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CHAPTER I: Introduction

Effect of CO2 Laser and 38% Diammine Silver Fluoride Treatment on Enamel and Root 

Demineralization

ABSTRACT:

Objectives:  CO2  laser  and  Diammine-Silver-Fluoride  have  separately  been  shown to  inhibit 

demineralization.  However,  the  combined  effect  of  the  two  modalities  in  inhibiting 

demineralization of enamel and root has not been investigated yet. The purpose of this study is to 

evaluate  the  effect  of  CO2 laser  combined  with  38%  DSF  treatment  on  enamel  and  root 

demineralization. 

Methods:  Eight windows (4 in enamel and 4 in root) approximately 3mm x 1mm size were 

created on fifteen sound extracted human premolars and were randomly assigned to Control (No 

Treatment),  CO2  laser,  DSF,  DSF+CO2  laser  treatment  groups.  38% DSF was  applied  for  2 

minutes and CO2 laser with a wavelength of 10.6µm, 50HZ repetition rate,  200µs pulse was 

used. A 3-day pH cycling scheme for artificial lesion formation and polarized light microscopy 

for measuring the lesion depth was performed. Factorial ANOVA was employed to test the main 

effects and interaction.

Results: The mean lesion depth (in μm) for each group were 303.75±12.30 (Control), 224.08 ± 

8.61(DSF),  175.22±4.10  (CO2  laser),  152.74±3.90  (DSF+CO2  laser)  in  enamel  and 1261.90± 

11.68 (Control), 814.85± 8.89(DSF), 935.45±8.42 (CO2 laser), 614.37±4.84 (DSF+CO2 laser) in 

root. CO2 Laser and DSF had a statistically significant effect on lesion depth in enamel and root 

(all p<0.001). The interaction between CO2  laser and DSF was significant in enamel (p<0.005) 

and root (p<0.001). Individual  tooth structure had no statistically significant  effect  on lesion 

depth formation in both enamel and root.  

Conclusion: Combining with CO2 laser may double the cariostatic effect of DSF.
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CHAPTER II: Literature Review

2.1. Dental Caries 

2.1.1. Epidemiology of untreated dental caries

2.1.1.1. Global burden of oral diseases

Years lived with disability (YLD) is the quantification of the disease burden represented by the 

severity and the duration of the disability of a population (Baelum et al., 2007). Fig.1 shows that 

the  total  disease  burden  is  highest  in  Sub-  Saharan  Africa  followed  by  India  where 

communicable  diseases  play a  major  part.  On the contrary,  in  Established  Market  Economy 

countries,  non-communicable  diseases play a major role.  It  also shows that the oral  diseases 

contribute very little to the total YLD/ million populations (Baelum et al., 2007). 

Fig 1. The distribution of the burden of disease measured as years lived with disability (YLD) 

per million people for different regions of the world (Adopted from Baelum et al., 2007).  
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The  Middle  Eastern  countries  have  the  highest  oral  disease  contribution  followed  by  Latin 

America  and  Caribbean,  and  other  Asian  countries.  The  lowest  contributions  were  in  Sub- 

Saharan Africa & in China  (Baelum et al.,  2007). Caries, periodontal  disease and edentulism 

have contributed1.6% towards the total YLD worldwide. Table 1 shows the relative YLD for 

oral diseases compared to that of other common diseases with comparable YLD values (Baelum 

et al., 2007).

Table 1. Percentage distribution of years lived with disability (YLDs) for oral diseases compared 

with some other common diseases in 1990 (Murray and Lopez, 1996). 

As reported  by the  WHO  Oral  Health,  an  action  plan  for  promotion  and integrated  disease 

prevention has to be formulated because oral diseases such as dental caries, periodontal disease, 

tooth  loss,  oral  mucosal  lesions,  oropharyngeal  cancers,  oral  manifestations  of  HIV/AIDS, 

necrotizing ulcerative stomatitis and orodental trauma can be potentially serious health problems 

(Petersen, 2008). Its impact on life includes pain and suffering, impairment of regular function 

and  decreased  quality  of  life  and  is  markedly  significant  at  the  individual  level  and  in 

communities (Petersen, 2008). The greatest burden of oral diseases lies with underprivileged and 

poor populations globally (Petersen, 2008). In the Sixtieth World Health Assembly held in 2007, 

the WHO, in its provisional agenda, had ranked oral disease as the fourth most expensive disease 

to treat. Most of the high-income countries deal with oral diseases by establishing advanced oral-

health services, which are based mainly on the dental health care provided by private dentists. 

Public oral health systems are also organised in some high-income countries. In most of the low 
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and middle income countries oral health care facilities primarily cater to emergency oral care and 

pain relief (Petersen, 2008).

2.1.1.2. Caries and oral disease burden

As seen in Table 2, dental caries seems to contribute about 10 times more to the YLD measure 

than the periodontal diseases (Murray and Lopez, 1996).  This is mainly due to the fact that the 

pain is a frequent sequel to caries. Edentulism is an equally important cause for oral disease 

burden,  globally  (Murray  and Lopez,  1996).  It  is  evident  that  edentulism is  an  unfavorable 

sequelae  to  caries  and  they  are  interrelated.  Reports  have  shown  that  the  prevalence  of 

edentulism decreased as the anti-caries regimens increased (Beltran-Aguilar et al., 2005).

Table  2.The  relative  contribution  of  caries,  periodontal  diseases  and  edentulism  to  the  oral 

disease burden for different regions of the world (Murray and Lopez, 1996).  

2.1.1.3. Dental caries - the major oral disease burden

Owing to its undesirable sequelae such as oral pain, suffering, disability and tooth loss, dental 

caries remains as the major oral disease burden (Baelum et al., 2007). In low-income countries 

dental  caries  remains  untreated  in  both  primary  (percentage  of  untreated  caries  >94%)  and 

permanent dentitions (percentage of untreated caries >87%) of the children (Yee and Sheiham, 

2002). After assessing the WHO Global Oral Data Bank data on the prevalence of caries in many 

countries, the mean 12-year old DMFT was compiled and calculated for low, medium and high 

income nations. The mean 12-year old DMFT for the low, medium and high income nations 

were 1.9, 3.3 and 2.1 respectively (Yee and Sheiham, 2002). For low income African and Asian 

nations  the  percentage  of  untreated  dental  caries  was  approximately  95% in  the  deciduous 
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dentition and 89% in the permanent dentition (Yee and Sheiham, 2002). The National Institute of 

Health (NIH)  has  reported  that  dental  caries  is  the  single  most  common  chronic  childhood 

disease which was 5 times more common than asthma and 7 times more common than hay fever 

(National Institute of Health, 2000). Recent studies have reported that there is a marked increase 

in dental caries in both children and adults (Bagramian et al., 2009). This increase appears to be 

remarkable in children, new immigrants and lower socio economic groups  (Bagramian et al., 

2009). Table 3 depicts the prevalence of dental caries in various countries across different age 

groups. Although the sample sizes were variable  in the different  countries,  this  table clearly 

indicates that caries prevalence is a potential threat to good oral health across the globe. Also, 

from Table 3, it is interesting to note that caries seems to afflict developed countries like USA 

and UK as much as it affects the developing nations. 

Table  3.  Prevalence  of  dental  caries  in  various  countries  all  over  the  world  (Adopted  from 

Bagramian et al., 2009).
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Table 4 summarizes the recent studies that have raised concerns with the caries levels that have 

been identified in deciduous dentitions in various parts of the world. 

Table 4: Summary of studies that shows the caries status in different parts of the world

Study Age group&
Sample size

Aim of the study Findings

Dye  et  al., 

2007 

10,000 and 
15,000 children,
2-11 years of age

Presented an oral health 
disease prevalence data 
by United States 
National Health and 
Examination Survey 
(NHANES) from 1988-
1994 and 1999-2004

A large percentage of untreated 
tooth decay was found across all 
age groups and socio-demographic 
characteristics.  No reductions were 
observed in the prevalence and 
severity of dental caries in primary 
teeth during the 10-year period of 
each survey. 

Du et al., 
2007

2,014 children,
3-5 years of age

To determine the current 
prevalence and severity 
of caries in primary 
dentition in a preschool 
population in two 
provinces in China

The mean dmft and dmfs values 
were 2.57 and 4.25 respectively. 
The caries prevalence and severity 
increased with age. The data 
showed that 55% of young children 
had dental caries and most decayed 
teeth were untreated.

Zeng et al., 
2005

957 children,
3-5 years of age

To describe the caries 
status and oral health 
related behaviors of 3-5 
year-old children two 
ethnic groups in 
Guangxi Province, 
China

Overall, 60% of children had caries 
with a mean dmft value of 3.01. 
Rampant caries ranged from 9% to 
13% for ethnic groups. For both 
groups decayed teeth dominated the 
caries index. 

Wong et 
al., 2001

1587 children 
aged 5-6 years, 
1576 children 
aged 12 years of 
age

To describe the oral 
health status and 
treatment needs of the 5- 
to 6-year-old and 12-
year-old children in 
Southern China

The overall weighted prevalence of 
dental caries (DMFT) was 84% for 
the younger children while for the 
older group the DMFT caries score 
was 42%. Rural children in both 
groups had higher caries attack 
rates. Decayed teeth accounted for 
most of the caries experience.

Tsai et al., 
2006

981 children less 
than 6 years of 
age

To investigate the 
prevalence, patterns, and 
etiological factors for 
caries in Taiwan 
children.

By age 6, 89.38% of children had 
caries. The prevalence of dental 
caries for all children combined 
was 52.9%.

Ferreira et 
al., 2007

1487 children 
from 0-5 years

To investigate the 
prevalence and severity 

Forty percent of the children had 
caries and the caries increment 
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of dental caries and their 
association with 
demographic and socio-
economic variables in 
Brazilian preschoolers

increased with age. Caries was 
significantly higher in children with 
mothers of low education and low 
family income.

Scavuzzi et 
al., 2007

186 children 
from 12-30 
months of age.

To investigate caries in 
a sample of young 
children in Brazil.

A low prevalence of dental caries 
(6.4%) was recorded at the initial 
examination, but caries increased 
threefold (20%) with new disease 
being observed during the study 
period. With children who had 
caries at baseline the prevalence 
doubled at the 1-year interval

Delgado-
Angulo  et 
al.,2006

sample of 121 
children aged 7 
to 9 years

To assess the individual 
and grouped influence 
of host-related factors 
on dental caries 
experience in permanent 
dentition of 7-9 year-old 
children in Lima, Peru.

Dental caries in the primary 
dentition is a risk indicator for 
caries in the permanent dentition. 
Clinical examination results 
showed a prevalence of dental 
caries in the permanent dentition to 
be 78.5%.

Vallejos-
Sanchez et 
al.,2006

452  children,
6-9  year olds

To evaluate the 
likelihood of caries 
increment in school 
children based on their 
prior caries experience 
in Campeche, Mexico.

Prevalence of caries in permanent 
teeth increased from year 1999 to 
2000 by over 20%. The percentage 
of children with new dental caries 
increased from 14.2% to 34.7%.

Gao et al., 
2009

1,782 children 
aged 3-6 years

To evaluate caries 
prevalence and severity 
and determine  the 
influence of various 
demographic and socio-
economical factors on 
caries patterns among 
different ethnic groups 
of preschoolers in 
Singapore.

The percentage of affected caries 
increased with age, being 25.5% in 
3-4 yrs, 36.9% in 4-5 yrs and 48.9% 
in 5-6 yrs old. The mean (SD) deft 
and defs were 1.54 (2.75) and 3.30 
(7.49), respectively. About 90% of 
the affected teeth were decayed 
teeth. Rampant caries was found in 
16.5% of children and about 61% 
of affected surfaces were smooth 
surfaces

2.1.1.4. Effect of caries on the deciduous dentition   

United States Department  of Health and Human Services (USDHSS) revealed that  poor oral 

health  in  children  is  a  major  factor  that  affects  their  nutrition,  growth  and  development. 

Untreated childhood oral diseases leads to pain, development of dentofacial anomalies and other 

serious health problems, such as severe tooth aches, dental  abscess, destruction of bone, and 
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spread of infection via blood stream. The social impact of oral diseases in children is high, as 

more than 51 million school hours are lost every year due to dental illness. Poor children have 

almost 12 times more restricted activity days because of the dental illness than children from 

higher-income families (National Institute of Health, 2000). 

Early childhood caries (ECC) is the most common disease of childhood affecting children, their 

families, the community and the health care system impacting the child’s development, school 

performance and behavior  (Casamassimo et al., 2009). Children affected by dental caries have 

compromised quality of life as their daily routine such as eating and sleeping, weight gain and 

their normal growth is disrupted. Additionally, they have a lower oral health-related quality of 

life than children without caries (Elice and Fields, 1990; Filstrup et al., 2003; Low et al., 1999). 

Children with nursing caries who had received treatment for at least one pulpally involved tooth 

had lower weight than control children (Acs et al., 1992).

