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Summary 
 
Recent evidence has suggested that the presence of ion channel mutations in 

the interstitial cells of Cajal (ICC) and the smooth muscle cells (SMC) may 

cause gastrointestinal (GI) motility disorders. Specifically, the R76C mutation 

of a sodium channel interacting protein, telethonin and the G298S mutation of 

the sodium channel were found in patients presenting with idiopathic intestinal 

pseudo-obstruction and irritable bowel syndrome, respectively. However, the 

genotype to phenotype link remains unclear. How, if at all, do these mutations 

disrupt GI organ electromechanics and lead to motility disorders?  

 

Multi-scale computational modelling is an attractive approach that works 

synergistically with experimental and clinical efforts, towards the elucidation 

of disorder etiology and in treatment development. Here, the hypothesis that 

the rare and missense mutations of R76C and G298S are pathogenic factors 

for GI motility disorders was investigated through the development of multi-

scale computational models.  

 

Computer models describing the electrophysiology of wild-type, R76C and 

G298S sodium channels were developed and validated. Eleven models were 

selected for higher spatial scale investigations. At the single cell scale, a novel, 

biophysical single cell model of the human small intestine SMC 

electrophysiology was developed, which together with existing well-

established gastric models of ICC and SMC electrophysiology, were used to 

integrate and investigate the sodium channel models. At the multi-cellular 



 

x 
 

scale, two influential features of tissue electrophysiology were described to 

create a realistic one dimensional gastric model. An extended bidomain 

method was developed to integrate the presence of multiple 

intercommunicating ICC and SMC from the single cell descriptions, while the 

electrical slow wave entrainment and propagation mechanisms, essential for 

healthy electrical behaviour, were incorporated. Eventually, a one dimensional 

model simulating a strip of gastric wall was implemented to investigate the 

effects of the mutations.  

 

From the in silico experiments, the R76C mutation caused a gain-of-function 

effect as reflected in the increased sodium current entry in all the single cell 

models of the ICC and SMC as well as in the ICC and SMC present in the 

gastric strip model. Consequently, the ICC and SMC electrophysiology were 

altered, with an increase in slow wave duration, resting voltage depolarization 

and an increase in slow wave frequency. The G298S mutation, in general, 

caused a loss-of-function effect where sodium current entry decreased in the 

single cell models and the gastric strip model.  However, these changes did not 

translate into significant electrical slow wave changes. Therefore, neither 

mutation is definitively pathogenic, however the R76C mutation seems to 

offer a greater potential than the G298S mutation in causing GI motility 

disorders.  

 

Future work should refine existing models with new ones developed, 

following new yet reliable experimental findings. GI organs are 

electromechanical, therefore the development of a multi-scale mechanical 



 

xi 
 

framework, coupled to the existing multi-scale electrophysiology framework 

can reveal how electrical alterations from mutations are translated into 

mechanical disruptions to cause GI motility dysfunction.  
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Introduction 
      
 
 
 
 
 
 
 

“A journey of a thousand miles begin with a single 
step.”  
– Laozi, Chinese philosopher 
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1 Introduction 

1.1 Motivation 

Significant advances in our understanding of the gastrointestinal (GI) tract in 

health and disease have been achieved in recent times, however, much remains 

unknown with regards to the etiology of most functional GI disorders. A 

functional disorder is one that arises despite the absence of structural damage 

to an organ. In such cases, treatments target alleviation of symptoms instead of 

the underlying mechanisms of the disorder [1]. In some cases, the treatment 

causes undesirable side-effects. To complicate matters, GI disorders are 

typically heterogeneous and complex, meaning that a multitude of genetic 

and/or environmental factors are involved in the pathogenesis of the disorder. 

This poor understanding of etiology has contributed to the unwillingness of 

several pharmaceutical companies to develop GI drugs, despite an apparent 

huge and expanding demand [2]. More importantly, we are unable to improve 

the quality of life and reduce economic costs to the victims of these chronic GI 

disorders.  

 

A series of comprehensive studies by Everhart and Rudhl on the burden of 

digestive diseases in the United States has estimated that GI diseases have 

affected about 72 million Americans, caused about 10% of all deaths and 

resulted in a staggering total cost of USD142 billion in 2004 alone [3-5]. In 

the Asia-Pacific region, the prevalence of irritable bowel syndrome  is fast 

increasing, particularly in emerging economies, brought about by changes in 
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diet and lifestyle [6] (see Figure 1.1). In the local context (Singapore), Changi 

General Hospital reported that irritable bowel syndrome affects 30% to 50% 

of the local population, and that patients might suffer from “a great deal of 

discomfort and distress” but schemes are available to help patients “control the 

symptoms” of the GI disorder [7]. Given the increasing prevalence and 

substantial adverse impacts of GI disorders, expediting our understanding of 

GI tract in health and diseases is critical.  

 

Figure 1.1.  World map of prevalence of irritable bowel syndrome from 2000 to 2004 by 
Rome 2 criteria, while in parentheses are statistics by Manning criteria. Adapted from [6].  
 

The key focus for us is idiopathic GI motility disorders of the stomach and 

small intestine; such disorders include gastroparesis, delayed gastric emptying, 

rapid gastric emptying, irritable bowel syndrome and intestinal pseudo-

obstruction, and are characterized by a mix of symptoms such as abdominal 

pain, early satiety, nausea, constipation and diarrhoea. Idiopathic GI motility 

disorders are usually diagnosed through a series of steps that includes looking 

at medical history and performing indicative tests such as radionuclide transit 
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tests through imaging, ingestible measurement capsules and the examination 

of faecal bacteria growth. Should these tests indicate an absence of structural 

lesion but a presence of motility impairment, it is classified as a case of a 

functional disorder of GI motility with unknown causation.  

 

Nonetheless, there are an increasing number of studies that correlate some of 

these idiopathic disorders with genetic variants such as ion channel mutations. 

Ion channelopathies are well known for other electrically active body systems 

such as in the nervous system where potassium channel mutations are known 

to cause episodic ataxia and in the cardiac system where sodium channel 

mutations are known to cause dysrhythmias [8, 9]. Similarly, it is possible that 

genetic mutations, specifically those of ion channels in the primary motility 

effectors of the smooth muscle cells (SMC) and the pacemaking interstitial 

cells of Cajal (ICC), are candidates for causing GI dysrhythmia and 

subsequently motility disorders in a subset of patients. Some prokinetic drugs 

are designed to alleviate GI motility disorder symptoms through actions on ion 

channels; examples include nifedipine, diltiazem, otilonium bromide which act 

on calcium channels, lidocaine, ranolazine which act on sodium channels, and 

glipizide, amiodarone which act on potassium channels, while lubiprostone 

acts on chloride channels [10]. However, these prokinetics drugs are likely 

prescribed to improve motility through “blind” actions on ion channels, since 

the underlying mechanisms of the motility disorders are not well-understood. 

Furthermore, due to the non-specific expression of these ion channels in other 

body systems, some of these drugs could impose adverse side-effects. Despite 

this, ion channels remain as promising targets for the treatment of GI motility 
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disorders because of benefits such as specific targeting of drugs on ion channel 

sub-types and their macro-complexes as well as the high throughput of ions 

across channels that increases drug efficacy [10, 11]. 

 

However, so far, there are no ion channel mutations of the ICC and SMC 

which are known to cause motility disorders. Early evidence suggests the 

SCN5A gene encoded sodium channel, which is found in the ICC and SMC, 

as a potential candidate for ion channelopathy of GI motility. Sodium channel 

mutations have been statistically correlated with GI symptoms [12, 13] while 

rare and missense mutations were identified in the blood of patients suffering 

from chronic intestinal motility disorders (see Table 1.1 for some of these 

sodium channel related mutations) [14, 15]. However, it remains unclear how 

these mutations contribute to GI motility disorders and further studies are 

challenged by limitations in experimental techniques applied to the GI tract. 

Computational modelling therefore represents a key tool to further our 

understanding of GI motility in health and disease.  

Table 1.1. List of SCN5A related mutations associated with GI and cardiac symptoms, 
referred to by the references [14, 15] in the main text. 
 

Mutation 
related to 
SCN5A 

GI Symptoms Cardiac 
Symptoms 

R76C Yes [14] Not tested 
G298S Yes [15] Yes [206] 

G1743R Not tested  Yes [13] 
R1623Q Not tested  Yes [13] 
R1644H Not tested Yes [13] 
E1784K Not tested Yes [13] 
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1.2 Approach 

Computational modelling in biology and physiology in the recent years, has 

received strong attention. Multidisciplinary efforts have been invested to 

model, analyze and predict complex biological and physiological mechanisms 

with reasonably good success. However, several major challenges exist, one is 

the so-called “grand challenge” of multi-scale computational modelling that 

involves integrating interdependencies across several observation scales, while 

maintaining computational efficiency. Research work into multi-scale 

computational modelling promises to help us better understand disease 

mechanisms, establish diagnostic biomarkers, personalize and optimize 

treatment, and to develop new therapeutic options.  

 

The International Union of Physiological Sciences (IUPS) Physiome Project, 

set up some 10 years ago, is one such project aimed at multi-scale modelling 

[16]. It is a worldwide public effort that includes the construction of a 

computational framework to understand human physiology which involves the 

development of integrative models across several scales. These scales consists 

of gene expression to cell to organism, modelled in a number of aspects such 

as gene regulatory networks, protein pathways, integrative cellular function 

and multi-cellular structure-function relationships in a tissue or whole organ.  

 

One major theme of the IUPS Physiome Project is the digestive and GI system, 

also known as the GIome [17], and this is the main theme that this PhD thesis 

falls under. The aim is to model GI motility to understand its healthy and 

diseased states with an eye towards improving GI healthcare. The cardiac 
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computational modelling field is much more mature and has observed 

successes in the elucidation of ion channelopathy etiology and drug 

development. This contrasts the relatively nascent field of GI computational 

modelling. Nonetheless, progress has accelerated in recent years due to a steep 

increase in our understanding of GI tract physiology.  

 

Developing computer models of multiple spatial scales are required in this 

research. Here, the approach to such multi-scale modelling would necessarily 

be a pragmatic one, i.e., a “middle-out” approach where models are built and 

refined from any scale with good availability of information [18]. These 

models are then integrated to the multi-scale framework as shown in Figure 

1.2. For example, one can begin with improving an existing multi-cellular 

description, followed by modelling ion channels, building a single cell model, 

and then (re-)investigating the effects of ion channel variants at different 

levels of this multi-scale GI framework.  

 

Figure 1.2.  Pragmatic approach for multi-scale modelling. Instead of pursuing a top-down 
(from systems to sub-cellular mechanism) or bottom-up (in the reverse hierarchy), the 
pragmatic approach of middle-out [18] is chosen. This means models are built and refined at 
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any scale, depending on the availability of information and resources; efforts should be made 
to iteratively refine and integrate models from these different scales into a systemic 
framework.  
 

At each spatial scale, model construction is guided by an ideal outline shown 

in Figure 1.3. An adequate model is formulated with a suitable level of 

structural complexity and granularity, while a chosen set of parameters is 

parameterized against training data. The model output is then checked against 

validation data and subjected to sensitivity and robustness testing, if necessary. 

These will provide information useful for decisions in modelling design, and 

for providing feedback on the training data. This can be repeated from time to 

time to improve the model as further data and findings appear. Modelling can 

additionally be viewed to be in an iterative relationship with clinical and 

experimental studies where progress in any of these three major research 

thrusts can assist each other’s development. For instance, modelling can 

provide insights to guide experimental design whose results can in turn help to 

refine or discriminate existing models. 

 

Figure 1.3.  An ideal outline for creating an adequate model at any spatial scale. 
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1.3 Hypothesis and objectives 

Against the above background, the motivation in this thesis is to examine the 

primary hypothesis that ion channel mutations, particularly the mutations of 

SCN5A, contribute to GI motility disorders. The following objectives were 

therefore defined: 

 

(1) Development of novel computer models describing the wild-type 

(normal) and mutation affected ion channels, as well as other ion 

channel variants that arise from alternative splicing and polymorphism. 

 

(2) Development of a novel and biophysically based human jejunal 

smooth muscle cell model.  

 

(3) Development of novel multi-cellular models that describe:  

(a) An extended bidomain framework of multiple cell types 

(b) The incorporation of tissue heterogeneities 

 

(4) Integration of the ion channel models into existing and newly 

developed single cell and multi-cellular models, and then to investigate 

the mutations’ contribution towards GI motility disorders.  

 

1.4 Organization of thesis 

This thesis is organized into six chapters to address the hypothesis and 

objectives that were identified. An outline of the subsequent chapters is given 

below.  
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Chapter 2 - Background 

The first part of this chapter provides an introduction to the biology and 

physiology of GI motility, particularly for the stomach and small intestine. 

The existing GI models across the spatial scales are then reviewed.  

 

Chapter 3 – Ion channel modelling 

At the sub-cellular level, the focus is on modelling ion channel 

electrophysiology. The theoretical methods and experimental information 

useful for ion channel modelling are discussed. This includes two major 

formalisms, i.e., the Hodgkin-Huxley formalism and the multi-state Markov 

formalism. The traditional Hodgkin-Huxley formalism was first examined by 

modelling the human sodium channels in wild-type and mutation affected 

states (i.e., a R76C mutation). This formalism was found to be inadequate in 

describing channel kinetics. Subsequently, the Markov formalism was applied 

to create models that were able to describe channel kinetics well.  The same 

Markov modelling methodology was then applied to model human sodium 

channels for four common polymorphic-splice variants under wild-type state 

and a G298S mutation state, resulting in a basic set of eight sodium channel 

models. With these models, the mutations were computationally investigated 

in existing biophysically based single cell models of the stomach. Additionally, 

the interest in examining an alternative ion channel mutation led to the 

modelling and investigation of a potassium channel mutation, I177N, which is 

also discussed in this chapter.  
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Chapter 4 - Single cell modelling 

Existing single cell models of GI electrophysiology do not include a human 

intestinal smooth muscle model, while recent experimental data are coming 

from the human small intestine, and early evidence suggests sodium 

channelopathies of intestinal motility disorders. Therefore, a novel 

biophysically based human jejunal SMC model of the small intestine was 

developed with the details discussed in this chapter. Subsequently, the sodium 

channel models that were developed in Chapter 3 were integrated into the 

human jejunal SMC model to evaluate the consequences of these mutations.  

 

Chapter 5 - Multi-cellular modelling 

In integrative multi-scale modelling, one aim is to appropriately integrate 

cellular descriptions into a multi-cellular framework such as a tissue or organ 

model where there is intercellular communication and where tissue 

heterogeneities are incorporated. Given the complexity of the GI wall tissue, 

the traditional bidomain framework is unsuitable in accounting for the 

multitude of cell types and their distribution, in GI electrophysiology. 

Therefore, an extended bidomain framework for including multiple cell types 

was developed. The development and validation of the extended bidomain 

framework as well as the incorporation of tissue heterogeneities are presented 

in this chapter. This is followed by an examination of the effects of ion 

channel mutations in the multi-cellular model developed here.  
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Chapter 6 – Conclusions  

This chapter summarizes the research work presented in this thesis and 

recommends future work to advance the current development and findings. 
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“If I can’t build it, I don’t understand it.”  
– Richard Feynman, American physicist 
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2 Background  

2.1 Gastrointestinal tract physiology 

2.1.1 Overview 

The gastrointestinal (GI) tract, also known as the digestive tract or alimentary 

canal, comprises a series of connected organs that perform a range of 

functions that include ingestion of food, digestion of contents through 

mechanical and biochemical actions, absorption of nutrients, electrolytes and 

water, and excretion of waste products. The GI tract also acts as a component 

of the immune system, protecting the human body against attacks from 

pathogenic microorganisms and toxic materials that can enter the GI tract via 

what we eat [19-22]. These functions are executed and assisted by the main 

and accessory organs of the human GI tract as shown in Figure 2.1. In the 

proximal to distal direction, we have the tongue, jaw and teeth followed by the 

oesophagus that delivers the swallowed contents to the stomach, which then 

releases the processed materials to the small intestine through to the large 

intestine, before the eventual waste materials are stored in the rectum for 

excretion through the anus. The accessory organs of parotid gland, liver, 

gallbladder and pancreas provide supportive functions such as secretion of 

digestive agents and metabolism of absorbed nutrients. The stomach and the 

small intestine, and in particular their motility function, are the focus of this 

work. 
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Figure 2.1. Anatomy of the human GI tract. Adapted from [23]. 

2.1.2 Stomach 

The stomach is located between the oesophagus and the small intestine.  It is a 

hollow muscular organ that can be divided into three key regions of the fundus, 

the corpus and the antrum. The fundus, located at the proximal end of the 

stomach, acts as a storage space for incoming food through adaptive relaxation. 

The corpus and the antrum, which are located in the mid region and distal 

region of the stomach respectively, are the areas in which significant phasic 

motility occurs. They are electrically active with rhythmic electrical slow 

waves at a frequency of 3 cycles per minute (cpm), as illustrated in Figure 2.2. 

The propagation of these slow waves from the initiation site at the corpus to 

the antrum coordinates peristalsis. Rings of contraction are formed at the 

corpus and travel towards the antrum. A contraction ring takes approximately 

20 s to move from the initiation site at the corpus to the distal antrum. At the 

extremities of the stomach are sphincters that connect to the adjacent organs, 

i.e., the lower oesophageal sphincter at the proximal end connects to the 
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oesophagus, and the pyloric sphincter at the distal end connects to the 

duodenum of the small intestine. Particularly, if the pyloric sphincter is closed 

when the stomach contracts, retrograde propulsion of the gastric contents 

occurs, resulting in mixing and breaking down of food. The amount of 

contents that gets transported into the duodenum of the small intestine depends 

on the extent of pylorus opening. The pylorus also acts as an electrical barrier 

that prevents the electrical slow waves from the duodenum from interfering 

with stomach motility and vice versa [19-22, 24].  

 

Figure 2.2. Electrical recordings and peristaltic waves from the stomach. Electrical slow 
waves of 3 cycles per min of varying morphology can be recorded from the corpus to antrum 
of the human stomach. The fundus is known to be electrically quiescent and exhibits tonic 
contraction and relaxation to accommodate food. Peristaltic waves, in the form of contraction 
rings, are coordinated by electrical slow waves and propagate towards the antrum. Spike 
potentials on slow waves are an indication of stronger smooth muscle contraction in the 
stomach wall. Adapted from [24].   
 

2.1.3 Small intestine 

The small intestine, which is located between the stomach and the large 

intestine, can be divided into three regions, i.e., the duodenum, the jejunum 

and the ileum (see Figure 2.3). The small intestine is where most of the 



Chapter 2. Background 

 
15 

 

digestion and nutrient absorption take place. Two main types of motility are 

present in the small intestine. The first type is segmentation, where the small 

intestine is organized into several non-propagating compartments of 

contractions. This facilitates chyme turn-over and mixing with digestive 

secretions. The second type is peristalsis which facilitates the transport of 

digesta down the GI tract, akin to that in the stomach. Notably, the jejunum 

forms about 40% of the small intestine, and thus provides a significant surface 

area for digestion and absorption. Motility in the small intestine is also driven 

by intrinsic electromechanical activity of its cells. However, the coordination 

of electrical and mechanical activities is not as well understood compared to 

the stomach [25].  

 

 

Figure 2.3. The human small intestine. It is divided into three regions, the duodenum, 
jejunum and ileum. Adapted from [26]. 
 

2.1.4 Motility 

Motility results from rhythmic relaxation and contraction of the GI walls. It is 

an important activity that enables the GI tract to perform transportation, 

mixing and excretion of materials. Motility occurs in the GI walls due to the 

electrical and mechanical (i.e., electromechanical) activities of relevant cells 
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that are present within. Extrinsic factors, such as neural signalling, hormones 

and the immune system modulate motility [27]. Figure 2.4 shows an 

anatomical outline of a general section through the GI wall, containing cells 

responsible for motility. The innermost layer is the mucosa that forms the 

immediate wall of the lumen and is responsible for secretion and absorption. 

The muscularis muscosae is a thin layer of smooth muscle that supports 

secretion of digestive agents from the mucosal glands, while the submucosa 

plexus contains a network of neurons that forms part of the enteric nervous 

system. Next, the submucosa is where blood and lymphatic vessels run 

through. These vessels are essential for the transport of nutrients and 

substances, to and away from the GI wall. The submucosa is followed by the 

circular smooth muscle layer where circumferential muscular contractions 

occur. Then, there is the myenteric plexus which also contains a network of 

neurons that form the enteric nervous system. Both the submucosa and 

myenteric plexi provide the major nerve supply to GI tract and mediate motor 

control and sensory control. The longitudinal muscle layer is where 

longitudinal muscular contractions occur; this layer is thinner relative to the 

circular muscle layer. The smooth muscle cells in both the circular and 

longitudinal layers are electrically excitable and can transduce electrical 

signals into contractions through calcium linked actomyosin cross-bridging 

activity. In addition, both muscle layers receive signalling input from the 

enteric neurons. Finally, the outermost layer is the serosa which is a thin layer 

of connective tissue (about 0.1-0.2 microns, [28]) containing serous cells that 

secrete lubricating fluids to protect its organs from frictional damage [17, 29-

34]. 
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Figure 2.4. General structure of the human GI wall. Adapted from [35] 

 

It was previously thought that the GI circular and longitudinal smooth muscles 

were electrically self-exciting and that this led to their contractions. First 

discovered by Cajal in 1893 [36], the interstitial cells of Cajal (ICC) were later 

found to be the electrical pacemaker cells responsible for the excitation and, 

therefore, mechanical actions of the electrically excitable but passive GI 

smooth muscle cells [37]. A variety of ICC sub-types were found to locate in 

different layers of the GI wall, as shown in Figure 2.5 [38]. Briefly, the ICC of 

the myenteric plexus, ICC-MY (also known as ICC-MP), are generally 

accepted as the primary pacemaker cells in the stomach and small intestine, 

while ICC of the submucosa plexus, ICC-SMP, are accepted as the primary 

pacemaker cells in the colon [39, 40]. The circular muscle layer ICC, ICC-CM, 

and the longitudinal muscle layer ICC, ICC-LM, serve the role of active 

regeneration of slow waves that are conducted into these layers from the 

primary pacemaker ICC-MY [41, 42]. ICC-CM and ICC-LM are considered 

as intramuscular ICC (ICC-IM), and these, together with the deep muscular 

plexus ICC, ICC-DMP, are suggested to mediate enteric neuronal signalling 
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[43]. Not much is known about the functional roles of the other ICC sub-types 

except for their identification in the respective anatomical locations within the 

GI wall.  

 

Figure 2.5.  A variety of interstitial cells of Cajal (ICC) is present in different layers of the GI 
tract. ICC-SM is found at submucosa-circular muscle interface of stomach pylorus. 
Similarly, ICC-SMP is found at the interface of submucosa plexus and circular muscle of the 
colon. ICC-DMP are in the deep muscular plexus of the small intestine. ICC-CM and ICC-
LM are the ICC located within the circular and longitudinal muscle layers respectively.  ICC-
MP is the ICC network found in the myenteric plexus between the circular and longitudinal 
smooth muscle layers. ICC-SS are the ICC found in the subserosal tissue space. Adapted 
from [38]. 
 
 

2.1.5 Cellular electrophysiology of key motility cells 

The key cell types in the stomach and the small intestine that are involved in 

GI motility are the smooth muscle cells (SMC) from the circular muscle layer 

and the ICC-MY. The circular smooth muscle layer, found in both the stomach 

and small intestine, is the thickest muscle layer in the GI wall, and is therefore 

a main effector of motility. Adjacent to the circular smooth muscle layer, is 

the myenteric plexus layer, in which the pacemaking ICC-MY are found. The 
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ICC-MY form a network within the myenteric plexus. This network is well-

established to initiate and coordinate electrical slow waves that excite the 

circular smooth muscle layer [44-46]. On the other hand, lesions on the ICC-

MY and its network are known to cause GI motility disorders [47-50]. Given 

the critical function of the ICC-MY as well as of the circular SMC, these are 

deemed to be the key cell types involved in motility. Here, the research focus 

is on describing the electrophysiological characteristics of these key cell types 

in the stomach and the small intestine. The electrophysiology of these cells is 

important in determining the smooth muscle mechanical activity and hence 

motility. 

 

Stomach  

The ICC-MY excite the largely passive SMC; direct evidence of electrical 

coupling between the ICC-MY and SMC was provided by Hirst et al [51]. 

Figure 2.6 shows that the ICC electrical slow waves dictate the SMC electrical 

slow wave morphology and frequency. However, the SMC slow waves are of 

lower amplitude than the ICC slow waves due to the degree of electrical 

coupling through gap junction proteins, the low ICC-to-SMC ratio and the 

intrinsic excitability of the SMC. 

 

In the stomach of large mammals such as dogs and humans, a dominant slow 

wave frequency of about 3 cpm is typically recorded from an intact stomach. 

However, studies have shown that isolated cells (or tissues) exhibit a gradient 

of decreasing intrinsic frequency from the corpus to the antrum (for example, 

canine recordings as shown in Figure 2.7) [52, 53]. The variation in intrinsic 
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frequency arises due to cellular variations in pacemaking properties of the ICC 

in the ICC-MY network, and this frequency gradient is central to the healthy 

performance of gastric motility [54, 55]. Typically, the fastest pacemaking 

ICC appear in the corpus and entrain other slower ICC in the ICC-MY 

network through a putative voltage-to-calcium transduction mechanism, 

mediated by calcium ion channels [56].  

 

 

Figure 2.6.  Slow waves recorded from the guinea pig gastric ICC and SMC. Adapted from 
[51]. 
 

This entrainment feature is responsible for the initiation of electrical slow 

waves and contraction rings from the corpus and for organizing their aboral 

propagation towards the antrum. Without the frequency gradient, the entire 

corpus and antrum will activate and contract at the same time, and normal 

peristalsis will not be possible. Therefore, any lesion on the ICC network, a 

disruption of the frequency gradient or a malfunction of the entrainment 

mechanism can lead to gastric motility disorders. There is increasing evidence 

that ICC and its network impairment, such as those that arise from 
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complications of diabetes, can cause gastric dysmotility (for example, 

gastroparesis) [47, 57, 58]. Extrinsic factors such as neuronal or paracrine 

signalling 

 

 

 

 

 

 

 

 

 

 

Figure 2.7.  Intrinsic slow waves of the canine stomach. Note the decrease in frequency and 
polarization of resting membrane potential from the corpus down to the antrum. Adapted from 
[53]. 
 

signalling can also disrupt frequency regulation. Prostaglandin, a paracrine 

substance, was found to exert chronotropic effects through studies of 

tachygastria (hypermotility) in animals and humans [59, 60]. A chronotropic 

agent can also cause the antral ICC to pace at a higher frequency than the 

corpus ICC. This can result in functional uncoupling in the form of retrograde 

slow wave propagation that causes hypomotility and reduces stomach 

emptying [61].  
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Small intestine  

The ICC-MY and SMC electrophysiology of the small intestine is similar to 

the gastric counterparts. However, one salient difference is the intrinsic 

frequency of the electrical slow waves. In the stomach, the typical entrained 

frequency is at 3 cpm, whereas much higher frequencies have been recorded in 

the small intestine. It was noted in canine and feline small intestines that 

intrinsic slow wave frequencies start at around 14 cpm at the duodenum and 

decreases to around 10 cpm at the ileum [62, 63]. Human recordings are 

limited with recent measurements indicating 8 cpm in the human small 

intestine (location unspecified) [64] and 6 cpm in the human jejunum [45]. 

These human results were recorded from waste tissue of morbidly obese 

patients who had undergone gastric bypass surgery.  

 

Additionally, the propagation pattern of small intestine slow waves is unclear, 

however initial evidence suggests the presence of a single pacemaking site in 

the duodenum near the pylorus junction as opposed to the alternative belief of 

multiple active pacemaking sites along the small intestine. The apparent 

gradient of decreasing slow wave frequency from the duodenum to the ileum 

putatively arises due to the occasional blockage of slow wave propagation 

along the small intestine [65, 66]. Such a frequency gradient has been 

suggested to facilitate high intensity mixing in the proximal small intestine for 

effective nutrient absorption due to its higher frequencies while slower 

frequencies at the distal region facilitates the processing of more slowly 

digested substances such as fats and bile before entry to the large intestine [67].  
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2.1.6 Sub-cellular mechanisms 

Moving down the spatial scale, the contribution of sub-cellular mechanisms to 

cellular electrophysiological behaviour is examined here. The membranes of 

excitable cells contain a variety of transmembrane proteins that confers 

membrane electrical excitability. These include ion channels that can be gated 

by different factors such as membrane voltage, ligands, and mechanical forces. 

Upon activation, these channels open and conduct specific ions across the cell 

membrane with characteristic kinetics, thereby changing the distribution of the 

intracellular and extracellular concentrations of ionic species and hence their 

respective electrochemical gradients. Key ionic species include sodium, 

calcium, potassium and chloride ions. Other transmembrane proteins that 

regulate ionic flow include pumps and exchangers.  

 

A dynamic potential difference (also known as membrane voltage) arises in 

the cell due to the transmembrane exchange of ions, the ionic concentrations 

in the immediate extracellular and intracellular spaces of the cellular 

membrane, as well as the cell membrane’s capacitive properties. The 

distribution of intracellular and extracellular concentrations of an ionic species 

produces what is known as Nernst potential [68]. Should the membrane 

voltage differ from the Nernst potential, then this potential difference creates a 

driving force that pushes this species of ions through the ion selective channels 

that are open. This in turn shapes cellular membrane voltage/potential. 

Intracellular mechanisms such as buffering proteins and organelles regulate 

ion sequestration and release, which will also influence free ionic 

concentrations, the Nernst potential and ultimately the membrane voltage.  
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The ICC and SMC contain the following general types of ion channels: 

Calcium-selective conductances, sodium-selective conductances, potassium-

selective conductances, calcium-activated potassium conductances, chloride-

selective conductances, and non-selective cationic conductances. The specific 

types of ion channels that are present in a cell depend on the spatial location in 

the stomach, small intestine and the animal species. Each type or sub-type of 

ion channel type exhibits different kinetics in regulating ionic flow; their 

functional roles are typically different but they act in a concerted fashion to 

engender normal slow waves in the ICC and SMC. Farrugia (1999) provides a 

comprehensive review of the ionic conductances in both the GI SMC and ICC 

[69], Vogalis (2000) has a review on GI potassium channels [70] while a 

number of other review papers that discuss ionic conductances for ICC 

electrophysiology can be found in [71-73]. 

 

Since ion channels play critical roles in the electrophysiology of the ICC or 

SMC, ion channel variations and changes in their expression level can alter 

electrical behaviour, and in turn affect mechanical behaviour. Such alterations 

can propagate across the spatial scales and eventually cause adverse changes 

to motility at the level of the whole organ. Ion channel variations include those 

that arise from alternative splicing, polymorphisms and genetic mutations, and 

can confer differentiated kinetic behaviour. As for ion channel expression, it 

determines the number of viable ion channels in a cell that would influence the 

magnitude of an ionic current that shapes membrane voltage.  
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Specifically, alternative splicing refers to the selective removal of mRNA 

exons that result in translated proteins of the same type, but of different sizes 

and possibly with different properties. For polymorphisms and genetic 

mutations, these refer to changes in the genetic sequence that can translate to a 

change in amino acid residue of the protein. Alternative splicing, 

polymorphisms and genetic mutations can therefore result in functional 

consequences for a protein. Splice and polymorphic variants are found in 

healthy subjects but may increase or decrease disease susceptibility. For 

instance, a novel splice variant of the ANO-1 CaCC, found in a patient with 

diabetic gastroparesis and not in healthy subjects, is a putative 

pathophysiological factor that confers disease susceptibility [42].  Genetic 

mutations, typically associated with diseased subjects, may serve as a 

substantial factor underlying disease etiology, and can be assisted by 

alternative splicing and polymorphisms present in the same ion channel 

protein.  For instance, the kinetic behaviour of sodium channels in its most 

common background form of Q1077del splice variant is more strongly 

affected by the G298S genetic mutation, relative to its other common 

backgrounds [12]. So far, no ion channel variants of the ICC and SMC are 

known to cause GI motility disorders but there are initial evidence implicating 

sodium channel mutations in intestinal motility disorders [14, 15].  

 

2.2 Multi-scale modelling of the gastrointestinal tract 

Multi-scale mathematical and computational modelling is ideally suited to 

succinctly represent and integrate the tremendous volume of experimental data 

arising across the multiple scales. These models can be applied to understand 
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how different parts and activities of the various spatial scales interact in the 

complete picture. Multi-scale modelling of the GI electrophysiology has 

existed for some time and this section discusses the existing notable models of 

the ICC and SMC, across the spatial scales of single cell, multi-cells as well as 

the human torso.  

 

2.2.1 Single cell models 

Hodgkin-Huxley model 

The cellular electrophysiology of most single cell models of the ICC and SMC 

used a governing equation of membrane potential which described a cell as a 

simple parallel conductance electrical circuit. This approach follows the Nobel 

prize winning seminal work of Hodgkin and Huxley in 1952, where a model 

of giant squid axon electrophysiology was created (see Figure 2.8) [74]. The 

governing equation is given by: 

𝑑𝑉𝑚
𝑑𝑡

= −
𝐼𝑖𝑜𝑛 + 𝐼𝑆𝑡𝑖𝑚

𝐶𝑚
, (2.1) 

where 𝑉𝑚  is the membrane potential, 𝐼𝑖𝑜𝑛  is the sum of ionic currents that 

contribute to cellular electrophysiology, 𝐼𝑆𝑡𝑖𝑚  is a stimulus current that, if 

present, is delivered by an external source such as a neighbouring cell or an 

electrode, and 𝐶𝑚 is the membrane capacitance. The choice of 𝐼𝑖𝑜𝑛 depends on 

the ionic currents carried by ion channels, pumps, exchangers and any other 

sub-cellular mechanisms that may contribute to cellular electrophysiology. 

There are a number of mathematical approaches to model the various 

𝐼𝑖𝑜𝑛 including the traditional Hodgkin-Huxley gating-variable approach, the 
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multi-state Markov approach, as well as the less common Poisson Nernst 

Planck approach [75, 76].   

 

 

 

 

 

   

Figure 2.8. The Hodgkin-Huxley parallel conductance electrical circuit (right) is the gold-
standard for modelling electrophysiology of a single cell (left). Cm refers to the cell 
capacitance, reflecting the ability of a cell membrane to store charges on either sides of the 
membrane, Vm refers to the (trans-)membrane potential with the intracellular potential as the 
reference point, Ex refers to the Nernst potential of the various ions, and Rx refers to the 
variable resistances (or equivalently, conductances) of the ion channels.  
 

As an illustration, Figure 2.8 shows the parallel conductance circuit that 

Hodgkin and Huxley have used to model the giant squid axon cell model 

electrophysiology.  The membrane potential (or voltage) is defined to be the 

difference of potential inside a cell, minus the potential outside of a cell. Three 

types of currents, i.e., the sodium current, potassium current, and non-selective 

leakage current (𝐼𝑁𝑎, 𝐼𝐾 , and 𝐼𝑙 respectively) were sufficient to describe the 

axon membrane potential. Each of these ionic current is described by an 

Ohmic equation: 

𝐼𝑋 = 1
𝑅𝑋

(𝑉𝑚 − 𝐸𝑋), (2.2) 

where a particular ionic current, 𝐼𝑋 , is given by the multiplication of the 

inverse of a variable resistance, 𝑅𝑋  and the potential difference between the 
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membrane potential, 𝑉𝑚, and the Nernst potential, 𝐸𝑋 . The inverse of 𝑅𝑋  is 

also commonly and equivalently described in terms of a conductance, 𝐺𝑋: 

𝐼𝑋 = 𝐺𝑋(𝑉𝑚 − 𝐸𝑋). (2.3) 

In turn, 𝐺𝑋  is typically a product of the channel’s maximum conductance in a 

cell, 𝐺𝑋�  and the probability of a single channel in the open state to conduct 

ions, 𝑃𝑂: 

𝐺𝑋 = 𝐺𝑋� 𝑃𝑂. (2.4) 

𝑃𝑂  is time variant and dependent on 𝑉𝑚  which regulates the ion channels’ 

open probability. 𝐺𝑋�  is assumed constant in the model, but in the biological 

context it may vary due to altered expression, localization and degradation of 

the ion channels. 

 

The Nernst potential, 𝐸𝑋 , is an electrochemical property of an ionic species, 

that arises from the distribution of intracellular and extracellular ionic 

concentrations of this ion. It can be described by:  

𝐸𝑋 = 𝑅𝑇
𝑧𝑋𝐹

𝑙𝑛
[𝑋]𝑜
[𝑋]𝑖

, (2.5) 

 

where R, T, F are the ideal gas constant, temperature, and Faraday’s constant 

respectively, X refers to the ion type, 𝑧𝑋  is the valence of X, [𝑋]𝑖 and [𝑋]𝑜 

refer to the ionic concentration of X  in the intracellular and extracellular 

spaces respectively. 
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2.2.2 SMC models 

Early models 

Following Hodgkin and Huxley’s landmark model in 1952, the development 

of Hodgkin-Huxley type single cell models of the GI tract appeared later, in 

the 1990s. These models contain greater cellular complexity such as in the 

number of influential ionic currents that shape membrane potential. These 

models include:  

 

(1)  Lang & Rattray’s 1992 Hodgkin-Huxley type smooth muscle model that 

contains four ionic currents, namely, 𝐼𝐶𝑎 , the calcium current, 𝐼𝐾𝑑𝑒𝑙 , the 

delayed rectifier potassium current, 𝐼𝑙𝑒𝑎𝑘, the leakage current, and 𝐼𝐾𝐶𝑎, the 

calcium activated potassium current which together were able to describe self-

excitatory smooth muscle slow waves that matched experimental observations 

from several regions of the GI tract (with appropriate variation of the free 

parameters) [77]. The governing equation for 𝑉𝑚 , the smooth muscle cell 

membrane potential that has 𝐶𝑚 as the cell capacitance, is therefore: 

𝑑𝑉𝑚
𝑑𝑡

= − 1
𝐶𝑚

(𝐼𝐶𝑎 + 𝐼𝐾𝑑𝑒𝑙 + 𝐼𝑙𝑒𝑎𝑘 + 𝐼𝐾𝐶𝑎). (2.6) 

 

 

(2) Skinner et al’s 1993 Hodgkin-Huxley type smooth muscle model described 

four ionic currents, namely, 𝐼𝑁𝑎 , the sodium current, 𝐼𝐾 , the potassium 

current, 𝐼𝐾𝐶𝑎, the calcium activated potassium current, and 𝐼𝐶𝑎, the calcium 

current [78]. In addition, thermodynamically based equations were used to 
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describe 𝐼𝑁𝑎𝐾 , the sodium-potassium pump, 𝐼𝐶𝑎𝑃 , the calcium pump, and 

𝐼𝑁𝑎𝐶𝑎 , the sodium-calcium exchanger. Both pumps contain a variable, 

dependent on an oscillatory ATP concentration, which drives the rhythmic 

slow waves reproduced by this model. The governing equation for 𝑉𝑚 , the 

smooth muscle cell membrane potential that has 𝐶𝑚 as the cell capacitance, is 

therefore: 

𝑑𝑉𝑚
𝑑𝑡

= − 1
𝐶𝑚

(𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐾𝐶𝑎 + 𝐼𝐶𝑎 + 𝐼𝑁𝑎𝐾 + 𝐼𝐶𝑎𝑃 + 𝐼𝑁𝑎𝐶𝑎). (2.7) 

 

(3) Miftakhov et al’s 1996 and 1999 small intestinal smooth muscle models, 

also based on Hodgkin-Huxley formalism, describe smooth muscle electrical 

activity based on 𝐼𝐶𝑎
𝑓 , the fast calcium current, 𝐼𝐶𝑎

𝑠 , the slow calcium current, 

𝐼𝐾 , the potassium current, 𝐼𝐾𝐶𝑎, the calcium activated potassium current, and 

𝐼𝐶𝑙, the chloride current [79-81]. The governing equation for 𝑉𝑚, the smooth 

muscle cell membrane potential that has 𝐶𝑚 as the cell capacitance and 𝛼 as a 

numeric  constant, is therefore: 

𝑑𝑉𝑚
𝑑𝑡

= − 𝛼
𝐶𝑚

�𝐼𝐾 + 𝐼𝐾𝐶𝑎 + 𝐼𝐶𝑎
𝑓 + 𝐼𝐶𝑎

𝑠 + 𝐼𝐶𝑙�. (2.8) 

Miftakhov et al’s models also included elaborate descriptions of electrical 

stimuli provided by the enteric nervous system to the smooth muscles. These 

models were able to replicate rhythmic electrical slow waves, as well as 

spikes/action potentials that appear on the slow wave plateau which are 

responsible for stronger contractions in the intestinal smooth muscles. 
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However, one common salient issue with the above models is the assumption 

that GI smooth muscles are self-excitatory. This was because the 

establishment and acceptance of ICC as the pacemaker cells exciting the 

smooth muscles post-dated these early models. Therefore, these models are 

rather limited in their potential applications, such as in the investigation of 

consequences of ion channel variants.  

 

Corrias and Buist’s SMC model 

In 2007, Corrias and Buist constructed a biophysically based single cell 

electrophysiology model of the canine gastric SMC [82], underpinned by 

Hodgkin-Huxley type ionic current descriptions. Figure 2.9 shows a schematic 

of the Corrias and Buist SMC model, with the following governing equation: 

                
𝑑𝑉𝑚
𝑑𝑡

= − 1
𝐶𝑚

�𝐼𝐶𝑎𝐿 + 𝐼𝐿𝑉𝐴 + 𝐼𝑁𝑎 + 𝐼𝐵𝐾 + 𝐼𝐾𝑟 + 𝐼𝐾𝑎 + 𝐼𝑏𝐾  

+ 𝐼𝑁𝑆𝐶𝐶 + 𝐼𝐶𝑎
ℎ𝑜𝑚𝑒𝑜 + 𝐼𝑆𝑡𝑖𝑚�, 

(2.9) 

where 𝐶𝑚  is the cell membrane capacitance,  𝑉𝑚  is the membrane voltage 

which is dependent on the following critical ionic currents: 𝐼𝐶𝑎𝐿 is the L-type 

calcium current, 𝐼𝐿𝑉𝐴 is the low voltage-activated calcium current, 𝐼𝑁𝑎 is the 

voltage-dependent sodium current, 𝐼𝐵𝐾  is the big conductance calcium-

activated potassium current, 𝐼𝐾𝑟 is the delayed rectifier potassium current, 𝐼𝐾𝑎 

is the A-type potassium current, 𝐼𝑏𝐾  is the background leakage potassium 

current, 𝐼𝑁𝑆𝐶𝐶  is the relatively passive non-selective cationic current,   and 

due to the lack of experimental data, 𝐼𝐶𝑎
ℎ𝑜𝑚𝑒𝑜, is a phenomenological description 
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of calcium handling by mechanisms such as sarcoplasmic reticulum regulation 

and sodium-calcium exchanger. 𝐼𝐶𝑎
ℎ𝑜𝑚𝑒𝑜  is required to achieve intracellular 

calcium homeostasis. To excite the electrically passive SMC, the ICC 

stimulation is supplied through the term 𝐼𝑆𝑡𝑖𝑚:  

𝐼𝑆𝑡𝑖𝑚 = 𝐺𝑐𝑜𝑢𝑝𝑙𝑒(𝑉𝑚 − 𝑉𝐼𝐶𝐶 ), (2.10) 

where 𝐺𝑐𝑜𝑢𝑝𝑙𝑒 is the coupling conductance between ICC and SMC, 𝑉𝑚 is the 

SMC membrane potential, and 𝑉𝐼𝐶𝐶  is the ICC membrane potential. In the 

original paper, the ICC stimulus is a prescribed waveform resembling 

experimental observations, with a resting membrane potential of -70 mV, 

amplitude of 60 mV, and a coupling conductance of 1.1 nS. A noteworthy 

point is that the SMC model has to be parameterized to ensure reasonable 

electrical excitability. In the physiological situation, the density of ICC to 

density of SMC is said to be low (for example, less than 10% ICC and more 

than 90% SMC in gastric tissue [83]), therefore the SMC should not demand 

too much energy from ICC for its stimulation; ICC in turn requires 

considerable energy for self-excitation, evidenced by the high density of ICC 

mitochondria. This was considered in the model through the use of a suitably 

low coupling conductance.  

 

Figure 2.10 shows the SMC model predicted slow waves that are in good 

agreement to the canine gastric SMC recordings. The model was further 

validated through additional computational tests. Being biophysically based 

and robust, the model is amenable for further integrative studies such as the 
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investigation of mutation of its constituent ionic conductances, and in multi-

cellular studies. However, one limitation of the model is that the ionic current 

descriptions were constructed from more than one animal species, with the 

global membrane voltage being able to match the canine slow wave recordings. 

Therefore, as new data appear, an update to make it an animal specific model 

may be performed.  

 

Figure 2.9. Biophysically based canine gastric single SMC model of electrophysiology by 
Corrias and Buist [82]. Adapted from CellML repository [84].  
 

 

Figure 2.10. Corrias and Buist SMC slow waves. (a) shows the simulated SMC slow waves 
which are in good agreement with slow waves experimentally recorded from the canine 
gastric smooth muscle tissue in (b). Adapted from [82]. 
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2.2.3 ICC models 

The ICC, unlike the SMC, exhibits spontaneous pacemaking ability. A 

biophysically based ICC model would therefore have to describe the 

pacemaker mechanism. To facilitate the discussion of the models, a brief 

discussion on the current understanding of ICC pacemaking mechanism is 

provided here. 

 

The pacemaker mechanism is an object of much debate with two prevailing 

hypotheses. One is the non-selective cationic conductance (NSCC) hypothesis 

that posits the endoplasmic reticulum, mitochondria and a partial plasma 

membrane space containing the NSCC, together, constitute a pacemaker unit 

as shown in Figure 2.11; several pacemaker units within a ICC are 

spontaneously active and summate to elicit spontaneous ICC slow waves [85]. 

Specifically, the cytosolic subspace in this pacemaker unit is where calcium 

handling/cycling occurs at a particular frequency. The endoplasmic reticulum 

releases calcium through IP3 receptor mediated channels, while the 

mitochondrion uptakes calcium through its uniporters at a faster rate (than 

calcium release from endoplasmic reticulum), thus causing a marked reduction 

of the subspace calcium. This then activates the calcium inhibited NSCC 

which leads to an influx of calcium ions that depolarizes the cellular 

membrane voltage. Additional auxiliary calcium regulatory mechanisms 

include the endoplasmic reticulum calcium ATPase that pumps cytosolic 

calcium into the endoplasmic reticulum, and the mitochondrion’s sodium-

calcium exchanger that releases calcium into the cytosolic subspace of the 

pacemaker unit. The pacemaker units within an ICC and between ICC, 
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coordinate the calcium-cycling-to-voltage activity through putative 

transducers in the form of ICC membrane voltage-dependent calcium channels; 

this enables a synchronized or entrained calcium-cycling frequency and slow 

wave frequency.  

 

   

Figure 2.11. ICC pacemaker unit from the non-selective cationic channel (NSCC) pacemaking 
hypothesis. The pacemaker unit comprises a (sarco-)endoplasmic reticulum (SER), 
mitochondrion and a non-selective cationic channel. Coordinated calcium handling by the 
SER, the mitochondrion, and the NSCC results in spontaneous pacemaking in the ICC. The 
voltage-dependent calcium channels carry voltage information to regulate the frequency of 
calcium handling in the PU, and hence the whole cell slow wave frequency. Adapted from 
[85]. 
 

The other major competing hypothesis is that of a calcium-activated chloride 

conductance (CaCC) as the pacemaking conductance. CaCC of the GI tissue 

has been observed for a long time, but it was not until recently that a 

molecular identity for the CaCC was established to be encoded by the ANO-1 

gene [86-89]. Inhibition of ANO-1 CaCC in ICC was found to inhibit slow 

waves in a number of studies [64, 90]. Subsequently, ANO-1 CaCC was 

demonstrated to be a reliable biomarker to identify GI ICC [91]. Moreover, 

altered expression of ANO-1 CaCC has been linked to diabetic gastroparesis 

[58]. These provided strong support that CaCC is indeed responsible for ICC 

pacemaking and is a good challenge to the NSCC hypothesis.  
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Aliev et al’s phenomenological model 

In 2000, Aliev et al proposed a simple description of an ICC-driven SMC [92]. 

