

BUILDING OR/MS COMPUTATIONAL APPLICATIONS

ON SPREADSHEET

REN XIANGYAO

(B.Eng, Nanjing University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48656027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Ren Xiangyao

06 Sep 2012

i

ACKNOWLEDGEMENTS

This dissertation will not have been possible without the generous help, encouragement and

support of a number of people to whom I owe my great thanks and appreciation over the past

three years. It was my pleasure to study and work with them.

First and foremost, I owe my particular gratitude to my supervisor, Professor Teo Kwong

Meng, for his invaluable guidance and kindly support throughout the entire period. With his

help, I have been able to correct from wrong and learn from failure. His insightful ideas,

rigorous thoughts, and great enthusiasm inspired me and made this research a precious

experience in my life, and I believe such experience will continually benefit me for the whole

life.

Besides, I would like to thank the National University of Singapore for offering me the

Research Scholarship. I owe my great thanks to Prof Tang Loon Ching and Prof Lee Loo Hay,

who has offered great support for me to complete this research work. Without their generosity

and patience, this research work will not have been possible. I am very grateful to my

colleagues in ISE Department for their kind help. Especially, I would like to thank Lai Chun,

for her every patience and help for my questions. I owe my great thanks to all the people who

have helped me in one way or the other.

I feel deeply indebted to my family for their endless love, support and encouragement. My

wholehearted thankfulness and gratefulness goes to my girlfriend Jing Hua Yi, who has

provided me the best and priceless love, encouragement, and support to facilitate the

completion of this thesis. I will remember my deepest appreciation to my great love in my

mind and this thesis is dedicated to you.

Ren Xiangyao

January, 2012

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

TABLE OF CONTENTS ..ii

SUMMARY .. v

LIST OF TABLES .. vi

LIST OF FIGURES ... viii

ABBREVIATIONS .. x

Chapter 1 Introduction .. 1

1.1 MOTIVATION ... 1

1.1.1 Background .. 1

1.1.2 Importance of the Study of Building Applications on Spreadsheet 2

1.1.3 Methods used to Build Applications on Spreadsheet ... 2

1.1.4 Motivation of this Research ... 5

1.2 RESEARCH DESIGN .. 6

1.2.1 Research Objective... 6

1.2.2 Research Questions and Approaches ... 7

1.3 RESULTS AND CONTRIBUTIONS... 9

1.3.1 Principal Results .. 9

1.3.2 Our Contributions .. 10

1.4 THESIS ORGANIZATION AND STRUCTURE .. 11

Chapter 2 Literature Review .. 13

2.1 INTRODUCTION .. 13

2.1 DIFFERENT SPREADSHEET SOFTWARE USED FOR BUILDING APPLICATIONS 13

2.2 DIFFERENT METHODS OF BUILDING APPLICATIONS ON SPREADSHEET 14

2.2.1 Built-in Functions and Solvers ... 14

2.2.2 Internal Programming Methods ... 15

2.2.3 External Programming Methods .. 16

2.2.4 Hybrid Programming Methods .. 17

2.3 SUMMARY .. 17

Chapter 3 Performance Comparison of Different Methods on Spreadsheet 19

3.1 INTRODUCTION .. 19

3.2 TESTING PROBLEM DESCRIPTION ... 20

3.3 PERFORMANCE COMPARISON OF DIFFERENT METHODS ON EXCEL....................... 23

3.3.1 Performance of VBA on Excel .. 23

iii

3.3.2 Performance of VC++ on Excel ... 25

3.3.3 Performance of Java on Excel .. 26

3.3.4 Performance of VBA call C++ DLL on Excel ... 27

3.3.5 Comparison of Different Methods on Excel .. 28

3.3.6 Summary .. 31

3.4 PERFORMANCE COMPARISON OF DIFFERENT METHODS ON CALC 32

3.4.1 Performance of OOO Basic on Calc .. 33

3.4.2 Performance of Java on Calc.. 34

3.4.3 Comparison of Different Methods on Calc .. 35

3.4.4 Summary .. 37

3.5 EASE OF IMPLEMENTATION OF DIFFERENT METHODS ON SPREADSHEET 37

3.5.1 Implementation of VBA to Build Applications on Excel .. 38

3.5.2 Implementation of VC++ to Build Applications on Excel ... 40

3.5.3 Implementation of Java to Build Applications on Excel .. 42

3.5.4 Implementation of VBA call C++ DLL to Build Applications on Excel 44

3.5.5 Implementation of OOO Basic to Build Applications on Calc .. 46

3.5.6 Implementation of Java to Build Applications on Calc ... 47

3.5.7 Summary of Ease of Implementation of Different Methods on Spreadsheet 49

3.6 CONCLUSIONS ... 50

Chapter 4 An Application Example: Solving VRPTW on Excel 52

4.1 INTRODUCTION .. 52

4.2 EXCEL VRPTW APPLICATION USING VBA CALL C++ DLL METHOD 53

4.2.1 Input and Output Format .. 54

4.2.2 Using VBA call C++ DLL to Build the Excel VRPTW Application 55

4.3 PERFORMANCE OF THE EXCEL VRPTW APPLICATION .. 58

4.4 CONCLUSIONS ... 60

Chapter 5 Framework of Building Applications on Spreadsheet 61

5.1 INTRODUCTION .. 61

5.2 FRAMEWORK OF BUILDING APPLICATIONS ON SPREADSHEET 62

5.2.1 Selecting between Excel and Calc ... 62

5.2.2 Selecting between Different Methods on Excel and Calc .. 63

5.2.3 The Framework .. 67

5.3 STRUCTURES AND ROUTINES OF DIFFERENT METHODS .. 69

5.4 SUMMARIES AND CONCLUSIONS .. 70

Chapter 6 Conclusions and Future Research .. 72

iv

6.1 INTRODUCTION .. 72

6.2 MAJOR CONTRIBUTIONS .. 72

6.3 LIMITATIONS AND FUTURE RESEARCH ... 74

REFERENCES ... 76

v

SUMMARY

With the great usage of spreadsheet in business and scientific world nowadays, building

computational applications on spreadsheet has become essential for people to conduct data

analysis, algorithm computation, and solving problems. However, when different options of

spreadsheet software and methods are available to build spreadsheet applications, the

performance difference of these options and how to make the selection is rarely addressed. The

purpose of this research is to investigate the performance and implementation effort of

different options, provide guidelines for people to select between different options, and

provide people with an easier start to build applications on spreadsheet.

We define the Internal, External and Hybrid programming methods of building computational

applications on two of the most popular spreadsheet software: Microsoft Excel and

OpenOffice.org Calc. A comprehensive performance comparison of different methods on these

two spreadsheets is conducted, from which the insights of the performance differences of

different options under different scenarios and the ease of implementation of different options

are revealed.

Based on the comparison, we construct a framework of building computational spreadsheet

applications that provides guidelines of selecting between different options under different

criteria. Comprehensive implementation examples in areas of operations research and

management science, such as Sort, Shortest Path, TSP and VRP spreadsheet applications are

built with structural routines and library codes. It is able to provide people with an easier start

to build spreadsheet applications.

With the framework of building computational applications on spreadsheet, people can apply

the most effective approaches based on their requirements and build spreadsheet applications

with much more convenience and efficiency.

vi

LIST OF TABLES

Table 3.1 Options of spreadsheet software and methods in this research framework 20

Table 3.2 Description of implementation tests on spreadsheet ... 21

Table 3.3 Input and Output formats in Sort implementation test .. 21

Table 3.4 Input and Output formats in Shortest Path implementation test 22

Table 3.5 Input and Output formats in TSP implementation test .. 22

Table 3.6 Performance of VBA on Excel ... 24

Table 3.7 Performance of VC++ on Excel .. 25

Table 3.8 Performance of Java on Excel ... 26

Table 3.9 Performance of VBA call C++ DLL on Excel .. 27

Table 3.10 Performance comparison of different methods on Excel on data transferring 29

Table 3.11 Performance comparison of different methods on Excel on algorithm computing 30

Table 3.12 Performance comparison of different methods on Excel on Total time 30

Table 3.13 Performance of OOO Basic on Calc ... 33

Table 3.14 Performance of Java on Calc .. 34

Table 3.15 Performance comparison of different methods on Calc on data transferring.......... 35

Table 3.16 Performance comparison of different methods on Calc on algorithm computing .. 36

Table 3.17 Performance comparison of different methods on Calc on Total time 36

Table 3.18 Functions of C++ BasicExcel Library to access Excel ... 40

Table 3.19 Methods of Java JXL Library to access Excel .. 43

Table 3.20 The Equivalents of common data types between C++ DLL and VBA 45

Table 3.21 Methods of Java SimpleJavaAPI Library to Access Calc 48

Table 4.1 Performance comparison of Excel VRPTW application and C++ standalone VRPTW

application in Solomon test cases ... 59

Table 5.1 Comparison of cost between Excel and Calc .. 62

Table 5.2 Comparison of speed performance between Excel and Calc 63

Table 5.3 Performance comparison of different methods on Excel .. 64

vii

Table 5.4 Speed of different methods to build applications on Excel under different criteria .. 65

Table 5.5 Performance comparison of different methods on Calc .. 65

Table 5.6 Speed of different methods to build applications on Calc under different criteria ... 66

Table 5.7 Ease of implementation of different methods to build spreadsheet applications 66

viii

LIST OF FIGURES

Figure 1.1 Internal Programming methods to build spreadsheet applications 4

Figure 1.2 External Programming methods to build spreadsheet applications 4

Figure 1.3 Hybrid programming methods to build spreadsheet applications.............................. 5

Figure 1.4 Framework of building applications on spreadsheet ... 10

Figure 3.1 Access Excel Workbook layer with VBA ... 39

Figure 3.2 Access Excel Worksheet layer with VBA ... 39

Figure 3.3 Access Excel Cells layer with VBA .. 39

Figure 3.4 Access Excel Workbook layer with C++ Library .. 41

Figure 3.5 Access Excel Worksheet layer with C++ Library ... 41

Figure 3.6 Access Excel Cells layer with C++ Library .. 42

Figure 3.7 Access Excel Workbook layer with Java Library .. 43

Figure 3.8 Access Excel Worksheet layer with Java Library ... 44

Figure 3.9 Access Excel Cells layer with Java Library... 44

Figure 3.10 Access Calc SpreadsheetDocument layer with OOO Basic 46

Figure 3.11 Access opened Calc SpreadsheetDocument directly with OOO Basic 46

Figure 3.12 Access Calc Sheets layer with OOO Basic .. 47

Figure 3.13 Access Calc Cells layer with OOO Basic .. 47

Figure 3.14 Access Calc SpreadsheetDocument layer with Java Library 48

Figure 3.15 Access Calc Sheets layer with Java Library .. 49

Figure 3.16 Access Calc Cells layer with Java Library .. 49

Figure 3.17 Code structures of different methods to build applications on spreadsheet 50

Figure 4.1 Data flow of spreadsheet applications built with VBA call C++ DLL method 53

Figure 4.2 Iutput format of Excel VRPTW application .. 54

Figure 4.3 Output format of Excel VRPTW application .. 54

Figure 4.4 Define Interface function VRPprocess in C++ DLL ... 56

Figure 4.5 Export VRPprocess function in C++ DLL ... 56

ix

Figure 4.6 Declare VRPprocess function in VBA .. 56

Figure 4.7 Sync process to transfer data array with dynamic length information between VBA

and C++ DLL .. 57

Figure 5.1 Framework of building applications on spreadsheet ... 68

Figure 5.2 Code Structures of different methods to build applications on spreadsheet 69

x

ABBREVIATIONS

Algo Algorithm computing

API Application Programming Interface

BIFF Binary Interchange File Format

Calc OpenOffice.org Calc

COM Component Object Model

DLL Dynamic Link Library

Excel Microsoft Excel

IDE Integrated Development Environment

MS Management Science

ODF Open Document Format

OLE Object Linking and Embedding

OOO Basic OpenOffice.org Basic

OR Operations Research

Read Read data from spreadsheet

RTD Real Time Data

SDK Software Development Kit

TSP Travelling Salesman Problem

VBA Visual Basic for Applications

VBE Visual Basic Editor

VC++ Microsoft Visual C++

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

Write Write result to spreadsheet

XML Extensible Markup Language

1

Chapter 1

Introduction

1.1 MOTIVATION

1.1.1 Background

The spreadsheet discussed in this paper refers to the computer software that simulates paper

accounting worksheets. The main concepts are those of a grid of cells, called sheet, storing

either raw data values or formulas in the cells. An array of cells is analogous to an array of

variables in a conventional computer program.

The first electronic spreadsheet, VisiCalc, became an instant success when it was introduced in

1978 (Power 2004). Since it was introduced, spreadsheet embraces an explosive growth. It has

become a ubiquitous tool that is used in almost all business work and scientific fields. Hesse

and Scerno (2009), based on their almost 20 years of experience of using spreadsheets, share

their perspectives that spreadsheet has tremendously changed the world in various ways such

as in computer usage, training and education, data analysis and presentation. Spreadsheet is

widely used today due to its great advantages listed below:

 Automatic calculation: with the cell references in spreadsheet, the data value can be

recalculated automatically. Users only need to change the entry with a new value, and

the cells will be updated. This highly improves the efficiency.

 Diverse formatting and charting: spreadsheets allow users to format the data in various

appearances and present them with various types of graphs. With this property, data

can be better presented and interpreted.

 Data integrity: spreadsheet is able to check the consistency of data automatically. It

will reject or correct wrong entries to enforce the data integrity.

2

1.1.2 Importance of the Study of Building Applications on Spreadsheet

Spreadsheet is ubiquitous due to its general availability, accessibility and ease of use (Rosen

and Adams 1987). Based on data stored in spreadsheet, people can build applications on it to

conduct various kinds of data analysis and decision support analysis (Ragsdale 2011), compute

results and solve problems directly. Building computational applications on spreadsheet

becomes essential both in business industry and scientific fields nowadays. For example, in

Engineering and industries, researchers can build spreadsheet applications to carry out specific

computations and solve problems (Fields 1986, Whitehouse and Hodak 1986, Jr 1987, Kokol

1989, Zimmerman and Gibson 1989, Bloch 1995, Dianond and Hanratty 1997, Billo 2011). In

Business, people can build spreadsheet applications to carry out data analysis and simulation

(Earnest 1987, Raffensperger 2003). These spreadsheet applications with computational usage

further extend the capability of spreadsheet and help people obtain solutions conveniently and

analyze data efficiently.

One of the well-known examples is the Excel Solvers built by Frontline Corporation. It can

solve various kinds of optimization problems such as conventional optimization, simulation

optimization and stochastic optimization problems. Rosen and Adams (1987) and Chehab et al.

(2004) review the spreadsheet applications in Chemical Engineering and Electrical

Engineering respectively. They conclude that in various computational instances, building

applications on spreadsheet is an important and attractive alternative compared with other

means of computational applications. Filby (1998) introduces abundant research examples in

Science and Engineering on building applications and models on spreadsheet. Oke (2004)

reviews the applications built on spreadsheet in Engineering Education and points out the

importance of applications on spreadsheet to the need of high quality, learning-centered

education.

1.1.3 Methods used to Build Applications on Spreadsheet

Among various kinds of spreadsheet software, Microsoft Excel is the most successful

spreadsheet software which dominates the commercial market and owns over one billion users

3

worldwide (Stan J. Liebowitz 2001, Ionut Arghire 2012). Almost all standard entrepreneurship

textbooks propose Excel spreadsheets to create a financial plan as part of a business plan

(Gansel 2008). Meanwhile, OpenOffice.org Calc is a free and open-source spreadsheet

software modeled after Excel. These two kinds of spreadsheet are the most popular

spreadsheet software people used nowadays.

There are different kinds of methods available to build computational applications on

spreadsheet, which can be classified into two parts: Built-in functions and Programming

methods.

Built-in functions are the functions integrated in spreadsheet software, such as Sum() function.

They can be used to carry out simple calculations and solve simple problems iteratively, such

as Sort, Solver, etc. The data in spreadsheet Cells are referenced and passed to Built-in

functions, and then the computation results are displayed in Cells where the Built-in functions

are used. When the problem is relatively simple and problem size is small, Built-in function is

a very convenient method to build computational spreadsheet applications. However, when the

problem size and difficulty increases, Built-in functions will become extremely difficult to

implement or impossible to use. For example, when the number of decision variables exceeds

200, the Standard Solver in Excel spreadsheet is not applicable.

Thus, for larger size and more complicated problem, programming methods are applied to

build spreadsheet applications to read input data from spreadsheet, compute output results, and

then write output results back to spreadsheet (Hazel n.d., Walkenbach 2004). Based on where

the data transferring and computing process are located, we categorized the programming

methods into three groups, as defined below:

1. Internal programming methods: Internal programming methods are programming methods

which are integrated with IDEs inside spreadsheet software, such as VBA (Visual Basic for

Applications) in Excel, and OOO Basic (OpenOffice.org Basic) in Calc. As shown in Figure

1.1, the arrow shows the data flow. Data can be read from spreadsheet into Internal

4

programming methods, then computing process is conducted, and the results obtained are

written back to spreadsheet. It allows users to define the algorithm and calculation steps

themselves. At the same time, the Built-in functions can also be called in macros written by

Internal programming methods. Because of its powerfulness and convenience, this method has

become the most popular method to build computational spreadsheet applications.

Figure 1.1 Internal Programming methods to build spreadsheet applications

2
.
External programming methods: These methods, such as C++ and Java, can be used to

access spreadsheet and build applications on it. As shown in the Figure 1.2, spreadsheet Input

data can be read into External programming methods, where computing process is carried out,

and then results can be written back to spreadsheet.

Figure 1.2 External Programming methods to build spreadsheet applications

3. Hybrid programming methods: Hybrid programming method is the combination of Internal

and External programming methods to build computational applications on spreadsheet, such

as VBA call C++/FORTRAN DLL method combining VBA and C++/FORTRAN. As shown

5

in the Figure 1.3, Input data on spreadsheet are read by Internal methods (VBA) and passed to

External methods (C++/FORTRAN DLL) to carry out computing process, and then results are

passed from External methods (C++/FORTRAN DLL) to Internal methods (VBA) and written

back to the spreadsheet. Rosen and Partin (2000) introduce the VBA call FORTRAN DLL

method to convert the existing standalone FORTRAN programs to applications on Excel.

Figure 1.3 Hybrid programming methods to build spreadsheet applications

In this thesis, we focus on Excel and Calc as they are the most popular spreadsheets used

nowadays. Based on these two spreadsheet software, we will focus on using Internal, External,

and Hybrid programming methods to build computational spreadsheet applications.

Specifically, for Internal programming method, we select VBA on Excel, OOO Basic on Calc

as they are integrated in the respective spreadsheet software. For External programming

method, we select VC++ (Visual studio C++), Java on Excel and Java on Calc as they are the

most popular and typical methods in use to build spreadsheet applications nowadays. For

Hybrid programming method, we select VBA calling C++ DLL on Excel which is a natural

combination of Internal and External methods, and to our best knowledge, Hybrid

programming method on Calc is not feasible and hence will not be discussed in this study. The

reason will be discussed in Chapter 3 section 3.1.

1.1.4 Motivation of this Research

Although there are numerous studies on how to build computational applications on

spreadsheets for solving problems, however, a fundamental issue -- the performance difference,

6

which refers to the speed of applications on spreadsheet, among various building methods are

rarely addressed. The previous research works tell us the feasibility of using different options

to build applications on spreadsheet. However, knowing their feasibility is not equivalent to

knowing the strengths and weaknesses of the methods and the spreadsheet software. Thus, an

inappropriate method, which is inefficient for certain scenarios, can be chosen by researchers

and practitioners. Such inefficient choice will result in a huge waste of critical resources (e.g.,

human skills, man-hours, Information technology (IT)), which leads to producing much more

costs in industries.

Therefore, the knowledge of performance differences among various options is critical for

making the right decisions in different scenarios. This is the essential motivation of this study.

We intend to comprehensively investigate the performance, in terms of speed, of different

implementation methods, as well as their ease of implementation, and help people to select the

most efficient method among different options at the earliest stage of building spreadsheet

applications. In short, the goal is to make it easier to deal with problems of building

computational applications on spreadsheet.

1.2 RESEARCH DESIGN

1.2.1 Research Objective

In section 1.1, we discuss the importance of building computational applications on

spreadsheet. We observe that making the right choice among different options of building

spreadsheet applications is critical. Therefore, we will study on building spreadsheet

applications at both strategical and tactical levels. Based on the discussions above, we

formulate our research objective as follows:

To investigate the performance differences and ease of implementation of different options

to build computational spreadsheet applications, provide guidelines of selecting the most

efficient option among them under different scenarios, and provide people with a much

easier and quicker start of building spreadsheet applications.

app:ds:strategical

7

We discuss the important components of our research objective below:

1. Performance difference: We aim to show the performance difference, specifically, the

speed difference of spreadsheet applications built with different methods. Besides, we

aim to tell the ease of implementation of each option.

