
IMPROVING QUALITY OF EXPERIENCE

AND PROTOCOL PERFORMANCE USING

USER CONTEXT INFORMATION

LU YU

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012

To my parents and departed grandfather.

i

Acknowledgements

After over seven years postgraduate study, at three different countries, in two

different disciplines, I have learned one thing - I could never have done any good

research work without the support and encouragement of a lot of people.

First, I would like to express my deepest gratitude to my two advisors, Prof.

Wong Wai-Choong, Lawrence and Prof. Mehul Motani, for their continuous guid-

ance and support during my four years PhD study. Their invaluable advice, keen

insight, extensive knowledge and enthusiasm have provided me great inspirations

and paved the way for my research. They have generously devoted their time and

efforts to fostering my independent learning and thinking abilities. If I do take the

academic path, I only hope that I can be half the advisor that you have been to

me. Whatever path I do take, the philosophy and the thinking skills I have learned

from them will definitely benefit all my life. I guess that is why Ph.D. stands for

Doctor of Philosophy, and we pursue not only a doctor in pure engineering or

science.

I would also like to thank Prof. THAM Chen Khong, Prof. Chua Kee Chaing,

Prof. Ge Shuzhi, Dr. Soh Wee-Seng, Prof. Hang Chang Chieh, and Dr. Xiao

Wendong, for their professional advices and comments on both my research and

my future career plans.

My sincere thanks also goes to Prof. Liu Jinkun for not only his role as my

ii

ACKNOWLEDGEMENTS

master advisor in Beijing University of Aeronautics and Astronautics, but also his

unconditional support for my overseas study in both Singapore and France.

I must thank National University of Singapore for providing me such a pre-

cious study opportunity, when my student visa application was unexpectedly re-

jected by the U.S. embassy around four years ago. I have been very lucky to meet

Prof. Justine Clare Burley in Beijing back in 2007, who encouraged me to come

to this garden city and my current faculty, NUS Graduate School for Integrative

Sciences and Engineering (NGS).

I would like to thank all my lab mates and colleagues in NUS ECE Com-

munications Lab and IDMI Ambient Intelligence Lab, Mr. Wang Hui, Mr. Song

Xianlin, Dr. Zhang Xiaolu, Dr. Da Bin, Dr. Chen Qian, Mr. Sun Ju, Dr. Jin

Yunye, Mr. Ingwar Wirjawan, Mr. Goh Thiam Pheng and many other good

friends. Without you guys to have fun with and complain to, I cannot complete

my thesis work and my PhD journey.

Finally, I would like to dedicate this work to my parents and my departed

grandfather, who taught me the most important subject and set themselves as the

best example: how to care about others more than yourself. They have always

been there for me, although I am not a qualified son and grandson. I owe them

much.

iii

Contents

Dedication i

Acknowledgements ii

Contents iv

Summary viii

List of Tables x

List of Figures xi

List of Symbols xiii

List of Abbreviation xv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Challenges . 5

1.3 Thesis Contributions . 7

1.4 Organization of the Thesis . 8

2 Background and Related Work 10

iv

CONTENTS

2.1 Internet Protocol Stack Design . 10

2.1.1 Layered Architecture . 11

2.1.2 Design Principles . 12

2.1.3 Relevant Research Proposals 13

2.2 Recognition of End-User and Context Information 15

2.2.1 End-User Modeling . 15

2.2.2 Context-Aware Computing 16

2.3 Quality of Experience (QoE) . 21

2.4 Summary . 22

3 User-Context Module Architecture and its Implementation 24

3.1 Architectural Building Blocks . 25

3.2 Context Sensing Subsystem . 26

3.2.1 Overview of Context Sensing Subsystem 26

3.2.2 Implementation of A Context Sensing Subsystem 28

3.3 Context Model Subsystem . 30

3.3.1 Overview of Context Model Subsystem 30

3.3.2 End-User Modeling . 31

3.3.3 Key Context Information (KCI) 34

3.3.4 Building the Context Models 34

3.3.5 Analysis and Discussion . 39

3.4 Control Subsystem . 41

3.5 Summary . 42

4 The User-Context Module Application I: HTTP Case 44

4.1 Problem Description . 45

4.2 Key Context Transfer Protocol . 46

v

CONTENTS

4.3 The Control Subsystem Design . 49

4.4 Experimental Setup . 50

4.4.1 Server-side Implementation Issues 50

4.4.2 Client-side Implementation Issues 51

4.4.3 Experimental Configuration 53

4.5 Internet Experiment Results . 55

4.5.1 Light-Traffic Condition . 56

4.5.2 Heavy-Traffic Condition . 59

4.5.3 Discussions on Delayed and Loss of KCIs 63

4.6 Summary . 64

5 The User-Context Module Application II: TCP Case 66

5.1 Problem Description . 67

5.2 Assessment of QoE . 68

5.3 The Control Subsystem Design . 69

5.4 Experimental Results and QoE Enhancement 75

5.5 Summary . 79

6 A Resource Distribution Framework Incentivizing Context Shar-

ing and Moderate Competition 81

6.1 Motivations and Examples . 82

6.1.1 Web System Example . 83

6.1.2 Streaming Media System Example 84

6.2 Objectives of the Framework . 85

6.3 Framework Workflow . 86

6.4 Willingness Update Algorithm . 89

6.5 Resource Distribution Algorithm 93

vi

SUMMARY

6.6 Theoretical Analysis of the Framework 96

6.6.1 Non-Cooperative Game and Nash Equilibrium 97

6.6.2 Theoretical Analysis . 97

6.7 Illustrative Case and Experimental Results 101

6.8 Summary . 112

7 Conclusion and Future Work 113

7.1 Research Summary . 113

7.1.1 The User-Context Module Architecture 113

7.1.2 The Key Context Information and Context Models 114

7.1.3 The Applications of the User-Context Module 115

7.1.4 The Resource Distribution Framework 116

7.2 Future Research Directions . 116

7.2.1 Advanced End-User Models and KCI 116

7.2.2 More Applications of the User-Context Module 117

7.2.3 Context Usage in Future Internet Architecture 118

7.3 Conclusion . 119

Bibliography 120

Appendix A 128

Appendix B 137

vii

Summary

As an effective technique for multiplexed utilization of interconnected net-

works and their hosts, today’s Internet protocol stack does not explicitly take into

account dynamic end-users and their context information in its architectural de-

sign, which affects Internet performance from both the end-user perspective and

the network perspective. On the other hand, the rapid progress in context-aware

computing techniques as well as cognitive science greatly facilitates collecting and

ascertaining context information of Internet end-users. Proper utilization of the

highly abstract and substantive end-user’s context information presents major op-

portunities to further enhance the Internet as a user-centric, context-aware and

intelligent communication system. To address these research challenges, a novel

functional module, called the User-Context Module, is proposed to explicitly and

smoothly integrate an end-user’s context information into the five-layer Inter-

net protocol stack. In this thesis dissertation, the research is exploited in three

phases: (i) basic architectural design of the User-Context Module; (ii) applications

of the User-Context Module; (iii) a resource distribution framework that provides

context-driven service differentiation, and also incentivizes context sharing and

moderate competition under the User-Context Module.

Firstly, we design the basic architecture of the User-Context Module, which

consists of three indispensable subsystems. Two fundamental categories of the

viii

SUMMARY

advanced context information are defined, and corresponding context models are

built for three representative Internet services with the aim of empowering the

Internet to capture, understand and utilize end-user’s context information.

Secondly, we design and implement two applications of the User-Context

Module to demonstrate its operation, implementation and performance. The In-

ternet experimental results show that the two applications can effectively enhance

the end-user’s quality of experience (QoE) and improve the underlying protocol

performance.

Lastly, based on the User-Context Module architecture and the deduced con-

text information, we propose a resource distribution framework that (1) provides

service differentiation in allocating limited resources; (2) encourage all Internet

clients to provide their actual context information; (3) motivate all Internet clients

to adopt a moderate competition policy.

ix

List of Tables

3.1 Basic Context Information from End-Users and Internet Services . . 27

3.2 Interaction Conditions and the Corresponding Validation Criteria . 36

3.3 The Context Models for the Three Internet Services 38

x

List of Figures

1.1 Oversimplification of Internet client 2

1.2 De-conflation of end-user, networked host and Internet services. . . 3

1.3 New communication pathway and the closed communication loop. . 4

2.1 Organization of the Related Work. 11

2.2 Internet protocol stack and OSI model. 12

2.3 Basic MILSA architecture and its three realms. 14

2.4 Basic and abstract model of Human Information Processing (HIP). 16

2.5 A typical and simplified middleware based context-aware system

architecture. 18

2.6 An example of the latest context-aware systems: IBM Blue Space. . 20

3.1 System block diagram of the User-Context Module with the Internet

protocol stack. 25

3.2 Detecting an end-user’s frontal face and open eyes in real-time. . . . 29

3.3 Physical sensors in the built Context Sensing Subsystem. 30

3.4 Model Human Processor (MHP) framework. 32

3.5 Logical structure of the built context model. 40

4.1 Workflow of the Key Context Transfer Protocol. 47

4.2 Network topology in the experiment. 53

xi

LIST OF SYMBOLS

4.3 Average Web page response time under the light-traffic condition. . 57

4.4 Ratios of HTTP request number to transferred Web page number. . 58

4.5 Average Web page response time under the heavy-traffic condition. 60

4.6 Ratios of HTTP request number to transferred Web page number. . 61

4.7 Throughput of Web server under heavy-traffic condition. 61

5.1 Advertised window size determined by the spare room of the re-

ceiver buffer. 69

5.2 The end-user’s QoE on QQQTV and CuteFTP as a function of the

allocated bandwidth . 71

5.3 Key Context Information transition on QQQTV. 75

5.4 A comparison between the system without and with the User-

Context Module. 76

5.5 Cumulative Opinion Score (COS) under the two extreme scenarios . 78

6.1 Time slot divided into the Initialization Period and the Hold Period. 87

6.2 Three steps in the basic workflow of the resource distribution frame-

work. 89

6.3 Three bucket groups in the given Resource Distribution Algorithm

(RDA). 94

6.4 Service differentiation under the resource distribution framework. . 105

6.5 A comparison of the average end-user’s QoE on Web browsing. . . . 106

6.6 A comparison between the honest client and the dishonest client. . . 108

6.7 A comparison between the aggressive client and the moderate client.110

6.8 Framework adaptivity in terms of the total client number. 111

xii

List of Symbols

Symbol Meaning

𝑉 sending rate of TCP connection

𝐾𝑝, 𝐾𝑑 tuning parameters in PD control algorithm

𝑒 error in control system (ideal output - measurable output)

𝑊 𝑟𝑒𝑐 advertised window size in TCP

𝑓𝑠 normalized file size in the QoE model

𝑉𝑑 normalized downloading bandwidth in the QoE model

𝑖, 𝑗, 𝑘, 𝐿, 𝑀, 𝑟 indices

𝑃 game player (Internet client)

𝐼 set of game players

𝑁 total number of game players

𝑇 time slot over resource distribution process

𝑤 willingness value of the resource owner

𝑏 bidding value of game player

𝑥 assigned resources by the Resource Distribution Algorithm

𝑠 outcome of the Key Context Information

𝐶 class of Internet clients categorized by the resource owner

𝜇 total amount of available resources

xiii

LIST OF SYMBOLS

Symbol Meaning

𝑞 duration ratio in the Willingness Update Algorithm

𝜃 threshold in the Willingness Update Algorithm

𝜂 number of tickets in the Willingness Update Algorithm

𝑙 amplification factor in the Willingness Update Algorithm

⌈⋅⌉ ceiling function

⌊⋅⌋ floor function

𝐺 group of Internet clients divided by Resource Distribution Algorithm

ℎ final height in the Resource Distribution Algorithm

𝐵∗ bidding strategy profile of all game players

∇ differential operator (gradient)

xiv

List of Abbreviation

Abbreviation Full Name

QoE Quality of Experience

MHP Model Human Processor

HIP Human Information Processing

COS Cumulative Opinion Score

RDA Resource Distribution Algorithm

WUA Willingness Update Algorithm

HCI Human-Computer Interaction

DARPA Defense Advanced Research Project Agency

OSI Open Systems Interconnect

HTTP Hypertext Transfer Protocol

DNS Domain Name System

TCP Transport Control Protocol

IP Internet Protocol

IETF Internet Engineering Task Force

MILSA Mobility and Multihoming supporting

Identifier Locator Split Architecture

LISP Locater/ID Separation Protocol

xv

LIST OF ABBREVIATION

EPIC Executive Process Interactive Control

GUI Graphical User Interface

OPENCV Open Source Computer Vision

QoS Quality of Service

CS Communicating State

IS Inactive State

KCTP Key Context Transfer Protocol

TLS Transport Layer Security

XMLP Extensible Markup Language Protocol

LAN Local Area Network

WAN Wide Area Network

RTT Round Trip Time

RTSP Real Time Streaming Protocol

ITU-T International Telecommunication Union

Telecommunication standardization sector

PD Proportional and Derivative

VoD Video on Demand

CDN Content Distribution Network

RMI Remote Method Invocation

KKT Karush-Kuhn-Tucker

xvi

Chapter 1

Introduction

1.1 Motivation

As an effective global system for multiplexed utilization of interconnected net-

works and their hosts, the Internet has achieved tremendous success in supporting

today’s Internet services. This is due to many fundamental and respected design

principles for building the Internet protocol stack, such as layered architecture

for task partitioning, packet switching for multiplexing, end-to-end arguments for

defining protocols and global addressing for routing datagrams.

One of the fundamental design principles is that the Internet serves as the

communication medium between two hosts that desire to speak to each other [1],

where networked hosts work as the delegated representative of Internet end-users [2].

Such a design principle directly results in today’s Internet simply regarding its end-

user, host and services as one entity, namely the Internet client. More specifically,

the Internet protocol stack conflates its dynamic end-user, networked host and

various running services into one oversimplified concept: an Internet client that

desires communicating. Fig. 1.1 simply depicts such a design principle for the

1

CHAPTER 1. Introduction

End-User

Networked Host

Internet Client that Desires

Communicating

Internet Services

Internet Client

simplified into

Fig. 1.1: Oversimplification of Internet client

Internet protocol stack and its communication protocols. Note that the end-user

refers to the person who uses developed Internet services through a networked

host. Internet services span a wide range of online services typically including

World Wide Web, file transfer, streaming media as well as electronic mail. Inter-

net application refers to any individual program that supports the corresponding

Internet service. Networked hosts range in size from a small netbook through

laptop to workstation.

There is no doubt that such a traditional design principle greatly decreases

today’s Internet complexity, but it essentially excludes the end-user factor from the

Internet client entity and even the entire Internet protocol stack. Consequently,

communication protocols in the Internet protocol stack inevitably ignores the end-

user’s presence, preference and any interaction activities with the Internet services

and host. As a result, the Internet protocol stack is unable to take advantage of

its end-user’s information, especially the context information that can be utilized

in different communication protocols and services. The absence of the end-user’s

context information may not only affect the underlying network performance but

2

CHAPTER 1. Introduction

Networked Host

Internet Services

Internet Client that Desires

Communicating

End-User

Internet Client Involving Context Information

Context-Aware Computing

Cognitive Psychology

Fig. 1.2: De-conflation of end-user, networked host and Internet services.

also decrease the usability and effectiveness of Internet services. Under many

circumstances, it may also cause mobility and security issues.

On the other hand, advances in context-aware computing present major

opportunities for empowering the traditional Internet to capture its end-user’s

presence, activities and other important context information. Briefly speaking,

context-aware computing makes use of various sensors and techniques, e.g., wire-

less network camera and computer vision techniques, to collect a system’s physical

and environmental information. Such a system then can adapt its operations to

the collected context information to increase its usability and effectiveness. There

has been an entire body of research dedicated to building context-aware systems

for different use cases and applications. For many existing context-aware sys-

tems, the Internet serves as a communication carrier to undertake the task of long

distance data transmission. However, few prior systems and studies consider ex-

plicitly introducing the captured context information into the underlying Internet

protocol stack and communication protocols.

Moreover, the developed cognitive models in cognitive psychology [3], which

3

CHAPTER 1. Introduction

End-User

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Context Information

Internet Services

Internet Protocol Stack

Fig. 1.3: New communication pathway and the closed communication loop.

focus on understanding humans and their activities, can also help capture the

end-user’s context information. Cognitive psychology is the study of how humans

acquire, process and store information and solve problems. Cognitive psychology

research as well as some fields in Human-Computer Interaction (HCI) [4] has

made great efforts on modeling humans and interpreting their interactions with

the external environment.

As shown in Fig. 1.2, combination of existing context-aware computing tech-

niques with the established cognitive models directly helps to restore the oversim-

plified Internet client, and de-conflate Internet end-user, networked host and Inter-

net services. It would eventually enable the Internet protocol stack and services to

fully understand end-users, and actively adapt their operations and performance

to the captured context information.

The research we are proposing aims at explicitly incorporating end-user’s sub-

stantive context information, such as the interaction status between an end-user

and different Internet services, into the underlying Internet protocol stack, and

4

CHAPTER 1. Introduction

further enhancing the Internet as a user-centric, context-aware, and interactive

communication system. As illustrated in Fig. 1.3, besides the conventional com-

munication pathway from the Internet protocol stack through Internet services to

the client side, a novel communication pathway for transmission of context infor-

mation from the client side to the Internet protocol stack is proposed. Hence, our

work essentially establishes a closed communication loop involving the Internet

protocol stack, Internet end-users, and Internet services.

1.2 Research Challenges

Why is introducing end-user’s context information into the Internet protocol

stack so different from building traditional context-aware systems? The difficulties

in enabling a user-centric and context-aware Internet protocol stack stem mainly

from the following open issues:

1. What kind of context information is required, and even indispensable, for

the Internet protocol stack? How to capture and ascertain such context

information?

2. How does the Internet protocol stack utilize and adapt itself to the derived

context information?

3. How to motivate selfish Internet clients to actively provide and share their

actual context information?

Firstly, any information that can be used to characterize the situations be-

tween an end-user and Internet services or host is valid and regular context in-

formation. However, only the highly abstract and most substantive context in-

formation, which describes end-user’s interaction states with the working Internet

5

CHAPTER 1. Introduction

services, makes sense to the Internet protocol stack. It is because any redundant or

invalid context information would easily degrade the performance of the Internet

protocol stack, whose key responsibility is to provide end-to-end connectivity ser-

vice. Hence, only the concise context information that accurately reflects dynamic

changes of an end-user’s real-time interaction states can be introduced into the

protocol stack. In addition, such advanced context information should be acquired

and verified from multiple and heterogenous sources.

Secondly, the layered architecture of the Internet provides natural abstrac-

tions to deal with the functional hierarchy present in the Internet protocol stack,

and the communication protocols running at a particular layer do not need to

worry about the rest of the stack. Hence, context information should be cau-

tiously introduced into communication protocols to avoid spoiling the integrity

and modularity of the Internet architecture. Improperly introducing the context

information would effect the basic functions and operations of the relevant pro-

tocols, and even lead to unintended consequences on overall performance of the

entire layer.

Last but not least, even though the desired context information has been ac-

curately captured and successfully incorporated into the Internet protocol stack,

Internet clients would be reluctant to provide and share their context information,

especially the information that may result fewer allocated resources. This is due

to the fact that all Internet clients are selfish and rational in nature, and these

unconstrained competitors always act in a way to maximize their own benefits.

Hence, a systematic mechanism or framework is required to incentivize actual con-

text sharing and moderate competition among Internet clients, when the designed

system provides the context-driven service differentiation.

6

CHAPTER 1. Introduction

1.3 Thesis Contributions

The contributions of this thesis are listed below:

∙ Design a functional module, called the User-Context Module, to explicitly

and smoothly incorporate the advanced context information of end-users

into the Internet protocol stack.

∙ Construct a group of context models to deduce two fundamental categories

of the context information for the representative Internet services.

∙ Design and implement two practical applications of the User-Context Mod-

ule, which interact with the distinct communication protocols on different

layers to enhance the end-user’s Quality of Experience (QoE) and improve

the underlying protocol performance.

∙ Build a resource distribution framework for the User-Context Module to

provide context-driven service differentiation and incentivize actual context

information sharing and moderate competition among selfish Internet clients.

The first two contributions mainly address the first research problem raised

in the previous section, i.e., what is the required context information and how

to derive it. The proposed solution, namely the User-Context Module with its

three key subsystems, empowers the Internet protocol stack to recognize two fun-

damental interaction states between an end-user and operating Internet services.

For different Internet services, the defined context information can be effectively

deduced by the built context models, which leverage on cognitive psychology and

first-order rule-based reasoning.

The third contribution are two distinct applications of the User-Context Mod-

ule, namely the HTTP case and the TCP case. They demonstrate the User-

7

CHAPTER 1. Introduction

Context Module’s operations and impacts as well as its Control Subsystem’s de-

sign and implementation. These two applications explore the design space of

the User-Context Module and also inform other novel utilization of the deduced

context information for the Internet protocol stack. Hence, it takes solid steps

towards solving the second problem raised in the previous section, i.e., how to en-

able the Internet protocol stack to utilize and adapt itself to the deduced context

information.

The last contribution is to provide a widely applicable framework with the

practical algorithms to encourage selfish Internet clients sharing actual context

information and meanwhile reducing the excessive competition among them. The

design philosophy behind the proposed framework helps the designers to consider

the context owner factor and view the design problem in its entirety when building

a new User-Context Module application. The proposed framework addresses the

last research problem raised in the previous section.

In short, our research efforts have been made to separate end-users from the

conventional oversimplified Internet client, utilize the specific end-user’s context

information to improve the Internet protocol stack performance and eventually

provide services to ordinarily Internet end-users.

1.4 Organization of the Thesis

The thesis is organized in the following manner:

Chapter 2 summarizes the related work from the perspectives of the Internet

protocol stack design and the end-user’s context recognition, respectively.

Chapter 3 proposes the architectural framework of the User-Context Module

through augmenting the traditional Internet protocol stack, and lays a special

8

CHAPTER 1. Introduction

stress on designing and implementing two subsystems, i.e., the Context Sensing

Subsystem and the Context Model Subsystem, to capture and deduce the desired

context information.

Chapter 4 presents the first application of the User-Context Module, which

mainly introduces the deduced context information into the Application Layer’s

HTTP protocol. A specifically designed Control Subsystem is designed and im-

plemented for this application. The first application demonstrates how the User-

Context Module improves HTTP protocol performance and the end-user’s QoE.

Chapter 5 presents the second application of the User-Context Module, which

mainly introduces the deduced context information into the Transport Layer’s

TCP protocol. The second application demonstrates how the User-Context Mod-

ule improves TCP protocol and enhances the end-user’s QoE.

Chapter 6 proposes a supporting framework for the User-Context Module,

which provides context-driven service differentiation and incentivizes context shar-

ing and moderate competition among Internet clients.

Chapter 7 contains a summary and suggestions for future research in this

direction.

9

Chapter 2

Background and Related Work

This chapter discusses the background research work related to this disserta-

tion. The review is cross-disciplinary and thus it is classified into three general

fields: (1) Internet protocol stack design; (2) recognition of end-user and con-

text information; (3) end-user’s QoE. The Internet protocol stack design is first

reviewed. Then, we discuss the second field, which mainly includes end-user mod-

eling and context-aware computing. Finally, we give an introduction to the basic

concept of QoE. Fig. 2.1 illustrates the organization of this chapter.

2.1 Internet Protocol Stack Design

The goal of the original Internet, which was built up for the Defense Ad-

vanced Research Project Agency (DARPA) around 30 years ago, was to develop

an effective technique for multiplexed utilization of interconnected networks and

their hosts [1]. With such a host-centric vision, Internet creators built an Internet

protocol stack and successfully connected worldwide hosts together.

10

CHAPTER 2. Background and Related Work

Related Work

Internet Protocol

Stack Design

Recognition of End-

User and Context

Information

Relevant Research Proposals

Design Principle

Layered Architecture

End-User Modeling

Context-Aware Computing

Existing Context-

Aware Systems

Context Information

Acquisition

Context Model

Quality of Experience

Fig. 2.1: Organization of the Related Work.

2.1.1 Layered Architecture

In order to accomplish complicated data communication tasks, the Internet

partitions its methods and protocols into several hierarchical abstraction layers.

Each layer has specific features and functionalities with peer interactions at equiv-

alent layers across networks. As shown in Fig. 2.2, the five-layer Internet protocol

stack [5] and the seven-layer Open Systems Interconnect (OSI) model [6] are the

two commonly used models for organizing and describing the layered architec-

ture of today’s Internet. In the five-layer Internet protocol stack, the Application

Layer is the top layer and contains all protocols and methods that fall into the

realm of process-to-process communications across an IP network, such as Hyper-

text Transfer Protocol (HTTP) and Domain Name System (DNS). The Transport

Layer is mainly responsible for supporting the end-to-end conversation, where

Transmission Control Protocol (TCP) is the primary connection-oriented proto-

11

CHAPTER 2. Background and Related Work

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Session Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Presentation Layer

Application Layer
Send

to

Network

Receive

from

Network

Internet Protocol Stack OSI Model

Fig. 2.2: Internet protocol stack and OSI model.

col. The Network Layer is responsible for packet forwarding including routing

with an official packet format defined in Internet Protocol (IP). The Data Link

layer provides the abstraction of a link, as well as the ability to transmit and

receive bits over the link. The Physical Layer handles signals and supports the

communication service in bits. In short, such a layered architecture described by

the five-layer protocol stack plays a prominent role in the success of the modern

Internet. Any new enhancements for the Internet should maintain the integrity

and the modularity of the layered architecture.

2.1.2 Design Principles

Since the inception of the Internet, many fundamental and respected princi-

ples have been gradually introduced and implemented in its layered architecture

and communication protocols, such as packet switching for multiplexing [7], end-

12

CHAPTER 2. Background and Related Work

to-end arguments for defining communication protocols [8] and global addressing

for routing datagrams [6]. Regulated by those established design principles, Inter-

net designers do their work: they design, revise, configure and deploy a variety of

communication protocols and Internet services.

One of the fundamental design principles is that the Internet serves as the

communication medium between two hosts that desire to speak to each other [1,

9]. The Internet standard [2] published by Internet Engineering Task Force (IETF)

specifies that “Internet host, or simply ‘host’, is the ultimate consumer of com-

munication services. A host generally executes application programs on behalf of

user(s), employing network and/or Internet communication services in support of

this function”. With such a host-centric vision, the Internet protocol stack sim-

ply regards the Internet end-user, host and Internet service as one entity, namely

the Internet client. More specifically, the Internet allows any networked host to

be the representative of its end-user, and assumes that any network host always

desires to communicate with each other. Such a design principle and assumption

greatly reduces the complexity of today’s Internet architecture and communica-

tion protocol design. However, they inevitably result in the Internet protocol stack

oversimplifying the concept of the Internet client. Accordingly, the designed com-

munication protocols completely ignore the end-user’s presence, interaction state

and any other relevant and important information.

