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Abstract

Quantum cosmology intends to explain our universe by imbibing our

current, general relativistic ideas of cosmology with quantum theory, which

is understood to be fundamental. One of the most important reasons for

this is to explain our universe at time t = 0, at which quantum e�ects

are expected to be large, and at which singularities occur for matter �lled

universes. However quantum cosmology, based on a canonical quantum

formulation of general relativity, does not solve all singularities via the

Wheeler-DeWitt equation. In order to model the fundamental theory of

quantum gravity, whatever it may be, we resort to information-theoretic

nonlinearisations of the Wheeler-DeWitt equation, in hope that the prob-

lem of singularities can be resolved. This work is divided into two parts.

The �rst part is an extension of a previous work which studied the nonlin-

ear Wheeler-DeWitt equation for a de Sitter universe, non-pertubatively.

The generalisation here is that the cosmological constant is now a function

of the scale factor. We �nd results similar to the previous study includ-

ing a minimum and maximum size to the universe, in some cases further

implying a cyclic universe via the e�ective classical dynamics. The sec-

ond part is a non-pertubative study of the FLRW-φ universe, in which the

only matter is a free massless scalar �eld, which can be used as an internal

clock. The Wheeler-DeWitt equation is now used to describe the evolution

of a wavepacket, and bounces at small and large sizes were found, leading

to cyclic-type evolution, which is however not periodic nor everlasting.
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Chapter 1

Introduction

The subject of cosmology is in some sense one of the oldest known to man, never

failing to leave in a state of astonishment the imaginations of both philosophers and

scientists alike, throughout time. In its modern form, much of cosmology as we

know it is based on Einstein's theory of general relativity, with the most important

development being the Big Bang theory which postulated that the Universe expanded

from an extremely hot and dense state, which appeared approximately 13.8 billion

years ago; and continues to expand today. In recent years, the Lambda-Cold Dark

Matter (Λ-CDM) model of the universe has come to be accepted as the standard model

of Big Bang cosmology, incorporating an in�ationary epoch, cold dark matter, and

accelerating expansion, all of which are necessary to corroborate modern experimental

evidence.

However, as versatile as it is in explaining various phenomena, the Λ-CDM model

is still not complete in the sense that there are still some unsolved problems, which

require us to look for a more fundamental and holistic theory; that is, of quantum

cosmology. Even without these problems, the necessity for a quantum theory of

cosmology would not be precluded, since it is the general belief of modern physics

that nature is intrinsically quantum in its behaviour.

One of the most important questions left unanswered by all general relativistic
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models of cosmology is that of the singularity of curvature invariants at the beginning

of time, t = 0. This singularity arises as a consequence of having all the mass and

energy of the universe at a single point, which is the point of in�nite density known

as the Big Bang. In fact, classical cosmology is inadequate in explaining our universe

before the Planck time (10−44 seconds after the Big Bang), at which the universe was

no larger than 10−35 m, with energies of the order 1019 GeV. At such scales, at which

the Compton wavelength of a particle is approximately equal to its Schwarzschild

radius [1], it would be di�cult not to expect quantum e�ects to come into play, and

quantum cosmology is expected to either properly explain this epoch, or do away with

it altogether.

Many potential theories of quantum gravity have emerged in recent years, the main

contenders being string theory and loop quantum gravity, together with many other

potential theories such as Regge calculus, causal sets and topological quantization.

Quantum cosmology however does not attempt to answer the question of what the

fundamental theory of quantum gravity is, but rather relies on a canonical quantum

formalism based on general relativity alone. The assumption in doing this is that

whatever the exact fundamental theory of quantum gravity is, in its semiclassical

limit it should agree with the semiclassical limit of the canonical quantum formalism

based only on general relativity [1].

The de�ning equation of quantum cosmology is the Wheeler-DeWitt equation,

which is obtained by directly quantizing Einstein's equations. However, in order to

model the actual fundamental theory of spacetime, we shall resort to nonlinearising

this equation. This is based on the idea that at small scales and high energies (as in

our early universe), it is possible that quantum mechanics itself will change, and may

not be a linear theory anymore. However, many di�erent types of nonlinear quantum

mechanics exist in the literature, and as such we must choose one which is best suited

to quantum cosmology.

We shall choose to use information theoretically motivated nonlinearities, devel-
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oped by Parwani [2]. The nonlinear equations we shall work with are derived via the

maximum entropy/uncertainty principle, in a manner similar to how the canonical

probability distribution is derived via the Gibbs-Shannon entropy in statistical me-

chanics. Such a method provides the most unbiased description of the system, since

maximising the uncertainty measure acknowledges our ignorance of a more detailed

structure [2], and which is appropriate in our case since our knowledge of physics

at small scales is limited. Our subject of nonlinear quantum cosmology is thus con-

cerned with solving information theoretically motivated nonlinear Wheeler-DeWitt

equations.

In this thesis we shall generalise and extend on previous research in this �eld.

Parwani and Nguyen [3] �rst studied the nonlinear Wheeler-DeWitt equation pertu-

batively, for a spatially �at, empty Friedmann-Lemaître-Robertson-Walker (FLRW)

universe with a cosmological constant (also known as a de Sitter or FLRW-Λ uni-

verse) as well as for a spatially �at FLRW universe in which the only matter is a free

massless scalar �eld (also known as a FLRW-φ universe), while Parwani and Tarih [4]

studied the de Sitter universe via non-pertubative numerical methods.

In the �rst part of this work we shall generalise the non-pertubative study of a

de Sitter universe to one where the cosmological constant varies slowly as a function

of the scale factor. As we shall see, we �nd universes with minimum and maximum

allowed sizes, which in some cases are proven to be cyclic universes. In the second

part, we study the spatially �at FLRW-φ universe non-pertubatively. We treat the

scalar �eld as an intrinsic time variable, enabling us to approximately understand

the dynamics of this universe. We �nd di�erent cyclic-type evolutions for di�erent

nonlinear parameter values, with bounces at small and large size in some instances.

However, we do not see periodic nor everlasting cycles. As we shall see, in all these

evolutions the universe begins and ends at a �nite size, without ever reaching zero

size at which a singularity would occur.

3



Chapter 2

Review on Classical Cosmology

In this chapter we shall brie�y recapitulate the main ideas of general relativistic

cosmology that will be used in our study of nonlinear quantum cosmology.

One of the basic assumptions of physical cosmology is that of the cosmological

principle, which states that we do not occupy any special or privileged location in the

universe. The physical consequences of this principle is that our universe is isotropic

(meaning that it appears the same to us regardless of the direction in which we look)

and homogeneous (it is identical at every point). Observationally, we �nd both of

these requirements to be true at scales of more than a 100 million light years.

As noted previously, our universe is expanding, and does so according to Hubble's

law, which says that the velocity, v at which interstellar bodies move away from Earth

is directly proportional to their proper distance from us, d, or

v = Hd, (2.1)

where H is the Hubble parameter, which is in general a function of time, t.

The proper distance is also a function of time, since the universe is expanding. It is

however customary to use comoving coordinates in the study of physical cosmology.

Comoving coordinates are coordinates that are independent of the expansion (and

4



thus independent of time), and to �nd the actual proper distance, d(t) between any

two points, we use

d(t) = a(t)χ, (2.2)

in which χ is the comoving distance, and a(t) is the scale factor. The scale factor

here is a measure of the expansion of the universe, and as such is a function of time.

In studying physical cosmology we have to resort to the laws of general relativity,

which de�ne gravitation as the curvature of spacetime occurring due to the presence

of a certain mass-energy density distribution. This relationship is represented using

the Einstein �eld equations, a set of 10 nonlinear partial di�erential equations, written

succinctly as

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
Tµν . (2.3)

The left hand side of this equation contains information about the local geometry, or

curvature, of a spacetime, in which Rµν is the Ricci curvature tensor, R is the scalar

curvature, gµν is the metric tensor and Λ is the cosmological constant. The right hand

side contains information about the matter and energy content in the same spacetime

via the energy-momentum tensor Tµν . The constant of proportionality contains G

which is Newton's gravitational constant, and c which is the speed of light.

The entire local geometry of the spacetime is in fact encoded within the metric

tensor, gµν , since we can use it to obtain the Ricci curvature tensor, from which we

can then obtain the scalar curvature. Thus, in order to study any spacetime we merely

need to specify the metric tensor of that spacetime and the energy-momentum tensor

of the mass-energy density within it. The metric tensor is related to the separation

in between events, or points in spacetime (the line element), via

ds2 = gµνdx
µdxν . (2.4)

The local geometry of a homogeneous and isotropic universe can be represented
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by the Friedmann-Lemaître-Robertson-Walker (FLRW) line element,

ds2 = −c2N2dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

)
. (2.5)

Here a(t) is the scale factor, N is the lapse function (which relates coordinate time t

and proper time τ), and k is a constant which represents the curvature of all space,

and can take values -1, 0 or 1 depending on whether the universe has an open, �at or

closed geometry respectively. We use comoving spherical spatial coordinates here, and

the comoving coordinate distance, r, is related to the previously speci�ed comoving

distance, χ, by χ = r if k = 0, χ = sin−1 r if k = 1, and χ = sinh−1 r if k = −1.

The matter in our universe can be modelled as a perfect �uid, which is a �uid

without viscosity, shear stresses, or heat conduction. The energy-momentum tensor

for such a �uid is given by

Tµν = (ρc2 + p)uµuν − pgµν , (2.6)

where ρ is the mass-energy density, p is the pressure and uµ is the four-velocity of the

matter.

Using the FLRW metric implied by equation (2.5) and the energy-momentum ten-

sor for a perfect �uid (equation (2.6)) in the expression (2.3), we obtain the Friedmann

equation,

ȧ2 =
8πGρa2

3
− kc2 +

Λc2a2

3
, (2.7)

and the Friedmann acceleration equation,

ä = −4πG

3

(
ρ+

3p

c2

)
a+

Λc2a

3
. (2.8)

These are the equations of motion that govern the expansion of space. However, in

order to solve these equations , we need another equation, since we have 3 unknowns
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(a(t), ρ(a), p(a)) and only 2 equations relating them. This is equation is known as

the equation of state,

p = wρc2, (2.9)

where w is a dimensionless parameter. Various types of �uids can be modelled by

choosing di�erent values for w, such as dust (w = 0), radiation (w = 1/3), and dark

energy/cosmological constant (w = −1).

A scalar �eld, φ, can be understood to be a type of perfect �uid, with

w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(2.10)

(Here c has been set to 1). If the scalar �eld is constant in time, it has zero kinetic

energy, and is thus equivalent to a cosmological constant, since w becomes -1. If the

scalar �eld is free and massless (V (φ) = 0), then w = 1. Likewise, with a proper

choice of kinetic and potential energies, we are able to achieve any w between -1

and 1, and as such the scalar �eld is a useful tool for modelling various cosmological

phenomena.
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Chapter 3

Review on Quantum Cosmology

As mentioned previously, quantum cosmology does not try to answer the fundamen-

tal question of what the correct theory of quantum gravity is, but rather attempts to

solve cosmological problems that occur at scales where both gravitational and quan-

tum e�ects are strong (i.e. large mass and small size) by directly quantizing general

relativity canonically. One hopes that in doing so one arrives at a theory which in its

semiclassical limit agrees with the semiclassical limit of the actual quantum theory of

gravity.

The foundations of quantum cosmology were �rst put in place by Bryce DeWitt

in 1967 [5], who after developing the canonical theory of quantum gravity, applied

canonical quantization to a closed FLRW universe with matter. Further contributions

by Wheeler [6] (who had �rst suggested the use of a wavefunctional) and Misner [7]

completed the canonical formalism. After a lull, the subject was revived with focus on

boundary conditions, with the seminal paper by Hawking and Hartle [8] concerning

the `no-boundary' proposal, and Vilenkin [9] suggesting the `tunnelling' proposal, in

which the universe is born via quantum tunnelling to appear at a �nite, non-zero size.

Since then quantum cosmology has attempted to tackle the question of �xing the

initial conditions for cosmic in�ation, which are unanswered in classical in�ationary

cosmology. Other problems that quantum cosmology has attempted to answer is
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the arrow of time, the origin of structure formation and how the transition from the

quantum realm to the classical realm (quantum decoherence) occurs.

We shall review the main concepts of the subject as pertinent to our study of

nonlinear quantum cosmology. Quantum mechanics is very di�erent from general

relativity in the sense that in general relativity, the �eld equations tell us how a source

of mass-energy a�ects the curvature of spacetime; whereas in quantum mechanics, the

wavefunction is a single mathematical object which contains all the information about

a system. For example, we are able to �nd the expectation value of the momentum

of a quantum particle by using just its wavefunction and an operator. Thus, in

quantum cosmology we would require some sort of wavefunction which can contain

the information of both the geometry and the matter content in the universe. This

mathematical object is known as a wavefunctional,

Ψ[hij(x), φ(x)], (3.1)

which can be interpreted as the probability amplitude of the universe being a spatial

hypersurface, Σ, on which hij(x) is the intrinsic 3-dimensional metric, and which

contains a matter �eld, φ(x).

The wavefunctional is the solution of the Wheeler-DeWitt equation, and in order

to derive this equation we have to use the Hamiltonian, or ADM formalism of general

relativity, in which the 4-dimensional manifold, M that represents the evolution of

our universe is foliated into spatial hypersurfaces, Σt, which are labelled by a global

time function , t. The relevant action is called the Einstein-Hilbert action,

S =
1

16πG

[∫
M
d4x
√
−g(4R− 2Λ) + 2

∫
∂M

d3x
√
hK

]
+ Smatter, (3.2)

where

Smatter =

∫
M
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ− V (φ)

)
(3.3)
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is the usual action for a scalar �eld. Here g is the determinant of the metric tensor

gµν , h is the determinant of the 3-dimensional intrinsic metric hij ,
4R is the Ricci

scalar, and K is the trace of the extrinsic curvature Kij , which describes how the

spatial hypersurfaces Σt curve with respect to the manifold,M within which they are

embedded.

By obtaining the equation of motions, and then quantizing them via identi�cation

of the conjugate momenta, one equation we can �nd is the Wheeler-DeWitt equation

[1] (hereon we only work in natural units, where ~ = c = 1):

ĤΨ[hij , φ] =

[
−(16πG)Gijkl

δ2

δhijδhkl
+

√
h

16πG
(−3R+ 2Λ + 16πGT̂ 0̂0̂)

]
Ψ[hij , φ] = 0

(3.4)

where the 00-component of the energy-momentum tensor in an orthonormal frame,

T̂ 0̂0̂ =
−1

2h

δ2

δφ2
+

1

2
hij∂iφ∂jφ+ V (φ) (3.5)

for a scalar �eld. Also, 3R is the Ricci scalar of the intrinsic 3-geometry, and

Gijkl =
1

2

√
h(hikhjl + hilhjk − hijhkl) (3.6)

is known as the DeWitt metric. The Wheeler-DeWitt equation is in fact not a single

equation, but one equation at every point, x, on the spatial hypersurface Σt.

We also �nd one other quantum equation, known as the momentum constraint [1],

which can be used to show that the wavefunctional, Ψ[hij , φ] is the same for con�gura-

tions {hij(x), φ(x)} which are related by di�eomorphisms in the spatial hypersurface,

Σt. However, we shall only consider the Wheeler-DeWitt equation hereon, since it will

be argued later that the momentum constraint will be automatically satis�ed under

a symmetry restriction.

One may ask on what con�guration space is the Wheeler-DeWitt equation de-

�ned. The answer to this is the space of all Riemannian 3-metrics hij(x), and matter
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con�gurations φ(x) on the spatial hypersurfaces, Σt, which is also known as super-

space. This is an in�nite-dimensional space, since it is essentially a space which has

a 3-geometry at every one of its points [6].