2. Guidelines: Based on the performance differences, we aim to provide the guidelines of

how to select the fastest method with the least implementation effort among various

options. Thus, people can make the most efficient selections under different

requirements.

3. Easier and quicker start: After people selecting a specific option to build spreadsheet

applications, we strive to reduce the people’s amount of work of implementing this

specific option to build spreadsheet applications by providing structural routines and

library codes, and thus the efficiency and convenience of the implementation process

can be greatly improved.

1.2.2 Research Questions and Approaches

To achieve our objective, we propose a number of research questions that have to be answered.

The logical sequence of research activities are also reflected in these questions. For each

question, we discuss the approach we are going to use to arrive the answer.

Q1: What are the performance differences of different methods on spreadsheet? (Chapter 3)

To answer this question, we comprehensively compared the performance of different methods

on Excel and Calc spreadsheets using implementation tests with growing problem size and

algorithm complexity. For implementation tests, we select Sort, Shortest Path and TSP to be

our test problems due to their growing difficulty and complexity. For each test problem, we

select small, medium and large levels of problem size to implement. We compare the running

time of implementations in the aspects of total, data transferring and algorithm computing to

reveal the performance difference of different methods on spreadsheet in these aspects.

8

Q2: What is the implementation effort required to build spreadsheet applications using

different methods? (Chapter 3)

However, even when Q1 is answered, people will still want to know the development effort of

different methods to build spreadsheet applications. This is because if the performance

between different methods makes no difference in certain situations, people will certainly like

to use the method with the least implementation effort. Assuming people are unsophisticated

developers or inexperience programmers, we present the implementation effort of different

methods in terms of the code structures and the amount of codes needed to build up the

applications on spreadsheet. Through the construction of comprehensive implementation tests

using different methods on spreadsheet, we are able to tell the ease of implementation of

different methods to build spreadsheet applications.

Q3: To what extent can we build computational spreadsheet applications to solve very

complicated problems? (Chapter 4)

Even if people are aware of the strengths and weaknesses of different options, it remains to

investigate the capability of computational spreadsheet applications to solve very complicated

problems. The lack of such upper bound information on capability can result in the

underestimation of the capability of spreadsheet applications. To answer this question, we

construct a spreadsheet VRPTW application using the best method from the answers of Q1.

We apply the tabu-search heuristics (Lau et al. 2003) to solve the VRPTW problem, the VRP

problem with Time Windows. We use this spreadsheet VRPTW application to solve all the 56

Solomon test cases, which are well-established benchmark test cases for VRPTW problem

(Solomon, 1987), and compare the performance with a C++ standalone application reading and

writing data on text files. To this end, by solving a very complicated problem with

sophisticated heuristics using a spreadsheet VRPTW application and comparing its

performance with standalone computational applications, we can obtain the insights of the

capability of computational applications based on spreadsheet.

9

Q4: How to select between different options of building computational spreadsheet

applications? (Chapter 5)

Based on the performance differences and ease of implementation of different methods on

spreadsheet from Chapter 3, we construct a framework of building applications on spreadsheet

that provides guidelines of selecting between different options under different scenarios. We

study and identify the criteria to select between different spreadsheet software and different

methods following the sequence of building spreadsheet applications, and under each scenario,

we provide the most efficient option with the least implementation effort. With such a

framework, people can select the most efficient way among various options to build

computational spreadsheet applications based on their requirements.

Q5: How to make it easiest to build computational applications on spreadsheet? (Chapter 5)

With the framework providing guidelines of selecting between different options, people can

select the most efficient methods to build applications on spreadsheet based on their

requirements. We construct the structural routines of different methods and the library codes of

comprehensive implementation examples to further provide people with an easier start to build

spreadsheet applications with specific method. In this way, we strive to reduce the amount of

work to build spreadsheet applications to the largest extent and improve the convenience and

efficiency involved.

1.3 RESULTS AND CONTRIBUTIONS

1.3.1 Principal Results

Our principal result is the framework of building applications on spreadsheet. It provides

guidelines of selecting the most effective method to build computational spreadsheet

applications under different scenarios, as shown in Figure 1.4 below.

Through our principal result, the framework of building spreadsheet applications, the research

questions can be answered and our research objective can be achieved.

10

Figure 1.4 Framework of building applications on spreadsheet

1.3.2 Our Contributions

Our contributions to the research study of building computational applications on spreadsheet

in this thesis are summarized below:

Start

Select

spreadsheet

platform

Excel Calc

 Very complicated

algorithm?

VBA Call

C++ DLL

Java C++

OOO

Basic

Not Applicable Java

 Very easy

Algorithm?
 Complicated

Algorithm?

 Do you want

it to be Free?

 Do you want

Fast speed?

 Do you want

Fast speed?

 Intensive data

transfer?

 Intensive data

transfer?

Not

Applicable

VBA

Select methods Select methods

Y

N

N

N Y Y

Y

N Y
N Y

N

N

Y

Y

N

11

1. A framework providing guidelines of selecting between different methods to build

computational applications on spreadsheet; with this framework, people are able to apply the

most efficient approach to build spreadsheet applications based on their requirements, which

supports the decision making and improves the efficiency.

2. The ease of implementation analysis of different methods to build spreadsheet applications;

for unsophisticated developers or inexperienced programmers, it is very important to have the

information of implementation effort of different options so that they can better plan and

schedule their resources to build applications on spreadsheet. With the ease of implementation

analysis, people can choose the one with the least implementation effort from feasible options.

3. An Excel VRPTW application with good performance, which has not been found in the

literature; with the insights of capability of spreadsheet applications to solve the VRPTW

problem, people are able to tell the feasibility of building computational spreadsheet

applications to solve very complicated problems.

4. A Sync process to transfer data arrays with dynamic length which overcomes the inherent

limitation of VBA call C++ DLL method to build spreadsheet applications; with such a

process, the data arrays with dynamic length can be transferred between VBA and C++ DLL

by being transformed into data arrays with static length.

5. Structures, routines and library codes of different methods to build spreadsheet applications;

it provides people with a much easier start to build applications on spreadsheet. With the

structural routines and library codes, people are able to conveniently and easily follow the

routines and sample codes to build applications on spreadsheet with the specific option they

have selected, which saves the cost and improves the efficiency greatly.

1.4 THESIS ORGANIZATION AND STRUCTURE

In this research framework, this thesis is organized and structured as follows:

12

Chapter 2 contains the literature review on building computational applications on spreadsheet.

In this chapter, recent literatures on building computational spreadsheet applications will be

reviewed and the limitations of current studies will be discussed to form the basis of

motivation of this research.

In Chapter 3, we conduct a comprehensive comparison of the performance of different

methods on spreadsheet and their ease of implementation analysis. The running time of

implementation tests built on spreadsheet with increasing algorithm complexity and problem

size are compared. Next, the amount of implementation effort in terms of the code structures

and the codes needed for different methods on spreadsheet are compared. Through these

comparisons, the strengths and weaknesses of each method under different criteria and the ease

of implementation of each method will be concluded.

In Chapter 4, we build an Excel VRPTW application using VBA call C++ DLL (Hybrid)

method to show that a spreadsheet application solving a complicated problem with

sophisticated heuristics can be successfully built using the VBA call C++ DLL method.

Meanwhile, the Excel VRPTW application performance is compared with a C++ standalone

application under all 56 Solomon test cases. The insights of the capability of using VBA call

C++ DLL method to build computational spreadsheet applications will be revealed.

Chapter 5 will construct the framework of building computational applications on spreadsheet.

Through the comparative study on different spreadsheet software and different methods of

building applications on spreadsheet, we will provide guidelines of selecting between different

options under different scenarios. Furthermore, we will provide structured routines and library

codes of different options to provide people with an easier start.

In Chapter 6, we give concluding remarks and discuss the limitations and possible further

extensions of this research.

13

Chapter 2

Literature Review

2.1 INTRODUCTION

As discussed in Chapter 1, there are plenty of studies about how to build applications on

spreadsheet in order to solve different problems. Therefore in this chapter, we discuss some

published research and development of spreadsheet applications that are related to our research

topic. Firstly, we describe some general literatures on computational spreadsheet applications

built for solving different problems, especially in science and engineering areas (section 2.1).

Next, we discussed different methods used to build computational spreadsheet applications

(section 2.2). In section 2.2.1, the use of built-in functions and solvers is addressed. The

spreadsheet applications using three different types of programming methods are reviewed

separately in sections 2.2.2, 2.2.3 and 2.2.4. Finally, we summarize our findings from the

literature and discuss how these interesting findings motivate this research (section 2.3).

2.1 DIFFERENT SPREADSHEET SOFTWARE USED FOR

BUILDING APPLICATIONS

The spreadsheets are used widely because of their obvious advantages in terms of efficiency,

various ways of formatting, data integrity, and automatic and accurate charting generation.

Since the first electronic spreadsheet VisiCalc was developed, many different kinds of

spreadsheet software have been invented and the spreadsheet software market is maturing.

These spreadsheets can be classified into two categories: online spreadsheets and desktop

spreadsheets (Obrenovic and Gasevic 2008). Google spreadsheets are one of the most popular

online spreadsheets that can be accessed from the Google Docs. The desktop ones include

Microsoft Excel and some open-source software like OpenOffice.org Calc. Microsoft Excel is

the most successful commercial spreadsheet software. Starting from 1995 to the present,

Microsoft Excel has dominated the commercial spreadsheet market (Stan J. Liebowitz 2001).

http://en.wikipedia.org/wiki/OpenOffice.org_Calc

14

During the last two decades, numerous research studies have been conducted to build

applications and models on spreadsheet for Business usages, Engineering calculations and

Engineering educations (Rosen and Adams 1987, Chehab et al. 2004 ,Oke 2004). Among these

studies, when the spreadsheet software is referred, Microsoft Excel is the most popular

spreadsheet software used to build applications in Science and Engineering. Moreover, Excel

spreadsheets are proposed to be used in most of the standard entrepreneurship textbooks to

create financial plans in the business world (Gansel 2008). However, OpenOffice.org Calc,

which is an open-source and free spreadsheet software developed after Microsoft Excel, has

also become a very popular and important spreadsheet software nowadays. It is able to run on

various kinds of Operating Systems including Windows, Mac OS and Linux.

Thus, having observed the popularity of Excel and Calc, we will choose them as the

spreadsheet platforms of our research. Since Calc is a free and popular spreadsheet software,

and there is little research on spreadsheet applications on Calc, it will be worthwhile to extend

applications from Excel spreadsheet to Calc. This gap of building applications on spreadsheets

other than Microsoft Excel in Science and Engineering research areas leads to one of our

motivations for this research framework.

2.2 DIFFERENT METHODS OF BUILDING APPLICATIONS ON

SPREADSHEET

2.2.1 Built-in Functions and Solvers

Many researches on spreadsheet models and applications apply cell reference functions, and

built-in formulas inside the spreadsheet software to carry out engineering calculations

iteratively to achieve the computation results. Archer (1989) applies the digraphs to represent

the logical ordering of the cell reference calculations. For problems with iterative solutions, a

pseudo cell relationship diagram (CRD) is generated to present the cell references and data

flows in this kind of computational applications on spreadsheet. Anthony and Wilson (1990)

build a simple manpower model on SuperCalc spreadsheet system with Cell references to

15

solve the problem step by step. It is shown that using Built-in functions to build applications

on spreadsheet is useful for developing models and insights rapidly and for producing

unsophisticated results. However, once the model starts to grow, it will outgrow the

spreadsheet approach. Filby (1998) introduces abundant examples of applications in Science

and Engineering using Built-in functions to build computational applications on spreadsheet.

According to Rosen and Adams (1987), the applications built with Built-in functions on

spreadsheet have some advantages. For example, the user can define tabular format, and the

arithmetic operations are hidden from input and output results. Hence they are user-friendly

and easy to use. The calculations are carried out step by step and non-procedural, and hence

will be very intuitive and easy to understand. However, this kind of application built with

Built-in functions on spreadsheet has a number of limitations. Firstly, the spreadsheet

application is calculated through the entire process for each update. Secondly, no return

capabilities are available to carry out a subroutine or recursive type of calculation. Thirdly,

when the problem becomes very difficult and data size becomes very large, the applications on

spreadsheet using built-in functions are very tedious to build.

Frontline Solvers is the developer of the Standard Solver in Excel spreadsheet. Standard Excel

Solver is able to solve Linear and Non-linear problems with a maximum size of 200 variables.

It is applicable across different areas and able to solve various problems (Frontline), such as

portfolio optimization in Finance and Investment, job scheduling in Manufacturing, routing

and loading in Distribution and Networks, etc. Lynne and John (2004) apply the Excel solver

on real sample design problems with complex features, and also discussed about other solver

tools which are widely available nowadays in spreadsheet for solving sample design problems.

However, to build applications on spreadsheet with Built-in Solvers, the problem size will be

limited, and the algorithm cannot be user-defined.

2.2.2 Internal Programming Methods

As discussed in section 2.2.1, both built-in functions and solvers have some limitations. Since

spreadsheet is a powerful programming language and is viewed as the “fourth-generation

16

programming language” (Thomas, A. Grossman 2010), when the built-in functions and solvers

are not able to satisfy the needs of researchers and engineers, they start to apply Internal

programming languages integrated inside the spreadsheet in order to get a more powerful

option.

For problems with more complicated algorithm and larger problem size, many literatures have

proposed building computational applications on spreadsheet using Internal programming

languages. With the advent of VBA, which is a programming method integrated in Excel

spreadsheet, researchers can write macros using VBA to build computational spreadsheet

applications. LeBlanc and Galbreth (2007) describe an efficient way which uses VBA in Excel

to solve Large-Scale linear optimization problems (LPs). The model built on Excel with VBA

has overcome limitations for large-scale problems and increased model usability. Au et al.

(2010) develop a prototype VBA package implementing advanced Monte-Carlo simulation

which is able to perform efficient uncertainty propagations. David and Ragsdale (2003)

improve the Excel solver with VBA to solve stochastic multi-criteria linear problems.

Numerous applications built with VBA on spreadsheet in Science and Engineering can also be

found in Filby (1998).

2.2.3 External Programming Methods

External programming languages, such as C/C++, Java, Visual Basic, C#, can also be used to

build computational applications on spreadsheet. External programming methods are different

from Internal programming methods, they are not integrated in spreadsheet and hence they are

not able to build applications on spreadsheet directly. Literatures are available on building up

the interface between spreadsheet and External programming methods. For instances, Hazel

introduces the method of accessing Excel spreadsheet from within C++ using Microsoft

Component Object Model (COM). Sakalli and Birgoren (2009) developed spreadsheet-based

decision support tools that link Excel with LINGO modeling language and optimizer. LINGO

is a comprehensive tool designed to build and solve various kinds of optimization models, such

as Linear, Non-linear optimization, etc. LINGO modeling language is integrated in the

17

package for expressing optimization models. It is able to import data from spreadsheets and

export solutions back out to spreadsheets through the OLE (Object Linking and Embedding)

links. LibXL is a C++ library that can read and write Excel files. J-Integra is a Java

interoperability component that bridges Java and Microsoft Excel. JXL is a free open-source

java API enabling developers to read and write Excel spreadsheets.

2.2.4 Hybrid Programming Methods

Hybrid programming methods are the hybrid of Internal programming methods and External

programming methods or packages. Rosen and Partin (2000) first propose a method to utilize

the existing standalone FORTRAN programs in the spreadsheet environment with VBA. For

example, in this research work, VBA is able to utilize the FORTRAN code by declaring the

function in FORTRAN as a Dynamic Link Library (DLL), which makes the process simple

and convenient, and at the same time also proves the strong capability of spreadsheet. Rosen

(2001) also describes a method of VBA call C++ DLL on spreadsheet to carry out calculations

with simple examples. Additionally, Punuru and Knopf (2008) introduce the concept of linking

VBA with C/C++ code. They systematically present on how to facilitate the transfer of data,

such as single variables, vectors and matrices, between VBA and C++ DLLs with various

illustrative examples. Hazel also introduces VBA call C++ DLL method to build

computational applications on Excel spreadsheet. Moreover, Frontline’s Risk and Premium

Solver software is developed using External programming languages and can be deployed in

VBA as XLL add-ins. This Solver software is able to solve various kinds of optimization

problems of large size with algorithms. However, it lacks the ability to allow users to solve

problems with self-defined heuristics.

2.3 SUMMARY

In this Chapter, different spreadsheet software and methods used to build computational

applications on spreadsheet in Business, Science and Engineering are substantially reviewed.

Nowadays, numerous applications have been built on spreadsheet with various kinds of

methods. This includes for instance, applying Built-in functions in spreadsheet to carry out

18

calculations and solve problems iteratively, and applying Internal, External and Hybrid

programming methods, such as VBA, C++, VBA call C++ DLL, to build more capable and

efficient applications on spreadsheet for more complicated and larger size problems. However,

there are several questions and topics that need more investigation, thus motivate the studies

involved in this dissertation.

Firstly, the current studies on building applications on spreadsheet are mostly based on Excel

spreadsheet software. OpenOffice.org Calc, which is an open-source and free spreadsheet

software popularly used around the world nowadays, will also be of great value and interest to

be investigated to build computational applications on it.

Secondly, with different methods to build computational spreadsheet applications, an

important research question is to find out the performance difference among these methods.

This knowledge is critical for people to make decisions when several options are available to

be selected. Besides, the ease of implementation of these methods is also very important to

build spreadsheet applications. However, these topics are rarely addressed in literatures on

spreadsheet applications. Chapter 3 is motivated to answer this research question.

Thirdly, another important question is how capable is the spreadsheet application to solve very

complicated problems with sophisticated heuristics. Without such information, people will not

be able to easily tell the feasibility of building computational spreadsheet applications for

complicated problems with sophisticated heuristics. Chapter 4 is motivated by attempting to

fill this gap.

Lastly, facing different choices and combinations of spreadsheet software and different

methods, how to select among these options to build applications on spreadsheet under

different scenarios is rarely addressed. If people could select the most suitable method to build

computational spreadsheet applications in different situations, the efficiency will be greatly

improved. This is the research objective of Chapter 5.

19

Chapter 3

Performance Comparison of Different Methods on

Spreadsheet

3.1 INTRODUCTION

As discussed in Chapter 2, there are numerous studies on how to build computational

applications on spreadsheet. However, the performance differences, in terms of the speed of

computational spreadsheet applications, among various building methods, and their ease of

implementation are rarely addressed. The strengths and weaknesses of different options are the

most critical information for selecting within different options to build computational

applications on spreadsheet in different scenarios. Without such knowledge, the most efficient

method may not be selected among various options. Moreover, with the knowledge of

implementation effort of different options, people can better plan and schedule resources to

fulfill the developing task.

Therefore, in this chapter, we will focus on two of the most popular spreadsheet software,

Excel and Calc. Based on these two spreadsheet platforms, Internal, External and Hybrid

programming methods, including VBA, VC++, Java, VBA call C++ DLL and OOO Basic are

used to build implementation tests on spreadsheet, to compare their performance and analyze

their ease of implementation. The reason for choosing these options is because of their

importance and popularity in building computational spreadsheet applications. The

combinations of software and methods are summarized in Table 3.1 shown below.

We organize Chapter 3 as follows: Firstly, to investigate the performance difference of

different methods on spreadsheet, we believe the best way is through comprehensive

comparison tests. In section 3.2, we describe different testing problems used in this chapter.

Based on this, we build implementation tests using different methods with increasing

20

algorithm complexity and problem size to compare their performance (sections 3.3, 3.4). For

example, we select merge-sort to solve Sort problem, Dijkstra for Shortest Path problem and

2opt and 3-opt heuristics to solve TSP problem. The performance measure refers to the speed

of spreadsheet application. Hence, the running time of each implementation test is compared in

three aspects: Total time, Data transferring time, and Algorithm computing time.

Table 3.1 Options of spreadsheet software and methods in this research framework

 Microsoft Excel OpenOffice.org Calc

Internal Programming Method VBA OOO Basic

External Programming Method VC++, Java Java

Hybrid Programming Method VBA call C++ DLL ＊

＊: Hybrid methods on Calc are not discussed in this research study as data is not stored consecutively

in OOO Basic, and the data array is not able to be passed by address in the same ways as Hybrid

method on Excel such as VBA call DLL to build spreadsheet applications. Hence, the Hybrid method on

Calc is considered not feasible in this research framework.