A Turkish study involving children with ECC stated that children with ECC were considerably 

lighter and shorter than controls without caries. The mean weight of children with caries was 

between the 25th percentile and 50th percentile compared to controls who were between the 50th 

percentile and 75th percentiles. Seven percent of cases and 0.7% of controls weighed less than 

the  20th  percentile  (Ayhan  et  al.,  1996).  After  rehabilitation  the  children  with  ECC  had 

significantly increased growth velocities  (Acs et al., 1999). Moreover, there was a remarkable 

improvement  in children’s  eating preferences,  quality  of the food taken,  social  behavior  and 

sleeping habits reported by their parents  (Acs et al.,  2001; Filstrup et al.,  2003; Thomas and 

Primosch,  2002). Thus the treatment need for painful carious deciduous teeth cannot be over 

emphasized. On a different note, painless carious primary teeth that do not have infection can be 

approached with non-operative, non-invasive alternatives such as topical fluoride applications 

and oral hygiene maintenance (Baelum et al., 2007). In this way, invasive dental treatment which 

may cause dental fear and anxiety in young children can be avoided (Milsom et al., 2003). 
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2.1.2. Role of Fluorides in Caries Prevention

2.1.2.1. Mechanisms of action of fluoride

The mechanism of action of fluoride treatment in caries prevention has been broadly investigated 

over the years and there is convincing evidence that it acts by inhibiting demineralization and 

promoting remineralization. Additionally it also inhibits the metabolism and acid production of 

cariogenic bacteria (Clarkson, 1991; ten Cate, 1999). The results of more recent epidemiological 

and laboratory studies can be summarized by stating that post eruptive (topical) application of 

fluoride plays a dominant role in caries prevention  (Hellwig and Lennon, 2004). This topical 

fluoride effect is supported by in vitro and in situ investigations demonstrating that the mode of 

action of fluoride can be attributed mainly to its influence on de- and remineralization kinetics of 

dental hard tissues (Hellwig and Lennon, 2004). 

2.1.2.1.1. Inhibiting demineralization 

Fluoride reduces the solubility of crystals and improves its crystallinity when taken up in the 

apatite lattice in the form of fluorhydroxyapatite  (DePaola, 1991). There have been efforts to 

increase the fluoride concentration in the outer enamel  thereby increasing the lifetime caries 

resistance of teeth (ten Cate, 1999). This theory forms the basis to the application of fluoride for 

caries prevention purposes  (ten Cate and van Loveren, 1999). Alternatively a small amount of 

aqueous fluoride in saliva and dental plaque was demonstrated to reduce the rate of mineral loss 

dramatically (ten Cate, 1999). Since the demineralization was found to be a function of both pH 

and fluoride concentration the reduction in demineralization could be achieved by influencing 

either  one  or  both  (ten  Cate  and  Duijsters,  1983).  Since  the  dissolved  fluoride  in  the  oral 

environment  could  be  rinsed  away,  this  mechanism implies  the  requirement  of  a  continued 

supply of fluoride so that caries prevention can be maintained at anytime with reasonable results 

(ten Cate and van Loveren, 1999; Wefel, 1990). 

The  previously  mentioned  roles  of  incorporated  and  aqueous  fluoride  in  inhibiting 

demineralization can be illustrated by the following reaction: 

Ca10 (PO4)6(OH)F <—> 10Ca2+ + 6PO4 3-+OH-+F-
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It  is obvious that if the solid material  has a low solubility due to incorporated fluoride,  less 

calcium, phosphate, hydroxyl ions and fluoride are required to prevent dissolution. It is however, 

equally clear that high concentration of any of the ions, including fluoride, in the aqueous phase 

inhibits  dissolution  as  well  (Margolis  and  Moreno,  1992;  Wefel,  1994).  Considering  these 

reactions above, it can be concluded that the incorporated and aqueous fluoride work in concert 

in preventing demineralization (Margolis and Moreno, 1992; Wefel, 1994). Moreover, during the 

demineralization episodes, the incorporated fluoride could be released into plaque and saliva, 

while  aqueous  fluoride  could  be  incorporated  into  crystalline  lattice  and  replace  carbonate, 

resulting in a mineral with lower solubility (ten Cate, 1999). 

2.1.2.1.2. Promoting remineralization

The effect of fluoride on remineralization has received considerable attention during the past 

decades  (ten Cate, 1999). A small amount of fluoride in saliva and plaque has been found to 

strongly promote remineralization of dentine and enamel, ensuing in a shift from a net negative 

balance  results  in  caries  to  a  positive  balance  where  the  tissue  can  be  further  mineralized, 

remineralized or hypermineralized  (Featherstone,  1994).  The hyper-mineralization of dentine, 

evidenced by multiple radio dense bands within the lesion after use of topical fluoride agents was 

found in vitro, implying that the mineral  content and acid resistance exceeded that of sound 

dentine  (Inaba et al., 1996; ten Cate and van Duinen, 1995). In situ studies have shown that 

fluoride treatments could shift the balance in a demineralizing environment to a condition of 

remineralization not only for enamel but also for dentine  (Stephen et al., 1992; Sullivan et al., 

1997; Wefel and Jensen, 1992). 

 Both  the  aqueous  fluoride  and  the  incorporated  fluoride  account  for  the  enhanced 

remineralization.  The  incorporation  of  fluoride  into  crystal  lattice  with  a  resultant 

fluorhydroxyapatite has a lower solubility than hydroxyapatite. Furthermore, it leads to a larger 

degree of super saturation at a given calcium and phosphate level in saliva and plaque fluid. This 

thermodynamic  driving  force  for  the  precipitation  determines  the  rate  at  which  minerals 

precipitate (Wefel, 1994). 
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2.1.2.1.3. Interference with bacterial metabolism

Fluoride has been found to be able to disturb the colonization, growth and acid production of 

bacteria  (ten  Cate,  1999;  Wefel,  1990).  The  formation  of  extra  cellular  polysaccharide,  a 

substance playing a role in bacterial adhesion, was found to be retarded markedly by fluoride in 

concentrations higher than 40 ppm (Broukal and Zajicek, 1974). The reduction in plaque growth 

when using topical fluoride treatments has been shown (Birkeland, 1972; Luoma et al., 1973). 

Several investigators have tried to relate the cariostatic effect of fluoride to changes in microbial 

composition of plaque on tooth surfaces as found by some studies (Loesche et al., 1975; Woods, 

1971). However there was no absolute consensus as to whether fluoride may significantly change 

the microbial composition (ten Cate, 1999; Wefel, 1990).  

The inhibition of carbohydrate metabolism and acid production by fluoride in pure cultures of 

oral Streptococci  and  Lactobacilli  was  demonstrated  as  early  as  1940  (Van Kesteren  et  al., 

1942). Since then, many studies have been published on direct and indirect effects of fluoride on 

the  metabolism of  oral  bacteria  (Bowden,  1990;  Hamilton,  1990;  Marquis,  1995).  However, 

there  is  still  debate  whether  the  antimicrobial  effects  of  fluoride  do  contribute  to  caries 

prevention.  The  most  important  argument  is  that,  the  fluoride  concentrations  needed  for 

antimicrobial effects significantly surpass the concentrations needed to reduce the solubility of 

apatite (Tatevossian, 1990). 

2.1.2.2. Appropriate use of fluoride interventions in caries control

Various forms of fluoride application has led to the decline of caries in many industrialized 

countries  worldwide  even  though  refined  carbohydrate  consumption  has  reached  at  a 

comparatively higher level over the past several decades (Brown, 1989; Stephen, 1997; ten Cate, 

1999). Most authorities including WHO, have attributed the modern advances in dental caries 

prevention  to  the  widespread  use  of  fluorides  (ten  Cate,  1999).  The  effectiveness  of  both 

systemic  and topical  fluorides  in  caries  prevention  is  well  documented  and has  been shown 

effective in many epidemiological, clinical and laboratory studies  (Clarkson, 1991; Wefel and 

Harless, 1984). 
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2.1.2.2.1. Methods of delivery of fluoride and their indications

The effect of fluoride content in water for the prevention of dental caries was first recognized in 

the early 1900’s (McKay, 1928) and was further investigated by Dean and his colleagues (Dean 

et  al.,  1941;  Dean et  al.,  1942).  Fluoride levels  near  1.0  ppm produced about  60% to 65% 

reduction in caries incidence in both the primary and permanent dentitions and were considered 

to be the optimum level as there was only low prevalence of dental fluorosis (Dean et al., 1950). 

Water fluoridation was thus translated into clinical  use and was successfully implemented in 

communities in the United States (Dean, 1942). Water fluoridation has been regarded as the most 

cost effective measure available and it should be implemented wherever deemed appropriate and 

feasible (ten Cate, 1999).

The  widespread  usage  of  water  fluoridation  in  many  countries  has  been  attributed  to  the 

improvement in caries control over the years  (Murray, 1993). Water fluoridation serves as the 

fundamental  basis  for  caries  prevention  because  it  has  unique  advantages  in  the  aspect  of 

delivery, equity, fulfillment and cost-effectiveness compared to other fluoride techniques (Lewis 

and Banting, 1994). Water fluoridation has been estimated to reduce caries to about 11- 40% and 

it  has  been  an  integral  part  of  oral  health  programs  in  many  countries  (Newbrun,  1989). 

Singapore started its comprehensive fluoridation programme in 1956, which covered 100 per 

cent of the population. This fluoridation programme has resulted in a marked decline in dental 

caries prevalence  (Lo and Bagramian, 1997; Loh, 1996; Teo, 1984). Other effective mode of 

fluoride  delivery  to  the  public  is  through  salt  and  milk  fluoridation  (Ivanova  et  al.,  1995; 

Marthaler  and  Petersen,  2005;  Woodward  et  al.,  2001).  Dietary  fluoride  supplements  as  a 

targeted  preventive  procedure  should  be  reserved  only  those  who  are  at  higher  caries  risk. 

However, daily administration of fluoride tablet was suggested for children and pregnant women 

living  in  communities  with  suboptimal  fluoride  concentrations  in  water  supplies  (Axelsson, 

2000).

Fluoride tooth pastes is the most widespread and significant vehicle used for caries control and 

their use should augment any caries preventive program (Ogard et al., 1994). Fluoride varnish, 

mouth rinses and fluoride releasing materials are very effective in inhibiting caries in high risk 

population (ten Cate and van Loveren, 1999). Professionally applied topical fluoride agents are 
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recommended for persons with active dental decay, for those who are undergoing head and neck 

radiation therapy and for older adults experiencing root caries (ten Cate, 1999). Besides efficacy, 

an appropriate choice of fluoride application for caries prevention depends on practicality and 

availability, cost, patient acceptance and compliance, caries activity and safety (Newbrun, 2001; 

Ogard et al., 1994). A variety of fluoride compounds mainly sodium fluoride (NaF), acidulated 

phosphate fluoride, titanium tetra fluoride, sodium monofluorophosphate, stannous fluoride and 

Diammine Silver Fluoride have been used for caries prevention (Chu et al., 2002; Gisselsson et 

al., 1999; Johnson, 1993; Llodra et al., 2005; Wefel, 1994; Yee et al., 2009).  Neutral sodium 

fluoride, the major ingredient of many fluoride mouth rinses, tooth pastes, dentrifrices, gels, has 

been accepted as one of the most important fluoride compounds in caries prevention (Ogard et 

al., 1994). 

Given the improvements in dental  manpower and introduction of more specific measures for 

caries  prevention,  the non specific  systemic use of fluoride in water to prevent caries raised 

questions because of the risk of dental fluorosis (Clarkson, 1991). As a result, the role of topical 

fluoride application is becoming more outstanding in modern society (Clarkson, 1991; ten Cate 

and van Loveren, 1999)

2.1.2.2.2. Professionally applied topical fluoride applications

Over the past several decades, topical fluorides have been shown to be effective in preventing 

dental caries (Buyukyilmaz et al., 1997; Marinho et al., 2003; Marinho et al., 2004; Ripa et al., 

1987).  Different  types  of  topical  fluoride  agents  including  self  applied  fluorides  (fluoride 

dentrifrices, mouth rinses and gels) and professionally applied fluorides (fluoride varnish and 

gel), have been widely used and their effectiveness has been well established by clinical trials, 

laboratory studies and intraoral model systems (Marinho et al., 2003; Marinho et al., 2004). To 

increase  the  cariostatic  effect,  professionally  applied  topical  fluorides,  fluoride  slow release 

devices and dental materials, allowing topical fluoride more time to react and taken up by the 

tooth  structure  have been developed  (Ogard et  al.,  1994;  ten Cate  and van Loveren,  1999). 

Professionally applied topical fluoride agents can result in a  caries reduction of about 40% when 

applied biannually  (ten Cate, 1999). Topical application of fluorides to groups or individuals 

combined with oral health education reduces the progression of caries, which is equal to that of 
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water fluoridation  (Clarkson, 1991; Featherstone, 1994; ten Cate, 1999). The efficacy however 

depends largely on the concentration of the particular fluoride, the duration and frequency of its 

application and to some extent the specific fluoride compound used (Newbrun, 2001). 