The model described electrical activity in the intestine based on two linear 

ordinary differential equations derived from the works of Fitzhugh and 

Nagumo [93, 94]. The equations are: 

𝑑𝑢
𝑑𝑡

= 𝑘𝑢(𝑢 − 𝑎)(1 − 𝑢) − 𝑣, (2.11) 

𝑑𝑣
𝑑𝑡

= 𝜖(𝛾(𝑢 − 𝛽) − 𝑣), (2.12) 

where 𝑢 is the normalized transmembrane potential of the ICC or SMC, 𝑣 is a 

recovery variable, 𝑘 is rate constant, 𝑎 is normalized threshold potential, ϵ is 

an excitability parameter, 𝛾  and 𝛽 are rate constants used to shift equilibrium 

to achieve excitability in the SMC, and oscillatoriness in the ICC. All the 

dependent variables were tuned to replicate intestinal slow wave behaviour. 

The equations were applied to a dual cable one dimensional framework, where 

one cable represents a layer of coupled ICC, and the other cable represents a 

layer of coupled SMC. The simplicity of the descriptions allowed better 

computational efficiency and was used in a number of initial studies for 

anatomically realistic multi-dimensional models of the stomach and small 

intestine [95-100]. However, Aliev et al’s model is phenomenological with no 

explicit representation of influential ionic currents (unlike the biophysically 

based Hodgkin-Huxley models), nor is there a physical correspondence for its 

parameters. This created limitations such as its inapplicability to study ion 

channel variants (for example, mutations) and computational instability in 

simulations with long period of slow wave activity.  
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Youm et al’s intestinal ICC model 

Following Aliev et al’s phenomenological model that describes the ICC 

electrical activity, Youm et al constructed the first biophysically based single 

cell ICC model for the murine small intestine, published in 2006. Figure 2.12 

shows the model schematic while the governing equation of the membrane 

voltage is given by: 

𝑑𝑉𝑚
𝑑𝑡

= − 1
𝐶𝑚

(𝐼𝐶𝑎𝐿 + 𝐼𝐴𝐼 + 𝐼𝑉𝐷𝐷𝑅 + 𝐼𝐾𝐼 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑃𝑀𝐶𝐴 + 𝐼𝑁𝑎𝐾), (2.13) 

where there are four types of ion channels that carry 𝐼𝐶𝑎𝐿, the L-type calcium 

current, 𝐼𝐴𝐼 , the inward autonomous current which supposedly carries 

potassium, calcium and sodium ions, 𝐼𝑉𝐷𝐷𝑅 , the voltage dependent 

dihydropyridine resistant current, and 𝐼𝐾𝐼 , which is the inward potassium 

current. One exchanger and two pumps that regulate ionic homeostasis in the 

cytosol were also included, these are 𝐼𝑁𝑎𝐶𝑎, the sodium-calcium exchanger, 

𝐼𝑃𝑀𝐶𝐴, the plasma membrane calcium ATPase pump, and 𝐼𝑁𝑎𝐾 , the sodium-

potassium pump. Spontaneous slow wave generation is driven by 𝐼𝐴𝐼 , which 

is a current constructed based on murine small intestine recordings. 𝐼𝐴𝐼 , and 

hence the ICC slow wave are regulated by intracellular calcium which in turn 

is dependent on the membrane ion channels and exchangers that carry calcium 

ions, as well as the endoplasmic reticulum mediated calcium regulation. 

Experimental evidence suggested IP3-mediated release of calcium from the 

endoplasmic reticulum as a critical regulator of the intracellular calcium. In 

the model, an endoplasmic reticulum component that describes IP3-mediated 
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release of calcium, 𝐼𝐼𝑃3𝑅, a calcium leak current, 𝐼𝑙𝑒𝑎𝑘 , and a calcium uptake 

current, 𝐼𝑢𝑝, were included to provide for the necessary calcium regulation. 

Figure 2.13 shows the slow waves predicted by Youm et al’s model.  

 

Figure 2.12. Biophysically based intestinal ICC single cell model of electrophysiology by 
Youm et al [101]. Adapted from CellML repository [84]. 
 
 
 
Youm et al’s model was a good step forward in providing a biophysically 

based description of the intestinal ICC electrophysiology. The simplicity of 

the model reduces the computational cost of using the single cell model in 

higher spatial scale modelling. However, recent experimental findings limit 

the potential applications of this model. Firstly, studies have demonstrated that 

the mitochondrion is an important element in regulating intracellular calcium 

ions, and therefore in the generation of slow waves. Several studies have 

shown that in the presence of mitochondrial uncouplers, ICC failed to produce 

slow waves [102, 103]. Secondly, the model lacks critical ion channels that are 

present in the ICC, which includes the calcium activated potassium channels 

[104], ether-a-go-go channels [105] and sodium channels [106]. The absence 
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of these ion channel descriptions hinders investigation of channelopathies, for 

example, sodium channelopathy that was associated with intestinal disorders 

[14, 107]. Lastly, the model captures neither of the two prevailing hypotheses 

of pacemaker mechanism.  

 

Figure 2.13. Simulated ICC slow waves from Youm et al’s ICC model, with a relatively high 
frequency of 22.86 cpm. Adapted from [101].  
 

Corrias and Buist’s ICC-MY model 

In 2008, Corrias and Buist constructed a biophysically based single cell 

electrophysiology model of the guinea-pig gastric ICC which is underpinned 

by Hodgkin-Huxley based ionic current descriptions [108]. Figure 2.14 shows 

a schematic of the Corrias and Buist ICC model, with the following governing 

equation: 

   
𝑑𝑉𝑚
𝑑𝑡

= − 1
𝐶𝑚

(𝐼𝐶𝑎𝐿 + 𝐼𝑉𝐷𝐷𝑅 + 𝐼𝑁𝑎 + 𝐼𝐸𝑅𝐺 + 𝐼𝐾𝑣11 + 𝐼𝐵𝐾 + 

𝐼𝐶𝑎𝐶𝑙 + 𝐼𝑁𝑆𝐶𝐶 + 𝐼𝑏𝐾 + 2𝐹 𝑉𝑐𝑦𝑡𝑜𝐽𝐶𝑎−𝑒𝑥𝑡), 

(2.14) 

where the essential ionic currents include 𝐼𝐶𝑎𝐿, the L-type calcium current, 

𝐼𝑉𝐷𝐷𝑅, the voltage-dependent dihydropyridine-resistant calcium current, 𝐼𝑁𝑎, 

the voltage-dependent sodium current, 𝐼𝐸𝑅𝐺 , the ether-a-go-go voltage-
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dependent potassium current, 𝐼𝐾𝑣11 , the Kv1.1 gene encoded voltage-

dependent potassium channels carrying the current, 𝐼𝐵𝐾  , the big conductance 

calcium-activated potassium current, 𝐼𝐶𝑎𝐶𝑙 , the calcium-activated chloride 

channels, 𝐼𝑁𝑆𝐶𝐶 , the non-selective cationic conductance carrying the current, 

𝐼𝑏𝐾 , the background leakage potassium current, and the calcium extrusion 

mechanism whose calcium current is given by 2𝐹 𝑉𝑐𝑦𝑡𝑜𝐽𝐶𝑎−𝑒𝑥𝑡, in which 𝐹  is 

Faraday’s constant, 𝑉𝑐𝑦𝑡𝑜 is the cytoplasmic volume of the ICC, and 𝐽𝐶𝑎−𝑒𝑥𝑡 is 

the calcium efflux (in concentration per unit time).  

 

Figure 2.14. Biophysically based guinea-pig gastric ICC single cell model of 
electrophysiology by Corrias and Buist [108]. Adapted from CellML repository [84].  
 

The ICC model was made self-excitatory by describing the NSCC pacemaking 

mechanism through the use of a sub-membrane space (SS) in the pacemaker 

unit that is formed by the mitochondria, endoplasmic reticulum (ER), and the 
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NSCC (encircled in dashed line in Figure 2.14). The governing equation for 

the pacemaker unit describes calcium-handling derived from Fall and Keizer 

[109] and assumes the following form: 

𝑑[𝐶𝑎2+]𝑆𝑆
𝑑𝑡

= −𝐽𝑈𝑁𝐼 + 𝐽𝑁𝑎𝐶𝑎 − 𝐽𝑆𝐸𝑅𝐶𝐴 + 𝐽𝐸𝑅 − 𝐽𝑙𝑒𝑎𝑘, (2.15) 

where mitochondria calcium handling involves 𝐽𝑈𝑁𝐼 , the calcium uptake by 

its uniporter, and 𝐽𝑁𝑎𝐶𝑎, the calcium release by its sodium-calcium exchanger; 

ER handling involves 𝐽𝐸𝑅, the calcium release by its IP3 receptor mediated 

channels, and 𝐽𝑆𝐸𝑅𝐶𝐴 , the calcium uptake by its calcium pump;  𝐽𝑙𝑒𝑎𝑘 

represents the calcium leakage between the cytosolic space and SS.  

 

In the pacemaker unit, the frequency of calcium-handling follows a frequency 

close to the typical frequency of gastric slow waves at 3 cpm which in turn 

drives the whole cell electrophysiology to reproduce realistic slow waves of 3 

cpm. Figure 2.15 shows the simulated ICC slow waves in good agreement 

against experimental observation from the guinea-pig antral ICC. 

 

Figure 2.15.  Corrias and Buist ICC slow waves. A shows the antral ICC from the guinea-pig 
stomach while B shows the simulated gastric ICC slow waves from the Corrias and Buist 
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model. A good agreement between simulation and experimental data was observed. Adapted 
from [108]. 
 

The ICC model was well-validated and contained the essential ionic currents 

and sub-cellular components to describe cellular electrophysiology, including 

ion channels that the Youm et al’s model lacked. For instance, the inclusion of 

a sodium channel description in the ICC model provides for the investigation 

of the consequences of its mutations on cellular electrophysiology. The 

biophysically based model also makes it suitable for multi-cellular studies, 

which can overcome the limitations inherent in Aliev et al’s phenomenological 

model. 

 

Despite being robust and biophysically based, there is space to improve the 

ICC model. For instance, the constituent descriptions of ionic currents and 

sub-cellular mechanisms were constructed from experimental data arising 

from different animal species. The global behaviour of predicted ICC slow 

wave potentials matched the slow wave recordings from the guinea pig. In the 

case of calcium homeostasis, a phenomenological description was employed 

since experimental data was lacking. Therefore, as more findings appear in the 

literature, corresponding updates can be made, such as to work towards an 

animal or human specific model. As mentioned earlier in this section, the 

NSCC pacemaking hypothesis is now challenged by new evidence that 

suggest CaCC as the pacemaking conductance. Therefore, the ICC model 

could serve as a platform to develop and integrate the new CaCC pacemaking 

mechanism, to evaluate these two competing hypotheses, and to elucidate any 

additional roles that the CaCC may play in ICC electrophysiology. 
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Additionally, as these single cell models would be integrated into 

computationally demanding multi-cellular models such as a tissue block or 

whole organ, the computational efficiency of the constituent cellular models 

ought to be maximized. The original ICC model used an extensive description 

of intracellular calcium dynamics from Fall and Keizer’s model to describe 

calcium handling in the pacemaker unit; this increased the computational cost 

significantly. Therefore, the description of this component of the ICC model 

could be simplified to contain only the essentials for pacemaker unit calcium 

handling (as has been practised, for example by Du et al [110]).  

 

Faville et al’s intestinal ICC model 

Faville et al’s intestinal ICC model is made up of two components, a bulk 

cytoplasm cell model [111] and a pacemaker unit (PU) model [112], as shown 

in Figure 2.16. Here, the governing equation of the ICC membrane voltage is 

given by: 

𝑑𝑉𝑚

𝑑𝑡
= − 1

𝐶𝑚 �𝐼𝐶𝑎(𝑇 ) + 𝐼𝐶𝑎(𝐸𝑥𝑡) + 𝐼𝐿 + 𝐼𝐾(𝐾𝐵) + 𝐼𝐾(𝑣1.1) + 𝐼𝐾(𝐸𝑅𝐺) + � 𝐼𝑃𝑈

𝑛

𝑖=1
�, (2.16) 

where 𝐼𝐶𝑎(𝑇 ) is the T-type calcium current, 𝐼𝐶𝑎(𝐸𝑥𝑡) is the calcium extrusion 

pump, 𝐼𝐿  is the small leak current, 𝐼𝐾(𝐾𝐵)  is the background potassium 

current, 𝐼𝐾(𝑣1.1) is the voltage dependent potassium current and 𝐼𝐾(𝐸𝑅𝐺) is the 

ether-a-go-go potassium current. These ionic currents constitute the bulk 

cytoplasmic component of the overall ICC model. The PU component is 

represented by 𝐼𝑃𝑈  which refers to the sum of currents from one pacemaker 
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unit that contribute towards membrane potential, while 𝑛 refers to the total 

number of pacemaker units, to be defined by the user.  

 

A single pacemaker unit is made up of four components, i.e., the endoplasmic 

reticulum (ER), the mitochondrion, a “subspace 2” for ionic exchange between 

the ER and mitochondrion, and another “subspace 1” that is shared by the ER, 

mitochondrion, “subspace 2” and the plasma membrane. The PU produces 

unitary potentials, 𝑉𝑃𝑈, that are shaped by the ionic currents in the PU, which 

is given by the following governing equation: 

𝑑𝑉𝑃𝑈
𝑑𝑡

= − 1
𝐶𝑚

(𝐼𝐶𝑎 + 𝐼𝑁𝑎 + 𝐼𝑁𝑆𝐶𝐶−𝐶𝑎 + 𝐼𝑁𝑆𝐶𝐶−𝑁𝑎 + 𝐼𝑃𝑀 + 𝐼𝑁𝑎𝑃 ), (2.17) 

where 𝐼𝐶𝑎 is the calcium current, 𝐼𝑁𝑎 is the sodium current, 𝐼𝑁𝑆𝐶𝐶−𝐶𝑎 is the 

non-selective cationic current for calcium ions, 𝐼𝑁𝑆𝐶𝐶−𝑁𝑎 is the non-selective 

cationic current for sodium ions, 𝐼𝑃𝑀  is the plasma membrane calcium pump 

and 𝐼𝑁𝑎𝑃  is the sodium pump. These ionic currents are dependent on both 

membrane potential as well as the intracellular calcium in subspace 1. The 

intracellular calcium in subspace 1 is regulated by the interplay of mechanisms 

involving subspace 2, the ER and the mitochondrion. Specifically, the ER 

releases IP3 mediated calcium through 𝐽𝐼𝑃𝑅 and uptakes calcium through an 

endoplasmic reticulum calcium ATPase pump, 𝐽𝑆𝐸𝑅𝐶𝐴; while the 

mitochondrion releases calcium through a sodium-calcium exchanger, 𝐽𝑁𝐶𝑋  

and uptakes calcium through its uniporter, 𝐽𝑀𝐶𝑈 . The calcium flux between 
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subspace 1 and subspace 2 is mediated by 𝐽𝑆1𝑆2  while the calcium flux 

between subspace 2 and the bulk cytoplasm is mediated by the calcium flux, 

𝐽𝑆2𝐶𝑦 . The pacemaking mechanism in the PU is based on the NSCC 

hypothesis (i.e., through the 𝐼𝑁𝑆𝐶𝐶  currents). The unitary potentials from each 

of the PU contribute towards ICC membrane voltage through the term 𝐼𝑃𝑈 . 

Figure 2.17 shows the predicted slow waves for ten PU (i.e., n=10), which 

were found to resemble murine slow waves [111]. 

 

Figure 2.16.  Faville et al’s ICC model [111] is made up of two main components: One is the 
bulk cytoplasm cell model that describes ionic currents in the plasma membrane, and a 
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cytoplasmic calcium flux, JCY. The second component, the pacemaker unit, is shown in the 
blow-up; each pacemaker unit contains four compartments of endoplasmic reticulum (ER), 
mitochondrion, subspace 1 and subspace 2. The number of pacemaker units in the ICC model 
is user-defined. Adapted from CellML repository [84]. 
 

 

Figure 2.17.  Simulated ICC slow waves, with a frequency of 17.4 cpm, from Faville et al’s 
model where the number of PU was set to 10.  Adapted from [111].  
 
 
Faville et al has constructed a biophysically detailed ICC model that 

incorporated multiple PUs. The PUs summate to contribute towards ICC slow 

waves, in agreement with some literature findings [85]. However, the bulk 

cytoplasm component lacks essential ionic currents that are found to exist in 

the ICC, these are the L-type calcium channels, calcium activated chloride 

channels [104] and voltage activated sodium channels [106]. The pacemaking 

mechanism in this model uses the NSCC hypothesis, which is now challenged 

by the CaCC hypothesis. Lastly, given the complexity of the ICC model, a 

heavy computational cost is expected, relative to the Youm et al’s and Corrias 

and Buist’s ICC models.  

 

All in all, the later single cell models are biophysically-based and constructed 

using the Hodgkin-Huxley parallel conductance circuit approach to describe 

cellular electrophysiology (Eq. 2.1). ICC models specific to the stomach and 

small intestine are available, but their usability relies on what actually is the 

pacemaker mechanism, and this merits further investigation. To the best of our 

knowledge, a biophysically based SMC model is available for the stomach, 
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but not for the small intestine. There are also no known human ICC or SMC 

models. 

2.2.4 Multi-cellular models 

Multi-cellular models refer to the modelling of electrophysiology in a state 

where multiple cells are effectively coupled and can span several spatial 

dimensions from a one-dimensional cable of connected cells to a three-

dimensional whole organ.  

 

The earliest multi-cellular models appeared in the late 1960s to the 1970s, 

which were models based on relaxation oscillators coupled to each other. 

Basically, sets of simple ordinary differential equations were developed whose 

solutions exhibited oscillatory behaviour that replicated the rhythmic slow 

waves observed in the GI musculature. These equations that described an 

oscillator were derived from Van der Pol’s 1926 theoretical framework 

describing self-sustaining oscillations [113]. A number of oscillators could be 

coupled to represent multi-cellular electrical coupling in the GI tissue and this 

was practised in a number of early studies [114-116]. These early 

models/framework are outdated as more experimental findings appear [117], 

with the major limitations being their inability to accurately reproduce realistic 

slow waves and that their descriptions are phenomenological with smooth 

muscles as self-pacing.  

 

Sperelakis and Daniel’s 2004 paper modelled SMC in a two-dimensional 

planar framework with the aim of studying the role of gap junction 

communication in the activation of intestinal smooth muscle cells by the ICC 
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[118]. Figure 2.18 shows the layout of this planar framework, where 25 SMC 

were connected in a five-by-five network, with a single ICC as the pacemaker 

that was connected to a SMC located at position E5. It was claimed that no 

gap junctions were incorporated in the model. Instead, the SMC and ICC were 

connected by resistance junctions, with the electric fields providing the 

excitation that transmits through the intercellular junctional clefts. However, 

some discrepancies casted the reliability of the study into doubt. The ICC 

membrane potentials reported in the paper had breached physiological values 

by over 30 mV, while the use of resistive elements to connect cells was 

exactly the approach used to model the presence of gap junction connections 

in well established studies [119].  
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Figure 2.18.  Sperelakis and Daniel’s multi-cellular model. 25 SMC are arranged in a five by 
five network, to be excited by a single ICC that is connected to the SMC at position E5. 
Resistive elements are used to connect the cells, and intercellular communication is facilitated 
through the transmission of electric field excitation. Adapted from [118]. 
 
In a 2005 paper by Edwards and Hirst, a one dimensional transmural cable 

model that described the electrical propagation across the stomach wall, as 

shown in Figure 2.19, was presented. In it, there was an explicit representation 

of the longitudinal muscle, ICC-MY and the circular muscle [120]. This was 

achieved through three parallel conductance circuits connected in series by 

coupling conductances,  𝑔𝐼𝐶  and 𝑔𝐼𝐿 . This model was able to successfully 

reproduce slow wave behaviour from the different layers of the guinea-pig 

stomach, but leaned towards a phenomenological type of model since the 
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underlying cellular components do not describe specific ion channels 

necessary for electrophysiology.  

 

Figure 2.19.  Edwards and Hirst’s transmural cable model. The model represents a transmural 
cross-section of the stomach wall, and therefore consists of the essential components of the 
ICC-MY network, sandwiched by the circular muscle layer and the longitudinal muscle layer. 
The components are connected by two fixed conductances, while each component is made up 
of the phenomenological elements of resistors, capacitances and reversal potentials. Adapted 
from [120].  
 

In the 2000s, a number of studies authored by researchers from the Auckland 

Bioengineering Institute (ABI) and the National University of Singapore 

(NUS) modelled multi-cellular electrical activity of the stomach and small 

intestine through the use of continuum based modelling [96, 98-100, 121]. 

Continuum modelling refers to the description of a tissue or organ structure as 

a continuum with spatially averaged properties, i.e., the connected or coupled 

SMC and ICC are reasonably represented as a syncytium. This continuum 

approach was widely practised in the modelling of cardiac electrical activity 

through the use of bidomain equations [122, 123]. Due to the unavailability of 

biophysically based single cell GI models during then, the multi-cellular 

studies by these researchers implemented Aliev et al’s phenomenological 

cellular description [92] in the bidomain framework, and they were able to 

describe the electrical activity in the stomach and small intestine with good 

success. Figure 2.20 shows a realistic simulated human small intestine 

electrical activity from their work [99]. However, a number of limitations can 
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result since these models do not contain biophysically based cellular 

descriptions. For instance, the continuum models may not function properly 

should biophysical single cell models be integrated (in place of the Aliev et 

al’s model) while the investigation of ion channel variants cannot be 

performed due to the lack of their explicit representation. The next limitation 

is that the traditional bidomain framework, which has historically worked well 

for cardiac tissue modelling, may not be ideally suited for the GI tissue. This is 

because the latter’s musculature is complicated and can involve at least two 

cell types (i.e., the ICC and SMC) in the simulation studies, whereas the 

bidomain framework is known to work well for only one cell type as 

demonstrated in the cardiac simulation studies.  

 

Figure 2.20. Simulated membrane potentials from the human small intestine model. Left panel 
of each pair of results corresponds to the SMC potentials, while the right panel corresponds to 
the ICC potentials. The ICC potentials are more depolarized than the SMC potentials. Also 
note that the potentials generally travel in the aboral direction over time. Adapted from [99]. 
 

In 2010, Du et al furthered the work by predecessors by integrating an adapted 

version of the Corrias and Buist ICC model into the traditional bidomain 

framework, to construct a two dimensional murine tissue model of ICC [110]. 

As mentioned earlier, a gradient of slow wave frequencies is observable in the 

stomach and small intestine. To create this gradient in his model, the Corrias 

and Buist ICC model was modified to include an additional description of a 

voltage-dependent and IP3-induced calcium release mechanism in the 
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pacemaker unit. This calcium release mechanism was based on an earlier work 

by Imitiaz et al [124].  

 

In the one dimensional demonstration, seemingly stable entrainment was 

obtained with this new feature. Uncoupling or no entrainment was observed 

when the intracellular and extracellular conductivities were tuned to zero. The 

implementation was further extended into a two-dimensional tissue block, 

derived from the images of murine jejunal ICC-MY network. Figure 2.21 

shows a successful implementation where simulated ICC slow waves initiated 

from the upper left hand corner and propagated radially until the whole tissue 

block was activated at about -25 mV.  

 

However, one critical limitation of this modelling approach lies in the 

pacemaker unit. The entrainment mechanism was derived from Imitiaz et al 

[124] that described voltage mediated synthesis of IP3 in driving oscillatory 

calcium release from the ER. However, the mitochondrion was suggested to 

be a critical player in slow wave generation which was not included in the 

work of Imitiaz et al [102, 103]. Next, the pacemaking mechanism description 

of Imitiaz et al, which was adopted as an entrainment mechanism in the ICC 

model, operates on the premise that the membrane voltage drives the synthesis 

of IP3. Although this is possible, strong evidence suggests a voltage dependent 

dihydropyridine resistant calcium conductance as the entrainment mechanism 

[45]. Furthermore, the ICC pacemaking ability may actually be driven by 

ANO-1 CaCC [90]. Nonetheless, this work is commendable for its efforts in 

integrating a biophysically based ICC description into a bidomain tissue model 
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based on a realistic murine jejunum ICC-MY structure, as well as its 

application to demonstrate how ICC-MY impairment may cause dysrhythmia 

and dysmotility. 

 

Figure 2.21. Simulated slow wave propagation in a two dimensional tissue block of murine 
jejunal ICC-MY network. Adapted from [110]. 
 

2.2.5 Torso models 

The underlying electrical slow wave activities of the stomach and small 

intestine are measurable at the torso surface as an electrogram or 

magnetogram. Electrode based devices and magnetometers (for example, the 

Superconducting Quantum Interference Device, or SQUID) can record these 

far-field bioelectromagnetic signals non-invasively and can potentially assist 

clinicians in diagnosis and treatment. Examples include electrogastrography 

and magnetogastrography for the stomach [125, 126], electroenterography and 

magnetoenterography for the small intestine [127, 128]. A key issue that has 

prevented the reliability and widespread use of these measurement 

techniques/devices is the poor interpretability of the complex and noisy signals. 

Torso models, based on the aforementioned multi-scale models, can help in 

this regard. For instance, an ion channelopathy modelled at the protein channel 
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level, can be integrated into a multi-cellular framework through cellular 

descriptions, and then coupled to a torso model which could predict 

morphologic changes in electrography or magnetography recordings unique to 

that mutation.  

 

Torso modelling to simulate the bioelectric and biomagnetic far-field signals 

for the stomach and the small intestine has been demonstrated by the same 

ABI and NUS researchers who reported the application of traditional bidomain 

framework to create the stomach and small intestine models [96, 98-100, 121]. 

The bidomain framework described in the previous section was implemented 

in anatomically realistic models of the stomach and small intestine derived 

from imaging (for example, from the visible human male project database 

[129]). The whole organ bidomain framework was solved, and its extracellular 

potentials over the organ geometry were used to create equivalent dipole 

sources necessary for solving the torso model equations. The torso volume, 

excluding the electrically active organ (i.e., the stomach or small intestine) 

was assumed to be a passive tissue conductor of the active organ’s 

extracellular potentials. The torso volume potentials are described by the 

generalized Laplace equation: 

∇ ∙ (𝜎𝑜∇𝜑𝑜) = 0, (2.18) 

where subscript o denotes the region outside of the electrically active organ,  

𝜎𝑜 is the tissue conductivity, and 𝜑𝑜 is the tissue potential. The extracellular 

potentials of the organ that were solved are coupled to this equation through 

the continuity of potentials and currents. An electric field distribution that 
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pervades the passive torso volume, including the torso (skin) surface 

potentials, or electrography, can then be computed.  

 

To calculate the corresponding magnetic field, one of the Maxwell’s quasi-

static equations, in which the magnetic field is uncoupled from the electric 

field, is used: 

∇ × 𝑩 = 𝜇0𝑱 , (2.19) 

where 𝑩 is the magnetic field, 𝜇0 is the permittivity of free space and 𝑱  is the 

electric current density which is contributed by two components: 

𝑱 = 𝑱 𝑖 − 𝜎∇𝜑, (2.20) 

where  𝑱 𝑖 is the contribution from primary current sources (dipoles from the 

active organ) and 𝜎∇𝜑 is the contribution from the secondary volume current 

that arises from the conductivity of the passive torso volume. This series of 

equations can be solved using finite element and boundary element methods 

[130, 131]. The resultant simulated electrical and magnetic activities, 

analogous to that measurable with torso surface electrodes and magnetic 

sensors respectively, have been validated [96, 98-100, 121]. Figure 2.22  

shows an example of the simulated electrical and magnetic activities for the 

human stomach. The small intestine, due to its convoluted structure, presents 

an added challenge to torso modelling [132].  
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Figure 2.22. Simulated electrical and magnetic activities for a human stomach. Left panel 
shows slow wave propagation in the stomach. Middle panel shows the corresponding 
electrical potential distribution on the abdominal surface, and magnetic field gradients in 
arrows. Note that the skin surface potentials are much weaker than that of the stomach. Right 
panel shows a corresponding simulated unipolar electrode recording. Adapted from [121]. 
 

GI conditions can arise due to abnormal electrophysiological behaviour and 

these are difficult to diagnose without surgical intervention to obtain electrical 

recordings. Therefore, electrography and magnetography are appealing in their 

non-invasiveness. In particular, magnetography provides an added advantage 

of finer recordings, since the magnetic field is less attenuated by tissue volume 

than are the electrical signals on the skin surface [133].  
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This section has provided an overview on torso modelling, and several 

challenges are inherent in this pursuit. A good multi-scale framework from the 

sub-cellular to whole organ electrophysiology is critical to its development. A 

torso model also serves as an important part of a mature GI framework, to 

actualize clinical applications; for example, in the use of electrography and 

magnetography for diagnostic purposes. 

 

2.3 Chapter summary 

The motility function of the stomach and small intestine is of interest in this 

thesis work. Motility in these organs is required for digestive functions such as 

mixing, nutrients absorption and transport of the ingested contents. The GI 

wall consists of the ICC-MY and SMC which are key cell types involved in 

motility. The ICC-MY are the electrical pacemakers that interact with the 

relatively passive SMC to produce coordinated motility behaviour. In the 

healthy stomach, electrical slow waves originate from the corpus and 

propagate aborally, with a dominant frequency of 3 cpm while the small 

intestine has its pacemaking site in the proximal duodenum during the 

quiescent state, with higher slow wave frequencies that range from 6 cpm to 

14 cpm. The ICC-MY and SMC are excitable due to their sub-cellular 

mechanisms such as membrane ion channels, exchangers and pumps that 

regulate intracellular ionic concentrations and membrane voltage. Given the 

critical role of ion channels in cellular electrophysiology, its variation such as 

a mutation is capable of contributing to, or causing, motility disorder. Initial 

evidence suggests sodium channelopathy in motility disorders. However, the 
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genotype to phenotype link is unclear. Multiple spatial scale modelling is an 

important approach to bridge the gap.  Suitable ion channel models describing 

wild-type and mutation states can be developed. The existing guinea-pig 

gastric ICC model and the canine gastric SMC model are suitable 

biophysically based models in which the ion channel models can be integrated 

to investigate the consequences of its mutation. No human small intestine ICC 

or SMC model was found in the existing literature. The single cell models, 

that contain the ion channel models of interest, can be examined at the multi-

cellular level. The traditional bidomain framework serves as a basis to model 

inter-communicating cells in a tissue or organ and with which to examine 

electrical behaviour. The existing bidomain descriptions can be improved or 

extended to better describe GI electrophysiology. For instance, the two key 

cell types of ICC-MY and SMC as well as any slow wave frequency gradient 

in a GI organ can be incorporated. Torso modelling represents the highest 

spatial scale of modelling that future studies, beyond this thesis, can look into. 

To demonstrate awareness, the torso modelling approach was described. 

Dipoles can be computed from the solution to the bidomain equations that 

describe whole organ electrophysiology. A torso model then uses the dipole 

results to solve for the electric or magnetic field at the body surface. A 

channelopathy may result in a unique electrogram or magnetogram useful for 

diagnostics.  
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“Tell me and I forget. Teach me and I remember. 
Involve me and I learn.”  
– Benjamin Franklin 
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3 Ion channel modelling 

This chapter first describes the general methods used to model ion channel 

electrophysiology, followed by the application of some of these methods to 

model ion channels and their variants. The effects of the ion channel variants, 

particularly the mutations, were then investigated in existing single cell 

models of the gastric ICC and SMC.  

 

3.1 Hodgkin-Huxley formalism 

Hodgkin and Huxley in their Nobel prize winning work presented the first 

membrane excitability model of squid giant axon action potentials, with which 

they were able to reproduce realistic action potentials underpinned by two 

currents carried by voltage-dependent ion channels of sodium and potassium 

[74]. They used a series of voltage clamp experiments to characterize the 

kinetics of these voltage-dependent ion channels and devised mathematical 

methods to model the ion channel kinetics. A parallel conductance electrical 

circuit integrated with the kinetic models of ion channels was used to describe 

axon membrane excitability. The model was successful in accounting for the 

main properties of the action potentials and hence provided convincing 

evidence that their methods were feasible. To date, the Hodgkin-Huxley 

formalism remains widely-used and is considered a classical formalism.  

 

The Hodgkin-Huxley formalism of modelling ion channels basically 

hypothesizes that an assembly of several independent gating particles exists in 
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the cellular membrane that mediate the flow of ions. Each gating particle bears 

a net electronic charge which can be modulated by membrane voltage to reside 

in either the open or closed state.  

 

Figure 3.1 shows the gating particle model, where there are two states, C 

refers to the closed state probability and O refers to the open state probability, 

α(Vm) and β(Vm) are, respectively, the closed to open rate transition variable 

and the open to closed rate transition variable that are dependent on membrane 

voltage, Vm. Note that C is equivalent to 1-O. 

 

 

 
 
Figure 3.1. A Hodgkin-Huxley two-state gating particle model. The gating particle can either 
be in the open state, O, or in the closed state, C (probability of open and closed states sum up 
to 1). The forward and backward transitions are given by α and β respectively and are 
functions of membrane voltage, Vm.  
 

The corresponding first-order kinetic equation of the gating particle is then 

given by Eq. 3.1. As for the description of rate transition equations, α and β, 

Hodgkin and Huxley used a variety of empirical functions that followed the 

general forms shown in Eqs. 3.2 to 3.3, where A, B, and C are the parameters 

whose values are determined by fitting against the appropriate experimental 

data:  

𝑑𝑂
𝑑𝑡

= 𝛼(1 − 𝑂) − 𝛽𝑂, (3.1) 

𝛼 𝑜𝑟 𝛽 = 𝐴𝑒𝑥𝑝 �
𝑉𝑚 − 𝐵

𝐶
�, (3.2) 

𝛼 𝑜𝑟 𝛽 =
𝐴

±1 + 𝑒𝑥𝑝 �𝑉𝑚 − 𝐵
𝐶 �

. (3.3) 

C O 
α(Vm) 

β(Vm) 
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The analytical solution to Eq. 3.1 is given by: 

𝑂 = 𝛼
𝛼 + 𝛽

+ 𝐷𝑒𝑥𝑝 −𝑡

�
1

𝛼 + 𝛽�
, 

(3.4) 

where D is an arbitrary constant. In this equation, the term 1
𝛼+𝛽  is a time 

constant which can be replaced with 𝜏𝑂 while the term 𝛼
𝛼+𝛽 is the steady-state 

value of the open state which can be denoted by 𝑂∞ since as t∞, O𝑂∞ . 

Also, with the initial condition of O=𝑂𝑂 at t= 0, D then becomes 𝑂𝑂 − 𝑂∞ 

thus giving the following re-expressed equations: 

𝑂 = 𝑂∞ + (O𝑂 − O∞)𝑒𝑥𝑝−𝑡
𝜏𝑂

, (3.5) 

𝑑𝑂
𝑑𝑡

=
𝑂∞ − 𝑂
𝜏𝑂

, (3.6) 

𝜏𝑂 = 1
𝛼 + 𝛽

, (3.7) 

𝑂∞  = 𝛼
𝛼 + 𝛽

. (3.8) 

Alternatively, the steady-state value, 𝑂∞  can be described by a biophysical 

function, i.e., the Boltzmann equation. The Boltzmann equation of statistical 

mechanics describes the statistical distribution of a particle under a certain 

temperature and electrical field during equilibrium. The relative probability of 

a particle in state 2 over state 1 is given by: 

𝑃2
𝑃1

=
𝑒𝑥𝑝 �−𝑢2𝑘𝐵𝑇

�

𝑒𝑥𝑝 �−𝑢1𝑘𝐵𝑇
�
 

                   = 𝑒𝑥𝑝 �
−(𝑢2 − 𝑢1)

𝑘𝐵𝑇
�, 

 

 

 

(3.9) 
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where 𝑢  refers to the single particle energy at a particular state, 𝑘𝐵  is the 

Boltzmann constant, 𝑇 is the temperature. The equation can be extended to a 

more chemical form of concentrations and molar energies: 

 

LHS of Eq. 3.9: 

                                          
𝑃2
𝑃1

=

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 2
𝑣𝑜𝑙𝑢𝑚𝑒 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 1
𝑣𝑜𝑙𝑢𝑚𝑒 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

 

                           =

𝐶2
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝐶1
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

 

     =
[𝑃2]
[𝑃1]

, 

 

 

 

 

 

(3.10) 

RHS of Eq. 3.9:  

𝑒𝑥𝑝 �
−(𝑢2 − 𝑢1)

𝑘𝐵𝑇
� = 𝑒𝑥𝑝 �

−𝑁𝐴(𝑢2 − 𝑢1)
𝑁𝐴𝑘𝐵𝑇

� 

                     = 𝑒𝑥𝑝 �−(𝑈2−𝑈1)

𝑁𝐴
𝑅
𝑁𝐴

𝑇
� 

                              = 𝑒𝑥𝑝 �
−(𝑈2 − 𝑈1)

𝑅𝑇
� ; 

 

 

 

 

(3.11) 

equating LHS to RHS gives the following: 

             
[𝑃2]
[𝑃1]

= 𝑒𝑥𝑝 �
−(𝑈2 − 𝑈1)

𝑅𝑇
�, 

(3.12) 

 

where [𝑃] is the concentration of particle P at particular state, 𝑈 is the molar 

energy at that state, 𝑅 is the ideal gas constant and 𝑁𝐴 is Avogadro constant.  

 

With the above as a basis, consider the gross kinetics of the transition between 

channel opening and closing: C O. Starting with Eq. 3.9, let state 2 be the 

open state, O, and state 1 be the closed state, C. The change in energies 
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(𝑢2 − 𝑢1)  can be broken down into two components: (1) 𝜔 , the energy 

required for conformational change that is independent of membrane potential, 

and (2) 𝑧𝑔𝑞𝑒𝑉𝑚, the energy due to membrane potential (𝑉𝑚), required to move 

the gating charges (𝑧𝑔), that results in channel opening to conduct a gating 

current (𝑞𝑒is the elementary charge). These give: 

𝑂
𝐶

= 𝑒𝑥𝑝 �
−(𝜔 −  𝑧𝑔𝑞𝑒𝑉𝑚)

𝑘𝐵𝑇
�, 

(3.13) 

 

Eq. 3.13 is used to derive open probability at equilibrium or steady-state: 

𝐶
𝑂

+ 1 = 𝑒𝑥𝑝 �
(𝜔 −  𝑧𝑔𝑞𝑒𝑉𝑚)

𝑘𝐵𝑇
� + 1, (3.14) 

𝑂
𝑂 + 𝐶

=
1

𝑒𝑥𝑝 �
(𝜔 −  𝑧𝑔𝑞𝑒𝑉𝑚)

𝑘𝐵𝑇
� + 1

, 

where 𝑂
𝑂+𝐶

 is effectively the steady-state open probability, 𝑂∞.  

(3.15) 

 

 

Simplifying Eq. 3.15 gives the following general form of: 

                         𝑂∞ = 1

𝑒𝑥𝑝
�

−
𝑧𝑔𝑞𝑒
𝑘𝐵𝑇 �𝑉𝑚 −  𝜔

𝑧𝑔𝑞𝑒��
+ 1

 

      = 1

𝑒𝑥𝑝�−
�𝑉𝑚−  𝜔

𝑧𝑔𝑞𝑒
�

𝑘𝐵𝑇
𝑧𝑔𝑞𝑒

�+1

 

               =
1

1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑉0)
𝐾 �

, 

 

 

 

 

 

 

(3.16) 

which is the form of Boltzmann equation commonly used to fit against steady-

state gating values, where 𝑉0 and 𝐾 are constants to be determined from 

experimental data.  
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3.1.1 Hodgkin-Huxley ionic current 

An ion channel can comprise a number of independent gating variables (of the 

same or different type) and is permeable to ionic flow when all its gates are 

opened. For example, in the Hodgkin-Huxley 1952 paper, the sodium channel 

was modelled to contain three identical activation gating particles, m, and one 

inactivation gating particle, h, therefore giving the following equations to 

solve for the sodium current that flows through the sodium channels: 

𝑑𝑚
𝑑𝑡

= 𝛽𝑚(1 − 𝑚) − 𝛼𝑚𝑚, (3.17) 

𝑑ℎ
𝑑𝑡

= 𝛽ℎ(1 − ℎ) − 𝛼ℎℎ, (3.18) 

𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝐸𝑁𝑎), (3.19) 

where Eqs. 3.17 and 3.18 solve for the open probability of each type of gating 

particle, which in turn gives the effective open probability, 𝑚3ℎ, of a sodium 

channel. This then solves for the sodium current, 𝐼𝑁𝑎, for a given maximum 

sodium channel conductance, 𝐺𝑁𝑎, and a driving force due to the difference of 

the membrane voltage, 𝑉𝑚, and the sodium Nernst potential, 𝐸𝑁𝑎. 

 

3.2 Thermodynamic formalism 

The classical Hodgkin-Huxley approach uses empirical functions of voltage to 

define the rate transition equations (Eqs. 3.2 and 3.3). Biophysically based 

equations such as the Boltzmann equation can also be used (Eq. 3.16). This 

section describes another biophysical approach to define rate transition 

equations based on thermodynamics. To illustrate, Figure 3.2 shows two 
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coupled states that hypothetically correspond to two states of an ion channel 

protein, where I refers to the initial state and F refers to the final state, and 

their forward and backward rate transitions are denoted by rf(Vm) and  rb(Vm) 

respectively.  

 

 

 

Figure 3.2. Thermodynamics to describe rate transition between two states of an ion channel. I 
refers to the initial state while F refers to the final state. Thermodynamically, the rate of the 
forward transition, rf(Vm), and backward transition, rb(Vm),  depend exponentially on the free 
energy barrier between the two states and hence can be described by 𝑟(𝑉𝑚) = 𝑟0𝑒𝑥𝑝�− ∆𝐺(𝑉𝑚)

𝑅𝑇 �.  

 

According to the theory of reaction rates, a rate transition r(Vm) depends  

exponentially on the free energy barrier between two states [134, 135]: 

𝑟(𝑉𝑚) = 𝑟0𝑒𝑥𝑝 �−
∆𝐺(𝑉𝑚)

𝑅𝑇 �, (3.20) 

∆𝐺(𝑉𝑚) = 𝐺∗(𝑉𝑚) − 𝐺0(𝑉𝑚), (3.21) 

where 𝑟0  is a constant, ∆𝐺(𝑉𝑚)  is the free energy barrier dependent on 

membrane voltage, Vm, R is the ideal gas constant and T is the temperature. 

∆𝐺(𝑉𝑚)  is defined to be the difference between the free energy of the 

activated state, 𝐺∗(𝑉𝑚), and the free energy of the initial state, 𝐺0(𝑉𝑚). Note 

that the smaller the energy barrier between two states, the faster the transition 

between them.  

 

Applying a Taylor series expansion to Eqs. 3.20 and 3.21, the following 

general non-linear thermodynamic rate transition equation was achieved: 

 I F 
rf (Vm) 

rb(Vm) 
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𝑟(𝑉𝑚) = 𝑟0𝑒𝑥𝑝
�

− �𝐴∗ + 𝐵∗𝑉𝑚 + 𝐶∗𝑉𝑚
2 + ⋯ � − �𝐴0 + 𝐵0𝑉𝑚 + 𝐶0𝑉𝑚

2 + ⋯ �
𝑅𝑇 �

 

                     =𝑟0𝑒𝑥𝑝 �− �𝐴+𝐵𝑉𝑚+𝐶𝑉𝑚
2+⋯ �

𝑅𝑇 �, 

(3.22) 

where the rate transition equation is now expressed in both linear (𝐴 + 𝐵𝑉𝑚) 

and non-linear components (𝐶𝑉𝑚
2 + ⋯ ) of free energy where A, B, C,… are 

parameter values to be determined from experimental data. The 

thermodynamic significance of the free energy components was proposed: (1) 

The constant linear term, A, corresponds to the free energy component 

independent of membrane voltage, (2) the linear term, 𝐵𝑉𝑚 , describes the 

interaction between the membrane voltage electrical field and the isolated 

charges and rigid dipoles of the ion channel state [136-139], (3) while the non-

linear components, 𝐶𝑉𝑚
2 + ⋯, describe the effects of electronic polarization 

and pressure induced by an electrical field or mechanical constraints on charge 

movement (due to the ion channel protein structure) [136-138]. These are true 

for both the initial state (subscript 0) and for the activated state (superscript *). 

 

Through the above approach, the forward and backward rate transition 

equations for the pair of state transitions in Figure 3.2 can be described by: 

𝑟𝑓 (𝑉𝑚) = 𝑟𝑓
0 𝑒𝑥𝑝

�
− �𝑎1 + 𝑏1𝑉𝑚 + 𝑐1𝑉𝑚

2 + ⋯ �
𝑅𝑇 �

, (3.23) 

𝑟𝑏(𝑉𝑚) = 𝑟𝑏
0𝑒𝑥𝑝

�
− �𝑎2 + 𝑏2𝑉𝑚 + 𝑐2𝑉𝑚

2 + ⋯ �
𝑅𝑇 �

, (3.24) 
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where the superscript 0 denotes the initial state of a single transition. Note that 

𝑎1, 𝑏1,𝑐1, … and 𝑎2, 𝑏2,𝑐2, … are not necessarily inter-related even though the 

same two states are involved in these two transitions.  

 

Should the membrane voltage be relatively small, then the general non-linear 

thermodynamic rate transition equation in Eq. 3.22 can be simplified to the 

following general linear thermodynamic form: 

𝑟(𝑉𝑚) = 𝑟0𝑒𝑥𝑝 �−
(𝑎 + 𝑏𝑉𝑚)

𝑅𝑇 �, (3.25) 

in which there are three parameter values to determine per rate equation, i.e., 

𝑟0, 𝑎 and 𝑏. A smaller number of parameters will give a higher computational 

efficiency. For further information in using thermodynamic rate transitions, 

the reader is referred to the work of Willms et al [140]. 

 

3.3 Multi-state Markov formalism 

The Hodgkin-Huxley formalism has its limitations. For example, the Hodgkin-

Huxley sodium channel model assumes that the activation and inactivation 

gating particles are independent, and this may conflict with experimental 

findings that demonstrated these processes are dependent [141-144]. The 

multi-state Markov formalism offers an alternative approach to describe ion 

channel behaviour. Markov models typically follow a topology with multiple 

states, where each state can correspond to a protein conformational state of the 

ion channel (a good review is by Sakmann and Neher [145]). 
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The topology of a general Markov model for an ion channel is shown in 

Figure 3.3. Any ion channel can exist in three main types of states, namely the 

closed state type (superscript C), the open state type (superscript O) and the 

inactivated state type (superscript I). Within each state type, an ion channel 

can further exist in several states as denoted by the subscripts i, j and k. 

Transitions can take place between states of the same type and between 

different state types, as indicated by the bidirectional arrows in Figure 3.3. The 

selection of an appropriate topology for a particular ion channel can rely on 

experimental observations such as ion channel protein structures, macroscopic 

voltage clamp recordings and microscopic single channel recordings, if 

available. For example, some potassium channels are known not to exhibit 

inactivation behaviour, and therefore the I-type cluster of inactivation states 

can be removed from the general topology. 

 

Figure 3.3. General Markov model topology. An ion channel can exist in one of the three main 
types of states, i.e., closed state (superscript C), open state (superscript O), and inactivation 
state (superscript I). For each of the three main state types, the ion channel can further exist in 
sub-states denoted by subscripts i, j, and k. State transitions can exist between states of each 
type, and between different state types (as indicated by the bidirectional arrows connecting the 
states).  
 
In Markov models, it is assumed that the transition probability between states 

depends only on the present state and not the historical values. Each pair of 

transition states from a Markov model could be described by Figure 3.4 where 

Si and Sf refer to the initial state and final state respectively, and each of these 
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states assumes a probability value at each time point, i.e., P(Si,t) and P(Sf,t). 

The transition probability from one state to the another is described by 

P(SiSf) for the forward transition and P(SfSi) for the backward transition. 

This interpretation is extensible to all transition pairs within a Markov model, 

and gives rise to the following governing equation for the time derivative of 

any state (probability) in a Markov model: 

     
𝑑𝑃 (𝑆𝑖, 𝑡)

𝑑𝑡
= � 𝑃 �𝑆𝑓,𝑡�𝑃 (𝑆𝑓 → 𝑆𝑖)

𝑛

𝑓=1
− � 𝑃 �𝑆𝑖,𝑡�𝑃 (𝑆𝑖 → 𝑆𝑓 )

𝑛

𝑓=1
, (3.26) 

where P(Si,t) is the state variable whose probability is solved for in the 

equation, f refer to each state that is directly coupled to the state Si, n is the 

total number of states for f, the left term in the right hand side of the equation 

represents all transitions going into Si, while the right term (in the right hand 

side of the equation) represents all transitions going away from Si. 