Secondly, to investigate the ease of implementation of different methods on spreadsheet, we

assume that the implementation effort required is in terms of the code structures and amount of

codes required to write for unsophisticated developers or inexperienced programmers. Based

on this assumption, we will illustrate the code structures and the critical codes of different

methods to build spreadsheet applications. In section 3.5, we analyze the ease of

implementation of different methods on the two spreadsheet platforms. We conclude this

Chapter in section 3.6.

3.2 TESTING PROBLEM DESCRIPTION

In order to investigate and compare the performance of different methods on spreadsheet

comprehensively, it is important to construct the implementation tests in two dimensions:

algorithm complexity and problem size.

For algorithm complexity, the Merge-sort algorithm for Sort problem, the Dijkstra algorithm

for Shortest Path problem and the 2-opt+3-opt heuristic algorithm for TSP (Travelling

Salesman) problem are selected to build implementation tests due to their growing difficulty

and complexity. Hence with increasing algorithm complexity, the algorithm computing time

21

performance of different methods on spreadsheet can be compared comprehensively. For

problem size, each specific problem is implemented with growing data size to compare the

data transferring speed performance of different methods on spreadsheet. Therefore, the

implementation tests are able to reveal the performance of different methods comprehensively

from problem with easy algorithm and small size to problem with complicated algorithm and

large size.

The basic information of implementation tests can be summarized in Table 3.2 shown below.

Table 3.2 Description of implementation tests on spreadsheet

 Problem Size

Test Problem Algorithm Algorithm Complexity Small Medium Large

Sort Merge-sort Easy O(n log n) 1000 10000 50000

Shortest Path Dijkstra Medium O(n
2
) 500 1000 5000

TSP 2-opt + 3-opt Complicated O(n
3
) 50 100 150

Implementation tests to compare the performance of different methods on spreadsheet are

illustrated in detail below.

For the Sort problem, the Merge-sort algorithm is used to compute the result. Merge-sort is a

very efficient sorting algorithm and the time complexity is O(n log n). For each run, the Input

data is randomly generated and stored as a single column, and the Output result will be

computed and sorted also in a single column in the same spreadsheet. This can be shown in

Table 3.3 shown below.

Table 3.3 Input and Output formats in Sort implementation test

Input Output

Data[1] Result[1]

… …

Data[n] Result[n]

For the Shortest Path problem, the problem used in this research is the single-source shortest

path problem, and the classic Dijkstra algorithm is used to obtain the solution. The Dijkstra

22

algorithm is the most popular algorithm used to solve the single-source shortest path problem,

and its time complexity is O(n
2
). In this study, the Input data is the Graph adjacency matrix

which indicates the Path cost if there is an Edge between Vertex i and j . The output is the

shortest path to each location from the single source Vertex 0 and the total cost of each shortest

path. For each size of the implementation test, the adjacency matrix is randomly generated and

stored in three columns in the spreadsheet. The Output result is computed and stored in the

same spreadsheet. This can be shown in the table below.

Table 3.4 Input and Output formats in Shortest Path implementation test

Input Output

Vertex 0 Vertex i Cost[0][i] Vertex 0 Total Cost[0] Path (0 to 0)

… … … … … …

Vertex j Vertex n Cost[j][n] Vertex n Total Cost[n] Path (0 to n)

For the TSP problem, it is a NP-hard problem which is not able to obtain optimal solution in

polynomial time. In this study, a combination of 2-opt and 3-opt heuristics to obtain an

approximation of the optimal solution is used. 2-opt and 3-opt will iteratively improve the

solution in each iteration, its time complexity is O(n
3
) and the combination of 2-opt and 3-opt

will increase the probability of finding better approximation to the optimal solution. The Input

data is the randomly generated coordinates of all points from 0 to n stored in two columns in

the spreadsheet. The Output result is the approximate optimal solution of the shortest

Hamiltonian cycle route and its total distance. It is computed and stored in the same

spreadsheet. This can be shown in the table below.

Table 3.5 Input and Output formats in TSP implementation test

Input Output

X[0] Y[0] Total Distance Route[0]

… … …

X[n] Y[n] Route[n]

 All implementation tests built on spreadsheet will follow the 3 general steps shown below:

 (1) Load file and Read data from spreadsheet;

23

 (2) Solve the problem using specific algorithm;

 (3) Write result to spreadsheet and save file;

In the following research framework, these 3 steps will be denoted as Read, Algo, and Write

for short. The running time of each part will be recorded separately and compared.

All the tests were carried out under the same condition on the same computer device (Intel

Core2 Duo CPU, T9600, 2.8GHz, RAM 4.00GB, 32-bit Windows Operating System). Each

specific problem is repeated with 100 Runs to obtain the average running time results.

3.3 PERFORMANCE COMPARISON OF DIFFERENT METHODS

ON EXCEL

Through the comprehensive implementation tests built on Excel spreadsheet, we are able to

compare the performance of different methods on Excel spreadsheet in following sub-sections.

To restate the different methods on Excel spreadsheet, we select 4 different methods and

compare their performances on Excel spreadsheet. They are VBA, VC++, Java, and VBA call

C++ DLL. Among them, VBA is the Internal programming method, VC++ and Java are the

External programming methods, and VBA call C++ DLL is the Hybrid programming method.

To investigate and compare their performances, we apply these programming methods to build

implementation tests on Excel spreadsheet to read and write on spreadsheet and carry out

algorithm computations.

In sub-sections 3.3.1 to 3.3.4, we will present the performance results of the 4 methods on

Excel. In sub-section 3.3.5, we will compare their performances. In sub-section 3.3.6, we will

give a summary.

3.3.1 Performance of VBA on Excel

The running time results of implementation tests using VBA on Excel spreadsheet are shown

in Table 3.6 shown below.

24

Table 3.6 Performance of VBA on Excel

 VBA Performance (seconds)

 Total Read Algorithm Write

Sort

Small size 0.0135 0.0002 0.0078 0.0055

Medium size 0.1050 0.0034 0.0864 0.0152

Large size 0.5496 0.0177 0.4745 0.0574

Shortest Path

Small size 0.2911 0.0117 0.0404 0.2390

Medium size 1.0219 0.0254 0.1705 0.8260

Large size 8.1588 0.2246 6.2037 1.7305

TSP

Small size 0.9426 0.0055 0.9273 0.0098

Medium size 20.4383 0.0086 20.4145 0.0152

Large size 98.9141 0.0039 98.9023 0.0078

It can be seen that from Sort to TSP test, with the increase of algorithm complexity, when

algorithm computing becomes more and more complicated, VBA’s algorithm computing time

will increase tremendously and it will always take longer time compared with reading and

writing on Excel spreadsheet. Meanwhile, within each implementation, the algorithm

computing time will increase significantly with the increase of problem size. As a result, the

total running time of the implementation will become extremely long.

With the growth of problem size, when the data transferring becomes more and more intensive,

the reading and writing time of VBA in different implementation tests increases insignificantly

except in Shortest Path. This is because the data format in Sort and TSP tests makes VBA able

to read and write data in a group, but in Shortest Path test, data can only be read and written

Cell by Cell. Furthermore, the reading time will always outperform the writing time, and

therefore the data transferring time of VBA will mostly be composed of writing results back to

Excel spreadsheet.

In summary, VBA performs much better on reading and writing than algorithm computing.

Moreover, VBA performs very well on implementation with easy problem instead of a

complicated one. Also, reading and writing time will be influenced by whether data is read or

25

written by group or by cell, as reading and writing by group will show much better

performance. The performance results demonstrate the strength of VBA on reading and writing

and the weakness of VBA on algorithm computation. VBA will probably be a good choice for

implementations on Excel which do not contain complicated or difficult algorithm computing

tasks. However, comparison of the performances with other methods on Excel spreadsheet is

required to show its performance differences.

3.3.2 Performance of VC++ on Excel

The running time results of implementation tests using VC++ on Excel spreadsheet are shown

in the table below.

Table 3.7 Performance of VC++ on Excel

 VC++ Performance (seconds)

 Total Read Algorithm Write

Sort

Small size 0.2693 0.0093 0.0003 0.2597

Medium size 2.6745 0.1107 0.0030 2.5608

Large size 13.4682 0.8595 0.0160 12.5927

Shortest

Path

Small size 0.6466 0.0176 0.0010 0.6280

Medium size 1.5995 0.0408 0.0045 1.5542

Large size 8.7816 0.3815 0.1026 8.2975

TSP

Small size 0.0720 0.0011 0.0154 0.0555

Medium size 0.3900 0.0019 0.3118 0.0763

Large size 1.6818 0.0024 1.5810 0.0984

It can be seen that with the increase of algorithm complexity, when algorithm computing

becomes more and more complicated, VC++’s algorithm computing time will remain at fast

speed. Meanwhile, within each implementation, the algorithm computing time will increase

insignificantly with the increase of problem size.

With the growth of problem size, when the data transferring becomes more and more intensive,

the reading and writing time of VC++ in different implementation tests increases significantly

26

except in the TSP test. The data transferring work including reading and writing will be

relatively easy in the TSP test since problem size in TSP test is only 50 to 150. Also, the

reading time will always outperform the writing time, which means the data transferring time

of VC++ will mostly be contributed by writing results back to Excel spreadsheet.

Thus, through these implementation tests, VC++ reveals its better performance and strength on

algorithm computing compared to reading and writing. VC++ will be a good choice for

applications on Excel spreadsheet with complicated algorithm computing but will not be able

to provide good performance for applications with intensive data transferring. Comparison

with other methods will be needed to conclude its performance differences.

3.3.3 Performance of Java on Excel

The running time results of implementation tests using Java on Excel spreadsheet are shown in

the table below.

Table 3.8 Performance of Java on Excel

 Java Performance (seconds)

 Total Read Algorithm Write

Sort

Small size 0.1647 0.0429 0.0002 0.1216

Medium size 0.2813 0.0628 0.0024 0.2162

Large size 1.1403 0.1927 0.0120 0.9357

Shortest

Path

Small size 0.5437 0.1289 0.0074 0.4074

Medium size 0.8240 0.1921 0.0228 0.6092

Large size 3.2271 0.9331 0.6298 1.6643

TSP

Small size 0.2326 0.0384 0.0776 0.1166

Medium size 1.7104 0.0382 1.5523 0.1199

Large size 7.9047 0.0398 7.7448 0.1201

It can be seen that with the increase of algorithm complexity, when algorithm computing

becomes more and more complicated, Java’s algorithm computing time will remain to be short.

27

However, within each implementation, the algorithm computing time will grow quickly with

the increase of problem size.

With the growth of problem size and when the data transferring becomes more and more

intensive, the reading and writing time of Java in different implementation tests increases

quickly. Moreover, the reading time will always outperform the writing time, which means the

data transferring time of Java will mostly be from writing results back to Excel spreadsheet.

Hence, Java possesses the strength on algorithm computing compared to reading and writing

on Excel spreadsheet. However, Java will not be able to provide very fast performance for

applications with intensive data transferring or with very complicated algorithm computing. Its

performance differences can be illustrated with the comparison to other methods on Excel

spreadsheet.

3.3.4 Performance of VBA call C++ DLL on Excel

The running time results of implementation tests using VBA call C++ DLL on Excel

spreadsheet are shown in Table 3.9 presented below.

Table 3.9 Performance of VBA call C++ DLL on Excel

 VBA call C++ DLL Performance (seconds)

 Total Read Algorithm Write

Sort

Small size 0.0064 0.0004 0.0005 0.0055

Medium size 0.0246 0.0037 0.0050 0.0159

Large size 0.1039 0.0193 0.0257 0.0588

Shortest

Path

Small size 0.4089 0.0169 0.0057 0.3862

Medium size 0.9002 0.0312 0.0215 0.8475

Large size 3.0023 0.2358 0.7044 2.0621

TSP

Small size 0.0449 0.0008 0.0313 0.0129

Medium size 0.3258 0.0012 0.3082 0.0164

Large size 1.5754 0.0012 1.5602 0.0141

As demonstrated, the performance of VBA call C++ DLL on Excel spreadsheet combines the

strength of VBA on data transferring and VC++ on algorithm computing. With the increase of

28

algorithm complexity, when algorithm computing becomes more and more complicated, VBA

call C++ DLL’s algorithm computing time increases but retains in fast speed. Within each

implementation, the algorithm computing time will increase insignificantly with the increase

of problem size.

With the growth of problem size and when the data transferring becomes more and more

intensive, the reading and writing time of VBA call C++ DLL in different implementation tests

remains to be very short except in the case of the Shortest Path test, since the data are read and

written Cell by Cell in the Shortest Path implementation. Moreover, the data transferring time

in VBA call C++ DLL is mainly caused by writing results back to Excel spreadsheet.

Thus, VBA call C++ DLL has the advantage on data transferring similar to VBA. Meanwhile,

it also possesses the strength on algorithm computing similar to VC++ which is able to

complete complicated algorithm computing tasks in a short period of time. Therefore, for

applications on Excel spreadsheet both with intensive data transfer and with complicated

algorithm computation, VBA call C++ DLL method will provide fast speed performance.

3.3.5 Comparison of Different Methods on Excel

In order to find out the performance differences between different methods on Excel

spreadsheet, the best way is to compare the performance of different methods under the same

criteria. From previous sections, we are able to tell the strengths and weaknesses of different

methods on Excel spreadsheet. Also, we obtain the insight that data transferring time of

different methods will be dominated by writing results back to Excel spreadsheet. Hence, we

can combine the reading and writing performance, and compare the data transferring

performance of different methods instead. Next, we will compare the performance, namely the

running time, of these 4 methods on Excel in three aspects, including data transferring,

algorithm computing and total time. These aspects are comprehensively examined with the

increase of problem size and algorithm complexity.

29

(1) The Comparison of the data transferring (reading and writing) performance of four

different methods on Excel spreadsheet is shown in Table 3.10 below.

Table 3.10 Performance comparison of different methods on Excel on data transferring

 Data Transferring Performance (seconds)

 VBA VC++ Java
VBA call

C++ DLL

Sort

Small size 0.0057 0.269 0.1645 0.0059

Medium size 0.0186 2.6715 0.279 0.0196

Large size 0.0751 13.4522 1.1284 0.0781

Shortest

Path

Small size 0.2507 0.6456 0.5363 0.4031

Medium size 0.8514 1.595 0.8013 0.8787

Large size 1.9551 8.679 2.5974 2.2979

TSP

Small size 0.0153 0.0566 0.155 0.0137

Medium size 0.0238 0.0782 0.1581 0.0176

Large size 0.0117 0.1008 0.1599 0.0153

It can be seen that the VBA and VBA call C++ DLL methods present great advantage on

reading and writing, and provide the fastest performance on data transferring consistently.

With the growth of data size, the data transferring time of VC++ and Java on Excel

spreadsheet will increase quickly. Therefore, the order of the data transferring performance of

these 4 methods on Excel spreadsheet is, VBA = VBA call C++ DLL > Java > VC++, where

“=” means the same and “>” means faster than.

(2) The comparison of the Algorithm computing performance of four different methods on

Excel spreadsheet is shown in Table 3.11 below.

As displayed, VC++ shows the fastest performance on algorithm computing consistently, and

VBA also shows very fast speed on algorithm computing. However, its performance will be a

little bit longer than VC++ as there is additional data passing time between VBA and C++

DLL. On the other hand, VBA always performs the slowest on algorithm computing. With the

increase of the algorithm complexity, Java will be less efficient compared with VC++ on

30

algorithm computation. Hence, the algorithm computing performance difference of these 4

methods on Excel spreadsheet is VC++ > VBA call C++ DLL > Java > VBA, where “>”

means faster than.

Table 3.11 Performance comparison of different methods on Excel on algorithm computing

 Algorithm Computing Performance (seconds)

 VBA VC++ Java
VBA call

C++ DLL

Sort

Small size 0.0078 0.0003 0.0002 0.0005

Medium size 0.0864 0.003 0.0024 0.005

Large size 0.4745 0.016 0.012 0.0257

Shortest

Path

Small size 0.0404 0.001 0.0074 0.0057

Medium size 0.1705 0.0045 0.0228 0.0215

Large size 6.2037 0.1026 0.6298 0.7044

TSP

Small size 0.9273 0.0154 0.0776 0.0313

Medium size 20.4145 0.3118 1.5523 0.3082

Large size 98.9023 1.581 7.7448 1.5602

(3) The comparison of the Total time performance of four different methods on Excel

spreadsheet is shown in the table below.

Table 3.12 Performance comparison of different methods on Excel on Total time

 Total time Performance (seconds)

 VBA VC++ Java
VBA call

C++ DLL

Sort

Small size 0.0135 0.2693 0.1647 0.0064

Medium size 0.105 2.6745 0.2813 0.0246

Large size 0.5496 13.4682 1.1403 0.1039

Shortest

Path

Small size 0.2911 0.6466 0.5437 0.4089

Medium size 1.0219 1.5995 0.824 0.9002

Large size 8.1588 8.7816 3.2271 3.0023

TSP

Small size 0.9426 0.072 0.2326 0.0449

Medium size 20.4383 0.39 1.7104 0.3258

Large size 98.9141 1.6818 7.9047 1.5754

31

It can be seen that for the overall performance, VBA call C++ DLL will provide the fastest

performance in total consistently, as it combines the advantage of VBA on data transferring

and the strength of VC++ on algorithm computing. For other methods, VBA will beat VC++

and Java when there is intensive data transferring and the problem is simple and easy, such as

the Sort test. However, as the problem becomes more and more complicated and data

transferring becomes less and less intensive, VC++ and Java’s advantage on algorithm

computing will outperform and beat VBA completely, such as for the TSP test.

3.3.6 Summary

With the comprehensive performance comparison of different methods on Excel spreadsheet,

we can summarize the performance differences of these four methods to build applications on

spreadsheet.

For VBA on Excel spreadsheet, VBA has the fast speed in data transferring on Excel

spreadsheet and the advantage of reading and writing data by groups. VBA is slow at

algorithm computing and this weakness makes its performance the longest when the problem

becomes more and more complicated. Hence, VBA, as an Internal programming method, will

be fast for applications on Excel spreadsheet with intensive data transferring while slow for

implementations with complicated algorithm computing.

For VC++ on Excel spreadsheet, VC++ has the fast speed on algorithm computing and this

advantage makes it able to solve complicated problems and obtain the solution in very short

time. VC++ is slow at data transferring on Excel spreadsheet and it will underperform when

data transferring becomes more and more intensive. Thus, VC++, as an External programming

method, will be fast for applications on Excel spreadsheet with complicated algorithm

computing while slow for implementations with intensive data transferring.

For Java on Excel spreadsheet, Java also reveals its strength on algorithm computing and

performs similarly as VC++ on Excel spreadsheet. However, Java’s algorithm computing

speed will not be as fast as VC++ with the increase of algorithm complexity. Meanwhile,

32

compared with VC++, Java reveals its strength in data transferring on Excel spreadsheet.

Therefore, Java, as another External programming method, will be a good choice for

applications on Excel spreadsheet with less intensive data transfers and less complicated

algorithm computations.

For VBA call C++ DLL on Excel spreadsheet, this method combines the advantage of VBA on

data transferring and the strength of C++ on algorithm computing. Hence, it reveals the fastest

performance consistently through the implementation tests. However, there will be additional

time for data exchange between VBA and C++ DLL file.

3.4 PERFORMANCE COMPARISON OF DIFFERENT METHODS

ON CALC

Through the comprehensive implementation tests built on Calc spreadsheet using different

methods, we are able to show the performance of different methods on Calc spreadsheet in the

following sub-sections.

Again, for the different methods on Calc spreadsheet, two different methods are selected and

their performances on Calc spreadsheet are compared. They are OOO Basic and Java. OOO

Basic is an Internal programming method, and Java is an External programming method. They

are the most typical methods to build applications on Calc spreadsheet. Hybrid programming

method, to our best knowledge, will not be available as data is not stored consecutively in

OOO Basic in Calc. Therefore, it is hard to combine OOO Basic with External programming

methods as data is hard to exchange between Internal and External methods.

In order to tell the performance differences of different methods on Calc spreadsheet, the

running times of different implementation tests on three aspects, data transferring, algorithm

computing and Total time are compared comprehensively with increasing problem size and

algorithm complexity.

33

In sub-sections 3.4.1 to 3.4.2, we will present the performance results of OOO Basic and Java

on Excel. In sub-section 3.4.3, we will compare their performances. In sub-section 3.4.4, we

will summarize their performance differences.

3.4.1 Performance of OOO Basic on Calc

The running time results of OOO Basic on Calc spreadsheet are shown in Table 3.13 presented

below.

