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1 Summary iv

1 Summary

This thesis studies several variants of partial learning under the framework of induc-

tive inference. In particular, the following learning criteria are examined: confident

partial learning, partial conservative learning, essentially class consistent partial

learning, and iterative learning. Consistent partial learning of recursive functions is

classified according to the mode of data presentation; the two main types of data

texts considered are canonical text and arbitrary text. The issue of consistent par-

tial learning from incomplete texts is also given a brief treatment towards the end of

the report. A further research direction taken up in this report is the investigation

of the additional learning power conferred by oracles. It is shown that certain con-

ditions on the computational degrees of oracles enable all recursive functions to be

confidently partially learnt. Similarly, it is proved that all PA-complete oracles are

computationally strong enough to permit the essentially consistent inference of all

recursive functions. Another question particularly relevant in the effort to construct

class separation examples of various learning criteria is whether there is always a

uniform effective procedure to find a recursive function that is not learnt by a learner

according to some criterion. The present work tries to address this question for the

case of confident partial learning and consistent partial learning.
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2 Introduction

This project has grown out of an attempt to systematically characterize the nature of

partial learning, a generalisation of the traditional models of learning in inductive

inference. Whilst the usual criteria of learning success, such as explanatory and

behaviourally correct learning, do permit a large class of languages to be learnt,

there are many natural examples that fail to be identifiable in the limit, even in

the broadest sense of semantic convergence. The reasons for their unlearnability are

not due to any lack of computational ability of the learner; indeed, even with the

additional learning power conferred by any oracle, there is no recursive learner that

can always converge in the limit to a correct guess on a text for any member set in

the class of all finite sets plus one infinite set. The problem is due to a mix of factors.

One reason is the structural nature of the class of languages; another reason may

be that the learning success requirements imposed are too stringent. To enrich the

classes of languages that are, in some tenable sense, learnable, one may attempt to

loosen the restrictions for learning success. Various approaches devoted to this aim

can be found in the inductive inference literature. Feldman [6], for example, showed

that a decidable rewriting system (drs) is always learnable from positive information

sequences in a certain restricted sense. Partial learning is another such proposal to

overcome the deficiency of learning in the limit. Unfortunately, it has already been

noted by Osherson, Stob and Weinstein [24] that the class of all r.e. sets is partially

learnable. Similarly, the class of all co-r.e. sets is also partially learnable. In order

to capture a more balanced sense of partial learnability, one may therefore require

a careful calibration of learning success requirements, such as may be obtained by

imposing additional learning contraints.
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This work is organized into two main sections: the partial learnability of r.e. and

co-r.e. languages, and the partial learnability of recursive functions. Confidence is

shown to be a fairly strong restriction on partial learnability: even the class of

all cofinite sets is not confidently partially learnable; neither is the class consisting

of the unions of all finite sets with any nonrecursive set. This observation also

extends to the learning of recursive functions, as may be noted from the fact that

even behaviourally correct learnability is insufficient to guarantee confident partial

learnability in this case. Furthermore, several theorems illuminate the role that

padding, an occasionally useful tool in Recursion Theory, plays in the construction of

confident partial learners. In particular, one result states that vacillatory learnability

(whereby a learner is permitted to oscillate infinitely often between finitely many

different correct indices) implies confident partial learnability when the hypothesis

space is taken to be the standard universal numbering of all r.e. languages, or that

of all partial-recursive functions. Since padding is a technique dependent on the

nature of the numbering with respect to which a learner specifies its conjecture, it

may be natural to inquire how the results on confident partial learnability vary with

the choice of a learner’s hypothesis space. To shed some light on this question, we

construct an example of a uniformly r.e. class of languages which is vacillatorily

learnable but not confidently partially learnable with respect to the given class

numbering. It is, however, still possible to recover from this negative result a weaker

connection between the two forms of learning: a later theorem demonstrates that,

with respect to any general uniformly r.e. hypothesis space of languages, explanatory

learnability implies confident partial learnability.

A further theme studied in this work is the additional learning power conferred by
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oracles. We study this problem from the viewpoints of both confident and consistent

partial learnability. We suggest certain sufficient conditions on the computational

degrees of oracles that permit the confident partial learnability of all recursive func-

tions. Conversely, various necessary conditions on the computational degrees of ora-

cles relative to which REC is confidently partially learnable are proposed. A weaker

version of consistent partial learnability - essentially consistent partial learnability,

according to which a learner must be consistent on cofinitely many data inputs - is

introduced. It is shown that all PA-complete oracles are strong enough to allow all

recursive functions to be essentially consistently partially learnable. This theorem

may be viewed in contrast with the results obtained in [13], in which the authors

fully characterise the computational degrees of oracles relative to which REC is con-

sistently partially learnable. We conclude the section on consistent partial learning

of recursive functions by considering a scenario in which the the learner has to infer

recursive extensions of functions presented as incomplete texts. The final section

deals with the notion of iterative learning, also known as memory-limited learning.

In this setting, a learner has to base its conjecture only on the current input data

and its last hypothesis. The requirements of iterative function learning appear to be

quite exacting: it is shown that there are explanatorily learnable classes of recursive

functions which are not iteratively learnable.
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2.1 Notation

The set of natural numbers is denoted by N, that is, N = {0, 1, 2, . . .}. All “numbers”

in this project refer to natural numbers. The abbreviation r.e. shall be used for

the term “recursively enumerable.” A universal numbering of all partial-recursive

functions is fixed as ϕ0, ϕ1, ϕ2, . . .. Given a set S, S denotes the complement of S,

and S∗ denotes the set of all finite sequences in S. Let W0,W1,W2, . . . be a universal

numbering of all r.e. sets, where We is the domain of ϕe. 〈x, y〉 denotes Cantor’s

pairing function, given by 〈x, y〉 = 1
2(x+y)(x+y+ 1) +y. We,s is an approximation

to We; without loss of generality, We,s ⊆ {0, 1, . . . , s}, and {〈e, x, s〉 : x ∈ We,s} is

primitive recursive. ϕe(x) ↑ means that ϕe(x) remains undefined; ϕe,s(x) ↓ means

that ϕe(x) is defined, and that the computation of ϕe(x) halts within s steps. K

denotes the diagonal halting problem. The jump of a set A is denoted by A′;

that is, A′ = {e : ϕAe (e) ↓}. For any two sets A and B, A ⊕ B = {2x : x ∈

A} ∪ {2y + 1 : y ∈ B}. Analogously, A ⊕ B ⊕ C = {3x : x ∈ A} ∪ {3y + 1 :

y ∈ B} ∪ {3z + 2 : z ∈ C}. The class of all recursive functions is denoted by REC;

the class of all {0, 1}-valued recursive functions is denoted by REC0,1. For any

two partial-recursive functions f and g, f =∗ g denotes that for cofinitely many x,

f(x) ↓= g(x) ↓.

For any σ, τ ∈ (N ∪ {#})∗, σ � τ if and only if σ = τ or τ is an extension of σ,

σ ≺ τ if and only if σ is a proper prefix of τ , and σ(n) denotes the element in the

nth position of σ, starting from n = 0. Given a number a and some fixed n ≥ 1,

denote by an the finite sequence a . . . a, where a occurs n times. a0 denotes the

empty string. The concatenation of two strings σ and τ shall be denoted by στ , and

occasionally by σ ◦ τ .
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2.2 Definitions

The main references on Recursion Theory consulted over the course of this project

were [23], [25], and [27]. The notions of partial-recursive functions and recursively

enumerable sets form the theoretical backbone of the present work. These are de-

fined formally as follows.

Definition 1 The class of partial-recursive functions is the smallest class C of func-

tions from Nn (with parameter n ∈ N) to N such that

• The function mapping any input in Nn to some constant m is in C;

• The successor function S given by S(x) = x+ 1 is in C;

• For every n and every m ∈ {1, 2, . . . , n}, the function mapping (x1, x2, . . . , xn)

to xm is in C;

• For any functions f : Nn → N and g1, . . . , gn : Nm → N in C, the function map-

ping (x1, x2, . . . , xm) to f(g1(x1, x2, . . . , xm), g2(x1, x2, . . . , xm), . . . , gn(x1, x2, . . . , xm))

is in C;

• If g : Nn+2 → N and h : Nn → N are functions in C, then there is a func-

tion f : Nn+1 → N in C with f(x1, x2, . . . , xn, 0) = h(x1, x2, . . . , xn) and

f(x1, x2, . . . , xn, S(xn+1)) = g(x1, x2, . . . , xn, xn+1, f(x1, x2, . . . , xn, xn+1));

• If f : Nn+1 → N is a function in C, the function µy(f(x1, . . . , xn, y)

= 0), which takes the value z if f(x1, . . . , xn, y) is defined for all y ≤ z and

f(x1, . . . , xn, y) > 0 for y < z and f(x1, . . . , xn, z) = 0, and is undefined if no

such z can be found, is in C.



2 Introduction 6

Definition 2 A function is recursive if it is defined on the whole domain Nn and

partial-recursive. A set A is recursively enumerable if it is the range of a partial-

recursive function. A set A is recursive if there is a recursive function f with

f(x) = 1 for x ∈ A and f(x) = 0 for x /∈ A. A set A is 1-generic if for all recursively

enumerable setsB ⊆ {0, 1}∗ there exists an n such that either A(0)◦A(1)◦. . .◦A(n) ∈

B or no extension of A(0) ◦ A(1) ◦ . . . ◦ A(n) belongs to B. More generally, a set

A is n-generic if for every Σ0
n set W ⊆ {0, 1}∗ there is an m such that either

A(0) ◦ A(1) ◦ . . . ◦ A(n) ∈ W or no extension of A(0) ◦ A(1) ◦ . . . ◦ A(n) belongs to

W .

Remark 3 The abbreviation r.e. shall be used for the term “recursively enumer-

able.” Given a partial-recursive function ϕe, one can simulate the computation of

ϕe(x) for a number s of computation steps. Then ϕe,s(x) is defined if the com-

putation halts within s steps; otherwise ϕe,s(x) is undefined. Similarly, given a

recursively enumerable set A, one can simulate the enumeration process of A for s

computation steps, and denote by As the set all of elements of A that are enumerated

within s steps.

Depending on the context, a numbering is either a uniformly r.e. family {Li}i∈N

of subsets of N, or a uniformly co-r.e. family {Li}i∈N of subsets of N, or a family

{φi}i∈N of partial-recursive functions from N to N such that 〈i, x〉 → φi(x) is partial-

recursive. We shall fix a universal numbering ϕ0, ϕ1, ϕ2, . . . of all partial-recursive

functions, and a universal numbering W0,W1,W2, . . . of all r.e. sets, where We is

the domain of ϕe. By means of Cantor’s pairing function, strings over a count-

able alphabet can be coded as natural numbers; for mathematical convenience, this

work usually regards a class of languages as a set of natural numbers. K, the
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diagonal halting problem, denotes the set {e : e ∈ We}, which is also equal to

{e : ϕe(e) is defined}.