Using the concept of superspace also gives us greater insight into the conceptual

aspects of quantum cosmology, via the method of path integrals. In quantum me-

chanics, the propagator, which gives the probability amplitude of a particle initially

at a point xa to be found later at a certain point xb, can be de�ned as the sum of

all possible paths that the particle can take between both points, with each path as-

signed a certain amplitude. Similarly one is able to de�ne a path integral in canonical

quantum gravity (as pioneered by Gibbons and Hawking [10, 11]) as giving us the

probability amplitude for a spatial hypersurface, Σt, with intrinsic metric hij(x) and

matter con�guration φ(x) to evolve into a spatial hypersurface, Σt′ , with intrinsic

metric h′ij(x) and matter con�guration φ′(x). This is given by a functional integral

of eiS over all 4-geometries gµν and matter con�gurations φ(x) which can interpolate

between the initial and �nal con�gurations, or

〈h′ij , φ′,Σt′ |hij , φ,Σt〉 =

∫
DgggDφeiS[gµν ,φ] (3.7)

Thus, just like how via path integrals in quantum mechanics, we come to un-

derstand that because of quantum �uctuations in position and momentum due to

the uncertainty principle, the classical trajectory of a particle becomes ill-de�ned,

and non-classical trajectories close to the classical one gain a signi�cant amplitude,

likewise in quantum gravity the quantum �uctuations in the superspace coordinates

hij(x) and φ(x) and their respective conjugate momenta due to the uncertainty princi-

ple result in the classical evolution of a 3-geometry (according to Einstein's equations)

becoming ill-de�ned, and now non-classical evolutions close to the classical one also

gain a signi�cant amplitude. In fact, the very idea of a precise evolution or trajectory

loses its meaning, and we have to forgo the concept of a classical spacetime, and make

11



do with a `spacetime foam' in which quantum �uctuations occur in the geometry of

space and its rate of change [6, 12].

However in practice we do not actually work with the full in�nite dimensions

of superspace, as it is impossible. One instead makes some restrictions based on

symmetry, which truncate the in�nite dimensions of superspace to a �nite dimensional

con�guration space, referred to as minisuperspace. The fact that we are able to do this

bodes well for cosmology, since we are used to making the assumptions of homogeneity

and isotropy there, as in the FLRW metric. In general the Wheeler-DeWitt equation

is actually one equation for every point x, of the spatial hypersurface at a certain

point in time; but upon assuming that it is homogeneous we have just one Wheeler-

DeWitt equation for the entire spatial hypersurface. The minisuperspace coordinates

are now φ(x), and up to three coordinates that specify the 3-geometry. If we further

assume isotropy on the spatial hypersurface, then the minisuperspace coordinates are

only φ(x) and the scale factor, a(t), which now completely speci�es the 3-geometry.

Furthermore, under the minisuperspace scheme, the momentum constraint equation

mentioned earlier is automatically satis�ed [13,14], since the di�eomorphisms it deals

with are meaningless in a homogeneous space, allowing us to work only with the

Wheeler-DeWitt equation. We shall use this minisuperspace approximation for our

study of nonlinear quantum cosmology.

However before proceeding, it is important to note that the procedure of minisu-

perspace quantization itself has not been rigorously proven to be a valid approximation

to superspace quantization, and critics have proven several instances in which it could

be an incorrect one (Kuchar̆ and Ryan [15], for example). The source of the possible

invalidation has to do with the fact that if we perform a series expansion of a metric

in terms of space-dependent modes, the uncertainty principle disallows the setting of

the inhomogeneous modes to zero prior to quantization, which is exactly what we do

in minisuperspace quantization. Nevertheless, the procedure is still important in that

it provides us with veri�able results, which are impossible to retrieve using the full
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superspace. Furthermore homogeneity and isotropy are both features observable in

our own universe; and thus it is not unreasonable to expect that a rigorous truncation

scheme to some minisuperspace models will be found in the future, and it is with this

belief that we proceed.

The Wheeler-DeWitt equation in minisuperspace is much simpler than its super-

space counterpart, as we shall see. The Einstein-Hilbert action (3.2) becomes

S ≡
∫
dtL =

1

2

∫
dtNa3

[
− ȧ2

N2a2
+

k

a2
+
φ̇2

N2
− V (φ)

]
(3.8)

for a FLRW universe, and we shall use this action to derive the Wheeler-DeWitt

equation in minisuperspace. It should be noted that the scale factor, a, we use here

is not the physical scale factor aphys, which appears in the FLRW metric. They are

related by the expression

aphys =

√
4πl2p
3Va3

a, (3.9)

where lp is the Planck length, and Va3 is the volume of the spatial hypersurface divided

by a3. Va3 depends on the curvature, k, and the topology of the hypersurface [16,17].

If the spatial hypersurface has a closed geometry k = 1 (i.e. a 3-sphere) and topology

S3 then Va3 = 2π2, whereas if the geometry of the hypersurface is �at (k = 0), Va3

can take any value since the fundamental polyhedra of such hypersurfaces can have

any arbitrary size [18].

We can further simplify the action (3.8) by assuming that we have a scalar �eld

that varies very slowly, or is constant. In such a case we have a negligible kinetic energy

term, and a potential energy term that can be taken to be constant (V (φ) = V ). We

will then only have one minisuperspace coordinate, the scale factor, a(t). The action

then becomes

S ≡
∫
dtL =

1

2

∫
dtN

[
− ȧ

2a

N2
+ a(k − a2

a20
)

]
, (3.10)

where a20 = 1/V . If we vary the action with respect to the lapse function, N (which
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measures the di�erence between coordinate time, t, and proper time, τ , on curves

normal to the hypersurfaces Σt) and choose the gauge N = 1, we then obtain a

Friedmann equation,

ȧ2 +

(
k − a2

a20

)
= 0. (3.11)

Upon comparison with the general form of the Friedmann equation (2.7), we see

that this is just the Friedmann equation for an empty universe with a cosmological

constant, Λ = 3/a20 (a FLRW-Λ universe). The expanding solution to equation (3.11)

for a �at (k = 0) geometry is

a = e

(
t
a0

)
. (3.12)

This solution permits the existence of a universe of zero size, since a→ 0 as t→ −∞.

We shall now obtain the Wheeler-DeWitt equation in minisuperspace for a FLRW-

Λ universe by quantizing the Friedmann equation (3.11). We �rst �nd the momentum

conjugate to the scale factor from the Lagrangian implied by the action (3.10),

pa =
∂L

∂ȧ
= −ȧa. (3.13)

The Friedmann equation (3.11) then becomes

p2a + a2
(
k − a2

a20

)
. (3.14)

Next, we quantize via Dirac's quantization rule, promoting the canonical momen-

tum pa to an operator p̂a = −i ∂∂a in equation (3.14), leading to

[
− ∂2

∂a2
+ a2

(
k − a2

a20

)]
ψ(a) = 0, (3.15)

the Wheeler-DeWitt equation in minisuperspace, for an empty FLRW universe with

a cosmological constant. It is obvious that this equation is mathematically equivalent

to a time-independent Schrödinger equation for a particle of mass m = 1/2 with zero
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Figure 3.1: Plot of the potential energy for a closed, empty FLRW universe with a
cosmological constant

energy, moving under the in�uence of a potential energy,

V (a) = a2
(
k − a2

a20

)
. (3.16)

For a closed universe (k = 1), we �nd that a potential barrier naturally occurs close

to a = 0, as seen in Figure 3.1. This is desirable, as it implies that the universe can

tunnel through the potential barrier to be born at a = a0, thus avoiding zero size.

Also, in the classical dynamics, a collapsing universe would experience a bounce when

it reaches the barrier, thus preventing it from reaching zero size.

We are able to calculate a tunnelling probability for this universe from the poten-

tial energy using the WKB approximation:

P ≈ exp

(
−2

∫ a0

0
da
√
V (a)

)
= exp

(
−2

∫ a0

0
da

√
a2 − a4

a20

)
(3.17)

= exp

(
−2

a20
3

)
(3.18)

= exp

(
− 2

Λ

)
(3.19)

One however has to be aware that this is not a traditional quantum system, in that
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there is no classical observer separate from the quantum system since it encompasses

the whole universe. We thus have to replace the usual Copenhagen interpretation of

quantum mechanics with the idea of `decoherent histories' proposed by Gell-Mann

and Hartle [19], in which each possible history of the universe is assigned a certain

probability. As such, equation (3.19) tells us that the most probable history in which

a closed FLRW-Λ universe tunnels into existence at a �nite size is one where the

cosmological constant is at the maximum value it is allowed to take.

However, we do not see the kind of potential barrier seen in Figure 3.1 for the

cases of k = 0, and k = −1, which is unfortunate, as much experimental data based

on observations of the cosmic microwave background and observations of distant su-

pernovae imply that our universe is spatially �at (k = 0). We thus study nonlinear

quantum cosmology for spatially �at universes in order to see if the nonlinearities may

cure the problem of zero size in a manner similar to that seen thus far, or in a di�erent

manner altogether. It is however imperative to note that we do not actually have a

singularity of curvature invariants at zero size in the model we have been working

with so far, as the only matter contained in a FLRW-Λ universe is a cosmological

constant. Nevertheless, by studying this model we hope to �nd e�ects that will also

hold true in more complicated models that do contain physical singularities.
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Chapter 4

Review on Nonlinear Quantum

Mechanics and Nonlinear

Quantum Cosmology

It has been widely speculated in recent years that quantum mechanics could just be

an approximate theory, and that the Schrödinger equation should actually contain

additional, small, nonlinear terms. In fact, nonlinear Schrödinger equations are re-

quired to phenomenologically describe both quantum and classical systems, such as

the Gross-Pitaevskii equation which describes the wavefunction of a Bose-Einstein

condensate, and the cubic nonlinear Schrödinger equation that occurs in �ber optics

and the description of water waves.

Thus, it would not be unreasonable to expect that under certain extreme con-

ditions quantum mechanics in general will have to be modi�ed, and nonlinearities

that would otherwise be small might increase in magnitude to be comparable with

the linear terms of the equation. One such condition could be the Planck scale, and

this has been suggested by Svetlichny [20], who conjenctured that linear quantum

mechanics is merely an emergent feature of the actual theory of quantum gravity,
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which is probably nonlinear.

We thus shall attempt to solve our problem of understanding our universe at the

Planck scale by resorting to nonlinear modi�cations to quantum mechanics. However

many such modi�cations exist, with various motivations, and in this work we shall use

an information theoretically motivated nonlinear Schrödinger equation introduced by

Parwani [2]. Our basis for choosing this nonlinear equation over the others relies on

the fact that it is based on the maximum uncertainty principle, which as we shall see

is apt since we are attempting to model unknown new physics at the Planck scale,

the form of which we do not know.

The maximum uncertainty principle here is the general principle of which the

maximum entropy principle of statistical mechanics is an example. In statistical me-

chanics, the maximum entropy principle allows us to derive an unknown probability

distribution for a statistical system under a given constraint. For example, if a sta-

tistical system has an unknown probability distribution, p(x), but the mean energy

is given as E =
∫
ε(x)p(x)dx (the constraint), we maximise the Gibbs entropy

IGS = −
∫
p(x) ln p(x)dx (4.1)

subject to the constraint to give us the correct form of the probability distribution.

In other words, by maximising IGS − βE (where β is a Lagrange multiplier) with

respect to variations in p(x) we obtain the canonical probability distribution p(x) ∝

exp(−βε(x)).

However an identical expression to that of (4.1) was derived by Shannon [21] as

an information measure, which quanti�es the information content, or conversely the

uncertainty in a system. The maximum uncertainty principle is based on the idea

that by maximising the uncertainty measure, one acknowledges our ignorance of a

more detailed structure, thus giving us an unbiased description of the system.

The measure (4.1) is not the only uncertainty measure we may use when using
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the maximum uncertainty principle; for example if one already has some information

about the system in the form of a reference probability distribution r(x), one may

use the Kullback-Liebler information measure,

IKL = −
∫
p(x) ln

p(x)

r(x)
dx, (4.2)

which reduces to the Shannon information measure (4.1) when we have no a priori

information about the system, and are forced to take r(x) to be a uniform distribution.

It was shown by Reginatto [22] that it is also possible to derive the Schrödinger

equation via the maximum uncertainty principle by using another information mea-

sure, known as the Fisher information measure, as follows. By making the Madelung

transformation ψ =
√
pe

iS
~ , the Schrödinger equation may be rewritten in terms of

the hydrodynamical variables, p and S:

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ V (x) +Q = 0 (4.3)

∂p

∂t
+

1

m

∂

∂x

(
p
∂S

∂x

)
= 0 (4.4)

where

Q = − ~2

2m

1
√
p

∂2.
√
p

∂x2
(4.5)

Reginatto showed that it is possible to recover the Schrödinger equation in this form

by minimising the combination ΦA + ξIF , where the action,

ΦA =

∫
p

(
∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ V (x)

)
dx dt, (4.6)

the Fisher information measure,

IF =

∫
1

p

(
∂p

∂x

)2

dx dt (4.7)
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and the Lagrange multiplier ξ = ~2
8m .

It may at �rst seem apparent that both the information measures ((4.2) and (4.7))

used in statistical mechanics and quantum mechanics are di�erent, however there is in

fact a close relationship between both measures. If we choose the reference distribution

in the Kullback-Liebler measure to be identical to p(x) but with an in�nitesimally

shifted argument, or r(x) = p(x+ ∆x), we see that, to lowest order [2]

IKL(p(x), p(x+ ∆x)) =
−(∆x)2

2
IF (p(x)) +O(∆x)3 (4.8)

(It should be noted that for quantum mechanical applications, the probability dis-

tribution, p is not only a function of position, x, but a function of time, t as well,

and as such in these cases the Kullback-Liebler measure should have an integral not

only over position, but also over time). Thus one may speculate that a generalisa-

tion to the Schrödinger equation might arise if one uses the left hand side of (4.8)

to derive it instead of just the Fisher information. This is indeed true, as was shown

by Parwani [2], and we arrive at a nonlinear Schrödinger equation by minimising the

combination ΦA − ξIKL. Here we need a negative sign in front of the term with the

Kullback-Liebler measure, due to the negative sign that occurs in the leading order

term in equation (4.8).

However the nonlinear Schrödinger equation we obtain is problematic, because

singularities occur in it whenever either p(x) or p(x + ∆x) vanishes. Thus in order

to evade this, we shall modify our information measure. There is nothing wrong with

doing this, as a relationship of the form (4.8) is satis�ed by not only the Kullback-

Liebler measure, but by many other information measures as well; that is they give

us the Fisher measure multiplied by some factors to leading nontrivial order in ∆x,

when they are expanded in terms of ∆x. However there are some further caveats that

the information measure has to satisfy in order for it to give us a proper quantum

mechanical equation. Firstly, the information measure should be positive de�nite,
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and of the form

G(p(x, t); ∆x) =

∫
p(x, t)H(p(x, t); ∆x)dx dt, (4.9)

in order for the superposition principle to hold for wavefunctions of negligible over-

lap. Also, we require that the function H(p(x, t); ∆x) in equation (4.9) should be

invariant under scaling of the function p(x, t), in order to ensure that the solutions

are normalizable [2].

An information measure that satis�es all these assumptions, and does not lead to

singularities is

IKL−R =
1

η4

∫
p(x) ln

(
p(x)

(1− η)p(x) + ηp(x+ ηL)

)
dx dt, (4.10)

which is a regularized Kullback-Liebler measure, where L = ∆x, and η is a dimen-

sionless parameter. The range of the parameter is 0 < η ≤ 1, and when η = 1 the

measure reduces to the negative of the Kullback-Liebler measure (4.2).

Thus, minimising the combination ΦA+ ξIKL−R leads to the information theoret-

ical nonlinear Schrödinger equation [2]

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ + F (p)Ψ, (4.11)

where the nonlinear term is

F (p) = QNL −Q, (4.12)

where,

QNL =
~2

4mL2η4

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

]
,

(4.13)

Q is the quantum potential, equation (4.5), p(x) = Ψ(x, t)∗Ψ(x, t) is the probability

density, and p±(x) = p(x± ηL) is the probability density at two neighbouring points.
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It can be shown that in the limit that the nonlinear length, L approaches zero,

QNL reduces to Q, giving us the linear Schrödinger equation. The nonlinear length,

L may be interpreted in various ways; it is possible that it is the Planck length,

lp ∼ 10−35, or perhaps related to the size of elementary particles, or it could just be

the resolution at which spatial coordinates become distinguishable [2].