Table 3.13 Performance of OOO Basic on Calc

 OOO Basic Performance (seconds)

 Total Read Algorithm Write

Sort

Small size 7.347 0.749 3.915 2.683

Medium size 15.257 1.373 8.252 5.632

Large size 96.611 6.536 47.050 43.025

Shortest

Path

Small size 14.826 2.624 8.374 3.828

Medium size 57.642 10.155 34.570 12.917

Large size
Out of

Memory

Out of

Memory

Out of

Memory

Out of

Memory

TSP

Small size 190.914 0.015 190.867 0.032

Medium size 4791.056 0.047 4790.916 0.078

Large size 24433.080 0.059 24432.955 0.093

Note that OOO Basic in the Shortest Path test with data size 5000 will be out of memory as

5000*5000 elements are too large in quantity to be accessed, and hence, the running time

result is not available.

It can be seen that with the increase of algorithm complexity, when algorithm computing

becomes more and more complicated, the algorithm computing time of OOO Basic increases

tremendously and turns out to be extremely long in the TSP test. Meanwhile, with the growth

of problem size, when the data transferring becomes more and more intensive, the data

transferring time of OOO Basic, which includes reading and writing on Calc, also grows and

becomes very long. Moreover, within data transferring, there is no dominance between reading

34

and writing. Overall, OOO Basic reveals better performance on data transferring than

algorithm computing.

3.4.2 Performance of Java on Calc

To illustrate the performance of Java on Calc spreadsheet, the reading, algorithm computing,

writing and total time results of Java in Sort, Shortest Path and TSP tests are presented in

Table 3.14 shown below.

Table 3.14 Performance of Java on Calc

 Java Performance (seconds)

 Total Read Algorithm Write

Sort

Small size 5.562 2.591 0.001 2.970

Medium size 588.166 292.811 0.016 295.338

Large size 13292.494 6587.224 0.127 6705.144

Shortest Path

Small size 16.160 7.501 0.006 8.653

Medium size 72.234 28.445 0.022 43.767

Large size 2888.850 2539.089 0.566 349.196

TSP

Small size 0.584 0.056 0.257 0.270

Medium size 6.647 0.114 6.159 0.373

Large size 27.903 0.204 27.166 0.532

It can be seen that the Java method on Calc spreadsheet shows great strength on algorithm

computing. However, the data transferring speed of Java, including reading and writing on

Calc spreadsheet, is very slow. Except that in TSP test, Java’s reading and writing time on

spreadsheet is very short since the data size in TSP test is only 50 to 150. With the increase of

problem size, the reading and writing time will increase and becomes extremely long. With the

growth of algorithm complexity, the algorithm computing will remain to be within reasonable

time. Moreover, no dominance between reading and writing exists within data transferring. In

summary, Java performs at fast speed on algorithm computing while it reveals slow

performance on data transferring on Calc spreadsheet.

35

3.4.3 Comparison of Different Methods on Calc

In order to find out the performance differences between different methods on Calc

spreadsheet, we need to compare the performance of these two methods in different

implementation tests presented above. The running time results of OOO Basic and Java for

different implementation tests can be compared on three aspects, including data transferring,

algorithm computing and total time, in which reading and writing are combined into data

transferring. Through a comprehensive comparison with increasing problem size and algorithm

complexity, the performance differences of different methods can then be shown.

(1) The Comparison of the data transferring performance of different methods on Calc

spreadsheet is shown in Table 3.15 presented below.

Table 3.15 Performance comparison of different methods on Calc on data transferring

 Data transferring Performance (seconds)

 OOO Basic Java

Sort

Small size 3.432 5.561

Medium size 7.005 588.149

Large size 49.561 13292.37

Shortest Path

Small size 6.452 16.154

Medium size 23.072 72.212

Large size Out of Memory 2888.285

TSP

Small size 0.047 0.326

Medium size 0.125 0.487

Large size 0.152 0.736

It can be seen that compared with Java, OOO Basic reveals its great strength in data

transferring on Calc spreadsheet, and the data transferring performance of OOO Basic is

consistently better than Java in all implementation tests.

(2) The comparison of the algorithm computing performance of different methods on Calc

spreadsheet is shown in Table 3.16 below.

36

It can be seen that Java has great advantage on algorithm computing and performs at much

faster speed than OOO Basic.

Table 3.16 Performance comparison of different methods on Calc on algorithm computing

 Algorithm Computing Performance (seconds)

 OOO Basic Java

Sort

Small size 3.915 0.001

Medium size 8.252 0.016

Large size 47.05 0.127

Shortest Path

Small size 8.3742 0.006

Medium size 34.57 0.022

Large size Out of Memory 0.566

TSP

Small size 190.867 0.257

Medium size 4790.916 6.159

Large size 24432.955 27.166

(3) The comparison of the total time performance of different methods on Calc spreadsheet is

shown in the table below.

Table 3.17 Performance comparison of different methods on Calc on Total time

 Total time Performance (seconds)

 OOO Basic Java

Sort

Small size 7.347 5.562

Medium size 15.257 588.166

Large size 96.611 13292.494

Shortest Path

Small size 14.8262 16.160

Medium size 57.642 72.234

Large size Out of Memory 2888.850

TSP

Small size 190.914 0.584

Medium size 4791.056 6.647

Large size 24433.080 27.903

It can be seen that when the data transferring is very intensive, such as in Sort test, OOO Basic

will show better performance than Java on Calc spreadsheet due to its strength on data

transferring. When the problem becomes more and more complicated and data transferring

37

becomes less and less intensive, which means that the algorithm computing will play the most

important role, Java can make use of its strength on algorithm computing and outperform OOO

Basic in Total on Calc spreadsheet. Furthermore, when the algorithm computing and data

transferring are both at a medium level, these two methods will provide similar performance.

3.4.4 Summary

Through the performance comparison of OOO Basic and Java on Calc spreadsheet, the

performance differences of different methods on Calc spreadsheet can be summarized below.

For OOO Basic on Calc spreadsheet, OOO Basic has the strength of data transferring on Calc

spreadsheet. However, OOO Basic performs very slowly on algorithm computing. Hence,

OOO Basic, as an Internal programming method to build applications on Calc spreadsheet,

will be appropriate for applications with intensive data transferring while it will be slow for

applications with complicated algorithm computing. In addition, OOO Basic is not able to

access very large dimensional matrices which limit its scope of use.

For Java on Calc spreadsheet, Java has fast speed on algorithm computing, but it is slow at

data transferring on Calc spreadsheet. This combination of performance determines that Java,

as an External programming method, will be a good choice for applications on Calc

spreadsheet with complicated algorithm computing but easy data transferring work.

3.5 EASE OF IMPLEMENTATION OF DIFFERENT METHODS

ON SPREADSHEET

After determining the performance differences of different methods to build computational

applications on spreadsheet, the next natural question will be the ease of implementation of

different methods to build spreadsheet applications. This is because if the performance among

various methods turns to be indifferent in certain scenarios, people will certainly want to select

the one with the least implementation effort.

38

Therefore, in this section, we intend to conduct the ease of implementation analysis of

different methods on spreadsheet to help people to tell their implementation effort differences.

Thus people are able to select the most efficient method to build spreadsheet applications that

can achieve the performance requirement while implement with the least effort.

To analyze the ease of implementation, we assume that the implementation effort required can

be revealed in terms of the code structures and the codes to be written for unsophisticated

developers or inexperienced programmers, since more critical codes always refer to more

implementation effort when building computational applications on spreadsheet. Hence,

through the analysis of the essential codes needed and the code structures to build applications

on spreadsheet using each method, the ease of implementation of different methods on

spreadsheet can be shown.

To build applications on spreadsheet, the most important effort to be implemented is the

interface between different methods and the spreadsheet to transfer Input data and Output

result, since the implementation effort for algorithm computing part will be about the same for

every method to obtain the solution. Thus, in sub-sections 3.5.1 to 3.5.6, we will illustrate the

critical codes of different methods to build up the interface with spreadsheet intuitively. In sub-

section 3.5.7, we conclude on the ease of implementation of different methods on spreadsheet.

3.5.1 Implementation of VBA to Build Applications on Excel

VBA is an application of Microsoft’s event-driven programming language Visual Basic and its

associated Integrated Development Environment (IDE), which are built into Microsoft Excel

spreadsheet. VBA enables developers to build self-defined functions and applications. Hence,

we can use VBA to build applications on Excel spreadsheet directly.

In order to build applications on Excel spreadsheet with VBA, we need to build up the

interface between VBA and Excel spreadsheet, which contains three level of access on Excel:

Workbook, Worksheets, and Cells or Range. These three levels form a relation of layers, which

means that lower levels can only be accessed if we have obtained the access of upper level. For

39

instance, if we want to read and write the data on Excel spreadsheet, we have to first access the

Workbook, then the Worksheets, before we can access the Cells to read and write data.

Hence, the interface between VBA and Excel spreadsheet requires the 3 steps shown below:

Step 1. Obtain the access of Workbook layer. In VBA, we can use the Application’s property

and function, and declare (Dim) a Workbook type variable to obtain the access of Workbook

level as shown in the figure below.

Figure 3.1 Access Excel Workbook layer with VBA

Step 2. Obtain the access of Worksheet layer. After Workbook, we can use the Workbook’s

property and function, and declare (Dim) a Worksheet type variable to obtain the access of

Worksheet level as shown in the figure below.

Figure 3.2 Access Excel Worksheet layer with VBA

Step 3. Obtain the access of Cells level. After Worksheet, we can access the Cells by using the

Worksheet variable’s property function as shown in the figure below.

Figure 3.3 Access Excel Cells layer with VBA

Here, i stands for row index and j stands for column index in Cells(i, j). The Value property

will return the data information stored in this cell.

40

More detailed information of routines and sample codes of VBA on Excel spreadsheet can be

found in APPENDIX A.

3.5.2 Implementation of VC++ to Build Applications on Excel

With the purpose of building applications on Excel spreadsheet with VC++, the most

important part is to build up the interface between VC++ and Excel spreadsheet. In this

research, we will apply a VC++ open-source library written by Yap (2006) to read and write

data on Excel spreadsheet. This open-source library called BasicExcel is a C++ class that is

able to bridge VC++ with Excel 2003 spreadsheet. The way that BasicExcel interfaces with

Excel is to operate the file directly through the Binary file format. Microsoft Excel uses a

proprietary binary file format called BIFF (Binary Interchange File Format) as its primary

format up until Excel 2007, and since version 2007, Microsoft Excel changes its file format to

Office Open XML. Therefore, BasicExcel is restricted to be used for Excel with version earlier

than 2007.

Basic reading and writing tasks on 2003 Excel spreadsheet are supported by this open-source

library, such as reading and writing numbers and strings, adding and deleting worksheets,

geting name of or renaming the worksheets. Although it looks simple, BasicExcel has already

satisfied all the basic steps that are to be covered in the implementation tests in this research.

BasicExcel contains three Classes to approach three layers of access on Excel spreadsheet.

They are Class BasicExcel for Workbooks, Class BasicExcelWorksheet for Worksheets and

Class BasicExcelCell for Cells. The functions used in implementation tests and their

descriptions are listed in the table below.

Table 3.18 Functions of C++ BasicExcel Library to access Excel

Functions in BasicExcel Description

bool Load (Const char* filename) Load a workbook from an Excel spreadsheet file.

bool SaveAs (Const char* filename) Save current workbook to an Excel file.

41

BasicExcelWorksheet*

GetWorksheet(size_t sheetIndex)

Generate a pointer to an Excel worksheet with

given index. Index starts from 0.

BasicExcelCell*

Cell(size_t row, size_t col)

Give a pointer to an Excel cell. Row index and

Col index start from 0.

double GetInteger() const Return an integer value in Cell.

void SetInteger(int val) Set content of an Excel cell to an integer value.

double GetDouble() const Return a double value in Cell.

void SetDouble(double val) Set content of an Excel cell to a double value.

The interface between VC++ and Excel spreadsheet can be built through the 3 steps shown

below:

Step 1. Load Workbook file. The access of Workbook can be obtained by calling the “Load()”

function in Class “BasicExcel” as shown in the figure below.

Figure 3.4 Access Excel Workbook layer with C++ Library

Step 2. Access Worksheet. The access of Worksheet can be obtained by calling the

“GetWorksheet()” function in Class “BasicExcel” and passing to a pointer declared as

“BasicExcelWorksheet” object as shown in the figure below.

Figure 3.5 Access Excel Worksheet layer with C++ Library

Step 3. Access Cells. The access of Cells can obtained by calling the function “Cell(i, j)” in

Class “BasicExcelWorksheet” and received by declaring a pointer to “BasicExcelCell” object

as shown in Figure 3.6 presented below.

Here, i stands for row index and j stands for column index in Cell(i, j). The row index and

column index start from 0.

42

Figure 3.6 Access Excel Cells layer with C++ Library

More sample codes of how to interface with Excel spreadsheet using the VC++ BasicExcel

library method and more detailed routine information can be found in APPENDIX A.

3.5.3 Implementation of Java to Build Applications on Excel

In this research framework, we will use a Java open-source library called JXL to interface with

Excel and manipulate the Excel spreadsheet. JXL is a mature Java API (Application

Programming Interface) that allows people to read and write on Excel spreadsheet. Within its

features, JXL supports reading and writing data on Excel 2003 spreadsheets. It also supports

basic operations such as setting format, adding and removing worksheets and so on. In

summary, JXL is a maturely developed, free Java Excel API popularly used to build up the

interface between Java and Excel spreadsheet nowadays.

Similarly, JXL can access three layers of Excel spreadsheet using the Class methods and

interfaces inside the library package. JXL divides reading and writing on Excel spreadsheet to

two different Class packages, where “jxl” is dedicated to handle reading tasks and “jxl.write”

is dedicated to handle writing tasks. For reading Workbook, a Class called “Workbook” is

defined in “jxl” to represent a Workbook and provide a handle into individual Worksheets. For

Worksheet, a public interface called “Sheet” is defined to represent a Worksheet within a

Workbook and provide a handle into individual Cells. For Cells, a public interface called “Cell”

is defined to represent an individual Cell within a Worksheet and can be queried for its type

and its contents. Within the interfaces Cell, there are also sub-interfaces, such as NumberCell,

FormulaCell, etc. to generate different types of Cells. Writing will be very similar to reading,

and the difference is to replace the above Classes and interfaces to WritableWorkbook,

WritableSheet, and WritableCell.

43

The Class methods used in implementation tests to interface with Excel spreadsheet, and their

descriptions are listed in Table 3.19 presented below.

Table 3.19 Methods of Java JXL Library to access Excel

Commonly used Methods in JXL Description

public static Workbook getWorkbook

(java file)
A factory method which takes in an Excel file

public abstract Sheet getSheet (int i)
Gets the Worksheet within this workbook with

specified Index

public Cell getCell (int column,

int row)
Returns the cell specified at this row and column

Sheet.public int getRows() Returns the number of rows in this sheet

NumberCell getValue() Gets the double contents for this cell

public static WritableWorkbook

createWorkbook (java file)

Creates a writable workbook with the given file

name

public WritableSheet getSheet (int i) Gets the specified sheet within this workbook

public void addCell (WritableCell cell) Adds a cell to this sheet

public class Number Creates a cell, which contains a numerical value

public Number(int col, int row,

double val)

Constructs a number, adds to a spreadsheet at the

column/row position indicated.

public abstract void write()
Writes out the data held in this workbook in Excel

format

The interface between Java and Excel spreadsheet can be built through the 3 steps shown

below:

Step 1. Access the Workbook. The access of Workbook can be obtained by calling the

getWorkbook() function and passing to the Class Workbook objects shown in Figure 3.7 shown

below.

Figure 3.7 Access Excel Workbook layer with Java Library

http://jexcelapi.sourceforge.net/resources/javadocs/2_3/docs/jxl/Workbook.html

44

Step 2. Access the Worksheet. The access of Worksheet can be obtained by calling the

getSheet() function and passing to the Class Sheet object as shown in the figure below.

Figure 3.8 Access Excel Worksheet layer with Java Library

Step 3. Access the Cells. The access of Cells can be obtained by calling the getCell(i, j)

function and passing to the Class NumberCell object. The value can be retrieved by calling the

getValue() function as shown in the figure below.

Figure 3.9 Access Excel Cells layer with Java Library

Here, i stands for column index and j stands for row index in getCell(i, j). The row index and

column index start from 0.

More sample codes and detailed information of Java routines on Excel can be found in

APPENDIX A.

3.5.4 Implementation of VBA call C++ DLL to Build Applications on Excel

Dynamic-Link library, or DLL, is Microsoft’s implementation of the shared library concept in

the Microsoft Windows systems. DLL files are independent modules that contain functions

and resources which are compiled, linked and stored separately from the applications. It

provides a way to modularize applications so that functionality can be updated, reused, and

most importantly, be shared. Hence, this property allows other applications to call the DLL file

as a function. In this research framework, once the DLL is defined and the format is matched,

VBA is able to call DLL as a function to perform execution of algorithms and specific

computations to obtain the results. We will use C++ to compile the DLL function and declare

45

it in VBA. This can thus be considered as a Hybrid programming language since it is the

combination of VBA and C++ programming languages.

The process flow of the implementation is that we first read data with VBA from Excel

spreadsheet, then call the DLL function, and the input data are transferred into C++ DLL to

carry out algorithm computations and results are obtained. Thereafter, the output results are

transferred from DLL back to VBA, and VBA will write the results back to Excel spreadsheet.

We can see that to build applications on Excel spreadsheet using VBA call C++ DLL method,

two kinds of interface have to be built. One is the bridge linking Excel spreadsheet with VBA,

and the other one is the bridge linking VBA with C++ DLLs. The interface with Excel

spreadsheet follows the same reading and writing procedure described in VBA method on

Excel, which contains three layers of access to Excel spreadsheet through VBA. Hence, we

have to build up the bridging interface between VBA and C++ DLL to transfer the data and

results.

In order to build up the interface between VBA and C++ DLL, function arguments are used to

transfer input data and output results. The important information to be noted is that the data

type length of function parameters must be matched between C++ DLL and VBA. The data

types commonly used in C++ DLLs and their VBA equivalents are shown in the table below.

Table 3.20 The Equivalents of common data types between C++ DLL and VBA

C++ VBA Size in Bytes Description

bool Boolean 2 Stores a value of True (0) or False (-1)

short Integer 2 Contains a number in the range of -32768 to 32767

int Long 4
Contains a number in the range of -2,147,483,648 to

2,147,483,647

double Double 8 Contains a real number in the range of +/- 1.7E +/- 308

char Byte 1 Contains a number in the range of 0-255

Since the implementation codes of VBA call C++ DLL method on Excel spreadsheet are long

and complicated, the detailed routine and sample codes of VBA call C++ DLL method on

Excel are provided in APPENDIX A.

46

3.5.5 Implementation of OOO Basic to Build Applications on Calc

OOO Basic is a programming language developed especially for OpenOffice.org applications

and it is integrated into the OpenOffice.org package. OOO Basic belongs to the Basic family,

and it is very similar to VBA for Excel spreadsheet. We can insert modules in the OOO Basic

editor and build applications on Calc spreadsheet directly.

Similarly, in order to use OOO Basic to operate on Calc spreadsheet, we also need to build up

the interface between OOO Basic and Calc spreadsheet which contains three levels of access

on Calc: SpreadsheetDocument, Sheets, and Cells or Range. Hence, the interface between

OOO Basic and Calc spreadsheet requires the 3 steps shown below.

Step 1. Obtain the access of SpreadsheetDocument. The access of SpreadsheetDocument can

be obtained by calling the “LoadComponentFromURL()” function and declaring an object type

variable to receive it. If the spreadsheet document has already been opened and the application

is built directly on it, then we can simply declare an object and use “ThisComponent” to obtain

the access of this SpreadsheetDocument as shown in the figures below.

Figure 3.10 Access Calc SpreadsheetDocument layer with OOO Basic

Figure 3.11 Access opened Calc SpreadsheetDocument directly with OOO Basic

Step 2. Obtain the access of Sheets. The access of Sheets can be obtained by calling the

“Sheets()” function and received by declaring an object type variable as shown in the figure

below.

47

Figure 3.12 Access Calc Sheets layer with OOO Basic

Step 3. Obtain the access of Cells. The access of Cells can be specified by calling the

“getCellByPosition(i, j)” function and received by declaring an object type variable, where i

stands for the column index and j stands for the row index starting from 0, as shown in the

figure below.

Figure 3.13 Access Calc Cells layer with OOO Basic

More detailed OOO Basic routines and sample codes can be found in APPENDIX B.

