the thi  

leg of ship route r∈R .  

With the above decision variables, FDM2 can be reformulated as: 

[FDM6]   
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subject to: 
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 EMP EMP EMP EMP
, 1 ˆ , ,r i ri ri ri rf z f z r i− + = + ∀ ∈ ∀ ∈R I  (4.63) 
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 EMP EMP
4 ˆ ˆ(1 ) ( ) ( ), , ,o o

riv rv ri ri ri ri r r
o

z M x z z z z r i v
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 EMPˆ 0, ,ri rz r i≥ ∀ ∈ ∀ ∈R I  (4.66) 

 EMP 0, ,ri rz r i≥ ∀ ∈ ∀ ∈R I  (4.67) 

 EMP 0, ,ri rf r i≥ ∀ ∈ ∀ ∈R I  (4.68) 

and relevant constraints. 



Chapter 4 Fleet Deployment with Transshipment 

63 

4.4 Computational Study 

4.4.1 Real-case problems 

To assess the performance of the proposed mixed-integer linear programming model and 

to gain insight into the fleet deployment problem, we first take advantage of eight test cases 

with different container shipment demands, provided by a global shipping company. The test 

cases apply to the Asia-Europe-Oceania shipping network of the global liner shipping 

company, which has a total of 46 ports, as shown in Figure 2-1. All 46 ports are assumed to 

have the same characteristics, except for geographical location and container shipment 

demand. The loading cost ˆ 150pc =  USD/TEU, discharge cost 150pc =  USD/TEU, and 

transshipment cost 200pc =  USD/TEU. There are four types of ships, as shown in Table 4-1. 

A total of 12 ship routes are operated over these 46 ports, as shown in Table 4-2. Each ship 

route has two or three candidate ship types. The candidate ship types for the 12 ship routes 

and the fixed operating costs fix
rvc  and fixed round-trip voyage times fix

rvτ  are shown in Table 

4-3. A blank in Table 4-3 means that the corresponding ship type is not a candidate for the 

relevant ship route. fix
rvc  and fix

rvτ  are computed using the data from Table 4-1 and Table 4-2. 

fix
rvc  is calculated by summing the fixed cost of calling at a port and the bunker cost. fix

rvτ  is 

derived by summing the fixed time spent calling at each port on the ship route and the sailing 

time on each voyage leg. There are 652 O-D port pairs with container shipment demand. The 

mixed-integer linear programming model FDM2 is solved using CPLEX-12.1, running on a 3 

GHz Dual Core PC with 4 GB of RAM. 
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Table 4-1  Characteristics of the liner ship fleet 

 Ship type 
 1  2 3  4  
Capacity (TEUs) 1500 3000 5000 10000 
Fixed operating cost opr

vc  (USD/week) 51923 76923 115384 173076 
Speed (knots) 16.2 18.9 22.5 26 
Bunker cost (USD/n mile) 59 72 78 100 
Fixed cost for calling at a port (USD) 3873 5477 7071 10000 
Berth occupancy charge ber

pvc  (USD/hour) 500 1000 1666 3333 
Fixed time when calling at a port (hours) 4 4 4 4 
Container handling time (hours/TEU) 1/40 1/85 1/95 1/120 
Number of owned ships own

vN  20 20 20 20 

Profit gained from chartering out a ship out
vc  

(USD/week) 
52500 77000 98000 140000 

Maximum number of ships that can be chartered in 
in
vN  30 30 30 30 

Cost of chartering in a ship in
vc  (USD/week) 66500 94500 122500 175000 

 

Table 4-2  Ports of call and voyage distance (n miles) for each leg of the 12 ship routes  

No. Ports of call (voyage distance) 

1 Yokohama(15)→Tokyo(177)→Nagoya(201)→Kobe(734)→Shanghai(745)→Hong Kong(1568) 
→ Yokohama 

2  Ho Chi Minh(589)→Laem Chabang(755)→Singapore(187)→Port Klang(830) →Ho Chi Minh 
3  Brisbane(419)→Sydney(512)→Melbourne(470)→Adelaide(1325)→Fremantle(1733)→ 

Jakarta(483)→Singapore(3649)→Brisbane 
4  Manila(527)→Kaohsiung(164)→Xiamen(260)→Hong Kong(15)→Yantian(19)→Chiwan(17) 

→Hong Kong(620)→Manila 
5  Dalian(187)→Xingang(379)→Qingdao(303)→Shanghai(93)→Ningbo(93)→ Shanghai(383)→ 

Kwangyang(72)→Busan(487)→Dalian 
6  Chittagong(872)→Chennai(573)→Colombo(306)→Cochin(723)→Nhava Sheva(723)→ 

Cochin(306)→Colombo(573)→Chennai(872)→Chittagong 
7  Sokhna(265)→Aqabah(554)→Jeddah(1268)→Salalah(885)→Karachi(688)→Jebel Ali(862) 

→Salalah(1878)→Sokhna 
8  Southampton(165)→Thamesport(386)→Hamburg(82)→Bremerhaven(196)→Rotterdam(42)→

Antwerp(51)→Zeebrugge(168)→Le Havre(103)→Southampton 
9  Port Klang(187)→Singapore(483)→Jakarta(1917)→Kaohsiung(904)→Busan(904) 

→Kaohsiung(342)→Hong Kong(17)→Chiwan(1597)→Port Klang 
10  Southampton(3162)→Sokhna(1878)→Salalah(1643)→Colombo(1560)→Singapore(1415) 

→Hong Kong(260)→Xiamen(486)→Shanghai(448)→Busan(487)→Dalian(187)→ 
Xingang(379)→Qingdao(303)→Shanghai(745)→Hong Kong(1415)→Singapore(1560)→ 
Colombo(1643)→Salalah(5029)→Southampton 

11  Brisbane(419)→Sydney(512)→Melbourne(470)→Adelaide(1325)→Fremantle(3148)→ 
Colombo(1643)→Salalah(5244)→Rotterdam(5244)→Salalah(1643)→Colombo(5191)→ 
Brisbane 

12  Yantian(9956)→Hamburg(3621)→Sokhna(620)→Jeddah(4156)→Port Klang(187)→ 
Singapore(1309)→Manila(629)→Yantian 
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Table 4-3  Candidate ship types, fixed costs (USD/week) and fixed voyage times (hours) of 

the 12 ship routes  

No. 
 Ship type 1  Ship type 2  Ship type 3  Ship type 4 
 fix

rvc  fix
rvτ   fix

rvc  fix
rvτ   fix

rvc  fix
rvτ   fix

rvc  fix
rvτ  

1  226198 236  280542 206     404000 161 
2  154791 161  191900 140     276100 110 
3  533980 558  656891 482     929100 371 
4     155123 113  176013 100  232200 92 
5  148807 155  187600 137     279700 111 
6  322916 337  400072 293     574800 229 
7  404711 423  499139 366     710000 284 
8     129712 95  149622 85  199300 79 
9     501088 368  551946 314  715100 286 

10        1883007 1072  2430000 972 
11  1504231 1573  1843178 1354     2583900 1033 
12  1235313 1292  1512755 1111     2117800 847 

 

 

Table 4-4 shows the total container shipment demand for the 652 O-D port pairs (TEUs), 

the number of ports with transshipment containers, the optimal total number of container 

transshipment operations, the optimal total cost (million USD/week), and CPU time (minutes) 

for the eight test cases. First, we observe that FDM2 can be solved efficiently for all test 

cases: the maximum CPU time required is nine minutes. Second, the total number of 

transshipment containers is significant compared with the total container shipment demand. 

This highlights the importance of taking into consideration container transshipment 

operations in the FDP. It is noteworthy that, among the total of 46 ports, 17 to 22 ports have 

transshipment container throughput in the optimal solutions. This high proportion of 

transshipment ports is not captured in the literature on the hub-and-spoke (H&S) network of 

liner shipping services, whereas the proposed model fully captures this feature, since it 

allows container transshipment at any port. For example, in practice a number of global liner 

shipping companies do not have direct ship routes from Australia to Europe. However, they 
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have ship routes that connect Australia to Asia and ship routes that connect Asia to Europe. 

Therefore containers from Australia to Europe can be transshipped at any of the common 

Asian ports of call, such as Singapore, Hong Kong, and Kaohsiung. If the transshipment cost 

at e.g. Singapore were very high, global liner shipping companies would choose to transship 

containers from Australia to Europe at Hong Kong or Kaohsiung. The load, discharge, and 

transshipment container throughput at the 22 transshipment ports in test case 1 is plotted in 

Figure 4-2. Major transshipment ports, such as Singapore, Salalah, Colombo and Hong Kong, 

can easily be identified. 

 

Table 4-4  Computational results for the real-case fleet deployment problems 

Case No. 

Total container 
shipment 
demand 

No. of ports with 
transshipment  

Total no. of 
transshipment 

containers 

Total cost 
(million 

USD/week) 
CPU Time 

(mins) 
1 23353 22 21846 20.73 9 
2 24308 18 22080 21.37 7 
3 25176 22 23155 21.91 4 
4 26233 17 23815 22.71 5 
5 27321 19 24811 23.42 5 
6 28610 20 26412 25.00 4 
7 30189 18 27417 26.55 8 
8 32559 18 30507 28.37 3 
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Figure 4-2 Load, discharge and transshipment container throughput (TEUs) at the 22 

transshipment ports in test case 1 

 

Ship utilization can provide important insights into liner shipping services. For instance, 

the ship utilization on each leg of ship route 9 in test case 1 is shown in Figure 4-3. It can be 

observed that ship utilization between Kaohsiung and Busan is very low. Given that Busan is 

far away to the north of the other ports on the ship route, the liner shipping company may 

consider removing Busan from this ship route. Figure 4-4 shows the ship utilization on each 

leg of ship route 10 in test case 1. Similarly, the ship utilization is very low when the ship 

sails from Shanghai to Busan, Dalian, Xingang, Qingdao, and back to Shanghai. Therefore, 

these four ports―Busan, Dalian, Xingang, and Qingdao―might also be removed from the 

ship route and a feeder service to Shanghai could possibly be introduced instead. It should be 

mentioned that ship utilization on the westbound route (from Shanghai to Southampton) is 

high, whereas ship utilization on the eastbound route (from Southampton to Shanghai) is 
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much lower. This phenomenon is due to the trade imbalance between the east and the west. 

Unlike the above two cases of low utilization between Kaohsiung and Busan, and between 

the two calls at Shanghai, removing some ports of call on the eastbound route would not 

significantly shorten the round-trip distance. In fact, it would be difficult to improve the low 

ship utilization due to trade imbalance. 

 

Figure 4-3 Ship utilization on each leg of ship route 9 in test case 1 

 

Figure 4-4 Ship utilization on each leg of ship route 10 in test case 1 
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4.4.2 Randomly generated test instances 

To further test the computational efficiency of the proposed model, we make use of ten 

randomly created cases, each of which has a network of 300 ports and 20,000 O-D port pairs. 

The scale of these problems is thus larger than the shipping network of the world’s largest 

liner shipping company Maersk, which has a total of 234 unique ports and 14,000 O-D port 

pairs (Løfstedt, 2010). In the test cases, the ports are uniformly distributed on a 

20,000×15,000 (unit: n mile) rectangular area. The container shipment demand for each O-D 

port pair is generated according to the following distribution:  

 ( )Pr( 1) 20000 / 300 300odn ≥ = ×  (4.69) 

 Pr(1 30 | 1) 0.95od odn n≤ ≤ ≥ =  (4.70) 

 Pr(31 100 | 1) 0.045od odn n≤ ≤ ≥ =  (4.71) 

 Pr(101 1000 | 1) 0.005od odn n≤ ≤ ≥ =  (4.72) 

The container volume defined by Eqs. (4.70), (4.71) or (4.72) obeys the discrete uniform 

distribution, which means that odn
 
takes only integer values. For the generation of ship routes, 

we first generate the maximum number of ports of call on a certain ship route, according to 

the discrete uniform distribution U(2,15) . The thi  ship route starts from the last port of call 

on the th( 1)i −  route (the 1st ship route starts from Port 1). The thj  port of call on the thi  ship 

route is chosen randomly from the 10 nearest ports to the th( 1)j −  port of call. The thi  ship 

route finishes either when j  equals the randomly generated maximum number of ports of 

call or when the round-trip distance has exceeded 30,000 n miles. Using this procedure, we 

first generate 20 ship routes. After that, the ports not included in these ship routes are 

randomly connected through feeder services to one of the ports on these ship routes. We 

http://forskningsbasen.deff.dk/Search.external?operation=search&search-query=au:%22L%C3%B8fstedt+Berit%22
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consider a total of nine ship types, of which one dummy mega-ship type has a capacity of 

1,000,000 TEUs. This dummy mega-ship type is a candidate ship type for all ship routes, 

ensuring that FDM2 has a feasible solution. Each of the generated ship routes has two or 

three candidate ship types. With these settings, we solve ten randomly generated large-scale 

networks with CPLEX, using the same computer as was used in the eight test cases described 

above. The average CPU time required over the ten cases was 67 minutes and the maximum 

time was 236 minutes. Hence, the large-scale problems encountered in practice can be solved 

with the proposed model. 

4.5 Conclusions 

A realistic FDP with container transshipment operations has been investigated. Based on 

the novel concept of origin-based container flow variables, a mixed-integer linear 

programming model for the FDP is formulated, which allows container transshipment 

operations at any port for any number of times.  

The computational experiments on the Asia-Europe-Oceania shipping network of a 

global liner shipping company are conducted. The result that 17 to 22 ports out of the total of 

46 ports have transshipment throughputs in the optimal solutions cannot be captured by the 

existing literature on H&S liner shipping networks. We showed how ship utilization in the 

optimal solution can be used to redesign liner services. Further tests on randomly generated 

large-scale networks show that the proposed model is able to address large-scale problems 

encountered in practice.  
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CHAPTER 5. SAILING SPEED OPTIMIZATION 

This chapter first calibrates the bunker consumption - sailing speed relation for container 

ships using historical operating data from a global liner shipping company. It proceeds to 

investigate the optimal sailing speed of container ships on each leg of each ship route in a 

liner shipping network while considering transshipment and container routing. This problem 

is formulated as a mixed-integer nonlinear programming model. In view of the convexity, 

non-negativity, and univariate properties of the bunker consumption function, an efficient 

outer-approximation method is proposed to obtain an ε-optimal solution with a 

predetermined optimality tolerance level ε. The proposed model and algorithm is applied to a 

real case study for a global liner shipping company. 

 
5.1 Calibration of Bunker Consumption - Sailing Speed Function  

Before describing the sailing speed optimization problem, we first calibrate the relation 

between bunker consumption and sailing speed. According to the literature review, we 

assume that the daily bunker consumption Q  (tons/day) and sailing speed v  (knot) has the 

power relation: 

 bQ a v= ×  (5.1) 

where a  and b  are coefficients to be calibrated from real data. Function (5.1) is more 

general than the third power relation assumed in most existing studies. We can transform Eq. 

(5.1) into an equivalent form: 

 ln ln lnQ a b v= +  (5.2) 
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Therefore, we can consider ln v  as the independent variable and ln Q  as the response 

variable, and use the conventional linear regression method to calibrate parameters ln a  and 

b . 

 
5.1.1 Data description  

We take advantage of 5 groups of data provided by a global liner shipping company as 

shown in Table 5-1. This dataset is representative because it covers three types of ships – 

3000-TEU (acronym for twenty-foot equivalent unit), 5000-TEU, and 8000-TEU ships – on 

five voyage legs. There are 20 historical data for each voyage leg on the average sailing 

speed and daily bunker consumption. We hence calibrate the parameter a  and b  for each 

group of data using the linear regression method.  
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Table 5-1  Historical data on sailing speed and bunker consumption  

Ship type and voyage leg Average speed  
(knot) 

Bunker  
(ton/day) 

 Average speed  
 (knot) 

Bunker 
(ton) 

3000-TEU 
Singapore-Jakarta 

(SG-JK)  
  
  

16.0 42   17.3 53 
17.0 47   16.9 47 
16.3 43   15.7 39 
15.0 37   17.1 50 
17.6 56   18.0 60 
16.4 44   16.2 43 
15.9 40   17.5 55 
15.5 38   15.8 39 
16.6 45   15.4 38 
17.7 58   16.5 45 

3000-TEU 
Singapore-Kaohsiung  

(SG-KS) 
  

20.0 82   18.7 69 
20.5 87   20.7 93 
18.5 67   19.0 73 
19.7 77   20.6 90 
19.6 76   19.8 78 
18.8 72   20.4 85 
20.9 98   19.4 75 
20.8 96   21.5 108 
18.2 65   21.1 101 
21.2 103   20.3 84 

5000-TEU 
Hong Kong-Singapore 

(HK-SG) 
  

17.0 51   17.0 51 
18.5 70   16.8 48 
17.9 64   16.5 46 
17.4 56   17.0 52 
16.9 49   18.9 74 
16.4 46   17.1 53 
17.1 52   18.5 71 
16.1 45   17.6 59 
19.8 80   18.4 69 
19.0 75   18.2 67 

8000-TEU 
Yantian-Los Angeles 

(YT-LA) 
  
  

19.0 109   19.6 121 
19.5 118   18.4 98 
18.8 103   18.5 100 
21.0 147   21.4 155 
19.7 123   22.0 178 
20.4 135   20.2 132 
18.9 106   19.7 124 
17.9 89   19.4 117 
19.3 115   18.9 105 
17.0 81   23.0 200 

8000-TEU 
Tokyo-Xiamen 

(TK-XM) 
  

17.5 86   18.4 97 
17.8 87   17.4 85 
16.8 76   18.0 92 
20.1 128   17.0 82 
16.1 70   18.6 102 
15.8 68   17.2 83 
21.0 146   16.9 79 
20.5 135   18.0 93 
16.5 75   17.8 88 
17.2 84   17.0 81 
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5.1.2 Calibration results with statistical analysis  

Figure 5-1 shows the calibrated bunker consumption - sailing speed function using Excel, 

the historical operating data (the diamonds in the figure) and the calibrated function (the 

curve). Table 5-2 reports the calibration and relevant statistical test results. First, we observe 

that the coefficient of determination 2R  is at least 0.96 and the adjusted 2R  is at least 0.95. 

Also, at the 5% significance level, the hypothesis that the residual errors are normally 

distributed is not rejected for any of the five data sets by using the Anderson-Darling Test. 

Therefore, using the power function (5.1) to approximate the bunker consumption function is 

appropriate.  

Second, at the 5% significance level, the hypothesis that b=1 is rejected for all of the five 

data sets as shown in Table 5-2. We can hence conclude that the daily bunker consumption is 

a not a linear function of the sailing speed. Table 5-2 also shows that at the 5% significance 

level, the hypothesis that b=3 is rejected for two of the five data sets. Among the five data 

sets, the largest coefficient b is 3.3 and the smallest is 2.7. As a consequence, we reach the 

conclusion that the third power relationship is indeed a good approximation. Hence, we argue 

that the third power relation can be used if not enough historical data are available. Once 

enough historical data are ready for obtaining b through regression, we should use a more 

accurate bunker consumption function.  

Third, the regression analysis also shows that bunker consumption is dependent on 

voyage legs. For example, the bunker consumption - sailing speed functions for 3000-TEU 

ships on the leg Singapore-Jakarta and the leg Singapore-Kaohsiung are different. This can 

be explained by the fact that different legs have different weather conditions and sea 
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conditions such as currents. As a consequence, the optimal sailing speeds on different legs 

may be different. 