We now wish to nonlinearise the Wheeler-DeWitt equation in minisuperspace

(3.15) in a similar manner to how the Schrödinger equation was nonlinearised. We

�rst recall that the Wheeler-DeWitt equation in minisuperspace we saw in the last

chapter is equivalent to a time-independent Schrödinger equation for a particle of

mass, m = 1/2 and zero energy. Thus, factoring out the time-dependence of the

wavefunction in equation (4.11) as usual, Ψ(x, t) = ψ(x)e
−iEt

~ , we �nd the time-

independent nonlinear Schrödinger equation,

Eψ(x) = − ~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) + F (p)ψ(x) (4.14)

Then, making the variable change x→ a, and setting E = 0, m = 1/2, and using

natural units (~ = c = 1), we arrive at the nonlinear Wheeler-DeWitt equation in

minisuperspace, [
− ∂2

∂a2
+ V (a) + F (p)

]
ψ(a) = 0. (4.15)

An alternative way of understanding the appearance of the nonlinearity is by taking

Dirac's quantization rule to be modi�ed to become p̂2a = − ∂2

∂a2
+F (p). It is important

to note that the nonlinear length, L is now rescaled just like how the scale factor,

a was rescaled in equation (3.9), and we are working with L and not Lphys. In this

case it is possible to interpret L as a minimal uncertainty in position, as seen in some

suggested theories of quantum gravity, such as superstring theory [23].

It is the objective of nonlinear quantum mechanics to study the solutions to equa-

tions of the type (4.15). For a potential energy of the form (3.16), corresponding to
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an empty FLRW universe with a cosmological constant, equation (4.15) becomes

[
− ∂2

∂a2
+ a2

(
k − a2

a20

)
+ F (p)

]
ψ(a) = 0. (4.16)

Nonlinear equations such as this are di�cult to solve exactly, and one may resort

to pertubative approximations by assuming a small nonlinearity. As mentioned before

we choose to focus on �at (k = 0) universes; and using a pertubative treatment, we

are able study the e�ects of adding the nonlinearity to the Wheeler-DeWitt equation,

as was shown by Nguyen and Parwani [3], and as we shall review here. Setting k = 0

and a = lb in equation (4.16),with l = a
1
3
0 , one obtains

[
− ∂2

∂b2
− b4 + l2F (p(lb))

]
φ(b) = 0, (4.17)

where φ(b) ≡ ψ(a). Next, assuming small nonlinearity at all times (even when the

universe was of small size), we expand the nonlinear term F pertubatively in L to

leading order,

F (b) =
η(3− 4η)L

l3
f(b) +O(L2) (4.18)

where

f(b) =
q′

12q3
(2q′2 − 3q′′q). (4.19)

Here q(b) = φ∗(b)φ(b), and primes refer to derivatives with respect to b. Replacing

this form of the nonlinearity into equation (4.17) gives us, to leading order,

[
− ∂2

∂b2
− b4 + η(3− 4η)εf(b)

]
φ(b) = 0, (4.20)

where ε ≡ L/l is a parameter introduced to measure the strength of the nonlinearity.

We may then iterate about the solution to the unperturbed equation by assuming

ε � 1, to solve the equation, as follows. The expanding solution to equation (4.20),
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with ε = 0 (no perturbation), is a Hankel function,

φ0(b) ∝
√
bH

(2)
1
6

(
b3

3
) (4.21)

≈
√

6

πb2
exp

[
− i(b

3 − π)

3

]
as b→∞. (4.22)

Using the asymptotic form (4.22), we may �nd q0(b) and thus f0(b), giving us an

e�ective potential

Veff = −b4 + η(3− 4η)εf0(b). (4.23)

In order to avoid zero-size, as was discussed at the end of the last chapter, we

would need the potential (4.23) to form a potential barrier close to b = 0. This is

indeed seen, since for small b, it can be shown that

f0 ≈ 0.1b, (4.24)

and thus for η < 3/4, we see an e�ective potential barrier close to b = 0, through

which the quantum universe tunnels into existence.

Applying the WKB formula as before, it can be shown that the tunnelling prob-

ability,

P ≈ exp(−0.1η(3− 4η)ε)). (4.25)

Therefore for �xed η, as long as it is less than 3/4, the probability can be interpreted as

implying that smaller values of ε are `preferred', which is consistent with our previous

assumption ε � 1. Thus, we have shown that for a �at (k = 0) universe, using a

nonlinear Wheeler-DeWitt equation results in a universe tunnelling into existence at a

�nite size, and which is classically prevented from shrinking to zero size via a bounce,

just as in the case for a closed (k = 1) universe using the linear equation.

However, we have only used approximate pertubative methods thus far, assuming

small nonlinearity throughout time, and a more general study should allow for larger
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nonlinearities via non-pertubative methods, and we shall do just this in the next

chapter.
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Chapter 5

Non-pertubative Study of a

Spatially Flat FLRW Universe

with a Cosmological Constant as a

Function of the Scale Factor

5.1 Motivation

As we have seen, FLRW-Λ universes with positive curvature (k = 1) are allowed to

be born at a �nite size due to quantum tunneling, as was �rst described by Atkatz

and Pagels [24] as well as Vilenkin [25]. Also, as shown in the previous chapter, if we

introduce information theoretically motivated nonlinearities into the Wheeler-DeWitt

equation in minisuperspace, we can similarly avoid a zero size universe at t = 0 for

�at universes (k = 0) as well, as long as the parameter η < 3/4.

However we have only treated the nonlinear Wheeler-DeWitt equation pertuba-

tively thus far, for a non-varying cosmological constant in a de Sitter universe. In

Parwani and Tarih [4], the same case was treated non-pertubatively, leading to a nu-

merically soluble di�erence equation. Our motivation for this section is to extend the
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non-pertubative treatment to the case of a �at FLRW universe in which the only mat-

ter is a cosmological constant which varies as a function of the scale factor. We shall

�rst review the non-pertubative treatment for the case of a non-varying cosmological

constant.

5.2 Review of the Non-Pertubative Study of a Flat FLRW Universe

with a Non-varying Cosmological Constant

As we have seen in the previous chapter, for our case of the �at FLRW-Λ universe, we

may attempt to model new physics at the quantum gravity scale using the framework

of information theory by using the following nonlinear Wheeler-DeWitt equation:

[
− ∂2

∂a2
− a4

a20
+ F (p)

]
ψ(a) = 0. (5.1)

To study it non-pertubatively we need to express the wavefunction of the universe in

terms of its amplitude and phase:

ψ =
√
peiS . (5.2)

Using this form of the solution, the Wheeler-DeWitt equation will have an imaginary

part and a real part. The imaginary part of the equation is then a continuity equation,

∂

∂a

(
p
∂S

∂a

)
= 0, (5.3)

which is solved to give us the constant current, σ:

p
∂S

∂a
= σ. (5.4)

This constant current can be �xed by requiring that the non-pertubative solution

approaches the asymptotic form of the Hankel function solution to the linear Wheeler-
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DeWitt equation (with a0 set to 1),

[
− ∂2

∂a2
− a4

]
ψ(a) = 0, (5.5)

for some large a. The asymptotic form of the solution is

ψ0(a) ≈
√

6

πa2
exp

[
− i(a

3 − π)

3

]
as a→∞. (5.6)

Thus, using the amplitude and the phase of the asymptotic form, we obtain:

σ =
−6

π
. (5.7)

The derivatives of S in the real part of the nonlinear Wheeler-DeWitt equation,

(
∂S

∂a

)2

− a4

a20
+QNL = 0, (5.8)

can then be eliminated using equation (5.4), giving us a pure di�erence equation for

the probability density (the detailed derivation can be found in Appendix A):

(
σ

p

)2

=
a4

a20
− 1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

]
(5.9)

This equation relates the probability density p(a) at equally spaced lattice points,

which are separated by a step size ζ = ηL, which is also a measure of the nonlinearity.

However it is imperative to note that the variable a, and thus p(a) are both still

continuous. All that equation (5.9) implies is that the value of p(a) at any point is

now non-local, in that it depends on the values of p(a + ζ) and p(a − ζ). Thus, it

should be understood that the region between any two lattice points is continuously

connected.

The di�erence equation can easily be solved numerically, �rst, by specifying two

initial values for p+ and p, and �nding p−. Then we refer to the original p as p+, and
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the original p− as p, and �nd the next lattice point. Iterating this process, we are able

to �nd p as a function of a. However, this is only possible since, using the di�erence

equation (5.9), we are able to write p− in terms of p and p+. It is unfortunately

impossible to write p+ explicitly in terms of p and p−, and as such we have to resort

to Newton's method to �nd values of the probability density forward from the two

initial points speci�ed earlier.

For the backward evolution a variable change has to be made in the di�erence

equation, namely a → a + ζ, which leads to a relabelling of the probability density

terms:

p−(a)→ p(a) (5.10)

p(a)→ p+(a) (5.11)

p+(a)→ p++(a) (5.12)

As before p±(a) = p(a ± ζ), and p++(a) = p(a + 2ζ). We may then rearrange the

di�erence equation into an explicit form for p(a):

p(a) =
ηp+(a)

(1− η)

[
1

1− (1−ηη )D
− 1

]
, (5.13)

where (with the constant a0 set to 1),

D = ln

(
p+

(1− η)p+ + ηp++

)
+

ηp++

(1− η)p+ + ηp++
− 2ζ2η2

(
(a+ ζ)4 − σ2

p2+

)
. (5.14)

Using equation (5.13) we may evolve the equation backwards from two starting lattice

points.

These two initial values are obtained by assuming that about a certain size (which

we shall assume to be a = 5), the nonlinearity is small, and that the wavefunction

of the universe will be close to the solution of the linear Wheeler-DeWitt equation

(5.5) that represents an expanding universe, which, as before, is given by the following
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Hankel function:

ψ0(a) ∝
√
aH

(2)
1
6

(
a3

3
) (5.15)

≈
√

6

πa2
exp

[
− i(a

3 − π)

3

]
as a→∞. (5.16)

In fact one can choose any initial starting point besides a = 5 as long as it is not too

close to a = 0 (since it was conjenctured that when the universe is close to zero size

the nonlinearities would be large in magnitude), and this will not qualitatively a�ect

the numerical results obtained. We use the asymptotic form of the solution given by

equation (5.16) to �nd the values of the probability density p = ψ∗0ψ0 at a = 5 and

a = 5 − ζ, which gives us the values of p++ and p+ respectively for the backward

evolution, or the values of p and p− respectively for the forward evolution.

In Parwani and Tarih [4] many interesting properties were found for this cosmo-

logical model for various values of ζ and η. Firstly, it was found that a maximum size

for the universe, amax, existed for all values of ζ and η (Figures 5.1 and 5.2). This

maximum size occurs because in the forward evolution, after several iterations, a lat-

tice point which is negative or complex is found. Such a point denotes the beginning

of an unphysical region, and as such constrains the range of scale factors within which

the quantum universe can be found. It was also found that as ζ increases, the value

of amax decreases.

Also, as ζ is increased while η is kept constant, there is a certain critical ζ value

(ζc) beyond which we �nd the occurrence of a minimum size to the universe, amin

(Figure 5.3). This occurs in a similar manner to the occurrence of the point amax,

that is, a negative/complex lattice point is encountered in the backward evolution,

and is considered to be the beginning of an unphysical region.

The trend for amax values also changes once ζc is encountered, that is, amax

increases as ζ increases, for ζ ≥ ζc. Also the trend for amin is that it decreases as ζ is

increased. Thus, we �nd that the range of allowable scale factor values increases as
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Figure 5.1: Plot of the probability density function p(a) as a function of the scale
factor a, for ζ = 0.005 and η = 0.5.

ζ is increased, as long as ζ ≥ ζc. Also, the probability density implying a minimum

and maximum allowable size to the universe also allows for the existence of cyclic

universes, with bounces at amin and amax. We may con�rm such behaviour if the

e�ective potential forms real barriers at amin and amax. A minimum size to the

quantum universe is ideal because it allows us to avoid the problem of a singularity

at a = 0. But what about the quantum universes which have ζ < ζc? Fortunately,

Figure 5.2: Occurrence of amax for ζ = 0.005 and η = 0.5.
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Figure 5.3: Plot of the probability density function p(a) as a function of the scale
factor a, for ζ = 0.049 and η = 0.5.

when we study the e�ective potential Veff ≡ −a4 + F (p), we �nd a real potential

barrier close to a = 0, as seen in Figure 5.4, as long as η < 3/4, which is in agreement

with the pertubative treatment. This type of potential barrier occurs for all low

values of ζ, as long as η < 3/4, and possibly higher values of ζ, but this cannot be

determined accurately since when generating the potential numerically, we need to

Figure 5.4: Plot of the e�ective potential Veff as a function of the scale factor a,
for ζ = 0.005 and η = 0.5.
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use the central di�erence approximation (to calculate the term Q), which is not an

accurate approximation for large lattice spacing.

5.3 The Scale Factor Varying Cosmological Constant

We now extend the work done by Parwani and Tarih to a more general case, that is

a model in which we replace the non-varying cosmological constant by one that is a

function of the scale factor, Λ(a).

The Einstein-Hilbert action for a FLRW universe is:

S =

∫
dtL =

1

2

∫
dtNa3

[
− ȧ2

N2a2
+
φ̇2

N2
− V (φ) +

k

a2

]
. (5.17)

For a slowly varying scalar �eld the action reduces to:

S =

∫
dtL =

1

2

∫
dtN

[
− ȧ

2a

N2
+ a

(
k − a2

a20

)]
, (5.18)

where the kinetic energy term has been ignored, and,

1

a20
= V (φ) =

Λ

3
. (5.19)

Now in Parwani and Tarih, the cosmological constant was treated as being both

a constant of time, t and the scale factor, a. In that case setting the kinetic energy

term to zero was not an approximation. However when one chooses to vary the

cosmological constant, Λ, one has a varying potential V (φ), and as such the kinetic

energy term will not be zero. We shall ignore the kinetic energy term by assuming that

the variation is slow, in order to simplify the analysis. Because of this simpli�cation,

the following analysis of the varying cosmological constant case should be considered

as an approximation.

We shall now make the cosmological constant a function of the scale factor, a, by

setting,
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a0 =
(1 + a2m)

(1 + 52m)
, (5.20)

which in turn gives us a cosmological constant of the form:

Λ(a) =
3

a20
= 3

(1 + 52m)2

(1 + a2m)2
, (5.21)

where m is a parameter that can only take values 0 < m ≤ 1 (the m = 0 case

corresponds to a non-varying cosmological constant). m is constrained to these values

since it can be shown that when m > 1, our previous assumption that the kinetic

energy term is small at all times is violated.

The factor of (1 + 52m)2 is a convenient normalisation used to simplify our nu-

merical calculations, as will be explained later in this chapter. Figure 5.5 shows how

the cosmological constant in equation (5.21) varies as a function of a for various m

values. It is obvious from the �gure that the cosmological constant is large when the

universe is small, and drops in magnitude as the universe expands. The magnitude

of the cosmological constant when the universe is small depends on the parameter m.

Figure 5.5: The cosmological constant, Λ(a) as a function of the scale factor a, for
m=0.5, 0.75 and 1. Though not obvious from the diagram, all three functions are
equal at a = 5, as expected.
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Figure 5.6: The classical evolution of universes with m=0, m=0.25, m=0.5, m=0.75
and m=1. Note that although not shown here, t can be negative, since for the m = 0
case a = 0 when t = −∞. Also, as expected, a = 5 at the same time for all �ve
universes.

We are still able to �nd the Friedmann equation as before, by varying the action

with respect to the lapse function, N and choosing the gauge N = 1, giving us:

ȧ2 +

(
k − a2 (1 + 52m)2

(1 + a2m)2

)
= 0. (5.22)

We wish to study only �at universes, and thus we set k = 0. This equation can then

be solved numerically in terms of a. Figure 5.6 shows the classical evolution of the

scale factor, a with time, t, for various values of the parameter m. It is clear that as

m is increased, there is decreasing acceleration for the classical universe. For m = 0.5

linear expansion occurs after a certain point in time, and for any m > 0.5 we �nd

deceleration in the universe after a certain point in time.

We may once again perform minisuperspace quantization as before, replacing the

canonical momentum pa = ∂L
∂ȧ = −ȧa by the operator p̂ = −i ∂∂a , giving us the
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following Wheeler-DeWitt equation.

[
− ∂2

∂a2
− a4 (1 + 52m)2

(1 + a2m)2

]
ψ(a) = 0 (5.23)

We may solve this equation numerically for ψ(a), from which we can obtain the

probability density distribution, p(a) for various values of m. Examples of these are

shown in Figures 5.7-5.10.