3.5.6 Implementation of Java to Build Applications on Calc

In this research framework, we will use a free Java library called ODFDOM toolkit to build up

the interface and access Calc spreadsheet. ODFDOM is an Open Document API that provides

an easy way to manipulate ODF (Open Document Format) files such as Calc spreadsheets.

Moreover, based on ODFDOM, we also apply a more easy-to-use Simple Java API, which is a

high level abstraction of the lower-level ODFDOM API for modifying ODF files. In order to

use Simple Java API, the following runtime libraries are required:

 JDK version 1.6

 ODFDOM 0.8.7

 The Apache Xerces 2.9.1 or higher version

Just like other methods, Simple Java API also provides three layers of Classes to access Calc

spreadsheet. For SpreadsheetDocument, a Class called “SpreadsheetDocument” is defined in

48

Simple Java API to represent a SpreadsheetDocument. For Sheets, a public Class called “Table”

is defined to represent the Sheets in ODF spreadsheet and provide methods to modify cells. For

Cells, a public Class “Cell” is defined to represent the Cells in ODF spreadsheet and provide

methods to modify the cell content and cell properties. The Class methods used in

implementation tests and their descriptions are listed in the table below.

Table 3.21 Methods of Java SimpleJavaAPI Library to Access Calc

Methods in Simple Java API on Calc Description

public static

SpreadsheetDocument.loadDocument

(DocumentPath)

Loads a SpreadsheetDocument from the

provided path

public Table getSheetByIndex (int i) Retrieves sheet by index

public Cell getCellByPosition (int col,

int row)

Returns a single cell that is positioned at the

specified column and row

Class Cell. getDoubleValue () Gets the double value of this cell

Class Cell.setDoubleValue (Double value) Sets the cell value as a double

public void save (OutputPath) Saves the document to an OutputStream

The interface between Java and Calc spreadsheet can be built through the 3 steps shown below.

Step 1. Access the SpreadsheetDocument. The access of SpreadsheetDocument can be

obtained by calling the “loadDocument()” function and passing to an object with

“SpreadsheetDocument” Class type as shown in the figure below.

Figure 3.14 Access Calc SpreadsheetDocument layer with Java Library

49

Step 2. Access the Sheets. The access of Sheets can be obtained by using the

SpreadsheetDocument object to call the “getSheetByIndex()” function to retrieve Sheets by

index and passing to an object with “Table” Class type as shown in the figure below.

Figure 3.15 Access Calc Sheets layer with Java Library

Step 3. Access the Cells. The access of Cells can be obtained by using the Table object “sheet”

defined above to call the “getCellByPosition(i, j)” function, where i stands for the column

index and j stands for the row index starting from 0, And then passing to an object defined

with “Cell” Class type as shown in the figure below.

Figure 3.16 Access Calc Cells layer with Java Library

More detailed information of the Java Routines on Calc spreadsheet and sample codes are

shown in APPENDIX B.

3.5.7 Summary of Ease of Implementation of Different Methods on Spreadsheet

Through the illustration of implementation of different methods and the critical codes to

construct the interface with spreadsheet, we are able to intuitively summarize the code

structures of different methods to build applications on spreadsheet, as illustrated in Figure

3.17 below.

It can be seen that for Internal programming methods, such as VBA on Excel and OOO Basic

on Calc, we can build up the interface directly on spreadsheet; for External programming

methods, such as VC++, Java on Excel and Java on Calc, we have to import the open-source

library and build up the interface with spreadsheet; for Hybrid programming methods, such as

50

VBA call VC++ DLL, we have to build up two interfaces, namely the interface to transfer data

between spreadsheet and Internal method, and the interface to transfer data between Internal

method and External method.

Figure 3.17 Code structures of different methods to build applications on spreadsheet

Therefore, through the codes structures and the critical codes to be written to build spreadsheet

applications, the ease of implementation of different kinds of methods can be concluded as

follows: Internal methods require the easiest effort to implement, then the External methods,

and Hybrid methods require the most effort to implement to build applications on spreadsheet.

3.6 CONCLUSIONS

In this chapter, comprehensive implementation tests are conducted to show the performance

differences and implementation effort of different methods to build applications on spreadsheet.

Until now, we are able to answer the research questions 1 and 2 stated in Chapter 1.

Conclusions are summarized below:

1. For the performance of different methods, VC++ and Java, as External programming

methods, have fast speed on algorithm computing but suffer from the weakness in data

transferring on spreadsheet. VBA and OOO Basic, which are Internal programming methods

integrated inside Excel and Calc spreadsheet, perform at fast speed on data transferring, but

51

have weakness on algorithm computing. The Hybrid programming method, such as VBA call

C++ DLL, which combines the advantages of Internal and External programming methods,

will provide the overall fastest performance in both data transferring and algorithm computing.

2. For the ease of implementation, Internal methods require the least effort to implement,

followed by External methods. Hybrid methods require the most effort to implement to build

applications on spreadsheet.

Through various implementation tests, it can be seen that Hybrid programming methods have

the great advantage in building computational spreadsheet applications. Although Hybrid

methods will require more implementation effort than Internal and External programming

methods, however, it is much more capable than Internal and External programming methods

on spreadsheet in terms of speed performance, especially for spreadsheet applications to solve

very complicated problems with sophisticated algorithms. We will elaborate on this issue in

the next chapter.

52

Chapter 4

An Application Example: Solving VRPTW on Excel

4.1 INTRODUCTION

In Chapter 3, the performance differences between various options to build computational

spreadsheet applications and their ease of implementation have been investigated. It is found

that the Hybrid programming method, such as VBA call C++ DLL on Excel spreadsheet,

shows the best performance consistently throughout the comparison, and hence it shows strong

capability to build computational spreadsheet applications. However, it remains to investigate

the capability of using this method to build spreadsheet applications to solve very complicated

problems with sophisticated algorithms, and evaluate its performance in terms of speed

compared with other standalone applications.

To investigate the capability of the Hybrid programming method, VBA call C++ DLL, we

implement this method and build an Excel VRPTW application to solve VRPTW (Vehicle

Routing Problem with Time Windows) problems. VRP is a NP-hard problem, which means

that generally, optimal solutions cannot be obtained in Polynomial time. It is much more

complicated than TSP as TSP is just a special case of VRP, and it is likely that the worst case

running time of VRP increases exponentially with problem size. VRPTW is even harder than

VRP as it has to consider the time window constraint. Spreadsheets have been used for solving

various kinds of optimization problems (Parlar 1986, Roy, A., Lasdon and Plane 1989,

Conway and Ragsdale 1997, Kharab 2000). However, these problems addressed are not as

complicated as VRP.

We apply the tabu-search heuristics (Lau et al. 2003) to solve the VRPTW problem, and we

use this Excel VRPTW application to solve all the Solomon test cases, which are well-

established benchmark test cases for VRPTW problem (Solomon, 1987), and compare the

performance with a standalone C++ application on solving this VRPTW problem. The

53

standalone C++ application will read and write data on text files. With the Excel VRPTW

application example to solve a very complicated problem with sophisticated heuristics and the

evaluation of its performance through the comparison with other standalone applications, we

are able to tell the capability of using VBA call C++ DLL to build computational spreadsheet

applications.

VBA call C++ DLL method has an inherent limitation of transferring dynamic length array

data between VBA and C++ DLL. Here, we propose a Sync concept to overcome this

limitation and we manage to transfer the VRPTW solution with dynamic length route result

array from C++ DLL to VBA.

This Chapter is organized as follows: in section 4.2, we introduce the Excel VRPTW

application example in detail, including the data format and the interface between VBA and

C++ DLL. In section 4.3, we present the performance result of this VRPTW spreadsheet

application. We conclude and summarize this Chapter in section 4.4.

4.2 EXCEL VRPTW APPLICATION USING VBA CALL C++ DLL

METHOD

This VRPTW application example follows the same process as we discussed previously in

using VBA call C++ DLL method to build spreadsheet applications. Firstly, Input data will be

read from the Excel spreadsheet using VBA. Then Input data are transferred from VBA to C++

compiled DLL to solve the problem and the result will be obtained. After that, solution results

are transferred back to VBA from C++ DLL. Finally, Output results are written back to the

Excel spreadsheet using VBA. All the I/O data transferring occurs in memory, and the process

can be illustrated in the figure below.

Figure 4.1 Data flow of spreadsheet applications built with VBA call C++ DLL method

54

4.2.1 Input and Output Format

The Input data format follows the same structure as in the Solomon test cases (Solomon, 1987),

in which Number of Vehicles, Vehicles Capacity Limit, Number of Customers, Customer

Positions, Demand, and Time Window are specified. The Input data format is shown in the

figure below.

Figure 4.2 Iutput format of Excel VRPTW application

The Output will present the detailed information of the solution. Firstly, there will be the total

summary information, including Number of Vehicles Used, Number of Customers Served,

Number of Customers Not Served, Total Distance Travelled, and Total Load Carried. Then,

the specific route information of each used vehicle will be shown, such as the Vehicle ID,

Number of Customers Served in the route, Customer ID served in sequence, Arrival Time, and

the Start time and Due Time of the customer. A sample of Output format is shown in Figure

4.3 below.

Figure 4.3 Output format of Excel VRPTW application

Route Report

Number of vehicles used: 10

Number of customers served: 100

Number of customers not served: 0

Total Distance Travelled: 829.01

Total Load Carried: 1810

Vehicle ID: 1

Number of customers served: 10

Customer Arrival Start Due

90 2062 2000 8400

87 11562 8500 14400

86 20662 17300 23800

83 30262 26500 33800

82 39562 36900 42000

84 49145 45800 52300

85 58428 55500 61200

88 67728 64500 70800

89 77011 73700 80200

91 86372 83600 88900

55

4.2.2 Using VBA call C++ DLL to Build the Excel VRPTW Application

The purpose of using VBA call C++ DLL method to build applications on spreadsheet is to

utilize the strength of VBA on performing data transferring tasks and also the advantage of

C++ on algorithm computing. In order to use this method, we have to build up the interface to

bridge VBA with C++ compiled DLL to transfer data between them.

DLL as a Dynamic Link Library is constructed by different functions fulfilling different tasks,

and DLL is able to EXPORT these defined functions in this library. Accordingly, VBA is able

to declare these exported functions in DLL. After declaring the functions, VBA can call these

functions as self-defined functions, and then VBA is linked with DLL.

However, we have to make this bridge able to transfer data between each other. As illustrated

in Chapter 3 and APPENDIX A, VBA has two ways to pass values: one is by value (ByVal),

and the other is by reference or address (ByRef). ByVal is always used to pass single value, and

ByRef is usually used to pass arrays or matrices. We will use function argument variables to

transfer the data between VBA and C++ DLL, and we need to make sure the argument type

and return type in the DLL exported function are uniformly matched with the ones in the VBA

declared function.

For example, in this VRPTW application, we first compile a DLL file called “VRP.dll” to

carry out the algorithm computation. Within this “VRP.dll”, we define an Interface function

called VRPprocess to export. In this interface function, the function arguments contain all the

Input and Output variables. Hence the Input data and Output result will be exchanged between

VBA and C++ DLL through these arguments, as shown in Figure 4.4 below.

It can be seen that the interface function VRPprocess will first transfer the Input from VBA to

C++ DLL through the Input arguments, as done by the sub-function TransferInput(). Then the

results can be obtained from Optimise() which performs the algorithm computing, and these

results are passed from C++ DLL back to VBA through the Output arguments, as done by the

sub-function ReportOutput().

56

Figure 4.4 Define Interface function VRPprocess in C++ DLL

More sample codes and routines of how to transfer data using function arguments can be found

in APPENDICES A and C.

Then we create a “VRP.def” file to export this function, as shown in the figure of C++ sample

code below.

Figure 4.5 Export VRPprocess function in C++ DLL

After that, we generate the DLL file and declare this function in VBA, as shown in the figure

of VBA sample codes below.

Figure 4.6 Declare VRPprocess function in VBA

57

When declaring the exported C++ DLL function VRPprocess() in VBA, the function argument

types are correspondingly matched, such as int data type in C++ matches Long data type in

VBA, int* pointer in C++ matches ByRef as long in VBA to pass the address of the variable

value. The return type is also matched to be Double value for both. The common data type

equivalence between C++ DLL and VBA is shown in Table 3.20 in Chapter 3.

Thus, we are able to transfer Input data and Output results between VBA and C++ DLL now.

However, we can only pass static length array of data between VBA and C++ DLL. Since the

array data is transferred using pointers by address, and calling the DLL function in VBA is a

one-time trigger event, it is not able to dynamically change the length of array. Unlike TSP, the

VRP result is the Route solution with dynamic length, and before algorithm computing, we

have no chance to know the length of route result array in advance. Next, we propose the Sync

concept in building the interface between VBA and C++ DLL to overcome such an inherent

limitation of this method to build spreadsheet applications.

To illustrate intuitively, Figure 4.7 below shows the Sync process to transfer dynamic length

array data between VBA and C++ DLL. The Sync concept is to transform the dynamic length

array to a static length array that is large enough to handle the maximum dynamic length and

the information of the length.

Figure 4.7 Sync process to transfer data array with dynamic length information between VBA

and C++ DLL

58

It can be seen that the route result with CustomerNumber is a dynamic length result. For VBA

and C++ DLL, we define the matrices nCustomerNumber(n, n) and CustomerNumber[n][n]

that are both large enough to handle the maximum number of customers in the route result, and

define the nCustomerInRoute(n) and CustomerInRoute[n] arrays to record the dynamic length

information. After algorithm computation, the route solution result is stored in

CustomerNumber[n][n] matrix and the number of customers in each route with dynamic

length information is stored in CustomerInRoute[n]. Then through function arguments, we

synchronize the large matrix and array between C++ DLL and VBA, and hence the result with

dynamic length information is successfully transferred from C++ DLL to VBA.

With this Sync process, the Excel VRPTW application can be successfully built using the

VBA call C++ DLL method.

4.3 PERFORMANCE OF THE EXCEL VRPTW APPLICATION

After bridging the Excel spreadsheet with VBA and linking VBA with C++ DLL, we can run

the VRPTW application and the running time result can be obtained. The performance in terms

of speed of the Excel VRPTW application will be evaluated by comparing with a C++

standalone application to solve all the 56 Solomon test cases. The Solomon test cases are well-

established benchmark test cases for the VRPTW problem (Solomon, 1987). There are

altogether 6 groups of test cases with different instances of vehicle capacity limit and Time

Window limit. Each test case contains 100 customers. We expect to obtain the insights of the

capability of this spreadsheet application through the comprehensive performance comparisons

with the standalone application.

For each test case, the running times of 100 runs to solve specific test case are recorded to

obtain the average running time of both application. Specifically, the Total time, reading,

algorithm computing and writing time are compared to evaluate the performance. Here, we

will present the performance comparison between the two applications on the 6 groups of test

cases, as shown in the figure below. Within each group, the average running time of the group

59

are presented. The complete running time comparison for each test case can be found in

APPENDIX D.

Table 4.1 Performance comparison of Excel VRPTW application and C++ standalone VRPTW

application in Solomon test cases

 Total time* Reading
Algorithm

computing
Writing

Solomon Test

Cases Group
Excel C++ Excel C++ Excel C++ Excel C++

C101-C109 5.685 5.128 0.010 0.002 5.065 5.118 0.611 0.008

C201-C208 3.448 2.455 0.012 0.003 2.587 2.445 0.849 0.008

R101-R112 8.202 7.822 0.011 0.002 7.567 7.812 0.624 0.008

R201-R211 5.320 4.099 0.009 0.002 4.718 4.089 0.593 0.008

RC101-RC108 7.869 7.311 0.011 0.002 6.910 7.301 0.949 0.008

RC201-RC208 5.605 4.281 0.010 0.002 4.392 4.271 1.203 0.007

*: All the Units are in seconds.

It can be seen that Excel VRPTW built with VBA call C++ DLL method and C++ VRPTW

application show very similar performance on algorithm computing since the computations are

both conducted in C++. However, the reading and writing time, especially the writing time of

Excel VRPTW will be consistently longer than C++ VRPTW application. Therefore, this

performance difference resulted in longer time in total for Excel VRPTW application.

Through the comprehensive comparison, the insights of the capability of spreadsheet

applications built with VBA call C++ DLL method can be obtained: Excel VRPTW

application is able to obtain good solution results at fast speed, which proves the capability of

VBA call C++ DLL on building computational spreadsheet applications to solve complicated

problems with sophisticated heuristics. Moreover, the performance difference compared with

other standalone applications on text files will mainly come from the data transferring on

Excel spreadsheet, especially, the writing on Excel.

60

4.4 CONCLUSIONS

In this Chapter, we built an Excel VRPTW application using VBA call C++ DLL method to

solve the VRPTW problem, which is a much more complicated problem than TSP. Through

the comprehensive comparison of the running time performance of this spreadsheet application

with a C++ standalone VRPTW application on benchmark Solomon test cases, it is observed

that the spreadsheet application built with VBA call C++ DLL method is capable to solve

complicated problems with sophisticated heuristics with good performance. The powerful

capability of the Hybrid method brings up the importance of building computational

spreadsheet applications in research use.

Moreover, through the Excel VRPTW application example, we provide more specific

guidelines of implementing VBA call C++ DLL method to build spreadsheet applications, and

interfacing VBA with C++ DLL. The bridge between VBA and DLL is the most critical step

of using this method to build applications on spreadsheet, and it is constructed from 3 aspects

shown below:

(1) The exported function in C++ DLL matches the declared function in VBA;

(2) The function argument variables in C++ DLL match the function argument variables

in VBA;

(3) The function return data type in C++ DLL match the return data type in VBA.

If the function is successfully matched and declared, we can transfer data between VBA and

C++ DLL. Then we can use VBA to read data and write results on Excel spreadsheet, and use

C++ DLL to compute the solution results.

Moreover, with the Sync process to overcome the inherent limitation of VBA call C++ DLL

method that dynamic length array data are not able to transferred between VBA and C++ DLL,

the route result with dynamic length information can be successfully transferred between C++

DLL and VBA. A computational spreadsheet application capable to solve complicated

problems can be built successfully.

61

Chapter 5

Framework of Building Applications on Spreadsheet

5.1 INTRODUCTION

When building applications on spreadsheet, people have to make a choice among various

options. Nowadays, when people select a specific option to build the spreadsheet application,

they are primarily oriented by which method they are more familiar with, instead of choosing

the most efficient and appropriate one that will satisfy their requirements. Therefore, how to

select between different options becomes a very important and critical question needs to be

investigated. Moreover, after selecting the method to build spreadsheet applications, for

unsophisticated developers or inexperienced programmers, who are new to this method and

have to start from the beginning to learn and apply this method to build spreadsheet

applications, need efficient support and guidance for easier start.

Therefore, in this Chapter, based on the knowledge of the performance differences, ease of

implementation, and the capabilities of different options investigated in Chapter 3 and Chapter

4, we construct a framework of building computational applications on spreadsheet to provide

guidelines for people to select between various options under different scenarios. After a

specific approach has been selected, we provide the structural routines and library codes of the

specific method to support and guide people to build spreadsheet applications efficiently and

conveniently.

The framework of building applications on spreadsheet consists of two parts. The first part

provides the guidelines of how to select between the two options of spreadsheet platforms,

Excel and Calc, under different scenarios. The second part provides the guidelines of how to

select the most efficient method among different options to build applications on Excel or Calc

under different scenarios.

62

We organize this Chapter as follows: in Section 5.2, we construct the framework of building

applications on spreadsheet; section 5.3 illustrates the structures and routines of each method

to provide people a much easier start to build spreadsheet applications with the options they

have selected. In Section 5.4, summaries and conclusions are provided.

5.2 FRAMEWORK OF BUILDING APPLICATIONS ON

SPREADSHEET

5.2.1 Selecting between Excel and Calc

Since saving of money and saving of time are usually the two major concerns of people to

evaluate different options, we specify the cost and speed as two criteria to select between

Excel and Calc spreadsheets.

To evaluate the cost of these two spreadsheet platforms, we compare the price of the latest

version of these two spreadsheet software. To evaluate the speed of these two spreadsheets, we

take the VBA performance on Excel spreadsheet and the OOO Basic performance on Calc

spreadsheet in Chapter 3 to represent the speed performance of these two spreadsheets and

make the comparison. As VBA and OOO Basic are both Internal programming methods

officially integrated in Excel and Calc spreadsheets, their performances will be typical and

reasonable to represent the speed performance of these two spreadsheets.

The table below shows the comparison of cost between Excel and Calc spreadsheets.

Table 5.1 Comparison of cost between Excel and Calc

 Microsoft Excel 2010 OpenOffice.org Calc 3.3.0

Cost $139.99 Free

The Total running times of VBA on Excel and OOO Basic on Calc spreadsheet in various

implementation tests with growing problem size and increasing algorithm complexity are

shown in the table below.