Definition 4 Let C be a class of recursive, recursively enumerable, or co-recursively

enumerable sets. A text TL for some L in C is a map TL : N → L ∪ {#} such that

range(TL) = L. TL[n] denotes the string TL(0) ◦ TL(1) ◦ . . . ◦ TL(n). A learner is

a recursive function M : (N ∪ {#})∗ → N. The main learning criterion studied in

the report is partial learning ; this notion, together with various learning constraints

and other learning success criteria, are defined as follows.

i. M is said to partially learn C if, for each L in C, and any corresponding text

TL for L, there is exactly one index e such that M(TL[k]) = e for infinitely

many k, and this e satisfies L = We.

ii. M is said to explanatorily (Ex) learn C if, for each L in C, and any correspond-

ing text TL for L, there is a number n for which L = WM(TL[j]) whenever j ≥ n,

and for any k ≥ j, M(TL[k]) = M(TL[j]).

iii. M is said to behaviourally correctly (BC) learn C if, for each L in C, and any

corresponding text TL for L, there is a number n for which L = WM(TL[j])

whenever j ≥ n.

iv. M is said to vacillatorily (V ac) learn C if it BC learns C and outputs on every

text TL for each L in C only finitely many different indices.

v. M is said to partially conservatively learn C if it partially learns C and outputs

on every text TL for each L in C exactly one index e with L ⊆We.
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vi. M is said to confidently partially learn C if it partially learns C and, for every

set L and every text TL for L, outputs on TL exactly one index infinitely often.

Definition 5 The definitions for learning of recursive functions proceed in parallel

fashion; here we distinguish between learning from canonical texts and arbitrary

texts. Let C be a class of recursive functions. The canonical text T canf for some f

in C is the map T canf : N → N such that T canf (n) = f(n) for all n. T canf [n] denotes

the string T canf (0) ◦ T canf (1) ◦ . . . ◦ T canf (n). An arbitrary text Tf for some f in C is

a map Tf : N → graph(f) such that Tf (N) = graph(f). Tf [n] denotes the string

Tf (0) ◦ Tf (1) ◦ . . . ◦ Tf (n). In contrast to canonical texts, the pairs 〈x, f(x)〉 in

graph(f) may appear in any order. The learning success criteria are first defined

with respect to learning from canonical texts.

i. M is said to partially (Partcan) learn C if, for each f in C, there is exactly one

index e such that M(T canf [k]) = e for infinitely many k, and this e satisfies

f = ϕe.

ii. M is said to explanatorily (Excan) learn C if, for each f in C, there is a

number n for which f = ϕM(T canf [j]) whenever j ≥ n, and for any k ≥ j,

M(T canf [k]) = M(T canf [j]).

iii. M is said to behaviourally correctly (BCcan) learn C if, for each f in C, there

is a number n for which f = ϕM(T canf [j]) whenever j ≥ n.

iv. M is said to vacillatorily (V accan) learn C if it BCcan learns C and outputs

on the canonical text for each f in C only finitely many different indices.

v. M is said to confidently partially (ConfPartcan) learn C if it partially learns C
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from canonical text and outputs on every infinite sequence exactly one index

infinitely often.

vi. M is said to essentially class consistently partially (EssClassConsPartcan)

learn C if it partially learns C from canonical text and, for each f in C,

ϕM(T canf [n])(m) ↓= f(m) holds whenever m ≤ n for cofinitely many n.

The analagous learning criteria defined in the context of identification with re-

spect to arbitrary text are as follows.

i. M is said to partially (Partarb) learn C if, for each f in C, and any corre-

sponding text Tf for f , there is exactly one index e such that M(Tf [k]) = e

for infinitely many k, and this e satisfies f = ϕe.

ii. M is said to explanatorily (Exarb) learn C if, for each f in C, and any corre-

sponding text Tf for f , there is a number n for which f = ϕM(Tf [j]) whenever

j ≥ n, and for any k ≥ j, M(Tf [k]) = M(Tf [j]).

iii. M is said to behaviourally correctly (BCarb) learn C if, for each f in C, and

any corresponding text Tf for f , there is a number n for which f = ϕM(Tf [j])

whenever j ≥ n.

iv. M is said to vacillatorily (V acarb) learn C if it BCarb learns C and outputs on

every text Tf for each f in C only finitely many different indices.

v. M is said to confidently partially (ConfPartarb) learn C if it Partarb learns C

and outputs on every infinite sequence exactly one index infinitely often.
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vi. M is said to essentially class consistently partially (EssClassConsPartarb)

learn C if it Partarb learns C and, for each f in C, and any corresponding text

Tf for f , ϕM(Tf [n])(m) ↓= f(m) holds whenever 〈m, f(m)〉 ∈ {Tf (k) : k ≤ n}

for cofinitely many n.

On occasion, the present work also studies the question of partial learnability

under the setting of any general hypothesis space. The learning success criteria are

extended in a natural way; the subsequent definition carries out this generalisation

for confident partial learning.

Definition 6 Let L = {A0, A1, A2, . . .} be a uniformly recursively enumerable fam-

ily, and let H = {B0, B1, B2, . . .} ⊇ L. L is said to be confidently partially learnable

using the hypothesis space H if there is a confident partial recursive learner M such

that for all Ai, M outputs on a text for Ai exactly one index j infinitely often and

j satisfies Bj = Ai.

Blum and Blum [3] introduced the notion of a locking sequence for explana-

tory learning, whose existence is a necessary criterion for a learner to successfully

identify the language or recursive function generating the text seen. With a slight

modification, one can adapt this concept to the partial learning model.

Definition 7 Let M be a recursive learner and L be a set partially learnt by M .

Then there is a finite sequence σ of elements in L ∪ {#} such that

• WM(σ) = L;

• For all finite sequences τ of elements in L ∪ {#}, there is an η ∈ (L ∪ {#})∗

such that M(σ ◦ τ ◦ η) = M(σ).
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This σ shall be called a locking sequence for L.

2.3 Tools from Recursion Theory

The present section summarises the results in Recursion Theory that are most fre-

quently applied in the following work.

Theorem 8 (Substitution theorem, or s-m-n theorem) For all m,n, a partial func-

tion f(e1, . . . , em, x1, . . . , xn) is partial recursive if and only if there is a recursive

function g such that

∀e1, . . . , em, x1, . . . , xn[f(e1, . . . , em, x1, . . . , xn) = ϕg(e1,...,em)(〈x1, . . . , xn〉)].

Theorem 9 (Padding lemma) There is a recursive function pad satisfying

ϕpad(e) = ϕe, and pad(e) > e for all e.

Theorem 10 (Kleene’s second recursion theorem, or fixed-point theorem) Given

any recursive function f , there are infinitely many e with ϕf(e) = ϕe.
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3 Partial Learning of Classes of R.e. Languages

The point of departure is the following result noted by Osherson, Stob and Weinstein

[24], that the class of all r.e. sets is partially learnable. The proof can be extended

to show that the class of all co-r.e. sets is also partially learnable, as is the class

of all recursive functions. This theorem motivates the search for a more restrictive

criterion of partial learning.

Theorem 11 The class of all r.e. sets is partially learnable.

Proof. Let F0, F1, F2, . . . be a Friedberg numbering of all r.e. sets. One can define

a recursive learner M that outputs, on any text T (0) ◦ T (1) ◦ T (2) ◦ . . ., an index e

at least n times if and only if there is a stage s > n such that Fe,s(x) = Ts(x) for

all x ≤ n, where Ts = {T (0), T (1), . . . , T (s)} − {#}. By the s-m-n theorem, there

is a recursive function g such that Fd = Wg(d) for all d. A new recursive learner N

can subsequently be defined to translate the indices output by M into indices from

the default hypothesis space {W0,W1,W2, . . .}, by setting N to conjecture g(e) just

if M outputs e. The one-one numbering property of F0, F1, F2, . . . implies that if T

were the text for some r.e. language L, then there is exactly one index e satisfying

∀x ≤ n[Fe(x) = Ts(x)] for infinitely many n and s. This establishes that N is a

partial learner of all r.e. languages, as required. �

3.1 Confident Partial Learning

The first learning constraint proposed here as a means of sharpening partial learn-

ability is that of confidence. This notion is mentioned peripherally in [12] and [22],
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appearing within exercises in the textbooks cited. As defined earlier, a recursive

learner is confident just if it outputs on each text for every set L exactly one index

infinitely often. The next result, that the class of all cofinite sets is not confidently

partially learnable, is proved in [9], and it shows that this additional learning re-

quirement does in fact restrict the scope of partial learnability.

Theorem 12 [9] The class of all cofinite sets is not confidently partially learnable.

To bridge the gap between partial learning and the more traditional learning

success criteria of explanatory and behaviourally correct learning, it is shown next

that one can also construct a behaviourally correctly learnable class of r.e. languages

which is not confidently partially learnable.

Theorem 13 There is a uniformly r.e. class of languages which is behaviourally

correctly learnable but not confidently partially learnable.

Proof 1. Let C be the class {{e} ⊕ (We ∪ D) : e ∈ N ∧ D is a finite set}. A

behaviourally correct learner for C may be defined as follows: on reading the input

σ with |σ| = n+1 and range(σ) = {2e}∪{2x1+1, 2x2+1, . . . , 2xk+1}, M conjectures

an r.e. index for the set {e}⊕(We∪{x0, x1, . . . , xk}); otherwise, M outputs a default

index 0. For any given set {e}⊕(We∪D) in C, every text for this set must eventually

contain the number 2e as well as the set {2y + 1 : y ∈ D}. Consequently, M will

always converge semantically to an index of the set to be learnt.

Next, assume by way of contradiction that N confidently partially learns C.

Fix any number e such that We is coinfinite, and using the oracle K′, choose a

subsequence a0, a1, a2, . . . of N−We which satisfies the following two properties for
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all n:

• an+1 > an;

• an+1 > ϕK
s (a0, a1, . . . , an),

for all s ≤ n such that ϕK
s (a0, a1, . . . , an) is defined.

Put L = {e} ⊕ (N− {a0, a1, a2, . . .}). By the confidence of N , there is an index

d and a finite sequence σ ∈ (L ∪ {#})∗ such that for all τ ∈ (L ∪ {#})∗, there is an

η ∈ (L ∪ {#})∗ such that N(σ ◦ τ ◦ η) = d.

Claim 14 There is a number n such that for all k > n, there is a τk ∈ ({e} ⊕ (N−

{a0, a1, . . . , ak}))∗ for which, given any γ ∈ ({e} ⊕ (N − {a0, a1, . . . , ak}))∗, there

exists some η ∈ ({e} ⊕ (N− {a0, a1, . . . , ak}))∗ with N(σ ◦ τk ◦ γ ◦ η) = d.