2.1.2.3. Fluoride in teeth

2.1.2.3.1. Fluoride uptake and its role in caries inhibition

Fluoride uptake, in both loosely bound form (calcium fluoride which is readily to be dissolved in 

the oral environment) and the firmly bound form (apatitic fluoride which is incorporated into the 

crystal  structure  therefore  not  easily  released)  has  been  recognized  as  a  marker  of  caries 

resistance in teeth (Caslavska et al., 1975; DePaola, 1991). Firmly bound fluoride in the form of 

apatitic fluoride resulting in a less soluble mineral than the original enamel apatite through the 

compositional  and  crystallographic  alterations  has  drawn  significant  interest  among  dental 

researchers for many years  (Caslavska et al., 1975; DePaola, 1991; ten Cate, 1997). The study 

done by Larsen and Fejerskov showed that the formation of fluorapatite could increase the caries 

resistance because subsurface lesions were developed when the enamel was exposed to a liquid 

unsaturated  with  respect  to  hydroxyapatite  and  supersaturated  with  respect  to  fluorapatite 

(Larsen and Fejerskov, 1977). Another study done by Takagi et al. 2000  removed the loosely 

bound fluoride in the teeth after topical fluoride application and they proved that the mineral loss 

after  5-day pH cycling  process  was  reduced by 55% due to  the  formation  of  firmly  bound 

fluoride. When dicalcium phosphate dihydrate (DPCD) was adopted to increase the firmly bound 

fluoride  formation,  the  mineral  loss  was  reduced  by  77%  (Takagi  et  al.,  2000).  This  study 

concluded that the enamel resistance to lesion formation was closely related to firmly bound 

fluoride  while  the  loosely  bound  fluoride  was  absent  (Takagi  et  al.,  2000).  In  addition  to 

reducing solubility of tooth during acid attack, the dissolved apatitic fluoride can also prevent 

demineralization as observed in in-vitro and in-vivo studies (LeGeros et al., 1983; Ogaard et al., 

1988). Apatitic fluoride which could be released during initial dissolution of mineral may also 

serve as a reservoir of fluoride for the inhibition of acid production especially under low pH 

conditions (Birkeland and Charlton, 1976; Harper and Loesche, 1986). 
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The cariostatic effect of loosely bound fluoride has been well acknowledged by several studies 

(Arends et  al.,  1983; Margolis  et  al.,  1986). When the hard tissues of teeth exposed to high 

concentration of fluoride application CaF2-like globules were formed on the surface and in the 

intercrystal  region  (Arends et  al.,  1983;  Tsuda  and Arends,  1993).  In  the  oral  environment, 

loosely-bound fluoride  is  readily  dissolved  and released  fluoride  into  the  plaque  and saliva, 

resulting in a beneficial fluoride levels. This may account for a shift in mineral uptake and loss 

pattern thereby facilitating overall remineralization  (ten Cate, 1997; Wefel, 1990). During the 

demineralization episodes the loosely bound fluoride release may also be incorporated into tooth 

crystal to form apatitic fluoride (Wefel, 1990). 

The loosely bound fluoride could be readily washed away, resulting in an exponential decrease 

of fluoride levels in saliva and plaque after a topical fluoride application. However, the important 

finding is that the loosely bound fluoride tend to be released at the time it is most needed, namely 

during a cariogenic challenge (ten Cate, 1997; ten Cate and van Loveren, 1999). In addition CaF2 

was  found  to  be  less  soluble  and  stay  within  the  tooth  surface  for  a  long  time  in  in-vivo 

conditions (Caslavska et al., 1975; ten Cate, 1997). The presence of CaF2 like deposits in tooth 

may therefore act as a reservoir for fluoride to be mobilized into the underlying tooth surface 

(Westerman et al., 1999). 

2.1.2.3.2. Efforts to increase fluoride uptake

Conventional topical fluoride treatments do not lead to a significant increase in fluoride uptake 

(Takagi  et  al.,  1992;  Takagi  et  al.,  2000).  Considerable  efforts  have  been  directed  towards 

increasing the concentration and application time, prolonging the reaction time of fluoride with 

hydroxyapatite by fluoride varnish, pre-treating the tooth with the complexing agent dicalcium 

phosphate  dihydrate  (DPCD)  and  combining  fluoride  with  cationic  surfactants  (Chow  and 

Brown,  1975;  Sieck  et  al.,  1990).  Although  related  studies  have  shed  light  into  enhancing 

fluoride uptake in tooth the practical and efficient methods needs further exploration (Takagi et 

al., 1992; Takagi et al., 2000).
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2.1.3. Role of DSF in Dental caries 

2.1.3.1. The Technique

2.1.3.1.1. Arresting Caries Techniques

Arrest of caries techniques (ACT) are known as minimal intervention techniques because it helps 

in arresting caries without the mechanical preparation of the tooth for a restoration. Arresting 

caries techniques include those using silver fluoride, stannous fluoride, diammine silver fluoride, 

low viscosity glass ionomer cement, and supervised tooth brushing programmes using fluorides. 

The  main  goal  of  this  technique  is  to  arrest  caries  rather  than  restoring  the  damaged  tooth 

structure. This is non-invasive, painless and quick compared to traditional curative approach of 

cavity  preparation  and  restoration. This  procedure  minimizes  the  pain  and  suffering  of 

mechanical  preparation  of  the  teeth  especially  in  children  who were  young  and  difficult  to 

manage. Moreover, the WHO dental databases of caries in children showed that 90% of caries 

were left  untreated  in  developing  countries  due to  the cost  of treating  them with traditional 

restorative  treatment  (Yee  and  Sheiham,  2002).  Therefore,  these  techniques  are  particularly 

useful in community dental  health procedures in disadvantaged communities as many of the 

young  children  are  burdened  with  dental  caries  from  an  early  age.  Ultimately  the  aim  of 

remineralization therapies in caries management for enamel lesions is to slow lesion progression, 

promote lesion arrest, and ideally achieve lesion regression (Pitts and Wefel, 2009). 

2.1.3.1.2. Arresting non-cavitated lesions

All  the non cavitated  smooth  surface lesions  should receive  preventive  therapy to  arrest  the 

carious  lesion,  to  remineralize  and  to  avoid  cavitation  and  eliminate  the  need  of  surgical 

treatment (Stahl and Zandona, 2007). The International Caries Detection and Assessment System 

(ICDAS),  based  on  visual  inspection  can  detect  cavitated  and  non-cavitated  lesions  with 

adequate reliability for use in clinical research as well as in epidemiological surveys (Pitts, 2004; 

Ismail et al., 2007). Inclusion of non-cavitated lesions is necessary because these lesions can be 

arrested  through preventive  management  thereby lowering  the  costs  of  restorative  treatment 

(Pitts and Fyffe, 1988; Pitts, 2004). The non-cavitated lesions in primary and permanent teeth 

can be managed professionally by non-invasive means such as fluoride varnish and sealants and 
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supervised daily home tooth brushing using fluoride toothpaste to arrest the progression of the 

lesion so that restorations will not be necessary (Evans and Dennison, 2009).

2.1.3.1.3. Arresting cavitated lesions

Various topical agents such as silver nitrate, stannous fluoride, sodium fluoride, silver fluoride 

and Diammine Silver Fluoride have been applied clinically at high concentrations to arrest the 

active  cavitated  carious  lesions  and  to  prevent  further  caries  progression.  High  fluoride 

concentration  compounds  such  as  silver  fluoride  [AgF]  and  Diammine  Silver  Fluoride 

Ag(NH3)2F were used to arrest more advanced carious lesions in several countries (Zero, 2006). 

AgF and DSF are particularly appropriate in children with moderate and severe caries involving 

more  than  one  surface  of  the  tooth.  Such  minimal  intervention  techniques  mainly  targeted 

children who were phobic to dental treatment.

2.1.3.1.4. Silver Fluoride

Silver fluoride (AgF) was developed by Craig in 1978. The technique used AgF with stannous 

fluoride  to  limit  caries  progression  in  the  primary  molars  of  children  living  in  a  low 

socioeconomic background in New South Wales, Australia  (Craig et al., 1981). Subsequently, 

the  atraumatic  approach  started  in  Western  Australia  using  40% Silver  fluoride  solution  in 

arresting residual caries followed by the insertion of glass ionomer restoration in carious primary 

teeth (Gotjamanos, 1996). This approach used a modified preparation of the cavity without local 

anaesthesia followed by the application of AgF and restorations with GI cement (Gotjamanos, 

1996).   The clinical  follow-up of approximately 400,000 cases of these deep carious lesions 

indicated a success rate of 100% based on the absence of symptoms (Gotjamanos, 1996). 

2.1.3.1.5. Diammine Silver Fluoride

The usage of Diammine Silver Fluoride [Ag (NH3)2F] to arrest dental caries dates back to 1969 

(Nishino  et al.,  1969). This simple and non-invasive application method of Diammine Silver 

Fluoride has been used in many countries for years to arrest dental caries and it is commercially 
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available in markets for many years. DSF is a colorless solution containing fluoride ions. The 

ammonia ions in DSF combines with silver ions to form diammine-silver ion [Ag (NH3)2]+ and 

this formation is a reversible reaction. This complex is very stable and the equilibrium lies within 

diammine-silver ions. DSF is more stable than AgF and it can be kept constant concentration for 

a longer time (Chu and Lo, 2008). Moreover, DSF is not alkaline as AgF solution. The main 

advantages of DSF pointed out by Bedi and Infirri (1999) were:

1. DSF is effective in preventing and arresting caries progression which if left untreated will 

cause pain and infection. 

2. The cost of DSF treatment is low and affordable. 

3.  The  application  procedures  are  simple  so  that  the  non-dental  professionals  can  be  easily 

trained to apply DSF. 

4. It does not require expensive equipment to perform the treatment. 

5. The risk of spreading infection is low. 

DSF is available in two concentrations of 38% (44,800 ppm F) and 12%. The 38% Diammine 

Silver Fluoride is commonly used to arrest  caries in children,  who would not accept  normal 

dental treatment  (Chu and Lo, 2008) and used as an alternative where restorative treatment for 

primary teeth is not an option (Yee et al., 2009). Its low cost and simplicity in application makes 

DSF an appropriate therapeutic agent for use in community dental health projects. DSF’s ability 

to  halt  the  caries  process  and simultaneously  prevent  the  formation  of  new caries  makes  it 

superior to the other fluoride based caries preventive agents (Rosenblatt et al., 2009). 

2.1.3.2. The mode of action         

Diammine  Silver  Fluoride  reacts  with  hydroxyapatite  and  forms  calcium fluoride  and silver 

phosphate.  Further  dissociation  of  calcium  fluoride  into  calcium  and  fluoride  leads  to  the 

formation of fluorapatite (Rosenblatt et al., 2009). 
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Ca10(PO4)6(OH) 2 + Ag(NH3)2F → CaF2 + Ag3PO4 + NH4OH

CaF2 → Ca++ + 2F-

Ca10(PO4)6(OH) 2 + 2F- → Ca10(PO4)6F2 + 2OH

In the decayed teeth, silver phosphate reacts with bacterial amino and nucleic acid thiol groups to 

form silver amino and nucleic acids (Figure 2) (Rosenblatt et al., 2009).

Fig 2. Mode of action of Diammine Silver Fluoride (Adopted from Rosenblatt et al., 2009).    
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2.1.3.3. Efficacy

2.1.3.3.1. In vitro studies involving SF and DSF

Over the last 40 years silver fluoride has been used in dentistry as an anticaries agent. In vitro 

studies demonstrated that silver fluoride is effective in inhibiting S. mutans growth (Thibodeau et 

al., 1978) and caries progression (Klein et al., 1999).  Histological assessment of dental pulps 

following the application of 40% AgF and GI cement showed a good response in the pulp which 

includes the formation of reparative dentin and increased odontoblastic activity  (Gotjamanos, 

1996). 

In order for fluoride to be effective as a remineralizing agent, it has to be present near the tooth 

surface in a stable form. When DSF reacts with enamel apatite, it forms calcium fluoride and 

silver phosphate which are insoluble in oral environment and therefore are more stable. Thus the 

decalcification of teeth due to constant acid attack is minimized. The penetration assessed by 

electron probe microanalyser showed that the fluoride penetrated through the enamel for about 

25µ depth.  Moreover,  the  fluoride  retained  after  the  immersion  in  synthetic  saliva  is  higher 

compared to other fluorides NaF, NaF-PO4 and SnF2 (Suzuki et al., 1974). An in-vitro study on 

demineralized  dentin  disks  in  a  diffusion apparatus  compared  the  efficacy  of  AgF and AgF 

followed by KI on the penetration and viability of S. mutans. The results showed significant 

inhibitory effects on S. mutans penetration and growth during a 14 day exposure (Knight et al., 

2005). The same group has demonstrated that the AgF/KI treatment of demineralized and non-

demineralized dentine prevented biofilm  formation and reduced further demineralization by S. 

mutans (Knight  et  al.,  2007,  Knight  et  al.,  2009).  The  micro  hardness  of  measurements  of 

arrested dentinal caries on primary teeth receiving DSF and NaF after 30 months was harder than 

that of active carious lesions  (Chu and Lo, 2008).  Within the  outer 25– 200 µm, the median 

micro hardness of dentin in arrested carious lesions (range, 20–46 or 196–451 MPa) were greater 

than those of soft carious lesions (range, 5–20, or 49–196 MPa) (Chu and Lo, 2008). 

The recent study evaluated the effect of 3.8% DSF as an antibacterial agent against E. faecalis 

biofilms (Hirashi et al., 2010). They demonstrated that DSF can be used as an antimicrobial root 

canal irrigant or interappointment dressing, especially in locations in which potential blackening 
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of dentin  by metallic  silver is  not  a major  concern.  Table  5 summarizes  the in-vitro studies 

involving Diammine Silver Fluoride and Silver Fluoride. 

