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SUMMARY 

Chronic Hepatitis B viral (HBV) infection has been epidemiologically linked to the 

development of Hepatocellular Carcinoma (HCC) in patients. A significant 

characterization of chronic HBV infection is the integration of HBV DNA into multiple 

locations within the host DNA. This integration of viral DNA into host genome has been 

implicated to contribute to hepatocarcinogenesis through either insertional-mutagenesis 

or the retention/expression of the original/modified HBV proteins. One viral protein, 

HBx, has been strongly suggested to play important roles in oncogenicity through the 

deregulation of host genes. However, the association between chronic HBV infection and 

HCC remains poorly understood. 

Our laboratory had enriched for HBV sequences in 48 HBV-associated HCC patients and 

employed the FLX Genome Sequencer to characterize variations in the HBV DNA as 

well as HBV integration events in these patients. In this thesis, I employed a 

computational workflow to analyze the high-throughput sequencing data, and identified 

60 contigs/reads with altered HBV DNA and 63 contigs/reads carrying both HBV and 

human DNA within the same read from which the HBV-HG junction sites were inferred. 

Various variations such as insertions, deletions, duplications and inversions were 

observed from the 60 altered HBV sequences. Interestingly, the HBV-HG integrations 

were found to preferentially occur at the HBx gene locus (27/63=42.9%) and the 3’ C-

terminal of HBx carrying p53 binding domain was often deleted to fuse with the human 

genome. Deletion of p53 binding domain of HBx may potentially promote carcinogenesis 

in HCC patients, as p53 is a well-known tumor suppressor. The N-terminal two third of 

HBx gene carrying transactivation domains were often retained in the integrated form. In 
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addition, most of the genome integrations were found to occur at the non-coding regions 

of human genome, such as, gene promoters (4/63), introns (21/63) and intergenic regions 

(30/63). Nevertheless, computational scanning of the integrated sequences for open 

reading frames have shown that the genome integration may either lead to early 

termination of HBV genes or expression of potential chimeric transcripts fusing HBV and 

human DNA. Significantly, our laboratory has successfully experimentally validated a 

subset of the integrated sequences and the expression of chimeric transcripts. By 

characterization of HBV genome integration sites using high throughput targeted genome 

sequencing, we are now better positioned to gain improved insights on how HBV genome 

integration may contribute to hepatocarcinogenesis in HCC patients. 

To further elucidate the role of the HBx gene in HCC, our laboratory employed 

chromatin immunoprecipitation and sequencing using the Solexa Genome Sequencer 

(ChIP-Seq) on immortalized liver cell line, THLE3 using HBx antibodies. I employed a 

computational workflow to integrate the high throughput ChIP-Seq data, microarray 

expression profiles for both cell lines (THLE3) and 100 HBV-associated HCC patients, 

and the clinical data of the 100 HCC patients. A total of 2860 potential HBx binding sites 

were identified and were found to be significantly enriched in exons and promoter 

regions of genes (p<0.00001). Interestingly, almost half of the predicted binding sites 

within exons/introns were localized in the first and last exons/introns, indicating the 

potential regulatory effect of HBx on gene expressions. 195 potential HBx-interacting 

transcription factors were predicted, of which 129 were commonly predicted from our 

previous ChIP-chip data on HepG2 cells. 143 potential HBx deregulated direct gene 

targets were identified in THLE3 cells, indicating the pleiotropic nature of HBx: interact 
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with a variety of transcription factors and deregulate a large set of genes. 18 of these 143 

HBx-associated deregulated genes were also consistently differentially deregulated in the 

100 HCC patients. Seven of these 18 genes were found significantly associated with 

various patients’ clinical features including survival, tumor grade, tumor invasion, liver 

cirrhosis, tumor capsulation and multifocality. By identification of clinically associated 

potential HBx deregulated direct gene targets, we are now in a better position to explore 

the role of HBx in hepatocarcinogenesis in HCC patients.  

                                                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

                                                

 



 

ix 

 

LIST OF FIGURES 

Figure 1.1: Hybrid capture to capture viral-host integration sites ...................................... 7 

Figure 1.2: ChIP-chip and ChIP-Seq workflow. ............................................................... 14 

Figure 1.3: Analysis of ChIP-Seq sequencing data .......................................................... 19 

Figure 1.4: Bimodal enrichment pattern of ChIP-Seq sequencing data ............................ 25 

Figure 1.5: Aims of the project. ........................................................................................ 44 

 
Figure 2.1: Flowchart of the HBV enrichment strategy applied in our laboratory. .......... 46 

Figure 2.2: Analysis pipeline for identification of HBV-human junctions from 454 FLX 

sequencing data ................................................................................................................. 47 

Figure 2.3: Typical patterns of HBV-containing sequence identities ............................... 50 

Figure 2.4: Summary of sequence identities for all 1,902,755 raw FLX sequencing reads

........................................................................................................................................... 51 

Figure 2.5: Coverage of the HBV genome (3215bp) by the 378 HBV-containing 

sequences including 220 assembled contigs and 158 unassembled reads in patients ....... 54 

Figure 2.6: Enrichment of HBV-HG junctions with integration sites on HBx gene ........ 57 

Figure 2.7: Location plot of the 27 predicted HBV-HG junctions where the junction 

points fall on HBx gene (Supplementary Table S2) ......................................................... 62 

 
Figure 3.1: Workflow of computational analysis to identify genomic binding sites of HBx 

and putative clinically associated direct target genes of HBx .......................................... 68 

Figure 3.2: Flowchart of experimental design for generation of ChIP-Seq data and gene 

expression profiles performed in the laboratory ............................................................... 71 



 

x 

 

Figure 3.3: Flowchart of the statistical hypothesis testing on the association of HBx 

deregulated gene targets with patient clinical data ........................................................... 79 

Figure 3.4: Processing of ChIP-Seq raw reads to identify potential HBx binding sites. .. 82 

Figure 3.5: Genome-wide distribution of the 2860 potential DNA binding sites of HBx 

predicted from ChIP-Seq data in THLE3 cells ................................................................. 85 

Figure 3.6: Summary of the computational analysis results for identification of HBx 

binding sites, potential HBx-interacting transcription factors and HBx deregulated direct 

gene targets ....................................................................................................................... 89 

Figure 3.7: Hierarchical clustering of the 23 potential HBx deregulated gene targets that 

are significantly differentially expressed between tumor and adjacent non-tumor tissues 

of the 100 HCC patients with average fold change above 2 ............................................. 92 

Figure 3.8: Survival plots for the four survival-associated potential HBx deregulated gene 

targets ................................................................................................................................ 96 

Figure 3.9: Plots for the six potential HBx deregulated gene targets that showed 

significant associations with the 100 HCC patients’ categorical clinical features ........... 99 

Figure 3.10: Scatter plots for the expressions of the seven potential HBx deregulated gene 

targets and expressions of HBx protein in 100 HCC patients ........................................ 106 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

LIST OF TABLES 

Table 1.1: Comparison of metrics and performances of three next-generation DNA 

sequencing platforms and two third generation sequencing technologies .......................... 5 

Table 1.2: Comparison of metrics and performances of ChIP-chip and ChIP-Seq 

technologies ...................................................................................................................... 17 

Table 1.3: Comparisons of various peak-calling algorithms for ChIP-Seq data .............. 23 

 
Table 2.1: Summary of the identities of the 378 HBV-containing sequences. ................. 56 

Table 2.2: Summary of the locations of the 63 junction points on human genome. ........ 59 

 
Table 3.1: Comparisons of ChIP-chip data on HepG2 cells (Sung et al., 2009) and ChIP-

Seq data on THLE3 cells. ................................................................................................. 87 

Table 3.2: Summary of corrected two-sided significance values from the clinical 

statistical tests on the 18 potential HBx deregulated gene targets. ................................... 94 

Table 3.3: Summary of the clinical associations for the seven potential HBx deregulated 

gene targets ..................................................................................................................... 103 

Table 3.4: Functional annotations of the seven clinically associated potential HBx 

deregulated gene targets .................................................................................................. 104 

 
Supplementary Table S1: Number of sequences (assembled contigs and unassembled 

reads) that were classified into the five major groups in each patient sample ................ 124 

Supplementary Table S2: Information for 56 HBV-HG junctions and seven modified 

HBV-HG junctions predicted in different patient samples. ............................................ 125 

Supplementary Table S3: List of the 195 enriched transcription factors from ChIP-Seq 

data in THLE3 cells, among which 129 were common with the transcription factors 

predicted from ChIP-chip data in HepG2 cells ............................................................... 127 



 

xii 

 

 

ABBREVIATIONS 

BLAST  Basic Local Alignment Search Tool  

CCAT   Control-based ChIP-Seq Analysis Tool 

ChIP-     Chromatin Immunoprecipitation 

DAVID  Database for Annotation, Visualization and Integrated Discovery 

FDR   False Discovery Rate 

HBV   Hepatitis B Virus 

HBx   Hepatitis B virus X gene 

HCC   Hepatocellular Carcinoma 

HOMER  Hypergeometric Optimization of Motif Enrichment 

MACS   Model-based Analysis for ChIP-Seq 

NGS   Next Generation Sequencing 

IP   Immunoprecipitation 

UTR   Un-Translated Region 

SPSS   Statistical Package for the Social Sciences 

TSS   Transcription Start Site 

 

 

 

 



 

1 

 

CHAPTER 1: Literature Review and Introduction 

1.1 HBV-Host Genome Integration  

Hepatocellular carcinoma (HCC) is the fifth most common subtype of liver cancer 

and is found to be the third leading cause of cancer death in the world due to late 

diagnosis and limited treatment options (Blum, 2005; Lupberger and Hildt, 2007). 

There are many risk factors that may cause the development of HCC, including 

chronic infections of hepatitis B or C virus (HBV/HCV), aflatoxin exposure and 

excessive alcohol consumption. However, the most epidemiologically associated 

risk factor is HBV infection, as it has been estimated that chronic HBV infection 

accounts for 50-55% of all HCC cases in the world (Arbuthnot and Kew, 2001; 

Chang, 2003; Lupberger and Hildt, 2007; Parkin et al., 2001). As HBV infection 

precedes the development of HCC by several years, the time gap could allow 

multiple cellular events such as genetic or chromosomal changes to occur which 

eventually lead to HCC. One of the key mechanisms in hepatocarcinogenesis 

involves the integration of HBV genome into the host genome, which is observed 

in 85-90% of HCC cases and has been reported by many isolated studies to play 

important roles in HCC development (Bonilla Guerrero and Roberts, 2005; 

Buendia, 1992; Robinson, 1994). HBV genome integration occurs at early stage 

after HBV infection and is reported to contribute to host chromosomal instability 

by various complex genome alteration events which may result in large inverted 

duplications, deletions, and chromosomal translocations (Tan, 2011). Studies also 

have shown that frequent HBV genome integrations and variations may disrupt 
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host genes that are essential for cell signalling, proliferation and apoptosis 

(Boyault et al., 2007; Kuang et al., 2004; Murakami et al., 2005; Paterlini-Brechot 

et al., 2003; Saigo et al., 2008; Tan, 2011). Therefore, HBV-host genome 

integrations and alterations may play a crucial role in HBV-induced development 

of HCC. However, the detailed mechanism of how HBV genome integration may 

gradually lead to hepatocarcinogenesis in HCC patients remains unclear (Ng and 

Lee, 2011; Tan, 2011). 

1.2 Limitation of PCR-based Methods to identify HBV-Host 

Genome Integrations 

Previously, many research groups have characterized HBV integrations using 

PCR-based (Polymerase Chain Reaction) methods such as HBV-Alu-PCR which 

designed one primer specific to HBV sequence and another primer directed to the 

most abundant mobile Alu elements/repeats of human genome to amplify the 

virus/cellular DNA junctions (Tu et al., 2006), cassette-ligation mediated PCR 

which used cassette-ligated human genome DNA fragments adjacent to the 

integrated HBV DNA as a template for nested PCR with the cassette- and HBV-

specific primers to identify HBV integration sites from the HBV DNA amplified 

from HCC patient liver tissues (Saigo et al., 2008; Tamori et al., 2003; Tamori et 

al., 2005), and low resolution southern blot which hybridized the HBV DNA 

extracted from HCC patient tumor tissues with the HBV DNA regions as probes 

to identify integrated HBV DNA sequences (Tamori et al., 2003; Urashima et al., 

1997) etc. These methods combining PCR and capillary sequencing have shown 
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that HBV integration sites might not be entirely random as generally believed, 

and more importantly, HBV was observed to be mutated or truncated in the 

integrated form.  

As a result, due to the lack of knowledge on the virus sequences retained in the 

integrated form and the extremely high sensitivity of PCR, a potential problem 

associated with PCR methods is that primers designed may reside at truncated or 

mutated or polymorphic regions of the virus genome, resulting in failure in 

amplification and thus leading to potential increased false negative rates in 

discovering virus-host integration sites. In addition, without prior knowledge of 

the virus integrated sequences, PCR primers and reactions covering the whole 

virus genome may be required in order to fully characterize the virus integration 

sites, and this would be extremely labour intensive to carry out. More efficient 

and higher resolution techniques are needed for detection of virus integration sites 

in a genome-wide scale in order to overcome the limited prior knowledge of 

integration sites. In recent years, targeted genome sequencing-based approaches 

have rapidly replaced PCR-based methods (combination of PCR and capillary 

sequencing) to discover genome structural variants including virus-host 

integrations (Ansorge, 2009; Mardis, 2009). 

1.3 Application of Targeted Deep Sequencing Techniques to 

Identify Viral-host Integration Boundaries 

The low throughput and high cost of the traditional Sanger capillary-based 

sequencing has been a key limiting factor for full-sequencing-based approaches. 
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There has been increased demand for the development of low-cost and high-

throughput sequencing technologies. In recent years with the emergence of "Next 

Generation Sequencing" (NGS) technologies such as Roche/454 Life Sciences™, 

Illumina/Solexa™ Sequencing and Applied Biosystems SOLiD™, sequencing 

costs have been brought down by several orders of magnitude and throughput has 

been raised by hundreds of folds (Shendure and Ji, 2008). In addition, third 

generation sequencing techniques, such as Ion Torrent™ semiconductor 

sequencing, Complete Genomics™ DNA Nanoball (DNB) sequencing (Drmanac 

et al., 2010; Porreca, 2010), etc. are providing another big boost to this approach 

with ever higher throughput and lower cost. These deep sequencing techniques 

enable parallelization of sequencing processes, producing millions of sequence 

reads at once. Table 1.1 compares the performances of three next-generation 

sequencing platforms and two third generation sequencing technologies.  

In particular, Roche 454 Life Sciences has the ability to sequence whole genomes 

in days, with 99% accuracy and at a cost of 100x less than using the capillary-

based sequencing methods. Besides, the Roche FLX 454 pyrosequencing 

technology can even achieve average read length of 400bp which has drastically 

increased the sequencing depth and capacity. Development of these high-accuracy, 

high-throughput and low cost sequencing techniques has improved the 

applications of sequence-based methods to a whole genome scale with fine-tuned 

resolution to single base precision (Mardis, 2008a, b; Schuster, 2008; Stephens et 

al., 2009).  
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Table 1.1: Comparison of metrics and performances of three next-generation 
DNA sequencing platforms and two third generation sequencing technologies: 
454 pyrosequencing, Illumina Solexa sequencing, Applied Biosystems SOLiD 
sequencing, Ion Torrent semiconductor sequencing and Complete Genomics 
DNA Nanoball sequencing (DNB). (Table updated from Shendure and Ji 2008) 

Deep-
sequencing 
platforms 

Next Generation Sequencing Third Generation Sequencing 

454 
pyrosequencing 

Illumina (Solexa) 
sequencing 

Applied 
Biosystems 

SOLiD 
sequencing 

Ion Torrent 
Semiconductor 

sequencing 

Complete Genomics 
DNA Nanoball 

sequencing 

URL http://www.454.c
om 

http://www.illumina.
com/pages.ilmn?ID=

204 

http://www.applie
dbiosystems.com.

sg/ 

http://www.iont
orrent.com/ 

http://www.completegen
omics.com/services/tech

nology/details/  

Sequencing 
Chemistry Pyrosequencing 

Polymerase-based 
sequence-by-

synthesis 

Ligation-based 
sequencing 

Semiconductor 
sequencing 

Unchained ligation-
based sequencing 

Amplification 
approach Emulsion PCR Bridge amplification Emulsion PCR Emulsion PCR rolling circle replication 

Mb per run 100 Mb 600,000 Mb 170,000 Mb 100 Mb 180,000 Mb 

Time per  run 7 hours 9 days 9 days 1.5 hours 12 days 

Read length 400 bp 2x100 bp 35x75 bp 200 bp 35 bp (mate-pair) 

Cost per run $8,438 USD $20,000 USD $4,000 USD $350 USD $20,000 USD per 
genome Cost per Mb $84.39 USD $0.03 USD $0.04 USD $5.00 USD 

Cost per 
instrument $500,000 USD $600,000 USD $595,000 USD $50,000 USD N.A 

Nowadays, a variety of techniques that specifically capture genomic genes or 

regions of interest from genomic samples coupled with ultra-high throughput 

NGS sequencers, has been increasingly adapted for and applied in cancer research 

for the detection of larger genome structural variants, including 

insertions/deletions, translocations and viral insertions (Abel et al., 2010; 

Duncavage et al., 2011; Hernandez et al., 2011; Mardis, 2009; Stephens et al., 

2009). Such targeted deep sequencing narrows down the sequencing to important 

genes or regions of interest instead of the entire genome. It allows analysis of 

interesting genomic sequence variants more efficiently and at even lower cost, 

http://www.454.com/�
http://www.454.com/�
http://www.illumina.com/pages.ilmn?ID=204�
http://www.illumina.com/pages.ilmn?ID=204�
http://www.illumina.com/pages.ilmn?ID=204�
http://www.appliedbiosystems.com.sg/�
http://www.appliedbiosystems.com.sg/�
http://www.appliedbiosystems.com.sg/�
http://www.iontorrent.com/�
http://www.iontorrent.com/�
http://www.completegenomics.com/services/technology/details/�
http://www.completegenomics.com/services/technology/details/�
http://www.completegenomics.com/services/technology/details/�
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especially in the context that NGS has the capacity to sequence multiple 

experimental samples in a single run by using “barcodes” or indexed labels for 

individual samples (Mardis, 2008; Abel et al., 2010). To reduce costs, it is often 

necessary to select regions of interest before sequencing. There are several target 

enrichment methods, including standard PCR, ligation-based PCR or hybrid 

capture (Mamanova et al., 2010; Summerer, 2009). In the context of viral-human 

genome integration, hybrid capture enrichment adopts a basic principle that uses 

viral-specific probes to hybridize with DNA fragments containing viral sequences 

or viral-human integration boundaries. The un-hybridized DNA fragments 

containing only human sequences are washed away, and the captured DNA 

sequences of interest are then eluted for deep sequencing (See Fig 1.1). Analysis 

of the deep sequencing data can identify chimeric sequences which contains the 

viral-host integration boundaries. Hybrid capture is advantageous over PCR-based 

enrichment approaches by allowing identification of novel viral integration sites 

or translocation breakpoints (Abel et al., 2010; Mamanova et al., 2010). 

With limited knowledge of HBV-human integration sites and to fully characterise 

HBV-human integrations over whole genome, our laboratory has proposed to 

apply the hybrid capture enrichment strategy to capture DNA fragments 

containing HBV sequences or HBV-host integration sequences from the complex 

HCC patient genomic DNA samples, coupled with ultra-high throughput FLX 

454-pyrosequencer, to identify the chimeric sequences representing HBV-human 

integration sites. As part of a larger research project in our HBV research 
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laboratory, I have proposed an analysis pipeline for the ultra-high throughput FLX 

sequencing data to characterize HBV-human genome integration sites. 

 
Figure 1.1: Hybrid capture to capture viral-host integration sites. Human genomic 
DNA (green) containing inserted viral genome (red) is first fragmented to certain 
size. The fragmented DNAs are then hybridized with capture probes that are 
specific and complementary to viral DNA sequences, and subsequently fragments 
not containing virus DNA are washed away. The captured DNA containing viral 
sequences are then eluted for deep sequencing. By analyzing the sequencing data, 
chimeric reads consisting of the human/virus integration boundaries can be 
identified. 

1.4 Analysis of Targeted Deep Sequencing Data to Identify Viral-

host Integration Boundaries 

Targeted genomic regions of interest can be sequenced at great depth using next 

generation sequencing technologies. There have been several programs developed 

to date that analyse deep sequencing data for locating sequence variants, such as, 

Pindel (Ye et al., 2009), BreakDancer (Chen et al., 2009), MoDIL (Lee et al., 

2009), PEMer (Korbel et al., 2009), VariationHunter (Hormozdiari et al., 2010), 
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and SLOPE (Abel et al., 2010) etc. Pindel, BreakDancer, MoDIL, PEMer and 

VariationHunter are specifically designed to analyse sequence data generated 

from whole genomes while SLOPE is developed to analyse targeted sequence 

data. Pindel identifies insertions/deletions with single-base resolution but is not 

designed to detect virus insertion boundaries or sequence breakpoints. 

BreakDancer, MoDIL, PEMer, VariantionHunter and SLOPE rely on discordant 

mapping of paired-end diTag sequencing data to detect genome structural variants. 

Paired-end diTag sequencing of targeted DNA fragments is one of the popular 

strategies used to discover genome-wide sequence structural variations, based on 

the principle that the paired-end tags generated from high-throughput sequencer 

can be aligned back to the host reference genome sequences and abnormal 

separations or locations between the two reads of a pair suggest a potential 

genome structural variation, like insertion, deletion, rearrangements and 

translocation (Bashir et al., 2008; Korbel et al., 2007; Ng et al., 2006; Ruan et al., 

2007; Tuzun et al., 2005; Volik et al., 2003). However, the problem associated 

with these discordant paired-end strategies in characterizing virus-host integration 

boundaries is that they generally cannot achieve single-base resolution and might 

have relatively high false positive rates because of limited prior knowledge of the 

virus insertion size (Mardis et al., 2009). Hence, due to limited prior knowledge 

of the HBV virus insertion size in human genome and in order to 

comprehensively characterize the integration sites precisely in single-base 

resolution, we embarked single-end sequencing with FLX 454 pyrosequencer 

which is capable of generating significantly longer reads. 
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Analysis of the single-end high-throughput sequencing data usually begins with 

the alignment of the sequencing reads back to the entire host reference genome, 

and this mostly is the key limiting and time-consuming step in the analysis 

process. Currently, there are many available sequence assembly software 

designed for aligning deep sequencing data, including: 

a) de novo assemblers that merge sequences based on overlaps between sequence 

reads, such as, ABySS (Simpson et al., 2009), SSAKE (Warren et al., 2007), 

VCAKE (http://vcake.sourceforge.net/), EULER-SR (Chaisson and Pevzner, 

2008), Velvet (Zerbino and Birney, 2008), MIRA (http://mira-

assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html), and 

NextGENe (http://www.softgenetics.com/NextGENe_9.html); 

b) reference-guided assemblers that map sequence reads to a known reference 

genome, such as, RMAP (Smith et al., 2009; Smith et al., 2008), SeqMap 

(Jiang and Wong, 2008), SHRiMP (http://compbio.cs.toronto.edu/shrimp/), 

ZOOM (Lin et al., 2008), MAQ (http://maq.sourceforge.net/), NovoAlign 

(http://biowulf.nih.gov/apps/novocraft.html), GenomeMapper 

(http://1001genomes.org/downloads/genomemapper.html), MOSAIK 

(http://bioinformatics.bc.edu/marthlab/Mosaik#News), BWA (Li and Durbin, 

2009, 2010) and Bowtie (Langmead et al., 2009); 

c) assemblers that can do both de novo and reference-guided assembly, including 

SOAP (Li et al., 2008), CLC Genomics Workbench 

http://vcake.sourceforge.net/�
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html�
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html�
http://www.softgenetics.com/NextGENe_9.html�
http://compbio.cs.toronto.edu/shrimp/�
http://maq.sourceforge.net/�
http://biowulf.nih.gov/apps/novocraft.html�
http://1001genomes.org/downloads/genomemapper.html�
http://bioinformatics.bc.edu/marthlab/Mosaik#News�
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(www.clcbio.com/genomics/), and DNASTAR SeqMan NGen 

(http://www.dnastar.com/t-nextgen-seqman-ngen.aspx).  

A common feature of these sequence assemblers is that they are computationally 

intensive requiring large computational power and processing memory. Besides 

being time-consuming, most of these assemblers are either only suitable for small 

genomes, or are restrained to a limited number of input sequences in each 

assembly run, or restricted to certain sequence read length. FLX 454 

pyrosequencer generates sequence reads of variable lengths ranging from thirty to 

thousands base pairs. A commercial assembler, the SeqMan NGen which is 

developed by the company DNASTAR, is fast, accurate and specifically designed 

for 454 pyrosequencing reads with no restrictions on the number of input 

sequences and sequence lengths. SeqMan NGen was found to be ideal for de novo 

assembly of 454 pyrosequencing data, permitting closely examination of the 

quality and reliability of the assembled sequences for post-assembly analysis. 

Although SeqMan NGen was designed for 454 sequencing data, it is less suitable 

for identifying virus-host integration boundaries compared to the standalone 

BLAST (Basic Local Alignment Search Tool) program (Altschul et al., 1997). 

This is because SeqMan NGen can only detect the alignments where the full 

length of the sequencing reads match to the reference genome when doing 

reference-guided assembly, while BLAST searches for local alignments between 

the reads and reference genomes allowing identification of reads with one part 

mapped to virus genome and the other part aligned to host genome, thereby 

http://www.clcbio.com/genomics/�
http://www.dnastar.com/t-nextgen-seqman-ngen.aspx�
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leading to the identification of virus-host integration sites. BLAST is the most 

commonly used tool to search against large genome sequence databases, and is 

perfectly suitable for sequencing reads of variable lengths. Also BLAST provides 

additional options for users to set the mapping thresholds to adjust the stringency 

of alignments, such as matching identities, E-values and low complexity filter etc. 

In this study, I implemented an analysis workflow utilizing BLAST to map the 

targeted high-throughput single-end deep sequencing reads of variable lengths to 

both human and virus reference genome sequences, in order to identify the virus-

human integration boundaries.  

1.5 HBx-Interacting Transcription Factors  

Due to unresponsiveness to treatment and late symptom recognition, HCC is one 

of the most common and lethal cancer in the world (Blum, 2005; Lupberger and 

Hildt, 2007). It is estimated that 50-55% of HCC cases in the world are associated 

with chronic infection of HBV (Parkin et al., 2001). The viral X-gene (HBx) of 

HBV is conserved among all mammalian hepadnaviruses and the HBx protein has 

been implicated to play a major role in the development of HCC in chronic HBV-

infected patients. 

HBx is a multifunctional protein of length 154-amino acids. It acts as a 

promiscuous transactivator that disrupts host cellular gene expressions and 

subsequent cellular pathways, such as, signalling pathways, DNA repair 

mechanisms, proliferation, and apoptotic cell death (Becker et al., 1998; 

Groisman et al., 1999; Lee and Lee, 2007; Matsuda and Ichida, 2009), which 
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ultimately may lead to tumorigenesis. HBx is implicated to modulate aberrant 

host gene expressions not by binding to DNA directly but through its interactions 

with transcription factors (Andrisani and Barnabas, 1999; Ganem, 2001; Wu et al., 

2001). Currently, various transcription factors (e.g. NF-kappa B, NF-AT, AP1, 

P53, E2F1, CREB, STAT3), as well as several general transcription machinery 

complexes in the cell (e.g. TATA-binding protein, TFIIB, TFIIH, RPB5), have 

been reported to interact with HBx (Benn et al., 1996; Cheong et al., 1995; 

Maguire et al., 1991; Qadri et al., 1995; Waris et al., 2001; Williams and 

Andrisani, 1995). Deregulating host gene expression through interaction with 

transcription factors has been known to be one of the major underlying 

mechanisms that HBx plays in carcinogenesis. Systematically identifying the list 

of transcription factors that interacts with HBx and the direct gene targets of HBx-

transcription factor complex could provide further insights into HBx functions in 

HCC. To address this, our laboratory had been the very first to generate 

antibodies against HBx protein and utilize chip-based chromatin 

immunoprecipitation technology (ChIP-chip) to identify genomic binding sites 

and candidate gene targets of HBx (Sung et al., 2009).  