Next, we nonlinearise within the information theory framework (references [2,26]),

giving rise to the following nonlinear Wheeler-DeWitt equation,

[
− ∂2

∂a2
− a4 (1 + 52m)2

(1 + a2m)2
+ F (p)

]
ψ(a) = 0. (5.24)

We shall avoid studying this equation pertubatively, since in the study involving the

non-varying cosmological constant, it was found that the non-pertubative treatment

provided more information, and therefore we shall proceed with such a treatment,

which shall give us a di�erence equation. As usual we make the Madelung transfor-

mation ψ =
√
peiS , giving us an equation with a real and imaginary part. In fact, the

derivation of the di�erence equation for this case is identical to that of the case of a

non-varying cosmological constant, as shown in Appendix A, since the only di�erence

Figure 5.7: Probability density distribution for m = 0. This is equivalent to the
non-varying cosmological constant case, and should be used for comparison with the
following �gures.
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Figure 5.8: Probability density distribution for m = 0.1. There are small-amplitude
oscillations along this curve, which are too small to be seen here.

Figure 5.9: Probability density distribution for m = 0.5. Here we see oscillations
that decrease in both amplitude and wavelength as a increases.

Figure 5.10: Probability density distribution for m = 1. In this case the oscillations
are constant in amplitude and wavelength after a certain value of a.
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is that now a0 is not a constant but a variable (equation (5.20)). Thus we can just

replace the new form of a0 into the di�erence equation (equation (5.9)), giving us:

(
σ

p

)2

= a4
(1 + 52m)2

(1 + a2m)2
− 1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

]
(5.25)

We shall study this di�erence equation numerically for m = 0.1, m = 0.5 and

m = 1, since this should be su�cient to understand the change in behaviour in the

probability density, p(a) as m is increased from 0 to 1. The parameter ζ will be varied

in the range 0 > ζ > 1, whereas for the parameter η we shall concentrate mainly on

η = 0.5, since varying η does not provide us with much new behaviour.

5.4 Numerical Analysis

In our numerical analysis, we follow the method of Parwani and Tarih [4], where we use

the solution to the linear Wheeler-DeWitt equation to �nd the values of the two initial

lattice points, and evolve backward as well as forward from those points. We have once

again assumed that at a certain size, a = 5, the solution of the nonlinear Wheeler-

DeWitt equation approaches that of the linear one. Here we are able to understand

why the factor of (1 + 52m) was included when de�ning the cosmological constant in

equation (5.21), as follows. At a = 5, the factor allows our nonlinear Wheeler-DeWitt

equation for a scale factor-varying cosmological constant, equation (5.24) to become

the nonlinear Wheeler-DeWitt equation for a non-varying cosmological constant,

[
− ∂2

∂a2
− a4 + F (p)

]
ψ(a) = 0. (5.26)

Then by assuming that the nonlinearity is small/zero at this size, this equation be-

comes the linear equation (5.5), and as such we are still able to use the linear solution

(5.16) for our initial value of p(a) at the lattice point a = 5 when solving the di�erence

equation. For the other initial lattice point at a = 5 − ζ we do not exactly retrieve
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equation (5.26), but since we are constrained to small ζ values, using equation (5.26)

with zero nonlinearity to �nd the initial value at that point is a good approximation.

For the backward evolution, we once again have to make the same variable change

as in the previous case (a → a + ζ), in order to obtain an explicit form for p(a) in

terms of two other lattice points. This variable change causes the same relabelling of

the probability density terms as before (eqs. (5.10) to (5.12)), and thus we have:

p(a) =
ηp+(a)

(1− η)

[
1

1− (1−ηη )D
− 1

]
, (5.27)

where,

D = ln

(
p+

(1− η)p+ + ηp++

)
+

ηp++

(1− η)p+ + ηp++
−2ζ2η2

(
(a+ ζ)4

(1 + 52m)2

(1 + (a+ ζ)2m)2
− σ2

p2+

)
.

(5.28)

We use the linear solution (5.16) to calculate the two initial lattice points p++ and

p+ and use them to �nd p. Next we refer to p+ as p++, and p as p+, and �nd the

next lattice point value. Iterating this process several times, we are able to �nd the

probability density p(a) for lattice points at smaller scale factor values than the two

initial points. Similarly, for the forward evolution, we call the same two initial points

p− and p, and use the discrete di�erence equation as a function of p+ in Newton's

method, which is then used to obtain p+. Renaming the points and iterating the

process in a manner similar to the backward evolution, we are able to generate the

entire pro�le of the probability density p(a) as a function of a.

5.5 Results

5.5.1 m=1

For the case of m = 1, we vary the parameter ζ, while the parameter η is kept equal

to 0.5, in order to obtain various probability density distributions, p(a). The �rst

major di�erence from the non-varying cosmological constant case that is immediately
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Figure 5.11: Plot of the probability density function p(a) as a function of the scale
factor a, for m = 1, ζ = 0.005 and η = 0.5.

apparent is that for low values of ζ there is no amax, as seen in the plot of the prob-

ability density function, p(a) for ζ = 0.005 (Figure 5.11). This however immediately

poses a problem: since p(a) does not seem to vanish as a → ∞, it is not normaliz-

able. This could be an e�ect of our analysis being an approximate one, since we have

ignored the kinetic energy term in the Einstein-Hilbert action, equation (5.17). It

Figure 5.12: Oscillations in the probability density function p(a) for m = 1, ζ =
0.005 and η = 0.5.
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Figure 5.13: Plot of the probability density function p(a) as a function of the scale
factor a, for m = 1, ζ = 0.0394 and η = 0.5.

should be noted that in the m = 0 case studied by Parwani and Tarih [4], oscillations

of small amplitude, which tend to decrease in wavelength and increase in amplitude

as a is increased, were found in the probability density curves. Though not obvious

from Figure 5.11, similar oscillations were also found for m = 1, but with much larger

amplitude and wavelength for identical values of ζ, as seen in Figure 5.12.

As ζ is increased, we �nd that the oscillations slowly increase in amplitude, and

decrease in wavelength, eventually giving us a pro�le as seen in Figures 5.13 and 5.14,

which are for ζ = 0.0394. As we increase ζ further, we eventually encounter a critical

value, ζmaxc , at which we �nd an amax in the probability density function. For the

m = 1 case, we �nd that ζmaxc = 0.0397, and the occurrence of amax for this ζ value

can be seen in Figure 5.15.

It can easily be seen that the oscillations that are seen in Figure 5.14 and Figure

5.15 have amplitudes that seem to be modulated periodically. However, this is prob-

ably an e�ect of the larger lattice spacing (due to the higher values of ζ) causing the

actual shape of the oscillations to be distorted.

As we increase ζ even further, there will be a value, ζminc , at which we �nd an

amin. For m = 1, we have ζminc = 0.0407. Figure 5.16 shows an example of an amin
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Figure 5.14: Oscillations in the probability density function p(a) for m = 1, ζ =
0.0394 and η = 0.5. Here the lattice points are denoted, in order to show that the
larger spacings between them have distorted the pro�le slightly.

Figure 5.15: Plot of the probability density function p(a) as a function of the scale
factor a, for m = 1, ζ = 0.0397 and η = 0.5. Here amax = 14.037

occurring for ζ > ζminc .

Increasing ζ above the two critical values does not give us much new features.

The only notable feature is the slight change in trend for the values of amin as ζ is

increased. Whereas for the m = 0 case, amin in general decreases as ζ is increased,

here we see that for low ζ values amin in general increases for increasing ζ, before
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Figure 5.16: Plot of the probability density function p(a) as a function of the scale
factor a, for m = 1, ζ = 0.041 and η = 0.5.

giving way to the typical decreament seen in the m = 0 case, as seen in Figure 5.17.

The behaviour of amax however is similar to the m = 0 case, where amax in general

decreases, before beginning to increase again about ζminc onwards. In other words, the

range of allowed scale factor, a, values increases with increasing ζ. However these are

only a general trends, and there are occasionally sudden jumps from this behaviour.

Figure 5.17: Plot of the variation of amin values with ζ, for m = 1. Though not
shown in this plot, amin decreases monotonically for ζ > 0.24.
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Figure 5.18: Plot of the probability density function p(a) as a function of the scale
factor a, for m = 0.5, ζ = 0.01 and η = 0.5. Here amax = 18.317.

5.5.2 m=0.5

For the case of m = 0.5 we �nd results that are closer in behaviour to the m = 0

case. For all ζ, even as low as 0.0005, we always �nd the occurrence of an amax. The

critical ζ value beyond which the occurrence of amin is found (ζminc ) is 0.0438.

The probability density distributions found for low ζ were similar to Figure 5.15,

except that the oscillations in the curve were much less obvious, as in Figure 5.18. As

ζ is increased, we �nd that the oscillations behave di�erently from the m = 1 case, in

that they now increase in both wavelength and amplitude, thus becoming increasingly

less apparent. This trend continues until ζ is close to ζminc , where the amplitude of

the oscillations suddenly grow, giving us a pro�le as in Figure 5.19.

Beyond ζminc , the probability density distributions exhibited both amin and amax,

as in Figure 5.16. Unlike the m = 1 case, we �nd that amin in general only decreases

as ζ is increased (for ζ values at which it occurs). The trend in the variation of amax

however, is similar to that of the m = 0 and m = 1 case, that is it decreases as ζ is

increased, but only until ζ = ζminc , beyond which it generally increases. There are

again, however, some instances where jumps from monotonic behaviour are noted in
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Figure 5.19: Plot of the probability density function p(a) as a function of the scale
factor a, for m = 0.5, ζ = 0.0435 and η = 0.5. Here amax = 5.302

these trends, as before. Also, the oscillations seen in the pro�les for ζ < ζminc also

seem to be of smaller amplitude, when compared to those seen in pro�les with m = 1

for the same value of the parameter ζ. We also �nd that, for low ζ, amax (ζ ≤ 0.04237)

and amin (ζ ≤ 0.0463) tend to be lower for m = 0.5 when compared to m = 1, for

equal values of ζ.

5.5.3 m=0.1

For m = 0.1, we �nd behaviour that is even closer to the m = 0 case. amax occurs

for all values of ζ, and as ζ is increased, amin occurs for all ζ > ζminc = 0.0462963.

For low values of ζ the amax (ζ ≤ 0.04065) and amin (ζ ≤ 0.0641) values tend

to be even lower when compared to the previous cases, for equal values of ζ. The

oscillations are also of even smaller amplitude in comparison to the previous cases, for

equal values of ζ, and behave in a similar fashion to the oscillations found for m = 0.5

as we increase ζ.

The trends associated with the variation of amax and amin are similar to that

found for m = 0.5. Here we �nd that as ζ is increased, amax decreases until ζ = ζminc ,

beyond which it increases. This behaviour is similar to that of all the previous cases.
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amin unsurprisingly varies like how it did for m = 0.5 and m = 0, that is it decreases

as ζ is increased. Once again, there are some values of ζ for which the values of amax

and amin do not follow these trends.

It should be noted that using the linear Wheeler-DeWitt equation (5.23), the

probability density curves for all three values of m (Figures 5.8-5.10) already exhibit

oscillations, and as such the oscillations we have seen thus far are probably not due

to the e�ects of adding the nonlinear term to the equation alone.

5.6 Analytical Study of amin, amax and the Di�erence Equation

In the previous section we see the occurrence of minimum and maximum scale fac-

tor values beyond which the probability density distribution, p(a) takes on nega-

tive/complex values, which are considered unphysical. These occurrences can be

understood by noticing that the di�erence equation does not guarantee that p(a)

will remain positive when we evolve it backward or forward from two initial points.

This can be easily seen by studying the form of the di�erence equation used for the

backward evolution, equation (5.27).

We �rst intend to understand why we do not see an amax for m = 1 at low values

of ζ. Using the di�erence equation (5.25), we �rst set p+ = p(amax) = 0, which then

requires that p = p(amax−ζ) and p− = p(amax−2ζ). We then assume that for ζ → 0,

the slope of the wavefunction, ψ′(a) is a constant close to the point amax. This is a

valid assumption, as long as the wavefunction, ψ(a) is smooth near the point amax.

Also since p(amax) = 0, ψ(amax) = 0. Thus, using a Taylor's series approximation,

we have:

ψ(amax − ζ) ≈ ψ(amax)− ζψ′(amax) (5.29)

= −ζγ (5.30)

Here γ is the constant slope of the wavefunction, ψ′(a), for any a close to amax.
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Likewise,

ψ(amax − 2ζ) ≈ ψ(amax)− 2ζψ′(amax) (5.31)

= −2ζγ (5.32)

The following expressions for p and p− then immediately follow:

p = (ζγ)2 (5.33)

p− = (2ζγ)2 (5.34)

Using these expressions, together with p+ = 0 in the di�erence equation (5.25),

we obtain the following expression (with a = amax − ζ):

(
σ

(ζγ)2

)2

= (amax−ζ)4
(1 + 52m)2

(1 + (amax − ζ)2m)2
− 1

2ζ2η2

(
ln

(
1

1− η

)
− η(2ζγ)2

(1− η)(2ζγ)2 + η(ζγ)2

)
(5.35)

or,

(amax − ζ)4
(1 + 52m)2

(1 + (amax − ζ)2m)2
=

1

ζ2

(
σ2

γ4ζ2
− 1

2η2

(
ln(1− η) +

4η

4− 3η

))
. (5.36)

Now we know from our numerical results that for low values of ζ and for m = 1, amax

is very large, and possibly in�nite. It is thus safe to assume that 1 + (amax − ζ)2m ≈

(amax − ζ)2m, and ζ ≈ 0. This gives us

amax ≈
(

1

(ζ2)(1 + 52m)2

(
σ2

γ4ζ2
− 1

2η2

(
ln(1− η) +

4η

4− 3η

))) 1
4−4m

(5.37)

From this expression we see that when we set m = 1, amax is approximately in�nity.

So far we have investigated the behaviour close to the point amax, by setting

p+ = 0. However, we see that setting p = 0 in the di�erence equation (5.25) leads

to a divergence via the logarithmic term. However, if we rearrange the di�erence
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equation and take the limit p→ 0, we obtain

2ζ2η2σ2 = − lim
p→0

p2
(

ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

)
.

(5.38)

Since

lim
p→0

p2
(

ln

(
p

(1− η)p+ ηp+

))
= 0, (5.39)

we can then obtain the consistency relation

−2ζ2η2σ2 = lim
p→0

p2
(

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

)
. (5.40)

Thus, in order for the right hand side to remain constant, the coe�cient of p2 in the

expression above must develop a 1/p2 divergence, which must occur through either

p+ or p− becoming negative. In other words we have proven that as p→ 0 at a point,

either one of its adjacent points must enter an unphysical region. This relationship

is obviously identical for all values of m, including the m = 0 case, as was shown in

Parwani and Tarih [4].

Next we �nd an exact solution to the di�erence equation (5.25) using just three

lattice points. Setting p− and p+ equal to 0, and letting p take some positive value

at the mid-point, a = am, the di�erence equation becomes

(
σ

p

)2

= a4m
(1 + 52m)2

(1 + a2mm )2
− 1

2ζ2η2

(
ln

(
1

1− η

))
. (5.41)

The �rst constraint is that the right side of this equation is positive de�nite. Next,

assuming that amin 6= 0, we obtain the second constraint, am = amin+ζ. Using these

constraints gives us the expression

(amin + ζ)4
(1 + 52m)2

(1 + (amin + ζ)2m)2
ζ2 >

1

2η2

(
ln

(
1

1− η

))
(5.42)

If we take η → 0+ or η → 1−, the right hand side of this expression blows up. For
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constant ζ and m, this then implies that we have a large amin, which in turn implies

that we can have large universes, with sizes as large as amin + 2ζ.

5.7 E�ective Classical Dynamics

The Wheeler-DeWitt equation is independent of time, and therefore does not give

us any ideas about the time evolution of a universe. The wavefunction merely gives

us the probability of observing a universe in an ensemble of universes with a certain

scale factor value. In the numerical analysis we have seen how only a certain range of

scale factors was allowed for certain universes, due to occurrences of maximum and

minimum scale factor values for these universes. However we would like to understand

the behaviour of only a single universe, and not only of the allowed scale factors it

can take, but of its dynamics. The arguments we shall use in this section are based

on those in Parwani and Tarih [4].