There is a partial K-recursive function which evaluates the maximum value of

any sequence τk ∈ ({e} ⊕ (N − {a0, a1, . . . , ak}))∗ such that for all η ∈ ({e} ⊕ (N −

{a0, a1, . . . , ak}))∗, it holds that N(σ ◦ τk ◦ η) 6= d, if such a sequence τk does in fact

exist. Let ϕK
s (a0, a1, . . . , ak) be this value whenever it is defined; by the choice of

ak+1, one has that ak+1 > ϕK
s (a0, a1, . . . , ak) for all k ≥ s. As a consequence, for all

n ≥ s, τn cannot exist, for otherwise τn ∈ (L∪{#})∗, and so by the locking property

of σ, there is a sequence η ∈ (L∪{#})∗ for which N(σ ◦ τn ◦ η) = d, contrary to the

definition of τn. This establishes the claim.

Hence by the claim, there are at least two different finite sets F and G, for

example {a0, a1, . . . , as} and {a0, a1, . . . , as+1}, both of which are disjoint to We,

and two strings σF ∈ ({e} ⊕ (N− F ))∗, σG ∈ ({e} ⊕ (N−G))∗, as well as an index
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d, such that for every τF ∈ ({e} ⊕ (N − F ))∗ and for every τG ∈ ({e} ⊕ (N − G))∗

there is an ηF ∈ ({e} ⊕ (N − F ))∗ with N(σF ◦ τF ◦ ηF ) = d and there is an

ηG ∈ ({e} ⊕ (N−G))∗ with N(σG ◦ τG ◦ ηG) = d.

If, on the other hand, We were cofinite, then for every finite set F disjoint to

We, {e} ⊕ (N − F ) is equal to {e} ⊕ (We ∪ H) for some finite subset H. Since N

confidently partially learns the set {e}⊕ (We ∪H), it outputs on every text for this

set exactly one index of the set infinitely often, so that the finite sets F and G as

constructed above cannot exist. Hence it would follow that {e : We is coinfinite}

is Turing reducible to K′; denoting by D0, D1, D2, . . . a canonical numbering of all

finite sets, this reducibility may be realised by the Σ0
3 formula

e ∈ {c : Wc is coinfinite} ⇔ ∃〈d, i, j〉∃σi∃σj∀s∀τi∀τj∃ηi∃ηj [(i 6= j

∧ (Di ∪Dj) ∩We,s = ∅ ∧ σi ◦ τi ∈ (({e} ⊕ (N−Di)) ∪ {#})∗

∧ σj ◦ τj ∈ (({e} ⊕ (N−Dj)) ∪ {#})∗)⇒ (ηi ∈ (({e} ⊕ (N−Di)) ∪ {#})∗

∧ ηj ∈ (({e} ⊕ (N−Dj)) ∪ {#})∗ ∧N(σi ◦ τi ◦ ηi) = d ∧N(σj ◦ τj ◦ ηj) = d)],

which contradicts the known fact that it is Π0
3-complete. �

Proof 2. Let A be any r.e. but nonrecursive set. We shall show that the uniformly

r.e. class C = {A ∪ D : D is finite} is behaviourally correctly learnable but not

confidently partially learnable. As the argument is based on the nonrecursiveness of

A, it may be assumed without any loss of generality that A is the diagonal halting

problem K. A behaviourally correct learner for C may be defined as follows: on

reading the input σ = a0 ◦ a1 ◦ . . . ◦ an, the learner M outputs an r.e. index for

K∪{a0, a1, . . . , an}−{#}. If a0◦a1◦a2◦. . . were a text for the set K∪D, then there is a

sufficiently long prefix a0◦a1◦. . .◦an of the text such that D ⊆ {a0, a1, . . . , an}−{#},
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and consequently M will converge semantically to an index for K ∪D.

Next, it shall be demonstrated that C is not confidently partially learnable.

Assume by way of contradiction that N were a confident partial learner of C. A K′-

recursive text, together with a subsequence {x0, x1, x2, . . .} of N−K, are constructed

inductively as follows:

• Since N confidently partially learns C, a locking sequence σ0 ∈ (K∪{#})∗ for

K may be found using the oracle K′. Furthermore, suppose that N outputs

the index e0 for K infinitely often; σ0 may then be chosen so that for all

τ ∈ (K ∪ {#})∗, N(σ0 ◦ τ) ≥ e0. By again accessing the oracle K′, a search

is then run for a number y ∈ N − K such that N(σ0 ◦ y) ≥ e0, and for all

τ ∈ (K ∪ {#})∗, N(σ0 ◦ y ◦ τ) ≥ e0. Such a y must always exist: for, suppose

on the contrary that for all y ∈ N − K, either N(σ0 ◦ y) < e0 holds, or there

is a string τ ∈ (K ∪ {#})∗ for which N(σ0 ◦ y ◦ τ) < e0. By the choice of σ0,

N(σ0 ◦y) ≥ e0 and N(σ0 ◦y ◦ τ) ≥ e0 for all y ∈ K and τ ∈ (K∪{#})∗. Hence

one obtains an effective decision procedure for determining whether or not

any given number is contained in K, via the condition y /∈ K ⇔ N(σ0 ◦ y) <

e0 ∨ ∃τ ∈ (K ∪ {#})∗[N(σ0 ◦ y ◦ τ) < e0], which is a contradiction. Hence the

search for such a y will eventually terminate successfully; now set x0 = y.

• At stage n+ 1, suppose that x0, x1, . . . , xn, as well as σ0, σ1, . . . , σn have been

selected. In addition, suppose that for all k ≤ n, N outputs the index ek

for K∪ {x0, . . . , xk−1} infinitely often after it is fed with the locking sequence

σ0◦x0◦. . .◦σk. Assume as the inductive hypothesis that N(σ0◦x0◦σ1◦x1◦. . .◦

σn◦xn) ≥ en, and that for all τ ∈ (K∪{#})∗, N(σ0◦x0◦σ1◦x1◦. . .◦σn◦xn◦τ) ≥
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en. As N confidently partially learns K ∪ {x0, x1, . . . , xn}, there is a string

τ ∈ (K∪ {#})∗ and an r.e. index en+1 > en for K∪ {x0, x1, . . . , xn} such that

N(σ0 ◦x0 ◦σ1 ◦x1 ◦ . . .◦σn ◦xn ◦τ ◦η) ≥ en+1 for all η ∈ (K∪{x0, x1, . . . , xn}−

{#})∗. This string τ may be found using the oracle K′; one then sets σn+1 = τ .

By an argument analogous to that of the base step of the construction, one

may consult the oracle K′ to find a number y ∈ N−K−{x0, x1, . . . , xn} so that

N(σ0 ◦x0 ◦σ1 ◦x1 ◦ . . . ◦σn ◦xn ◦σn+1 ◦ y) ≥ en+1, and for all γ ∈ (K∪{#})∗,

it holds that N(σ0 ◦ x0 ◦ σ1 ◦ x1 ◦ . . . ◦ σn+1 ◦ y ◦ γ) ≥ en+1. Setting xn+1 = y,

this completes the recursion step.

It follows from the above construction that e0, e1, e2, . . . is a strictly monotone in-

creasing sequence, so that for every number e, there is an n sufficiently large so that

N(γ) > e for all γ � σ0 ◦ x0 ◦ σ1 ◦ x1 ◦ σ2 ◦ x2 ◦ . . . with |γ| > n. This means that N

does not output any index infinitely often on the text σ0 ◦ x0 ◦ σ1 ◦ x1 ◦ σ2 ◦ x2 ◦ . . .,

contradicting the hypothesis that N is a confident learner. �

In spite of the preceding negative examples, there may still be a fair abundance of

confidently partially learnable classes of languages. As demonstrated in [9], the class

of all closed sets of Noetherian K-r.e. matroids is confidently partially learnable.

Furthermore, Gold’s example [10], consisting of all finite sets and one infinite set,

provides a relatively natural instance of a confidently partially learnable but not

behaviourally correctly learnable class of languages.

Example 15 The class C = {D : D is finite}∪{N} is confidently partially learnable

but not behaviourally correct learnable.
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Proof. One can define a recursive learner M that outputs, on the input σ = a0 ◦

a1◦a2◦ . . .◦an, a fixed index of N if range(σ)−{#} 6= {a0, a1, a2, . . . , an}−{#}, and

a canonical index for range(σ)−{#} if range(σ)−{#} = {a0, a1, a2, . . . , an}−{#}.

M then outputs a fixed index for N infinitely often on any input text with an infinite

range; otherwise, it will output a canonical index for the finite range of the text.

Hence M confidently partially learns C. On the other hand, it can be shown [10]

that C cannot be behaviourally correctly learnt, even with the aid of oracles. �

With a little diligence, it is possible to show that even for a uniformly recur-

sive class of languages, behaviourally correct learnability does not necessarily imply

confident partial learnability. Such an example is exhibited in the proof of the next

theorem.

Theorem 16 There is a uniformly recursive class of languages which is behaviourally

correctly learnable but not confidently partially learnable with respect to the hypoth-

esis space {W0,W1,W2, . . .}.

Proof. Let M0,M1,M2, . . . be an enumeration of all partial-recursive learners. The

primary objective is to build a K-recursive sequence a0, a1, a2, . . . such that if the

sequence is finite and equal to σ, then the learner Ma0 fails to learn the language

L〈στ〉 for all extensions τ ∈ N∗ of σ; and if the sequence is infinite, then there are

finite sequences σ0, σ1, σ2, . . . such that for all i, σi ∈ (L〈a0,...,ai,s〉 ∪ {#})∗ for a

sufficiently large number s, and σ0 ◦ σ1 ◦ σ2 ◦ . . . is a text on which Ma0 outputs

each index only finitely often. For each finite sequence 〈a0, a1, . . . , an, s〉 ∈ N∗, the

recursive set L〈a0,a1,...,an,s〉 is defined in an inductive fashion as follows.
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First, define an auxiliary class of finite sets An,s by

An,s(x) =

 0 if x > 3n+ 1 or x ≡ 0(mod 3) or x ≡ 2(mod 3);

Ws(x) if x ≤ 3n+ 1 and x ≡ 1(mod 3).

The purpose of introducing the finite sets {An,s}n,s∈N is to ensure that each of

the sets L〈a0,a1,...an,s〉 differs from all of W0,W1, . . . ,Wn; the construction achieves

this when s is sufficiently large. Next, put

L〈a0,s〉 =



{a0, t} ⊕ ((N−A0,s) ∩ {0, 1, . . . , t})⊕ (N ∩ {0, 1, . . . , t}) if t is the first step

with t > max{s, a0}

such that A0,t(1) 6= A0,s(1);

{a0} ⊕ (N−A0,s)⊕ N if A0,s(1) = W0,s(1).