Table 5. In-vitro studies involving Diammine Silver Fluoride and Silver Fluoride 

Study Objective Methods Results 

Suzuki 
et 
al.,1974 

To find out the subsequent 
changes of CaF2 and 
AG3PO4 produced by the 
application of DSF in oral 
environment, penetration 
of fluoride and fluoride 
uptake 

1. X-Ray diffraction analysis. 
2. Electron probe microanalysis 
3. Chemical Analysis

 Ag3 PO4 reacted with SCN to 
form AgSCN which retained 
longer period of time. The 
fluoride penetrated through 
the enamel for about 25µ 
depth. DSF Retained after the 
immersion in synthetic saliva 
for a week was highest.

Afonso 
et al., 
1996 

An in vitro test system 
involving application of 
40% AgF solution to 
prepared cavities of 
extracted teeth to 
demonstrate the passage of 
significant amounts of 
fluoride into the dental 
pulp 

Fluoride analysis 
Histology is to determine the 
distribution of reduced silver.  

Failed to demonstrate the 
passage of significant 
amounts of fluoride into the 
dental pulp, despite a very 
high concentration of fluoride 
(100,000 ppm) in the applied 
solution. 

Gotjam
anos 
et 
al.,1996

This study investigated 
pulp response in primary 
teeth with deep residual 
caries treated with silver 
fluoride and glass ionomer 
cement

Histological assessment of the 
dental pulps of 55 carious 
primary teeth at  3 to 58 
months after treatment by 
atraumatic technique of 40% 
AgF application followed by 
restoration GI cement

Fifty of the 55 teeth 
examined showed a 
favourable pulpal response, 
inducing presence of 
abundant reparative dentine 
and a wide odontoblast layer.

Klein et 
al.,1999 

This study compares four 
chemotherapeutic 
regimens AgNO3, 
AgF/SnF2, DSF, CHX 
used for inhibiting carious 
lesion progression 

A bacterial model system 
containing MS and LC was 
used to generate carious lesions 
on 85 extracted sound 
permanent 3rd molars which 
were randomly assigned to 4 
test groups and control group. 

Six weeks later lesions 
treated with a single AgNO3, 
AgF/SnF2  application 
demonstrated 29% and 19% 
less lesion progression 
respectively than the control 
group (p<0.05). 

Knight 
et 
al.2005

The aim of this study was 
to develop an in vitro 
model that would provide 
an indication of the 
permeability of 
demineralized dentine to 

Forty dentine discs were 
bonded to the base of forty 
5mL polycarbonate screw top 
vials filled with nutrient 
medium, sterilized and placed 
into a continuous culture of 

Samples treated with AgF 
and AgF/KI had significantly 
lower optical densities than 
the corresponding controls. 
The range of optical densities 
was least amongst 
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SM after treatment of the 
dentine with AgF followed 
by KI.  

SM. demineralized samples 
treated with AgF/KI

Knight 
et 
al.2007

To observe the difference 
between demineralized 
and non-demineralized 
dentine treated with 
AgF/KI after exposing to 
S. mutans.  

10 samples of demineralized 
dentine
10 samples of demineralized 
dentine treated with  AgF/KI
5 samples of non-
demineralized dentine.
10 samples of non-
demineralized dentine treated 
with AgF/KI.
 

AgF/KI treatment prevented 
biofilm formation. AgF/KI 
treatment of demineralized 
dentine was more effective in 
reducing dentine breakdown 
and the growth of SM. 
Significantly higher levels of 
silver and fluoride were 
deposited within 
demineralized dentine

Chu 
and Lo, 
2008 

This study measured the 
micro hardness of arrested 
dentinal caries on primary 
teeth receiving regular 
fluoride applications after 
30 months. 

38% DSF every 12 months or 
5% NaF varnish every 3 
months. At 30 months very 
mobile Knoop Hardness 
Number measurements at sites 
below the surface at the center 
of the carious lesion every 25 
mm toward the pulp

Within the outer 25–200 mm, 
the median KHN of arrested 
carious lesions (range, 20–46 
or 196–451 MPa) were 
greater than those of soft 
carious lesions (range, 5–20, 
or 49–196 MPa). 

Knight 
et 
al.2009

The purpose of this study 
was to measure whether a 
topical application of DSF 
followed by KI on 
partially demineralized 
dentine affected the 
formation of a SM biofilm.

10 Disks as control
10 Disks treated with AgF 
followed by KI
10 Disks treated with KI 
10 Disks treated with AgF. The 
outer surfaces of the disks were 
subjected SEM. 
EPMA Analysis.

An SM biofilm covered with 
entire exposed surfaces of all 
control and KI treated disks. 
No discernible bacterial 
biofilm was detected on disks 
treated with AgF or AgF/KI. 
Detectable amounts of silver 
and fluoride were found up to 
450 µm in the AgF or 
AgF/KI sections

Hiraishi 
et al., 
2010 

This study investigated the 
use of 3.8% DSF as an 
antibacterial agent against 
Enterococcus faecalis 
biofilms and its ability to 
penetrate dentinal tubules 
by the formation of silver 
salts. 

Biofilms were generated on
membrane filter discs and 
subjected to 15-minute and
60-minute exposure times with 
3.8% DSF, saturated Ca (OH)2, 
5.25% NaOCl (negative 
control),  0.9% NaCl (positive 
control). Ag (NH3)2F 
application is for 24, 48, and 72 
hours. SEM analysis to find the 
deposition of silver salts. 

Both NaOCl and Ag (NH3)2F 
were effective against E. 
faecalis biofilms. Silver 
deposits were present on 
66.5% of the radicular dentin 
surfaces after 72-hour 
application of Ag (NH3)2F. 
Penetration of the silver 
deposits was observed at 
most 40 mm into dentinal 
tubules.
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2.1.3.3.2. Clinical trials involving SF and DSF

The  clinical  studies  have  shown  that  AgF  inhibits  caries  progression  in  both  primary  and 

permanent teeth (McDonald and Sheiham, 1994) and is effective in preventing caries in newly 

erupted first permanent molars when applied with SnF2 (Green, 1989). 

The clinical trial study involving 375 Chinese preschool children showed that yearly application 

of DSF was effective in arresting dentin caries and preventing new carious lesions in primary 

anterior teeth compared to the other group which had 3 monthly application of NaF (Chu et al., 

2002).  Children  who received  DSF annually  had more  arrested  caries  lesions  than the other 

groups.  The  mean  number  of  arrested  carious  tooth  surfaces  in  DSF group with  or  without 

excavation were 2.5 and 2.8 compared to the NaF group which is 1.5 and 1.5 (Chu et al., 2002). 

There was no evidence to show that the removal of carious dentin prior to the application of 

fluoride agents had an effect on their ability to arrest dentin caries (Chu et al., 2002). 

Llodra et al. (2005) showed that six monthly application of a 38% DSF was effective in reducing 

caries in both primary teeth and first permanent molars in 6 to 15 year old school children. This 

clinical  study was about 36 months and the total  number of samples  was 452 Cuban school 

children.  The  mean  baseline  dmfs  (decayed,  missing  and filled  surface  index)  scores  of  the 

children were 3.68 ± 0.30 in the DSF group and 3.35 ± 0.26 in the control group. The mean 

number of surfaces with active caries was 3.29 ± 0.28 in the DSF group and 2.91 ± 0.22 in the 

control group (Llodra et al., 2005).  After 36-month follow-up, the mean number of new decayed 

surfaces in primary teeth was 0.29 in DSF compared to 1.43 in controls. The mean number of 

new decayed surface in first permanent molars was 0.37 in DSF group and 1.06 in controls after 

follow-up  (Llodra  et  al.,  2005).  Compared  with  the  control,  DSF  group  children  had  more 

surfaces with inactive caries and a higher proportion of black stains in inactive lesions (Llodra et 

al., 2005). 

Another clinical study performed arresting caries treatment to manage untreated dental caries in 

primary teeth of 976 Nepalese school children with ages ranging from 3-9 years for the period of 

2 years (Yee et al., 2009). This is the first clinical study to evaluate the effectiveness of one time 

application of DSF in both 38% and 12% concentrations and tested the effect of DSF with or 

without a reducing agent  (Yee et al., 2009). The mean number of arrested caries surfaces with 
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38% DSF alone and with reducing agent was 4.5 and 4.2 after 6 months, 4.1 and 3.4 after one 

year and 2.2 and 2.1 after 2 years. A single application of 38% DSF, with or without tea as a 

reducing  agent,  was  significantly  more  effective  in  both  the  anterior  and  posterior  primary 

dentitions of young children than 12% DSF and control (Yee et al., 2009).  

The randomized control clinical trial study by Tan et al. (2010) assessed effectiveness of four 

methods including DSF in preventing root caries.  A total number of 306 generally healthy elders 

having  at  least  5  teeth  with  exposed sound root  surfaces  were  selected  for  the  study.  They 

received  either  oral  hygiene  instruction  (OHI),  OHI  and  applications  of  1%  chlorhexidine 

varnish every 3 months, OHI and applications of 5% sodium fluoride varnish every 3 months and 

OHI and annual applications of 38% Diammine Silver Fluoride (DSF) as treatment (Tan et al., 

2010). Two thirds (203/306) of the elders were followed for 3 years. Mean numbers of new root 

caries surfaces in the four groups were 2.5, 1.1, 0.9, and 0.7 respectively (ANOVA, p < 0.001). 

Results showed that DSF solution, sodium fluoride varnish, and chlorhexidine varnish were more 

effective in preventing new root caries than OHI alone (Tan et al., 2010).

The recent  multi-center randomized clinical trial study assessed the effectiveness and safety of 

topical Diammine Silver Fluoride in reducing root sensitivity (Castillo et al., 2011). From Lima 

and Cusco, Peru, 126 adults with at least one tooth sensitive to compressed air were randomly 

assigned to  either  the experimental  treatment  group or sterile  water  (Control).  The pain was 

assessed by means of a 100-mm visual analogue scale at 24 hours and 7 days post-treatment 

(Castillo et al., 2011). The Diammine Silver Fluoride reduced pain at 7 days at both sites. In 

Lima, the average change in pain scores assessed using a Visual Analog Scale between baseline 

and day 7 for the silver fluoride group was -35.8 (SD = 27.7) mm vs. 0.4 (SD = 16.2) mm for the 

control group (P < 0.001). In Cusco, the average change in pain scores for the silver fluoride 

group was -23.4 (SD = 21.0) mm and -5.5 (18.1) mm for the control group (P = 0.002) (Castillo 

et al., 2011). No tissue ulceration, white changes, or argyria were observed. No changes were 

observed in  the Gingival  Index and the study concluded that  Diammine Silver  Fluoride is  a 

clinically effective and safe tooth desensitizer (Castillo et al., 2011)
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2.1.3.4. Safety

Application of silver fluoride solution to prepared cavities of extracted teeth did not demonstrate 

the passage of significant amounts of fluoride into the dental pulp, despite using a very high 

concentration  of  fluoride  (100,000  ppm)  in  the  solution  (Afonso  and  Gotjamanos,  1996). 

Therefore, this in vitro study confirmed that the application of 40% silver fluoride as a cavity 

varnish or liner and its use in the 'atraumatic' technique for treating deep carious lesions can be 

considered as a safe clinical procedures (Afonso and Gotjamanos, 1996). 

The possible acute toxicity to the pulp or the induction of fluorosis through the use of DSF has 

been widely debated  (Gotjamanos, 1997; Neesham, 1997). The black discoloration of carious 

teeth is the only drawback of using DSF for clinical purposes. Chu and his associates stated that 

there was no significant change in parental  satisfaction due to the staining(Chu et al.,  2002). 

Appearance of mildly painful white lesions on the mucosa which disappeared in 48 hrs without 

treatment has been mentioned in one study  (Llodra et al., 2005). Considering the dose related 

safety,  DSF’s dosage is approximately one drop for each quadrant, applied with a brush and 

rinsed  off  afterward.  This  minimal  amount  of  application  keeps  the  adverse  events  low 

(Rosenblatt et al., 2009). 

2.1.3.5. Summary

Studies  have  shown that  DSF and SF can  inhibit  progression  of  caries  (Klien  et  al.,  1999; 

Mcdonald and Sheiham, 1994) and investigations have shown that enamel and dentin are harder 

and less soluble after application of DSF (Chu and Lo, 2008). The silver component in AgF may 

cause destruction of plaque bacteria including S. mutans and result in the mechanical sealing of 

sound and carious dentinal tubules (Gotjamanos, 1996; Thibodeau et al., 1978). Studies have 

demonstrated that DSF can prevent biofilm  formation and reduce further demineralization by 

S.mutans (Knight et al., 2005; Knight et al., 2007) and have shown effective against E.feacalis 

biofilm  (Hirashi  et  al.,  2010).  Clinical  trials  have  found  DSF  to  be  an  effective  agent  in 

preventing new caries and arresting caries especially in young children who are less cooperative 

(Chu et al., 2002; Llodra et al., 2005; Yee et al., 2009). In addition to this,  recent clinical trials 

have shown that DSF is effective in preventing root caries (Tan et al., 2010) as well as root 
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sensitivity (Castillo et al., 2011). However, there has not been any study reporting the effect of 

CO2 laser combined with Diammine Silver Fluoride treatment in inhibiting caries.   