2.1.3 Relevant Research Proposals

There have been relevant research proposals within the scope of extending the

concept of Internet client, particularly the studies on the identifier-locator split

architecture. The identifier specifies who the networked host is, and the locator

explains where the networked host is. Briefly speaking, the identifier-locator split

13

CHAPTER 2. Background and Related Work

DNS name,

Application

Layer IDs

IP

User-ID,

Data-ID,

Service-ID

Locator

Host-ID

TCP/UDP

Port

TCP/UDP

Port

User Realms

Host Realms

Infrastrucutre

Realms

Internet

Protocol Stack
MILSA

Fig. 2.3: Basic MILSA architecture and its three realms.

architecture attempts to use independent name spaces to help the Internet protocol

stack recognize the host and the host address separately. For example, MILSA

(Mobility and Multihoming supporting Identifier Locator Split Architecture) [10]

introduces a new Host-ID sub-layer into the Network Layer of the protocol stack

to separate networked host from its locater. As shown in Fig. 2.3, it defines the

independent user realm, host realm and infrastructure realm, which are handled

by their individual realm managers.

MILSA and other identifier-locator split architectures, such as HIP [11] and

LISP [12], aim to eventually enable Internet end-users, rather than the networked

host, be the final destination of Internet services. Hence, to some extent, they

incorporate Internet end-users into the architecture of the Internet protocol stack,

although none of end-user’s context information is included. For more details of

the identifier-locator split architecture and relevant research proposals, the reader

is referred to [9] and the references therein.

14

CHAPTER 2. Background and Related Work

2.2 Recognition of End-User and Context Infor-

mation

In order to enable the Internet to recognize the Internet end-user’s context, we

must first understand the end-user himself. After that, we can employ approaches

and techniques to capture the required context information. Hence, in this section,

we first introduce the particular field related to end-user modeling, and then we

review the related work in context-aware computing.

2.2.1 End-User Modeling

Cognitive psychology [13] as well as particular fields in Human-Computer In-

teraction [4] offer us a group of approaches to model human and interpret human’s

interaction behavior. The Human Information Processing (HIP) approach [3] in

cognitive psychology holds considerable promise to model how an end-user re-

ceives, stores, integrates and uses information from the external environment,

such as Internet services. The basic idea of the HIP approach is that the human is

like a computer or a complex system that can be analyzed in terms of subsystems

and their inter-relationships. Fig. 2.4 depicts a basic and abstract model of HIP.

Different HIP models have been developed to characterize or predict an end-user’s

interaction activity and behavior. The most widely known models include Model

Human Processor (MHP) proposed by Card et al. [14] and Executive Process In-

teractive Control (EPIC) [15]. Both models assume that a series of discrete phases

compose the information processing, and the output of one phase serves as the

input for the next. McClelland’s cascade model [16] considers that each phase is

continuously active with continuous output values, where only partial information

at each phase is transmitted to the next. Besides the discrete and continuous

15

CHAPTER 2. Background and Related Work

Long Term Memory

Working Memory

Central Executive Environment

Input: Perception

Output: Behavior

Fig. 2.4: Basic and abstract model of Human Information Processing (HIP).

phase models, Sequential Sampling Models [17] and other applicable HIP mod-

els [18] have been proposed and developed. Furthermore, some new approaches

start to challenge and improve on the traditional HIP approach, such as the sit-

uated cognition [19] and the cybernetic approach [20]. In this dissertation, the

proposed context model is based on MHP, not only because it is the most widely

known and established HIP model, but more importantly, it offers an efficient way

to precisely define an end-user’s different interaction states, which can be validated

by the specific interaction conditions.

2.2.2 Context-Aware Computing

Besides the established models to describe an end-user, context-aware com-

puting approaches and techniques are also indispensable for the recognition of

end-user’s context. The ubiquitous computing idea [21] envisioned by Weiser has

evolved to a more general paradigm known as context-aware computing. The term

context refers to any information that can be used to characterize the situation

16

CHAPTER 2. Background and Related Work

of an entity that is considered relevant to the interaction between an end-user

and the application, including the end-user and the application themselves [22].

Context-aware computing enables a system to be aware of its end-user and adapt

its operations to the captured end-user’s context information.

Context Information Acquisition

Context information acquisition refers to the process of capturing and manag-

ing the basic context information from heterogeneous sensors. The sensors can be

classified into physical sensors and virtual sensors: physical sensors are the hard-

ware sensors that capture the information from the physical environment, while

virtual sensors collect data from software applications including operating systems

and Internet services. Different context information acquisition approaches would

directly influence the architectural style of a built context-aware system. In gen-

eral, there have been several context information acquisition approaches, typically

including the direct sensor access approach, the context server based approach

and the middleware based approach [23]. The middleware based approach uses

a method of encapsulation to separate and hide low-level sensing details to ease

rapid prototyping and implementing of a context-aware system. The separation of

detecting and using context is also necessary to improve the extensibility and the

reusability of a context-aware system. The middleware based approach has been

widely adopted in the existing context-aware systems, such as SOCAM [24] and

Gaia systems [25], which effectively support acquiring, discovering, interpreting

and disseminating different context information. Fig. 2.5 illustrates a typical and

simplified middleware based context-aware system architecture consisting of Con-

text Sensing Layer, Context Middleware Layer and Context Application Layer.

Our User-Context Module architecture also draws upon the design experience

17

CHAPTER 2. Background and Related Work

Context Application

Layer

Context Middleware

Layer

Context Sensing

Layer

Context-Aware Service

Context Database

and File System

Virtual Sensors Physical Sensors

External

Context

Provider

Internal

Context

Provider

Context

Engine

and Model

Fig. 2.5: A typical and simplified middleware based context-aware system architecture.

from the middleware based approach for acquisition of Internet end-user’s context

information.

Context Model

After successfully acquiring basic context information, context models are

often required to define, ascertain and store some advanced context data in an

application processable form. In general, the existing context models can be clas-

sified into several categories, including the logic based model, the ontology based

model, the object oriented model as well as the key-value model [26]. The logic

based model and the ontology based model are two widely used models in today’s

context-aware systems. The logic based model often adopts an inference engine,

or called reasoning engine, to deduce new facts based on the pre-defined rules

and expressions. It has a high degree of formality, and allows addition, update

or removal of new facts. The ontology based model directly applies the ontology

reasoning techniques, which has high and formal expressiveness. The developed

18

CHAPTER 2. Background and Related Work

context models for a variety of context-aware systems are well summarized in [27].

Our User-Context Module adopts the first-order rule-based reasoning engine, and

thus our context model can be classified into the category of the logic based model.

Existing Context-Aware Systems

We finally provide an overview of the existing context-aware systems. The

Active Badge Location System [28] is always regarded as the first context-aware

system, which utilized an end-user’s location context information to forward phone

calls to a telephone close to the end-user. In later context-aware systems, end-

user’s identity, activity, time and other context information are gradually intro-

duced and employed [27]. The latest context-aware systems are always character-

ized by an intelligent environment, user-centered service and transparency. They

deploy various autonomous computational devices and sensors to build a user-

centered environment for distinct application scenarios. In most cases, end-users

in such an intelligent environment do not notice those integrated devices and sen-

sors while they benefit from the supported applications and services.

With the aim of having “the system adapt to its users”, there have been

tremendous efforts in building context-aware systems from both the technical and

the social perspectives [29–33]. MIT has built a pervasive human-centered com-

puting environment in the Oxygen project [29]. The system deploys multiple em-

bedded computational devices called Enviro21s (E21s) in offices, cars and homes to

collect context information. With the hand-held devices called Handy21s (H21s)

and the indoor location support, Oxygen’s system can assist its users perform a

group of tasks in their daily lives. Georgia Tech’s researchers have designed an en-

vironment that can sense the inhabitants through a variety of sensing technologies

in their Aware Home project [30]. One interesting Aware Home initiative called

19

CHAPTER 2. Background and Related Work

Fig. 2.6: An example of the latest context-aware systems: IBM Blue Space.

“Aging in Place” focuses on developing the technology and applications which

enable senior adults to live independently in their homes. IBM has proposed the

next-generation workspace solution in its “Blue Space” project [31], which in-

tegrated sensors, actuators, displays and wireless networks into one work place.

The workspace solution, as shown in Fig 2.6, aims to increase the productivity

by deterring unwanted interruptions and facilitating communication among group

members.

In the built context-aware systems, the Internet protocol stack has always

served as the default long distance data communication carrier. However, limited

prior projects consider enabling the Internet to directly utilize the captured end-

user’s context information. The context-aware Web service [34] can be regarded

as a good attempt in this direction. They mainly employ Web end-user’s context

information to support Web content adaptation [35], communication optimiza-

tion [36] as well as security and privacy control [37]. For example, in Web content

adaptation systems, specific context information is always used to customize Web

content in a form suitable to the end-user. Nevertheless, existing context-aware

Web service systems only utilize context information to adjust high level Internet

20

CHAPTER 2. Background and Related Work

services, and none of them introduce end-user’s context information directly into

the Internet protocol stack, or more specifically, the underlying Internet commu-

nication protocols.

2.3 Quality of Experience (QoE)

Since one of the main objectives of the proposed User-Context Module appli-

cation is to enhance the end-user’s QoE, it is necessary to first discuss its basic

concept and assessment approach.

The ITU Telecommunication (ITU-T) Standardization Sector defines QoE as

“the overall acceptability of an application or service, as perceived subjectively by

the end user” [38]. Other concepts of QoE [39, 40] can be simply interpreted as

the end-user’s subjective perception on the qualitative performance of commu-

nication systems and applications. QoE is currently receiving immense interest

from both of the academic and the industrial perspectives. Particular attention

is given to assess and measure QoE not only in terms of the traditional Quality

of Service (QoS) parameters [41], but a joint consequence of the communication

context environment, the characteristics of the service in use and the underlying

network performance. Since a large number of variables and information need

to be considered, Brooks et al. [42] propose a structured assessment approach to

describe end-user’s QoE with the following clause:

IF <Communication Situation>;

USING <Service Prescription>;

WITH <Technical Parameters>;

THEN <end-user’s QoE>.

21

CHAPTER 2. Background and Related Work

Such an assessment approach explicitly combines the end-user’s usage context

information and technical parameters together to measure the QoE. All the at-

tributes in the bracket have many possible options. For example, <Communication

Situation> takes into account objective communication context related to end-

users. The <Service Prescription> can be Live Streaming, File Transfer or any

other types of Internet services. The <Technical Parameters> ranges from the bit

rate to the protocol type, and a more complete list is given in [42]. For the <end-

user’s QoE>, the Opinion Score scale from 5 to 1 can be used to describe the

end-user’s subjective satisfaction on the performance of a given Internet service.

With the structured assessment approach, we can describe and measure the

end-user’s QoE in a clearer and comprehensive way. The progress on the tech-

niques for enhancing and modeling QoE would impact Internet design and even-

tually benefit the ordinary Internet end-users.

2.4 Summary

In this chapter, we first review the Internet protocol stack design issue, and

then discuss the end-user modeling and the context information recognition. Last

but not least, we introduce the definition of QoE and its assessment approach. The

traditional host-centric design principle causes that the Internet protocol stack in-

evitably ignores its end-user’s presence, interaction activities and other context

information. In order to retrieve and utilize the substantive context information,

it is necessary to enable the Internet protocol stack to recognize and understand

its end-users. Cognitive psychology provides the required models and framework.

Context-aware computing approaches and techniques draws a blueprint for en-

abling the Internet further adapt to the captured context information. Moreover,

22

CHAPTER 2. Background and Related Work

the latest context-aware systems demonstrate how to derive advanced context

information and utilize them for system-level adaptations. Our investigation of

these related work and background knowledge has informed our design objectives,

namely enhancing the end-user’s QoE and improving the performance of Internet

communication protocols.

23

Chapter 3

User-Context Module

Architecture and its

Implementation

In Chapter 1, we described the motivation and the research challenges. In

Chapter 2, we discussed the related work from the perspectives of the Internet

protocol stack design and the context recognition for Internet clients. In this

chapter, we present a new functional module, called the User-Context Module, to

explicitly and smoothly incorporate the context information of end-users into the

Internet protocol stack through augmenting the traditional layered network ar-

chitecture. The User-Context Module consists of three indispensable subsystems:

the Context Sensing Subsystem, the Context Model Subsystem and the Control

Subsystem. In this chapter, we also put special emphasis on designing and im-

plementing the Context Sensing Subsystem and the Context Model Subsystem to

deduce the specific advanced context information.

24

CHAPTER 3. User-Context Module Architecture and its Implementation

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Internet

backbone

S
h
a
red

D
a
ta
b
a
se

Control

Subsystem
Context Model

S
h
a
red

D
a
ta
b
a
se

Group

Context Model

Control

subsystem

User-Context Module

Server

User-Context Module

Key Context Information

Context Sensing

Subsystem

Basic Context

Information Key Context Information

Group

Key Context Information

Internet Client

Fig. 3.1: System block diagram of the User-Context Module with the Internet protocol stack.

3.1 Architectural Building Blocks

With the aim of introducing the context information of end-users into the

basic infrastructure of the Internet, we propose a functional module, namely the

User-Context Module, running on top of the five-layer Internet protocol stack.

The User-Context Module mainly operates under the traditional client-server ar-

chitecture with a strong emphasis on utilizing the interaction information between

an end-user and the Internet. The system block diagram is illustrated in Fig. 3.1.

As indicated earlier, the User-Context Module consists of three main com-

ponents, which are called Context Sensing Subsystem, Context Model Subsystem

and Control Subsystem. In general, the Context Sensing Subsystem undertakes

the basic context information gathering task and directly works with end-users

on the Internet client side. Based on the captured basic context information, the

Context Model Subsystem utilizes context models to deduce the advanced con-

text information that characterizes interactions within an Internet client. In this

dissertation, such advanced context information is termed Key Context Infor-

25

CHAPTER 3. User-Context Module Architecture and its Implementation

mation (KCI). With the deduced KCI, the Control Subsystem directly adjusts

the Internet protocols and services in different layers to improve underlying net-

work performance. We present the design and the implementation issues of these

three subsystems of the User-Context Module in the subsequent three sections.

3.2 Context Sensing Subsystem

3.2.1 Overview of Context Sensing Subsystem

The Context Sensing Subsystem directly interacts with the individual Inter-

net end-user, networked host and their surrounding environment. Since its main

functionalities involve monitoring, collecting and recording the basic context in-

formation of end-users, the Context Sensing Subsystem mainly operates at the

Internet client side as shown in Fig. 3.1. The Context Sensing Subsystem requires

a variety of physical sensors and virtual sensors: physical sensors are the hardware

sensors that capture the information from the physical environment, while virtual

sensors collect data from the software systems, e.g., operating systems running

on the networked host and working Internet services. Sometimes, the Context

Sensing Subsystem is also equipped with specifically designed User Interfaces to

receive manual inputs from Internet end-users. In general, the Context Sensing

Subsystem fulfills the following two functions:

(1) Monitor and record the interaction activities and other relevant basic con-

text information between an end-user and Internet services running on a

networked host. The interaction activities include the host-oriented in-

formation, e.g., which Internet service is currently displaying in the fore-

ground of the network host screen, as well as the user-oriented information,

e.g., whether an end-user’s eye-gaze direction is towards the networked host

26

CHAPTER 3. User-Context Module Architecture and its Implementation

Table 3.1: Basic Context Information from End-Users and Internet Services

 End-User Internet Service

B
a

si
c

C
o

n
te

x
t

In
fo

rm
a

ti
o

n
 E1

Eye-gaze direction towards

networked host screen
S1

Displaying in the foreground

of network host screen

E2 Wearing earphone or near speaker S2 Generating audio output

E3 Touching Mouse S3 Receiving mouse message

E4 Touching Keyboard S4 Receiving keyboard message

E5 Near Microphone S5 Receiving audio input

screen. Other relevant basic context information includes the end-user’s lo-

cation, identity and preference. By leveraging on the intelligent physical and

virtual sensors, the Context Sensing Subsystem can perform its work and

fulfill its tasks in an invisible way.

(2) Besides automatically collecting the basic context information in the back-

ground, the Context Sensing Subsystem may also provide the end-user a

direct and visible interaction service. For example, an end-user could inform

the Internet protocol stack his current state or preference by simply press-

ing some matching buttons on a specially designed graphical user interface

(GUI), or some GUI could show significant underlying network conditions

to the end-user through any user-friendly ways.

In short, the Context Sensing Subsystem mainly undertakes the interaction

activities and other meaningful basic context information gathering task. All the

captured basic context information are delivered to the Context Model subsystem

in real-time for further processing.

27

CHAPTER 3. User-Context Module Architecture and its Implementation

3.2.2 Implementation of A Context Sensing Subsystem

We implement a Context Sensing Subsystem specifically designed to detect

the interaction activities between an end-user and Internet services running on a

networked host (laptop or desktop). To enable the designed subsystem more prac-

tical and generally applicable, its physical sensors are mainly the default devices on

a common network host, including keyboard, mouse and Webcam. Table 3.1 lists

the collected basic context information from the end-user side and the Internet

service side.

From the end-user side, for example, the Context Sensing Subsystem utilizes

a built-in Webcam or a common USB Webcam as the physical visual sensor to

capture open eyes on the human frontal face and accordingly estimate whether

an end-user’s eye-gaze direction is towards the networked host screen in real-

time. The Open Source Computer Vision (OpenCV) library [43] and the existing

visual tracking algorithms [44, 45], greatly facilitate building such a video-based

eye-tracking system. We use the models “haarcascade-frontalface-alt.xml” and

“haarcascade-eye-tree-yeglasses.xml” of the Haar Classifier [46] in the OpenCV

Library to detect an end-user’s frontal face and his open eyes as shown in Fig. 3.2.

The Haar Classifier works as a highly efficient and accurate algorithm to detect

human facial features, which can analyze a 320 by 240 image with a frame rate of

3 frames per second by using 1.2 GHz AMD processor [47].

From the Internet service side, for example, the Context Sensing Subsystem

can automatically monitor and detect which running Internet service is display-

ing in the foreground of the networked host screen and which Internet service is

receiving the mouse/keyboard inputs. Our Context Sensing Subsystem is devel-

oped in Visual C++ under Microsoft .NET Framework on Win32 platform, and

Fig. 3.3 demonstrates the physical sensors employed in our built Context Sensing

28

CHAPTER 3. User-Context Module Architecture and its Implementation

Fig. 3.2: Detecting an end-user’s frontal face and open eyes in real-time.

Subsystem.

Besides the basic context information in Table 3.1, the built Context Sensing

Subsystem also collects the specific underlying network conditions, which involve

the running communication protocols, the critical network configurations and the

important Quality of Service (QoS) parameters. For example, the Context Sensing

Subsystem periodically samples the bandwidth consumption of each running Inter-

net service at the client side. To measure the bandwidth consumption in real-time,

a third party driver called WinPcap [48] is employed to intercept packets flowing

through the network adapter installed on the networked host. Some functions have

not been fully implemented for the current version of our Context Sensing Subsys-

tem, such as detecting whether an end-user is sitting near the speaker, but a great

deal of research has been done for solving such a positioning problem and a variety

of RFID location sensing systems have even been commercialized [49]. Moreover,

other latest sensing technologies in the latest context-aware systems [27, 34] can

also be introduced to the new version of the Context Sensing Subsystem for col-

29

CHAPTER 3. User-Context Module Architecture and its Implementation

Fig. 3.3: Physical sensors in the built Context Sensing Subsystem.

lecting additional basic context information in a more efficient way. In short,

the rapid advancements in ubiquitous sensing and computing technologies greatly

facilitate building the Context Sensing Subsystem for the User-Context Module.

Under the framework of the User-Context Module, the basic context informa-

tion and the underlying network conditions captured by the built Context Sensing

Subsystem are directly delivered to the Context Model Subsystem in real-time.

3.3 Context Model Subsystem

3.3.1 Overview of Context Model Subsystem

The Context Model Subsystem plays a key role in the User-Context Module,

because it is the component for constructing, hosting and utilizing the context

model to deduce the KCI. The context model refers to the abstract data model for

ascertaining an end-user’s presence, preference and interaction activities. In order

to build a reliable and accurate context model, the related cognitive psychology

30

CHAPTER 3. User-Context Module Architecture and its Implementation

models [3], Human-Computer Interaction (HCI) knowledge [4], as well as data

mining and machine learning methods [50] need to be employed. When more

complex context information need to be deduced, advanced reasoning approaches

such as the ontology reasoning [51] can also be introduced.

Besides the context model, the Context Model Subsystem also includes a

shared database, which is used to store and retrieve the captured basic context

information and various underlying network conditions. Depending on the built

context model, the shared database can also perform the task of data filtering

to pick out all irrelevant information before sending data to each built context

model. The context model processes those delivered data and finally deduces the

KCI, which will be promptly delivered to the Control Subsystem. Note that the

Context Model Subsystem can work at both the Internet client side and the server

side as shown in Fig. 3.1, where the context model on the server side can be called

the group context model and consequently deduces the group KCI. The group

KCI is mainly used to help enhance server performance and facilitate server batch

processing. We will further present it in Chapter 6.

3.3.2 End-User Modeling

Building a reliable and accurate context model for ascertaining the presence,

preference or complex interactions of an end-user is not a straightforward task,

and we must first understand and model the end-user himself before further in-

vestigating his interaction activities. Fortunately, cognitive psychology and HCI

fields offer a variety of well developed frameworks and models to explain and de-

scribe the human internal structure and his interaction behavior. The Human

Information Processing (HIP) approach in cognitive psychology field is one of the

most successful methods to conceptualize how the human mind works when he

31

CHAPTER 3. User-Context Module Architecture and its Implementation

Perceptual

Processor

Feedback

Perceptual

Subsystem

Senses

Visual Image

Storage

Auditory

Image

Storage

Long-Term

Meomory

Working

Memory

Cognitive

Processor

Motor

Processor

Actuator

(arm-hand-finger

system, sound, etc)

Motor

Subsystem

Cognitive

Subsystem

Fig. 3.4: Model Human Processor (MHP) framework.

interacts with the external environment. The basic idea of this approach is that

human interaction behavior is a function of several ordered processing stages. In

other words, the human is like a system that can be analyzed in terms of subsys-

tems and their interrelationships. Different architectures, such as the ACT [52]

and the SOAR [53] models, hold great promise for the HIP approach, while the

most widely accepted and well-known one is the Model Human Processor (MHP)

proposed by Card et al. [14].

As shown in Fig. 3.4, MHP consists of three interacting subsystems: the

Perceptual subsystem, the Cognitive subsystem and the Motor subsystem, and

each with its own processors and memories. The Perceptual subsystem is equipped

with sensors and associated buffer memories for collecting and temporarily storing

the external information. The Cognitive subsystem accepts symbolically coded

information from the memories of the Perceptual subsystem, and then decides on

how to respond. Finally, the Motor subsystem carries out the response and takes

action. The MHP models the information processing of humans as a sequential or

32

CHAPTER 3. User-Context Module Architecture and its Implementation

parallel operation of these three MHP subsystems. Furthermore, the rationality

principle and problem space principle of MHP indicate that human behavior is

based on rational activity, which means a normal end-user will not randomly and

arbitrarily change from one state to another. Moreover, all rational activities

serve to achieve human’s explicit goals, given the task and external information

and bounded by his knowledge and processing ability.

Based on the MHP and its two basic principles, we can define many reasonable

states to describe the basic end-user status with an Internet service. In this work,

we define two important end-user states with an individual Internet service:

(1) User Perception State : Both the end-user’s Perceptual and Cognitive

subsystems are turned ON to acquire and process the information of the

corresponding Internet service.

(2) User Halt State : The end-user’s three subsystems, i.e., the Perceptual,

Cognitive and Motor subsystems, are all turned OFF with the corresponding

Internet service.

The above defined two end-user states can be applied to most Internet ser-

vices, and each running Internet service can be associated with only one defined

end-user state at a time, i.e., either the User Perception State or the User

Halt State. Note that here the Internet service refers to the smallest unit of ser-

vice: for example, each open Web page tab of a Web browser is considered as one

individual Internet service of the Web browsing service. Other possible situations

of an end-user can be simply termed as Unidentified User State.

33

CHAPTER 3. User-Context Module Architecture and its Implementation

3.3.3 Key Context Information (KCI)

As indicated earlier, the KCI serves as the standard outputs of the context

model and the direct inputs of the Control Subsystem. Hence, it plays a crucial

role in the User-Context Module and needs to be clearly defined and specified in

the context model.

With the above defined end-user states, a variety of KCIs can be defined

depending on different usage scenarios. In this work, we define two fundamental

categories of the KCI for any Internet client:

(1) COMMUNICATING STATE (CS): The end-user stays in the User Per-

ception State AND the corresponding Internet service keeps working.

(2) INACTIVE STATE (IS): The end-user stays in the User Halt State OR

the corresponding Internet service stops working.

The defined two categories of the KCI are applicable to interaction activities

between an end-user and different Internet services, regardless of the end-user’s

identity and the type of networked host. Moreover, they can be used as the

cornerstones for further defining and describing more complex KCI. With the

explicitly defined KCI, we proceed to build the corresponding context model. In

addition, when an end-user stays in the Unidentified User State, the corresponding

KCI can be simply named UNIDENTIFIED STATE.

3.3.4 Building the Context Models

From the definitions of the User Perception State and User Halt State, we

know that monitoring and recognizing the status of the end-user’s three MHP

subsystems is the most straightforward way to identify the end-user state and

eventually deduce the two categories of the defined KCI:

34

CHAPTER 3. User-Context Module Architecture and its Implementation

∙ For the end-user’s Perceptual subsystem, MHP shows that the most impor-

tant memories for the human perceptual processors are the Visual Image

Storage and the Auditory Image Storage. Thus, the Context Model Sub-

system should strive to verify whether an end-user perceives any visual or

auditory information. Meanwhile, it needs to detect the source of the visual

or auditory information among the running Internet services.

∙ For the end-user’s Cognitive subsystem, although many researchers attempt

to model and build the cognitive architectures and models [54], it is still dif-

ficult to accurately differentiate its status. Fortunately, MHP demonstrates

that the Motor subsystem follows the Recognize-Act Cycle of the Cognitive

Processor. Thus, through monitoring the Motor subsystem behavior, we

could estimate the ON/OFF status of the end-user’s Cognitive subsystem.