 

 

 

Figure 3.4. A pair of state transitions from a Markov model. Si and Sf refer to the initial state 
and final state of this transition pair respectively, and each of these two states possesses a 
probability value at each point in time, i.e., P(Si,t) and P(Sf,t). The rate of (probability) 
transition from one state to another is then described by P(Si  Sf) for the forward transition 
and P(Sf  Si) for the backward transition.  
 

Eq. 3.26 describes the state probability of a single ion channel (i.e., a 

stochastic Markov model) due to the explicit representation of time in the state 

variable. Eq. 3.26 can, however, be extrapolated to the macroscopic scale 

which describes the state probabilities of a population of an ion channel type 

and predicts continuous macroscopic currents. The research in this thesis deals 

 Si Sf 
P(SiSf) 

P(SfSi) 
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with macroscopic currents, and therefore Eq. 3.26 was adjusted to the 

following representation: 

𝑑𝑆𝑖
𝑑𝑡

= � 𝑆𝑓 𝑟𝑓𝑖

𝑛

𝑓=1
− � 𝑆𝑖𝑟𝑖𝑓

𝑛

𝑓=1
, 

(3.27) 

where Si refers to the fraction of ion channels in state i, and Sf refers to the 

fraction of ion channels in state f (i.e., state probability), while 𝑟𝑓𝑖 and 𝑟𝑖𝑓  refer 

to the rate variables (instead of transition probabilities) of the backward (Sf  

Si) and forward (Si Sf) transitions respectively. As before, these rate 

variables can depend on voltage and/or other factors that regulate the ion 

channel state transitions (for example, ligands such as acetylcholine or 

calcium ions). Therefore, the thermodynamic equations described earlier in 

section 3.2 can be utilized in a multi-state Markov model for voltage 

dependent transitions. 

 

Some ion channels obey microscopic reversibility when they reach 

thermodynamic equilibrium. Microscopic reversibility can be implemented in 

Markov modelling of such ion channels [146]. Appendix 1 shows a simple 

illustration of how microscopic reversibility may be applied. It helps to reduce 

the number of parameters, depending on the nature of closed loop reactions in 

the model topology. Recommended methods to test if an ion channel type 

obeys microscopic reversibility require single channel recordings [147]. 

However, such experimental data was not available for the modelling work in 

this thesis.  The Markov modelling approach discussed earlier is of a 

stationary nature, in which the rate transitions between states are not 

dependent on time. Stationary models have been successfully used to describe 
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macroscopic ionic currents and to study channelopathies. Recently, a non-

stationary approach to create Markov models was proposed [148, 149]. This 

approach relies, ideally, on both macroscopic data as well as microscopic data 

from single channel recordings. It aims to provide a unique description of ion 

channel activity based on microscopic statistical properties of single channels. 

These non-stationary models are defined in only two states, i.e., closed and 

open states, without a biophysical representation of the ion channel. The 

approach also requires the ion channel gating to satisfy certain single channel 

properties. 

 

Finally, it is generally accepted that multi-state Markov models are able to 

better describe ion channel kinetics. However, the tradeoff comes from the 

greater model complexity that leads to issues such as a greater challenge in 

estimating parameter values from experimental data, an increase in 

computational load due to more variables, and a greater difficulty in relating 

the multiple time constants with the experimentally derived time constants 

[150].  

 

3.4 Ligand gated ion channels 

Ion channels can exist in different states, the transition between states can 

depend on membrane voltage, as well as ligands. If an ion channel is activated 

by ligands such as calcium ions, the Hill equation is one way to model this 

behaviour. For an equilibrium reaction of an n number of ligands, L, to an ion 

channel or receptor, R: 
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          nL + R  LnR, (3.28) 

its dissociation constant, 𝐾𝐷, expressed in terms of concentrations is: 

𝐾𝐷 =
[𝐿]𝑛[𝑅]
[𝐿𝑛𝑅]

. (3.29) 

Its Hill equation is then defined to be the fraction of ligand bound receptors, 𝜃, 

as given by: 

𝜃 =
[𝐿𝑛𝑅]

[𝑅]𝑡𝑜𝑡𝑎𝑙
. (3.30) 

where [𝑅]𝑡𝑜𝑡𝑎𝑙 refers to the total concentration of receptors available in the 

system. 

 

Mass balance for [𝑅] gives: 

[𝑅]𝑡𝑜𝑡𝑎𝑙 = [𝐿𝑛𝑅] + [𝑅], (3.31) 

which is rearranged to:  

[𝑅] = [𝑅]𝑡𝑜𝑡𝑎𝑙 − [𝐿𝑛𝑅], (3.32) 

Eq. 3.32 is then substituted into 𝐾𝐷 of Eq. 3.29: 

𝐾𝐷 =
[𝐿]𝑛([𝑅]𝑡𝑜𝑡𝑎𝑙 − [𝐿𝑛𝑅])

[𝐿𝑛𝑅]
. (3.33) 

Further rearrangement of Eq. 3.33 gives the final form of the Hill Equation: 

[𝐿𝑛𝑅]
[𝑅]𝑡𝑜𝑡𝑎𝑙

=
1

𝐾𝐷
[𝐿]𝑛 + 1

, (3.34) 

          𝜃 =
1

𝐾𝐷
[𝐿]𝑛 + 1

, (3.35) 

where n is the Hill coefficient. An n value bigger than 1 indicates positive 

cooperativity, i.e., binding of ligand promotes subsequent ligand binding, 

while a value smaller than 1 indicates negative cooperativity, i.e., binding of 

ligand inhibits subsequent ligand binding. In ion channel modelling parlance, 
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𝜃 refers to the steady-state open probability that is dependent on the ligand 

concentration, [𝐿].  

 

3.5 Gastrointestinal sodium channels 

The general methods for modelling ion channels were discussed in the 

preceding section; here, the GI sodium channels are introduced, which will be 

followed by a discussion on sodium channel modelling. A voltage-gated 

sodium (Na) channel is a transmembrane protein that conducts sodium ions 

into a cell and is commonly referred to as Nav1.x, where v denotes voltage 

sensitivity (or dependency), ‘1’ refers to the sodium channel family, and x 

denotes the sub-family the sodium channel belongs to. The alpha subunit of a 

sodium channel is pore-forming and functional. It is made up of four repeat 

domains, each having six segments, with intracellular and extracellular linkers 

connecting the segments and domains. The distribution of amino acid residues 

of differing characteristics and the structure of the tertiary protein endow the 

alpha subunit with voltage-sensitivity and ion-selectivity. Sodium channels are 

also known to inactivate due to the intracellular linkers and the C-terminus 

domain of the alpha subunit. Endogenous auxiliary proteins such as beta 

subunits do interact with the sodium channel alpha subunit (forming macro-

molecular complexes) and are capable of altering channel properties such as 

voltage sensitivity and mechanosensitivity [151, 152]. There are at least nine 

known members of the sodium channel alpha subunit family, and they include 

neuronal sodium channels whose alpha subunit is encoded by the 

SCN1A/SCN2A/SCN3A genes, the skeletal muscle sodium channel encoded 

by the SCN4A gene, and cardiac muscle sodium channel encoded by SCN5A. 
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In these excitable cell types, the sodium channels play a critical role, i.e., the 

sodium current carried by these channels are responsible for the rapid upstroke 

phase of the electrical action potential in these cells, as well as for 

refractoriness (due to channel inactivation) [153].  

 

In the gastrointestinal tract, SCN5A encoded alpha subunit was discovered in 

the key motility cell types of ICC-MY [106] and the circular SMC [154, 155] 

from the human jejunum. The gastrointestinal SCN5A sodium channels were 

found to be near identical to the cardiac SCN5A sodium channels in terms of 

its amino acid homology [155], are voltage sensitive, tetrodotoxin resistant, 

and were also found to be mechanosensitive [156-159]. From the experiments 

on tissue samples, it was suggested that the SCN5A sodium current plays an 

essential role in the control of intestinal motor function through its influence 

on electrical slow waves such as on the resting membrane potential, rate of 

rise of upstroke and frequency (but not a driver of the upstroke, unlike in the 

cardiac cells) [106].  

 

Cardiac SCN5A mutations are known to cause diseases such as Brugada 

syndrome and LQT syndrome [160, 161], while neuronal sodium channel 

mutations are known to cause diseases such as epilepsy [9] and pain 

hypersensitivity [162]. Interestingly, in a 2006 epidemiological study, patients 

with cardiac SCN5A mutations were correlated with GI symptoms, 

particularly abdominal pain [13]. The identity of the mutations, except for one 

loss-of-function mutation, was not revealed. The same study also showed the 

absence of a link with the most common potassium channelopathy (encoded 
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by KCNH2 and also expressed in the gastrointestinal tract). This suggested 

that the GI complaints were specific to SCN5A. A separate study indicated a 

similar result, where patients with gain-of-function cardiac SCN5A mutation 

(causing LQT syndrome) were also correlated with abdominal pain [163]. 

Even more recently, SCN5A related mutations were found in patients with 

intestinal motility disorders. Patients with idiopathic intestinal motility 

disorder had blood samples taken for molecular screening for rare and 

missense mutations on the SCN5A and related genes. Two rare missense 

mutations were identified and transfected into HEK-293 cells for voltage 

clamp studies, which revealed that these mutations were able to alter channel 

kinetics under the biological conditions of the HEK-293 cells. Specifically, a 

R76C mutation of the SCN5A sodium channel interacting protein, telethonin, 

appeared to induce a gain-of-function change in the sodium channel kinetics, 

and could possibly alter its mechanosensitivity. This is a novel, rare and 

missense mutation found in one patient with idiopathic intestinal pseudo-

obstruction [14]. The other is a rare and missense G298S mutation of the 

SCN5A gene, found in a patient with irritable bowel syndrome [15]. This 

mutation was examined in HEK-293 cells in four different but common 

SCN5A backgrounds (unlike the R76C study) that arise from alternative 

splicing (Q1077/Q1077del) and a naturally occurring polymorphism 

(H558/H558R). The voltage-clamp findings indicate that these four 

backgrounds (or so-called sodium channel variants) affect sodium channel 

behaviour in the wild-type and mutated states. For the G298S mutation, its 

major influence on sodium channel appeared to be a loss-of-function effect.  
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Although the R76C and G298S mutations were discovered in patients with 

idiopathic intestinal disorders, and were found to cause a change in sodium 

channel behaviour in HEK-293 cells, this does not automatically mean that the 

mutation is responsible for the disease. The use of further experimental 

techniques to examine these SCN5A mutations is challenging. In terms of 

using cultured cells of ICC-MY and SMC, their phenotype and their 

phenotype maintenance might not sufficiently or consistently replicate their 

native counterparts to properly investigate these mutations. As for animal 

models, the SCN5A channels are currently found to be negligibly (or not) 

expressed in smaller mammals such as the mouse and guinea pig [164]. Multi-

scale computational modelling is an alternative that can potentially address 

this genotype-phenotype gap. Suitable ion channel models describing the 

aforementioned sodium channel variants can be developed and then integrated 

into higher spatial scale models to predict and understand their consequences.  

 

The subsequent sections of this chapter will, firstly, describe the use of the 

traditional Hodgkin-Huxley formalism to model wild-type and R76C affected 

sodium channels as studied in the aforementioned R76C study by Mazzone et 

al [14]. A multi-state Markov formalism was subsequently used to model the 

same channels for its better accuracy in representing channel kinetics. This is 

followed by the modelling of polymorphic-splice variants of wild-type and 

G298S sodium channels from the study by Saito et al [15]. The consequences 

of these sodium channel variants were also examined through their integration 

into single cell models of gastric ICC and SMC.  
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3.6 Modelling sodium channels using a Hodgkin-Huxley formalism 

3.6.1 Experimental data 

Three groups of experimental data from Mazzone et al [14], labeled according 

to what was transfected into the HEK-293 cell expression system, were used 

to develop the sodium channel models, i.e., SCN5A (with the SCN5A gene 

only), TCAP (with the SCN5A gene and wild-type telethonin gene, TCAP) 

and R76C (with the SCN5A gene and R76C TCAP gene). They comprised 

detailed 𝐼𝑁𝑎 versus time data over a range of clamping voltages with seven 

cells for each of the three groups (a sample is shown in Figure 3.5), as well as 

gross kinetic data such as peak current versus clamping voltage, time to peak, 

fast and slow inactivation time constant values. These data were processed and 

appropriately used to parameterize the sodium channel models.  

 

Figure 3.5. A sample of the experimental data from one of the seven cells of the SCN5A 
group (file number, 07119000.abf). The normalized sodium current time traces, for all 24 
clamping voltages, were overlaid. 
 
The Hodgkin-Huxley formalism was applied to construct the sodium channel 

model using experimental data from the R76C study by Mazzone et al [14]. 
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The sodium channel was defined to follow the conventional configuration of 

three activation gates, m, and one inactivation gate, h, which gives the 

following form of sodium current equation, 𝐼𝑁𝑎  (see Figure 3.6 for 

explanation):  

𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝐸𝑁𝑎), (3.36) 

where the remaining symbols follow their usual meaning. Key to completing 

the description of a sodium channel model is the mathematical descriptions 

that solve for m and h. Three Hodgkin-Huxley sodium channel models 

corresponding to the wild-type sodium channel (SCN5A model), the sodium 

channel under wild-type telethonin augmentation (TCAP model), and the 

sodium channel under R76C telethonin augmentation (R76C model) were 

constructed.  

 

Figure 3.6. The sodium channel, here, is defined to contain two types of gates, i.e., the 
activation and inactivation gates. The activation gate’s open probability is given by m and the 
close probability is given by 1-m, while for the inactivation gate, the open probability is given 
by h and the close probability is given by 1-h. α is a voltage dependent rate constant that 
controls the forward transition from closed to open state of a gate while β is the voltage 
dependent rate constant that controls the backward transition from open to closed state of a 
gate. When all gates of a channel are open, ions are able to flow through it under a potential 
difference driving force.  
 

3.6.2 Voltage clamp protocol 

Two voltage clamp protocols from the study of Mazzone et al [14] were used 

in the simulation protocol to develop the sodium channel models. One is an 

activation protocol designed to study the activation properties of the sodium 
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channels. As shown in Figure 3.7, the cell is held at a holding voltage of -100 

mV before stepping to a clamping voltage for 50 ms. This is repeated with a 

start-to-start time of 1 s, and for a range of clamping voltages starting from -80 

mV to 35 mV with an interval size of 5 mV. The inactivation protocol is more 

complicated, and designed to study the channels’ inactivation properties. As 

shown in Figure 3.8, the holding voltage is -100 mV, and the clamping voltage 

duration is 3 s (to ensure that the channels are steadily inactivated). A voltage 

of -110 mV that lasts 0.1/0.2 ms is required after 3 s of voltage clamping to 

normalize transients, before ending off at a voltage of -40 mV. This protocol is 

designed to sense the extent of inactivation through the amount of activation 

of the inactivated sodium currents measured at the terminal voltage of -40 mV. 

This is repeated for a range of clamping voltages from -130 mV to -60 mV 

with an interval size of 5 mV and with a start-to-start time of 4 s.  

 

Figure 3.7. Activation voltage clamp protocol. Holding voltage is at -100 mV, clamping 
voltage is from -80 mV to 35 mV at step size of 5 mV. The clamping duration is 50 ms, while 
the start to start time is 1 s. 
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Figure 3.8. Inactivation voltage clamp protocol. Holding voltage is at -100 mV, clamping 
voltage is from -130 mV to -60 mV at step size of 5 mV with a clamping duration of 3 s. 
Subsequently, the cell is subjected to 0.1 or 0.2 ms of -110 mV voltage to normalize 
transients, before ending off with a voltage of 40 mV. The start to start time is 4 s. 

 

3.6.3 Data for model parameterization 

To parameterize the Hodgkin-Huxley sodium channel models (or 

formulations), four types of gross kinetic data are required. These are the 

activation gate’s steady-state values, 𝑚∞,  and time constant values, 𝜏𝑚; and 

the inactivation gate’s steady- state values, ℎ∞, and time constant values, 𝜏h. 

The gross kinetic data of 𝑚∞, 𝜏𝑚 and 𝜏ℎ were obtained by fitting an analytical 

solution of 𝐼𝑁𝑎  in Eq. 3.36 against the detailed experimental data of 𝐼𝑁𝑎 

versus time measured under the activation protocol, while ℎ∞  values were 

derived from the peak currents measured under the inactivation protocol.  

Solving the differential equations of the gating variables, m and h, of the form 

shown in Eq. 3.6, gives the following analytical solution of 𝐼𝑁𝑎:  
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𝐼𝑁𝑎 = 𝐺𝑁𝑎 �𝑚∞ − (𝑚∞ − 𝑚0) 𝑒𝑥𝑝 �−
𝑡
𝜏𝑚
��

3
�ℎ∞ − (ℎ∞ − ℎ0) 𝑒𝑥𝑝 �−

𝑡
𝜏ℎ
�� (𝑉𝑚 − 𝐸𝑁𝑎),  

(3.37)  

where 𝑚0 and ℎ0 refer to the initial values of the m and h gates respectively, 

with all other symbols carrying the same meaning as before. Eq. 3.37 can be 

simplified by assuming that a depolarization from the holding voltage to any 

clamping voltage is significantly large such that 𝑚0 is much smaller than 𝑚∞, 

while ℎ∞ is approximately zero at sufficiently large voltages. The simplified 

analytical solution is therefore: 

𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑚∞
3ℎ0 �1 − 𝑒𝑥𝑝 �−

𝑡
𝜏𝑚
��

3
𝑒𝑥𝑝 �−

𝑡
𝜏ℎ
� (𝑉𝑚 − 𝐸𝑁𝑎). (3.38) 

With Eq. 3.38 as a basis, a freely available program, Stimfit [165], was used to 

fit for the values of 𝑚∞, 𝜏𝑚 and 𝜏ℎ against the 𝐼𝑁𝑎 versus time experimental 

data from the activation protocol. This was repeated for all three cases of 

SCN5A, TCAP and R76C.  

 

The last variable of ℎ∞  was first examined through the chain-rule 

differentiation of Eq. 3.36: 

𝑑𝐼𝑁𝑎
𝑑𝑡

=
𝜕𝐼𝑁𝑎
𝜕𝑚

𝑑𝑚
𝑑𝑡

+
𝜕𝐼𝑁𝑎
𝜕ℎ

𝑑ℎ
𝑑𝑡

. (3.39) 

The gradient at peak current is zero, therefore the time derivative term of 𝐼𝑁𝑎 

becomes zero at this point. Under the inactivation protocol, the sodium 

channels are under voltage clamp long enough for the m gates to reactivate, 

and become steadily open at a constant value (say 𝑚𝑐𝑜𝑛𝑠𝑡 ) until the peak 

current time point, measured at the terminal voltage of -40 mV. Therefore, it 
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can be assumed that 𝑑𝑚
𝑑𝑡

= 0. This leaves 𝜕𝐼𝑁𝑎
𝜕ℎ

𝑑ℎ
𝑑𝑡

= 0 at the peak current time 

point, i.e., 𝜕𝐼𝑁𝑎
𝜕ℎ

= 0 or 𝑑ℎ
𝑑𝑡

= 0 . It is known that 𝑑ℎ𝑑𝑡 = ℎ∞−ℎ
𝜏ℎ

, and taking 𝑑ℎ
𝑑𝑡

= 0, 

one gets ℎ = ℎ∞ at the peak current: 

𝐼𝑁𝑎
𝑃𝑒𝑎𝑘 = 𝐺𝑁𝑎𝑚𝑐𝑜𝑛𝑠𝑡

3 ℎ∞(𝑉𝑚 − 𝐸𝑁𝑎), (3.40) 

where 𝐼𝑁𝑎
𝑃𝑒𝑎𝑘 is the peak sodium current  measured at each of the clamping 

voltages, 𝑉𝑚, under the inactivation protocol. The maximal (or biggest) 𝐼𝑁𝑎
𝑃𝑒𝑎𝑘 

at voltage, 𝑉 𝑀𝑎𝑥, is then given by 𝐼𝑁𝑎
𝑀𝑎𝑥 with the assumption that ℎ∞ = 1: 

𝐼𝑁𝑎
𝑀𝑎𝑥 = 𝐺𝑁𝑎𝑚𝑐𝑜𝑛𝑠𝑡

3 1�𝑉 𝑀𝑎𝑥 − 𝐸𝑁𝑎�. (3.41) 

The 𝐼𝑁𝑎
𝑃𝑒𝑎𝑘  in Eq. 3.40 was normalized with 𝐼𝑁𝑎

𝑀𝑎𝑥  in Eq. 3.41 to get the 

equation of ℎ∞: 

𝐼𝑁𝑎
𝑃𝑒𝑎𝑘

𝐼𝑁𝑎
𝑀𝑎𝑥 =

𝐺𝑁𝑎𝑚𝑐𝑜𝑛𝑠𝑡
3 ℎ∞(𝑉𝑚 − 𝐸𝑁𝑎)

𝐺𝑁𝑎𝑚𝑐𝑜𝑛𝑠𝑡
3 1(𝑉 𝑀𝑎𝑥 − 𝐸𝑁𝑎)

, (3.42) 

ℎ∞ =
�

𝐼𝑁𝑎
𝑃𝑒𝑎𝑘

𝐼𝑁𝑎
𝑀𝑎𝑥�

�
𝑉𝑚 − 𝐸𝑁𝑎

𝑉 𝑀𝑎𝑥 − 𝐸𝑁𝑎�
. (3.43) 

The parameter values in the right hand term of Eq. 3.43 can be easily obtained 

from experimental data to compute the ℎ∞  value for each voltage, 𝑉𝑚 . 

Therefore, with the above equations, one can derive 𝑚∞, 𝜏𝑚, ℎ∞ and 𝜏h values 

from experimental data to parameterize a Hodgkin-Huxley formulation. 
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3.6.4 General forms of the four formulation sets 

Four sets of Hodgkin-Huxley type formulations that use the rate constants 

and/or the steady-state and time constant values to describe the m and h gates 

were identified. These four sets of formulations are described below in Tables 

3.1 to 3.4. The parameter values of these formulations were subsequently 

fitted against experimental data, and their goodness-of-fit compared. The best 

set of formulation was selected to represent the m and h gates of the sodium 

channel model.  

 

Table 3.1. Formulation 1. The variables are the steady-state and time constant values of the 
activation and inactivation gates. A, B, C, D, E, a, b, c, d, e are parameters whose values were 
fitted to experimental data.     
 

Variables Equations 

m∞ 1

1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝐴)
𝐵 �

 

τm 𝐶 + 𝐷𝑒𝑥𝑝(−𝐸𝑉𝑚) 
h∞ 1

�1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑎)
𝑏 ��

2 

τh 𝑐 + 𝑑𝑒𝑥𝑝(−𝑒𝑉𝑚) 

 

 
Table 3.2. Formulation 2. It is identical to formulation 1, except that the parameter values of 
m∞ were fitted to normalized m∞ data.  
 

Variables Equations 

m∞ 1

1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝐴)
𝐵 �

 

τm 𝐶 + 𝐷𝑒𝑥𝑝(−𝐸𝑉𝑚) 
h∞ 1

�1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑎)
𝑏 ��

2 

τh 𝑐 + 𝑑𝑒𝑥𝑝(−𝑒𝑉𝑚) 
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Table 3.3. Formulation 3. The variables are the rate values of the forward and backward 
transitions of opening and closing of the activation and inactivation gates. A, B, C, D, E, a, b, 
c, d are parameters whose values were fitted to experimental data. Since the experimental data 
are in steady-state values and time constant values, therefore their equivalent forward and 
backward rate values were obtained by using Eqs. 3.7 and 3.8.   
 

Variables Equations 

αm 𝐴 𝑒𝑥𝑝 �
𝑉𝑚
𝐵
� 

βm −𝐶(𝑉𝑚 + 𝐷)

𝑒𝑥𝑝 �−𝑉𝑚 + 𝐷
𝐸 � − 1

 

αh  1

𝑒𝑥𝑝 �−𝑉𝑚 − 𝑎
𝑏 � + 1

 

βh 𝑐 𝑒𝑥𝑝 �
𝑉𝑚
𝑑
� 

 
 
 
 
Table 3.4. Formulation 4. Here, the inactivation gating is described by the steady-state and 
time constant variables (following Table 3.1 or Table 3.2) while the activation gating is 
described by the forward-backward transition rate variables (following Table 3.3). A, B, C, D, 
E, a, b, c, d, e are parameters whose values were fitted to the appropriate experimental data.  
 

Variables Equations 

αm 𝐴 𝑒𝑥𝑝 �
𝑉𝑚
𝐵
� 

βm −𝐶(𝑉𝑚 + 𝐷)

𝑒𝑥𝑝 �−𝑉𝑚 + 𝐷
𝐸 � − 1

 

h∞ 1

�1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑎)
𝑏 ��

2 

τh 𝑐 + 𝑑𝑒𝑥𝑝(−𝑒𝑉𝑚) 
 

3.6.5 Parameterization and selection of the formulation sets 

The parameter values of each of the four sets of formulations were computed 

through the use of Microsoft Excel’s add-on ‘Solver’. Three sets of values 

were obtained for each of the three groups of cells, SCN5A, TCAP and R76C, 

as shown in Tables 3.5 to 3.8. 
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Table 3.5.  Formulation 1 with the corresponding parameter values for each of the three cases 
of SCN5A, TCAP and R76C.   
 

Equations 
m∞ 1

1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝐴)
𝐵 �

 

τm 𝐶 + 𝐷𝑒𝑥𝑝(−𝐸𝑉𝑚) 
h∞ 1

�1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑎)
𝑏 ��

2 

τh 𝑐 + 𝑑𝑒𝑥𝑝(−𝑒𝑉𝑚) 
Parameter values 

 SCN5A  TCAP R76C 
A 59.78 62.35 63.05 
B 5.406 5.414 4.972 
C 0.07329 0.06113 0.06161 
D 0.1048 0.06312 0.09190 
E 0.02592 0.03351 0.03061 
a -86.53 -85.04 -86.5 
b -6.5 -7.2 -6.5 
c 1.325 1.386 0.9329 
d 0.08901 0.03494 0.03381 
e 0.07587 0.08742 0.09200 

 
 
Table 3.6. Formulation 2 with the corresponding parameter values for each of the three cases 
of SCN5A, TCAP and R76C.   
 

Equations 
m∞ 1

1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝐴)
𝐵 �

 

τm 𝐶 + 𝐷𝑒𝑥𝑝(−𝐸𝑉𝑚) 
h∞ 1

�1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑎)
𝑏 ��

2 

τh 𝑐 + 𝑑𝑒𝑥𝑝(−𝑒𝑉𝑚) 
Parameter values 

 SCN5A TCAP R76C 
A 55.35 56.81 56.55 
B 7.631 8.756 9.070 
C 0.07329 0.06113 0.06161 
D 0.1048 0.06312 0.09190 
E 0.02592 0.03351 0.03061 
a -86.53 -85.04 -86.5 
b -6.5 -7.2 -6.5 
c 1.325 1.386 0.9329 
d 0.08901 0.03494 0.03381 
e 0.07587 0.08742 0.09200 
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Table 3.7. Formulation 3 with the corresponding parameter values for each of the three cases 
of SCN5A, TCAP and R76C.   
 

Equations 
αm 𝐴 𝑒𝑥𝑝 �

𝑉𝑚
𝐵
� 

βm −𝐶(𝑉𝑚 + 𝐷)

𝑒𝑥𝑝 �−𝑉𝑚 + 𝐷
𝐸 � − 1

 

αh  1

𝑒𝑥𝑝 �−𝑉𝑚 − 𝑎
𝑏 � + 1

 

βh 𝑐 𝑒𝑥𝑝 �
𝑉𝑚
𝑑
� 

Parameter values 
 SCN5A TCAP R76C 

A 0.1422 0.1669 0.3533 
B -33.20 -35.69 -105.9 
C 0.08037 0.1018 0.09514 
D 66.86 67.05 63.53 
E 3.321 3.316 4.554 
a -13.966 -16.432 -31.768 
b 20.805 21.152 11.092 
c 3.38e-11 3.65e-11 3.09e-11 
d -4.402 -4.400 -4.401 

 
Table 3.8. Formulation 4 with the corresponding parameter values for each of the three cases 
of SCN5A, TCAP and R76C.   
 

Equations 
αm 𝐴 𝑒𝑥𝑝 �

𝑉𝑚
𝐵
� 

βm −𝐶(𝑉𝑚 + 𝐷)

𝑒𝑥𝑝 �−𝑉𝑚 + 𝐷
𝐸 � − 1

 

h∞ 1

�1 + 𝑒𝑥𝑝 �− (𝑉𝑚 − 𝑎)
𝑏 ��

2 

τh 𝑐 + 𝑑𝑒𝑥𝑝(−𝑒𝑉𝑚) 
Parameter values 

 SCN5A TCAP R76C 
A 0.1422 0.1669 0.3533 
B -33.20 -35.69 -105.9 
C 0.08037 0.1018 0.09514 
D 66.86 67.05 63.53 
E 3.321 3.316 4.554 
a -86.53 -85.04 -86.5 
b -6.5 -7.2 -6.5 
c 1.325 1.386 0.9329 
d 0.08901 0.03494 0.03381 
e 0.07587 0.08742 0.09200 
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The fully defined formulations for SCN5A, TCAP and R76C, as shown in 

Tables 3.5 to 3.8, were then used together with the sodium current equation of 

Eq. 3.36 (with 𝐺𝑁𝑎 defined to be 1), to perform simulations to solve the 

models for normalized sodium currents under the activation and inactivation 

protocols (as shown in Figures 3.7 and 3.8). The results were processed 

according to the methods under section 3.6.3 to obtain the gross kinetic data of  

𝑚∞, ℎ∞, 𝜏𝑚, and 𝜏ℎ. The gross kinetic values derived from the predicted data 

was then compared against the experimental data, both graphically (see 

Figures 3.9 to 3.11) and quantitatively through the calculation of the mean 

squared error. Table 3.9 shows the mean squared error with the shaded boxes 

indicating the formulation that gives the least error for each metric (m∞, h∞, τm, 

τh) while the total sum of mean squared error gives the sum of all error over all 

three cases. Formulation 4 was deemed to be the best formulation since it 

provided the best fit to the most number of metrics, and gave a total sum of 

mean squared error that ranked second. This was followed by Formulation 2 

and Formulation 1, while Formulation 3 has an error that is significantly larger 

than the rest. Formulation 4 was used in the subsequent work.  
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Figure 3.9. A comparison of fit between the predicted data for all four formulations against the corresponding experimental data, for 
the case of SCN5A. Error bars represent one standard deviation of the mean. 
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Figure 3.10. A comparison of fit between the predicted data for all four formulations against the corresponding experimental data, 
for the case of TCAP. Error bars represent one standard deviation of the mean. 
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Figure 3.11. A comparison of fit between the predicted data for all four formulations against the corresponding experimental data, 
for the case of R76C. Error bars represent one standard deviation of the mean. 
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Table 3.9. Table of mean squared error when all formulations were compared against 
experimental data of 𝑚∞, 𝜏𝑚, ℎ∞and 𝜏ℎ.  

 Mean Squared Error (MSE) 
Formulation 

1 

Formulation 
2 

Formulation 
3 

Formulation 
4 

SCN5A  m∞ 0.0071215 0.0016202 0.0013657 0.0013657 
h∞ 0.0037373 0.0037588 0.0074872 0.0037293 
τm 0.0040450 0.0043586 0.0044878 0.0024316 
τh 0.19577 0.29737 1.4000 0.18332 

Sum of 
MSE 0.21067 0.30710 1.4133 0.19085 

TCAP m∞ 0.012193 0.0036454 0.0026760 0.0026760 
h∞ 0.000854 0.00083245 0.0028144 0.00086396 
τm 0.0024084 0.0024914 0.0032608 0.002328 
τh 0.57221 1.0677 2.3596 1.0032 

Sum of 
MSE 0.58767 1.0747 2.3684 1.0091 

R76C m∞ 0.016487 0.0044231 0.0027734 0.0027734 
h∞ 0.0012869 0.0013425 0.031066 0.0012994 
τm 0.0019381 0.0031637 0.0079992 0.010509 
τh 3.0921 1.5010 18.741 2.6909 

Sum of 
MSE 3.1118 1.5099 18.783 2.7055 

Total sum of 
MSE  3.9101 2.8917 22.565 3.9055 

 

To determine how Formulation 4 performs against the detailed experimental 

data of sodium current over time, the same voltage clamp activation protocol 

shown in Figure 3.7 was applied to the Hodgkin-Huxley model described by 

Formulation 4, for all three groups of SCN5A, TCAP and R76C. Figures 3.12 

to 3.14 show the simulation results of normalized sodium current versus time 

plots for selected voltages from -70 mV to 30 mV, for SCN5A, TCAP and 

R76C respectively. A common misfit for all three groups was observed to be 

the inability of the Hodgkin-Huxley model in describing the inactivation of 

sodium current, even though the model was able to predict the peak sodium 

current at the right time points. Specifically, the Hodgkin-Huxley model 

appears to predict sodium currents that tend to inactivate faster than the 

experimental recordings. This discrepancy is worth attention because in 
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cellular electrophysiology, the extent of sodium channel inactivation affects 

the amount of current influx that could alter cellular membrane voltage. 

Therefore, the decision was made to evaluate the multi-state Markov 

formalism in developing models that can accurately describe sodium current, 

including its inactivation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3. Ion channel modelling 

 
93 

 

 
 

Figure 3.12. A comparison of the normalized sodium current over time between predicted data from formulation 4 and experimental data, 
for the SCN5A group. Each subplot corresponds to the sodium current produced under a selected clamping voltage used in the patch clamp 
experiments. 
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Figure 3.13. A comparison of the normalized sodium current over time between predicted data from formulation 4 and experimental data, 
for the TCAP group. Each subplot corresponds to the sodium current produced under a selected clamping voltage used in the patch clamp 
experiments. 
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Figure 3.14. A comparison of the normalized sodium current over time between predicted data from formulation 4 and experimental data, 
for the R76C group. Each subplot corresponds to the sodium current produced under a selected clamping voltage used in the patch clamp 
experiments. 
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3.7 Modelling the sodium channels using the Markov formalism 

3.7.1 Model topology 

The Markov model topology used to create the sodium channel models is 

shown in Figure 3.15. This topology has been used previously to describe an 

existing cardiac sodium channel model and was selected since the protein 

structure homology is essentially identical between the cardiac and intestinal 

sodium channels [106, 166].  

 

Figure 3.15. The six-state topology of the Markov sodium channel model. It consists of three 
closed states (CI, C2, C3), two inactivated states (I1, I2) and one open state (O). The transition 
rates, k, between states are voltage-dependent; their parameters are fitted to experimental data.  
 

The model describes the sodium channel in terms of six states, three closed 

states (C1, C2, C3), two inactivated states (I1, I2) and one open state (O). 

These six states can correspond to the structure-function characteristics of the 

protein sodium channel, where the sequential activation of each of the four 

homologous domains parallelizes the transitions from C3 to C2 to C1 to O 

states. It is known that the sodium channel exhibits two discernible types of 

inactivation due to the intracellular linkers and C-terminus domain, therefore 

these are represented by two inactivation states of I1 and I2. A transition rate 

ki,j, governs the transition between two states and is defined to depend on 
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membrane voltage, 𝑉𝑚. Following sections 3.2 and 3.3 that discussed the use 

of thermodynamic descriptions for the transition rates between states in a 

multi-state Markov model, a simplified linear form of Eq. 3.25, as proposed by 

Stevens [138] was tested: 

𝑘 = 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚), (3.44) 

while two nonlinear forms (with thermodynamic equations of Eq. 3.23 and 

3.24  as a basis) as proposed by Destexhe and Huguenard [167] and Ozer 

[168] were also examined: 

𝑘 = 𝐴𝑒𝑥𝑝�𝐵 + 𝐶𝑉𝑚 + 𝐷𝑉𝑚
2 + 𝐸𝑉𝑚

3 + ⋯ �, (3.45) 

𝑘 = 𝐴𝑒𝑥𝑝(𝐵(𝑉𝑚 − 𝑉𝐶)2) + 𝐷𝑒𝑥𝑝(𝐸(𝑉𝑚 − 𝑉𝐹 )2) + ⋯, (3.46) 

where in the above Eqs. 3.44 to 3.46, A, B, C, D, E, VC and VF are unknown 

parameters whose values can be fitted to experimental data.  

 

After experimenting with a number of different forms for the transition rate 

equations, the three parameter equation in Eq. 3.44 was selected as it was the 

simplest form that could adequately describe the data. As shown in Figure 

3.15, there are 12 possible transitions and the resulting sodium channel model 

therefore would include 12 of such transition rate equations for a total of 36 

unknown parameters to be determined. Following the general Markov model 

description, Eq. 3.27 was used to derive the system of first order differential 

equations that arises from Figure 3.15 and is given by: 
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𝑑𝐶1
𝑑𝑡

= −�𝑘𝐶1,𝐶2 + 𝑘𝐶1,𝐼1 + 𝑘𝐶1,𝑂�𝐶1 + 𝑘𝐶2,𝐶1𝐶2 + 𝑘𝐼1,𝐶1𝐼1 + 𝑘𝑂,𝐶1𝑂, (3.47) 

 

𝑑𝐶2
𝑑𝑡

= −�𝑘𝐶2,𝐶1 + 𝑘𝐶2,𝐶3�𝐶2 + 𝑘𝐶1,𝐶2𝐶1 + 𝑘𝐶3,𝐶2𝐶3, (3.48) 

 

𝑑𝐶3
𝑑𝑡

= −𝑘𝐶3,𝐶2𝐶3 + 𝑘𝐶2,𝐶3𝐶2, (3.49) 

 

𝑑𝐼1
𝑑𝑡

= −�𝑘𝐼1,𝐶1 + 𝑘𝐼1,𝐼2 + 𝑘𝐼1,𝑂�𝐼1 + 𝑘𝐶1,𝐼1𝐶1 + 𝑘𝐼2,𝐼1𝐼2+𝑘𝑂,𝐼1𝑂, (3.50) 

 

𝑑𝐼2
𝑑𝑡

= −𝑘𝐼2,𝐼1𝐼2 + 𝑘𝐼1,𝐼2𝐼1, (3.51) 

 

𝑑𝑂
𝑑𝑡

= −�𝑘𝑂,𝐶1 + 𝑘𝑂,𝐼1�𝑂 + 𝑘𝐶1,𝑂𝐶1 + 𝑘𝐼1,𝑂𝐼1, (3.52) 

In a general Markov model, the sum of all open states gives the effective open 

probability that can be used to compute the ionic current through a population 

of channels. In this case, the sodium channel model has one open state, O, and 

its corresponding ionic current can be described by: 

𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑂(𝑉𝑚 − 𝐸𝑁𝑎). (3.53) 

 

3.7.2 Derivation of the open probability 

The whole cell patch clamp experimental data from SCN5A, TCAP and R76C 

consists of sodium current recordings over time for each cell and for each 

clamping voltage. From the perspective of a sodium channel model, a current 

will only flow when the channel is in the open state, thus the sodium current 

time recordings must be reconciled with channel open probability over time, 

𝑃𝑂(𝑡). Therefore, the whole cell sodium current is given by: 
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𝐼𝑁𝑎(𝑡) = 𝐺𝑁𝑎𝑃𝑂(𝑡)(𝑉𝑚 − 𝐸𝑁𝑎). (3.54) 

𝐼𝑁𝑎(𝑡) can be normalized using a single value of a recorded peak sodium 

current, 𝐼𝑁𝑎
𝑝𝑒𝑎𝑘 , that occurs at a clamping voltage, 𝑉𝑚

𝑝𝑒𝑎𝑘 , with an open 

probability, 𝑃𝑂
𝑝𝑒𝑎𝑘, such that 𝑃𝑂

𝑝𝑒𝑎𝑘(𝑉𝑚
𝑝𝑒𝑎𝑘 − 𝐸𝑁𝑎) is at a peak value: 

𝐼𝑁𝑎(𝑡)

𝐼𝑁𝑎
𝑝𝑒𝑎𝑘 =

𝐺𝑁𝑎𝑃𝑂(𝑡)(𝑉𝑚 − 𝐸𝑁𝑎)

𝐺𝑁𝑎𝑃𝑂
𝑝𝑒𝑎𝑘(𝑉𝑚

𝑝𝑒𝑎𝑘 − 𝐸𝑁𝑎)
. (3.55) 

Assuming that the maximum sodium channel conductance, 𝐺𝑁𝑎 , remains 

unchanged, and with the rearrangement of Eq. 3.55, one can obtain from the 

whole cell patch clamp data: 

𝑃𝑂(𝑡) = 𝑃𝑂
𝑝𝑒𝑎𝑘 𝐼𝑁𝑎(𝑡)

𝐼𝑁𝑎
𝑝𝑒𝑎𝑘 �

𝑉𝑚
𝑝𝑒𝑎𝑘 − 𝐸𝑁𝑎

𝑉𝑚 − 𝐸𝑁𝑎 �
. (3.56) 

The advantage of this approach is that the maximum whole cell sodium 

conductance need not be determined as it is cancelled out. 𝑉𝑚
𝑝𝑒𝑎𝑘  is the 

clamping voltage that produced the peak current corrected for series 

resistance. One might assume 𝑃𝑂
𝑝𝑒𝑎𝑘 is 1.0, but this is physically impractical 

because it implies that all of the sodium channels in a cell are open 

simultaneously which is highly unlikely for a channel that exhibits 

inactivation. The 𝑃𝑂
𝑝𝑒𝑎𝑘 value was estimated from experimental data by using 

the Hodgkin-Huxley analytical solution from Eq. 3.37:  

𝐼𝑁𝑎
𝑝𝑒𝑎𝑘�𝑡𝑝𝑒𝑎𝑘� = 𝐺𝑁𝑎𝑚∞

3ℎ0 �1 − 𝑒𝑥𝑝 �−
𝑡𝑝𝑒𝑎𝑘
𝜏𝑚

��
3
𝑒𝑥𝑝 �−

𝑡𝑝𝑒𝑎𝑘
𝜏ℎ

� (𝑉𝑚 − 𝐸𝑁𝑎), 

 (3.57) 
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where the recurring symbols follow their earlier meaning and 𝑡𝑝𝑒𝑎𝑘 refers to 

the time at which the selected 𝐼𝑁𝑎
𝑝𝑒𝑎𝑘 occurs. Eq. 3.57 is essentially the same as 

Eq. 3.54 when 𝐼𝑁𝑎 = 𝐼𝑁𝑎
𝑝𝑒𝑎𝑘 , therefore the open probability equation can be 

obtained: 

𝑃𝑂
𝑝𝑒𝑎𝑘 = 𝑚∞

3ℎ0 �1 − 𝑒𝑥𝑝�−
𝑡𝑝𝑒𝑎𝑘
𝜏𝑚 ��

3
𝑒𝑥𝑝�−

𝑡𝑝𝑒𝑎𝑘
𝜏ℎ �. 

(3.58) 

 

Given the time, 𝑡𝑝𝑒𝑎𝑘 , at which 𝐼𝑁𝑎
𝑝𝑒𝑎𝑘  occurs, 𝑃𝑂

𝑝𝑒𝑎𝑘  can be obtained. The 

values of 𝑚∞, 𝜏𝑚, 𝜏ℎ for the selected 𝐼𝑁𝑎
𝑝𝑒𝑎𝑘  can be obtained from the kinetic 

data derived from Hodgkin-Huxley modelling of the sodium channel (i.e., 

Figures 3.9 to 3.11).  Since the holding voltage of the patch clamp experiments 

was -100 mV,  ℎ0 can assume the value of ℎ∞ at -100 mV which was earlier 

derived from the inactivation experimental data (also shown in Figures 3.9 to 

3.11). The resulting 𝑃𝑂
𝑝𝑒𝑎𝑘 can be inserted into Eq. 3.56 to calculate 𝑃𝑂(𝑡) from 

the experimental 𝐼𝑁𝑎(𝑡) data.  

 

3.7.3 Estimation of parameter values 

Experimental data from Mazzone et al [14], corresponding to the three 

transfection groups of SCN5A, TCAP and R76C, were used to parameterize 

the Markov model. In each group, there were seven cells with each cell 

providing detailed 𝐼𝑁𝑎(𝑡)  data at 24 clamping voltages (-80 mV to 35 mV at 

intervals of 5 mV). After baseline corrections, the methodology described in 

the previous section was applied across each set of seven cells to obtain 𝑃𝑂(𝑡) 
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for each clamping voltage. A simple averaging procedure was performed that 

yielded three sets of 24 traces of 𝑃𝑂
𝑎𝑣𝑔(𝑡) from which the unknown parameter 

values were determined.  

 

To estimate the parameter values, the model described in Figure 3.15 was 

implemented in MATLAB and was subjected to the same voltage activation 

protocol that was used in the patch clamp experiments (see Figure 3.7). 

ODE15S, a MATLAB function was chosen to integrate the system of ordinary 

differential equations (Eqs. 3.47 to 3.52) during the fitting process [169]. 

Fminsearch, another MATLAB function, was used to minimize the objective 

function for parameterization. All of the clamping voltages were fitted 

simultaneously. The intention was to train the model to generalize the 

underlying behaviour trend of the sodium channels according to the 

physiological voltages that the clamping voltages cover. The objective 

function, 𝐹𝑚𝑖𝑛, was defined to be the sum of squared difference between the 

predicted open probability, 𝑃𝑂
𝑚𝑜𝑑𝑒𝑙(𝑡), and the experimental data derived open 

probability, 𝑃𝑂
𝑎𝑣𝑔(𝑡), across all 24 traces: 

𝐹𝑚𝑖𝑛 = � ��𝑃𝑂
𝑚𝑜𝑑𝑒𝑙 − 𝑃𝑂

𝑎𝑣𝑔
�

2

𝑡𝑖𝑚𝑒

24

𝑡𝑟𝑎𝑐𝑒=1
. 

 

(3.59) 

 

The quality of fit from the parameter estimation was quantified by calculating 

the percentage error between 𝑃𝑂
𝑚𝑜𝑑𝑒𝑙(𝑡) and 𝑃𝑂

𝑎𝑣𝑔(𝑡) across all data points: 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑒 =
100�∑ ∑ �𝑃𝑂

𝑚𝑜𝑑𝑒𝑙 − 𝑃𝑂
𝑎𝑣𝑔

�
2

𝑡𝑖𝑚𝑒
24
𝑡𝑟𝑎𝑐𝑒=1

∑ ∑ 𝑃𝑂
𝑎𝑣𝑔

𝑡𝑖𝑚𝑒
24
𝑡𝑟𝑎𝑐𝑒=1

. (3.60) 

  

A good initial guess greatly facilitated the convergence of the parameter 

estimation. A method to obtain the initial guess was developed based on a 

multi-state version of the traditional Hodgkin-Huxley gating formalism [170]. 

In this approach, each transition rate of the Markov model was specified as an 

integer multiple of the rates in a two-state gating format. The two-state rate 

constants can either be fitted to the patch clamp data or taken from an existing 

sodium channel model. Figure 3.16 illustrates the result of such an adaptation 

for the six-state model from Figure 3.15. To further illustrate, consider the 

transition of C3C2, where kC3,C2 is equivalent to 3𝛼𝑚
𝐻𝐻 (here, 𝛼𝑚

𝐻𝐻 is the 

opening rate of the Hodgkin-Huxley activation gate). The voltage-dependent 

equation of 𝛼𝑚
𝐻𝐻  of the Hodgkin-Huxley sodium channel model as described 

in, for example, ten Tusscher et al [171] was used to calculate the value of 

kC3,C2 for each of the 24 clamping voltages and then 𝑘𝐶3,𝐶2 = 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) 

can be fitted to the results to obtain the initial guesses/estimates of the 

unknowns, A, B and C. This process was repeated to obtain good initial 

estimates for the remaining state transitions.  
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Figure 3.16. A multi-state Hodgkin-Huxley model, equivalent to the Markov sodium model in 
Figure 3.15 was used to obtain a good initial guess for the fitting procedure. The rate value of 
each transition is assigned as an integer multiple of the rate value of an activation or 
inactivation gate in a Hodgkin-Huxley sodium channel model.  
 