2.2. Lasers in Dentistry

2.2.1. Laser principles

2.2.1.1. Laser light production

The basic system of laser contains an active element, a resonator and a pump source. The pump 

source illuminates a working substance which is the active element of the laser and leads to 

exponential light amplification (Akhmanov, 1997). The light going sideways abandons the active 

element without gaining substantial energy. On the other hand, the light wave travelling along 

the axis of the optical resonator and passing repeatedly through the active element, gains energy 

constantly (Akhmanov, 1997). Because of the partial transmission of light through one of the 

resonant mirrors, the radiation comes out as a laser beam from the resonator (Akhmanov, 1997).

2.2.1.2. Characteristics of laser light

There are mainly three important characteristics with the laser beam (Akhmanov, 1997). 

2.2.1.2.1 Coherence

The light produced by a laser differs from ordinary light in that it is made up of waves of the 

same wavelength and all waves are in one phase both spatially and temporally. 

2.2.1.2.2 Monochromaticity

Laser has one specific color because laser light travels in a specific wavelength. 
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2.2.1.2.3. Collimation

Laser light travels in a collimated or parallel beam and it does not diverge significantly even over 

long distances. This leads to ultimate precision and minimal energy loss. 

2.2.1.3. Laser Parameters

 Laser radiation is characterized primarily by its wavelength, energy, pulse duration, continuous 

wave power, spectral bandwidth, tuning range and beam divergence (Akhmanov, 1997). These 

parameters vary extensively for different type of lasers. For example,  excimer lasers produce 

ultra violet radiation in the 200-300 nm wavelength range and CO2 lasers operate in the infrared 

(10.6 µm) (Akhmanov, 1997). According to wavelength, lasers can be categorized ultraviolet (1-

400 nm), visible (400-750 nm), and infrared (750 + nm) levels.  Energy density, defined as the 

amount of energy that is distributed over a surface area or volume, expressed in j/cm2, is an 

important parameter representing the intensity of laser radiation (Birngruber, 1989).  

2.2.2. Laser-tissue interactions

2.2.2.1. Factors modulating biological effects of laser

The optical properties of tissue elements determine the nature and degree of the tissue response 

through the processes of absorption, transmission,  reflection and scattering of the laser beam 

(Dederich, 1991). The extent of interaction of laser light as a form of radiant energy with tissue 

is determined by two dependant variables, the specific wavelength of the laser emission and the 

optical characteristics of the particular target tissues (Dederich, 1991). 

Biologic systems have different optical absorption characteristics and so predicting the effect of 

a particular laser emission may appear problematic.  Water is the predominant element which 

controls the tissue effects of laser emission within the infrared spectrum such as CO2.  So, the 

CO2 laser at a wavelength of 10.6 µm is well absorbed by oral tissue fluids and has a minimal 

penetration beyond the surface. Conversely,  water is transparent to the emission of Nd: YAG 

laser which may lead to deeper penetration into the tissue. 
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The  characteristic  of  preferential  absorption  of  specific  wavelengths  of  radiant  energy  by 

chromophores such as hemoglobin and melanin exert a significant influence over the interaction 

with tissues. Hemoglobin readily interacts with 488 and 514 nm wavelengths As a result the 

ability of the argon lasers for coagulation and hemostasis is proved effective. 

2.2.2.2. Tissue effects of laser irradiation

Photo-thermal effect is the major biological effect of laser. Under varied irradiation conditions, 

diverse  thermal  effects  can  be achieved  resulting  in  warming,  coagulation,  tissue shrinkage, 

vaporization, ablation and carbonization of biological tissues respectively.  The photo acoustic 

effects can also be created by lasers. The pulse of laser energy on hard dental tissues can produce 

a shockwave which ultimately pulverizes the tissue creating an abraded crater. Lasers can create 

photo-chemical  effects  by  stimulating  chemical  reactions  and  rupturing  inter  molecular  and 

atomic bonds.  The applications of lasers in the curing of composite  resin and photodynamic 

therapy for  treating  cancer  are  based  on  the  photochemical  effects  of  laser.  Moreover  laser 

induced fluorescence has been used effectively as a diagnostic tool in clinical practice  (Fisher, 

1992). 

2.2.2.3. Laser- tissue interactions on dental hard tissues

The  absorption  and  transmission  of  laser  light  in  human  teeth  is  mainly  dependent  on  the 

wavelength of laser light (Frentzen and Koort, 1991). Ultraviolet laser light is well absorbed but 

in the mid-infrared spectrum the absorption in water and in hydroxyapatite differs enormously 

depending  on  the  wavelength  of  the  laser  light.  In  water  and  in  HA,  there  is  a  very  low 

absorption at a wavelength of 2 µm in comparison to the high absorption of laser energy at 3µm 

and 10µm.  At 1µm the absorption in water and in HA becomes about 10,000 times less than that 

at 3 µm (Nagasawa, 1983; Legros, 1999). 

2.2.3. Laser Application in general dentistry

Following the discovery of laser (Maiman, 1960), the effects of laser on the teeth were explored 

(Goldman et al., 1964; Stern et al., 1966). With subsequent  growth in laser technology, several 

types of  laser such as CO2 laser, Nd: YAG laser, Argon laser, Er: YAG laser and He: Ne lasers 
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were  developed  and  used  in  dental  research  and  treatment  (Coluzzi,  2000;  Wigdor  et  al., 

1995).The  applications  of  these  different  kinds  of  lasers  in  dentistry  includes  oral  surgery, 

analgesia,  treatment  of  hypersensitive  dentin  and  aphthous  ulcers,  tooth  whitening,  sulcular 

debridement,  caries  removal,  cavity  preparation,  polymerization  of  light  cured  composite 

restorative  materials,  pulpotomy,  various  endodontic  treatments,   welding  dental  prostheses, 

bone ablation and cartilage reshaping (Coluzzi, 2000; Wigdor et al., 1995).

Until now, lasers were mainly used in soft tissue surgeries and produced desirable effects. Due to 

the unpredictability of laser induced effects in dental hard tissue treatment, its clinical application 

is very limited in dental hard tissues (Wigdor et al., 1995)

2.2.4. Laser Applications in caries prevention 

Dental laser research was actually started in the year 1963 at the University Of Los Angeles 

School Of Dentistry with the investigations of the researchers named Ralph S. Stern and Reider 

F. Sognnaes (Miserendino and Pick, 1995). Various types of lasers in the prevention of dental 

caries have been documented over the past several years. These studies have used different types 

of lasers, namely ruby lasers  (Mannerberg et al., 1969; Stern et al., 1966; Stern, 1969; Vahl, 

1968), Nd: YAG laser  (Stern, 1969; Yamamoto and Ooya, 1974; Yamamoto and Sato, 1980), 

argon lasers  (Hattab, 1987; Nammour et al., 1987) and CO2  lasers  (Brune, 1980; Kuroda and 

Fowler, 1984; Lobene et al., 1968; Nelson et al., 1987; Scheinin and Kantola, 1969; Stern, 1969; 

Stern et al., 1972).

2.2.4.1. The cariostatic effects of laser

The CO2 laser is more effective and safer in caries preventive application, because the emission 

wavelengths of a CO2 laser coincide with the strong infrared absorption regions of apatite. Stern 

and  his  associates  have  investigated  the  macroscopic  enamel  surface  changes  induced  by  a 

pulsed CO2  laser at an energy density ranging from 13 to 50 J/cm2  (Stern et al., 1972). They 

showed that CO2 laser was more efficient than ruby laser, which required an energy density > 

200 J/cm2 to generate similar inhibitory effects on enamel demineralization (Stern et al., 1972). 

About 50-60% reduction in subsurface demineralization was achieved by CO2 laser (Fox et al., 

1992; Stern et al., 1972). In another study there was an 87% reduction in caries like lesions, 
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observed by using pulsed CO2 laser on enamel (Featherstone and Nelson, 1987). The CO2 laser 

irradiation was capable of converting the enamel surface apatite to lower soluble one (Fox et al., 

1992). The critical pH of enamel was lowered from 5.5 to 4.78 after the laser treatment (Fox et 

al., 1992). 

Borggreven et al. (1980) used 200 μm thick slices of bovine enamel mounted as membranes in 

diffusion cells  and tested the permeability of enamel  before and after  laser irradiation.  They 

found that repeated pulsed CO2 laser irradiation caused a significant permeability increase, rather 

than a decrease. They concluded that irradiation of enamel at an energy density that increases the 

acid resistance of enamel did not decrease the rate of transport of various compounds, even when 

the irradiation was repeated up to 40 times. It was suggested that the cariostatic mechanisms of 

laser irradiation on enamel might be due to laser-induced chemical modifications rather than due 

to permeability changes (Borggreven et al., 1980).

One study used Nd: YAG laser at an energy density of 10 J/cm2 and 20 J/cm2 and they assessed 

the enamel surface changes by using micro-radiography. At energy density of 20 J/cm2  the Nd: 

YAG lased enamel samples showed no subsurface demineralization in microradiographs. It was 

concluded that the apparent difference in acid resistance between Nd: YAG lased and unlased 

enamel may be due to a physical change in the size of enamel crystallites as a result of the loss of 

water  and  carbonate  from minerals  at  the  surface  of  enamel  (Yamamoto  and  Ooya,  1974). 

Another study concluded that reduced acid solubility of the Nd: YAG lased enamel resulted from 

a decrease in permeability caused by the changes in organic matter that accounted for the smooth 

appearance of the enamel surface (Yamamoto and Sato, 1980). 

Nelson et al. (1987) evaluated the effect of low energy, pulsed CO2 laser radiation on human 

enamel  at wavelengths ranging from 9.3 to 10.6 μm. Fractured cross-sections of these zones 

revealed that the effect of the laser extended approximately 5 μm below the enamel surface, 

where melting, fusion and recrystallization of enamel crystallites were observed. The apparent 

inhibition of demineralization was more effective at the higher energy treatment of 50 J/cm2 than 

lower energy treatment of 10 J/cm2 (Nelson et al., 1987). 
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The study by Ferreria et al. (1989) revealed that laser irradiated enamel surface was altered. They 

exhibited either crazing alone or crater in combination with crazing. In the crazed enamel, prism 

boundaries were present and most crystals generally resembled those of normal enamel, even 

though  some  crystals  have  unusual  shapes  and  sizes.  They  concluded  that  lased  enamel 

exhibiting a greater number of voids did not specify an ultra structural improvement compared 

with normal enamel. However, the larger apatite crystal size and loss of prism boundaries in the 

crazed  and  cratered  enamel  may  decrease  acid  dissolution,  since  the  dissolution  rates  are 

proportional to the crystal surface area. Therefore, larger particles in crazed and cratered enamel 

would probably result in reduced acid reactivity (Ferreira et al., 1989). 

The study by Hsu et al (2000) demonstrated the role of the organic matrix in CO2 laser induced 

inhibition  of  enamel  demineralization.  The  effects  of  low-energy  CO2  laser  irradiation  on 

demineralization of both normal human enamel and human enamel without its organic matrix 

were investigated. The laser irradiation resulted in a 98% reduction in mineral loss, but the laser 

effect dropped to about 70% when the organic matrix in the enamel was removed. The study also 

showed that melting of the crystals was not necessary for achieving laser-induced inhibition of 

demineralization (Hsu et al., 2000). 

2.2.4.2. Mechanisms involved in laser induced caries prevention

Several  mechanisms have been proposed for years to explain the caries preventive effects of 

lasers (Hicks et al., 1997; Oho and Morioka, 1990).  

2.2.4.2.1. Morphological, physical and chemical changes

Surface melting and fusion on lased enamel were suggested as the main reasons for the increased 

acid resistance in the earlier  studies  (Stern and Sognnaes,  1965;  Stern,  1969).  However,  the 

favorable  changes in acid resistance of the mineral  have occurred at  temperatures  below the 

melting point of the tooth mineral (Kantorowitz et al., 1998). On the other hand they showed that 

melting and fusion were not necessary to achieve caries inhibition  (Kantorowitz et al., 1998). 

The laser irradiance melted the enamel apatite and this  melt  composed of traces of alpha tri 

calcium phosphate and tetra calcium phosphate which has the higher solubility than the original 

apatite  (Kuroda and Fowler, 1984). These remarkable findings have raised questions about the 
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melting and fusion in laser induced caries prevention and recommended that there may be other 

mechanisms involved in the cariostatic effects of lasers (Kantorowitz et al., 1998). An increase in 

the enamel micro hardness after the application of lasers has been suggested to play a role in 

caries inhibition (Marquez et al., 1993).

The laser induced changes in the composition and crystal structure of enamel have caught the 

interest of the researchers in recent years (Hsu et al., 1998; Oho and Morioka, 1990; Zuerlein et 

al., 1999).  There was an alteration in the composition of enamel with the reduction in organic, 

carbonate and water substances after the CO2  laser irradiation at different fluence levels (Fox et 

al.,  1992;  Hsu  et  al.,  1998;  Oho  and  Morioka,  1990).  Thirty  percent  of  the  carbonate  was 

removed from the  enamel  at  temperatures  between 400-600° C  (Zuerlein  et  al.,  1999).  This 

carbonate  reduction  in  hydroxyapatite  crystals  produced  a  tooth  surface  and  its  underlying 

structures less acid soluble than the unlased hydroxyapatite (Hsu et al., 1998; Oho and Morioka, 

1990). 