1.6 Limitation of ChIP-Chip Methods to Profile Protein-DNA 

Interactions 

ChIP-chip, which is the coupling of chromatin immunoprecipitation with 

microarray chip technology, was initially described in 1999 and has been widely 

used in past few years to investigate protein-DNA interactions and determine the 
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binding sites of proteins in genome (Aparicio et al., 2004; Blat and Kleckner, 

1999; Buck and Lieb, 2004). Most ChIP-chip protocols first fragment the 

genomic DNA into small pieces, and then employ specific antibodies against 

DNA-binding proteins of interest to immunoprecipitate chromatin cross-linked 

with proteins of interest, before hybridizing the immunoprecipitated DNA 

fragments onto primarily promoter-sequence microarray chip (see Fig 1.2). ChIP-

chip is powerful enough to determine the binding sites of DNA-binding proteins 

at high resolution and on a genome-wide basis. Several studies have applied 

ChIP-chip using antibodies against specific transcription factors to identify 

binding sites and candidate gene targets of those transcription factors (e.g. E2F, c-

Myc, P53, and P65 etc)  (Li et al., 2003; Lim et al., 2007; Wei et al., 2006; 

Weinmann et al., 2001; Zeller et al., 2006). Similarly, to characterize DNA 

binding sites of HBx directly on a genome-wide basis, our laboratory has 

generated antibodies specifically against HBx protein which is useful for 

chromatin immunoprecipitation, and successfully predicted a list of DNA binding 

sites from ChIP-chip technique, direct gene targets of HBx and a list of potential 

HBx-interacting transcription factors obtained from motif enrichment analysis 

(Sung et al., 2009).  
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Figure 1.2: ChIP-chip and ChIP-Seq workflow. DNA-binding proteins are first 
cross-linked to double-stranded genomic DNA, including protein of interest 
(yellow) and other uninteresting proteins (purple). The protein-bounded DNA 
strands are then broken up into small pieces, using methods like sonication. 
Antibodies specifically against the protein of interest are added in to 
immunoprecipitate chromatin bound with the proteins of interest. After 
dissociation with the bound proteins, the immunoprecipitated DNA fragments are 
prepared either for hybridization on microarray DNA chip (ChIP-chip) or high-
throughput deep sequencing (ChIP-Seq). Both ChIP-chip and ChIP-Seq are 
designed to detect binding sites of DNA-binding proteins in high resolution on a 
genome-wide basis. However, ChIP-Seq is advantageous over ChIP-chip since 
ChIP-Seq can determine binding sites over the whole genome while ChIP-chip is 
limited to the genome regions tiled on microarray chip.  

However, one problem associated with ChIP-chip-based methods is that, these 

array-based methods are restricted to the genome regions tiled on the microarray 

chip, for example, tiled array of 1.5kb promoter regions of human genes (Sung et 
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al., 2009), and this would probably lead to increased false negative rates as true 

binding sites of HBx on the un-tiled regions of the genome will not be 

interrogated. As a consequence, the high false negative rates of ChIP-chip may 

cause bias in downstream analysis when predicting potential HBx-interacting 

transcription factor motifs based on the identified list of binding sites. 

Additionally, due to the existence of hybridization noise, spatial variation, dye 

bias, technical bias, dynamic intensity signal measurements, and lack of 

reproducibility associated with DNA microarray chip experiments, most 

published studies using ChIP-chip methods repeated their experiments at least 

three times (technical replicates) to maintain experimental accuracy, technical 

precision and biological significance (Dombkowski et al., 2004; Eklund and 

Szallasi, 2008; Febbo and Kantoff, 2006; Rosenzweig et al., 2004; Steger et al., 

2011). Though there are currently many software packages available aiming to 

minimize array background noises and artefacts, statistical analysis of the large 

amount of raw data with multiple technical replicates generated from arrays is 

always facing a challenge to extract biologically meaningful information. 

Therefore, with the need to reduce false negative rates and improve analysing 

accuracy for ChIP-chip method, a recent  advance that couples chromatin 

immunoprecipitation with ultra high-throughput deep DNA sequencing 

technology (ChIP-Seq) was employed to investigate protein-DNA interactions on 

a genome-wide basis (Barski et al., 2007; Johnson et al., 2007; Robertson et al., 

2007). 
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1.7 Application of ChIP-Seq Methods to Profile Protein-DNA 

Interactions 

As shown previously in Fig 1.2, ChIP-Seq is a technique that consists of ChIP 

method that uses antibody specific to the protein of interest to immunoprecipitate 

and enrich for the DNA fragments bound by protein of interest, followed by size 

selection and ultra high-throughput deep sequencing of the enriched DNA 

fragments associated with the protein of interest (Johnson et al., 2007). Both 

ChIP-chip and ChIP-Seq require highly specific antibodies that could specifically 

recognize and immunoprecipitate chromatin crossed-linked with protein of 

interest. Nevertheless, with the advent of ultra high-throughput deep sequencing 

technique, ChIP-Seq offers many advantages over ChIP-chip with higher base-

pair resolution, greater genome coverage, increased sensitivity and specificity, no 

hybridization noise and dye bias generated from the cross-hybridization step in 

ChIP-chip (Park, 2009; Robertson et al., 2007). A review paper published by Park 

(2009) provides a detailed comparison of ChIP-chip and ChIP-Seq methods 

including experimental protocols and computational data analysis. Table 1.2 

briefly summarizes a comparison for ChIP-chip and ChIP-Seq technologies.  
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Table 1.2: Comparison of metrics and performances of ChIP-chip and ChIP-Seq 
technologies. (Table updated from Park, 2009)  

Properties ChIP-chip ChIP-Seq 

Cost $400-800 USD per array; multiple 
array needed for large genome $1,000-2,000 USD per sample lane 

Genome coverage only on promoters, specific genes 
or certain chromosomal regions entire genome 

Genomic repeats can avoid repeats from array repeats are sequenced 
Platform noises die bias & hybridization noise possible GC bias 

Multiplexing no yes by using library index or barcode 
Amount of input IP DNA more less 

Peak detection fewer peaks with broader width larger number of more localized peaks 
Resolution array-specific (30-100 bp) single nucleotide 

Reproducibility microarray lower reproducibility 
(at least three technical replicates) high 

Signal-to-noise ratio lower better 
Bioinformatics analysis harder (multiple replicates) easier 

 
ChIP-Seq, first described in 2007, was one of the very early applications of next 

generation sequencing technologies (Barski et al., 2007; Johnson et al., 2007; 

Mikkelsen et al., 2007; Robertson et al., 2007). With the decreasing cost of ultra 

high-throughput sequencing, there has been an increasing trend nowadays to 

apply ChIP-Seq methods to systematically profile protein-DNA interactions and 

assess putative genome-wide binding sites of important proteins, including 

polymerases, transcription factors and tumor suppressor proteins, in the areas of 

cancer research, transcriptional regulatory networks studies and immune function 

studies  (Botcheva et al., 2011; Hawkins et al., 2010; Northrup and Zhao, 2011; 

Park, 2009; Scisciani et al., 2011; White, 2011; Xie et al., 2011). For example, 

Botcheva et al., (2011) was the first that successfully profiled genome-wide de 

novo mapping of the putative genomic binding sites of the tumor suppressor p53 

in normal and cancer-derived human cells, by applying ChIP-Seq experiments 

and computationally analysing ChIP-Seq data for high-confidence ChIP-Seq 
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peaks. It has been shown that ChIP-Seq is sufficiently powerful enough to 

identify genomic binding sites of DNA-binding proteins with large genome 

coverage. This gives our laboratory the incentive to apply ChIP-Seq methods 

instead of ChIP-chip using antibodies against HBx to profile genomic binding 

sites of HBx over the whole human genome.  

1.8 Analysis of ChIP-Seq Data to Identify DNA-binding Sites of 

Proteins  

ChIP-Seq experiments generate large quantities of high-throughput sequencing 

data. All profiling technologies would produce noise artefacts, and ChIP–Seq is 

also of no exception (Park, 2009). Thus, effective computational analysis of ChIP-

Seq data will be crucial to generate biologically meaningful results. The purified 

DNA fragments from ChIP experiments can be sequenced by any of the next-

generation platforms, such as Illumina Solexa Genome Analyzer, Roche 454 

platform, and  Applied Biosystems (ABI) SOLiD platforms (Shendure and Ji, 

2008). The image data generated from the sequencing platforms are converted by 

the base caller software into sequence tags, which are referred as ChIP-Seq 

sequencing data. Preliminary analysis of the ChIP-Seq data consists of two major 

steps: a) mapping the sequence tags into reference genome; and b) peak-calling to 

find enriched regions as potential binding sites of the protein of interest, as shown 

in Fig 1.3.  
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Figure 1.3: Analysis of ChIP-Seq sequencing data. The images from the next-
generation sequencing platform for chromatin immunoprecipitated DNA 
fragments using antibodies against protein of interest are first converted using 
base caller software into sequence tags, which will then be mapped to the 
reference genome. A step of peak calling comparing the ChIP-Seq profile with 
control sample profile will generate of list of enriched peak regions ranked by 
statistical significance measures representing the potential binding sites of the 
protein of interest in reference genome. Subsequently, the profiles of enriched 
regions can be further analyzed for more information, such as the binding motifs 
enriched, location of the binding sites in genome structures, integration of gene 
expression data, differential binding profile analysis, and so on. Processes for 
generation of sequencing data are highlighted in blue, while computational 
identification of genomic binding sites of proteins is highlighted in pink and post 
identification analysis is highlighted in yellow. 

Mapping of sequence reads into the reference genome will give the intensities or 

counts of reads mapped to genome regions, and analysing the read intensities over 

the genome will produce a list of regions with enriched mapped reads (“peak-

calling”), as the potential genome-wide binding sites of the protein of interest 

(Hoffman and Jones, 2009). With the profile of potential binding sites, further 

analysis can be done, such as, transcription factor binding motifs enrichment 
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analysis, location of the binding regions over the genome relative to genome 

structures, correlation of gene expressions, differential binding sites between 

different cellular conditions, and so on (Park, 2009).  

However, there are various potential sources of artefacts in ChIP-Seq experiments, 

which may result in the detection of insignificant peaks. For instance, shearing of 

DNA strands into fragments with a commonly used method like “sonication”, 

usually does not result in uniform fragmentation of the genome and thus leads to 

the uneven distribution of sequence tags across the genome, since some genome 

regions, such as open chromatin regions, are more easily fragmented than other 

genome regions, such as closed regions (Park, 2009). Therefore, in order to avoid 

such bias, control experiments are designed to pair up control profiles with the 

ChIP-Seq profiles so as to measure the significance of the peaks. These control 

samples used for sequencing are either input DNA which is a portion of the 

sheared DNA sample without immunoprecipitation, or mock DNA with DNA 

obtained from immunoprecipitation without antibodies, or DNA from nonspecific 

immunoprecipitation using an antibody against a protein that is not known to be 

involved in DNA binding. Input DNA has been used widely as the control sample 

in ChIP–Seq studies to remove the artefacts and bias from the ChIP-Seq 

experiments, such as the variable solubility of different regions, DNA shearing 

and amplification (Park, 2009). By comparing the read intensities in ChIP-Seq 

profile to the control sample profile at the paired-up genome regions, one can 

measure the significance of the peaks. Thus, the peak-calling step of the ChIP-Seq 

data analysis compares the ChIP sample profile to the control sample profile, and 
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detects the potential enriched regions ranked by statistical significance 

measurements. 

As for the very first step of analysis of the ChIP-Seq sequencing data, there are 

many different reference-guided short read mapping tools available, described 

earlier in Section 1.4, such as, Eland (part of the Illumina suite), GenomeMapper, 

RMAP, SeqMap, SHRiMP, ZOOM, NovoAlign, MOSAIK, MAQ, BWA and 

Bowtie. In particular, compared the other aligners, Bowtie is ultra-fast for 

Illumina short sequencing reads of uniform length of about 36bp, allowing 

multiple-core parallel processing and memory-efficient for large genomes, while 

maintaining a comparable mapping accuracy (Langmead et al., 2009). The 

Illumina sequencer produces single-end sequencing reads of short length, e.g. 

36bp, and when aligning millions of reads of such short length to a large reference 

genome, e.g. human genome, a remarkable portion of the reads would probably 

match to multiple positions in the genome. In order to maintain the mapping 

accuracy, thresholds usually are set to remove the sequence reads that match 

ambiguously to the reference genome. Bowtie provides options for users to set the 

mapping thresholds, such as gapped or un-gapped alignment, number of 

mismatches allowed in the alignment, number of hits to output for users, and so 

on (Langmead et al., 2009). By setting the various options, one can decide the 

thresholds for the alignments between the sequence reads and reference genome, 

and achieve a balance between the mapping accuracy and the number of 

sequencing reads remained for peak-calling and advanced analysis. 
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Mapping of the sequencing reads generate the read intensities or counts within 

genome regions, and comparing the read intensities over genome regions in ChIP 

sample to the control sample can produce a list of peak regions where the reads 

are significantly enriched in ChIP sample over control sample (Hoffman and 

Jones, 2009). There are many different peak-calling software packages that utilize 

control sample profile, such as, E-RANGE (Mortazavi et al., 2008), spp package 

(Kharchenko et al., 2008), MACS (Zhang et al., 2008), QuEST (Valouev et al., 

2008), SISSRs (Jothi et al., 2008), GLITR (Tuteja et al., 2009), PeakSeq 

(Rozowsky et al., 2009), CisGenome (Ji et al., 2011; Jiang et al., 2010), Sole-

Search (Blahnik et al., 2010), and CCAT (Xu et al., 2010). A detailed comparison 

of various available peak-calling software algorithms is summarized in Table 1.3.   
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Table 1.3: Comparisons of various peak-calling algorithms for ChIP-Seq data, 
including E-RANGE, spp package, MACS, QuEST, SiSSRs, GLITR, PeakSeq, 
CisGenome, Sole-Search and CCAT. (Table adjusted and updated from Pepke et 
al., 2009) 

 
Peak-caller Signal-

Profile 
Tag shift or 

extension Control Data 
Peak Criteria Peak 

ranked by 
FDR (false discovery 

rate) reference 

E-RANGE 

shift tag, 
aggregation 

peak estimate or 
user-input 

fold enrichment of 
ChIP over control, 
calculate p value 

height cutoff, 
local peak 
estimate 

p value # peaks in control 
# peaks in ChIP 

Mortazavi, 
Williams et 

al. 2008 

spp 
package 

shift tag, 
window 

scan 

estimate tag shift 
to maximize 

strand correlation 

subtract control 
from ChIP before 

peak-calling 

Poisson p value 
for paired peaks p value # peaks in control 

# peaks in ChIP 

Kharchenko, 
Tolstorukov 
et al. 2008 

MACS 
shift tag, 
window 
scan 

estimate from 
peak-pairs 

swap ChIP & 
control datasets to 

calculate FDR 

local region 
Poisson p value p value # peaks in control 

# peaks in ChIP 
Zhang, Liu et 

al. 2008 

QuEST 

shift tag, 
kernel 
density 

estimation 

estimate local shift 
to maximize 

strand correlation 

fold enrichment, 
control data split 
into pseudo-ChIP 
to compute FDR 

height cutoff, 
background ratio q value # peaks in pseudo-ChIP 

# peaks in ChIP 

Valouev, 
Johnson et al. 

2008 

SiSSRs 
shift tag, 
window-

scan 

average distance 
of nearest tag pairs 

compute fold 
enrichment of 

ChIP over control 

N+-N- sign change, 
N++N- threshold in 

region 
p value control distribution 

Jothi, 
Cuddapah et 

al. 2008 

GLITR extend tag, 
aggregation user-input 

control data split 
into pseudo-ChIP 
to calculate FDR 

peak height cutoff 
& fold enrichment 

peak height 
& fold 

enrichment 

# peaks in pseudo-ChIP 
# peaks in ChIP 

(Tuteja, 
White et al. 

2009 

PeakSeq extend tag, 
aggregation user-input 

significance of 
ChIP enrichment 
over control 

local region 
binomial p value q value binomial for ChIP & 

control 

Rozowsky, 
Euskirchen et 

al. 2009 

CisGenome 
shift tag, 
window-

scan 

average distance 
of peak-pairs 

conditional 
binomial 

distribution to 
estimate FDR 

number of reads 
in window, 

number of ChIP 
reads minus 
control reads 

number of 
reads under 

peak 

conditional binomial 
distribution of ChIP over 

control 

Jiang, Wang 
et al. 2010; Ji, 

Jiang et al. 
2011 

Sole-Search 
extend tag, 

window 
scan 

user-input 

determine peak 
height cutoff & 
calculate fold 
enrichment 

peak height cutoff 
& enrichment 

significance cutoff 
(one sample t-test) 

peak height 
& 

enrichment 
significance 

# peaks in control 
# peaks in ChIP 

Blahnik, Dou 
et al. 2010 

CCAT 
shift tag, 
window 

scan 

estimate from 
peak-pairs 

swap ChIP & 
control datasets to 

calculate FDR 

local region 
Poisson p value p value # peaks in control 

# peaks in ChIP 
Xu, Handoko 

et al. 2010 

 
The peak-calling step in these software packages generally can be summarized 

into three basic sub-components: (i) generate signal profiles along each 

chromosome based on read/tag counts, (ii) find enriched peak regions in ChIP 

data relative to background control data (peak-calling) and (iii) assign statistical 

significance to filter out false positives and rank high-confidence peak calls 

(Pepke et al., 2009). Most algorithms generate smooth signal distributions/profiles 

using a fixed-width sliding window centered at each genome position and 
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replacing the read/tag count in that genome position with the summed read counts 

within the window or modified signal values based on some assumptions of the 

distributions. Since the immunoprecipitated DNA fragments are double-stranded 

with the two strands equally likely to be sequenced from 5’ to 3’, the single-ended 

sequencing reads/tags are expected to come from both strands and form two 

density distributions (one for forward strand, and the other for reverse 

complement strand), which occur upstream and downstream with true DNA-

protein crosslinking or binding sites in-between, as illustrated in Fig 1.4. Based on 

this bimodal enrichment pattern, programs like MACS, SiSSRs, spp package, 

QuEST, FindPeaks, E-RANGE, GLITR, and CCAT first shift the reads by half of 

the DNA fragment length (either user-defined or estimated from ChIP data) in a 

strand-specific manner and then build the signal profile based on the shifted read 

positions, such that, the corresponding distributions of two strands will overlay 

giving rise to a “summit” that has the local maximum and most likely represent 

the true DNA-protein binding sites. Some other programs may alternatively 

extend the genome location of the reads to accomplish the same goals. This 

strand-specific read shifting could considerably improve “summit” resolution and 

better locate the precise binding sites if the shifted distance is accurate (Pepke et 

al., 2009). 
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Figure 1.4: Bimodal enrichment pattern of ChIP-Seq sequencing data. Since the 
immunoprecipitated DNA fragments are double-stranded with the two strands 
equally likely to be sequenced from 5’ to 3’, the single-ended sequencing 
reads/tags are expected to come from both strands and form two density 
distributions (one for forward strand, and the other for reverse complement 
strand), which occur upstream and downstream with true DNA-protein 
crosslinking or binding sites in-between. In order to improve binding site 
detection resolution, some peak-calling algorithms first either shift the reads by 
half of the DNA fragment length or alternatively extend the genome location of 
the reads to the expected DNA fragment length in a strand-specific manner, and 
then build the signal profile based on the shifted or extended read positions, such 
that, the corresponding distributions of two strands will overlay giving rise to a 
“summit” that has the local maximum and most likely represent the true DNA-
protein binding sites. This could significantly improve the precise detection of 
binding site location. (Figure redrawn from Park, 2009) 
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When comparing the ChIP profile to control sample profile, most peak-calling 

programs calculate fold enrichment of reads in ChIP over control sample along 

genome regions, and assign statistical significance to each enriched peak in ChIP 

data. Different programs employed different methods to compute the significance 

to filter out false positives and rank for high-confidence peaks. For example, some 

built sophisticated statistical models from control data to assess the significance 

of ChIP peaks (Blahnik et al., 2010; Boyle et al., 2008; Ji et al., 2008; Mortazavi 

et al., 2008; Nix et al., 2008; Qin et al., 2010; Rozowsky et al., 2009; Spyrou et al., 

2009; Valouev et al., 2008; Xu et al., 2010; Zhang et al., 2008), some calculate 

empirical false discovery rate by swapping ChIP and control data to identify 

enriched peaks in control data (False Discovery Rate (FDR) = number of peaks in 

control / number of peaks in ChIP) (Kharchenko et al., 2008; Lun et al., 2009; Xu 

et al., 2010; Zhang et al., 2008), and some calculate FDR by partitioning control 

data to generate pseudo-ChIP data if control data is large enough (Tuteja et al., 

2009; Valouev et al., 2008). Among these peak-calling algorithms, MACS has 

been evaluated to be superior over others with good sensitivity and specificity that 

gives higher true positive rates, higher ranking accuracy, better peak positional 

accuracy and precision (spatial resolution) (Wilbanks and Facciotti, 2010). MACS 

algorithm will (1) first remove duplicate reads in the datasets that may arise from 

ChIP-DNA amplification and sequencing library preparation, (2) linearly scale the 

total number of reads in control data to be the same with that in ChIP data, (3) 

empirically model the size of the true protein binding site based on the bimodal 

enrichment pattern, (4) shift the genome locations of the reads in a strand-specific 
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manner by half of the estimated size of the protein binding site, (5) scan the 

genome using sliding windows of user-defined width to identify candidate peaks 

with significant read enrichment based on p-values calculated from dynamic 

Poisson distribution of reads, (6) swap ChIP and control datasets and call peaks in 

control data, and (7) calculate FDR for each detected peak in ChIP data and rank 

them using the p-values. CCAT applies similar algorithm with MACS but is 

superior to MACS as it estimates noise rate and resample the datasets to balance 

ChIP and control sample sizes instead of using linear scaling as in MACS (Xu et 

al., 2010).  

1.9 Motif Enrichment Analysis to Identify Co-Factors of Proteins 

With the profile of potential protein binding sites identified from peak-calling 

tools, further analysis can be done, such as, binding motifs enriched, location of 

the binding regions over the genome, correlation with gene expressions, 

differential binding sites between different cellular conditions, and so on (Park, 

2009). For example, motif enrichment analysis can predict the DNA-binding 

motifs for the protein of interest by first extracting the genomic sequences of the 

identified DNA-binding sites from the reference genome, and then scanning 

against known DNA-binding motifs, e.g. TRANSFAC database (Wingender et al., 

1996), or predicting novel binding motifs using de novo motif finding algorithms. 

Proteins such as transcription factors, generally do not work alone and usually 

function with other transcription factors (co-factors) in a combinatory fashion to 

regulate target gene expressions precisely. Particularly, in situations of where 
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factors co-associated with the protein of interest are present, ChIP-Seq protocol 

using antibodies against the protein of interest could immunoprecipitate the DNA 

fragments bound by the protein of interest that is meanwhile co-localized with its 

interacting factors (Liu et al., 2010). In such cases, motif enrichment analysis of 

the predicted DNA-binding sites against known motif databases will help identify 

the interacting DNA-binding co-factors for the protein of interest globally. 

Sequence motif discovery algorithms play an important part in order to better 

understand the protein-DNA interaction mechanisms, and the structures and 

functions of proteins (Bailey, 2008). There are various motif finding software 

tools available for ChIP-Seq data, including MDScan (Liu et al., 2002), Weeder 

(Pavesi et al., 2004), MEME (Bailey et al., 2009; Bailey et al., 2006), GALF-G 

(Chan et al., 2009), Tmod (Sun et al., 2010), HOMER (Heinz et al., 2010), HMS 

(Hu et al., 2010), recently published CENTDIST (Zhang et al., 2011) sand 

DREME (Bailey, 2011), etc. Most motif finding algorithms scan the genomic 

sequences of the DNA-binding regions identified from ChIP-Seq data, and search 

for either statistically overrepresented word-based oligonucleotide (motifs) with 

high occurrence frequency, or probabilistic sequence models with model 

parameters estimated from maximum-likelihood or by Bayesian inference (Das 

and Dai, 2007). The word-based algorithm guarantees global optimality and is 

suitable to identify short motifs in eukaryotic genomes, while the probabilistic 

approach involves representation of motif models by position weight matrix 

(Bucher, 1990) and is appropriate for longer motifs. All these algorithms 

mentioned have been reported to be able to correctly detect the motifs that were 
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previously detected by laboratory experimental approaches, and some de novo 

motif finding algorithms can find novel motifs. In particular, for eukaryotic 

genomes, HOMER (Hypergeometric Optimization of Motif Enrichment) motif 

enrichment algorithm against known motifs database comprises of the following 

steps: (i) first, the program randomly selects a set of background genomic 

sequences with similar length and GC content to the target sequences (potential 

binding sites), (ii) it then assigns weights to each background sequence to 

minimize the imbalance in sequence contents with the target sequences, (iii) it 

further calculates the occurrence of each known motif in the target and 

background sequences and (iv) then computes a significance value (e.g. p-value) 

for the enrichment of the motif in the target sequences over background sequences 

(Heinz et al., 2010). The motifs identified are ranked by their enrichment 

significance values produced by the motif finder algorithm, and usually 

significantly enriched motifs with significance measurement values passing 

defined threshold (e.g. p-value < 0.05) are selected as the potential co-factors that 

may interact with the protein of interest when binding to genomic DNA.  

In addition to identifying co-factors for protein of interest, ChIP-Seq data also has 

the capacity to permit further analysis to uncover protein-DNA interaction 

patterns and gene regulation mechanisms, such as correlation with gene 

expression profiles, relationship of DNA-binding sites to genome structures, 

differential binding sites of proteins in response to different cellular conditions, 

and so on. In summary, our laboratory has employed ChIP-Seq Illumina ultra 

high-throughput sequencing technique with antibodies specifically against HBx 
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protein for immunoprecipitation, and in this study, I implemented a computational 

workflow to analyse the ultra high-throughput ChIP-Seq sequencing data, identify 

potential genomic binding site of HBx in a genome-wide scale, discover 

transcription factors that potentially interact with HBx form motif enrichment 

analysis, and identify potential deregulated direct gene targets of HBx from 

integration of gene expression profiles, for a better understanding of the 

underlying mechanisms of HBV-induced hepatocarcinogenesis. 

1.10 Project Objectives 

Chronic HBV infections may gradually lead to the development of HCC in 

patients (Arbuthnot and Kew, 2001; Bonilla Guerrero and Roberts, 2005; Buendia, 

1992; Chang, 2003; Lupberger and Hildt, 2007; Parkin et al., 2001; Robinson, 

1994). However, the association between chronic HBV infection and HCC 

hepatocarcinogenesis remains incompletely understood (Ng and Lee, 2011), 

though a few underlying mechanisms have been proposed by numerous studies, 

such as, HBV genome integration into human genome (Bill and Summers, 2004; 

Bonilla Guerrero and Roberts, 2005; Buendia, 1992; Goto et al., 1993; Jiang et al., 

2012; Murakami et al., 2005; Pineau et al., 1998; Robinson, 1994; Saigo et al., 

2008; Tan, 2011; Tu et al., 2006), HBx deregulation of host genes expression 

through interactions with transcription factors (Andrisani and Barnabas, 1999; 

Ganem, 2001; Sung et al., 2009; Wu et al., 2001) or through deregulation of 

regulatory microRNA expressions (Kong et al., 2011; Shan et al., 2011; Wang et 

al., 2010; Wang et al., 2012; Wu et al., 2011; Yip et al., 2011; Yuan et al., 2012) 
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or through epigenetic modifications (e.g. DNA methylation status of genes) 

(Arzumanyan et al., 2012; Huang et al., 2010; Jung et al., 2010; Kim et al., 2010; 

Madzima et al., 2011; Park et al., 2011; Su et al., 2008; Um et al., 2011; Zhu et al., 

2010). In this project, we focused on two essential underlying mechanisms: HBV 

genome integration as described in Chapter 2, and HBx deregulation of host gene 

expression through interactions with transcription factors, as described in Chapter 

3 of this MSc thesis. 