∙ For the end-user’s Motor subsystem, the arm-hand-finger system is con-

sidered as the most important actuator by MHP. Hence, from observing

the interaction activities between the end-user fingers and the keyboard (or

mouse) on the networked host, the Context Model Subsystem could deduce

whether the end-user’s Motor and Cognitive subsystems are turned ON and

working. Moreover, MHP takes the human vocal system as another actua-

tor, and thus it is also a significant clue to infer the ON/OFF status of the

Motor and Cognitive subsystems.

Based on the above analysis and the defined KCI, five Interaction Con-

ditions described in Table 3.2 require to be verified by the Context Model Sub-

system. Table 3.2 also gives the corresponding validation criteria for each

Interaction Condition, which can be found in Table 3.1. The given validation

criteria shows that verifying each Interaction Condition requires two pieces of the

35

CHAPTER 3. User-Context Module Architecture and its Implementation

Table 3.2: Interaction Conditions and the Corresponding Validation Criteria

Interaction

Condition
Description

Validation

Criteria
MHP

(1)
The end-user is perceiving visual

information of the Internet service
E1 AND S1 P, C

(2)
The end-user is perceiving auditory

information of the Internet service
E2 AND S2 P, C

(3)
The end-user generates mouse input to

the Internet service
E3 AND S3 C, M

(4)
The end-user generates keyboard input

to the Internet service
E4 AND S4 C, M

(5)
The end-user generates microphone

input to the Internet service
E5 AND S5 C, M

P=Perceptual subsystem; C=Cognitive subsystem; M=Motor subsystem.

basic context information from the end-user side and the Internet service side, re-

spectively. Moreover, the rightmost “MHP” column in Table 3.2 demonstrates the

related end-user MHP subsystems that have been activated and turned ON. For

example, given an end-user’s eye-gaze direction towards the networked host screen,

i.e., E1, and the Internet service displaying in the foreground of the networked

host screen, i.e., S1, the Interaction Condition (1) can be verified: the end-user

is perceiving visual information of the Internet service, and his Perceptual and

Cognitive subsystems are turned on and working on it.

With the five Interaction Conditions and the defined KCI, the context model

can be efficiently built using the first-order rule-based reasoning approach. Since

different Internet services require their individual context models, we have chosen

three representative Internet services to build the corresponding three context

models: Web Browsing, Live Streaming and File Transfer.

∙ The primary purpose of Web Browsing service is to fetch information on

36

CHAPTER 3. User-Context Module Architecture and its Implementation

servers and present it to end-users. The Web browser is the corresponding

Internet application installed on individual networked host. For example,

Mozilla Firefox is such a client side Internet application.

∙ Live Streaming provides live television or live radio service over the Internet.

It always requires a minimum guaranteed bandwidth allocation, because the

real-time video/audio programs are sensitive to fluctuations of the received

rate. The streaming media player is an Internet application to play back

the live multimedia content on the networked host. For example, an IPTV

software called QQQTV is such a client side Internet application.

∙ File Transfer refers to copying a file to or from a remote host over the In-

ternet, and it is also one of the most utilized Internet services. The Internet

application implementing the File Transfer Protocol (FTP) can always pro-

vide such a service. A client side software called CuteFTP is such an Internet

application.

Based on the defined KCI and the given five Interaction Conditions in Ta-

ble 3.2, three simple but reliable context models for the above-described Internet

services are constructed respectively, and then summarized in Table 3.3.

From the built context models in Table 3.3, we see that different combinations

of the Interaction Conditions derive the corresponding KCI, where “S” means sat-

isfying the Interaction Condition, “F” denotes failing to satisfy it, “X” means

either of the earlier two options, and “n/a” indicates not applicable for that Inter-

net Service. For example, when the Context Model Subsystem has verified that

the end-user is perceiving visual and auditory information from a live streaming

Internet application, i.e., the Interaction Conditions (1) and (2) in Table 3.2, then

the Communicating State between the end-user and that Internet application

37

CHAPTER 3. User-Context Module Architecture and its Implementation

Table 3.3: The Context Models for the Three Internet Services

Internet Service
Key Context

Information

Interaction Condition

(1) (2) (3) (4) (5)

Web Browsing

(Mozilla Firefox)

CS S X S X n/a

IS F F F F n/a

Live Streaming

(QQQTV)

CS S S X X X

IS F F F F X

File Transfer

(CuteFTP)

CS S n/a S X n/a

IS F n/a F F n/a

CS=Communicating State; IS=Inactive State.

S=Satisfy; F=Fail to satisfy; X=either S or F; n/a=not applicable.

can be directly derived regardless of whether the end-user generates the Mouse,

Keyboard and Microphone inputs to that live streaming application, i.e., the In-

teraction Conditions (3), (4) and (5) in Table 3.2. Similarly, when the Inactive

State between the end-user and a live streaming Internet application is deduced,

the Context Model Subsystem has to verify that the end-user is not perceiving

any visual and auditory information from that application and also not generating

any Mouse and Keyboard input to the same application, i.e., failing to satisfy the

Interaction Conditions (1), (2), (3) and (4), and the Interaction Conditions (5)

does not need to be considered in this case.

The built context models in Table 3.3 work well for the three representa-

tive Internet services in most cases, and more complicated context models with

advanced reasoning approaches can be considered for other Internet services and

special usage cases. In addition, other possible combinations of Interaction Condi-

tions, which are not described in Table 3.3, simply generate the previously defined

Unidentified State.

38

CHAPTER 3. User-Context Module Architecture and its Implementation

3.3.5 Analysis and Discussion

In order to build reliable and practical context models, the five groups of

basic context information in Table 3.1 are collected from the end-user side and

the Internet service side, respectively. On the end-user side, we introduce the

cognitive framework MHP to model the end-user and systematically describe his

interaction behavior. On the basis of the three MHP subsystems, i.e., the Percep-

tual, the Cognitive and the Motor subsystems, as well as its two principles, we

first define two basic end-user states, i.e., the User Perception State and the User

Halt State, to specifically describe an Internet end-user. Subsequently, the two

defined end-user states, combining with the working status of the corresponding

Internet service, are used to further define the KCI. The defined two fundamental

categories of the KCI, i.e., the Communicating State (CS) and the Inactive State

(IS), serve as the built context model. To deduce the KCI CS and the IS, the

five Interaction Conditions in Table 3.2 are determined to infer ON/OFF states of

the three MHP subsystems, and such five Interaction Conditions can be verified

by the collected five groups of the basic context information. Those Interaction

Conditions with the first-order rule-based reasoning approach eventually establish

the context models for the three representative Internet services as shown in Ta-

ble 3.3. Fig. 3.5 demonstrates the logical structure of the context models, where

the built context model is highlighted by a dashed border.

From the User-Context Module perspective, the built context models can ef-

fectively deduce the specific KCI for Internet clients. From the Internet design

perspective, it is also necessary and significant to build such context models to

differentiate between the two basic communication states for Internet clients. As

described in Chapter 1, today’s Internet follows the traditional design principle

that it serves as the communication medium between any two networked hosts

39

CHAPTER 3. User-Context Module Architecture and its Implementation

Interaction Conditions

Internet Service

State
End-User State

First-Order Rule-Based Reasoning

Key Context Information

Basic Context Information

of End-Users
Basic Context Information

of Internet Service

M
H
P

Fig. 3.5: Logical structure of the built context model.

that desire to speak to each other. In other words, the five-layer Internet protocol

stack does not explicitly take into account any end-user as well as his context

information, and thus essentially conflate dynamic end-user, Internet services and

static networked host into one oversimplified concept. For example, Hypertext

Transfer Protocol (HTTP) and Transmission Control Protocol (TCP) follow such

a traditional principle, and they have been widely used to support various Inter-

net services, including the above-described Web browsing, Live Streaming and File

Transfer services. Such a traditional design principle decreases the Internet archi-

tecture complexity, but inevitably compromises underlying network performance.

Therefore, the built context models together with the User-Context Module archi-

tecture essentially provide the Internet an efficient de-conflation solution and take

solid steps to separate the Internet end-user from the networked host and running

Internet services. More specifically, they empower the Internet to recognize the

most important and fundamental interaction states between an end-user and any

40

CHAPTER 3. User-Context Module Architecture and its Implementation

Internet service, i.e., the Communicating State and the Inactive State.

3.4 Control Subsystem

The Control Subsystem is the component for directly interacting with the

underlying Internet infrastructure based on the delivered KCI. For different ap-

plications of the User-Context Module, the Control Subsystem may interact with

different Internet protocols and services in distinct layers, but its main objective

is always to improve protocol performance and enhance QoE by dynamically allo-

cating different resources according to the delivered KCI. Note that resources can

be of distinct types for different Internet services, and thus the Control Subsystem

may work at either or both the Internet client side and the server side.

When interacting with Internet protocols and services, the Control Subsystem

does not attempt to modify their internal structures and architectures. In most

cases, the Control Subsystem only cautiously chooses proper parameters of proto-

cols or services that are usually accessible and adjustable, and then implement the

corresponding Control Rules to actively tune those parameters. The Control

Rules is a set of rules that specify the actions triggered by real-time changes of the

delivered KCI. In general, designing a Control Subsystem and the corresponding

Control Rules is an application-specific task, but the following three principles

should be considered:

∙ The Control Rules would provide service differentiation according to the

delivered KCI, where higher priority is given to the Internet clients in the

Communicating State.

∙ The Control Rules would actively help individual Internet client to enhance

its individual utility/payoff or maximize the system-level social welfare.

41

CHAPTER 3. User-Context Module Architecture and its Implementation

∙ The Control Rules would adapt to the dynamics of Internet clients, and

would be scalable in terms of gracefully handling rapidly growing Internet

clients.

Note that designing a Control Subsystem for the User-Context Module is rel-

atively different from the traditional cross-layer design [55]. The cross-layer design

always exploits the dependence between the established protocol layers to obtain

performance gains and typically follows some basic structures, such as creating

new interfaces or merging of adjacent layers [56], to share and exchange network

state information. However, the Control Subsystem under the User-Context Mod-

ule focuses on actively tuning and managing the accessible parameters in Internet

protocols, configurations and services. Hence, in general, the integrity of the

conventional Internet layered architecture and protocols can be well maintained,

when the Control Subsystem together with the User-Context Module architecture

is introduced and implemented.

We present two applications of the User-Context Module in the subsequent

two chapters, in which the Control Subsystem mainly works with the upper two

layers, and more specifically, HTTP Protocol in the Application Layer and TCP

protocol in the Transport Layer. Those two applications would demonstrate the

Control Subsystem’s operations, practices and impacts.

3.5 Summary

The Context Sensing Subsystem, the Context Model Subsystem and the Con-

trol Subsystem compose the core architecture of the proposed User-Context Mod-

ule. The Context Sensing Subsystem mainly undertakes basic context information

gathering task, and closely works with end-users on the Internet client side. The

42

CHAPTER 3. User-Context Module Architecture and its Implementation

Context Model Subsystem employs the MHP framework with the first-order rule-

based reasoning approach to establish the required context models. The built

context models are used to deduce the two categories of the KCI for Internet

clients, namely the Communicating State and the Inactive State, for the selected

Internet services. The Control Subsystem utilizes the delivered KCI to actively

adjust Internet protocols and services according to the specifically designed Con-

trol Rules. The User-Context Module architecture with the defined two basic

categories of the KCI can be regarded as the first and the crucial step to separate

Internet end-user from networked host and Internet service. Moreover, the novel

User-Context Module bridges the gaps and establishes a new communication path-

way between Internet end-users and the underlying protocol stack. Such modular

design not only explicitly and smoothly incorporates end-users and their context

information into the Internet, but also provides abundant flexibility for different

applications and deployment plans.

43

Chapter 4

The User-Context Module

Application I: HTTP Case

In Chapter 3, we first introduce a novel functional module called the User-

Context Module, and then discuss the design and implementation issues of its

three main subsystems, especially the Context-Sensing Subsystem and the Context

Model Subsystem. As indicated in the same chapter, designing a Control Subsys-

tem with the corresponding Control Rules is an application-specific task. In this

chapter, based on the deduced KCI of the Internet client, i.e., the Communicating

State and the Inactive State, we present the first application of the User-Context

Module. In this application, the Control Subsystem interacts with the Internet

Application Layer to improve the protocol performance and the end-user’s QoE.

More specifically, by adjusting the persistent connection timeout parameter in the

Application Layer’s Hypertext Transfer Protocol (HTTP), the Control Subsys-

tem effectively reduces the redundant HTTP traffic and the end-user perceived

latency in Web browsing. The context model built for the Web browsing service

44

CHAPTER 4. The User-Context Module Application I: HTTP Case

in chapter 3 is adopted to generate the KCI for the Control Subsystem of this

application.

4.1 Problem Description

In today’s World Wide Web system, HTTP [57] is the de facto communica-

tion standard for transferring Web pages. The persistent connection mechanism

of HTTP/1.1, also called HTTP keep-alive, allows Web clients to send multi-

ple HTTP requests over the same TCP connection. The persistent connection

mechanism reduces network congestion from re-establishing TCP connections and

conserves the host’s CPU and memory usage. As a default function, persistent

HTTP connection is widely implemented on both the browser and the server sides.

HTTP/1.1 [57] specifies that “servers will usually have some time-out value be-

yond which they will no longer maintain an inactive connection”, and “the use of

persistent connections places no requirements on the length (or existence) of this

time-out for either the client or the server”. Clearly, HTTP/1.1 does not explicitly

define the persistent connection closing mechanism but suggests picking a proper

timeout value for terminating persistent connections. In practical implementa-

tions of HTTP/1.1, a fixed timeout value is always imposed. The latest version

2.2.1 of the Apache HTTP Server employs 5 seconds, and the Microsoft IIS uses

120 seconds as their default timeout values. Improperly configuring the timeout

value will easily degrade network performance. A small fixed timeout value causes

low utilization of HTTP persistent connections, and thus increases the end-user

perceived latency as well as the Internet burden. Conversely, a large fixed timeout

value would waste and even quickly exhaust the limited Web server resource (e.g.

worker threads), which also results in long and unpredictable end-user perceived

45

CHAPTER 4. The User-Context Module Application I: HTTP Case

latency.

There has been limited research work on optimally tuning the persistent con-

nection timeout value of HTTP to improve Web server performance: Faber [58]

and Barford [59] indicate that the Web server should close the persistent connec-

tions once the client becomes inactive, but no specific approach has been provided.

Mogul [60] proposes to give higher priority to the newly established connections,

while Sugiki [61] suggests setting higher priority to the small RTT connections

and prematurely terminate the ones with large RTT. However, none of these pre-

vious studies directly solves the main problem of the HTTP persistent connection

mechanism. In a Web session, it is difficult for HTTP to discriminate

between a persistent connection that is being used by an end-user and

a persistent connection that is already in a long-term idle state. The

context model built for the Web browsing service and the deduced KCI, i.e., the

Communicating State and the Inactive State, essentially provide HTTP a direct

solution to differentiate the above-described two states of HTTP persistent connec-

tions. Therefore, adopting the proposed User-Context Module becomes a natural

and effective way to address this problem.

Before designing and implementing the Control Subsystem of the User-Context

Module for HTTP, it is necessary to first define a Key Context Transfer Protocol

(KCTP) to deliver the deduced KCI from the Internet client side to the Web server

side.

4.2 Key Context Transfer Protocol

The Key Context Transfer Protocol (KCTP) is used to deliver the real-time

KCI from the Internet client side to the Web server side. The KCTP assumes

46

CHAPTER 4. The User-Context Module Application I: HTTP Case

Time

KCTP Response

Time Interval

q
u
ery

th
e
rea
l-tim

e
K
ey

C
o
n
tex
t
In
fo
rm
a
tio
n

TimeKCTP Response

KCTP Request KCTP Request

Time Interval

S
en
d
b
a
ck
th
e
re
a
l-
ti
m
e

K
ey
C
o
n
te
x
t
In
fo
rm
a
ti
o
nq

u
ery

th
e
rea
l-tim

e
K
ey

C
o
n
tex
t
In
fo
rm
a
tio
n

S
en
d
b
a
ck
th
e
re
a
l-
ti
m
e

K
ey
C
o
n
te
x
t
In
fo
rm
a
ti
o
n

Fig. 4.1: Workflow of the Key Context Transfer Protocol.

a reliable transport and in this case using HTTP persistent connection, which is

essentially the TCP connection, as its underlying carrier. The KCTP works under

the client-server architecture and employs the request-response message exchange

pattern. The overall workflow of the KCTP is illustrated in Fig. 4.1:

(1) After the persistent HTTP connection becomes idle, the Web server side

KCTP program waits for a time interval and then initiates a request message

to the client side via the existing persistent HTTP connection.

(2) Upon receiving the KCTP request, the client side KCTP program retrieves

the corresponding real-time KCI from the Context Model Subsystem. The

retrieved KCI can be the Communicating State, the Inactive State or any

other pre-defined advanced context information of Internet clients.

(3) The client side KCTP program encapsulates that real-time KCI in an KCTP

response message, and sends it back to the Web server side.

(4) The Web server side KCTP program receives multiple KCTP response mes-

47

CHAPTER 4. The User-Context Module Application I: HTTP Case

sages from different client sides. Then it delivers all KCIs and relevant

information to the Group Context Model Subsystem for further processing.

(5) After some time interval, the server side KCTP program repeats the request

via the same persistent HTTP connection, if that connection still exists and

remains in the idle state.

Theoretically, the KCTP should adjust the time interval between consecutive

requests according to each end-user’s browsing behavior pattern. Based on the

MHP theory, the end-user’s browsing behavior primarily depends on his Cognitive

subsystem, whose tasks involve learning, retrieving the facts from its long-term

memory and acquiring the solution of the problem. Through practical user stud-

ies and theoretical calculations, MHP shows that the cognitive processing rate

has a wide range among different individuals because of their different processing

capacities. For example, human reading speed ranges from 52 to 652 words per

minute; in working memory, the decay parameter varies from 5 to 226 seconds.

In other word, even for the same Web page, different end-users require different

processing time and the variance magnitude can be several seconds or even larger.

We simplify this cognitive diversity by using 7 seconds, the average decay param-

eter value of the MHP Cognitive subsystem [14], as the time interval value of the

KCTP. In the future work, the Context Sensing Subsystem and the Context Model

subsystem could jointly work on capturing the end-user’s individual cognitive ca-

pacity and predicting his processing time, then the KCTP and the entire system

performance can be further improved.

Remark 1 : The current version of the KCTP operates only in the simple con-

dition, and a more complicated situation occurs when one or more intermediaries

are present between Web clients and Web server, such as when a proxy server is

in use. Under such a situation, a new version of the KCTP needs to be specified.

48

CHAPTER 4. The User-Context Module Application I: HTTP Case

Remark 2 : Transferring the private KCI of the Internet clients to the public

Web server side may raise security concerns. When necessary, some encryption

protocols, such as the Transport Layer Security (TLS), could be adopted to prevent

eavesdropping or tampering. Meanwhile, the User-Context Module should also

make every effort to process context information locally and avoid any unnecessary

transmission over the Internet.

Remark 3 : Other interoperable communication mechanisms, such as the XML

Protocol (XMLP) [62], can also be employed to undertake the KCI delivery task.

The basic workflow is similar to the KCTP, and thus the corresponding modifica-

tions may be required.

4.3 The Control Subsystem Design

Once the KCTP response messages successfully transfer multiple clients’ KCIs

to the Web server side, the group context model will utilize the delivered informa-

tion to generate the group KCI for the convenience of batch processing by the Web

server. In this case, we do not build any group context model but simply move

each delivered KCI to the Control Subsystem on the Web server side to continue

processing.

With the delivered real-time KCI, the Control Subsystem on the server side

adopts the following Control Rules:

(1) IF the Inactive State arrives, THEN the Control Subsystem immediately sig-

nals the Application Layer to terminate the corresponding HTTP persis-

tent connection, i.e., setting the persistent connection timeout parameter to

zero.

(2) IF the Communicating State arrives, THEN the Control Subsystem signals

49

CHAPTER 4. The User-Context Module Application I: HTTP Case

the Application Layer to maintain the corresponding HTTP persistent

connection and wait for the next KCI from the same Web client, i.e., setting

the persistent connection timeout parameter to a value larger than the KCTP

time interval.

(3) IF the Unidentified State arrives and the Web Server is under the heavy-traffic

situation, THEN the Control Subsystem handles it as the Inactive State and

immediately terminates the connection. Otherwise, the Control Subsystem

treats it as the Communicating State and maintains the connection.

The above Control Rules enable the inflexible HTTP persistent connection

mechanism to dynamically adapt to the end-user’s real-time browsing behavior,

and to influence the underlying network performance. In order to assess the per-

formance gain from both the end-user and the Internet perspectives, we conduct

comprehensive experiments accordingly.

4.4 Experimental Setup

4.4.1 Server-side Implementation Issues

We select the Apache HTTP Server in our experiment, as it is a popular

open-source Web server. The current Apache HTTP Server 2.2 is configured by

writing different Directives in its configuration files, and the HTTP persistent

timeout value is set in the main configuration file by the KeepAliveTimeout Di-

rective. The Apache HTTP Server places the KeepAliveTimeout Directive in its

main configuration file apache2.conf and sets 5 seconds as its default value. How-

ever, any changes to the KeepAliveTimeout Directive can only be recognized by

the server when it is started or restarted, because the Apache HTTP Server only

50

CHAPTER 4. The User-Context Module Application I: HTTP Case

reads and processes the main configuration files during its boot-up phase. Fur-

thermore, the KeepAliveTimeout Directive can only simply set the same timeout

value for all incoming HTTP requests, so different timeout values cannot be set

for different HTTP connections which are initiated by distinct end-users. Since

the existing HTTP implementation in Apache Server and KeepAliveTimeout Di-

rective cannot meet our requirements, we therefore disable the KeepAliveTimeout

Directive and modify a small part of the Apache source code, where the Apache

Server implements the HTTP persistent connection function. The major modi-

fications are made on the file ℎ𝑡𝑡𝑝 𝑐𝑜𝑟𝑒.𝑐, which is placed in the Apache source

code directory under /𝑚𝑜𝑑𝑢𝑙𝑒𝑠/ℎ𝑡𝑡𝑝.

The newly modified Apache HTTP Server can adaptively adjust the time-

out value according to the delivered real-time KCI, and it does not require any

restart or reboot. Meanwhile, the modified Apache HTTP Server can also set

different timeout values for different incoming HTTP requests, which are initiated

by distinct Web clients.

We employ the dynamic Web pages as the workload file in our experiment.

Thus the PHP code is embedded into the workload HTML files and interpreted

by the PHP processor module. We install and configure PHP 5.3.2 module on

the modified Apache HTTP Server under the Linux 2.6.28. The average PHP

processing time in the experiment is 50 milliseconds, which also takes account of

the time to access the database.

4.4.2 Client-side Implementation Issues

In order to emulate multiple end-users’ Web browsing scenarios, the experi-

ment requires a specific HTTP request generator to fulfill the following functions:

∙ The HTTP request generator can emulate the defined Communicating State

51

CHAPTER 4. The User-Context Module Application I: HTTP Case

and the Inactive State: When the Communicating State starts, the generator

immediately makes the first HTTP request. After receiving the whole Web

page from the server, the generator waits for a certain time interval (end-

user processing time) before it sends the next HTTP request. The generator

repeats the above procedure until the Communicating State interval ends.

Then, during the Inactive State, it simply keeps silent and stops sending

HTTP request until the Communicating State resumes.

∙ To simulate multiple concurrent Internet clients and create heavy-traffic con-

dition, the HTTP request generator should be able to simultaneously open

multiple sockets on a single host. Each socket emulates one Internet client

and initiates HTTP requests independently.

Existing popular Web workload generators, such as SPECweb2005 [63] and

Surge [64] cannot fulfill both of these functions, thus we implement a new HTTP

request generator. The new generator is written based on Libwww [65], which

is a highly modular and flexible client side Web API for both UNIX and Win-

dows (Win32) platform. We build the new HTTP request generator under the

Linux 2.6.28 and all the code is written in C. The new HTTP request generator

can open multiple sockets simultaneously, and control the HTTP requests on each

socket. The next HTTP request can only be sent after receiving the last HTTP

response and waiting for some manually defined time interval. Therefore, the

newly built HTTP request generator can emulate multiple Internet clients gen-

erating HTTP requests concurrently, while any one of its open sockets simulates

single end-user’s Web browsing behavior by means of sequentially sending HTTP

requests.

52

CHAPTER 4. The User-Context Module Application I: HTTP Case

Dummynet WAN

Emulator

Host 1

Router Modified

Web ServerHost 2

Host 3

Simulate

Multiple

Internet

Clients

Fig. 4.2: Network topology in the experiment.

4.4.3 Experimental Configuration

Our experimental hardware setup involves several hosts connected to the cam-

pus local area network (LAN). Each host is equipped with Duo Intel T7300 2.00-

GHz processors, and a 2-GB RAM, and runs Linux 2.6.28. One of the hosts is

selected as the Web server and runs modified Apache HTTP Server 2.2.15. Other

hosts act as multiple Internet clients and generate HTTP 1.1 requests to the Web

server by running the new HTTP request generator. In the experiment, we sup-

pose that the KCI only transits between the Communicating State and the

Inactive State. When in the Communicating State, we assume that each client

makes sequential HTTP requests following a homogeneous Poisson process with a

rate of 7 requests per minute, and thus the time interval between two consecutive

HTTP requests 𝑡 is exponentially distributed with the mean value of 60
7
seconds,

denoted as 𝑡 ∼ 𝑒𝑥𝑝(60
7
). After sending 10 HTTP requests during the Communi-

cating State, each client will automatically transit to the Inactive State. During

the Inactive State interval, each client stops generating any HTTP requests to

53

CHAPTER 4. The User-Context Module Application I: HTTP Case

the Web server until the Communicating State resumes. In the experiment, the

HTTP request generator periodically alternates between the two states and re-

peats 3 cycles, which means each client experiences 3 Communicating States and

3 Inactive States. Thus each client sends a total of 30 HTTP requests during the

experiment. Since the time interval of the Inactive State varies irregularly, which

depends on end-user’s personal factors, we simply set this value to 30 seconds

in the experiment. To collect more accurate experimental data, we repeated the

experiment 3 times with a random starting order of the 3 hosts. Then we average

out the observations from all the Web clients.

We consider two experimental conditions: light-traffic condition and heavy-

traffic condition. For the light-traffic condition, each host emulates 10 end-users

and keeps sending HTTP requests to the server, and thus 3 hosts emulate a total

of 30 concurrent end-users. For the heavy-traffic condition, all the settings are the

same as the light-traffic condition, but each host emulates 100 end-users and thus

300 concurrent end-users in total. Note that the heavy-traffic condition here is dif-

ferent from the server overload situation. The heavy-traffic condition means that

the number of concurrent alive clients reaches the maximum number of allowable

connections, while the overload situation indicates that the workload persistently

exhausts some server resources, such as the server CPU load or the server uplink

bandwidth. Since system performance always becomes unstable under the over-

load situation, we do not consider it in our experiment and we suppose that the

Web server employs some admission control schemes, such as in [66, 67] to avoid

the overload situation.