Further, let L〈a0〉 = L〈a0,0〉. Now, given the sequence 〈a0, a1, . . . , an, s〉 with

n ≥ 1, consider the following conditions:

• for each i with 0 ≤ i ≤ n, x ∈ Ai,s if and only if x ∈Wi ∩ {0, 1, . . . , n};

• there are finite sequences σ0, σ1, . . . , σn−1 such that

σ0 ∈ (({a0} ⊕ (N−A0,s)⊕N)∪ {#})∗ is the first string found at step a1 > a0

with a1 > max(range(σ0)), and for which, whenever

τ ∈ (({a0}⊕(N−A0,s)⊕N)∪{#})∗, it holds that Ma0(σ0 ◦τ) > 0; in addition,

for each i with 1 ≤ i ≤ n− 1,

σi ∈ (({a0} ⊕ (N− Ai,s)⊕ (N− {a0, a1, . . . , ai−1})) ∪ {#})∗ is the first string

found at step ai+1 > ai with ai+1 > max(range(σ0 ◦ σ1 ◦ . . . ◦ σi)), and for all

τ ∈ (({a0} ⊕ (N− Ai,s)⊕ (N− {a0, a1, . . . , ai−1})) ∪ {#})∗, one also has that
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Ma0(σ0 ◦ σ1 ◦ . . . ◦ σi ◦ τ) > i.

If both of the above conditions are satisfied, set

L〈a0,a1,...,an,s〉 = {a0} ⊕ (N−An,s)⊕ (N− {a0, a1, . . . , an−1}).

If, on the other hand, at least one of the above conditions is not satisfied, and

t > max{s, a0} is the first step at which a condition is breached, set

L〈a0,a1,...,an,s〉 = {a0, t}⊕((N−An,s)∩{0, 1, . . . , t})⊕((N−{a0, a1, . . . , an−1)∩{0, 1, . . . , t}).

The first coordinate of L〈a0,a1,...,an,s〉 has a dual role: to encode the learner Ma0 to

be diagonalised against, as well as to prevent a finite set L〈a0,a′1,...,a′n′ ,s
′〉 from being a

proper subset of L〈a0,a1,...,an,s〉 if, for the sequence 〈a0, a1, . . . , an, s〉, there are finite

sequences σ0, σ1, . . . , σn−1 found at stages a1, a2, . . . , an respectively satisfying the

conditions described above, so that L〈a0,a1,...,an,s〉 is infinite. The second coordinate

secures that L〈a0,a1,...,an,s〉 differs from W0,W1, . . . ,Wn provided s is large enough,

while the last coordinate encodes the steps a0, a1, a2, . . . at which the sequences

σ0, σ1, σ2, . . . are found. It follows from the construction that L〈a0,a1,...,an,s〉 is finite

and has an element equal to 0 modulo 3 which is greater than a0 if and only if

at least one of the above conditions fails to hold. It remains to show that the

uniformly recursive class C = {L〈a0,a1,...,an,s〉}a0,a1,...,an,s∈N is BCr.e. learnable but

not confidently partially learnable.

By the known characterisation of BCr.e. learnable uniformly recursive families

[2], it suffices to demonstrate that each set in the class contains a possibly non-

effective tell-tale set - that is, corresponding to each L〈a0,a1,...,an,s〉, there is a finite



3 Partial Learning of Classes of R.e. Languages 21

set H〈a0,a1,...,an,s〉 ⊆ L〈a0,a1,...,an,s〉 such that all L′ ∈ C for which H〈a0,a1,...,an,s〉 ⊆

L′ ⊆ L〈a0,a1,...,an,s〉 holds must be equal to L〈a0,a1,...,an,s〉. These tell-tale sets may be

observed by means of a case distinction. To begin with, consider sets of the form

L〈a0,s〉; since all finite sets are tell-tale sets of themselves, it may be assumed that

L〈a0,s〉 = {a0}⊕(N−A0,s)⊕N. Suppose that there are sequences σ0, σ1, σ2, . . . , σn, . . . ,

found at steps a1, a2, a3, . . . , an, . . . , respectively satisfying the requirements for

L〈a0,a1,...,an,s〉 to be an infinite set when s is sufficiently large. The sequences

σ0, σ1, σ2, . . ., together with steps a1, a2, a3, . . ., if they exist, are uniquely deter-

mined. Consequently, a tell-tale set for L〈a0,s〉 is {a0} ⊕ ∅⊕ {a1}, as every finite set

contains at least two elements in the first coordinate, and so cannot be a proper

subset of {a0} ⊕ (N − A0,s) ⊕ N. By the same token, if there exist at least n

terms in the sequence a1, a2, a3, . . ., and L〈a0,a1,...,an,s〉 = {a0} ⊕ (N − An,s) ⊕ (N −

{a0, a1, . . . , an−1}), then a tell-tale set for L〈a0,a1,...,an,s〉 is {a0} ⊕ ∅ ⊕ {an}. On

the other hand, if there is no n-th term in the sequence, then a tell-tale set for

{a0}⊕(N−An,s)⊕(N−{a0, a1, . . . , an−1}) is {a0}⊕∅⊕∅. Thus by the non-effective

version of Angluin’s criterion, C is BCr.e. learnable.

To complete the proof, assume by way of contradiction that Ma0 were a confident

partial learner of the class C. Suppose that there is an infinite sequence of strings

σ0, σ1, σ2, . . . found at steps a1, a2, a2, . . . respectively, which satisfy the condition

that for all i, σi ∈ (L〈a0,a1,...,ai,s〉 ∪ {#})∗ for some s such that for each j between 0

and n, x ∈ Aj,s if and only if x ∈Wi∩{0, 1, . . . , n}; and whenever τ ∈ (L〈a0,a1,...,ai,s〉∪

{#})∗, then Ma0(σ0 ◦ . . . ◦ σi ◦ τ) ↓> i. This would then imply that σ0 ◦ σ1 ◦ σ2 ◦

. . . is a text on which Ma0 outputs each index only finitely often, contrary to the

assumption that Ma0 is a confident learner. Suppose, however, that only finitely
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many a0, a1, a2, . . . exist; therefore, if ak were the last term in this sequence, then for

all σ ∈ (L〈a0,a1,...,ak,s〉∪{#})
∗, where s is large enough so that Ak,t = Ak,s whenever

t > s, there is a sequence τ ∈ (L〈a0,a1,...,ak,s〉 ∪ {#})
∗ so that Ma0(σ0 ◦ σ1 ◦ . . . ◦

σk−1 ◦ σ ◦ τ) ≤ k. Hence, since L〈a0,a1,...,ak,s〉 /∈ {W0,W1, . . . ,Wk} and range(σ0 ◦

σ1 ◦ . . . ◦ σk−1) ⊂ L〈a0,a1,...,ak,s〉 by construction, there is a text for L〈a0,a1,...,ak,s〉

on which Ma0 outputs an incorrect index infinitely often, again contradicting the

assumption that Ma0 is a confident partial learner of C. In conclusion, the class

C is BCr.e. learnable but not confidently partially learnable with respect to the

hypothesis space {W0,W1,W2, . . .}. �

The following theorem formulates a learning criterion that may appear at first

sight to be less stringent than confident partial learnability, but is in fact equivalent

to it. This result is then applied in the subsequent theorem to show that every

vacillatorily learnable class of r.e. languages is also confidently partially learnable.

Theorem 17 A class C is confidently partially learnable if and only if there is a

recursive learner M such that

• M outputs on each text exactly one index infinitely often;

• if T is a text for a language L in C, and d is the index output by M infinitely

often on T , then there is an index e of L with e ≤ d.

Proof. Suppose that there is a recursive learner M of C which satisfies the learning

criteria laid out in the statement of the theorem. Let pad(e, d) be a two-place

recursive function such that Wpad(e,d) = We and pad(e, d) 6= pad(e′, d′) if (e, d) 6=

(e′, d′) for all numbers e, d, e′, d′. One may define a confident partial learner N as



3 Partial Learning of Classes of R.e. Languages 23

follows: on the input text T = a0 ◦ a1 ◦ a2 ◦ . . ., N outputs pad(e, d) at least n times

if and only if M outputs d at least n times and there is a stage s > n such that e is

the minimal number not exceeding d which satisfies the condition

∀k ≤ d[max{x ≤ s : ∀y ≤ x[y ∈Wk,s ⇔ y ∈ {a0, a1, . . . , as}]}

≤ max{x ≤ s : ∀y ≤ x[y ∈ We,n ⇔ y ∈ {a0, a1, . . . , an}]}]. Since M outputs

exactly one index, say i, infinitely often on the text T , N also outputs infinitely

often the number pad(e, i), where e is the least index with e ≤ i such that either

We = range(T ), or the minimum number xe for which We(xe) 6= T (xe) is equal to

max{{xk : k ≤ i ∧ xk = min{y : Wk(y) 6= T (y)}}}. For all i′ different from i, N

outputs pad(k, i′) finitely often as M outputs i′ only finitely often; for each k 6= e not

exceeding i, there is a stage s sufficiently large so that for all subsequent stages, k

will never satisfy the condition imposed on e. Hence N , on every text it is fed with,

outputs exactly one index infinitely often. Furthermore, if T is a text for a language

L in C, and i is the index that M outputs infinitely often on T , then the number

e ≤ i such that We(y) = T (y) on the longest possible initial segment {0, 1, . . . , xk}

among all indices k ≤ i is also an index for L, that is, We = L. This establishes that

N is a confident partial learner of C. Conversely, if P were a confident partial learner

of C, then P also fulfils the learning criteria in the statement of the theorem: if P

is presented with a text for some L in C, then the index d that it outputs infinitely

often satisfies Wd = L.

Theorem 18 If a class C is vacillatorily learnable, then C is confidently partially

learnable.

Proof. By the criterion established in Theorem 17, it suffices to prove that if C

were vacillatorily learnable, then there is a learner N such that N outputs on every
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text T exactly one index d infinitely often, and if T is a presentation of some L in C,

then d is an upper bound for an index of L. Suppose that M is a vacillatory learner

of C. Let T = a0 ◦ a1 ◦ a2 ◦ . . . be a text, and define N to be a recursive learner such

that:

• N outputs the number d at least n times if and only if there is a stage s > n

such that d = max{M(σ) : σ � a0 ◦ . . . ◦ as};

• N outputs a fixed index 0 for ∅ at least n times if and only there is a stage s

at which M(a0 ◦ . . . ◦ as) > n.

If M outputs an infinite set of different indices on the text T , then N outputs

0 infinitely often, and all other indices for at most a finite number of times. If M

outputs only finitely many indices e0, e1, . . . , en, then N outputs max{e0, e1, . . . , en}

infinitely often. In addition, if T is a text for some L in C, then M outputs only

finitely many indices, so that N outputs the maximum, m, of these indices infinitely

often, and there is an e ≤ m such that We = L. Thus N satisfies the required

learning criteria, and it follows by Theorem 17 that C must be confidently partially

learnable.

As was pointed out earlier, the union of the class of all finite sets and the

class {N} is not behaviourally correctly learnable, even though both of the classes

{D : D is finite} and {N} are explanatorily learnable. On the other hand, it is quite

a curious feature of confident learning under various success criteria that it is closed

under finite unions. In particular, it is shown in [27] that the union of finitely many

confidently vacillatorily learnable classes is also confidently vacillatorily learnable;
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the analogous result for confident behaviourally correct learning also holds true. The

next theorem states that this property of confident learning also extends to partial

learnability. That is to say, if C1 and C2 are confidently partially learnable classes

of r.e. languages, then C1 ∪ C2 is also confidently partially learnable. The proof

illustrates a padding technique, dependent on the underlying hypothesis space of

the learner, that is often applied throughout this work to construct confident partial

learners.