1.10.1 Computational Analysis for Characterization of HBV-Host 

Genome Integration Sites 

HBV-host genome integration is very commonly observed in HBV-associated 

HCC cases, and is believed to be one of the key mechanisms involved in 

hepatocarcinogenesis. HBV integration into the host genome could result in 

possible disruption of host gene expressions, expression of modified viral proteins 

or viral-host chimeric proteins that are potentially oncogenic and contribute to 

hepatocarcinogenesis. Therefore studying where HBV genome integrates into the 

host genome will promote understanding of the underlying mechanisms of how 

HBV infection gradually leads to development of HCC. HBV genome integration 

into human genome has been reported for many years, however, the details of 

how HBV genome integration may contribute to hepatocarcinogenesis is still 

incompletely understood (Ng and Lee, 2011). To address it, the very first step is 

to know the locations where HBV DNA is inserted to human DNA. To 

comprehensively characterize HBV genome integration sites and study the 
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variations of HBV DNA in HCC patients, with limited prior knowledge on how 

HBV DNA fuses with human genome, our laboratory employed targeted high 

throughput FLX sequencing techniques on 48 HBV-associated HCC patients’ 

samples (tumor and adjacent non-tumor tissues) to enrich for HBV-containing 

DNA fragments. To maximize the targeted sequencing capacity, a set of 6bp 

“barcodes” was used to label for individual patient samples, allowing sequencing 

of multiple samples in a single run. Millions of sequencing reads of variable 

lengths were generated. In this project, I implemented a computational workflow 

to analyse the high-throughput sequencing data and identify sequences carrying 

both HBV and human DNA within the same sequence where the HBV-HG 

integration sites can be inferred. The analysis pipeline aimed to accomplish the 

following specific objectives at various analysis steps: 

Specific Objective 1: Remove noise and insignificant reads from the ultra high-

throughput sequencing data 

Hybrid capture strategy to enrich for HBV sequences has limited enrichment 

efficiency. Due to the sequence similarities between HBV and human genomes, 

non-specific hybridization of HBV probes with human genome sequences may 

potentially capture insignificant DNA fragments that do not contain HBV 

sequences or HBV-human integration boundaries. In addition, the last elution step 

of hybrid capture method may also cause noise DNA fragments to be sequenced. 

Thus the pool of millions of raw sequencing reads from ultra high-throughput 

FLX sequencer may contain lots of insignificant and noise reads, which purely 
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belong to human genome and neither contain HBV sequences nor HBV-human 

integration boundaries. To identify HBV-containing reads, the very first step is to 

filter out the pure human sequences and the sequences that do not contain HBV 

sequences, from the large raw sequence library. Mapping the raw sequencing 

reads against human genome and HBV genome respectively may help to achieve 

this objective. 

Specific Objective 2: Identify HBV-host integration boundaries by aligning sequence 

reads against both HBV and human genomes  

Removal of noise and insignificant reads will largely reduce the size of the 

sequencing library. FLX 454 pyrosequencer is reported to have an average read 

length of 400 bases, and thus can largely reduce ambiguities when searching for 

read identities against genome databases. More importantly, this particular long 

read length feature of FLX sequencer could allow us to identify HBV-host 

integration boundaries directly from the raw sequence reads that can be long 

enough to accommodate the junction sites. A sequence read containing a HBV-

host junction site is hypothesized to have at least one region of the sequence 

aligned to human genome and the other region aligned to HBV genome. 

Therefore, after removal of the noise sequence reads from the FLX sequencing 

library, potential HBV-host junction sites could be directly identified from the rest 

of the raw sequence reads by aligning the sequence reads against both human and 

HBV genomes and examining the hits of each sequence read to the two reference 

genomes. 
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Nevertheless, one should not neglect the possibility that DNA shearing or 

fragmentation in the initial ChIP-Seq experimental step may happen to occur at 

the HBV-host junction sites, in which case, those HBV-host junction sites might 

be disrupted and missed out in the sequencing mapping analysis. Therefore, in 

this study and in my analysis pipeline, a step of de novo assembling of sequence 

reads into longer sequences which we called “contigs” was also incorporated, 

with the purpose of recovering any possible disrupted HBV-host junction sites. 

Furthermore, assembly provides representative or consensus sequences (“contigs”) 

by merging overlapping reads, and this could help us to reconstruct the original 

long DNA sequences from the fragmented DNA sequence reads. Thereby, the 

“contigs” and the remaining unassembled sequence reads could be mapped 

against both human and HBV genomes respectively in order to identify HBV-host 

integration boundaries.  

Specific Objective 3: Perform post-identification analysis to get more detailed 

information on HBV-host integrations 

After identification of HBV-host integration boundaries in HCC patients, more 

detailed post-identification analysis may be performed to understand HBV-host 

integration mechanisms. Questions to be answered may include: whether the 

integration of HBV genome into human genome is a random process or do they 

follow any conserved patterns; whether there are any integration sites conserved 

among different patient tissues; whether there is any obvious difference in the 

integration sites between tumor and adjacent non-tumor tissues of HCC patients; 
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whether there is any HBV gene that is more preferred to be integrated into the 

human genome; whether there is any functional domain of HBV genes that is 

often conserved and integrated in the human genome; whether there is any host 

gene that is disrupted by integration; what is the functional importance of 

disrupted host genes; and so on. Efforts trying to answer these biological 

questions may help us identify genes or factors of HBV that are important for 

hepatocarcinogenesis and further understand the details of HBV-host genome 

integrations in HCC patients with chronic HBV infections.  

1.10.2 Computational Analysis for Identification of Putative 

Deregulated Direct Gene Targets of HBx 

The HBV genome of length 3215bp consists of 4 major genes encoding for core 

protein, surface antigen protein, polymerase, and viral X-gene. Among the four 

genes, the viral X-gene (HBx) of HBV is conserved among all mammalian 

hepadnaviruses and the small protein (154 amino acids) encoded has been 

strongly implicated to play a major role in hepatocarcinogenesis and the 

development of HCC in chronic HBV-infected patients. HBx protein acts as a 

transactivator that disrupts host cellular gene expressions and subsequent cellular 

pathways which may lead to cancer. HBx has been reported to deregulate host 

genes expression through various mechanisms, such as, through interactions with 

transcription factors (Andrisani and Barnabas, 1999; Ganem, 2001; Sung et al., 

2009; Wu et al., 2001), through deregulation of regulatory microRNA expressions 

(Kong et al., 2011; Shan et al., 2011; Wang et al., 2010; Wang et al., 2012; Wu et 
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al., 2011; Yip et al., 2011; Yuan et al., 2012), or through epigenetic modifications 

(e.g. DNA methylation status of genes) (Arzumanyan et al., 2012; Huang et al., 

2010; Jung et al., 2010; Kim et al., 2010; Madzima et al., 2011; Park et al., 2011; 

Su et al., 2008; Um et al., 2011; Zhu et al., 2010). In this project, we focused on 

HBx deregulation of host gene expressions through interactions with transcription 

factors. 

Deregulating host gene expressions through interactions with transcription factors 

has been known to be one of the major underlying mechanisms that HBx plays in 

hepatocarcinogenesis. HBx protein does not bind to DNA directly, but through 

interacting with transcription factors. It regulates gene expression by changing the 

DNA binding affinities of transcription factors. Systematically identifying the list 

of transcription factors that HBx interacts and the direct target genes of HBx-

transcription factor complex could provide further insights into HBx functions in 

the development of HCC. Our laboratory has previously systematically profiled 

HBx genomic binding sites and HBx-interacting transcription factors using ChIP-

chip method on 1.5kb promoter regions of human genes (Sung et al., 2009). 

However, there are various limitations and bias associated with ChIP-chip, as 

discussed in Section 1.6. Therefore, our laboratory has turned to apply ChIP-Seq 

technology coupled with Illumina high-throughput sequencing technique on 

primary liver cell line THLE3 transfected with HBx-expressing adenoviruses, to 

identify a more comprehensive and unbiased list of HBx genomic binding sites. 

ChIP-Seq technique uses antibody specific to the protein of interest to 

immunoprecipitate DNA fragments bound by protein of interest, followed by size 
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selection and sequencing of the enriched DNA fragments. The sequencing step in 

ChIP-Seq enables identification of genome-wide DNA-protein binding sites, and 

has become the major trend in the field of studying protein-DNA interactions. The 

Illumina sequencing approach applied by our laboratory produced millions of 

short sequence reads of 36bp for both control and HBx-expressing THLE3 cell 

samples. In addition, previous studies on HBx deregulation of host genes were 

mainly carried out in cell lines due to lack of patients data. In this study, with the 

availability of HCC patients data in our laboratory, I implemented a 

computational workflow to analyse the ChIP-Seq sequencing data and integrate 

the microarray expression profiles and clinical data of 100 HBV-associated HCC 

patients to identify a more comprehensive list of potential genomic binding sites 

of HBx, HBx-interacting transcription factors and potential HBx deregulated 

direct gene targets with clinical inferences in HCC patients. The analysis process 

aims to accomplish the following objectives: 

Specific Objective 4: Align ChIP-Seq Illumina sequencing reads to human genome 

and remove reads mapped ambiguously to human genome 

The Illumina Solexa sequencer produced millions of single-end sequence reads of 

36bp, out of which, a significant portion might match to multiple positions in the 

human genome, because of the short read length (36bp) and the large human 

genome size. In order to maintain the mapping accuracy, thresholds must be set to 

remove sequence reads that match ambiguously to human genome. An ultrafast 

reference-guided short read aligner Bowtie (Langmead et al., 2009) provides 
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options for users to set the thresholds, such as gapped or un-gapped alignment, 

number of mismatches allowed in the alignment, number of matches to output for 

users, and so on. Mapping criteria/parameters need to be carefully selected in this 

project to achieve a balance between the mapping accuracy and the amount of 

sequencing reads remained usable for downstream analysis. 

Specific Objective 5: Identify significantly enriched peak regions as potential DNA 

binding sites of HBx using peak-calling algorithms 

Following aligning sequence reads to human genome and filtering out reads with 

ambiguous matches in human genome, the next step is to analyse the intensities 

(counts) of reads mapped on genome regions and identify regions, where the 

reads are significantly enriched, as the potential HBx binding sites. This peak-

calling step will compare the read intensities in HBx-expressing THLE3 cells 

against the read intensities in control THLE3 cells, and then identify regions 

(peaks) with reads significantly enriched in HBx-expressing THLE3 cells. Our 

control THLE3 ChIP-Seq data was important because it served as background 

noise model to help filter out false positive regions that might come from DNA 

shearing biases, antibody immunoprecipitation biases or sequencing artefacts. The 

peak-calling step generally can be summarized into three basic sub-components: 

(i) generate signal profiles along each chromosome based on read/tag counts, (ii) 

find enriched peak regions in ChIP data relative to background control data (peak-

calling) and (iii) assign statistical significance to filter out false positives and rank 

high-confidence peak calls. Since the immunoprecipitated DNA fragments are 
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double-stranded with the two strands equally likely to be sequenced from 5’ to 3’, 

the single-ended reads/tags are expected to come from both strands and form two 

density distributions (one for forward strand, and the other for reverse 

complement strand), which occur upstream and downstream with true DNA-

protein crosslinking or binding sites in-between. Thus, the sequencing reads are 

expected to show a bimodal enrichment pattern for a true binding site, and 

therefore, strand-specific shifting or extending of the reads could yield more 

precise prediction of DNA binding sites. Two peak-calling tools MACS 

(http://liulab.dfci.harvard.edu/MACS/) and CCAT (http://cmb.gis.a-

star.edu.sg/ChIPSeq/paperCCAT.html) were utilized in this project to first shift 

the genomic positions of the reads by half of the estimated DNA fragment length 

in a strand-specific manner and then call peaks with significant read enrichments 

in ChIP data relative to background control data. Peaks commonly predicted from 

the two peak-calling algorithms (MACS and CCAT) can be selected as the 

potential genomic binding sites of HBx, and this application of multiple peak-

calling algorithms on the same dataset will give us more confidence on the 

predictions. 

Specific Objective 6: Identify potential HBx-interacting transcription factors from 

motif enrichment analysis 

From the list of enriched peaks representing potential binding sites of HBx over 

human genome, motif enrichment analysis was performed to predict the 

transcription factor binding motifs enriched within the predicted candidate 

http://liulab.dfci.harvard.edu/MACS/�
http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.html�
http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.html�
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binding sites of HBx, to obtain a list of predicted transcription factors that 

potentially interact with HBx to bind to DNA. This analysis consists of two major 

steps: a) extraction of the genomic DNA sequences for the candidate binding sites 

of HBx, and 2) scanning of these peak sequences against the known human 

transcription factor motifs using known motif finder algorithms. For example, 

HOMER (http://biowhat.ucsd.edu/homer/chipseq/), developed in the Glass lab of 

UCSD (Heinz et al., 2010), first randomly selects a set of background genome 

sequences of similar length and GC content to the target sequences (potential 

binding sites), assesses the occurrences of each known motif in the background 

and target sequences, and calculates significance values for each known motif 

enriched in target sequences relative to background sequences. Thereafter, the 

enriched motifs could then be ranked based on the significance values produced 

by HOMER and those motifs with significance values above the threshold were 

considered as the transcription factors that may potentially interact with HBx and 

bind to genome DNA.  

Specific Objective 7: Identify potential direct gene targets of HBx by integrating 

microarray expression profiles for THLE3 cell line 

A list of differentially expressed genes was identified using a two-colour 

expression profiling array of HBx-expressing and control THLE3 cells. These 

differentially expressed genes were hypothesized to be deregulated (either up- or 

down-regulated) upon the presence of HBx protein in THLE3 cells. In this study, 

through the integration of the microarray gene expression profiles and ChIP-Seq 

http://biowhat.ucsd.edu/homer/chipseq/�
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data, a list of putative direct gene targets of HBx deregulated through HBx-

transcription factor interactions could be identified. 

Specific Objective 8: Evaluate the clinical relevance of the potential deregulated 

direct gene targets of HBx 

Since these potential deregulated direct gene targets of HBx were predicted from 

primary liver cell line (THLE3), we evaluated if these deregulated gene targets of 

HBx are clinically relevant. To address this, the microarray gene expression 

profiles and the clinical data collected from 100 HBV-associated HCC patients 

were integrated. The expression values for the potential HBx deregulated direct 

gene targets in the tumor and adjacent non-tumor tissues of the 100 HCC patients 

were first examined. As HBx is reported to have oncogenic potential, gene targets, 

which were appropriately differentially expressed in tumor over adjacent non-

tumor tissues in HCC patients similar to what was observed in THLE3 cells upon 

the presence/expression of HBx protein, were selected for further analysis as these 

are likely to be related to hepatocarcinogenesis. With the availability of the 

clinical data of the 100 HCC patients, associations between these genes and the 

patients’ clinical characteristics and survival potential can then be evaluated by 

performing various statistical tests, such as T-test, One way ANOVA, non-

parametric tests (median test, Mann-Whitney U test and Kruskal-Wallis test), and 

Kaplan-Meier survival test. Gene targets with significant clinical associations 

were considered to be highly likely to have clinical inferences of HCC patients. 
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In summary, in this section of this project, I integrated the ChIP-Seq data and 

microarray expression profiles from both cell line and HCC patients, as well as 

clinical data from 100 HBV-associated HCC patients, and performed a series of 

computational analysis as described above, to identify genome-wide potential 

HBx-binding sites, potential HBx-interacting transcription factors, and putative 

clinically associated HBx direct gene targets that were deregulated indirectly by 

HBx through interactions with transcription factors. Previous studies on HBx 

deregulation of host genes were mainly carried out in cell lines due to lack of 

patients data. In this study, we are the very first to integrate the clinical data of a 

large series of HCC patients and identify potential HBx deregulated gene targets 

with significant clinical inferences. Identification of clinically significant direct 

gene targets of HBx may help us to further understand the underlying mechanisms 

of HBV-induced hepatocarcinogenesis, and facilitate future discovery of potential 

drug targets and novel drug therapies for HCC. 

1.10.3 Summary of Project Objectives 

Figure 1.5 briefly summarizes the various specific objectives of this project. By 

characterization of HBV genome integration sites and identification of clinically 

associated deregulated gene targets of HBx, we aim to get more insights of the 

two essential underlying mechanisms that may potentially contribute to HBV-

induced hepatocarcinogenesis in HCC patients: HBV genome integration into 

human genome and HBx deregulation of host gene expressions through 

interactions with transcription factors. In the following sections of this MSc thesis, 
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Chapter 2 will describe the experimental design, data analysis pipeline, and 

interpretation of results on HBV-host junction sites obtained by analysing the 

FLX high-throughput sequencing data of enriched HBV-containing DNA 

fragments extracted from 48 HBV-associated HCC patients. Chapter 3 will 

describe the ChIP-Seq experimental design, data analysis pipeline and 

interpretation of results on HBx genomic binding sites, HBx-interacting 

transcription factors, and clinically associated deregulated direct gene targets of 

HBx obtained by integrating the ChIP-Seq data, microarray expression profiles 

for both liver cell line (THLE3) and HCC patients, as well as the clinical data of 

100 HCC patients. Chapter 4 will give a summary and conclusion of this study. 



 

44 

 

 
Figure 1.5: Aims of the project. Our laboratory has applied a targeted NGS technique 
to identify HBV-human integration sites. I implemented a workflow to analyze the 
high-throughput FLX sequencing data to: 1) first remove pure host and noise reads by 
aligning reads to human and HBV genomes, 2) de novo assemble the reads into 
longer “contigs” to reconstruct original DNA sequences and recover junction sites 
disrupted from DNA shearing; then identify HBV-host junction sites by searching 
“contigs” against human and HBV genomes, and last 3) perform post-identification 
analysis to get more detailed information on HBV-host genome integrations. Our 
laboratory also applied ChIP-Seq technique with HBx antibodies to profile genomic 
binding sites of HBx. I integrated the ChIP-Seq sequencing data, microarray 
expression profiles and HCC patient clinical data to: 4) first remove ChIP-Seq 
sequencing reads that matched ambiguously to the human genome, 5) identify 
significantly enriched peak regions as potential DNA binding sites of HBx using 
peak-calling algorithms, 6) identify potential HBx-interacting transcription factors 
from motif enrichment analysis, 7) identify potential deregulated direct gene targets 
of HBx by integrating microarray expression profiles, and last 8) identify clinically 
significant deregulated direct gene targets of HBx by integrating clinical features and 
survival time data of 100 HBV-associated HCC patients. The high-throughput 
sequencing data used in this project are highlighted in blue, while the microarray 
expression profiles and clinical data used are highlighted in orange and the 
computational analysis processes are highlighted in pink. 
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CHAPTER 2: Computational Characterization of HBV-Host 
Genome Integration Sites 

2.1 Materials and Methods 

2.1.1 Data Collection: HBV-containing DNA Fragments Enrichment and 

FLX Sequencing Library Construction 

DNA samples were extracted from tumor and adjacent non-tumor tissues of 48 

HBV-positive HCC patients, and a total of 96 FLX sequencing libraries were then 

constructed in our laboratory following the protocol briefly shown in Fig 2.1. The 

key step of the HBV sequence enrichment strategy was to use the specifically 

designed HBV probes to pull down HBV-containing DNA fragments from 

extracted patient DNA samples. To ensure maximum coverage of the whole HBV 

genome with minimum bias, 26 3' biotinylated HBV probes which are 70-mer 

long were specifically designed based primarily on conserved regions. 

Nevertheless, probes within some less conserved regions of 96 genotype B and 

genotype C HBV genome sequences downloaded from NCBI data repository had 

to be designed as well. In order to make full use of the sequencing capacity, 

pooled FLX sequencing of all the 96 tissue samples was done, where each sample 

library had a unique 6bp library barcode attached at the 5' of the DNA fragments 

for identification. This enrichment strategy facilitated the capture of novel HBV-

containing sequences from the 48 pairs of patient DNA samples, without prior 

knowledge on which part of HBV genome integrated to human genome.  
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Figure 2.1: Flowchart of the HBV enrichment strategy applied in our laboratory. 
Each extracted DNA sample was first sonicated into small fragments of 300 to 
800bp, and linkers were added for sequencing purpose. The double-stranded DNA 
fragments were then denatured into single-stranded fragments and twenty-six 3’ 
biotinylated HBV probes of length 70-mer were then used to pull down the 
fragments that contain HBV genome sequences. The HBV-containing DNA 
fragments were then undergone pooled FLX sequencing, where each sample 
library had a unique 6bp library barcode added to the 5' of the sequence reads for 
identification. 

2.1.2 Computational Identification of HBV-Host Junction Sites from FLX 

Sequencing Data 

A specific analysis pipeline was developed to identify the HBV-human junctions 

from the 454 FLX sequencing reads (Fig.2.2).  
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Figure 2.2: Analysis pipeline for identification of HBV-human junctions from 454 
FLX sequencing data. NCBI standalone soft tool BLASTN 2.2.23+ was used to 
search sequence reads against human genome (NCBI reference contig assembly 
of Build37) and HBV genome (human HBV strain genome sequences 
downloaded from NCBI genome database). Reads not assigned to any patient 
samples, or fully matched to human genome, or with no hit to HBV genome were 
filtered out. Then de novo assembly algorithm from DNASTAR SeqMan NGen 
was used to assemble the rest reads into contigs for each patient. Contigs and 
unassembled reads, which were either fully aligned to HBV genome or with at 
least 52 consecutive bases aligned to HBV genome, were selected for further 
identifications. The sequence identities were classified into five groups where the 
two groups “HBV-HG junction” and “Modified HBV-HG junction” contained the 
predicted junction points where HBV sequences insert into human genome. A 
graphic representation of the typical sequences identities is shown in Fig 2.3. 
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From the pool of millions of raw sequence reads, those reads whereby the 6bp 

barcodes were not matched to any patient were first removed, and the remaining 

reads were assigned to different patients based on the unique identification 

barcodes. The assigned reads were then searched against human genome (NCBI 

reference contig assembly Build37) using NCBI standalone soft tool BLASTN 

2.2.23+ (Basic Local Alignment Search Tool) (Altschul et al., 1997). Reads that 

were fully matched to human genome were further removed as “pure” human 

sequences. Full match to human genome was defined based on two criteria: 1) the 

matching identity of the local alignment between sequence read and human 

genome was above 80%; 2) the 3’ and 5’ ends of the sequence read that were not 

covered by the local alignment must be shorter than 12bp. The remaining reads 

were further searched against human HBV genome strains sequences downloaded 

from NCBI Genome database, and those with no hit to HBV genome were further 

removed as insignificant reads. Reads that remained after the above filtering 

process were used for downstream identification of HBV-HG junctions. 

To recover possible HBV-HG junction sites that might be disrupted during DNA 

shearing process as well as to reconstruct the original DNA sequences from 

fragmented sequencing reads, the remaining reads were assembled into longer 

sequences known as “contigs” for each patient sample using de novo assembly 

algorithm DNASTAR SeqMan NGen and LaserGene for visualization of 

assembly. For each patient, the assembled contigs and unassembled reads left 

were then searched against HBV genome, and those either fully matched to HBV 

genome or having HBV hit longer than 52bp were selected. The reason 52bp was 
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used as a threshold is that the longest identical region between human genome 

and most HBV strains genome is 52bp. Thus sequences that had at least 52 

consecutive bases aligned to HBV genome would carry more confidence that the 

aligned part of the sequence were truly derived from HBV genome rather than 

human genome.  

Subsequently, the selected contigs and unassembled reads either fully aligned to 

HBV genome or with at least 52 consecutive bases aligned to HBV genome, were 

searched against both HBV and human genomes for sequence identities. In this 

study, sequence identities were classified into five groups: one group is named 

“intact HBV” referring to sequences that are fully matched to HBV genome; 

second group is “modified HBV” including sequences with one region aligned to 

HBV genome and the other region aligned to a different region of HBV genome; 

the third group is “HBV+Unknown” containing sequences with one region 

aligned to HBV genome but the other region comprising only a few bps that is too 

short to be accurately mapped to either HBV or human genome (“unknown”); the 

fourth group is “HBV-HG junction” representing sequences with one region  

aligned to HBV genome but the other region mapped to human genome; and the 

last group is “modified HBV-HG junction” referring to sequences with one region 

identified as “modified HBV” and the other region aligned to human genome. 

Contigs and unassembled reads grouped into “HBV-HG junction” and “modified 

HBV-HG junction” would contain the predicted junction points where HBV 

sequences insert into human genome. The HBV-HG and modified HBV-HG 

junctions were then further classified into two types for ease of post-identification 
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analysis: Type I has the 5’ end of the HBV genome sequence deleted at the 

integration site, and Type II has the 3’ end of the HBV genome deleted at the 

integration site (Fig 2.3). This classification will facilitate the identification of 

genes or functional domains of HBV genome that are deleted or conserved after 

the integration events. 

 
Figure 2.3: Typical patterns of HBV-containing sequence identities: intact HBV 
that is fully aligned to HBV genome, modified HBV with one region of the 
sequence aligned to HBV genome and the other region aligned to human genome, 
HBV+Unknown with one region aligned to HBV genome and the other region not 
known to both HBV and human genomes, and HBV-HG junctions with one 
region aligned to HBV genome and the other region aligned to human genome. In 
this study, the HBV-HG junctions were further grouped into two types: Type I 
with the 5’ end of HBV genome deleted (pattern1) and Type II with 3’ end of 
HBV genome deleted (pattern2) in the integrations. The red color highlighted the 
junction points on HBV genome. 

 

2.2 Results 

2.2.1 Sequence Identities of the FLX Sequencing Reads 

A total of 1,902,755 raw sequence reads were obtained from 454 FLX 

pyrosequencing of our 48 pairs of DNA samples extracted from tumor and 

adjacent non-tumor tissues of HBV-positive HCC patients. Each sequence read 
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had a 6bp library barcode at the 5' to facilitate the unique identification of the 

specific patient DNA sample. The raw sequence reads were then analysed 

following the pipeline shown in Fig 2.2 and a summary of the sequence identities 

was shown in the Fig 2.4. 

 

Figure 2.4: Summary of sequence identities for all 1,902,755 raw FLX sequencing 
reads. About 2.13% of the raw sequence reads were not assigned to any patient 
sample because of no match of unique 6bp library barcodes. A large portion of the 
raw reads, about 95.22%, were fully matched to human genome and another 
1.74% had no hit to HBV genome. These sequence reads were removed from 
assembly analysis. The rest 0.91% reads with at least one hit to HBV genome 
were then uploaded to SeqMan NGen de novo assembler for assembly into longer 
sequences which we called "contigs". As a result, 1224 contigs were formed and 
5227 raw reads remain unassembled. These contigs and unassembled reads were 
then searched against HBV genome, and 220 contigs plus 158 unassembled reads 
were found either fully matched to HBV genome or with at least 52 consecutive 
bases aligned to HBV genome. These 378 sequences (220+158) were considered 
confidently containing HBV sequences and would be used for downstream 
analysis to identify HBV-host integrations.  

About 2.13% of the raw sequences did not match to the unique 6bp barcodes for 

the patient samples and were thus removed at first place. The remaining reads 

were then assigned to the 48 patients each with paired tumor and adjacent non-

tumor tissue samples based on the barcode identification. The assigned raw reads 
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had average length of 254bp and ranged from 34bp to 1121bp. These reads were 

then searched against human and HBV genomes using BLAST, and a large 

portion of the raw reads (95.22%) were found to be fully aligned to human 

genome and another small proportion of 1.74% did not align to the HBV genome. 

“Fully matched" to human genome was defined as: there are at least 80% identity 

between the query sequence and the reference genome sequence and not more 

than 12bp of the 5’ and 3’ ends of the sequence does not align to the reference 

sequence. Sequences that were either purely human or did not align to HBV 

genome are probably results of non-specific enrichment, and were then removed 

from downstream assembly analysis. The remaining 0.91% of the reads that had 

hits to HBV genome were assembled into longer sequences ("contig") using 

SeqMan NGen de novo assembler. 

The criteria for the de novo assembly are as follows: for two sequence reads to 

assemble into one longer sequence, the overlapping fragment between the two 

reads must be longer than 19bp and the overlapping region should be above 85% 

identical. In addition, the assembler algorithm also calculates the probability that 

an observed overlapping fragment is also observed amongst other input sequences. 

Hence, the longer the overlapping fragment, the less likely that fragment is 

observed in other sequences, thus the more confidence one can have that the 

overlapping fragments are not merely due to a chance event. The assembly was 

done for every single patient sample, and the assembled contigs and unassembled 

reads were then searched against the HBV genome. As a result, a total of 378 

sequences (220 contigs and 158 unassembled reads) were found to either align 
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completely with the HBV genome or have greater than 52 consecutive bases 

identical with the HBV genome. 52bp was chosen as a threshold is because that 

the longest identical region between the HBV and human genome sequences is 

52bp. Thus a sequence, which had greater than 52 consecutive bases locally 

aligned to HBV genome, was most likely derived from the HBV genome rather 

than human genome. 