 

Table 5-2  Statistical analysis of the linear regression model  

 3000-TEU 
SG-JK 

3000-TEU 
SG-KS 

5000-TEU 
HK-SG 

8000-TEU 
YT-LA 

8000-TEU 
TK-XM 

a^ 0.014 0.010 0.004 0.011 0.037 
b 2.892 3.002 3.314 3.118 2.709 

R2 0.964 0.960 0.977 0.993 0.990 
Adjusted R2 0.962 0.958 0.976 0.993 0.990 

p-values 

H0:b=1* 0.000 0.000 0.000 0.000 0.000 
H0: b=3# 0.425 0.990 0.018 0.066 0.000 

Normality 
of residual  

error& 0.790 0.095 0.112 0.150 0.638 
^Computed from ln a ; * t-Test; #t-Test;  &Anderson-Darling Test 
 
5.2 Problem Description 

Given a set of ports P , a set of weekly-serviced ship routes R , each of which already 

has a given type of ship to deploy, and the container shipment demand odn  (TEUs), 

( , )o d ∈W , the liner shipping company aims to determine the number of ship to deploy on 

each ship route and the sailing speed on each voyage leg, in order to fulfill the container 

shipment demand while minimizing the total cost. 
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Figure 5-1 Bunker consumption – sailing speed relation 
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5.2.1 Weekly service, sailing speed, and bunker consumption  

It is assumed that each ship route r∈R  is deployed with a given type of ship. The 

capacity of a ship deployed on the ship route r  is denoted by Capr  (TEUs) and let ship
rc  

(USD/week) be the fixed operating cost of a ship on the ship route r . The liner shipping 

company maintains weekly service frequency on the ship routes. That is, if the round-trip 

time of a ship route is 42 days, then six ships are deployed to ensure that each port of call is 

visited one time every week. The round-trip time consists of sea time and port time. The 

sailing speed on leg i  of the ship route r , r∈R , ri∈I , is denoted by riv  (knot). The sailing 

speed riv  should be within the economic sailing interval min max[ , ]ri riV V . Let riL   be the oceanic 

distance (n mile) of leg i  of the ship route r , and the sailing time on leg i  is /ri riL v  (hr). 

The port time consists of standby time for pilotage in and out and container handling time. 

The total standby time for pilotage in and out of ports in a round-trip is denoted by fix
rt  (hr). 

Since the weekly service frequency has to be maintained, assuming that a total of rm  ships 

are deployed on the ship route r , we have 

 fix total container handling time at all portcalls 168 ,
r

ri
r r

i ri

L t m r
v∈

+ + ≤ ∀ ∈∑
I

R  (5.3) 

As the bunker consumption function is dependent on voyage legs, we denote by ( )ri rig v  

(tons/n mile) the bunker consumption per nautical mile at the speed riv  on leg i  of ship route 

r . We further use bunα (USD/ton) to represent the bunker fuel price, the total operating cost 

of the ship route r  (USD/week) can thus be calculated by 

 bun ship( )
r

ri ri ri r r
i

L g v c m
∈

α +∑
I

 (5.4) 
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5.2.2 Properties of container routes  

Each container route contains full information on how containers are transported from 

the origin port to the destination port. The container routing problem needs to determine how 

many containers to be transported on each container route h , denoted by hy  (TEUs). All 

container shipment demand has to be fulfilled, namely 

 , ( , )
od

h od
h

y n o d
∈

= ∀ ∈∑
H

W  (5.5) 

Let rht  (hr/TEU) be the additional round-trip time posed for the ship route r  by 

transporting one TEU according to container route h . For instance, each TEU routed on the 

container route 3h  shown by Eq. (2.5) will be loaded at Xiamen and discharged at Colombo 

on the ship route 2, thereby increasing the round-trip time of the ship route 2 by the sum of 

handling time for one TEU at the two ports: Xiamen and Colombo. Therefore, the total 

container handling time (hr) at all ports of call on the ship route r  can be calculated by 

 ,rh h
h

t y r
∈

∀ ∈∑
H

R  (5.6) 

Let hc  (USD/TEU) be the handling cost associated with transporting one TEU on a 

container route h . For instance, 
3hc  for the container route 3h  in Eq. (2.5) is the sum of 

loading cost at Xiamen, transshipment cost at Colombo, and discharge cost at Chennai. Both 

rht  and hc  are known parameters. The total container handling cost can be calculated by 

 h h
h

c y
∈
∑

H

 (5.7) 

We further let binary coefficient hrir  be 1 if containers on the container route h  are 

transported on leg i  of ship route r , and 0 otherwise. For example, the container route 3h  

consists of the 2nd and the 3rd legs of the ship route 2 and the 1st leg of the ship route 3. We 
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hence have
3 22 1hr = , 

3 23 1hr = , and 
3 31 1hr = . To ensure that ship capacity constraint is 

respected on all the legs of the ship route r , we should have 

 Cap , ,hri h r r
h

y r i
∈

r ≤ ∀ ∈ ∀ ∈∑
H

R I  (5.8) 

5.2.3 Mixed-integer nonlinear programming model  

The sailing speed optimization problem has the following decision variables: 

rm :  Number of ships to deploy on the ship route r∈R ; 

riv :  Sailing speed on leg i  of a ship route r∈R ; 

hy :  Number of containers (TEUs) routed on container route h∈H ; 

The objective aims to minimize the total operating cost. The port charges and canal dues are 

fixed; hence we only consider the fixed ship operating cost, bunker cost and container 

handling cost. 

The sailing speed optimization problem can be formulated as a mixed-integer nonlinear 

programming model: optimal speed model 1 (OSM1): 

 

 [OSM1] bun ship

, ,
min ( )
r ri h

r

ri ri ri r r h hm v y r i r h
L g v c m c y

∈ ∈ ∈ ∈

α + +∑∑ ∑ ∑
R I R H

 (5.9) 

subject to fix 168 ,
r

ri
rh h r r

i hri

L t y t m r
v∈ ∈

+ + ≤ ∀ ∈∑ ∑
I H

R  (5.10) 

 Cap , ,hri h r r
h

y r i
∈

r ≤ ∀ ∈ ∀ ∈∑
H

R I  (5.11) 

 , ( , )
od

h od
h

y n o d
∈

= ∀ ∈∑
H

W  (5.12) 

 min max , ,ri ri ri rV v V r i≤ ≤ ∀ ∈ ∀ ∈R I  (5.13) 

 ,rm r+∈ ∀ ∈R  (5.14) 
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 0,hy h≥ ∀ ∈H  (5.15) 

The objective function (5.9) minimizes the total operating cost. The first term is the bunker 

consumption cost, the second term is the vessel operating cost, and the third term is the 

container handling charges. Constraint (5.10) enforces the weekly service requirement. 

Constraint (5.11) imposes the capacity constraint. Eq. (5.12) require that all the container 

shipment demands are satisfied. Constraint (5.13) defines the lower and upper bounds of 

sailing speed. Constraints (5.14) and (5.15) define rm  as positive integer variable, and hy  as 

nonnegative continuous variable, respectively. 

5.3 Solution Methodology 

OSM1 is a mixed-integer nonlinear programming model with nonlinear terms shown in 

Eqs. (5.9) and (5.10). In order to take advantage of state-of-art mixed-integer linear 

programming solvers, we intend to linearize the OSM1. The nonlinearity of Eqs. (5.10) can 

be overcome by using the reciprocal of sailing speed as a decision variable. We will prove 

that the nonlinear objective function (5.9) is convex and therefore an efficient outer-

approximation method can be employed by using sum of many piecewise-linear functions to 

approximate the convex function shown in Eq. (5.9). The approximation error can be 

controlled within a predetermined tolerance level with a suitable outer-approximation scheme. 

Due to the convexity of the objective function, the piecewise-linear approximating functions 

are also convex. Therefore the model with the sum of the piecewise-linear approximating 

functions as the objective function can be transformed to a mixed-integer linear programming 

model. Unlike the discretization approach (e.g., Gelareh and Meng, 2010), no additional 

integer variables are needed. Hence, the mixed-integer linear programming model can be 

efficiently solved by state-of-art mixed-integer linear programming solvers such as CPLEX. 



Chapter 5 Sailing Speed Optimization 

81 

 
5.3.1 Convexification 

We define new decision variables 

 1/ , ,ri ri ru v r i= ∀ ∈ ∀ ∈R I  (5.16) 

All the constraints expressed by Eqs. (5.10) become linear constraints with respect to the 

alternative decision variable riu : 

 fix 168 ,
r

ri ri rh h r r
i h

L u t y t m r
∈ ∈

+ + ≤ ∀ ∈∑ ∑
I H

R  (5.17) 

 The constraints (5.13) can be rewritten by 

 max min max min1/ 1/ , ,ri ri ri ri ri rV U u U V r i= ≤ ≤ = ∀ ∈ ∀ ∈R I  (5.18) 

The bunker consumption function ( )ri rig v  can be alternatively expressed as a function of the 

reciprocal of the sailing speed. We define: 

 ( ) (1/ ), ,ri ri ri ri rQ u g u r i= ∀ ∈ ∀ ∈R I  (5.19) 

Hence, the model OSM1 is equivalent to the following model by rewriting objective function 

shown in Eq. (5.9) as a function of the alternative decision variables.  

[OSM2] bun ship

, ,
min ( )
r ri h

r

ri ri ri r r h hm u y r i r h
L Q u c m c y

∈ ∈ ∈ ∈

α + +∑∑ ∑ ∑
R I R H

 (5.20) 

Note that OSM2 is a mixed-integer nonlinear programming model with linear constraints and 

nonlinear objective function (5.20). 

We exploit the special structure of OSM2 and prove that the objective function (5.20) is 

convex. To this end, we can prove the convexity of the function ( )ri riQ u  as a consequence of 

the convexity, non-negativity, and univariate property of ( )ri rig v . Suppose that daily bunker 

consumption (tons) on leg i  of ship route r  is ( ) rib
ri ria v× . Noting that ( )ri riQ u  represents the 

bunker consumption (tons) per nautical mile, we have 
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 1(1/ )( ) (1/ ) ( ) / 24, ,
24 (1/ )

ri
ri

b
bri ri

ri ri ri ri ri ri r
ri

a uQ u g u a u r i
u

−×
= = = ∀ ∈ ∀ ∈

×
R I  (5.21) 

According to the regression analysis, the coefficient rib  is between 2.7 and 3.3 and 0ria > . 

Therefore ( )ri riQ u  is convex in riu  on the interval min max[ , ]ri riU U . Even if considering that rib  

may be out of the range [2.7,3.3],  ( )ri riQ u  is convex in riu  as long as 1rib > . Therefore it is 

reasonable to conclude that the objective function (5.20) is convex. 

5.3.2 Outer-approximation method 

In view of the convexity of the function ( )ri riQ u , we use a piecewise-linear function to 

approximate it. To control the approximation error, we can define an absolute objective value 

tolerance ε (USD/week), namely, the solution obtained by approximation should not be 

worse than the optimal one by more than ε in the objective value. In our algorithm, we 

allocate the total tolerance ε among the voyage legs in proportion to the voyage distance. 

Define ε  (tons/n mile) as: 

 bun

1

r
rir i

L
∈ ∈

ε
ε = ×

α ∑ ∑R I

 (5.22) 

If the approximation error for ( )ri riQ u is not greater than ε , then the overall objective value 

error is not greater than ε. 

Now, we develop an algorithm that generates a piecewise-linear function with as few 

pieces as possible for approximating ( )ri riQ u  while controlling the approximation error within 

ε  for any min max[ , ]ri ri riu U U∈ . Let ( )ri riQ u′  denote  the derivative of ( )ri riQ u  at riu , namely 

 ( ) (1 )( ) / 24rib
ri ri ri ri riQ u a b u −′ = −  (5.23) 

We describe the algorithm below by using Figure 5-2 to schematically illustrate it. 
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Algorithm 5-1: Generation of a piecewise-linear approximation function 

Step 0: Let Ψ  be a set of lines, Ψ =∅ . Set 0k = , 1 min
ri riu U= , 1 1( )ri ri riQ Q u= − ε . 

Step 1: Set 1k k= + . If the following inequality holds: 

 
max

max
max

( ) ( )
k

ri ri ri
ri rik

ri ri

Q U Q Q U
U u

− ′≥
−

 (5.24) 

namely, point ( , ( ))k k
ri ri riu Q u  is on or below the tangent line of ( )ri riQ u  at max

riU , see 

Figure 5-2  (a), add to Ψ  line k  as follows 

 max max max( ) ( )( )ri ri ri ri ri ri riQ Q U Q U u U′− = −  (5.25) 

and go to Step 3. Else, add to Ψ  line k  that passes the point ( , )k k
ri riu Q  and supports 

the epigraph of ( )ri riQ u . Line k  can be obtained in the following manner. Suppose 

that line k  supports the epigraph of ( )ri riQ u  at the point ˆˆ( , )k k
ri riu Q . According to 

Eq.(5.21), we have 

 1ˆ ˆ( ) / 24ribk k
ri ri riQ a u −=  (5.26) 

By definition, 
 

 
ˆ

ˆ ˆ( ) (1 )( ) / 24
ˆ

ri

k k
bk kri ri

ri ri ri ri rik k
ri ri

Q Q Q u a b u
u u

−− ′= = −
−

 (5.27) 

Combining Eqs. (5.26) and (5.27), we can numerically estimate ˆk
riu  by the bisection 

search method. Hence, line k  is defined to be 

 

 
ˆ

( )
ˆ

k k
k kri ri

ri ri ri rik k
ri ri

Q QQ Q u u
u u

−
− = −

−
 (5.28) 

Go to Step 2. 
Step 2: For line k , when riu  takes the value max

riU , riQ  will take the following value: 
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 max
ˆ

( )
ˆ

k k
k kri ri
ri ri rik k

ri ri

Q QQ U u
u u

−
+ −

−
 (5.29) 

If Eq. (5.29) is not less than max( )ri riQ U − ε , namely, the gap between line k  and 

function ( )ri riQ u  is not greater than ε  even when riu  takes the value max
riU , then we 

can conclude that the gap between line k  and function ( )ri riQ u  is not greater than ε  

when riu  takes any value between k
riu  and max

riU , see Figure 5-2  (b), go to Step 3. 

Else, there exists exactly one point 1 1( , )k k
ri riu Q+ +  on line k  such that 1 maxk k

ri ri riu u U+< <  

and 1 1( )k k
ri ri riQ Q u+ += − ε , see Figure 5-2  (c). Similar to ˆk

riu , 1k
riu +  can also be 

numerically estimated by bisection search method. Go to Step 1. 

Step 3: Let riK  be the current value of k , namely, the number of lines in Ψ , and use the 

generic form 

 
 slope Q-interceptri rik ri rikQ u= × +  (5.30) 

to represent a line k  in Ψ  that is defined by Eq. (5.25) or Eq. (5.29), 1, 2 rik K=  . 

The piecewise-linear approximation function represented by ( )ri riQ u  can be written 

as 

 { }( ) max slope Q-intercept , 1, 2ri ri rik ri rik riQ u u k K= × + =   (5.31) 

( )ri riQ u  is schematically shown by the thickest solid line in Figure 5-2 (d). 
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min
riU max

riU riu

( )ri riQ u

ε

0

1 1( , )ri riu Q

1 min( , ( ))ri ri riu Q U

max max( , ( ))ri ri riU Q U

(a)

(line 1)
tangent line

min
riU max

riU riu

( )ri riQ u

ε

0

1 1( , )ri riu Q

1 min( , ( ))ri ri riu Q U

max max( , ( ))ri ri riU Q U

(b)

line 1

1 1ˆˆ( , )ri riu Q ≤ ε

min
riU max

riU riu

( )ri riQ u

ε

0

ε

ε

1 1( , )ri riu Q

1 min( , ( ))ri ri riu Q U

1 1ˆˆ( , )ri riu Q

2 2( , )ri riu Q 2 2ˆˆ( , )ri riu Q

3 3( , )ri riu Q

(c)

line 1

line 2

line 3

min
riU max

riU riu

( )ri riQ u

0
(d)

( )ri riQ u ( )ri riQ u

( )ri riQ u

( )ri riQ u

 

Figure 5-2 Generation of a piecewise-linear approximation function 

 

We can replace ( )ri riQ u in the objective function (5.20) of OSM2 by ( )ri riQ u  and obtain 

an approximation model represented by OSM3: 

[OSM3] bun ship

, ,
min ( )
r ri h

r

ri ri ri r r h hm u y r i r h
L Q u c m c y

∈ ∈ ∈ ∈

α + +∑∑ ∑ ∑
R I R H

 (5.32) 

Algorithm 1 and the convexity of function ( )ri riQ u  implies that  
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 min max( ) ( ) ( ), , , [ , ]ri ri ri ri ri ri r ri ri riQ u Q u Q u r i u U U− ε ≤ ≤ ∀ ∈ ∀ ∈ ∀ ∈R I  (5.33) 

Therefore, by using the piecewise-linear function ( )ri riQ u  as a surrogate for ( )ri riQ u , the total 

objective value error of OSM3 with respect to the original model OSM1 can be controlled 

within the tolerance level ε. 

The convexity of function ( )ri riQ u  further implies the convexity of ( )ri riQ u . Therefore 

OSM3 can be transformed into an equivalent mixed-integer linear programming model 

OSM4 by introducing new decision variables riQ :  

[OSM4] bun ship

, , ,
min

r ri h ri
r

ri ri r r h hm u y Q r i r h
L Q c m c y

∈ ∈ ∈ ∈

α + +∑∑ ∑ ∑
R I R H

 (5.34) 

subject to   

 slope Q-intercept , , , 1, 2ri rik ri rik r riQ u r i k K≥ × + ∀ ∈ ∀ ∈ ∀ =R I   (5.35) 

OSM4 can be efficiently solved by state-of-art mixed-integer linear programming solvers 

such as CPLEX. Let the optimal objective value to the original mixed-integer nonlinear 

programming model OSM1 be Opt . The optimal objective value to the approximation model 

OSM4, denoted by LB , is a lower bound for Opt . Let the optimal solution to OSM4 be *
rm , 

*
riu , *

hy , *
riQ . It is evident that *

r rm m= , *1/ri riv u= , *
h hy y=  is a feasible solution to OSM1, 

hence an upper bound for Opt  can be determined by 

 bun * ship * *(1/ )
r

ri ri ri r r h h
r i r h

UB L g u c m c y
∈ ∈ ∈ ∈

= α + +∑∑ ∑ ∑
R I R H

 (5.36) 

According to the piecewise-linear approximation scheme, it follows that 

 LB Opt UB LB≤ ≤ ≤ + ε  (5.37) 
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5.4 Computational Study   

5.4.1 Description of parameter settings 

To evaluate the applicability of the proposed model and the efficiency of the algorithm, 

we use a real-case example provided by a global liner shipping company. This example has 

46 ports in an Asia-Europe-Oceania shipping network as shown in Figure 2-1. There are a 

total of 652 O-D port pairs with container shipment demand and the overall demand is 

22,054 TEUs/week. There are 3 types of ship and 11 ship routes, as shown in Table 5-3 and 

Table 5-4, respectively. The 11 ship routes have 87 legs altogether. A total of 814 container 

routes for the 652 O-D port pairs in the shipping network are provided by the global liner 

shipping company. The load cost, discharge cost, and transshipment cost is assumed to be the 

same for all the 46 ports at 60 USD/TEU, 60 USD/TEU, and 100 USD/TEU, respectively. 

The container handling efficiency is assumed to be the same for all ports and is only related 

to ship type, as shown in Table 5-3. The pilotage in and out of any port by any ship is 4 hours. 

The coefficients a and b for daily bunker consumption function (5.2) on each voyage leg is 

calibrated using the data provided by the global liner shipping company. The mixed-integer 

nonlinear programming model OSM1 has a total of 11 integer decision variables rm  and 

87+814=901 continuous decision variables riv  and hy . The total number of constraints is 

11+87+652+2×87=924. The mixed-integer linear programming model OSM4 has an 

additional 87 continuous decision variables riQ  and a number of approximation constraints 

(5.35). OSM4 is solved by CPLEX-12.1 running on a 3 GHz Dual Core PC with 4 GB of 

RAM. 

We set the absolute objective value tolerance ε at 0.01(106 USD/week) and solve the 

model OSM4 with different bunker price settings. Given the bunker price bunα , we first 
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calculate ε  according to Eq. (5.22). After that, we obtain the approximation constraints  

(5.35) using the proposed algorithm for each of the 87 voyage legs in the shipping network. 

With these constraints, we can formulate model OSM4, which is subsequently solved by 

CPLEX. The objective value of OSM4, LB , is a lower bound of the original problem, and an 

upper bound, UB , can also be obtained by Eq. (5.36). 