The  studies  in  the  past  have  demonstrated  that  the  CO2  laser  was  capable  of  producing 

recrystallization and increasing the size of hydroxyapatite crystals and resulting in more caries 

resistant  enamel  (Goodman  and  Kaufman,  1977;  Kantola  et  al.,  1973).  A  high  positive 

birefringence, signifying the formation of microspaces in enamel and a decrease of lattice strain 

added with slight a-axis contraction contributed to the laser induced acid resistance of enamel. 

The  removal  of  carbonate  and  recrystallization  of  enamel  crystals  occurred  at  a  lower 

temperature compared to the melting and formation of unwanted additional calcium phosphate 

phases (Zuerlein et al., 1999). 

The mechanism for the increased acid-resistance was explained by laser induced reduction in 

solubility and the alterations of the inorganic component of the tooth hard tissues (Stern et al., 

1966). Moreover, the thermal changes in the organic content such as protein denaturation and 

micropores expansion which leads to the decrease in permeability of enamel was attributed to 

play a significant role in caries inhibition (Stern et al., 1972; Yamamoto and Sato, 1980).  The 

increased acid resistance of lased enamel was mainly due to the reductions in both permeability 

and solubility of tooth enamel (Nelson et al., 1987). 
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2.2.4.3. Possible side effects

The main hindrance of using lasers in prevention of dental caries clinically are the possible side 

effects on the hard and soft tissue of tooth including the formation of unwanted calcium phases 

that are more soluble than the original apatite; creation of enamel cracks that could permit the 

penetration of bacterial products into deeper layers of teeth and lead to the reduction in micro 

hardness; and possible laser-induced thermal damages to pulp (Cox et al., 1994; Hashiguchi and 

Hashimoto, 2000; Hicks et al., 1995a; Tagomori and Morioka, 1989; Zuerlein et al., 1999). On 

the other hand the laser tissue interactions differ enormously depending upon the type of laser 

beam, operational mode and energy output. Therefore, it is necessary to explore appropriate laser 

therapy for efficient protection against caries without causing adverse effects on tooth structures 

(Tagomori and Morioka, 1989)

2.3. Combined treatment with fluoride and laser

2.3.1. Synergistic cariostatic effect of fluoride and laser treatment

Several  studies  have  reported  that  laser  irradiation  combined  with fluoride  treatment  have a 

greater  effect  on inhibiting  caries  in  both enamel  caries  (Table  6) and root  caries  (Table  7) 

compared to laser or fluoride treatment alone. 

Combined argon laser and APF treatment resulted in 50-60% reduction in lesion depth compared 

with  control  in  enamel  caries  initiation  and progression.  The  fluoride  treatment  before  laser 

irradiation resulted in greater reduction in lesion depth compared to fluoride treatment after laser 

irradiation (Flaitz et al., 1995; Hicks et al., 1995a).  CO2 laser in combination with fluorides has 

shown greater efficacy in inhibiting enamel caries (Hsu et al., 2001; Hsu et al., 2004; Tepper et 

al., 2004). There was enamel caries inhibition of about 91% as shown by the combined CO2 laser 

treatment in a pH-cycling system (Featherstone et al., 1991). Treatment with low-intensity CO2 

laser irradiation in combination with 2% NaF gel has resulted in a 98.3% reduction in mineral 

loss (Hsu et al., 2001). The study by Tepper and his associates reported that the treatment with 

continuous  wave  CO2 laser  immediately  after  applying  amine  fluoride  led  to  50% increase 
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fluoride uptake in the enamel compared to the control group (Tepper et al., 2004).  The recent 

study which compared the effectiveness of CO2 laser and diode laser on the fluoride uptake 

revealed that the uptake is increased on the diode laser (57%) and CO2  laser (69%) irradiated 

enamel  surface  and  better  pulp  safety  was  obtained  with  CO2 laser  than  with  diode  laser 

(Gonzaelez-Rodriguez et al., 2009).

For roots, the reduction in lesion depth ranged from 54% to 66% compared with control (Hicks 

et  al.,  1995b;  Hicks et  al.,  1997).  Another  study by Gao et  al.  (2006)  reported a significant 

synergistic  effect  of  combined  CO2  laser  and  fluoride  treatment  on  the  inhibition  of  root 

demineralization which may be caused by the laser-enhanced fluoride uptake of about 84.5% in 

the root (Gao et al., 2006).
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Table 6. Studies on the effect of combined fluoride and laser treatment in inhibiting enamel caries

Study Sample Characterization 
Technique

Lesion 
formation

Laser
Parameters

Fluoride 
treatment 

L& F 
timings*

Results (% 
Reduction in 
comparision with 
control)

Goodman 
and 
Kaufman, 
1977

 18 
incisor 
enamel 
sections

Atomic absorption 
spectroscopy

Dissolved in 
150 µl of 2M 
perchloric acid

Argon laser 
(5145 A)
4.0 Watts 

NaF, 4% L/F 50% reduction 

Tagomori 
and Morioka, 
1989

Enamel 
sections

Atomic absorption 
spectroscopy

Etched with 1 
ml of 0.5 M 
HCLO4

Nd:YAG, 
40 J/cm2

2% NaF, 
APF, 5 
minutes

L —> F 
& 
F —>  L

laser +APF- 43%
APF+ laser- 60%
laser+ NaF-  38%
NaF+ laser- 47%

Featherstone 
et al., 1991

90 human 
Pre 
molars

Micro hardness 
measurement

pH cycling for 5 
days

CO2, 15/25 mJ 
per pulse 

1.23% APF 
gel, 5 
minutes

L —> F 91% 

Fox et al., 
1992

Human 
enamel 

Initial dissolution 
rate

Bisphosphonic 
acid 

CO2, 65 J/cm2

2  sec.
NaF L —> F 84% 

Flaitz et 
al,1995

Human 
enamel

PLM microscopy Acidified gel Argon 2 w for 
10s 100 J/cm2

1.23% APF 
gel, 4 
minutes

L —> F 
& 
F —>  L

laser alone: 26-32%
L+F- 50%

Hicks  et al., 
1995

20 sound 
human 
molars

PLM microscopy Acidified gel Argon 0.25 
watts 10,12.0 
+/- 0.5 J/cm2 

1.23% APF 
gel, 4 
minutes

L —> F 
& 
F —>  L

52 % ( L —> F)
56% ( F —>  L )

Hsu. J et al., 
1998

Human 
enamel 
blocks

PLM microscopy&
micro radiography

Demineralizing 
solution

CO2, 42.5-170 
J/cm2

0.2 ppm 
fluoride

L —> F 42.5  J/cm2- 37.3%, 85 
J/cm2- 85.7%,  127.5 
J/cm2- 94.5%, 170 
J/cm2- 55%

Haider et al., 
1999

10 human 
premolars

16 X Bisecting 
microscope, caries 
detection dye

Acidified gelatin 
gel with HCl

Argon, 
100J/cm2 

2% NaF , 4 
minutes

L —> F 60%
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Hsu et al., 
2001

24 human 
pre 
molars

Micro radiography pH cycling CO 2, 0.3 
J/cm2, 2 W, 5 
ms 

2% neutral 
NaF , 4 
minutes

F —>  L F+L treatment led to 
98.3% and 95.1% with 
and without organic 
matrix

Santos et al., 
2001

110 
human 
enamel 
blocks

PLM microscopy pH cycling CO2, 9.6 um, 
1.0, 1.5  J/cm2 

, 10 Hz, 5 µs 

APF gel, 5 
minutes

L —> F 
& 
F —>  L

35% to 76% achieved. 
Best inhibition seen 
when treated with APF 
before laser.

Santos et al., 
2002

120 
human 
enamel 
blocks

PLM microscopy pH cycling CO2, 9.6 um, 
2.0 &3.0 
J/cm2 , 5-8 µs

APF gel, 5 
minutes

L —> F 
& 
F —>  L

87% to 170% 
(together with reversal 
of lesions)

Hsu et al., 
2004 

5 human 
molars

Secondary ion 
mass spectroscopy,
ESEM

KOH extraction 
technique

CO2 laser at 2 
and 4 W 5, 
and 4 s 

2.0% NaF, 
4 minutes

F —>  L KOH and Non KOH 
groups have higher 
fluoride uptake of 60%

Tepper et al., 
2004

40 human 
enamel 
sections

Selective electrode,
SEM

Etching with 
10µl 2M HCl

CO2 laser 
wavelength-
10.6 um,2 W, 
irradiation 
time 15 s. 

1% Amine 
fluoride 15 
seconds

F —>  L laser treatment with 
amine fluoride 
solution caused almost 
50% increase in 
fluoride uptake 

Gonzalez 
Rodriguez et 
al., 2009

45 sound 
human 
molars

Selective ion 
electrode
Thermocouple 
probe to measure 
thermal changes

Etching with 
2M HCl 

1. Diode - 2 
settings 5w, 
7w for 30 ms 
2. CO2 laser-
10.6 um, 
1w,15 ms 

0.1 mg 
Amine 
fluoride 15 
seconds

F —>  L AmF only- 38%
AmF+Diode 5w - 44%
AmF+Diode 7w –57%
AmF+ CO2  1w- 69%

* L —> F- Laser treatment before fluoride treatment; F —> L- Laser treatment after fluoride treatment; L —> F & F —> L- Laser 
treatment before and after fluoride treatment; L/F- Laser treatment concurrent with the fluoride treatment 
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Table 7. Studies on the effect of combined fluoride and laser treatment in inhibiting root caries

Study Sample
Charecterization 
technique

Lesion 
formation

Laser 
Parameters

Fluoride tx
L & F 
timings*

Results (% 
reduction in 
comparision with 
control)

Hicks et 
al., 1995b

Sound human 
root 

PLM microscopy  pH cycling Argon,

12 J/cm2

1.23% APF 
gel, 4 minutes

L —> F & 

F —>  L

54 %( L —> F) 

57% (F —>  L)

Hicks et 
al., 1997

Sound human 
root 

PLM microscopy  pH cycling Argon,

12 J/cm2

1.23% APF 
gel, 4 minutes

L —> F & 

F —>  L

64 %( L —> F) 

66% (F —>  L)

Gao et 
al., 2006

15 sound 
human 
premolars

PLM microscopy  pH cycling NaF

1.14 J/cm2

2% neutral 
NaF , 4 
minutes

F —>  L laser only: 29.8%

fluoride only:30.8%

F —>  L: 84.5% 

* L —> F- Laser treatment before fluoride treatment; F —> L- Laser treatment after fluoride treatment; L —> F & F —> L- Laser 

treatment before and after fluoride treatment
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2.3.2. Possible mechanisms of the combined cariostatic effect of laser and fluoride

So far, the mechanism of the combined fluoride and laser treatment in inhibiting dental caries 

remains  unclear.  Several  studies have reported that CO2 (Gao et  al.,  2006; Hsu et  al.,  2004; 

Tepper et al., 2004), Argon (Goodman and Kaufman, 1977), Diode (Gonzaelez-Rodriguez et al., 

2009) and Nd:YAG (Zhang et al., 1996) laser irradiation may enhance fluoride uptake on tooth 

surfaces. Two theories have dominated the studies on the mechanism behind the cariostatic effect 

of  combined  laser  and  fluoride  treatment.  Scanning  electron  microscopic  studies  have 

demonstrated numerous spherical and globular precipitates that resembled calcium fluoride on 

root surfaces after fluoride and laser treatment  (Westerman et al.,  1999; Zhang et al.,  1996). 

These precipitates acted as a fluoride reservoir to replenish the fluoride released during periodic 

episodes of demineralization thereby interfering with the dynamic process of the caries formation 

(Haider et al., 1999; Westerman et al., 1999). The other theory emphasized the role of lasers on 

enhancing fluoride uptake into the tooth structure and thus optimizing its crystallinity instead of 

producing surface deposits  (Goodman and Kaufman, 1977; Hsu et al., 2004; Meurman et al., 

1997; Zhang et al., 1996). 

Using  the  enamel  powder,  the  study showed   a  14-fold  increase  in  fluoride  uptake  and an 

increase in crystallite size after laser irradiation (Goodman and Kaufman, 1977). The penetration 

of fluoride into a depth of 20 microns in root surface was successfully achieved by Nd: YAG 

laser was reported by another study (Zhang et al., 1996). It was believed that the application of 

fluoride before laser irradiation could lead to the mobilization of surface coating of fluoride 

allowing  the  incorporation  of  these  surface  precipitates  into  the  underlying  cementum  and 

dentine,  thus increasing their caries resistance  (Hicks et al.,  1997). With the use of synthetic 

hydroxyapatite one study proved that the  CO2 laser treatment in the presence of fluoride could 

even transform hydroxyapatite  into  fluorapatite,  resulting  in  a  reduced surface  area and less 

solubility (Meurman et al., 1997). 
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2.4. Aims and Objectives

The  aim of  this  study is  to  evaluate  the  effect  CO2 laser  combined  with  Diammine  Silver 

Fluoride treatment on demineralization and fluoride uptake in both enamel and root.

2.5. Hypothesis 

Diammine Silver Fluoride (DSF) when combined with CO2 laser will have a synergistic effect in 

preventing enamel and root demineralization and increasing the fluoride uptake in comparison 

with DSF or laser treatment alone 

53



CHAPTER III: Materials and Methods

3.1.  Part  I:  Effect  of  CO2  Laser  and  Diammine  Silver  Fluoride  treatment  on 

demineralization of Enamel and Root  

3.1.1. Tooth collection and cleaning    

The teeth collected for this study were collected from Dr. R. Baskaran, Manikandan Memorial 

Dental  Clinic,  Tamilnadu,  India.  They  were  premolars  extracted  for  orthodontic  purposes. 