In the experiment, we adopt Dummynet [68] to emulate the practical Internet

environment. Dummynet is a widely-used tool for enforcing queue and bandwidth

limitation, delay and packet loss in network experiments and tests. We enable

54

CHAPTER 4. The User-Context Module Application I: HTTP Case

its delay function and set the configuration parameter to 100 milliseconds for

both directions of each link. So the Round Trip Time (RTT) between the client

and the Web server is around 250 milliseconds, which consists of the packet-

propagation delays and PHP processing time. We also set the packet loss rate

to 1%, which is usually caused by the congestion and data corruption along the

path of data transmission. The above conditions commonly exist in a Wide Area

Network (WAN) as well as the last-hop wireless environments. Since optimizing

the Web server’s overall performance is out of the scope of this experiment, most

of the configuration parameters of the Apache HTTP Server are kept their default

settings. For example, the maximum number of HTTP persistent connections that

can be processed simultaneously by the Apache HTTP Server is set to 256 in the

experiment.

The experiment topology, as depicted in Fig. 4.2, consists of multiple Internet

clients and the modified Apache HTTP Server. We also suppose that the real-

time KCIs of the Web clients can always be correctly deduced by the implemented

Context Model Subsystem.

4.5 Internet Experiment Results

Based on the above-described experimental setup, we study the network per-

formance and contrast the results with the case without the User-Context Module.

In this User-Context Module application, the Web page response time can be an

appropriate performance metric for the end-user perceived latency. The Web page

response time is the time interval that starts when the end-user sends the Web

request and ends when the end-user receives the last object of that Web page.

Besides the Web page response time, we also study the Web traffic statistics and

55

CHAPTER 4. The User-Context Module Application I: HTTP Case

the server aggregate throughput to fully assess the influence of adding the new

User-Context Module. The collected Web traffic statistics in this experiment in-

cludes the number of the successfully delivered Web pages, and the number of

HTTP requests transferred between the server and the clients. The server ag-

gregate throughput is the sum of the Web server generated data rates that are

successfully delivered to all the clients.

4.5.1 Light-Traffic Condition

We experiment with two groups of Web pages, which are similar to the

SPECweb benchmark [63]. In the first group, the mean size of the generated

dynamic Web pages is smaller than 5KB, and in the second group the mean size

is larger than 50KB. Fig. 4.3(a) shows the average Web page response time of

the small size group, while Fig. 4.3(b) shows that of the large size group, and

Fig. 4.3(c) describes the KCI transitions during the experiment.

Figs. 4.3(a) and 4.3(b) show that the User-Context Module can significantly

shorten the average Web page response time of both groups. In contrast to the

results where the fixed timeout value 5 seconds (the default value of the latest

Apache HTTP Server) and 1 second are used, the User-Context Module case

can save almost 200 milliseconds on average. It roughly equals to the back-and-

forth time on the wire, namely one round trip packet-propagation delay. This is

because the User-Context Module can actively extend the lifecycle of the HTTP

connections when the Web client stays in the Communicating State, and thus avoid

multiple unnecessary re-establishments of new HTTP connections. Meanwhile,

we see that under the light-traffic condition, the 15 seconds timeout case can also

achieve quite short average response time. It is because during the Communicating

State, the time interval between the consecutive HTTP requests is always smaller

56

CHAPTER 4. The User-Context Module Application I: HTTP Case

0 10 11 20 21 30
200

300

400

500

600

700

Sequence of Completed HTTP Request-Response Pair

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (

m
s
) With the Module

Timeout=1 sec

Timeout=5 sec

Timeout=15 sec

(a) Small Web page size group.

0 10 11 20 21 30
950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

Sequence of Completed HTTP Request-Response Pair

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

With the Module

Timeout=1 sec

Timeout=5 sec

Timeout=15 sec

(b) Large Web page size group.

0 10 11 20 21 30

IS

CS

Sequence of Completed HTTP Request-Response Pair

K
e
y
 C

o
n

te
x
t

In
fo

rm
a
ti

o
n

(c) Key Context Information transition.

Fig. 4.3: Average Web page response time under the light-traffic condition.

than 15 seconds, and thus HTTP persistent connections will not be terminated

by the Web server as frequently as the small timeout value cases.

Fig. 4.4 shows the ratio of the total number of HTTP requests sent by the

clients to the total number of the successfully transferred Web pages. For both

57

CHAPTER 4. The User-Context Module Application I: HTTP Case

0

1000

2000

3000

4000

5000

6000

7000

8000

1.97

1.77

1.17
1.07

1.97

1.77

1.17
1.07

Large Web Page

T
o

ta
l

N
u

m
b

e
r

Small Web Page

 Total Transfered Web Pages

 Total HTTP Requests --- With the Module

 Total HTTP Requests --- Timeout = 15 sec

 Total HTTP Requests --- Timeout = 5 sec

 Total HTTP Requests --- Timeout = 1 sec

Fig. 4.4: Ratios of HTTP request number to transferred Web page number.

the small and the large page size groups, the User-Context Module case achieves

the smallest ratio, i.e., 1.07. The 1 second fixed timeout case results in the highest

ratio, i.e., 1.97, which indicates that almost two HTTP requests are required to

fetch one Web page. This is because once the small timeout occurs, the Web server

will send a TCP segment with the FIN bit set to 1 and enter the FIN WAIT 1

state. While the Web browser may continue sending new but already invalid

HTTP requests through the same connection before it sends the clients’ side TCP

segment with the FIN bit. Besides the transmission of invalid HTTP requests,

the unnecessary re-establishment and closing HTTP connections also significantly

increase the burden on both the Web server and the Internet backbone. Note

that in practice most commercial Web browsers usually open multiple concurrent

HTTP connections for fetching one Web page and different browsers adopt differ-

ent mechanisms to reduce the unnecessary retransmission. So the absolute value

of the ratio may vary case by case, but its relative trend will be the same as shown

in Fig. 4.4.

58

CHAPTER 4. The User-Context Module Application I: HTTP Case

4.5.2 Heavy-Traffic Condition

Figs. 4.5(a) and 4.5(b) also show significant reduction in the average Web page

response time under the heavy-traffic condition. Similar to the results under the

light-traffic condition, the User-Context Module reduces the Web page response

time by almost the equivalent of one round trip packet-propagation delay when

compared to the 1 second and 5 seconds timeout cases.

Note that under the heavy-traffic condition, the User-Context Module achieves

much shorter average Web page response time than the 15 seconds timeout case.

This is because with the fast increasing number of Web clients, the new HTTP per-

sistent connections also dramatically increase. With a large fixed timeout value,

the Web server cannot terminate inactive connections and allocate the limited

server resource to the newly incoming clients in a timely manner. This causes the

number of concurrent HTTP persistent connections to easily reach the upper limit

of the Apache HTTP Server, which is set to 256 in this experiment. When this

happens, new incoming HTTP connections must wait either in the SYN-queue or

the ACK-queue of the Apache Web server. Such queuing delay at the server side

can easily amount to several seconds and thus greatly influences the Web page re-

sponse time. From the collected data of the 15 seconds timeout case, we see that

the Web page response time of the late arriving clients varies from hundreds to

thousands of milliseconds, although the early arriving clients can still attain quite

small response time. Consequently, the high and unstable queuing delay experi-

enced by the late arriving clients lead to the large average Web page response time

and signification fluctuations in the 15 seconds timeout case, which are evident in

Figs. 4.5(a) and 4.5(b).

Prior studies [69, 70] have shown that the Web page response time greatly

directly influences the end-user’s QoE in Web browsing. With the same QoE

59

CHAPTER 4. The User-Context Module Application I: HTTP Case

0 10 11 20 21 30

300

400

500

600

700

800

900

1000

1100

Sequence of Completed HTTP Request-Response Pair

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

With the Module

Timeout=1 sec

Timeout=5 sec

Timeout=15 sec

(a) Small Web page size group.

0 10 11 20 21 30
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

Sequence of Completed HTTP Request-Response Pair

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

With the Module

Timeout = 1 sec

Timeout = 5 sec

Timeout = 15 sec

(b) Large Web page size group.

0 10 11 20 21 30

IS

CS

Sequence of Completed HTTP Request-Response Pair

K
e
y
 C

o
n

te
x
t

In
fo

rm
a
ti

o
n

(c) Key Context Information transition.

Fig. 4.5: Average Web page response time under the heavy-traffic condition.

rating measurement (called Opinion Scores), the quantitative relationship be-

tween the end-user’s QoE and the Web page response time has been investigated:

ITU-T G.1030 [70] demonstrates that the logarithmic relationship fits well, while

Shaikh et al. [69] shows that the exponential relationship gives the best correlation

60

CHAPTER 4. The User-Context Module Application I: HTTP Case

0

10000

20000

30000

40000

50000

60000

70000

80000

1.97

1.78

1.18
1.08

1.95

1.79

1.21
1.11

Large Web Page

T
o

ta
l

N
u

m
b

e
r

Small Web Page

 Total Transferred Web Pages

 Total HTTP Requests --- With the Module

 Total HTTP Requests --- Timeout = 15 sec

 Total HTTP Requests --- Timeout = 5 sec

 Total HTTP Requests --- Timeout = 1 sec

Fig. 4.6: Ratios of HTTP request number to transferred Web page number.

0

2

4

6

8

10

12

14

479438310

T
h

ro
u

g
h

p
u

t
(M

B
it

/s
e

c
)

HTTP Requests Rate (request/sec)

 With the Module

 Timeout = 15 sec

 Timeout = 5 sec

 Timeout = 1 sec

297

Fig. 4.7: Throughput of Web server under heavy-traffic condition.

result. The two relationships are compared in [41], where a generic exponential

relationship between the end-user’s QoE and the QoS parameters has been sug-

gested. Those results illustrate that the mathematical relationship between the

end-user’s QoE and the Web page response time may vary due to the diversity of

the participants in user studies and the network configurations. However, all the

61

CHAPTER 4. The User-Context Module Application I: HTTP Case

derived models verify that the Opinion Scores monotonously increases with the

decreasing Web page response time. Therefore, it confirms that this User Module

application enhances the end-user’s QoE through reducing the Web page response

time.

Under the heavy-traffic condition, the average throughput of the Web server

hosting the large Web page group is shown in Fig. 4.7. We see that introducing

the User-Context Module cannot increase the server throughput, which indicates

that the aggregate throughput does not greatly depend on the timeout value.

However, Fig. 4.7 also shows that with the equivalent aggregate throughput, the

User-Context Module case achieves the smallest HTTP request rates, and thus

effectively reduces the burden on the server and the Internet backbone. Fig. 4.6

also show the same performance gain in terms of the ratio of the HTTP requests

number to the successfully transferred Web page number under the heavy-traffic

condition.

From the experimental results under both the light-traffic condition and the

heavy traffic condition, we see that the current HTTP persistent connection mech-

anism, with either small or large fixed timeout values, is unable to achieve optimal

operation in terms of reducing end-user perceived latency and cutting down the

Internet traffic burden. It is because no Internet client’s context information, or

more specifically end-user’s real-time browsing information, is available for the

HTTP protocol.

The Internet experimental results have proven that the proposed User-Context

Module is an effective solution, which successfully bridges the gap between the

HTTP persistent connection mechanism and Web clients.

62

CHAPTER 4. The User-Context Module Application I: HTTP Case

4.5.3 Discussions on Delayed and Loss of KCIs

In the above-described Control Subsystem designed for HTTP protocol, the

real-time KCIs are required to be delivered from the client side to the Web server

side for controlling the persistent HTTP connections. We therefore define the

KCTP protocol and utilize it to accomplish the KCI delivery task. Because the

implemented KCTP essentially uses the TCP connection as its default underly-

ing carrier, the TCP’s retransmission mechanism would provide the reliable data

delivery service and thus the KCTP can prevent the loss of KCIs during the trans-

mission process.

On the other hand, the implemented KCTP cannot ensure the timely delivery

of real-time KCIs due to network congestion at the Internet backbone. Under such

circumstances, there are two possible cases:

∙ Delayed Communicating State: According to the designed Control Rules, the

Control Subsystem would maintain the HTTP persistent connection until

the next corresponding KCI arrives. Hence, the delayed CS packet would

only result that the server side extends the life span of the current HTTP

connection. Because the Web client can still send or receive the data with

the same HTTP connection, the delayed CS will not impair the QoE of the

corresponding end-user at the client side.

∙ Delayed Inactive State: According to the designed Control Rules, the Con-

trol Subsystem would terminate the HTTP persistent connection when the

corresponding IS arrives. The delayed IS information would only result that

the Web server continues to maintain the current idle HTTP connection

until the delayed IS is delivered. Hence, it will not make any impact on

the QoE of the corresponding end-user, because the IS essentially indicates

63

CHAPTER 4. The User-Context Module Application I: HTTP Case

no interaction between the end-user and the Web service at the client side.

Moreover, since a Web system normally serves at least hundreds of concur-

rent clients, single or a few KCIs’ delay would have little influence on the

performance of the User-Context Module.

In short, a few delayed or loss of KCIs would not impair the QoE of the

corresponding end-user and also not deteriorate the overall system performance,

given that the Web system always serves a large number of clients.

4.6 Summary

In this chapter, we present the first application of the User-Context Module,

which mainly introduces the KCI of Internet clients into the Application Layer’s

HTTP protocol. The specifically designed Control Subsystem adaptively adjusts

the HTTP persistent connection timeout parameter according to the defined Con-

trol Rules. Internet experimental results confirm that such design significantly

reduces the unnecessary Internet traffic burden and enhances the end-user’s QoE.

Meanwhile, implementing such a User-Context Module requires computa-

tional burden for deducing and delivering the real-time KCI at the ends of Internet.

With the rapid advancement of sensing techniques and computational capability

of network hosts, the system overhead would be further reduced and minimized.

This application sets a sample solution for a group of Internet communication

protocols to provide service differentiation in the corresponding Internet service

according to the deduced end-user usage status. For example, the User-Context

Module can also be applied to adjust the session-related variables in Real Time

Streaming Protocol (RTSP) the streaming media Internet services. In short, the

first application demonstrates the User-Context Module’s operations and impacts

64

CHAPTER 4. The User-Context Module Application I: HTTP Case

as well as its Control Subsystem’s design and implementation.

65

Chapter 5

The User-Context Module

Application II: TCP Case

In Chapter 4, we presented the first application of the User-Context Module,

which introduces the KCI of Internet clients into the Application Layer’s HTTP

protocol. Such a User-Context Module application is motivated by improving per-

sistent connection mechanism of the HTTP protocol. In this chapter, we present

the second application of the User-Context Module, which is mainly motivated by

enhancing the end-user’s QoE. In this application, the Control Subsystem interacts

with the Transport Layer’s TCP protocol to dynamically allocate the resource at

the bandwidth-limited access link. More specifically, the Control Subsystem ma-

nipulates the advertised window size in the TCP protocol based on the captured

KCIs of the Internet clients.

66

CHAPTER 5. The User-Context Module Application II: TCP Case

5.1 Problem Description

As a connection-oriented and reliable Transport Layer communication pro-

tocol, Transmission Control Protocol (TCP) [71] is an indispensable component

of the modern Internet protocol stack. Many Internet services and their appli-

cations rely on TCP as their transport carrier, such as File Transfer (CuteFTP),

Web Browsing (Firefox), Electronic Mailing (Microsoft Outlook), and some Live

Streaming services (QQQTV).

Similar to other Internet communication protocols, TCP is also designed with

the traditional Internet principle that assumes two network hosts always desire

to speak to each other. Hence, an individual TCP stream always intends to

maximize its own throughput unless network congestion or receiver buffer overflow

happens. It has been proven that when multiple TCP streams compete for the

same bottleneck link, the stream with a smaller RTT can always grab a much

larger share of that bottleneck link bandwidth than other streams with larger

RTT [72]. Therefore, the TCP protocol always favors an Internet application with

short RTT regardless of the end-user preference and other influential factors. Such

a TCP property can easily impair the QoE of Internet end-users, especially when

an end-user wants to prioritize an Internet application having larger RTT. For

instance, an end-user may simultaneously open CuteFTP to download a large file

and QQQTV to watch online TV. As a live multimedia streaming application,

QQQTV always requires a minimum guaranteed bandwidth, but some CuteFTP

connections with small RTT can easily grab most of the available bandwidth at the

access link, where the last mile bottleneck exists. Hence, with the aim of enhancing

the end-user’s QoE, the User-Context Module would be a natural and effective

solution to enable TCP to provide an appropriate bandwidth prioritization service.

Accordingly, the built context models for the Live Streaming service and the File

67

CHAPTER 5. The User-Context Module Application II: TCP Case

Transfer service can be used to deduce the indispensable KCI.

Since the main objective of this User-Context Module application is to en-

hance the end-user’s QoE, it is necessary to discuss its assessment approach first.

5.2 Assessment of QoE

As mentioned in chapter 2, assessing and measuring QoE require not only the

traditional Quality of Service (QoS) parameters [41], but a joint consequence of

the communication context environment, the characteristics of the service in use

and the underlying network performance. Brooks et al. [42] propose a structured

assessment approach to describe QoE with the following clause:

IF <Communication Situation>;

USING <Service Prescription>;

WITH <Technical Parameters>;

THEN <end-user’s QoE>.

The <Communication Situation> takes into account objective communica-

tion context related to end-users. Therefore, the Communicating State, the In-

active State and other properly defined KCI of the Internet client can be in-

troduced into the parameter set of the <Communication Situation> attribute.

The <Service Prescription> can be Live Streaming (QQQTV), File Transfer

(CuteFTP) or any other types of Internet services. The <Technical Parameters>

ranges from the bit rate to the protocol type [42]. For the <end-user’s QoE>,

the Opinion Score scale from 5 to 1 can be used to describe the end-user’s subjec-

tive satisfaction on the performance of a given Internet service. Based on such a

68

CHAPTER 5. The User-Context Module Application II: TCP Case

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data

Offset

Internet Checksum

Options

Unused
Flags

(Control Bits) Advertised Window Size

Urgent Pointer

Data

32 Bits

TCP Segment Structure

Spare Room

Data

in

Buffer

Advertised Window Size

Receiver Buffer

Fig. 5.1: Advertised window size determined by the spare room of the receiver buffer.

structured assessment approach, we design and implement the Control Subsystem

for the TCP protocol to enhance the end-user’s QoE.

5.3 The Control Subsystem Design

In order to enable TCP to provide a bandwidth prioritization service at the

bandwidth-limited access link, the Control Subsystem of the User-Context Module

needs to leverage on the flow control mechanism of TCP. The original objective

of the TCP flow control mechanism is to obviate the TCP sender overflowing

the TCP receiver’s local buffer. Different from the well-known TCP congestion

control mechanism, the TCP flow control mechanism maintains a variable called

advertised window at the TCP receiver side. As shown in Fig. 5.1, the advertised

window size is always set to the amount of spare room in the buffer, and is included

in each TCP acknowledgement returned to the TCP sender. Thus, the advertised

window can actually limit the maximum number of bytes a sender is allowed to

69

CHAPTER 5. The User-Context Module Application II: TCP Case

transmit before receiving the next acknowledgment from the receiver side.

There has been some prior work on adjusting the advertised window size

in [73, 74]. Most of them follow a similar mathematical model describing the rela-

tionship between the sending rate V of a TCP connection and the corresponding

advertised window size:

𝑉 =
𝑊 𝑟𝑒𝑐

𝑅𝑇𝑇
, (5.1)

where 𝑊 𝑟𝑒𝑐 is the advertised window size in bits and RTT is the average round

trip time of the TCP connection in seconds. The above mathematical model

sufficiently describes the TCP flow control mechanism, although it simplifies other

TCP mechanisms such as the congestion control dynamics [75]. The above model

is based on the following assumptions:

∙ The access link or the last hop link is the bottleneck link of the entire net-

works, which commonly exists in wired and wireless networks.

∙ The packet loss probability is small and thus we neglect the effect of the

TCP slow start and the time-out mechanism.

∙ Only long-term bulk-transfer Internet applications and services are consid-

ered, since the short-term small sessions are likely to have completed before

they can influence the end-user’s QoE.

From the TCP model given in (5.1), we see that adjusting the advertised

window size at the receiver side can directly influence the TCP sending rate.

Therefore, the Control Subsystem can redistribute the limited bandwidth resource

at the access link by manipulating the TCP advertised window size on the Internet

client side. Furthermore, the TCP model (5.1) also shows that the sending rate

70

CHAPTER 5. The User-Context Module Application II: TCP Case

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Allocated Bandwidth (Kbps)

Q
o

E
 (

O
p

in
io

n
 S

c
o

re
)

QQQTV

CuteFTP

Fig. 5.2: The end-user’s QoE on QQQTV and CuteFTP as a function of the allocated bandwidth

V is inversely proportional to the average RTT, and the Control Subsystem can

either employ the TCP timestamp option [76] or the method proposed in [77] to

calculate the average RTT. Note that implementing such a Control Subsystem at

the TCP receiver side for adjusting the advertised window size does not require

any changes to the existing TCP protocol.

We set up our experiment with the two Internet applications QQQTV and

CuteFTP : the end-user opens QQQTV for watching the online live TV program

(ESPN channel), and meanwhile uses CuteFTP to download a zip file (200 MB).

Such usage scenario commonly exists in practice. To enable the access link to be

the bottleneck link in the experiment, we employ NetLimiter [78] on the Internet

side to limit the overall incoming throughput to 1.0 Mbps. Since the main objective

of this User-Context Module application is to enhance the end-user’s QoE, we

conduct the specific user study to investigate the relationship between the QoE

and the bandwidth consumption of QQQTV. The participants are asked to provide

their subjective responses about the QQQTV performance on the Opinion Score

scale from 5 to 1. The following grades are used: 5 = Excellent, 4 = Good, 3 =

71

CHAPTER 5. The User-Context Module Application II: TCP Case

Average, 2 = Poor, 1 = Bad. In total, 4 female and 5 male test users attended

the study with an age distribution between 20 and 55 years (mean 32.3 years,

median 29.4 years). All participants are rather advanced in terms of watching

live streaming multimedia and Internet usage. The solid line in Fig. 5.2 depicts

the end-user’s QoE on QQQTV as a function of the allocated bandwidth (from

100 Kbps to 1000 Kbps, error bars representing 95% confidence intervals). The

outcome of the user study demonstrates that the Opinion Score is Good when the

allocated bandwidth is above 400 Kbps, and the Opinion Score drops to almost

Poor when the allocated bandwidth is below 320 Kbps, i.e., QQQTV’s performance

deteriorates to an unacceptable level for the Internet end-users. For the end-user’s

QoE on CuteFTP, Reichl et al. [79] modeled the QoE on file downloading as a

function of the normalized file size 𝑓𝑠 and the normalized download bandwidth 𝑉𝑑

as follows:

𝑄𝑜𝐸 =
0.775√

𝑓𝑠
ln(𝑉𝑑) + 1.268

We adopt the above model to describe the relationship between the end-

user’s QoE and the bandwidth consumption of CuteFTP. Given the fixed file size

of 200 MB, the dash line in Fig. 5.2 depicts the variance of the end-user’s QoE on

CuteFTP with the same range of the allocated bandwidth from 100 Kbps to 1000

Kbps. From Fig. 5.2, we see that allocating enough bandwidth to QQQTV greatly

improves the corresponding end-user’s QoE, while decreasing the bandwidth for

downloading large file has limited impairment to the end-user’s QoE on CuteFTP.

According to the structured assessment approach to the QoE, Fig. 5.2 can be

further expressed as follows:

IF <Communicating State>;

72

CHAPTER 5. The User-Context Module Application II: TCP Case

USING <QQQTV> or USING <CuteFTP>;

WITH <Bit Rate (from 100 Kbps to 1000 Kbps)>;

THEN <Opinion Score Results in Fig. 5.2>.

Note that we take the Bit Rate as the main parameter of the attribute

<Technical Parameters>, because it is the key factor to influence the perfor-

mance of both QQQTV and CuteFTP. Other technical parameters can be further

considered in more complicated usage scenarios.

Based on the end-user’s QoE models on QQQTV and CuteFTP as well as the

above analysis, we see that QQQTV should be given priority to receive enough

bandwidth resource. Hence, under the condition that the two Internet applications

are running simultaneously, the following Control Rules can be implemented on

the Internet client side:

(1) IF the Communicating State (or the Unidentified State) between the end-

user and QQQTV is deduced, and meanwhile the QQQTV bandwidth share

is lower than 320 Kbps, THEN the Control Subsystem immediately re-

duces the advertised window size of CuteFTP until QQQTV bandwidth

share exceeds 400 Kbps.

(2) IF the Inactive State between the end-user and QQQTV is deduced or QQQTV

is terminated, THEN the Control Subsystem increases the advertised win-

dow size of CuteFTP to the initial value.

(3) For other possible situations, the Control Subsystem takes no action.

The above Control Rules ensure that when the end-user is watching QQQTV,

QQQTV is always given priority to receive enough bandwidth. Meanwhile, CuteFTP

can also keep working with the leftover network resource rather than be forcibly

73

CHAPTER 5. The User-Context Module Application II: TCP Case

paused or closed. When the end-user stops watching QQQTV, the Control Subsys-

tem will take back the privilege given to QQQTV and allow the running CuteFTP

to fairly compete for the limited bandwidth resource again.

Since the second application of the User-Context Module mainly aims to

demonstrate our design and motivations, the usage scenario and experimental

setup are relatively simple. With more complicated conditions, new Control Sub-

system and Control Rules should be re-designed. For example, the Control Sub-

system at the server side can also be launched to actively allocate the limited

network resource according to the deduced KCI, when a bottleneck exists at the

uplink of the server. In addition, some data mining and machine learning algo-

rithms can also be introduced to automatically generate the Control Rules based

on the basic context information of Internet clients [80].

To achieve fast response and avoid overshoot, we adopt the widely used dis-

crete PD (Proportional and Derivative) control algorithm to adjust the advertised

window size:

Δ𝑊 𝑟𝑒𝑐
𝑗 = 𝐾𝑝𝑒(𝑗) +𝐾𝑑(𝑒(𝑗)− 𝑒(𝑗 − 1)),

where

𝑒(𝑗) = 𝑅− 𝑉𝑗.

The controller output Δ𝑊 𝑟𝑒𝑐
𝑗 is used to adjust the advertised window size at

the 𝑗𝑡ℎ sampling time. R is the target bandwidth and 𝑉𝑗 is the allocated bandwidth

at the 𝑗𝑡ℎ sampling time. 𝐾𝑝 and 𝐾𝑑 are the tuning parameters in the PD control

algorithm. The sampling interval can be about five RTT of the adjusted TCP

connection.