To understand the dynamics of a single universe we return the nonlinear Wheeler-

DeWitt equation (5.24) to the classical regime, resulting in a modi�ed Friedmann

equation:

a2ȧ2 + Veff = 0, (5.43)

where the e�ective potential

Veff = −a4 (1 + 52m)2

(1 + a2m)2
+ F (p). (5.44)

This Friedmann equation describes the classical dynamics of a single universe.

However one must be aware that we are only able to do this since dS/da blows up near

the nodes amax and amin, due to equation (5.4), enabling us to make a semiclassical

approximation of the wavefunction; and since, as argued by Halliwell [27], dS/da has a

correlation with the classical momentum for any oscillatory wavefunction of the form

eiS . Then, as in Atkatz [12], such a semiclassical approximation of the oscillatory

49



wavefunction will give rise to a Friedmann equation as in equation (5.43).

As long as the term F (p) is small, then it cannot overcome the other term in Veff

(especially when a is large), and as such Veff remains negative, and the expansion of

the universe is unbounded. However F (p) does not always remain small. Near one

of the nodes (which we shall refer to as a∗), where the wavefunction, and thus p goes

to zero, we �nd that p ≡ |ψ|2 ∼ (a − a∗)2, by making a linear approximation in a

manner similar to that done in the previous section. Equation (5.40) then tells us that

QNL ∼ −1/p2, and we also notice that Q (equation (4.5), with ~ = 1 and m = 1/2)

is also possibly large and diverging. There is thus a possibility that F (p) = QNL−Q

is positive and large near the nodes. It is worth mentioning that the enhancement

of the nonlinearity near nodes is found for simpler quantum mechanical problems as

well, as in reference [26].

Veff was found to be negative between the nodes amin and amax, for cases where

both occur. In some cases we see a complex or real potential barrier developing close

to amin or amax. For example, for m = 0.1, ζ = 0.0467 and η = 0.5 we �nd a real

potential barrier occurring close to amin; and for m = 0.2, ζ = 0.02, and η = 0.8, we

see a real potential barrier close to amax. We also see cases where real barriers occur

close to both amin and amax, such as for m = 1, ζ = 0.042 and η = 0.5 (Figure 5.20).

It should however be noted that these potential barriers do not occur exactly at the

nodes, and p(a) can still be nonzero in regions where the potential is positive. This

is not surprising as we are dealing with a quantum system.

A real potential barrier indicates that the region beyond it is classically inaccessi-

ble, and is desirable because it would imply that a bounce could possibly occur at the

barrier in the e�ective classical dynamics of the system, and this shall be analytically

proven to be indeed true shortly. Likewise, if we have potential barriers at small and

large size, it can be shown that bounces occur at both these barriers, leading to a

cyclic evolution for this universe. However the possibility of a cyclic universe is not

precluded for all universes for which an amin does not exist. Numerically, we �nd
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Figure 5.20: Plot of the e�ective potential for m = 1, ζ = 0.042 and η = 0.5. The
blank parts of the plot indicate regions where the e�ective potential is undetermined,
which is due to F (p) becoming undetermined whenever two adjacent lattice points
in p(a) are zero. The red squares indicate points where the potential has become
complex.

that as long as η < 3/4, we see a small but �nite potential barrier close to a = 0,

which will prevent a collapsing universe from reaching zero size. Thus, whenever we

have a real potential barrier at amax for any η < 3/4, a cyclic universe will occur. An

example of this is for m = 0.5, ζ = 0.0167, and η = 0.5 as seen in Figure 5.21 and

Figure 5.22.

We now proceed to show that the real potential barriers near amax and amin are

indeed classical turning points at which bounces occur. We rearrange equation (5.43)

and equate it to a new `modi�ed' potential function V (a),

ȧ2 = −
Veff
a2

= V (a), (5.45)

on which we can then perform a Taylor expansion about the node a∗, giving us,

ȧ2 ≈ V (a∗) + (a− a∗)V ′(a∗). (5.46)

The prime here denotes di�erentiation with respect to a. In our numerical analysis
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Figure 5.21: Plot of the e�ective potential for m = 0.5, ζ = 0.0167 and η = 0.5.
The red square indicates a point where the potential has become complex.

Figure 5.22: Plot of the e�ective potential for m = 0.5, ζ = 0.0167 and η = 0.5.
Here we see the small but nonzero potential barrier close to a = 0. The plot seems
to end abruptly near a = 0, and this is because Veff needs 3 lattice points of p(a)
to be de�ned and is only de�ned at the central lattice point, and as such Veff is not
de�ned at the �rst and last lattice points of p(a).
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we have seen that for a real potential barrier, Veff=0 close to the node. Therefore we

shall estimate that Veff (a∗) = 0. It then follows from (5.45) that V (a∗) = 0.

Now if we concern ourselves with the node a∗ = amax, we see that V ′eff (a∗) is a

positive constant, since Veff is shifting from a negative to a positive value at the node.

By di�erentiating (5.45) we then see that V ′(a∗) is a negative constant. This proves

that our approximation (5.46) is valid, because since (a− amax) is always negative as

we approach the node from the left, as long as V ′(a∗) is negative, the right hand side

of (5.46) will remain positive , which is required since ȧ2 is always positive. Thus, as

we approach amax from the left, we have

ȧ ≈ K
√
amax − a, (5.47)

where K is some positive constant. We have chosen the positive square-root value

for ȧ, because this indicates an expanding universe before a reaches amax. Equation

(5.47) indicates that ȧ→ 0 and ä < 0 as a→ amax.

Likewise, if we consider the node a∗ = amin, we now see that V ′eff (a∗) is a negative

constant, and therefore V ′(a∗) is a positive constant. (a− a∗) is now always positive,

since we are approaching the node from the right. Thus as we approach amin from

the right,

ȧ ≈ −K
√
a− amin, (5.48)

where K is again some positive constant. This time we have chosen the negative

square-root value for ȧ, since this universe is contracting before a reaches amin. Equa-

tion (5.48) then indicates that ȧ→ 0 and ä > 0 as a→ amin.

Thus, we have proven that real potential barriers close to amin and amax are indeed

turning points in the e�ective classical dynamics, by showing that contraction slows

down at the barrier near amin and that expansion slows down at the barrier near

amax. For universes with real potential barriers at small and large size, this analysis

then concludes that they are indeed cyclic.
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Chapter 6

Non-pertubative Study of a

Spatially Flat FLRW Universe

with a Free Massless Scalar Field

6.1 Motivation

So far we have studied a �at FLRW universe in which the only matter is a cosmological

constant which varies slowly as a function of the scale factor; which is equivalent to a

scalar �eld that has a potential which is a function of the scale factor and a negligible

kinetic energy. In Parwani and Tarih [4], only the case of a �at FLRW universe

with a non-varying cosmological constant (which is equivalent to a scalar �eld with

a constant potential energy and no kinetic energy) was treated non-pertubatively.

However Parwani and Nguyen [3] also studied the case of a spatially �at FLRW

universe with a free massless scalar �eld pertubatively. This case is in some sense the

other extreme to the case in Parwani and Tarih [4], since it is equivalent to a scalar

�eld that has signi�cant kinetic energy but no potential energy. In this chapter we

shall study the free massless scalar �eld case non-pertubatively, after a brief review

of the pertubative treatment. The motivation for studying this case is to attempt
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to model the dynamics of the universe, using the scalar �eld as an 'intrinsic' time

coordinate. However, before proceeding we shall �rst �nd the classical solutions for a

�at FLRW universe with a free massless scalar �eld.

We transform the Einstein-Hilbert action as below, where α = ln(a) :

S =
1

2

∫
dtNe3α

[
− α̇

2

N2
+
φ̇2

N2
+ V (φ) + ke−2α

]
. (6.1)

We vary the action with respect to α, φ and N , in the gauge N=1, to give us the

following classical equations:

φ̈+ 3φ̇α̇+
1

2

dV

dφ
= 0, (6.2)

2α̈+ 3α̇2 + 3φ̇2 − 3V (φ) + ke−2α = 0, (6.3)

−α̇2 + φ̇2 + V (φ)− ke−2α = 0. (6.4)

Next, assuming a �at universe (k = 0) and a free massless scalar �eld (V (φ) = 0);

and scaling the time variable, we can �nd the following classical solutions:

α =
1

3
ln t+ C, (6.5)

φ =
1

3
ln t. (6.6)

Here C is an arbitrary constant. From equation (6.5) it is obvious that as t → 0 we

have α → −∞, and therefore a → 0. Thus, we have the problem of a singularity of

curvature invariants. We will apply nonlinear quantization to this model in the next

section to see whether there is a means by which we can avoid this singularity, and

also to study how the nonlinearities a�ect the evolution of the universe.

At this juncture it is instructive to note that the Wheeler-DeWitt equation con-

tains no explicit time variable. As such, in quantum cosmology, we look at the

correlations between variables to describe how the universe evolves in time [1,28,29].
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A common method is to use a free massless scalar �eld as an internal clock to the

universe [30�32] and this is exactly what we shall do in this chapter.

6.2 The Nonlinear Wheeler-DeWitt Equation for a spatially �at

FLRW Universe with a Free Massless Scalar Field

To emphasize generality we shall reintroduce the potential V (φ) and the curvature,

k. From the action (6.1) we may obtain the gravitational Hamiltonian [16,17,33]

H =
N

2e3α
[
−p2α + p2φ + e6αV (φ)− ke4α

]
, (6.7)

where

pα =
−e3αα̇
N

(6.8)

and

pφ =
e3αφ̇

N
(6.9)

are the canonical momenta. It can be easily shown that the Hamiltonian, equation

(6.7) is a vanishing quantity using the constraint, equation (6.4); and thus we have

N

2e3α
(
−p2α + p2φ + e6αV (φ)− ke4α

)
= 0. (6.10)

Next we quantize this equation using Dirac's quantization rule, and obtain the

Wheeler-DeWitt equation,

[
∂2

∂α2
− ∂2

∂φ2
+ e6αV (φ)− ke4α

]
ψ(α, φ) = 0. (6.11)

This equation is equivalent to a time-independent Schröedinger equation in two di-

mensions. Since we are working with the case of a free massless scalar �eld in �at
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space, the Wheeler-DeWitt equation thus reduces to

[
∂2

∂α2
− ∂2

∂φ2

]
ψ(α, φ) = 0, (6.12)

which is just a Klein-Gordon equation in terms of α and φ. The general solution

of equation (6.12) can be obtained by separation of variables; i.e. using ψ(α, φ) =

f(α)g(φ). Doing this we may obtain the expressions

f(α) = Ak(α) = a1e
ikα + a2e

−ikα, (6.13)

and

g(φ) = Bk(φ) = b1e
ikφ + b2e

−ikφ, (6.14)

where a1, a2, b1 and b2 are arbitrary constants. In these expressions k is the separation

constant, and should not be confused with the curvature. The general solution is a

superposition of the eigensolutions ψk(α, φ) = Ak(α)Bk(φ); i.e:

ψ(α, φ) =

∫ ∞
−∞

w(k)Ak(α)Bk(φ)dk, (6.15)

where w(k) is an arbitrary function of k.

The eigensolution ψk(α, φ) = Ak(α)Bk(φ) is itself not normalizable, but taking

an approach similar to wavepacket construction in the free particle problem of quan-

tum mechanics, we can normalize the general solution, equation (6.15), by choosing

appropriate values for a1, a2, b1 and b2, and an appropriate function for w(k).

We construct the wavepacket whilst keeping in mind that it should represent a

large universe when the intrinsic time φ is large. To do so we take a2 = b1 = 0 and

the function w(k) to be a Gaussian weight,

w(k) = exp

[
−(k2 − g2)2

σ2

]
, (6.16)
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where σ and g are constants. Doing so, we may obtain the solution:

ψ(α, φ) = a1b2σ
√
π exp

[
−(α− φ)2

4

]
exp(ig(α− φ)). (6.17)

The corresponding probability density is

p(α, φ) ≡ ψ∗ψ = (a1b2σ)2π exp

[
−(α− φ)2

2

]
. (6.18)

Since φ is being used as the internal clock of the system, and the probability density

(6.18) is clearly localised near α ≈ φ for any φ, we can see that the wavefunction

(6.17) we have derived represents a large universe at large time, as we required.

Next we shall nonlinearise the Wheeler-DeWitt equation (6.12), using the information-

theoretic approach [2, 26], to obtain

[
∂2

∂α2
− ∂2

∂φ2
− Fα(p) + Fφ(p)

]
ψ(α, φ) = 0, (6.19)

where Fα and Fφ have the same form as F in (4.12), but with nonlinear parameters

Lα > 0 and Lφ > 0 which are in general distinct from each other. Here Lα and Lφ

correspond to the gravitational and matter degrees of freedom respectively.

6.3 Review of the Pertubative Study of a Flat Universe with a Free

Massless Scalar Field

Now we shall brie�y review the pertubative solution of equation (6.19) as demon-

strated by Nguyen and Parwani [3]. Replacing the unperturbed probability density

solution (equation (6.18)) in the nonlinear terms of equation (6.19), and keeping only

the leading nontrivial terms in the series expansions of Fα(p) and Fφ(p), we obtain

an e�ective linear equation,

[
∂2

∂α2
− ∂2

∂φ2
+ Veff

]
ψ(α, φ) = 0, (6.20)
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where

Veff = u
[
σ2(φ− α)2 − 3

]
(φ− α), (6.21)

u ≡
η(3− 4η)(Lα + Lφ)σ4

12
. (6.22)

This equation approximately describes the quantum dynamics of wavepackets that are

highly localised, to leading nontrivial order in perturbation theory. We do not calcu-

late a tunneling probability here, but instead we shall work backwards to obtain the

e�ective classical equations that should imply the modi�ed quantum equation (6.20),

via the correspondence principle [12]. It can easily be seen that the Hamiltonian that

corresponds to equation (6.20) is

Ĥ =
N

2e3α
[
−p̂2α + p̂2φ + Veff (φ, α)

]
. (6.23)

This in turn arises from canonically quantising the classical action

S =

∫
dtL =

1

2

∫
dtNe3α

[
− α̇

2

N2
+
φ̇2

N2
+ e−6αVeff (φ)

]
. (6.24)

Finally the classical action will give us the following modi�ed classical evolution equa-

tions, in the gauge N=1:

φ̈+ 3φ̇α̇+
1

2
e−6α

∂Veff
∂φ

= 0, (6.25)

2α̈+ 3α̇2 + 3φ̇2 + e−6α
[
3Veff −

∂Veff
∂φ

]
= 0, (6.26)

−α̇2 + φ̇2 + e−6αVeff = 0. (6.27)

It is also instructive to note that

∂Veff
∂φ

= −
∂Veff
∂α

= 3u
[
σ2(φ− α)2 − 1

]
. (6.28)
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The e�ective classicals equations (6.25)-(6.27) describe the mean dynamics of lo-

calized quantum states in a self consistent manner, since we used such states to obtain

the e�ective potential, equation (6.21). It can be shown that the modi�ed constraint,

equation (6.27) combined with either one of the other two evolution equations (6.25)

or (6.26) will imply the third remaining equation.

Perhaps the most important result which can be proven using the system of equa-

tions (6.25)-(6.27) is that if we assume the strong correlation condition α = φ at all

times, we �nd that a minimum size for the universe naturally occurs, thus replac-

ing the Big Bang singularity with a bounce. It can be shown [3] using the modi�ed

classical equations that

α ≥ −C
3u

, (6.29)

and thus the minimum size of the universe is

amin = exp

(
−C
3u

)
, (6.30)

where C is a constant determined by the initial conditions.

This result has also been veri�ed numerically by Nguyen and Parwani [3], wherein

it was also shown that if α = φ initially, it will remain so for all times. The more

general initial condition of α 6= φ was also studied, and was also shown to provide a

bounce at some nonzero size, so long as the corrections due to Veff remain within the

regime of the pertubative approximation.