 

Table 5-3  Ship fleet 

Ship Type (TEUs) 3000 5000 10000 
Min speed (knot) 15 20 21 
Max speed (knot) 23 26 30 
Container move per hour  85 95 120 
Time for pilotage in and out of a port (hr)  4 4 4 
Weekly operating cost (1000 USD) 76.9 115.4 173.1 
 

Table 5-4  Ship route 

No. Ship Type Ports of call 
1 5000-TEU Singapore → Brisbane → Sydney → Melbourne → Adelaide → 

Fremantle 
2 5000-TEU Xiamen → Chiwan → Hong Kong → Singapore → Port Klang → 

Salalah → Jeddah → Aqabah → Salalah → Singapore 
3 3000-TEU Yokohama → Tokyo → Nagoya → Kobe → Shanghai 
4 3000-TEU Ho Chi Minh → Laem Chabang → Singapore → Port Klang 
5 3000-TEU Brisbane → Sydney → Melbourne → Adelaide → Fremantle → 

Jakarta → Singapore 
6 3000-TEU Manila → Kaohsiung → Xiamen → Hong Kong → Yantian → 

Chiwan → Hong Kong 
7 3000-TEU Dalian → Xingang → Qingdao → Shanghai → Ningbo → 

Shanghai → Kwangyang → Busan 
8 3000-TEU Chittagong → Chennai → Colombo → Cochin → Nhava Sheva → 

Cochin → Colombo → Chennai 
9 5000-TEU Sokhna → Aqabah → Jeddah → Salalah → Karachi → Jebel Ali 

→ Salalah 
10 10000-TEU Southampton → Thamesport → Hamburg → Bremerhaven → 

Rotterdam → Antwerp → Zeebrugge → Le Havre 
11 10000-TEU Southampton → Sokhna → Salalah → Colombo → Singapore → 

Hong Kong → Xiamen → Shanghai → Busan → Dalian → 
Xingang → Qingdao → Shanghai → Hong Kong → Singapore → 
Colombo → Salalah 
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5.4.2 Result analysis 

Table 5-5 shows the computational results regarding the number of approximation 

constraints (5.35), the CPU time used to solve the mixed-integer linear programming model 

OSM4, the LB  (106 USD/week), UB , and their relative difference. We observe that the 

proposed algorithm generates a piecewise-linear approximation function with a moderate 

number of pieces. Considering that there are 87 voyage legs, less than 10 pieces are needed 

to approximate ( )ri riQ u . As a consequence, OSM4 can be efficiently solved (less than 0.2 

second). By setting ε at 0.01, we can see that UB LB−  is indeed not greater than 0.01, which 

is consistent with (5.36). The setting of ε is actually very tight: the relative difference of LB  

and UB  is less than 0.1% for all bunker prices.  

 

Table 5-5  Computational results 

Bunker price 
(USD/ton) 

Number of 
Constraints 

(5.35) 
CPU time 
(second) LB  UB  ( ) /UB LB LB−  

300 398 0.125 10.491 10.497 0.06% 
400 453 0.047 11.157 11.162 0.05% 
500 497 0.047 11.822 11.828 0.05% 
600 546 0.047 12.488 12.493 0.04% 
700 585 0.062 13.136 13.140 0.03% 
800 620 0.063 13.772 13.776 0.03% 
900 655 0.047 14.398 14.401 0.02% 

1000 692 0.063 15.023 15.027 0.02% 
 

Table 5-6 reports the bunker cost (106 USD/week), ship cost, and the number of each 

type of ship deployed with the bunker price varying from 300 to 1000 USD/ton. It is evident 

that when the bunker price is high, more ships are deployed at the optimal solution in order to 

lower down the sailing speed and control bunker consumption. Our model provides the 

optimal trade-off between bunker cost and ship cost. 
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Table 5-6  Ship number and ship cost at different bunker prices 

Bunker price 
(USD/ton) 

 Cost  
(106 USD/week) 

 Ship number 

 Bunker Ship  1500-TEU 3000-TEU 5000-TEU Sum 
300  1.992 3.577  9 10 10 29 
400  2.659 3.577  9 10 10 29 
500  3.324 3.577  9 10 10 29 
600  3.990 3.577  9 10 10 29 
700  4.445 3.769  10 11 10 31 
800  5.082 3.769  10 11 10 31 
900  5.630 3.846  11 11 10 32 
1000  6.256 3.846  11 11 10 32 
 

We further examine the optimal sailing speed structure. Table 5-7 shows the bunker 

consumption coefficients a and b and the optimal sailing speed on each leg of ship route 1 at 

the bunker price 800 USD/ton. We observe that at the same sailing speed, the daily bunker 

consumptions on legs 1 and 2 are higher than legs 3, 5, 6 since both coefficients a and b on 

legs 1 and 2 are larger than legs 3, 5, 6, and the optimal sailing speeds on legs 1 and 2 are 

lower than legs 3, 5, 6. However, one should note that higher daily bunker consumption does 

not necessarily mean lower sailing speed. Suppose that a ship route has two legs with bunker 

consumption function shown in Figure 5-3. Evidently, leg 1 has higher bunker consumption 

than leg 2 at the same speed. However, the same speed increment would result in a much 

more dramatic increase in bunker consumption on leg 2 than leg 1. Hence, ships in general 

should sail at higher speed on leg 1 and lower speed on leg 2. In fact, the optimal sailing 

speed is mainly related to the sensitivity (derivative) of bunker consumption to speed, rather 

than the absolute bunker consumption value. In Table 5-7, since both coefficients a and b on 

legs 1 and 2 are larger than legs 3, 5, 6, the bunker consumption on legs 1 and 2 are more 

sensitive to speed than legs 3, 5, 6. 
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Table 5-7  Optimal sailing speed on each leg of ship route 1 at the bunker price 800 USD/ton 

Leg 1 
Singapore→ 

2 
Brisbane→ 

3 
Sydney→ 

4 
Melbourne→ 

5 
Adelaide→ 

6 
Fremantle→ 

a (×10-2) 1.296 1.326 1.293 1.215 1.260 1.254 
b 2.958 2.970 2.436 2.928 2.442 2.538 
Speed (knot) 20.0 20.0 26.0 20.0 26.0 23.3 
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Figure 5-3 A counter-example 

 

5.5 Conclusions  

The bunker consumption - sailing speed relation for container ships is calibrated using 

historical operating data from a global liner shipping company. Results show that the 

extensively used third power relationship is indeed a good approximation. Therefore, the 

third power relation can be used if not enough historical data are available. Once enough 

historical data are available for the calibration purpose, a more accurate bunker consumption 

function should be used. The bunker consumption - sailing speed relation is also dependent 

on voyage legs. Therefore, this chapter investigated the optimal sailing speed of container 

ships on each leg of each ship route in a liner shipping network while considering 

transshipment and container routing. It is formulated as a mixed-integer nonlinear 
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programming model. In view of the convexity, non-negativity, and univariate properties of 

the bunker consumption - sailing speed function, an efficient outer-approximation method is 

proposed to obtain an ε-optimal solution with a predetermined optimality tolerance level ε. 

The proposed model and algorithm is applied to a real case study for a global liner shipping 

company.  
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CHAPTER 6. SHIP ROUTE SCHEDULE DESIGN 

 This chapter deals with a tactical-level liner ship route schedule design problem (SDP) 

which aims to determine the arrival time of a ship at each port of call on a ship route and the 

sailing speed function on each voyage leg by taking into account time uncertainties at sea and 

at port. It first derives the optimality condition for the sailing speed function with sea 

contingency and subsequently demonstrates the convexity of the bunker consumption 

function. A mixed-integer nonlinear stochastic programming model is developed for the 

proposed liner ship route schedule design problem by minimizing the ship cost and expected 

bunker cost while maintaining a required transit time service level. In view of the special 

structure of the model, an exact cutting-plane based solution algorithm is proposed. 

Numerical experiments on real data provided by a global liner shipping company 

demonstrate that the proposed algorithm can efficiently solve real-case problems. 

 
6.1 Problem description 

The liner ship route schedule design problem aims to determine the arrival time at each 

port of call on each ship route to minimize the ship cost and expected bunker cost, while 

considering sea contingency and uncertain port time and fulfilling the port-to-port transit 

time constraints. 

 
6.1.1 Weekly service-based schedule 

For the sake of presentation, time 0 (hours) in this study is defined as the time 00:00 on a 

particular Sunday. Hence time 12:00 of the next Monday can be represented by the time 

204 (hours), namely, 7 days 24 hours/day+24 hours +12 hours× = 204 (hours). Each ship 
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route has a weekly service frequency, which means that ships on the same ship route arrive at 

each port of call at the same time (e.g., 9:00 a.m. on Tuesday) of each week.  

Let 1 2( , , , )
rr r r rNt t t=t   (hours) denote the arrival time at the 1st, 2nd … th

rN  port of call 

of ship route r  in a round trip by a ship deployed on the ship route. The round trip time is the 

time interval between the arrival at the 1st port of call and the next arrival at the 1st port of 

call. Hence, the round trip time is 1rrN rt t−  plus the inter-arrival time between the last port of 

call and the next arrival at the 1st port of call. To maintain a weekly service, if the round trip 

time is 56 days, then eight ships must be deployed on the ship route. Let rm  be the number of 

homogeneous ships deployed on the ship route r  to maintain the weekly service. Thus, a 

ship completes a round-trip journey in 168 rm  hours (168 7 days 24 hours/dayr rm m= × × ). We 

choose any one of these rm  ships, and the weekly service based schedule for the ship route 

r∈R  can be represented by a row vector ( ),r rm t . Given this schedule, inter-arrival time 

between the thi  port of call and the thj  port of call for the same ship on ship route  r , 

denoted by rijt  (hours), can be calculated by  

 
,                    

, , , ,
168 ,  

rj ri
rij r

rj r ri

t t i j
t r i j i j

t m t i j
− <

= ∀ ∈ ∀ ∈ ≠ + × − >
R I  (6.1) 

Figure 6-1 intuitively depicts one ship route r  served by two container ships a and b to 

maintain the weekly service and shows the arrival time at each port of call, namely, 

( )1 2 3, ,r r rt t t . We define Hong Kong as the 1st port of call. Figure 6-1 (a) and (b) separately 

show the arrival time at each port by ship a and ship b, and Figure 6-1 (c) gives a space time 

network that combines the arrival times of both ships. According to Figure 6-1 (a), it can be 

easily seen that 2 1r rt t−  is the inter-arrival time between the 1st port of call and the 2nd port of 
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call by ship a on the ship route r . For simplicity, hereafter when we mention inter-arrival 

time we mean the inter-arrival time of the same ship. In reality, the inter-arrival time between 

two consecutive ports of call consists of the time spent at the former port of call, plus the 

sailing time on the voyage leg. Ship a visits the 1st port of call at time 1rt , and the next time it 

visits the 1st port of call is time 1 168 2rt + ×  because a round-trip journey time is two weeks. 

Consequently, the inter-arrival time between the th
rN  port of call and the 1st port of call 

, ,1 1 168 2
r rr N r rNt t t= + × − . According to Figure 6-1 (c) it is easy to see that ship b visits the 1st 

port of call at time 1 168rt + . As a consequence, the 1st port of call (as well as other ports of 

call) is visited exactly once a week. 
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(a) Arrival time of ship a

Hong Kong

Singapore

Jakarta

2rt

1rt

2 168 2rt + ×

3rt

1 168 2rt + ×

Hong Kong

Singapore

Jakarta

1rt 2rt 3rt 1 168 2rt + × 2 168 2rt + ×

3 168rt − 1 168rt + 2 168rt + 3 168rt +

(b) Arrival time of ship b

Hong Kong

Singapore

Jakarta

2 168rt +

1 168rt +

2 168 3rt + ×

3 168rt +

1 168 3rt + ×

Ship a

Ship b Arrival time

(c) Space time network representation of arrival times for both ships  
Figure 6-1 Ship route schedule 

 
6.1.2 Random port time and sea contingency time 

The total time spent by a ship deployed on a particular ship route r∈R  at the thi  port of 

call is referred to as the port time at this port of call, denoted by riτ . The port time consists of 

time for pilotage in and out of the port and container handling time. The container handling 

time, which depends on the number of containers loaded and discharged, the number of quay 

cranes allocated to the ship, and efficiency of quay crane operators, amongst others, is a 

major constituent of the port time. Because the ship route schedule design is a tactical-level 

planning decision, the number of containers to be handled cannot be predicted accurately. 

Furthermore, the number of quay cranes allocated to serve a ship relies on the container 
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terminal operator, and the efficiency of quay crane operators fluctuates. Therefore, the port 

time riτ  cannot be predicted accurately at the stage of ship route schedule design. To address 

this issue, we formulate riτ  as a random variable with a predetermined probability 

distribution function ( )ri rif τ  defined on an interval min maxˆ ˆ[ , ]ri riτ τ , where riτ  represents a 

realization of the random variable riτ , and minˆ riτ  and maxˆ riτ  are two given non-negative 

parameters. This probability distribution function can be estimated from the historical port 

time when a similar ship visited the port. Defining , , 1 , ,1r r rr N N r Nt t+ = , the available voyage time 

for a container ship sailing on the thi  leg of the ship route r  can be calculated by 

 ava
, , 1 , , 1, 2, ,ri r i i ri rt t r i N+= − τ ∀ ∈ ∀ =R


  (6.2) 

Eq. (6.2) implies that the available voyage time ava
rit  is also a random variable.  

The liner shipping company has to maintain some contingency time at sea for each leg i  

of each ship route r , denoted by con
r̂it  (hours), as a hedge against uncertainty, like adverse 

weather, to ensure the schedule integrity. At the beginning of the voyage, namely, when a 

ship has just departed from port rip , the sailing speed has to be at least ava conˆ/( )ri ri riL t t− , where 

riL  (n mile) is the voyage distance of the thi  leg of ship route r , and ava
rit  is a realization of 

the random variable ava
rit . In other words, the ship will arrive at the next port of call at least 

con
r̂it  hours before the scheduled arrival time if the sailing speed does not change. In this 

context, even if the ship is delayed during the voyage, it can still arrive at the next port of call 

at the scheduled time as long as the delay does not exceed con
r̂it  hours. After having sailed for 

a certain distance, the sea contingency time is reduced because a shorter residual voyage 

distance means less uncertainty. It is assumed that the sea contingency time required during 
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the voyage of the leg is proportional to the residual voyage distance. Given the sailed 

distance ( )ril t  by time t  , 0 ( )ri ril t L< < , the required sea contingency time for the remaining 

voyage can thus be computed by  

 con ( )ˆ ri ri
ri

ri

L l tt
L
−

×  (6.3) 

According to Eq. (6.2), the corresponding realization of the random available voyage 

time ava
rit  on the thi  leg can be calculated by  

 ava
, , 1 , , 1, 2, ,ri r i i ri rt t r i N+= − τ ∀ ∈ ∀ =R   (6.4) 

Since the remaining voyage distance is ( )ri riL l t−  and the residual available voyage time is 

ava
rit t− ,  the instantaneous sailing speed of a ship at the time t , denoted by ( )riv t ,  can be 

lowered down to no less than 

 ( ) ( )ava conˆ( ) / ( ( )) /ri ri ri ri ri ri riL l t t t t L l t L− − − × −  (6.5) 

The sailing speed has direct implications on the bunker consumption. Denote the bunker 

consumption per hour (tons/hr) at the speed ( )riv t , ava0 rit t≤ ≤ , as a function ˆ ( ( ))ri rig v t . For 

the ease of exposition, this chapter assumes that the hourly bunker consumption ˆ ( ( ))ri rig v t  is 

proportional to the 3rd power of sailing speed, namely: 

 3 min maxˆ ( ( )) [ ( )] , ( ) [ , ]ri ri r ri ri ri rig v t a v t v t V V= ∈  (6.6) 

where ra  is a known coefficient related to the type of ship deployed on ship route r , min
riV  

and max
riV  are the minimum and maximum economic sailing speeds, respectively. 
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6.1.3 Transit time of container routes  

The transit time for a container route odh∈H  for port pair ( , )o d ∈W , denoted by ht  

(hours), is defined as the difference between the arrival time at the origin port o∈P  of the 

ship that will carry the containers and the arrival time at the destination port d ∈P  of the 

ship (possibly not the same ship as at the origin port) that carries the containers to the 

destination port. The transit time consists of the time that containers are stowed onboard, and 

it also incorporates the connection time at transshipment ports. The onboard time is 

dependent on the schedule of the particular ship route and the connection time is reliant on 

the schedules of the two connecting ship routes.  

Container transshipment operations at a particular port can occur only when this port is 

visited by ships at least twice a week. Given the set of ship routes R , all the possible 

container transshipment operations can be represented by the following set: 

 { }, , , , , , ,r s ri sjr s i j r s i j p p= < > ∀ ∈ ∀ ∈ ∀ ∈ =Q R I I  (6.7) 

A quadruplet , , ,r s i j< >∈Q  represents a container transshipment operation from one ship 

on the ship route r  to another ship on the ship route s  at their common calling port ri sjp p= . 

The set Q  can be easily identified. For example, the set of transshipment quadruplets for the 

network shown in Figure 2-3 is:  

 
2,3, 4,1 , 3, 2,1, 4 ,
2,1,1,1 , 1, 2,1,1 ,
2,2,3,5 , 2,2,5,3 , 2,1,3,3 , 1, 2,3,3 , 2,1,5,3 , 1, 2,3,5

< > < > 
 = < > < > 
 < > < > < > < > < > < > 

Q  (6.8) 

where 2,3,4,1< >  and 3,2,1,4< >  correspond to transshipments at Colombo, 2,1,1,1< >  and 

1,2,1,1< >  are transshipments at Hong Kong, and the other six quadruplets represent 

transshipments at Singapore.  
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Denote by p̂t  (hours) the least connection time required at a particular port p , namely, if 

an incoming ship arrives at port p  earlier than an outgoing ship by at least p̂t  hours, then 

containers can be transshipped from the former ship to the latter; otherwise containers have 

to wait until the next week when a ship on the outgoing ship route arrives. The connection 

time for a transshipment , , ,r s i j< >∈Q , denoted by conn
rsijt  (hours), can be expressed by 

 conn ˆmin{ 168 :  and 168 }, , , ,
rirsij sj ri sj ri pk

t t t k k t t k t r s i j= − + ∈ − + ≥ ∀ < >∈Q  (6.9) 

where   is the set of integers.  

The topological relation between a container route odh∈H  and a ship route r∈R  can 

be represented by binary indicators { }0,1rij
hδ ∈  and {0,1}rsij

hδ ∈ . 1rij
hδ =  means that the j i−  

consecutive legs, namely, the thi , th( 1)i + … th( 1)j −  legs of the ship route r  are contained in 

container route h , if i j< ; or the rj N i+ −  consecutive legs, namely, the thi , 

th( 1)i + … th
rN , 1st , 2nd … th( 1)j −  legs of the ship route r  are contained in container route 

h , if i j> . 1rsij
hδ =  if container route h  incorporates the transshipment , , ,r s i j< >∈Q , and 

0 otherwise.  

The transit time of container route odh∈H  can be calculated by 

 conn

, , ,
, ( , ) ,

r r

rij rsij od
h h rij h rsij

r i j r s i j
t t t o d h

∈ ∈ ∈ < >∈

= δ + δ ∀ ∈ ∀ ∈∑∑∑ ∑
R I I Q

W H  (6.10) 

For example, the transit time for the container route 3h  show in Eq. (2.5) is 

 
3

conn
224 312 2341ht t t t= + +  (6.11) 

Note that Eq. (6.10) is applicable to all container routes no matter whether transshipment is 

involved. The transit time ht  should not be too long because otherwise shippers may turn to 
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other liner container shipping companies. The liner container shipping company thus must 

provide a certain level of service in terms of the maximum allowable transit time for each 

container route h , denoted by ĥT  (hours), for shippers, namely, 

 ˆ , ( , ) , od
h ht T o d h≤ ∀ ∈ ∀ ∈W H  (6.12) 

The schedule design problem with sea contingency time and uncertain port time can be 

summarized as follows. Determine the weekly service based schedule ( ),r rm t  for each ship 

route r∈R  and the sailing speed function ( )riv t  on each voyage leg of each ship route 

r∈R  for every realization of the random port time riτ , so as to minimize the expected total 

cost, including the ship cost and bunker cost, while respecting sea contingency on each 

voyage leg and satisfying the transit time constraint for all the container routes. 