Hence, a total of 378 sequences (220+158) were found highly likely to be derived 

from the HBV genome, with some aligning to both human and HBV genome 

sequences where potential HBV-host integration sites can be identified. These 

378 HBV-containing sequences were then used for downstream analysis 

including the identification of HBV-host integration sites.   

2.2.2 Sequence Capture Coverage of HBV Genome from FLX data 

To determine if the entire HBV genome can be enriched by the specifically 

designed HBV probes in our laboratory and also to determine if there are 

preferred enrichment on specific regions of the HBV genome, among the 378 

identified HBV-containing sequences, the number of sequences that aligned to 

each position of the circular HBV genome (1 to 3215bp) was counted and then 

plotted as shown in Fig 2.5. As evident in Fig 2.5, the designed HBV probes were 

capable of capturing the entire HBV genome, and in particular, the HBx gene 

(position: 1374-1838) was relatively more abundant than other regions of the 

HBV genome in these patients. Interestingly, the 3' end (near position 1838) of 

the HBx gene had relatively lower abundance than the 5' end (near position 1374). 
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This difference in the abundances of the 5’ and 3’ ends of HBx gene in HCC 

patient liver tissues may indicate the differences of their functions. 

 
Figure 2.5: Coverage of the HBV genome (3215bp) by the 378 HBV-containing 
sequences including 220 assembled contigs and 158 unassembled reads in patients. 
For each position of the HBV genome of length 3215bp, the number of sequences 
that covered the position was counted and then plotted as a distribution over the 
entire HBV genome. It turned out that the entire HBV genome could be captured 
by the HBV probes designed in our laboratory, and the HBx gene (1374-1838) 
may exist more abundantly relative to other parts of the HBV genome in patients. 
And the 3’ end of HBx gene (near position 1838) may have lower abundance than 
the 5’ end (near position 1374) in patient liver tissues.    
 

2.2.3 Identification of Modified HBV and HBV-Human Genome Junctions 

These 378 HBV-containing sequences were searched against HBV and human 

genomes, and then classified them into the five groups, as shown in Table 2.1 and 

Supplementary Table S1. Of the 378 sequences, 221 were fully matched to HBV 

genome ("intact HBV"); 60 were chimeric where one region of the sequences 

aligned to HBV genome and the other region aligned to a different region of HBV 

genome ("modified HBV"); 34 had one region aligned to HBV genome but the 
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other region containing only a few bases that makes it difficult to map uniquely to 

human or HBV reference genomes ("HBV+Unknown"); 56 had one region 

aligned to the HBV genome and the other region aligned to human genome 

("HBV-HG junction"); and 7 had one region identified as "modified HBV" and 

the other region aligning to the human genome sequences ("modified HBV-HG 

junction"). The 221 "intact HBV" sequences were not long enough for us to 

determine whether they come from free HBV species or integrated HBV with 

human genome in patients. The 60 "modified HBV" sequences had various 

alterations and were probably consequences of the complex events (deletions, 

insertions, duplications, inversions and rearrangements) that occurred after the 

HBV genome is integrated into human genome. These 378 HBV-containing 

contigs and unassembled reads were distributed amongst 42/48 (~87.5%) patients. 

Among these 42 patients with HBV-containing sequences, ~35.7% (15/42) had 

various alterations/modifications in their HBV sequences including insertion, 

deletions, duplications and inversions (“modified HBV” and “modified HBV-HG 

junctions”), while ~52.4% (22/42) carried both HBV and human sequences within 

the same sequence from which integration sites can be inferred (“HBV-HG 

junction” and “modified HBV-HG junctions”). Our laboratory has experimentally 

successfully validated a subset of "intact HBV", "modified HBV" and “HBV-HG 

junction” sequences. However, there seems to be no conserved patterns of the 

alterations/modifications of the HBV sequences (“modified HBV”) among 

patients, during integration events. This may suggest that the alterations of HBV 
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genome sequences after insertion into human genome were either very complex 

or relative random as implicated by previous studies.  

Table 2.1: Summary of the identities of the 378 HBV-containing sequences. The 
sequence identities were classified into five categories: intact HBV, 
modified/altered HBV, HBV+unknown, HBV-Human junction, and modified 
HBV-human junction. 

 

Nevertheless, some patterns were apparent when “HBV-HG junction” sequences 

where the HBV and human genomic sequences integrated, were examined. The 

56 “HBV-HG junctions” and 7 “modified HBV-HG junctions” comprised 

junction points that fused HBV sequence to the human sequence. The detailed 

information of these 63 HBV-Human junctions was listed in Supplementary Table 

S2, which illustrated the integration positions of HBV and human genomes, 

junction points, and the HBV and human genes where the junction points resided. 

Twenty seven of the 63 junctions (~42.9%) were predicted to have the junction 

points on HBx gene. Although the HBx gene is only 465bp of the HBV genome 

of 3215bp (~14.5%) as seen in Fig 2.6, the junction sites were almost three times 

more enriched in the vicinity of HBx gene (42.9% ~= 3*14.5%) with significant 

Chi-Square two-sided p-value of 0.0008, compared to other genes of HBV 

genome. Thus, we may conclude that HBV genome integrations may 
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preferentially occur at the HBx gene, indicating potential functions of HBx gene 

in HBV-induced hepatocarcinogenesis. Our laboratory has successfully 

experimentally validated a selected subset of 23 HBV-HG junctions, of which 20 

had the junction points on HBx gene, as indicated in the 8th column of 

Supplementary Table S2. This indicated that our analysis pipeline (Fig 2.2) is 

robust for the FLX sequencing data in identifying novel HBV-human integration 

sites, and at least a subset of 23 novel HBV-human integration sites have been 

experimentally validated to exist in HCC patient liver tumor or adjacent non-

tumor tissues.  

 

Figure 2.6: Enrichment of HBV-HG junctions with integration sites on HBx gene. 
The circular HBV genome consists of four major coding genes: polymerase 
(2307-3215 & 1-1623), pre-core (1814-2452), surface protein (2848-3215 & 1-
835), and HBx (1374-1838). Out of the 63 HBV-human junctions predicted, 27 
(~42.9%) were predicted to occur on HBx gene. HBx gene is a small open reading 
frame of length 465bp which accounts only ~14.5% of the entire HBV genome. 
We could see that the HBV genome integrations were almost three times enriched 
in HBx gene (42.9% ~= 3*14.5%), with significant Chi-Square two-sided p-value 
of 0.0008, compared to other genes of HBV genome. Therefore it could be 
concluded that HBV genome integrations may preferentially occur on HBx gene, 
indicating potential functions of HBx for HBV-associated HCC. 
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Integration of HBV genome into human genome is implicated to have two basic 

functions: disrupting the host gene expressions or expressing chimeric transcripts 

and proteins. Within human genome, most of the junction points were located at 

the non-coding regions, such as, promoter, introns and intergenic regions (Table 

2.2), suggesting that the HBV insertions may potentially disrupt the regulatory 

elements on the human genome of host gene expressions. To check whether these 

junctions potentially change host gene expressions, the expression values of the 

nearest genes for each junction site were examined in patient tumor and non-

tumor tissues from patient cDNA expression microarray profiles. Among the 63 

junctions, there were 13 nearest genes that were differentially expressed between 

tumor and non-tumor tissues by at least 2 fold (Supplementary Table S2). Nine of 

the 13 genes had the HBV junction points on introns, while three genes had 

junction points at downstream of gene regions and one at promoter region. The 

true cellular events leading to the final change of these 13 host gene expressions 

remain unknown, but it might potentially be due to the viral genome integration. 

Nevertheless, most of the 63 viral integrations occur on non-coding regions of 

host genome, and by computationally scanning for opening reading frames in the 

integrated genome, we hypothesized that these viral integrations may result in 

early termination of viral genes (ie, expression of modified viral proteins) or 

expression of viral-host chimeric transcripts that might be potentially oncogenic. 

Our laboratory has experimentally validated the existence of viral-host chimeric 

transcripts and functional evaluation of these chimeric transcripts is still in 

progress in the laboratory.  



 

59 

 

Table 2.2: Summary of the locations of the 63 junction points on human genome.  

Location of HBV-HG Junctions # of Junctions 
Promoter 4 

Intron 21 
Exon 1 

Hypothetical pseudo-genes 5 
Intergenic 30 

Not Annotated 1 
Non-coding RNA 1 

Total 63 
 

2.2.4 Analysis of HBV-Host Junctions with Junction Points on HBx gene 

Since HBx gene has been implicated to play a major role in the development of 

HCC in chronic HBV-infected patients, the 27 HBx-HG chimeric junctions were 

further examined. HBx gene of length 465bp codes for HBx protein of 154 amino 

acids which is a multifunctional protein with trans-repression regulatory domain, 

dimerization domain, and DDB1 binding domain at N-terminal, and 

transactivation domain and p53 binding domain at C-terminal (Fig 2.7). To see 

which functional domains of HBx were affected by the integrations, the locations 

of the 27 HBx-HG junction points were plotted on HBx gene as shown in Fig 2.7. 

Since the coding domains of HBx protein were from the positive strand of HBx 

gene, the HBx-HG junctions were grouped into two junction patterns (Fig 2.3 & 

Fig 2.7): pattern 1 with the 5' end of HBx gene (N-terminal of HBx protein) 

deleted at the junction point; and pattern 2 with the 3' end of HBx gene (C-

terminal of HBx protein) deleted at the junction point. Of the 27 junctions with 

fusion point on HBx gene, eight had the N-terminal of HBx deleted in the 

integrations (junction pattern 1), 18 had the C-terminal of HBx deleted in the 

integrations (junction pattern 2), and 1 had a special case of HG-HBV-HG 
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junction pattern which had the first and last part of the sequence aligned to human 

genome while the middle part aligned to HBV genome. Six out of the eight 

junctions with N-terminal of HBx deleted located at the very 3' end of HBx gene 

(e.g. position 1820), with only a few base pairs remained in the junctions, 

indicating that almost the entire HBx gene was deleted in the integrations. In fact, 

it could be regarded that the HBx gene was not involved in these six junctions. 

Nevertheless, the other two pattern 1 junctions with the trans-repression domain 

removed were experimentally validated by our laboratory to exist in patients. 

Furthermore, the 18 junctions with C-terminal of HBx deleted mostly located 

within the p53 binding domain, suggesting that the p53 binding domain of HBx 

was deleted or partially deleted in the integrations. These 18 junctions have all 

been experimentally validated in our laboratory. The single HG-HBV-HG 

junction cannot be experimentally validated and is probably due to assembly 

errors. In summary, the two junctions with N-terminal trans-repression domain 

deleted and the 18 junctions with C-terminal p53 binding domain of HBx deleted 

in the integrations were all experimentally validated and may lead to expression 

of potential chimeric transcripts fusing HBx gene and human sequences.  

Interestingly, the 18 junctions with C-terminal of HBx deleted all had the p53 

binding domain deleted or partially deleted in the integrations. This may implicate 

that the N-terminal two thirds of HBx (amino acids 1 to 100 or nucleotide 1374 to 

1673) preferentially remain intact in the integrations. N-terminal two thirds of 

HBx comprise of trans-repression domain, dimerization domain, DDB1 binding 

domain and transactivation domains, which may be important for HBx functions 
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in patients. On the other hand, deletion or partial deletion of p53 binding domain 

in HBx may potentially abolish its interaction with p53. P53 is a well-known 

tumor suppressor gene regulating apoptosis and thus elimination of HBx 

interaction with p53 may promote hepatocarcinogenesis and development of HCC. 

In addition, this observation of more frequent deletion of C-terminal than N-

terminal of HBx in integrations is consistent with our earlier result of sequence 

coverage over whole HBV genome, shown in Fig 2.5, where the 3' end of HBx 

gene had relatively lower abundance than the 5' end of HBx gene. 
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Figure 2.7: Location plot of the 27 predicted HBV-HG junctions where the junction 
points fall on HBx gene (Supplementary Table S2). a) The reported functional 
domains of HBx protein included trans-repression regulatory domain, dimerization 
domain, DDB1 binding domain, transactivation domain, and p53 binding domain. 
Of the 27 junctions, eight had the N-terminal of HBx deleted (yellow arrow), 18 had 
the C-terminal of HBx deleted (green arrow) and one had a special case of HG-
HBV-HG junction pattern, in which the first and last part of the sequence aligned to 
human genome while the middle part aligned to HBV genome. Six out of the eight 
junctions with N-terminal of HBx deleted located at the very 3' end of HBx gene 
with only a few base pairs of HBx gene remained in the junction, and thus could be 
regarded not involving HBx gene. The other two junctions with N-terminal of HBx 
deleted had the trans-repression domain deleted, and were experimentally validated 
by our laboratory colleagues. The 18 junctions with C-terminal of HBx deleted were 
all experimentally validated and mostly had the p53 binding domain deleted or 
partially deleted in the integrations. The one HG-HBV-HG junction cannot be 
experimentally validated and could possibly be due to assembly errors. In total, the 
two junctions with N-terminal trans-repression domain deleted and the 18 junctions 
with C-terminal p53 binding domain of HBx deleted may potentially lead to 
expression of chimeric transcripts fusing HBx and human sequences. b) Part B 
illustrates the HBV-HG junction patterns in genome integrations: pattern 1 with N-
terminal of HBx deleted; pattern 2 with C-terminal of HBx deleted; and HG-HBV-
HG junction with both N-terminal and C-terminal of HBx deleted. Red color 
highlights the integration sites of HBV genome with human genome. 
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2.3 Discussion and Future Work 

Currently most of the approaches used to study the integration sites of HBV in the 

host genome were all PCR-based methods which required prior information on the 

integrated HBV sequences, or assumption of integration of certain parts of HBV. To 

comprehensively characterize HBV genome integration boundaries in HCC patients, 

our laboratory developed an unbiased HBV enrichment strategy followed by next 

generation sequencing (454 life science FLX sequencer) to capture HBV related 

DNA fragments from the complex genomic DNA samples extracted from the tumor 

and adjacent non-tumor tissues of 48 HBV-positive HCC patients. In this study, I 

implemented a pipeline to analyse the ultra high-throughput sequencing data, and 

was able to identify various novel modified/altered HBV sequences as well as novel 

HBV-host junctions, without much prior knowledge or assumption of which part of 

HBV genome is integrated into host genome. A total of 378 sequences including 

assembled contigs and unassembled reads were found to contain HBV sequences, 

out of which, 60 were altered HBV sequences (e.g. insertion, deletion, duplication 

and inversion) and 63 comprised of HBV-HG junctions. These 378 HBV-containing 

sequences were distributed amongst 42/48 (87.5%) patients. Of the 42 patients, 

35.7% (15/42) had various alterations in their HBV sequences, including insertions, 

deletions, duplications and inversions, while 52.4% (22/42) carried both HBV and 

human sequences within the same sequence from which integration sites can be 

inferred (HBV-HG junctions). 



 

64 

 

Particularly, our laboratory has successfully validated a batch of altered HBV 

sequences and HBV-HG junctions. Presence of the altered HBV sequences in 

patients confirmed that after HBV genome inserted into host genome, complex 

manipulations events may have occurred, such as insertions, deletions and 

duplications, inversions and rearrangements. However, there seemed to be no 

conserved patterns of these alteration events across the 48 patients, which implicate 

that the alteration process might be either very complex or relatively random. 

Nevertheless, we do observe that the junction/fusion points of HBV genome with 

human genome were enriched on HBx gene (27/63 junctions), and more 

interestingly the C-terminal of HBx was often deleted at the integration sites. HBx 

protein of length 154 amino acids has been implicated to play a major role in HBV-

induced hepatocarcinogenesis, and our observation suggested that integration of C-

terminal deleted HBx with human genome may be potentially functionally important 

in hepatocarcinogenesis. P53 has been reported to interact with HBx at C-terminal 

amino acids 100 to 154. Deletion or partial deletion of C-terminal p53 binding 

domain of HBx may potentially abolish its interaction with p53. P53 is a well-

known tumor suppressor gene regulating apoptosis and thus abortion of HBx 

interaction with p53 may promote hepatocarcinogenesis and development of HCC. 

More importantly, the N-terminal two thirds of HBx (amino acids 1 to 100) were 

observed to be preferentially retained in the integrated form. The N-terminal two 

thirds of HBx comprise trans-repression domain, dimerization domain, DDB1 

binding domain and transactivation domains, and may be important for HBx 

functions in HBV-induced hepatocarcinogenesis. 
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Integration of HBV into human genome is implicated to either disrupt host gene 

expressions or express chimeric transcripts and proteins to functionally participate in 

hepatocarcinogenesis. We have observed that most of the 63 HBV-HG junctions 

occurred at the non-coding regions of human genome (Table 2.2), therefore, the 

integration of HBV genome may interrupt the regulatory elements of host genes, 

such as promoters, introns, and intergenic regions. Examining the nearest genes for 

the 63 junctions, we found 13 were differentially expressed in tumor and adjacent 

non-tumor tissues of HCC patients with at least 2 fold changes. Though it might be 

due to the viral genome integration, the true cellular events leading to the change of 

these 13 host gene expressions are still unknown. Nevertheless, by computationally 

scanning for opening reading frames, we hypothesized that in addition to 

interrupting host gene expressions, these viral integrations may also result in early 

termination of viral gene expression (i.e. expression of modified viral proteins) or 

expression of viral-host chimeric transcripts that may be potentially oncogenic. Our 

laboratory has experimentally observed the existence of novel viral-host chimeric 

transcripts. The functional evaluation of these chimeric transcripts/proteins is still in 

progress in the laboratory.  

Identification of novel HBV-human genome integration sites, modified viral protein 

expression and potential viral-host chimeric transcripts could facilitate the 

understanding of the underlying mechanisms of HBV genome integrations into 

human genome, and may give us more knowledge on how HBV infection gradually 

leads to hepatocarcinogenesis. The major benefit of utilizing hybrid capture method 

coupled with single-end high-throughput 454 FLX pyrosequencing is that the reads 
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could be long enough to permit the identification of precise virus insertion sites in 

human genome at single-base resolution with one region of the read aligned to 

human genome and the other region aligned to virus genome. Last but not least, this 

has been among the very first to comprehensively characterize HBV integrations 

utilizing high throughput sequencing techniques in a large series of samples from 48 

HCC patients on a genome-wide basis without much prior knowledge of the 

integration sites. By the identification and characterization of these genome 

integration sites, we are now better positioned to understand the underlying 

mechanism of how HBV genome integrations may contribute to HBV-induced 

hepatocarcinogenesis in HBV-associated HCC patients. 
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CHAPTER 3: Computational Identification of Putative 
Direct Gene Targets of HBx 
 

3.1 Materials and Methods 

HBx protein has been implicated to play an important role in HBV-induced 

hepatocarcinogenesis, and one of the reported underlying mechanisms is that HBx 

binds to DNA indirectly through interactions with transcription factors and deregulate 

host gene expressions by changing transcription factor binding affinities to DNA. In 

order to profile the genome binding sites of HBx-transcription factor complex on a 

genome-wide basis with single-base resolution, our laboratory has utilized antibodies 

specifically against HBx protein to immunoprecipitate DNA fragments potentially 

bound by HBx-transcription factor complex in primary immortalized liver cell line 

(THLE3) transfected with HBx-expressing adenoviruses, and then applied high-

throughput Illumina sequencer to sequence the immunoprecipitated DNA fragments. 

This ChIP-Seq technology produced millions of sequence reads of uniform length 36 

bp for HBx-expressing THLE3 cells (AdHBx) and control THLE3 cells (AdEasy). In 

this project, I implemented an analysis pipeline to integrate the THLE3 ChIP-Seq 

sequencing data, microarray expression profiles for THLE3 cells and 100 HCC 

patients, and 100 HCC patient clinical data to identify global genome binding sites of 

HBx and predict putative clinically associated direct gene targets of HBx, as shown in 

Fig 3.1.   
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Figure 3.1: Workflow of computational analysis to identify genomic binding sites of 
HBx and putative clinically associated direct target genes of HBx. With the Illumina 
sequencing reads of 36bp generated from ChIP-Seq technique in THLE3 cells 
transfected with HBx-expression adenoviruses (AdHBx) and control THLE3 cells 
(AdEasy), I first aligned the short reads to human genome using Bowtie and removed 
those reads matched ambiguously to human genome. The remaining reads were then 
analyzed using peak-calling tools MACS and CCAT to identify significantly enriched 
peaks as potential HBx binding sites. Location of the predicted HBx binding sites 
relative to the genome structures can be plotted and examined. The genomic 
sequences of the predicted HBx binding sites were retrieved and scanned against 
TRANSFAC motif database using HOMER motif enrichment algorithm for potential 
HBx-interacting transcription factors, which were then compared with the previously 
predicted transcription factors from the ChIP-chip data (Sung, Lu et al. 2009). 
Additionally, the microarray expression profiles for the nearest genes of the potential 
HBx binding sites were analyzed using R packages “Loess” for normalization and 
“Limma” for differential expressions to identify potential HBx deregulated direct 
gene targets in THLE3 cells. Microarray expression profiles for 100 HBV-associated 
HCC patients were also analyzed using “Loess” and “Limma” and integrated to get a 
list of potential HBx direct gene targets that were also differentially expressed in 
HCC patient tumor and adjacent non-tumor tissues. Integration and analysis of the 
HCC patient clinical data using statistical analysis package SPSS further narrowed 
down a list of clinically significant potential direct gene targets of HBx. 
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I analyzed the ChIP-Seq Illumina sequencing data, microarray expression profiles, 

and HCC patient clinical data obtained in our laboratory (highlighted in blue in Fig 

3.1). For the Illumina high-throughput sequencing reads of 36bp generated from the 

ChIP-Seq technique on THLE3 cells transfected with HBx-expressing adenoviruses 

(AdHBx) and control THLE3 cells (AdEasy), the short reads were first mapped into 

human genome using reference-guided aligner Bowtie (Langmead et al., 2009), and 

those reads that matched ambiguously to human genome were removed. Peak-calling 

software tool MACS (Model-based Analysis for ChIP-Seq) (Zhang et al., 2008) was 

then used to scan the remaining reads with unique best match to human genome. 

Significantly enriched peaks identified from MACS were then re-confirmed using 

another peak-calling tool CCAT (Control-based ChIP-Seq Analysis Tool) (Xu et al., 

2010). Common enriched peaks predicted from both MACS and CCAT were 

identified as the potential HBx binding sites in human genome. Genomic locations of 

the potential HBx binding sites were then examined for possible patterns of HBx 

binding sites relative to genome structures (e.g. promoters, introns, exons, and 

intergenic regions). The genomic DNA sequences of the potential HBx binding sites 

were also retrieved and scanned against TRANSFAC transcription factor known 

motif database (Wingender et al., 1996) using HOMER motif enrichment algorithm 

(Hypergeometric Optimization of Motif Enrichment) (Heinz et al., 2010) to identify 

significantly over-represented motifs as the potential HBx-interacting transcription 

factors. Our laboratory has previously utilized ChIP-chip technique on UV-treated 

liver cell line HepG2 cells transfected with HBx-expressing adenoviruses, and 

published a list of predicted HBx-interacting transcription factors (Sung et al., 2009). 
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Therefore, the potential HBx-interacting transcription factors predicted from the 

ChIP-Seq data were also compared to those from ChIP-chip data for commonly 

predicted HBx-interacting transcription factors. Further, microarray expression 

profiles for THLE3 cells (AdHBx vs AdEasy) was analyzed using R packages 

“Loess” for microarray normalization and “Limma” for identification of differentially 

expressed genes in THLE3 cells. Expression values for the nearest genes of the 

potential HBx binding sites were then examined to identify potential HBx deregulated 

direct gene targets in THLE3 cells. Microarray expression profiles for the 100 HBV-

associated HCC patients (tumor vs adjacent non-tumor tissues) were also analyzed 

and integrated to identify potential HBx direct gene targets that were differentially 

expressed in HCC patients. To check whether these potential HBx direct target genes 

identified from THLE3 cells are truly related to HCC, clinical data of 100 HCC 

patients including survival profile etc., were also integrated to identify significant 

clinically associated gene targets of HBx using statistical analytic package SPSS 

(Statistical Package for the Social Sciences) (Mather and Austin, 1983). The 

following sub-sections under Materials and Methods will elaborate in details of the 

computational analysis shown in Fig 3.2  

3.1.1 Data Collection: ChIP-Seq Libraries, Expression Profiles & 100 HCC 

Patients Clinical Data 

As shown in Fig 3.2, Chromatin immunoprecipitation (ChIP) was performed on 

DNA samples extracted from control immortalized primary normal liver cell line 

THLE3 cells (AdEasy) and HBx-expressing adenoviruses transfected THLE3 

cells (AdHBx), using antibodies specifically against HBx protein to 
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immunoprecipitate sheared DNA fragments that are bound indirectly by HBx. 

High throughput Illumina sequencing of the immunoprecipitated DNA fragments 

were then performed to construct AdEasy and AdHBx THLE3 ChIP-Seq libraries, 

which can be further analysed to detect the potential global genomic binding sites 

of HBx and predict HBx-interacting transcription factors. The sequence reads are 

of length 36bp.  

           
 

Figure 3.2: Flowchart of experimental design for generation of ChIP-Seq data and 
gene expression profiles performed in the laboratory. DNA samples were first 
extracted from control immortalized primary normal liver cell line THLE3 cells 
(AdEasy) and HBx-expressing adenoviruses transfected THLE3 cells (AdHBx), 
then sonicated into small fragments, followed by chromatin immunoprecipitation 
using anti-HBx antibodies. After size selection, the immunoprecipitated DNA 
fragments were then sent for high throughput Illumina sequencing (36bp) to 
construct AdEasy and AdHBx THLE3 ChIP-Seq libraries. RNA samples were 
also extracted in our laboratory from the same sets of AdEasy and AdHBx 
THLE3 cells for Agilent two-color expression microarray in order to examine the 
change of gene expressions upon the presence of HBx protein in THLE3 cells.  
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To examine the change of gene expressions upon expression of HBx protein in 

THLE3 cells, RNA samples were also extracted in our laboratory from the same 

sets of AdEasy and AdHBx THLE3 cells for Agilent two-colour expression 

microarray, where control AdEasy sample was labelled as Cy3 (green) and 

AdHBx sample was labelled as Cy5 (red). Similarly, Agilent two-colour 

microarray of 100 HCC patients were performed by labelling the DNA sample 

extracted from the tumor tissue of a patient as Cy3 (green) and that from the 

adjacent non-tumor tissue in the same patient as Cy5 (red). Clinical data of the 

100 HCC patients were also available for analysis. The patient clinical data 

include tumor grade (1, 2, 3 & 4), tumor encapsulation (Yes/No), tumor necrosis 

(Yes/No), vascular invasion (Yes/No), multifocality (Yes/No), local tumor 

extension (confined tumor: Yes/No), normal liver cirrhosis (Yes/No), normal liver 

steatosis (Yes/No), hepatic dysplasia (Yes/No), and survival time. Seventy five 

out of the 100 HCC patients have survival time data: 16 patients died from HCC 

and the other 59 patients were considered "censored cases" (48 alive at the time of 

recording, 6 dead but not due to HCC, and 5 lost of follow up). The HBx protein 

expression levels in both tumor and adjacent non-tumor tissues of the 100 HCC 

patients had also been determined in the laboratory.  

3.1.2 Computational Identification of DNA Binding Sites of HBx  

The short sequence reads of length 36bp from ChIP-Seq Illumina high-throughput 

sequencing platform for THLE3 AdEasy and AdHBx cells were first aligned to 

human genome (HG19) with no gaps permitted and a maximum of 2 mismatches 

allowed using an ultrafast and memory-efficient short read aligner Bowtie. Reads 
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that aligned ambiguously to human genome were removed (i.e. reads matched to 

multiple regions of human genome with the same best alignment score and 

significance), and reads with unique best match to human genome were selected 

for downstream peak finding process. An existing ChIP-Seq peak calling 

algorithm MACS was applied taking AdEasy sample as negative control and 

AdHBx sample as ChIP. MACS algorithm will (1) first remove duplicate reads in 

the datasets that may arise from ChIP-DNA amplification and sequencing library 

preparation, (2) linearly scale the total number of reads in control data to be the 

same with that in ChIP data, (3) empirically model the size of the true protein 

binding site based on the bimodal enrichment pattern, (4) shift the genome 

locations of the reads in a strand-specific manner by half of the estimated size of 

the protein binding site, (5) scan the genome using sliding windows of user-

defined width to identify candidate peaks with significant read enrichment in 

AdHBx sample based on p-values calculated from dynamic Poisson distribution 

of reads, (6) swap ChIP and control datasets and call peaks in control data, and (7) 

calculate FDR for each detected peak in ChIP data and rank them using p-values 

and FDR. In this study, MACS was applied using the threshold of at least 10 folds 

enrichment in AdHBx sample over control AdEasy sample and enrichment 

significance p-value less than 0.00005 for finding candidate enriched peaks. 