Theorem 19 Confident partial learning is closed under finite unions; that is, if C1

and C2 are confidently partially learnable classes, then C1∪C2 is confidently partially

learnable.

Proof 1. Let M and N be confident partial learners of the classes C1 and C2 re-

spectively. A new confident partial learner which learns C1 ∪ C2 may be defined as

follows. There is a one-one function f such that f(i, j, k) is an index of Wi if k is

even, and an index of Wj if k is odd. The new learner R outputs f(i, j, k) at least

n times if and only if the following conditions hold:

• M outputs i at least n times;

• N outputs j at least n times;

• if k = 0, then for some s > n, ∀x < n[Wi,s(x) = Wj,s(x)];

• if k = 2o+ 1, then there is an s > n such that o is the minimum value where

Wi,s(o) 6= Wj,s(o) and Wj,s(o) = 1 if and only if o has been observed in the

input data so far;
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• if k = 2o+ 2, then there is an s > n such that o is the minimum value where

Wi,s(o) 6= Wj,s(o) and Wi,s(o) = 1 if and only if o has been observed in the

input data so far.

Consider an index of the form f(i, j, k). If M outputs i finitely often, or N

outputs j finitely often, then R outputs f(i, j, k) only finitely often. Suppose, on

the other hand, that M outputs i and N outputs j infinitely often. By the confidence

of M and N , there is exactly one such pair of numbers 〈i, j〉. To show that there

is exactly one value of k such that R outputs f(i, j, k) infinitely often, consider first

the case that Wi = Wj . Then for all x, there is an s such that for all y < x,

Wi,s(y) = Wj,s(y), and so in following the above algorithmic instructions, R outputs

the index f(i, j, 0) infinitely often. However, since for every number o there are at

most finitely many s such that Wi,s(o) 6= Wj,s(o), this means that R outputs an

index of the form f(i, j, 2o+ 1) or f(i, j, 2o+ 2) only finitely often.

Secondly, suppose that Wi 6= Wj , and let o be the least number with Wi(o) 6=

Wj(o). There is an s sufficiently large so that for all s′ ≥ s, it holds that Wi,s′(o) 6=

Wj,s′(o), and hence R will output the index f(i, j, 0) only finitely often. Let f(i, j,m)

be an index for which m 6= o. Then m is not the minimum value such that Wi(m) 6=

Wj(m); thus whenever s is large enough, eitherWi,s(m) = Wj,s(m) holds or there is a

k < m with Wi,s(k) 6= Wj,s(k). For this reason, R outputs the indices f(i, j, 2m+ 1)

and f(i, j, 2m + 2) finitely often. Lastly, consider the indices f(i, j, 2o + 1) and

f(i, j, 2o + 2). Without loss of generality, assume that Wi(o) = 1 and Wj(o) = 0.

If o eventually appears in the text presented, then for all large enough s, o is the

minimum value that occurs in the data revealed with Wi,s(o) 6= Wj,s(o), and in

addition Wi,s(o) = 1, Wj,s(o) = 0; whence, R must output f(i, j, 2o + 2) infinitely
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often and f(i, j, 2o+ 1) finitely often. If o never occurs in the text presented, then

for all large enough s, o is the minimum value such that Wi,s(o) 6= Wj,s(o), and

Wj,s(o) = o, so that R outputs f(i, j, 2o+1) infinitely often and f(i, j, 2o+2) finitely

often. This completes the case distinction and establishes that R is confident.

Suppose further that R is presented with a text for some L in C1. On this text,

M will output exactly one index i for L infinitely often, and N will also output

exactly one index j infinitely often. If Wi = Wj , then R will output the index

f(i, j, 0) infinitely often; by the definition of f , f(i, j, 0) is an index for Wi and thus

R confidently partially learns L. If Wi 6= Wj , let o be the minimum value such that

Wi(o) 6= Wj(o). If o ∈ Wi, then o will eventually appear in the input data and

hence R will output f(i, j, 2o + 2) infinitely often, which is an index for Wi by the

definition of f . If o /∈ Wi, then o will never occur in the input data and R still

outputs the index f(i, j, 2o + 2) infinitely often. For the case that L is in C2, an

argument analogous to the preceding one, with the roles of M and N interchanged,

may be applied. In conclusion, R confidently partially learns C1 ∪ C2. �

Proof 2. Let M and N be confident partial learners of the classes C1 and C2 respec-

tively. Now using Theorem 17, one can consturct a new learner R which outputs

〈i, j〉 at least n times iff M outputs i and N outputs j at least n times. It is directly

obvious that on every text of a function, the learner R outputs exactly one index

〈i, j〉 infinitely often; this index is an upper bound of an index e of the function to

be learnt whenever i ≥ e∨j ≥ e. Hence R is a confident partial learner (in the sense

of Theorem 17) of C1 ∪ C2. �
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With a similar aim as Theorem 17 - to compare and contrast the learning

strength of confident partial learning with that of other possible learning criteria

- the next theorem considers a variant of confident learning, whereby the learner is

constrained to converge semantically on any given text. This, however, again does

not give rise to any new learning notion, as one can show that any class of r.e.

languages that is learnable according to the proposed criterion can already be con-

fidently partially learnt. Nonetheless, the result bears out the view that confident

partial learning is quite a versatile learning requirement.

Theorem 20 A recursive learner M is said to confidently behaviourally correctly

learn a class C if for every text T there is an r.e. language L such that M almost

always outputs an index for L when it is presented with T ; and if T is a text of some

language L′ in C, then L = L′. Every confidently behaviourally correctly learnable

class is confidently partially learnable.

Proof. Let M be a confident behaviourally correct learner of the class C. Suppose

further that M never returns to an old hypothesis; that is, for all strings σ ∈ (N ∪

{#})∗ and γ ≺ σ, M(σ) 6= M(γ). Owing to the padding lemma, this requirement

on M may always be imposed by setting, if necessary, a new learner to conjecture

an index j > i such that Wj = Wi if M has already hypothesised i at an earlier

stage. A confident partial learner N of C may be defined as follows. Let pad(e, d)

be a recursive function with Wpad(e,d) = We for all e, d.

N outputs pad(e, d + 1) at least n times if and only if there is a stage s > 2n

such that

• M(a0 ◦ a1 ◦ . . . ◦ ai+1) = e for some i with i ≤ n;
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• for all x < n, We,s(x) = WM(a0◦a1◦...◦ai+1◦...◦aj),s(x), where j = i + 2, i +

3, . . . , i + n + 1; in other words, We,s agrees with the s-approximations of its

subsequent n conjectures on all values of x below n;

• d is the minimum number such that WM(a0◦...◦ai),s(d) 6= We,s(d).

Furthermore, N outputs pad(e, 0) at least n times if and only if there is a stage

s > n such that if a0a1 . . . as is the input data, then M(a0) = e, and for all x < n,

We,s(x) = WM(a0◦a1◦...◦aj),s(x), where j = 1, 2, . . . , n.

At each stage, there are only finitely many values of pad(e, d) that qualify as

hypotheses for N ; in addition, N may output an index different from its all preceding

conjectures if no value of pad(e, d) is valid. Hence N may be extended to a well-

defined recursive learner.

To show that N is a confident partial learner of C, let N be presented with any

given text T , and suppose that M on T converges semantically to the r.e. set L;

by the confident behaviourally correct learning property of M , such a set L must

exist, and if T is a presentation of some language L′ in C, then L = L′. It shall be

argued that N outputs exactly one index of the form pad(e, d) infinitely often, and

is such that Wpad(e,d) = L. Two cases are distinguished: first, when M , on the text

T , outputs an index e such that We 6= L; second, when all the conjectures of M on

T are semantically identical, that is, We = L for all indices e that M outputs.

For the first case, suppose that p = max{e : WM(T [e]) 6= L}; here T [e] denotes

the sequence of the first e + 1 data bits of T . Let h = M(T [p + 1]); h is the

first conjecture of M from which point onwards it converges semantically to L.

Then WM(T [p+k]) = L for all k ≥ 1, and there is a minimum value d such that
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WM(T [p])(d) 6= L(d). Hence for all n, there is a stage s > 2n such that whenever

x < n and 1 ≤ j ≤ n, then Wp,s(x) = WM(T [e+j]),s(x); furthermore, d is the least

number such that WM(T [p]),s(d) 6= Wh,s(d). As a consequence of the first condition

defined on N , N outputs the index pad(h, d+ 1) infinitely often.

Next, consider any index g that M conjectures before it outputs h, that is,

g = M(T [k]) for some k ≤ p. Since, by assumption, all the indices that M outputs

on T are different, g 6= h. There is a subsequent conjecture of M , say M(T [k + l]),

such that WM(T [k+l]) 6= Wg. It follows that if e is the least number for which

WM(T [k+l])(e) 6= Wg(e), then for all large enough s, WM(T [k+l]),s(e) 6= Wg(e), and

thus for any value of x, pad(g, x + 1) fails to qualify as a valid conjecture of N at

almost all stages.

Now let g′ be any index thatM conjectures after it outputs h; g′ = M(T [p+k+1])

for some k. Then WM(T [p+k]) = Wg′ = L, that is, there is no minimum number d′

such that WM(T [p+k])(d
′) 6= Wg′(d

′); whence, every index of the form pad(g′, x) is

output only finitely often.

In regard to the second case: asWM(T [k]) = L for all k, there are no numbers d′, k,

such that WM(T [k+1])(d
′) 6= WM(T [k])(d

′), so that the first condition defined on N

occurs at most finitely often. This means that every index of the form pad(g′, x+1),

where g′ is a conjecture of M on T , is output only finitely often. On the other

hand, since WM(T [0]) = WM(T [k]) for all k, there is for every n an s > n such

that WM(T [0]),s(x) = WM(T [k]),s(x) whenever x < n and k ≤ n. Hence N outputs

pad(M(T [0]), 0) infinitely often.

This completes the case distinction and establishes that N is a confident partial
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learner of C, as claimed. �

The fact that the Padding Lemma, satisfied by any acceptable numbering of all

r.e. sets, is used in a crucial way for some of the preceding proofs, raises the question

of how confident partial learnability varies with the choice of a learner’s hypothesis

space. To emphasise the connection between these two aspects of learning, the next

series of results show that certain analogues of earlier theorems fail to hold under

the setting of more general hypothesis spaces where the technique of padding may

not be applicable, as would be the case if, for example, the learner fixes a Friedberg

numbering as its hypothesis space.

Theorem 21 The class C = {{e}⊕We : We is cofinite} of recursive sets is explana-

torily learnable with respect to r.e. indices but is not confidently partially learnable

with respect to co-r.e. indices.