6.2 Optimal Sailing Speed Function  

We first investigate the optimal sailing speed and minimum bunker consumption on a 

specific leg i  of a particular ship route r∈R  with a given available sailing time. Given a 

liner ship route schedule ( , )r rm t  and a realization riτ  of the uncertain port time riτ , the 

corresponding available sailing time ava
rit  on the thi  leg of the ship route r  can be calculated 

by Eq. (6.4).  

To simplify the notation, we drop the subscript r  and i  in the following discussion. We 

use L , avat , cont̂  to denote the voyage distance, available sailing time, and sea contingency 

time, respectively. We denote by ( )v t , ˆ ( ( ))g v t , ava( )C t  the sailing speed at time t , hourly 

bunker consumption at speed ( )v t , and minimum bunker consumption on the voyage leg 

given the available sailing time avat .  
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6.2.1 Bunker consumption minimization model 

The optimal sailing speed problem (SSP) with the available sailing time avat  aims to find 

a function ( )v t  that minimizes the bunker consumption on the voyage leg subject to the sea 

contingency time constraint, and it can be formulated as a minimization model named sailing 

speed model (SSM). 

[SSM] 
ava

ava

0( )
ˆ( ) : min ( ( ))

t

v t
C t g v t dt= ∫  (6.13) 

 ava con ava0
0

( )
ˆ( ) ( ) , 0

t
tL v d

v t t t t L v d t t
L

 − τ τ × − − × ≥ − τ τ ∀ ≤ ≤
 
  

∫
∫  (6.14) 

 ava

0
( ) 0, 0

t
L v d t t− τ τ ≥ ∀ ≤ ≤∫  (6.15) 

 
ava

0
( )

t
v d Lτ τ =∫  (6.16) 

 min max ava( ) {0} [ , ], 0v t V V t t∈ ∀ ≤ ≤  (6.17) 

The objective function seeks for the minimum bunker consumption ava( )C t  on the voyage 

leg. Eq. (6.14) ensures that the sea contingency is maintained, in which 
0

( )
t
v dτ τ∫  is the 

sailed distance by time t . Eqs. (6.15)-(6.16) guarantee that the ship arrives at the next port of 

call by time avat . Eq. (6.17) enforces that the ship either sails within the economic speed 

range, or stands still at sea. To guarantee the feasibility of the [SSP] model, it follows that: 

 ava ava
mint t≥  (6.18) 

where 

 ava con
min max

ˆ Lt t
V

= +  (6.19) 
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SSM is a variant of the continuous optimal control problems like rocket launching (see, 

Stengel, 1994; Weinstock, 2008), and it can be approximated by a discrete optimization 

model. We divide the time interval ava[0, ]t  into ϒ  uniform sub-intervals and assume that the 

ship sails at a constant speed denoted by ( )v ξ  in each time sub-interval 1, 2, ,ξ = ϒ . SSM 

can be approximated by the nonlinear programming model: 

[SSM (ϒ )] 
ava

( ) 1

ˆmin ( ( ))
v

t g v
ϒ

ξ
ξ=

ξ
ϒ ∑  (6.20) 

 

1 ava
1ava ava con

1 ava
1

[ ( ) ( / )]1 ˆ( )

[ ( ) ( / )], 1, 2, ,

L v t
v t t t

L

L v t

ξ−

′ξ =

ξ−

′ξ =

 ′− ξ × ϒξ − ξ × − − × ϒ  

′≥ − ξ × ϒ ξ = ϒ

∑

∑ 

 (6.21) 

 1 ava
1
[ ( ) ( / )] 0, 2,3, ,L v tξ−

′ξ =
′− ξ × ϒ ≥ ξ = ϒ∑   (6.22) 

 ava

1
[ ( ) ( / )]v t L

ϒ

ξ=

ξ × ϒ =∑  (6.23) 

 min max( ) {0} [ , ], 1, 2, ,v V Vξ ∈ ξ = ϒ   (6.24) 

6.2.2 Optimality condition 

For the nonlinear programming model (6.20)-(6.24), we define a feasible speed function 

as follows: 

 * ava con minˆ(1) : max{ /( ), }v L t t V= −  (6.25) 

 
min max

*
min min

( ), ( ) {0} [ , ]
( ) : , 2,3

,0 ( )
V V

v
V V

β ξ β ξ ∈
ξ = ξ = ϒ

< β ξ <



  (6.26) 

where 
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1 * ava
1

1 * ava
1ava ava con

[ ( ) ( / )]
( ) :

[ ( ) ( / )]
ˆ[( 1) ( / )]

L v t

L v t
t t t

L

ξ−

′ξ =
ξ−

′ξ =

′− ξ × ϒ
β ξ =

′− ξ × ϒ
− ξ − × ϒ − ×

∑
∑

 (6.27) 

This feasible speed function *( )v ξ  can be alternatively interpreted as follows. At the 

beginning of any time sub-interval ξ , 1, 2ξ = ϒ , the residual distance to sail 

1 * ava
1

( ) : [ ( ) ( / )]L L v tξ−

′ξ =
′ξ = − ξ × ϒ∑ , the residual available time 

ava ava ava( ) : ( 1) ( / )t t tξ = − ξ − × ϒ , the required sea contingency time for the remaining voyage 

con conˆ ˆ( ) : ( ( )) /t t L L Lξ = − ξ , and the sailing speed is exactly enough to maintain the sea 

contingency time conˆ ( )t ξ , that is, * ava conˆ( ) ( ) /[ ( ) ( )]v L t tξ = ξ ξ − ξ . If * min max( ) {0} [ , ]v V Vξ ∉  , 

*( )v ξ  should be adjusted to minV  due to constraint (6.24). Note that * max( )v Vξ ≤  due to Eqs. 

(6.18)-(6.19) and (6.25)-(6.26). 

Figure 6-2 intuitively plots the feasible sailing speed function *( )v ξ  with three possible 

scenarios of the available sailing time avat . In the first scenario, avat  is very small and 

* min( )v Vξ >  throughout the time interval ava[0, ]t . In the second scenario, * min(0)v V> , and 

after some time *( )v ξ  is set at minV . As a result, the ship arrives at the destination earlier than 

avat . In the third scenario, avat  is very large and ava conˆ/( )L t t−  is already smaller than minV . 

As a result, *( )v ξ  is set at minV  until the ship arrives at the destination (at a time earlier than 

avat ).  
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3

2

1
Speed function 1 with 

minV

t

*( )v ξ

1t 2t 3t

ava
1t t=

Speed function 2 with ava
2t t=

Speed function 3 with ava
3t t=

0
 

Figure 6-2 The sailing speed function with available sailing time 

 

To simplify the exposition, unless explicitly stated, in the remainder we assume that 

min 0V = . The speed function *( )v ξ  has the following property: 

Lemma 6-1: * *
1 2( ) ( )v vξ ≥ ξ  for 1 21≤ ξ < ξ ≤ ϒ .  

Proof: This property can easily be demonstrated in an inductive manner by proving that (i) 

* *
1 2( 1) ( 2)v vξ = ≥ ξ =  and (ii) * *

1 1( 1) ( 2)v vξ + ≥ ξ +  if * *( ) ( 1)v vξ ≥ ξ +  for any 

11, 2ξ = ξ .□ 

By using the Lemma 6-1 and the third power relationship between the bunker consumption 

and sailing speed, we have the following important proposition: 

Proposition 6-1: Function *( )v ξ  is the optimal solution to the SSM (ϒ ) model. 

Proof: We assume that the optimal solution to the [SSP(ϒ )] is ( )v ξ  rather than *( )v ξ . For 

example, Figure 6-3 shows *( )v ξ  and ( )v ξ  that are discretized into 5ϒ =  sub-intervals. In 

both Figure 6-3 (a) and (b), *( )v ξ  and ( )v ξ  overlap when 1ξ =  and 2ξ = . ( )v ξ  shown in 

Figure 6-3 (a) is infeasible to  the model [SSP(ϒ )]. This is because by definition, at the 
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beginning of the time sub-interval 3ξ = , namely, at time ava ava( 1) ( / ) 2 / 5t tξ − × ϒ = , equality 

holds in constraint (6.21) for *( )v ξ . Since *( ) ( )v vξ = ξ  for 1ξ =  and 2ξ = , and *( ) ( )v vξ < ξ  

for 3ξ = , it is evident that constraint (6.21) does not hold at this time point for ( )v ξ . That is, 

( )v ξ  is infeasible to the model [SSP( ϒ )]. By contrast, ( )v ξ  shown in Figure 6-3 (b) is 

feasible. In other words, any feasible ( )v ξ  that is different from *( )v ξ  must satisfy: there 

exist a 1 {1,2 1}ξ ∈ ϒ −  and a 2 1 1{ 1, 2 }ξ ∈ ξ + ξ + ϒ  such that  

 *
1( ) ( ), 1v vξ = ξ ∀ξ ≤ ξ −  (6.28) 

 *
1 1( ) ( )v vξ > ξ  (6.29) 

 *
1 2( ) ( ), 1 1v vξ ≥ ξ ∀ξ + ≤ ξ ≤ ξ −  (6.30) 

 *
2 2( ) ( )v vξ < ξ  (6.31) 

In the example of Figure 6-3 (b), 1 3ξ =  and 2 4ξ = . Eqs. (6.28)-(6.29) ensure that in the first 

time sub-interval 1ξ  where *
1 1( ) ( )v vξ ≠ ξ , we must have *

1 1( ) ( )v vξ > ξ . If 1 1ξ = , there is no 

Eq. (6.28) since no time sub-interval ξ  satisfies 1 1ξ ≤ ξ − . Eqs. (6.28)-(6.29) follow due to 

the definition of *( )v ξ  in Eq. (6.26) and the constraint (6.21). Eqs. (6.30)-(6.31) guarantee 

that there exists a time sub-interval 2 1ξ > ξ  such that *
2 2( ) ( )v vξ < ξ . Eqs. (6.30)-(6.31) hold 

as a result of Eq. (6.23). The time sub-intervals after 2ξ , namely, after the first time sub-

interval where *( ) ( )v vξ < ξ , does not affect the proof. 

We now show that the speed function ( )v ξ  is not optimal. To simplify the notation, we 

define 1 2( 4)v v= ξ = , *
2 2( 4)v v= ξ = , *

3 1( 3)v v= ξ = , 4 1( 3)v v= ξ = . According to Lemma 1, 

we have 
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 4 3 2 1v v v v> ≥ >  (6.32) 

Recall that the bunker consumption function 3ˆ ( )g v av= . The total bunker consumption of 

( )v ξ  at time sub-intervals 1ξ  and 2ξ  is 3 3 ava
4 1[ ( ) ( ) ] ( / )a v a v t+ × ϒ . Assuming that 

4 3 2 1v v v v− ≥ − , we define a new speed function ( )v′ ξ : 

 
4 2 1 1

2 2

( ),
( ) ,

( ),  otherwise

v v v
v v

v

− − ξ = ξ
′ ξ = ξ = ξ
 ξ 

 (6.33) 

It is evident that ( )v′ ξ  is feasible to the model [SSP(ϒ )]. The total bunker consumption of 

( )v′ ξ  at time sub-intervals 1ξ  and 2ξ  is 3 3 ava
4 2 1 2[ ( ( )) ( ) ] ( / )a v v v a v t− − + × ϒ , which is 

smaller than the bunker consumption of ( )v ξ . At other time sub-intervals, the bunker 

consumption of ( )v′ ξ  is the same as ( )v ξ . Therefore ( )v ξ  is not the optimal solution to the 

model [SSP(ϒ )]. The case when 4 3 2 1v v v v− < −  can be proved analogously. □  

 

1 ξ

*( )v ξ
( )v ξ

4v

3v 2v

1v
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(a): Infeasible (b): Feasible ( )v ξ ( )v ξ  

Figure 6-3 Proof of the optimal sailing speed function 
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Represent by *( )v t  the optimal solution to SSM. When the number of sub-intervals ϒ  

approaches infinity, *( )v ξ  converges to *( )v t . Referring to Eq. (6.26) when ϒ approaches 

infinity, the optimality condition of the optimal speed function *( )v t  is: 

 
*

* ava con * ava0
0

( )
ˆ( ) ( ) , 0

t
tL v d

v t t t t L v d t t
L

 − τ τ × − − × = − τ τ ∀ ≤ ≤
 
  

∫
∫  (6.34) 

The difference between the optimality condition (6.34) and constraint (6.26) is that “=” 

replaces “≥”. By Lemma 6-1, we have: 

Lemma 6-2: *( )v t  decreases with t .  

6.2.3 Optimal sailing speed function 

Based on the optimality condition (6.34), we can obtain a deeper insight into the optimal 

sailing speed function *( )v t . To this end, the distance travelled by a ship at the time-varying 

speed *( )v t  by a given time t  can be calculated by  

 * *

0
( ) : ( )

t
l t v d= τ τ∫  (6.35) 

It is straightforward to check that the function *( )l t  satisfies the following differential 

equation and boundary condition according to Eq. (6.34): 

 
* *

ava
*

1 2

( ) ( ) , 0
( )

dl t L l t t t
dt b l t t b

−
= ∀ ≤ ≤

× − +
 (6.36) 

where parameters con
1

ˆ /b t L= , ava con
2

ˆb t t= −  and 

 *(0) 0l =  (6.37) 

Eqs. (6.36)-(6.37) imply that *( )l t  has the expression as follows: 

 
2 1 0

0
1

( )
*( )

bt b Lbb LambertW e
bl t L e

− −
− + ×

= −  (6.38) 
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where 0b  is a constant determined by the boundary condition shown in Eq. (6.37) and 

( )LambertW   is the Lambert W function (Corless et al., 1996). Note that the Lambert W 

function ( )LambertW z  satisfies the condition: 

 ( )( ) LambertW zz LambertW z e= ×  (6.39) 

However, it cannot be expressed in terms of elementary functions. Hence the optimal sailing 

speed function *( )v t  does not have a closed-form expression because * *( ) ( ) /v t dl t dt= . 

Fortunately, we can use *( )v ξ  shown in Eqs. (6.25)-(6.26) to approximate   *( )v t  in 

numerical computation. 

6.2.4 Properties of the optimal sailing speed function 

We analyze some useful properties of the optimal sailing speed function. Rather than 

considering the optimal sailing speed as a function of time t , we alternatively regard it as a 

function of the sailed distance l  , 0 l L≤ ≤ . It is apparent that the optimal sailing speed at a 

particular time t   (or, at a particular sailed distance l ) also relies on avat . In this sub-section 

we treat avat  as a variable, and therefore with a little abuse of notation, we represent the 

optimal sailing speed when the ship has sailed a distance of l  , as * ava( , )v l t .  According to 

the optimality condition (6.34), it follows that 

 

 

* ava

ava con
* ava0

ava con con
* ava0

( , ) 1 ˆ
( , )

1ˆ ˆ( ) /
( , )

l

l

L lv l t L lt dx t
v x t L

L l

t t lt L dx
v x t

−
=

−
− −

−
=

− + −

∫

∫



 (6.40) 

 

We further have:  
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Lemma 6-3: * ava ava( , ) / 0v l t t∂ ∂ ≤ .  

Proof: To simplify the notation, we use v  in place of * ava( , )v l t . Taking the first-order partial 

derivative with respect to avat  for both sides of Eq. (6.40), we have 

 2ava 3 ava
ava con con

0

11
1ˆ ˆ( ) /

l

v L l v
t v t

t t l t L dx
v

∂ − ∂ = − + × ∂ ∂  − + × − 
 ∫

 (6.41) 

Thus, if ava/ 0v t∂ ∂ > , then the left-hand side of Eq. (6.41) is positive, while the right-hand 

side of Eq. (6.41) would be negative. Therefore ava/ 0v t∂ ∂ ≤ .□ 

Proposition 6-2: 2 * ava ava 2( , ) / ( ) 0v l t t∂ ∂ ≥ .  

Proof: To simplify the notation, we use v  in place of * ava( , )v l t . Combining Eqs. (6.40) and 

(6.41) yields that 

 
2

ava 3 ava

11v v v
t L l v t
∂ ∂ = − + × ∂ − ∂ 

 (6.42) 

Hence,  

 3
ava ava

1v vv v
t L l t
∂ ∂ = − + ∂ − ∂ 

 (6.43) 

Computing the partial derivative with respect to avat  for both sides of Eq. (6.43), we obtain: 

 
2 2 2

2
ava ava 2 ava ava 2

1 3
( ) ( )

v v v vv v
t t L l t t

 ∂ ∂ ∂ ∂  + = − +  ∂ ∂ − ∂ ∂   
 (6.44) 

Thus, 
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2

ava 2

2 ava ava 2

ava
2

ava

( )
3 ( / ) /( ) ( / )

1/( )
( / ) /( ) 3 ( )

1/( )

v
t

v v t L l v t
v L l

v t L l vv L l
v L l t

∂
∂

− ∂ ∂ − − ∂ ∂
=

+ −

− ∂ ∂ − ∂ = + − + − ∂ 

 (6.45) 

According to Eq. (6.43), we have 

 2
ava ava

1( ) v vL l v
t v t
∂ ∂ − = − + ∂ ∂ 

  (6.46) 

Combining Eqs. (6.45) and (6.46), we obtain: 

 

2

ava 2

ava
2 2

ava

ava
2

ava

( )
( / ) /( ) 13

1/( )

( / ) /( ) 12
1/( )

v
t

v t L l vv v
v L l v t

v t L l vv
v L l v t

∂
∂

− ∂ ∂ −  ∂  = − +  + − ∂  
− ∂ ∂ − ∂ = − + − ∂ 





 (6.47) 

Since ava/ 0v t∂ ∂ ≤ , it follows that 2 ava 2/ ( ) 0v t∂ ∂ ≥ . □ 

Since *( )v t  is the optimal sailing speed function, the minimum bunker consumption 

ava( )C t  shown in Eq. (6.13) can be represented by 

 
ava

ava *

0
ˆ( ) ( ( ))

t
C t g v t dt= ∫  (6.48) 

Alternatively,  ava( )C t  can be expressed in terms of * ava( , )v l t . Let * ava( ( , ))g v l t  denote the 

bunker consumption per nautical mile (tons/n mile) at the speed of * ava( , )v l t . According to 

Eq. (6.6), it follows 

 
* ava

* ava * ava 2
* ava

ˆ ( ( , ))( ( , )) [ ( , )]
( , )

g v l tg v l t a v l t
v l t

= =  (6.49) 
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Using bunker consumption per nautical mile * ava( ( , ))g v l t  in place of bunker consumption 

per hour *ˆ ( ( ))g v t , the minimum bunker consumption function ava( )C t  can be rewritten as: 

 ava * ava

0
( ) ( ( , ))

L
C t g v l t dl= ∫  (6.50) 

Lemma 6-3 and Eq. (6.50) imply the following lemma: 

Lemma 6-4: The minimum bunker consumption ava( )C t  decreases with the available sailing 

time avat . 

We further have the proposition: 

Proposition 6-3: The minimum bunker consumption ava( )C t  is convex on the available 

sailing time avat . 