Through clinical examination, all the teeth were ensured to be free from caries and other defects 

of tooth hard tissues. Only forceps were used during the extraction. Those collected teeth were 

stored at 4° C in 0.1% thymol solution.  The procedure for tooth collection was approved under 

the  exemption  category  of  the  Institutional  Review  Board  of  the  National  University  of 

Singapore (NUS-IRB reference code: 11-106E).

All the extracted teeth were cleaned in the Cariology Lab, Level-3, DSO Building, NUS through 

careful scaling to remove the debris, attached soft tissues and calculus and examined under a 
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stereo microscope (Olympus SZ40, Olympus Optical Co. LTD, Japan) at 10X magnification to 

select the teeth with no caries lesion. 

3.1.2. Sample preparation and grouping 

Fifteen human sound premolars were selected and cleaned.  A hole was drilled with a dental 

turbine (Super- Torque LUX 3 turbine 650, Ka Vo Dental Gmbh, Germany) at the apical portion 

of each tooth, to allow a dental floss (Oral-B Essential floss, Gillette Company, South Boston, 

MA, U.S.A.) to pass through. This could facilitate suspension of the teeth in the solutions during 

pH cycling. Each tooth was  varnished two times using an acid resistant varnish (Express Finish, 

Maybelline Inc., NY, U.S.A), leaving eight windows: two on the buccal surface and two on the 

lingual surface in enamel and two on the mesial and two on the distal surface in root ( Fig 3). 

Windows were approximately of 1 mm (height) by 3mm (length). The windows were created on 

the buccal and lingual surfaces of enamel and mesial and distal surfaces of root. The distance 

between the two windows on the same enamel and root surface was 2mm and the windows were 

located at 1 mm below the cemento enamel junction (CEJ) in the root.

(a)                             (b)                                 (c)                                  (d)

Fig.3: (a) Buccal view. (b) Lingual view. (c) Mesial view. (d) Distal view
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Randomly,  each of the four windows on the same tooth was assigned into four groups listed 

below by using a research randomizer program (www.randomizer.org). The random assignment 

was performed by an independent laboratory assistant in order to minimize selection bias. 

Group 1: Control

Group 2: Laser treatment alone

Group 3: Fluoride treatment alone

Group 4: Fluoride followed by laser treatment 

3.1.3. Fluoride treatment

38% Diammine Silver Fluoride  (Bee Brand Medical Dental Company Ltd, Osaka, Japan) was 

applied in the windows of 3 and 4 for 2 minutes using an applicator brush (Fig 4). After the 

treatment, the excess DSF solution was wiped off with tissue paper before further treatment. 
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(a)                                                                (b)

Fig 4: (a) Diammine Silver Fluoride.  (b) Application of DSF on windows

3.1.4. Laser treatment

The windows of group 2 and 4 received CO2 laser irradiation treatment. A single pulse mode of a 

carbon dioxide laser system (SMARTPS laser system, Shin Han Systek Co Ltd, Korea) with a 

wavelength of 10.6 µm, 50 HZ repetition rate, 200 µs pulse was applied (Fig 5a and 5c).   The 

laser tip was clamped on a chemical stand to prevent movement (Fig 5b).  The spot size was 

about 1.01 m in diameter (Fig 5d) ensured by a stylus-object distance of about 25 mm adjusted 

through a X-Y-Z positioner.  After laser treatment, all the teeth were rinsed in a beaker of de-

ionized and distilled water for 5 minutes at a stirring speed of 130 rpm at 37° C. 

                      

57

25 mm



 (a)                                                                            (b)

    

                       (c)                                                                               (d)

Fig 5: (a) SMARTPS CO₂ laser System. (b) Placement of tooth 25mm from laser tip. (c) Laser 

Settings. (d) Laser dimensions with average spot size of 1.01mm. 

3.1.5. Artificial lesion formation

A three-day pH-cycling scheme was performed, with 18-hours of demineralization followed by 

6-hours  of remineralization, at  a  stirring  speed  of 150 rpm at  37º  C.   The  demineralization 

solution  used  in  this  study  was  Yakult.  A  pH  meter  (Model  370,  ORION  Basic  Selective 

Benchtop Meter; Orion Research, Inc, Boston, MA, USA) was used to measure the pH value of 

the  solutions.  A calibration  range  of  pH 7  to  pH 4  was  selected.  Measurement  of  pH was 

repeated  for  5  separate  bottles  of  Yakult®  and  the  mean  pH was  3.65.  The  remineralizing 

solution, pH of 7.0, containing 0.15M potassium chloride, 1.5mM calcium and 0.9mM phosphate 

ions,  was prepared.  A 10-minute  wash in  the  de-ionized and distilled water  were performed 

between the demineralization and remineralization phases and at the end of the pH-cycling. Both 
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demineralization  and remineralization solutions were changed daily.  All  teeth  were stored in 

plastic containers with 100% humidity after pH cycling.

     

                            (a)                                                                 (b)

Fig 6: (a) Teeth suspended in Yakult® solution. (b) Teeth suspended in remineralizing solution.

3.1.6. Sectioning

All teeth were sectioned longitudinally, perpendicular to the crown surfaces through the central 

part of the each window with a Silverstone- Taylor hard-tissue microtome (Series 1000 deluxe. 

Sci Fab, Littleton, CO, USA) equipped with a Buehler Diamond Wafering Blade (Series 15LC, 

Buehler Ltd. Lake Bluff, IL, USA) (Fig 7). An opportune air mist for cooling was maintained 

during  the  whole  sectioning  process.  The  sections  were  detached  from  the  crown  using  a 

disposable  microtome  blade  (LEICA  model  818.  LEICA  Instruments  GmbH,  Nussloch, 

Germany). From central area of each window four sections, with the thickness of about 150 µm, 

were obtained. 
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(a)                                                       (b)

          Fig 7: (a) Silverstone-Taylor hard-tissue microtome. (b) Polarized light microscope 

3.1.7. Polarized Light Microscopy (PLM) Characterization

Amply  imbibed  in  water  all  the  sections  were  characterized  at  10x  magnification  under  a 

polarized light microscope ( Model BX51, Olympus, Japan), to produce PLM digital images with 

a color video digital camera (Model ssc-DC58AP, Exwave HAD, Sony, Japan) as in Figure 7b.

3.1.8. Lesion Depth Measurement 

On each of the PLM image,  by using the image analysis  software,  (Micro Image Olympus, 

Japan),  the  lesion  area was traced  and measured  within  the central  400 µm of  the  artificial 
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enamel caries lesion (Fig. 8). The area value was divided by 400, to produce the average lesion 

depth. Area measurements were performed by a blinded evaluator in order to minimize observer 

bias in the study. 

  

(a)                                                                 (b)

Fig 8: (a) Lesion depth measurement- enamel (b) Lesion depth measurement- root

3.1.9. Statistical Analysis

The dependant variable was lesion depth (in micrometers). The independent variables included, 

laser treatment, fluoride treatment and tooth structure.

After  testing  the  homogeneity  of  variance  by  the  Levene  test,  a  general  linear  model  was 

constructed  to  evaluate  the  main  effects  of  independent  variables  and  the  laser-fluoride 

interaction. A post hoc test, the Tukey-Kramer test for multiple comparisons, was adopted to 

evaluate the significance of the between-group differences with level of statistical significance 

set at p<0.05. The univariate general linear model (SPSS Statistics 16.0) was used to analyze the 
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main effects and the potential interactions between the independent variables on enamel and root 

respectively.  The  dependant  variable  was  lesion  depth  (in  micrometers).  The  independent 

variables were laser and fluoride. Tooth number was kept as a random variable.

3.2.  Part  II: Effect  of  CO2  Laser  and Diammine Silver  Fluoride  treatment  on  fluoride 

uptake in Enamel and Root 

3.2.1. Sample preparation and grouping

Five human sound premolars were selected and cleaned. Each tooth was varnished for two times 

using an acid resistant varnish (Express Finish, Maybelline Inc., NY, U.S.A), leaving eight 1 mm 

(height) x 3mm (length) windows with two on the buccal surface and two on the lingual surface) 

in enamel and root. The distance between the two windows on the same enamel and root surfaces 

was 2mm and the windows were located at 1 mm below the cemento enamel junction (CEJ) in 

the root. 

      

            

                                    (a)                                                                  (b)

Fig 9: (a) Buccal and Lingual windows -enamel       (b) Left and Right windows- root
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Each of the four windows on the same tooth was randomly assigned to one of the four groups 

listed below by using a research randomizer program (www.randomizer.org). The randomization 

was performed by an independent laboratory assistant in order to minimize selection bias. 

  

Group 1: Control

Group 2: Laser treatment alone

Group 3: Fluoride treatment alone

Group 4: Fluoride followed by laser treatment 

3.2.2. Fluoride treatment

38% Diammine Silver Fluoride  (Bee Brand Medical Dental Company Ltd, Osaka, Japan) was 

applied  in  the windows of  group 3 & 4 for  2  minutes  using an applicator  brush.  After  the 

treatment, the excess of DSF solution was wiped off with tissue papers before further treatment. 

3.2.3. Laser treatment

The windows of group 2 and 4 received CO2 laser irradiation treatment. The single pulse mode 

of a SMARTPS carbon dioxide laser system (SMARTPS laser system, Shin Han Systek Co Ltd, 

Korea) with a wavelength of 10.6 µm, 50 Hz repetition rate, 200 µs pulse was applied. The laser 

tip was clamped on a chemical stand to prevent movement and to ensure the spot size of about 

0.5 mm in diameter. After laser treatment, all the teeth were rinsed in the de-ionized and distilled 

water for 5 minutes at a stirring speed of 130 rpm at 37° C. 
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3.2.4. Sectioning

The first two cuts were done with a Buehler Isomet Low Speed Saw (Model no: 11-1280-250, 

Lake Bluff, IL, USA) equipped with a Buehler Diamond Wafering Blade (Series 15 LC, Buehler 

Ltd, Lake Bluff, IL, USA). Then the samples were sectioned using a Silverstone-Taylor hard-

tissue microtome (Series 1000 Deluxe, Scifab, Littleton,  CO, USA) equipped with a Buehler 

Diamond Wafering Blade (Series 15 LC, Buehler Ltd, Lake Bluff, IL, USA) for the rest of the 

cuts.  An  opportune  water  air  mist  for  cooling  was  maintained  during  the  whole  sectioning 

process. From each window 0.6mm thick sections were obtained. 

3.2.5. Fluoride uptake measurement by nuclear microscopy

The  measurement  of  fluoride  concentration  using  nuclear  microscopy  was  assisted  by  the 

Department  of  Physics,  NUS, Singapore  with the  2  MeV proton  beam focused  onto  a  spot 

approximately 5 micrometers. The tooth samples were irradiated with a 2 MeV proton beam at 

currents of 2-3nA from Singletron accelerator at the Center for Ion Beam Applications. Proton 

induced Gamma Emission (PIGE), Proton Induced X-ray Emission PIXE and (non)-Rutherford 

Backscattering (RBS) were applied. The characteristic X-rays produced by the various elements 

in the tooth samples were detected by a Si(Li) detector and the total proton fluence was measured 

by RBS. From this data, elemental distributions and concentrations were calculated. The calcium 

distribution maps were used for the straightforward identification of the tooth surfaces during the 

measurements. The fluorine content in the teeth was simultaneously determined by observing the 

6-7 MeV gammas from the nuclear reaction 19F (p, ag) 16O with a NaI (Tl) detector. During the 
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measurement,  the  beam spot  on  the  tooth  was  clearly  visible  due  to  the  fluorescence.  This 

allowed to select and identify the various regions of the teeth for analysis purposes.

3.2.6. Statistical Analysis

The  dependant  variable  was  “fluoride  uptake”.  The  independent  variables  included  “laser 

treatment”, “fluoride treatment” and “tooth structure”.

A factorial ANOVA model with level of statistical significance set at p<0.05 was constructed for 

the assessment of the main effects and potential interactions between factors. After testing the 

homogeneity of variance by the Levene test, a general linear model was constructed to evaluate 

the main effects of independent variables and the laser-fluoride interaction on enamel and root 

respectively. One-way ANOVA was used to evaluate the difference between the four groups. A 

post  hoc  test,  the  Tukey-Kramer  test  for  multiple  comparisons,  was  adopted  to  evaluate  the 

significance of the between-group differences with level of statistical significance set at p<0.05.

CHAPTER IV: RESULTS

4.1. Results for demineralization study

4.1.1. Enamel

The mean lesion depths (in μm) were 303.75 ± 12.30 for the control group, 224.08 ± 8.61 for the 

DSF group, 175.22 ± 4.10 for the laser group, and 152.74 ± 3.90 for DSF + laser group in 

enamel. Figure 10 shows the  mean lesion depths in enamel for the different treatments.
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 Figure 10: Mean lesion depth for different treatments in enamel.

When the percentage reduction of different treatments was compared to the control it showed 

that the combined DSF- laser treatment nearly doubled the cariostatic effect of DSF (Table 8).  