74

CHAPTER 5. The User-Context Module Application II: TCP Case

0 200 400 600 800 1000 1200 1400 1600

(closed)

IS

CS

Elapsed Time (sec)

K
e
y
 C

o
n

te
x
t

In
fo

rm
a
ti

o
n

Fig. 5.3: Key Context Information transition on QQQTV.

5.4 Experimental Results and QoE Enhancement

To illustrate the feasibility and effectiveness of the above-described solution,

we implement the defined Control Rules and the function to measure the real-time

bandwidth consumption for each TCP connection on the Internet client side. The

experiment lasts 1600 seconds, and CuteFTP starts its downloading task from the

beginning to the end. Meanwhile, the KCI transitions on QQQTV are shown in

Fig. 5.3.

Fig. 5.4(a) shows the bandwidth distribution of the bottleneck link (1Mbps

in total) without the User-Context Module, when QQQTV and CuteFTP run

simultaneously. We see that CuteFTP always captures most of the limited band-

width resource, i.e., nearly 800Kbps, because it has relatively smaller average

RTT and enough advertised window size in each TCP acknowledgement. There-

fore, QQQTV always cannot receive the minimum guaranteed bandwidth, which

greatly impairs the corresponding end-user’s QoE. In practice, the end-user has to

manually shut down or pause CuteFTP to facilitate normal watching QQQTV.

Fig. 5.4(b) illustrates the bandwidth distribution of the bottleneck link when

the User-Context Module is implemented. We see that when the end-user starts

watching QQQTV, i.e., the Communicating State between the end-user and QQQTV,

75

CHAPTER 5. The User-Context Module Application II: TCP Case

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

Elapsed Time (sec)

B
a
n

d
w

id
th

 (
K

b
p

s
)

QQQTV

CuteFTP

(a) Bandwidth allocation without the User-Context Module

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

Elapsed Time (sec)

B
a
n

d
w

id
th

 (
K

b
p

s
)

QQQTV

CuteFTP

(b) Bandwidth allocation with the User-Context Module

Fig. 5.4: A comparison between the system without and with the User-Context Module.

the Control Subsystem can automatically decrease the bandwidth consumption of

CuteFTP until QQQTV bandwidth share exceeds 400 Kbps. When the end-user

temporarily stops watching QQQTV, i.e., the Inactive State between the end-user

and QQQTV, the Control Subsystem then releases the constraints on the adver-

tised window size of CuteFTP, and takes back the privilege given to QQQTV.

During the entire process, the Control Subsystem guarantees that the full bot-

tleneck link capacity is utilized by the two running Internet applications and no

resource wastage.

On the basis of the above experimental results, we further investigate its

influence on the end-user’s QoE. As indicated earlier, the end-user’s QoE is a

joint consequence of the technical parameters (traditional QoS parameters), the

communication context environment and the characteristics of the network services

in use. Fig. 5.2 has depicted the end-user’s QoE on QQQTV and CuteFTP when

76

CHAPTER 5. The User-Context Module Application II: TCP Case

the parameter of the <Communication Situation> is the Communicating State.

When the parameter of the <Communication Situation> is the Inactive State, the

Opinion Score in the <end-user’s QoE> can be simply assigned “0” regardless of

the types of Internet services and the variances of technical parameters. The main

reason is that the Inactive State indicates no interaction between the end-user’s

all three MHP subsystems and the corresponding Internet service, and thus it

results in little influence on the end-user’s subjective satisfaction. Given the KCI

transition on QQQTV depicted in Fig. 5.3, we further consider the two specific

scenarios with regard to the KCI transition on CuteFTP:

Scenario A: CuteFTP is always associated with the Inactive State, which means

the end-user is unaware of CuteFTP downloading from the begin-

ning to the end.

Scenario B: CuteFTP is always associated with the Communicating State,

which means the end-user is aware of CuteFTP downloading even

when the end-user is watching QQQTV.

Based on the bandwidth distribution results in Figs. 5.4(a) and 5.4(b), we

can calculate the Cumulative Opinion Score (COS), i.e., the sum of the Opinion

Score on QQQTV and CuteFTP, for the above-described two usage scenarios,

respectively. Fig. 5.5(a) illustrates the variances of the COS under the Scenario

A. Note that under the scenario A, the Opinion Score on CuteFTP stays at zero,

because the parameter of the <Communication Situation> for CuteFTP is always

the Inactive State. Hence, Fig. 5.5(a) essentially depicts the end-user Opinion

Score on QQQTV. Therefore, we clearly see that introducing the User-Context

Module effectively prevents the QoE on QQQTV falling down to the Poor level

and maintains it at a high satisfaction level during the period when the end-user

77

CHAPTER 5. The User-Context Module Application II: TCP Case

0 200 400 600 800 1000 1200 1400 1600

0

1

2

3

4

5

6

Elapsed Time (sec)

C
u

m
u

la
ti

v
e
 O

p
in

io
n

 S
c
o

re
 (

C
O

S
) With the User-Context Module

Without the User-Context Module

(a) COS under the Scenario A

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

Elapsed Time (sec)

C
u

m
u

la
ti

v
e
 O

p
in

io
n

 S
c
o

re
 (

C
O

S
)

With the User-Context Module

Without the User-Context Module

(b) COS under the Scenario B

Fig. 5.5: Cumulative Opinion Score (COS) under the two extreme scenarios

is watching QQQTV. Fig. 5.5(b) demonstrates the COS under Scenario B. We

see that the User-Context Module can still dramatically increase the COS when

QQQTV is in the Communicating State, although the end-user Opinion Score on

CuteFTP would be slightly decreased because less bandwidth is allocated to it.

Such a result indicates that when the User-Context Module lowers down CuteFTP

bandwidth share, it does not influence much on the overall QoE of the Internet

end-user even when he is constantly aware of the CuteFTP downloading task.

78

CHAPTER 5. The User-Context Module Application II: TCP Case

The given scenarios are the two extreme cases depicting the KCI between

the end-user and CuteFTP. In reality, the situation is more likely to frequently

switch between the two states, and even turns to the Unidentified States, caused

by human complex internal conscious and unconscious psychological and cognitive

factors [4]. However, with the derived positive COS results in both extreme cases

as shown in Figs. 5.5(a) and 5.5(b), we can tentatively conclude that the proposed

User-Context Module with the defined Control Rules effectively enhances the end-

user’s QoE in practice. Therefore, the User-Context Module application fulfills

the initial design objective. Noted that the designed Control Subsystem can only

address the access link bottleneck problem, and the main system overhead is still

the real-time KCI deduction at the client side. In addition, different from the

first HTTP case, the Control Subsystem designed for the TCP protocol directly

manipulates the advertised window size at the client side, and thus the KCIs

are not required to be transferred to the server side. Accordingly, there would

be no loss or delayed KCIs to influence the QoE and system performance of the

User-Context Module.

5.5 Summary

In this chapter, we present the second application of the User-Context Mod-

ule, which mainly introduce the KCI of Internet clients into the Transport Layer’s

TCP protocol. With the aim of enhancing the end-user’s QoE, the Control Sub-

system manipulates the advertised window size in TCP to actively re-distribute

the access link bandwidth for prioritizing the specific Internet service. The exper-

imental results with the corresponding QoE assessment approach confirm that the

second User-Context application effectively enhances the Internet end-user’s sub-

79

CHAPTER 5. The User-Context Module Application II: TCP Case

jective satisfaction. Furthermore, such an application demonstrates a systematic

way to design the Control Rules for enhancing the end-user’s QoE and construct

the QoE model through the user study. Accordingly, a wide range of the similar

User-Context Module applications can be developed, and then evaluated by the

given structured QoE assessment approach.

80

Chapter 6

A Resource Distribution

Framework Incentivizing Context

Sharing and Moderate

Competition

In the previous chapters, we have introduced the core architecture of the User-

Context Module, which consists of the Context Sensing Subsystem, the Context

Model Subsystem and the Control Subsystem. In the Context Model Subsystem,

the two fundamental categories of the KCI have been defined and subsequently

deduced by the context models built for different Internet services. Based on

the context models built for Web browsing, Live Streaming and File Transfer,

we present the two applications of the User-Context Module to improve Internet

performance from different aspects. Both applications essentially make use of the

captured KCI to manage different types of the limited resources. In this chap-

81

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

ter, we propose a resource distribution framework that provides context-driven

and QoE-aware service differentiation, which means that starving clients are pri-

oritized in resource allocation to enhance the corresponding end-user’s quality of

experience (QoE). Moreover, the framework actively motivates each Internet client

to consistently provide its actual context information and to adopt moderate com-

petition policies, given that all clients are selfish but rational in nature.

6.1 Motivations and Examples

As illustrated in the User-Context framework and its applications, the de-

duced KCI can be directly used to help the Internet to differentiate between clients

that are really resource-starved and clients that are just ordinary resource con-

sumers. The proposed User-Context Module essentially introduces the KCI into

the resource distribution process and provides service differentiation in allocat-

ing the resource. More specifically, the Control Subsystem adaptively allocates

the limited resources to real starving Internet clients based on the real-time KCI.

Such a design could effectively improve the protocols performance and enhance

the end-user’s QoE.

On the other hand, another critical issue is to motivate the individual client to

provide truthful and actual context information. Normal operations of the User-

Context Module require that Internet clients provide their actual KCI in a timely

way. In many cases, the limited resources are located on the server side or remote

end of the network, and accordingly Internet clients are required to share their

KCIs with the remote resource owner. However, Internet clients are assumed to

be rational and selfish in nature, and therefore they may not be willing to provide

their KCIs, especially the negative ones (e.g., Inactive State), which may lead to

82

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

fewer allocated resources or a lower priority.

Moreover, the selfish nature results in the Internet clients competing aggres-

sively for any limited resource over the Internet, typically including the resource

held by servers. To further aid understanding of the above-described issues, we

take two practical Internet systems as the illustrative examples, namely the World

Wide Web system (Web system) and the Streaming Media system.

6.1.1 Web System Example

The Web system adopts the client-server architecture and leverages on the

HTTP protocol for transferring Web pages between the Web server and the Web

clients. On the Web server side, the child process usually creates multiple worker

threads to handle any incoming HTTP connection requests: normally, one worker

thread only serves one HTTP connection at a time on a first-come-first-served

basis. Too many worker threads in Web server can easily cause thrashing in

virtual memory system and considerably degrade server performance. In practice,

a fixed limit is always imposed on the maximum number of worker threads: for

example, the default maximum number in an Apache HTTP Server 2.2 is set

to 256. Therefore, the worker threads held by the Web server always become

the limited resource in the Web system. On the Web client side, HTTP/1.1

specifies that “Clients that use persistent connections SHOULD limit the number of

simultaneous connections that they maintain to a given server. A single-user client

SHOULD NOT maintain more than 2 connections with any server or proxy”.

However, today’s commercial Web browsers frequently violate this restriction: the

default maximum value of Firefox 3.6 is set to 6 parallel persistent connections

per server, and 8 persistent connections per proxy as default settings. Recently,

the latest Internet Explorer as well as Google Chrome also aggressively adopts at

83

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

least 6 parallel persistent connections per server as their default settings. Hence,

the limited worker threads in the Web system are often subjected to excessive

competition from aggressive and unconstrained Web clients.

As described in the previous chapters, today’s Internet simply assumes that

all the end-users behind their network hosts desire to communicate with the other

end. The traditional Web system also assumes that all the allocated worker threads

are being used by the end-users through the established HTTP connections, and

thus it usually handles all incoming HTTP requests equally and maintains a first-

in, first-out (FIFO) queue with the drop-tail queue management [81]. To handle

the established HTTP connections, the Web system has to use the fixed timeout

mechanism for releasing the worker thread [61]. As shown in the previous chapters,

when the User-Context Module is introduced and implemented, the Web system

can effectively differentiate between the worker threads that are being used by the

real end-users and the worker threads that are just grabbed by the aggressive Web

browsers. With such crucial context information, the User-Context Module can

provide many possible service differentiation solutions. However, since providing

the Inactive State (IS) information to the Web server may directly result in fewer

and even no allocated worker threads, any rational and selfish Web client may not

be willing to share its negative KCI. Accordingly, any well-designed Control Rules

cannot properly work and become impractical.

6.1.2 Streaming Media System Example

The Streaming Media system also faces similar problems, and the uplink

bandwidth on the streaming server side is always the most expensive and lim-

ited resource. For example, as a popular video on demand (VoD) and video-

sharing system, YouTube mainly adopts the traditional client-server architecture

84

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

and leverages on Content Distribution Networks (CDNs) despite some P2P-based

local distribution proposals [82]. YouTube servers have to handle clients that nor-

mally request multiple clips at a time while demanding shortest buffer delays [83].

However,the system cannot provide any service differentiation in distributing its

uplink bandwidth according to the end-user’s viewing behavior and other rele-

vant context information. Purchase of the uplink bandwidth imposes substantial

costs on YouTube, and such high cost is one of the main reasons it is acquired

by Google in 2006 [84]. When the User-Context Module is introduced and im-

plemented, the Streaming Media systems, such as YouTube, could dynamically

distribute its uplink bandwidth in an optimal way according to the watching be-

havior and other relevant context information of the clients. However, if providing

the Inactive State or other negative context information would only result in less

allocated bandwidth, the rational and selfish YouTube clients would not provide it

or only provide the positive KCI for their own benefits. Under such circumstances,

the User-Context Module cannot properly operate, even though the KCI can be

accurately deduced on the YouTube client side by dedicated context models.

6.2 Objectives of the Framework

The analysis and the examples illustrate that the User-Context Module re-

quires a systematic mechanism to address all the above-described open issues. We

therefore propose a novel resource distribution framework with the three explicit

design objectives:

1. The framework should provide service differentiation in allocating limited

resources in terms of the deduced KCI.

2. The framework should encourage selfish and rational Internet clients to pro-

85

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

vide their actual KCIs, including the negative Inactive State.

3. The framework should motivate all Internet clients to adopt a moderate

competition policy.

In this chapter, we first introduce the basic workflow of the resource distribu-

tion process. Its three-step distribution procedure can be used to evolve a variety

of Internet services and systems. We then address the general design principles

for the two indispensable algorithms used in the resource distribution process, and

sequentially corresponding concrete algorithms that are conceptually simple and

widely applicable. Based on the given two algorithms, we provide theoretical in-

sights of the framework workflow, and show that the framework with its associated

algorithms can effectively incentivize context sharing and moderate competition

among the selfish but rational Internet clients. Finally, we implement and test the

proposed framework on a Web system to validate the framework performance.

6.3 Framework Workflow

Assume that 𝜇 basic units of the limited resource are held by the server (or

server cluster), which is termed resource owner in this framework. The limited re-

source can be of any type, such as worker thread, bandwidth, CPU time, memory,

etc. A finite set of Internet clients, denoted by 𝑃𝑖, 𝑖 ∈ 𝐼 = {1, 2, ..., 𝑁}, com-

pete for the given limited resource. All Internet clients update and transfer their

latest KCIs to the resource owner through interoperable communication mech-

anisms, such as the XML Protocol (XMLP) [62], JAVA RMI (Remote Method

Invocation) or any other pre-defined protocols or approaches. The resource owner

maintains a database to store and manage the delivered KCIs with the timestamp

of its recent update. Since clients only need to update their newly changed KCIs

86

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

Time Slot

STEP 1 STEP 2 STEP 3

Initialization Period Hold Period

Time Slot

STEP 1 STEP 2 STEP 3

Initialization Period Hold Period

Fig. 6.1: Time slot divided into the Initialization Period and the Hold Period.

to the resource owner, synchronization between Internet clients and the resource

owner is not required. On the resource owner side, the time domain is divided

into fixed-sized time slots 𝑇𝑗, 𝑗 ∈ {1, 2, ...,+∞}, and as shown in Fig. 6.1, each

individual time slot can be further divided into two parts: an Initialization Period

and a subsequent Hold Period. The resource distribution process only occurs in

the Initialization Period, but its result effects the entire Hold Period and part of

the next Initialization Period. Normally, the Initialization Period only occupies a

small portion of its time slot length, e.g., 5% to 10%.

Within each Initialization Period, the interaction steps between the resource

owner and Internet clients, i.e., the basic workflow of the resource distribution

framework, can be described as follows:

STEP 1: According to the current and historical KCI, the resource owner first

performs the Willingness Update Algorithm (WUA) to cal-

culate its willingness value for each Internet client. The willingness

value, say 𝑤𝑖(𝑇𝑗), reflects the amount of resource that the resource

owner is willing to offer to client 𝑃𝑖 during the current time slot 𝑇𝑗.

After performing the WUA, the resource owner immediately informs

each client the assigned willingness value.

87

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

STEP 2: After receiving the assigned willingness value, each client, say 𝑃𝑖,

takes a proper strategy to select a bidding value 𝑏𝑖(𝑇𝑗) and sends

it back to the resource owner. The bidding value 𝑏𝑖(𝑇𝑗) reflects the

amount of the resource that client 𝑃𝑖 expects to obtain from the

resource owner during the current time slot 𝑇𝑗. Meanwhile, based on

its bidding value 𝑏𝑖(𝑇𝑗), a set of control rules on the client side need

to be determined on a case-by-case basis.

STEP 3: With all the received bidding values as well as the original willing-

ness values, the resource owner executes the Resource Distribu-

tion Algorithm (RDA) to obtain the final resource distribution

result. The result 𝑥𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼 is the amount of the resource finally

assigned to client 𝑃𝑖 for the current time slot 𝑇𝑗. Based on the final

resource distribution result, a set of control rules on the server side

need to be determined on a case-by-case basis.

Remark 1 : If any individual client cannot provide its bidding value in a timely

way before STEP 3 starts, the resource owner then assumes that the client uses

the given willingness value as its bidding value.

Remark 2 : The basic unit of the limited resource is selected depending on

the resource characteristics and the usage case. For example, in the Web system,

the single worker thread can be chosen as the basic unit of the limited resource.

In the YouTube streaming system, 512 Kbps can be set as the basic unit for the

uplink bandwidth on the server side, since the YouTube servers currently use the

“block sending” method with the constant block size of 64 KB [84].

The above three-step procedure defines the basic workflow of the resource

distribution framework, which is illustrated in Fig. 6.2. STEP 1 and STEP 3 of

the framework workflow require the Willingness Update Algorithm and the

88

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

Client

Resource Owner

Client
Client

Client

Client

Resource Owner
Resource Owner

Willingness Value

W
ill
in
gn
es
s
V
al
ue

Willi
ngn

ess
Valu

e

Bidding Value

Bidd
ing V

alue

B
id
di
ng
V
al
ue

Assigned Resource

Ass
igne

d Re
sour

ce

A
ss
ig
ne
d
R
es
ou
rc
eClient

Client

Client

Client

Fig. 6.2: Three steps in the basic workflow of the resource distribution framework.

Resource Distribution Algorithm, which will be discussed in the following

sections, respectively. STEP 2 requires a proper bidding strategy, which will be

discussed in the theoretical analysis section.

6.4 Willingness Update Algorithm

In STEP 1 of the workflow, the willingness value 𝑤𝑖(𝑇𝑗) reflects the amount

of resource that the resource owner is willing to offer to client 𝑃𝑖 during time slot

𝑇𝑗. The main objective of introducing the willingness value concept and the WUA

is to make a preliminary resource distribution based only on the KCIs of Internet

clients. The following design principles for the WUA are proposed:

∙ Group all Internet clients into multiple classes according to their current and

historical KCI.

∙ Incentivize the prioritized class by assigning its members higher willingness

values, while the prioritized classes should take into account both positive

and negative KCI.

∙ The sum of the assigned willingness values equals to the total amount of the

available limited resource.

89

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

In previous chapters, we have built the context models under the User-Context

Module architecture to deduce the two fundamental categories of the KCI, namely

the Communicating State (CS) and the Inactive State (IS). We assume that each

client updates its KCI in a timely manner, either the CS or the IS with the time

stamp to the database located on the resource owner side. For each Internet

client, say 𝑃𝑖, we first introduce a new variable called the duration ratio which is

defined as 𝑞𝑖(𝜏) =
𝑡𝐶𝑆
𝑖 (𝜏)

𝑡𝐼𝑆𝑖 (𝜏)
, where 𝑡𝐶𝑆

𝑖 (𝜏) and 𝑡𝐼𝑆𝑖 (𝜏) are the cumulative times spent

by client 𝑃𝑖 in the CS and the IS over the previous 𝜏 time slots, respectively. At

the beginning of each time slot, say 𝑇𝑗, the resource owner categorizes all clients

into four classes according to the client’s current KCI, denoted as 𝑠𝑖(𝑇𝑗), and its

duration ratio 𝑞𝑖(𝜏):

𝐶1 = {𝑃𝑖 : 𝑠𝑖(T𝑗) = CS & 𝑞𝑖(𝜏) ≤ 𝜃}
𝐶2 = {𝑃𝑖 : 𝑠𝑖(T𝑗) = IS & 𝑞𝑖(𝜏) > 0}
𝐶3 = {𝑃𝑖 : 𝑠𝑖(T𝑗) = CS & 𝑞𝑖(𝜏) > 𝜃}
𝐶4 = {𝑃𝑖 : 𝑠𝑖(T𝑗) = IS & 𝑞𝑖(𝜏) = 0},

where 𝜃 is a threshold parameter that needs to be specified by the resource owner.

Classes 𝐶1 and 𝐶3 include all clients currently in the CS, while 𝐶1 requires a small

𝑞𝑖(𝜏), i.e., a high proportion of the IS duration over the previous 𝜏 time slots.

Classes 𝐶2 and 𝐶4 involve all clients currently in the IS, while 𝐶4 requires that

its members keep staying in the IS during the previous 𝜏 time slots. In principle,

class 𝐶1 has the highest priority among all classes. In other words, the client

currently in the CS would receive large willingness value from the WUA, given

that it spent enough time in the IS over the previous 𝜏 time slots. On the other

hand, class 𝐶4 has the lowest priority, because its members never transit back to

the CS over the previous 𝜏 time slots. The priority order of classes 𝐶2 and 𝐶3

90

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

may alter depending on the usage case and the resource type. Such a classification

essentially facilitates the resource owner incentivizing both the CS update and the

IS update from Internet clients.

By leveraging on the above described four classes, we present a conceptually

simple implementation of WUA based on the lottery scheduling [85]. The lottery

scheduling is a simple randomized allocation mechanism: the allocation rights

are represented by lottery tickets that are distributed among the participants.

Each allocation is determined by holding a lottery. The reward is granted to the

participant having the winning ticket in every round. In the proposed WUA, the

clients in the same class, say 𝐶𝑟, receive an equal number of tickets, denoted as

𝜂𝑟, 𝑟 ∈ {1, 2, 3, 4}. Given 𝑁𝑟 is the total number of clients in class 𝐶𝑟, the

following pseudo-code describes how the WUA calculates the willingness values

for the current time slot 𝑇𝑗.

Algorithm 1 Willingness Update Algorithm (WUA)

Input: 𝐶𝑟, 𝑁𝑟 and 𝜂𝑟, 𝑟 ∈ {1, 2, 3, 4}, 𝜇, 𝑙.
Output: Willingness values 𝑤𝑖(𝑇𝑗), 𝑖 ∈ 𝐼.
1: 𝑤𝑖(𝑇𝑗) = 0, 𝑖 ∈ 𝐼;
2: Provide 𝜂1, 𝜂2, 𝜂3 and 𝜂4 lottery tickets to each client in classes 𝐶1, 𝐶2, 𝐶3 and

𝐶4, respectively;
3: 𝐾𝑁 = 𝜂1 ∗𝑁1 + 𝜂2 ∗𝑁2 + 𝜂3 ∗𝑁3 + 𝜂4 ∗𝑁4;
4: 𝜇𝑙 = 𝜇 ∗ 𝑙;
5: for 𝑙 = 1 → 𝜇𝑙 do
6: Randomly pick one ticket from a total of 𝐾𝑁 tickets, denoted by 𝜆;
7: if the player 𝑃𝑖 has the ticket 𝜆 then
8: 𝑤𝑖(𝑇𝑗) = 𝑤𝑖(𝑇𝑗) + 1;
9: end if
10: end for
11: 𝑤𝑖(𝑇𝑗) = 𝑤𝑖(𝑇𝑗)/𝑙, 𝑖 ∈ 𝐼;

The WUA first clears the willingness values assigned in the previous time slot.

It then distributes different number of tickets to each client according to its class,

and calculates the total number of tickets used for the current time slot, i.e., 𝐾𝑁 .

91

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

By multiplying an amplification factor 𝑙 with the total amount of resource 𝜇, the

WUA obtains the value 𝜇𝑙 and accordingly holds 𝜇𝑙 rounds of lottery. In each

round, the willingness value of the winning client is increased by 1. Finally, the

willingness values are all divided by the same factor 𝑙 to ensure that their sum

equals to 𝜇. Note that if the original 𝜇 is sufficiently large, the amplification factor

𝑙 can be simply set to 1 in the algorithm.

Theoretically, the probability 𝜌 that a client given 𝜂𝑟 tickets will win a lot-

tery with a total of 𝐾𝑁 tickets is simply 𝜌 = 𝜂𝑟
𝐾𝑁

. After 𝜇𝑙 identical lotteries, the

expected willingness value of that client is 𝜇𝑙 ∗ 𝜌, with a variance 𝜇𝑙 ∗ 𝜌(1 − 𝜌).

Accordingly, the assigned willingness value 𝑤𝑖(𝑇𝑗) follows the binomial distribu-

tion, which can be denoted as 𝑤𝑖(𝑇𝑗) ∼ 𝐵(𝜇𝑙, 𝜌). The corresponding coefficient of

variation equals to
√

(1−𝜌)
𝜇𝑙𝜌

, which indicates that the disparity between the actual

assigned willingness value and its expected value decreases with
√
𝜇
𝑙
. Briefly, the

expected willingness value assigned to a client is proportional to its share of the

total ticket number. Hence, the resource owner can prioritize class 𝐶𝑟 by simply

providing more tickets to its clients, i.e., increasing 𝜂𝑟. In practice, the time span

parameter 𝜏 and 𝜂𝑟, 𝑟 ∈ {1, 2, 3, 4} can be a constant or dynamically configured

by the resource owner in terms of its priority policy and real-time workload.

Remark 1 : For the new clients that request to join the resource distribution

process, they have to wait until the new time slot starts. However, their KCI

during the waiting time slot, say 𝑇𝑗−1, can be regarded as being in the IS, and

thus they would be grouped into class 𝐶1 in their first time slot 𝑇𝑗.

Remark 2 : Besides the lottery scheduling algorithm, other algorithms and

mechanisms, which fulfill the task of dynamic priority assignment and adjustment,

can also be used to design new WUA.