Proof:  Let ava ava ava
1 2(1 )t t tλ = λ + −λ , 0 1≤ λ ≤ . According to Eq. (6.50), 

 

ava

* ava

0

* ava ava
1 20

* ava * ava
1 20

* ava * ava
1 20

* ava * ava
1 20 0

ava
1

( )

( ( , ))

( ( , (1 ) ))

( ( , ) (1 ) ( , ))

( ( , )) (1 ) ( ( , ))

( ( , )) (1 ) ( ( , ))

( )

L

L

L

L

L L

C t

g v l t dl

g v l t t dl

g v l t v l t dl

g v l t g v l t dl

g v l t dl g v l t dl

C t

λ

λ=

= λ + −λ

≤ λ + −λ

 ≤ λ + −λ 

= λ + −λ

= λ +

∫
∫
∫
∫
∫ ∫

ava
2(1 ) ( )C t−λ

 (6.51) 

The first inequality holds due to the convexity of * ava( , )v l t  by Proposition 6-2 and the 

monotonically increasing property of * ava( ( , ))g v l t  when * ava( , ) 0v l t ≥  by its definition, and 

the second inequality holds because of the convexity of * ava( ( , ))g v l t . Thus, ava( )C t  is 

convex on avat .□ 
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6.3 Mixed-Integer Nonlinear Stochastic Optimization Model 

Suppose that we have identified the optimal bunker consumption function ava( )ri riC t  in 

SSM for each leg i  of each ship route r . The schedule design problem aims to determine the 

arrival time rt  and the number of ships rm  for each ship route, in order to minimize the sum 

of ship cost and expected total bunker cost while satisfying the transit time constraints. Let 

ship
rc  be the fixed operating cost (USD/week) of one ship deployed on ship route r∈R , 

which includes the cost components such as crew cost, insurance, depreciation, which are 

incurred as long as a ship is in operation. ship
rc   relies solely on the type of ship that is 

deployed on ship route r  and hence may be different for ships on different ship routes. Let 

bunα  (USD/ton) be the bunker price. Represent by + the set of positive integers. The 

schedule design problem can be formulated as the following schedule design model (SDM): 

[SDM1] ship bun ava

,
min ( ( , , ))

r r
r

r r ri ri r r rim r r i
c m C t m

∈ ∈ ∈

 
+ α τ 

 
∑ ∑∑t

t
R R I



  (6.52) 

subject to 
 conn 168 168 , , , ,rsij sj ri rsij rsijt t t z z r s i j+ −= − + − ∀ < >∈Q  (6.53) 

 conn ˆ , , , ,
rirsij pt t r s i j≥ ∀ < >∈Q  (6.54) 

 , {0}, , , ,rsij rsijz z r s i j+ − +∈ ∀ < >∈Q  (6.55) 

 
,

, , , ,
168 ,

rj ri
rij r

rj r ri

t t i j
t r i j i j

t m t i j
− <

= ∀ ∈ ∀ ∈ ≠ + × − >
R I  (6.56) 

 ( )conn

, , ,
, , ,

r r

rij rsij od
h h rij h rsij

r i j r s i j
t t t o d h

∈ ∈ ∈ < >∈

= δ + δ ∀ ∈ ∀ ∈∑∑∑ ∑
R I I Q

W H  (6.57) 

 ( )ˆ , , , od
h ht T o d h≤ ∀ ∈ ∀ ∈W H  (6.58) 

 max con max
, , 1

ˆˆ / , ,r i i ri ri ri ri rt t L V r i+ − τ ≥ + ∀ ∈ ∀ ∈R I  (6.59) 
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 11 0t =  (6.60) 

 10 168, \{1}rt r≤ ≤ ∀ ∈R  (6.61) 

 0, ,ri rt r i≥ ∀ ∈ ∀ ∈R I  (6.62) 

 ,rm r+∈ ∀ ∈R  (6.63) 

The objective function (6.52) minimizes the total ship cost and expected bunker cost. 

Note that the optimal bunker consumption ava( )ri riC t  is a random variable since it is dependent 

on ava
rit , which is reliant on the random port time riτ . Constraints (6.53)-(6.55) define the 

connection time at transshipment ports. Eqs. (6.56)-(6.58) impose the transit time constraints. 

Eq. (6.59) guarantees that ships can maintain the schedule integrity in the worst case, namely, 

when port time takes the largest value maxˆ riτ . Constraints (6.60) and (6.61) are introduced to 

eliminate the symmetric solutions of the schedules due to the weekly services. Constraint 

(6.60) requires that the ship on the 1st ship route arrives at the 1st port of call at time 0. 

Constraints (6.61) enforce that the arrival time at the 1st port of call on all ship routes other 

than the 1st one is in the 1st week. Constraints (6.62) impose that rit  are non-negative 

variables and constraints (6.63) require that rm  are positive integers. 

The objective function (6.52) can be rewritten as follows: 

 ship bun
, , 1,

min ( )
r r

r

r r ri r i im r r i
c m C t +

∈ ∈ ∈

+ α∑ ∑∑t R R I

 (6.64) 

where the function , , 1( )ri r i iC t +  is the expected value of bunker consumption with respect to 

, , 1r i it + , namely,  
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 max

min

max

min

, , 1

ava

ˆ ava

ˆ

ˆ

, , 1ˆ

( )

( ( , , ))

( ( , , )) ( )

( ) ( ) , ,

ri ri

ri ri

ri ri

ri ri

ri r i i

ri ri r r ri

ri ri r r ri ri ri ri

ri r i i ri ri ri ri r

C t

C t m

C t m f d

C t f d r i

+

τ =τ

τ =τ

τ =τ

+τ =τ

 = τ 

= τ τ τ

= − τ τ τ ∀ ∈ ∀ ∈

∫

∫

t

t

R I




 (6.65) 

Proposition 6-4: , , 1( )ri r i iC t +  is convex with respect to , , 1r i it + . 

Proof:  Let 1 2
, , 1 , , 1 , , 1(1 )r i i r i i r i it t tλ

+ + += λ + −λ , 0 1≤ λ ≤ . We have 

 

max

min

max

min

m

, , 1

ˆ

, , 1ˆ

ˆ 1 2
, , 1 , , 1ˆ

1 2
, , 1 , , 1ˆ

( )

( ) ( )

[ (1 ) ] ( )

[ ( ) (1 )( )] ( )

ri ri

ri ri

ri ri

ri ri

ri ri

r i i

ri r i i ri ri ri ri

ri r i i r i i ri ri ri ri

ri r i i ri r i i ri ri ri ri

C t

C t f d

C t t f d

C t t f d

λ
+

τ =τ λ
+τ =τ

τ =τ

+ +τ =τ

+ +τ =τ

= − τ τ τ

= λ + −λ − τ τ τ

= λ − τ + −λ − τ τ τ

∫

∫
max

in

max

min

max

min min

ˆ

ˆ 1 2
, , 1 , , 1ˆ

ˆ 1 2
, , 1 , , 1ˆ ˆ

[ ( ) (1 ) ( )] ( )

( ) ( ) (1 ) ( ) ( )

ri ri

ri ri

ri ri

ri ri ri

ri ri ri ri

ri r i i ri ri r i i ri ri ri ri

ri r i i ri ri ri ri ri r i i ri ri ri ri

C t C t f d

C t f d C t f d

τ =τ

τ =τ

+ +τ =τ

τ =τ τ

+ +τ =τ τ =τ

≤ λ − τ + −λ − τ τ τ

= λ − τ τ τ + −λ − τ τ τ

∫

∫

∫
maxˆ

1 2
, , 1 , , 1( ) (1 ) ( )

ri

r i i r i iC t C t

=τ

+ += λ + −λ

∫

 (6.66) 

The inequality holds due to the convexity of ava( )ri riC t  by Proposition 6-3. Therefore 

Proposition 6-4 holds. □ 

Proposition 6-4 also implies the convexity of the nonlinear stochastic programming model 

SDM1. 

The constraints (6.58) in SDM1 may be over conservative in practice. The liner shipping 

company may also define a certain level of service 1−α , 0 1≤ α < , where at least 

( , )
(1 ) | |

o d ∈
−α ∑ od

W
H  container routes have to satisfy the transit time constraints. This can 

be achieved by replacing constraints (6.58) with the following relaxed constraints: 
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 ˆ , ( , ) , od
h h ht T Mx o d h≤ + ∀ ∈ ∀ ∈W H  (6.67) 

 
( ) ( ),, ,

| |
od

od
h

o do d h

x
∈∈ ∈

 
≤ α× 
  

∑ ∑
WW H

H  (6.68) 

 {0,1}, ( , ) , od
hx o d h∈ ∀ ∈ ∀ ∈W H  (6.69) 

where M  is a large number and a    represents the largest integer not greater than a .  

6.4 Solution Algorithm 

The difficulty in solving the nonlinear convex stochastic programming model SDM1 lies 

in that the function , , 1( )ri r i iC t +  does not have analytical expression. Nevertheless, in view of 

its convexity, we first propose a procedure to numerically estimate , , 1( )ri r i iC t +   and 

subsequently develop a tailored cutting-plane based algorithm for solving the nonlinear 

convex stochastic model SDM1. 

6.4.1 A numerical procedure for calculating bunker consumption 

We evaluate , , 1( )ri r i iC t +  at many discrete points of , , 1r i it +  and thereby derive a piecewise 

linear function as an approximation, as shown in Figure 6-4. The points of , , 1r i it +  used in the 

piecewise linear function are denoted by 1 min
, , 1 , , 1r i i r i it t+ += , 2

, , 1r i it +  … , , 1r i it κ + , 1
, , 1r i it κ+ + … max

, , 1 , , 1
riK

r i i r i it t+ += , 

where riK  is a very large number representing the number of points used in the piecewise 

linear function for leg i  of ship route r . Note that for clarity only a few points are shown in 

Figure 6-4. The minimum time min
, , 1r i it +  can be determined by Eq. (6.19) and the maximum port 

time maxˆ riτ : 

 min con max
, , 1 max

ˆ ˆ , ,ri
r i i ri ri r

ri

Lt t r i
V+ = + + τ ∀ ∈ ∀ ∈R I  (6.70) 
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Similarly, max
, , 1r i it +  is achieved when the ship can always sail at its lowest speed: 

 max con max
, , 1 min

ˆ ˆ , ,ri
r i i ri ri r

ri

Lt t r i
V+ = + + τ ∀ ∈ ∀ ∈R I  (6.71) 

It is easy to show that  max
, , 1 , , 1( ) ( )ri r i i ri r i iC t C t+ +=  if max

, , 1 , , 1r i i r i it t+ +≥ . Thus , , 1( )ri r i iC t +  is not 

evaluated at any time max
, , 1 , , 1r i i r i it t+ +>  in Figure 6-4. 

Given , , 1r i it + , obtaining , , 1( )ri r i iC t +  involves a two-dimensional integration: the outer 

integration is on the random port time riτ  as in Eq. (6.65) and the inner integration is to find 

the value ava( )ri riC t  with given ava
rit . According to Eqs. (6.6) and (6.20), ava( )ri riC t  can be 

approximated by  

 ava * 3 ava

1
( ) ( ( )) / , ,ri ri r ri ri rC t a v t r i

ϒ

ξ=

= ξ ϒ ∀ ∈ ∀ ∈∑ R I  (6.72) 

The outer integration can be approximated by discretizing the port time range min maxˆ ˆ[ , ]ri riτ τ  

analogous to the inner integration. Such a two-dimensional integration can be efficiently 

calculated at a high precision. Therefore, we assume that there is no gap between the 

obtained piecewise linear function and the function , , 1( )ri r i iC t + . 
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0

, , 1( )ri r i iC t +

min
, , 1r i it + , , 1r i it κ +

1
, , 1r i it κ+ +

max
, , 1r i it + , , 1r i it +  

Figure 6-4 Relation between the inter-arrival time and expected bunker consumption 

 
6.4.2 A cutting-plane based solution algorithm 

The brutal-force approach via dynamic programming is unworkable for the liner ship 

route schedule design problem. In fact, although the bunker consumption on a leg depends 

solely on the designed inter-arrival time between the two end ports of call, , , 1r i it + , the number 

of states explodes exponentially with the increase in voyage legs as a result of the linking 

constraints (6.57)-(6.58). Therefore, new solution approaches have to be proposed. 

The piecewise linear function shown in Figure 6-4 is convex due to the convexity of 

, , 1( )ri r i iC t + . Therefore in theory SDM1 can be transformed into a mixed-integer linear 

optimization model. Nevertheless, we must use quite a large number of points to approximate 

, , 1( )ri r i iC t +  in order to achieve a high accuracy. Under this circumstance, SDM1 will have too 

many constraints defining the line segments for the piecewise linear function. These 

constraints would drastically increase the computational burden and computer memory 

requirement. To circumvent this difficulty, we observe that at most two such constraints are 
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binding on each voyage leg at the optimality. Therefore we propose a cutting-plane based 

algorithm to solve SDM1. This cutting-plane based algorithm dynamically generates 

potentially binding cuts. As a result, only a very small subset of the line segments in the 

piecewise linear function is used. This algorithm may terminate finitely since , , 1( )ri r i iC t +  is 

piecewise linear. In practical applications, the liner shipping company can define an absolute 

objective value tolerance ε (USD/week). When the difference in objective value between the 

obtained solution and the optimal one is below ε, the algorithm terminates. We can allocate 

the total tolerance ε among the voyage legs in proportion to the voyage distance. Define riε  

(tons) as: 

 bun , ,
s

ri
ri r

sjs j

L r i
L

∈ ∈

ε
ε = ∀ ∈ ∀ ∈

α ∑ ∑R I

R I  (6.73) 

riε  is the maximum allowable bunker consumption error on leg i  of ship route r  in the 

cutting-plane based algorithm. Note that if we set 0ε = , the algorithm finds the optimal 

solution. The cutting-plane based algorithm is as follows. 

Algorithm 6-1: Cutting-plane based algorithm: 

Step 1: Reformulate SDM1 by introducing new decision variables riC  as: 

[SDM2] ship bun

, ,
min
r r ri

r

r r rim C r r i
c m C

∈ ∈ ∈

+ α∑ ∑∑t R R I

 (6.74) 

 0, ,ri rC r i≥ ∀ ∈ ∀ ∈R I  (6.75) 

with the same constraints as SDM1.  

Step 2: Solve the mixed-integer linear programming model SDM2 to find the optimal 

solution denoted by *
rm , *

rt , *
riC  . Recall that , , 1( )ri r i iC t +  is the piecewise linear 

function shown in Figure 6-4. We check the error in bunker consumption for each leg 
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ri∈I  on each ship route r∈R . If * *
, , 1( )ri r i i ri riC t C+ − > ε ,  we add a new cut to the 

model SDM2 in such a manner: If * max
, , 1 , , 1r i i r i it t+ +≥ , add the cut: 

 max
, , 1( )ri ri r i iC C t +≥  (6.76) 

Otherwise, there exists 1 1riK≤ κ ≤ −  such that * 1
, , 1 , , 1 , , 1r i i r i i r i it t tκ κ+

+ + +≤ < . Add the 

following cut to SDM2: 

 
1

, , 1 , , 1
, , 1 , , 1 , , 11

, , 1 , , 1

( ) ( )
( ) ( )ri r i i ri r i i

ri ri r i i r i i r i i
r i i r i i

C t C t
C C t t t

t t

κ+ κ
+ +κ κ

+ + +κ+ κ
+ +

−
≥ + × −

−
 (6.77) 

If there are new cuts added, repeat Step 2. Otherwise, the gap between the obtained 

solution and the optimal one is less than ε, stop. 

6.5 Case Study 

We use an Asia-Europe-Oceania shipping network provided by a global liner shipping 

company to assess the models and solution algorithms proposed in this study. The network 

has a total of 46 ports in Asia, Europe, and Oceania, as shown in Figure 2-1. These 46 ports 

are served by 11 ship routes with three types of ships, as shown in Table 6-1 and Table 6-2, 

respectively. There are a total of 100 container routes in the shipping network.  

A basic setting of the case study is as follows: the bunker price is 300 USD/ton; the 

contingency time for each leg is proportional to the voyage distance at 10 hours per 1000 n 

miles; the random port time is uniformly distributed and the maximum (minimum) port time 

is 10% larger (smaller) than the average port time shown in Table 6-2; the tolerance ε is 

taken as 0.1% of the estimated total cost. The total cost is estimated as the sum of the 

estimated ship cost and estimated bunker cost. The estimated ship cost is the average of the 

maximum ship cost (when all ships sail at the lowest speed) and the minimum ship cost 

(when all ships sail at the highest speed). The estimated bunker cost is the average of the 
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maximum bunker cost (when all ships sail at the highest speed) and the minimum bunker 

cost (when all ships sail at the lowest speed).  

The mixed-integer linear programming model [SDM2] is solved by CPLEX-12.1 

running on a 3.2 GHz Dual Core PC with 4 GB of RAM. The relative mixed-integer 

programming (MIP) gap tolerance is set at 0.1%, and therefore the obtained solution is at 

most 0.2% worse than the optimal one. In order to further improve the computational 

performance of the cutting-plane based algorithm, we first set ε at 1% of the estimated total 

cost and set the relative MIP gap tolerance in CPLEX at 1% and solve [SDM2] (fast cut-

generation stage). When all cuts have been generated, we reset ε at 0.1% of the estimated 

total cost and the relative MIP gap tolerance in CPLEX at 0.1% and solve [SDM2] together 

with the generated cuts (refining stage). The advantage of this setting is that a number of high 

quality cuts will be generated without considerable computational efforts in the fast cut-

generation stage. 

With the above basic parameter settings, the fast cut-generation stage generates 258 cuts 

after 8 iterations, and the refining stage generates another 145 cuts after 8 iterations. The total 

CPU time for the cutting-plane based algorithm is 1.6 seconds. Therefore this algorithm is 

very efficient to find high quality solutions. Next, we analyze the solutions in different 

parameter settings to gain managerial insights for liner shipping companies. 

 

Table 6-1  Ship fleet profile 

Ship Type 1 2 3 
TEU Capacity 3000 5000 10000 
Min Speed (knot) 15 20 21 
Max Speed (knot) 23 26 30 
Bunker Consumption Coefficient a (1e-4)  3.95 4.64 5.33 
Operating Cost (million USD/(year•ship)) 2.0 3.0 4.5 
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Table 6-2  Ship route information 

No. Ship Type Ports of call (average port time, hour) 
1 5000-TEU Singapore(12) → Brisbane(11) → Sydney(12) → Melbourne(12) → 

Adelaide(12) → Fremantle(11) → Singapore 
2 5000-TEU Xiamen(12) → Chiwan(14) → Hong Kong(13) → Singapore(12) → Port 

Klang(12) → Salalah(12) → Jeddah(13) → Aqabah(12) → Salalah(12) → 
Singapore(12) → Xiamen 

3 3000-TEU Yokohama(8) → Tokyo(8) → Nagoya(8) → Kobe(8) → Shanghai(14) → 
Yokohama 

4 3000-TEU Ho Chi Minh(8) → Laem Chabang(9) → Singapore(10) → Port 
Klang(10) → Ho Chi Minh 

5 3000-TEU Brisbane(9) → Sydney(10) → Melbourne(10) → Adelaide(10) → 
Fremantle(9) → Jakarta(10) → Singapore(10) → Brisbane 

6 3000-TEU Manila(8) → Kaohsiung(8) → Xiamen(10) → Hong Kong(11) → 
Yantian(8) → Chiwan(12) → Hong Kong(11) → Manila 

7 3000-TEU Dalian(8) → Xingang(8) → Qingdao(8) → Shanghai(14) → Ningbo(10) 
→ Shanghai(14) → Kwangyang(8) → Busan(9) → Dalian 

8 3000-TEU Chittagong(8) → Chennai(9) → Colombo(9) → Cochin(8) → Nhava 
Sheva(9) → Cochin(8) → Colombo(9) → Chennai(9) → Chittagong 

9 5000-TEU Sokhna(15) → Aqabah(12) → Jeddah(13) → Salalah(12) → Karachi(10) 
→ Jebel Ali(11) → Salalah(12) → Sokhna 

10 10000-TEU Southampton(21) → Thamesport(15) → Hamburg(17) → 
Bremerhaven(17) → Rotterdam(16) → Antwerp(19) → Zeebrugge(15) → 
Le Havre(15) → Southampton 

11 10000-TEU Southampton(21) → Sokhna(20) → Salalah(17) → Colombo(16) → 
Singapore(17) → Hong Kong(18) → Xiamen(17) → Shanghai(21) → 
Busan(16) → Dalian(15) → Xingang(15) → Qingdao(15) → 
Shanghai(21) → Hong Kong(18) → Singapore(17) → Colombo(16) → 
Salalah(17) → Southampton 

 

6.5.1 Impact analysis of the maximum allowable transit time  

First, we make a sensitivity analysis of the solution with the maximum allowable transit 

time. We vary the maximum allowable transit time for all the container routes with the 

incremental of 2 days. Figure 6-5 shows the total cost and the number of deployed ships, 

where “0” on the horizontal axis corresponds to the maximum allowable transit time in the 

basic setting, 100% and 95% represent the level of service, namely, 100% means the 

maximum allowable transit time has to be satisfied for all the container routes, and 95% 

implies that at most (1-95%)×100=5 container routes may violate this constraint. It can be 

seen that with the shortening of the maximum allowable transit time from 0 to -10 on the 

horizontal axis in Figure 6-5, the number of deployed ships drops because the ships have to 
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sail at a higher speed. At the same time, the total cost increases due to the dramatic increase 

in bunker cost. Given the same maximum allowable transit time, the 95% level of service 

may require fewer ships and incur lower cost than the 100% level of service. When the 

maximum allowable transit time is very tight (corresponding to -10 on the horizontal axis in 

Figure 6-5), the 100% level of service can no longer be fulfilled, while with the 95% level of 

service, the total cost only increases moderately. When the maximum allowable transit time 

is very slack (e.g., -4, -2, and 0 on the horizontal axis in Figure 6-5), a slight change in the 

maximum allowable transit time and the level of service has no impact on the number of 

ships deployed or the total cost.  
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Figure 6-5 Sensitivity of ship number and total cost with transit time 
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6.5.2 Change in bunker price and sea contingency  

The bunker price and sea contingency also have implications on the schedule design. Fig. 