Another peak calling soft tool CCAT was used simultaneously to re-confirm the 

list of potential enriched peaks. CCAT adopts similar algorithm with MACS but 

is superior over MACS by estimating noise rate and resampling datasets to 

balance ChIP and control sample size instead of linear scaling as in MACS. Only 
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enriched peaks predicted from MACS with their peak summits covered also by 

regions predicted from CCAT were considered as the potential DNA binding sites 

of HBx.  

3.1.3 Annotation of Genome-wide Potential HBx Binding Sites   

The potential HBx binding sites identified from ChIP-Seq data were mapped to 

the in-house human reference genome annotation database (HG19) from HOMER 

package (Hypergeometric Optimization of Motif Enrichment) developed in the 

Glass lab of UCSD (Heinz et al., 2010). This annotation database includes 

detailed information on human gene promoters, transcription start sites (TSS), 

introns, exons, gene 5’ and 3’ un-translated regions (UTRs). Promoter region was 

defined as 5kb upstream to the TSS of reference genes, and intergenic regions 

were defined as genomic regions other than promoters and gene body regions. 

Peaks located within multiple annotation categories (e.g. peaks fall in promoter of 

one gene but exon of another gene) were classified based on the precedence order 

that promoter comes first followed by 5' UTR and 3' UTR which then precede 

introns and exons. Mapping of peaks to annotation database was done using 

Microsoft SQL server 2005 software which stores relational databases and 

provides comprehensive functions for users to search and manipulate the cross-

linked data tables. 

3.1.4 Motif Enrichment Analysis for Potential HBx-interacting 

Transcription Factors 
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Genomic DNA sequences of the potential HBx binding sites were extracted from 

human genome (HG19) for transcription factor motif enrichment analysis. 

HOMER known motif enrichment algorithm scripts (Heinz et al., 2010) were 

downloaded (http://biowhat.ucsd.edu/homer/) and applied using transcription 

factor position weight matrices from TRANSFAC motif database version 11.3  

(Wingender et al., 1996) which covered 601 vertebrate motif matrices for 389 

transcription factor families. As mentioned earlier, HOMER motif enrichment 

algorithm comprises of the following steps: (i) first, the program randomly selects 

a set of background genomic sequences with similar length and GC contents to 

the potential binding site sequences named as “target sequences”, (ii) it then 

assigns weights to each background sequence to minimize the imbalance in 

sequence contents with the target sequences, (iii) it further calculates the 

occurrence of each known motif in the target and background sequences and (iv) 

then computes a significance value (e.g. p-value) for the enrichment of the motif 

in the target sequences over background sequences (Heinz et al., 2010). 

Transcription factor motifs were ranked according to their enrichment p-values 

reported by HOMER and those with p-value below 0.05 were considered as 

significantly enriched/over-represented within the potential HBx binding sites. 

These significantly over-represented ones were known as transcription factors that 

may potentially interact with HBx to form a complex and bind to DNA.  

The list of significantly enriched HBx-interacting transcription factors predicted 

in this study was also compared to the list HBx-interacting transcription factors 

discovered previously in our laboratory from ChIP-chip method (Sung et al., 

http://biowhat.ucsd.edu/homer/�
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2009). This is to see whether there is any HBx-interacting transcription factor that 

is commonly predicted in different liver cell lines under different experimental 

conditions (UV-treated HepG2 vs THLE3) using different experimental methods 

(ChIP-chip vs ChIP-Seq).  

3.1.5 Analysis of THLE3 Microarray Expression Profiles to Predict 

Deregulated Direct Gene Targets of HBx 

The Agilent two-colour microarray data with four biological replicates for THLE3 

AdHBx (labelled as Cy5) and AdEasy (labelled as Cy3) cells were analysed using 

R packages “Loess” for array normalization and “Limma” for detection of 

differentially expressed genes in AdHBx over AdEasy cells. Genes with at least 

1.5-fold expression change in AdHBx relative to AdEasy cells were selected as 

differentially expressed genes. These differentially expressed genes were 

hypothesized to be deregulated (either up- or down-regulated) either directly by 

HBx or due to downstream regulation effect of HBx. Expression values for the 

corresponding nearest genes of the potential HBx binding sites were then 

examined, and those differentially expressed with at least 1.5-fold change were 

selected as candidate deregulated direct gene targets of HBx.  

3.1.6 Gene Ontology Analysis for Deregulated Gene Targets of HBx 

The list of candidate HBx deregulated direct gene targets were uploaded to a web-

based gene ontology analysis application DAVID (Database for Annotation, 

Visualization and Integrated Discovery) (http://david.abcc.ncifcrf.gov/) for 

enriched biological processes, molecular functions, KEGG pathways and so on. 

http://david.abcc.ncifcrf.gov/�
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Gene ontology terms with Benjamini-corrected p-values below 0.05 were 

considered as significantly enriched among the deregulated direct gene targets of 

HBx, and might be potentially deregulated by HBx. 

3.1.7 Analysis of Microarray Expression Profiles of 100 HCC Patients 

The Agilent two-colour microarray data for the 100 HCC patients’ tumor 

(labelled as Cy5) and adjacent non-tumor tissues (labelled as Cy3) were analysed 

using R packages “Loess” for array normalization and “Limma” for detection of 

differentially expressed genes. Genes with at least 2-fold average expression 

change in tumor relative to adjacent non-tumor tissues of the 100 HCC patients 

with multiple test corrected p-values below 0.05 were selected as significantly 

differentially expressed genes in HCC patients.  

3.1.8 HCC Patients Clinical Data Analysis to Identify Clinically 

Associated Deregulated Gene Targets of HBx 

From the list of candidate HBx deregulated gene targets identified from THLE3 

ChIP-Seq data, those genes that were also significantly differentially expressed in 

HCC patients’ tumor over adjacent non-tumor tissues were first selected. HBx is 

reported to have oncogenic potential, thus, the gene targets displaying the same 

deregulation direction in THLE3 cells (AdHBx over AdEasy) and in HCC 

patients (tumor over adjacent non-tumor tissues) were further selected. That is, if 

the gene targets were down-regulated when HBx is expressed in THLE3 cells and 

also down-regulated in tumor compared to adjacent non-tumor tissues of HCC 

patients, they were considered likely to be related to HCC; and similarly for up-
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regulation. Thereby those gene targets deregulated consistently in THLE3 cells 

(AdHBx over AdEasy) and in HCC patients (tumor over adjacent non-tumor 

tissues) were selected for downstream clinical statistical tests to investigate 

whether these gene targets had any clinical inferences in HBV-associated HCC.  

Statistical tests were performed on these selected deregulated gene targets, using 

IBM statistical analytical soft tool SPSS 19 (Statistical Package for the Social 

Sciences ) (Mather and Austin, 1983) to find the gene targets significantly 

associated with HCC patient clinical features. The categorical clinical data of the 

100 HCC patients include tumor grade (1, 2, 3 & 4), tumor encapsulation 

(Yes/No), tumor necrosis (Yes/No), vascular invasion (Yes/No), multifocality 

(Yes/No), local tumor extension (confined tumor: Yes/No), normal liver cirrhosis 

(Yes/No), normal liver steatosis (Yes/No), and hepatic dysplasia (Yes/No). Each 

of the selected HBx deregulated gene targets was tested against each of these 

clinical features. For a statistical hypothesis testing on the association between a 

deregulated gene target and a clinical categorical feature, the 100 HCC patients 

were first divided into two or more than two groups based on the number of 

different factor groups (e.g. Yes/No) in that clinical feature, and the gene 

expression values (log2 fold change in tumor over adjacent non-tumor tissues) 

were then compared across these patient groups, with the null hypothesis that the 

different patient groups have similar gene expressions.  
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Figure 3.3: Flowchart of the statistical hypothesis testing on the association of 
HBx deregulated gene targets with patient clinical data. Each of the gene targets 
was tested on each clinical feature. In a hypothesis testing on a clinical feature, 
the normality of the gene expression distributions in patient groups (e.g.  Yes/No) 
was first checked: if the normality was valid, T-test or one-way ANOVA was 
applied depending on the number of patient groups (2 or >2 groups); if the 
normality not valid, non-parametric tests, like Median test, Mann-Whitney U test 
and Kruskal-Wallis test, were performed. For clinical features with more than 2 
patient groups, Bonferroni multiple test correction was applied to adjust the two-
sided p-values obtained from post-hoc pair-wise comparisons between the patient 
groups. Bonferroni multiple test correction was also conducted when the same 
hypothesis testing on the same clinical feature was repeatedly performed on a set 
of gene targets. A significant association between a gene target and a clinical 
feature was obtained if the corrected two-sided p-value was less than 0.05. 

As shown in Fig 3.3, for a hypothesis testing of the association between a gene 

target and a clinical feature, the normality of the distribution of the target gene 

expression in each patient group (e.g. Yes/No) was first checked: if the gene 

expression for all patient groups were normally distributed, T-test or one-way 

ANOVA was applied depending on the number of patient groups (T-test for two 

groups and one-way ANOVA for more than two groups); if normality not valid, 
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non-parametric tests, like Median test, Mann-Whitney U test for two patient 

groups and Kruskal-Wallis test for more than two patient groups, were performed. 

For clinical features with more than two groups (e.g. tumor grade: 1, 2, 3 &4), 

Bonferroni multiple test correction was applied to adjust the two-sided p-values 

obtained from post-hoc pair-wise comparisons among patient groups. Bonferroni 

multiple test correction of two-sided p-values was also conducted when the same 

hypothesis testing on the same clinical feature was repeatedly performed on a set 

of HBx deregulated gene targets. A significant association between a gene target 

and a clinical feature was established if the corrected two-sided p-value from the 

statistical tests were less than 0.05. 

In addition to clinical categorical data, 75 out of the 100 HCC patients had the 

survival profiles: 16 died from HCC and the other 59 patients were considered 

"censored cases" (48 alive at the time of recording, 6 dead but not due to HCC, 

and 5 lost of follow up). These "censored cases" were also included in survival 

time analysis. For survival time analysis on each HBx deregulated gene target, the 

75 patients were first divided into 2 groups based on the gene expression in 

patients: one group with higher expression of that gene in tumor than adjacent 

non-tumor tissues, and the other group with lower expression of that gene in 

tumor than adjacent non-tumor tissues. The survival time between the two 

patients groups were then compared using Kaplan-Meier mean and median 

survival time tests, with the null hypothesis that the two patient groups have 

similar survival profiles. Genes with two-sided p-value less than 0.05 were 

regarded highly likely to be associated with patients’ survival time.  
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3.1.9 Correlation of Expressions of HBx and HBx Deregulated Gene 

Targets in 100 HCC Patients Tumor and Adjacent Non-Tumor Tissues 

With HBx protein expression values measured by our laboratory in tumor and 

adjacent non-tumor tissues of the 100 HCC patients, a linear regression model for 

each clinically significant HBx deregulated gene target was built to investigate 

whether there is any linear correlation/relationship between the expressions of the 

gene target and HBx protein in HCC patients. Pearson correlations were 

calculated to measure the strength of the linear relationships between HBx and 

HBx gene targets expressions, and two-sided p-values measuring the significance 

of the correlations were also computed using SPSS tool.  

3.2 Results 

3.2.1 Analysis of ChIP-Seq Data and Identification of Potential DNA 

Binding Sites of HBx 

A previous study (Sung et al., 2009) done by our laboratory using ChIP-chip 

technique on gene promoter regions for UV-treated liver cell line HepG2 cells has 

suggested that HBx deregulated host gene expressions not by binding directly to 

gene promoter but through interactions with transcription factors. ChIP-Seq 

technique is advantageous over ChIP-chip primarily in terms of the capability of 

predicting the DNA binding sites of HBx globally with larger genome coverage, 

since ChIP-chip is restricted to the limited number of probes used in array chip. 

Therefore our laboratory has utilized ChIP-Seq technique on primary liver cell 

line THLE3 cells (AdHBx vs AdEasy) to comprehensively profile HBx binding 

sites globally with single-base resolution. 
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As shown in Fig 3.4, after chromatin immunoprecipitation of DNA fragments 

bound by HBx-transcription factor complexes and Illumina sequencing of the 

enriched DNA fragments (ChIP-Seq), we got 14,270,900 and 11,885,806 raw 

short reads of length 36bp for THLE3 AdEasy and AdHBx cells respectively. 

 

Figure 3.4: Processing of ChIP-Seq raw reads to identify potential HBx binding 
sites. In total our laboratory got 14,270,900 and 11,885,806 raw reads of length 
36bp for THLE3 AdEasy and AdHBx cells respectively from Illumina sequencing. 
The raw reads were first searched against human genome (HG19) using Bowtie 
with criteria of no gaps permitted and a maximum of 2 mismatches allowed, and 
reads with unique best match to human genome were then selected. In the end, 
67.12% of raw reads for AdEasy and 55.93% for AdHBx cells were used for 
downstream peak finding process. While treating AdEasy as control, MACS was 
applied searching for enriched peak regions, and 3083 peaks were found enriched 
in AdHBx over AdEasy cells. To re-confirm the enrichment of peaks, CCAT was 
also applied, and 2860 out of the 3083 peaks from MACS were finally obtained 
with their MACS peak summits falling within enriched regions predicted by 
CCAT. These 2860 peak regions were the final list of potential genomic binding 
sites of HBx and used for further analysis. 



 

83 

 

Following the workflow pipeline illustrated in Fig 3.1, an ultra-fast aligner 

Bowtie with comparable accuracy was first used to map these short reads to 

human reference genome, with no gaps permitted and a maximum of two 

mismatches allowed in the alignments. Because of the short read length (36bp) 

and the large human genome size, a remarkable portion of these reads could 

match to multiple regions of human genome. To maintain the balance of mapping 

accuracy and the number of reads retained for downstream analysis, those reads 

that matched to multiple regions of human genome with the same best alignment 

score and significance were removed. Reads with unique best match to human 

genome were remained for downstream analysis. As a result, 67.12% and 55.93% 

of the raw reads for AdEasy and AdHBx cells were selected respectively for 

peak-calling step.  

After removal of reads that matched ambiguously to human genome, the peak-

calling software tool MACS (Zhang et al., 2008) was applied treating AdEasy 

sample as negative control, with the criteria of 600bp sliding window, at least 10 

folds enrichment in ChIP over control samples and  enrichment significance of p-

value less than 0.00005. In the end, a list of 3083 peaks was obtained with 

enriched reads in AdHBx relative to AdEasy cells. To re-confirm the enriched 

peaks, another peak-calling tool CCAT (Xu et al., 2010), which adopts similar 

algorithm with MACS but is superior in its way to balance the ChIP and control 

sample size, was simultaneously applied. Of the 3083 peaks, 2860 had their peak 

summits predicted from MACS falling within the enriched regions predicted from 
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CCAT, and these 2860 enriched peaks were considered as the potential DNA 

binding sites of HBx in human genome. 

3.2.2 Genome-Wide Distribution of Potential DNA Binding Sites of HBx  

Since ChIP-Seq is capable of detecting genome-wide protein binding sites, we 

may wonder how these predicted potential HBx binding sites distribute over 

human genome. The 2860 potential HBx binding sites were aligned to the in-

house human genome annotation database of HOMER developed by the Glass lab 

of UCSD (Heinz et al., 2010), which include detailed position information on 

gene promoters, introns, exons, un-translation regions (5’ or 3’ UTR), and 

transcription start sites (TSS). The promoter regions were defined as 5kb 

upstream to the TSS of reference genes, and the intergenic regions were defined 

as genomic regions other than promoters and gene body regions. Potential HBx 

binding sites located within multiple genome annotation categories (e.g. peaks fall 

in the promoter of one gene but exon of another gene) were classified based on 

the precedence order that promoter comes first followed by 5' UTR and 3' UTR 

which then precede introns and exons. Distributions of the 2860 potential HBx 

binding sites on each annotation category were shown in Fig 3.5A. 
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Figure 3.5: Genome-wide distribution of the 2860 potential DNA binding sites of 
HBx predicted from ChIP-Seq data in THLE3 cells. Promoter is defined as 5kb 
upstream to transcription start sites (TSS) of human genes. A) Distribution of the 
2860 potential HBx binding sites on different regions of genome: promoters, 
introns, exons, 5'UTR, 3'UTR, and intergenic regions. Since introns and 
intergenic regions are the two longest categories in human genome, most potential 
binding sites located within introns of genes (37.45%) and intergenic regions 
(34.58%). Next abundant is the promoter, followed by exons, 5'UTR and 3'UTR. 
Importantly, these 2860 predicted HBx binding sites were found to be 
significantly enriched in exons and promoter regions of genes and significantly 
less distributed in intergenic regions with binomial two-tailed p-values less than 
0.00001. B) Almost half of the binding sites within introns located in the first and 
last introns. C) Almost half of the binding sites within exons located in the first 
and last exons. Enrichment on the first and last introns/exons relative to other 
middle introns/exons indicates the potential regulatory effect of HBx on gene 
expressions. 
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We could see that most of the potential HBx binding sites located within introns 

of genes (37.45%) and intergenic regions (34.58%), which is not surprising since 

introns and intergenic regions are the two longest categories in human genome. 

Next abundant are the promoters, exons, 5'UTR and 3'UTR in descending order. 

However, these 2860 predicted HBx binding sites were found to be significantly 

enriched in exons and promoter regions of genes and significantly less distributed 

in intergenic regions with binomial two-tailed p-values less than 0.00001. Among 

the potential binding sites within introns and exons (Fig 3.5B and 3.5C), we found 

almost half were located within the first and last introns or exons of genes. 

Enrichment of the potential binding sites of HBx in the first and last introns and 

exons of genes relative to other middle introns and exons might suggest the 

potential regulatory effect of HBx on gene expression. 

3.2.3 Potential HBx-Interacting Transcription Factors Predicted from 

HepG2 ChIP-chip and THLE3 ChIP-Seq Data 

To identify the transcription factors that may potentially interact with HBx in 

THLE3 cells, the genomic DNA sequences for the 2860 global potential HBx 

binding sites were extracted and scanned against the known transcription factor 

binding motifs in TRANSFAC database (Wingender et al., 1996) using motif 

finding scripts from HOMER (Heinz et al., 2010). Of the 601 vertebrate motif 

matrices tested, 195 transcription factor motifs were found significantly 

enriched/over-represented within the 2860 potential HBx binding sites in THLE3 

cells (with HOMER p-value < 0.05). These 195 transcription factor motifs were 

ranked according to the p-values, shown in Supplementary Table S2.  
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As mentioned earlier, a previous ChIP-chip study done by our laboratory (Sung, 

Lu et al. 2009) has identified 144 potential HBx-interacting transcription factors 

in UV-treated and HBx-expressing adenoviruses transfected HepG2 cells. Among 

these 195 potential HBx-interacting transcription factors predicted from THLE3 

cells, 129 were commonly predicted from the previous ChIP-chip study on 

HepG2 cells (Sung et al., 2009) (Table 3.1).  

Table 3.1: Comparisons of ChIP-chip data on HepG2 cells (Sung et al., 2009) and 
ChIP-Seq data on THLE3 cells. 

 ChIP-chip ChIP-Seq Overlap 
Liver cell line HepG2 (UV-treated) immortalized THLE3 N.A 

Differential gene 
expressions (AdHBx over 

AdEasy) 

10,145 (Fold 
change >=2) 

3,876 (Fold 
change >=1.5) 

1213 (646 same 
deregulation direction; 

567 opposite) 
Genome coverage 1.5kb gene promoters whole genome N.A 

Potential HBx binding sites 971 2860 7 
Potential HBx deregulated 

direct gene targets 
184 (Fold 

change >=2) 
143 (Fold 

change >=1.5) 
2 (1 same deregulation 
direction; 1 opposite) 

Potential HBx-interacting 
transcription factors 144 195 129 

 

The 129 potential HBx-interacting transcription factors commonly predicted from 

THLE3 ChIP-Seq data and HepG2 ChIP-chip data include previously reported 

ones that either interact with HBx or are activated by HBx, such as, SP1 (Lee et 

al., 1998), AP1 (Benn et al., 1996), AP2 (Kim and Rho, 2002), E2F  (Weinmann 

et al., 2001), E2F1 (Choi et al., 2002; Sung et al., 2009), CREB (Maguire et al., 

1991), SMAD4 (Sung et al., 2009), YY1 (Sung et al., 2009), NFKAPPAB50 (Su 

and Schneider, 1996), STAT3 (Waris et al., 2001), and so on. The 195 enriched 

transcription factors from THLE3 ChIP-Seq data also include C-Myc (Li et al., 

2003; Zeller et al., 2006) and P53 (Wei et al., 2006), that were previously reported 

to interact with HBx but not predicted by HepG2 ChIP-chip data. This could be 
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an evidence of the improvement of ChIP-Seq over ChIP-chip in reducing false 

negative rates, since the ChIP-chip data only covered 1.5kb promoter regions of 

human genes while ChIP-Seq was able to detect binding sites over entire genome. 

Though around 90% of the potential HBx-interacting transcription factors 

(129/144) in HepG2 cells were also found in THLE3 cells, only 7 out of the 971 

HBx binding sites predicted in HepG2 cells overlapped with the 2860 HBx 

binding sites predicted in THLE3 cells, as shown in Table 3.1. There is also very 

little overlap on HBx deregulated direct gene targets predicted in the two datasets 

(Table 3.1). This indicates that, even though THLE3 ChIP-Seq and HepG2 ChIP-

chip data predicted most similar sets of potential HBx-interacting transcription 

factors, the deregulated gene targets of HBx were very different between the two 

cell lines. Possible explanations for this gene targets difference may be that: a) 

HepG2 and THLE3 are two different primary liver cell lines and they might be 

physiologically very different; and b) HepG2 cells were UV-treated before 

chromatin immunoprecipitation while THLE3 cells were not. From the 

microarray gene expression profiles shown in Table 3.1, it was also observed that 

gene expressions changed much more drastically in UV-treated HepG2 cells than 

genes in THLE3 cells: 10,145 genes with above 2 fold change in UV-treated 

HepG2 AdHBx over AdEasy cells (Sung et al., 2009), while only 3,876 genes 

with above 1.5 fold change in THLE3 AdHBx over AdEasy cells. This indicated 

that UV-treatment might have enforced the regulation effect of HBx on gene 

expressions in HepG2 cells and this may possibly contribute to the differences in 

HBx gene targets between the two liver cell lines (HepG2 and THLE3).  
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Figure 3.6: Summary of the computational analysis results for identification of 
HBx binding sites, potential HBx-interacting transcription factors and HBx 
deregulated direct gene targets. Genomic sequences for the 2860 potential HBx 
binding sites were extracted and scanned against TRANSFAC transcription factor 
binding motif database, and 195 transcription factors were found significantly 
enriched. Compared with the 144 transcription factors predicted from HepG2 
ChIP-chip data (Sung et al., 2009), there were 129 transcription factors commonly 
found in ChIP-chip and ChIP-Seq data. Analysis of microarray expression 
profiles identified 3,876 genes differentially expressed in THLE3 cell AdHBx 
over AdEasy with fold change above 1.5. Integration of the expression values for 
the nearest genes of the 2860 potential HBx binding sites allowed identification of 
161 potential binding sites corresponding to 143 differential genes in THLE3 cells. 
Analysis of microarray expression profiles in HCC patients predicted 3,407 genes 
differentially expressed with average fold change above 2 in patient tumor over 
adjacent non-tumor tissues. Of the 143 genes, 18 were differentially expressed in 
patients with the same deregulation direction in THLE3 cells. HCC patients’ 
clinical data were also integrated and statistical tests were performed on the 18 
genes, of which, 7 were found clinically associated. These 7 clinically associated 
genes were considered as the candidate HBx deregulated direct gene targets that 
may potentially be related to hepatocarcinogenesis.  
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3.2.4 Potential HBx Deregulated Direct Gene Targets in THLE3 Cells 

HBx has been implicated to interact with transcription factors, change the DNA 

binding affinity of the transcription factors, and consequently regulate gene 

transcription and expression. To identify the deregulated direct gene targets of 

HBx, expression profiles for the nearest genes of the 2860 potential HBx binding 

sites were examined in THLE3 cells. As summarized in Fig 3.6, of the 2860 

potential HBx binding sites, 161 sites corresponding to 143 genes displayed 

differential gene expressions (fold change above 1.5) in THLE3 cells (AdHBx 

over AdEasy). These 143 differentially expressed genes with potential HBx 

binding sites nearby were identified as the potential deregulated direct gene 

targets of HBx. Gene ontology analysis of these 143 potential deregulated direct 

gene targets of HBx showed that the top two significantly enriched biological 

processes are developmental process (Benjamini-corrected p-value: 4.14E-06) and 

multicellular organismal process (Benjamini-corrected p-value: 1.08E-04). These 

two biological processes were also found significantly enriched in the 184 

potential deregulated gene targets of HBx predicted from the ChIP-chip data on 

UV-treated HepG2 cells (Sung et al., 2009). The top significantly enriched 

molecular function of the 143 potential deregulated gene targets of HBx in 

THLE3 cells is transcriptional factor activity (Benjamini-corrected p-value: 

0.045388), which, however, was not significantly enriched in the 184 potential 

deregulated direct gene targets of HBx in HepG2 cells. 
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3.2.5 Clinically Associated Potential HBx Deregulated Gene Targets 

3.2.5.1 Expression of Potential HBx Deregulated Gene Targets in HCC Patients 

These 143 potential deregulated gene targets of HBx were identified in primary 

liver THLE3 cell line. Analysis of the microarray expression profiles in 100 

HBV-associated HCC patients found 3,407 genes differentially expressed in 

patients’ tumor over adjacent non-tumor tissues with average fold change above 2 

and adjusted p-values less than 0.05. To further examine whether these 143 

potential gene targets were truly related to HCC, their expression values in the 

100 HCC patients were investigated, and 23 out of the 143 genes were found 

significantly differentially in HCC patients’ tumor and adjacent non-tumor tissues 

with average fold change above 2.  

As shown in the hierarchical clustering graph of the 23 genes’ expressions in the 4 

biological replicates of THLE3 cells and the 100 HCC patients (Fig 3.7), 18 out of 

the 23 genes had the same deregulation direction in THLE3 AdHBx over AdEasy 

cells and in HCC patients’ tumor over adjacent non-tumor tissues. That is, these 

18 genes were deregulated consistently in THLE3 cells (AdHBx over AdEasy) 

and in 100 HCC patients (tumor over adjacent non-tumor tissues). Of these 18 

genes, 15 were consistently down-regulated in THLE3 cells and HCC patients; 

while the other 3 genes were consistently up-regulated. HBx is of oncogenic 

potential, so having the same deregulation direction in tumor over adjacent non-

tumor tissues of HCC patients and in THLE3 cells when HBx is expressed 



 

92 

 

indicates that these 18 genes might be potentially associated with hepatocellular 

carcinogenesis and development of HBV-associated HCC.   

 

 

 

 

 

 

 

 
 
Figure 3.7: Hierarchical clustering of the 23 potential HBx deregulated gene 
targets that are significantly differentially expressed between tumor and adjacent 
non-tumor tissues of the 100 HCC patients with average fold change above 2. The 
log2 fold change of tumor over adjacent non-tumor tissues on each patient, and 
the log2 fold change of THLE3 AdHBx over AdEasy cells (four biological 
replicates), were used for clustering (average linkage). Green represents down-
regulation in HCC patients’ tumor over adjacent non-tumor tissues or in THLE3 
AdHBx over AdEasy cells, while red represents up-regulation. The 5 genes 
marked with black star are the ones with opposite deregulation directions in 
THLE3 cells and HCC patients, while the remaining 18 genes are consistently 
deregulated in THLE3 cells and HCC patients indicating potential clinical 
inferences in HCC patients. 