3.7.4 Estimation of maximum sodium channel conductance 

The use of expression systems such as HEK-293 cells are useful in examining 

channel kinetics, however they do not provide direct information on maximum 

whole cell sodium conductance (or ion channel density) in native cell 

populations such as in the human GI ICC and SMC. Furthermore, the existing 

literature does not explicitly contain the maximum sodium conductance in a 

human GI ICC or SMC. Their physiological values were therefore estimated 

using the SCN5A model in conjunction with published experimental data from 

the human jejunal ICC and SMC [106, 154]. The maximum sodium 

conductance,𝐺𝑁𝑎 , for each cell type was derived such that the predicted 

maximum sodium current, 𝐼𝑁𝑎𝑚𝑎𝑥, from the ICC and SMC models matched the 

corresponding native cell experimental data. From Strege et al [106], the mean 

maximal peak sodium current of -177.5 pA gave an estimated 𝐺𝑁𝑎 of 32.67 nS 

in the ICC and from Holm et al [154], the mean maximal peak sodium current 

of -142 pA gave an estimated 𝐺𝑁𝑎 of 24.17 nS. 
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3.7.5 Results of the fitting 

The fitting procedure was applied to the experimental data from each of the 

transfection groups resulting in three sodium channel models. The optimized 

rate equation parameters for the SCN5A, TCAP and R76C models are shown 

below: 

 

Table 3.10. Table of parameter values for SCN5A, TCAP and R76C models. 

General rate equation 
𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) 

Model SCN5A TCAP R76C 
State transition A (ms-1) B C (mV-1) A (ms-1) B C (mV-1) A (ms-1) B C (mV-1) 

OI1 1.6164 0.30763 0.0060535 1.5031 0.36057 0.013723 1.7059 0.25972 0.010794 
I1I2 0.027735 0.051490 -0.046865 0.048229 0.026852 -0.00039991 0.093675 0.090650 -0.010767 

C3C2 0.00052548 -0.069102 0.0031945 4.2888e-06 0.25713 0.0098716 0.011545 -0.28925 -0.00039366 

C2C1 1.4496 -0.15660 0.058353 0.95831 0.29962 0.052254 1.0577 -0.38600 0.075900 
C1O 1.5329 0.0093193 0.041075 2.4093 -0.014853 0.039009 2.4818 0.010733 0.042291 
I2I1 0.0039239 2.6793 0.0061468 0.0011524 4.4643 0.061081 0.0021109 1.2968 0.0017296 

C2C3 0.55432 -0.099074 0.036441 0.67540 -0.078236 0.013469 0.68451 -0.17156 0.028433 
C1C2 3.1566 0.36352 0.077193 2.4647 0.61872 0.060615 2.8189 0.39519 0.072258 
OC1 2.3915 -13.335 -0.25289 2.5386 -9.4247 -0.17572 1.5057 -12.211 -0.22722 
I1C1 1.9046 -2.4840 0.020406 2.9223 -2.9928 -0.00095557 1.4574 -2.7369 0.0066217 
C1I1 0.00021688 -0.063438 0.0046683 0.00029607 -1.2366 0.0025689 0.0017829 -32.331 -0.0031479 
I1O 0.12052 -9.6028 0.083025 0.047343 -11.439 0.37114 0.41627 -10.725 0.26954 

 

The quality of fit was quantified according to Eq. 3.60 and the errors for 

SCN5A, TCAP and R76C models were 0.245%, 0.108% and 0.106% 

respectively. As for a graphical comparison between model and experimental 

data, Figures 3.17 to 3.19 show the quality of fit for detailed data of 

normalized sodium current over time for a selected subset of clamping 

voltages for all three groups of SCN5A, TCAP and R76C, while the complete 

results can be found in Appendix 2.  
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Figure 3.17. Comparison between model data and experimental data for SCN5A group. Solid 
line for model predicted data, dashed gray lines for average experimental data. 
 

 
Figure 3.18. Comparison between model data and experimental data for TCAP group. Solid 
line for model predicted data, dashed gray lines for average experimental data. 
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Figure 3.19. Comparison between model data and experimental data for R76C group. Solid 
line for model predicted data, dashed gray lines for average experimental data. 
 
 
The sodium channel models were created primarily using whole cell patch 

clamp data from HEK-293 cells. To get an indication of the value of these 

models in describing native wild-type channel behaviour, each of the three 

models were compared against sodium currents from patch clamp recordings 

from native human jejunal ICC and SMC. Figure 3.20 shows that the SCN5A 

model has the best agreement to the experimental data for both ICC and SMC, 

followed by the TCAP model, and then the R76C model. Quantitatively, the 

differences with experimental data, calculated using Eq. 3.60, are: For the 

ICC, 0.130% (SCN5A), 0.134% (TCAP) and 0.174% (R76C), and for the 

SMC, 0.118% (SCN5A), 0.128% (TCAP) and 0.156% (R76C). Therefore, as 

expected, the sodium channel model without exogenous telethonin 

augmentation (SCN5A) best reproduces the wild-type channel behaviour in 

expp.experimental 
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the human ICC and SMC. Although the three models agree well with the 

experimental data from the HEK-293 transfection studies, some differences 

were noted with the native cells. One explanation could be the influence of 

currents from unblocked channels in the cells under patch clamp 

measurements. 

 

Figure 3.20. Normalized peak sodium current versus clamping voltage. Top panel compares 
model data against human jejunal ICC experimental data while bottom panel compares model 
data against human jejunal SMC experimental data.   
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To further validate the sodium channel models, a voltage clamp protocol 

resembling that of a GI single slow wave was used (see Figure 3.21). The 

predicted response of all three models demonstrated key qualities of a sodium 

current that were consistent with experimental observations, i.e., a rapid initial 

inactivation at the 100 ms time point followed by a late reactivation at the 200 

ms time point [172].  

 

Figure 3.21. Slow wave like voltage clamp protocol results. Upper left corner shows the slow 
wave like voltage clamp protocol. The other figures show the response of the SCN5A, TCAP 
and R76C models to the voltage clamp protocol. Experimental recordings of the wild-type 
sodium current to the voltage clamp protocol also showed the presence of fast inactivation at 
the 100 ms time point, and a reactivation at the 200 ms time point [172].   
 

3.7.6 Cellular consequences of the R76C mutation 

The SCN5A and R76C models were integrated into existing models of ICC 

and SMC electrophysiology to evaluate the cellular consequences of the R76C 

mutation. Specifically, the gastric ICC model describing guinea-pig slow 

waves [108] and gastric SMC model describing canine slow waves [82] were 

chosen (as introduced in Chapter 2, Sections 2.2.2 and 2.2.3). These gastric 

models each contain an existing description of the sodium channel which was 
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constructed based on limited experimental data that was available at that time. 

In each cell type, the existing channel description was therefore replaced by 

the Markov models developed here, together with the appropriate cell type’s 

maximum whole-cell conductance. In addition, in integrating the sodium 

channel models (here, or later) to the single cell models (and other higher scale 

models in this thesis work) which are at a standard body temperature of 37⁰C, 

a temperature coefficient, Q10, with a value of 2.45 was applied for the 

sodium channel models [82, 108].  

 

HEK-293 cells express native TCAP, therefore the SCN5A model actually 

describes sodium channel behaviour in the presence of endogenous TCAP. 

Patch clamp simulation results indicated that the SCN5A model presented 

similar kinetics to TCAP, agreeing with observations made in Mazzone et al’s 

experimental study [14] (i.e., steady-state values, time to peak values in Figure 

4 and the fast and slow inactivation time constants in Figure 5 of [14]). Given 

that the SCN5A model matched better with human jejunal data than TCAP 

(see Figure 3.20), the SCN5A and R76C models were used in each cell type to 

perform simulations of 300 s of electrical activity. Figure 3.22 shows the 

simulation results of the membrane potentials; the upper panel shows that the 

R76C mutation has caused a slight increase in plateau phase duration of the 

ICC membrane potential by about 750 ms while the lower panel shows the 

R76C mutation has caused a slight depolarization of the resting phase 

potential in the SMC by about 0.940 mV. Near identical simulation results 

were obtained when R76C is compared against TCAP, instead of SCN5A in 

the ICC and SMC models. Figure 3.23 shows the corresponding sodium 
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current behaviour where the presence of mutation resulted in a greater influx 

of sodium currents in both the ICC and SMC. These results indicate that 

although the sodium channels are not the initiator of slow waves as they are in 

other cells, the presence of the R76C mutation is sufficient to cause notable 

changes in cellular electrophysiology.  

 

 

Figure 3.22. Slow wave simulation results. Upper panel shows the effect of the R76C 
mutation in the ICC membrane potential; lower panel shows the effect of the R76C mutation 
in the SMC membrane potential.   
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Figure 3.23. Sodium current simulation results. Upper panel shows the ICC sodium currents 
while lower panel shows the SMC sodium currents. 
 

3.7.7 Discussion 

In Section 3.6, it was demonstrated that the Hodgkin-Huxley formalism was 

not able to adequately describe the time course of channel inactivation (see 

Figures 3.12 to 3.14), therefore the Markov formalism was then used to 

construct the sodium channel models. It was shown that the Markov models of 

SCN5A, TCAP and R76C were indeed able to describe time course behaviour 
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of sodium channels adequately, which included channel inactivation (see 

Figures 3.17 to 3.19 and Appendix 2). The apparent increase in computational 

cost incurred from the more complex Markov model over a Hodgkin-Huxley 

model is reducible by using the implicit Euler method (over forward Euler 

method) with, for example, LU decomposition and back substitution to solve 

the resulting linear system. In addition, it is worth noting that the three-

parameter rate equation shown in Eq. 3.44 can be simplified to a two-

parameter form of 𝑘 = 𝐴′𝑒𝑥𝑝(𝐶𝑉𝑚) . The two-parameter form can be 

considered to improve computational efficiency in higher spatial scale 

investigations and in the parameterization procedure. For convenience, the 

parameter values of the simplified rate equations corresponding to Table 3.10 

can be found in Appendix 5. 

 

The sodium channel kinetics were assumed to be identical in both the ICC and 

SMC, since identical alpha subunits of the sodium channel exist in both cell 

types. Furthermore, it was inferred from native channel data that the ICC and 

SMC sodium channels behave in a similar manner [106, 154]. Therefore, any 

of the three channel models can be integrated into either the ICC or SMC 

model. However, should it be established that telethonin expression in ICC is 

absent, then it is only a simple matter of only including the Markov sodium 

channel models for study in the SMC model and not the ICC model. 

 

Sodium channel activation and inactivation kinetics with and without the 

R76C mutation were analyzed by simulating the patch clamp protocol 

described by Mazzone et al [14]. The results agree with those noted 
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experimentally. The resting membrane voltage range, within which steady-

state sodium current was expected to flow, was enlarged (also known as the 

window current). The time to reach peak current was slightly decreased, while 

the fast time constant of inactivation was also decreased. These macroscopic 

observations were further examined in terms of the state transitions in the 

Markov models over the physiological range of membrane potentials, i.e., 

from -70 mV to -20 mV. For the transition between any pair of connected 

states i and j, the steady-state value of state i was described by ki,j/(ki,j+kj,i) and 

the characteristic time constant given by 1/(ki,j+kj,i). The results are shown in 

Figures 3.24 and 3.25. It was found that near the resting membrane potential, 

the mutation caused an increase in steady-state value of O which brought 

about a net shift in the opening direction, resulting in more channels that 

reside in the open state. In turn, this may explain the observation of an 

enlargement of the window current. Upon depolarization, the time constant for 

the transition pair of O and I1 became significantly smaller in the presence of 

mutation which could exert a net influence in causing a reduction in the time 

until peak current as well as a decrease in fast inactivation due to the faster 

kinetics brought about by a smaller time constant.  

 

From the whole cell simulations, changes in the transmembrane potential 

profile of the gastric ICC and SMC were observed upon the inclusion of the 

R76C mutation. The duration of the ICC plateau phase was increased slightly, 

which was a consequence of a net increase in sodium current amplitude when 

compared to the wild-type channel. It appears that the R76C mutation’s effect 

on increasing open probability overcame its effect on causing smaller fast time 
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constant of inactivation values which may have otherwise resulted in plateau 

shortening. An expanded window current near the resting membrane potential, 

as observed by Mazzone et al [14], suggested that the resting membrane 

potential may increase with an increased inward current. Indeed this agrees 

with the model predictions in the SMC where the resting membrane potential 

was depolarized. This was also consistent and reflected in the predicted SMC 

sodium current which saw the mutation increasing the sodium current during 

the resting phase. In the self-exciting single ICC model, the frequency of the 

slow waves was unchanged in the presence of the mutation, and this implies 

that the alteration of the sodium current was not sufficient to significantly 

change intracellular calcium handling which would be necessary to elicit a 

frequency change. The single SMC model received a prescribed ICC stimulus 

input of fixed frequency, and therefore unable to experience a change in its 

slow wave frequency.  

 

Although the same sodium channel formulations were included in both the 

ICC and SMC models, significant differences were observed when comparing 

the effects of the same mutation on resting potential.  The expansion of 

window current near the resting potential indicates an expected increase in the 

inward sodium current and hence a depolarization. However, the extent of this 

depolarization depends on the magnitude of the whole cell sodium channel 

conductance relative to the conductances of the other channel types. Here, the 

proportion of the whole cell conductance contributed by the sodium channels 

in the ICC at the resting membrane potential was substantially smaller than in 

the SMC. Hence, upon the inclusion of the R76C model, the effects on the 
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SMC resting membrane potential were substantially larger than those observed 

in the ICC. These aside, it was noted that the consequences of the R76C 

mutation in ICC and SMC are consistent with it being a gain-of-function 

mutation as determined from the HEK-293 patch clamp studies. 

 

Additionally, the observed effects of the Markov sodium channel models in 

the simulated single cell membrane potential of ICC and SMC are contingent 

on the assumption that the whole cell sodium conductance remains unchanged 

in the presence of telethonin and/or its mutation. Future studies that confirm 

any effects on the whole cell sodium conductance such as through an 

alteration of SCN5A expression level and single sodium channel conductance 

would aid in the interpretation of the current findings.  
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Figure 3.24. Steady-state values of all six states of the Markov sodium channel model. Solid line refers to the SCN5A model, while 
dashed line refers to the R76C model. 
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Figure 3.25. Time constant values, τ, of all six states of the Markov sodium channel model. Solid line refers to the SCN5A model, 
while dashed line refers to the R76C model. 
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3.8 Modelling polymorphic-splice variants and G298S mutation  

The preceding section discussed the modelling and investigation of the R76C 

mutation that caused a gain-of-function in the SCN5A sodium channels. Here, 

the modelling and investigation of a loss-of-function mutation in SCN5A itself 

will be discussed. As previously mentioned, G298S is a rare and missense 

mutation discovered in a patient with idiopathic irritable bowel syndrome (IBS) 

in a study by Saito et al [15]. It was determined that the patient was 

heterozygous for a common polymorphism, H558R, however it was not 

known if the G298S mutation resided on the H558 and/or H558R allele. 

Including the common alternative splicing of SCN5A transcripts, i.e., 

Q1077/Q1077del, four common backgrounds are possible: H558/Q1077del, 

H558R/Q1077del, H558/Q1077 and H558R/Q1077. Table 3.11 shows the 

estimated frequencies of each background in the population [173]. 

Table 3.11. Estimated frequencies of the four common SCN5A sodium channel backgrounds 
in the population.   
 

Polymorphism Alternative splicing Estimated 
frequencies in 

population 
H558 Q1077del 45% 

H558R Q1077del 20% 
H558 Q1077 25% 

H558R Q1077 10% 
 

The transfection experiments in HEK-293 expression systems were 

consequently performed in eight groups, that is, four common backgrounds in 

the G298 (wild-type) state and another four common backgrounds that carried 

the G298S mutation created by site-directed mutagenesis. For each of the eight 

groups, a number of transfected HEK-293 cells were used to record sodium 

currents using the whole cell patch clamp approach, which followed the same 
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activation protocol that was used in Mazzone et al’s study on the R76C 

mutation  (see Figure 3.7) [14].  For ease of referencing, the eight groups of 

HEK-293 cells have been assigned the following names as shown in Table 

3.12. 

 
Table 3.12. Table of assigned names for each of the eight groups of HEK-293 cells used in the 
voltage clamp experiments.  
 

 
Assigned 

group name 

SCN5A channel variants 
Polymorphism Alternative 

splicing 
G298 (wild-type)  or 

G298S (mutation) 
V1_WT H558 Q1077del G298 
V1_MT H558 Q1077del G298S 
V2_WT H558R Q1077del G298 
V2_MT H558R Q1077del G298S 
V3_WT H558 Q1077 G298 
V3_MT H558 Q1077 G298S 
V4_WT H558R Q1077 G298 
V4_MT H558R Q1077 G298S 

 
 

In the HEK-293 experiments, the G298S mutation was found to cause a loss-

of-function effect on the sodium channels in all four backgrounds. The notable 

changes were a decrease in peak currents and an increase in time to peak for a 

subset of the range of clamping voltages that were used. Further experiments 

revealed that the single channel conductance was not changed by mutation, but 

a change in the maximum whole cell conductance was not ruled out. Perfusion 

patch clamp on the HEK-293 cells showed that mechanosensitivity of the 

sodium channels was reduced by the mutation (10 ml/min of bath solution for 

60 s).   

 

A Markov formalism using the same methodology as put forth in section 3.7 

was used to create eight sodium channel models corresponding to each of the 
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eight groups of sodium channel variants. The same model topology with six 

states was used (see Figure 3.15). The experimental data in the 

aforementioned G298S study [15] was obtained from Mayo Clinic 

collaborators, and was sufficient to be divided into training data and validation 

data. Table 3.13 shows the breakdown of experimental data that was provided, 

i.e., the number of cells for each of the eight groups under five different 

holding voltages (-100 mV to -60 mV at an increment of 10 mV). The number 

of cells for the perfusion studies (at -100 mV of holding voltage) was also 

provided. The experimental data from each cell recorded sodium current over 

time for a total of 24 clamping voltages (from -80 mV to 35 mV with a voltage 

step size of 5 mV). Upon inspection of the experimental data, it was 

determined that the quality of data for holding voltages of -70 mV and -60 mV 

was poor due to the low signal-to-noise ratio. This was a consequence of the 

smaller currents that were recorded at more depolarized holding voltages. 

Moreover, the same data, from the holding voltages of -70 mV and -60 mV, 

was used in Saito et al’s paper to compare the peak currents only, and was not 

used to analyze the kinetic parameters of time to peak and inactivation time 

constants [15].  Therefore, the decision was made to use the experimental data 

from the holding voltages of -100 mV, -90 mV and -80 mV where the 

experimental data from -100 mV and -90 mV was applied to train the 

parameter values, while the experimental data from -80 mV was used for 

validating the predictions of the sodium channel models.  
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Table 3.13. The number of cells for the experimental data provided by Mayo Clinic. 
 

 
 
 

Group 

Number of cells 
 

Holding voltage (no perfusion) 
Perfusion  

(-100mV of holding 
voltage) 

-100 
mV 

-90 
mV 

-80 
mV 

-70 
mV 

-60 
mV 

before during after 

V1_WT 29 22 30 23 23 27 27 27 
V1_MT 16 20 21 14 14 20 20 20 
V2_WT 9 9 9 9 9 9 9 9 
V2_MT 13 17 17 6 6 16 16 16 
V3_WT 10 10 10 10 10 10 10 10 
V3_MT 8 7 12 5 5 12 12 12 
V4_WT 10 9 9 9 9 9 9 8 
V4_MT 6 10 10 5 5 10 10 10 

 
 

3.8.1 Results of the Markov sodium channel models 

The same fitting procedure used to create the SCN5A, TCAP and R76C 

models was again applied to determine the parameter values using the training 

data. The quality of fit between the model predicted data and training data was 

quantified using Eq 3.60. For the holding voltage of -100 mV, the error range 

was between 0.5071% to 1.1396%, while the error range of the holding 

voltage of -90 mV was between 0.5227% to 1.1559% (Tables 3.14 and 3.15). 

Figures 3.26 and 3.27 show a sample of the graphical comparison between 

model and experimental data for the most common background at the holding 

voltage of -100 mV while Figures 3.28 and 3.29 show a sample of the same 

comparison for the holding voltage of -90 mV. The full results for both 

holding voltages are found in Appendices 3, 4, 6 and 7. From these 

comparisons, all eight models of V1_WT, V1_MT, V2_WT, V2_MT, 

V3_WT, V3_MT, V4_WT and V4_MT were well fitted to the experimental 

training data. Their corresponding parameter values are given in Tables 3.16 

to 3.19. As mentioned in Section 3.7.7, the transition rate equations can be 
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simplified to a two-parameter form, for which the parameter values for all of 

the G298S models can be found in Appendix 9. 

 

Table 3.14. Table of fitting error for holding voltage of -100 mV. 
 

Holding voltage of -100 mV 
Group % Error 
V1_WT 0.69377 
V1_MT 0.62208 
V2_WT 0.70608 
V2_MT 0.72843 
V3_WT 1.0610 
V3_MT 0.85971 
V4_WT 0.50715 
V4_MT 1.1396 

 
 

Table 3.15. Table of fitting error for holding voltage of -90 mV. 
 

Holding voltage of -90 mV 
Group % Error 
V1_WT 0.570388 
V1_MT 0.65179 
V2_WT 0.72637 
V2_MT 0.69124 
V3_WT 1.1559 
V3_MT 0.93977 
V4_WT 0.52273 
V4_MT 1.0917 
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Figure 3.26. A comparison between V1_WT model predicted data (solid lines) and the 
corresponding training data (dashed lines) at holding voltage of -100 mV.  
 

 
 
Figure 3.27. A comparison between V1_MT model predicted data (solid lines) and the 
corresponding training data (dashed lines) at holding voltage of -100 mV.  
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Figure 3.28. A comparison between V1_WT model predicted data (solid lines) and the 
corresponding training data (dashed lines) at holding voltage of -90 mV.  
 
 

 
Figure 3.29. A comparison between V1_MT model predicted data (solid lines) and the 
corresponding training data (dashed lines) at holding voltage of -90 mV.  
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Table 3.16. Table of parameter values for V1_WT (H558/Q1077del/G298) and V1_MT 
(H558/Q1077del/G298S) models. 
 

General rate equation 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) 
Model V1_WT V1_MT 

State transition A (ms-1) B C (mV-1) A (ms-1) B C (mV-1) 
OI1 0.036687 3.4265 0.014105 0.031603 3.6945 0.013251 
I1I2 0.48967 4.1594 -0.00147 0.20522 0.19431 8.25E-05 

C3C2 0.16336 -0.25374 1.35E-05 0.40111 -1.3898 6.71E-07 
C2C1 1.9098 1.03012 0.009075 1.2666 0.63593 0.012529 
C1O 1.6082 1.2926 0.027162 0.15202 8.8928 0.15577 
I2I1 4.81E-08 0.16182 -0.19518 9.08E-07 1.3507 -0.07881 

C2C3 0.003925 -0.01698 -0.03231 0.011512 -0.15544 -0.00944 
C1C2 0.30529 -5.497 -0.12304 0.001446 0.68823 -0.09343 
OC1 0.000276 -0.25465 -0.18870 5.32E-05 0.14220 -0.15874 
I1C1 0.14825 1.6128 -0.00232 0.063163 0.000863 0.002923 
C1I1 0.3965 -0.9776 -0.00217 0.026344 1.8257 -0.00109 
I1O 6.15E-08 -1.8516 0.21914 5.04E-08 -0.16421 -0.10859 

 
Table 3.17. Table of parameter values for V2_WT (H558R/Q1077del/G298) and V2_MT 
(H558R/Q1077del/G298S) models. 
 

General rate equation 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) 
Model V2_WT V2_MT 

State transition A (ms-1) B C (mV-1) A (ms-1) B C (mV-1) 
OI1 2.0449 -0.39552 0.019379 1.5990 -0.25874 0.013426 
I1I2 0.19991 -0.15856 -0.00024 0.65879 -1.1944 0.005872 

C3C2 0.65340 3.7882 -0.00029 0.001369 17.975 -0.05534 
C2C1 0.43400 3.5372 0.038026 1.2835 2.4612 0.059176 
C1O 1.1336 1.6813 0.014891 0.003716 7.0674 0.00391 
I2I1 2.75E-09 3.0226 -0.10784 1.11E-06 3.9328 0.041269 

C2C3 41.0241 -0.15853 0.10401 0.002079 17.664 0.056623 
C1C2 0.17463 -0.00398 -0.08117 0.033643 -1.2428 -0.05566 
OC1 1.71E-06 -0.08985 -0.24795 2.09E-05 0.59890 -0.22839 
I1C1 0.025078 0.81180 0.000115 0.018812 0.97575 0.001762 
C1I1 0.079915 0.61268 -0.03967 0.019384 -0.29525 -0.04812 
I1O 2.37E-08 0.45067 0.000219 3.13E-08 0.41019 -0.00099 

 
Table 3.18. Table of parameter values for V3_WT (H558/Q1077/G298) and V3_MT 
(H558/Q1077/G298S) models. 
 

General rate equation 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) 
Model V3_WT V3_MT 

State transition A (ms-1) B C (mV-1) A (ms-1) B C (mV-1) 
OI1 1.0509 -0.00188 0.013052 0.011 4.5396 0.003512 
I1I2 0.16014 1.52E-05 7.28E-05 6.5172 0.83560 0.0751 

C3C2 2.24E-05 0.23347 0.011129 0.29188 18.894 0.018823 
C2C1 39.163 3.1225 0.00193 0.10035 3.6565 -0.00096 
C1O 3.3076 0.16137 0.029006 9.0263 0.004581 0.037862 
I2I1 0.000171 -0.00542 0.001704 0.001941 2.1773 0.076449 

C2C3 2.7201 0.29930 -0.08035 0.11062 0.000483 0.008181 
C1C2 6.0014 3.6398 0.11515 0.14561 -0.49537 -0.10116 
OC1 0.000472 -11.815 -0.3522 0.0001 -5.8355 -0.26534 
I1C1 0.11804 -0.603 -0.00267 0.59724 -6.57E-05 -0.00184 
C1I1 0.062142 -201.50 0.003774 0.034989 -0.73327 -0.09776 
I1O 3.5451 -111.31 -0.04346 0.024731 -0.6599 0.088102 
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Table 3.19. Table of parameter values for V4_WT (H558R/Q1077/G298) and V4_MT 
(H558R/Q1077/G298S) models. 
 

General rate equation 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) 
Model V4_WT V4_MT 

State transition A (ms-1) B C (mV-1) A (ms-1) B C (mV-1) 
OI1 1.6045 -0.4034 0.016644 0.67157 0.36888 0.010451 
I1I2 0.14322 -0.09503 -0.00027 1.2060 3.6722 0.07498 

C3C2 0.68867 2.5953 -0.00028 0.039218 1.2313 1.37E-05 
C2C1 0.041242 6.6360 0.073074 4.2345 0.32816 0.02748 
C1O 1.4307 1.2250 0.005846 10.820 0.57825 0.079874 
I2I1 1.45E-09 6.4684 -0.09772 4.97E-05 -0.16724 -0.05031 

C2C3 36.432 -0.12012 0.12543 0.00134 0.83136 -0.03935 
C1C2 0.070957 -0.00802 -0.08102 0.88776 -0.67163 0.000154 
OC1 1.32E-06 0.060388 -0.23442 1.42E-05 -1.6516 -0.23273 
I1C1 0.021741 1.0796 5.52E-05 0.000701 -0.00196 0.20869 
C1I1 0.077563 -0.11975 -0.07212 0.051036 0.87166 0.000195 
I1O 2.87E-08 1.0721 7.24E-05 3.36E-05 -0.10936 -0.1016 

 

Further tests were performed to validate these eight models. Table 3.20 shows 

the errors, for each model, between the predicted data and the validation data 

measured with the holding voltage of -80 mV. The error range was from 

0.5838% to 1.5250%. Figures 3.30 and 3.31 show a sample of the graphical 

comparison between model data and validation data for the most common 

background at the holding voltage of -80 mV; the full results are found in 

Appendices 8 and 10. Additionally, as is the case for the R76C work, a slow 

wave like voltage clamp protocol (the same as that shown in Figure 3.21) was 

applied to each of the eight models. As shown in Figure 3.32, the models 

exhibited the expected behaviour of a rapid spike like inactivation at the 100 

ms time point, followed by a small reactivation at around the 200 ms time 

point.  
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Table 3.20. Table of error for holding voltage of -80 mV. 
 

Holding voltage of -80 mV 
Group % Error 
V1_WT 0.86434 
V1_MT 1.0574 
V2_WT 0.99495 
V2_MT 1.0017 
V3_WT 1.52503 
V3_MT 1.2960 
V4_WT 0.58381 
V4_MT 1.4706 

 

 
Figure 3.30. A comparison between V1_WT model predicted data (solid lines) and the 
corresponding training data (dashed lines) at holding voltage of -80 mV.  
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Figure 3.31. A comparison between V1_MT model predicted data (solid lines) and the 
corresponding training data (dashed lines) at holding voltage of -80 mV.  
 
 
As mentioned previously, the SCN5A sodium channels have been found in 

human jejunal ICC and SMC. However, the sodium channel background in 

these human samples is unknown. The experimental samples were taken from 

the surgical waste of different patients and could possibly belong to any of the 

four common backgrounds (Table 3.11) or a mix in the case of averaged data 

[106, 154]. Nevertheless, from the reported peak current versus voltage (I-V) 

results in Saito et al’s G298S study, the normalized I-V behaviour is not 

expected to differ significantly from the equivalent I-V behaviour  from the 

human ICC and SMC [15, 106, 154]. Therefore, the same human I-V results 

used to compare against the earlier SCN5A, TCAP and R76C models were 

used here to compare against the simulated I-V results from the eight sodium 

channel models (under identical voltage clamp conditions).  
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Figure 3.32. Slow wave like voltage clamp protocol results. Top panel shows the slow wave 
like voltage clamp protocol applied to check the response from each of the eight sodium 
channel models. Their results were printed in the lower panels which agreed with 
experimental observations that the sodium current exhibited a spike-like rapid inactivation at 
the 100 ms time point, followed by a miniscule reactivation at around the 200 ms time point 
[172]. Inset for some subplots shows a magnification of the reactivation.  

Time (msec) Time (msec) 

Time (msec) Time (msec) 

Time (msec) Time (msec) 
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Figures 3.33 and 3.34 show the comparison between the predicted I-V from 

each of the eight models against the ICC and SMC experimental data 

respectively. The results indicated that the predicted normalized I-V were in 

general agreement with the human experimental data over the given voltage 

range. It is noteworthy that the V3_MT (or H558/Q1077/G298S) model 

presented a significant depolarizing shift in peak voltage, relative to its wild-

type result (V3_WT), for both the ICC and SMC. This implied that, where the 

peak current is concerned, the mutation will cause a greater influx of current 

relative to the wild-type. This might appear to contra-indicate the loss-of-

function effect the G298S mutation is reported to confer. Nonetheless, the 

plausibility of altered expression of H558R/Q1077del SCN5A has not been 

ruled out. In another words, this apparent gain-of-function effect in peak 

currents can be reversed into a loss-of-function effect through a sufficiently 

reduced population of active H558R/Q1077del/G298S channels.  

       

 
Figure 3.33. ICC I-V plots. In each of the eight subplots, the same human ICC experimental I-
V data (in circles) were compared against equivalent simulated I-V data (solid lines) from 
each of the eight models. The corresponding error index between experimental and model data 
is printed for each subplot. 
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Figure 3.34. SMC I-V plots. In each of the eight subplots, the same human SMC experimental 
I-V data (in circles) were compared against equivalent simulated I-V data (solid lines) from 
each of the eight models. The corresponding error index between experimental and model data 
is printed for each subplot. 
 
 

3.8.2 Estimation of maximum sodium channel conductance 

As mentioned earlier, the use of expression systems, such as HEK-293 cells, 

are useful in examining channel kinetics, however they do not provide direct 

information on maximum whole cell sodium conductance (or ion channel 

density) in native cell populations such as in the human GI ICC and SMC. 

Alternative splicing, polymorphisms, and genetic mutations may also affect 

the effective density of sodium channels in a cell [173, 174]. Saito et al 

suggested that even though the sodium single channel conductance was not 

found to be significantly altered by the G298S mutation, they believed that the 

number of available channels may have decreased through an unknown 

mechanism [15].   
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Previously in the R76C work, the maximum sodium conductance in the native 

cells of ICC and SMC were derived from the SCN5A model such that the 

maximum sodium current experimentally measured in the human jejunal ICC 

and SMC was reproduced by the SCN5A model under the same conditions. 

The estimated maximum conductance is therefore also dependent on the set of 

HEK-293 experimental data from which the SCN5A model was constructed. 

For the G298S work, the experimental data belonged to a different study, 

hence the estimated maximum sodium channel conductances can be and were 

indeed different from what was reported earlier for the R76C work.  

 

For the native cells, the background of the sodium currents reported for the 

human jejunal ICC and SMC are unknown and may correspond to a mix of 

polymorphic-splice backgrounds. Therefore, the four wild-type sodium 

channel models cannot be matched to the experimental results according to 

their backgrounds to obtain the appropriate maximum conductances. 

Nonetheless, it will be interesting to check the implied maximum 

conductances. The same mean maximal peak sodium current of -177.5 pA in 

the single ICC (Strege et al, [106]) and -142 pA in the single SMC (Holm et al, 

[154]) were used to estimate the maximum conductances.  Table 3.21 shows 

the estimated maximum sodium channel conductance values, 𝐺𝑚𝑎𝑥
𝐼𝐶𝐶  and 𝐺𝑚𝑎𝑥

𝑆𝑀𝐶,  

for each of the four backgrounds in the human ICC and SMC.  

 

Due to the uncertainty in the effects of the polymorphism, alternative splicing 

and mutation in affecting maximum conductances, the averaged values of the 
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maximum sodium channel conductances in the ICC and SMC were used to 

facilitate subsequent computational studies in higher spatial scale models. 

 
Table 3.21. Table of maximum sodium channel conductance values for the human ICC and 
SMC.  
 

Background 𝑮𝒎𝒂𝒙𝑰𝑪𝑪  (nS) 𝑮𝒎𝒂𝒙𝑺𝑴𝑪 (nS) 
H558/Q1077del 10.279 7.6557 

H558R/Q1077del 9.4437 6.9994 
H558/Q1077 7.6235 5.7398 

H558R/Q1077 11.079 8.1949 
Average 9.6062 7.1475 

 
 
 

3.8.3 The cellular consequences of the polymorphic-splice backgrounds 

and G298S mutation 

As before, the existing gastric ICC [108] and SMC [82] models of 

electrophysiology were used to evaluate the cellular consequences of the 

sodium channel variants that arise from the four common backgrounds and the 

G298S mutation. Each of the two cellular models contains a prior description 

of the sodium channel which was constructed with limited data. Therefore, the 

sodium channel description was replaced with the Markov models developed 

here and the respective averaged whole cell sodium channel maximum 

conductance values, reported in Table 3.21, were used.  

 

The eight Markov sodium channel models were integrated separately in the 

ICC and SMC models. Initially, only homozygous situations were considered, 

i.e., each cellular model did not contain a mix of the eight sodium channel 

model. Although, biologically, heterozygous situations such as 50% wild-type 

and 50% G298S of a particular background (or any other feasible 
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combination) is possible, the homozygous results would provide information 

on the necessity to examine the heterozygous situations.  

 

Figures 3.36 to 3.38 contain the ICC simulation results for the eight sodium 

channel models from all four backgrounds. The upper panels compare the ICC 

membrane potential in the presence of G298S mutation while the lower panels 

compare the ICC wild-type and G298S sodium currents. It was observed that 

the G298S mutation caused a general reduction in sodium current for the 

H558/Q1077del and H558R/Q1077 backgrounds while there is an apparent 

increase in sodium current due to the mutation for the H558R/Q1077del and 

H558/Q1077 backgrounds. Despite the mutation causing a change in the 

sodium currents, this was not sufficient to cause a significant change in 

membrane potential in the ICC model for all of the backgrounds.  

 

Figures 3.39 to 3.42 contain the simulation results from the SMC for the eight 

sodium channel models from all four backgrounds. Again, the upper panels 

compare the SMC membrane potentials, with and without the influence of the 

G298S mutation while the lower panels compare the SMC wild-type and 

G298S sodium currents. It was observed that the G298S mutation has, in 

general, caused a reduction in sodium current for the H558/Q1077del, 

H558R/Q1077del and H558R/Q1077 backgrounds, while there was an 

increase in sodium current for the H558/Q1077 background. Similarly, despite 

these changes in sodium currents, the SMC membrane potential was not 

significantly perturbed. This was with the exception of the H558/Q1077del 

background where a noticeable hyperpolarization of the SMC resting 
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membrane potential was observed, which was consistent with the decrease in 

resting phase sodium current due to the mutation. Coincidentally, the 

H558/Q1077del is the most common background with 45% prevalence in the 

human population.  

 

In the above homozygous situations that were explored in the ICC and SMC, 

the backgrounds and mutations do not appear to have a significant effect on 

ICC and SMC electrophysiology. Therefore, by inference, the numerous 

possible heterozygous situations should result in a similar outcome for ICC 

and SMC electrophysiology. Thus, these heterozygous situations were not 

examined.  

 

The G298S mutation was characterized to be a loss-of-function mutation in 

the HEK-293 experiments, which appear to contradict the mixed effects in the 

ICC and SMC. This can be explained by the uncertainty in the maximum 

sodium channel conductance in the single ICC and SMC cells. In these 

simulations, the maximum sodium conductance in the ICC and SMC were 

assumed to be the same across all backgrounds. It is possible that in the actual 

biological situation, the mutation could reduce the maximum whole cell 

conductance of the sodium channels to an extent that reverses the gain in 

sodium current to produce a net current smaller than that of its wild-type 

counterpart. Similarly, the number of active sodium channels may be up-

/down- regulated differently depending on the sodium channel background.  

The regulation pattern in the native cells may also differ from the HEK-293 

cells. Additionally, over-compensation from homeostatic regulation may be 
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another mechanism that explains the paradoxical gain-of-function and loss-of-

function phenotypes predicted by the G298/G298S SCN5A models. 

Homeostatic regulation in general is a mechanism where a biological cell 

senses and attempts to compensate for phenotypical changes, such as those 

arising from genetic mutation, through the regulation of protein expression 

[175]. In some cases, homeostatic regulation over-compensates and causes a 

paradoxical reversal of function [176]. All these might explain the lack of 

influence of the mutation on ICC and SMC electrophysiology. Also, should 

the wild-type maximum conductances turn out to be much higher than what 

was determined and used in the current simulation studies, the sodium currents 

may then exert significant influence on GI cellular electrophysiology.  

 

The lack of influence of the G298S mutation might also be attributed to the 

lacking aspects of the cellular models that were used; for instance, the gastric 

models do not track all the ionic concentration changes over time. The sodium 

and potassium ions are artificially kept in homeostasis resulting in constant 

Nernst potentials. It might well also be the case that the sodium channels do 

not contribute to the motility and its disorders. Finally, studies have shown 

that the Nav1.5 sodium channel is present in the human jejunal ICC and SMC, 

but to date, no studies have confirmed the presence or absence of the same 

sodium channels in the human stomach. Furthermore, the R76C mutation was 

associated with intestinal pseudo-obstruction while the G298S mutation was 

associated with irritable bowel syndrome; these are motility disorders of the 

intestines. The consequences of these mutations might be more pronounced in 

the jejunal cells of the small intestine as opposed to the gastric cells.  
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Therefore, jejunal cell models would be useful to gain additional insights. The 

development of a human jejunum smooth muscle cell model and the results of 

investigating the sodium channel mutations in the new cell model, are 

described in the next chapter. 

 
Figure 3.35. ICC membrane potential and sodium current for the H558/Q1077del background. 
The G298S mutation reduced the sodium current but was unable to significantly alter the ICC 
membrane potential. Results in black solid line correspond to the presence of wild-type 
sodium channels in the ICC, while grey dashed line correspond to G298S sodium channels in 
the ICC.  
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Figure 3.36. ICC membrane potential and sodium current for the H558R/Q1077del 
background. The G298S mutation increased the sodium current but was unable to significantly 
alter the ICC membrane potential. Results in black solid line correspond to the presence of 
wild-type sodium channels in the ICC, while grey dashed line correspond to G298S sodium 
channels in the ICC.  
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Figure 3.37. ICC membrane potential and sodium current for the H558/Q1077 background. 
The G298S mutation increased the sodium current and was able to very slightly prolong ICC 
membrane potential plateau duration. Results in black solid line correspond to the presence of 
wild-type sodium channels in the ICC, while grey dashed line correspond to G298S sodium 
channels in the ICC.  
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Figure 3.38. ICC membrane potential and sodium current for the H558R/Q1077 background. 
The G298S mutation reduced the sodium current but was unable to significantly alter the ICC 
membrane potential. Results in black solid line correspond to the presence of wild-type 
sodium channels in the ICC, while grey dashed line correspond to G298S sodium channels in 
the ICC. 
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Figure 3.39. SMC membrane potential and sodium current for the H558/Q1077del 
background. The G298S mutation reduced the sodium current and slightly hyperpolarized the 
SMC resting membrane potential. Results in black solid line correspond to the presence of 
wild-type sodium channels in the SMC, while grey dashed line correspond to G298S sodium 
channels in the SMC. 
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Figure 3.40. SMC membrane potential and sodium current for the H558R/Q1077del 
background. The G298S mutation reduced the peak sodium current but was unable to 
significantly alter the SMC membrane potential. Results in black solid line correspond to the 
presence of wild-type sodium channels in the SMC, while grey dashed line correspond to 
G298S sodium channels in the SMC. 



Chapter 3. Ion channel modelling 

 
143 

 

 
Figure 3.41. SMC membrane potential and sodium current for the H558/Q1077 background. 
The G298S mutation reduced the sodium current but was unable to significantly alter the 
SMC membrane potential. Results in black solid line correspond to the presence of wild-type 
sodium channels in the SMC, while grey dashed line correspond to G298S sodium channels in 
the SMC. 
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Figure 3.42. SMC membrane potential and sodium current for the H558R/Q1077 background. 
The G298S mutation reduced the sodium current but was unable to significantly alter the 
SMC membrane potential. Results in black solid line correspond to the presence of wild-type 
sodium channels in the SMC, while grey dashed line correspond to G298S sodium channels in 
the SMC. 
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3.8.4 Further discussion 

Steady-state values and time constants 

One additional set of results were obtained from each of the eight sodium 

channel models, i.e., the steady-state values and characteristic time constants 

for each pair of connected states. To recapitulate, for a state i of a pair of 

connected states, i and j, its steady-state value is described by ki,j/(ki,j+kj,i) and 

the characteristic time constant is given by 1/(ki,j+kj,i) (where j is the state that 

i is connected to).  These results are shown in Appendices 11 and 12. Briefly, 

the results indicated that the presence of G298S mutation tends to alter the 

steady-state values of the C2, I1 and O states of the sodium channels, across 

the various backgrounds, such that there is a net reduction in open probability. 

This is with the exception of the H558/Q1077 background where the near zero 

steady-state values of C3 suggested that more channels are available to open 

which resulted in a gain-of-function effect as observed in the earlier cellular 

results. For the time constants, the G298S mutation seemed to slow the 

kinetics of the sodium channels because in all backgrounds, except 

H558/Q1077, the time constants for several pairs of connected states were 

increased. For the H558/Q1077 background, C2 and C1 were the only pair of 

transition states with an increase in time constants while all other transition 

pairs exhibited a general decrease in time constants. However, these 

differences in time constants due to mutation did not seem to significantly 

change the sodium time course behaviour in each background, under the 

activation voltage clamp. The G298S mutation is located in the extracellular 

linker of the 5th and 6th segments of domain I of the sodium channel alpha 
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subunit, and the results so far support this linker as having functional 

importance in influencing state transitions to sodium channel opening.   

 

Perfusion/mechanosensitivity considerations  

The same experimental study by Saito et al examined the effect of G298S 

mutation on the mechanosensitivity of sodium channels [15]. Mechanical 

stimulation was applied through a perfusion of bath solution at 10 ml/min. 

Whole cell patch clamp recordings were measured before, during and after 

perfusion. It was reported that perfusion significantly increased the peak 

sodium currents and that the G298S mutation was capable of altering the 

mechanosensitivity of the sodium channels in only the H558/Q1077del 

background (i.e., the perfusion induced increase in peak currents were 

significantly reduced by the mutation). An earlier mechanosensitivity study by 

Morris and Juranka [157] further characterized the SCN5A sodium channel 

kinetics as being able to accelerate reversibly with stretch.  

 

As detailed experimental data on Saito et al’s perfusion measurements were 

available (Table 3.13), the perfusion induced changes in sodium currents in all 

four backgrounds, with and without G298S mutation, were quantified. 

Perfusion/mechanical stimulation is known to consistently alter the sodium 

currents and can be quantified using two metrics, an amplitude scaling factor 

and a time scaling factor, as shown below: 

 𝐼𝑁𝑎
𝑚𝑒𝑐 = 𝐴𝑠𝑓 𝐼𝑁𝑎 �

𝑡
𝑇𝑠𝑓 �, (3.61) 
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where 𝐼𝑁𝑎
𝑚𝑒𝑐  is the sodium current measured under mechanical stimulation, 𝐼𝑁𝑎 

is the baseline sodium current which is a function of time t; 𝐴𝑠𝑓 is the 

amplitude scaling factor while 𝑇𝑠𝑓 is the time scaling factor. The baseline 

sodium current can be mapped to the mechanically stimulated sodium current 

through these two scaling factors. Table 3.22 shows the averaged values of the 

amplitude and time scaling factors for each of the eight sodium channel 

variants (derived from the before-and-during perfusion data, and the after-and-

during perfusion data). Note that the values of the scaling factors are 

independent of the clamping voltage. The results in Table 3.22 were re-

expressed graphically in Figure 3.43 to aid analysis.  

 
Table 3.22. Scaling factors for the mechanically stimulated sodium channels. 
 

 
Sodium channel variant number 

 
Sodium channel variant 

Average amplitude  
scaling factor, 𝐴𝑠𝑓  

Average time  
scaling factor, 𝑇𝑠𝑓  

1 V1_WT 1.5905 0.81755 
2 V1_MT 1.4293 0.85976 
3 V2_WT 1.3557 0.80684 
4 V2_MT 1.3997 0.82005 
5 V3_WT 1.2407 0.86214 
6 V3_MT 1.6506 0.87174 
7 V4_WT 1.2523 0.82643 
8 V4_MT 1.5424 0.83956 

 
It was observed from Table 3.22 and Figure 3.43, that the time scaling factor 

appeared relatively constant with values that indicated accelerated kinetics, 

under perfusion, for all eight variants. Greater fluctuation in the amplitude 

scaling factors was observed. The amplitude scaling factor was reduced in the 

presence of mutation for the most common H558/Q1077del background. 

However, for all the remaining three backgrounds, the amplitude scaling factor 

was higher in the presence of mutation. This implies that the mutation was 

only able to reduce the mechanosensitivity of the sodium channels in the most 
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common background of H558/Q1077del, while appearing to provide 

resistance against a reduction in mechanosensitivity in the other three 

backgrounds. The initial experimental findings by Saito et al also determined 

that the G298S mutation reduced mechanosensitivity only in the most 

common background of H558/Q1077del [15]. 

 

 
Figure 3.43. The average amplitude and time constant scaling factors for WT and G298S 
states of each of the four backgrounds were compared graphically. Refer to Table 3.22 for 
more details. 
 
 
 
In terms of experimental data analysis, here, the peak sodium current from all 

24 clamping voltages were identified from the HEK-293 cells, before, during 

and after perfusion. The amplitude scaling factor for each cell was derived by 

dividing the maximal peak sodium current from the mechanically activated 

sodium channels, with the corresponding peak sodium current from either 

before or after perfusion. Subsequently, with the amplitude scaling factors, 

optimization was performed to parameterize the time scaling factors for each 

HEK-293 cell. The amplitude and time scaling factor results were checked by 

comparing the scaled sodium current time traces (for both the before and after 
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perfusion results) against the corresponding mechanically activated sodium 

currents, for all 24 clamping voltages. The scaling factors for each cell were 

averaged as shown in Table 3.22 and Figure 3.43. It would be interesting for 

future studies to examine how the functional effects of the G298S mutation are 

conferred to the sodium channels of the various common backgrounds under 

stretch conditions.  

 

The amplitude and time constant scaling factors reported here are useful to 

derive a set of parameter values for each of the eight Markov sodium channel 

models. In turn, these models can be used to examine the effects of G298S 

mutation on cellular electrophysiology under perfusion or mechanical 

activation. Briefly, to derive the parameter values, the ‘A’ parameter of each 

exponential rate equation (i.e., Eq. 3.44) is to be divided by the time constant 

scaling factor, while the maximum sodium channel conductance is multiplied 

by the amplitude scaling factor. Because the time scaling factor values are 

smaller than one, perfusion or mechanical stimulation should accelerate the 

activation and inactivation of the sodium current in all backgrounds, mutation 

or not. This, alone, implies that the sodium current will be reduced, which is 

not expected to significantly alter cellular electrophysiology of the ICC and 

SMC. As for the amplitude scaling factors that were increased in the presence 

of the mutation, the resulting mechanically modulated sodium current should 

become larger compared to unperturbed conditions, and hence possess a 

greater potential in altering cellular electrophysiology. Mechanosensitivity 

altered by mutation may therefore possibly contribute to GI motility disorders. 
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3.9 Modelling Kv1.1 potassium channel and its mutation  

A variety of voltage gated potassium channels, which are found in the GI ICC 

and SMC, typically constitutes a significant efflux of potassium ions that 

modulates cellular excitability. However, there are no known experimental 

studies on potassium channel mutations as a cause for GI motility disorders. 