6 illustrates the total bunker consumption and the number of deployed ships at the bunker 

price of 300 USD/ton and 600 USD/ton for different sea contingencies. It should be pointed 

out that the total cost increases with sea contingency and bunker price and is not plotted in 

Figure 6-6. According to Figure 6-6, it can be observed that the liner shipping company will 

choose to sail at lower speeds to control the bunker consumption when the bunker price is 

high. This observation is consistent with industrial practices. For example, both the Grand 

Alliance and CMA CGM each decided to add a ninth ship to one of their respective Asia-

Europe routes during the summer of 2006 to cope with the high bunker price. The resulting 

fuel cost savings generated by each of the other eight ships more than compensated for the 

cost of hiring and operating the ninth ships (Vernimmen et al., 2007). Another example is that 

in 2009, to deal with the decreased container shipment demand and the large ship fleet, liner 

shipping companies took measures including slow or super slow steaming in an attempt to 

curb shipping capacity and thus boost the freight rate (UNCTAD, 2010).  

Another interesting finding is that the increase in sea contingency leads to either the 

increase in the number of deployed ships or the increase in sailing speed. As a consequence, 

when the sea contingency increases and more ships are deployed, the sailing speed may 

decrease. Therefore we cannot reach a straightforward conclusion regarding the relation 

between sea contingency and sailing speed. This highlights the inherent difficulty of the 

problem. 
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Figure 6-6 Sensitivity of bunker consumption and ship number with bunker price and sea 

contingency 

 

6.5.3 Different port time profiles  

We investigate the effect of average port time and the range of port time max min
ri riτ − τ  on 

the optimal solution. Figure 6-7 shows the bunker consumption and the number of deployed 

ships with the increase of average port time (the range of port time keeps constant), where 

“0%” on the horizontal axis corresponds to the port time range in the basic setting. Figure 6-8 

presents the bunker consumption and the number of deployed ships with the increase in the 

range of port time (The average port time keeps constant), where the range 10% denotes that 

the maximum and minimum port times are 10% larger and smaller than the average, 

respectively. The total cost increases with the average port time and the range of port time, 

and is not plotted. 
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Compared with larger sea contingency as shown in Figure 6-6, longer average port time 

and a wider port time range have a similar effect on the optimal ship number and sailing 

speed. That is, either the number of ships increases, or ships sail at higher speeds. The 

increase in the average port time, port time range, and sea contingency leads to a non-

decreasing optimal number of ships deployed, but does not necessarily result in a higher 

sailing speed. 
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Figure 6-7 Sensitivity of bunker consumption and ship number with average port time 
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Figure 6-8 Sensitivity of bunker consumption and ship number with range of port time 

 

6.6 Conclusions 

This chapter addresses a practical liner ship route schedule design problem accounting 

for uncertainties at sea and at port. The optimality condition for the sailing speed with sea 

contingency is derived by analyzing the characteristics of the bunker consumption – sailing 

speed relation. Based on the optimal sailing speed function, the convexity of bunker 

consumption on the available sailing time for each voyage leg is proved. A mixed-integer 

nonlinear stochastic programming model is developed to minimize the ship cost and expected 

bunker cost while satisfying transit time constraints. An exact and efficient cutting-plane 

based solution algorithm is proposed. Experiments on data provided by a global liner 

shipping company yield the following managerial insights. First, when the maximum 

allowable transit time is tight, allowing a small percentage of container routes to violate the 

transit time requirement not only reduces the total cost but also provides feasible schedules 
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when an extremely tight transit time is required. Second, liner shipping companies should 

lower down sailing speed of ships to control bunker consumption in case of high bunker 

price. Third, with the increase in sea contingency, average port time, and port time range, the 

optimal number of ships deployed will not decrease, however, the optimal sailing speed may 

increase or decrease. 
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CHAPTER 7. LINER SHIPPING NETWORK DESIGN 

This chapter studies a realistic liner shipping network design problem while considering 

practical operations and features, including multi-type containers, container transshipment 

operations, empty container repositioning, origin-to-destination transit time constraint, 

consistent services with the current network, and joint services with other liner shipping 

companies. It first examines the laden and empty container shipment demand. It proceeds to 

investigate the routing of laden containers while considering the transit time constraint. Two 

approaches are proposed. The first one is based on global and regional hubs. It generates 

container routes efficiently whereas cannot guarantee optimality. The second one is reliant on 

the construction of a liner shipping operational network and an integer linear programming 

model. It is an exact algorithm while the computational time is longer. Given a set of 

candidate ship routes, including ship routes that must be used, ship routes a minimum 

number of which must be used, and ship routes that are completely optional, a mixed-integer 

linear programming model is presented, which gives the ship routes that should be used and 

the laden and empty container flow in the resulting network. After that, the resulting network 

is further improved by changing existing ship routes, adding new ship routes, and removing 

ship routes. Finally, a real case study based on the global shipping network of a liner shipping 

company, consisting of 166 ports, is reported.  

7.1 Problem Description  

The liner shipping network design problem (NDP) aims to construct the ship routes (port 

rotations, type and number of ships to deploy) that constitute the network, which fulfills the 

container shipment demand at minimum cost. 
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7.1.1 Container shipment demand  

There are many types of containers to transport for each O-D pair, such as dry 20-ft, dry 

40-ft, reefer 20-ft, and reefer 40-ft. Different types of containers are different in volume and 

port handling cost. Let K  represent the set of container types. Denote by kE  the twenty-foot 

equivalent volume (TEUs) of a container in type k∈K . For example, a dry 40-ft is 2 TEUs. 

Denote by k
odn   the weekly number of laden containers in type k  to be transported for the O-

D pair ( , )o d ∈W . Let k
odW  be the average weight (tons) of a laden container in type k  to be 

transported for the O-D pair ( , )o d ∈W . 

Due to trade imbalance, some locations have surplus empty containers and other 

locations are deficit in empty containers. Define : k k
pk op pdo d

n n
∈ ∈

γ = −∑ ∑P P
. Let SUR

kP  be the 

set of ports with surplus empty containers in type k , that is, SUR : { | 0}k pkp= ∈ γ >P P . 

Similarly, let BAL
kP  and DEF

kP  be the set of ports with balanced and deficit empty containers 

in type k , respectively. We further represent by kW  the weight (tons) of an empty container 

in type k . 

7.1.2 Container shipping network 

The liner shipping company does not design a shipping network from scratch. In fact, it 

usually designs the network based on its current shipping network. Therefore, we use the 

current network as an input of the network design problem. We assume that the company has 

an initial network which consists of three types of ship routes: ship routes that must be used 

(type 1) denoted by R̂ ; ship routes that at least SRN  of them must be used (type 2) denoted 

by R ; and ship routes that are optional (type 3) denoted by R . ˆ=R R R R  .  
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There are two constituents of ship routes in type 1: ship routes that are jointly operated 

with other shipping companies and ship routes that are proved to be very successful. Each 

ship route of type 1 has a specified type of ship deployed on it. It should be mentioned that if 

a ship route is operated with other companies, it is possible that e.g. six 9k-TEU ships are 

deployed, while the focal company controls only two of them. Therefore, the focal company 

can utilize 3k-TEU ship slots on each ship. To capture this feature, we use rΛ  to represent 

the percentage of ship slots of ship route ˆr∈R  controlled by the focal company. The 

number of ships deployed as well as the arrival and departure time at each port of call are 

also known for ship routes of type 1. 

Ship routes of type 2 are important and the liner shipping company does not intend to 

change all of them. Hence, it requires that at least SRN  of them must be used, SR | |N ≤ R . 

Ship routes of type 3 are less important. Each ship route of type 2 and type 3 also has a 

specified type of ships to deploy. However, the type of ship can be changed. The number of 

ships deployed on a ship route of type 2 and type 3 is a decision variable. When we say that a 

ship route of type 2 is used, we mean that the pre-specified ship type is not changed. 

7.2 Laden Container Routing  

7.2.1 Assumptions and constraints 

As we have mentioned, a port pair ( , )o d ∈W  may have more than one type of 

container to ship. In reality, different types of containers are shipped together. Therefore, we 

assume that whenever containers of the same O-D are shipped, different types of containers 

must be shipped proportional to the container shipment demand k
odn . This assumption 

significantly simplifies the modeling difficulties because we can treat the containers of the 

same O-D as a single type of containers, which is elaborated below. 
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We can use TEU to compute the container shipment demand of port pair ( , )o d ∈W . 

Thus, in terms of TEU, the container shipment demand odn  can be calculated by 

 , ( , )k
od k od

k
n E n o d

∈

= ∀ ∈∑
K

W  (7.1) 

The average weight (tons) per TEU, denoted by odW , is computed by 

 / , ( , )k k
od od od od

k
W W n n o d

∈

= ∀ ∈∑
K

W  (7.2) 

Other parameters can be computed in a similar manner. For example, suppose that the 

productivity of port p∈P  is pvM  moves/hour for ships of type v∈V . Then the average 

container handling time (hour) per TEU, denoted by od
pvt , can be calculated by 

 /( ), ( , ) , , ,od k
pv od pv od p

k
t n M n o d p v

∈

= ∀ ∈ ∀ ∈ ∀ ∈∑
K

W P V  (7.3) 

The liner container shipping company thus must provide a certain level of service in 

terms of the maximum allowable transit time for each port pair ( , )o d ∈W , denoted by ôdT  

(hours), for shippers. This is one of the major constraints in the generation of container routes. 

To capture the transit time of containers, the arrival and departure time at each port of 

call on each ship route in R  must be known. As mentioned above, the arrival and departure 

time of ship routes in type 1 are already given. However, the time components and the 

number of ships deployed on ship routes in type 2 and type 3 are not known. Before routing 

containers, we have to set the schedules for these ship routes. This is implemented as follows. 

We first estimate the time spent at each port of call based on historical data, and the sea time 

based on the voyage distance and the design speed of ships. After that, we obtain the round-

trip time, thereby calculating the number of ships required. If this number is not an integer, 

we round it up or down by adjusting the speed of ships. After that, we can obtain the sea time 
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on each leg and the port time at each port of call. It should be mentioned that the transit time 

of containers includes the connection time (or dwell time) at transshipment ports. This 

connection time is dependent on the schedules of the two ship routes. However, we do not 

capture so many details in the model and simply assume that the connection time at a port is 

a constant value p̂t  hours. We make this simplifying assumption because otherwise we have 

to consider the available berth time window at each port of call, which dramatically increases 

the difficulties of the model. 

In the generation of container routes, maritime cabotage has to be taken into account. 

Maritime cabotage is imposed in most of the countries in the world. It requires that a global 

liner shipping company that is not based in the country does not allow transporting laden 

container within the country. For example, Maersk Line is not allowed to relay containers 

from Qingdao at Shanghai, because this operation involves the delivery of containers from 

Qingdao to Shanghai and it would reduce the profit of local shipping companies such as 

COSCO and CSCL. 

7.2.2 A hub-based container route generation approach 

To facilitate the generation of container routes, we take advantage of the current 

operating rules of the liner shipping company. It has a set of global hubs and regional hubs 

for transshipment. For example, Figure 7-1 depicts the 166 ports of a global liner shipping 

company. Figure 7-2 shows its two global hubs: Singapore and Hong Kong, and 14 regional 

hubs which are Balboa, Manzanillo, Miami, Hamburg, Rotterdam, Port Said, Djibouti, 

Salalah, Jebel Ali, Colombo, Singapore, Hong Kong, Kaohsiung, and Pusan (note that a 

global hub is also a regional hub). We assume that global hubs can be used to relay 

containers of any O-D pair, while regional hubs can only relay containers associated with its 
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feeder ports. Because of the voluminous data, we do not show the associated feeder ports of 

each regional hub in Figure 7-2. 

 

 

Figure 7-1 A global shipping network of 166 ports 

 

 

Figure 7-2 Global and regional hubs 

 

Take the O-D pair Hakata-Kotka shown in Figure 7-3 as an example. Hakata is a feeder 

port assigned to Pusan, and Kotka is a feeder port assigned to both Hamburg and Rotterdam. 

This corresponds to the most complicated case where containers are from one feeder to 

another feeder and these two feeders are not assigned to the same regional hub. The possible 

routing choices are shown in Table 7-1. Containers can be shipped without relay (ID1), or 
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relayed once at a regional hub or a global hub (ID2-ID6), or relayed twice (ID7-ID14), or 

relayed three times at two regional hubs and a global hub (ID15-ID18). 

 It should be noted that if a routing alternative violates the maritime cabotage restriction, 

it should be removed. Table 7-1 does not provide container routes because it does not specify 

which leg of which ship route to use. To generate container routes, we enumerate all possible 

combinations of ship routes for each routing choice in Table 7-1 and check the transit time 

constraint. We do not consider all the container routes for each O-D at the network design 

stage. Rather, we only consider the 30 container routes with the lowest operating cost. 

 

 

Figure 7-3 Relevant ports for the O-D pair Hakata-Kotka 
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Table 7-1  Routing choices for containers from Hakata to Kotka  

ID Possible routing choices 

1 Hakata-Kotka 

2 Hakata-Pusan-Kotka 

3 Hakata-Hamburg-Kotka 

4 Hakata-Rotterdam-Kotka 

5 Hakata-Hong Kong-Kotka 

6 Hakata-Singapore-Kotka 

7 Hakata-Pusan-Hamburg-Kotka 

8 Hakata-Pusan-Rotterdam-Kotka 

9 Hakata-Pusan-Hong Kong-Kotka 

10 Hakata-Pusan-Singapore-Kotka 

11 Hakata-Hong Kong-Hamburg-Kotka 

12 Hakata-Hong Kong-Rotterdam-Kotka 

13 Hakata-Singapore-Hamburg-Kotka 

14 Hakata-Singapore-Rotterdam-Kotka 

15 Hakata-Pusan-Hong Kong-Hamburg-Kotka 

16 Hakata-Pusan-Hong Kong-Rotterdam-Kotka 

17 Hakata-Pusan-Singapore-Hamburg-Kotka 

18 Hakata-Pusan-Singapore-Rotterdam-Kotka 

 

7.2.3 An exact container route generation approach 

The hub-based container route generation approach is very efficient in practice. 

Nevertheless, it may not generate all the best container routes because it does not allow laden 

containers to be relayed at ports other than hubs. We further develop a mathematical model 

for generating container routes while considering operational constraints. 

To facilitate the generation of container routes, we reformulate a liner shipping network 

as an operational network. For example, Figure 7-4 is the corresponding operational network 

for the O-D pair Xiamen-Singapore of the network in Figure 2-3. The operational network 
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( , )N A  for the O-D pair of ( , )o d ∈ ×P P , where N  represents the node set and A  is the arc 

set, is constructed as follows. First, add a virtual source node and a virtual sink node to N . 

Each node in N  except the virtual source and sink nodes corresponds to a port of call on a 

liner ship route. Hence, every node in N  except the source and sink nodes can be 

represented by ( , )r i , i.e., the ith port of call on ship route r∈R . The arc set 

source sink: v tA A A A A=    , which represent the voyage arcs, transshipment arcs, source arcs, 

and sink arcs, respectively. A voyage arc va A∈  can be represented by its tail node ( , )r i . In 

other words, voyage arc ( , )r i  is the voyage from node ( , )r i  to node ( , 1)r i + . Note that 

voyage arc ( , )rr N  is the voyage from node ( , )rr N  to node ( ,1)r  because each ship route 

forms a loop. To simplify the notation, in the sequel we define node ( , 1)r i + , ri N= , to be 

node ( ,1)r . A relay arc ta A∈  can be represented by (( , ), ( , ))r i s j  where ri sjp p= . In other 

words, containers are transshipped at port ri sjp p=  from a ship on ship route r  to a ship on 

ship route s . A source arc is an arc from the source node to a node ( , )r i  referring to the 

origin port o , namely, rip o= . A sink arc is defined similarly. To summarize, we can use 

a A∈  to refer to an arc of any type. We can also use ( , ) vr i A∈   to refer to the voyage arc 

from node ( , )r i  to node ( , 1)r i + , and use (( , ), ( , )) tr i s j A∈  to refer to the transshipment arc 

from the ith port of call of ship route r  to the jth port of call of ship route s . 
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Figure 7-4 A liner shipping operational network for the O-D of Xiamen-Singapore 

 

Each arc a A∈  is associated with a time, denoted by at , which is determined by the 

liner service schedules. Suppose that each ship route provides a weekly service frequency 

and consider a particular ship on each ship route. Suppose that the ship on ship route r∈R  

visits the first port of call at time 1rt  (the time 0 can be arbitrarily defined, e.g., 00:00:00 

01/01/2011), and then visits the second port of call at time 2rt , etc. In this context, the time of 

a voyage arc ( , ) va r i A= ∈  is the time from the arrival at the ith port of call to the arrival at 

the (i+1)th port of call, i.e., , 1a r i rit t t+= − . The time of a relay arc (( , ), ( , )) ta r i s j A= ∈  is ˆ
ript  

for simplicity. 

Similar to at , a A∈ , each arc a A∈  is also associated with a cost, denoted by ac . The 

cost of a source arc is the loading cost of containers at their origin port, and the cost of a sink 

arc is the discharge cost of containers at their destination port. The cost of a voyage arc can 
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be set at 0 because the marginal cost of transporting one more container is insignificant 

compared with the handling cost. The cost of a transshipment arc is mainly the transshipment 

cost of containers at the port associated with the transshipment arc. 