It is clear that in a pertubative study of the nonlinear Wheeler-DeWitt equation

of a �at FLRW universe with a free massless scalar �eld taken to be the intrinsic

time, one always encounters a minimum nonzero size for the universe, resolving the

singularity problem. However we have so far only studied equation (6.19) assuming

small nonlinearities, which is required of the pertubative treatment; and it is possible

that we could �nd new predictions if the equation is studied non-pertubatively.
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6.4 The Di�erence Equation

We shall study the nonlinear Wheeler-DeWitt equation for a �at FLRW universe with

a free massless scalar �eld,

[
∂2

∂α2
− ∂2

∂φ2
− Fα(p) + Fφ(p)

]
ψ(α, φ) = 0, (6.31)

in a manner similar to how the nonlinear Wheeler-DeWitt equation for �at FLRW-Λ

universe with a cosmological constant was studied non-pertubatively by Parwani and

Tarih [4], as well as earlier in this volume.

As before we write the wavefunction in terms of its amplitude and phase,

ψ(α, φ) = A(α, φ)eiS(α,φ). (6.32)

Before using this form in equation (6.31), we should address a certain intricacy in-

volving equations of the Klein-Gordon type, an example of which is equation (6.31).

It is well known that the probability density of such equations is not positive de�nite.

When using the Klein-Gordon equation to describe charged particles of zero spin, we

have the luxury of multiplying the negative probability density by the charge, and

interpreting the resulting quantity as a negative charge density. However in describing

the state of the universe, we have no analogous quantity which can take both positive

and negative values, and we thus need to �nd a way to show that the probability

density is indeed positive de�nite.

The probability density associated with (6.31) is of the standard form,

p = i

(
ψ∗
∂ψ

∂φ
− ψ∂ψ

∗

∂φ

)
. (6.33)

However if we substitute the form (6.32) into the probability density (6.33), it can be
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shown that it reduces to

p = −2
∂S

∂φ
|ψ|2. (6.34)

Since |ψ|2 is positive de�nite, we can say that the probability density, p is positive

de�nite, as long as

∂S

∂φ
< 0 (6.35)

We shall use this constraint later when making an ansatz for the form of S(α, φ).

Now we use the form of the wavefunction in equation (6.32) in the nonlinear

Wheeler-DeWitt equation (6.31); the imaginary part of the resulting equation is given

by

∂

∂φ

(
A2∂S

∂φ

)
− ∂

∂α

(
A2∂S

∂α

)
= 0, (6.36)

while the real part is given by

−
(
∂S

∂φ

)2

+

(
∂S

∂α

)2

−QαNL +QφNL = 0 (6.37)

(The full derivations of (6.36) and (6.37) can be found in Appendix B). Here QαNL and

QφNL are the generalised quantum potentials corresponding to α and φ respectively,

and have the same form as QNL in equation (4.13).

Next we shall make an ansatz for the form of the phase S. We assume that

S(α, φ) = aφ+ bα, (6.38)

where a and b are constants. Invoking the constraint (6.35), we also see that we

require

a < 0. (6.39)

With the ansatz (6.38), equation (6.36) becomes

a
∂

∂φ

(
A2
)
− b ∂

∂α

(
A2
)

= 0 (6.40)
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Now we make the second ansatz, which is for the form of the amplitude A(α, φ).

We assume that

A(α, φ) = A(cφ+ dα), (6.41)

where c and d are constants. Now if we let cφ+ dα = z,we have

∂

∂φ
(A(α, φ))2 =

∂A2

∂z

∂z

∂φ
=
∂A2

∂z
c, and (6.42)

∂

∂α
(A(α, φ))2 =

∂A2

∂z

∂z

∂α
=
∂A2

∂z
d, (6.43)

Then (6.40) becomes

a

(
∂A2

∂z

)
c− b

(
∂A2

∂z

)
d = 0, (6.44)

or

ac = bd. (6.45)

Equation (6.45) is a constraint, which can be automatically satis�ed by setting a = d

and b = c.

Finally, equation (6.37) becomes

−a2 + b2 −QαNL +QφNL = 0, (6.46)

which is a di�erence equation describing the evolution of the universe in time, with

the free massless scalar �eld playing the role of intrinsic time. Much of our remaining

arguments in this volume shall concern the numerical study of this equation.

However before we proceed we would �rst like to justify the two choices of ansatz

made in arriving at the di�erence equation (6.46) and the constraint (6.45). Both

ansatzes (equations (6.38) and (6.41)) are justi�ed if one observes the solution (6.17)

to the linear Wheeler-DeWitt equation with a free massless scalar �eld.

The �rst ansatz (6.38) is justi�ed if we study the phase of the linear solution,

which is −gφ + gα. Comparing this phase with the �rst ansatz, which is aφ + bα
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(remember a is negative due to constraint (6.35)), we may say that the e�ect of the

nonlinearities is to make the coe�cients of φ and α in the phase of the linear solution

inequal, since in general (−a) 6= b.

The ansatz for the amplitude of the wavefunction can also be similarly justi�ed.

In the linear solution (6.17) the amplitude is given as

Alinear(α, φ) = a1b2σ
√
π exp

[
−(α− φ)2

4

]
, (6.47)

while the ansatz for the functional form of the amplitude of the nonlinear case is

A(α, φ) = A(bφ+ aα) (6.48)

(taking constraint (6.45) into account we have set c = b and d = a, as before a is

negative). We note that in the amplitude of the linear solution (6.47), the factor in

the exponent can equivalently be

exp

[
−(gφ− gα)2

4g2

]
, (6.49)

and the functional form of the amplitude of the linear solution would be

Alinear(α, φ) = A(gφ− gα). (6.50)

It is then easy to see that the justi�cation for the second ansatz is similar to the �rst

one, that is we assume that the nonlinearities result in the coe�cients of φ and α in

the amplitude of the linear solution becoming inequal. It is obvious that in making

both ansatzes, we are postulating that the e�ects of the nonlinear terms do not a�ect

the linear form of the wavepacket (6.17) substantially.
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6.5 Numerical Analysis

Before we explore the results of the numerical study of the di�erence equation (6.46),

we shall �rst explore the properties of the equation a little further, before making

some assumptions essential for the numerical calculations.

It is obvious that in the di�erence equation we have derived for a spatially �at

FLRW-φ universe,

−a2 + b2 −QαNL +QφNL = 0, (6.51)

there are two generalised quantum potentials. The �rst,

QαNL =
1

2ζ2αη
2
α

[
ln

(
p

(1− ηα)p+ ηαp+

)
+

ηαp+
(1− ηα)p+ ηαp+

− ηαp−
(1− ηα)p− + ηαp

]
,

(6.52)

corresponds to the gravitational degree of freedom of the universe, or in other words

the size of the universe as determined by the scale factor; and the second,

QφNL =
1

2ζ2φη
2
φ

[
ln

(
p

(1− ηφ)p+ ηφp+

)
+

ηφp
+

(1− ηφ)p+ ηφp+
−

ηφp
−

(1− ηφ)p− + ηφp

]
,

(6.53)

corresponds to the matter degree of freedom of the universe, or equivalently the

intrinsic time for the evolution of the universe. Here p(α, φ) = −2∂S∂φ |ψ|
2 = −2a|ψ|2 is

the probability density (a is negative), p±(α, φ) ≡ p(α±ζα, φ), p±(α, φ) ≡ p(α, φ±ζφ),

ζα = ηαLα and ζφ = ηφLφ are positive dimensionless parameters which represent

the nonlinearity scales corresponding to α and φ respectively, and �nally 0 < ηα <

1 and 0 < ηφ < 1 are the regularization parameters that each label a family of

nonlinearisations.

It is obvious that with the scalar �eld as an added temporal dimension, the di�er-

ence equation now represents a two-dimensional lattice of points, each representing

the probability density, p for a certain scale factor value and at a certain point in

intrinsic time. As before it is important to note that both variables α and φ, as well
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as the probability density p(α, φ) are all still continuous.

The �rst assumption we make in order to simplify the numerical calculations will

be that the two nonlinearity scales are equal, i.e. ζα = ζφ = ζ. We shall also make a

similar assumption for the regularization parameters ηα and ηφ, that is ηα = ηφ = η.

In the numerical analysis, we shall study how the probability density (the probability

here being that of the universe having a certain scale factor value) evolves di�erently

with intrinsic time for various values of ζ and η.

The values for the constants a and b in equation (6.51) also remain to be deter-

mined. The constant a is negative, and although in the linear case we have −a = b

(see section 1.4 on the justi�cation of the two ansatzes), in general we should have

−a 6= b for the nonlinear case. With these caveats in mind, we assume:

a = −1− eζ, (6.54)

b = 1 + fζ, (6.55)

where,

e = 1, (6.56)

f = 1.5. (6.57)

Here e 6= f , since we want to ensure that −a 6= b for all values of ζ. However we have

chosen a value of f close to that of e, assuming that although the nonlinearities cause

−a to be not equal to b, the di�erence between both values is small. In fact it can

clearly be seen that the di�erence (−a− b) increases linearly as a function of ζ, since

it is equal to (f − e)ζ = 0.5ζ, and that when ζ = 0 (the linear case), the di�erence

becomes zero, and −a = b, as expected.

Previously we only studied a di�erence equation in one dimension (the scale fac-

tor), that is for the case of a �at FLRW universe containing only a varying cosmological

66



constant. In that model we only needed to specify two initial values, before evolving

the di�erence equation backward from these points explicitly, and forward from these

points using Newton's method. However since we now have a two dimensional grid

the problem is slightly more complicated. The full form of the di�erence equation is

now

−a2 + b2 − 1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

]
+

1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+

(1− η)p+ ηp+
− ηp−

(1− η)p− + ηp

]
= 0.

(6.58)

We �rst notice that the di�erence equation now relates �ve lattice points; p+, p−,

p+, p− and p, instead of just three. Also on further inspection of the equation, we

notice that we are only able to obtain either p− or p− explicitly in terms of four other

lattice points, and thus once again we are forced to resort to Newton's method for

the forward evolution.

Now for the backward evolution, we once again need to make a change of variable

to shift the lattice points by making the substitution φ→ φ+ ζ, which results in the

following relabellings:

p−(α, φ)→ p(α, φ) (6.59)

p(α, φ)→ p+(α, φ) (6.60)

p+(α, φ)→ p++(α, φ) (6.61)

p−(α, φ)→ p+−(α, φ) (6.62)

p+(α, φ)→ p++(α, φ) (6.63)

where p±(α, φ) ≡ p(α ± ζ, φ), p±(α, φ) ≡ p(α, φ ± ζ) and p++(α, φ) ≡ p(α, φ + 2ζ).
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We then rearrange (6.58) to arrive at

p(α, φ) =
ηp+(α, φ)

(1− η)

[
1

1− (1−ηη )D
− 1

]
, (6.64)

where

D = ln

(
p+

(1− η)p+ + ηp++

)
+

ηp++

(1− η)p+ + ηp++
+ 2ζ2η2(b2 − a2)

−

[
ln

(
p+

(1− η)p+ + ηp++

)
+

ηp++
(1− η)p+ + ηp++

−
ηp+−

(1− η)p+− + ηp+

] (6.65)

Ideally we would like to start with a particular value of φ, calculate all the lattice

points for di�erent α values at that value of φ, and then repeat the process for the

next φ value, which is the previous φ value minus the step size ζ. However, from the

di�erence equation, it is obvious that for each row of lattice points p(α, φ), we need

information from two other rows, that is p(α, φ + ζ) and p(α, φ + 2ζ). Therefore,

our initial values for the backward evolution has to be two rows of lattice points

corresponding to two values of φ, which di�er by ζ. For this we assume that at the

two initial values of φ, the pro�le of the probability density is described by a Gaussian

Figure 6.1: Initial Gaussian probability density distribution for p(α, 0)
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wavepacket as in the linear case, equation (6.18). We shall always set the two initial

rows to be at p(α, 0) (Figure 6.1) and p(α,−ζ). From these two rows, we may generate

the backward evolution of the di�erence equation.

For the forward evolution, we once again need to use Newton's method. We again

use two rows of the linear solution as our initial probability density distributions,

but this time for p(α, φ) and p(α, φ − ζ), and use equation (6.58) as the function

in Newton's method to obtain the values of p(α, φ + ζ), and then iterate the whole

process to evolve the equation forward in intrinsic time.

It is also important to note that the two initial wavepackets set the hard boundaries

within which we perform our calculations. In theory the Gaussian wavepacket solution

(6.18) extends from α = −∞ to α =∞ for any value of φ, but due to the limitations

of our numerical analysis using MATLAB, calculations are only performed within

a limit of about α = −38.5 to α = 38.5. In doing this we have ensured that the

Gaussian peak is far enough from the boundaries during the numerical evolution so

as to not a�ect its dynamical evolution substantially.

Figure 6.2: Lattice points related by the di�erence equation.

In the numerical analysis, several interesting characteristics are seen. First we

shall see that at every step in the evolution of the equation backward or forward

in intrinsic time, it seems that we lose information about two lattice points. The

reason for this is that the di�erence equation (6.58) relates �ve lattice points for any

particular value of φ and α, namely p, p+, p−, p+ and p−, as in Figure 6.2. This
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forms the basic `unit' of the lattice, and in the forward and backward evolutions there

is loss of information due to the shape of this basic unit.

A pedagogical example of how this happens can be seen in Figure 6.3. We shall

however consider this apparent loss of information as meaning that the probability

density p is not de�ned at points where the loss of information occurs, and can

therefore be considered to be zero at these points. In other words it is not actual

loss of information, but rather a loss of range, since the di�erence equation is merely

telling us that the range of scale factor values that the universe can have shrinks in

both the forward and backward evolutions in time.

Figure 6.3: Loss of range in the two-dimensional lattice (Black dots represent lattice
points with non-zero probability).
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However Figure 6.3 does not address another important feature seen in our numer-

ical analysis. In the case of Parwani and Tarih [4], a feature that was not previously

seen was the occurrence of negative/complex probabilities after evolving beyond a

certain value of the scale factor a, both when the di�erence equation was evolved

using the di�erence equation and using Newton's method. As mentioned before these

negative/complex probabilities are interpreted as being unphysical.

In our numerical analysis of the two-dimensional di�erence equation for our case

of the free massless scalar �eld we �nd similar features, but in this case the nega-

tive/complex points occur for di�erent scale factor (α) values at di�erent points in

intrinsic time (φ). Since we do not consider these points as being physical, wherever

such points are encountered in the numerical work for a particular value of φ, we

truncate the original boundaries to form new soft boundaries, and the lattice points

for the next iteration at φ−ζ (or φ+ζ in the forward evolution) will only be calculated

within these new soft boundaries. A pedagogical example of this is Figure 6.4.

It is also important to note that in the numerical analysis there are cases where the

probability density becomes positive again after having previously become negative

as we iterate along α. However, as in Parwani and Tarih [4] we do not consider these

regions, as we require that the probability density at every point in intrinsic time

must be continuous and positive de�nite.

It is thus obvious that all universes described by the di�erence equation (6.58) will

begin and end at �nite intrinsic times, since whenever we evolve the equation forward

or backward in time, the wavepacket will eventually disappear at some value of φ.

We have performed the backward and forward evolution for three values of η,

namely η = 0.1, η = 0.5, η = 0.9; and for various values of ζ, ranging from about

ζ = 0.01 to ζ = 0.9. In doing so we have been able to deduce the dynamics of several

types of universes.
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Figure 6.4: Occurrence of negative/complex probabilities in the two-dimensional
lattice (Black dots with crosses represent lattice points with negative/complex prob-
ability).

6.6 Results

The easiest way of deducing the dynamics from the lattice of probability density

points, is by studying how the peak of the wavepacket moves along the axis α as

intrinsic time changes. In other words we are deducing a plot of the scale factor, α

against φ, to give us an idea of how the universe expands or contracts as a function

of intrinsic time. It should be noted that these are not the actual dynamics of the

universe, since we are not able to deduce α as function of time, t. Nevertheless it does

give us good insight into how the dynamical behaviour of the universe is a�ected as

the nonlinear parameter ζ is varied.
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Figure 6.5: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.5, ζ = 0.03. The peaks of the initial
Gaussian wavepackets are at φ = 0, α = 0 and φ = −ζ, α = −ζ.