Nevertheless, gastrointestinal motility disorders are heterogeneous and 

complex, multiple factors can serve a subset of patients. It is therefore possible 

that a potassium channel mutation in the GI ICC and/or SMC may contribute 

to GI disorders. Hence, there is an interest here to examine the impact of a 

known potassium channelopathy of another body system, in the context of the 

GI tract. A missense mutation, I177N of the Kv1.1 voltage-gated potassium 

channel, known to cause episodic ataxia by affecting the central and peripheral 

nervous system, was chosen for this study [177]. Kv1.1 channels are known to 

exist in the GI ICC but not the SMC [178]. 

The Kv1.1 channel is a quaternary protein comprising four identical protein 

subunits. Figure 3.44 shows a protein subunit with the predicted location of 

the I177N mutation; four such subunits form a mutated Kv1.1 channel.  

Segment 4, S4, of a Kv1.1 subunit is the membrane voltage sensor which can 

interact with other subunit segments, and lead to a variety of conformational 

states depending on the membrane voltage.  
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Figure 3.44. A Kv1.1 subunit that consists of six transmembrane segments. The I177N 
mutation is putatively located in segment 1 of the subunit. Four such subunits can assemble to 
form a quaternary Kv1.1 protein channel capable of conducting potassium ions. Picture is 
adapted from Imbrici et al [177]. 

The activation and deactivation of the S4 voltage sensor from each subunit in 

a channel was defined to follow the Hodgkin-Huxley kinetics. This means a 

Kv1.1 channel can exist in sequential states of four deactivated S4 segments to 

three, two, one and zero deactivated S4 segments. The corresponding rate 

transition values, in this forward direction, are therefore defined by applying 

the appropriate integer multiple on a basal rate transition value; this is likewise 

for the backward direction where four activated S4 segments deactivate 

sequentially. Additionally, the Kv1.1 tetramer is thought to behave 

cooperatively, that is, the tetramer can exist in a closed-oriented un-relaxed 

state or in open-oriented relaxed state, the transition between a closed-oriented 

state to its corresponding open-oriented state depends on the number of 

activated S4 segments. The more activated S4 segments there are, the faster 

the transition from the closed-oriented state to the open-oriented state (i.e., a 

relatively larger value of rate transition). Similarly, the more deactivated S4 

segments there are, the faster the transition from the open-oriented state to the 

closed-oriented state. Because of these behaviours, the Monod-Wyman-

Changeux topology and kinetics as discussed in McCormack et al’s work were 
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adopted [179]. Figure 3.45 shows the simplified topology diagram for the 

Kv1.1 channel. Basically, it contains an upper tier of closed-oriented un-

relaxed states and a lower tier of open-oriented relaxed states. It is only when 

the channel is in the O state that it conducts potassium ions. The horizontal 

rate transitions follow Hodgkin-Huxley kinetics while the vertical rate 

transitions follow cooperative behaviour. These are incorporated by applying 

the appropriate multiplier values on the common rate transition equations.  

 

Figure 3.45. The model topology chosen for Kv1.1 channel. Upper tier states are closed-
oriented un-relaxed states while lower tier states are open-oriented relaxed states. Here, O is 
defined to be the state that the channel conducts potassium ions. The channel kinetics, i.e., the 
forward/backward and upward/downward transition rates follow the Hodgkin-Huxley 
behaviour and cooperative behaviour, respectively. The rate equations are found in Eqs. 3.62 
to 3.94.  

The equations that define the Kv1.1 model are found in Eqs. 3.62 to 3.94; 

𝐼𝐾𝑣11  describes the total Kv1.1 current computed from the maximum 

conductance, 𝐺𝐾𝑣11 , the open probability, 𝑂 ,  and the potential difference 

comprising membrane voltage, 𝑉𝑚, and potassium reversal potential, 𝐸𝐾 . ∝, β, 

δ and γ are common rate equations to be expressed with the appropriate 

multiplier in accordance to the prescription of the Hodgkin-Huxley and 

cooperative mechanisms. 𝑘𝐵  is the Boltzmann constant and 𝑇  is the 
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temperature that the Kv1.1 channels operate under. 𝑝1  to 𝑝7  are parameter 

values to be to be fitted to experimental data. Since the Kv1.1 model was used 

to describe both the wild-type and I177N homomeric channels, therefore two 

sets of parameter values were obtained. The experimental data, recorded from 

human Kv1.1 expressed in Xenopus Oocytes, which was presented in Figures 

2 and 3 of Imbrici et al’s paper were digitized and utilized to parameterize the 

wild-type and mutation models [177].  

𝐼𝐾𝑣11 = 𝐺𝐾𝑣11𝑂(𝑉𝑚 − 𝐸𝐾), 
 

(3.62) 

∝= 𝑝1𝑒𝑥𝑝
𝑝2𝑉𝑚
𝑘𝐵𝑇

, (3.63) 
 

𝛽 = 𝑝3𝑒𝑥𝑝
𝑝4𝑉𝑚
𝑘𝐵𝑇

, (3.64) 
 

𝛿 = 𝑝5, (3.65) 
 

𝛾 = 𝑝6, (3.66) 
 

𝜑 = 𝑝7, (3.67) 
 

𝑘𝐵 = 8.617𝑒− 5, (3.68) 
 

𝑘𝐶1𝐶2 = 4 ∝, (3.69) 
 

𝑘𝐶2𝐶3 = 3 ∝, (3.70) 
 

𝑘𝐶3𝐶4 = 2 ∝, (3.71) 
 

𝑘𝐶4𝐶5 =∝, (3.72) 
 

𝑘𝐶2𝐶1 = 𝛽, (3.73) 
 

𝑘𝐶3𝐶2 = 2𝛽 , (3.74) 
 

𝑘𝐶4𝐶3 = 3𝛽, (3.75) 
 

𝑘𝐶5𝐶4 = 4𝛽, (3.76) 
 

𝑘𝑂1𝑂2 = 4𝜑 ∝, (3.77) 
 

𝑘𝑂2𝑂3 = 3𝜑 ∝, (3.78) 
 

𝑘𝑂3𝑂4 = 2𝜑 ∝, (3.79) 
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𝑘𝐶4𝑂 = 𝜑 ∝, (3.80) 
 

𝑘𝑂2𝑂1 =
𝛽
𝜑

, (3.81) 
 

𝑘𝑂3𝑂2 =
2𝛽
𝜑

, (3.82) 
 

𝑘𝑂4𝑂3 =
3𝛽
𝜑

, (3.83) 
 

𝑘𝑂𝑂4 =
4𝛽
𝜑

, (3.84) 
 

𝑘𝐶1𝑂1 =
𝛾

𝜑4, (3.85) 
 

𝑘𝐶2𝑂2 =
𝛾

𝜑3, (3.86) 
 

𝑘𝐶3𝑂3 =
𝛾

𝜑2, (3.87) 
 

𝑘𝐶4𝑂4 =
𝛾
𝜑

, (3.88) 
 

𝑘𝐶5𝑂 = 𝛾 , (3.89) 
 

𝑘𝑂1𝐶1 = 𝛿𝜑4, (3.90) 
 

𝑘𝑂2𝐶2 = 𝛿𝜑3, (3.91) 
 

𝑘𝑂3𝐶3 = 𝛿𝜑2, (3.92) 
 

𝑘𝑂4𝐶4 = 𝛿𝜑, (3.93) 
 

𝑘𝑂𝐶5 = 𝛿. (3.94) 
 

Table  3.23 shows the parameter values that define the equations for the wild-

type and I177N Kv1.1 models, while Figures 3.46 and 3.47 contain the results 

of the model predictions compared against experimental data for the wild-type 

and mutation models respectively [177]. As the Kv1.1 channels were found to 

be present in the GI ICC and not the SMC, the Kv1.1 models were investigated 

in the Corrias and Buist single cell model of GI ICC [108]. 

Table  3.23. Parameter values of the wild-type and I177N Kv1.1 models. 

Parameter Wild-type model I177N model 
p1 0.2271 0.0259 
p2 0.0010 0.0025 
p3 0.0295 0.0428 
p4 -0.0008 -1.6261e-4 
p5 0.2158 1.4533e-5 
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p6 0.0368 0.8798 
p7 12.0000 12.0000 

 

Figure 3.46. Validation results for the wild-type Kv1.1 model; solid lines refer to model 
predicted results while circles refer to experimental results. Top panel compares the results for 
normalized peak tail Kv1.1 currents against clamping voltage. Middle panel compares the 
activation time course for the Kv1.1 currents normalized against the peak current for the 
clamping voltages of 20 mV (lowest trace), 40 mV and 60 mV (highest trace). Bottom panel 
compares the deactivation time course for the Kv1.1 currents normalized against the peak 
current for the clamping voltages of -20 mV to -70 mV (interval of 10 mV); in the results, the 
higher the Kv1.1 trace, the more depolarized its corresponding clamping voltage is (for 
example, the top trace is for -20 mV and the bottom most trace is for -70 mV).  

 

Figure 3.48 shows the simulation results of the ICC membrane potential for 

three different configurations of the Kv1.1 models in the ICC model. These are 

100% wild-type Kv1.1 channels which represent wild-type homozygosity, 

100% I177N Kv1.1 channels which represent mutation homozygosity, as well 
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as 50% wild-type-50% I177N channels which represent heterozygosity. The 

simulation results of the ICC membrane voltage are consistent with the I177N 

 

Figure 3.47. Validation results for the I177N mutated Kv1.1 model; solid lines refer to model 
predicted results while circles refer to experimental results. Top panel compares the results for 
normalized peak tail Kv1.1 currents against clamping voltage. Middle panel compares the 
activation time course for the Kv1.1 currents normalized against the peak current for the 
clamping voltages of 20 mV (lowest trace), 40 mV and 60 mV (highest trace). Bottom panel 
compares the deactivation time course for the Kv1.1 currents normalized against the peak 
current for the clamping voltages of -20 mV to -70 mV (interval of 10 mV); in the results, the 
higher the Kv1.1 trace the more depolarized its corresponding clamping voltage is (for 
example, the top trace is for -20 mV and the bottom most trace is for -70 mV).  

 

mutation being a loss-of-function mutation.  In the presence of 50% mutation, 

the membrane voltage was less polarized than the result for no mutation. At 

100% mutation, the membrane voltage was depolarized to an almost steady 

value. Therefore, in general, the greater the mutation population, the weaker 
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the Kv1.1 current, and thus, the more the ICC depolarizes. Figure 3.49 then 

shows the corresponding results of the Kv1.1 currents. At 100% wild-type, the 

Kv1.1 current was greater than the current at heterozygosity (for about 4 s after 

the start of each period of the Kv1.1 current), while the current at 100% 

mutation presented an almost flat morphology with values that were generally 

the smallest of all three configurations. The appearance of an apparently flat 

current for the case of 100% mutation could be attributed to the mutated Kv1.1 

channel being highly inactive over the plateau voltages and the absence of 

wild-type channels to assist repolarization (unlike the heterozygous situation); 

the Kv1.1 current and thus the ICC voltage became fixated at an almost steady 

value.  

The results of this work demonstrated that the I177N mutation, if present in 

the GI ICC, is capable of altering the membrane voltage dramatically. Since 

ICC depolarizes the passive SMC, it is expected that a drastic change in SMC 

membrane voltage will arise. In turn, this may result in adverse changes in 

mechanical activity of the GI smooth muscles that can lead to abnormal 

motility. In addition, although the aforementioned statistical study by Locke et 

al reported no correlation of the cardiac KCNH2-encoded potassium channel 

mutations with GI symptoms [13], it does not contradict the findings here 

since the Kv1.1 channels are encoded by the KCNA gene and there are no 

known mutations of the Kv1.1 channels that cause cardiac disease [180]. 
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Figure 3.48. Simulation results for gastric ICC membrane voltage. The Markov models of 
wild-type and I177N Kv1.1 models were integrated into the ICC model with 100% wild-type 
channels, 100% mutated channels and 50% wild-type-50% mutated channels configurations.    

 

 

Figure 3.49. The corresponding simulation results of the gastric ICC IKv1.1 currents are 
shown here.     
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3.10 Limitations and constraints in ion channel modelling 

This chapter has described the various methods of modelling ion channel 

electrophysiology. The modelling and investigation of a number of sodium 

channel variants as well as a potassium channel mutation were examined. This 

last section of this chapter will discuss the limitations and constraints that were 

realized during the course of ion channel modelling.  

 

Voltage clamp data 

Experimental information is crucial to the development of computer models of 

ion channels. However, it is not always possible to have all the experimental 

data needed to construct the ideal model. The patch clamp techniques are a 

common approach to measure the electrical activity of a single ion channel, a 

cluster of a few ion channels or a population of channels in a single cell, under 

different clamping configurations and protocols. Typically, single ion channel 

recordings can yield valuable statistical information such as single channel 

conductance and channel open duration distribution which can in turn help in 

the design of an ion channel model topology (i.e., the number and types of 

main ion channel states) [181]. In the case of R76C modelling, single channel 

recording was not performed, thus it is not known if the R76C mutation affects 

single channel conductance which can potentially alter the influence of sodium 

currents on cellular electrophysiology [14]. For the G298S mutation, it was 

determined from single channel recordings that the single channel 

conductance remained unchanged in the presence of mutation, but detailed 

experimental data was not available [15].  
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In the case of macroscopic current measurements, such as in whole cell patch 

clamping, whole cell currents are typically recorded with a clamping protocol 

designed to characterize the ion channel kinetics. These provide detailed 

information in the form of a series of ionic current over time recording for 

each clamping voltage. These detailed current over time information are 

usually summarized in the form of key metrics such as steady-state or peak 

ionic current over voltages, characteristic time values such as time to peak or 

inactivation time constants. While these key metrics serve the good purpose of 

highlighting channel kinetics, the information may not be sufficient for model 

construction, such as in Markov modelling. In the case of sodium channel 

modelling (R76C and G298S), it was fortunate that detailed information were 

acquired, in stages, from Mayo Clinic collaborators and these were very useful 

to train parameter values and to validate the models. In the case of Kv1.1 

channel modelling, detailed information was not available even though 

attempts were made to obtain the data from the authors.  

 

The issue of detailed experimental data also brings about the question of how 

much data is sufficient for effective and efficient model construction. Ideally, 

the experimental data would be divided into two groups, one group to train the 

parameter values, and the other group to serve as data to validate model 

predictions. For the case of G298S modelling, voltage clamp experiments 

were carried out over a wide range of conditions, therefore providing enough 

data for parameter training and for validation. However it is not always the 

case where sufficient experiments were performed to give enough data for 

model construction, which was the case for the R76C study.  



Chapter 3. Ion channel modelling 

 
161 

 

The ability of ion channel models to do a good job in describing experimental 

observations in both general metrics and detailed data, does not guarantee that 

the models are always able to extrapolate well into native conditions that are 

not covered by the conditions from which the training and validation data were 

measured. Two caveats are:  

 

(1) The models are built on experimental data measured from standard voltage 

clamp conditions and therefore can make good predictions on the ion channel 

behaviour under the same or similar voltage clamp conditions. In the native 

environment, the presence of effects from a multitude of sub-cellular 

mechanisms leads to a more dynamic variation in membrane potential 

behaviour, the ion channel models may therefore not realistically reflect its in 

situ behaviour.  Another consideration is that the experimental data used to 

construct the sodium channel models were recorded with holding voltages that 

were generally more negative than the gastrointestinal slow wave resting 

voltages (for example -90 mV and -100 mV). Despite this, such a choice of 

holding voltage in the activation voltage clamp protocol facilitates the steady 

inactivation of the sodium channels to properly characterize the channel 

activation kinetics. On the other hand, the use of more depolarized holding 

voltages nearer to the slow wave resting voltages following the same voltage 

clamping protocol, though closer to the physiological conditions, does not 

provide for steady channel inactivation. Furthermore, as observed from the 

G298S data, the signal-to-noise ratio is significantly greater at these 

depolarized holding voltages. Therefore, to examine channel properties using 



Chapter 3. Ion channel modelling 

 
162 

 

a more depolarized holding voltage necessitates a re-design in the clamping 

protocol. 

 

(2) There are a number of approaches to characterize ion channels with patch-

clamping. Single cells can be dissected from its native tissue and, with 

appropriate conditions currents through specific type/s of ion channels can be 

measured. Depending on availability, native cells may come from human 

tissue in the form of surgical waste or from animal models. The desired cell 

type can also be cultured for patch clamp experiments. Alternatively, 

transfection of genes encoding ion channels can be performed on expression 

systems such as HEK-293 cells, Xenopus oocytes and CHO cells with voltage 

clamping subsequently performed on these cells to record the ionic currents. 

The choice is sometimes dependent on factors such as the availability of 

human tissue, presence of specific ion channel type in an animal cell, 

phenotype development and maintenance in dissociated or cultured cells. 

Differences can and do exist in the ion channel kinetics recorded from these 

different sources. If the aim is to model human ion channels to develop a 

human cellular model, then experimental data from HEK-293 cells transfected 

with the human ion channel may not necessarily reflect the actual behaviour in 

the native milieu of the human cell. Cellular differences such as regulation of 

ion channel expression and turnover, as well as the presence or absence of 

auxiliary protein subunits can lead to a phenotype unlike that in the native cell. 

For instance, beta subunits are known to modulate cardiac sodium channel 

behaviour but are not expressed in the HEK-293 cells that have been 

commonly used to measure sodium currents [182, 183]. 
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Over the course of Markov modelling of ion channels, particularly for the 

sodium channels, it was realized that information such as open probability 

over time, single channel conductance and number of channels in a cell are 

critical towards developing a good ion channel model. Because the 

experimental data to construct the sodium channels were measured from HEK-

293 cells, one inherent uncertainty is the density or maximum conductance of 

these channels in the HEK-293 cells versus the native environment (i.e., the 

ICC and SMC). Therefore, a Hodgkin-Huxley based method to derive open 

probability over time was developed. As for the single channel conductance of 

the sodium channels, take the example of R76C modelling, it is not known 

how telethonin (both wild-type and mutated states) affects single channel 

conductance. These result in uncertainties about the effective maximum 

conductance of an ion channel population, which can amplify or diminish the 

effects of mutations or other types of variants and can cause a change in the 

outcome of the simulation predictions. One approach to overcome this is 

through the use of fluctuation analysis [184-187] which requires experimental 

data that has recorded repeated measurements from the same cell under the 

same protocol. Fluctuation analysis taps on the statistical properties of noisy 

experimental data to mine specific properties of an ion channel type in a cell. 

The non-stationary fluctuation analysis as demonstrated by Sigworth [187] 

derived important information of single channel current, open probability over 

time and the total number of channels in the system. Unfortunately, such non-

stationary fluctuation analysis was not possible for the experimental data 

provided for this research work, since measurements were not made 
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repeatedly on the same cells. No explicit demand for such recordings and/or 

the challenge of maintaining cellular viability under repeated measurements 

might explain the absence of such experimental data. The details of non-

stationary fluctuation analysis are available in Appendix 13.  

 

One should also be mindful of the experimental errors that can affect the 

quality of experimental data being recorded. Series resistance offered by 

electrode tip can create an apparent shift in clamping voltage which may go up 

to as big as 20 mV (imagine a horizontal translation of the I-V plot), this can 

affect voltage-dependency described by the models. Errors can also arise in 

the time domain due to the limitations of Bessel filtering of the electrical 

signals recorded by patch-clamping. For example, a 10 kHz filter can result in 

up to 0.5 ms of error. Such errors can be significant for fast currents such as 

sodium in which the peak sodium current occurs in a time scale of an order 

close to such an error. Cell viability can also affect the quality of data, and one 

indicator is the reversal potential, where a non-physiological accumulation of 

ions shifts the reversal potential unnaturally.  

  

Biological considerations 

From a biological point of view, several factors may contribute to ion channel 

physiology and potentiate or diminish a mutation’s effect on an ion channel. 

The following aims to raise awareness of some situations, most of which were 

not possible to incorporate in the existing computational framework, which 

can affect ion channel phenotype.  
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(1)   Regulation of ion channels 

The number of ion channels is regulated by a number of mechanisms such as 

the expression, trafficking, localization, and the degradation of ion channels. 

The number of active channels in turn affects the ion channels’ influence on 

cellular behaviour. Dys-regulation can therefore be pathogenic. Figure 3.50 

provides an example of the regulation of cardiac sodium channels [188]. Ion 

channel variants (for example, mutations) can affect regulatory processes such 

as ion channel expression [189], trafficking [190] and can be responsible for 

secondary effects of long-term expression of mutants [191, 192]. Processes 

like these can affect the functional phenotype of GI ion channels.  

 

Figure 3.50. Regulation of the expression and trafficking of cardiac Nav1.5 channels. Nav1.1, 
Nav1.3 and Nav1.6 are found in mice and contribute to less than 5% of sodium currents. 
Abbreviations: βx, beta subunits of sodium channels; Cv, caveolae; IcD, intercalated disk; Ls, 
lysosome; N-glyc, N-glycosylation; Nu, nucleus; phos, phosphorylation; RER, rough 
endoplasmic reticulum; TE, tubular element; TT, transverse tubule; TV, transport vesicle. 
Picture adapted from [188]. 

 

(2) Temperature 

Gating defects due to mutations could be hidden or be less pronounced in the 

temperatures the experiments are performed under [193, 194]. To overcome 

this, voltage clamp experiments can be performed over the physiological (and 

even pathophysiological) temperature range of the human body where possible; 
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it is understandable that lower temperatures are sometimes used in 

experimental studies to reduce the rate of fast ion channels to aid measurement.   

 

(3) Auxiliary elements 

Auxiliary elements of ion channels are native/endogenous proteins that 

significantly augment the ion channel functions, but do not form the ion-

carrying pore of a channel. Examples include beta, delta and gamma subunits 

that can affect channel gating properties as well as regulation such as turnover 

and localization [195].   For sodium channels, the alpha subunit is sufficient 

for function but these channels are known to be modulated by auxiliary 

proteins [196] such as telethonin [14], syntrophin [158], cytoskeleton [159] 

and beta subunits which are argued to be necessary for normal kinetics and 

voltage dependence of gating [197-199]. Auxiliary proteins are also known to 

alter voltage-gated potassium channels [200, 201] such as beta subunits [202, 

203], and G proteins [204, 205]. Unfortunately, such auxiliary elements are 

not necessarily present in the expression systems used for voltage clamp 

experiments, therefore experimental design should consider the co-expression 

of auxiliary elements. The work of Wang et al is an example where the cardiac 

sodium beta-1 subunit was co-transfected with the cardiac sodium alpha 

subunit into a mammalian cell line (tsA201) for whole cell patch clamp 

functional characterization, since it was known that the cardiac beta subunits 

alter the functional characteristics of alpha subunits [206].  
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(4) Polymorphic-splice variants 

Mutations aside, ion channel variations include polymorphisms and alternative 

splicing. These variants may confer differing biophysical properties on the 

same ion channels such as altered voltage and calcium sensitivities as well as 

in the regulation of their expression [15, 173, 207]. These variations also 

potentially provide resistance against mutagenic variations [208] or serve as 

susceptibility factors that may explain the physiological and 

pathophysiological states of the GI cells and organs. For example, a novel 

splice-variant of the ICC pacemaking calcium-activated chloride conductance 

found in diabetic samples may serve as a potential molecular drug target for 

diabetic gastroparesis [58, 209].  Additionally, ion channels and their variants 

may be expressed differentially across different GI organs and sometimes 

across different regions of the same organ. These variations and differences 

should be incorporated into the modelling framework, where necessary and 

possible, for more realistic predictions and applications [155]. 

 

3.11 Chapter summary 

The R76C and G298S experimental studies [14, 15] characterized the 

electrical behaviour of the wild-type and mutation affected sodium channels in 

the HEK-293 cells. However, the effects of these sodium channel related 

mutations in the GI motility effector cells of ICC and SMC are unknown. This 

gap was bridged computationally by creating sodium channel models based on 

the HEK-293 cellular data from these experimental studies. This chapter has 

discussed the creation of various sodium channel models, and later, these 

models were integrated into the biophysical single cell models of the gastric 
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ICC and SMC to obtain insights on the cellular effects of these mutations. In 

creating the sodium channel models, the traditional Hodgkin-Huxley 

formalism was initially used to construct three sodium channel models of 

SCN5A, TCAP and R76C to investigate the cellular consequences of the 

R76C mutation of the sodium channel interacting protein, telethonin. 

Although the gross kinetics were well-matched with experimental data, the 

Hodgkin-Huxley formalism did not allow an adequate description of the 

inactivation behaviour of the sodium currents during voltage clamp 

simulations. Therefore the Markov formalism was employed where the 

sodium channel was described with a six-state topology. Subsequent 

investigations of the cellular consequences of the R76C mutation in gastric 

ICC and SMC electrophysiology showed that the R76C mutation was capable 

of gain-of-function influence on the electrical behaviour of these single cells. 

However, further work is required to confirm these findings. The same 

Markov modelling method was applied to model the SCN5A channel and its 

G298S mutation under four different backgrounds that arose from 

polymorphism and alternative splicing. Eight Markov models for the wild-type 

and G298S channels for each of the four backgrounds were constructed and 

validated against experimental data. Similarly, the G298S mutation models 

were examined in gastric ICC and SMC models, however the effect of 

mutation on the cellular electrophysiology was negligible. The Kv1.1 channels 

are known to contribute to GI ICC electrophysiology. To investigate the 

consequences of a loss of Kv1.1 function, models describing the wild-type and 

I177N mutation Kv1.1 channels were created. The results indicated a strong 

alteration of ICC electrophysiology due to the I177N mutation. All in all, the 



Chapter 3. Ion channel modelling 

 
169 

 

simulation results here have shown that the mutations do affect gastric ICC 

and SMC membrane voltage, which existing experimental studies have not yet 

been able to demonstrate.  



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Chapter 4  
Single cell modelling 
 
      
 
 
 
 
 
 
 

“All models are wrong; some models are useful.”  
– George Box, statistician 
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4 Single cell modelling 

SCN5A sodium channels have been experimentally identified in the circular 

smooth muscle of the jejunum in the human small intestine [154, 155]. The 

R76C and G298S mutations were also correlated with human intestinal 

disorders [14, 15]. Therefore, it would be pertinent to investigate the sodium 

channel models describing these two mutations in a human intestine cell 

model. However, no suitable biophysically based model of an intestinal SMC 

currently exists. Existing SMC models describe only stomach cells of animals 

[82, 108] while earlier SMC models by Miftakhov et al [210, 211] and Skinner 

et al [212] describe the SMC as being self-excitatory which are not consistent 

with recent findings that the ICC excites SMC. For the small intestine, the 

existing models are for the non-human ICC [111, 213, 214]. The following 

presents the development and validation of a novel biophysically based 

electrophysiological model of a human jejunal SMC (hJSMC). This is 

followed by an investigation of the consequences of the R76C and G298S 

mutations in the hJSMC model.  

 

4.1 Model development 

4.1.1 Governing Equation 

The governing equation of the hJSMC model is based on the classical 

Hodgkin-Huxley approach that describes the cell membrane as a parallel 

conductance circuit. It is given by:  
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m

Stimionm

C
II

dt
dV +

−= , (4.1) 

where mV  is the cellular membrane potential, t  is the time, mC  is the cell 

membrane capacitance and StimI  is an externally applied stimulus, usually 

provided by the ICC. mC was chosen to be 50 pF, which is within the reported 

range of 39 to 65 pF for human jejunal myocytes [215-217]. ionI  is the sum of 

the ionic currents crossing the membrane and is given by:  

NSNaKNCXNaBKKvCaTCaLion IIIIIIIII +++++++= , (4.2) 

where CaLI and CaTI are L-type and T-type calcium (Ca2+) currents 

respectively, KvI is the voltage-dependent potassium (K+) current, BKI  is the 

large conductance Ca2+ and voltage activated K+ current, NaI  is the sodium 

(Na+) current, NaKI  is the Na+-K+ pump, NCXI is the Na+-Ca2+ exchanger and 

NSI  is a non-selective leakage current. Figure 4.1 shows a schematic of the 

hJSMC model while the complete mathematical description of the model can 

be found in Appendix 14. 
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Figure 4.1. The hJSMC model schematic containing the ionic conductances and sub-cellular 
mechanisms that critically influence cellular potential of the hJSMC. See the text for a 
detailed description of the components.  

 

4.1.2 Ionic current descriptions  

The protein ion channels in the model are described by the traditional 

Hodgkin-Huxley method or the deterministic Markov method (see Chapter 3 

for details). Here, it was determined that CaLI , BKI  and NaI  were better 

described by the Markov method while KvCaT II , and NSI were adequately 

described by the Hodgkin-Huxley method. Details for each of the ionic 

conductances and sub-cellular mechanisms are provided below. 

  

4.1.3 L-type Ca2+ channels  

CaLI  is carried by L-type Ca2+ channels which have been identified in human 

jejunal smooth muscle. These channels are considered the main pathway for 
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Ca2+ entry [218, 219]. A Markov formulation was chosen using a topology 

proposed by Faber et al as shown in Figure 4.2 [220].  

 

Figure 4.2. L-type Ca2+ channel model topology. Prefixes C, I, O denote closed, inactivated 
and open states respectively; suffixes Ca, V, f, s found in some of the states refer to calcium-
bound, voltage-dependent, fast, and slow properties of these states, respectively. The topology 
was designed to best describe observed characteristics of the L-type Ca2+ channels. 
 
  
The states and transitions were determined to incorporate experimentally 

characterized features of the L-type Ca2+ channels. The rate equations 

describing the state transitions depend on either mV or [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 . The 

kinetics of the human jejunal L-type channels were characterized through 

transfection of α1C and β2 subunits into HEK-293 cells [221]. Here, the model 

parameters were fitted to replicate the experimental data of Lim et al [221] by 

imposing the same experimental conditions in the simulations. Voltage clamp 

was simulated with Ba2+ as the charge carrier, at an extracellular concentration 

of 10 mM. The presence of 2 mM EGTA in the pipette solution was simulated 

by switching off the Ca2+ dependency in the relevant transitions. The CaLI  

equation is given by:  

)( CamOCaLCaL EVPGI −= , (4.3) 
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where CaLG  is the maximum conductance with a value of 1.44 nS, OP  is the 

open probability obtained by solving the Markov model, and CaE  is the 

Nernst potential for Ca2+ ions. The predicted normalized current-voltage I-V 

plot was found to match well with experimental data as shown in Figure 4.3. 

Figure 4.4 shows the corresponding simulation result of L-type calcium 

current versus time plots for the clamping voltage range of -90 mV to 30 mV, 

which exhibited behaviour that agreed with experimental observations [221].  

 

Figure 4.3. Normalized peak current versus voltage (I-V) plot for L-type calcium channels 
shows a good match between experimental data in dots (from Figure 1b of [221]) and 
simulated data in solid line.  
 

 
 
Figure 4.4. The predicted normalized current versus time plots for the L-type calcium 
channels for the clamping voltage range of -90 mV to 30 mV at a step size of 10 mV.  
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4.1.4 T-type Ca2+ channels  

CaTI  are carried by low-voltage activated T-type Ca2+ channels which have 

been identified in the intestinal SMC and ICC from various species through 

functional differentiation of two distinct Ca2+ currents [222] and genetic 

expression studies [223]. Its expression in the human jejunum is less clear. 

Farrugia et al observed that nifedipine completely abolished inward currents in 

freshly isolated human jejunum cells which suggests that only L-type channels 

may be present. However, the possibility of “another Ca2+ channel type with 

low channel density and/or low open probability” was not excluded in the 

same study [217]. Therefore, the decision was to include T-type Ca2+ 

channels, albeit with a substantially lower whole cell conductance than for the 

L-type Ca2+ channels. The T-type currents were characterized by: 

)( CamCaTCaTCaTCaT EVfdGI −= , (4.4) 

where CaTG  is the maximum conductance with a value of 0.0425 nS while 

CaTd and CaTf are the Hodgkin-Huxley activation and inactivation gating 

variables respectively. The parameters that characterize CaTd and CaTf were 

optimized to replicate the experimentally recorded kinetics in HEK-293 cells 

transfected with human Cav3.1 T-type Ca2+ channels [224]. The normalized I-

V result agreed well with the experimental data as shown in Figure 4.5. Figure 

4.6 shows the corresponding simulation result of T-type calcium current 

versus time plots for clamping voltage range of -90 mV to 30 mV which 

exhibited behaviour that also agreed with experimental observations [224].  
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Figure 4.5. Normalized peak current versus voltage (I-V) plot for T-type calcium channels 
shows a good agreement between experimental data in dots (from Figure 1b of [224]) and 
model data in solid line.  

 

Figure 4.6. The predicted normalized current versus time plots for the T-type calcium 
channels for the clamping voltage range of -90 mV to 30 mV at a step size of 10 mV. 

 

4.1.5 Voltage dependent K+ channels  

Voltage gated K+ channels have been discovered and functionally 

characterized in many SMC along the GI tract (see [69] for review). The 

voltage dependent whole cell K+ current was measured and characterized in 

freshly isolated human jejunal myocytes. In the model, such a current is 

described by the following equation: 
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)( KmKvKvKvKv EVyxGI −= , (4.5) 

where KvG is the maximum conductance with a value of 1.0217 nS  while Kvx  

and Kvy  are the Hodgkin-Huxley activation and inactivation gates 

respectively, and KE  is the Nernst potential for K+ ions. The model 

parameters were optimized in simulations that followed the same voltage 

clamp protocol used in the experiments performed by Farrugia et al on the 

human jejunum smooth muscle [225]. The model predictions agreed well with 

experimental data for the normalized I-V results over the physiological range 

of voltages as shown in Figure 4.7.  

 

Figure 4.7. Normalized I-V plot of whole cell currents. A good agreement between model data 
(solid line) and experimental data (dots) from the human jejunal myocytes (from Figure 9 of 
[225]). 
 

4.1.6 Ca2+ and voltage activated K+ channels  

The Ca2+ and voltage activated large conductance K+ channels (BK) channels 

are found in the GI smooth muscles of several species [226-229, 234], and 

their high conservation across multiple species suggests the importance of 

such channels. Initial evidence of the presence of BK in human jejunal SMC is 
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found in the work of Strege et al [230]. To describe the kinetics of BK, a 

Markov description was adapted from Cox et al [231]. The model topology 

describes cooperative Ca2+ binding to each of the four alpha subunits of the 

BK homotetramer while transitions between a pair of closed and open states 

are voltage dependent (see Figure 4.8).  

 
Figure 4.8. A10-state Markov model of homotetrameric BK channel. Upper tier states are 
various closed conformation states (with prefix C) while lower tier states are various open-
oriented conformation states (with prefix O). In each tier, the horizontal transitions depend 
on [𝐶𝑎2+]𝑖

𝑓𝑟𝑒𝑒 , that reflects cooperative Ca2+ binding to each of the four alpha subunits of the 
BK homotetramer. The membrane voltage dependency is found in the vertical transitions 
between states. O4 is the conformation state that conducts ions across BK channels under a 
voltage driving force. 

 
Due to the absence of human intestinal smooth muscle data, the model’s 

parameter values were optimized against the human myometrium smooth 

muscle data over a voltage range of -70 mV to 60 mV, and over a 

physiological  [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 range of 100 nM to 1000 nM [232, 233]. The BKI  

equation is given by: 

)( KmOBKBK EVPGI −= , (4.6) 

where BKG  is the maximum conductance with a value of 80 nS. Figure 4.9 

shows that the model was able to adequately describe experimentally recorded 

behaviour.  

. 



Chapter 4. Single cell modelling 

 
179 

 

 

Figure 4.9. Open probability versus clamping voltage plots, across various [𝑪𝒂𝟐+]𝒊
𝒇𝒓𝒆𝒆, from 

100 nM to 1000 nM. There is good agreement between experimental data in dots (from Figure 
2b of [233]) and data from the BK model in solid lines.  

 

4.1.7 Na+ channels  

As discussed in Chapter 3, NaI  is carried by the Nav1.5 channels which are 

expressed in the human jejunal circular SMC [154, 159]. The sodium channel 

models that were developed in Chapter 3 were selectively integrated into the 

hJSMC model depending on the objectives. Figure 4.10 gives an example of 

the simulated wild-type sodium current versus time plots, from the R76C 

computational study in Chapter 3, which demonstrated realistic behaviour 

[154]. To investigate the consequences of R76C mutation, the wild-type model 

of SCN5A was selected and appropriately integrated into the hJSMC, the 

results of which served as a control to compare against the results of the R76C 

mutation in hJSMC. This is likewise for the wild-type models and the 

mutation models of the G298S work. The NaI  equation is given by: 

)( NamONaNa EVPGI −= , (4.7) 
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where NaG  is the maximum conductance with a value of 24.17 nS for the 

R76C work and a value of 7.15 nS for the G298S work, and NaE  is the Nernst 

potential for Na+ ions. 

 

Figure 4.10. The simulated normalized current versus time plots for the wild-type sodium 
channels, from the R76C work, for the clamping voltage range of -80 mV to 30 mV at a step 
size of 10 mV. 

 

4.1.8 Pumps and exchangers 

Pumps and exchangers are widely known to regulate ionic homeostasis. The 

Na+-K+ pump (NaK) is ubiquitous and essential for maintaining a high K+ 

concentration and low Na+ concentration in a cell but there is little information 

for the gastrointestinal NaK pump except for early studies on the guinea-pig 

taenia coli [235, 236]. The Na+-Ca2+ exchanger, NCX serves to restore the 

distribution of Ca2+ ionic concentrations across the cell membrane, by 

removing Ca2+ from cells through the energy released from Na+ influx along 

its electrochemical gradient. NCX is also ubiquitous, but not much is known 

for the intestinal NCX exchanger. Nonetheless, its presence was demonstrated 

through staining in the murine jejunum smooth muscle [237]. Due to the lack 

of quantitative data for NaK and NCX, the human cardiac descriptions from 
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ten Tusscher et al were implemented in the hJSMC model to solve for NaKI  

and NCXI . The maximum permeability was the only parameter adjusted in the 

NaKI  and NCXI  models to achieve homeostasis [171] since the lack of 

quantitative experimental data made it unsuitable to optimize other parameters 

of these models. Furthermore, in the original descriptions from the cardiac 

context, the maximum permeability parameters were also arbitrarily set and 

not directly supported by experimental findings. 

 

4.1.9 Non-selective leak current 

It was reported in single cell studies of the human jejunal smooth muscle that 

upon inhibition of the dominant outward currents, a non-selective linear leak 

current with 0 mV reversal potential was revealed. This leak current, NSI , was 

defined to include both sodium ( NaNSI _ ) and potassium ( KNSI _ ) components. 

The total channel conductance was determined to be at least 45 fold smaller 

than the maximum conductance of KvI . 

 

4.1.10 ICC stimulus current 

The passive SMC are excited by the ICC pacemakers through protein gap 

junctions [238-241]. Here, in the absence of a suitable human ICC model, the 

ICC excitation is phenomenologically provided by StimI : 

)( ICC
mmcoupleStim VVGI −= , (4.8) 
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where coupleG  represents the total gap junction coupling conductance between 

ICC and SMC, while ICC
mV  is the membrane potential of the adjacent ICC 

which was defined to be:  
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The waveform of ICC
mV then appears as shown in Figure 4.11 where ICC

restV is 

the ICC potential at the resting phase, ICC
ampV is the amplitude of the slow wave 

potential, ICC
peakV is the peak potential. ICC

peakt is the time duration for the upstroke 

to take place, and ICC
plateaut  is the time duration for the plateau phase. Together 

they sum up to give the slow wave period, periodt . 

 

Figure 4.11. A single slow wave of ICC membrane potential, ICC
mV where ICC

restV = -57 mV, 
ICC

peakV =-23.5 mV, ICC
peakt =300 ms and ICC

plateaut = 9700 ms. Refer to text for further explanation. 
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The frequency of slow wave activity was 6 cpm (or periodt = 10 s) based on 

experimental recordings from human jejunal myocytes at 6.03 ± 0.33 cpm 

[46].  

4.1.11 Intracellular ionic concentrations 

The intracellular concentration of each ionic species affects its Nernst 

potential which in turn affects the driving force for ionic currents. It is 

therefore relatively important to track these intracellular concentrations 

through the following equations: 

( )
cellCa

NCXCaTCaL

total
i

FVz
III

dt
Cad 12][ 2

−+−=
+

, (4.10) 
 

( )
cellK

KNSNaKstimBKKv
i

FVz
IIIII

dt
Kd 12][

_+−−+−=
+

  
(4.11) 

 

( )
cellNa

NaNSNCXNaKNa
i

FVz
IIII

dt
Nad 133][

_+++−=
+

 (4.12) 
 

where the change in concentrations of each ionic species is a function of all 

related ionic currents carrying the respective ion type. Here, F  is Faraday’s 

constant, cellV  is the cell volume, z  is the valence of an ion, subscript i refers 

to the intracellular space and superscript total refers to the total intracellular 

calcium concentration.   

 

4.1.12 Ca2+ buffering 

Ca2+ buffering proteins exist in the myoplasmic space and bind to calcium 

ions, leaving a proportion of free unbound intracellular Ca2+ ions that can 

exert regulatory effects on Ca2+ sensitive ion channels, such as  CaLI  and BKI , 
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and can influence the Ca2+ Nernst potential [218, 242]. The effects of two 

known Ca2+ buffering proteins were included in the hJSMC model. One is the 

ubiquitous calmodulin (CaM) expressed in all eukaryotic cells and the other is 

calreticulin (CRT) found in the cytosol of the jejunal smooth muscle tissue 

[237]. The equilibrium buffering equation that describes both buffering 

proteins was derived using the law of mass action and conservation of mass 

(derivation details can be found in Appendix 15): 
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 (4.13) 

where [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒is the free intracellular calcium concentration, n  is the hill 

coefficient, totalCRT ][ , refers to the total buffering protein concentration for 

calreticulin, totalCaM ][ , refers to the total buffering protein concentration for 

calmodulin and DK is the dissociation constant; note that 
dt

Cad total
i][ 2+

 from 

Eq. 4.10 is used in this equation to solve for [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒. 

 

4.1.13 Nernst potentials  

The Nernst potential is dependent on intracellular and extracellular 

concentration of the ionic species. The intracellular concentrations were 

tracked according to Eqs. 4.10 to 4.13. The Nernst potential in turn affects the 

driving force that plays a role in determining the magnitude and direction of 
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ionic currents. Below shows the Nernst potential equations of calcium, 

potassium and sodium respectively: 

free
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Ca Ca
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4.2 Simulation Results 

4.2.1 Slow waves and Ca2+ transients  

The governing equation for hJSMC slow waves (Eq. 4.1) and its subsidiary 

equations were solved to obtain mV over time. An implicit backward Euler 

method was necessary to solve the Markov descriptions, where the resulting 

linear system was solved using LU decomposition. For all other differential 

equations, an explicit forward Euler method was used. A single time step of 

0.1 ms was sufficient for convergence and stability of the solution.  

 

The model was able to predict slow waves that are in agreement with 

experimental recordings under the same conditions (compare Figure 4.12a 

with Figure 4.12b) [45]. The predicted peak amplitude is 23.88 mV and 

resting phase potential is -60.20 mV. Figure 4.12c shows the corresponding 

predicted [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 is 96 nM at rest and 256 nM at the plateau phase (i.e., an 

amplitude of 160 nM). Experimental [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒data for the human intestinal 

smooth muscle is limited; Bielefeldt et al reported a [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 value of about 
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60 nM under resting conditions for the cultured human intestinal smooth 

muscle cells [243], while Farrugia et al reported a resting [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 value of 

about 130 nM and a maximum increase of about 160 nM in [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 in the 

jejunal smooth muscle cell [217]. Therefore, the predicted [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 agrees 

well with these experimental observations. The stability of the hJSMC model 

was demonstrated through long term simulation of 30 minutes of electrical 

activity.       

 

Figure 4.12. hJSMC results. (a) Experimentally recorded hJSMC slow waves, adapted from 
Lee et al [45]. (b) Simulated hJSMC slow waves after long term simulation of 30 minutes of 
electrical activity. (c) Predicted free intracellular calcium concentration.  
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The only other study known to record human intestinal slow waves was 

performed by Hwang et al [64] and exhibited different metrics from the earlier 

results by Lee et al [45]. The average frequency was higher at 7.5 cpm, and the 

amplitude was bigger at about 31 mV with a resting membrane potential of 

around -64 mV. These differences could arise due to tissue sample differences 

such as the location of the sample in the small intestine or the relative density 

of ICC to smooth muscle cells. The hJSMC model was able to replicate the 

slow waves from Hwang et al with some modification to the original ICC 

stimulus. The results are compared against the experimental recordings as 

shown in Figure 4.13. 

 

 

Figure 4.13. Simulated slow waves (lower panel) were able to match experimental results in 
the control traces of Figures 7A and 7B,  reported in Hwang et al [64] (upper panel). 
 

4.3 Altered conditions 

The hJSMC model was subjected to further validation under altered 

conditions. Figure 4.14 shows the simulation results of whole cell current 

versus time traces for a hJSMC model subjected to activation voltage clamp 

from -80 mV to 20 mV with an increment size of 5 mV. Figure 4.14a shows 
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the results for a holding voltage of -70 mV while Figure 4.14b shows the 

results for a holding voltage of -20 mV. This was repeated with other holding 

voltages from 0 mV to -90 mV. For these results, it was observed that the 

steady-state behaviour of the whole cell currents is independent of holding 

voltage. Figures 4.14a and 4.14b also show that for a prolonged clamping 

period of 2000 ms there is negligible inactivation. These results matched the 

experimental observations on hJSMC [216]. 

 

 

Figure 4.14. The whole cell current versus time traces from hJSMC subjected to voltage 
clamp with different holding voltages. (a) shows the results for original holding voltage of -70 
mV. (b) shows the results for a holding voltage of -20 mV.  
 

Experimentally, when isolated hJSMC was subjected to voltage clamp in Ca2+ 

free bath solution, negligible change to I-V behaviour was observed [216]. A 

(b) 

(a) 
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Ca2+ free bath environment was simulated in the hJSMC model by setting the 

extracellular and intracellular Ca2+ concentrations to 1e-7 mM. The simulation 

result in Figure 4.15 shows negligible change to I-V and this agrees with 

experimental observation.  

 

 

Figure 4.15. Predicted whole cell normalized I-V data from hJSMC model under the 
conditions where calcium concentrations were reduced to near zero to simulate the effect of 
calcium-free bath solution during voltage clamping. The dashed line is simulation data, while 
gray dots are experimental data under control conditions [216].   

 

Under the condition where the prescribed ICC stimulation was switched off by 

setting coupleG to 0 nS, the hJSMC slow waves ceased with the mV  stabilizing at 

resting value of -73.1 mV as shown in Figure 4.16. This is in agreement with 

the hJSMC being an excitable but passive cell type, requiring stimulation from 

the pacemaking ICC. To simulate the experimental environment of an isolated 

hJSMC where there is an absence/reduction of carbon monoxide activation of 

the potassium channels and/or degradation of potassium channels, KvG  was 

set to be 100 times smaller than its original value. The resulting stabilized 

resting potential gave a value of -37 mV. These values are within the recorded 
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range of initial potentials reported in Farrguia et al’s work on isolated hJSMC, 

i.e., between 11 mV to 80 mV with an average of -41 mV [216].  

 

 

Figure 4.16. hJSMC response to termination of ICC stimulation. The coupling conductance 
between the ICC and hJSMC was set to zero at time point 1400 seconds. Correspondingly, the 
hJSMC slow waves ceased to a steady potential of about -73.1 mV.  
 

Lee et al reported that the drug, 2-Aminoetoxydiphenyl borate (2-APB) was 

capable of inhibiting ICC slow waves. A concentration of 50 μM was able to 

reduce ICC frequency to about 4.90 cpm, increase time to peak by about 

19.69% and reduce amplitude by about 32.90% [45]. This was simulated by 

implementing the same quantitative changes to the prescribed ICC stimulus. 

The resulting hJSMC voltage response is shown in Figure 4.17 which 

additionally demonstrated that the hJSMC model describes a cell that is 

passive whose excitation is dependent on the nature of the stimulation.  