Table 8: Percentage reduction of lesion depth compared to control

CO2 Laser and DSF had a statistically significant effect on lesion depth in enamel (all p<0.001). 

The interaction between CO2 laser and DSF was significant in enamel (p=0.001). Individual tooth 

structure had no significant effect on lesion depth formation in enamel (p=0.310). 

4.1.2. Root

The mean lesion depths (in μm) were 1261.90 ± 11.68  for the control group, 814.85 ± 8.89 for 

the DSF group, 935.45 ± 8.42 for the laser group, 614.37 ± 4.84 for the DSF + laser group in 

root. Figure 11 depicts the mean lesion depths in root.
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Enamel Control Fluoride Laser FL
Mean 303.7507 224.08 175.22 152.74

Standard Deviation 47.63173 33.35123 15.8747 15.11813
%  reduction  25% 42% 49%

Ranking 1V III II I



Fig 11: Mean lesion depth for different treatments in root

When the percentage reduction of different treatments was compared to the control the combined 

DSF-laser treatment was double the cariostatic effect of the laser group.

Table 9: Percentage reduction of lesion depth compared to control

CO2 Laser and DSF had a statistically significant effect on lesion depth in root (all p<0.001). The 

interaction  between  CO2  laser  and  DSF was  significant  in  root  (p<  0.001).  Individual  tooth 

structure had no significant effect on lesion depth formation in root (p=0.401).

4.2. Results for Fluoride Uptake study
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Root Control Fluoride Laser FL
Mean 1261.90 814.85 935.45 614.37

Standard Deviation 45.2098 34.43197 32.61967 18.75995
%  reduction 35% 25% 51%

Ranking 1V II III I



The effect of laser and DSF on fluoride uptake in enamel or root was not statistically significant 

(all p> 0.05). The results were different from those of the PLM study and summarized in Table 

10 for enamel samples and Table 11 for root samples. 

4.2.1. Enamel

Table 10: Percentage increase in fluoride uptake compared to Enamel

4.2.2. Root

Table 11: Percentage increase in fluoride uptake

CHAPTER V: Discussion

5.1. Main Findings

5.1.1.  Significant  effect  of  combined  CO2 laser  and  DSF  in  inhibiting  enamel  and  root  

demineralization
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Enamel Control Fluoride Laser FL
Mean 3514 3573 3964 4290

Standard Deviation 1175.671 1867.359 997.6629 1988.796
%  of uptake  1.67 12 22

Ranking I I I I

Enamel Control Fluoride Laser FL
Mean 820 591.2 867 1165

Standard Deviation 800.0761 86.31164 734.4733 849.8286
%  uptake  -27 5.73 42

Ranking I I I I



Compared to the control group, the reduction in lesion depth for laser treatment alone and DSF 

treatment  alone was about 42% and 25% in enamel  and 25% and 35% in root respectively. 

Moreover, the combination of DSF treatment with the CO2 laser irradiation demonstrated almost 

50% reduction in lesion depth compared to control (no treatment) in enamel and root. This was 

similar to the results of previous studies which showed that the combined argon laser and APF 

treatment  had resulted in a 50-60% reduction in lesion depth compared  with the controls  in 

enamel and root caries initiation and progression (Flaitz et al., 1995; Hicks et al., 1995a; Hicks et 

al.,  1995b; Hicks et  al.,  1997).  Fluoride treatment  before laser  irradiation resulted in  greater 

reduction in lesion depth compared to fluoride treatment  after  laser irradiation  (Flaitz  et  al., 

1995; Hicks et al., 1995a; Hicks et al., 1995b). In contrast, another study reported a significantly 

higher (60%) inhibition of Ca release from enamel treated with acidulated phosphate fluoride 

after  laser  irradiation  (Tagomori  and  Morioka,  1989).  As  for  the  CO2 laser  treatment,  its 

combination with fluorides has shown greater efficacy than laser and fluoride treatment alone in 

inhibiting enamel caries (Hsu et al., 2001; Hsu et al., 2004; Tepper et al., 2004). There was 91% 

inhibition  of  enamel  demineralization  after  the  combined  CO2 laser  and  fluoride  treatment 

evaluated in a pH-cycling system (Featherstone et al., 1991). Treatment with low-intensity CO2 

laser  irradiation  in  combination  with  2% NaF gel  resulted  in  a  98.3% reduction  in  enamel 

mineral loss (Hsu et al., 2001). 

5.1.2. Combination of CO2 laser and DSF – A promising method in caries prevention

In the studies with the combined fluoride and laser treatment for caries prevention, Argon and 

Nd: YAG were used. An important concern regarding laser irradiation of teeth which limits laser 

application in dental practice and which leads to many laser strategies being abandoned is the 

possibility of overheating the tooth pulp that could cause pulp-necrosis (Zuerlein et al., 1999). 

This is more important when laser irradiation is conducted on the root surface where thinner 

tooth structure may result in a higher temperature change in pulp (Powell et al., 1990). 

Regarding  CO2 laser,  it  is  highly  absorbed by tooth  surface,  resulting  in  a  temperature  rise 

limited to a thin layer near the surface (Stern, 1968; Nelson et al., 1987; Ferreira et al., 1989, 

Zuerlein et  al.,  1999).  Previous studies have shown that CO2 laser irradiation will  not cause 

thermal injury to the pulp if the total energy delivered in a few seconds is less than 4-8 J (Fisher 

and Frame, 1984; Powell et al., 1990). In the current study, the CO2 laser irradiation with an 

69



energy density of 1.14 J/cm2 was adopted. Although the effects of the treatment of pulp were not 

investigated in this experiment, a few in vitro and in vivo studies have suggested the safety of the 

irradiation  conditions  (Fowler  and  Kuroda,  1986;  Anic  et  al.,  1992;  Yu  et  al.,  1993).  The 

unfavorable  high  temperature  alterations,  such  as  melting  and  formation  of  new  calcium 

phosphate phases, reported as a consequence of CO2 laser at a high energy density (Kantola et 

al., 1973; Kuroda and Fowler, 1984), were probably not formed under the irradiation conditions 

used in this  study (Hsu et  al.,  2000; Hsu et  al.,  2001; Zuerlein et  al.,  1999).  Therefore,  the 

combination of DSF and CO2 laser treatment may offer a clinically promising safe therapy with a 

higher efficacy in caries protection than DSF and CO2 laser treatment alone.

5.1.3. Will low cost laser therapy enhance DSF’s cariostatic effect in the rural communities?

The clinical trials have demonstrated that DSF’s lowest prevented fractions for caries arrest and 

prevention were 96.1% and 70.3%, respectively (Rosenblatt et al., 2009). In contrast, fluoride 

varnish’s highest prevented fractions for caries arrest and prevention were 21.3% and 55.7%, 

respectively.  Similarly,  DSF’s  highest  numbers  needed  to  treat  for  caries  arrest  and  caries 

prevention were 0.8 (95% CI = 0.5–1.0) and 0.9 (95% CI = 0.4–1.1), respectively (Rosenblatt et 

al.,  2009).  For  fluoride  varnish,  the  lowest  numbers  needed  to  treat  for  caries  arrest  and 

prevention were 3.7 (95% CI = 3.4–3.9) and 1.1 (95% CI = 0.7–1.4), respectively (Rosenblatt et 

al., 2009).  These promising results suggest that DSF is more effective than fluoride varnish, and 

may be a valuable caries-preventive intervention. Moreover, DSF has been shown to be a safe, 

affordable, effective, efficient, and equitable caries-preventive agent to meet the criteria of both 

the WHO Millennium Goals and the US Institute of Medicine’s criteria for 21st century medical 

care (Rosenblatt et al., 2009). 

Due to the high cost of high power lasers, they are still not widely employed in private practice, 

particularly  in  developing  countries.  Low  power  red  and  near-infrared  lasers  may  be  an 

alternative approach, since reports in the literature have suggested that their use with or without 

topical fluoride, can lead to enhanced tooth resistance against dental caries (Slujaiev et al., 1990). 

This study used a 5-minute rinse after DSF application to simulate the intra-oral swallowing or 

rinsing  effect  and  found  that  the  cariostatic  effect  of  DSF nearly  doubled  in  enamel  when 

combined with CO2  laser. Even though low power lasers are less expensive than high power 

lasers, its use in low-income rural communities would still be prohibitive. 
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5.1.4. Current relevance of the combined treatment strategy in caries prevention

Although fluoride has been validated to be an effective agent in caries prevention and has been 

widely applied for several decades, it has not resulted in the elimination of dental caries (Winn et 

al.,  1996).   Conventional  fluoride  treatments  appeared  to  be  not  as  effective  for  root  as  for 

enamel, due to the greater critical pH of dentine/cementum and the quicker progression rate of 

root  caries  (Herksroter  et  al.,  1991;  ten  Cate  et  al;  1995;  ten  Cate,  1997).  The  preventive 

measures for root caries may have to be more aggressive due to the highly porous structure of 

root. As a result, the combination of fluoride with other preventive methods, instead of fluoride 

alone was proposed to enhance its efficacy (Ogard et al., 1994, ten Cate, 1997; ten Cate. 1999). 

The data of this present study substantiates this approach.

5.1.5. Possible mechanisms of laser effect in enhancing fluoride uptake

The fluoride uptake after topical fluoride application has been validated as a process of diffusion 

with simultaneous chemical reaction (Duckworth and Braden, 1967). However, several potential 

mechanisms have been speculated in laser-enhanced fluoride uptake. The significant carbonate 

loss induced by laser irradiation has been revealed by previous studies (Oho and Morioka, 1990; 

Zuerlein et al., 1999). The high concentration of fluoride ions may replace the carbonate and be 

incorporated into the crystal structure, resulting in the formation of fluoridated hydroxyapatite or 

fluorapatite  (Goodman and Kaufman,  1977).  An experiment  on synthetic  hydroxyapatite  has 

demonstrated the phase transformation to fluorapatite by laser above 38 J/cm2 (Meurman et al., 

1997). Using low-energy laser, fluoridated hydroxyapatite has been formed as well (Hsu et al., 

2004).   

5.1.6. Potential problems in evaluating F-uptake in this study

5.1.6.1. Sample Preparation

The potential factor which may affect the results in fluoride uptake is the size of the samples. 

Some of the samples were shaped after the fluoride and laser treatment to fit into the loading post 
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during the fluoride measurement. Since the four windows on the same tooth were assigned into 

four groups by an independent laboratory assistant, selection bias was minimized in this study. 

 5.1.6.2. Fluoride measurement using nuclear microscopy technique

In  most  of  the  fluoride  uptake  studies,  two  traditional  methods,  namely  the  acid-etch  and 

microdrill techniques, were used for the assessment of fluoride uptake in teeth (Sakkab et al., 

1984; Grobler and Kotze, 1990; Duckworth and Gilbert, 1992; Dunipace et al., 1997; Soyman et 

al.,  1997).  With  these  two methods,  accuracy  cannot  be  guaranteed  during  the  processes  of 

etching  and  fluoride  measurement  (Duckworth  and  Gilbert,  1992),  and  may  result  in 

considerable over- or under-estimation of the amount of fluoride (Sieck et al., 1990). The PIGE 

technique used in this study gives positive and specific identification of fluorine (Lenglet et al., 

1988).  But  the  major  drawbacks  of  this  technique  were  poor  intrinsic  resolution  and  long 

analysis times (12-16 hour per scan). The samples were cut after the fluoride and laser treatment. 

There may be contamination of the treated surface while cutting and rinsing of samples after the 

fluoride/laser  treatment.  Other  potential  problems  may  include  the  inherent  heterogeneous 

distribution of fluoride in the control group and the potentially erroneous sampling of treatment 

sites for F-counts. These issues might possibly contribute to the inconclusive fluoride uptake 

data.

5.2. Limitations, Future directions and Conclusion

5.2.1. Limitations 

We would like to highlight some limitations in this study. 

The  duration  and  frequency  of  exposure  of  tooth  samples  to  the  demineralizing  and 

remineralizing solution for 3 days is not exactly the case in the oral environment. 

The mechanism of action by which the CO2 laser and DSF acted synergistically to reduce the 

lesion depth has not been fully investigated in this study. 

The results of this study provide in-vitro data only. Other variables, such as the role of biofilm, 

bacteria, and saliva, have not been taken into account. 

5.2.2. Future directions 
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In view of the above-mentioned limitations of this study, our future directions will be

1. To develop a realistic exposure time and frequency for the combined CO2 laser and DSF 

treatment so that it can be implemented at the chair-side. This will be accomplished by 

performing time-series in-vitro experiments similar to this study, followed by choosing 

the  shortest  and  most  effective  time-point  at  which  the  combined  DSF +  CO2 laser 

treatment may maximize its cariostatic effect. 

2. To characterize the crystallographic alterations in enamel and root after the combined 

fluoride and laser treatment. This can be accomplished using electron and micro X-ray 

diffraction, coupled with transmission electron microscopy studies. 

3. To  examine  the  possibility  of  using  a  dynamic  model  which  could  simulate  the 

environment of oral cavity including oral biofilm in order to study the cariostatic effect of 

DSF+CO2 lasers. 

5.2.3. Conclusion 

The CO2 laser when combined with DSF will potentiate the cariostatic effect of DSF. Further in-

vitro, in-vivo and epidemiological studies are necessary to fully understand the combined effects 

of this CO2 laser and DSF application in the clinical setting.
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