Proof. On the input data σ, an explanatory learner outputs an r.e. index for

{e}⊕We for the first e such that 2e ∈ range(σ); if no such number e exists, then the

learner outputs 0. Now assume by way of contradiction that there were a confident

partial co-r.e. learner M of the class C. By the confidence of M , for every number

e there is a sequence σ ∈ (({e} ⊕ We) ∪ {#})∗ and an index d with M(σ) = d

such that for all τ ∈ (({e} ⊕We) ∪ {#})∗ there is an η ∈ (({e} ⊕We) ∪ {#})∗ for

which M(στη) = d. This sequence σ and index d may be found using the oracle K′.

Suppose first that We were cofinite. Since M confidently partially learns {e} ⊕We,

one has that |Wd| <∞, and for all numbers x, x ∈ We holds if and only if x /∈ Wd

holds as well. The latter condition may be checked by means of the oracle K′.

Suppose, on the other hand, that We were coinfinite. Then, either |Wd| is infinite,
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or there must exist an x such that x /∈ We ∪Wd. This case distinction shows that

{e : We is cofinite} is Turing reducible to K′, a contradiction to the established

fact that it is Σ0
3-complete. In conclusion, the class C is not confidently partially

learnable with respect to co-r.e. indices. �

Theorem 22 There are uniformly r.e classes L1,L2, such that L1 and L2 are con-

fidently partially learnable using L1 and L2 as hypothesis spaces respectively, but

L1 ∪ L2 is not confidently partially learnable using itself as a hypothesis space.

Proof. Let L1 = {U〈d,e,0〉 = {〈d, e, x〉 : x ∈Wd} : d, e ∈ N}, and

L2 = {U〈d,e,1〉 = {〈d, e, x〉 : x ∈ We} : d, e ∈ N}. Each of L1 and L2 is confidently

partially learnable using itself as a hypothesis space: a confident partial learner for

L1 outputs 〈d, e, 0〉 if 〈d, e, x〉, where x is any number, is the first triple that the data

reveals, while a confident partial learner for L2 outputs 〈d, e, 1〉 upon witnessing the

same data; otherwise, if no number occurs in the data, then the learners output a

default index ?. Now assume by way of contradiction that L1 ∪L2 were confidently

partially learnable using L1 ∪L2 as the hypothesis space; let M be such a recursive

learner. Fix any index d of K. It shall be shown next that there is an algorithm using

the oracle K for deciding whether or not any given r.e. set We is equal to K. Let e be

any given number; now generate an infinite text T = 〈d, e, x0〉◦〈d, e, x1〉◦〈d, e, x2〉◦. . .

for U〈d,e,0〉, where x0, x1, x2, . . . is a one-one enumeration of K. By accessing the

oracle K, run a search for the first xi ∈ K such that one of the following conditions

holds:

1. There is a y ≤ xi with y ∈ K−We or y ∈We −K;

2. There is no sequence σ ∈ ((U〈d,e,0〉 ∩ U〈d,e,1〉) ∪ {#})∗ such that M(〈d, e, x0〉 ◦
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. . . ◦ 〈d, e, xi〉 ◦ σ) = 〈d, e, 0〉;

3. There is no sequence σ ∈ ((U〈d,e,1〉 ∩ U〈d,e,0〉) ∪ {#})∗ such that M(〈d, e, x0〉 ◦

. . . ◦ 〈d, e, xi〉 ◦ σ) = 〈d, e, 1〉.

If We 6= K, then there is a y and an xi with y ≤ xi for which either y ∈ K−We

or y ∈ We − K holds; thus condition 1. would eventually be satisfied. If, on the

other hand, We = K, then U〈d,e,0〉 = U〈d,e,1〉, so that T is also a text for U〈d,e,1〉;

indeed, U〈d,e,0〉 and U〈d,e,1〉 are the only two r.e. sets in L1 ∪ L2 for which T is a

text. By the confidence of M , M outputs exactly one of the two indices - 〈d, e, 0〉

or 〈d, e, 1〉 - infinitely often on the text T . If M outputs 〈d, e, 0〉 infinitely often,

then condition 3. would be satisfied at some stage; if it outputs 〈d, e, 1〉 infinitely

often, then condition 2. would eventually hold. Hence the above decision procedure

using the oracle K is effective. One can then conclude that if condition 1. holds,

then We 6= K; and if either condition 2. or 3. is satisfied, then We = K. In other

words, the index set {e : We = K} is Turing reducible to K, which is impossible

since {e : We = K} has the Turing degree of K′. In conclusion, the class L1 ∪ L2 is

not confidently partially learnable using itself as a hypothesis space. �

Theorem 23 The uniformly r.e. class C = L1 ∪ L2, where L1 = {Le = {e + x :

x ≤ |We|} : e ∈ N} and L2 = {He = {e + x : x ∈ N} : e ∈ N} is vacilla-

torily learnable, but not confidently partially learnable using the hypothesis space

{L0, H0, L1, H1, L2, H2, . . .}.

Proof. A behaviourally correct learner of C may perform as follows: on the input σ

with minimum number e and maximum number e+a, the learner checks if |We,|σ|| ≥

a. If so, then it conjectures Le; otherwise, it outputs He.
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On the other hand, if C were confidently partially learnable by a recursive learner

M , then, for any given number e, one may enumerate a default text T (0) ◦ T (1) ◦

T (2) ◦ . . . for Le, and use the oracle K to search for the first number k such that

for all σ ∈ (Le ∪ {#})∗, M does not conjecture one of the sets Le, He on the input

T (0) ◦ T (1) ◦ . . . ◦ T (k) ◦ σ. By the confidence of M , such a number k must always

exist. If k is found such that M does not conjecture Le for all inputs T (0) ◦ T (1) ◦

T (2) ◦ . . . ◦T (k) ◦σ such that σ ∈ (Le ∪{#})∗, then it may be concluded that We is

infinite. Otherwise, if He is the set that M eventually rejects, then it may be tested,

again by means of the oracle K, whether or not there exists a τ ∈ (He ∪ {#})∗

for which M conjectures He on the input T (0) ◦ T (1) ◦ . . . ◦ T (k) ◦ τ . If such a τ

exists, then one may conclude that We is finite; if, however, no such τ can be found,

then We must be infinite. Hence {e : |We| = ∞} is Turing reducible to K, which

is impossible since it has the same Turing degree as K′. In conclusion, C is not

confidently partially learnable. �

Fortunately, not all of the relations established hitherto between confident partial

learning and other learning criteria with respect to the default hypothesis space

{W0,W1,W2, . . .} are lost when considering more general hypothesis spaces; if the

learner’s hypothesis space is uniformly r.e., one can show that a weaker version of

Theorem 18, that explanatory learnability implies confident partial learnability, is

preserved.

Theorem 24 Let C = {L0, L1, L2, . . .} be a uniformly r.e. class that is explanatorily

learnable. Then C is confidently partially learnable with respect to the hypothesis

space {L0, L1, L2, . . .}.
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Proof. Assume that M is an explanatory learner of C with respect to a uniformly

r.e. hypothesis space {H0, H1, H2, . . .}. Then there exists a uniformly K-recursive

family of finite sequences σ0, σ1, σ2, . . . such that for each e,

• range(σe) ⊆ Le;

• for all τ ∈ (Le ∪ {#})∗, M(σeτ) = M(σe).

One can define a new learnerN as follows: on the input η, N outputs the least e ≤ |η|

such that range(σe,|η|) ⊆ range(η), where σe,s denotes the sth approximation to σe,

and for all τ satisfying |τ | ≤ |η| and range(τ) ⊆ range(η), M(σe,|η|τ) = M(σe,|η|). If

such a number e does not exist, then N outputs the default index 0.

Claim 25 If N outputs on a text T an index e infinitely often, then M converges

to an index i with respect to its hypothesis space {H0, H1, H2, . . .} on the text σe ◦

T (0) ◦ T (1) ◦ T (2) ◦ T (3) ◦ . . ., and if T were a text for some language L in C, then

Le = Hi = L.

Suppose that N outputs the index e infinitely often, and let n be sufficiently large

so that σe,s = σe for all s > n. Then e is an index for which range(σe) ⊆ range(T ).

Furthermore, for all τ such that τ is a prefix of T , M(σeτ) = M(σe). Hence M

converges on the text σe ◦ T (0) ◦ T (1) ◦ T (2) ◦ T (3) ◦ . . . to some fixed index i.

Suppose further that T were a text for some La in C. Then, since M explanatorily

learns La, there is a least number e for which M converges to some fixed index on

σe ◦ T , and is such that Le = La. Moreover, since σe is a locking sequence for Le

(and thus also for La), this means that for all τ ∈ (La ∪ {#})∗, M(σeτ) = M(σe).

Hence N explanatorily learns C using the hypothesis space {L0, L1, L2, . . .}. This
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establishes the claim.

The confident partial learner P is now defined by setting P to output e at least

n times if and only if N outputs e at least n times, and to output the default index

0 at least n times if N makes at least n mind changes. P is indeed confident: if

there is a least index e such that M converges to some index i on the text σe ◦ T ,

then P converges in the limit to e; if, on the other hand, no such index e exists,

then N will continue searching for a larger index at every stage that satisfies the

required condition that M(σkτ) = M(σk) for all τ ∈ (range(T )∪ {#})∗, and conse-

quently outputs the default index 0 infinitely often. Finally, since N explanatorily

learns C with respect to the hypothesis space {L0, L1, L2, . . .}, it follows that P also

explanatorily learns C using the same hypothesis space. �

3.2 Partial Conservative Learning

Conservativeness is a learnability constraint that has been studied fairly extensively

in the inductive inference literature, especially in the setting of indexed families

[1, 15]. In the remainder of this section, we consider the notion of partial conser-

vativeness in language learning; in brief, this is partial learning combined with the

constraint that if a learner outputs e infinitely often on a text for some target lan-

guage L, then none of its other conjectures on this text can contain L as a subset. In

the first place, it is observed that Gold’s class does not satisfy this learning criterion.

Theorem 26 The class C = {N} ∪ {F : F is finite} is not partially conservatively

learnable.

Proof. Assume by way of contradiction that M were a recursive partially conser-
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vative learner of C. Since M learns N, there is a sequence

a0 ◦ a1 ◦ . . . ◦ an ∈ (N ∪ {#})∗ such that M(a0 ◦ a1 ◦ . . . ◦ an) = e for some e with

N = We. Then a0 ◦ a1 ◦ . . . ◦ an is the initial segment of a text for the finite set

{a0, a1, . . . , an} − {#}, but since M outputs an index e with

N = We ⊃ {a0, a1, . . . , an} − {#}, M cannot be a partially conservative learner of

C. �

Theorem 27 Let {ϕf(0), ϕf(1), ϕf(2), . . .} be a Friedberg numbering of all partial-

recursive functions. Consider the set C = {ϕf(e) : ϕf(e) is recursive} of recursive

functions, and build the class of graphs G = {{〈x, y〉 : ϕf(e)(x) ↓= y} : ϕf(e) ∈ C}.

Then G is partially conservatively learnable but neither confidently partially learnable

nor behaviourally correctly learnable.