Chapter 4. Single cell modelling 

 
191 

 

 

Figure 4.17.  To simulate the effect of 2-APB, appropriate changes were made to the ICC 
stimulus, applied at a time point of 1400 seconds. Consequently, the hJSMC slow waves cycle 
at 4.9 times per minute, with a reduction in slow wave upstroke and plateau amplitude.  
 

4.3.1 Contributions of ionic currents to hJSMC response 

Two steps were taken to evaluate the contribution of the key ionic currents in 

the SMC slow waves. Firstly, the values of the corresponding currents at 

critical phases of a slow wave, i.e., the resting and plateau phases were 

normalized and plotted in Figure 4.18. Secondly, a sensitivity analysis was 

performed by separate adjustment of maximum channel conductance by ±50% 

with the original values serving as the control, as shown in Figure 4.19.  

 

In both resting and plateau phases, the hJSMC model exhibited relatively 

strong outward currents through KvI , and this agrees with the experimental 

observation that the normal hJSMC exhibited strong outward potassium 

current that is a major determinant of the membrane potential [216]. This 

strong outward KvI  is the main counter against the inward ICC stimulation 

current. The strong influence of KvI  was further supported by the sensitivity 

analysis results in Figure 4.19a that demonstrated that a 50% increase in 
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maximum conductance of KvI  significantly hyperpolarized membrane 

potentials and vice-versa for a 50% decrease in maximum conductance.  

 

BKI  is another outward potassium current but here it plays a minor role in 

shaping membrane potential as demonstrated by the small amplitude of its size 

relative to KvI at both the resting and plateau phases (see Figure 4.18) as well 

as the very slight membrane potential changes upon ±50% of its maximum 

conductances (see Figure 4.19b). This is reasonable since BKI  has been found 

to be weakly voltage dependent over the physiological slow wave [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 

range of between 96 nM to 256 nM predicted by the hJSMC model (see Figure 

4.12). Greater electrical excitation of the hJSMC would result in greater 

[𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒  primarily through CaLI  and therefore greater contraction of the 

smooth muscle. Because of the sensitivity to calcium, BKI  would then act like 

a rheostat to regulate smooth muscle excitability and contractility under such 

circumstances.  

 

NaI  is a relatively strong inward current at both the resting and plateau phases 

(see Figure 4.18). In the hJSMC model, the choice of maximum conductance 

for NaI  was based on a value determined from experimental NaI in hJSMC 

[154, 244]. However, ±50% of the maximum conductance of NaI  did not 

seem to vary the membrane potential (see Figure 4.19c). This could be a 

consequence of an ICC driving force that is great enough to counteract any 
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NaI influence on the hJSMC membrane potential. NaI  also exists in the ICC 

and can shape the ICC electrical slow waves [106], which in turn can affect 

the hJSMC slow waves.  

 

The biggest inward current at the plateau phase is CaLI . Its sensitivity analysis 

results in Figure 4.19d show that ±50% variation in maximum conductance for 

CaLI changes membrane potential slightly at the plateau phase only. This is 

reasonable since CaLI  has been experimentally characterized to be relatively 

inactive over the range of the slow wave potentials (see Figure 4.3). 

Nonetheless, CaLI , being the dominant Ca2+ current, was able to carry 

sufficient Ca2+ into the hJSMC essential for smooth muscle contractility [217, 

245]. Figure 4.19e shows the corresponding [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒

 for ±50% variation in 

maximum conductance of CaLI which demonstrated that a small change in 

membrane potential was able to lead to significant change in [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒. 

 
Figure 4.18. Ionic currents recorded from hJSMC simulation under control conditions. Left 
panel plot is for currents recorded from the resting phase, while right panel plot is for currents 
recorded from the plateau phase. Currents are normalized according to their directionality, i.e. 
negative value currents are normalized against the amplitude of the largest negative current at 
either the resting or plateau phase and vice versa.          
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4.4 Discussion of the hJSMC model 

To the best of our knowledge, this is a first mathematical model that describes 

a human smooth muscle cell and in that of the small intestine. The key ionic 

currents were carefully selected, modelled and validated against experimental 

data. The overall hJSMC model was able to predict membrane potential 

behaviour that is in good agreement with experimental observations. These 

provided greater confidence in the choice of parameter values for the hJSMC 

model. The simulated [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 is within the expected range and the model 

was stable through long term simulation. The time-course of [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 was 

within physiological range, and it behaves in a manner consistent with what 

was captured in fluorescence imaging of Ca2+ transients in jejunal cells [45]. 

This would be useful for coupling this electrical model to a mechanical model 

of hJSMC as a realistic [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 is necessary for an appropriate trigger of 

pathways involved in cellular mechanics. Further validation was performed by 

subjecting the hJSMC model to voltage clamp simulations under a number of 

conditions. The corresponding simulation results, in terms of whole cell 

current versus time, and peak current versus clamping voltage, are consistent 

with that reported experimentally.   
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f  

 

Figure 4.19. Sensitivity analysis by increasing/decreasing maximum channel conductance by 
50% to evaluate the contributions of key ionic currents towards hJSMC membrane voltage. (e) 
shows the corresponding changes in [𝐶𝑎2+]𝑖

𝑓𝑟𝑒𝑒for the change in conductance in (d).  

 
As some ionic currents were experimentally characterized in expression 

systems such as HEK-293 cells, it is impossible to draw conclusions on the 

correct value of the maximum conductance of these ionic currents from such 

experiments. The choice of maximum conductances in this model was 

therefore carefully selected to satisfy what is known about these ionic currents 

and the hJSMC slow waves from experimental studies. The model contains 

kinetic parameters derived from non-jejunal SMC data. The BK channels were 

parameterized from human myometrium smooth muscle data while the 

(a) (b) 

(c) (d) 

(e) 
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homeostatic mechanisms describe human cardiac muscle kinetics. Therefore, 

as relevant human jejunal data appears, both the kinetic parameters as well as 

maximum conductance parameters in this model should be updated 

accordingly 

 

Given the critical role of ICC in driving SMC excitation, the development of a 

suitable biophysically based human jejunal ICC model coupled to the hJSMC 

model would be beneficial to investigate the coupled state electrophysiology 

in affecting motility pattern. This pursuit is reliant on more experimental 

findings on human jejunal ICC. In this hJSMC model, a low coupling with the 

prescribed ICC stimulus, produced a peak ICC current that was at a relatively 

low value of -0.674 pA/pF. This aligns with the physiological situation where, 

despite the low ratio of ICC to SMC, the ICC were able to effectively excite 

the greater number of SMC in a tissue [83]. The hJSMC model is therefore 

expected to be amenable for higher scale studies such as when coupled to a 

biophysical ICC model or in multi-cellular modelling.   

 

The hJSMC is an electromechanical cell that generates motility at the global 

level, with free intracellular calcium as a critical link between electrical and 

mechanical functions. Its calcium and sodium channels were found to be 

mechanosensitive [246, 247]. Therefore a mechanical extension to this model 

would be useful, for example, in the investigation of how mutation altered 

cellular electrics could translate into altered mechanics. This can be achieved 

through the incorporation of biological pathways associated with actomyosin 

active contraction and soft tissue mechanics of the hJSMC. 
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4.5 Investigation of the R76C and G298S mutations 

The sodium channels that were presented in Chapter 3 were integrated into the 

hJSMC model. For the investigation of R76C mutation, 100% homozygosity 

was examined, i.e., the simulation results with 100% SCN5A versus 100% 

R76C were compared. Similarly, for the G298S investigation, simulation 

results for the 100% wild-type versus 100% G298S mutation were compared, 

for each of the four different common backgrounds. 

 

Figure 4.20 shows the results for the investigation of the R76C mutation. The 

upper panel indicates that in the presence of R76C mutation, the membrane 

potential was slightly depolarized which was more obvious at the plateau 

phase of the slow waves. This is in correspondence to the sodium currents 

shown in the lower panel, where the R76C affected sodium current carried a 

greater influx of sodium currents than the wild-type current. This is consistent 

with the earlier observations that the R76C mutation exerts a gain-of-function 

effect.  

 

However, even though the R76C mutation exerted a gain-of-function effect, 

the results differ from that of the gastric canine SMC (see Figures 3.22 and 

3.23), where a depolarization in resting potential and not the peak potential 

was predicted.  The gastric slow waves have more negative resting potentials, 

less depolarized peak potentials and slower frequency compared to the 

intestinal slow waves. These differences in cellular electrophysiological 

environment caused the sodium current response of the same wild-type and 
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R76C models to be different in the intestinal SMC models than in the gastric 

counterpart. This therefore caused a different change in membrane potential 

despite the incorporation of the same mutation.   

 

Figures 4.21 to 4.24 show the results for investigating the G298S mutations in 

the four common backgrounds of H558/Q1077del, H558R/Q1077del, 

H558/Q1077, and H558R/Q1077. The upper panel of all the figures shows 

that the G298S mutation was incapable of causing any noticeable change to 

the hJSMC potential in all four backgrounds. This was even though the G298S 

sodium currents were different from their wild-type counterparts. In all 

backgrounds, except for H558/Q1077, the peak G298S sodium currents were 

smaller than the peak wild-type sodium currents, which is in agreement with 

G298S as a loss-of-function mutation. The increase in sodium current due to 

the G298S mutation in the H558/Q1077 background agreed with that observed 

in the gastric cell models. As before, the argument was the G298S mutation 

and/or the background of the sodium channel could affect the maximum 

sodium channel conductance in the cell, through expression pathways or 

otherwise, and can therefore reverse the apparent gain-of-function effect to a 

loss-of-function effect. In terms of the SMC membrane potential, in none of 

the backgrounds was the G298S mutation able to cause noticeable changes, 

unlike in the gastric SMC results where it was observed that the G298S 

mutation was able to slightly hyperpolarize the resting potentials in the most 

common background of H558/Q1077del (see Figure 3.39). Additionally, the 

corresponding predicted [𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒  were compared between wild-type and 



Chapter 4. Single cell modelling 

 
199 

 

G298S for all backgrounds; however there was no observable change in 

[𝐶𝑎2+]𝑖
𝑓𝑟𝑒𝑒 which is an indication that contraction may not be affected.  

w

 

 
Figure 4.20.  Results for the R76C mutation in hJSMC. Upper panel compares the wild-type 
membrane potential (black solid line) against membrane potential in the presence of R76C 
mutation (gray dashed line). Inset shows the enlargement of a slow wave plateau. Lower panel 
compares the wild-type and R76C sodium currents in the hJSMC model.   
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The lack of consequences of the mutations related to the sodium channels in 

the hJSMC can be explained by reasons similar to those mentioned in Chapter 

3. The maximum conductance value affects the amount of sodium current and 

its contribution towards membrane potential. In the case of G298S, it is 

possible that due to mutation and/or ion channel background, the effective 

density of sodium channels may be up- or down- regulated. The contribution 

of sodium current also depends on the strength of other ionic currents that 

shape the membrane potential behaviour. Inter-species and inter-/intra-organ 

differences can result in the same ionic current having different extent of 

contribution towards shaping membrane potential. Here, the outward 

potassium currents were experimentally determined to be a strong influence, 

thus weakening the influence of other currents such as the sodium current. The 

hJSMC model was activated by a prescribed ICC stimulus and this constrained 

the SMC voltage behaviour; for instance, the frequency of the slow waves 

cannot change. Additionally, the mutations may act through sodium channels 

present in the ICC, and in turn affect SMC electrophysiology.  
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Figure 4.21.  G298S mutation in hJSMC results for H558/Q1077del background. Upper panel 
compares the wild-type membrane potential (black solid line) against membrane potential in 
the presence of G298S mutation (gray dashed line). Lower panel compares the wild-type and 
G298S sodium currents in the hJSMC model.   
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Figure 4.22.  G298S mutation in hJSMC results for H558R/Q1077del background. Upper 
panel compares the wild-type membrane potential (black solid line) against membrane 
potential in the presence of G298S mutation (gray dashed line). Lower panel compares the 
wild-type and G298S sodium currents in the hJSMC model.   
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Figure 4.23.  G298S mutation in hJSMC results for H558/Q1077 background. Upper panel 
compares the wild-type membrane potential (black solid line) against membrane potential in 
the presence of G298S mutation (gray dashed line). Lower panel compares the wild-type and 
G298S sodium currents in the hJSMC model.  
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Figure 4.24.  G298S mutation in hJSMC results for H558R/Q1077 background. Upper panel 
compares the wild-type membrane potential (black solid line) against membrane potential in 
the presence of G298S mutation (gray dashed line). Lower panel compares the wild-type and 
G298S sodium currents in the hJSMC model.   
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4.6 Chapter summary 

A biophysically based electrophysiological model of the hJSMC was created 

and validated. This is a first human gastrointestinal cell model, and a first for 

the small intestine. Its electrophysiology was described by eight ionic currents 

including calcium, potassium, and sodium currents as well as an exchanger 

and a pump. The cell model predictions under normal and altered conditions 

agreed with experimental findings. These include the slow wave 

characteristics, intracellular calcium concentration and voltage clamp 

response. The R76C and G298S mutations were experimentally correlated 

with patients with intestinal motility disorders, but existing experimental 

studies have not been able to examine the consequences of these mutations in 

the human small intestinal smooth muscle [14, 15]. To overcome such a gap, 

the hJSMC model was subsequently used together with the sodium channel 

models developed in the preceding chapter to computationally investigate 

these mutations’ effects on cellular electrophysiology. The R76C mutation 

was able to cause a small increase in the plateau potentials of the hJSMC slow 

waves while no noticeable change to the slow wave potentials was observed 

for the G298S mutation across all backgrounds. Any change in cellular 

electrical potential has the potential to alter the intracellular calcium level in 

the smooth muscle cell which can in turn lead to a change in cellular 

mechanical behaviour. Having examined the single cell scenario, the next 

chapter includes an investigation of the R76C and G298S mutations in a multi-

cellular electrophysiological model of the stomach. This investigation might 

provide further insights into the consequences of mutations in a tissue 

construct where there is inter-cellular communication between ICC and SMC. 
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“The purpose of computing is insight, not numbers”  
while “the purpose of computing numbers is not yet in 
sight,”   
– Richard Hamming, American mathematician 
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5 Multi-cellular modelling  

The preceding two chapters have discussed modelling up to the spatial scale of 

a single cell. In the physiological situation, within a tissue or an organ, single 

cells can be organized into a multi-cellular syncytium, in which intercellular 

communication and spatial heterogeneities exist and affect behaviour.  

 

5.1 Extended bidomain framework 

5.1.1 Background 

The traditional bidomain computational framework is one technique for multi-

cellular modelling which is popularly applied in cardiac modelling. The 

bidomain approach describes the tissue or organ construct as a continuum with 

volume averaged properties. The control volume is divided into two domains, 

i.e., the intracellular domain of a single cell type separated by the cellular 

membranes from the extracellular space (see Figure 5.1).  

 

The wall of GI organs where muscular activity occurs has a complex anatomy. 

It contains variants of the SMC and ICC as well as the enteric neuronal cells at 

various anatomical locations, which are all involved in generating motility. 

These SMC and ICC are connected to each other via gap junction proteins, 

and therefore form a continuum construct [38, 258]. Because of the anatomical 

complexity, the traditional bidomain equations that describe a single cell type 

in a tissue are therefore unable to realistically and effectively reflect the 

multiple cell types present in the GI wall. There were earlier attempts to model 
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the cellular heterogeneity in the GI wall which encountered limitations. Aliev 

et al’s cable model solves the ICC and SMC domains separately in a 

monodomain format, i.e., without the effects of extracellular space 

communication, and without biophysically detailed cellular descriptions [213]. 

Large scale electrophysiological models of the stomach and small intestines 

were also developed [213, 248, 249], however these specified the ICC and 

SMC as separate discrete layers, unlike the more complex physiological 

situation where ICC are known to exist in several layers of the GI wall such as 

within the smooth muscle layers [38]. To address this gap, an attempt was 

made to extend the traditional bidomain framework to incorporate multiple 

cell types. The derivation to extend the bidomain framework, which follows 

Buist and Poh (2010) [250], is described in the next section. 

 

5.1.2 Method 

Traditional bidomain framework 

Maxwell’s equations that govern the electric fields and magnetic fields, as 

shown in Eqs. 5.1 to 5.4, are relevant for the development of the traditional 

bidomain framework where: E is the electric field intensity, B is the magnetic 

flux density, J is the electric flux density, ρ is the electric charge density, μ0 is 

the permeability of free space, Є0 is the permittivity of free space and t is time.  

𝛻 ∙ 𝑬 =
𝜌

∈0
, (5.1) 

𝛻 × 𝑬 = − 𝜕𝑩
𝜕𝑡,

, (5.2) 

𝛻 ∙ 𝑩 = 0, (5.3) 
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𝛻 × 𝑩 = 𝜇0 �𝑱 +∈0
𝜕𝑬
𝜕𝑡 �, (5.4) 

In the GI environment, the electrical and magnetic fields occur at relatively 

low frequencies, therefore the time derivatives are assumed zero, resulting in 

quasi-static version of the Maxwell’s equations which essentially uncouples 

the electric and magnetic fields: 

𝛻 ∙ 𝑬 =
𝜌

∈0
, (5.5) 

𝛻 × 𝑬 = 0, (5.6) 

𝛻 ∙ 𝑩 = 0, (5.7) 

𝛻 × 𝑩 = 𝜇0𝑱 . (5.8) 

Eq. 5.6 indicates that the curl of the electric field is zero in the GI 

physiological context; therefore E can be represented by the gradient of a 

scalar potential field, 𝜑: 

𝑬 = −𝛻𝜑. (5.9) 

Next, for any given control volume representing a multi-cellular construct, the 

continuity equation can be used to describe the transport of electrical charges 

across the boundaries. With charge conservation, the following form of 

continuity equation was obtained: 

∇ ∙ 𝑱 + 𝜕𝜌
𝜕𝑡 = 0. (5.10) 

At equilibrium, there is no net current flux density, therefore the electric 

charge density in the control volume does not change with time, i.e.,  𝜕𝜌
𝜕𝑡 = 0. 

The continuity equation is further reduced to: 

∇ ∙ 𝑱 = 0. (5.11) 
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J can be split into two components, one that is ohmic arising from tissue 

properties, Jo, and the other is an impressed current density from an external 

source, Jimp, i.e., 

𝑱 = 𝑱𝒐 + 𝑱𝒊𝒎𝒑. (5.12) 

Jo arises from tissue properties which can be expressed as a product of an 

electric field intensity, E, in the tissue, and the tissue conductivity, σ. By 

substituting E with Eq. 5.9, the final term in the following equation is obtained 

for Jo:   

𝑱𝒐 = 𝝈𝑬 

           = −𝜎∇𝜑. 

 

(5.13) 

If the control volume is divided into two domains (i.e., a bidomain) of 

extracellular space and intracellular space, then Jo can be further subdivided 

into extracellular current density, Je, and intracellular current density, Ji,, with 

their respective conductivities and potentials given by σe, φe, σi and φi where 

subscripts e and i denote extracellular and intracellular spaces respectively. In 

the absence of an externally impressed current density, Jimp is zero, and Eq. 

5.11 becomes the following: 

∇ ∙ 𝑱 = ∇ ∙ 𝑱𝒐 

                    = ∇ ∙ (𝑱𝒆 + 𝑱𝒊) 

                                    = ∇ ∙ (−𝜎𝑒∇𝜑𝑒 − 𝜎𝑖∇𝜑𝑖) 

  = 0. 

 

 

 

 

 

(5.14) 

Electric charges move from one domain to the other domain in the control 

volume across the membrane boundary through 𝛻 ∙ 𝑱 .  Here, the electric flux 
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density is defined to exit from the intracellular domain into the extracellular 

space, i.e.,  

∇ ∙ (𝜎𝑖∇𝜑𝑖) = 𝐴𝑚𝐼𝑚, (5.15) 

∇ ∙ (𝜎𝑒∇𝜑𝑒) = −𝐴𝑚𝐼𝑚, (5.16) 

where Im refers to the electric current per unit area exiting the cellular 

membrane, and Am refers to the membrane surface area to control volume ratio.  

 

To link cellular electrical activity to a bidomain multi-cellular formulation, the 

term Im is defined to be the sum of ionic currents crossing a cellular membrane, 

and thus assumes the following form: 

𝐼𝑚 = 𝐶𝑚
𝜕𝑉𝑚
𝜕𝑡

+ � 𝐼𝑖𝑜𝑛, (5.17) 

where Cm is the membrane capacitance, Vm is the potential difference given by 

φi-φe and Iion is the various ionic currents that cross the membrane. Combining 

Eqs. 5.15 to 5.17, the traditional bidomain equations are obtained: 

𝛻 ∙ (𝜎𝑖𝛻𝜑𝑖) = 𝐴𝑚 �𝐶𝑚
𝜕𝑉𝑚
𝜕𝑡

+ � 𝐼𝑖𝑜𝑛�, (5.18) 

𝛻 ∙ (𝜎𝑒𝛻𝜑𝑒) = −𝐴𝑚 �𝐶𝑚
𝜕𝑉𝑚
𝜕𝑡

+ � 𝐼𝑖𝑜𝑛�, 
(5.19) 

 

where Eqs 5.18 and 5.19 sum up to give: 

∇ ∙ (𝜎𝑒∇𝜑𝑒 + 𝜎𝑖∇𝜑𝑖) = 0. (5.20) 
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Figure 5.1. Schematic of the traditional bidomain framework. There are two domains, the 
extracellular domain and the intracellular domain, with different types of current fluxes. 
𝐼𝑑𝑖𝑓𝑓

𝐸𝑋𝑇 belongs to  𝛻 ∙ (𝜎𝑒𝛻𝜑𝑒), 𝐼𝑑𝑖𝑓𝑓
𝑐𝑒𝑙𝑙 belongs to  ∇ ∙ (𝜎𝑖∇𝜑𝑖), 𝐼𝑖𝑜𝑛

𝑐𝑒𝑙𝑙 is equivalent to 𝐴𝑚𝐼𝑚 while 

𝐼𝑠𝑡𝑖𝑚
𝑐𝑒𝑙𝑙 and 𝐼𝑠𝑡𝑖𝑚

𝐸𝑋𝑇  are any stimulus currents that may be injected into the extracellular and 
intracellular domains respectively.  
 
 
Extending the bidomain framework to incorporate multiple cell types 

The key to incorporate multiple cell types is through the distribution of 

membrane area of each cell type. In the case of having two cell types of the 

ICC and SMC, the total membrane area in the control volume is given by: (1) 

ICC membrane area in contact with extracellular space, (2) SMC membrane 

area in contact with the same extracellular space, and (3) the membrane area 

that connects the ICC and SMC. In the third scenario, the ICC and SMC are 

connected via protein gap junctions that are able to conduct ionic currents 

across these cells. Therefore, Am can be re-expressed as: 

𝐴𝑚 =
𝐴𝐼𝐶𝐶 + 𝐴𝑆𝑀𝐶 + 𝐴𝑔𝑎𝑝

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

       = 𝐴𝑚
𝐼𝐶𝐶 + 𝐴𝑚

𝑆𝑀𝐶 + 𝐴𝑚
𝑔𝑎𝑝, 

 

 

(5.21) 
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where AICC, ASMC and Agap refer to the membrane area of the ICC, SMC, and 

the connected membrane area between ICC and SMC respectively, Vcontrol is 

the control volume, 𝐴𝑚
𝐼𝐶𝐶 , 𝐴𝑚

𝑆𝑀𝐶 and 𝐴𝑚
𝑔𝑎𝑝 are the membrane area to control 

volume ratios for ICC, SMC and connected membrane area respectively. Eq. 

5.21 can be generalized for n number of cell types and connected areas: 

𝐴𝑚 =
∑ 𝐴𝑖

𝑛
𝑖=1

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
= � 𝐴𝑚

𝑖
𝑛

𝑖=1
. (5.22) 

Consequently, the traditional bidomain equations of Eqs. 5.18 and 5.19 are 

transformed into: 

𝛻 ∙ (𝜎𝑖𝛻𝜑𝑖) = 𝐴𝑚 �𝐶𝑚
𝜕𝑉𝑚
𝜕𝑡

+ � 𝐼𝑖𝑜𝑛� 

                                = 𝐴𝑚
𝐼𝐶𝐶

�𝐶𝑚
𝐼𝐶𝐶 𝜕𝑉𝑚

𝐼𝐶𝐶

𝜕𝑡 + ∑ 𝐼𝑖𝑜𝑛
𝐼𝐶𝐶

� + 

                                           𝐴𝑚
𝑆𝑀𝐶

�𝐶𝑚
𝑆𝑀𝐶 𝜕𝑉𝑚

𝑆𝑀𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝑆𝑀𝐶
� 

                                    = 𝛻 ∙ �𝜎𝑖
𝐼𝐶𝐶𝛻𝜑𝑖

𝐼𝐶𝐶 + 𝜎𝑖
𝑆𝑀𝐶𝛻𝜑𝑖

𝑆𝑀𝐶�, 

 

 

 

 

 

 

(5.23) 

𝛻 ∙ (𝜎𝑒𝛻𝜑𝑒) = −

⎝
⎜
⎜
⎜
⎛ 𝐴𝑚

𝐼𝐶𝐶
�𝐶𝑚

𝐼𝐶𝐶 𝜕𝑉𝑚
𝐼𝐶𝐶

𝜕𝑡 + ∑ 𝐼𝑖𝑜𝑛
𝐼𝐶𝐶

� +

𝐴𝑚
𝑆𝑀𝐶

�𝐶𝑚
𝑆𝑀𝐶 𝜕𝑉𝑚

𝑆𝑀𝐶

𝜕𝑡 + ∑ 𝐼𝑖𝑜𝑛
𝑆𝑀𝐶

�⎠
⎟
⎟
⎟
⎞
. 

 

 

(5.24) 

For the connected membrane space where a local ionic current flows through 

the gap junctions between the ICC and SMC intracellular spaces, a simple 

linear relationship is assumed: 

𝐼𝑔𝑎𝑝 = 𝑔𝑔𝑎𝑝�𝜑𝑖
𝐼𝐶𝐶 − 𝜑𝑖

𝑆𝑀𝐶 �, (5.25) 

where ggap is the overall gap junction conductance, 𝜑𝑖
𝐼𝐶𝐶  and 𝜑𝑖

𝑆𝑀𝐶  are the 

intracellular potentials of the ICC and SMC respectively. The gap junction 
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current forms part of the membrane ionic currents, and is thus integrated into 

the bidomain equations in the following manner: 

𝛻 ∙ (𝜎𝑖
𝐼𝐶𝐶 𝛻𝜑𝑖

𝐼𝐶𝐶 ) = 𝐴𝑚
𝐼𝐶𝐶

�𝐶𝑚
𝐼𝐶𝐶 𝜕𝑉𝑚

𝐼𝐶𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝐼𝐶𝐶
� + 𝐴𝑚

𝑔𝑎𝑝𝐼𝑔𝑎𝑝, 

 

(5.26) 

𝛻 ∙ (𝜎𝑖
𝑆𝑀𝐶𝛻𝜑𝑖

𝑆𝑀𝐶) = 𝐴𝑚
𝑆𝑀𝐶

�𝐶𝑚
𝑆𝑀𝐶 𝜕𝑉𝑚

𝑆𝑀𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝑆𝑀𝐶
� − 𝐴𝑚

𝑔𝑎𝑝𝐼𝑔𝑎𝑝, (5.27) 

while Eq. 5.20 is updated to: 

∇ ∙ (𝜎𝑒∇𝜑𝑒 + 𝜎𝑖
𝐼𝐶𝐶∇𝜑𝑖

𝐼𝐶𝐶 + 𝜎𝑖
𝑆𝑀𝐶∇𝜑𝑖

𝑆𝑀𝐶 ) = 0, (5.28) 

 

which together with Eqs. 5.26 and 5.27 constitute the key equations of the 

extended bidomain framework.  

 

Application of external stimulus to the extended bidomain framework 

To apply external electrical stimulus to the control volume, useful for 

bidomain studies, such as in the case of simulating an exogenous electrical 

current injection from electrode/s (for example, from a pacemaking device), 

the extended bidomain equations were adjusted to include external stimulus in 

the following three possible ways: 

 

(1) Stimulus 𝐼𝑠𝑡𝑖𝑚
𝐼𝐶𝐶  injected into the ICC intracellular space,   

 

𝛻 ∙ 𝜎𝑖
𝐼𝐶𝐶 𝛻𝜑𝑖

𝐼𝐶𝐶 = 𝐴𝑚
𝐼𝐶𝐶

�𝐶𝑚
𝐼𝐶𝐶 𝜕𝑉𝑚

𝐼𝐶𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝐼𝐶𝐶 − 𝐼𝑠𝑡𝑖𝑚
𝐼𝐶𝐶

� + 𝐴𝑚
𝑔𝑎𝑝𝐼𝑔𝑎𝑝, 

 
(5.29) 
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(2) Stimulus 𝐼𝑠𝑡𝑖𝑚
𝑆𝑀𝐶  injected into the SMC intracellular space,   

 
𝛻 ∙ 𝜎𝑖

𝑆𝑀𝐶𝛻𝜑𝑖
𝑆𝑀𝐶 = 𝐴𝑚

𝑆𝑀𝐶
�𝐶𝑚

𝑆𝑀𝐶 𝜕𝑉𝑚
𝑆𝑀𝐶

𝜕𝑡 + ∑ 𝐼𝑖𝑜𝑛
𝑆𝑀𝐶 − 𝐼𝑠𝑡𝑖𝑚

𝑆𝑀𝐶
� − 𝐴𝑚

𝑔𝑎𝑝𝐼𝑔𝑎𝑝, 
 

(5.30) 

 

(3) Stimulus 𝐼𝑠𝑡𝑖𝑚
𝐸𝑋𝑇 injected into the shared extracellular space, 

𝛻 ∙ �𝜎𝑒𝛻𝜑𝑒 + 𝜎𝑖
𝐼𝐶𝐶 𝛻𝜑𝑖

𝐼𝐶𝐶 + 𝜎𝑖
𝑆𝑀𝐶 𝛻𝜑𝑖

𝑆𝑀𝐶� − 𝐼𝑠𝑡𝑖𝑚
𝐸𝑋𝑇 = 0, (5.31) 

 
 

Note that because the external stimulus changes the total energy of the whole 

control volume, therefore a stimulation should be applied such that long term 

stability is ensured (i.e., to ensure the conservation of charge in the continuity 

equation is observed). An example is the use of bipolar stimuli configuration 

or to bath the multi-cellular construct in interstitial fluid. A schematic of the 

extended bidomain framework is shown in Figure 5.2. 

 

Figure 5.2. Schematic of the extended bidomain framework. The traditional bidomain 
framework was extended by dividing the intracellular domain into two sub-domains, one for 
the ICC and one for the SMC. Possible current fluxes are indicated by the arrows, where the 
new symbols carry the following meanings: 𝐼𝑑𝑖𝑓𝑓

𝐼𝐶𝐶  belongs to ∇ ∙ (𝜎𝑖
𝐼𝐶𝐶∇𝜑𝑖

𝐼𝐶𝐶), 𝐼𝑑𝑖𝑓𝑓
𝑆𝑀𝐶belongs 
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to ∇ ∙ (𝜎𝑖
𝑆𝑀𝐶∇𝜑𝑖

𝑆𝑀𝐶) , 𝐼𝑖𝑜𝑛
𝐼𝐶𝐶  is equivalent to 𝐴𝑚

𝐼𝐶𝐶
�𝐶𝑚

𝐼𝐶𝐶 𝜕𝑉𝑚
𝐼𝐶𝐶

𝜕𝑡 + ∑ 𝐼𝑖𝑜𝑛
𝐼𝐶𝐶

�  and 𝐼𝑖𝑜𝑛
𝑆𝑀𝐶 is 

equivalent to 𝐴𝑚
𝑆𝑀𝐶

�𝐶𝑚
𝑆𝑀𝐶 𝜕𝑉𝑚

𝑆𝑀𝐶

𝜕𝑡 + ∑ 𝐼𝑖𝑜𝑛
𝑆𝑀𝐶

�.  

 

Implementation of the extended bidomain framework 

The extended bidomain governing equations can be implemented in a format 

that facilitates solving the equations computationally: 

 

Eqs. 5.29 and 5.30 were rearranged to have the 𝜕𝑉𝑚
𝜕𝑡  term on the left hand side 

of the equations: 

𝜕𝑉𝑚
𝐼𝐶𝐶

𝜕𝑡
= 1

𝐶𝑚
𝐼𝐶𝐶 �

𝛻 ∙ 𝜎𝑖
𝐼𝐶𝐶 𝛻𝜑𝑖

𝐼𝐶𝐶

𝐴𝑚
𝐼𝐶𝐶 −

𝐴𝑚
𝑔𝑎𝑝

𝐴𝑚
𝐼𝐶𝐶 𝐼𝑔𝑎𝑝 − � 𝐼𝑖𝑜𝑛

𝐼𝐶𝐶 + 𝐼𝑠𝑡𝑖𝑚
𝐼𝐶𝐶

�
, 

 (5.32) 

 

𝜕𝑉𝑚
𝑆𝑀𝐶

𝜕𝑡
= 1

𝐶𝑚
𝑆𝑀𝐶 �

𝛻 ∙ 𝜎𝑖
𝑆𝑀𝐶𝛻𝜑𝑖

𝑆𝑀𝐶

𝐴𝑚
𝑆𝑀𝐶 +

𝐴𝑚
𝑔𝑎𝑝

𝐴𝑚
𝑆𝑀𝐶 𝐼𝑔𝑎𝑝 − � 𝐼𝑖𝑜𝑛

𝑆𝑀𝐶 + 𝐼𝑠𝑡𝑖𝑚
𝑆𝑀𝐶

�
. 

 (5.33) 

Linearity of the Laplacian operator was applied by adding and subtracting the 

∇ ∙ (𝜎𝑖𝛻𝜑𝑒) type terms in the diffusion equation of Eq. 5.31, resulting in: 

∇ ∙ �𝜎𝑒∇𝜑𝑒 + 𝜎𝑖
𝐼𝐶𝐶∇𝜑𝑖

𝐼𝐶𝐶 + 𝜎𝑖
𝑆𝑀𝐶 ∇𝜑𝑖

𝑆𝑀𝐶� − 𝐼𝑠𝑡𝑖𝑚
𝐸𝑋𝑇 − ∇ ∙ (𝜎𝑖

𝐼𝐶𝐶 ∇𝜑𝑒) −

∇ ∙ (𝜎𝑖
𝑆𝑀𝐶∇𝜑𝑒) + ∇ ∙ (𝜎𝑖

𝐼𝐶𝐶 ∇𝜑𝑒) + ∇ ∙ (𝜎𝑖
𝑆𝑀𝐶∇𝜑𝑒) = 0. 

 (5.34) 

Simplifying Eq. 5.34 by substituting 𝑉𝑚 = 𝜑𝑖 − 𝜑𝑒 gives: 

∇ ∙ ((𝜎𝑒 + 𝜎𝑖
𝐼𝐶𝐶 + 𝜎𝑖

𝑆𝑀𝐶)∇𝜑𝑒) = 𝐼𝑠𝑡𝑖𝑚
𝐸𝑋𝑇 − ∇ ∙ (𝜎𝑖

𝐼𝐶𝐶 ∇𝑉𝑚
𝐼𝐶𝐶) − ∇ ∙ (𝜎𝑖

𝑆𝑀𝐶∇𝑉𝑚
𝑆𝑀𝐶). 

 (5.35) 
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With the above form of the extended bidomain equations, i.e., Eqs. 5.32, 5.33 

and 5.35, the following implementation was employed: 

• The Corrias and Buist single cell models of gastric ICC and SMC 

electrical activity were integrated into the framework through the ICC and 

SMC ionic current terms [82, 108]. 

• The tissue geometry was defined to be a one dimensional 100 mm gastric 

strip. 

• The space dimension was discretized using the central space finite 

difference method with a spatial resolution of 1 mm (∆𝑥). 

• The time dimension was discretized using the forward Euler method with a 

time step size of 0.1 ms (∆𝑡).  

• The resulting system of equations was solved using the biconjugate 

gradient stabilized method. 

• Boundary conditions were imposed by: (1) setting the average of the 

extracellular field to be zero; (2) defining no flux boundary conditions, i.e., 

∂φ
∂n

= 0, to compute the intracellular potentials for the boundary nodes.  

• The following bidomain parameter values were used: 

Table 5.1. Bidomain parameter values. 

Parameter Value Units 
𝝈𝒊

𝑰𝑪𝑪  0.5 mS.mm-1 

𝝈𝒊
𝑺𝑴𝑪  0.1 mS.mm-1 

𝝈𝒆 0.1 mS.mm-1 

𝑪𝒎
𝑰𝑪𝑪  0.01 μF.mm-1 

𝑪𝒎
𝑺𝑴𝑪  0.01 μF.mm-1 

𝑨𝒎
𝑰𝑪𝑪  100 mm-1 

𝑨𝒎
𝑺𝑴𝑪  100 mm-1 

𝑨𝒎
𝒈𝒂𝒑 0.1 mm-1 
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𝒈𝒈𝒂𝒑 0.2 mS.mm-2 

 

To solve the problem in the finite time central space (FTCS) method, the 

𝑉𝑚
𝐼𝐶𝐶  and 𝑉𝑚

𝑆𝑀𝐶 at the next time point, 𝑡 + ∆𝑡 , are solved explicitly using Eqs. 

5.32 and 5.33. Subsequently, 𝑉𝑚
𝐼𝐶𝐶  and 𝑉𝑚

𝑆𝑀𝐶  are used to solve Eq. 5.35 

which gives 𝜑𝑒 at the new time point, 𝑡 + ∆𝑡. Since 𝑉𝑚
𝐼𝐶𝐶 , 𝑉𝑚

𝑆𝑀𝐶  and 𝜑𝑒 are 

known for time 𝑡 + ∆𝑡 , therefore 𝜑𝑖
𝐼𝐶𝐶  and 𝜑𝑖

𝑆𝑀𝐶  at time  𝑡 + ∆𝑡  can be 

computed and then placed back into Eqs. 5.32 and 5.33 to solve the next time 

iteration. This process is repeated until the completion of the required 

simulated time frame. The FTCS discretized form of Eqs. 5.32, 5.33 and 5.35 

can be found in Appendix 16. 

 

5.1.3 Results and Discussion  

Without any external stimulus  

Figure 5.3 shows the results of the simulations without any external stimulus. 

In (a) to (c), the spatiotemporal plots together with the corresponding electrical 

potential scale bars are shown for 𝑉𝑚
𝐼𝐶𝐶 , 𝑉𝑚

𝑆𝑀𝐶  and 𝜑𝑒 respectively. (d) shows 

a cross-section from the spatiotemporal plots at a distance of 50 mm (i.e., 

middle of the cable) where the typical physiological slow waves of 𝑉𝑚
𝐼𝐶𝐶  and 

𝑉𝑚
𝑆𝑀𝐶  were observed [56, 251]. The appearance of 𝜑𝑒 depends on the nature 

of the boundary condition used. Here, the average of the extracellular potential 

field was set to zero. The simulated slow wave frequency was 2.9 cpm. The 

extended bidomain framework simulation results showed stable and realistic 
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electrical activity propagating across space and time. ICC are self-exciting and 

therefore no input is required to drive electrical activity in this cable model.  

 

One interesting observation was made when 𝑔𝑔𝑎𝑝 (or equivalently𝐴𝑚
𝑔𝑎𝑝) was 

increased. The amplitude of the ICC waveform decreased and became more 

triangular in shape until eventually the ICC pacemaking activity ceased. An 

increase in 𝑔𝑔𝑎𝑝 means an increase of electrical energy that is supplied to the 

SMC from the ICC. A high 𝑔𝑔𝑎𝑝 value places an energy demand that the ICC 

are unable to adequately provide, therefore leading to reduced or cessation of 

pacemaking activity. It has been proposed that in the thicker human GI wall, 

ICC in the myenteric plexus alone are not sufficient to sustain pacemaking 

activity through the relatively thick wall, and thus supportive elements such as 

intramuscular ICC are required [252].  
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Figure 5.3. Extended bidomain results. (a) to (c) show the spatiotemporal plots of 𝑉𝑚
𝐼𝐶𝐶 , 

𝑉𝑚
𝑆𝑀𝐶  and 𝜑𝑒 respectively. Distance 0 mm refers to the proximal end of the 100 mm cable 

geometry. There is stable propagation of electrical activity from 0 mm downwards to 100 mm, 
and across time.  A single frequency of 2.9 cpm is observed. (d) shows a cross-section of the 
spatiotemporal plots at distance of 50 mm (middle of cable) for 𝑉𝑚

𝐼𝐶𝐶 , 𝑉𝑚
𝑆𝑀𝐶  and 𝜑𝑒.  

 
 
 
 

(a) 

(b) 

(c) 

(d) 

-20 mV 

-70 mV 

40 mV 

-35 mV 

φe 

Vm 



Chapter 5. Multi-cellular modelling 

 
220 

 

With external stimulus 

The interest is to simulate intracellular electrode stimulation of the cells, 

therefore in the simulation studies, a periodic external stimulus with a duration 

of 200 ms and a frequency of 3.3 cpm was tested via 𝐼𝑠𝑡𝑖𝑚
𝐼𝐶𝐶  and 𝐼𝑠𝑡𝑖𝑚

𝑆𝑀𝐶  in a 

system with an intrinsic ICC pacing frequency of 2.9 cpm. Figure 5.4(a) 

shows the results for  𝐼𝑠𝑡𝑖𝑚
𝐼𝐶𝐶  where stable entrainment with the stimulus 

frequency of 3.3 cpm was observed for both the ICC and SMC, while Figure 

5.4(b) shows the results for  𝐼𝑠𝑡𝑖𝑚
𝑆𝑀𝐶  where stable entrainment was also 

observed. The slightly gentler rate of rise in slow wave upstroke in (b) relative 

to (a), and to the original slow waves (in dashed lines) could have resulted 

from a reduced loading of the ICC by the SMC, because the injection of 

external energy into the SMC through  𝐼𝑠𝑡𝑖𝑚
𝑆𝑀𝐶  helped the ICC in exciting the 

SMC.  
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Figure 5.4. Simulation results for injection of stimulus current (𝑰𝒔𝒕𝒊𝒎)  into the extended 
bidomain cable. Gray dashed lines show the unstimulated 𝑽𝒎

𝑰𝑪𝑪  with intrinsic frequency of 
2.9 cpm. Gray solid lines show the stimulated 𝑽𝒎

𝑰𝑪𝑪  at 3.3cpm; similarly black solid lines 
show the stimulated 𝑽𝒎

𝑺𝑴𝑪  at 3.3cpm. (a) is the result for using 𝑰𝒔𝒕𝒊𝒎
𝑰𝑪𝑪  while (b) is the result 

for using 𝑰𝒔𝒕𝒊𝒎
𝑺𝑴𝑪  . Stable entrainment was observed for both cases.  

 

Discussion 

The extended bidomain framework was developed to incorporate multiple cell 

types in a tissue control volume. This concept was demonstrated here in a dual 

cell type, one dimensional cable model of a 100 mm gastric strip of ICC and 

SMC syncytium. The extended bidomain framework offers potential to be 

more generally applied.  

(a) 

(b) 
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For the GI tract, as mentioned in Chapter 2, a number of ICC and SMC 

variants with differing properties exist within the GI wall that contribute to 

motility. These include intramuscular ICC which are located within the 

smooth muscle layers. More recently, fibroblast like cells were suggested to be 

connected to the GI smooth muscles through protein gap junctions and act as a 

mediator for enteric neuronal transmission [253]. Therefore, these additional 

cell types can also be incorporated using the extended bidomain framework. 

The one dimensional framework can also be expanded into a two or three 

dimensional framework as in the case of a whole GI organ model.  

 

Beyond the GI tract, the extended bidomain framework can be applied to other 

tissues where ICC-like cells exist or where multiple cell types are involved in 

tissue electrophysiology. These include the heart [254], myometrium [255, 

256] and the pancreas [257]. In addition, fibroblast cells may play an 

important role in cardiac electrophysiology by interacting with the cardiocytes 

[258, 259], therefore the extended bidomain framework is applicable to 

investigate their roles in the heart [260]. 

 

An important element of the extended bidomain framework is the gap junction 

conductance that connects the ICC with the SMC, which was assumed here to 

be linearly dependent on a fixed maximum conductance and potential 

difference. However, these gap junctions formed by connexin proteins may 

exhibit more complex behaviour such as gating kinetics [261]. For the heart, 

gap junction abnormalities have been associated with cardiac propagation 
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issues that led to cardiac diseases [262]. Hence, this is a potentially 

worthwhile area to examine for GI organs.  

 

Next, the extended bidomain framework describes inter-cellular 

communication and therefore slow wave conduction through the 

implementation of gap junction connections between cells, and the flow of 

conductivity-dependent electrical currents in the extracellular domain 

(alternatively termed “local circuit flow”). A possible limitation in this 

framework is the absence of a possible third mechanism of inter-cellular 

communication through the electric field at cell-to-cell junctional clefts. 

Previous studies have suggested that action potential propagation between 

cardiocytes is effectively due to electric field excitation at junctional clefts, i.e., 

a sufficiently negative potential that develops in a cleft provides for a supra-

threshold depolarization in the post-junctional membrane [263]. Such a 

mechanism supports sequential activation of the cardiocytes. Simulation 

studies further suggested that gap junctions are essential but not key to 

activation in the cardiocytes. Hence, there is a possibility of a similar electric 

field mechanism in the gastrointestinal conduction system that may, to a 

certain extent, contribute to slow wave propagation. This is a noteworthy area 

to examine but is non-trivial to implement because the extended bidomain 

framework is based on continuum modelling whereby the multi-cellular model 

is not composed of a collection of discrete cells.  
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5.2 Modelling gastric slow wave propagation and entrainment  

5.2.1 Background 

To realistically model GI electrophysiology at the tissue or organ level, any 

critical or relevant factors that shape the macroscopic electrical activity need 

to be described. In the stomach, there are two such factors in the form of 

electrical gradients. These gradients are a result of spatially varying properties 

of heterogeneous gastric cells. This section discusses the methods and results 

for describing these gradients. Note that the derivations in this section follow 

the paper co-authored by the thesis author [264].  

 

5.2.2 Frequency gradient and entrainment in the stomach  

In the intact stomach, an ICC-MY network coordinates electrical propagation 

from the corpus to the antrum with a single frequency of 3 cpm. However, 

isolated smooth muscle tissue exhibits a gradient of decreasing frequency from 

the corpus to antrum, along the stomach’s greater curvature [53, 265].  This is 

a result of ICC with higher intrinsic frequency, normally at the corpus region, 

that entrains the slower pacing ICC to produce a single frequency in the 

stomach [85, 265]. Therefore, suitable mechanisms are required to describe 

and integrate the frequency gradient and entrainment in the model. 

 

Firstly, a mechanism for the ICC to generate different intrinsic frequencies is 

described. Under the NSCC hypothesis, the pacemaker unit (PU) in an ICC is 

made up of the endoplasmic reticulum (ER), mitochondria and plasma 

membrane ion channels, particularly the non-selective cationic channels 
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(NSCC). As discussed in Chapter 2, calcium ions are released from the ER 

through IP3-receptor mediated channels, followed by a stronger uptake of 

calcium by the mitochondria which results in a dip in PU calcium that 

activates the calcium inhibited NSCC. NSCC activation changes the 

membrane potential and sets up a slow wave frequency that follows the 

calcium cycling rate in the PU. There is some evidence to suggest, though not 

conclusively, that the IP3 concentration in the PU regulates the slow wave 

frequency in the murine stomach [266] and the small intestine [267]. An 

increase in the IP3 concentration increases the probability of calcium release 

from the ER which consequently causes a faster rate of calcium cycling, and 

hence a higher slow wave frequency. Here, to establish a ICC frequency 

gradient along the gastric cable, the IP3 concentration was therefore chosen as 

proxy via a linear IP3 concentration gradient with values of 645 nM at the 

proximal end of the cable, and 600 nM at the distal end to achieve a 

physiologically realistic entrained frequency of 3.1 cpm.  

 

Next, an entrainment mechanism that allows the highest frequency ICC slow 

waves to synchronize the remaining ICC to follow the same frequency is 

described. Although calcium cycling in the PU sets the frequency, it is 

unlikely that a calcium signal from one ICC is able to directly coordinate 

another ICC’s slow wave frequency. This is because calcium waves are known 

to travel much slower than electrical signals in the GI tissue. Therefore, a 

voltage based mechanism is more plausible and this is supported by 

experimental evidence that suggests a voltage-dependent, dihydropyridine-

resistant (VDDR) conductance carrying calcium currents is involved in slow 
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wave entrainment [45, 268]. Firstly, the voltage signals from a faster 

frequency ICC is conducted to the slower ICC. Consequently, the VDDR 

channels in the slower ICC carry an increased influx of calcium into the 

cytosolic space as well as the enclosed PU space. The IP3 channels in the PU 

which are also calcium mediated therefore experience an increase in opening 

rate. In turn, calcium cycling in the PU is set at a higher frequency dictated by 

the pace-setting ICC [85].  