92

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

6.5 Resource Distribution Algorithm

In STEP 3 of the framework workflow, the resource owner executes the Re-

source Distribution Algorithm (RDA) to obtain the resource distribution result of

the current time slot. The following design principles for the RDA are proposed:

∙ An Internet client, who requests a reasonable amount of the resource, should

be allocated a fair portion of the limited resource. The Internet client, who

behaves aggressively, should be allocated less or even no resource.

∙ Any two Internet clients, who both adopt moderate bidding strategies and

receive the same willingness value, should be allocated similar amount of the

limited resource.

∙ The final resource allocation result should achieve a high level of satisfaction

from the perspectives of both Internet clients and the resource owner.

∙ The RDA should strive to preserve the scalability, efficiency and responsive-

ness of the original system and its services.

Assume that the willingness values from the resource owner and the bidding

values from Internet clients are given, we present a practical RDA based on the

so-called water filling algorithms [86, 87] to demonstrate the described design

principles. Each Internet client, say 𝑃𝑖, is treated as a bucket with an area 𝑏𝑖(𝑇𝑗)

and a width 𝑤𝑖(𝑇𝑗) as shown in Fig. 6.3. Each bucket has a bottom thickness
𝑏𝑖(𝑇𝑗)

𝑤𝑖(𝑇𝑗)
,

and accordingly its total height amounts to
2𝑏𝑖(𝑇𝑗)

𝑤𝑖(𝑇𝑗)
. The height of the bucket reflects

the aggressiveness level of the client: higher bucket indicates more aggressiveness.

The main task of the RDA is to divide all the buckets (clients) into three

groups according to their height: the “moderate” group, the “normal” group and

the “aggressive” group, denoted as 𝐺1 = {𝑃1, ..., 𝑃𝐿}, 𝐺2 = {𝑃𝐿+1, ..., 𝑃𝑀} and

93

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

Assigned Resources

Bucket’s Bottom

h

1p Lp 1Lp + Mp 1Mp + Np· · · · · · · · ·

1G 2G 3G

· · ·

· · ·

· · ·

1

1

()

()

j

j

b T

w T

1 ()jw T

()

()

N j

N j

b T

w T

()N jw T

1 ()M jw T
+

()M jw T

1 ()L jw T
+

()L jw T

1

1

()

()

j

j

b T

w T

()

()

N j

N j

b T

w T

Fig. 6.3: Three bucket groups in the given Resource Distribution Algorithm (RDA).

𝐺3 = {𝑃𝑀+1, ..., 𝑃𝑁}, 1 ≤ 𝐿 ≤ 𝑀 ≤ 𝑁 . For the clients in group 𝐺1, the RDA

fulfils all their demands, i.e., offering their bidding amounts of the resource. For

the clients in group 𝐺2, the RDA partially satisfies their demands by offering a

certain amount of resource, which ensures that all buckets in group 𝐺2 reach the

same final height, denoted by ℎ. For the clients in group 𝐺3, the RDA does not

offer any resource to them. Fig. 6.3 illustrates the general distribution result of

the RDA. The RDA can be expressed by the pseudo-code in Algorithm 2.

In Routine 1, the RDA successively selects a bucket from the shortest one

and assumes it to be the last member of group 𝐺1. Then the RDA calculates the

corresponding amount of the required resource 𝛼: if 𝛼 is less than the available

amount of resource 𝜇, the selected bucket would be assigned to group 𝐺1 and the

same procedure is applied to the next bucket; otherwise the RDA calculates the

leftover resource and jumps to Routine 2. In Routine 2, the RDA successively

selects a bucket from the tallest one and assumes it to be the first member of

group 𝐺3. Then it calculates the corresponding amount of the required resource

94

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

Algorithm 2 Resource Distribution Algorithm (RDA)

Input: 𝜇, 𝑏𝑖 and 𝑤𝑖, ∀𝑖 ∈ 𝐼 for the current time slot .
Output: Three groups 𝐺1, 𝐺2, 𝐺3, and final height ℎ in group 𝐺2.
Init: 𝑙𝑜𝑤 = 2𝑏1

𝑤1
, ℎ𝑖𝑔ℎ = 𝑏𝑁

𝑤𝑁
, 𝑏0 = 0, and sort all clients in ascending 𝑏𝑖

𝑤𝑖
order,

denoted by
{

𝑏1
𝑤1
, 𝑏2

𝑤2
, ... , 𝑏𝑁

𝑤𝑁

}
.

Routine 1 : /∗ pick out all clients in 𝐺1 ∗ /
for 𝑘 = 1 → 𝑁 do

𝛼 =
𝑖=𝑘∑
𝑖=1

𝑏𝑖;

𝑗 = 𝑘 + 1;
while 𝑙𝑜𝑤 >

𝑏𝑗
𝑤𝑗

do

𝛼+ = (𝑙𝑜𝑤 ∗ 𝑤𝑗 − 𝑏𝑗);
𝑗 ++;

end while
if 𝛼 ≤ 𝜇 then
𝐿 = 𝑘; /∗ assigned 𝑃𝑘 to 𝐺1 ∗ /
𝑙𝑜𝑤 = 2𝑏𝑘+1

𝑤𝑘+1
, 𝛼 = 0;

else {𝛼 > 𝜇}
𝜇− =

𝑖=𝑘−1∑
𝑖=0

𝑏𝑖;

𝜇′ = 𝜇, exit for;
end if

end for
Routine 2 : /∗ pick out all clients in 𝐺3 ∗ /
for 𝑘 = 𝑁 → 𝐿+ 1 do
if ℎ𝑖𝑔ℎ ≥ 2𝑏𝐿+1

𝑤𝐿+1
then

ℎ𝑖𝑔ℎ = 𝑏𝑘−1

𝑤𝑘−1
; /∗ assigned 𝑃𝑘 to 𝐺3 ∗ /

else if ℎ𝑖𝑔ℎ < 2𝑏𝐿+1

𝑤𝐿+1
then

𝛽 =
𝑘∑

𝑗=𝐿+1

(ℎ𝑖𝑔ℎ ∗ 𝑤𝑗 − 𝑏𝑗);

if 𝛽 ≥ 𝜇 then
ℎ𝑖𝑔ℎ = 𝑏𝑘−1

𝑤𝑘−1
; /∗ assigned 𝑃𝑘 to 𝐺3 ∗ /

else {𝛽 < 𝜇}
𝑀 = 𝑘;
exit for;

end if
end if

end for
Routine 3 : /∗ calculate the final height h in group 𝐺2 ∗ /

ℎ = 𝑏𝑀
𝑤𝑀

+
𝜇−

𝑀−1∑
𝑖=𝐿+1

(
𝑏𝑀
𝑤𝑀

∗𝑤𝑖−𝑏𝑖)

𝑀∑
𝑖=𝐿+1

𝑤𝑖

;

95

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

𝛽: if 𝛽 is larger than the leftover resource, the selected bucket would be assigned

to group 𝐺3 and the same procedure is applied to the next bucket; otherwise the

RDA jumps to Routine 3. Since Routine 1 and Routine 2 have picked out all the

buckets in groups 𝐺1 and 𝐺3, the rest of buckets would be automatically assigned

to group 𝐺2. In Routine 3, the RDA calculates the final height ℎ in group 𝐺2

with the leftover resource. After that, the resource owner can simply distribute

the resource in terms of the three groups derived by the RDA:

𝑥𝑘(𝑇𝑗) =

⎧⎨⎩
𝑏𝑘(𝑇𝑗), ∀𝑘 ∈ [1, 𝐿];

𝑤𝑘(𝑇𝑗) ∗ ℎ− 𝑏𝑘(𝑇𝑗), ∀𝑘 ∈ [𝐿+ 1, 𝑀];

0, ∀𝑘 ∈ [𝑀 + 1, 𝑁].

Note that the prerequisite of running the given RDA is
𝑁∑
𝑖=1

𝑏𝑖 > 𝜇, which means

that the sum of all bidding values exceeds the total amount of resource. When
𝑁∑
𝑖=1

𝑏𝑖 ≤ 𝜇, the resource owner can simply regard all clients as “moderate” clients

and offers their bidding amount of resource, i.e., 𝑥𝑖(𝑇𝑗) = 𝑏𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼.

6.6 Theoretical Analysis of the Framework

In the previous two sections, we have presented the WUA and the RDA, which

are required in STEP 1 and STEP 3 of the framework workflow respectively. In

STEP 2 of the framework workflow, a bidding strategy needs to be independently

determined by the individual Internet client. In this section, we demonstrate

that Internet clients are motivated to actively share their actual Key Context

Knowledge and moderately compete from the theoretical perspective. In addition,

we also prove that the distribution results of the framework always maximize a

particular form of the social welfare function with the given WUA and the RDA.

96

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

Since the concepts of Nash equilibrium and non-cooperative game are used in our

analysis, we first briefly introduce the related parts of game theory.

6.6.1 Non-Cooperative Game and Nash Equilibrium

Game theory [88] is a mathematical tool for modeling and analyzing the

strategic interactions among rational decision makers (players), and subsequently

provides insight into various competitive environments and mechanisms. As one

of the main branch of game theory, non-cooperative game describes the situation

where each selfish player makes decisions independently and acts to maximize his

own benefit [89]. The outcome of the non-cooperative game is termed as the Nash

equilibrium, which essentially indicates that no individual player can unilaterally

improve his payoff/utility given that the other players adopt the existing Nash

equilibrium. One of the important applications of the non-cooperative game theory

is to help design the mechanism that leads independent and selfish players towards

a system-wide desirable outcome [90]. The details of the non-cooperative game

theory and its examples of can be found in [91].

6.6.2 Theoretical Analysis

The basic workflow of the framework determines the three-step interaction

process between the resource owner and its clients. Such an interaction process

can be modeled and analyzed as a non-cooperative game: all Internet clients can

be regarded as the game players; each game player can independently choose a

bidding strategy to maximize its own payoff; the given WUA and RDA jointly

work as the utility function and the final resource distribution results are the

payoffs for each game player. Hence, we adopt the non-cooperative game theory

tool to analyze the resource distribution process.

97

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

Lemma 1: Under the proposed framework with the given WUA and RDA,

any Internet client, say 𝑃𝑐, who bids the assigned willingness value, i.e., 𝑏𝑐(𝑇𝑗) =

𝑤𝑐(𝑇𝑗), can be guaranteed to receive its bidding amount of resource, i.e., 𝑥𝑐(𝑇𝑗) =

𝑏𝑐(𝑇𝑗), regardless of other clients’ bidding strategy.

Proof : The proof is given in the Appendix.

Lemma 2: Under the proposed framework with the given WUA and RDA,

the bidding strategy profile 𝐵∗(𝑇𝑗) = {𝑏∗𝑐(𝑇𝑗) : 𝑏∗𝑐(𝑇𝑗) = 𝑤𝑐(𝑇𝑗), ∀𝑐 ∈ 𝐼} is the

unique pure-strategy Nash equilibrium in time slot 𝑇𝑗.

Proof : The proof is given in the Appendix.

Proposition 1: Under the proposed resource distribution framework with

the given WUA and RDA, the best policy for any individual Internet client is to

share its actual KCI, i.e., either the CS or the IS, and meanwhile adopt a moderate

bidding strategy to compete for the limited resource.

Proof : As mentioned earlier, in general, all Internet clients are rational and

selfish in nature, and thus they always attempt to acquire more resource regardless

of others. The proposed framework with the given WUA and RDA addresses it

from both the context sharing and resource bidding aspects:

1. Context Sharing : in the given WUA, the highest prioritized class 𝐶1 requires

a high proportion of the IS duration over the previous 𝜏 time slots. Mean-

while, classes 𝐶2 and 𝐶3 have the same priority in the WUA. Hence, for

any rational Internet client temporarily in the IS and not starving, the best

policy is not to hide the IS but quickly update it to the resource owner. As

a result, when its CS resumes, such a client will be most probably classified

into class 𝐶1 and accordingly receive a higher willingness value. Lemma

1 shows that the higher the willingness value received, the more resource

can be guaranteed to gain from the resource owner. In other words, timely

98

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

update of negative KCI to the resource owner would be incentivized by al-

locating more resource when the client transits back to the positive KCI.

To prevent Internet client from manipulating its KCI update to improve its

payoff, the value of the time span parameter 𝜏 used in the duration ratio can

be dynamically configured by the resource owner and not be made public

to the clients. In short, motivated by such a specific service differentiation

mechanism, the best policy for any rational Internet client is to actively

share its actual KCI.

2. Resource Bidding : when any selfish client, say 𝑃𝑐, attempts to acquire more

resource by adopting aggressive bidding strategies, i.e., 𝑏𝑐(𝑇𝑗) ≫ 𝑤𝑐(𝑇𝑗),

Lemma 2 shows that such a client would deviate itself far from the system

unique Nash equilibrium 𝐵∗(𝑇𝑗). As a result, the client cannot gain more

resource to improve its payoff, but receives less or even no resource from

the resource owner. Because adopting aggressive bidding strategies suffers

a significant reduction in the finally allocated resource, the best policy for

any rational Internet client is to adopt a moderate bidding strategy.

In short, with the given WUA and RDA, the proposed resource distribution

framework can effectively motivate context sharing and moderate competition

among Internet clients.

Lemma 3: Under the proposed framework with the given WUA and RDA,

the distribution results 𝑋 = {𝑥𝑖(𝑇𝑗) : ∀𝑖 ∈ 𝐼} solves the following optimization

problem:

99

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

max
𝑁∏
𝑖=1

(
𝑥𝑖(𝑇𝑗)

𝑏𝑖(𝑇𝑗)
+ 1)

𝑤𝑖(𝑇𝑗)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑥𝑖(𝑇𝑗) ≤ 𝑏𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼,
𝑁∑
𝑖=1

𝑥𝑖(𝑇𝑗) ≤ 𝜇,

(6.1)

where 𝑤𝑖(𝑇𝑗) and 𝑏𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼, are the willingness values and the bidding values,

respectively, in time slot 𝑇𝑗.

Proof : The proof is given in the Appendix.

Proposition 2: Under the resource distribution framework with the given

WUA and RDA, the resource distribution results maximize a social welfare func-

tion in all time slots.

Proof : On the resource owner side, the latest willingness value, say 𝑤𝑖(𝑇𝑗),

can reflect the resource owner’s satisfaction degree with Internet client 𝑃𝑖 in terms

of its current and historical KCI. On the Internet client side, the value
𝑥𝑖(𝑇𝑗)

𝑏𝑖(𝑇𝑗)
,

i.e., the ratio of the finally assigned resource to its initial bidding amount, can

reflect the satisfaction degree of client 𝑃𝑖 with its resource distribution result in

the current time slot 𝑇𝑗. Hence, we can choose function
𝑁∏
𝑖=1

(
𝑥𝑖(𝑇𝑗)

𝑏𝑖(𝑇𝑗)
+ 1)

𝑤𝑖(𝑇𝑗)
to

simply describe the social welfare in time slot 𝑇𝑗, which considers the satisfactions

from both the resource owner and all Internet clients.

Given a condition that each client cannot receive more resource than its bid-

ding amount, maximizing the above social welfare function is equivalent to opti-

mization problem (A.6). Lemma 3 has proven that the resource distribution result

𝑋 in any given time slot solves optimization problem (A.6). Hence, the resource

distribution results always maximize the selected social welfare function in all time

slots.

Remark : The social welfare can be modeled by other functions on the condi-

tion that they consider the satisfactions of the resource owner as well as Internet

100

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

clients.

6.7 Illustrative Case and Experimental Results

To demonstrate how the proposed framework operates in practice, we take

the Web system as an illustrative case. As mentioned earlier, the resource owner,

namely the Web server, holds a limited number of the worker threads, which often

face excessive competitions from the Web clients. In this case, the Web client

refers to the individual end-user and his Web browser(s). We assume that the

KCI of each Web client, i.e., the CS and the IS, can be deduced in a timely way

and delivered to the Web server. At the beginning of each time slot, i.e., in STEP

1 of the Initialization Period, the Web server first executes the given WUA to

obtain the willingness values for all Web clients and immediately informs each

client of their assigned willingness value. In STEP 2, each Web client needs to

decide how many worker threads to bid for the current time slot, and the bidding

value is essentially the number of parallel HTTP connection requests sent by the

Web browser. Considering the given RDA running on the Web server side, any

rational Web client, say 𝑃𝑖, would behave moderately and choose a bidding value

𝑏𝑖(𝑇𝑗) close to 𝑤𝑖(𝑇𝑗). In this case, Web client 𝑃𝑖 can simply adopt a bidding

strategy as follows:

𝑏𝑖(𝑇𝑗) = max{1, ⌈𝑤𝑖(𝑇𝑗)⌉}, (6.2)

where ⌈⋅⌉ is the ceiling function. Accordingly, the control rules implemented on

the client side actively adjust the number of the parallel HTTP connections that

the Web browser sends to the Web server. Given that 𝑥𝑟
𝑖 (𝑇𝑗−1) is the number

of the established HTTP persistent connections between the Web browser and

101

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

the Web server over the previous time slot 𝑇𝑗−1, the following control rules are

implemented on the Web browser of client 𝑃𝑖 based on bidding strategy (6.2):

(1) IF 𝑏𝑖(𝑇𝑗) > 𝑥𝑟
𝑖 (𝑇𝑗−1), THEN the Web browser immediately initiates 𝑏𝑖(𝑇𝑗)−

𝑥𝑟
𝑖 (𝑇𝑗−1) new HTTP connection requests to the Web server.

(2) IF 𝑏𝑖(𝑇𝑗) ≤ 𝑥𝑟
𝑖 (𝑇𝑗−1), THEN the Web browser takes no action.

The above control rules indicate that the Web client does not need to perform

the connection termination tasks, which are left for the server side. In ideal

circumstances, 𝑥𝑟
𝑖 (𝑇𝑗−1) equals to the resource distribution result of the previous

time slot, i.e., 𝑥𝑟
𝑖 (𝑇𝑗−1) = 𝑥𝑖(𝑇𝑗−1).

In STEP 3, the Web server collects all the bidding values and executes the

given RDA to obtain the resource distribution results for the current time slot,

i.e., 𝑥𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼. Given that 𝛽𝑖(𝑇𝑗) = ⌈𝑏𝑖(𝑇𝑗)− 𝑥𝑖(𝑇𝑗)⌉, the following control

rules can be implemented on the Web server side:

(1) IF 𝛽𝑖(𝑇𝑗) > 0, THEN the Web server gracefully terminates 𝛽𝑖(𝑇𝑗) estab-

lished HTTP persistent connections with the Web client 𝑃𝑖.

(2) IF 𝛽𝑖(𝑇𝑗) = 0, THEN the Web server takes no action on client 𝑃𝑖.

The above control rules on the server side essentially enable the Web server

to take back the worker threads from the aggressive Web clients and accomplish

the result of the RDA. Note that the given RDA guarantees the distribution result

𝑥𝑖(𝑇𝑗) ≤ 𝑏𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼, and thus it is unnecessary to consider the case 𝛽𝑖(𝑇𝑗) < 0

in the above control rules.

Remark : Considering that the given WUA and RDA are running on the Web

server side, it is reasonable for any commercial Web browsers to stop arbitrarily

102

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

increasing the limit of parallel persistent connections per server, but adopt a proper

competition policy similar to the moderate bidding strategy (6.2).

We have implemented the proposed framework as well as the above described

control rules on a conventional Web system. On the Web server side, we have

selected Apache HTTP Server 2.2.15, as it is a popular open-source Web server.

In order to implement the control rules and the two algorithms, we have modified

a small part of the Apache source code, which implements the HTTP proto-

col and the thread pool management. Then we re-compile the server under the

Linux 2.6.28 and connect it to a MySQL database recording all the Web clients’

KCI with the timestamp. On the Web client side, we use a HTTP request gen-

erator to emulate multiple Web clients. Each client switches between the CS and

the IS and follows a similar state transition model given in [92], where the user

sessions are exponentially distributed. In the experiment, we set the CS duration

𝑡𝑐𝑠 is exponentially distributed with the mean value of 20 seconds, denoted as

𝑡𝑐𝑠 ∼ 𝑒𝑥𝑝(20), and the IS duration 𝑡𝑖𝑠 is exponentially distributed with the mean

value of 62.5 seconds, denoted as 𝑡𝑖𝑠 ∼ 𝑒𝑥𝑝(62.5). In the IS period, each Web client

stops generating HTTP requests and keeps silent. In the CS period, each Web

client makes sequential HTTP requests following a homogeneous Poisson process

with a rate of 30 requests per minute. More specifically, the probability that a Web

client sends 𝑘 HTTP requests during the CS period satisfies Pr(𝑘) = 𝑒−0.5𝑡𝑐𝑠 (0.5𝑡𝑐𝑠)
𝑘

𝑘!
.

The total amount of the limited resource is set to 256 units, namely the

default maximum number of parallel worker threads allowed in an Apache HTTP

server. The time slot length has been set to 10 seconds equally, where STEP

1 and STEP 2 of the Initialization Period are required to be completed in 800

milliseconds. In the given WUA, the threshold parameter 𝜃 and the duration

parameter 𝜏 are set to 3.0 and 2, respectively. The ticket numbers given to each

103

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

class, i.e., 𝜂𝑟, 𝑟 ∈ {1, 2, 3, 4}, are set to 4, 2, 2, 0, respectively. The amplification

factor 𝑙 used in the WUA is set to 10. In addition, a small positive constant is

added to the 𝑡𝐼𝑆𝑖 (𝜏) to avoid a zero denominator when calculating the duration

ratio 𝑞𝑖(𝜏).

Our experimental hardware setup involves five hosts equipped with Duo Intel

T7300 2.00-GHz processors and 2-GB RAM. One host runs the modified Apache

HTTP Server, and others run the HTTP request generator to act as multiple Web

clients. We adopt Dummynet [68], a widely-used tool to enforce queue delay and

packet loss, to emulate operating in a wide area network (WAN) environment.

We enable its delay function and set it to 50 milliseconds for both direction of

each link. Thus, the round trip time (RTT) is around 150 milliseconds, which

includes the database access time. We select four typical scenarios to demonstrate

the framework performance and its important properties. The experiments run

for 30 time slots each round, and we repeat 10 times for each example to average

out fluctuations caused by the random variables in the algorithms.

Example 1 (Service Differentiation). We first consider 500 clients com-

peting for the 256 worker threads. All of clients share their actual KCI including

the negative IS, and adopt the moderate bidding strategy (6.2). Fig. 6.4(a) il-

lustrates the average number of worker threads finally assigned to the individual

client in the four classes categorized by the WUA. Fig. 6.4(b) illustrates the num-

ber of clients in each class. Fig. 6.5 demonstrates the enhancement of the average

end-user’s QoE on Web browsing.

In the traditional Web system with FIFO queue and drop-tail queue man-

agement, 500 concurrent clients competing for 256 worker threads would result

in at least half of clients waiting in the pending connection queue or are simply

blocked. Under the proposed resource distribution framework, Fig. 6.4(a) shows

104

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Sequence of Time Slot

N
u

m
b

e
r

o
f

W
o

rk
e
r

T
h

re
a
d

Class 1

Class 2

Class 3

Class 4

(a) Average number of worker threads allocated to individual client in different classes

5 10 15 20 25 30
0

50

100

150

200

250

300

350

Sequence of Time Slot

N
u

m
b

e
r

o
f

C
li
e
n

t

Class 1

Class 2

Class 3

Class 4

(b) Number of clients in the four classes

Fig. 6.4: Service differentiation under the resource distribution framework.

that the Web clients who are currently in the CS and hold a high proportion of

the IS duration over the previous 2 time slots, i.e., the members of class 𝐶1, ob-

tain around 2 worker threads on average from the Web server. The Web clients

who actively transit from the CS to the IS in the previous 2 time slots, i.e., the

members of class 𝐶2, can also obtain 1 worker thread on average. Meanwhile, the

clients who are currently in the CS but hold a low proportion of the IS duration,

105

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

5 10 15 20 25 30
1

2

3

4

5

Sequence of Time Slot

A
v
e
ra

g
e
 Q

o
E

 (
O

p
in

io
n

 S
c
o

re
)

System with the Framework

System without the Framework

Fig. 6.5: A comparison of the average end-user’s QoE on Web browsing.

i.e., the members of class 𝐶3, also obtain nearly 1 worker thread, since the same

number of tickets are assigned to classes 𝐶2 and 𝐶3 in the WUA. The Web clients

who have stayed in the IS for the previous 2 time slots, i.e. the members of class

𝐶4, receive nothing from the resource owner.

For assessing the end-user’s QoE, prior studies [69, 70] have systematically

investigated the quantitative relationship between the QoE and the Web page

download time. Shaikh et al. [69] shows that the exponential relationship gives

the best correlation result: 𝑄𝑜𝐸 = 4.836 ∗ exp(−0.15𝑇), where 𝑇 is the Web page

download time. Meanwhile, the Opinion Score has been used to rate the QoE: 5

= Excellent, 4 = Good, 3 = Average, 2 = Poor, 1 = Bad. As indicated earlier, the

above mathematical relationship is valid only when the end-user keeps interacting

with the Web service, namely the clients that are in the CS. Otherwise, the QoE

would be always 0 no matter how much resource is allocated to the clients that

are in the IS. Hence, in each time slot, we simply compute the average download

time of all the Web clients in the CS, and then obtain the corresponding QoE

value by using the given quantitative relationship. For the purpose of comparison,

we also conduct the experiment and analysis on a conventional Web system with

106

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

the FIFO queue and drop-tail queue management. Fig. 6.5 depicts the average

end-user’s QoE in both cases: we clearly see that the system with the proposed

framework maintains a much higher QoE than the conventional Web system. The

main reason is that the proposed framework provides service differentiation and

successfully allocates the limited worker threads to the starving clients, i.e., the

members in classes 𝐶1, 𝐶2 and 𝐶3, while the traditional Web system only uniformly

treats all the incoming HTTP requests that would result in large queueing delay

for the starving clients. Moreover, the Web page transmission time can also be

reduced when multiple worker threads, e.g., 2 worker threads for the member of

class 𝐶1, can be allocated to the same starving client. Note that it is difficult to

establish a quantitative relationship between the end-user’s QoE and the number

of the allocated worker threads due to lack of reliable models of the Web server

and the Internet.

In short, the experimental results confirm that the framework effectively pro-

vides the service differentiation in terms of the current and historical KCI, and

significantly enhances the end-user’s QoE.

Example 2 (Context Sharing). We still consider 500 clients, among which

client A and client B always have the same KCI during all time slots as shown

in Fig. 6.6(b). Client A purposely never updates its IS to the resource owner but

fraudulently informs the resource owner the CS. Client B honestly updates its

KCI transitions to the resource owner. Both of them adopt the moderate bidding

strategy (6.2). Fig. 6.6(a) demonstrates the final resource distribution results of

the two clients.