3.2.5.2 Association of Potential HBx Deregulated Gene Targets with HCC 

Patient Survival Time 

As shown in Fig 3.6, to further evaluate the association of the 18 HBx deregulated 

gene targets with HCC, the gene expression profiles and clinical data including 

survival profiles of the 100 HCC patients were integrated, and various statistical 

tests were conducted searching for gene targets with significant associations with 

100 HCC patients THLE3-Agilent-4 BR 
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patient clinical features. Of these 100 patients, 75 had survival time data 

consisting of 16 patients dead from HCC cancer and the other 59 patients 

classified as “censored cases” (48 still alive at the time of recording, 6 dead due to 

reasons other than HCC and 5 lost of follow-up). These “censored cases” cases 

were still used in survival time analysis. Kaplan-Meier survival time analysis 

were performed for each of the 18 potential HBx deregulated gene targets by first 

dividing the patients into two groups (one group with gene expression in tumor 

tissue higher than adjacent non-tumor tissue, and the other group with gene 

expression in tumor tissue lower than adjacent non-tumor tissue) and then 

comparing the survival time between the two patient groups. The null hypothesis 

was that patient group with gene expression higher in tumor than adjacent non-

tumor tissue have the same survival time with the patient group with gene 

expression lower in tumor than adjacent non-tumor tissue. The significance p-

values obtained from Kaplan-Meier survival time analysis for each of the 18 

target genes are shown in the 2nd column of Table 3.2. 

 
 
 



 

94 

 

Table 3.2: Summary of corrected two-sided significance values from the clinical 
statistical tests on the 18 potential HBx deregulated gene targets. For a hypothesis 
testing of a gene target on a clinical categorical feature, the patients were first 
divided into different categorical groups and the gene expressions were then 
compared between patient groups. If the gene expressions in each patient group 
follow normal distribution, T-test (for features with 2 sub-groups) or one-way 
ANOVA (for features with >2 sub-groups) were performed; else, median test and 
Mann-Whitney U test (2 sub-groups) or Kruskal-Wallis test (>2 sub-groups) were 
performed. In this table, cells with only single number represents p-values from 
T-test or one-way ANOVA, while cells with two numbers in a bracket had the 
first number being the p-value from median test and the 2nd number from Mann-
Whitney U test or Kruskal-Wallis test. For Kaplan-Meier survival time analysis, 
patients were first divided into two groups based on gene expressions in patient 
tumor and adjacent non-tumor tissues and the survival time were then compared 
between the two patient groups. The 2nd column shows the two-sided p-values 
for survival time analysis. For clinical features with only 2 sub-groups, 
Bonferroni multiple test correction was applied to adjust the two-sided p-values 
(column 3 to 10). For clinical features with more than 2 sub-groups, the p-values 
from one-way ANOVA or Kruskal-Wallis tests were first checked, and if a p-
value was significant (less than 0.05), pair-wise comparisons and post-hoc 
Bonferroni corrections were then further performed. The feature in column 11 had 
3 sub-groups but the p-values were all not significant, so pair-wise comparisons 
were not conducted. The category "Tumor Grade" had 4 sub-groups, and column 
12 shows the p-values from one-way ANOVA, median test, or Kruskal-Wallis 
tests. Pair-wise comparisons (6 comparisons for 4 sub-groups) were then 
conducted for those with p-values less than 0.05 in column 12, and the Bonferroni 
corrected p-values for pair-wise comparisons were shown in the last column. In 
total, 6 genes showed significant clinical associations (shaded in yellow): BANK1, 
STK32B, DAO, C20orf74, FYB and CRDT1. Though DAO and TTR had 
survival time p-values not significant (shaded in grey), they did show a clear 
survival difference between patient groups (Fig.3.7). 

>2 groups pair-wise comparisons

TTR 0.063 1 1 1 1 0.318 1 1 1 0.324 (0.179, 0.332)
EPHA7 0.104 1 1 1 1 1 1 1 1 0.473 0.13

C20orf174 0.691 0.66 1 1 1 0.072 1 1 1 0.508 0.167
CD180 0.427 1 (1, 1) 1 1 0.528 1 1 1 0.951 (0.258, 0.152)
BANK1 0.957 1 (1, 1) 1 0.756 (0.012, <0.012) 1 0.54 (1, 1) 0.169 0.772
STK32B 0.017 (1, 1) 1 <0.008 1 1 1 (1, 1) 1 0.778 (0.117, 0.143)
CDH19 0.157 (0.384, 1) (1, 1) (1, 0.91) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (0.953, 0.591) (0.767, 0.114)

C7 0.542 (1, 1) (1, 1) (1, 0.51) (0.187, 0.792) (0.588, 1) (1, 1) (1, 1) (1, 0.71) (0.769, 0.731) (0.030, 0.035)
(1;1;1;0.48;0.426;0.192, 
1;1;1;1;0.288;0.114)

LRRC4 0.669 (1, 1) 1 (1, 1) (1, 1) (0.936, 1) 1 (1, 1) (1, 1) (0.670, 0.925) (0.328, 0.807)
C3orf41 0.948 (1, 1) (1, 1) 1 (1, 1) (1, 1) (1, 1) (1, 1) (0.42, 0.13) (0.663, 0.166) (0.561, 0.594)
PCDH21 0.121 (1, 1) 1 (1, 1) (1, 1) 1 (1, 1) (1, 1) (1, 1) (0.464, 0.876) (0.346, 0.381)

LIPC 0.178 (1, 1) 1 1 (1, 1) (1, 1) 1 1 1 (0.464, 0.481) (0.767, 0.453)

DAO 0.094 (1, 1) 1 (1, 1) (1, 0.748) (1, 0.66) (1, 1) (1, 1) 0.232 0.183 (0.097, 0.015)
1;1;0.827;0.07;0.059; 
0.013 (grade 2&4)

C20orf74 0.003 (1, 1) (1, 1) (1, 1) (1, 1) (0.588, 0.012) 0.572 (1, 1) (1, 1) (0.822, 0.826) (0.767, 0.800)
IRF4 0.452 1 1 (1, 1) 0.567 (1, 0.612) (1, 0.917) (1, 1) (1, 1) 0.399 0.152

FYB 0.364 (1, 1) 1 (1, 1) (0.044, 0.638) (0.588, 0.204) 1 (1, 1) 1 (0.743, 0.847) (0.062, 0.040)
1;1;0.75;0.642;0.462; 
0.174

CDRT1 0.955 (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) 0.022 (1, 1) (1, 1) (0.232, 0.234) (0.301, 0.523)
COL15A1 0.608 (1, 1) (1, 1) (1, 1) (1, 1) (0.588, 0.372) (1, 1) (1, 1) (1, 1) (0.351, 0.281) (0.049, 0.189) 1;1;1;1;1;0.114

Normal Liver 
Cirrhosis 
(Yes/No)

Tumor 
Capsule 

(Yes/No)

Tumor 
Necrosis 
(Yes/No)

Vascular 
Invasions 
(Yes/No)

Viral Infection 
(HBV, HCV, 

None)

Tumor Grade (1,2,3,4)

18 Target 
Genes

Survival 
Time

Hepatic Capsule 
(TumorFree/ 

Tumor Present)

Hepatic 
Displasia 
(Yes/No)

Liver Invasion 
(Confined to 
liver/Tumor 

Invades)

Multifocal 
(Yes/No)
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Two genes C20orf74 and STK32B were found showing significant differences in 

survival time between patient groups with two-sided p-value less than 0.05. As 

illustrated in Fig 3.8, HCC patients with lower C20orf74 expression in tumor than 

adjacent non-tumor tissues were more likely to have longer survival time than 

patients with higher C20orf74 expression in tumor than adjacent non-tumor 

tissues (two-sided p-value: 0.003). Patients with higher STK32B expression in 

tumor than adjacent non-tumor tissues were more likely to have longer survival 

time than patients with lower STK32B expression in tumor than adjacent non-

tumor tissue (two sided p-value: 0.017). Another two genes DAO and TTR 

showed clear differences in survival time between patient groups though not 

statistically significant. Similar to STK32B, patients with higher DAO and TTR 

expressions in tumor than adjacent non-tumor tissues appear to have longer 

survival time than patients with lower DAO and TTR expressions in tumor than 

adjacent non-tumor tissues (not statistically significant).  

In summary, higher expressions of STK32B, TTR, and DAO, and lower 

expression of C20orf74 in tumor over adjacent non-tumor tissues in HCC patients 

are associated with longer survival time. These four genes were also functionally 

important (Table 3.4): C20orf74 is a Ral GTPase activating protein involving in 

regulation of signal transduction; STK32B is a serine/threonine kinase which is 

important for protein amino acid post-translational modifications; DAO is a D-

amino acid oxidase participating in cellular amino acid metabolic process; and 

TTR possesses transporter activity. Together with the evidence of being 

potentially directly deregulated by HBx in THLE3 cells and being significantly 



 

96 

 

differentially expressed in tumor over adjacent non-tumor tissues of HCC patients, 

these four survival-associated genes, C20orf74, STK32B, DAO and TTR, might 

be important for HCC development and worth further investigations. 

 
Figure 3.8: Survival plots for the four survival-associated potential HBx 
deregulated gene targets. For each potential HBx gene target, patients were 
divided into two groups: one with higher expression of that gene in tumor than 
adjacent non-tumor tissues; and the other with lower expression of that gene in 
tumor than adjacent non-tumor tissues. Kaplan-Meier survival analysis was 
conducted comparing the survival time between the two patient groups. Two 
genes C20orf74 and STK32B showed significant survival time differences 
between patient groups (2-sided p-value: 0.003 and 0.017 respectively), and 
another two genes TTR and DAO showed clear differences though not 
statistically significant. Higher expression of STK32B, TTR, and DAO, and lower 
expression of C20orf74 in tumor over adjacent non-tumor tissues in HCC patients 
are associated with longer survival time. The plus sign on the survival curve refers 
to “censored” cases defined as those patients either still alive at the time of 
recording or dead from reasons other than HCC or lost of follow-up. These 
“censored” cases were also used in Kaplan-Meier survival analysis. 
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3.2.5.3 Association of Potential HBx Deregulated Gene Targets with HCC 

Patients’ Categorical Clinical Features 

In addition to HCC patients’ survival profiles, other categorical clinical data were 

also available in our laboratory, including tumor grade (1, 2, 3 & 4), tumor 

encapsulation (Yes/No), tumor necrosis (Yes/No), vascular invasion (Yes/No), 

multifocality (Yes/No), local tumor extension (confined tumor: Yes/No), normal 

liver cirrhosis (Yes/No), normal liver steatosis (Yes/No), and hepatic dysplasia 

(Yes/No). Statistical analytic soft tool SPSS version 19 (Mather and Austin, 1983) 

was applied to perform T-test, one-way ANOVA, or non-parametric tests, such as 

median test, Mann-Whitney U test and Kruskal-Wallis test. Each of the 18 

potential HBx deregulated genes was tested on each of the clinical categorical 

features, with statistical tests that were well chosen based on the properties of 

gene expression data in patients as described in Fig 3.3 and Table 3.2. For a 

hypothesis testing of a gene target on a clinical feature, the 100 HCC patients 

were first divided into two or more than two groups based on the sub factor 

groups of that clinical feature (e.g. Yes/No), and the gene expressions were then 

compared between these patient groups. The log2 fold change in patients’ tumor 

over adjacent non-tumor tissues were used as gene expression values. The null 

hypothesis was that these patient groups have similar gene expression profiles. 

Bonferroni multiple test correction was also applied in the end to adjust the two-

sided p-values when the same hypothesis testing was performed repeatedly on a 

set of gene targets or when post-hoc pairwise comparisons were conducted for 

clinical features with more than two sub factor groups (e.g. tumor grade: 1, 2, 3 & 
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4). A significant association of a gene target with a patient clinical feature was 

established when the corrected p-value was less than 0.05. Table 3.2 listed the 

multiple test corrected p-values of all the statistical tests that have been performed 

for the 18 potential HBx deregulated gene targets on the various clinical features, 

and the significant p-values obtained were highlighted in yellow. 

In summary, among the 18 potential HBx deregulated gene targets, 6 genes were 

found displaying significant associations with various HCC patients’ clinical 

categorical features. These 6 genes were BANK1, STK32B, DAO, C20orf74, 

FYB and CDRT1, and were significantly associated with tumor grade, liver 

invasions, multifocality of patients, normal liver cirrhosis, and tumor 

encapsulations. Details of the significant associations were shown in Fig 3.9. 
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Figure 3.9: Plots for the six potential HBx deregulated gene targets that showed 
significant associations with the 100 HCC patients’ categorical clinical features. X-axis 
represents the sub factor groups of the clinical features, and y-axis shows the log2 fold 
change expression values of genes in tumor over adjacent non-tumor tissues of HCC 
patients. Of the 18 potential gene targets, the following significant associations with 
corrected p-values less than 0.05 were found: A). Patients with tumor grade 4 are highly 
likely to have stronger down-regulation of DAO in tumor over adjacent non-tumor tissues 
than patients with tumor grade 2, with corrected p-value of 0.013 obtained from non-
parametric Kruskal-Wallis test. B). Patients with local tumor invasion are highly likely to 
have stronger up-regulation of STK32B in tumor over adjacent non-tumor tissues than 
patients with tumor confined to liver, with corrected p-values below 0.008 obtained from 
2-independent samples T-test. C). Patients with normal liver cirrhosis are highly likely to 
have stronger down-regulation of BANK1 and C20orf74 in tumor over adjacent non-
tumor tissues than patients with no normal liver cirrhosis, with corrected p-values of 
0.012 obtained from median test and Mann-Whitney U tests. D). Patients with tumor 
encapsulation are highly likely to have stronger up-regulation of CDRT1 in tumor over 
adjacent non-tumor tissues than patients with no tumor encapsulation, with corrected p-
value of 0.022 obtained from Mann-Whitney U test. E). Patients without multifocality are 
likely to have stronger down-regulation of FYB in tumor over adjacent non-tumor tissues 
than multifocal patients, with corrected p-value of 0.044 obtained from median test. 

Adj-P < 0.008 

Adj-P: 0.012 
 Adj-P: 0.012 

 Adj-P: 0.044  
A B 

C D 

E 

Adj-P: 0.022 
 Adj-P < 0.012 
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As plotted and explained in Fig 3.9, the associations of the six potential HBx 

deregulated gene targets with various categorical clinical features could be 

interpreted and summarized as follows: 

a) Patients with tumor grade 4 are highly likely to have stronger down-regulation 

of DAO in tumor over adjacent non-tumor tissues than patients with tumor 

grade 2, with Bonferroni multiple test corrected p-value of 0.013 obtained 

from post-hoc pair-wise comparisons following non-parametric Kruskal-

Wallis test.  

b) Patients with local tumor invasion are highly likely to have stronger up-

regulation of STK32B in tumor over adjacent non-tumor tissues than patients 

with tumor confined to liver, with Bonferroni multiple test corrected p-values 

below 0.008 obtained from 2-independent samples T-test. 

c) Patients with normal liver cirrhosis are highly likely to have stronger down-

regulation of BANK1 and C20orf74 in tumor over adjacent non-tumor tissues 

than patients with no normal liver cirrhosis, with Bonferroni multiple test 

corrected p-values of 0.012 obtained from median test and Mann-Whitney U 

tests. 

d) Patients with tumor encapsulation are highly likely to have stronger up-

regulation of CDRT1 in tumor over adjacent non-tumor tissues than patients 

with no tumor encapsulation, with Bonferroni multiple test corrected p-value 

of 0.022 obtained from Mann-Whitney U test. 
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e) Patients without multifocality are likely to have stronger down-regulation of 

FYB in tumor over adjacent non-tumor tissues than multifocal patients, with 

Bonferroni multiple test corrected p-value of 0.044 obtained from median test. 

3.2.5.4 Summary of Associations of Potential HBx Deregulated Gene Targets 

with HCC Patient Clinical Features 

As shown in Fig 3.8 & 3.9 and summarized in Table 3.3, there were in total seven 

potential HBx deregulated direct gene targets that might be associated with HCC 

patients’ survival profiles and various categorical clinical features including 

tumor grade, liver invasions, multifocality of patients, normal liver cirrhosis, and 

tumor encapsulations. The potential clinical associations and inferences of these 7 

potential HBx gene targets could be summarized as following points:  

a) HCC patients with tumor grade 4 were highly likely to have stronger down-

regulation of DAO in tumor over adjacent non-tumor tissues than patients 

with tumor grade 2 (adjusted p-value: 0.013). Furthermore, DAO also 

displayed clear survival differences between patient groups with higher and 

lower DAO expressions in tumor over adjacent non-tumor tissues, though 

statistically not significant with two-sided p-value of 0.094. Higher 

expressions of DAO in tumor over adjacent non-tumor tissues in HCC 

patients are likely to be associated with longer survival time (statistically not 

significant). In other words, lower expressions of DAO in tumor over adjacent 

non-tumor tissues in HCC patients are likely to be associated with shorter 

survival time. Therefore, in summary, lower expression of DAO in patients’ 
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tumor over adjacent non-tumor tissues is associated with shorter survival time 

and larger tumor grade. These associations of DAO with shorter survival time 

and larger tumor grade seemed to be valid, in the sense that, HCC patients 

with larger tumor grade are more likely to have shorter survival time.  

b) Two other significant survival-associated potential HBx gene targets STK32B 

and C20orf74 were also found significantly associated with tumor extension 

(adjusted p-value <0.008) and normal liver cirrhosis (adjusted p-value: 0.012) 

respectively. Higher expression of STK32B in tumor than adjacent non-tumor 

tissues of HCC patients was correlated with longer survival time and local 

tumor extension, while lower expression of C20orf74 in tumor than adjacent 

non-tumor tissues of HCC patients was correlated with longer survival time 

and normal liver cirrhosis. These established associations of STK32B and 

C20orf74 with longer survival time, local tumor extension and normal liver 

cirrhosis seemed to be valid, with the reasoning that, HCC patients who 

survived longer time might be more likely to have local tumor extension and 

develop normal liver cirrhosis. 

c) Higher expression of TTR in tumor over adjacent non-tumor tissues in HCC 

patients is associated with longer survival time, though statistically not 

significant with two-sided p-value of 0.063. 

d) In addition, another three potential HBx deregulated gene targets FYB, 

BANK1 and CDRT1 were found significantly associated with patients’ 

multifocality, normal liver cirrhosis and tumor encapsulation respectively.  
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• Patients not multifocal were likely to have stronger down-regulation of 

FYB expression in tumor over adjacent non-tumor tissues than multifocal 

patients (adjusted p-value: 0.044). 

• Patients with normal liver cirrhosis were highly likely to have stronger 

down-regulation of BANK1 expression in tumor over adjacent non-tumor 

tissues than patients with no normal liver cirrhosis (adjusted p-value: 

0.012).  

• Patients with tumor encapsulation were highly likely to have stronger up-

regulation of CDRT1 expression in tumor over adjacent non-tumor tissues 

than patients without tumor encapsulation (adjusted p-value: 0.022). 

Table 3.3: Summary of the clinical associations for the seven potential HBx 
deregulated gene targets. Five out of the seven genes were down-regulated (green) 
in both THLE3 cells (AdHBx over AdEasy) and HCC patients (tumor over 
adjacent non-tumor tissues), while the other two were up-regulated (red). Down-
regulation of DAO in patients (tumor over adjacent non-tumor tissues) was 
associated with shorter survival time (statistical not significant) and larger tumor 
grade. Down-regulation of C20orf74 in patients was related to longer survival 
time and normal liver cirrhosis. Down-regulation of TTR in patients was 
associated with shorter survival time (statistical not significant). Down-
regulations of FYB and BANK1 in patients were associated with patient non-
multifocality and normal liver cirrhosis respectively. Up-regulation of STK32B in 
patients was related to longer survival time and tumor invasion. Up-regulation of 
CDRT1 in patients was related to tumor encapsulation. 

*: association observed statistically significant after Bonferroni multiple test correction (adjusted p-value < 0.05) 
#: association statistically not significant but clear difference were observed (DAO: 0.094; TTR: 0.063) 
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Other than the four genes found associated with survival time (C20orf74, 

STK32B, DAO and TTR), the additional three genes associated with categorical 

clinical features (CDRT1, FYB and BANK1) were also functionally important. 

CDRT1 acts as protein-ubiquitin ligase; FYB involves in protein amino acid 

modifications and immune system process; and BANK1 involves also in immune 

system process. As annotated in Table 3.4, these seven putative HBx gene targets 

functionally involve in amino acid metabolic process, protein post translational 

modifications, regulation of signal transduction, protein transport, and immune 

responses. These seven potential HBx gene targets are likely to have clinical 

inferences in HCC patients and worth further investigation. 

Table 3.4: Functional annotations of the seven clinically associated potential HBx 
deregulated gene targets. These genes functionally involve in amino acid 
metabolic processes, protein post translational modifications, regulation of signal 
transduction, protein transport, and immune responses. 

Gene Gene Name Molecular Function Biological Process 

DAO D-amino-acid oxidase catalytic activity, D-amino-acid oxidase 
activity, oxidoreductase activity 

cellular amino acid metabolic process, cellular nitrogen 
compound metabolic process, primary metabolic 

process, oxidation reduction 

C20orf74 
RALGAPA2 (Ral 
GTPase activating 

protein, alpha subunit 2) 
GTPase activator activity, enzyme 

activator activity, nucleoside-
triphosphatase regulator activity 

regulation of signal transduction, regulation of cell 
communication, regulation of biological process, 

regulation of small GTPase mediated signal transduction 

STK32B serine/threonine kinase 
32B 

nucleotide & nucleoside binding, ion 
binding, catalytic activity, protein kinase 

activity, ATP binding, transferase 
activity, phosphotransferase activity, 

ribonucleotide binding 

protein modification process, protein amino acid 
phosphorylation, phosphate metabolic process, 

phosphorylation, biopolymer modification, post-
translational protein modification 

TTR transthyretin receptor binding, transmembrane 
transporter activity, hormone binding transport, localization 

CDRT1 CMT1A duplicated 
region transcript 1 zinc ion binding, ion binding, cation 

binding, metal ion binding Members of the F-box protein family; act as protein-
ubiquitin ligases  

FYB FYN binding protein receptor binding, protein binding, 

immune system process, post-translational protein 
modification, protein amino acid phosphorylation, 

protein targeting, protein import into nucleus, 
phosphorus metabolic process, nucleocytoplasmic 

transport, signal transduction, protein kinase cascade, 
protein transport, biopolymer modification, response to 

stimulus,  
BANK1 B-cell scaffold protein 

with ankyrin repeats 1   cell activation, immune system process,B cell activation 
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3.2.6 Correlation of Clinically Associated HBx Deregulated Gene Targets 

with HBx Protein Expression in the 100 HCC Patients 

The seven clinically associated potential HBx deregulated gene targets were not 

only deregulated when HBx is expressed in THLE3 cells, but also deregulated in 

tumor over adjacent non-tumor tissues of HCC patients. To examine whether 

there is any direct correlation between these gene targets and HBx protein, linear 

regression models were built and Pearson correlations were calculated based on 

these genes and HBx protein expression values in the 100 HCC patients (log2 fold 

change in tumor over adjacent non-tumor tissues). However, it turned out that 

none of these seven potential gene targets showed significant correlations with 

HBx protein expression, and all the correlation R square values were quite small, 

as seen in the scatter plots of Fig 3.10. This observation of low linear correlation 

between potential HBx deregulated gene targets and HBx protein expressions in 

HCC patients may be explained that patients were physiologically very complex 

and many other factors, such as, medication, diet, other diseases and 

environmental factors, could also affect the gene expressions in patients. In that 

case, the deregulation effect of HBx on gene expressions could possibly be 

masked or disturbed by other factors in patients. As a result, the relationship 

between gene expressions and HBx expressions in patients was no longer linear. 

Thus, the low linear correlations could not prove that these genes were completely 

unrelated to HBx. Nevertheless, these seven potential HBx gene targets with 

predicted HBx binding sites nearby were shown deregulated in THLE3 cells upon 
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expression of HBx protein, and this could be the evidence supporting the 

deregulation potential of HBx on these genes expressions.  

 
Figure 3.10: Scatter plots for the expressions of the seven potential HBx 
deregulated gene targets and expressions of HBx protein in 100 HCC patients. 
The log2 fold change of tumor over adjacent non-tumor tissues on each patient for 
genes (y-axis) and HBx protein (x-axis) were plotted. The Pearson correlations (R 
square value) calculated between the genes and HBx were quite low with highest 
value 0.074. HCC patients are physiologically very complex and there are many 
other factors that may affect gene expressions. Thus, the deregulation effects of 
HBx on gene expressions could be masked or disturbed, which may explain the 
low linear correlations between genes and HBx expressions in HCC patients. 

3.3 Discussion and Future Work 

HBx was reported not to bind DNA directly, but though interactions with 

transcription factors. HBx binds to transcription factors and regulate gene by chaning 

the DNA binding affinities of transcription factors. To unravel the genome-wide 

binding sites of HBx, our laboratory applied chromatin immunoprecipitation followed 

by Illumina high-throughput sequencing (ChIP-Seq) with antibodies specifically 
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against HBx protein in primary liver cell line THLE3 cells transfected with HBx-

expressing adenoviruses. Our laboratory has also previously utilized chip-based 

chromatin immunoprecipitation (ChIP-chip) in ultraviolet (UV)-treated primary liver 

cell line HepG2 cells transfected with HBx-expressing adenoviruses, to profile 

genomic binding sites of HBx. Compared to the ChIP-chip study, this ChIP-Seq 

strategy has overcome the limitations of ChIP-chip technology, such as, limited 

number of probes used in ChIP-chip hybridization array, hybridization noise and dye 

bias. It has also eliminated the possible artificial effects introduced by UV-treatment 

on HepG2 cells. In this study, an analysis pipeline was implemented to integrate the 

ChIP-Seq sequencing data, microarray expression profiles and 100 HBV-associated 

HCC patients’ clinical data. In the end, a list of potential genomic binding sites of 

HBx was discovered on a single-base resolution from the ChIP-Seq data, and a list of 

putative HBx deregulated direct gene targets was predicted to have significant clinical 

inferences in HBV-associated HCC patients.  

The millions of ChIP-Seq short sequencing reads of 36bp were first aligned to human 

genome and those with unique best match to human genome were remained for peak-

calling. THLE3 cells transfected with HBx-expressing adenoviruses (AdHBx) were 

compared against control THLE3 cells (AdEasy), and a total of 2860 potential 

genomic binding sites of HBx were predicted using peak calling algorithm MACS 

and CCAT. Most of these 2860 potential HBx binding sites located within gene 

introns and intergenic regions, and this is not surprising since introns and intergenic 

regions are the two longest categories in human genome. Next abundant locations of 

the 2860 potential binding sites are promoters, exons, 5'UTR and 3'UTR in 



 

108 

 

descending order. However, these 2860 predicted HBx binding sites were found to be 

significantly enriched in exons and promoter regions of genes (p<0.00001). 

Interestingly, among the binding sites within introns and exons, over half were in the 

first and last introns and exons. This may suggest the potential regulatory effect of 

HBx on gene expressions. 

The genomic sequences of the 2860 potential HBx binding sites were then retrieved 

for known motif enrichment analysis using HOMER. 195 transcription factor binding 

motifs were found significantly over-represented within the 2860 potential HBx 

binding sites. These 195 transcription factors are the potential candidate co-factors 

that HBx may interact to bind to DNA and deregulate gene expressions in HBx-

expressing THLE3 cells. Surprisingly, of the 195 potential HBx-interacting 

transcription factors, 129 were also found to be significantly over-represented within 

the HBx binding sites predicted from our previous ChIP-chip data done in our 

laboratory on UV-treated liver HepG2 cells (Sung et al., 2009) (Supplementary Table 

S3). This evidence further confirmed the list of potential transcription factors that 

HBx may interact in cell lines, even though the potential deregulated direct gene 

targets of HBx in these two liver cell lines did not overlap much which is probably 

due to their physiological differences and the artificial effects introduced by UV-

treatment on HepG2 cells. In addition, these 129 commonly predicted HBx-

interacting transcription factors include most of the transcription factors that were 

previously reported by other studies to interact with HBx or being activated by HBx. 

This could suggest that our computational workflow is robust to analyse ChIP-Seq 

data for identification of HBx-interacting transcription factors.  