63

Table 5.2 Comparison of speed performance between Excel and Calc

 Excel (VBA) Calc (OOO Basic)

Sort

Small size (secs) 0.013 7.347

Medium size 0.105 15.257

Large size 0.550 96.611

Shortest

Path

Small size 0.291 14.826

Medium size 1.022 57.642

Large size 8.159 Out of Memory

TSP

Small size 0.943 190.914

Medium size 20.438 4791.056

Large size 98.914 24433.080

It can be seen that with the increase of algorithm complexity and problem size, the speed

performance of Excel is consistently faster than Calc spreadsheet. Moreover, Calc is not able

to handle large number of elements in multi-dimensional matrices. With the growth of

algorithm complexity, the speed performance of Calc becomes slower and slower and the gap

to Excel spreadsheet becomes larger and larger. Therefore, as a spreadsheet platform to build

computational applications, Excel has much faster speed than Calc spreadsheet.

In summary, although Calc is a free open-source spreadsheet software and Excel is not free to

use, Excel’s speed performance is much faster than Calc spreadsheet. Therefore, if people

want to build applications on spreadsheet with free cost, Calc spreadsheet will be the right

choice to satisfy their requirement. If there is no capital constraint and people want to build

computational spreadsheet applications with fast speed performance, Excel will be the right

option to choose to meet the requirement.

5.2.2 Selecting between Different Methods on Excel and Calc

Based on the spreadsheet platform selected, the next step will be to select the most effective

method between different methods to build applications under different scenarios. In this

section, based on the performance comparison of different methods on Excel and Calc

spreadsheet in Chapter 3, we summarize the fast speed methods in different situations. The

64

different scenarios are the different combinations of two perspectives, the intensiveness of data

transferring on spreadsheet, i.e., the intensiveness of reading and writing on spreadsheet, and

the complexity of algorithm computing. When multiple options are available to be selected,

based on the ease of implementation analysis of various methods, we select the most efficient

method which requires the least implementation effort to build spreadsheet applications while

has fast speed performance.

The performance comparison of different methods on Excel spreadsheet in Chapter 3 is

summarized in Table 5.3 below.

Table 5.3 Performance comparison of different methods on Excel

 Methods on Excel

 Internal External Hybrid

 VBA VC++ Java
VBA call

C++ DLL

Sort

Small size (secs) 0.0135 0.2693 0.1647 0.0064

Medium size 0.105 2.6745 0.2813 0.0246

Large size 0.5496 13.4682 1.1403 0.1039

Shortest Path

Small size 0.2911 0.6466 0.5437 0.4089

Medium size 1.0219 1.5995 0.8240 0.9002

Large size 8.1588 8.7816 3.2271 3.0023

TSP

Small size 0.9426 0.0720 0.2326 0.0449

Medium size 20.4383 0.3900 1.7104 0.3258

Large size 98.9141 1.6818 7.9047 1.5754

It can be seen that for applications with intensive data transferring but simple algorithm

computing, such as Sort, VBA is the fast and good option to choose to build the application;

for applications with less intensive data transferring but more complicated algorithm

computing, such as Shortest Path, Java is the fast and good option to build the application; for

applications with simple data transferring but complicated algorithm computing, such as TSP,

VC++ is the fast and good option to build the application; and for applications with both

65

intensive data transferring and complicated algorithm computing, VBA call C++ DLL is the

fastest and best option to build the application.

Hence, we can summarize the speed of different methods on Excel spreadsheet in the table

shown below, where “Fast” indicates that the speed of this method is fast in this situation and

empty space indicates that the method is slow in this situation.

Table 5.4 Speed of different methods to build applications on Excel under different criteria

 Methods on Excel

 Internal External Hybrid

 VBA VC++ Java
VBA call C++

DLL

Intensive Data

Transferring
Fast Fast

Complicated

Algorithm Computing
 Fast Fast Fast

The performance comparison of different methods on Calc spreadsheet in Chapter 3 is

summarized in Table 5.5 below.

Table 5.5 Performance comparison of different methods on Calc

Methods on Calc

 Internal External

 OOO Basic Java

Sort

Small size (secs) 7.35 5.56

Medium size 15.26 588.17

Large size 96.61 13292.49

Shortest

Path

Small size 14.83 16.16

Medium size 57.64 72.23

Large size Out of Memory 2888.85

TSP

Small size 190.91 0.58

Medium size 4791.06 6.65

Large size 24433.08 27.90

66

It can be seen that for applications with intensive data transferring but simple algorithm

computing, such as Sort, OOO Basic will provide much better performance. For applications

with simple data transferring but complicated algorithm computing, such as TSP, Java will

provide much better performance. For applications with less intensive data transferring and

less complicated algorithm computing, such as Shortest Path, OOO Basic and Java will

provide similar performance. However, as problem size increases, OOO Basic may become

infeasible and Java will be the feasible option to build applications on Calc spreadsheet in this

case.

Hence, we can summarize the speed performance of different methods on Calc spreadsheet in

the table shown below, where “Fast” indicates that the speed of this method is fast in this

situation and empty space indicates that the method is slow in this situation.

Table 5.6 Speed of different methods to build applications on Calc under different criteria

 Methods on Calc

 Internal External

 OOO Basic Java

Intensive Data Transferring Fast

Complicated Algorithm Computing Fast

When multiple options are available in a specific case, the ease of implementation, in terms of

code structures and critical codes that need to be written, of different methods to build

spreadsheet applications to unsophisticated programmers or inexperienced developers is

summarized below.

Table 5.7 Ease of implementation of different methods to build spreadsheet applications

 Microsoft Excel OpenOffice.org Calc

 Internal External Hybrid Internal External

 VBA VC++ Java
VBA call

C++ DLL

OOO

Basic
Java

Implementation

Effort
Easy Moderate Moderate Difficult Easy Moderate

Programming

Skill requirement
Easy Moderate Moderate Difficult Easy Moderate

67

As presented, Internal methods require the easiest effort to implement, External methods

require a moderate level of effort to implement, and Hybrid methods require the most effort to

implement to build applications on spreadsheet.

Thus, under scenarios of different combinations of two criteria, the intensiveness of data

transferring and the complexity of algorithm computing, people are able to select the most

efficient method that requires the least implementation effort to build spreadsheet applications

while has fast speed performance.

5.2.3 The Framework

Thus far, we are able to propose a framework of building applications on spreadsheet that

provides guidelines for people to select between different options of spreadsheet platforms and

methods. To be specific, the framework will guide people to select between Excel and Calc

spreadsheets, and select the most efficient method within different options in different

scenarios, as shown in Figure 5.1 below.

It can be seen that firstly, to select between Excel and Calc to build the application, if fast

speed is required, Excel will be the right choice, otherwise if free software is needed, Calc will

be the right selection.

Secondly, to select between different methods on each spreadsheet, for Excel, if the problem is

very easy, VBA will be the most efficient method. Otherwise if the problem is not very easy

and there will be intensive reading and writing on spreadsheet, VBA call C++ DLL is the best

choice. If the problem is complicated but data transferring is easy, C++ will be the most

efficient option. Otherwise if there is no intensive data transferring and the problem is not very

complicated, Java will be the right choice in this case. For Calc, Java will be the most efficient

option when the problem is complicated and there is no intensive data transferring. OOO Basic

will be the most efficient method when the problem is not complicated.

68

Figure 5.1 Framework of building applications on spreadsheet

With this framework, people are able to make right and appropriate decisions under different

scenarios from the start to the end of the process of building applications on spreadsheet,

which greatly improves the efficiency of building spreadsheet applications.

Start

Select

spreadsheet

platform

Excel Calc

 Very complicated

algorithm?

VBA Call

C++ DLL

Java C++

OOO

Basic

Not Applicable Java

 Very easy

Algorithm?
 Complicated

Algorithm?

 Do you want

it to be Free?

 Do you want

Fast speed?

 Do you want

Fast speed?

 Intensive data

transfer?

 Intensive data

transfer?

Not

Applicable

VBA

Select methods Select methods

Y

N

N

N Y Y

Y

N Y
N Y

N

N

Y

Y

N

69

5.3 STRUCTURES AND ROUTINES OF DIFFERENT METHODS

With the selection of a specific method to build applications on the chosen spreadsheet

platform, for unsophisticated developers or inexperienced programmers, they may have to put

in a lot of effort and spend a lot of time to become familiar with this method to build the

spreadsheet applications, which is very inefficient and inconvenient.

To address this inefficiency, we provide in this section the structures and routines for each

method, and the library codes of comprehensive implementation examples to help people to

obtain a much easier start to build spreadsheet applications.

To build applications on spreadsheet with the methods discussed above, we have to in general

build up the structures of codes as shown in Figure 5.2 shown below.

Figure 5.2 Code Structures of different methods to build applications on spreadsheet

It can be seen that for different methods on different spreadsheets, we have to build up

different interfaces to bridge these methods with spreadsheet software. With the bridging

interfaces, we are able to transfer input data from spreadsheet to programming methods. Then

we have to construct the codes of the Algorithm to carry out algorithm computations and

obtain the results. Finally, the results are written back to spreadsheet through the bridging

interface. Moreover, for the Hybrid programming method, VBA call C++ DLL is able to use

70

the same interface as VBA and the same codes of the algorithm as VC++, with the difference

that we have to build up an additional bridging interface to link VBA with C++ DLL to

transfer data between them.

To build up the interface between different methods and spreadsheets, we have to in general

obtain the three layers of access to the spreadsheet step by step, as shown below:

Step 1. Obtain the access of SpreadsheetDocument or Workbook;

Step 2. Obtain the access of Sheets or Worksheets;

Step 3. Obtain the access of Cells.

To build up the interface of the Hybrid method between the Internal and External methods, we

have to in general make sure that these two methods are matched in three aspects:

(1) The exported function in C++ DLL matches the declared function in VBA;

(2) The function argument variables in C++ DLL matches the function argument variables

in VBA;

(3) The function return type in C++ DLL matches the return type in VBA.

To construct these interfaces, different methods provide and support different components and

Class functions to achieve this goal. The elements, Classes or functions that support accessing

three levels of spreadsheet in each method were introduced in Chapter 3 with sample codes.

Moreover, in this research, comprehensive implementations including Sort, Shortest Path, TSP,

and VRPTW, are constructed to provide sufficient library codes as references. Detailed

routines to build spreadsheet applications with different methods and the library codes of Sort,

Shortest Path, TSP and VRPTW implementations are illustrated in APPENDICES A, B and C.

5.4 SUMMARIES AND CONCLUSIONS

In this Chapter, based on performance differences and ease of implementation of different

options, the framework of building applications on spreadsheet is constructed to provide

71

guidelines to select between different options of spreadsheet platforms and methods to build

applications on spreadsheet. The structures, routines of different methods to build spreadsheet

applications and the library codes of comprehensive implementation examples are provided for

people to build applications on spreadsheet much more efficiently and conveniently. It will

greatly reduce and save the time to implement a new method for building spreadsheet

applications, especially for unsophisticated developers and inexperienced programmers. This

framework supports the decision making from the start to the end of the building process and it

helps people to select the most efficient options under different scenarios. Hence, people can

build the spreadsheet applications in a highly efficient way.

72

Chapter 6

Conclusions and Future Research

6.1 INTRODUCTION

This study was motivated by the observation from the literature that there are deficiencies in

knowledge to select between options that people encountered when building applications on

spreadsheet under different scenarios. The objective of the study is to investigate the

performance of different methods on spreadsheet and construct a general framework of

building applications on spreadsheet to provide guidelines for people to build applications

more efficiently and conveniently. To this aim, we have formulated five research questions in

Chapter 1. To answer these questions, we have implemented comprehensive tests to compare

the performance of different methods on spreadsheet and important properties of spreadsheet

applications. This study has provided useful guidance from the start to the end of the building

application process with routines and library codes. In this chapter, we summarize our major

contributions and significances of this study (section 6.2), followed by the discussion of the

limitations of this study and directions for future research (section 6.3).

6.2 MAJOR CONTRIBUTIONS

This study has investigated several topics on building applications on spreadsheet. Specifically,

the major contributions are described below,

Firstly, a comprehensive comparison of different kinds of methods, including Internal

programming methods, External programming methods and Hybrid programming methods to

build OR/MS applications on spreadsheet is conducted. The performance of VBA, VC++, Java,

VBA call C++ DLL on Excel and OOO Basic, Java on Calc spreadsheet are compared in terms

of running time results of comprehensive implementation tests with growing problem size and

increasing algorithm complexity. Through the performance comparison on these methods,

73

their performance differences are revealed and their strengths and weaknesses are shown. The

results of the comparative study in Chapter 3 provide useful information to select between

different options to build spreadsheet applications. The findings in this study suggest that

Hybrid programming methods which combine the efficiency of data transferring and algorithm

computing, such as VBA call C++ DLL on Excel, will give the fastest speed for spreadsheet

applications. Besides, the ease of implementation of different methods in terms of the code

structures and the critical codes needed to build spreadsheet applications is analyzed. Hence

people can select the option that achieves the performance requirement while requires the least

implementation effort.

Secondly, a spreadsheet application example of solving the complicated VRPTW problem is

built to illustrate the capability of the VBA call C++ DLL method on Excel spreadsheet. The

VRP problem with Time Windows solved by the tabu-search heuristic has modeled various

complexities in reality. The success of the Excel VRPTW application built with VBA call C++

DLL method shows the capability of this method to build spreadsheet applications to solve

very complicated problems with sophisticated algorithms in a short period of time.

Furthermore, the bridging interface between VBA and C++ DLL is illustrated in detail to

provide useful guidelines for people to apply this method to build spreadsheet applications.

Moreover, we propose a Sync process which overcomes the inherent limitation of VBA call

C++ DLL method for being unable to transfer data arrays with dynamic length.

Thirdly, a framework of building computational applications on spreadsheet was constructed

to provide guidelines of how to select the most efficient option among various options in

different scenarios. Based on the performance differences and ease of implementation of

different methods on spreadsheet in Chapter 3 and the insight of the capability of VBA call

C++ DLL method to build spreadsheet applications, we identify different criteria and scenarios

and compare different options to provide guidelines of selecting the most efficient method to

build spreadsheet applications. With this framework, people are able to build spreadsheet

applications with high efficiency.

74

Lastly, the structures, routines of different methods and library codes of comprehensive

implementation examples are provided for people to build applications with the method and

spreadsheet platform selected easily and conveniently.

6.3 LIMITATIONS AND FUTURE RESEARCH

This study focuses on building applications on spreadsheet. Based on the spreadsheet software,

applications are widely built on spreadsheet to conduct data analysis and further extend the

functional capability of spreadsheet due to the advantages of spreadsheet on ease of use and

user friendliness. However, spreadsheet applications also have various kinds of limitations as

illustrated below:

Firstly, Spreadsheet applications have the difficulty and limitation with Real-time data (RTD).

Real-time data is data that updates immediately after collection, such as Stock Quotes, Web

server Loads, etc. Hence, such kind of data will change and update frequently, and the

application built on spreadsheet needs to perform calculations and obtain results without much

delay. In this case, the spreadsheet applications will have some common limitations for real-

time solutions, such as, updates are missed easily, and the solutions are inefficient, which will

cause a lot of difficulties for computations based on real-time data.

Secondly, Spreadsheet applications are error-prone. In programming, we will follow strict

discipline to prevent most errors caused by humans. However, the customized developing

process of applications on spreadsheet is informal and not always well-structured. Hence,

spreadsheet applications will be error-prone, especially when data size is very large. The

results of spreadsheet applications will be invalid if the calculation is based on wrong numbers.

In this research, a framework is proposed to provide useful guidelines for the selection of

methods to build applications on spreadsheet under different scenarios by conducting empirical

studies with implementations on different spreadsheet platforms, using different methods, and

solving problems of different complexity with selected algorithms. However, there are still

75

several limitations of this study need to be mentioned and some interesting areas deserve

further explorations, as illustrated below:

Firstly, The selected problems are mainly in the area of operations research and management

science. It will be much more comprehensive if more application examples in various areas

can be provided such that the findings of this study, such as the framework, can be more

generalized.

Secondly, Hybrid programming methods on Calc spreadsheet is not investigated in this study.

Hence, finding possible solutions to build applications on Calc spreadsheet using Hybrid

programming methods will be a very interesting research topic as it will make the framework

complete. If Hybrid methods, which combine the advantages of Internal and External methods

can be found, the performance of applications on Calc spreadsheet can be greatly improved.

Thirdly, in this research, VRPTW, as a complicated problem, is used to test the capability of

VBA call C++ DLL method to build spreadsheet applications. However, implementation

examples to solve difficult problems that are even more complicated than VRPTW can further

extend the knowledge of the capability of VBA call C++ DLL methods to build spreadsheet

applications.

Lastly, Other than Reading and Writing data on spreadsheet directly, the data in spreadsheet

can be transferred indirectly, such as using a text file as an intermediate means to transfer data.

Thus, we can first use VBA and OOO Basic, which are integrated in spreadsheet, to read data

from the spreadsheet to the text file. Then, we can adopt VC++ or Java to read data from the

text file, carry out the algorithm computation, and write the results back to text files. After that,

we can again use VBA and OOO Basic to transfer the results in the text file to the spreadsheet

and complete the whole process. Similar as VBA call C++ DLL introduced in this research

framework, this method also combines advantages of VBA and OOO Basic on data

transferring on spreadsheet and VC++ and Java on algorithm computing. Implementing this

method of building spreadsheet applications is a useful topic that deserves attention.

76

REFERENCES

Anthony, S., Wilson, J. (1990). Manpower modelling using a spreadsheet. Omega Int. J. of

Mgmt Sci. Vol. 18, No. 5 , 505-510.

Archer, N. P. (1989). Electronic Spreadsheet Structures. Computers & Operations Research,

Vol. 16, Issue 5 , 493-496.

Au, S.K., Cao, Y., Wang, Z.J. (2010). Implementing advanced Monte Carlo simulation under

spreadsheet environment. Structural Safety, Vol. 32, 281–292.

Billo, E. J. (2001). Excel for Chemists-A Comprehensive Guide (2nd Edition). New York:

John Wiley & Sons.

Bloch, S. (1995). Spreadsheet Analysis For Engineers And Scientists. New York: John Wiley

& Sons.

Chehab, A., El-Hajj, A., Al-Husseini, M., & Artail, H. (2004). Spreadsheet Applications in

Electrical Engineering: A Review. Int. J. Engng Ed. Vol. 20, No. 6 , 902-908.

Composition Tool. IEEE Transactions on Service Computing, vol. 1, No. 4.

Conway, D., Ragsdale, C.T. (1997). Modeling optimization problems in the unstructured

world of spreadsheets. Omega, Int. J. Mgmt Sci. Vol. 25, No. 3 , 313-322.

David ,N., Ragsdale, C.T. (2003). A decision support methodology for stochastic multi-criteria

linear programming using spreadsheets. Decision Support Systems, Vol.36, 99– 116.

Dianond, D., Hanratty, V. C. (1997). Spreadsheet Applications in Chemistry using Microsoft

Excel. New York: John Wiley & Sons.

Earnest, D. L. (1987). Capital Equipment Justification: A Spreadsheet Application Template.

Computers & Industrial Engineering, Vol. 13, Nos 1-4 , 341-345.

77

Fields, F. (1986). Industrial Engineering Use of A Spreadsheet. Computers & Industrial

Engineering, Vol. 11, Issues 1-4 , 312-315.

Filby, G. (1998). Spreadsheets in Science and Engineering. Berlin Heidelberg: Springer.

Gansel, B. B. (2008). About the Limitations of Spreadsheet Applications in Business

Venturing. in Operations Research Proceedings, ser. Operations Research Proceedings, J.

Kalcsics and S. Nickel, Eds., vol. 2007. Berlin, Heidelberg: Springer, pp. 219–223.

Hazel, A. L. (n.d.). A brief introduction to C++ and Interfacing with Excel. Retrieved from

http://www.maths.manchester.ac.uk/~ahazel/EXCEL_C++.pdf

Hesse, R., Scerno, D. H. (2009). How Electronic Spreadsheets Changed the World. Interfaces,

Vol. 39, No. 2 , 159-167.

Ionut Arghire. (2012) "Microsoft’s Office Has over One Billion Users". SOFTPEDIA News.

World Wide Web, http://news.softpedia.com/news/Microsoft-s-Office-Has-Over-One-Billion-

Users-280426.shtml.

Jr, J. S. (1987). Industrial engineering spreadsheet applications from a manufacturing resource

planning (MRP-II) system. Computers & Industrial Engineering, Vol. 13, Issues 1-4 , 100-106.