As shown in Fig. 6.6, during the 1st and the 2nd time slots, both client A and

client B are allocated 2 worker threads, because the WUA groups the new clients

into class 𝐶1. Both client A and client B transit from the CS to the IS before

107

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

20 40 60 80 100 120 140 160 180 200

0

1

2

Elapsed Time (sec)

N
u

m
b

e
r

o
f

W
o

rk
e
r

T
h

re
a
d

Client A

Client B

(a) Amount of the resource allocated to client A and client B

20 40 60 80 100 120 140 160 180 200

IS

CS

Elapsed Time (sec)

(b) Key Context Information transitions of client A and client B

Fig. 6.6: A comparison between the honest client and the dishonest client.

the 3rd time slot arrives, while only client B updates its transition to the resource

owner. Accordingly, client A and client B are grouped into classes 𝐶3 and 𝐶2

respectively and are allocated 1 worker thread over the next 2 time slots. Then

both clients switch back to the CS before the 5th time slot comes, and client B

also provides timely updates it to the resource owner. Because client B shares its

IS between the 3rd and the 4th time slot, it has a lower duration ratio 𝑞𝐵(𝜏) over

the 5th and the 6th time slot. Hence, client B can be grouped into class 𝐶1 by the

WUA and is allocated 2 worker threads during its CS period. Meanwhile, client A

cannot receive any more worker threads and still stays in class 𝐶3 over the 5
th and

the 6th time slot, because it never shares its negative IS and thus its duration ratio

𝑞𝐴(𝜏) is kept high. In all the subsequent time slots, client B is always allocated

more resource than client A when it transits back to the CS, which is due to client

108

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

B actively sharing its negative IS with the resource owner. Hence, the framework

effectively encourages clients to provide their actual KCI.

Note that during the 13th and the 14th time slots, client B has entered the

long idle status, which indicates that its end-user has not been interacting with

the corresponding Web page for more than 2 time slots. Hence, it is reasonable

that the framework allocates less or even no worker thread to client B during

this period. The saved worker threads are assigned to the starving clients by the

Web server. In addition, dynamically adjusting the number of lottery tickets for

each class, i.e., 𝜂𝑟, and the threshold parameter 𝜃 in the WUA can enable the

incentivization mechanism to be more adaptive and responsive.

Example 3 (Moderate Competition). We still consider the 500 con-

current clients, among which client A and client B always receive the similar

willingness values from the resource owner. Client A adopts an aggressive policy

that keeps sending 6 parallel HTTP persistent connection requests to the Web

server, i.e., bidding 6 worker threads. Client B adopts the given moderate bid-

ding strategy (6.2) and the corresponding client-side control rules. Both of them

provide their actual KCI to the Web server. The received willingness values, the

bidding values and the final distribution results of client A and client B are shown

in Fig. 6.7(a) and Fig. 6.7(b), respectively.

As shown in Fig. 6.7(a), client A adopts an aggressive strategy and its bidding

value 6 is much higher than the given willingness values. As a result, client A

obtains almost no worker thread from the Web server in each time slot. On the

contrary, client B adopts the moderate strategy that the bidding value is always

close to the assigned willingness value and the corresponding control rules. As

a result, client B successfully gains a reasonable number of worker threads in

each time slot as shown in Fig. 6.7(b). From the final distribution results of

109

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Sequence of Time Slot

N
u

m
b

e
r

o
f

W
o

rk
e
r

T
h

re
a
d Bidding Value

Willingness Value

Final Allocated Value

(a) Client A (aggressive)

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Sequence of Time Slot

N
u

m
b

e
r

o
f

W
o

rk
e
r

T
h

re
a
d

Bidding Value

Willingness Value

Final Allocated Value

(b) Client B (moderate)

Fig. 6.7: A comparison between the aggressive client and the moderate client.

the two comparable clients, we see that the framework guarantees the moderate

clients to receive their fair portion of the limited resource, and meanwhile penalizes

the aggressive clients by decreasing the allocated resource. Hence, it effectively

incentivizes moderate competition among Internet clients.

Example 4 (Adaptability). We further investigate the performance of the

framework under a dynamic condition where there are significant fluctuations in

the total client number. As shown in Fig. 6.8(b), only 200 clients compete during

the first 8 time slots. From the 9th time slot onwards, the total client number

dramatically increases to 500 and holds for the subsequent 8 time slots. From the

16th time slot onwards, the total client number drops back to 200 for another 8

time slots and then increases to 500 again.

110

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

5 10 15 20 25 30
0

1

2

3

4

5

6

Sequence of Time Slot

N
u

m
b

e
r

o
f

W
o

rk
e
r

T
h

re
a
d

Class 1

Class 2

Class 3

Class 4

(a) Average number of worker threads allocated to individual client in
different classes

5 10 15 20 25 30
100

200

300

400

500

600

Sequence of Time Slot

N
u

m
b

e
r

o
f

C
li
e
n

t

(b) Fluctuations in the total client number

Fig. 6.8: Framework adaptivity in terms of the total client number.

Fig. 6.8(a) illustrates the system performance under such dynamic conditions.

We see that the framework can still effectively provide the expected service differ-

entiation: when the total number of clients is 200, the individual client in class 𝐶1

receives around 5 worker threads on average, and the individual client in classes 𝐶2

or 𝐶3 obtains more than 2 worker threads on average. When the total number of

clients dramatically increases to 500, the framework quickly adjusts its willingness

values and the distribution results are similar to Example 1, which also demon-

strates the stability of the framework. In short, this example illustrates that the

proposed framework can gracefully handle both the heavy workload and the light

workload situations.

111

CHAPTER 6. A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition

6.8 Summary

In this chapter, we present a novel resource distribution framework that pro-

vides context-driven and QoE-aware service differentiation. The framework also

incentivizes context-sharing and moderate competition under the User-Context

Module architecture. By leveraging on the selfish but rational nature of Inter-

net clients, the proposed framework explicitly allocates the limited resource to

the starving Internet clients. A three-step framework workflow as well as the re-

quired WUA and RDA algorithms are sequentially introduced. We analyze the

Internet clients behavior by formulating a noncooperative game and prove that

the framework guides all clients (game players) towards a unique Nash equilib-

rium. We have proven that under the proposed framework, the best policy for

any Internet clients is to provide their actual KCI and self-enforce moderate com-

petition policies. Furthermore, we prove that the distribution results computed

by the framework maximize a social welfare function. We demonstrate the moti-

vation, operation and performance of the framework by presenting a Web system

example. The experimental results in four scenarios demonstrate that the im-

proved Web system performance and confirm that all the three design goals are

achieved. The proposed framework mainly addresses the limited resource located

on the server side, and it cannot be directly applied on the case of the intermediate

nodes. More sophisticated framework workflow may be required for the new case,

although the similar system architecture can still be utilized.

112

Chapter 7

Conclusion and Future Work

In this thesis dissertation, we have devoted our research efforts on incorpo-

rating the context information of end-users into the Internet protocol stack and

services. In this final chapter, we summarize our work and suggest several areas

that merit future research.

7.1 Research Summary

7.1.1 The User-Context Module Architecture

How to empower the Internet protocol stack to capture, understand and uti-

lize an end-user’s context information is the most fundamental problem in our

research. Our solution to this problem is a new functional module, called the

User-Context Module, working with the five-layer Internet protocol stack. The

User-Context Module architecture mainly consists of three key components, which

are the Context Sensing Subsystem, the Context Model Subsystem and the Con-

trol Subsystem. Such design adopts the modularity approach to decompose the

113

CHAPTER 7. Conclusion and Future Work

solution into the “loosely coupled” parts, and each has realized a specific and

indispensable function:

∙ The Context Sensing Subsystem mainly undertakes the basic context in-

formation gathering task and closely works with end-users on the Internet

client side.

∙ The Context Model Subsystem employs logic based context models to deduce

the well-defined KCI based on the captured basic context information. The

deduced two categories of KCI represent the highly abstract and substantive

context information for a variety of Internet services.

∙ The Control Subsystem directly adjusts the Internet communication pro-

tocols and services in different layers, and accordingly enables the Internet

protocol stack adapting itself to the deduced KCI.

The three subsystems operate together as a coherent entity to improve the

performance of the Internet protocol stack and enhance the subjective satisfaction

of Internet end-users. In the previous chapters, the thesis has laid particular stress

on the design and implementation issues of the User-Context Module architecture

and its three subsystems.

7.1.2 The Key Context Information and Context Models

In order to provide the desired context information to the Internet protocol

stack and service, we first introduce the cognitive psychology model to help define

the KCI, and then construct the corresponding context models to deduce it. More

specifically, we first define two basic end-user states, i.e., User Perception State

and User Halt State, based on the MHP in cognitive psychology. Such two end-

user states, combining with Internet services working status, are used to further

114

CHAPTER 7. Conclusion and Future Work

define the two categories of KCI, i.e., Communicating State and Inactive State.

With the five given Interaction Conditions, the corresponding context models are

built using the first-order rule-based reasoning approach to deduce the two cate-

gories of KCI for different Internet services. The well-defined KCI and the context

models directly help the User-Context Module to understand and ascertain the

two fundamental interaction states between end-users and the Internet protocol

stack.

7.1.3 The Applications of the User-Context Module

The modular design of the User-Context Module provides abundant flexi-

bilities for various applications and deployment plans. We have presented two

applications of the User-Context Module, which introduce the deduced KCI into

the Application Layer’s HTTP protocol and the Transport Layer’s TCP protocol,

respectively.

In the first User-Context Module application, the Control Subsystem adap-

tively adjusts the HTTP persistent connection timeout parameter to reduce the

end-user perceived latency in Web browsing and the unnecessary HTTP traffic

burden on the Internet backbone.

In the second User-Context Module application, the Control Subsystem ma-

nipulates the advertised window size in TCP protocol to dynamically allocate the

limited bandwidth at the access link. Such an application effectively enhances the

end-user’s QoE and the TCP performance.

Both applications have demonstrated the User-Context Module’s operations

and impacts as well as its Control Subsystem’s design and implementation. Fur-

thermore, the design philosophy behind the two applications can be generalized

and applied in new User-Context Module applications, whose main objectives in-

115

CHAPTER 7. Conclusion and Future Work

cludes, but not limited to, improving protocol performance and enhancing the

QoE.

7.1.4 The Resource Distribution Framework

In most cases, the prerequisite of running a practical User-Context Module

application is that Internet clients actively provide truthful KCI, including the

negative ones. Hence, we have proposed a novel resource distribution framework

that not only provides the context-driven and QoE-aware service differentiation,

but also incentivizes the actual context sharing and moderate competition among

selfish and rational Internet clients. The framework workflow and the algorithm

design principles are introduced to provide the guidelines of building and evolving

new User-Context Module applications. The given WUA algorithm and RDA

algorithm can effectively encourage selfish Internet clients to provide the deduced

KCI, especially the negative Inactive State. Meanwhile, the framework incentivizes

moderate competition by penalizing aggressive Internet clients.

7.2 Future Research Directions

Introducing the context information of end-users into the Internet protocol

stack has a large exploration space and many issues warrant further investigation.

7.2.1 Advanced End-User Models and KCI

Human’s cognitive mechanism, which decides how to respond to the external

stimuli, greatly and directly influences the Internet end-user’s interaction behavior.

Despite the difficulties in explaining and measuring human cognitive capability, the

latest progress of cognitive psychology, brain-computer interface (BCI) as well as

116

CHAPTER 7. Conclusion and Future Work

neuroscience hold great promise for building more accurate end-user models. With

advanced end-user models, new KCI can be accordingly defined and introduced

into the User-Context Module to further describe interactions among end-user,

networked host and Internet service. The defined KCI, i.e., Communicating State

and Inactive State, can also serve as the building blocks of newly introduced KCI.

All KCI should keep highly abstract and be cautiously used to avoid impairing

the basic functionalities of the Internet architecture and communication protocols.

When building context the corresponding models to deduce new KCI, advanced

context modeling and reasoning approaches, such as the ontology reasoning, can

be considered and employed. Moreover, the computational overhead for collect-

ing and deducing new KCI at client side should also be considered and carefully

assessed.

On the Internet server side, methods to describe group KCI and group con-

text models require further study with the aim of facilitating batch processing

and enhancing server performance. Moreover, the mechanisms and algorithms to

dealing with the large-scale delayed KCIs on the server side are also needed to be

considered and designed.

7.2.2 More Applications of the User-Context Module

Currently, the User-Context Module mainly works with the two protocols in

the upper two layers, i.e., the Application Layer’s HTTP protocol and the Trans-

port Layer’s TCP protocol. To further enhance the Internet as a user-centered

and context-aware communication system, the User-Context Module is expected

to explore its interactions with many other communication protocols on all the

five layers. For example, the Control Subsystem of the User-Context Module

could seek to adjust the session-related variables in Real Time Streaming Pro-

117

CHAPTER 7. Conclusion and Future Work

tocol (RTSP) on Application Layer or the security-related variables in Internet

Protocol Security (IPsec) on Network Layer. To meet new Control Subsystem’s

requirements, the Context Sensing Subsystem and the Context Model Subsystem

may also need to be re-designed or upgraded .

7.2.3 Context Usage in Future Internet Architecture

Our User-Context Module provides a solution of introducing context infor-

mation into the legacy Internet architecture, where any major changes to the

established layered architecture and protocols are almost impossible. Hence, the

KCI can only be utilized to interact with the accessible and manageable compo-

nents in the existing Internet communication protocols and services. Otherwise,

any newly introduced context information would effect the Internet integrity and

modularity, which leads to unintended consequences on overall performance of the

protocol stack.

Currently, there are a number research projects on architectural design for

the next generation Internet using the so called clean-slate approach. The clean-

slate approach means designing the Internet from scratch without being bounded

by the constraints of the established Internet architecture and protocol stack.

For example, the identifier-locator split architecture, which was described in the

chapter of the related work, also adopts the clean slate design approach. Under

the identifier-locator split architecture, we suggest that the User Realm could

explicitly include the well defined KCI with the User-ID and the Service-ID.

To be generally applicable in the future Internet, the User-Context Module

could expose a set of application programming interfaces (API) that any proto-

cols could use to extract the captured and relevant context information. Such a

general API solution requires three indispensable conditions for the future Inter-

118

CHAPTER 7. Conclusion and Future Work

net architecture: (1) control subsystem with the control rules; (2) adjustable and

critical parameters in protocols; (3) well-defined control interfaces of protocols

that are able to tune the adjustable parameters. Some of the proposed architec-

tures essentially have satisfied all the above three conditions. For example, SILO

architecture [93] consists of a control agent with its policy (control subsystem

with the control rules), the control knobs (the adjustable parameters) and the

service-specified control interfaces. For the future protocols that frequently use

the specific context information, we also suggest that they can reserve 2 to 8 bits

in their header for the standardized context information.

7.3 Conclusion

The main contributions and novelty of this work can be summarized as follows:

∙ The designed User-Context Module firstly reveals the fact that properly

selected context information of end-users can be directly used in the un-

derlying Internet protocol stack to help enhance QoE and improve protocol

performance.

∙ The designed User-Context Module explicitly demonstrates how to capture,

ascertain and utilize the required context information of end-users.

∙ The designed User-Context Module effectively provides context-driven ser-

vice differentiation, and incentivizes actual context sharing and moderate

competition among Internet clients.

We hope this work can inspire Internet designers and open up a new realm

for innovations on both the existing and future Internet design.

119

Bibliography

[1] D. D. Clark, “The design philosophy of the DARPA Internet Protocols,”
SIGCOMM Comput. Commun. Rev., vol. 25, no. 1, pp. 102–111, 1995.

[2] R. Braden, “Requirements for Internet Hosts – Communication Layers,”
IETF RFC 1122, 1989.

[3] R. Lachman et al., Cognitive psychology and information processing: An in-
troduction. Lawrence Erlbaum Associates, 1979.

[4] A. Sears and J. A. Jacko, The Human-Computer Interaction Handbook: Fun-
damentals, Evolving Technologies and Emerging Applications, Second Edition
(Human Factors and Ergonomics). Lawrence Erlbaum Associates, 2002.

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach.
Pearson Education, Inc., 2008.

[6] H. Zimmermann, “OSI Reference Model–The ISO Model of Architecture
for Open Systems Interconnection,” IEEE Transactions on Communications,
vol. 28, no. 4, pp. 425–432, 1980.

[7] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle in cy-
berspace: defining tomorrow’s internet,” IEEE/ACM Trans. Netw., vol. 13,
no. 3, pp. 462–475, 2005.

[8] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system
design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, 1984.

[9] S. Paul, J. Pan, and R. Jain, “Architectures for the future networks and
the next generation Internet: A survey,” Computer Communications, vol. 34,
no. 1, pp. 2–42, 2011.

[10] J. Pan, R. Jain, S. Paul, and C. So-in, “MILSA: A New Evolutionary Ar-
chitecture for Scalability, Mobility, and Multihoming in the Future Internet,”
IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1344–
1362, 2010.

120

BIBLIOGRAPHY

[11] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Architecture,”
IETF RFC 4423, 2006.

[12] D. Farinacci, V. Fuller, et al., “Locater/ID Separation Protocol(LISP),” IETF
Internet Draft, 2012.

[13] U. Neisser, Cognitive Psychology. New York, NY: Meredith, 1967.

[14] S. K. Card, T. P. Moran, and A. Newell, The psychology of human computer
interaction. L. Erlbaum Associates Inc., 1983.

[15] D. E. Meyer and D. E. Kieras, “A Computational Theory of Executive
Cognitive Processes and Multiple-Task Performance,” Psychological Review,
vol. 104, no. 1, pp. 3–65, 1997.

[16] J. L. McClelland, “On the time relations of mental processes: A framework for
analyzing processes in cascade,” Psychological Review, vol. 88, pp. 375–407,
1979.

[17] R. Ratcliff and P. L. Smith, “A comparison of sequential sampling models for
two-choice reaction time,” Psychological Review, vol. 111, pp. 333–367, 2004.

[18] T. V. Zandt, H. Colonius, and R. W. Proctor, “A comparison of two re-
sponse time models applied to perceptual matching,” Psychological Bulletin
and Review, vol. 7, pp. 208–256, 2000.

[19] K. P. L. Vu and R. W. Proctor, Handbook of human factors in web design.
Mahwah, NJ: Erlbaum, 2004.

[20] D. D. Schmorrow, Foundations of augmented cognition. Mahwah, NJ: Erl-
baum, 2005.

[21] M. Weiser, “The Computer for the Twenty-First Century,” Scientific Amer-
ican, September, 2002.

[22] A. K. Dey, “Understanding and Using Context,” Personal Ubiquitous Com-
puting, vol. 5, no. 1, pp. 4–7, 2001.

[23] H. Chen, An Intelligent Broker Architecture for Pervasive Context-Aware
Systems. PhD thesis, University of Maryland, 2004.

[24] T. Gu, H. K. Pung, and D. Q. Zhang, “A Service-oriented middleware for
building context-aware services,” Journal of Network and Computer Applica-
tions, vol. 28, no. 1, pp. 1–18, 2005.

[25] M. Roman et al., “A Middleware Infrastructure for Active Spaces,” IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74–83, 2002.

121

BIBLIOGRAPHY

[26] T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey,” in Proc.
UbiComp, (Nottingham, UK), Sept. 2004.

[27] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on Context-aware
Systems,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 2,
no. 4, pp. 263–277, 2007.

[28] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge Location
System,” ACM Transactions on Information Systems, vol. 10, no. 1, pp. 91–
102, 1992.

[29] MIT Oxygen. [Online] Available: http://oxygen.lcs.mit.edu/, 2004.

[30] Georgia Tech Aware Home. [Online] Available:
http://awarehome.imtc.gatech.edu/, 2010.

[31] IBM Blue Space. [Online] Available: http://www.research.ibm.com/bluespace/,
2003.

[32] R. Chen et al., “Modeling the Ambient Intelligence Application System: Con-
cept, Software, Data, and Network,” IEEE Transactions on Systems, Man,
and Cybernetics-Part C, vol. 39, no. 3, pp. 299–314, 2009.

[33] A. Padovitz, S. W. Loke, and A. Zaslavsky, “Multiple-Agent Perspectives
in Reasoning About Situations for Context-Aware Pervasive Computing Sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics-Part A, vol. 38,
no. 4, pp. 729–742, 2008.

[34] H. L. Truong and S. Dustdar, “A Survey on Context-aware Web Service
Systems,” International Journal of Web Information Systems, vol. 5, no. 1,
pp. 5–31, 2009.

[35] B. Han, W. Jia, J. Shen, and M. C. Yuen, “Context-awareness in Mobile Web
Services,” Parallel and Distributed Processing and Applications, vol. 3358,
pp. 519–528, 2008.

[36] I. Matsumura et al., “Situated Web Service: Context-aware Approach to
High-Speed Web Service Communication,” in Proc. IEEE Conf. on Web Ser-
vices, (Chicago, IL), Sept. 2006.

[37] C. D. Wang, T. Li, and L. C. Feng, “Context-aware Environment-Role-Based
Access Control Model for Web Services,” in Proc. IEEE Conf. on Multimedia
and Ubiquitous Engineering, (Busan, Korea), April 2008.

[38] ITU-T. Rec. P. 10 /G. 100, Amendment 2: New Definitions for Inclusion in
Recommendation ITU-T P.10/G.100, 2008.

122

BIBLIOGRAPHY

[39] R. Jain, “Quality of Experience,” IEEE Multimedia, vol. 11, no. 1, pp. 95–96,
2004.

[40] Nokia, “Quality of Experience (QoE) of mobile services: Can it be measured
and improved,” white paper, finland, 2004.

[41] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship
between quality of experience and quality of service,” IEEE Network, vol. 24,
no. 2, pp. 36–41, 2010.

[42] P. Brooks and B. Hestnes, “User measures of quality of experience: why
being objective and quantitative is important,” IEEE Network, vol. 24, no. 2,
pp. 8–13, 2010.

[43] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the
OpenCV Library. O’Relly Media, Inc., 2008.

[44] Z. Ramdane-Cherif and A. Nait-Ali, “An adaptive algorithm for eye-gaze-
tracking-device calibration,” IEEE Transactions on Instrumentation and
Measurement, vol. 57, no. 4, pp. 716–723, 2008.

[45] M. Betke, J. Gips, and P. Fleming, “The Camera Mouse: Visual Tracking of
Body Features to Provide Computer Access for People With Severe Disabili-
ties,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 10, no. 1, pp. 1–10, 2002.

[46] R. Lienhart and J. Maydt, “An Extended Set of Haar-Like Features for Rapid
Object Detection,” in Proc. IEEE ICIP, (New York, USA), September 2006.

[47] P. I. Wilson and J. Fernandez, “Facial feature detection using Haar classi-
fiers,” Journal of Computing Sciences in Colleges, vol. 21, no. 4, pp. 127–133,
2006.

[48] F. Risso and L. Degioanni, “An architecture for high performance network
analysis,” in Proc. IEEE ISCC, (HAMMAMET, Tunisia), July 2001.

[49] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor Po-
sitioning Techniques and Systems,” IEEE Transactions on System, Man and
Cybernetics - Part C: Applications and Reviews, vol. 37, no. 6, pp. 1067–1080,
2007.

[50] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools
and techniques. San Francisco: Morgan Kaufmann, 2005.

[51] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “An ontology-based con-
text model in intelligent environments,” in Proc. Communication Networks
and Distributed Systems Modeling and Simulation Conference, (San Diego,
USA), Jan. 2004.

123

BIBLIOGRAPHY

[52] J. R. Anderson, M. P. Matessa, and C. Lebiere, “ACT-R: a theory of higher
level cognition and its relation to visual attention,” Hum.-Comput. Interact.,
vol. 12, no. 4, pp. 439–462, 1997.

[53] A. Howes and R. M. Young, “The role of cognitive architecture in modeling
the user: Soar’s learning mechanism,” Hum.-Comput. Interact., vol. 12, no. 4,
pp. 311–343, 1997.

[54] A. Newell, Unified theories of cognition. Cambridge, MA: Harvard University
Press, 1990.

[55] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross-layer de-
sign,” IEEE Wireless Communications, vol. 12, no. 1, pp. 3–11, 2005.

[56] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road
ahead,” IEEE Communication Magazine, vol. 43, no. 12, pp. 112–119, 2005.

[57] R. Fielding et al., “Hypertext Transfer Protocol – HTTP/1.1,” IETF RFC
2616, 1999.

[58] T. Faber, J. Touch, and W. Yue, “The TIME-WAIT state in TCP and its
effect on busy servers,” in Proc. IEEE INFOCOM, (New York, NY, USA),
Mar. 1999.

[59] P. Barford and M. Crovella, “A performance evaluation of hyper text transfer
protocols,” ACM SIGMETRICS Performance Evaluation Review, vol. 27,
no. 1, pp. 188–197, 1999.

[60] J. C. Mogul, “The case for persistent-connection HTTP,” in Proc. ACM SIG-
COMM, (Cambridge, MA, USA), Aug. 1995.

[61] A. Sugiki, K. Kono, and H. Iwasaki, “Tuning mechanisms for two major
parameters of Apache web servers,” Softw. Pract. Exper., vol. 38, no. 12,
pp. 1215–1240, 2008.

[62] N. Mitra and Y. Lafon, “Simple object access protocol (soap).” [online] Avail-
able: http://www.w3c.org/TR/soap, 2007.

[63] SPECweb. [online] Available: http://www.spec.org/web2005, 2005.

[64] P. Barford and M. Crovella, “Generating representative Web workloads for
network and server performance evaluation,” in Proc. ACM SIGMETRICS,
(Madison, Wisconsin, USA), June 1998.

[65] W3C, “Libwww: The w3c protocol library.” [online] Available:
http://www.w3.org/Library, 2004.

124

BIBLIOGRAPHY

[66] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel, “A method for trans-
parent admission control and request scheduling in e-commerce web sites,” in
Proc. ACM WWW, (New York, USA), May 2004.

[67] B. Schroeder and M. Harchol-Balter, “Web servers under overload: How
scheduling can help,” ACM Trans. Internet Technol., vol. 6, no. 1, pp. 20–52,
2006.

[68] Dummynet. [online] Available: http://info.iet.unipi.it/ luigi/dummynet/.

[69] J. Shaikh, M. Fiedler, and D. Collange, “Quality of Experience from User
and Network Perspectives,” Ann. Telecommun., vol. 65, pp. 47–57, 2010.

[70] ITU-T. Rec. G. 1030: Estimating end-to-end performance in IP networks for
data applications, 2005.

[71] J. Postel, “Transmission Control Protocol,” RFC 793, 1981.