 

109 

 

In this study, microarray gene expression profiles in THLE3 cells (AdHBx over 

AdEasy) were also integrated and a list of 143 potential deregulated direct gene 

targets of HBx were identified, indicating the pleiotropic nature of HBx: interact with 

a variety of transcription factors and deregulate a large set of genes. Though the 

potential HBx deregulated direct gene targets predicted from the two cell lines 

THLE3 and HepG2 were very different, they were enriched in similar biological 

pathways with top two being developmental process and multicellular organismal 

process. Nevertheless, the 143 potential HBx deregulated gene targets predicted from 

THLE3 ChIP-Seq data were significantly enriched in transcription factor activities, 

which however are not significant in HepG2 ChIP-chip data. In addition, the potential 

HBx-interacting transcription factors predicted from ChIP-Seq data include c-Myc 

and P53 that were previously reported to interact with HBx but not significantly 

found in ChIP-chip data. These two observations may possibly indicate that ChIP-Seq 

techniques could help to reduce false negative rates compared to ChIP-chip 

techniques. 

Previous studies on HBx deregulated gene targets were limited to cell lines due to 

lack of patient data. In this study, to further evaluate whether the putative HBx 

deregulated gene targets predicted from liver cell lines are truly related to HCC, 

microarray expression profiles and clinical data of 100 HBV-associated HCC patients 

were integrated, and statistical tests were performed to identify potential HBx 

deregulated gene targets that have significant clinical inferences in HCC patients. 18 

out of the 143 putative HBx deregulated gene targets were demonstrated to be 

significantly differentially expressed in tumor over adjacent non-tumor tissues in the 
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100 HCC patients with the same deregulation direction in THLE3 cells when HBx is 

expressed (AdHBx over AdEasy) (Fig 3.7). HBx is of oncogenic potential, so these 

18 potential HBx deregulated gene targets having the same deregulation direction in 

tumor over adjacent non-tumor tissues of HCC patients and in THLE3 cells when 

HBx is present might be potentially associated with HCC. To further confirm the 

association, statistical tests were performed for each of these 18 genes on each of the 

clinical features of the 100 HCC patients. It turned out that seven out of the 18 genes 

had obvious association with patient survival time, tumor grade, tumor invasion, 

normal liver cirrhosis, tumor encapsulation and multifocality (Fig 3.8, Fig 3.9 and 

Table 3.3). Particularly, higher expression of STK32B in tumor than adjacent non-

tumor tissues of HCC patients was significantly correlated with longer survival time 

and local tumor extension, while lower expression of C20orf74 in tumor than 

adjacent non-tumor tissues of HCC patients is significantly correlated with longer 

survival time and normal liver cirrhosis. Patients with higher DAO and TTR 

expressions in tumor than adjacent non-tumor tissues appeared clearly to have longer 

survival time than patients with lower DAO and TTR expressions in tumor than 

adjacent non-tumor tissues, though not statistically significant. Other three genes 

BANK1, CDRT1 and FYB were significantly related to normal liver cirrhosis, tumor 

encapsulation and multifocality respectively. Furthermore, these seven genes were 

functionally important involving in amino acid metabolic process, protein post-

translational modifications, protein transport, regulation of signal transduction, and 

immune responses (Table 3.4). Thus these seven potential HBx deregulated gene 
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targets are highly likely to have clinical inferences in HCC patients and worth further 

investigations. 

With the clinically associated potential HBx deregulated direct gene targets, we may 

wonder whether there is any linear correlation between the gene expression and HBx 

protein expression. To answer this question, linear regression models were 

constructed for each of the seven genes with HBx protein expressions in the 100 HCC 

patients. Pearson correlations and correlation significance were also calculated to 

evaluate the strength and significance of the linear relationships. Unfortunately, none 

of the seven genes were significantly correlated with HBx protein expressions in 

patients, and the correlation R square values were all very low (Fig 3.9). One possible 

explanation for the low correlations is that HCC patients were physiologically very 

complex and many other factors could also affect gene expressions in patients, such 

as, environmental factors, medication, other diseases, emotions, and so on. In that 

case, unlike in cell line, the HBx protein was no longer the only factor affecting gene 

expressions in patients, and the deregulation effect of HBx might be masked or 

disturbed by other factors. Therefore the low linear correlations do not conclude weak 

relationships between HBx and gene expressions in patients. More importantly, it has 

been shown that these potential HBx target genes with HBx binding sites nearby were 

deregulated upon the expression of HBx proteins in THLE3 cells, which supports the 

deregulation effect of HBx on gene expressions.  

In summary, by analysing the THLE3 ChIP-Seq sequencing data and comparing with 

HepG2 ChIP-chip data, a list of potential global HBx binding sites on a single-base 
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resolution was identified, and a more comprehensive list of potential HBx-interacting 

transcription factors was confirmed. In this study, the pleiotropic nature of HBx has 

been further concluded as a transactivator deregulating a large set of genes indirectly 

through interactions with a variety of transcription factors. To date, the underlying 

mechanism of how HBx deregulation of host gene expressions through interactions 

with transcription factors contributes to hepatocarcinogenesis in HCC patients was 

still unclear due to lack of patient data. In this study, the microarray expression 

profiles and clinical data of 100 HBV-associated HCC patients were first ever utilized, 

and seven putative HBx deregulated gene targets were identified to be significantly 

associated with patients’ clinical features including survival profiles. These putative 

HBx gene targets with significant clinical inferences may potentially involve in HBx-

induced hepatocarcinogenesis. However, this study may only identify a small portion 

of HBx gene targets that potentially play a role in hepatocarcinogenesis. Nevertheless, 

we gained more knowledge on the potential genomic binding sites of HBx, HBx-

interacting transcription factors and putative deregulated direct gene targets of HBx 

with potential clinical inferences in HCC patients. By identification of clinically 

associated HBx deregulated direct gene targets, we are now in a better position to 

explore the roles of the HBx in HBx-induced carcinogenesis. Future work on 

examining the pathways that HBx may deregulate by targeting these clinically 

associated genes through interactions with transcription factors is to be done. This 

may facilitate future discovery of potential drug targets and development of new 

therapies for HCC patients. 
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CHAPTER 4: Conclusion and Future Work 

Chronic HBV infections have been identified as a major risk factor for HCC accounting 

for 50-55% of all HCC cases in the world, and may gradually induce the development of 

HCC in patients (Arbuthnot and Kew, 2001; Bonilla Guerrero and Roberts, 2005; 

Buendia, 1992; Chang, 2003; Lupberger and Hildt, 2007; Parkin et al., 2001; Robinson, 

1994; Tan, 2011). Various mechanisms have been proposed currently by scientists for 

HBV-associated development of HCC, such as, multi-locus HBV genome integrations 

into human genome (Bill and Summers, 2004; Bonilla Guerrero and Roberts, 2005; 

Buendia, 1992; Goto et al., 1993; Jiang et al., 2012; Murakami et al., 2005; Pineau et al., 

1998; Robinson, 1994; Saigo et al., 2008; Tan, 2011; Tu et al., 2006), HBx deregulation 

of host genes expression through interactions with transcription factors (Andrisani and 

Barnabas, 1999; Ganem, 2001; Sung et al., 2009; Wu et al., 2001) or through epigenetic 

modifications of genes (e.g. alteration of DNA methylation status of genes) (Arzumanyan 

et al., 2012; Huang et al., 2010; Jung et al., 2010; Kim et al., 2010; Madzima et al., 2011; 

Park et al., 2011; Su et al., 2008; Um et al., 2011; Zhu et al., 2010) or through 

deregulation of regulatory microRNA expressions (Kong et al., 2011; Shan et al., 2011; 

Wang et al., 2010; Wang et al., 2012; Wu et al., 2011; Yip et al., 2011; Yuan et al., 2012), 

etc. Understanding these underlying mechanisms for HBV-induced carcinogenesis in 

HCC patients will help future identification of potential drug targets and development of 

new therapies for HCC treatment. However, the molecular pathogenesis of HBV-induced 

hepatocarcinogenesis in HCC patients is still unclear (Ng and Lee, 2011; Tan, 2011). In 

this project, we focused on two essential underlying mechanisms: HBV genome 
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integrations and HBx deregulation of host genes expression through interactions with 

transcription factors.  

4.1 Characterization of HBV-Host Genome Integration Sites in 

HCC Patients 

To understand HBV genome integration events, we first need to know where the 

HBV genome is fused with human genome. Previous studies on HBV genome 

integration sites are mainly PCR-based methods, which are labour-intensive and 

require prior-knowledge of HBV DNA that are fused with human DNA, which 

however is very limited currently (Saigo et al., 2008; Tamori et al., 2003; Tamori et 

al., 2005; Tu et al., 2006; Urashima et al., 1997). To comprehensively characterize 

HBV genome integration sites with human genome and to study the variation of 

HBV DNA in HCC patients, our laboratory has applied targeted deep sequencing 

(454 FLX sequencer) techniques to enrich for HBV-containing DNA fragments 

extracted from 48 HBV-positive HCC patients’ tumor and adjacent non-tumor 

tissues. In this study, I implemented a computational workflow to analyse the high 

throughput FLX sequencing data to identify integrated sequences carrying both 

HBV and human DNA within the same sequence from which the HBV-HG 

integration sites can be inferred. In the end, a set of 60 novel altered HBV sequences 

and 63 HBV-HG integrated sequences were successfully identified. Various 

alteration events such as insertion, deletion, duplication, and inversion were 

observed from the 60 altered HBV sequences. Novel HBV genome integration 

boundaries were also inferred from the HBV-HG integrated sequences which carried 

both HBV and human DNA within the same sequence. Interestingly, it was found 
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that the HBV-HG integrations preferentially occurred on the small HBx gene 

(27/63=42.9%) and the C-terminal of HBx carrying p53 binding domain was often 

removed to fuse with human genome. Deletion of p53 binding domain of HBx may 

potentially promote carcinogenesis, as p53 is a well-known tumor suppressor. The 

N-terminal two third of HBx gene carrying transactivation domains (amino acid 1 to 

100) were often retained in the integrated form, indicating the transactivator nature 

of HBx. Significantly, our laboratory has successfully experimentally validated the 

existence of altered HBV sequences and HBV-HG integration sites in HCC patients. 

These findings concluded the potential important role of HBx in HBV-associated 

carcinogenesis in HCC patients. By computational scanning of the HBV-HG 

integrated sequences for open reading frames, it has been observed that HBV-HG 

integrations may potentially lead to either early termination of HBV genes (e.g. HBx 

gene) or expression of chimeric transcripts. More significantly, based on my 

prediction results, our laboratory has experimentally proved the existence of 

chimeric transcripts in vivo, and functional evaluation on the oncogenic potential of 

these chimeric transcripts is still in progress in the laboratory.  

4.2 Future Work on the Computational Analysis Pipeline in 

Identifying Virus-Host Genome Integration Sites 

The major benefit of utilizing single-end high-throughput 454 FLX 

pyrosequencing is that the reads produced could be long enough to allow 

identification of precise virus insertion sites in human genome at single-base 

resolution with one region of the read aligned to human genome and the other 
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region aligned to virus genome. Analysing the millions of long sequencing reads 

of variable lengths has always been a challenge, which requires intensive 

computational power to map the reads to reference genome. Even though there 

are many software tools available specifically designed to map high throughput 

sequencing reads to reference genome, it is simply far from enough in the case of 

identifying viral-host integration sites. To extract the most biological meaningful 

results from high throughput sequencing data generated from specifically 

designed experiments, a carefully implemented analysis workflow is always 

needed to best fit the data. When analysing the FLX sequencing data in this study, 

mapping of the sequencing reads to reference genomes was only the very first 

step, after which, noise and insignificant reads that do not contain HBV sequences 

were removed to clean the data. Before proceeding to identify HBV-HG 

integration sites, a step of de novo assembly was incorporated to recover possible 

integration sites that were disrupted by DNA fragmentation. When identifying 

HBV-HG integrated sequences, the sequences were searched against both human 

and HBV genomes, and each sequence must be carefully examined to identify 

possible integration sites based on its alignments with human and HBV genomes. 

Sequences containing HBV genome integration sites were hypothesized to have at 

least one region of the sequence aligned to human genome and the other region 

aligned to HBV genome. Fortunately, findings in this study have promisingly 

proved the robustness of my computational approach to analyse the high 

throughput sequencing data for comprehensive identification of viral-host genome 

integrations. Future work to compact the analysis workflows as an integrated 
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standalone platform is to be done, such that other researchers can also submit their 

high throughput sequencing data and perform similar analysis to identify viral-

host genome integration sites. Previous studies on HBV genome integration sites 

were mainly PCR-based methods (Saigo et al., 2008; Tamori et al., 2003; Tamori 

et al., 2005; Tu et al., 2006; Urashima et al., 1997). This has been among the very 

first to comprehensively characterize the HBV-HG integration sites in a large 

series of samples from 48 HCC patients, and we are now in a better position to 

understand how HBV genome integration may potentially contribute to 

hepatocarcinogenesis in HCC patients. 

4.3 Identification of HBx Genomic Binding Sites, HBx-interacting 

Transcription Factors, and Clinically Associated Deregulated 

Direct Gene Targets of HBx 

Other than HBV genome integration into human genome after long term HBV 

infection in patients, HBx deregulation of host gene expression through 

interactions with transcription factors was reported also to potentially contribute 

to hepatocarcinogenesis. HBx is a small protein of length 154 amino acids which 

is reported to have oncogenic potential. HBx protein has been implicated to play 

an important role in HBV-induced development of HCC. HBx does not have a 

DNA-binding domain, and is found to bind to DNA indirectly through 

interactions with transcription factors. Interaction of HBx with transcription 

factors may change the DNA binding affinities of transcription factors and 

consequently lead to regulation of host gene expression. Our laboratory has 
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previously systematically profiled the HBx genomic binding sites, HBx-

interacting transcription factors and HBx deregulated direct genes in a large-scale 

using ChIP-chip method in UV-treated liver cell line (HepG2) on 1.5kb promoter 

regions of human genes (Sung et al., 2009). However, the detailed mechanism of 

how HBx deregulation of host gene expressions through interactions with 

transcription factors may contribute to hepatocarcinogenesis is still incompletely 

understood (Ng and Lee, 2011; Sung et al., 2009).  

There are various limitations and bias associated with ChIP-chip method, such as 

limited genome coverage (e.g. 1.5kb promoter regions of genes), hybridization 

noise, dye bias, and low reproducibility. To overcome the limitations associated 

with ChIP-chip and to obtain a more comprehensive and unbiased list of HBx 

genomic binding sites on single-base resolution, our laboratory has turned to 

apply chromatin immunoprecipitation coupled with high throughput sequencing 

technology (ChIP-Seq) to sequence immunoprecipitated DNA fragments bound 

by HBx in primary liver cell line THLE3 cells transfected with HBx-expressing 

adenoviruses. In this study, I implemented an analysis pipeline to integrate and 

analyse the ChIP-Seq sequencing data, microarray expression profiles for both 

THLE3 cells and 100 HCC patients, as well as the clinical data for the 100 HCC 

patients. In the end, a list of 2860 potential HBx binding sites, a list of 195 

potential HBx-interacting transcription factors, and a list of 143 potential HBx 

deregulated direct gene targets were identified in THLE3 cells. Among these 143 

potential HBx deregulated direct gene targets, seven were found also deregulated 

with significant clinical inferences in 100 HCC patients. These seven genes were 
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associated with various patients’ clinical features including survival time, tumor 

grade, liver invasions, patients’ multifocality, normal liver cirrhosis, and tumor 

encapsulations. 

The 2860 potential HBx genomic binding sites were mostly located within introns 

and intergenic regions. It is not surprising since introns and intergenic regions are 

the two longest categories in human genome. Next abundant locations of the 

potential HBx binding sites are promoters, exons, 5'UTR and 3'UTR in 

descending order. However, these 2860 predicted HBx binding sites were found 

to be significantly enriched in exons and promoter regions of genes, and 

significantly less located in intergenic regions (p<0.00001). Interestingly, among 

the binding sites within introns and exons, over half were in the first and last 

introns and exons, suggesting the potential regulatory effect of HBx on gene 

expressions. Among the 195 transcription factors significantly over-represented 

within the 2860 potential HBx binding sites identified from the THLE3 ChIP-Seq 

data in this project, 129 were also found significantly over-represented within the 

971 potential HBx binding sites identified from the UV-treated HepG2 ChIP-chip 

data done previous in our laboratory. Though THLE3 ChIP-Seq and HepG2 

ChIP-chip data predicted similar sets of potential HBx-interacting transcription 

factors with 129 motifs in common, the two datasets had very different sets of 

potential HBx deregulated gene targets, which might be due to the physiological 

differences of the two different cell lines and the artificial effects introduced by 

UV-treatment on HepG2 cells. Nevertheless, this has confirmed a list of 129 

transcription factors that may potentially interact with HBx and bind to DNA for 
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gene regulations. These 129 transcription factors include previously reported ones 

that either interact with HBx or are activated by HBx, such as, SP1 (Lee et al., 

1998), AP1 (Benn et al., 1996), AP2 (Kim and Rho, 2002), E2F  (Weinmann et al., 

2001), E2F1 (Choi et al., 2002; Sung et al., 2009), CREB (Maguire et al., 1991), 

SMAD4 (Sung et al., 2009), YY1 (Sung et al., 2009), NFKAPPAB50 (Su and 

Schneider, 1996), STAT3 (Waris et al., 2001), and so on. The 195 enriched 

transcription factors predicted from THLE3 ChIP-Seq data also include C-Myc 

(Li et al., 2003; Zeller et al., 2006) and P53 (Wei et al., 2006), that were 

previously reported to interact with HBx but not predicted from the HepG2 ChIP-

chip data. This may suggest ChIP-Seq is advantageous over ChIP-chip in 

reducing false negative rates, since the ChIP-chip data only covered 1.5kb 

promoter regions of human genes while ChIP-Seq was able to detect the binding 

sites over entire genome. 

Integration of microarray expression profiles in THLE3 cells (AdHBx over 

AdEasy) for the corresponding nearest genes of the 2860 potential HBx binding 

sites identified 143 potential HBx deregulated direct gene targets in THLE3 cells. 

These 143 potential gene targets were significantly enriched in developmental 

process and multicellular organismal process, and these two biological processes 

were also found significantly enriched by the 184 potential gene targets of HBx 

predicted from the HepG2 ChIP-chip data (Sung et al., 2009). The top 

significantly enriched molecular function of the 143 potential HBx gene targets 

from THLE3 ChIP-Seq data is transcriptional factor activity, which, however, 

was not significantly enriched in the 184 potential HBx gene targets from HepG2 
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ChIP-chip data. This may further confirm the advantage of ChIP-Seq over ChIP-

chip in reducing false positive rates. 

Further integration of microarray expression profiles for the 100 HBV-associated 

HCC patients (tumor over adjacent non-tumor tissues) found 18 out of the 143 

potential HBx direct gene targets also displaying differential expressions in HCC 

patients with consistent deregulation directions in THLE3 cells. To evaluate 

whether these 18 genes were truly related to HCC, statistical tests were performed 

on the 100 HCC patients’ clinical data, and seven out of the 18 genes were found 

to have significant clinical inferences. These seven potential HBx deregulated 

gene targets (DAO, C20orf74, TTR, STK32B, FYB, BANK1 and CDRT1) are 

associated with various patients’ clinical features including survival time, tumor 

grade, liver invasions, patients’ multifocality, normal liver cirrhosis, and tumor 

encapsulations. These seven clinically associated target genes were also 

functionally important involving in amino acid metabolic process, protein post-

translational modifications, protein transport, regulation of signal transduction, 

and immune responses. However, these seven genes were found to have very low 

linear correlations with HBx protein expressions in the 100 HCC patients, which 

could be explained by the physiological complexities of HCC patients. Other than 

HBx, there are many other factors affecting gene expressions in HCC patients, 

such as environmental factors, medications, diets, other diseases, emotions and so 

on. Therefore, the low linear correlations cannot exclude the relatedness between 

genes and HBx expressions in HCC patients. Thus, these seven potential gene 



 

122 

 

targets of HBx with clinical inferences in HCC patients are worth further 

investigations.  

4.4 Future Work on the Clinically Associated Gene Targets of HBx 

Future work should examine the pathways that HBx may deregulate. By targeting 

these clinically associated genes, it may help in the future discovery of potential 

drug targets and development of new therapies for HCC treatment. ChIP-Seq 

techniques have been widely utilized by researchers to comprehensively profile 

the genomic binding sites of proteins of interest. By doing motif enrichment 

analysis, co-factors that potentially interact with the proteins of interest when 

binding to DNA could also be identified. Integration of the microarray expression 

profiles enables identification of potential deregulated direct gene targets for the 

proteins of interest. Previous studies profiling HBx genomic binding sites are 

mainly in cell lines due to lack of patients data. In this study, we have utilized 

ChIP-Seq techniques, and successfully predicted HBx genomic binding sites, 

HBx-interacting transcription factors and HBx deregulated direct gene targets in 

primary liver cell line THLE3 cells. With the availability of 100 HCC patients’ 

microarray expression profiles and clinical data, we are the very first to integrate 

patient data and identified seven HBx gene targets with significant clinical 

inferences in HCC patients. Novel analysis pipeline integrating the cell line ChIP-

Seq sequencing data, microarray expression profiles for both cell lines and HCC 

patients, and HCC patient clinical data was successfully implemented in this study. 

Consistency between the THLE3 ChIP-Seq data and HepG2 ChIP-chip data in 
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terms of HBx-interacting transcription factors has proved the robustness of the 

analysis pipeline. More studies on the functions and pathways for the seven 

clinically associated deregulated gene targets of HBx need to be done, to identify 

the potential pathways that HBx may deregulate. In short, by identification of 

deregulated direct gene targets of HBx with significant clinical inferences in HCC 

patients, we are now better positioned to explore the roles of HBx contributing to 

the hepatocarcinogenesis in HCC patients.  

4.5 Conclusion 

In conclusion, this project has focused on two underlying mechanisms both of 

which may contribute to HBV-induced hepatocarcinogenesis in HCC patients: 

HBV multi-locus genome integrations into the human genome and HBx 

deregulation of host gene expressions through interactions with transcription 

factors. In this study, computational analysis pipelines have been implemented 

and successfully analysed the high throughput FLX pyrosequencing data, ChIP-

Seq Illumina sequencing data, microarray expression profiles and HCC patient 

clinical data. Our findings provided comprehensive characterization of the HBV 

genome integration sites with human genome and preliminary identification of 

putative HBx deregulated direct gene targets with significant clinical inferences in 

HCC patients. We are now better positioned to explore the underlying 

mechanisms of HBV-induced hepatocarcinogenesis in HCC patients, which may 

potentially facilitate future discovery of drug targets and new therapies for HCC 

patients. 
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CHAPTER 5: Supplementary Tables 

Supplementary Table S1: Number of sequences (assembled contigs and unassembled 
reads) that were classified into the five major groups in each patient sample. In total, our 
laboratory obtained 378 sequences including 221 "intact HBV", 60 "modified HBV", 34 
"HBV+unknown", 56 "HBV-HG junctions", and 7 "modified HBV-HG junctions".  

Patient 
Intact HBV modified HBV HBV+Unknown HBV-HG Junction modified HBV-HG 

Total 
Contig Unasm 

Read Total Contig Unasm 
Read Total Contig Unasm 

Read Total Contig Unasm 
Read Total Contig Unasm 

Read Total 

p2N  1 1             1 
p3N 1 1 2             2 
p4N 4 1 5             5 
p4T 5 3 8             8 
p5N 3  3 2 1 3 1  1 2 1 3    10 
p5T 2  2 1 1 2  1 1  1 1    6 
p6T 1 1 2        1 1    3 
p7N  1 1        1 1    2 
p8N 4  4     1 1 2 1 3    8 
p8T 1 2 3       1  1    4 
p9N  1 1 1 1 2  1 1       4 
p9T  1 1             1 

p10N 13 5 18 14 4 18 4 2 6 2 7 9    51 
p10T 6 1 7 8  8  1 1 4 2 6 3 1 4 26 
p11T 1 4 5             5 
p13T 1 1 2 1  1     1 1    4 
p14N 3  3             3 
p14T  1 1             1 
p15N  1 1             1 
p15T 3 1 4        1 1    5 
p16N 2 1 3  1 1  1 1  1 1    6 
p16T 2  2             2 
p17N 1 3 4             4 
p18N 1 1 2             2 
p18T 2  2 1  1          3 
p19N 2 1 3    1 3 4 3 1 4    11 
p19T 3 3 6       1  1    7 
p20N 5 4 9             9 
p20T 5 4 9 3 2 5 2  2 3  3    19 
p21N 1 1 2             2 
p21T 2 3 5             5 
p22N  2 2             2 
p22T 1  1  1 1  1 1    1  1 4 
p23N 2 1 3        1 1    4 
p23T 1 4 5 2 1 3 1  1       9 
p24T 1  1       1  1    2 
p26N 1  1             1 
p28N 2 1 3       2  2    5 
p28T 2 2 4       1  1    5 
p29N 5 4 9  1 1          10 
p29T 4 1 5       1  1    6 
p30T  2 2        1 1    3 
p31T 1 1 2        1 1    3 
p32N 3 2 5             5 
p32T 1  1             1 
p33T 1 1 2             2 
p34T 1 2 3    1  1       4 
p35T 1  1             1 
p36N  1 1             1 
p36T 2 1 3 2  2       1  1 6 
p37N 1 5 6     1 1  1 1    8 
p37T 3  3       1 1 2    5 
p38T 2 2 4             4 
p39N  3 3             3 
p39T 1  1 2  2 1  1       4 
p40N 1 1 2    1 1 2 1 1 2    6 
p40T 1 3 4    1  1       5 
p42N 1 1 2             2 
p42T 2 1 3             3 
p43T  1 1             1 
p44N  1 1             1 
p44T  2 2     1 1       3 
p45N 3 1 4 7  7 4 3 7 4 2 6 1  1 25 
p45T 1 1 2 1  1          3 
p46N 1 1 2  1 1          3 
p46T 3 2 5  1 1          6 
p48N  1 1        1 1    2 
Total 123 98 221 45 15 60 17 17 34 29 27 56 6 1 7 378 
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Supplementary Table S2: Information for 56 HBV-HG junctions and seven modified 
HBV-HG junctions predicted in different patient samples. The 3rd and 4th column 
displays the positions of the sequence matched to HBV genome and human genome 
respectively, with the number in red color highlighting the junction point and the 
plus/minus sign in bracket representing the strand of HBV or human genome that the 
sequence matched to. The 5th column shows the type of junction patterns for each 
sequence (See Fig 2.3). The 6th and 7th columns specify the HBV genes and human genes 
where the junction points reside. There are four major HBV genes: polymerase, precore, 
HBx and S (surface protein). Out of the 63 junctions, 27 had the junction points on HBx 
gene. The 8th and 9th columns show the junctions that have been validated and the 
chimeric transcripts that have been detected expressed in patient samples. The 10th 
column displays the expression fold change in patient tumor over non-tumor tissues for 
the nearest genes of the junctions. Positive fold change represents up-regulation of genes 
in tumor over non-tumor tissues in patient and negative value represent down-regulation. 
Genes highlighted are the ones differentially expressed in patient tumor over non-tumor 
tissues with at least 2 fold change: red for up-regulation and yellow for down-regulation. 
The last column shows the molecular functions and pathways involved for the genes 
differentially expressed.  
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Total HBV part HG Part Junction 
Pattern

HBVJunctionPoint HGJunctionPoint Junction 
Validated 

Chimeric 
Transcript

GeneExpression: fold 
change Tumor/NonTumor

GeneFunction

1966-2059(+) NT_005403.17:Chr2:20541731-20542059 (+) 1 precore BBS5-Promoter(-3.4kb) BBS5: -1.164
1477-1975(+) NT_010498.1:Chr16:2993363- 2993419  (-) 2 precore 29kb upstream to  C16orf78 C16orf78: -1.262
1853-2206(-) NT 030059.13:Chr10:10089307 -10089419 (+) 1 precore 500kb upstream to Loc100128586 pseudogene

p5T 1 1820-2095(+) NT_006576.16:Chr5:792307 -792457 (-) 1 HBx&precore  ZDHHC11-intron 11 yes ZDHHC11: -1.333
p6T 1 1495-1790(+) NT_016354.19:Chr4:60468621- 60468770  (-) 2 HBx 30kb upstream to  LOC389223 yes Expressed pseudogene
p7N 1 2295 -2403(+) NT 005612.16:Chr3:76198699 -76198537 (-) 1 precore SEC62-Intron 5 yes SEC62