Proof. First, a partially conservative learner M may be programmed to work as

follows: on the input σ = 〈x0, y0〉 ◦ 〈x1, y1〉 ◦ . . . 〈xn, yn〉, M searches for the least

e ≤ n such that ϕf(e),n(xi) ↓= yi for i = 0, 1, . . . , n, and conjectures g(e) for

which Wg(e) = {〈x, y〉 : x ∈ N ∧ ϕe(x) ↓= y}; if e does not exist, then M outputs

max{M(τ) : τ ≺ σ} if |σ| > 1, and an index for ∅ if |σ| = 1. M as defined must

be a partial learner of G, for if it were presented with a text of the graph of some

ϕf(e) in C, then, due to the one-one numbering property of {ϕf(0), ϕf(1), ϕf(2), . . .},

graph(ϕf(e)) ⊆ {〈x, y〉 : ϕf(d)(x) ↓= y} holds if and only if d = e. Consequently,

M must output g(e) infinitely often, and every other index g(d) with d 6= e only

finitely often. Furthermore, M is also partially conservative: for every d 6= e, there

is a number x such that either ϕf(d)(x) ↑, or ϕf(d)(x) ↓6= ϕf(e)(x). This implies

that for every d 6= e, Wg(e) 6⊂ Wg(d), so that M is partially conservative. Thus G is

partially conservatively learnable.
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That G is not, however, confidently partially learnable, follows from Theorems

32 and 4.1. Alternatively, one can argue as follows. Assume by way of contradiction

that G were confidently partially learnable via a recursive learner M . By the con-

fidence of M , one may find a finite sequence α = 〈0, y0〉 ◦ 〈1, y1〉 ◦ . . . ◦ 〈n, yn〉 such

that, for some unique index e, M(α) = e, and for each σ ∈ (N ∪ {#})∗ of the form

σ = 〈n+ 1, zn+1〉 ◦ . . . ◦ 〈n+ k, zn+k〉, there is a sequence τ ∈ (N∪{#})∗ of the form

τ = 〈n + k + 1, zn+k+1〉 ◦ . . . ◦ 〈n + k + i, zn+k+i〉 with M(α ◦ σ ◦ τ) = e. A new

recursive function g may now be defined inductively as follows.

• Set g(i) = yi for all i ≤ n.

• Assume that g(x) has been defined for all x ≤ k with k ≥ n. Run a search for

a sequence of the form 〈k+ 1, zk+1〉 ◦ . . . ◦ 〈k+ l, zk+l〉 such that M(〈0, g(0)〉 ◦

〈1, g(1)〉 ◦ . . . ◦ g(k) ◦ 〈k + 1, zk+1〉 ◦ . . . ◦ 〈k + l, zk+l〉) = e; since 〈0, g(0)〉 ◦

. . . 〈n, g(n)〉 = α is a locking sequence for M corresponding to the index e,

the search must eventually terminate successfully. Set g(k + j) = zk+j for

j = 1, . . . , l, and g(k + l + 1) = ϕe′(k + l + 1) + 1 if We is the graph of a

recursive function ϕe′ ; otherwise, g(k+ l+ 1) remains undefined until the next

stage.

If We is not the graph of a recursive function, then

We 6= {〈x, y〉 : x ∈ N ∧ g(x) ↓= y}; M , however, outputs e infinitely often on the

text 〈0, g(0)〉 ◦ 〈1, g(1)〉 ◦ 〈2, g(2)〉 ◦ . . ., and so it cannot confidently partially learn

the graph of g. In the case that We were the graph of some recursive function ϕe′ ,

then, since g is defined to be such that 〈k, g(k)〉 6= 〈k, ϕe′(k)〉 for infinitely many

k, We 6= {〈x, y〉 : x ∈ N ∧ g(x) ↓= y} still holds, and thus M fails to confidently
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partially learn the graph of g. This contradiction establishes that G is not confidently

partially learnable.

Lastly, assume towards a contradiction that N were a behaviourally correct

learner of G. Now, given any number e, one may check relative to the oracle K

whether or not ϕe is recursive via the following decision procedure.

1. At stage s, determine whether ϕe(x) is defined for all x ≤ s. If there is an

x ≤ s for which ϕe(x) ↑, then ϕe is not recursive. Otherwise, proceed to the

next step.

2. Check via K whether or not there exists a τ ∈ (graph(ϕe)∪{#})∗ such that for

some 〈x, y〉 ∈WN(σ◦τ), where σ = 〈0, ϕe(0)〉◦ . . .◦〈s, ϕe(s)〉, 〈x, y〉 ∈Wσ◦τ and

ϕe(x) ↓6= y. If so, proceed to the next stage and return to Step 1. ; otherwise,

it may be concluded that ϕe is a total recursive function.

If ϕe were a total recursive function, then N must behaviourally correct learn

the graph of ϕe, that is, there is a locking sequence σ for which the condition in

Step 2. does not hold. Thus the assumption that G is BC learnable yields a decision

procedure relative to K for the Π0
2 set {e : ϕe is recursive}, a contradiction. �

The next theorem succinctly characterises the oracles relative to which a class of

infinite languages is partially conservatively learnable. The hypothesis that all the

languages in the class be infinite cannot, however, be dropped, as will be shown in

the subsequent result.

Theorem 28 Let C be a class of infinite r.e. sets. Then the following three condi-

tions are equivalent.
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(i) C is partially conservatively learnable;

(ii) C has an Ex[K] learner using K-r.e. indices;

(iii) C has an Ex[K] learner using r.e. indices.

Proof. Suppose first that C is Ex[K] learnable, and let M be an explanatory learner

of C that outputs K-r.e. indices. Assume further that M never repeats a hypothesis

e if its subsequent conjecture differs from e; that is, if M outputs e, e′ at stages s

and s+ 1 respectively, where e 6= e′, then M thenceforth does not output e. On the

text T = a0 ◦ a1 ◦ a2 ◦ . . ., simulate the learner M , and let f be a recursive function

such that for each number e that M outputs on T and all e′, n, if σe is the shortest

prefix of T for which M(σe) = e,

Wf(e′,e,v0,...,vn,s0,...,sn) =



We′ ∩ {0, 1, . . . , t} if t is the least number such that

t > max(s0, . . . , sn) ∧ ∃i[1 ≤ i ≤ n

∧(We′,t(i) 6= vi

or We′,t(i) = 1 ∧WKt
e,t (i) = 0)];

We′ ∩ {0, 1, . . . , s} if s is the least number such that

∀u > s[∃τ ∈ (WKu
e,u ∪ {#})∗[M(σe ◦ τ) 6= e]];

We′ otherwise.

The first of the above three cases is always assigned priority over the remain-

ing ones; the second case applies only if no t satisfying the condition in the first

case is found. If M does not output d on T , then set Wf(i,d,v0,...,vn,s0,...,sn) =

∅ for all i, n, v0, . . . , vn, s0, . . . , sn. Construct a padding function pad for which

Wpad(e′,e,v0,...,vn,s0,...,sn) = We′ , and for all e′, e, n, k with k ≤ n, pad(e′, e, v0, . . . , vk, s0, . . . , sk) =
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pad(e′, d, v′0, . . . , v
′
n, s
′
0, . . . , s

′
n) if and only if e = d and for all i such that 1 ≤ i ≤ k,

vi = v′i, and if vi = v′i = 1, then si = s′i. Build a new learner P as follows: P outputs

pad(f(e′, e, v0, . . . , vn, s0, . . . , sn), e, v0, . . . , vn, s0, . . . , sn) exactly once if and only if

the conditions listed below hold:

1. M outputs e at least n times;

2. there is a stage s > n for which ∀i ≤ n[We′,s(i) = vi];

3. for all 1 ≤ i ≤ n, if vi = 1, then W
Ksi
e,si (i) = 1;

4. for all 1 ≤ i ≤ n, if vi = 0, then there is a stage ti ≥ n for which ϕ
Kti
e,ti

(i) ↑.

It shall be shown that P is partially conservative, and if M converges to some

e on T such that WK
e is r.e., then P outputs an index e′ infinitely often if and

only if We′ = WK
e and P outputs e′ at least once. Suppose that M does con-

verge to e on the text T , that T is a presentation of some L in C, and that WK
e

is an r.e. set. If M conjectures d at some stage with d 6= e, then it outputs

d only finitely often, so that by condition 1., P outputs all indices of the form

pad(f(e′, d, v0, . . . , vn, s0, . . . , sn), e, v0, . . . , vn, s0, . . . , sn) with d 6= e for at most a

finite number of times. To prove the partial conservativeness of P , suppose first that

L ⊂WK
d . Since M is an Ex[K] learner of L, and M never re-issues a hypothesis d if

it conjectures an index different from d at a later stage, this implies that there is a

sequence τ ∈ (WK
d ∪{#})∗ such that M(σd◦τ) 6= d, where σd is the shortest prefix of

T with M(σd) = d. This corresponds to the second case in the construction of f , and

so Wpad(f(e′,d,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn) must be finite. Hence, as L is infinite, L

cannot be a proper subset ofWpad(f(e′,d,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn). Next, consider
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the case that L 6⊆WK
d , that is, there is an x ∈ L−WK

d . From the first condition in the

construction of f , it follows that if Wpad(f(e′,d,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn) is infi-

nite, then it is a subset ofWK
d . Consequently, ifWpad(f(e′,d,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn)

is infinite, then there is an x ∈ L −Wpad(f(e′,d,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn). Thus,

the hypothesis that L is infinite again leads to the conclusion that

L 6⊂ Wpad(f(e′,d,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn). Furthermore, for all indices of the

form pad(f(e′, e, v0, . . . , vn, s0, . . . , sn), e, v0, . . . , vn, s0, . . . , sn), the construction of

f gives that every r.e. set Wpad(f(e′,e,v0,...,vn,s0,...,sn),e,v0,...,vn,s0,...,sn) is either finite, or

a subset of WK
e = L. This completes the verification that P is a partial conservative

learner.

Now let e′ be an r.e. index with We′ = WK
e . There is an infinite sequence of

values s0, s1, s2, . . . such that for all i, We′,si(i) = We′(i), and if

We′,si(i) = 1, then WKt
e,t (i) = 1 whenever t ≥ si. Thus

Wpad(f(e′,e,We′ (0),...,We′ (n),s0,...,sn),e,We′ (0),...,We′ (n),s0,...,sn)
= We′ for the values of si

in the above sequence. In addition, it may be observed that the set of values

{e′, e,We′(0), . . . ,We′(n), s0, . . . , sn} satisfies conditions 1. to 4. for all n, so that P

outputs every index pad(f(e′, e,We′(0), . . . ,We′(n), s0, . . . , sn), e,We′(0), . . . ,We′(n), s0, . . . , sn)

exactly once. As pad is defined to be such that

pad(f(e′, e,We′(0), . . . ,We′(n), s0, . . . , sn), e,We′(0), . . . ,We′(n), s0, . . . , sn)

= pad(f(e′, e,We′(0), . . . ,We′(k), s0, . . . , sk), e,We′(0), . . . ,We′(k), s0, . . . , sk) for all

n, k, it follows that P outputs a single index for We′ infinitely often.