6.6.1 η=0.5

For the η = 0.5 case we found a total of 4 distinct types of universes as we varied

the parameter ζ. We shall start with the simplest case; that is for all universes

with ζ ≤ 0.03. For this case we �nd that the scale factor (α) value at which the

probability density is peaked increases linearly as a function of intrinsic time (φ)

almost throughout the lifetime of the universe. In other words as we evolve the

di�erence equation both forward and backward in intrinsic time, we �nd an almost

complete linear dependence between the scale factor value of the probability density's

peak and the intrinsic time. The only exceptions are at the end of the backward and

forward evolutions. As we have mentioned before, due to the form of the di�erence

equation, all universes we shall study begin and end at �nite intrinsic time. In the

present case these coincide with divergences from linear behaviour. Figure 6.5 shows

the plot of the α value of the peak against the intrinsic time, φ, for the case of ζ = 0.03.

At the end of the backward evolution we see what we shall henceforth refer to as a

`bounce'. As we evolve backwards from the two initial wavepackets peaked at α = 0,
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Figure 6.6: Contraction at the end of the forward evolution for η = 0.5, ζ = 0.03.

φ = 0 and α = −ζ, φ = −ζ, the scale factor value of the peak of the wavepacket,

is seen to jump once to a lower value and back to a value that obeys the linear

relationship, decreases linearly again, and then jumps to a lower value again. From

there the scale factor value of the peak begins to increase gradually, before the peak

�nally disappears at a certain value of φ.

Near the end of the forward evolution, we also see non-linear behaviour which is

less obvious. This behaviour is more clearly seen in Figure 6.6.

We can interpret the behaviour of the peak we have seen thus far as a universe that

appears at a �nite (non-zero) scale factor value, contracting up to a certain point in

intrinsic time (φ), then undergoing in�ation, some linear expansion, a sudden de�ation

and then a re-in�ation, and then followed by linear expansion until a point near its

death, where it suddenly begins to contract for a very short time, doing so until it

vanishes at a �nite, large size.

It is however important to note that so far we have only discussed the peak of

the probability density curve, and at every point in intrinsic time, the universe can

have a scale factor value other than that speci�ed by the peak, as long as there

is a non-zero probability density value at that scale factor value. Nevertheless the
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probability density curves we �nd numerically are always highly localized and as such

studying just their peaks gives us a good idea of the mean dynamics of the universe.

It also should be noted that the di�erence equation is discrete in nature, and as such

the actual location of the peak of a wavepacket could be in between lattice points.

However as we are dealing with a small value of ζ in the current case, the peak we

measure will not vary much from the actual peak. Later this e�ect of discreteness on

the plots of α versus φ will be more noticeable for higher values of ζ.

We would like to further understand the evolution of the wavepacket and the

dynamics of the bounces by studying how the form of the probability density distri-

butions evolve. Figures 6.7 to 6.20 show the backward evolution for various values of

φ, from φ = 0 (the initial Gaussian wavepacket) to φ = −4.95, when the wavepacket

disappears.

It should be kept in mind that the various probability density distributions are

deduced from a �nite number of lattice points at every point in intrinsic time, φ.

From the �gures we clearly see the wavepacket traveling backwards (i.e. to lower

scale factor values), which is then followed by oscillations occurring on the left tail of

the pro�le (Figure 6.9 onwards). In Figure 6.10 we see one of the oscillatory peaks

outgrowing the main Gaussian peak, and quickly shrinking again in Figure 6.11. This

corresponds to the �rst jump from linear behaviour and back when evolving backwards

Figure 6.7: Probability density distribution at φ = 0
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Figure 6.8: Probability density distribution at φ = −1.05

Figure 6.9: Probability density distribution at φ = −1.65

Figure 6.10: Probability density distribution at φ = −1.68
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Figure 6.11: Probability density distribution at φ = −1.71

Figure 6.12: Probability density distribution at φ = −1.83

Figure 6.13: Probability density distribution at φ = −1.86
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Figure 6.14: Probability density distribution at φ = −1.95

Figure 6.15: Probability density distribution at φ = −2.4

Figure 6.16: Probability density distribution at φ = −2.7
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Figure 6.17: Probability density distribution at φ = −3.6

Figure 6.18: Probability density distribution at φ = −4.5

Figure 6.19: Probability density distribution at φ = −4.92
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Figure 6.20: Probability density distribution at φ = −4.95

from α = 0, φ = 0 that we saw in Figure 6.5.

The oscillations still persist even though we once again have linear behaviour due

to the Gaussian peak being larger (Figure 6.12), and in Figure 6.13 we see that an

oscillatory peak eventually outgrows the Gaussian peak again, and that oscillatory

peak hereon remains the largest of the two peaks until the end of the evolution.

This new peak moves forward (i.e. to higher scale factor values) throughout the

rest of the backward evolution, eventually merging with the Gaussian peak (Figure

6.16). This behaviour corresponds to the jump to a lower scale factor value, and

the subsequent movement of the peak to higher scale factor values for the rest of

the backward evolution (the `bounce') seen in Figure 6.5. Finally, the loss of range

mentioned earlier causes the range of lattice points to shrink (Figures 6.17-6.19), and

ultimately results in the wavepacket vanishing at φ = −4.95 (Figure 6.20).

The bounce at the end of the forward evolution is much simpler, and occurs solely

due to loss of range. Figures 6.21 to 6.36 show the forward evolution of the wavepacket,

with Figures 6.27 to 6.36 showing the last few lattice steps in intrinsic time of the

evolution to elucidate how the peak of the wavepacket moves backwards in space at

the end of the evolution, as the range of positive probability density values becomes

smaller. Here we see that the loss of range causes the original, linearly behaving
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peak to be `hidden', and the `peak' of the wavepacket thereafter is just the highest

probability density value that remains after the loss of range. In Figures 6.23 and 6.24

we also see a clear depiction of truncation of the wavepacket due to the occurrence of

negative or complex numbers.

As mentioned before, for all ζ values below 0.03, we �nd similar behaviour to

what we have seen thus far. However there are occasionally minute di�erences; for

example if ζ = 0.00926, the de�ation-rein�ation phase seen at the �rst bounce does

not happen just once, but several times before the expansion continues. Such minute

di�erences were rather common throughout the entire numerical analysis, especially

Figure 6.21: Probability density distribution at φ = 0

Figure 6.22: Probability density distribution at φ = 1.59
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Figure 6.23: Probability density distribution at φ = 2.1

Figure 6.24: Probability density distribution at φ = 6.6

Figure 6.25: Probability density distribution at φ = 12.6
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Figure 6.26: Probability density distribution at φ = 18.9

Figure 6.27: Probability density distribution at φ = 19.47

Figure 6.28: Probability density distribution at φ = 19.5
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Figure 6.29: Probability density distribution at φ = 19.53

Figure 6.30: Probability density distribution at φ = 19.56

Figure 6.31: Probability density distribution at φ = 19.59
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Figure 6.32: Probability density distribution at φ = 19.62

Figure 6.33: Probability density distribution at φ = 19.65

Figure 6.34: Probability density distribution at φ = 19.68
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Figure 6.35: Probability density distribution at φ = 19.71

Figure 6.36: Probability density distribution at φ = 19.74

at the end of the backward and forward evolutions, and here we shall not place much

emphasis on them, instead focusing on how the general features of the peak behaviour

change as the parameters ζ and η are varied.

For 0.04 ≤ ζ ≤ 0.06, the peak behaviour of the wavepacket is very similar to

that of ζ ≤ 0.03, with the only di�erence being a rapid, extremely short period of

contraction, or rather a de�ation, followed quickly by reexpansion of the usual linear

form, occurring when the universe is at a large size. This can be seen in Figure

6.37 which shows the plot of the α value of the peak against intrinsic time, φ, for

the case of ζ = 0.06. Once again we notice a minute di�erence in the backward
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Figure 6.37: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.5, ζ = 0.06.

bounce compared to the previous cases; here there is no evidence of any de�ation and

rein�ation occurring.

The de�ation in the forward evolution occurs due to a secondary peak developing

on the original Gaussian peak itself, instead of elsewhere in the pro�le. This can be

seen in Figures 6.38 to 6.41. The evolution prior to that which is seen in these �gures

is similar to that seen in Figures 6.21 to 6.26.

For the cases of 0.07 ≤ ζ ≤ 0.1 we see a very di�erent type of dynamics for the

Figure 6.38: Probability density distribution at φ = 12.0
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Figure 6.39: Probability density distribution at φ = 12.6

Figure 6.40: Probability density distribution at φ = 12.96

Figure 6.41: Probability density distribution at φ = 13.44
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Figure 6.42: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.5, ζ = 0.08.

universe. Figure 6.42 shows the plot of the scale factor (α) value at which the peak of

the wavepacket occurs as a function of intrinsic time, φ for ζ = 0.08. The backward

evolution for this case is similar to the previous cases seen, with a phase of in�ation,

de�ation and rein�ation present. However at φ = 6.7, something unexpected happens,

which is a sudden contraction of large magnitude, or de�ation. This is followed by a

period of further contraction. As forward evolution continues the contraction slows

down, up until φ = 27, when there is another sudden phase of rapid contraction,

though not as rapid as the earlier one. The contraction continues until the wavepacket

only has one lattice point with a non-zero value, that is when φ = 28.86, and after

this the wavepacket (and the universe) vanishes.

The period of contraction at the end of the forward evolution is due to the range

of the probability density distribution becoming increasingly smaller, and is similar

to the behaviour at the end of the forward evolution in the ζ = 0.03 case. The more

sudden jump from a large value of α to a smaller one that we see in the middle

of the evolution however is a new type of bounce. Previously we saw bounces that

occurred due to the emergence of another, non-Gaussian peak. However in this case,

the bounce occurs because another Gaussian peak emerges, eventually outgrowing the
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original one, and propagating in an opposite direction to it. This behaviour can be

seen in Figures 6.43 to 6.46.

In Figure 6.42, one also notices upon closer inspection that the nonlinear contrac-

tion phase seems to be staccato, and consisting of sudden jumps. This however is just

the e�ect of the discreteness of the di�erence equation mentioned earlier coming into

play. The actual peak at any point in intrinsic time could be in between two lattice

points, and the value we take as our peak value is merely the largest lattice point

value. As such we should understand that the decelerating contraction phase seen in

Figure 6.42 is actually continuous.

The fourth general type of universe found for η = 0.5, that is for the cases with

ζ ≥ 0.2 has the form seen in Figure 6.47. Here, the large step size of ζ = 0.4 causes

the plot to be even more discontinuous than previously seen, and thus the possible,

actual evolution of the peak approximately deduced through interpolation is also

plotted in Figure 6.47. In this type of evolution the usual backward evolution is still

seen, with the typical bounce followed by in�ation as φ increases. However, in the

forward evolution a new type of bounce occurs, which does not involve the growth of

any secondary peak, but rather is only caused by the original wavepacket changing

its direction of propagation. The contraction which occurs after the bounce is found

Figure 6.43: Probability density distribution at φ = 8.24
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Figure 6.44: Probability density distribution at φ = 8.96

Figure 6.45: Probability density distribution at φ = 9.04

Figure 6.46: Probability density distribution at φ = 9.28
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Figure 6.47: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.5, ζ = 0.4.

to slow down at �rst, and then settles to a constant speed. Finally at φ = 38 there is

only one non-zero lattice point in the pro�le, and for higher values of φ the wavepacket

vanishes, signalling the end of the universe.

6.6.2 η=0.1

For the family of universes with η = 0.1 the results are very similar to that of η = 0.5.

For ζ ≤ 0.0095 we �nd that the scale factor value of the peak of the wavepacket varies

with intrinsic time, φ as in Figure 6.48, which has behaviour similar to that seen in

Figure 6.5, with the minute di�erence that the contraction phase at the beginning

of the evolution is much shorter. This extremely short contraction phase cannot be

seen in Figure 6.48 due to the small lattice spacing, but is nevertheless present. If

0.01 ≤ ζ ≤ 0.1, then we �nd peak behaviour which is the same as that seen in Figure

6.37. Finally for universes with ζ ≥ 0.2, the peak behaviour is that seen in Figure

6.47. It should be noted that behaviour of the type seen in Figure 6.42 is absent for

all universes which have η = 0.1.
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Figure 6.48: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.1, ζ = 0.0095.

Figure 6.49: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.9, ζ = 0.03.

6.6.3 η=0.9

For η = 0.9 we �nd dynamics that we did not see previously for the other two η values.

The �rst unique type of dynamics we see is in the range 0 < ζ ≤ 0.03, an example of

which is the evolution for ζ = 0.02, as seen in Figure 6.49. In this range we have a

bounce in the backward evolution. However this bounce is merely due to the range
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Figure 6.50: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.9, ζ = 0.05.

of the wavepacket becoming smaller as it evolves, causing the point where the peak

is to change. There is also no in�ation in the at the beginning of the evolution. The

forward evolution on the other hand is mostly linear, except at the very end, where

there is a sudden jump similar to the in�ation previously seen. However right after

this in�ation, the wavepacket, and thus the universe, vanishes. It is not very di�cult

to see the similarity between these dynamics, and that seen in Figure 6.48. In fact

the plot in Figure 6.49 looks just like the plot in Figure 6.48 but with the spatial and

temporal axes reversed.

For 0.04 ≤ ζ ≤ 0.05, we �nd a slightly di�erent evolution, as seen in Figure 6.50,

which shows the dynamics for a universe with ζ = 0.05. We see a universe that starts

out at a �nite size, expands linearly, up to a certain point, when there is a sudden

contraction, followed quickly by linear expansion. Near the end of its life, it suddenly

in�ates, then begins to contract, �nally vanishing at a �nite size. Once again we �nd

dynamics similar to that found previously, but with orientation reversal of the axes.

Here we �nd that the plot in Figure 6.50 looks almost exactly like the plot in Figure

6.37 upside down. This is further con�rmed by the fact that the wavepacket behaves

similarly in both cases, except that now it is moving in the opposite directions in time
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Figure 6.51: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.9, ζ = 0.06.

and space.

Behaviour which is opposite to that found in the η = 0.5 case can also be seen

for the range 0.06 ≤ ζ ≤ 0.1, as seen in Figure 6.51. These dynamics are again just

that seen in Figure 6.42, but with the spatial and temporal axes �ipped. Here we see

a universe that is born at a �nite size, contracting rapidly at �rst, before suddenly

entering a phase of very slow contraction. This contraction eventually speeds up, and

it culminates with a sudden de�ation. From here the universe expands linearly up

until a point near its death, where it again in�ates, but not with as large a magnitude

as seen in the earlier de�ation. After in�ating it contracts for a short period of time,

and then vanishes. The de�ation of large magnitude that we see in the middle of

the evolution, as expected, occurs due to the appearance of another Gaussian peak,

which outgrows the original one.

For the range 0.1 ≤ ζ ≤ 0.4, we see dynamical behaviour as in Figure 6.52. Again,

this is similar to the evolution seen in Figure 6.47, but with the spatial and temporal

axes inverted. Here we see a universe that is born with �nite size, which undergoes

rapid contraction at �rst, which then abruptly slows down. The contraction continues,

gradually speeding up, and suddenly we see a period of rapid contraction, followed
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Figure 6.52: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.9, ζ = 0.2.

by expansion (a bounce). There seems to be a short period of slight acceleration in

the expansion, which eventually vanishes to make the expansion linear, up to a point

when there is sudden in�ation. After the in�ation the universe contracts, down to a

certain φ value, at which the wavepacket vanishes.

For ζ ≥ 0.5, the dynamics of the universe become hard to discern, mainly because

the large lattice step size obscures the actual locations of the peaks, and the behaviour

is much more complicated when compared to previous η values for the same range of

ζ, leaving us with an inaccurate description of the peak behaviour. However we will

still attempt to understand the behaviour from the lattice points we have. For ζ = 0.5

(Figure 6.53) the dynamics are rather unique when compared to others in the range.

We see that there are two plateaus within a certain range of φ in the plot, however by

studying the form of the probability denstiy functions in that range, we can deduce

that the plateaus actually contain two bounces, one at a larger size followed by one

at smaller size, with both bounces occurring around the centre of the plateaus. We

do not actually see the bounces since they are obscured due to the large step size.

After the bounces there seems to be linear expansion, which eventually slows down,

and the evolution �nally culminates with an in�ation of high magnitude, after which
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Figure 6.53: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.9, ζ = 0.5.