In the operational network, a container route is a path from the source node to the sink 

node. Theoretically, there may be an infinite number of paths for each O-D pair. However, 

practically the number of paths is quite limited because of operational constraints and 

business considerations. Before presenting the mathematical model, we present the notation: 

source ( , )a r i :  The source arc from the virtual source node to node ( , )r i ; 

sink ( , )a r i :  The sink arc from node ( , )r i  to the virtual sink node;      

t
pA :  Set of transshipment arcs at port p∈P , : {(( , ), ( , )) : }t t

p ri sjA r i s j A p p p= ∈ = = ; 

v
pA + :  Set of voyage arcs entering port p∈P , , 1: {( , ) : }v v

p r iA r i A p p+
+= ∈ = ; 

v
pA − :  Set of voyage arcs leaving port p∈P , : {( , ) : }v v

p riA r i A p p− = ∈ = ; 

Θ : The set of countries where the set of ports P  belong to 

Θ̂ : The set of countries where maritime cabotage is imposed for the liner shipping 

company 

ˆ\Θ Θ : The set of countries within each of which the liner shipping company can freely 

provide maritime transport services 

pθ : The country that port p∈P  belongs to 

Pθ : The set of ports located in country θ , θ∈Θ  
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The decision variable {0,1},ax a A∈ ∈ . 1ax =  if and only if arc a  is contained in the 

container route. Hence, the values of all ax  fully represent a container route. The container 

route generation model (CRM) is: 

[CRM] min
a

a ax a A
c x

∈
∑  (7.4) 

subject to: 
 

source

1a
a A

x
∈

=∑  (7.5) 

 
sink

1a
a A
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∈
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 ( , 1) 0, , ,r i r rix r i p o− = ∀ ∈ ∀ ∈ =R I  (7.10) 

 ( , ) 0, , ,r i r rix r i p d= ∀ ∈ ∀ ∈ =R I  (7.11) 

 (( , ),( , )) 0, (( , ), ( , )) t t
r i s j o dx r i s j A A= ∀ ∈   (7.12) 

 (( , ),( , ))
(( , ),( , ))

1, \{ , }
t
p

r i s j
r i s j A

x p o d
∈

≤ ∀ ∈∑ P  (7.13) 

 (( , ),( , ))
ˆ0, { , }, , (( , ), ( , )) t

r i s j o d px p P r i s j Aθ= ∀θ∈Θ θ θ ∀ ∈ ∀ ∈  (7.14) 

 (( , ),( , ))
(( , ),( , ))

ˆ1, \{ , }
t
p

r i s j o d
p P r i s j A

x
θ∈ ∈

≤ ∀θ∈Θ θ θ∑ ∑  (7.15) 
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 ( , 1) (( , ),( , )) , (( , ), ( , )) t
r i r i s jx x r i s j A− ≥ ∀ ∈  (7.16) 

 ( , ) (( , ),( , )) , (( , ), ( , )) t
s j r i s jx x r i s j A≥ ∀ ∈  (7.17) 

 (( , ),( , ))1 , , (( , ), ( , )) , ( ) \{( , 1), ( , )}t v v
a r i s j p p px x p r i s j A a A A r i s j+ −≤ − ∀ ∈ ∀ ∈ ∀ ∈ −P   (7.18) 

 ˆ
v t

a a od
a A A

t x T
∈

≤∑


 (7.19) 

 {0,1},ax a A∈ ∈  (7.20) 

The objective function (7.4) minimizes the total cost for transporting one container. 

Constraints (7.5)-(7.9) impose flow conservation. Eqs. (7.10)-(7.11) require that containers 

never visit their origin port from other ports and containers never visit other ports from their 

destination port (we define arc ( , 1)r i − , 1i = , to be arc ( , )rr N ). Eqs. (7.12)-(7.13) require 

that containers should never be transshipped at their origin or destination port and containers 

can be transshipped at a port other than their origin or destination at most once. Eqs. (7.14)-

(7.15) impose the maritime cabotage restriction. Eq. (7.14) requires that if the liner shipping 

company is subject to the maritime cabotage restriction in the country of the origin 

(destination) port, the liner shipping company cannot transship the containers at ports in the 

same country as the origin (destination) port. Eq. (7.15) enforces that for other countries that 

impose the maritime cabotage, the liner shipping company can transship the containers at 

most once at all ports within a country. Eqs. (7.16)-(7.18) require that if a transshipment arc 

(( , ), ( , )) tr i s j A∈  is visited, then the voyage arcs ( , 1) vr i A− ∈ , ( , ) vs j A∈  must also be 

visited, and none of the other voyage arcs entering or leaving the port associated with the 

transshipment arc is visited. Eq. (7.19) imposes the transit time constraint and Eq. (7.20) 

defines ax  to be a binary decision variable. 
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After the container route with the lowest cost while satisfying the transit time limit is 

generated, we can generate the container route with the 2nd lowest cost as follows. Let the 

binary vector * | |( ) {0,1}A
a a Ax ∈ ∈   represent the container route with the lowest cost. Add to the 

above model the following constraint to exclude this container route to be generated again:  

 
1 0

(1 ) 1a a
a A a A

x x
∈ ∈

− + ≥∑ ∑  (7.21) 

where  

 1 *: { : 1}aA a A x= ∈ =  (7.22) 

 0 *: { : 0}aA a A x= ∈ =  (7.23) 

The other container routes can be generated one by one in a similar manner by excluding all 

the previously generated container routes until the model is infeasible. 

The above model is an integer (binary) linear programming model and can be efficiently 

solved by state-of-art integer linear programming solvers. Moreover, the container routes for 

different O-D pairs can be simultaneously generated with different computing units. 

7.3 Network Design with Candidate Ship Routes 

Given an initial network with ship routes classified into three groups R̂ , R , and R , 

we aim to determine which ship routes in R R  should be chosen in order to minimize the 

total cost of transporting both laden and empty containers. It should be noted that since the 

predicted container shipment demand cannot match the true demand exactly, we allow some 

laden and empty containers not shipped while incurring some penalty cost.  

7.3.1 Decision variables 

The NDP has the following decision variables: 

rx : Binary decision variable which equals 1 if and only if ship route r∈R  is used; 
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in
vn : Number of ships in type v∈V  that are chartered in; 

hy : Number of laden containers (TEUs) shipped on container route h∈H ; 

ody : Number of laden containers (TEUs) unfulfilled for the port pair ( , )o d ∈W ; 

k
rif : Number of empty containers in type k  flowing on leg i  of ship route r∈R ; 

ˆk
riz : Number of empty containers in type k  loaded at the port of call i  of ship route 

r∈R ; 

k
riz : Number of empty containers in type k  discharged at the port of call i  of ship route 

r∈R ; 

ˆk
pz : Number of loading operations for empty containers in type k  at port p∈P ; 

k
pz : Number of discharge operations for empty containers in type k  at port p∈P ; 

k
pz : Number of transshipments for empty containers in type k  at port p∈P ; 

k
pz : Number of unshipped empty containers in type k  at port p∈P ; 

ody : Number of laden containers (TEUs) unfulfilled for the port pair ( , )o d ∈W ; 

7.3.2 Mixed-integer linear programming model 

Let EMPˆpkc , EMP
pkc , and EMP

pkc  be the load, discharge, and relay cost of empty containers in 

type k  at port p∈P , respectively. Let odc  (USD/TEU) be the penalty for not shipping a 

TEU for the port pair ( , )o d ∈W . We define 1rΛ =  for ship routes r∈R R . The weight 

(tons) of an empty container in type k  is denoted by kW . The type of ship deployed on ship 

route r∈R  is ( )v r , and the number of ships is ( )m r . : { | ( ) }v r v r v= ∈ =R R . The network 

design model (NDM) is: 
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[NDM] 
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 ˆ1,rx r= ∀ ∈R  (7.37) 

 {0,1},rx r∈ ∀ ∈R R  (7.38) 

 in 0,vn v≥ ∀ ∈V  (7.39) 
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 0,hy h≥ ∀ ∈H  (7.40) 

 0, ( , )ody o d≥ ∀ ∈W  (7.41) 

 ˆ 0, 0, 0, ,k k k
ri ri riz z f k r≥ ≥ ≥ ∀ ∈ ∀ ∈K R  (7.42) 

 ˆ 0, 0, 0, 0, ,k k k k
p p p pz z z z k p≥ ≥ ≥ ≥ ∀ ∈ ∀ ∈K P  (7.43) 

The objective function (7.24) minimizes the total cost. The first component is the cost 

associated with ship routes, the second term is the laden container routing cost, the third term 

is empty container handling cost, the fourth term is the cost for using more ships than owned, 

and the last two terms are penalty cost for not fulfilling the laden and empty container 

shipment demand.  Eq. (7.25) is the laden container flow conservation equation. Eqs. (7.26)-

(7.27) define the load and discharge volumes of empty containers, respectively. Eqs. (7.28)-

(7.31) are empty container flow conservation equations. Eq. (7.32) defines the transshipped 

empty containers. Eqs. (7.33)-(7.34) impose the ship volume and capacity constraints, 

respectively. Eq. (7.35) requires that the number of ships used cannot exceed the number of 

ships owned. Eq. (7.36) requires that at least SRN  ship routes of type 2 must be chosen. Eq. 

(7.37) requires that all ship routes of type 1 must be used. Eqs. (7.38)-(7.43) define the 

decision variables. 

The NDM can be transformed to a mixed-integer linear programming model due to the 

proposition below: 

Proposition 7-1: Replacing Eq. (7.32) by 

 ˆ , ,k k
p pz z k p≤ ∀ ∈ ∀ ∈K P  (7.44) 

 , ,k k
p pz z k p≤ ∀ ∈ ∀ ∈K P  (7.45) 

At the optimal solution, Eq. (7.32) holds automatically. 
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Proof: If ˆmin{ , }k k k
p p pz z z>  , we can decrease the objective function (7.24) by reducing the 

value of k
pz  while not violating any constraint. Hence, the proposition holds.□ 

 
7.3.3 A heuristic solution approach 

NDM cannot be solved directly by off-the-shelf solver if the cardinality of R R  is 

large because it has hundreds of thousands of continuous decision variables. To obtain a high 

quality solution efficiently, we propose a heuristic approach.  

First, denoting by *
hy  and *k

rif  the resulting flow of laden and empty containers, 

respectively, in a given network, we define the capacity utilization of leg i  of ship route 

r∈R , denoted by riU , as follows: 
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We further define the capacity utilization of ship route r∈R , denoted by rU , as follows: 
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and the hit-haul capacity utilization of ship route r∈R , denoted by max
rU , as follows: 

 max : max{ },
r

r rii
U U r

∈
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I
R  (7.48) 

A heuristic algorithm that obtains a high quality solution is as follows: 

Algorithm 7-1: Optimizing the initial network 
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Step 0: Specify the value OPTN (e.g. 20). Solve NDM by requiring 1rx =  for any r∈R . 

Obtain the container flow *
hy  and *k

rif . 

Step 1: Compute the capacity utilization of ship route r∈R R .  Set {0,1}rx ∈  for the 

OPTN  ship routes with the lowest capacity utilization.  

Step 2: Solve NDM by requiring 1rx =  for any r∈R  except the OPTN  ship routes identified. 

Obtain the container flow *
hy  and *k

rif . If all the OPTN  ship routes are chosen, stop. 

Otherwise remove the ship routes that are not chosen, go to Step 1. 

Proposition 7-2: Algorithm 7-1 terminates in a finite number of iterations. 

Proof: At least one ship route in R  is removed each time the algorithm repeats Step 2. Since 

the number of ship routes in R is limited, Proposition 7-2 holds. □ 

In the above algorithm, the number OPTN  is used to balance between the solution quality 

and computational time. For instance, if OPT | |N = R , we obtain the optimal solution. If OPTN  

is small, NDM can be solved efficiently in each iteration. Nevertheless, some potentially 

good ship routes may be removed at early stages of the algorithm. 

7.4 Successive Optimization Heuristic  

The approach mentioned above chooses a set of high quality ship routes to operate from 

a set of candidate ship routes. However, no new ship routes are generated. As a result, it may 

not be sufficient for designing the liner shipping network. Therefore, we propose a 

successive optimization heuristic algorithm that improves the network. The flowchart of the 

algorithm is shown in Figure 7-5. After the initial network is optimized, there are three stages 

to improve the resulting network, which are elaborated below. 
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Optimize the initial network
(Remove ship routes with low utilization)

Network Refinement
Step 1: Remove ports of call with low 
container handling volume;
Step 2: Redeploy ships based on utilization;
Step 3: Remove voyage legs with low 
utilization;
Step 4: Set the ship routes with low utilization 
as optional, reoptimize;
Step 5: Reverse the direction of ship routes.

Ship Route Alteration
Step 1: Remove feeder ports from line-haul 
ship routes;
Step 2: Add feeder ports to feeder ship routes;
Step 3: Add port to line-haul ship routes to 
increase hit-haul leg utilization.

Generate New Ship Routes
Generate line-haul ship routes and feeder ship 
routes based on unfulfilled demand.

Stage 1

Stage 2

Stage 3

 

Figure 7-5 Flowchart of the successive optimization heuristic algorithm 

 

7.4.1 Generate new ship routes 

If the projected container shipment demand is much larger than the current demand, or if 

the demand covers shipping markets that are not serviced by the current network, or if there 

is no initial network, the resulting network after optimizing the initial network may have a 

large number of unshipped containers. In such a setting, we need to design ship routes from 

scratch.  
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We first design the line-haul ship routes, which are classified according to trade lanes as 

e.g. intra-Asia, Asia to American West Coast, trans-Atlantic, Asia to American East Coast, 

etc. For each trade lane of line-haul ship routes, we first examine whether the volume of 

unshipped containers exceeds a threshold value. If it is not true, we do not need to design 

line-haul ship routes of this trade lane. Otherwise, we need to design a line-haul ship route.  

To design a line-haul ship route, first, we sequence the ports in the regions covered by 

the trade lane according to their unshipped laden containers to and from other ports in the 

regions. It should be mentioned that if a port is a regional hub, we add to it 30% of its 

feeders’ unshipped containers. We then choose a maximum of e.g. 10 ports with the largest 

volume of unshipped containers such that the volume of unshipped containers at each of 

these ports must be above a certain threshold. The port calling sequence is determined such 

that the round-trip journey distance is minimized. We design three line-haul ship routes with 

the same port rotations and different types of ships. The type of ship is determined based on 

1/3, 1/2, and 100% of the total unshipped demand of all the ports on the ship route. 

Feeder ship routes must be designed accordingly. After having design the line-haul ship 

routes, we connect the feeder ports to the regional hubs on the line-haul ship route if 

necessary. 

All these newly designed line-haul and feeder ship routes are set as optional and we 

solve NDM. This process is repeated until there are no new line-haul ship routes designed. 

After this stage, the volume of unshipped containers is usually less than 5% of the overall 

demand, which can be acceptable by the liner shipping company.  
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7.4.2 Network refinement  

The network refinement stage aims to improve the designed network without adding 

ports of call.  

In step 1, if the number of laden and empty containers handled at some ports of call is 

very small, for example, less than 10 containers, then these ports of call can be considered as 

removed. The number of empty containers handled can be obtained directly from the values 

of ˆk
riz  and k

riz . The number of laden containers handled can be derived by examining the value 

of hy  and the property of the container route h∈H . It should be highlighted that we do not 

remove a port of call directly. Instead, we let the algorithm determine whether a port of call 

should be removed. The algorithm is elaborated below, and the similar idea is applied to all 

the other steps of the incremental network alteration algorithm. 

Algorithm 7-2: Removing ports of call 

Step 0: Specify the value OPTN (e.g. 20).  

Step 1: Let new old: := =∅R R . Obtain the port of call with the smallest number of containers 

handled for each ship route r∈R R . Sequence these ports of call from the 

smallest number of containers handled to the largest. For each of the first OPT / 2N    

ship routes, denoted by r , set old old: { }r=R R   and add a new ship route r′  with the 

same type of ship and port rotation as r  except that the port of call with the smallest 

number of containers handled is removed, and set new new: { }r′=R R 

 and 

: { }r′=R R 

 . 
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Step 3: Set 1rx =  for any new old\ ( )r∈R R R

  and {0,1}rx ∈  for any new oldr∈R R

 . Solve 

NDM. If all ship routes in oldR  are chosen and no ship routes in newr∈R  is chosen, 

stop. Otherwise, repeat Step 1. 

 

In step 2 of the network refinement stage, if the capacity utilization rU  of ship route 

r∈R R  is very large or small, we consider replacing the ships with a string of larger or 

smaller ships, respectively. Still, we let the algorithm determine whether the ship size should 

be changed. 

An example of step 3 of the network refinement stage is shown in Figure 7-6. If the leg 

capacity utilizations riU  of the legs Yantian to Pusan, Pusan to Shanghai and Shanghai to 

Yantian are all very low, we consider removing all these legs altogether. 

 

 

Figure 7-6 Remove voyage legs 

 

In step 4 of the network refinement stage, we choose the OPTN  ship routes from R R  

with the lowest capacity utilization, set them as optional, and re-optimize. 

In step 5 of the network refinement stage, we choose the OPT / 2N    ship routes from 

R R  with the lowest capacity utilization, set them as optional, set the new ship routes by 

reversing their port calling sequences as optional, too, and re-optimize. 
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7.4.3 Ship route alteration 

The ship route alteration stage aims to improve the designed network by adding or 

removing ports of call in an intelligent manner.  

In step 1, if the capacity utilization of a feeder ship route, which is defined as a ship 

route consisting of a regional hub and its feeders, is low (e.g., less than 50%), we then 

consider removing the feeder ports included in the feeder ship route from existing line-haul 

ship routes. 

In step 2, if the capacity utilization of a feeder ship route is low, we also consider adding 

a new feeder port, which is assigned to the regional hub in the feeder ship route, to the feeder 

ship route based on the unshipped demand. 

In step 3, if the hit-haul capacity utilization of a line-haul ship route is low, we then 

consider adding a new port to ship route based on the unshipped demand. 

7.5 Case Study  

7.5.1 Data description 

We apply the network design models and solution algorithms to the global liner shipping 

network shown in Figure 7-1. The network has a total of 166 ports between which 6085 port 

pairs has container shipment demand. The general demand information regarding the ports 

are shown in Table 7-2 to Table 7-8, Figure 7-7, and Figure 7-8. There are four types of 

containers: dry 20-ft, dry 40-ft, reefer 20-ft, and reefer 40-ft. In terms of volume, there are 

totally 253383 laden TEUs and 106364.8 empty TEUs to ship per week. Three types of ships 

are used: 1500-TEU, 3000-TEU, and 5000-TEU ships. All other parameters and inputs are 

provided or estimated by the global liner shipping company. The initial network is based on 

the current network that the global liner shipping company is operating. The mixed-integer 
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linear programming model NDM is solved by CPLEX-12.1 running on a 3.2 GHz Dual Core 

PC with 4 GB of RAM. 
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Table 7-2  Ports in North Asia 

#  Port Name  Country Name 
 Total Import 

(TEUs) 
 Total Export 

(TEUs) 
1 SHEKOU CHINA 0 88 
2 TOKYO JAPAN 3024 1919 
3 FUZHOU CHINA 64 1543 
4 DAVAO PHILIPPINES 1175 2303 
5 KOBE JAPAN 3279 3313 
6 HONG KONG HONG KONG 5143 5027 
7 SHIMIZU JAPAN 122 178 
8 ZHANJIANG CHINA 0 262 
9 NAGOYA JAPAN 943 696 
10 OITA JAPAN 59 217 
11 SUBIC BAY PHILIPPINES 442 334 
12 VOSTOCHNY RUSSIAN FEDERATION 941 303 
13 VLADIVOSTOK RUSSIAN FEDERATION 646 12 
14 MANILA PHILIPPINES 2585 1638 
15 KWANGYANG KOREA 2220 3652 
16 NAHA JAPAN 1377 701 
17 YOKOHAMA JAPAN 3521 4115 
18 OSAKA JAPAN 43 0 
19 QINGDAO CHINA 2913 7035 
20 UBE JAPAN 5 165 
21 NAN SHA CHINA 218 1461 
22 NHAVA SHEVA PHILIPPINES 54 494 
23 SHIBUSHI JAPAN 246 328 
24 XIAMEN CHINA 713 7564 
25 PUSAN KOREA 5367 5278 
26 MINDANAO PHILIPPINES 850 1050 
27 CEBU PHILIPPINES 795 152 
28 YANGSHAN CHINA 1612 4876 
29 NINGBO CHINA 1217 10022 
30 LIANYUNGANG CHINA 346 1996 
31 TAIPEI PORT TAIWAN 818 48 
32 KAOHSIUNG TAIWAN 4711 7512 
33 SHANGHAI CHINA 5082 6214 
34 HAKATA JAPAN 599 454 
35 XINGANG CHINA 2588 2712 
36 YANTIAN CHINA 926 6225 
37 DA CHAN BAY CHINA 0 35 
38 DADIANGAS PHILIPPINES 166 387 
39 DALIAN CHINA 1172 1972 
40 HOSOSHIMA JAPAN 81 207 
41 CHIWAN CHINA 1370 9735 
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 Table 7-3  Ports in South Asia 