Kharab, A. (2000). An advanced macro spreadsheet program for the simplex method.

Computers & Operations Research, Vol. 27 , 233-243.

Kokol, P. (1989). Application of Spreadsheet Software in Software Engineering Measurement

Technology. Information and Software Technology, Vol. 31, Issue 9 , 477-485.

Lau, H.C., M. Sim, K.M. Teo. (2003). Vehicle routing problem with time windows and a

limited number of vehicles. European Journal of Operational Research, vol. 148, No. 3, 559–

569,

LeBlanc, L. J., and Galbreth, M. R. (2007). Implementing Large-Scale Optimization Models in

Excel Using VBA. Interfaces, Vol. 37 , 370-382.

78

Lynne,S., John, P. (2004). Using spreadsheet solvers in sample design. Computational

Statistics & Data Analysis, Vol. 44, 527 – 546.

Obrenovic, Z., Gasevic, D. (2008) . End-User Service Composition: Spreadsheets as a Service

Oke, S. (2004). Spreadsheet Applications in Engineering Education: A Review. Int. J. Engng

Ed. Vol. 20, No. 6 , 893-901.

Parlar, M. (1986). Dynamic Programming On an Electronic Spreadsheet. Computers &

Industrial Engineering, Vol. 10, No. 3 , 203-213.

Power, D. J. (2004). “A Brief History of Spreadsheets”. DSSResources.com, World Wide Web,

http://dssresources.com/history/sshistory.html, version 3.6.

Punuru, J. R., Knopf, F. C. (2008). Bridging Excel and C/C++ Code. Comput Appl Eng Educ,

Vol. 16 , 289-304.

Raffensperger, J. F. (2003). New Guidelines for Spreadsheets. International Journal of

Business and Economics, Vol. 2, No. 2 , 141-154.

Ragsdale, C. T. (2001). Spreadsheet Modeling and Decision Analysis (3rd Edition). Ohio:

South-Western Publishing.

Rosen, E. (2001). Use of C++ Dlls in Visual Basic for Applications With Excel 2000.

Retrieved from CACHE: http://cache.org/site/news_stand/spring01/spring2001_useofc.pdf

Rosen, E., Adams, R. (1987). A Review of Spreadsheet Usage In Chemical Engineering

Calculations. Computers & Chemical Engineering, Vol. 11, No. 6 , 723-736.

Rosen, E., Partin, L. (2000). A Perspective: The Use of the Spreadsheet for Chemical

Engineering Computations. Ind. Eng. Chem. Res., Vol. 39, No. 6 , 1612-1613.

Roy, A., Lasdon, L., Plane, D. (1989). End-user optimization with spreadsheet models.

European Journal of Operational Research, Vol. 39, Issue 2 , 131-137.

79

Sakalli U. S. and Birgoren B., (2009). A spreadsheet-based decision support tool for blending

problems in brass casting industry, Computers & Industrial Engineering, 56, 724–735.

Solomon M. M. (1987). Algorithms for the vehicle Routing and Scheduling Problem with

Time Window Constraints, Operations Research, 41, 469-488.

Stan J. Liebowitz, Stephen Margolis. (2001). Winners, losers & Microsoft: competition and

antitrust in high technology. Independent Institute. Chapter 8, 178-193.

Thomas, A. Grossman & Ozgur Ozluk (2010). Spreadsheets Grow Up: Three Spreadsheet

Engineering Methodologies for Large Financial Planning Models. Proc. European Spreadsheet

Risks Int. Grp. (EuSpRIG), 1-15.

Walkenbach, J. (2004). Excel 2003 Power Programming With VBA. New York: Wiley.

Whitehouse, G., & Hodak, G. (1986). A Spreadsheet-Based Macro Manpower Model .

Computers and Industrial Engineering, Vol. 11, Issue 1-4 .

Yap, C.W. (2006). BasicExcel - A Class to Read and Write to Microsoft Excel. Retrieved from

The Code Project http://www.codeproject.com/Articles/13852/BasicExcel-A-Class-to-Read-

and-Write-to-Microsoft

Zimmerman, S. M., & Gibson, D. R. (1989). A Proposed Method to Use Electronic

Spreadsheets to Develop Quality Control Charts. Computers & Industrial Engineering, Vol. 17,

No. 1-4 , 384-389.

80

APPENDICES

APPENDIX A

Routines of Different Methods to Build Applications on Excel

Spreadsheet

A.1 INTERNAL PROGRAMMING METHOD ON EXCEL

A.1.1 VBA Routine

(1) Generate an Input file in Microsoft Excel, Save as Excel Macro-Enabled Workbook,

such as “Input.xlsm” file.

(2) Open Visual Basic Editor.

In Excel 2003 and earlier, click Tools  Macro  Visual Basic Editor menu item to

get into the VBE.

In Excel 2007, Click Office  Excel Options  Popular tab  Select “Show

Developer tab in the Ribbon” will make the Developer ribbon visible. Then click

Developer Ribbon  Visual Basic button to get into the VBE.

For a quicker access, Press Alt+F11.

(3) Insert a Module

To start building the application, we usually need at least one module in a project where

one will typically store one’s codes. To insert a module, click the Insert  Module

menu item.

(4) Write the codes of Application

a) Construct the Interface between VBA and Excel Spreadsheet (Reading &

Writing)

81

To build up the Interface between VBA and Excel Spreadsheet, we need to obtain

three levels of access on Excel Spreadsheet step by step.

Step 1. Obtain the Access of Workbook layer In VBA, we can use Application’s

property and function and declare (Dim) a Workbook type variable to obtain the

access of Workbook level.

Step 2. Obtain the Access of Worksheet layer. After Workbook, we can use

Workbook’s property and function and declare (Dim) a Worksheet type variable to

obtain the access of Worksheet level.

Step 3. Obtain the Access of Cell level. After Worksheet, we can access the Cells by

using Worksheet variable’s Cell function. Usually, we can use “Cells(i, j).Value” to

read a single value stored in Cell(i, j), where i denotes the row index and j denotes

the column index. In this way, the input data are read cell by cell, or we can use

“Range(Cells(i1, j1), Cells(i2, j2)).Value” to read a group of data stored between

Cells(i1, j1) and Cells(i2, j2). In this way, the input data are read group by group.

The Interface sample codes between VBA and Excel Spreadsheet in Sort, Shortest

Path, and TSP application examples are shown in the figures below.

Figure A.1 Interface between VBA and Excel in Sort implementation: Read data

82

Figure A.2 Interface between VBA and Excel in Sort implementation: Write result

Figure A.3 Interface between VBA and Excel in Shortest Path implementation: Read

data

Figure A.4 Interface between VBA and Excel Spreadsheet in Shortest Path

implementation: Write result

83

Figure A.5 Interface between VBA and Excel Spreadsheet in TSP implementation:

Read data

Figure A.6 Interface between VBA and Excel Spreadsheet in TSP implementation:

Write result

b) Construct the Algorithm Computing codes

Through the Interface between VBA and Excel Spreadsheet, the Input data can be

read, and we can next construct the algorithm’s structure to compute and obtain the

result.

(5) Run the application in Excel Spreadsheet

After finishing all the above steps, we can run the application in Excel Spreadsheet to

complete building applications on Excel Spreadsheet with VBA method.

A.2 EXTERNAL PROGRAMMING METHOD ON EXCEL

A.2.1 VC++ Routine

(1) Generate an Input file in Microsoft Excel, Save as Excel 97-2003 Workbook, such as

“Input.xls” file.

84

(2) Under Microsoft Visual Studio C++ 2010, create a new C++ project.

Click the menu item File  New  Project  Select Win32 Console Application 

Enter Project name  Click OK  Next  Select Console Application & Empty

Project  Finish.

(3) Add Open-Source Library into the C++ project

In VC++ Routine on Excel, the Interface between C++ and Excel Spreadsheet such as

reading and writing on Excel are fulfilled using an open-source library called BasicExcel

downloaded from the Internet.

Click the menu item Project  Add Existing Item (Shift+Alt+A)  Select

BasicExcel.hpp & BasicExcel.cpp file  Add.

(4) Create a new C++ (.cpp) file

The “.cpp” file created will be the place to build smart applications, and the number of

“.cpp” files needed will depend on the application’s requirement.

Click the Project  Add New Item menu item (Ctrl+Alt+A)  Select C++ File (.cpp)

 Enter file name  Add.

(5) Write the Codes of Application

a) Including file and namespace

We will use the Classes and Functions defined in BasicExcel.hpp and

BasicExcel.cpp files to build up the Interface between C++ and Excel Spreadsheet.

Hence, we need to include “BasicExcel.hpp” first, while the other include files

needed will depend on the application’s requirement. This is shown in the Figure

below.

Figure A.7 C++ on Excel Spreadsheet: Include files and namespace

85

b) Construct the Interface between C++ and Excel Spreadsheet (Reading &

Writing)

To build up the Interface with reading and writing on Excel Spreadsheet, we need to

obtain three levels of access on Excel step by step.

Step 1. Load Workbook file. The access of Workbook can be obtained by calling the

“Load()” function in Class “BasicExcel”.

Step 2. Access Worksheet. The access of Worksheet can be obtained by calling the

“GetWorksheet()” function in Class “BasicExcel” and passing to a pointer declared

as “BasicExcelWorksheet” object.

Step 3. Access Cells. The access of Cells can obtained by calling the function “Cell(i,

j)” in Class “BasicExcelWorksheet” and received by declaring a pointer to

“BasicExcelCell” object, where i stands for row index and j stands for column index

in Cell(i, j) starting from 0. After obtaining the access of Cells, the value stored in

Cells can be retrieved by calling functions such as “GetInteger()”, “GetDouble()”, or

“GetString()”.

The Interface sample codes between C++ and Excel Spreadsheet in Sort, Shortest

Path, and TSP application examples are shown in the figures below.

Figure A.8 Interface between C++ and Excel Spreadsheet in Sort implementation: Read data

86

Figure A.9 Interface between C++ and Excel Spreadsheet in Sort implementation: Write result

Figure A.10 Interface between C++ and Excel Spreadsheet in Shortest Path implementation:

Read data

Figure A.11 Interface between C++ and Excel Spreadsheet in Shortest Path implementation:

Write result

87

Figure A.12 Interface between C++ and Excel Spreadsheet in TSP implementation: Read data

Figure A.13 Interface between C++ and Excel Spreadsheet in TSP implementation: Write

result

c) Construct Algorithm Computing Engine

Through the Interface between C++ and Excel Spreadsheet, the Input data can be

read, and we can next construct the algorithm’s structure to compute and obtain the

result.

(6) Build and Generate the C++ EXE file

Click the menu item Build  Build Solution (F7), and the C++ EXE file will be

generated in the Folder of C++ project.

(7) Run the application in Excel Spreadsheet

88

In order to run the C++ EXE file from Excel Spreadsheet, we will create a macro to

reference the C++ EXE file and run the Macro to trigger the C++ EXE program. We will

write the codes as shown in the Figure below.

Figure A.14 Excel Macro to trigger C++ run in Sort implementation

Hence, the flow of steps is Create an Excel Macro-Enabled Workbook  Enter the VBE

from Developer Ribbon  Insert a Module to create a Macro  Reference the C++

EXE file inside the Macro  Run the Macro to trigger the C++ EXE program to run.

A.2.2 Java Routine

(1) Generate an Input file in Microsoft Excel, Save as Excel 97-2003 Workbook, such as

“Input.xls” file.

(2) Under Eclipse IDE for Java Developers, Create a new Java project

Click the menu item File  New  Java Project  Enter Project name  Next 

Finish.

(3) Add open-source library into the Java project

In Java Routine on Excel spreadsheet, the Interface between Java and Excel Spreadsheet

such as reading and writing on Excel is fulfilled by using an open-source library called

JXL downloaded from the Internet.

Click the menu item Project  Properties  Java Build Path  Select the label

Libraries  Click Add External JARs  Select “jxl.jar”  OK.

(4) Create a new Class (.java) file

89

The Class file created will be the place to develop smart applications, and the number of

Class files needed will depend on the application’s requirement.

Right Click the Java Project created  New  Class  Enter Class name  Select

“public static void main(String[] args)” (Optional)  Finish.

(5) Write the Codes of Application

a) Import Open-Source Library Classes

We will use the Classes and Functions defined in jxl.jar file to build up the Interface

between Java and Excel Spreadsheet. Hence, we have to import the JXL Library first.

The other import Libraries needed will depend on the application’s requirement. This

is shown in the Figure below.

Figure A.15 Java on Excel Spreadsheet: Import Classes

b) Construct the Interface between Java and Excel Spreadsheet (Reading &

Writing)

To build up the Interface with reading and writing on Excel Spreadsheet, we need to

obtain three levels of access on Excel step by step.

Step 1. Access the Workbook. The access of Workbook can be obtained by calling

the “getWorkbook()” function and passing to the Class Workbook object.

Step 2. Access the Worksheet. The access of Worksheet can be obtained by calling

the “getSheet()” function and passing to the Class Sheet object.

Step 3. Access the Cells. The access of Cells can be obtained by calling the

“getCell(i, j)” function and passing to the Class NumberCell object, where i stands

for Column index and j stands for Row index in getCell(i, j) starting from 0. After

90

obtaining the access of Cells, the value can be retrieved by calling the “getValue()”

function.

The Interface sample codes between Java and Excel Spreadsheet in Sort, Shortest

Path, and TSP application examples are shown in the figures below.

Figure A.16 Interface between Java and Excel Spreadsheet in Sort implementation: Read data

Figure A.17 Interface between Java and Excel Spreadsheet in Sort implementation: Write

result

91

Figure A.18 Interface between Java and Excel Spreadsheet in Shortest Path implementation:

Read data

Figure A.19 Interface between Java and Excel Spreadsheet in Shortest Path implementation:

Write result

Figure A.20 Interface between Java and Excel Spreadsheet in TSP implementation: Read data

92

Figure A.21 Interface between Java and Excel Spreadsheet in TSP implementation: Write

result

c) Construct Algorithm Computing codes

Through the Interface between Java and Excel Spreadsheet, the Input data can be

read, and we can next construct the algorithm’s structure to compute and obtain the

result.

(6) Export Java project into a JAR file

Right-Click Java project  Select Java  Select Runnable JAR file  Click Next 

Specify Launch configuration  Specify Export destination  Click Finish. The

specified Java Runnable JAR file will be generated at the specified destination.

(7) Run the application in Excel Spreadsheet

In order to run the Java JAR file from Excel Spreadsheet, we will create a macro to

reference the Java JAR file and run the Macro to trigger the Java JAR file to run. We will

write the codes as shown in the Figure below.

Figure A.22 Excel Macro to trigger Java run in Sort implementation

93

Hence, the flow of steps is Create an Excel Macro-Enabled Workbook  Enter the VBE

from Developer Ribbon  Insert a Module to create a Macro  Reference the Java JAR

file inside the Macro  Run the Macro to trigger the Java JAR file to run.

A.3 HYBRID PROGRAMMING METHOD ON EXCEL

A.3.1 VBA Call C++ DLL Routine

(1) Generate an Input file in Microsoft Excel, Save as Excel Macro-Enabled Workbook,

such as “Input.xlsm” file.

(2) Build up the Interface between VBA and Excel Spreadsheet

Firstly, we will build up the Interface between VBA and Excel spreadsheet to read and

write data on Excel spreadsheet.

a) Open Visual Basic Editor.

In Excel 2003 and earlier, click Tools  Macro  Visual Basic Editor menu item

to get into the VBE.

In Excel 2007, Click Office  Excel Options  Popular tab  Select “Show

Developer tab in the Ribbon” will make the Developer ribbon visible. Then click

Developer Ribbon Visual Basic button to get into the VBE.

For a quicker access, Press Alt+F11.

b) Insert a Module

To insert a module, click the Insert  Module menu item.

c) Construct the Interface between VBA and Excel Spreadsheet

We can follow the same structure and steps in VBA Routine on Excel to construct the

Interface between VBA and Excel spreadsheet to read and write data on Excel

spreadsheet.

94

(3) Under Microsoft Visual Studio C++ 2010, Create a new DLL file

Click the menu item File  New  Project  Select Win32 Console Application 

Enter Project name  Click OK  Next  Select DLL  Finish.

(4) Build up the Interface between VBA and C++ DLL

a) Define the Interface Function in C++ DLL

The Interface Function should contain two types of arguments, Input arguments and

Output arguments, to receive the Input data and pass the Output result repectively.

This defined function will be the Interface between VBA and C++ DLL. The Input

data enters into this function from VBA, and after computation, the Output result

goes out from this function back into VBA. Usually, pointers are used to transfer

values between VBA and C++ DLL.

The format to define the Interface function in C++ DLL is shown below.

<return type> _stdcall <function name> (function Auguments)

An example is as follows:

double _stdcall sort (double *Input, int n, double *Output)

b) Construct the Interface between VBA and C++ DLL in Interface Function

As in the previous step, the data can be exchanged between VBA and C++ DLL

through the Interface function arguments. For single value data, the data can be

transferred between VBA and C++ DLL by value. For data Array and Matrix, the

data value will be transferred between VBA and C++ DLL by address. As data Array

and Matrix are consecutively stored in VBA, we can use pointers to reference the

address and access the value.

95

The Library codes of the Interface between VBA and C++ DLL in Sort, Shortest

Path, and TSP application examples are shown in the figures below. The Library

codes of the Interface between VBA and C++ DLL in VRP spreadsheet application

can be found in APPENDIX C.

Figure A.23 Interface Function between VBA and C++ DLL in Sort implementation

Figure A.24 Interface Function between VBA and C++ DLL in Shortest Path implementation

96

Figure A.25 Interface Function between VBA and C++ DLL in TSP implementation

c) Construct Algorithm Computing codes

Through the Interface, the Input data can be read, and we can next construct the

algorithm’s structure to compute and obtain the result.

d) Export the Interface Function

Add Module-Definition file (.def) into the C++ DLL project to Export the Interface

function to be used by VBA.

When creating the C++ DLL project, a “.cpp” file with the same name as the project

name will be obtained. Create a “.def” file with the same name as the “.cpp” file to

export Functions defined in the “.cpp” file.

Click Project  Add New Item  Module-Definition file (.def)  Enter name

 Add.

Inside the “.def” file, functions can be exported using the format shown below:

LIBRARY <Project Name>

EXPORTS

Function Name @1

97

…

Function Name @3

An example is shown in the figure below.

Figure A.26 Export Interface Function in C++ DLL in Sort implementation

e) Build and Generate C++ DLL file

Click the menu item Build  Build Solution (F7), and the C++ DLL file will be

generated in the Folder of the C++ DLL project.

f) Declare DLL Exported Function in VBA

After Exporting the Interface Function and Generating the C++ DLL file, we can

declare the function in VBA by specifying the name of the function and the location

of the C++ DLL file. The function return value type and argument type must be

matched to the definition in the C++ DLL file.

For data Array and Matrix, the arguments will be declared as “ByRef” to pass the

data between VBA and C++ DLL by address. For single value data, the arguments

will be declared as “ByVal” to pass the data between VBA and C++ DLL by value.

For example, the following figures show what can be written to declare the Sort

function exported in the previous steps.

Figure A.27 Declare Exported C++ DLL Function in VBA in Sort implementation

98

Figure A.28 Declare Exported C++ DLL Function in VBA in Shortest Path implementation

Figure A.29 Declare Exported C++ DLL Function in VBA in TSP implementation

(5) Call the Declared function in VBA

After declaring the function in VBA, we can use it as a self-defined function in VBA.

Hence, we can read Input data from Excel spreadsheet through the Interface between

VBA and Excel, and pass the data to C++ DLL by calling the declared C++ DLL

function, and obtain the result through the Interface between VBA and C++ DLL. Then,

the result will be written back to Excel spreadsheet through the Interface between VBA

and Excel.

When calling the declared function in VBA, if the data is an Array and arguments are

passed “ByRef”, we just need to specify the first element’s address in the function

arguments. Examples are shown in the following figures.

Figure A.30 Call Declared C++ DLL function in VBA in Sort implementation

Figure A.31 Call Declared C++ DLL function in VBA in Shortest Path implementation

Figure A.32 Call Declared C++ DLL function in VBA in TSP implementation

99

(6) Run the Application in VBA

After bridging Excel spreadsheet with VBA, bridging VBA with C++ DLL, and

constructing the algorithm computing function inside C++ DLL, we can run the

application in VBA and Excel spreadsheet, and complete building applications on Excel

spreadsheet using VBA call C++ DLL method.