Figure 6.54: Plot of the scale factor (α) value at which the peak of the wavepacket
occurs as a function of intrinsic time, φ for η = 0.9, ζ = 0.6.

the wavepacket disappears.

Finally for ζ ≥ 0.6 we see dynamics as in Figure 6.54. As in the previous case

this plot is di�cult to interpret, due to the large step size. From studying the proba-

bility density distributions in its range, the plateau here does not seem to contain a

bounce, but rather is a period of very slow expansion. We then see a period of erratic

expansion, in which we see linear expansion at �rst, which then slows down, and then
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speeds up again, followed by an in�ation-like jump. We then see contraction, followed

by slight �uctuations in size, before near linear expansion continues once again, before

the wavepacket disappears at a �nite time.

6.7 A Proof of Consistency

We shall now �nd an exact solution to the di�erence equation (6.58), using only 5

lattice points. We let p− and p+ to be equal to 0, and we let p be some positive number.

For the values of p+ and p− we say that the peak of the wavepacket grows and the

wavepacket itself becomes narrower in both the forward and backward evolution, and

as such we choose both p+ and p− to be equal to 1.5p.

Now the constant terms in the di�erence equation,

−a2 + b2 = ζ + 1.25ζ2, (6.66)

due to the forms (6.54) and (6.55) we have chosen for a and b respectively. The

expression (6.66) is positive de�nite, as long as ζ > 0. Thus it follows that the

combination of the third and fourth terms in the di�erence equation (6.58) must be

negative de�nite, which leads to the inequality

1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

]
>

1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+

(1− η)p+ ηp+
− ηp−

(1− η)p− + ηp

]
.

(6.67)

Using the 5 lattice points we chose earlier, the inequality becomes,

ln

(
p

(1− η)p

)
> ln

(
p

(1− η)p+ η(1.5p)

)
+

η(1.5p)

(1− η)p+ η(1.5p)
− η(1.5p)

(1− η)(1.5p) + ηp
,

(6.68)
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which can be simpli�ed to become

ln

(
1

1− η

)
> ln

(
1

1 + 0.5η

)
+

1.5η

1 + 0.5η
− 1.5η

1.5− 0.5η
. (6.69)

After some further algebra, the inequality can be reduced to

ln

(
1 + η

2

1− η

)
>

3− 6η

1− η + 6
η

. (6.70)

This expression is only satis�ed for the range 0 < η ≤ 1, which is consistent with the

range of values η can take. We can also �nd similar expressions consistent with the

same range for other choices of p+ and p−, as long as p+ = p− > p.

6.8 Interpretation of results

We have seen that the non-pertubative study of the Wheeler-DeWitt di�erence equa-

tion for a �at FLRW universe containing a free massless scalar �eld gives us several

types of dynamics for di�erent values of the nonlinear parameters η and ζ. It may

be somewhat strange that in all cases we see that the wavepacket that represents the

uncertainty in scale factor value vanishes at a large size, which in all cases is larger

than the size the universe was born with, and also larger than the minimum size the

universe reaches during the evolution. Although mathematically it is not a surprising

e�ect considering the form of the di�erence equation, it is not physically appealing

to have a universe that vanishes at large size. We also see that the universe is born

at a �nite size, which can be interpreted as the universe having tunnelled into exis-

tence. Using this interpretation one may also postulate that at the end of its life the

universe tunnels out of existence, perhaps into some higher dimension. However as

discussed by Carugno et. al. [34], the tunnelling analogy could become problematic

for the Klein-Gordon-type equation we are working with, which in turn makes our

interpretation problematic as well.
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We also see that in all cases, we have avoided a singularity at zero size, since

the universe never reaches the minimum scale factor value α = −∞. This con�rms

what was found pertubatively by Nguyen and Parwani [3], as reviewed in section 6.2.

However here, unlike the pertubative study where we study the modi�ed classical

equations (6.25)-(6.27), we are not able to obtain α explicitly in terms of the time

variable, t, since the Wheeler-DeWitt equation is independent of time, and as such

it should be noted that the actual form of the dynamics and bounces we have seen

thus far will depend on the functional form of φ in terms of t. In fact, in Nguyen and

Parwani [3], we see bounces that occur for α as a function of t even when α = φ, which

would just be a straight line without a bounce in an α versus φ plot. Nevertheless if

we assume that the functional form of φ in the classical case, which is

φ =
1

3
ln t (6.71)

does not di�er signi�cantly when we quantize and introduce nonlinearities, then we

can say (since α = ln a) that a plot of the scale factor, a versus t would not di�er

qualitatively from a plot of α versus φ. This would be a safe assumption for small

values of the nonlinear term, however, for larger nonlinearity the deviation from the

form (6.71) may be signi�cant, and the dynamics of a as a function of t may be very

di�erent from that of α as a function of φ. For example, if φ became a monotonically

decreasing function of t, then the dynamics we found numerically in the last section

would be happening backwards in time. Indeed, in the numerical analysis of the

η = 0.9 case we saw dynamics that seemed to be the same as that found for lower

values of η, but with spatial and temporal axes �ipped.

Another interesting feature seen in the numerical results is the occurrence of what

seem to be in�ationary epochs, in some cases early in the evolution of the universe (see

for example Figures 6.5, 6.37 and 6.47). However a proper in�ationary epoch, as that

postulated to have taken place early in our own universe's history, should involve the
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scale factor of the universe increasing by a factor of at least 1026 within approximately

10−32 seconds. In order to accurately determine whether such an increase could take

place, we would have to determine the exact functional form for φ in terms of t, which

is not possible. Thus our result that the quantum nonlinearities can induce in�ation

in the early universe is only speculative.

It is unfortunate that we do not see evidence for accelerating expansion in the

numerical results, a feature present in our own universe, except for an extremely

short period in the case of η = 0.9 and 0.1 ≤ ζ ≤ 0.4 (Figure 6.52). It is possible

that if we instead use a massless scalar �eld that is not free, but rather has a constant

potential, as in a cosmological constant, we might see periods of accelerated expansion

in the dynamics of the universe.

As previously mentioned, the plots for η = 0.9, for ζ ≤ 0.4, all seem to be

identical to plots seen for η = 0.5 and η = 0.1, except that there is reversal of the

orientation of the spatial and temporal axes. To further understand this, we can

refer to the pertubative treatment reviewed earlier, which is valid for low values of

ζ, since ζ = ηL. If we expand the nonlinear term F (p), we �nd that the nonlinear

Wheeler-DeWitt equation is

[
∂2

∂α2
− ∂2

∂φ2
+ Veff

]
ψ(α, φ) = 0, (6.72)

where

Veff = u
[
σ2(φ− α)2 − 3

]
(φ− α), (6.73)

u ≡ η(3− 4η)Lσ4

6
, (6.74)

to leading order in L. We can see that as we increase η from 0 to 1, when η > 3/4,

the e�ective potential changes sign. Thus we can postulate that for low ζ, when η

becomes greater that 3/4, the e�ect of the nonlinearity `reverses', and we begin to

101



see the orientation reversal in the plots of α versus φ. This is indeed found to be

true numerically, and η = 3/4 is a turning point for dynamics similar to that seen for

η = 0.1 and η = 0.5 to become dynamics similar to that seen for η = 0.9 in the plots

of α versus φ, as long as ζ is low.

In loop quantum cosmology (LQC), the Wheeler-DeWitt equation is also a di�er-

ence equation not only in its spatial coordinate but also its temporal one [35], with

evolution occurring in discrete steps. The discreteness in this theory arises due to

geometry being quantized in nature in loop quantum gravity, and at small scales this

discreteness is most apparent. Also, it is worth noting that Ashtekar et. al. [30] found,

by solving the LQC Wheeler-DeWitt equation numerically for the FLRW-φ model,

with the scalar �eld as intrinsic time, that the Big Bang is replaced by a bounce at

early intrinsic times, which is similar to what we have found for various parameter

values in our model.

It is interesting to note that the wavepackets we have seen in our work are examples

of intrinsic localized modes, also known as discrete breathers. Intrinsic localized

modes are modes prevented from dispersion due to the nonlinearity and discreteness

inherent in a certain physical system. Examples of such systems are certain solid-

state materials, optical waveguide arrays, photonic crystals and possibly Bose-Einstein

condensates and biopolymers [36].
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Chapter 7

Summary and Conclusion

We have studied two di�erent, contrasting models in nonlinear quantum cosmology

non-pertubatively, namely the spatially �at, empty FLRW universe with a scale factor-

varying cosmological constant, and the spatially �at FLRW universe containing a free

massless scalar �eld.

For the case of the scale factor-varying cosmological constant, Λ(a), we �nd results

similar to that found previously for a non-varying cosmological constant. With the

variation of Λ controlled by a new parameter m, we �nd a maximum size, amax, and

a minimum size, amin, to the universe by studying the probability density curves

generated numerically, though both features are not present in all cases. The main

new feature we see is that for m = 1, and low ζ, amax is approximately in�nity,

and thus the expansion of the universe will be unbounded for these parameter values.

The presence of a minimum size, amin, also allows us to avoid the problems associated

with a zero-size universe. We also �nd evidence for cyclic universes with bounces at

amax and amin when we study the e�ective classical dynamics, due to real barriers

occurring close to these points. For universes without an amin, cyclic evolution is still

possible as long as we have a real barrier close to amax, since we �nd a real potential

barrier appearing close to a = 0 as long as the parameter η < 3/4.

The non-pertubative study of the FLRW-φ universe enabled us to study its quan-
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tum dynamics using the scalar �eld, φ as intrinsic time. We �nd cyclic-type behaviour

for some values of the nonlinear parameters η and ζ, with bounces occurring at small

and large size. However we do not see periodic cycles, nor do we see everlasting

universes, since all universes we found were born and vanished at a certain point in

intrinsic time. The singularity of curvature invariants was also avoided for all values

of the parameters η and ζ, since in all cases the universe is born and vanishes at a

�nite, non-zero size, possibly tunnelling into existence at its birth, and tunnelling out

of existence at its death. We also �nd novel behaviour, including possible evidence

for an in�ationary epoch in many of the universes, although in some cases the epochs

do not occur near the beginning of the universe.

Both the models we have studied can only be considered toy models, and in

order to mirror our universe more closely one would have to include matter in these

models, perhaps in the form of a perfect �uid that mimics radiation at early times

and dust at later times. The �rst step to a more realistic model would however be

to combine both models studied here into a single one, with both a massless scalar

�eld and a cosmological constant. A simple further generalisation would then be to

allow the scalar �eld to be massive. In the long term it would be ideal to prove

that both cosmic acceleration and an in�ationary epoch can be produced by adding

information theoretically motivated nonlinearities to the Wheeler-DeWitt equation.

Another alternative generalisation would be to let the nonlinear parameters η and ζ

vary with the scale factor, and this could also possibly produce in�ation in the early

universe and acceleration at late times. Finally, we hope to �x the values of both

the nonlinear parameters by calculating observables which depend on them, and then

comparing these with experimentally obtained data.
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Appendix A

Derivation of the di�erence

equation for a FLRW-Λ universe

The nonlinear Wheeler-DeWitt equation for a spatially �at universe with a cosmo-

logical constant is, [
− ∂2

∂a2
− a4

a20
+ F (p)

]
ψ(a) = 0. (A.1)

Making the Madelung transformation,

ψ =
√
peiS . (A.2)

we �nd that

∂ψ

∂a
=
∂
√
p

∂a
eiS + i

√
peiS

∂S

∂a
, (A.3)

and

∂2ψ

∂a2
=
∂2
√
p

∂a2
eiS + i

∂
√
p

∂a
eiS

∂S

∂a
+ i

∂
√
p

∂a
eiS

∂S

∂a
−√peiS

(
∂S

∂a

)2

+ i
√
peiS

∂2S

∂a2
. (A.4)
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Replacing equation (A.4) into the Wheeler-DeWitt equation (A.1), gives us an equa-

tion with a real and an imaginary part. The imaginary part is

2
∂
√
p

∂a

∂S

∂a
+
√
p
∂2S

∂a2
= 0, (A.5)

or

1
√
p

∂

∂a

(
∂S

∂a
(
√
p)2
)

= 0. (A.6)

The real part is

−
∂2
√
p

∂a2
+
√
p

(
∂S

∂a

)2

− a4

a20

√
p+ F (p)

√
p = 0. (A.7)

Since F (p) = QNL −Q and

Q = − 1
√
p

∂2
√
p

∂a2
, (A.8)

equation (A.7) then becomes

(
∂S

∂a

)2

− a4

a20
+QNL = 0. (A.9)

Also (A.6) is equivalent to

∂

∂a

(
p
∂S

∂a

)
= 0, (A.10)

which implies

p
∂S

∂a
= σ, (A.11)

where σ is the conserved probability current. Using equation (A.11) in equation (A.9),

we transform the latter into a form devoid of di�erentials,

(
σ

p

)2

=
a4

a20
−QNL (A.12)
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or

(
σ

p

)2

=
a4

a20
− 1

2ζ2η2

[
ln

(
p

(1− η)p+ ηp+

)
+

ηp+
(1− η)p+ ηp+

− ηp−
(1− η)p− + ηp

]
(A.13)

which is the di�erence equation for a spatially �at FLRW universe with a cosmological

constant.
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Appendix B

Derivation of the di�erence

equation for a FLRW-φ universe

The nonlinear Wheeler-DeWitt equation for a spatially �at universe with a free mass-

less scalar �eld is,

[
∂2

∂α2
− ∂2

∂φ2
− Fα(p) + Fφ(p)

]
ψ(α, φ) = 0. (B.1)

Writing the wavefunction in terms of its amplitude and phase,

ψ(α, φ) = A(α, φ)eiS(α,φ), (B.2)

we see that

∂ψ

∂φ
=
∂A

∂φ
eiS + iAeiS

∂S

∂φ
, (B.3)

and

∂2ψ

∂φ2
=
∂2A

∂φ2
eiS + i

∂A

∂φ
eiS

∂S

∂φ
+ i

∂A

∂φ
eiS

∂S

∂φ
−AeiS

(
∂S

∂φ

)2

+ iAeiS
∂2S

∂φ2
. (B.4)
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Likewise,

∂2ψ

∂α2
=
∂2A

∂α2
eiS + i

∂A

∂α
eiS

∂S

∂α
+ i

∂A

∂α
eiS

∂S

∂α
−AeiS

(
∂S

∂α

)2

+ iAeiS
∂2S

∂α2
. (B.5)

Replacing equations (B.4) and (B.5) into equation (B.1) gives us an equation with

two parts, one real and one imaginary. The imaginary part is

2
∂A

∂φ

∂S

∂φ
+A

∂2S

∂φ2
− 2

∂A

∂α

∂S

∂α
+A

∂2S

∂α2
= 0, (B.6)

or

∂

∂φ

(
A2∂S

∂φ

)
− ∂

∂α

(
A2∂S

∂α

)
= 0. (B.7)

We do not need this equation in deriving the di�erence equation. It is however required

to derive constraint (6.45).The real part of the equation is,

∂2A

∂φ2
−A

(
∂S

∂φ

)2

− Fφ(p)A− ∂2A

∂α2
+A

(
∂S

∂α

)2

+ Fα(p)A = 0. (B.8)

Since Fφ(p) = QφNL −Qφ and Fα(p) = QαNL −Qα; with

Qφ = − 1

A

∂2A

∂φ2
(B.9)

and

Qα = − 1

A

∂2A

∂α2
(B.10)

equation (B.8) then becomes

−
(
∂S

∂φ

)2

+

(
∂S

∂α

)2

−QαNL +QφNL = 0. (B.11)

If we now assume that

S(α, φ) = aφ+ bα, (B.12)
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where a and b are constants, we obtain

−a2 + b2 −QαNL +QφNL = 0, (B.13)

or,

−a2 + b2 − 1

2ζ2αη
2
α

[
ln

(
p

(1− ηα)p+ ηαp+

)
+

ηαp+
(1− ηα)p+ ηαp+

− ηαp−
(1− ηα)p− + ηαp

]
+

1

2ζ2φη
2
φ

[
ln

(
p

(1− ηφ)p+ ηφp+

)
+

ηφp
+

(1− ηφ)p+ ηφp+
−

ηφp
−

(1− ηφ)p− + ηφp

]
= 0,

(B.14)

which is the di�erence equation for a spatially FLRW �at universe with a free massless

scalar �eld.
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