[72] T. V. Laskshman and U. Madhow, “The Performance of TCP/IP for Net-
works with High Bandwidth-Delay Products and Random Loss,” IEEE/ACM
Transactions on Networking, vol. 5, no. 3, pp. 336–350, 1997.

[73] P. Mehra, C. D. Vleeschouwer, and A. Zakhor, “Receiver-Driven Bandwidth
sharing for TCP and its Applications to Video Streaming,” IEEE/ACM
Transactions on Multimedia, vol. 7, no. 4, pp. 740–752, 2005.

[74] N. T. Spring et al., “Receiver based management of low bandwidth access
links,” in Proc. IEEE INFOCOM, (Tel Aviv, Israel), March 2000.

[75] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, 2000.

[76] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High Perfor-
mance,” Information Science Institute, RFC 1323, 1992.

[77] F. Berzosa et al., “Receiver-based RTT Measurement in TCP,” U.S. Patent
7330426 B2, 2008.

[78] L. Software, “Netlimiter: Internet traffic control and monitoring tool,” 2010.
[online] Available: http://www.netlimiter.com/.

[79] P. Reichl et al., “The Logarithmic Nature of QoE and the Role of the Weber-
Fechner Law in QoE Assessment,” in Proc. IEEE ICC 2010, (Cape Town,
South Africa), May 2010.

125

BIBLIOGRAPHY

[80] Y. Lu, M. Motani, and W. C. Wong, “Intelligent Network Design: User Layer
Architecture and its application,” in Proc. IEEE SMC, (Istanbul, Turkey),
Oct. 2010.

[81] J. Wei and C. Z. Xu, “eQoS: Provisioning of Client-Perceived End-to-End
QoS Guarantees in Web Servers,” IEEE Transactions on Computer, vol. 55,
no. 12, pp. 1543–1556, 2006.

[82] X. Cheng and J. Liu, “NetTube: Exploring Social Networks for Peer-to-Peer
Short Video Sharing,” in Proc. IEEE INFOCOM, (Rio de Janeiro, Brazil),
April 2009.

[83] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube network
traffic at a campus network - Measurements, models, and implications,” Com-
puter Networks, vol. 53, no. 4, pp. 501–514, 2009.

[84] S. Alcock and R. Nelson, “Application Flow Control in YouTube Video
Streaming,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 2, pp. 25–30, 2011.

[85] C. A. Waldspurger, Lottery and Stride Scheduling: Flexible Proportional-
Share Resource Management. PhD thesis, MIT, 1995.

[86] J. L. Boudec, “Rate adaptation, congestion control and fairness: A tutorial.”
[online] Available: http://icapeople.epfl.ch/leboudec, 2008.

[87] R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau, “Incentive
and Service Differentiation in P2P Networks: A Game Theoretic Approach,”
IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 978–991, 2006.

[88] G. Owen, Game Thoery, 3rd Edition. San Diego, CA: Academic, 1995.

[89] B. Wang, Y. Wu, and K. J. R. Liu, “Game Theory for Cognitive Radio
Networks: An overview,” Computer Networks, vol. 54, no. 14, pp. 2537–2561,
2010.

[90] K. Akkarajitsakul, E. Hossain, D. Niyato, and D. I. Kim, “Game Theoretic
Approaches for Multiple Access in Wireless Networks: A Survey,” IEEE Com-
munications Surveys & Tutorials, vol. 13, no. 3, pp. 372–395, 2011.

[91] K. Ritzberger, Foundations of Noncooperative Game Theory. New York, Ox-
ford University Press, 2002.

[92] P. Gill et al., “Characterizing user sessions on YouTube,” in Proc. Annual
Multimedia Computing and Networking Conference, (San Jose, CA, USA),
Jan. 2008.

126

BIBLIOGRAPHY

[93] R. Dutta et al., “The SILO Architecture for Services Integration, controL, and
Optimization for the Future Internet,” in Proc. ICC, (Glasgow, Scotland),
June 2007.

127

Appendix A

Proof of Lemma 1, 2 and 3.

Lemma 1: Under the proposed framework with the given WUA and RDA, any

Internet client, say 𝑃𝑐, who bids the assigned willingness value, i.e., 𝑏𝑐(𝑇𝑗) =

𝑤𝑐(𝑇𝑗), can be guaranteed to receive its bidding amount of resource, i.e., 𝑥𝑐(𝑇𝑗) =

𝑏𝑐(𝑇𝑗), regardless of other clients’ bidding strategy.

Proof : In STEP 1, the given WUA satisfies that the sum of the assigned willing-

ness values equals to the total amount of resource, i.e.,
𝑁∑
𝑖=1

𝑤𝑖(𝑇𝑗) = 𝜇. Hence, we

have

𝑤𝑐(𝑇𝑗) =
𝑤𝑐(𝑇𝑗)

𝑁∑
𝑖=1

𝑤𝑖(𝑇𝑗)

∗ 𝜇. (A.1)

In STEP 3, the given RDA classifies all clients into three groups 𝐺1 =

{𝑃1, ..., 𝑃𝐿}, 𝐺2 = {𝑃𝐿+1, ..., 𝑃𝑀} and 𝐺3 = {𝑃𝑀+1, ..., 𝑃𝑁}, where 1 ≤ 𝐿 ≤
𝑀 ≤ 𝑁 . The given RDA under the framework guarantees that all the members

in group 𝐺2 reach the same final height ℎ by offering the members a certain

amount of resource. Consider 𝑃𝐿 and 𝑃𝑀 are the last members of group 𝐺1 and

group 𝐺2, we have

⎧⎨⎩
2𝑏𝐿
𝑤𝐿

≤ ℎ < 2𝑏𝐿+1

𝑤𝐿+1

2𝑏𝑀
𝑤𝑀

≤ 2ℎ < 2𝑏𝑀+1

𝑤𝑀+1
.

where the time expression 𝑇𝑗 can be omitted within any individual time slot.

Because all clients in group 𝐺1 receive the amount of their bidding value, the

amount of the resource assigned to group 𝐺1, denoted by 𝜇1, satisfies

𝜇1 =
𝐿∑
𝑖=1

𝑥𝑖 =
𝐿∑
𝑖=1

𝑏𝑖 ≤
𝐿∑
𝑖=1

ℎ

2
∗ 𝑤𝑖.

The amount of the resource assigned to group 𝐺2, denoted by 𝜇2, satisfies

𝜇2 =
𝑀∑

𝑖=𝐿+1

𝑥𝑖 =
𝑀∑

𝑖=𝐿+1

(ℎ ∗ 𝑤𝑖 − 𝑏𝑖) <
𝑀∑

𝑖=𝐿+1

ℎ

2
∗ 𝑤𝑖.

The amount of the resource assigned to group 𝐺3, denoted by 𝜇3, satisfies

𝜇3 =
𝑁∑

𝑖=𝑀+1

𝑥𝑖 = 0.

Hence, the amount of the resource assigned to all clients satisfies

𝜇1 + 𝜇2 + 𝜇3 <

𝑀∑
𝑖=1

ℎ

2
∗ 𝑤𝑖. (A.2)

Because only the clients in group 𝐺1 receive their bidding amount of resource,

i.e., 𝑥𝑖 = 𝑏𝑖, we need to prove that any client, say 𝑃𝑐, whose bidding value 𝑏𝑐 = 𝑤𝑐,

must be assigned to group 𝐺1 by the given RDA. We consider the two cases that

𝑃𝑐 is assigned to group 𝐺2 and group 𝐺3 respectively.

(1) When client 𝑃𝑐 is assigned to group 𝐺2, i.e., ℎ < 2𝑏𝑐
𝑤𝑐

≤ 2ℎ: consider

𝑏𝑐 = 𝑤𝑐 and (A.1), we have ℎ < 2𝜇
𝑁∑
𝑖=1

𝑤𝑖

. Together with (A.2), we get

129

𝜇1 + 𝜇2 + 𝜇3 <
𝑀∑
𝑖=1

ℎ

2
∗ 𝑤𝑖 < 𝜇 ∗

𝑀∑
𝑖=1

𝑤𝑖

𝑁∑
𝑖=1

𝑤𝑖

< 𝜇.

The above inequality shows that the total assigned resource is less than the

total available resource, which conflicts with the basic design principle of the given

RDA. Hence, it is impossible that client 𝑃𝑐 is assigned to group 𝐺2 by the RDA.

(2) When the player 𝑃𝑐 is assigned to group 𝐺3, i.e., 2ℎ < 2𝑏𝑐
𝑤𝑐

: consider

𝑏𝑐 = 𝑤𝑐 and (A.1), we have ℎ < 𝜇
𝑁∑
𝑖=1

𝑤𝑖

. Together with (A.2), we get

𝜇1 + 𝜇2 + 𝜇3 <
𝑀∑
𝑖=1

ℎ

2
∗ 𝑤𝑖 <

𝜇

2
∗

𝑀∑
𝑖=1

𝑤𝑖

𝑁∑
𝑖=1

𝑤𝑖

< 𝜇.

The above inequality also conflicts with the given RDA, and thus it is also

impossible that client 𝑃𝑐 is assigned to group 𝐺3 by the RDA.

To sum, any client, who bids the given willingness value, can only be assigned

to group 𝐺1 by the RDA, and accordingly receives its bidding amount of resource

regardless of other clients’ bidding strategies.

130

Lemma 2: Under the proposed framework with the given WUA and RDA, the

bidding strategy profile 𝐵∗(𝑇𝑗) = {𝑏∗𝑐(𝑇𝑗) : 𝑏∗𝑐(𝑇𝑗) = 𝑤𝑐(𝑇𝑗), ∀𝑐 ∈ 𝐼} is the unique

pure-strategy Nash equilibrium in time slot 𝑇𝑗.

Proof : From Lemma 1 and the given strategy profile 𝐵∗, we have

𝑁∑
𝑐=1

𝑏𝑐 =
𝑁∑
𝑐=1

𝑥𝑐 = 𝜇, (A.3)

where the time slot expression 𝑇𝑗 is also omitted. (A.3) shows that the limited

resource is just used up and all clients are assigned to group 𝐺1 by the RDA.

Consider Lemma 1, no individual client, say 𝑃𝑐, could gain more resource by a

unilateral deviation from its initial bidding strategy 𝑏𝑐 = 𝑤𝑐, given that all the

other clients insist on their own bidding strategy. Therefore, the strategy profile

𝐵∗ is one pure-strategy Nash equilibrium of the competition game in time slot 𝑇𝑗.

Next, we further prove the uniqueness of the derived Nash equilibrium. As-

sume that there exists another pure-strategy Nash equilibrium �̃� = {�̃�𝑐 : ∀𝑐 ∈ 𝐼}
and the corresponding distribution result �̃� = {�̃�𝑐 : ∀𝑐 ∈ 𝐼}. The Nash equilib-

rium �̃� must satisfy the conditions

⎧⎨⎩ �̃�𝑐 ≥ 𝑏∗𝑐 = 𝑤𝑐, ∀𝑐 ∈ 𝐼;

�̃�𝑐 = 𝑥∗
𝑐 = 𝑤𝑐, ∀𝑐 ∈ 𝐼.

(A.4)

Otherwise, the client, say 𝑃𝑐, which receives �̃�𝑐 < 𝑤𝑐, can improve its payoff �̃�𝑐

by unilaterally change its bidding strategy to �̃�𝑐 = 𝑤𝑐, which guarantees �̃�𝑐 = 𝑤𝑐.

(A.4) demonstrates that any other Nash equilibrium requires at least one client be

assigned to group 𝐺2 and no client be assigned to group 𝐺3 by the RDA. Hence,

there are three possible cases.

(1) Only one client, say 𝑃𝑀 , in group 𝐺2, i.e., �̃�𝑀 > 𝑏∗𝑀 and 𝐿+1 = 𝑀 = 𝑁 :

in this case, there always exists a small positive constant 𝛿, such that the following

131

condition can be satisfied:

2𝑏∗1 + 𝛿

𝑤1

<
𝑥∗
𝑀 + �̃�𝑀 − 𝛿

𝑤𝑀

.

Hence, client 𝑃1 can always improve its payoff from 𝑥∗
1 to 𝑥

∗
1+𝛿 by unilaterally

increasing its bidding value from 𝑏∗1 to 𝑏∗1 + 𝛿. More generally, when only one

client is assigned to group 𝐺2, any clients in group 𝐺1 can gain more resource by

cautiously adding a small positive constant to its initial bidding value. Hence, no

Nash equilibrium exists in this case.

(2) Multiple but not all clients in group 𝐺2, i.e., �̃�𝑘 > 𝑏∗𝑘, ∀𝑘 ∈ [𝐿 + 1, 𝑀],

and 1 < 𝐿 + 1 < 𝑀 = 𝑁 : in this case, any client in group 𝐺1, say 𝑃1, can also

improve its payoff from 𝑥∗
1 to 𝑥∗

1 + 𝛿 by unilaterally increasing the bidding value

from 𝑏∗1 to 𝑏∗1 + 𝛿, given 𝛿 satisfying the condition

2𝑏∗1 + 𝛿

𝑤1

<
𝑥∗
𝐿+1 + �̃�𝐿+1 − 𝛿

𝑤𝐿+1

.

Hence, no Nash equilibrium exists in this case as well.

(3) All clients in group 𝐺2, i.e., �̃�𝑐 > 𝑏∗𝑐 , ∀𝑐 ∈ 𝐼 and 0 = 𝐿 < 𝑀 = 𝑁 : in this

case, the given RDA guarantees

𝑥∗
1 + �̃�1
𝑤1

=
𝑥∗
2 + �̃�2
𝑤2

= ⋅ ⋅ ⋅ = 𝑥∗
𝑁 + �̃�𝑁
𝑤𝑁

= ℎ′. (A.5)

where ℎ′ is the final height in group 𝐺2. (A.5) indicates that there always exists

a positive constant 𝜀 < �̃�1 − 𝑏∗1, such that client 𝑃1 can improve its payoff by

unilaterally decreasing its bidding value from �̃�1 to �̃�1 − 𝜀. More generally, when

all clients are assigned to group 𝐺2, any client can improve its payoff by cautiously

reducing its bidding value. Hence, no Nash equilibrium exists in this case as well.

In short, no pure-strategy Nash equilibrium exists in all possible cases. There-

132

fore, the given strategy profile 𝐵∗(𝑇𝑗) = {𝑏∗𝑐(𝑇𝑗) : 𝑏∗𝑐(𝑇𝑗) = 𝑤𝑐(𝑇𝑗), ∀𝑐 ∈ 𝐼} is

the unique pure-strategy Nash equilibrium within any individual time slot 𝑇𝑗,

𝑗 ∈ [1, 2, ...,+∞].

133

Lemma 3: Under the proposed framework with the given WUA and RDA, the

distribution results 𝑋 = {𝑥𝑖(𝑇𝑗) : ∀𝑖 ∈ 𝐼} solves the following optimization

problem:

max
𝑁∏
𝑖=1

(
𝑥𝑖(𝑇𝑗)

𝑏𝑖(𝑇𝑗)
+ 1)

𝑤𝑖(𝑇𝑗)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑥𝑖(𝑇𝑗) ≤ 𝑏𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼,
𝑁∑
𝑖=1

𝑥𝑖(𝑇𝑗) ≤ 𝜇,

(A.6)

where 𝑤𝑖(𝑇𝑗) and 𝑏𝑖(𝑇𝑗), ∀𝑖 ∈ 𝐼, are the willingness values and the bidding values

in time slot 𝑇𝑗.

Proof : After the logarithmic transformation of the given objective function, the

optimization problem can be expressed equivalently as follows:

min −
𝑁∑
𝑖=1

log (𝑥𝑖 + 𝑏𝑖)
𝑤𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑁∑
𝑖=1

𝑥𝑖 − 𝜇 ≤ 0,

𝑥𝑖 − 𝑏𝑖 ≤ 0,

−𝑥𝑖 ≤ 0,

where ∀𝑖 ∈ 𝐼 and the time slot expression 𝑇𝑗 is omitted. It is a convex optimiza-

tion problem, as the new objective function as well as all inequality constraints

are continuously differentiable and convex. In addition, because the inequality

constraints satisfy Slater’s condition, then strong duality holds, i.e., the optimal

duality gap is zero. Therefore, the Karush-Kuhn-Tucker (KKT) conditions are

not only necessary, but also sufficient conditions for the points to be primal and

dual optimal. In short, to prove 𝑋 = {𝑥𝑖 : ∀𝑖 ∈ 𝐼} solves the original optimization

problem, if and only if it satisfies the following KKT conditions:

134

⎧⎨⎩

𝑁∑
𝑖=1

𝑥𝑖 − 𝜇 ≤ 0;

𝑥𝑖 − 𝑏𝑖 ≤ 0 , 𝑖 = 1, 2, ..., 𝑁 ;

−𝑥𝑖 ≤ 0 , 𝑖 = 1, 2, ..., 𝑁 ;

𝜆𝑖 ≥ 0, 𝑖 = 0, 1, 2, ..., 2𝑁 ;

𝜆0 ∗ (
𝑁∑
𝑖=1

𝑥𝑖 − 𝜇) = 0;

𝜆𝑖 ∗ (𝑥𝑖 − 𝑏𝑖) = 0, 𝑖 = 1, 2, ..., 𝑁 ;

𝜆𝑖+𝑁 ∗ (−𝑥𝑖) = 0, 𝑖 = 1, 2, ..., 𝑁 ;

∇(−
𝑁∑
𝑖=1

log (𝑥𝑖 + 𝑏𝑖)
𝑤𝑖) + 𝜆0∇(

𝑁∑
𝑖=1

𝑥𝑖 − 𝜇) +
𝑁∑
𝑖=1

𝜆𝑖∇(𝑥𝑖 − 𝑏𝑖)

+
𝑁∑
𝑖=1

𝜆𝑖+𝑁∇(−𝑥𝑖) = 0,

where all 𝜆𝑖, ∀𝑖 ∈ 𝐼 are the Lagrange multipliers. The KKT conditions can be

further simplified to the following equivalent conditions:

⎧⎨⎩

{
𝑁∑
𝑖=1

𝑥𝑖 − 𝜇 < 0 & 𝜆0 = 0} 𝑜𝑟 {
𝑁∑
𝑖=1

𝑥𝑖 − 𝜇 = 0 & 𝜆0 ≥ 0};

{𝑥𝑖 − 𝑏𝑖 < 0 & 𝜆𝑖 = 0} 𝑜𝑟 {𝑥𝑖 − 𝑏𝑖 = 0 & 𝜆𝑖 ≥ 0};
{𝑥𝑖 > 0 & 𝜆𝑖+𝑁 = 0} 𝑜𝑟 {𝑥𝑖 = 0 & 𝜆𝑖+𝑁 ≥ 0};
−𝑤𝑖

𝑥𝑖+𝑏𝑖
+ 𝜆0 + 𝜆𝑖 − 𝜆𝑖+𝑁 = 0;

0 ≤ 𝑥𝑖 ≤ 𝑏𝑖,

(A.7)

where ∀𝑖 ∈ 𝐼. To prove that the final distribution result 𝑋 = {𝑥𝑖 : ∀𝑖 ∈ 𝐼}
always satisfies the above derived KKT conditions, two possible cases need to be

considered.

(1)
𝑁∑
𝑖=1

𝑥𝑖 = 𝜇: in this case, the framework executes the given RDA to divide

all clients into the three groups, i.e., the “moderate” group 𝐺1, the “normal”

group 𝐺2 and the “ aggressive” group 𝐺3, and then assign them the corresponding

135

amount of resource. We consider the most general situation that all three groups

are co-exist. Note that the given RDA under the framework guarantees that all the

members in group 𝐺2 reach the same final height ℎ by offering a certain amount

of resource, i.e., ℎ = 𝑥𝑖+𝑏𝑖
𝑤𝑖

, where 𝐿+ 1 ≤ 𝑖 ≤ 𝑀 .

The “moderate” group 𝐺1 receives 𝑥𝑖 = 𝑏𝑖, and accordingly the KKT condi-

tions require 𝜆0 ≥ 0, 𝜆𝑖 ≥ 0 and 𝜆𝑖+𝑁 = 0, where 1 ≤ 𝑖 ≤ 𝐿.

The “normal” group 𝐺2 receives 0 < 𝑥𝑖 < 𝑏𝑖, and accordingly the KKT

conditions require 𝜆0 ≥ 0, 𝜆𝑖 = 0 and 𝜆𝑖+𝑁 = 0, where 𝐿+ 1 ≤ 𝑖 ≤ 𝑀 .

The “aggressive” group 𝐺3 receives 𝑥𝑖 = 0, and accordingly the KKT condi-

tions require 𝜆0 ≥ 0, 𝜆𝑖 = 0 and 𝜆𝑖+𝑁 ≥ 0, where 𝑀 + 1 ≤ 𝑖 ≤ 𝑁 .

Considering all the above necessary conditions together, we have

⎧⎨⎩

𝜆𝑖 =
𝑤𝑖

𝑥𝑖+𝑏𝑖
− 1

ℎ
, 1 ≤ 𝑖 ≤ 𝐿;

𝜆𝑖 = 0, 𝐿+ 1 ≤ 𝑖 ≤ 𝑁 ;

𝜆𝑖+𝑁 = 0, 1 ≤ 𝑖 ≤ 𝑀 ;

𝜆𝑖+𝑁 = 1
ℎ
− 𝑤𝑖

𝑏𝑖
, 𝑀 + 1 ≤ 𝑖 ≤ 𝑁 ;

𝜆0 =
1
ℎ
.

The above solution guarantees that the resource distribution result 𝑋 = {𝑥𝑖 :

∀𝑖 ∈ 𝐼} satisfies the derived KKT conditions (A.7), and therefore it is also the

solution of the initial optimization problem.

(2)
𝑁∑
𝑖=1

𝑥𝑖 < 𝜇: in this case, the resource is not completely used up, which

indicates
𝑁∑
𝑖=1

𝑏𝑖 < 𝜇. Accordingly, the resource owner does not need to execute

the given RDA, but simply distributes the resources 𝑥𝑖 = 𝑏𝑖, ∀𝑖 ∈ 𝐼. Let 𝜆0 = 0,

𝜆𝑖+𝑁 = 0 and 𝜆𝑖 =
𝑤𝑖

2𝑏𝑖
, where ∀𝑖 ∈ 𝐼, the derived KKT conditions (A.7) can be

satisfied as well. Hence, the distribution result also solves the initial optimization

problem.

136

Appendix B

List of Publications

1. Yu Lu, Mehul Motani, and Wai-Choong Wong, “When Ambient Intelli-

gence Meets the Internet: User Module Framework and its Applications,”

Computer Networks (Elsevier), vo. 56, no. 6, pp. 1763-1781, 2012.

2. Yu Lu, Mehul Motani, and Wai-Choong Wong, “A QoE-Aware Resource

Distribution Framework Incentivizing Context Sharing and Moderate Com-

petition,” IEEE/ACM Transactions on Networking, under review.

3. Yu Lu, Mehul Motani, and Wai-Choong Wong, “The User-Context Module:

A New Perspective on Future Internet Design,” in Proc. International Con-

ference on Ambient Systems, Networks and Technologies (ANT), Niagara

Falls, Ontario, Canada, Sept., 2011.

4. Yu Lu, Mehul Motani, and Wai-Choong Wong, “When Ambient Intelligence

Meets Internet Protocol Stack: User Layer Design,” in Proc. IEEE Inter-

national Conference on Embedded and Ubiquitous Computing (EUC), Hong

Kong SAR, China, Dec., 2010.

5. Yu Lu, Mehul Motani, and Wai-Choong Wong, “Intelligent Network Design:

User Layer Architecture and its application,” in Proc. IEEE International

Conference on Systems, Man, and Cybernetics (SMC), Istanbul, Turkey,

Oct., 2010.

137

	Dedication
	Acknowledgements
	Contents
	Summary
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviation
	1 Introduction
	1.1 Motivation
	1.2 Research Challenges
	1.3 Thesis Contributions
	1.4 Organization of the Thesis

	2 Background and Related Work
	2.1 Internet Protocol Stack Design
	2.1.1 Layered Architecture
	2.1.2 Design Principles
	2.1.3 Relevant Research Proposals

	2.2 Recognition of End-User and Context Information
	2.2.1 End-User Modeling
	2.2.2 Context-Aware Computing

	2.3 Quality of Experience (QoE)
	2.4 Summary

	3 User-Context Module Architecture and its Implementation
	3.1 Architectural Building Blocks
	3.2 Context Sensing Subsystem
	3.2.1 Overview of Context Sensing Subsystem
	3.2.2 Implementation of A Context Sensing Subsystem

	3.3 Context Model Subsystem
	3.3.1 Overview of Context Model Subsystem
	3.3.2 End-User Modeling
	3.3.3 Key Context Information (KCI)
	3.3.4 Building the Context Models
	3.3.5 Analysis and Discussion

	3.4 Control Subsystem
	3.5 Summary

	4 The User-Context Module Application I: HTTP Case
	4.1 Problem Description
	4.2 Key Context Transfer Protocol
	4.3 The Control Subsystem Design
	4.4 Experimental Setup
	4.4.1 Server-side Implementation Issues
	4.4.2 Client-side Implementation Issues
	4.4.3 Experimental Configuration

	4.5 Internet Experiment Results
	4.5.1 Light-Traffic Condition
	4.5.2 Heavy-Traffic Condition
	4.5.3 Discussions on Delayed and Loss of KCIs

	4.6 Summary

	5 The User-Context Module Application II: TCP Case
	5.1 Problem Description
	5.2 Assessment of QoE
	5.3 The Control Subsystem Design
	5.4 Experimental Results and QoE Enhancement
	5.5 Summary

	6 A Resource Distribution Framework Incentivizing Context Sharing and Moderate Competition
	6.1 Motivations and Examples
	6.1.1 Web System Example
	6.1.2 Streaming Media System Example

	6.2 Objectives of the Framework
	6.3 Framework Workflow
	6.4 Willingness Update Algorithm
	6.5 Resource Distribution Algorithm
	6.6 Theoretical Analysis of the Framework
	6.6.1 Non-Cooperative Game and Nash Equilibrium
	6.6.2 Theoretical Analysis

	6.7 Illustrative Case and Experimental Results
	6.8 Summary

	7 Conclusion and Future Work
	7.1 Research Summary
	7.1.1 The User-Context Module Architecture
	7.1.2 The Key Context Information and Context Models
	7.1.3 The Applications of the User-Context Module
	7.1.4 The Resource Distribution Framework

	7.2 Future Research Directions
	7.2.1 Advanced End-User Models and KCI
	7.2.2 More Applications of the User-Context Module
	7.2.3 Context Usage in Future Internet Architecture

	7.3 Conclusion

	Bibliography
	Appendix A
	Appendix B