1878-2660 (-) NT 167187.1:Chr8:20552236-20552413 (+) 2 polymerase 50kb downstream to  NRG1 NRG1: 1.161
1678-1836(-) NT_167214.1: unplacedHG:128734-128832  (+) 2 HBx&precore 11kb downstream to LOC100286895 pseudogene
1590-1804(-) NT_010783.15:Chr17:17240216-17240371 (+) 2 HBx 60kb upstream to Loc100128713 yes pseudogene

p8T 1 1302-1780(-) NT_008046.16:Chr8: 10474414-10474450 (-) 2 HBx GDF6-intron 1 yes Expressed GDF6: -8.739 growth differentiation factor (formation 
of bones, joints, skull & axial skeleton)

133-331(-)* NT_009714.17:Chr12:15724057-15724089 (+);
NT 009714.17:Chr12:15723951-15724001(-)

1 polymerase&S 120kb donstream to ETNK1 ETNK1: 1.119

1682-1795(+) NT_011109.16:Chr19:20259097 -20259209  (-) 2  HBx KPTN-Promoter (-4kb) yes KPTN: 2.146 actin binding protein (cell motion) 
(filament organization)

1111-1172(-) NT_011362.10:Chr20:25100849- 25100967 (-) 1 polymerase 30kb upstream to C20orf108 C20orf108: -1.107

274-449 (+) NT_007592.15:Chr6:55255483-55255635 (-) 1  polymerase&S  HMGCLL1-intron6  HMGCLL1: -2.139 hydroxymethylglutaryl-CoA lyase 
activity;metal ion binding (metabolic 

788-911(+) NT_005403.17:Chr2: 63523480 -63523666 (-) 1  polymerase&S ERBB4-intron1 ERBB4: 1.039
1104-1325(-) NT_010194.17:Chr15:2204668-2204696  (-) 1 polymerase 20kb upstream to TRPM1 TRPM1: -1.491

1720-1806(-) NT_026437.12:Chr14:42942788 -42942818 (-
)

2  HBx PRKCH-intron9 PRKCH: -2.063 protein kinase C (protein modification & 
phosphorylation)

1666-1811(-) NT 024524.14:Chr13:16958192-16958260 (-) 2  HBx NBEA-intron yes NBEA: 1.624
967-1122(+) NT_022135.16:Chr2:1113100-1113176 (-) 1 polymerase LOC100507581-promoter(-4kb) hypothetical RNA gene 
36- 210(+) NT_024862.14:Chr17:582722- 582856  (-) 2 polymerase&S 44kb downstream to LOC100129683 yes pseudogene

1631-1820(-) NT 006576.16:Chr5:1287850-1287993 (+) 2 HBx TERT-promoter(-2688bp) yes TERT: 1.648
569-1192(+) NT_030059.13:Chr10:44588143 -44588334 2 polymerase BTAF1-Intron BTAF1: -1.256
1268-1316(-) NT_167206.1:ChrY:327776-327740 (-) 2 polymerase LOC100506481-promoter(-11bp) pseudogene 
1014-1316(-) NT 167206.1:ChrY:327749- 327805  (+) 2 polymerase LOC100506481-promoter(-20bp) pseudogene 
581-954(+) NT 006576.16:Chr5:1446416-1446477 (+) 2 polymerase 11kb upstream to SLC6A3 yes SLC6A3: -1.089

2-39(-), 3018-3215(-), 1631-
1820(+)

NT_011651.17:ChrX:28754024-28754062  (-) 2 HBx&precore 5kb downstream to MUM1L1 MUM1L1: -28.148 melanoma associated antigen (mutated) 1-
like 1

1080-1316(-), 1608-2115(+) NT_167206.1:ChrY:327761-327805  (+) 2 polymerase LOC100506481-promoter(-15bp) pseudogene 
1755-2613(-), 1818-2007(+), 

2068-3215(+), 2- 1316(+) 
NT_167206.1:ChrY:327746- 327805  (-) 2 polymerase LOC100506481-promoter(-32bp) pseudogene 

2220- 2337 (-), 1968-2122(-) NT 010783.15:Chr17:2948900-2948982  (+) 2 precore&polymerase CDK12-Intron10 CDK12: -1.049
p13T 1 688 -794(-) NT_011109.16:Chr19:10488025 -10488401 (+) 1 polymerase&S 9kb upstream to ZNF607  ZNF607: 1.703

p15T 1 536-956(-) NT_010718.16:Chr17:11715113-11715178 (-) 2 polymerase 65kb downstream to MAP2K4 MAP2K4: -7.013 mitogen-activated protein kinase kinase 
(MAPKKK cascade,protein modification)

p16N 1 618-822(-) NT 026437.12:Chr14:15744062-15744190 (+) 1 polymerase&S 47kb downstream to Loc100128921 pseudogene 
401-561(-) NT_029419.12:Chr12:23883663- 23883778  (-) 1 polymerase&S 113kb downstream to PGBD3P1 PGBD3P1

1822-2215(-) NT_167197.1:ChrX:27303621-27303669  (-) 1 HBx&precore  IL1RAPL1-inton 5  IL1RAPL1: -1.006
395-737(-) NT 010966.14:Chr18:18433732- 18433844  (-) 1 polymerase&S LOC647946 (non-coding RNA) non-coding RNA

392 -569(+) NT_167190.1:Chr11:2270409 -2270226 (-) 1 polymerase&S 3kb downstream to LRRC55; 36kb 
upstream to APLNR

LRRC55: -1.079;  APLNR:-
1.736

p19T 1 1522-1802(-) NT_030059.13:Chr10:68127017-68127161 (-) 2 HBx ATRNL1-intron 26 yes Expressed ATRNL1: 14.765 attractin-like 1 (cell surface receptor 
linked signal transduction)

1628-1819(-) NT_008413.18:Chr9: 33938611-33938663 (-) 2  HBx&precore UBAP2-intron12 UBAP2:-1.128

937-1792(+) NT_010718.16:Chr17:8745855-8745951 (+) 2 HBx NTN1-LastIntron yes NTN1:7.036 netrin 1 (axon guidance and cell migration) 
(variation of netrin may involve in cancer 

1481-1741(-)** NT_030059.13:Chr10:16274412-16274458 (+); 
NT 030059.13:Chr10:2366039 -2366072(+)

1&2 HBx 85kb downstream to REEP3; 
NCOA4-promoter(-3kb)

REEP3:-1.295, 
NCOA4:1.115

p22T 1 141-1819(-), 2974-3092(+) NT_167187.1:Chr8:30951033-30951157 (+) 2 HBx&precore 50kb upstream to POTEA; 26kb 
downstream to HGSNAT

yes Expressed POTEA,HGSNAT:1.475

p23N 1 1837-2014(+) NT_033899.8:Chr11:7899487- 7899717 (+) 1 HBx&precore 300kb upstream to  PDGFD yes PDGFD 
p24T 1 1472-1647(-) NT 167190.1:Chr11:12563743-12563941 (-) 2 HBx AIP-intron 5 yes Expressed AIP:1.911

962- 1663(-) NT_007933.15:Chr7:41050503-41050539 (-) 2 HBx SLC26A5-intron yes Expressed SLC26A5
2143-2516(+) NT_010718.16:Chr17:13143919-13144021 (-) 1 precore 35kb upstream to HS3ST3A1 yes in T&N HS3ST3A1:1.588

p28T 1 446- 1663(-) NT 007933.15:Chr7:41050503-41050619 (-) 2  HBx  SLC26A5-intron yes Expressed  SLC26A5
p29T 1 1883-2078(+) NT 025741.15:Chr6:28145055-28145220 (-) 1 precore 18kb upstream to TRDN yes TRDN:1.439
p30T 1 1820-1897(+) NT_010783.15:Chr17:4893254 -4893516 (-) 1 HBx&precore KRT32-intron6 & Exon6 KRT32:41.256
p31T 1 1575-1761(+) NT_008183.19:Chr8: 32531628 -32531673 (+) 1  polymerase&HBx 9kb downstream to HEV1 yes Expressed HEV1 
p36T 1 1093-1152(-), 874-1826(-) NT 008413.18:Chr9: 25075832- 25076007 (-) 2 polymerase 591kb upstream to TUSC1 yes Expressed  TUSC1:-1.428
p37N 1 1417-1678(-) NT 011109.16:Chr19:10829043 -10829084 (-) 2  HBx SIPA1L3-intron2 SIPA1L3:-1.649

2006 -2578(-) NT_030059.13:Chr10:41254724-41255047 (+) 1 precore 12kb downstream to LIPF yes LIPF:-1.234

1442-1796(+) NT_030059.13:Chr10:41577178-41577115 (-) 2 HBx FAS transcript variant 1-Intron 7 yes Expressed FAS:-2.847
TNF receptor superfamily (regulate 
programmed cell death & apoptosis) 

(transduce proliferation in normal cells)
1952-2307(-) NT 029490.4:Chr21:370831- 370944  (-) 1 precore 10kb upstream to BAGE2&BAGE3 BAGE2, BAGE3
108-400(+) NT_005612.16:Chr3:89972106- 89972186  (+) 1 polymerase&S  YEATS2-Intron 13 YEATS2:1.266

1821-2552(+) NT_029289.11:Chr5:5912940- 5913134 (+) 1 HBx&precore 140kb downstream to ASSP10 pseudogene 
1952-2041(+) NT 025028.14:Chr18:10744807-10745097 (-) 1 precore 500kb upstream to CDH7 CDH7:1.011

394 -490(-) NT_006713.15:Chr5:15433615-15433668  (-) 1 polymerase&S CENPK-Intron 5 CENPK:5.836
centromere protein (mitotic cell cycle) ( 
regulation of transcription from RNA 

polymerase II promoter )

1546-1600(-) NT_008470.19:Chr9:33306748- 33306795  (-) 1 polymerase&HBx BAAT-intron 1 BAAT:-2.439
liver amino acid N-acyltransferase (lipid 

metabolic process) (bile acid metabolic & 
transport process)

2574-2710(-) NT_022459.15:Chr3: 4187591-4187654 (-) 2  polymerase 193kb upstream to LOC100128160 hypothetical

1819-1934(+) NT_030059.13:Chr10:58098120 -58098199 (-) 1 HBx&precore 268kb downstream to SORCS3  SORCS3:3.269

sortilin-related VPS10 domain containing 
receptor 3 (cell surface receptor linked 

signal transduction) (strongly expressed 
in the central nervous system)

1 3010-3215(+), 53-366(+) NT_011520.12:Chr22:5748454-5748491 (-) 1  polymerase&S MYO18B-Intron 39 MYO18B:9.699
myosin 18B (regulate muscle-specific 

genes & intracellular trafficking)  
(Mutations associated with lung cancer)

p48N 1 152-382(+) NW_927993.1:unplacedHG:1-35 (-) 1 polymerase&S unplaced not annotated unannotated
Total

Patient

p5N

p8N

p10N

p10T

p19N

2

2

6

3

3

p45N

p20T

p28N

HBV-Human Junction (56) & modified HBV-Human Junction (7)

63

9

6

4

p37T

p40N

4

3

2
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Supplementary Table S3: List of the 195 enriched transcription factors from ChIP-Seq 
data in THLE3 cells, among which 129 were common with the transcription factors 
predicted from ChIP-chip data in HepG2 cells. The ranking of the enriched 
transcriptional factors was based on significance p-values from motif enrichment analysis. 

Motif Name Consensus 
ChipSeq P-
value 

ChipSeq 
Rank 

ChipChip 
Rank 

ChipChip p-
value 

Reference 

HEB GCCAGCTG 1.68E-55 1 39 1.4E-31 - 
MYOD CNGNNNCAGGTGNCGNAG 3.96E-54 2 53 1.1E-23 (Barnabas et al., 1997) 
MINI20 NNCCGGCCCCACGCAGGNGCA 7.01E-53 3 47 7.7E-26 - 

AP4 CTCAGCTGGT 1.03E-49 4 37 2.7E-33 - 
LRH1 CNGACCTTGNAC 2.38E-47 5       
E12 GGCAGGTGNCG 1.18E-46 6 73 3.3E-17 - 
E47 NCNGCAGGTGTNCNC 1.03E-41 7 35 5E-36 - 
AP2 GCCCCCAGGCGGNGNN 3.81E-39 8 4 2E-198 (Kim and Rho, 2002) 
HIC1 NCCGGGTGCCCGGGG 1.73E-37 9       

AP2ALPHA GCCNNNGGG 2.77E-37 10 7 3E-159 - 
USF CCACGTGN 2.77E-37 11 63 7E-21 - 

VMAF ANATGCTGACTCAGCACNN 4.50E-37 12 110 2.4E-05 - 
HEN1 NTGGGNCNCAGCTGCGNCCCNN 1.10E-36 13 33 2.9E-38 - 
ZF5 NGGGGGCGCGCTT 4.45E-34 14 14 9.4E-76 - 
DR1 GGGNCAAAGGTCA 4.45E-34 15 113 6.4E-05 - 
LBP1 CAGCTGC 3.74E-32 16 34 1.5E-36 - 

MUSCLE NNCCGCCNCCACCCCGGNGCC 3.19E-31 17 11 4.3E-86 - 
SMAD4 GTGGGGCAGCCANCT 4.85E-31 18 30 1.9E-43 - 
MZF1 AGTGGGGA 7.51E-31 19 80 3.4E-15 - 
AREB6 CTGCACCTGTGC 2.68E-30 20 142 0.0321 - 

MYOGENIN GGCAGCTG 4.14E-30 21 38 2.9E-32 - 
E2A CACCTGNC 6.26E-30 22 69 5.6E-18 - 

COUP TGACCTTTGACCC 2.72E-29 23 121 0.00149 - 
TAL1 TCCAGCTGCT 1.57E-28 24 107 1.1E-05 - 

LMO2COM CNNCAGGTGCNG 1.72E-28 25 60 1.4E-21 - 
LMAF GGTCAGCAG 2.56E-28 26       
HNF4 NGGNCA 1.28E-27 27 119 0.00057 - 
MAZR NGGGGGGGGGCCA 4.24E-27 28 25 2.4E-50 - 
CBF NNNNCTGCGGTTANNN 2.06E-26 29       
CP2 GCNCNACCCAG 4.51E-26 30 48 3.9E-25 - 

CACCCBINDINGFACTOR CANCCCNTGGGTGTGG 8.37E-26 31 29 6.5E-44 - 
AP2GAMMA GCCCNNGGG 3.05E-25 32 6 3E-167 - 

HES1 ANGNCTCGTGGCNNG 3.05E-25 33 36 8E-35 - 
ER CAGGTCACGGT 6.61E-25 34       

ETS1 ACAGGAAGTGNNTGC 6.26E-24 35       
ZIC1 TGGGTGGTC 1.31E-23 36 54 3.3E-23 - 
ATF3 CTCTGACGTCANCG 4.22E-23 37 88 4.6E-11 (Barnabas et al., 1997) 
MYC CACGTGN 1.69E-22 38 66 1E-18 - 
PAX4 NANNCCCACCCN 2.39E-22 39 40 3.9E-31 - 
MEIS1 NNNTGACAGGNC 3.44E-22 40       

AP2REP CAGTGGG 4.86E-22 41 70 6.1E-18 - 
AML1 TGTGGT 4.86E-22 42       

TAL1ALPHAE47 NCGAACAGATGGTNNN 9.91E-22 43 134 0.01206 - 
AR TGAGCACGN 1.42E-21 44 122 0.00181 (Zheng et al., 2007) 

PAX5 TCGAGGCGCANTGATGCGTAGCCGCCCC 5.29E-21 45 23 2E-54 - 
EBOX CCACGTGNCN 1.13E-20 46 67 1.6E-18 - 
TBX5 TNAGGTGTTA 1.13E-20 47       

MINI19 NNCNGNCNCCACNCAGGNGCC 3.15E-20 48 12 3.7E-82 - 
LRF NGGGCCCCC 3.15E-20 49       
TFE TCATGTGN 3.15E-20 50       

NMYC TNCCACGTGNCN 4.43E-20 51 72 2.2E-17 - 
MOVOB GNGGGGG 8.65E-20 52       

NRSF GCGCTGTCCGTGGTGCTGA 2.12E-19 53 19 5.3E-58 - 
KAISO NTCCTGCTAN 2.33E-19 54       

CLOCKBMAL ACACGTGG 2.49E-19 55       
ETS2 GACAGGAAGTANTT 9.23E-19 56       
PPAR TGACCTTTGNCCC 1.20E-18 57 116 0.00014 - 

GR TNTGTTCT 1.20E-18 58       
ZNF219 CGCCCCCCNCCC 3.13E-18 59       

NERF TGNCAGGAAGTAGGTNNC 5.55E-18 60 71 1.9E-17 - 
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HIF1 GCGTACGTGCGGNN 5.96E-18 61 15 1.3E-69 (Moon et al., 2004) 
NANOG GGGNCCATTTCC 1.92E-17 62       
MTF1 TNTGCACACGGCCC 9.71E-17 63 45 1.1E-26 - 

R NTGGCCGCGNANCGTGGTGCA 2.73E-16 64 51 7.2E-24 - 
YY1 NCNCGGCCATCTTGNCTGNT 4.15E-16 65 106 1.1E-05 - 
RFX CTGTTGCCA 4.40E-16 66 137 0.01492 - 
ATF CNCTGACGTCNNCC 8.11E-16 67 62 2.5E-21 (Maguire et al., 1991) 

EGR2 NTGCGTGGGCGT 1.98E-15 68       
KROX CCCGCCCCCGCCCC 2.61E-15 69 5 8E-197 - 
SREBP GNNATCACCCCA 4.68E-15 70       
NRF2 ACCGGAAGAG 1.09E-14 71 46 2.5E-26 - 
ZIC3 TGGGTGGTC 1.44E-14 72 96 2.7E-08 - 

STRA13 NNGTCACGTGANNN 1.96E-14 73 101 4.6E-07 - 
TAL1BETAITF2 GNNAACAGATGGTNTN 2.42E-14 74       

EGR GTGGGGGCGAC 2.53E-14 75 10 9E-125 (Yoo and Lee, 2004) 
CACD CCACACCC 2.53E-14 76       

TAL1BETAE47 NNGAACAGATGGTCNN 2.53E-14 77       
WT1 CCCNCCCNC 2.53E-14 78       
NFE2 TGCTGAGTCAC 3.21E-14 79       
CREB CGTCAN 3.35E-14 80 21 1.3E-57 (Maguire et al., 1991) 
CMYB CCNAANGGCNGTTGGGGG 1.01E-13 81 55 5.1E-23 - 
PPARA TNGGGTCATTGGGGTCANG 1.05E-13 82 82 6E-13 (Kim et al., 2007) 

P53 AGACATGCCT 1.33E-13 83       
GABP ACCGGAAGTGCA 1.71E-13 84       

CETS1P54 ACCGGAAGTN 2.94E-13 85 89 8.5E-11 - 
SP1 GGGGCGGGGC 3.91E-13 86 3 2E-262 (Lee et al., 1998) 
DEC CCCCAAGTGAAGG 3.91E-13 87 141 0.02661 - 

HAND1E47 ANNGGNGTCTGGCATT 5.08E-13 88       
MYCMAX NGACCACGTGGTCN 6.42E-13 89 81 4.3E-13 - 

VDR GGGTNAANGGGGTGA 8.61E-13 90 58 4.4E-22 - 
E2F1DP1 TTTCCCGC 1.10E-12 91 17 2.9E-63 - 

RP58 NAAACATCTGGA 1.40E-12 92       
ELK1 NNNNCCGGAAGTNN 1.46E-12 93 61 1.4E-21 (Goto et al., 2003) 
E2F1 NTTCGCGC 4.02E-12 94 9 8E-132 - 
LFA1 GGGGTCAG 4.02E-12 95 20 8.7E-58 - 

CETS168 CAGGAAGC 5.28E-12 96 65 9E-20 - 
NFY TAACCAATCAC 5.28E-12 97 75 3.1E-16 - 
EBF GTCCCTTGGGA 9.48E-12 98 114 6.5E-05 - 

NFMUE1 CGGCCATCT 1.27E-11 99 78 1.5E-15 - 
STAT3 NNNTTCCN 3.78E-11 100 97 3.4E-08 (Waris et al., 2001) 
MAZ GGGGAGGG 4.82E-11 101 16 9.2E-69 (Su et al., 2007) 
STAF NTTACCCANAATGCATTGCGNN 5.29E-11 102       

SMAD3 TGTCTGTCT 6.11E-11 103 140 0.02596 - 
OLF1 NNCNANTCCCCAGGGAGNNTGN 8.86E-11 104 84 2.9E-12 - 
CAAT NNTAGCCAATCA 1.24E-10 105 118 0.00042 - 
MIF1 NNGTTGCTAGGCAACNGG 1.25E-10 106 99 1.8E-07 (Zhang et al., 2006) 

SREBP1 NATCACGTGAC 1.60E-10 107 31 3.1E-42 (Kim et al., 2007) 
NF1 NTGGNNNNNTGCCAANN 1.60E-10 108       
MYB NNNGNCAGTTN 2.01E-10 109       
ETS ANCCACTTCCTG 2.53E-10 110 105 5.6E-06 - 
TFIII AGAGGGAGG 3.19E-10 111 42 5.3E-30 - 
AML ANGTNTGTGGTTANC 6.33E-10 112       
NRF1 CGCATGCGCA 7.29E-10 113 22 2.4E-55 - 

CACBINDINGPROTEIN GAGGGTGGG 9.85E-10 114 32 4.2E-41 - 
USF2 CACGTG 9.85E-10 115 68 3.5E-18 - 
AP1 GGTGACTCAGA 9.85E-10 116       

EGR1 ATGCGTGGGCGT 1.12E-09 117       
MAF TGCTGAGTCAN 1.55E-09 118 115 8.1E-05 - 

MYOGNF1 CACCTGTTNNNTTTGGCACGGNGCCAACN 1.77E-09 119 104 5E-06 - 
CMYC NACCACGTGCTC 1.84E-09 120       

SRF GNCCATATAAGGAC 1.84E-09 121       
AHRHIF TGCGTGCGN 1.94E-09 122 59 5.3E-22 - 

E2F TTTCGCGC 5.75E-09 123 8 3E-144 (Choi et al., 2002) 
ACAAT GATTGGTGG 1.26E-08 124 131 0.00658 - 
E4F1 GCTACGTCAC 1.33E-08 125 130 0.00651 (Rui et al., 2006) 
P300 NCNGGGAGTGNGNG 1.65E-08 126 98 6.6E-08 (Cougot et al., 2007) 
SF1 TGACCTTG 1.65E-08 127       

SZF11 CCAGGGTATCAGCCG 2.30E-08 128       
PR GANAGAACAN 3.74E-08 129       
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DR4 TGACCTNTACTGACCCC 4.54E-08 130 132 0.00659 - 
GC NGGGGGCGGGGCTN 1.01E-07 131 13 5.9E-82 - 

VMYB NCTAACGGN 1.47E-07 132 95 1.9E-08 - 
PEBP GNTAACCACAAANNT 1.47E-07 133       
TGIF AGCTGTCANNA 1.47E-07 134       
ROAZ GCACCCAAGGGTGC 1.81E-07 135       
ZID NGGCTCTATCATC 2.17E-07 136 129 0.00643 - 

AP1FJ GGTGACTCAGT 2.17E-07 137       
DELTAEF1 NNTCACCTNAN 3.84E-07 138       

DR3 GATGAACTTNCTGAACCGTTT 3.87E-07 139 109 2.3E-05 - 
ALPHACP1 CAGCCAATGAG 5.45E-07 140 143 0.03746 - 

ATF4 CCTGACGCAATG 5.61E-07 141 102 8.7E-07 - 
ZIC2 GGGGTGGTC 7.99E-07 142 57 3.4E-22 - 

CREBATF GTGACGTCA 1.40E-06 143 90 5.8E-10 - 
RREB1 CCCCAAACCACCCC 1.54E-06 144 41 4.7E-31 - 
AHR CTTGCGTGNGN 2.37E-06 145 50 2.7E-24 - 
OSF2 ACCACAAA 2.37E-06 146       
TEL2 CTACTTCCTG 2.92E-06 147       
PU1 AGAGGAAG 3.31E-06 148 144 0.04264 - 
SP3 AGCCTTGGGGAGGG 6.19E-06 149 43 7.5E-29 - 

HMX1 CAAGTGCGTG 6.39E-06 150 108 1.2E-05 - 
GATA1 CNNGATNGNN 6.56E-06 151 56 1.7E-22 - 
EGR3 NTGCGTGGGCGT 8.79E-06 152       

AHRARNT TNNGGNTTGCGTGCCC 1.07E-05 153 52 7.7E-24 - 
XPF1 TCAGAAGAAC 2.36E-05 154 125 0.00379 - 
RBPJK TTCCCACG 3.24E-05 155       

COUPTF NNNNNTGACCTTTGCCCNCTGCN 5.07E-05 156 87 1.6E-11 - 
PAX9 GAGACGCAGCGAGGAGTGACCACC 5.42E-05 157 76 1.3E-15 - 

E2 NNACCGNNANCGGTGC 6.85E-05 158 100 2.7E-07 - 
GCM CANACCCGCATT 6.85E-05 159 124 0.00282 - 
TTF1 CNCTCAAGNGNN 6.85E-05 160       
MEF3 GGGTCAGGTTTCA 8.03E-05 161 112 3.5E-05 - 

GEN_INI CCTCANTC 9.18E-05 162       
T3R CANTGAGGTCACGCNN 1.04E-04 163 103 4.2E-06 - 

BACH2 CGTGAGTCATC 1.05E-04 164 120 0.00092 - 
E2F1DP2 TTTCCCGC 1.62E-04 165 26 2.1E-49 - 

SMAD TAGNCAGACAG 1.62E-04 166 94 1.1E-08 - 
NGFIC ATGCGTGGGCGG 1.75E-04 167       
ARNT GTTGTCACGTGNNCGN 2.14E-04 168 83 6E-13 - 
MAX NAANCACGTGNTTN 2.54E-04 169 85 9.9E-12 - 

STAT6 GNCTTCCT 3.66E-04 170       
RFX1 NNGTNGCCTGGCAACNN 5.44E-04 171       
PAX6 CTGACCTGGAACTC 7.88E-04 172       
TFIIA TATAAAAGGACC 9.74E-04 173       

NFKAPPAB50 GGGGATTCCC 1.85E-03 174 77 1.5E-15 (Su and Schneider, 1996) 
CDPCR3 CACCAATANGTATNG 1.95E-03 175       
STAT1 CANTTCCG 3.22E-03 176 117 0.00025 - 

CREBP1 GGTGACGTAACT 3.33E-03 177 92 1.1E-09 (Cougot et al., 2007) 
GATA2 NNNGATAGNN 3.62E-03 178 93 6.2E-09 - 

UF1H3BETA GGTGGGGGAGGGGC 4.48E-03 179       
GLI NNTGGGTGGTCC 5.59E-03 180 86 9.9E-12 - 

BRCA TTNNGTTG 6.72E-03 181       
ATF1 CTCTGACGTCA 7.40E-03 182 91 9.9E-10 - 
ATF6 TGACGTGG 7.94E-03 183 64 2E-20 (Li et al., 2007) 
SPZ1 GNNGGAGGGTATGGC 1.00E-02 184 44 7.3E-28 - 
ZEC CAAGGTTGGTTGC 1.04E-02 185       

DEAF1 CCGCCCTCGGGTATTTCCGGAGNNG 1.11E-02 186 24 9.1E-52 - 
PPARG AACTAGGNCAAAGGTCA 1.21E-02 187       
TCF11 GTCATNNTNNNNN 1.47E-02 188       
TEF1 GGAATG 2.11E-02 189       
HSF1 NTTCTAGAANNTTCTCC 2.36E-02 190       

E2F4DP2 TTTCCCGC 2.72E-02 191 27 6.9E-49 - 
PEA3 ACATCCT 3.24E-02 192       
ERR1 NNNTCAAGGTCANA 3.77E-02 193       

E2F4DP1 TTTCGCGC 4.43E-02 194 28 2.4E-46 - 
IK1 NNTTGGGAATACC 4.45E-02 195       
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