100

APPENDIX B

Routines of Different Methods to Build Applications on Calc

Spreadsheet

B.1 INTERNAL PROGRAMMING METHOD ON CALC

B.1.1 OOOBasic Routine

(1) Generate an Input file in OpenOffice.org Calc, Save as ODF Spreadsheet file, such as

“Input.ods” file.

(2) Add OpenOffice.org Macro.

In OpenOffice.org 3.3.0, Click Tools  Macros  Organize Macros 

OpenOffice.org Basic (Alt + F11)  New to create a new module and get you into the

OpenOffice.org Basic Editor.

(3) Write the codes of Application

a) Construct the Interface between OOO Basic and Calc spreadsheet (Reading &

Writing)

To build up the Interface between OOO Basic and Calc spreadsheet, we need to obtain

three levels of access on Calc spreadsheet step by step.

Step 1. Obtain the Access of SpreadsheetDocument. The access of

SpreadsheetDocument can be obtained by calling the “LoadComponentFromURL()”

function and declaring an object type variable to receive it. If the

SpreadsheetDocument has already been opened and the application is built directly on

it, then we can simply declare an object and use “ThisComponent” to obtain the access

of this SpreadsheetDocument.

101

Step 2. Obtain the Access of Sheets. The access of Sheets can be obtained by calling

the “Sheets” and “getByName()” functions and received by declaring an object type

variable.

Step 3. Obtain the Access of Cells. The access of Cells can be specified by calling the

“getCellByPosition(i, j)” function and received by declaring an object type variable,

where i stands for the Column index and j stands for the Row index starting from 0.

The data value stored in Cell (i, j) can be retrieved by using the “Value” property.

The Interface sample codes between OOO Basic and Calc spreadsheet in Sort, Shortest

Path, and TSP application examples are shown in the figures below.

Figure B.1 Interface between OOO Basic and Calc spreadsheet in Sort implementation: Read

data

Figure B.2 Interface between OOO Basic and Calc spreadsheet in Sort implementation: Write

result

102

Figure B.3 Interface between OOO Basic and Calc spreadsheet in Shortest Path

implementation: Read data

Figure B.4 Interface between OOO Basic and Calc spreadsheet in Shortest Path

implementation: Write result

Figure B.5 Interface between OOO Basic and Calc spreadsheet in TSP implementation: Read

data

103

Figure B.6 Interface between OOO Basic and Calc spreadsheet in TSP implementation: Write

result

b) Construct Algorithm Computing Codes

Through the Interface between OOO Basic and Calc spreadsheet, the Input data can be

read, and we can next construct the algorithm’s structure to compute and obtain the

result.

(4) Run the application in Calc spreadsheet

After finishing all the above steps, we can run the application in Calc spreadsheet to

complete the whole process of building applications on Calc spreadsheet using the OOO

Basic method.

B.2 EXTERNAL PROGRAMMING METHOD ON CALC

B.2.1 Java Routine

(1) Generate an Input file in OpenOffice.org Calc, Save as ODF spreadsheet file, such as

“Input.ods” file.

(2) Under Eclipse IDE for Java Developers, Create a new Java project

Click the menu item File  New  Java Project  Enter Project name  Next 

Finish.

(3) Add Open-source Library into the Java project

104

In Java Routine on Calc spreadsheet, the Interface between Java and Calc spreadsheet,

such as reading and writing on Calc, is accomplished by using an open source library

called ODFDOM and SimpleJavaAPI downloaded from the Internet.

Click the menu item Project  Properties  Java Build Path  Select the label

Libraries  Click Add External JARs  Select .jar file listed below  OK.

The open-source library files included are listed below:

 odfdom-java-0.8.7.jar

 simple-odf-0.6.jar

 xerces-2_11_0\resolver.jar

 xerces-2_11_0\serializer.jar

 xerces-2_11_0\xercesImpl.jar

 xerces-2_11_0\xercesSamples.jar

 xerces-2_11_0\xml-apis.jar

(4) Create a new Class (.java) file

The Class file created will be the place to develop smart applications, and the number of

Class files needed will depend on the application’s requirement.

Right Click the Java Project  New  Class  Enter Class name  Select “public

static void main(String[] args)” (Optional)  Finish.

(5) Write the Codes of Application

a) Import Open-Source Library Classes

We will use the Classes and Functions defined in SimpleJavaAPI Library to build up

the Interface between Java and Calc spreadsheet. Hence, we have to import the

SimpleJavaAPI Library Classes first. The other import Libraries needed will depend

on the application’s requirement. This is shown in the Figure below.

105

Figure B.7 Java on Calc spreadsheet: Import Classes

b) Construct the Interface between Java and Calc spreadsheet (Reading &

Writing)

To build up the Interface with reading and writing on Calc spreadsheet, we need to

obtain three levels of access on Calc step by step.

Step 1. Access the SpreadsheetDocument. The access of SpreadsheetDocument can

be obtained by calling the “loadDocument()” function and passing to an object with

“SpreadsheetDocument” Class type.

Step 2. Access the Sheets. The access of Sheets can be obtained by using the

SpreadsheetDocument object to call the “getSheetByIndex()” function to retrieve

Sheet by index and passing to an object with “Table” Class type.

Step 3. Access the Cells. The access of Cells can be obtained by using the Table

object “sheet” defined above to call the “getCellByPosition(i, j)” function, where i

stands for the Column index and j stands for the Row index starting from 0, and then

passing to an object defined with “Cell” Class type. The data value stored in Cells(i,

j) can be retrieved by calling functions such as “getDoubleValue()”,

“getIntegerValue()”, and “getStringValue()”, etc.

The Library codes of the Interface between Java and Calc spreadsheet in Sort,

Shortest Path, and TSP application examples are shown in the figures below.

106

Figure B.8 Interface between Java and Calc spreadsheet in Sort implementation: Read data

Figure B.9 Interface between Java and Calc spreadsheet in Sort implementation: Write result

Figure B.10 Interface between Java and Calc spreadsheet in Shortest Path implementation:

Read data

107

Figure B.11 Interface between Java and Calc spreadsheet in Shortest Path implementation:

Write result

Figure B.12 Interface between Java and Calc spreadsheet in TSP implementation: Read data

Figure B.13 Interface between Java and Calc spreadsheet in TSP implementation: Write result

108

c) Construct Algorithm Computing codes

Through the Interface between Java and Calc spreadsheet, the Input data can be read,

and we can next construct the algorithm’s structure to compute and obtain the result.

(6) Export Java project into a JAR file

Right Click Java project  Select Java  Select Runnable JAR file  Click Next 

Specify Launch configuration  Specify Export destination  Click Finish. The

specified Java Run-able JAR file will be generated at the specified destination.

(7) Run the application in Calc spreadsheet

In order to run the Java JAR file in Calc spreadsheet, we will create a macro in Calc to

reference the Java JAR file and run the Macro to trigger the Java JAR file to run.

Firstly, we will create a batch file (.bat) to write the command line which will trigger the

Java Runnable JAR file to run, such as

START java.exe -jar “D:\Calc\Java\Calc_Java_SORT\OpenOffice_sort.jar”

Then, we will write the Macro in Calc spreadsheet to run the batch file (.bat) to trigger

the Java JAR file to run as shown in the Figure below.

Figure B.14 Calc Macro to trigger Java JAR run in Sort implementation

Hence, the flow of steps is Create a batch file (.bat) to trigger Java JAR file to run 

Add OpenOffice.org Macro  Reference the batch file (.bat) to run  Run the Macro to

trigger the Java JAR file to run.

After finishing all the above steps, we can complete the process of building applications

on Calc spreadsheet using the Java method.

109

APPENDIX C

Library Codes of Interface between VBA and C++ DLL in VRP

Spreadsheet Application

C.1 The Interface function VRPprocess with Input and Output arguments to transfer

data between VBA and C++ DLL

double _stdcall VRPprocess(int n_v, int n_caplimit, int n_customer, int * pPosX, int* pPosY, \

int* pDemand, int* pReadyTime, int* pLateTime, int* pServiceTime, \

int* n_VehiclesUsed, int* n_CustomerServed, int* n_CustomerNotServed, \

double* TotalDistance, int* TotalLoad, int* nCustomerInRoute, \

int* nCustomerNumber, int* nRouteArrivalTime)

{

 // Creat Class object;

 CVRPTW VRPTW;

 // Receive data from the argument variables

 VRPTW.TransferInput(n_v, n_caplimit, n_customer, pPosX, pPosY, \

pDemand, pReadyTime, pLateTime, pServiceTime);

 // Optimize and obtain the solution

 VRPTW.Optimise();

 // Transfer result to the argument variables

 VRPTW.ReportOutput(n_VehiclesUsed, n_CustomerServed, n_CustomerNotServed, \

TotalDistance, TotalLoad, \

nCustomerInRoute, nCustomerNumber, nRouteArrivalTime);

 // Free the memory and space

 VRPTW.OnFree();

 return 0;

}

C.2 Sub-function TransferInput() with Input arguments in VRPprocess to transfer Input

data from C++ DLL to VBA

void CVRPTW::TransferInput(int n_v, int n_caplimit, int n_customer, int * pPosX,

 int* pPosY, int* pDemand, int* pReadyTime, int* pLateTime, \

int* pServiceTime)

{

 // Create instance for route optimisation

 pVehicleRoute = new CVehicleRoute(&TestCase);

 pRouteOptimisation = new CRouteOptimisation(pVehicleRoute);

 // Transfer Test case data to C++ DLL

 TestCase.LoadData (n_v, n_caplimit, n_customer, pPosX, pPosY, pDemand, \

pReadyTime, pLateTime, pServiceTime)

// Initialise route

 pRouteOptimisation->Initialisation();

}

110

C.3 Sub-function LoadData() in TransferInput() to transfer Input data

bool CTestCase::LoadData(int n_v, int n_caplimit, int n_customer, int * pPosX, int* pPosY,

 int* pDemand, int* pReadyTime, int* pLateTime,

 int* pServiceTime)

{

 // Clear pointer

 if(pCustomerPosX)

 delete [] pCustomerPosX;

 if(pCustomerPosY)

 delete [] pCustomerPosY;

 if(pCustomerDemand)

 delete [] pCustomerDemand;

 if(pCustomerReadyTime)

 delete [] pCustomerReadyTime;

 if(pCustomerLateTime)

 delete [] pCustomerLateTime;

 if(pCustomerServiceTime)

 delete [] pCustomerServiceTime;

 if(pCustomerValue)

 delete [] pCustomerValue;

 if(pDistanceMatrix)

 {

 for(int i=0;i<=nNumberOfCustomers;i++)

 delete [] pDistanceMatrix[i];

 delete [] pDistanceMatrix;

 }

//Pass data to C++ DLL from VBA through function arguments by address or by

value

 nNumberOfVehicles=n_v;

 nCapacityLimit=n_caplimit;

 nNumberOfCustomers=n_customer;

 pCustomerPosX=new int[nNumberOfCustomers+1];

 pCustomerPosY=new int[nNumberOfCustomers+1];

 pCustomerDemand=new int[nNumberOfCustomers+1];

 pCustomerReadyTime=new int[nNumberOfCustomers+1];

 pCustomerLateTime=new int[nNumberOfCustomers+1];

 pCustomerServiceTime=new int[nNumberOfCustomers+1];

 pCustomerValue=new int[nNumberOfCustomers+1];

 for(int i=0;i<=nNumberOfCustomers;i++)

 {

 pCustomerPosX[i]=pPosX[i];

 pCustomerPosX[i]*=DISTANCETIMESCALE;

 pCustomerPosY[i]=pPosY[i];

 pCustomerPosY[i]*=DISTANCETIMESCALE;

 pCustomerDemand[i]=pDemand[i];

 pCustomerReadyTime[i]=pReadyTime[i];

 pCustomerReadyTime[i]*=DISTANCETIMESCALE;

 pCustomerLateTime[i]=pLateTime[i];

 pCustomerLateTime[i]*=DISTANCETIMESCALE;

 pCustomerServiceTime[i]=pServiceTime[i];

 pCustomerServiceTime[i]*=DISTANCETIMESCALE;

111

 pCustomerValue[i] = pCustomerDemand[i];

 }

 // Allocate memory for Distance Matrix

 // And calculate distance

 pDistanceMatrix = new unsigned int*[nNumberOfCustomers+1];

 double x,y;

 for(int i=0;i<=nNumberOfCustomers;i++)

 {

 pDistanceMatrix[i] = new unsigned int[nNumberOfCustomers+1];

 for(int j=0;j<=nNumberOfCustomers;j++)

 {

 x = pCustomerPosX[i] - pCustomerPosX[j];

 y = pCustomerPosY[i] - pCustomerPosY[j];

 pDistanceMatrix[i][j] = (unsigned int)(sqrt(x*x + y*y)+0.5);

 }

 }

 return true;

}

C.4 Sub-function ReportOutput() with Output arguments in VRPprocess() to transfer

Output result from C++ DLL back to VBA

void CVRPTW::ReportOutput(int* n_VehiclesUsed,int* n_CustomerServed, \

int* n_CustomerNotServed, double* TotalDistance, int* TotalLoad, \

int* nCustomerInRoute, int* nCustomerNumber, int* nRouteArrivalTime)

{

// Use pointers to report results of static values to VBA by address through function

arguments

 *n_VehiclesUsed= pVehicleRoute->GetNumVehicleUsed();

 *n_CustomerServed=pVehicleRoute->GetCustomerInserted();

 *n_CustomerNotServed=pVehicleRoute->GetHoldCount();

 *TotalDistance=pVehicleRoute->GetTotalDistance();

 *TotalLoad=pVehicleRoute->GetTotalCustomerValue();

// RouteResult function handles the dynamic length of route and arrival time result

array

 pRouteOptimisation->RouteResult(nCustomerInRoute, nCustomerNumber, \

nRouteArrivalTime);

}

C.5 Sub-function RouteResult() in ReportOutput() to Sync route result with dynamic

length information between C++ DLL and VBA

void CRouteOptimisation::RouteResult(int* nCustomerInRoute, int* nCustomerNumber, \

int* nRouteArrivalTime)

{

 // Use pointers to report routes to VBA by address through function arguments

 // Handle the dynamic length of route and arrival time result array

112

// Define a large matrix with same size in VBA capable to handle the maximum

dynamic length

int nDimension = pVehicleRoute->nNumberOfCustomers;

 int* CustomerInRoute = new int [nDimension];

 int ** CustomerID = new int* [nDimension];

 int ** RouteArrivalTime = new int* [nDimension];

 for (int k=0; k < nDimension; k++)

 {

 CustomerID[k]=new int [nDimension];

 RouteArrivalTime[k]=new int [nDimension];

 }

// Push the dynamic length route and arrival time result array into the large matrix

 for (int j=0;j<pVehicleRoute->nVehicleUsed;j++)

 {

 CustomerInRoute[j] = pVehicleRoute->GetRouteTotalCustomers(j);

 pVehicleRoute->SetRouteDepot(j);

 for(int i=0;i<CustomerInRoute[j];i++)

 {

 pVehicleRoute->GoNextCustomer(j);

 CustomerID[j][i] = pVehicleRoute->GetRouteCustomer(j);

 RouteArrivalTime[j][i]=pVehicleRoute->GetRouteArrivalTime(j);

 }

 }

 // Sync the large matrix in both VBA and C++ DLL to pass the route result to VBA

 for (int k=0; k<nDimension; k++)

 nCustomerInRoute[k]=CustomerInRoute[k];

 for (int j=0; j<nDimension; j++)

 for (int k=0; k<nDimension; k++)

 {

 nCustomerNumber[nDimension*j+k]=CustomerID[k][j];

 nRouteArrivalTime[nDimension*j+k]=RouteArrivalTime[k][j];

 }

}

113

APPENDIX D

Performance Comparison between Excel VRPTW Application and

C++ Standalone VRPTW Application in 56 Solomon Test Cases

Total time* Reading

Algorithm

computing
Writing

Solomon

Test Cases
Excel C++ Excel C++ Excel C++ Excel C++

C101 3.143 2.964 0.009 0.002 2.563 2.955 0.571 0.007

C102 4.536 4.285 0.010 0.002 3.991 4.275 0.535 0.008

C103 6.605 5.191 0.010 0.002 5.957 5.181 0.638 0.008

C104 8.799 8.565 0.014 0.002 8.232 8.555 0.553 0.008

C105 4.293 3.750 0.009 0.002 3.748 3.740 0.536 0.008

C106 4.788 3.939 0.010 0.002 4.173 3.929 0.605 0.008

C107 4.992 4.252 0.008 0.002 4.384 4.242 0.600 0.008

C108 5.945 6.109 0.009 0.002 5.242 6.099 0.694 0.008

C109 8.068 7.097 0.009 0.002 7.291 7.087 0.768 0.008

C201 2.167 1.368 0.009 0.002 1.420 1.358 0.738 0.008

C202 2.869 2.602 0.012 0.002 2.075 2.593 0.782 0.007

C203 4.440 3.383 0.010 0.004 3.614 3.371 0.816 0.008

C204 6.127 4.125 0.012 0.003 5.294 4.114 0.821 0.008

C205 2.496 1.586 0.018 0.002 1.614 1.576 0.864 0.008

C206 2.871 2.005 0.011 0.002 1.983 1.996 0.877 0.007

C207 3.140 2.281 0.011 0.002 2.176 2.272 0.953 0.007

C208 3.471 2.287 0.013 0.003 2.518 2.276 0.940 0.008

R101 7.861 7.683 0.017 0.001 7.410 7.674 0.434 0.008

R102 10.240 10.759 0.010 0.002 9.768 10.750 0.462 0.007

R103 8.804 9.704 0.008 0.002 8.308 9.694 0.488 0.008

R104 9.436 8.448 0.008 0.002 8.871 8.438 0.557 0.008

R105 7.158 6.039 0.012 0.002 6.553 6.029 0.593 0.008

R106 8.228 7.807 0.009 0.002 7.597 7.797 0.622 0.008

R107 6.257 6.164 0.009 0.002 5.593 6.154 0.655 0.008

R108 8.182 5.618 0.012 0.002 7.499 5.608 0.671 0.008

R109 7.545 7.529 0.015 0.001 6.835 7.520 0.695 0.008

R110 7.538 6.211 0.018 0.003 6.800 6.200 0.720 0.008

R111 8.449 9.971 0.010 0.005 7.645 9.958 0.794 0.008

R112 8.729 7.935 0.010 0.003 7.926 7.924 0.793 0.008

R201 3.037 2.899 0.008 0.002 2.617 2.889 0.412 0.008

R202 4.544 4.276 0.008 0.002 4.092 4.266 0.444 0.008

R203 4.817 3.591 0.008 0.002 4.333 3.582 0.476 0.007

R204 7.538 6.727 0.008 0.002 7.010 6.718 0.520 0.007

R205 3.833 2.303 0.008 0.003 3.288 2.292 0.537 0.008

R206 4.490 4.084 0.012 0.002 3.911 4.074 0.567 0.008

R207 6.513 5.471 0.009 0.002 5.898 5.462 0.606 0.007

114

R208 7.299 3.886 0.009 0.002 6.623 3.876 0.667 0.008

R209 6.476 3.597 0.009 0.003 5.739 3.587 0.728 0.007

R210 4.880 3.578 0.010 0.002 4.078 3.569 0.792 0.007

R211 5.092 4.674 0.010 0.002 4.310 4.664 0.772 0.008

RC101 6.540 7.279 0.010 0.002 5.715 7.270 0.815 0.007

RC102 8.738 6.211 0.011 0.002 7.840 6.201 0.887 0.008

RC103 7.402 8.743 0.010 0.002 6.530 8.734 0.862 0.007

RC104 9.993 6.449 0.011 0.002 9.050 6.439 0.932 0.008

RC105 7.818 8.055 0.010 0.002 6.881 8.046 0.927 0.007

RC106 7.267 7.219 0.011 0.003 6.301 7.208 0.955 0.008

RC107 7.729 7.465 0.012 0.003 6.587 7.454 1.130 0.008

RC108 7.466 7.064 0.010 0.003 6.373 7.053 1.083 0.008

RC201 3.876 2.676 0.010 0.002 2.711 2.667 1.155 0.007

RC202 4.352 4.048 0.011 0.002 3.213 4.039 1.128 0.007

RC203 8.281 5.632 0.010 0.002 7.068 5.623 1.203 0.007

RC204 7.605 4.820 0.010 0.003 6.437 4.809 1.158 0.008

RC205 5.283 3.388 0.009 0.002 4.073 3.379 1.201 0.007

RC206 3.532 3.588 0.009 0.002 2.308 3.579 1.215 0.007

RC207 6.037 5.779 0.009 0.003 4.727 5.769 1.302 0.007

RC208 5.870 4.313 0.009 0.002 4.596 4.304 1.266 0.007

* All the running times are measured in Seconds.