#  Port Name  Country Name 
 Total Import 

(TEUs) 
 Total Export 

(TEUs) 
1 ADELAIDE AUSTRALIA 362 601 
2 SYDNEY AUSTRALIA 1338 708 
3 HALDIA INDIA 63 108 
4 PANJANG INDONESIA 438 465 
5 LAEM CHABANG THAILAND 9388 10805 
6 PORT QASIM PAKISTAN 81 174 
7 JAWAHARLAL NEHRU INDIA 7496 7654 
8 MELBOURNE AUSTRALIA 1423 855 
9 COCHIN INDIA 282 0 
10 KAMPONG SAOM CAMBODIA 546 614 
11 VUNG TAU VIETNAM 613 1500 
12 BELAWAN INDONESIA 332 408 
13 CHITTAGONG BANGLADESH 2535 1738 
14 SINGAPORE SINGAPORE 7983 6895 
15 SURABAYA INDONESIA 2409 2116 
16 SEMERANG INDONESIA 1040 1077 
17 KARACHI PAKISTAN 7783 3125 
18 FREMANTLE AUSTRALIA 954 682 
19 COLOMBO SRI LANKA 2170 1392 
20 PALEMBANG INDONESIA 194 227 
21 MONGLA BANGLADESH 59 324 
22 JAKARTA INDONESIA 7404 5516 
23 BRISBANE AUSTRALIA 670 246 
24 MUNDRA INDIA 1146 1858 
25 TUTICORIN INDIA 876 0 
26 PENANG MALAYSIA 566 289 
27 DA NANG VIETNAM 22 0 
28 HO CHI MINH VIETNAM 4558 3713 
29 MANGALORE INDIA 6 0 
30 MADRAS INDIA 2048 2085 
31 PIPAVAV INDIA 3 0 
32 HAIPHONG VIETNAM 833 1400 
33 PORT KLANG MALAYSIA 4038 3441 

34 
VISHAKHAPATNAM 
(VISAG) INDIA 138 224 

35 PASIR GUDANG MALAYSIA 591 0 
36 MORMUGAO INDIA 14 0 
37 CALCUTTA INDIA 396 444 
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Table 7-4  Ports in West Asia 

#  Port Name  Country Name 

 Total Import 

(TEUs) 

 Total Export 

(TEUs) 

1 AJMAN UNITED ARAB EMIRATES 877 0 

2 SALALAH OMAN 349 110 

3 HODEIDAH YEMEN 1220 138 

4 SOKHNA EGYPT 5100 972 

5 JEBEL ALI UNITED ARAB EMIRATES 8018 5492 

6 SHUAIBA KUWAIT 403 525 

7 MINA KHALID UNITED ARAB EMIRATES 2693 34 

8 PORT SULTAN QABOOS OMAN 4 0 

9 JEDDAH SAUDI ARABIA 4539 1817 

10 DOHA QATAR 1356 201 

11 BANDAR ABBAS IRAN 119 0 

12 BAHRAIN BAHRAIN 942 960 

13 DAMMAN SAUDI ARABIA 4844 2265 

14 DJIBOUTI DJIBOUTI 838 112 

15 ADEN YEMEN 856 115 

16 FUJAIRAH UNITED ARAB EMIRATES 243 83 

17 AQABAH JORDAN 1626 307 

18 ABU DHABI UNITED ARAB EMIRATES 1948 1551 

19 SHUWAIKH KUWAIT 2951 615 

20 UMM QASAR IRAQ 1492 40 

21 SOHAR OMAN 615 1489 
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Table 7-5  Ports in West Europe 

#  Port Name  Country Name 

 Total Import 

(TEUs) 

 Total Export 

(TEUs) 

1 KOTKA FINLAND 460 420 

2 GOTHENBERG SWEDEN 185 70 

3 DUBLIN IRELAND 651 758 

4 LEHAVRE FRANCE 1218 996 

5 THAMESPORT UNITED KINGDOM 276 651 

6 KLAIPEDA LITHUANIA 1 0 

7 CORK IRELAND 111 66 

8 TALLIN ESTONIA 1008 432 

9 FELIXSTOWE UNITED KINGDOM 766 721 

10 HAMBURG GERMANY 4897 4276 

11 FOS SUR MER FRANCE 159 139 

12 ST.PETERSBURG RUSSIAN FEDERATION 1633 1409 

13 SOUTHAMPTON UNITED KINGDOM 4720 1973 

14 ANTWERP BELGIUM 2237 1792 

15 ZEEBRUGGE BELGIUM 65 24 

16 ROTTERDAM NETHERLANDS 6857 5773 

17 HELSINKI FINLAND 174 271 

18 GREENOCK UNITED KINGDOM 4 153 

19 BELFAST IRELAND 63 60 

20 GDYNIA POLAND 977 1335 

21 BREMERHAVEN GERMANY 887 1560 
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Table 7-6  Ports in the Mediterranean Sea 

#  Port Name  Country Name 
 Total Import 

(TEUs) 
 Total Export 

(TEUs) 
1 GENOA ITALY 788 744 
2 LA SPEZIA ITALY 0 5 
3 LATAKIA SYRIAN ARAB REPUBLIC 38 0 
4 MARSAXLOKK MALTA MALTA 49 13 
5 PORT SAID EGYPT 187 289 
6 BEIRUT LEBANON 19 0 
7 VALENCIA SPAIN 216 144 

8 
SUEZ CANAL CONTAINER 
TERMINAL EGYPT 98 518 

9 MERSIN TURKEY 862 605 
10 BARCELONA SPAIN 188 554 
11 DAMIETTA EGYPT 27 115 
12 HAIFA ISRAEL 194 192 
13 LIVORNO ITALY 1 0 

 

Table 7-7  Ports on West Coast of America 

#  Port Name  Country Name 
 Total Import 

(TEUs) 
 Total Export 

(TEUs) 
1 LAZARO CARDENAS MEXICO 647 462 
2 PUERTO QUETZAL GUATEMALA 478 373 
3 BALBOA PANAMA 244 175 
4 OAKLAND UNITED STATES 3904 4926 
5 ACAJUTLA EL SALVADOR 874 904 
6 SAN PEDRO UNITED STATES 12789 13480 
7 DUTCH HARBOR UNITED STATES 3 347 
8 SEATTLE UNITED STATES 6256 5312 
9 VANCOUVER CANADA 2094 2241 
10 SAN ANTONIO CHILE 237 482 
11 ENSENADA MEXICO 189 242 
12 BUENAVENTURA COLOMBIA 206 360 
13 GUAYAQUIL ECUADOR 218 843 
14 PAITA PERU 0 451 
15 IQUIQUE CHILE 15 8 
16 CALLAO PERU 188 549 
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Table 7-8  Ports on East Coast of America 

#  Port Name  Country Name 
 Total Import 

(TEUs) 
 Total Export 

(TEUs) 
1 JACKSONVILLE UNITED STATES 226 143 

2 MONTREAL CANADA 543 589 

3 PUERTO BARRIOS GUATEMALA 358 272 

4 PUERTO LIMON COSTA RICA 442 607 

5 PORTSMOUTH UNITED STATES 2003 2076 

6 HOUSTON UNITED STATES 800 1256 

7 MOBILE UNITED STATES 95 240 

8 PUERTO CORTES COSTA RICA 368 456 

9 NEW YORK / NEW JERSEY UNITED STATES 8189 2810 

10 CHARLESTON UNITED STATES 2076 1704 

11 MANZANILLO PANAMA 4089 1641 

12 MIAMI UNITED STATES 1378 1104 

13 SAVANNAH UNITED STATES 3064 2388 

14 SAN JUAN PUERTO RICO 674 372 

15 CARTAGENA COLOMBIA 595 526 

16 MANAUS BRAZIL 490 35 

17 RIO HAINA DOMINICAN REPUBLIC 371 218 

 

 

Figure 7-7 The import volume of each port 
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Figure 7-8 The export volume of each port 

 
7.5.2 Computational results 

The algorithm finishes after 7 minutes. A total of 81 ship routes are designed in the final 

network, as shown in Table 7-9. 304 ships are deployed in the network, with a total of ship 

board capacity of 1.157 million TEUs. An Asia-Europe ship route is shown in Figure 7-9, 

and its detailed information is presented in Table 7-10. 

Since many of the input data are estimated, it is difficult to evaluate the quality of the 

designed network. Liner shipping companies tend to use two indicators. The first one is the 

ratio of ship board capacity over the demand, and the second one is the hit-haul utilization of 

ship routes. The proposed algorithm designs a network that shipped 248692 TEUs per week 

(4691 TEUs are unshipped) with the ship board capacity of 1.157 million TEUs. This result 

outperforms the status quo of the liner shipping company. Most of the hit-haul utilization of 

the designed ship routes exceeds 90%, with the exception of a few feeder ship routes. The 

hit-haul utilization of the feeder ship routes is low because the smallest ship size used is 1500 

TEUs. In practice, smaller ships can be deployed. Moreover, the liner shipping company can 
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buy feeder shipping services if the demand is not large enough. Considering these limitations 

of the input data, the quality of the designed liner shipping network is high. 

 

Table 7-9  Ship routes and ships deployed 

  
Number of ships 

Region-to-region Number of ship routes 1500-TEU 3000-TEU 5000-TEU 
Intra-Asia 50 49 22 46 
Asia-Europe 6 8 0 43 
Trans-Pacific 10 3 7 82 
Trans-Atlantic 2 0 10 0 
Intra-Europe 5 4 3 2 
Intra-America 7 14 3 0 
Asia-US-Europe 1 0 0 8 
Total 81 78 45 181 

 

 

Figure 7-9 A designed Asia-Europe ship route  
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Table 7-10  Details of a designed Asia-Europe ship route 

Ship route ID: [54]; Ship type: 5000-TEU; Ship number: 10 

Shipped laden containers (TEUs) for 
different O-D pairs 

Intra-Asia Asia-Europe Trans-Pacific 
5724 9601 224 

Trans-Atlantic Intra-Europe Intra-America 
152 37 0 

Leg capacity utilization (%) 
1-      KOBE 2- KWANGYANG 3-   XINGANG 4-    NINGBO 5-    XIAMEN 

27 28 33 79 100 
6- HONG KONG 7- SINGAPORE 8-SOUTHAMPTO 9-   ANTWERP 10- ROTTERDAM 

100 100 47 24 16 
11-   HAMBURG 12- ROTTERDAM 13-   ANTWERP 14-   COLOMBO 15- SINGAPORE 

35 62 100 100 100 

 16-   YANTIAN  17- HONG KONG  18-  SHANGHAI  19-  YOKOHAMA  
78 70 74 42  

 

7.6 Conclusions  

This chapter addresses a realistic liner shipping network design problem while 

considering practical operations and features, including multi-type containers, container 

transshipment operations, empty container repositioning, origin-to-destination transit time 

constraint, consistent services with the current network, and joint services with other liner 

shipping companies. A practical and efficient method to handle the routing of laden 

containers is proposed to account for different types of containers. The container routes are 

generated based on both a heuristic method and an exact approach.  

A network design algorithm is presented. It first optimizes the initial network by 

removing the ship routes with low capacity utilization. After that, new ship routes are 

designed to ensure that the container shipment demand is fulfilled. The resulting network is 

further improved by two more stages. In one stage, the network is refined by removing ports 

of call with low handling volume, redeploying ships based on ship route capacity utilization, 
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removing voyage legs with low leg capacity utilization, removing ship routes with low 

capacity utilization, and reversing the port rotations of ship routes with low capacity 

utilization. In the next stage, both feeder ship routes and line-haul ship routes are further 

altered by adding or removing ports of call.  

A real case study based on the global shipping network of a liner shipping company, 

consisting of 166 ports, is reported. The algorithm efficiently designs a liner shipping 

network.  Two indicators, the ratio of ship board capacity over the demand and the hit-haul 

capacity utilization of ship routes, demonstrate that the design network is of high quality. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Overview and Contributions of the Work 

The research work carried out so far concerns with four issues: an origin-based fleet 

deployment model which fully captures the transshipment operations in liner shipping, a 

cutting-plane based ε-optimal algorithm for optimizing the sailing speed of container ships, a 

ship route schedule design problem with sea contingency and port time uncertainty, and the 

design of a practical liner shipping network.  

In the origin-based fleet deployment model, we use the flow volume on each leg, load 

volume and discharge volume at each port for containers originating from the same port as 

the decision variables. The origin-based formulation is much more compact than O-D based 

formulation. By comparing the container shipment demand and the volume of containers 

loaded and discharged at the ports, the number of containers transshipped at each port of call 

is derived. Thereby the transshipment cost can be accounted for in the model. In addition, the 

load volume and discharge volume at each port of call can be converted to container handling 

time. Hence, the transshipment cost and container handling time are included in the model. 

Since there are decision variables representing the load and discharge of containers at all 

ports of call, containers are allowed to be transshipped at any port of call in the model. 

Extensive test experiments show that the proposed origin-based model can be efficiently 

solved by CPLEX for real-case problems. 

In the speed optimization problem, we first examine the bunker consumption - sailing 

speed relation using historical operating data from a global liner shipping company. This 

work closes the gap in literature by providing empirical data to test how good the third power 

approximation is. Results show that the extensively used third power relationship is indeed a 
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good approximation. Therefore, the third power relation can be used if not enough historical 

data are available. Once enough historical data are available for the calibration purpose, a 

more accurate bunker consumption function should be used. We subsequently investigate the 

optimal sailing speed problem of container ships on each leg of ship routes in a liner shipping 

network. Practical issues which are seldom examined by existing studies on the speed 

optimization, including unique bunker consumption function for each leg, transshipment, 

container routing, and container handling time, are taken into account in the model. The 

sailing speed optimization problem for container ships in a liner shipping network with 

container routing is a practical research issue arising in the liner shipping industry. This 

problem is formulated as a mixed-integer nonlinear programming model. In view of the 

convexity, non-negativity, and univariate properties of the bunker consumption - sailing 

speed function, a novel outer-approximation algorithm is proposed to obtain an ε-optimal 

solution. Similar to the discretization method or the SOCP approach, the proposed algorithm 

is exact in that it obtains an ε-optimal solution. At the same time, the outer-approximation 

algorithm is very efficient compared to the discretization method and not subject to the 

restriction of the SOCP approach. Practical test instances demonstrate that the algorithm is 

efficient enough to solve problems encountered in practice to optimality with guaranteed 

precision. 

In the ship route schedule design problem with sea contingency and port time 

uncertainty, an effective solution algorithm is proposed in order to minimize the ship cost 

and bunker cost, while fulfilling the port-to-port transit time constraints. This problem is a 

new research issue with practical significances. The contributions to the literature can be 

summarized into three-fold. First, to the best of our knowledge, it makes the first attempt to 
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examine the optimal sailing speed function in view of sea contingency to minimize bunker 

consumption. The optimality condition for the sailing speed and the optimal sailing speed 

function with time are derived. Second, it contributes to the line of literature on optimization 

of sailing speed to control bunker consumption by providing an efficient and exact cutting-

plane based solution algorithm. This algorithm is capable of incorporating practical 

considerations, such as different bunker consumption – sailing speed relations on different 

legs, port-to-port transit time requirement, and sailing speed optimization at the network level. 

Third, it addresses the practical schedule design problem arising in liner shipping industry 

while considering port-to-port transit time with transshipment and sea contingency and 

uncertain port time. In other words, the transit time issue in liner shipping is addressed to its 

generality. The port-to-port transit time with transshipment issue is solved with a mixed-

integer programming model; sea contingency is investigated in the optimality condition of 

sailing speed; and the uncertain port time is addressed by proving the convexity of the 

expected bunker cost on each voyage leg in the inter-arrival time between the two 

consecutive ports of call of the leg. The novel holistic solution algorithm exploits the special 

structure of the decision problem and integrates several techniques in a nice manner. The 

proposed model and algorithm are very efficient to solve practical-scale problems and thus 

provide a useful planning tool for liner shipping companies. 

The liner shipping network design problem addressed in this study is different from 

existing literature in the following major aspects. First, multi-type containers are considered. 

In the literature all containers are transformed to TEUs, which may not be accurate because 

the volume of a dry 40-ft container is two TEUs, while its handling cost is less than the 

handling cost of two dry 20-ft containers. A practical and efficient method to handle the 
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routing of laden containers is proposed to account for different types of containers. Second, 

the origin-to-destination transit time of containers and the maritime cabotage restriction are 

included. To this end, both a heuristic method and an exact approach are proposed to generate 

container routes that satisfy these two constraints. Third, the network is designed in a manner 

that accounts for the initial network. This is a very practical consideration because a liner 

shipping cannot change its network overnight. As a result, a network that shares some degree 

of common features is desirable for liner shipping companies. The proposed models and 

algorithms are applied to the global shipping network of a liner shipping company, consisting 

of 166 ports. The ratio of ship board capacity over the demand and the hit-haul capacity 

utilization of ship routes demonstrate the efficacy of the proposed algorithms. 

8.2 Recommendations for Future studies 

8.2.1 Intermodal container transportation 

The origin and destination of containerized cargo are usually inland locations. 

Sometimes shippers arrange the inland transportation from the origin to the export port and 

from the import port to the destination. Under this circumstance, liner shipping companies 

can take ports as the origin and destination of containers. Otherwise, liner shipping 

companies not only provide maritime transportation services, but also take charge of inland 

transportation to fulfill the supply chain management requirement of the shippers.  

The literature on routing and scheduling in liner shipping focuses exclusively on the 

ocean side. Although there are a few studies on the inland transportation of containers (e.g., 

Bontekoning et al., 2004; Macharis and Bontekoning, 2004), hardly any research is directed 

at the optimization of both inland and maritime transportation systems. The interaction 

between the inland and maritime transportation lies in the choice of load (export) port and 
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discharge (import) port as well as the origin–destination transit time consideration. It is 

evident that a holistic optimization of the intermodal transportation network has implications 

for a liner shipping company. 

8.2.2 Joint planning between liner shipping companies and port operators 

In general, liner shipping companies and port operators make decisions independently. 

Nevertheless, a holistic optimization approach may improve the operating efficiency of both 

parties. For example, when a port is congested, ships may slow their speed to save bunker 

because they will have to wait for a berth even if they arrive early at the port. There have 

been some research in this area, for example, Golias et al. (2010) and Du et al. (2011). 

Another example is that liner shipping companies and port operators would agree on a berth 

time window for ships over a planning horizon. However, in practice, ships frequently miss 

the allocated time slots because liner shipping companies build too little buffer time in the 

schedule. This would adversely affect both berth and yard planning for port operators. A 

major challenge here is how to design mechanisms to coordinate different parties involved in 

both the decision making and the execution of the decisions.  

8.2.3 Shipping network reliability and vulnerabilities 

Maintaining a high quality of service is a great concern for liner shipping companies and 

maintaining reliable schedules has proven to be a challenge. In the container shipping 

segment, only 56 percent of all shipments arrived on time in the second quarter of 2011. 

(Drewry Maritime Research, 2011). The effect of unreliable deliveries from liner shipping 

companies on the supply chain as a whole is analyzed in Vernimmen et al. (2007). They 

proposed that if schedule reliability is increased, customers’ inventory costs may be reduced 

by 20 percent. A model for calculating time reliability in a container liner shipping network 
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is presented in Wu et al. (2009). Understanding and correctly formulating models that take 

reliability and vulnerability into account is an important topic for future research. 

8.2.4 Green shipping 

Designing shipping networks that are not only efficient, but also minimize 

environmental impact is becoming more important. Emissions from commercial shipping are 

currently the subject of intense scrutiny (Psaraftis, 2005). Among the top fuel-consuming 

categories of ships and hence air polluters are container vessels and the main reason is their 

high service speed. There are a few research papers in this area, such as Psaraftis and 

Kontovas (2010), Corbett et al. (2010), Kontovas and Psaraftis (2011) and Jepsen et al. 

(2011). In general, not many papers to date address the challenges of incorporating 

environmental issues into the models. In practice, increased environmental awareness will 

affect all levels of decision making, from deciding the fleet composition and which ports to 

call to selecting the sailing route between two ports in the presence of a storm or favorable 

currents. It will therefore be important to consider these challenges in future models.  
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