 

The cable model here integrates the Corrias and Buist’s single cell ICC model 

that contains a description of whole cell VDDR [108]. To model VDDR based 

entrainment, a fraction of the whole cell 𝐼𝑉𝐷𝐷𝑅, 𝑑𝑃𝑈, was directed into ICC 

PU space to form:  

𝐼𝑉𝐷𝐷𝑅𝑃𝑈 = 𝐺𝑉𝐷𝐷𝑅𝑑𝑃𝑈 𝑑𝑉𝐷𝐷𝑅𝑓𝑉𝐷𝐷𝑅�𝑉𝑚
𝐼𝐶𝐶 − 𝐸𝐶𝑎𝑃𝑈 �, (5.36) 

where 𝐼𝑉𝐷𝐷𝑅𝑃𝑈  denotes the PU VDDR current, while 𝐺𝑉𝐷𝐷𝑅 , 𝑑𝑉𝐷𝐷𝑅  and 

𝑓𝑉𝐷𝐷𝑅  represent the maximal whole cell conductance, activation gate and 

inactivation gate of the VDDR channels respectively. Their descriptions 

follow that of the original ICC model [108]. 𝑉𝑚
𝐼𝐶𝐶  refers to the ICC membrane 

potential, while 𝐸𝐶𝑎𝑃𝑈  is the Nernst potential of calcium within the PU. When 

an ICC is entrained by its neighbouring ICC, the electrical depolarization 

information is carried by 𝐼𝑉𝐷𝐷𝑅𝑃𝑈  which carries a current into the PU that 

phase-locks the calcium cycling to produce a frequency consistent with that of 

its neighbour. Here, 𝑑𝑃𝑈  is assigned 0.04 which was the smallest value that 
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produced entrainment. This also implies that the whole cell 𝐼𝑉𝐷𝐷𝑅 receives 

1 − 𝑑𝑃𝑈  (i.e., 0.96) of the original current, and is given by 

𝐼𝑉𝐷𝐷𝑅 = 𝐺𝑉𝐷𝐷𝑅(1 − 𝑑𝑃𝑈 )𝑑𝑉𝐷𝐷𝑅𝑓𝑉𝐷𝐷𝑅�𝑉𝑚
𝐼𝐶𝐶 − 𝐸𝐶𝑎�, (5.37) 

where 𝐸𝐶𝑎  refers to the Nernst potential of calcium in the bulk cytosolic 

space, outside of the PU.  

 

Under normal conditions, calcium cycling in the PU should observe 

homeostasis as is the case in the whole cell calcium regulation, thus a calcium 

homeostasis mechanism should be included for the PU. Due to the lack of 

experimental findings, a phenomenological model of calcium extrusion, 

𝐼𝐸𝑥𝑡𝑃𝑈 , was implemented to provide long term calcium homeostasis: 

𝐼𝐸𝑥𝑡𝑃𝑈 =
𝐼𝐸𝑥𝑡𝑃𝑈

𝑚𝑎𝑥

�1 + 𝑒𝑥𝑝 �
𝐶𝑎𝑃𝑈 − 𝐶𝑎50

𝑘 ��

,  

(5.38) 

where  𝐼𝐸𝑥𝑡𝑃𝑈
𝑚𝑎𝑥  is the maximal calcium extrusion current with a value of 

0.000315 mM/ms, 𝐶𝑎50 is the half concentration of calcium in PU at a value 

of 100 nM,  𝑘 is a slope factor set to be 15 nM and 𝐶𝑎𝑃𝑈  is the calcium 

concentration in the PU. 

 

With the additional mechanisms of 𝐼𝑉𝐷𝐷𝑅𝑃𝑈  and 𝐼𝐸𝑥𝑡𝑃𝑈 , calcium cycling in 

the PU is described by the following: 
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𝑑[𝐶𝑎2+]𝑃𝑈
𝑑𝑡

= �𝐼𝐼𝑃3 − 𝐼𝐶𝑎𝑃𝑢𝑚𝑝�
𝑉𝐸𝑅
𝑉𝑃𝑈

+ (𝐼𝑁𝑎𝐶𝑎 − 𝐼𝑢𝑛𝑖)
𝑉𝑚𝑖𝑡𝑜
𝑉𝑃𝑈

− �
𝐼𝑉𝐷𝐷𝑅𝑃𝑈
𝑧𝐹 𝑉𝑃𝑈

+ 𝐼𝐸𝑥𝑡𝑃𝑈 � − 𝐼𝑙𝑒𝑎𝑘
𝑉𝑐𝑦𝑡
𝑉𝑃𝑈

, 

 (5.39) 

where 𝐼𝐼𝑃3  is the calcium current efflux from the IP3 receptor dependent 

calcium channels of the ER, 𝐼𝐶𝑎𝑃𝑢𝑚𝑝 is the calcium current influx mediated by 

the calcium ATPase pump of the ER, 𝑉𝐸𝑅 refers to the volume fraction of the 

ER, 𝐼𝑁𝑎𝐶𝑎  refers to the calcium efflux from the mitochondria through its 

sodium-calcium exchanger, 𝐼𝑢𝑛𝑖 is the calcium current that imports calcium 

through the uniporter in the mitochondria while 𝑉𝑚𝑖𝑡𝑜 refers to the volume of 

the mitochondria, 𝑧 is the calcium valence, 𝐹  is Faraday’s constant, 𝐼𝑙𝑒𝑎𝑘  is 

the leakage calcium current that flows from the cytosolic space into the PU 

subspace, 𝑉𝑐𝑦𝑡 is volume fraction of the cytosol and 𝑉𝑃𝑈  is the volume fraction 

of the PU subspace. The descriptions and parameter values for these variables 

were derived from the original single cell ICC model, unless otherwise stated 

[108].  

 

5.2.3 Resting membrane potential gradient in the stomach  
 
Resting membrane potential (RMP) gradients exist in the stomach. In the 

canine stomach for instance, the RMP hyperpolarizes from the fundus to the 

antrum [53, 269]. Experimental evidence indicates that these RMP gradients 

may result from the regulation of outward potassium currents [270, 271]. The 

potassium channels are regulated by a wide variety of bio-agents such as gases 
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(for example, nitric oxide and hydrogen sulfide), inflammatory mediators, 

neurotransmitters and prostaglandins. However, quantitative data regarding 

the contribution of each of these factors towards RMP regulation is lacking. 

To overcome this limitation in the initial attempt to incorporate RMP gradients 

for a realistic multi-cellular model, carbon monoxide was selected as the proxy 

to modulate the potassium channels in the ICC and SMC cellular descriptions 

integrated in the cable construct. This choice was supported by findings that 

suggest carbon monoxide as key factor in regulation of potassium channels, 

and in the control of RMP [269, 271, 272].  

 

Carbon monoxide is one of the endogenous gases found in human tissues and 

in the GI tract [269, 273]. ICC-MY in the GI tract has been proposed to be a 

source of production of carbon monoxide through the enzyme, heme-

oxygenase-2 and its associated pathway [269, 274-276]. Murine experiments 

indicated that heme-oxgyenase-2 knock-outs do not exhibit a RMP gradient, 

thus supporting heme-oxygenase-2 produced carbon monoxide in modulating 

RMP [271] but the underlying mechanism of carbon monoxide action on RMP 

remains to be elucidated. Thus, carbon monoxide was assumed to be produced 

by ICC-MY with its concentration following the density of ICC-MY. In the 

stomach, ICC-MY is largely absent in the fundus but present in the corpus and 

antrum, therefore the ICC-MY density along the cable model was described by: 

𝑛𝐼𝐶𝐶𝑀𝑌 = 𝑛𝑆𝑀𝐶
∝ 𝛾 + (1 − 𝛼)

�1 + 𝑒𝑥𝑝�
𝛾 − 𝛾50

𝑘 ��

, (5.40) 

 

where  𝑛𝑆𝑀𝐶 is the number of SMC relative to each ICC, 𝛾 is the normalized 

coordinate with a range from 0 (representing proximal most end of stomach 
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cable) to 1 (representing the most distal end of the stomach cable), ∝ is 0.005, 

𝛾50 is 0.5 and 𝑘 is 0.01, thus giving the following profile: 

 

Figure 5.5. Distribution of relative ICC-MY density with nSMC set to 1. 𝜸=0  represents the 
proximal most end of the gastric cable model, while 1 represents the distal most end of the 
gastric cable model. The sharp transition, that starts somewhere at 0.45, demarcate the end of 
the fundus region and the beginning of the corpus, mimicking the physiological situation.  

 
 

The carbon monoxide concentration, [𝐶𝑂], distribution commensurate with 

the ICC-MY density and was described by the following: 

[𝐶𝑂] = 0.1 + 0.4

�1 + 𝑒𝑥𝑝�
𝛾 − 𝛾50

𝑘 ��

, (5.41) 

 

where 𝛾  and 𝑘 follow that of Eq. 5.40 and assumes the following profile: 
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Figure 5.6. Distribution of carbon monoxide concentration. 0 represents the proximal most 
end of the gastric cable model, while 1 represents the distal most end of the gastric cable 
model.  

 

The [𝐶𝑂] profile described by Eq. 5.41 and Figure 5.6 was designed to follow 

experimental measurements of the canine stomach where [𝐶𝑂] increases from 

around 0.1 nmol/mg in the fundus wet tissue to 0.5 nmol/mg of antrum wet 

tissue [271].   

 

Carbon monoxide influences the potassium channels and here it was assumed 

that it acts on all potassium channels of the recipient SMC, i.e., the voltage-

gated and calcium-dependent potassium channels. Carbon monoxide action on 

these channels was incorporated through an additional gating factor variable 

𝑓𝐶𝑂 multiplied to all the potassium channel descriptions, i.e., 

𝑓𝐶𝑂 = 2.475[𝐶𝑂] − 0.2375. (5.42) 

The parameter values in Eqs. 5.40 to 5.42 were selected to reproduce the RMP 

gradients experimentally recorded from canine tissue [53].  



Chapter 5. Multi-cellular modelling 

 
232 

 

5.2.4 Gastric cable continuum model 
 
In the attempt to demonstrate the feasibility of these approaches to describing 

the spatial variations, a simplified cable model was derived from the extended 

bidomain framework. Eqs. 5.26 and 5.27 were reduced to their one 

dimensional form, the linearity of the Laplacian operator was applied to both 

equations by adding and subtracting the term, 𝜎𝑖
∂2𝜑𝑒
∂x2 , and finally the 

extracellular potential was assumed to be constant, i.e., ∂
2𝜑𝑒
∂x2

= 0 . These 

resulted in the following cable equations: 

𝜎𝑖
𝐼𝐶𝐶 𝜕2𝑉𝑚

𝐼𝐶𝐶

𝜕𝑥2 = 𝐴𝑚
𝐼𝐶𝐶

�𝐶𝑚
𝐼𝐶𝐶 𝜕𝑉𝑚

𝐼𝐶𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝐼𝐶𝐶
� + 𝐴𝑚

𝑔𝑎𝑝𝐼𝑔𝑎𝑝 

                  = 𝐴𝑚
𝐼𝐶𝐶

�𝐶𝑚
𝐼𝐶𝐶 𝜕𝑉𝑚

𝐼𝐶𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝐼𝐶𝐶 + 𝐼𝑐𝑜𝑢𝑝𝑙𝑒�, 

 

 

 

(5.43) 

 

𝜎𝑖
𝑆𝑀𝐶 𝜕2𝑉𝑚

𝑆𝑀𝐶

𝜕𝑥2 = 𝐴𝑚
𝑆𝑀𝐶

�𝐶𝑚
𝑆𝑀𝐶 𝜕𝑉𝑚

𝑆𝑀𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝑆𝑀𝐶
� − 𝐴𝑚

𝑔𝑎𝑝𝐼𝑔𝑎𝑝 

                    = 𝐴𝑚
𝑆𝑀𝐶

�𝐶𝑚
𝑆𝑀𝐶 𝜕𝑉𝑚

𝑆𝑀𝐶

𝜕𝑡
+ � 𝐼𝑖𝑜𝑛

𝑆𝑀𝐶 − 𝐼𝑐𝑜𝑢𝑝𝑙𝑒�, 

 

 

(5.44) 

where the symbols carry the same meaning as in Eqs. 5.26 and 5.27, while the 

contribution of the gap junction current was replaced with 𝐼𝑐𝑜𝑢𝑝𝑙𝑒 . 𝐼𝑐𝑜𝑢𝑝𝑙𝑒  is 

effectively a form of 𝐼𝑔𝑎𝑝 (see Eq. 5.25) that incorporates the ICC-MY density, 

𝑛𝐼𝐶𝐶𝑀𝑌  , and assumes the following form: 

𝐼𝑐𝑜𝑢𝑝𝑙𝑒 = 𝑔𝑐𝑜𝑢𝑝𝑙𝑒𝑛𝐼𝐶𝐶𝑀𝑌 �𝑉𝑚
𝐼𝐶𝐶 − 𝑉𝑚

𝑆𝑀𝐶 �, (5.45) 
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In the absence of an explicit representation of the extracellular potentials, the 

ICC communicates with the SMC only through 𝐼𝑐𝑜𝑢𝑝𝑙𝑒. The parameter values 

for Eqs. 5.43 to 5.45 used in this study are shown in Table 5.2. 

 

Table 5.2. Cable model parameter values. 

Parameter Value Units 
𝝈𝒊

𝑰𝑪𝑪  0.3 mS.mm-1 

𝝈𝒊
𝑺𝑴𝑪  0.2 mS.mm-1 

𝐂𝐦
𝐈𝐂𝐂 0.01 μF.mm-1 

𝐂𝐦
𝐒𝐌𝐂 0.01 μF.mm-1 

𝑨𝒎
𝑰𝑪𝑪  100 mm-1 

𝑨𝒎
𝑺𝑴𝑪  100 mm-1 

𝑨𝒎
𝒈𝒂𝒑 0.1 mm-1 

𝒈𝒄𝒐𝒖𝒑𝒍𝒆 0.005 mS.mm-2 

 

The cable model length was selected to be 337 mm which matched the length 

of the human stomach, from the proximal fundus to the terminal antrum along 

the stomach’s greater curvature, as estimated from the data of the Visible 

Human Project [129]. An implicit forward time central space finite difference 

method was used to solve Eqs. 5.43 and 5.44, with a time step size of 0.1 ms 

and a grid size of 1 mm. The cellular descriptions of ICC and SMC 

electrophysiology by Corrias and Buist [82, 108] were integrated into the 

cable framework through the 𝐼𝑖𝑜𝑛 terms in Eqs. 5.43 and 5.44. These ionic 

currents were solved explicitly using the 4th order Runge-Kutta method. 
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5.2.5 Results and discussion  

Testing the frequency gradient and slow wave entrainment 

The entrainment mechanism was tested through an external stimulus injected 

into the ICC. Single cell ICC model was revised to include the entrainment 

mechanism from section 5.2.2 and defined to have an intrinsic frequency of 

2.7 cpm. A periodic voltage stimulus of 10 mV in height, 200 ms in duration 

with 3.1 cpm frequency was injected into the ICC, which simulates the 

condition under which a faster pacing ICC entrains a slower ICC. The 

simulation results indicated that entrainment was achievable and remained 

stable during prolonged simulations. Figure 5.7 is a sample result of successful 

entrainment. The ICC membrane potential was initially following the intrinsic 

frequency of 2.7 cpm in the presence of the voltage stimulus (darker gray 

lines). The voltage stimulus took some time to cause entrainment at 3.1 cpm. 

The time point of a slow wave at which the stimulus was injected affects the 

speed of entrainment as the closer the stimulus was applied to the onset of a 

slow wave, the faster entrainment occurs. This was possibly due to the 

refractoriness of the ICC membrane potential whose retarding effect on the 

stimulus diminishes towards the end of a slow wave. 

 

Figure 5.7. Single ICC model under periodic voltage stimulation. The intrinsic frequency of 
the ICC was 2.7 cpm, while the periodic stimulus has a frequency of 3.1 cpm as indicated by 
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the dark grey lines. Entrainment of the ICC occurred at about 125 s, in which the onset of the 
slow wave (in light grey) became aligned with the stimulus.  
 

Following the earlier single ICC tests with a voltage stimulus, a logical next 

test was to use a model where one ICC with a higher intrinsic frequency is 

coupled to another ICC of a lower frequency. Firstly, the two cells were set at 

different frequencies through adjusting the IP3 concentration. Their overlaid 

slow waves are shown in the top panel of Figure 5.8. Next, the two cells were 

coupled with the gap junction current defined by Eq. 5.45 but without 

implementing the voltage-to-calcium entrainment mechanism. The results as 

shown in the middle panel of Figure 5.8 indicated the presence of intercellular 

communication but no entrainment, therefore resulting in erratic membrane 

potentials in both cells. The duration of the simulation was lengthened and the 

initial phase difference between the ICC was varied, but the absence of 

entrainment persisted. Subsequently, the proposed entrainment mechanism 

was implemented in the model and subjected to the same tests. Stable 

entrainment was successfully achieved as shown in the bottom panel of Figure 

5.8. 

 

The functional significance of proper entrainment lies in its contribution 

towards coordinated and timely propagation of slow waves from the corpus to 

the antrum. The absence of frequency gradient would elicit simultaneous 

depolarization, which is unrealistic, while ectopic pacemakers would disrupt 

slow wave propagation and affect contraction patterns, leading to abnormal 

motility. For instance, if ICC in the antrum pace at a frequency higher than the 
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ICC in the corpus, proper entrainment is affected leading to functional 

uncoupling in the form of dysmotility which may be harmful.  

 

 

 

 
Figure 5.8. Testing entrainment using one cell of ICC coupled to another ICC. Top panel 
shows two uncoupled ICC at two frequencies of 3.2 cpm (gray solid line) and 3.0 cpm (black 
dashed line). Middle panel shows the two ICC in the coupled state but without implementing 
the entrainment mechanism; coupling causes persistent erratic slow wave behaviour under 
prolonged simulation. Bottom panel shows two coupled ICC with entrainment mechanism; 
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entrainment was successfully achieved with a frequency slightly lower than 3.2 cpm (of the 
faster pacing ICC).  
 

 

RMP gradient and slow wave propagation 

Carbon monoxide was used as a proxy to modulate SMC potassium channels 

to achieve a physiological RMP gradient in the cable model. Figure 5.9 shows 

the result of incorporating both the RMP gradient and entrainment mechanism 

through a spatiotemporal plot of the SMC membrane potential. It was 

observed that the resting membrane potential realistically changes from 

depolarized potentials to hyperpolarized potentials from the fundus to the 

antrum. The transition in resting potentials is less sharp than the ICC-MY 

density and carbon monoxide concentration, as shown in Figures 5.5 and 5.6. 

This contrast was attributed to sufficiently high tissue conductivities that 

smoothed the resting membrane potential variation. The lower panel of Figure 

5.9 shows an orthogonal projection of the spatiotemporal plot which, as 

expected, demonstrated that the fundus is mostly electrically quiescent relative 

to the corpus and antrum region. The resting membrane potential stabilized at 

a hyperpolarized value at some point in the corpus through to the antrum.  

 

The temporal electrical activity was extracted from the spatiotemporal dataset 

for the fundus, corpus and antrum giving the slow wave morphology shown in 

Figure 5.10. The RMP of the fundus, corpus and antrum were -42 mV, -60 mV 

and -68 mV, respectively, which are consistent with the experimental 

recordings of -40 mV in the guinea pig fundus [265] and -48 mV in the canine 

fundus, -60 mV for the mid orad corpus and -69 mV for the orad antrum [53]. 
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Figure 5.10 also shows that fundus presents minute slow waves with a small 

amplitude  

 

Figure 5.9. A spatiotemporal plot of simulated SMC electrical activity in the cable model, 
incorporated with frequency entrainment and RMP gradient. The fundus region is quiescent 
relative to the corpus and antrum, which is consistent with the physiological observation 
where slow waves appear to initiate from corpus and propagate aborally towards the antrum. 
Here, in the results, slow waves are produced at 3.1 cpm and stably propagate towards the 
antrum. The bottom panel shows an orthogonal projection of membrane potential across all 
time, from the fundus to the antrum where the fundus potentials are highly depolarized within 
a narrow range, while relatively sharp gradient of resting potential appeared for the transition 
into the proximal corpus region, and finally the resting potentials stabilized at a 
hyperpolarized value all the way to the end of the antrum in this cable.  
 

amplitude of about 1 - 3 mV and the slow wave amplitude increases to a 

maximum of 27 mV in the distal antrum, close to a reported value of 30 mV 

from the guinea pig antrum [277]. Also noteworthy from Figure 5.10 is the 

phase difference between the slow waves from the various spatial locations 

that indicate an aboral propagation of slow waves. The simulation results 

suggest that the frequency gradient is an important factor in slow wave 

propagation while the tissue conductivities and RMP gradients contribute to a 

much lesser extent.  
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Figure 5.10. Simulated smooth muscle slow wave potentials at various spatial locations from 
the fundus to the antrum. With the most proximal end of the fundus as the reference point, 
dashed black line is at 3 mm, dashed grey line is at 67 mm, black solid line is at 135 mm and 
grey solid line is at 202 mm. As the distance increases from the fundus end, the slow waves 
become bigger in amplitude. The slow waves are also in the proper order, where the nearer the 
location is to the fundus, the earlier the start of the slow waves.  
 

5.2.6 Limitations and recommendations 
 
Transmural RMP gradient 

The resting membrane potential gradient does not exist only in the 

longitudinal direction, but also across the GI wall, i.e., transmurally, in the 

stomach and small intestine of several animal species (such as murine, canine 

and humans). The transmural resting membrane potential was found to 

become depolarized towards to the inner circular smooth muscle (i.e., nearer 

to the lumen) since lesser carbon monoxide from the myenteric ICC gets 

diffused into a deeper smooth muscle layer [269, 278]. The physiological 

utility of resting membrane potential gradients is thought to allow graded 

contractile responses from the smooth muscles under different physiological 

conditions for effective motility control. Furthermore, the RMP gradient can 

influence electrical propagation from the outer to inner muscle layers. 

Therefore, it would be worthwhile to incorporate a transmural resting 

membrane potential gradient into the cable or higher spatial scale models, 
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towards creating more functionally realistic models and to better examine 

motility in health and disease.  

 

Table 5.3 shows a list of transmural resting membrane potentials and carbon 

monoxide concentrations compiled from a number of papers for different 

animal species that, though limited, could assist a preliminary investigation of 

transmural resting membrane potential gradient in a multi-cellular framework. 

In the earlier discussion, carbon monoxide was used as a proxy to control 

resting membrane potential through a potassium current modulating factor that 

is a function of carbon monoxide concentration. The same approach can be 

applied to create a transmural resting membrane potential. This then requires a 

mathematical description of both the longitudinal and transmural spatial 

distribution of carbon monoxide concentration.  

 

Table 5.3. Transmural resting membrane potential values and carbon monoxide concentration 
values, together with their references are provided here. 

 Species 

RMP outer 
circular 
muscle 
(mV) 

RMP inner 
circular 
muscle 
(mV) 

[CO] outer 
circular muscle 
(nmol/mg wet 

tissue) 

[CO] inner 
circular muscle 
(nmol/mg wet 

tissue) 

Fundus 
canine -47 

[53]  0.2 
[269, 278]  

human -47 
[53, 279]    

 
Corpus/ 
antrum 

canine 

-60 
[53] 

-52 
[53] 

0.4(antrum) 
[269, 278] 

0.24(antrum) 
[269, 278] 

-75 
[280-282] 

-64 
[280-282]   

human -74 
[279] 

-62 
[279]   

Jejunum 
canine 

-62 
[53, 279, 

283] 

-50 
[53, 279, 

283] 

1.44 
[269, 278] 

0.72 
[269, 278] 

human -69 
[53, 279] 

-59 
[53, 279]   
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Updating the pacemaking mechanism 

The ICC cellular description is based on a NSCC pacemaking hypothesis, and 

as mentioned, recent evidence has suggested that a calcium-activated chloride 

conductance, encoded by the ANO-1 gene, is responsible for intrinsic 

pacemaking of the ICC. Therefore, it may be necessary to update the ICC 

model with a calcium-activated chloride mechanism and then re-evaluate the 

frequency and entrainment methods developed here [64, 90]. 

 

Re-parameterization  

Experimental data is also lacking to parameterize the cable model, such as for 

the bidomain conductivities. Therefore, the parameter values here were 

determined so as to reproduce membrane potentials recorded from finite 

locations along the canine stomach reported in the work of Szurszewski [53]. 

With technological advances, a small number of recent studies have made 

high-resolution extracellular recordings of electrical activity over large surface 

of the canine stomach [284], porcine stomach [285] and human stomach [286] 

(versus finite location data from [53]), these promise a re-parameterization of 

the cable model parameter values (The interested reader can refer to Dinning 

et al [287] for a review of technical advances to monitor human motility 

patterns). Because these are extracellular potential recordings, the cable model 

requires an explicit representation of the extracellular potentials. An objective 

function can be set up for minimization against experimental data of these 

high resolution recordings to obtain the required parameter values. However, 

there are two caveats to be mindful of. The first is that, the increase in slow 

wave amplitudes from the fundus to the antrum could be a result of a more 
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polarized RMP due to polarizing bio-agents or higher amplitude electrical 

events stemming from the underlying cellular mechanisms (such as ionic 

currents), or both. Therefore, care should be taken to ensure the cellular 

models are realistic and up-to-date.  For one, the appearance of ANO-1 

calcium-activated chloride channel findings warrants an update. The second 

caveat is the potential contribution of intramuscular ICC, a significant variant 

of ICC, towards early activation of slow waves [284, 285, 288, 289]. The 

intramuscular ICC are interspersed between the smooth muscle cells [290] and 

are also found in high density in the gastric fundus which are devoid of ICC-

MY [291].  

 

Incorporation of other GI gases 

Carbon monoxide aside, two other endogenous GI gases were later found to 

influence GI motility, i.e., hydrogen sulfide [292-294] and nitric oxide [295-

297]. These gases affect the ion channels of GI smooth muscles and in turn 

alter electromechanical behaviour of these muscles. Hydrogen sulfide was 

found to activate human jejunal SCN5A encoded sodium channels by 

increasing peak currents and positively shifting steady-state activation [298]. 

Nitric oxide, a neurotransmitter produced by the enteric neurons, influences 

potassium channels in the GI smooth muscles [297, 299] and ICC [300]. Nitric 

oxide can also act as a co-factor with carbon monoxide in influencing human 

jejunal L-type calcium channels [221, 301]. Given the apparent importance of 

these gases in GI cellular activity and in GI motility, and as more experimental 

findings appear, it would be worthwhile to model their effects on ion channels 
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and subsequently their spatial distribution and influence at the tissue or organ 

level. 

 

A jejunal cable model 

The human jejunum smooth muscle cell model was earlier described. With the 

development of a suitable jejunal ICC cell model, a corresponding jejunal 

cable model can then be set up to better understand multi-cellular intestinal 

electrophysiology. 

 

5.3 Investigation of the R76C telethonin mutation in a cable model 

The effects of altered SCN5A function by the R76C telethonin mutation was 

investigated in single cell simulation studies in Chapter 3 and Chapter 4. One 

next step was to investigate the mutation in a multi-cellular setting where 

intercellular communication between the ICC and SMC was incorporated. The 

principles of creating an extended bidomain framework and for slow wave 

propagation and entrainment were applied to create a suitable one dimensional 

model to evaluate the consequences of mutation.  

 

5.3.1 Method 

The stomach fundus is known to be electrically quiescent while the slow 

waves are known to initiate in the corpus and propagate towards the antrum.  

The earlier Figure 5.9 shows that the RMP gradient stabilized at a relatively 

polarized and steady resting potential at some point in the corpus-to-antrum 

region. To efficiently study the effects of mutations on electrical behaviour in 



Chapter 5. Multi-cellular modelling 

 
244 

 

gastric tissue, a cable with a physiological length of 180 mm was selected. 

This cable corresponds to a stretch of electrically active gastric strip, along the 

greater curvature, from the corpus, at the approximate slow wave initiation site, 

to the terminal antrum. Figure 5.11 shows the anatomical location of the 180 

mm gastric cable, in the context of a whole stomach.   

 

Figure 5.11. Picture of a human stomach. Yellow cable represents a gastric strip along the 
greater curvature. The blue arrow indicates the approximate position of the corpus that 
measures a distance of 180 mm to the terminal antrum, at the distal end of the gastric strip.  
 

The approaches for the extended bidomain framework, and the entrainment 

mechanism that were discussed in the earlier sections of this chapter, were 

applied to create a similar continuum model with the chosen length of 180 mm. 

As before, the Corrias and Buist gastric ICC and SMC models were integrated 

into the continuum model. Due to the absence of a biophysically based human 

intestinal ICC model, the multi-cellular study of the small intestine was not 

performed. 

 

Using the respective Markov sodium channel models developed in Chapter 3, 

the R76C mutation was investigated in a homozygous scenario, where the 180 

mm cable model is separately integrated with 100% SCN5A channels and 100% 
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R76C affected sodium channels. It was assumed that telethonin exists in both 

the SMC as well as the ICC. The backward Euler Method was implemented 

for the Markov sodium channels, to be solved with LU decomposition, at the 

common time step size of 0.1 ms.  

 

5.3.2 Results  

The simulation results for the wild-type state, and the R76C mutation affected 

state are shown in Figure 5.12. Parts (a) and (b) show the spatiotemporal plot 

of the slow waves over the entire length of the 180 mm cable and over a 

steady-state time duration of 100 s. No noticeable impact on the slow wave 

propagation due to the R76C mutation was observed. The propagation speed 

of the slow waves, from the corpus to the antrum, was calculated to be 16.71 

mm/s for the wild-type case, and 16.20 mm/s in the presence of the R76C 

mutation. Parts (c) and (e) show the ICC and SMC slow waves respectively, 

recorded at a location of 25 mm from the proximal end of the cable. It was 

observed that the R76C mutation resulted in a slight increase in frequency 

(dashed lines), relative to the wild-type result (solid lines). Parts (d) and (f) 

show the corresponding ICC and SMC sodium currents respectively, where 

the R76C sodium currents in both cases reflect a gain-of-function through the 

stronger inward currents brought about by the mutation. Part (g) shows the 

corresponding SMC intracellular calcium concentration which has a frequency 

consistent with the slow waves, but no change in the concentration values was 

observed. Note that the equivalent results for the location of 90 mm and 180 

mm in the cable are provided in Appendix 17 and these results do not differ 

from those presented here.   
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Figure 5.12. 180 mm cable model results for the R76C study. (a) and (b) are the 
spatiotemporal plots for ICC + SCN5A and ICC + R76C respectively. (c) and (e) are the ICC 
and SMC slow wave potentials respectively. (d) and (f) are the ICC and SMC sodium currents 
respectively. (g) is the SMC intracellular calcium concentration. Solid lines for wild-type 
results and dashed lines for R76C mutation results. 
 

5.3.3 Discussion 

The cable propagation speeds of 16.71 mm/s (wild-type) and 16.20 mm/s 

(R76C) correspond to propagation duration of 10.77 s and 11.11 s respectively, 

along the 180 mm cable. Therefore, the R76C mutation has resulted in a 

slightly slower propagation speed, and this may be consequential of the 

apparent increase in slow wave frequency that was observed in Figure 5.12(c). 

(a) (b) 
(c) 

(d) 

(e) 

(f) 

(g) 
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One explanation for this is that at a faster frequency, slow wave excitation 

from a proximal node is delayed by the relatively greater refractoriness in the 

adjacent distal node at that time point. Consequently, the onset of slow wave 

in this distal node is delayed, therefore resulting in longer time duration for a 

slow wave to propagate over the same distance. Note that tissue conductivity 

was unchanged in the both the wild-type and R76C scenarios.  

 

The ICC and SMC slow waves that were recorded at selected spatial points 

indicated a consistent slight increase in frequency. This contrasts with the 

single cell results where a slight lengthening of the ICC slow wave duration 

and depolarization of the SMC resting potential were observed. Therefore, in 

the multi-cellular environment where the ICC and SMC are interconnected, 

the pacemaking ICC appeared to have driven the SMC such that the SMC 

resting membrane potential was no longer depolarized by the R76C mutation, 

just like in the single ICC slow wave results. At steady-state in the multi-

cellular setting, the increment in sodium current due to mutation seemed to 

have indirectly tuned the pacemaking mechanism, such that the slow waves 

were at a slightly higher pacing frequency. The ability of the R76C altered 

sodium current in increasing the ICC slow wave plateau duration, at the single 

cell level, is an indication of its potential to alter slow wave period, and hence 

frequency. The ICC slow wave frequency is driven by the pacemaking 

mechanism’s frequency which in turn is reliant on the calcium cycling within. 

A change in ICC membrane potential due to the R76C altered sodium current 

could influence the regulation of ionic conductances that carry the calcium 

ions. Subsequently, the downstream calcium-dependent processes such as the 
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pacemaker mechanism could be affected, leading to altered frequency at 

steady state in the multi-cellular setting. The SMC slow waves, driven by the 

ICC excitation, follow the same frequencies.   

 

Even though the R76C mutation induced observable changes in the cable 

model, it does not appear to be a significant adverse change against the wild-

type/healthy state. The propagation speed and the slow wave frequency were 

only slightly changed, despite a relatively greater change in the sodium current 

influxes. Furthermore, the calcium concentration did not change, therefore 

implying that the contraction should not change in strength. Nonetheless, the 

R76C mutation might require additional conditions for greater impact on 

electrics. Furthermore, the cable model is built upon single cell ICC and SMC 

models of mixed animal species, of which the pacemaking mechanism is still 

of debate. A refinement of these single cell models would aid in the cable 

model studies. It is also known that electrics affect mechanics and vice versa, 

therefore the incorporation of mechanics is an important pursuit to further the 

findings here.  

 

5.4 Investigation of the G298S mutation in a cable model 

The G298S mutation of the sodium channel was investigated in the single cell 

models in Chapters 3 and 4. Here, the same mutation was investigated in a 180 

mm cable model, in a similar manner to that of the R76C mutation in the 

previous section. 
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5.4.1 Method 

The same 180 mm cable model used in the previous section to study the R76C 

mutation was employed here. The sodium channel models developed in 

Chapter 3 were used to investigate the G298S mutation in each of the four 

common polymorphic-splice backgrounds. From the earlier single cell results, 

homozygous scenarios should suffice for the investigation here, i.e., the cable 

model were separately integrated with 100% wild-type model and 100% 

G298S model, for each of the four common backgrounds.  

 

5.4.2 Results 

H558/Q1077del background 

Figure 5.13 shows the wild-type G298 (V1_WT) and G298S mutation 

(V1_MT) simulation results for the most common background of 

H558/Q1077del. (a) and (b) show the spatiotemporal plots of the slow waves 

for the wild-type and mutation cases respectively, where no noticeable 

differences were observed between the two. The remaining results are the 

temporal plots for the slow waves taken at a location 25 mm from the 

proximal end of the cable model. (c) and (e) are the ICC and SMC slow waves 

respectively, where it was observed that the G298S mutation did not change 

the slow wave behaviour. (d) and (f) are the ICC and SMC sodium currents 

respectively, and here the G298S mutation has caused a general reduction in 

sodium current. Apparently, this reduction in sodium current was insufficient 

to elicit a change in the slow wave behaviour of the ICC and SMC. (g) shows 

the SMC intracellular calcium concentration, which did not change due to 

mutation, and therefore no change in contractile strength is expected.  
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H558R/Q1077del background 

Figure 5.14 shows the wild-type G298 (V2_WT) and G298S mutation 

(V2_MT) simulation results for the background of H558R/Q1077del. As 

before, (a) and (b) are the spatiotemporal plots of the slow waves for the wild-

type and mutation cases respectively, but no noticeable differences were 

observed. The other results are temporal plots for the slow waves, taken at a 

location of 25 mm from the proximal end of the cable model. Similarly, the 

mutation was not able to change the ICC and SMC slow waves and the SMC 

intracellular calcium concentration as shown in (c), (e) and (g) respectively. 

This was despite the mutation’s ability to alter the sodium currents of the ICC 

and SMC, as shown in (d) and (f). 

 

H558/Q1077 background 

Figure 5.15 shows the wild-type G298 (V3_WT) and G298S mutation 

(V3_MT) simulation results for the background of H558/Q1077. As before, (a) 

and (b) are the slow wave spatiotemporal plots for the wild-type and mutation 

cases respectively, but again, no noticeable differences were observed. The 

other results correspond to temporal plots for slow waves at the same position 

of 25 mm on the cable model. The mutation was again unable to change the 

ICC and SMC slow waves and the SMC intracellular calcium concentration as 

shown in (c), (e) and (g) respectively, despite causing an increase in sodium 

current in both the ICC and SMC, as shown in (d) and (f). Note that, here the 

mutation has caused a clear increase in sodium current, consistent with the 

results from earlier single cellular studies that this background results in a 

distinct gain-of-function effect for the G298S mutation. 
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H558R/Q1077 background 

Figure 5.16 shows the wild-type G298 (V4_WT) and G298S mutation 

(V4_MT) simulation results for the least common background of 

H558R/Q1077. As before, (a) and (b) are the slow wave spatiotemporal plots 

for slow waves at 25 mm. The mutation seems to have decreased the 

frequency of the ICC and SMC slow waves and the SMC intracellular calcium 

concentration slightly as shown in (c), (e) and (g) respectively. This was in the 

presence of a reduction in the sodium current in both the ICC and SMC as 

shown in (d) and (f). However, no change in the calcium concentration values 

was observed, an indication that no change in contraction strength is expected.  

 

The equivalent results for all the four backgrounds at the locations of 90 mm 

and 180 mm in the cable are provided in Appendices 18 to 21. These results 

do not differ from those presented above. As for the propagation speed, the 

same value of 13.24 mm/s was computed for both the wild-type and G298S 

mutation in all four backgrounds. 
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Figure 5.13. 180 mm cable model results for the H558/Q1077del background. (a) and (b) are 
the spatiotemporal plots for wild-type sodium channels and G298S sodium channels 
respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) and (f) 
are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular calcium 
concentration. Solid lines for wild-type results and dashed lines for G298S mutation results. 
 

(a) (b) 
(c) 

(d) 
(e) 
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Figure 5.14. 180 mm cable model results for the H558R/Q1077del background. (a) and (b) are 
the spatiotemporal plots for wild-type sodium channels and G298S sodium channels 
respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) and (f) 
are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular calcium 
concentration. Solid lines for wild-type results and dashed lines for G298S mutation results. 

(a) (b) 
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Figure 5.15. 180 mm cable model results for the H558/Q1077 background. (a) and (b) are the 
spatiotemporal plots for wild-type sodium channels and G298S sodium channels respectively. 
(c) and (e) are the ICC and SMC slow wave potentials respectively. (d) and (f) are the ICC 
and SMC sodium currents respectively. (g) is the SMC intracellular calcium concentration. 
Solid lines for wild-type results and dashed lines for G298S mutation results. 
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Figure 5.16. 180 mm cable model results for the H558R/Q1077 background. (a) and (b) are 
the spatiotemporal plots for wild-type sodium channels and G298S sodium channels 
respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) and (f) 
are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular calcium 
concentration. Solid lines for wild-type results and dashed lines for G298S mutation results. 
 

5.4.3 Discussion 

The results here are consistent with findings from the single cell studies, 

where almost negligible changes to the slow wave potentials were observed 

despite the G298S mutation causing a change in sodium currents in all four 

backgrounds. In all but the third background, the G298S mutation resulted in a 

net loss-of-function in sodium currents. A distinct and significant increase in 

sodium currents was observed for the third background of H558/Q1077; a 

(a) (b) 
(c) 

(d) 
(e) 

(f) (g) 
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similar observation was made in the single cell studies. An interesting and new 

finding was that in the fourth background of H558R/Q1077, the mutation 

seemed to have elicited a slight decrease in frequency. A closer look at the 

sodium currents revealed that in the presence of the mutation, there are almost 

negligible sodium currents in the ICC and SMC that have caused this change. 

In another words, this suggests that the presence of sodium currents is 

necessary to maintain the slow wave frequency. As previously mentioned, the 

maximum sodium channel conductance is an uncertain parameter that can alter 

the effects of the mutations in these backgrounds. For instance, the third 

background of H558/Q1077 may, together with the mutation, reduce the 

maximum conductance through expression, trafficking, localization and/or 

degradation pathways in the biological situation. If so, instead of an increase 

in current, a loss in current may result. The uncertainty in the maximum 

conductance value also means that the existing values used in the model may 

have masked the pathogenic effects the mutation could have on the slow 

waves. Lastly, the propagation speed is relatively stable at 13.24 mm/s for all 

eight cases, mutation or not. This translates to travel duration of about 13.6 s. 

The absence of change in speed is expected, given that the slow wave 

potentials were not altered much by the mutation.    

 

It appears that the G298S mutation is unable to cause an adverse 

electrophysiological change, despite its discovery in a patient with irritable 

bowel syndrome. However, its adverse influence potential may require 

additional conditions as well as with the use of physiological sodium channel 

maximum conductances. Experimental studies that clarify the effects of 
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H558/H558R polymorphism, Q1077/Q1077del alternative splicing, as well as 

the G298S mutation in altering the maximum conductance, particularly in the 

aspects of expression, trafficking and degradation, will help to improve the 

computational findings. As mentioned in the discussion for the R76C cable 

results, the gastric cable model is built upon single cell ICC and SMC models 

of mixed animal species, of which the pacemaking mechanism is still of 

debate. Therefore, a refinement of these models would help in the higher scale 

studies like this. The development of mechanical descriptions will also aid the 

findings here. The effects of mutation aside, it is hoped that the future work 

can additionally advance our understanding on whether the common sodium 

backgrounds are indeed unable to confer resistance or susceptibility to disease 

as the findings here seemed to indicate.  
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5.5 Chapter summary 
 
The earlier sections of this chapter have demonstrated a successful proof-of-

concept, through one dimensional 100 mm cable constructs, for (1) the 

extended bidomain framework for multiple cell types, and (2) the slow wave 

entrainment and propagation model through the incorporation of the 

entrainment mechanism, the frequency gradient, and the RMP gradient. 

Subsequently, the two concepts were applied to create a 180 mm cable model 

to study the mutations related to the sodium channels in the ICC and SMC. 

The R76C mutation was found to have a gain-of-function effect, and was able 

to slightly increase the slow wave frequency, but the change did not appear 

sufficient to cause disorder. The G298S mutation was found to have a 

primarily loss-of-function effect on the sodium currents, but did not translate 

to a significant change in slow wave behaviour.  To try to obtain further 

insight, the one dimensional model can be scaled up to form a multi-

dimensional tissue block to better examine how slow wave initiation and 

propagation characteristics over a greater volume of GI tissue may be affected 

by the mutations. Experimentally, such details require surgery to invasively 

record using multi-electrode arrays placed on the serosal surface of the 

stomach in live subjects [284-286]. Computationally, this is easier to 

investigate, and the multi-cellular framework can also serve to develop less 

invasive methods such as a multi-electrode device to record gastric electrical 

patterns from the skin surface instead.  

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Chapter 6  
Conclusions 
 
      
 
 
 
 
 
 
 

“An expert is a man who has made all the mistakes, 
which can be made, in a very narrow field.”  
 – Niels Bohr 
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6 Conclusions 

The key hypothesis to investigate in this thesis was that ion channel mutations, 

particularly the mutations of SCN5A, contribute to GI motility disorders. This 

has been performed based on the objectives listed in Chapter 1, where 

computer models across the sub-cellular, single cell and multi-cellular spatial 

scales were developed and used. Specifically: 

 

(1) Computer models describing the wild-type and mutation affected ion 

channels, including variants that arise from alternative splicing and 

polymorphism were developed.  

 

(2) A biophysically based human jejunal smooth muscle cell model was 

developed. 

 

(3) An extended bidomain model and an entrainment and propagation model 

were developed. 

 

(4) Integrative investigation of the mutations in existing and newly developed 

single cell and multi-cellular models was performed.  

 

All in all, in addressing the main hypothesis, significant modelling 

developments were made from the sub-cellular to the multi-cellular levels 

which were deemed to be valuable contributions to the multi-scale framework 

of GI motility. It is noteworthy that the descriptions here are necessarily 
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biased. The current GI models were constructed with appropriate granularity 

based on what are sufficient for the modelling objectives and the availability 

of experimental and clinical findings. As the famous systems biologist Denis 

Noble once said: “Models are partial representations. Their aim is explanation: 

To show which features of a system are necessary and sufficient to understand 

it” [18]. The computational cost would be too great to include all details, and 

possibly all resources in the universe would not be enough (as rationalized by 

Denis Noble in his book, The Music of Life [302]).   

 

The models developed here, were applied to primarily investigate sodium 

channelopathies of GI motility from an electrophysiological perspective. A 

pacemaking ICC’s electrical activity dictates the passive SMC’s electrical 

response. Therefore, electrophysiological perturbations in the ICC and/or the 

SMC may cause a change in the SMC’s intracellular calcium concentration 

through the calcium currents as well as any intracellular calcium regulatory 

mechanisms. The intracellular calcium concentration determines the extent of 

myosin light chain kinase activation and the subsequent smooth muscle 

contraction [303-305]. A suitable level of electrophysiological change can 

then cause an adverse change in contractility and motility. The results showed 

that the R76C mutation has a greater potential in altering electrophysiology 

than the G298S mutation. But it cannot yet be definitively concluded at this 

stage that these mutations are the primary cause of GI disorders. 
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6.1 Recommendations for future work 

A number of factors may have masked the pathogenic potential of both 

mutations that future studies can help to clarify. Therefore the following key 

future works are suggested: 

(1) Perform critical re-examination and updates for the existing gastric cell 

models against new findings that have appeared since the models were 

published; for instance, to relook the ICC pacemaking mechanism in the light 

of recent evidence that an ANO-1 encoded calcium-activated chloride channel 

serves as the pacemaking conductance [86, 89-91]. These are important 

towards a more realistic investigation of mutation consequences, and in the 

development of multi-cellular models.  

(2) Investigate whether the sodium channel models can be further applied to 

mine useful biophysical statistics useful for understanding channelopathies. 

For instance, the application of appropriate statistical techniques to examine 

microscopic (single ion channel) properties using macroscopic descriptions 

that the sodium channel models describe.  

 

(3) The development of a human intestinal ICC model is pertinent to examine 

the R76C and G298S mutations that were correlated with intestinal disorders. 

Further channelopathy investigations can then be performed by coupling the 

intestinal ICC model to the jejunal SMC model that was developed here. The 

extended bidomain framework approach can also be applied to integrate the 

intestinal ICC and SMC models into a multi-cellular model to study the 
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mutations. The mutations may well find greater impact in the intestinal ICC to 

cause altered contractility in the SMC of the small intestine.  

 

(4) Develop a mechanical extension to the multi-scale electrical framework 

(for example, [306]), which can include descriptions of mechanosensitive ion 

channels [307-310] to single smooth muscle cell active contraction and soft 

tissue mechanics [311, 312], and to multi-cellular mechanical deformation. 

Motility is about both electrics and mechanics, a mechanical extension would 

reflect a more realistic physiological situation where electrics and mechanics 

interplay, in a duplex fashion, and thus eventually allow an examination of 

contractility and deformability in a GI tissue or organ [35].   

 

(5) A model of the whole stomach electrophysiology (or even the whole small 

intestine) can be developed based on the multi-cellular approaches that were 

discussed earlier. Anatomical information from a suitable public database or 

patient specific imaging data can be used to create a realistic geometry of the 

organ model.  A more realistic model like this benefits investigations but is 

limited by the availability of experimental and clinical data for its construction, 

as well as the high computational cost associated with a highly complex model. 

Nonetheless, a whole organ model can provide a clearer understanding of 

pathophysiology in the actual human organ and assist in diagnosis and 

treatment development. As mentioned in Chapter 2, a whole organ model will 

facilitate the development of torso (or diagnostic) models of electrography and 

magnetography that can correlate genotype disturbances at the sub-cellular 

level to unique electromagnetic signatures that can be non-invasively 
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measured at the body surface. This aids diagnosis for effective treatment.   

Multi-cellular models like these can also be applied to develop and optimize 

electrode-based GI pacemaking devices [313, 314].  

 

(6) Peristalsis is a form of motility that moves the bolus in the GI tract during 

the post-prandial state; an impaired peristalsis results in motility disorders. 

Thus far, the focus was on the primary motility effector cells of the ICC-MY 

and the circular SMC. However, it is known that the enteric nervous system 

(ENS), present in the myenteric plexus, independently senses and provides 

extrinsic motor control on the ICC and SMC to elicit peristalsis through 

descending inhibition and ascending contraction. In addition, the longitudinal 

SMC layer which is the next thickest muscle layer to the circular smooth 

muscles, is also innervated by the ENS, activated by the ICC-MY and is said 

to functionally contribute to motility such as in peristalsis [315]. Therefore, 

given the significance of the ENS and the longitudinal SMC layer, it would be 

relevant to extend our computational studies into these areas to better 

understand motility in health and disease.  

 

Finally, a grand goal of a comprehensive multi-scale computer framework of 

the GI system is to establish a workflow useful for decisions in personalized 

clinical diagnosis and treatment, where clinical measurements recorded from a 

patient, in several areas from general physiological data (for example, skin 

surface electrical recordings), to specific anatomical data and to experimental 

data from tissue samples, are used to customize multi-scale computer models. 

Analyses of the simulation predictions of these patient specific models can 
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provide more accurate diagnosis to select well targeted treatment strategy, and 

thereby improve the effectiveness of patient care (see Figure 6.1).   

 

Figure 6.1. A clinical decision workflow that incorporates multi-scale computer models. 
Clinical data measured from a patient are used to parameterize the computer models. In turn, 
these patient specific models in the clinical computational framework will facilitate clinicians 
in making better decisions in their diagnoses and treatment strategies.  

 

6.2 Computational notes 

A number of computer languages, programs and tools were picked up and 

used during the PhD research, which can be found in Appendix 22. A sample 

implementation of the models presented in this thesis may be requested from 

the NUS Computational Bioengineering Laboratory or from the author 

through the following email address: poh.yongcheng@gmail.com.  
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Appendices 

Appendix 1.  Microscopic reversibility 
 
Microscopic reversibility (MR) is achieved when a reaction reaches a steady-

state where the degree of change in the forward direction equals to the degree 

of change in the backward direction, at steady-state amounts of the reactants. 

To illustrate, consider the following example of three state reaction system 

(see Figure A1.1).  

 

 

 

 

 

 

 

At equilibrium, three equations can be derived from the above reactions, i.e., 

Eqs. A1.1 to A1.3: 

𝛼1𝐴 = 𝛽1𝐶,  (A1.1)  

𝛼2𝐶 = 𝛽2𝐵,  (A1.2)  

𝛼3𝐵 = 𝛽3𝐴. (A1.3)  

Eq. A1.2 is divided by Eq. A1.3 to get: 

 
𝛼2𝐶
𝛽3𝐴

=
𝛽2
𝛼3

. 
(A1.4)  

Eq. A1.4 was rearranged to get: 

𝐶
𝐴

= 𝛽2𝛽3
𝛼2𝛼3

.  (A1.5)  

α3 β 3 

B C 

β1 

α2 

β2 

A 

α1 

Figure A1.1. A closed loop, three state reaction system. 
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Eq. A1.1 was rearranged to get: 

𝐶
𝐴

=
𝛼1
𝛽1

. (A1.6)  

Eq. A1.5 is equivalent to Eq. A1.6: 

𝛽2𝛽3
𝛼2𝛼3

=
𝛼1
𝛽1

. (A1.7)  

Rearrangement of Eq. A1.7 gives the MR relationship: 

𝛼1𝛼2𝛼3 = 𝛽1𝛽2𝛽3. (A1.8)  

 

The MR relationship can be extended for closed loop reactions of more than 

three states. Take the following example of four state reaction system (Figure 

A1.2): 

 

 

 

 

 

 

 

An additional state, D, has been introduced. Consider the equations of the 

transitions involving D, i.e., Eq. A1.9 and A1.10: 

𝛼0𝐴 = 𝛽0𝐷, (A1.9)  

𝛼1𝐷 = 𝛽1𝐶. (A1.10)  

α3 

B C 

β1 

α2 

β2 

β 3 α1 

β 0 
A D 

α0 

Figure A1.2. A closed loop, four state reaction system. 
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Eq. A1.10 is divided by Eq. A1.9 to get: 

𝛽1𝐶
𝛼0𝐴

=
𝛼1
𝛽0

. (A1.11)  

 

Eq. A1.11 was rearranged to get: 

𝐶
𝐴

=
𝛼0𝛼1
𝛽0𝛽1

. (A1.12)  

  

Eq. A1.12 was substituted into Eq. A1.5: 

𝛼0𝛼1
𝛽0𝛽1

=
𝛽2𝛽3
𝛼2𝛼3

. (A1.13)  

Eq. A1.13 was rearranged to get the MR relationship for four state reactions: 

𝛼0𝛼1𝛼2𝛼3 = 𝛽0𝛽1𝛽2𝛽3. (A1.14)  

By the same logic, the above relation can be extended to N states of closed 

loop reactions: 

𝛼0𝛼1𝛼2𝛼3 …𝛼𝑁 = 𝛽0𝛽1𝛽2𝛽3 …𝛽𝑁. (A1.15)  

Ion channels can exist in several states. The transition between states depends 

on the energy barrier and can be influenced by factors such as the membrane 

voltage changes. At equilibrium, transitions of ion channels involved in a 

closed loop should observe microscopic reversibility.  
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Appendix 2. Complete sodium current results for SCN5A, TCAP & 
R76C 
 
 
The complete results for the verification of the SCN5A, TACP & R76C 

sodium channel models are provided here, a subset of the results was shown in 

Chapter 3.  
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Figure A2.1. Results for the SCN5A model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. A total of 24 
clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average experimental data. 
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Figure A2.2. Results for the TCAP model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. A total of 24 
clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average experimental data. 
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Figure A2.3. Results for the R76C model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. A total of 24 
clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average experimental data. 
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Appendix 3. Complete sodium current results for G298 models  

at -100 mV 

 
The complete results for the verification of the G298 sodium channel models 

for all four backgrounds at -100 mV are provided here, a subset of the results 

was shown in Chapter 3.  
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Figure A3.1. Results for the H558/Q1077del/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A3.2. Results for the H558R/Q1077del/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A3.3. Results for the H558/Q1077/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. 
A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A3.4. Results for the H558R/Q1077/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Appendix 4. Complete sodium current results for G298S models  
at -100 mV 
 
 
The complete results for the verification of the G298S sodium channel models 

for all four backgrounds at -100 mV are provided here, a subset of the results 

was shown in Chapter 3.  
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Figure A4.1. Results for the H558/Q1077del/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A4.2. Results for the H558R/Q1077del/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A4.3. Results for the H558/Q1077/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. 
A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A4.4. Results for the H558R/Q1077/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Appendix 5. Table of parameter values for the SCN5A, TCAP and R76C 
models 
 
The original form of the rate equation, which is thermodynamically based, is 

given by 𝑘 = 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) and has three parameters of A, B, and C. In the 

event where the explicit representation of the three parameters does not matter, 

the simplified alternative form of 𝑘 = 𝐴′𝑒𝑥𝑝(𝐶𝑉𝑚)  may be considered for 

implementation to improve computational efficiency such as for the 

parameterization procedure or in higher spatial scale investigations. For 

convenience, the parameter values of the simplified alternative form of the rate 

equations (corresponding to Table 3.10 in the main text) are provided here.  

 

Table A5.1. Parameter values of the simplified rate equations for the SCN5A, TCAP and 

R76C models. 

Model SCN5A TCAP R76C 
Equation ki,j=A'exp(CV) 

State 
transition A' (ms-1) C (mV-1) A' (ms-1) C (mV-1) A' (ms-1) C (mV-1) 

OI1 2.1986234 0.0060535 2.1556658 0.013723 2.2118136 0.010794 
I1I2 0.0292005 -0.046865 0.0495416 -0.0003999 0.1025634 -0.010767 

C3C2 0.0004904 0.0031945 5.546E-06 0.0098716 0.0086452 -0.0003937 
C2C1 1.2394747 0.058353 1.2930917 0.052254 0.7189933 0.0759 
C1O 1.5472523 0.041075 2.3737791 0.039009 2.5085806 0.042291 
I2I1 0.0571904 0.0061468 0.1000977 0.061081 0.0077208 0.0017296 

C2C3 0.5020341 0.036441 0.6245736 0.013469 0.5765968 0.028433 
C1C2 4.5404017 0.077193 4.5758391 0.060615 4.1851257 0.072258 
OC1 3.867E-06 -0.25289 0.0002049 -0.17572 7.491E-06 -0.22722 
I1C1 0.1588606 0.020406 0.1465441 -0.0009556 0.094397 0.0066217 
C1I1 0.0002035 0.0046683 8.597E-05 0.0025689 1.622E-17 -0.0031479 
I1O 8.14E-06 0.083025 5.098E-07 0.37114 9.153E-06 0.26954 
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Appendix 6. Complete sodium current results for G298 models  
at -90 mV 
 
 
The complete results for the verification of the G298 sodium channel models 

for all four backgrounds at -90 mV are provided here, a subset of the results 

was shown in Chapter 3.  
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Figure A6.1. Results for the H558/Q1077del/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A6.2.  Results for the H558R/Q1077del/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A6.3. Results for the H558/Q1077/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. 
A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A6.4. Results for the H558R/Q1077/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Appendix 7. Complete sodium current results for G298S models  

at -90 mV 

 
The complete results for the verification of the G298S sodium channel models 

for all four backgrounds at -90 mV are provided here, a subset of the results 

was shown in Chapter 3.  
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Figure A7.1. Results for the H558/Q1077del/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A7.2. Results for the H558R/Q1077del/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A7.3. Results for the H558/Q1077/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. 
A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A7.4. Results for the H558R/Q1077/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Appendix 8. Complete sodium current results for G298 models  

at -80 mV 

 
The complete results for the verification of the G298 sodium channel models 

for all four backgrounds at -80 mV are provided here, a subset of the results 

was shown in Chapter 3.  
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Figure A8.1. Results for the H558/Q1077del/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A8.2. Results for the H558R/Q1077del/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 



 Appendices 

 
324 

 

 
Figure A8.3. Results for the H558/Q1077/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping voltage. 
A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A8.4. Results for the H558R/Q1077/G298 model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Appendix 9. Tables of parameter values for the G298S models 
 
The original form of the rate equation, which is thermodynamically based, is 

given by 𝑘 = 𝐴𝑒𝑥𝑝(𝐵 + 𝐶𝑉𝑚) and has three parameters of A, B, and C. In the 

event where the explicit representation of the three parameters does not matter, 

the simplified alternative form of 𝑘 = 𝐴′𝑒𝑥𝑝(𝐶𝑉𝑚)  may be considered for 

implementation to improve computational efficiency such as for the 

parameterization procedure or in higher spatial scale investigations. For 

convenience, the parameter values of the simplified alternative form of the rate 

equations for the G298S models (corresponding to Tables 3.16 to 3.19 in the 

main text) are provided here.  

 

Table A9.1. Parameter values of the simplified rate equations for the V1_WT 

(H558/Q1077del/G298) and V1_MT (H558/Q1077del/G298S) models. 

Model V1_WT V1_MT 
Equation ki,j=A'exp(CV) 

State 
transition A' (ms-1) C (mV-1) A' (ms-1) C (mV-1) 

OI1 1.1288136 0.014105 1.271245 0.013251 
I1I2 31.355084 -0.00147 0.2492341 8.25E-05 

C3C2 0.12675 1.35E-05 0.0999266 6.71E-07 
C2C1 5.3501175 0.009075 2.3923261 0.012529 
C1O 5.8574569 0.027162 1106.6103 0.15577 
I2I1 5.655E-08 -0.19518 3.505E-06 -0.07881 

C2C3 0.0038589 -0.03231 0.0098547 -0.00944 
C1C2 0.0012514 -0.12304 0.0028778 -0.09343 
OC1 0.000214 -0.1887 6.133E-05 -0.15874 
I1C1 0.7437463 -0.00232 0.0632175 0.002923 
C1I1 0.1491684 -0.00217 0.1635209 -0.00109 
I1O 9.655E-09 0.21914 4.277E-08 -0.10859 
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Table A9.2. Parameter values of the simplified rate equations for the V2_WT 

(H558R/Q1077del/G298) and V2_MT (H558R/Q1077del/G298S) models. 

Model V2_WT V2_MT 
Equation ki,j=A'exp(CV) 

State transition A' (ms-1) C (mV-1) A' (ms-1) C (mV-1) 
OI1 1.3768921 0.019379 1.2344659 0.013426 
I1I2 0.1705975 -0.00024 0.199538 0.005872 

C3C2 28.865128 -0.00029 87669.143 -0.05534 
C2C1 14.916817 0.038026 15.041164 0.059176 
C1O 6.0903065 0.014891 4.3592174 0.00391 
I2I1 5.65E-08 -0.10784 5.667E-05 0.041269 

C2C3 35.009859 0.10401 97551.111 0.056623 
C1C2 0.1739364 -0.08117 0.0097085 -0.05566 
OC1 1.563E-06 -0.24795 3.804E-05 -0.22839 
I1C1 0.0564746 0.000115 0.0499112 0.001762 
C1I1 0.1474728 -0.03967 0.0144284 -0.04812 
I1O 3.719E-08 0.000219 4.717E-08 -0.00099 

 

 

Table A9.3. Parameter values of the simplified rate equations for the V3_WT 

(H558/Q1077/G298) and V3_MT (H558/Q1077/G298S) models. 

Model V3_WT V3_MT 
Equation ki,j=A'exp(CV) 

State transition A' (ms-1) C (mV-1) A' (ms-1) C (mV-1) 
OI1 1.0489262 0.013052 1.0301866 0.003512 
I1I2 0.1601424 7.28E-05 15.029949 0.0751 

C3C2 2.829E-05 0.011129 46855899 0.018823 
C2C1 889.12019 0.00193 3.8861105 -0.00096 
C1O 3.8868259 0.029006 9.0677443 0.037862 
I2I1 0.0001701 0.001704 0.0171244 0.076449 

C2C3 3.6691816 -0.08035 0.1106734 0.008181 
C1C2 228.55863 0.11515 0.0887268 -0.10116 
OC1 3.489E-09 -0.3522 2.922E-07 -0.26534 
I1C1 0.0645877 -0.00267 0.5972008 -0.00184 
C1I1 1.919E-89 0.003774 0.0168065 -0.09776 
I1O 1.616E-48 -0.04346 0.0127835 0.088102 
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Table A9.4. Parameter values of the simplified rate equations for the V4_WT 

(H558R/Q1077/G298) and V4_MT (H558R/Q1077/G298S) models. 

Model V4_WT V4_MT 
Equation ki,j=A'exp(CV) 

State transition A' (ms-1) C (mV-1) A' (ms-1) C (mV-1) 
OI1 1.0718779 0.016644 0.9711668 0.010451 
I1I2 0.1302365 -0.00027 47.442056 0.07498 

C3C2 9.228596 -0.00028 0.1343483 1.37E-05 
C2C1 31.428084 0.073074 5.8792268 0.02748 
C1O 4.8703404 0.005846 19.291147 0.079874 
I2I1 9.345E-07 -0.09772 4.205E-05 -0.05031 

C2C3 32.308408 0.12543 0.0030772 -0.03935 
C1C2 0.0703902 -0.08102 0.4535345 0.000154 
OC1 1.402E-06 -0.23442 2.723E-06 -0.23273 
I1C1 0.0639947 5.52E-05 0.0006996 0.20869 
C1I1 0.0688094 -0.07212 0.1220208 0.000195 
I1O 8.385E-08 7.24E-05 3.012E-05 -0.1016 
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Appendix 10. Complete sodium current results for G298S models  

at -80 mV 

 

The complete results for the verification of the G298S sodium channel models 

for all four backgrounds at -80 mV are provided here, a subset of the results 

was shown in Chapter 3.  
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Figure A10.1. Results for the H558/Q1077del/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A10.2. Results for the H558R/Q1077del/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A10.3. Results for the H558/Q1077/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Figure A10.4. Results for the H558R/Q1077/G298S model. Each subplot represents the normalized sodium current versus time trace under a clamping 
voltage. A total of 24 clamping voltages were used, from -80 mV to 35 mV. Solid line represents model predicted data while dashed lines are for average 
experimental data. 
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Appendix 11. Comparison of the steady-state values of the G298/G298S 

models 

 
Each figure shows a comparison of the steady-state values for the G298 and 

G298S sodium channel models from the same background. 
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Figure A11.1. The steady-state values for the H558/Q1077del background. G298 results in solid line, G298S results in dashed line. 
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Figure A11.2. The steady-state values for the H558R/Q1077del background. G298 results in solid line, G298S results in dashed line. 
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Figure A11.3. The steady-state values for the H558/Q1077 background. G298 results in solid line, G298S results in dashed line. 
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Figure A11.4. The steady-state values for the H558R/Q1077 background. G298 results in solid line, G298S results in dashed line. 
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Appendix 12. Comparison of the time constants of the G298/G298S 

models 

 
Each figure shows a comparison of the time constant values for the G298 and 

G298S sodium channel models from the same background. 
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Figure A12.1.  The time constant, τ, values for the H558/Q1077del background. G298 results in solid line, G298S results in dashed line. 
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Figure A12.2. The time constant, τ, values for the H558R/Q1077del background. G298 results in solid line, G298S results in dashed line. 
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Figure A12.3. The time constant, τ, values for the H558/Q1077 background. G298 results in solid line, G298S results in dashed line. 
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Figure A12.4. The time constant, τ, values for the H558R/Q1077 background. G298 results in solid line, G298S results in dashed line. 
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Appendix 13. Non-stationary fluctuation analysis 
 
Ion channel open probability, single channel conductance and ion channel 

density are relatively important biophysical values for the modelling of ion 

channels. This section shows the mathematical derivation of an equation that 

is useful to obtain these biophysical values from experimental data measured 

from repeated voltage-clamp recordings of the same sample, i.e., a non-

stationary fluctuation analysis. Firstly, consider the average open probability 

of a population of N identical and independent ion channels at a point in time, 

say in a biological cell: 

< 𝑃𝑂 >= 𝑃𝑂. (A13.1)  

The probability of K of these channels being open is given by: 

𝑃(𝐾 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑜𝑝𝑒𝑛) = 𝑁!
𝐾!(𝑁−𝐾)!

𝑃𝑂𝐾(1 − 𝑃𝑂)𝑁−𝐾 .  (A13.2)  

The average open probability can in turn be expressed by: 

< 𝑃𝑂 > =  �
𝐾
𝑁
𝑃(𝐾 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑜𝑝𝑒𝑛)

𝑁

𝐾=0

 

                           = �
𝐾
𝑁

𝑁

𝐾=0

𝑁!
𝐾! (𝑁 − 𝐾)!

𝑃𝑂𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 
(A13.3)  

Or equivalently, 

𝑁𝑃𝑂 =  �𝐾
𝑁

𝐾=0

𝑁!
𝐾! (𝑁 − 𝐾)!

𝑃𝑂𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 
(A13.4)  

An alternative way to derive average open probability in a population of N 

identical and independent ion channels is demonstrated below. Begin with the 

binomial expansion: 

(𝛼𝑃𝑜 + (1 − 𝑃𝑂))𝑁 = �
𝑁!

𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

(𝛼𝑃𝑜)𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 
(A13.5)  
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Differentiate Eq. A13.5 with respect to α: 

𝑁(𝛼𝑃𝑜 + (1 − 𝑃𝑂))𝑁−1𝑃𝑜 = ∑ 𝐾 𝑁!
𝐾!(𝑁−𝐾)!

𝑁
𝐾=0 𝛼𝐾−1𝑃𝑜

𝐾(1 − 𝑃𝑂)𝑁−𝐾 .  (A13.6)  

If α = 1, the expression is reduced to the average open probability identical to 

the earlier equation of Eq. A13.4: 

𝑁𝑃𝑜 = �𝐾
𝑁!

𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 , 
(A13.7)  

< 𝑃𝑜 >= �
𝐾
𝑁

𝑁!
𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 
(A13.8)  

With Eq. A13.8 as a basis, the following shows the second moment of the 

distribution: 

< 𝑃𝑂2 >= ��
𝐾
𝑁
�
2 𝑁!
𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 
(A13.9)  

Now perform another round of differentiation of Eq. A13.5 with respect to α: 

𝑁(𝑁 − 1)(𝛼𝑃𝑜 + (1 − 𝑃𝑂))𝑁−2𝑃𝑜2 = �𝐾(𝐾 − 1)
𝑁!

𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝛼𝐾−2𝑃𝑜
𝐾(1 − 𝑃𝑂)𝑁−𝐾 . (A13.10)  

Again, let α =1 in Eq. A13.9: 

𝑁(𝑁 − 1)𝑃𝑜2 = �𝐾(𝐾 − 1)
𝑁!

𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 
(A13.11)  

Simplifying Eq. A13.11 gives: 

𝑁(𝑁 − 1)𝑃𝑜2 = �𝐾2 𝑁!
𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 −�𝐾
𝑁!

𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 

                = 𝑁2 ∑ 𝐾2

𝑁2
𝑁!

𝐾!(𝑁−𝐾)!
𝑁
𝐾=0 𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 − 𝑁∑ 𝐾

𝑁
𝑁!

𝐾!(𝑁−𝐾)!
𝑁
𝐾=0 𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 

 

(A13.12)  

Substitute Eq. A13.8 and Eq. A13.9 into Eq. A13.12 to get: 

𝑁(𝑁 − 1) < 𝑃𝑜 >2= 𝑁2 < 𝑃𝑂2 > −𝑁 < 𝑃𝑂 >.  (A13.13)  

Rearrange Eq. A13.13 to get: 

𝑁 < 𝑃𝑂 > −𝑁 < 𝑃𝑜 >2= 𝑁2 < 𝑃𝑂2 > −𝑁2 < 𝑃𝑜 >2,  

    <𝑃𝑂>(1−<𝑃𝑜>)
𝑁

=< 𝑃𝑂2 > −< 𝑃𝑜 >2.  (A13.14)  
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The right term of Eq. A13.14 gives the variance of 𝑃𝑂, therefore:  

𝜎𝑃𝑜 =
< 𝑃𝑂 > (1 −< 𝑃𝑜 >)

𝑁
. (A13.15)  

The above can be adapted to a more useful form by multiplying single channel 

current, i (assumed constant) to Eq. A13.12: 

𝑖2𝑁(𝑁 − 1)𝑃𝑜2 = 𝑁2�
𝐾2

𝑁2
𝑁!

𝐾! (𝑁 − 𝐾)!
𝑖2

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 − 𝑁�
𝐾
𝑁
𝑖2

𝑁!
𝐾! (𝑁 − 𝐾)!

𝑁

𝐾=0

𝑃𝑜𝐾(1 − 𝑃𝑂)𝑁−𝐾 . 

 (A13.16)  

Simplifying Eq. A13.16 gives: 

𝑁2𝑖2 < 𝑃𝑜 >2− 𝑁𝑖2 < 𝑃𝑜 >2= 𝑁2 < (𝑖𝑃𝑂)2 > −𝑁𝑖2 < 𝑃𝑂 >.  (A13.17)  

Rearrangement of Eq. A13.17 gives: 

𝑁𝑖2 < 𝑃𝑂 > −𝑁𝑖2 < 𝑃𝑜 >2= 𝑁2 < (𝑖𝑃𝑂)2 > − 𝑁2𝑖2 < 𝑃𝑜 >2.  (A13.18)  

With a population of N channels with single current, i,  and an open 

probability of PO, the macroscopic current of this system, I, is given by: 

𝐼 = 𝑁𝑖𝑃𝑂.  (A13.19)  

Using Eq. A13.19, Eq. A13.18 can be simplified: 

              𝑖(𝑁𝑖 < 𝑃𝑂 >)(1−< 𝑃𝑂 >) =< (𝑁𝑖𝑃𝑂)2 > −(𝑁𝑖 < 𝑃𝑂 >)2,  

𝑖 < 𝐼 > (1 −< 𝑃𝑜 >) =< 𝐼2 > −< 𝐼 >2.  (A13.20)  

The right hand term of Eq. A13.20 gives the variance, and therefore the 

following is obtained: 

𝜎𝐼 = 𝑖 < 𝐼 > (1 −< 𝑃𝑜 >),  

      𝜎𝐼(𝑡) = 𝑖 < 𝐼(𝑡) > (1 −< 𝑃𝑜(𝑡) >).  (A13.21)  

Eq. A13.21 is useful when the appropriate experimental data of I(t) is 

available; specifically, I(t) measured over a voltage clamp protocol from the 

same cell several times  allows the variance, 𝜎𝐼(𝑡), and mean values, I(t), to be 

computed. In turn, the single channel current, i, and the open probability, 

𝑃𝑜(𝑡), can be parameterized by fitting against the experimental data of 𝜎𝐼(𝑡) 
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and I(t). The number of channels, N, can also be derived. The parameter 

values of i, 𝑃𝑜(𝑡) and N are useful for ion channel modelling.   
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Appendix 14. Complete equations of the human jejunal smooth muscle 
cell model 
 
Table A14.1. Model parameters. 

Parameter 
name 

Description Value Units 

R Ideal gas constant 8.314 J/(molK) 
F The Faraday constant 96.48534 C/mmol 
T Temperature 310 K 

Cm Cell membrane capacitance 50 pF 
Vcell Cell volume 3.5e-12 l 

 
[ ]oCa +2

 

Extracellular calcium concentration 2 mM 

 
[ ]oK +

 

Extracellular potassium concentration 5.4 mM 

 
[ ]oNa +

 

Extracellular sodium concentration 140 mM 

total
iCa ][ 2+

 
Initial value of total intracellular calcium 

concentration 
0.004914 mM 

free
iCa ][ 2+

 
Initial value of free intracellular calcium 

concentration 
1.26e-4 mM 

 
[ ]iK +

 

Intracellular potassium concentration 150 mM 

 
[ ]iNa +

 

Intracellular sodium concentration 10.5 mM 

CaQ10  Q10 for calcium channels 2.1 - 

KQ10  Q10 for potassium channels 3.1 - 

NaQ10  Q10 for sodium channels 2.45 - 

Gcouple Coupling conductance between ICC and SMC 2.6 nS 
ICC

restV  Resting membrane potential of ICC -57 mV 

ICC
peakV  Peak membrane potential of ICC -23.5 mV 

ICC
ampV  Amplitude of ICC membrane potential (given by 

ICC
rest

ICC
peak VV − ) 

33.5 mV 

periodt  Period of single ICC slow wave 10000 ms 

ICC
peakt  Duration of ICC slow wave upstroke to reach 

ICC
peakV  

300 ms 

ICC
plateaut  Duration of ICC slow wave from start to plateau 

phase 
9700 ms 

slopet  Slope factor in 
ICC

mV  equation 600 ms 

1f  ICC conditioning factor 1 12000 ms 

2f  ICC conditioning factor 2 300 ms 

totalCRT ][  Total calreticulin concentration 0.034 mM 

CRTn  Hill coefficient for calreticulin 1 - 
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CRT
DK  

Dissociation constant for calreticulin 0.0009 mM 

totalCaM ][  Total calmodulin concentration 0.012 mM 

CaMn  Hill coefficient for calmodulin 4 - 

CaM
DK  

Dissociation constant for calmodulin 0.0001 mM4 

CaLG  Maximum conductance of CaLI  1.44 nS 

CaTG  Maximum conductance of CaTI  0.0425 nS 

KvG  Maximum conductance of KvI  1.0217 nS 

Kvxτ  Time constant for Kvx of KvI  4.7803 ms 

Kvyτ  Time constant for Kvy of KvI  763.7564 ms 

BKG  Maximum conductance of BKI  80 nS 

NaG  Maximum conductance of NaI  25.1 nS 

NCXP  Maximum NCXI  39.8437 pA/pF 

mCaK  [ ]iCa +2 half saturation constant of NCXI  1.38 mM 

mNaiK  [ ]iNa + half saturation constant of NCXI  87.5 mM 

satk  Saturation factor for NCXI  0.1 - 

γ  Voltage dependence parameter of NCXI  0.35 - 

NaKP  Maximum NaKI  0.1852 pA/pF 

mKK  [ ]oK + half saturation constant of NaKI  1 mM 

mNaK  [ ]iNa + half saturation constant of NaKI  40 mM 

NaNSG _  
Maximum conductance of non-selective current 

carrying sodium ions, NaNSI _  0.022488 nS 

KNSG _  
Maximum conductance of non-selective current 

carrying potassium ions, KNSI _  0.017512 nS 

 
Complete equations of the hJSMC model 
1. Governing equation for single hJSMC electrophysiology 

Voltages in mV, ionic currents in pA  

m

Stimionm

C
II

dt
dV +

−=  
(A14.1)  

2. Ionic currents, ionI   

NSNaKNCXNaBKKvCaTCaLion IIIIIIIII +++++++=  (A14.2)  
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3. StimI  equations 

)( ICC
mmcoupleStim VVGI −=  (A14.3)  

Mathematical profile of the prescribed ICC
mV that describes a single slow 

wave:  
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 −
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ICC
plateau

ICC
peak

slope

slope

ICC
amp

ICC
rest

ICC
peak
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m

tttfor

t
fftt

fVV

ttfor
f
tVV

V

12

1

2

5.0exp1

1
2

exp1

0

                    

 

 (A14.4)  

4. Equations for tracking the intracellular ionic concentrations 

Ion concentration should be tracked  in mM  

)(
cell

NCXCaTCaL

total
i

FV
III

dt
Cad

2
12][ 2

−+−=
+

 
 

(A14.5)  
 

( )
cell

KNSNaKstimBKKv
i

FV
IIIII

dt
Kd 12][

_+−++−=
+

  

(A14.6)   
 

( )
cell

NaNSNCXNaKNa
i

FV
IIII

dt
Nad 133][

_+++−=
+

 
 

(A14.7)   
 

5. Nernst potential 

Nernst potential unit is mV  

i

o
Ca Ca

Ca
F

RTE
][
][ln

2 2

2

+

+

=  
 

(A14.8)   
 

i

o
K K

K
F

RTE
][
][ln

+

+

=  
 

(A14.9)   
 

i

o
Na Na

Na
F

RTE
][
][ln

+

+

=  
 

(A14.10)   
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6. Calcium buffering 

Calcium concentration in mM 

( )
( )( )

( )
( )( ) 







+

+







+
+÷=

+

−+

+

−+++

22

12

22

1222

][

][][

][

][][1][][

CaM
D

nfree
i

nfree
i

CaM
DtotalCaM

CRT
D

nfree
i

nfree
i

CRT
DtotalCRT

total
i

free
i

KCa

CaKCaMn

KCa

CaKCRTn
dt

Cad
dt

Cad

CaM

CaM

CRT

CRT

 (A14.11)  

7. L-type calcium current, CaLI  

 

Figure A14.1. L-type Ca2+ channel Markov model topology. Prefixes C, I, O denote closed, 
inactivated and open states respectively; suffixes Ca, Vm, f, s found in some of the states refer 
to calcium-bound, voltage-dependent, fast, and slow properties of these states respectively. 
The topology was designed to best describe observed characteristics of the L-type Ca2+ 
channels. O is the state that conducts Ca2+ ions across the channels. 
 

)( CamOCaLCaL EVPGI −=  (A14.12)  

Common rate equations:  

)
0.30

exp(7310.0 mVa =  (A14.13)  

)
0.40

exp(2149.0 mVb −
=  (A14.14)  

Rate equations for horizontal activation transitions:   

aa 40 =  (A14.15)  
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aa 31 =  (A14.16)  

aa 22 =  (A14.17)  

aa =3  (A14.18)  

Rate equations for horizontal deactivation transitions (ms-1):   

bb =0  (A14.19)  

bb 21 =  (A14.20)  

bb 32 =  (A14.21)  

bb 43 =  (A14.22)  

Rate equations for fast and slow inactivation transitions  

(ms-1): 

 

)
0.10

exp(4742.0 m
f

V
=φ  (A14.23)  

)
0.40

exp(05956.0 m
s

V−
=φ  (A14.24)  

)
0.300

exp(01407.0 m
f

V−
=ξ  (A14.25)  

)
0.500

exp(01213.0 m
s

V
=ξ  (A14.26)  

)
0.500

exp(02197.0 m
f

V
=ψ  (A14.27)  

)
0.280

exp(00232.0 m
s

V−
=ψ  (A14.28)  

f

ff
f a

b
ψ
φξ

ω
3

3=  (A14.29)  
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s

ss
s a

b
ψ
φξ

ω
3

3=  (A14.30)  

f

fs
sf ξ

ψξ
ω =  (A14.31)  

sfs ψω =  (A14.32)  

Rate equations for calcium dependent transitions (ms-1):  

free
iCa ][

11

4

2++
=θ  

(A14.33)  

01.0=δ  (A14.34)  

8. T-type calcium current, CaTI  

)( CamCaTCaTCaTCaT EVfdGI −=  (A14.35)  

Equations for gating variables (ms-1):  

CaTd

CaTCaTCaT dd
dt

dd
τ
−

=
∞

 (A14.36)  

CaTf

CaTCaTCaT ff
dt

df
τ
−

=
∞

 (A14.37)  

Equations for steady-state values of the gating variables:  







 +
−+

=∞

3.5
5.60exp1

1
m

CaT V
d  

(A14.38)  







 +

+
=∞

0.4
5.75exp1

1
m

CaT V
f  

(A14.39)  
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Equations for the time constant variables: 

9058.1=
CaTdτ  (A14.40)  

( )















 +
−+=

900
50exp7.146.838117.0

2
m

f

V
CaT

τ  (A14.41)  

9. Voltage dependent potassium current, KvI  

)( KmKvKvKvKv EVyxGI −=  (A14.42)  

Rate equations for the gating variables (ms-1):  

Kvx

KvKvKv xx
dt

dx
τ
−

=
∞

 (A14.43)  

Kvy

KvKvKv yy
dt

dy
τ
−

=
∞

 (A14.44)  

Equations for the steady-state values of the gating variables: 







 +
−+

=∞

36.17
0.43exp1

1
m

Kv V
x  

(A14.45)  







 −

+
=∞

0096.12
9.44exp1

1
m

Kv V
y  

(A14.46)  

10. Calcium & voltage activated potassium current, BKI  

 

Figure A14.2. A10-state Markov model of homotetrameric BK channel. Upper tier states are 
various closed conformation states (with prefix C) while lower tier states are various open-
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oriented conformation states (with prefix O). In each tier, the horizontal transitions depend 
on [𝐶𝑎2+]𝑖

𝑓𝑟𝑒𝑒 , that reflects cooperative Ca2+ binding to each of the four alpha subunits of the 
BK homotetramer. The membrane voltage dependency is found in the vertical transitions 
between states. O4 is the conformation state that conducts ions across BK channels under a 
voltage driving force. 

 

)( KmOBKBK EVPGI −=  (A14.47)  

Common rate equations:  

)47188.8exp(
T

Va m=  (A14.48)  

)77556.7exp(
T

Vb m−
=  (A14.49)  

 40633=onk  (A14.50)  

11=C
offk  (A14.51)  

1.1=O
offk  (A14.52)  

Rate equations for voltage dependent transitions (ms-1):  

ak OC 0.0216200 =  (A14.53)  

ak OC 0.00086911 =  (A14.54)  

ak OC 2810000.022 =  (A14.55)  

ak OC 0.00078133 =  (A14.56)  

ak OC 0.04432444 =  (A14.57)  

bk CO 318.108400 =  (A14.58)  

bk CO 144.173611 =  (A14.59)  

bk CO 32.659422 =  (A14.60)  

bk CO 0.09531233 =  (A14.61)  
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bk CO 0.00010644 =  (A14.62)  

Rate equations for calcium dependent transitions (ms-1):  

free
ionCC Cakk ][4 2

10
+=  (A14.63)  

free
ionCC Cakk ][3 2

21
+=  (A14.64)  

free
ionCC Cakk ][2 2
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i

C
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34
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i

C
offCC Cakk ][3 2

23
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free
i

C
offCC Cakk ][2 2

12
+=  (A14.69)  

free
i

C
offCOC Cakk ][ 2

1
+=  (A14.70)  

free
ionOO Cakk ][4 2

10
+=  (A14.71)  

free
ionOO Cakk ][3 2

21
+=  (A14.72)  

free
ionOO Cakk ][2 2

32
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free
ionOO Cakk ][ 2
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+=  (A14.74)  
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offOO Cakk ][4 2
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offOO Cakk ][ 2

01
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11. Voltage dependent sodium current, NaI  

 

Figure A14.3. Six-state Markov model of Nav1.5. C refers to closed state, I refers to 
inactivated state, and O refers to open state where Na+ ions are conducted across the channels.  
 

)( NamONaNa EVPGI −=  (A14.78)  

Rate equations (ms-1):  

)0.00605350.30763exp(1.61641, mIO Vk +=  (A14.79)  

)0.046865-0.051490exp(0.0277352,1 mII Vk =  (A14.80)  

)0.0031945-0.069102exp(0.0005262,3 mCC Vk +=  (A14.81)  

)058353.015660.0exp(4496.11,2 mCC Vk +−=  (A14.82)  

)041075.00093193.0exp(5329.1,1 mOC Vk +=  (A14.83)  

)0061468.06793.2exp(0039239.01,2 mII Vk +=  (A14.84)  

)036441.0099074.0exp(55432.03,2 mCC Vk +−=  (A14.85)  

)077193.036352.0exp(1566.32,1 mCC Vk +=  (A14.86)  

)25289.0335.13exp(2.39151, mCO Vk −−=  (A14.87)  

)020406.04840.2exp(9046.11,1 mCI Vk +−=  (A14.88)  

)0046683.0063438.0exp(00021688.01,1 mIC Vk +−=  (A14.89)  
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)083025.06028.9exp(12052.0,1 mOI Vk +−=  (A14.90)  

12. Sodium-calcium exchanger, NCXI  
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 (A14.91)  

13. Sodium Potassium Pump, NaKI  
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 (A14.92)  

14. Non selective leak current, NSI  

KNSNaNSNS III __ +=  (A14.93)  

( )NamNaNSNaNS EVgI −= __  (A14.94)  

( )KmKNSKNS EVgI −= __  (A14.95)  
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Appendix 15. Calcium buffering for equilibrium reactions 
 
Free intracellular calcium is buffered by a number of proteins. This buffering 

affects the concentration of free calcium ions that would exert regulatory 

effects on cellular mechanisms. This section provides the derivation of the 

calcium buffering equations for two buffering proteins.  

 

Consider the reaction between n molar of calcium ions and a buffering protein, 

BP: 

nCa + BP  CanBP 

The dissociation constant, KD, is given by a ratio of the respective 

concentrations: 

𝐾𝐷 = [𝐶𝑎]𝑛[𝐵𝑃]
[𝐶𝑎𝑛𝐵𝑃]

.  (A15.1)  

By conservation of mass, the sum of buffered calcium and buffering 

protein/calcium concentrations gives the total buffering protein/calcium 

concentration: 

[BP]total=[CanBP]+[BP],  (A15.2)  

[Ca]total=[CanBP]+[Ca].  (A15.3)  

Rearrange Eq. A15.2 and Eq. A15.3 to get: 

 [BP]=[BP]total-[CanBP], (A15.4)  

[CanBP]=[Ca]total-[Ca]. (A15.5)  

Substitution of the Eq. A15.4 and Eq. A15.5 into equation of KD in Eq. A15.1 

and with rearrangement gives: 

[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙 = [𝐶𝑎] +
[𝐵𝑃]𝑡𝑜𝑡𝑎𝑙

1 + 𝐾𝐷
[𝐶𝑎]𝑛

. 
(A15.6)  
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Using chain rule differentiation on total intracellular concentration, i.e., Eq. 

A15.6, the following time derivative was obtained: 

𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙
𝑑𝑡

= 𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙
𝑑[𝐶𝑎]

𝑑[𝐶𝑎]
𝑑𝑡

.  (A15.7)  

Eq. A15.6 is differentiated with respect to [Ca] and substituted into Eq. A15.7 

to get the following: 

𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙
𝑑𝑡

= 𝑑[𝐶𝑎]
𝑑𝑡

�1 + 𝑛𝑘𝐷[𝐶𝑎]𝑛−1[𝐵𝑃]𝑡𝑜𝑡𝑎𝑙
([𝐶𝑎]𝑛+𝐾𝐷)2

�.  (A15.8)  

Re-expression of  Eq. A15.8 gives the desired equation to solve for free 

calcium concentration: 

𝑑[𝐶𝑎]
𝑑𝑡

=
𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙

𝑑𝑡

�1 + 𝑛𝑘𝐷[𝐶𝑎]𝑛−1[𝐵𝑃]𝑡𝑜𝑡𝑎𝑙
([𝐶𝑎]𝑛+𝐾𝐷)2

�
� .  

(A15.9)  

The above steps can be extended for the case of two types of buffering 

proteins, BP1 and BP2: 

nCa + BP1  CanBP1 (A15.10)  

mCa + BP2  CamBP2 (A15.11)  

Here are the respective dissociation constants, KD1 and KD2: 

𝐾𝐷1 =
[𝐶𝑎]𝑛[𝐵𝑃1]
[𝐶𝑎𝑛𝐵𝑃1]

, 
(A15.12)  

𝐾𝐷2 =
[𝐶𝑎]𝑚[𝐵𝑃2]
[𝐶𝑎𝑚𝐵𝑃2]

. 
(A15.13)  

The following relationships were established through conservation of mass: 

[BP1]total=[CanBP1]+[BP1], (A15.14)  

[BP2]total=[CamBP2]+[BP2], (A15.15)  

[Ca]total=[CanBP1]+ [CamBP2]+[Ca]. (A15.16)  

Rearrange Eq. A15.14 and Eq. A15.15 to get: 

[BP1]= [BP1]total -[CanBP1], (A15.17)  
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[BP2]= [BP2]total -[CamBP2]. (A15.18)  

Substitute Eq. A15.17 into Eq. A15.12 and rearrange to get:  

𝐾𝐷1
[𝐶𝑎]𝑛 =

[𝐵𝑃1]𝑡𝑜𝑡𝑎𝑙 − [𝐶𝑎𝑛𝐵𝑃1]
[𝐶𝑎𝑛𝐵𝑃1]  

=
[𝐵𝑃1]𝑡𝑜𝑡𝑎𝑙
[𝐶𝑎𝑛𝐵𝑃1]

− 1, 
(A15.19)  

[𝐶𝑎𝑛𝐵𝑃1] = [𝐵𝑃1]𝑡𝑜𝑡𝑎𝑙
1+ 𝐾𝐷1

[𝐶𝑎]𝑛
.  

(A15.20)  

Similarly, substitute Eq. A15.16 into  Eq. A15.13 and rearrange to get:  

[𝐶𝑎𝑚𝐵𝑃2] =
[𝐵𝑃2]𝑡𝑜𝑡𝑎𝑙

1 + 𝐾𝐷2
[𝐶𝑎]𝑚

. 
(A15.21)  

Next, substitute  Eq. A15.20 and Eq. A15.21 into Eq. A15.16 to get:  

[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙 = [𝐶𝑎] + [𝐵𝑃1]𝑡𝑜𝑡𝑎𝑙
1+ 𝐾𝐷1

[𝐶𝑎]𝑛
+ [𝐵𝑃2]𝑡𝑜𝑡𝑎𝑙

1+ 𝐾𝐷2
[𝐶𝑎]𝑚

.  
(A15.22)  

Apply chain rule differentiation to Eq. A15.22 to obtain the following: 

𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙
𝑑𝑡

= 𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙
𝑑[𝐶𝑎]

𝑑[𝐶𝑎]
𝑑𝑡

   

                                             = 𝑑[𝐶𝑎]
𝑑𝑡

�
1 + 𝑛𝐾𝐷1[𝐶𝑎]𝑛−1[𝐵𝑃1]𝑡𝑜𝑡𝑎𝑙

([𝐶𝑎]𝑛+𝐾𝐷1)2

+ 𝑚𝐾𝐷2[𝐶𝑎]𝑚−1[𝐵𝑃2]𝑡𝑜𝑡𝑎𝑙
([𝐶𝑎]𝑚+𝐾𝐷2)2

�. 

 

(A15.23)  

Finally, re-expression of Eq. A15.23 gives the desired equation to solve for 

free calcium concentration in the presence of two types of buffering proteins: 

𝑑[𝐶𝑎]
𝑑𝑡

=
𝑑[𝐶𝑎]𝑡𝑜𝑡𝑎𝑙

𝑑𝑡

�1 + 𝑛𝐾𝐷1[𝐶𝑎]𝑛−1[𝐵𝑃1]𝑡𝑜𝑡𝑎𝑙
([𝐶𝑎]𝑛+𝐾𝐷1)2 + 𝑚𝐾𝐷2[𝐶𝑎]𝑚−1[𝐵𝑃2]𝑡𝑜𝑡𝑎𝑙

([𝐶𝑎]𝑚+𝐾𝐷2)2
� .

�   

(A15.24)  
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Appendix 16. FTCS discretization of the extended bidomain equations 
 
To solve the extended bidomain problem using the finite time central space 

(FTCS) method, Eqs. 5.32, 5.33 and 5.35 from Chapter 5 were discretized to 

the form shown here, in Eqs. A16.1 to A16.3.  
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(A16.1)  
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(A16.2)  
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Appendix 17. Cable model results at 90 mm and 180 mm (SCN5A/R76C) 
 
 

 
 
Figure A17.1. SCN5A versus R76C slow wave results for the position of 90 mm from the 
proximal end of the cable model. (a) and (b) are the spatiotemporal plots for ICC with wild-
type sodium channels and ICC with R76C mutation respectively. (c) and (e) are the ICC and 
SMC slow wave potentials respectively. (d) and (f) are the ICC and SMC sodium currents 
respectively. (g) is the SMC intracellular calcium concentration. Solid lines for wild-type 
results and dashed lines for R76C mutation results. 
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Figure A17.2. SCN5A versus R76C slow wave results for the position of 180 mm from the 
proximal end of the cable model. (a) and (b) are the spatiotemporal plots for ICC with wild-
type sodium channels and ICC with R76C mutation respectively. (c) and (e) are the ICC and 
SMC slow wave potentials respectively. (d) and (f) are the ICC and SMC sodium currents 
respectively. (g) is the SMC intracellular calcium concentration. Solid lines for wild-type 
results and dashed lines for R76C mutation results. 
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Appendix 18. Cable model results at 90 mm and 180 mm 
(H558/Q1077del) 
 

 
 
Figure A18.1. H558/Q1077del/G298 versus H558/Q1077del/G298S slow wave results for the 
position of 90 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Figure A18.2. H558/Q1077del/G298 versus H558/Q1077del/G298S slow wave results for the 
position of 180 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Appendix 19. Cable model results at 90 mm and 180 mm 
(H558R/Q1077del) 
 

 
 
Figure A19.1. H558R/Q1077del/G298 versus H558R/Q1077del/G298S slow wave results for 
the position of 90 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Figure A19.2. H558R/Q1077del/G298 versus H558R/Q1077del/G298S slow wave results for 
the position of 180 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Appendix 20. Cable model results at 90 mm and 180 mm (H558/Q1077) 
 

 
Figure A20.1. H558/Q1077/G298 versus H558/Q1077/G298S slow wave results for the 
position of 90 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Figure A20.2. H558/Q1077/G298 versus H558/Q1077/G298S slow wave results for the 
position of 180 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Appendix 21. Cable model results at 90 mm and 180 mm (H558R/Q1077) 

 

 
 
Figure A21.1. H558R/Q1077/G298 versus H558R/Q1077/G298S slow wave results for the 
position of 90 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Figure A21.2. H558R/Q1077/G298 versus H558R/Q1077/G298S slow wave results for the 
position of 180 mm from the proximal end of the cable model. (a) and (b) are the 
spatiotemporal plots for ICC with wild-type sodium channels and ICC with G298S sodium 
channels respectively. (c) and (e) are the ICC and SMC slow wave potentials respectively. (d) 
and (f) are the ICC and SMC sodium currents respectively. (g) is the SMC intracellular 
calcium concentration. Solid lines for wild-type results and dashed lines for G298S mutation 
results. 
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Appendix 22. Computer languages, programs and tools 
 
 
Operating systems 
Linux (Fedora, Ubuntu) 
Mac  
Windows  
 
Integrated development 
environments 
Eclipse  
Code::Blocks 
OpenWatcom 
 
Languages 
C 
C++ 
CellML 
Matlab 
Perl 
 

Computation & visualization 
programs 
CHASTE 
CMISS cm 
CMISS cmgui 
CMISS unemap 
OpenMP 
 
Other programs 
Copasi 
GIMP 
GNUplot 
Inkscape 
QuB 
Octave 
Scilab  
OpenCell 
Stimfit
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/********** 
**The End** 
**********/ 