Suppose, on the other hand, that e′′ were an r.e. index such that

We′′ 6= WK
e . First, assume that for some i, We′′(i) = 1 but WK

e (i) = 0. Therefore

condition 3. does not hold at infinitely many stages, and so for all si, P outputs in-
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dices of the form pad(f(e′′, e, v0, . . . , vn, s0, . . . , si, . . . , sn), e, v0, . . . , vn, s0, . . . , si, . . . , sn)

only finitely often. Second, assume that for some i, We′′(i) = 0 but WK
e (i) = 1. As

a consequence, there is a sufficiently large stage s so that for all u > s, ϕKu
e,u(i) ↓,

implying that condition 4. fails to hold for indices of the form

pad(f(e′′, e,We′′(0), . . . ,We′′(n), s0, . . . , sn), e,We′′(0), . . . ,We′′(n), s0, . . . , sn) when-

ever n > s. Hence P outputs indices of the form

pad(f(e′′, e, v0, . . . , vn, s0, . . . , sn), e, v0, . . . , vn, s0, . . . , sn) only finitely often. There-

fore P is a partial conservative learner that outputs at least one r.e. index e′ with

We′ = L infinitely often, and if We′′ 6= L, then P outputs e′′ only finitely often.

It remains to construct a recursive learner N which, in addition to being partially

conservative, outputs exactly one correct index infinitely often if T were a presen-

tation of some L in C. This may be done by considering another padding function

pad1, where pad1(j, t) is an index for Wj , simulating the learner P , and setting N

to output pad1(j, t) at least n times if and only if there is a stage s ≥ t such that P

outputs j at least n times and t is the last stage at which P outputs some index i

with i < j up to stage t. N is then the desired partial conservative learner of C.

For the converse direction of the proof, suppose that M is a partial conservative

learner of C. To construct a new Ex[K] learner N , let N be fed with the input

σ = a0 ◦ a1 ◦ . . . ◦ an; N identifies via the oracle K the least member e of {M(τ) :

τ � a0 ◦ a1 ◦ . . . ◦ an} for which range(σ)− {#} ⊆We.

N then outputs the index e′, where WK
e′ = We if there exists a least number

e which satisfies the preceding condition, and WK
e′ = ∅ if such a number e cannot

be found. Suppose that N is presented with a text T = a0 ◦ a1 ◦ a2 ◦ . . . for some

L ∈ C. Since M partially conservatively learns L, it outputs on T exactly one index
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e with We = L infinitely often, and for all other indices d 6= e that it outputs,

L 6⊆ Wd. Let σ be the shortest prefix of T such that M(σ) = e. For each proper

prefix τ of σ, there is a sufficiently long segment a0 ◦ a1 ◦ . . . ◦ as of T such that

{a0, a1, . . . , as}−{#} 6⊆Wτ , and so the required condition is not met. On the other

hand, as range(T ) − {#} = We, the index e is a valid candidate at every stage,

implying that N will converge to a unique index e′ with WK
e′ = We in the limit.

Hence N is an Ex[K] learner of C, as was to be shown. In conclusion, a class C of

infinite sets is partially conservatively learnable if and only if it is Ex[K] learnable.

�

The example furnished below shows that in the above theorem, the condition

that the class of languages to be learnt must be infinite is indeed a necessary hypoth-

esis. Further, the subsequent example gives that partial conservative learnability is

weaker than learnability relative to oracles whose degrees are Turing above K.

Theorem 29 The class C = {{e+x : x ∈ N} : e ∈ N}∪{{e+x : x ≤ d} : e ∈ K−Kd}

is explanatorily learnable but not partially conservatively learnable.

Proof. A programme for an explanatory learner M of C is as follows: on the input

σ with e = min({x : x ∈ range(σ)}) and e + d = max({x : x ∈ range(σ)}), M

conjectures an index for the set {e + x : x ∈ N} if e /∈ K|σ| or if e ∈ Kd, and an

index for the set {e + x : x ≤ d} if e ∈ K|σ| − Kd. Suppose that M is fed with a

text for the set {e + x : x ∈ N}. If e 6∈ K then M will always output an index for

the correct set. If e ∈ Ks+1 −Ks, then M will converge to a correct index once the

element e+ s+ 1 occurs in a segment of the text of length at least s. On the other

hand, if M processes a text of the set {e + x : x ≤ d} with e ∈ Ks − Kd for some
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s > d, then it will also converge to a correct index after the sth stage.

For the sake of a contradiction, suppose that N were a partial conservative

learner of C. Define a recursive function f by setting f(e) to be the first number

d found such that {e, e + 1, . . . , e + d + 1} ⊆ WN(e◦e+1◦...◦e+d). Since N learns the

set {e + x : x ∈ N}, such a number d must exist, and so f is a recursive function.

Furthermore, owing to the partial conservativeness of N , it follows that e ∈ K holds

if and only if e ∈ Kf(e). This provides a recursive procedure for the halting problem,

which is a contradiction. Thus N cannot be a partial conservative learner of C, as

required. �.

Theorem 30 The class of infinite sets C = {{e}⊕(We∪D) : D is finite and We is cofinite}

∪ {{e} ⊕ N : e ∈ N} is Ex[K′] learnable but not partially conservatively learnable.

Proof. An Ex[K′] learner M may be programmed as follows: on the input σ,

if 2e is the minimum even number in the range of σ, M checks relative to the

oracle K′ whether or not there is a minimum x < |σ| such that the Π0
2 condition

∀y > x∃s[y ∈We,s] holds. If such a number x does not exist, M conjectures the set

{e}⊕N; if x is the minimum such number, then M again accesses K′ to determine the

finite set Dσ = {z ≤ x : z ∈ range(σ)−We}, and conjectures the set {e}⊕(We∪Dσ).

Otherwise, if no such e is found, M outputs a default index 0.

Suppose that M is presented with a text T for the set {e} ⊕ N. First, assume

that We is cofinite. Then there is a least number x such that for all y > x, y is

contained in We. Further, for a sufficiently long segment σ of the text, {z ≤ x :

z 6∈We} ⊆ range(σ) and |σ| > x both hold. Hence M will converge on T to a fixed

index for the set {e} ⊕ N. Secondly, assume that We is coinfinite. In this case, the
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condition ∀y > x∃s[y ∈ We,s] fails to hold for all x, and so M will conjecture the

set {e} ⊕ N on all segments of T . Next, suppose that M is fed with a text T ′ for

the set {e}⊕ (We ∪D), where We is cofinite and D is finite. Let x be the minimum

number such that for all y ≥ x, y ∈ We holds. Then, upon witnessing a segment σ

of T ′ with |σ| ≥ x which contains all the elements of D, M will thenceforth always

conjecture a fixed index for {e}⊕ (We ∪D). Therefore M is an Ex[K′] learner of C,

as required.

On the other hand, assume for the sake of a contradiction that N were a partial

conservative learner of C. Fix any number e, and load the text 2e ◦ 1 ◦ 3 ◦ 5 ◦ . . . ◦

(2n+1)◦ . . . into N . Since N partially learns the set {e}⊕N, there is a least number

k such that N outputs an index for {e} ⊕ N on the segment 2e ◦ 1 ◦ . . . ◦ 2k + 1;

moreover, one can search for k by means of the oracle K′. One may subsequently

check relative to K′ whether or not ∀z > k∃s[z ∈ We,s] holds. If it does hold,

then We is cofinite; otherwise, We must be coinfinite, for if We were cofinite and

z > k were a number such that z 6∈ We, then the segment 2e ◦ 1 ◦ . . . ◦ 2k + 1

may be extended to a text for {e} ⊕ (We ∪ {0, 1, . . . , k}), and since N outputs an

index for some set of which {e}⊕ (We∪{0, 1, . . . , k}) is a proper subset, this implies

that N cannot partially conservatively learn {e} ⊕ (We ∪ {0, 1, . . . , k}), contrary to

hypothesis. Thus the initial assumption would lead to a decision procedure relative

to K′ for the Π0
3-complete set {e : We is coinfinite}, a contradiction. In conclusion,

C is not partially conservatively learnable, as required. �

As a conclusion to the present section, the last result shows that Theorem 28

does not hold generally for every hypothesis space.
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Theorem 31 The class of infinite sets D = {{e}⊕{0, 1, . . . , d}⊕N : e ∈ K−Kd}∪

{{e} ⊕ N ⊕ N : e ∈ N} is explanatorily learnable but not partially conservatively

learnable using D as the hypothesis space.

Proof. An explanatory learner M may work as follows: on the input σ with 3e =

min({3x : 3x ∈ range(σ)}) and {3x + 1 : x ≤ d} ⊆ range(σ), M conjectures the

set {e} ⊕ {0, 1, . . . , d} ⊕ N if e ∈ K|σ|, and conjectures {e} ⊕ N ⊕ N if e 6∈ K|σ|,

or if the number e does not exist, or if there is no number 3x + 1 ∈ range(σ).

An argument analogous to that in the preceding claim shows that D cannot be

partially conservatively learnt using D as the hypothesis space: otherwise, if N

were a partial conservative learner, one may define a recursive function f which, on

input e, searches for the first number d such that {3e} ∪ {3x + 1 : x ≤ d + 1} ⊆

WN(3e◦1◦2◦4◦5◦...◦3d+1◦3d+2). Due to the condition that N only outputs indices of sets

in D, it must hold that if d is the first such number found, then {e}⊕ {0, 1, . . . , d+

1}⊕N ⊆WN(3e◦1◦2◦4◦5◦...◦3d+1◦3d+2). Therefore, by the conservativeness of N , e ∈ K

holds if and only if e ∈ Kd, a contradiction. �

4 Partial Learning of Classes of Recursive Functions

4.1 Confident Partial Learning

This section deals with partial learning of recursive functions. In a manner of

speaking, a text for a recursive function, whether canonical or arbitrary, conveys

more information than that for a language, since the learner progressively gains

knowledge about the graph of the target recursive function as well as its complement.
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That vacillatory learnability generally implies explanatory learnability in the case of

learning recursive functions but not for language learning, as proved in Theorem 41,

lends some weight to this heuristic observation. Nonetheless, a few of the relations

between confident partial learning and other learning success criteria that have been

established so far in the context of language learning also hold for recursive function

learning. To exemplify this point, the section’s first theorem gives an example of a

behaviourally correctly learnable class of recursive functions which is not confidently

partially learnable.

Theorem 32 There is a behaviourally correctly learnable class of recursive func-

tions which is not confidently partially learnable.

Proof 1. Let σ0, σ1, . . . be an enumeration of all binary strings. Define, for each

e ∈ N, the Π1
0 class Ce = {A ⊆ N : ∀x ∈We∃y[σx(y) 6= A(y)]}. Set

F = {B ⊆ N : ∃e∀y ≤ e∀z∃A ∈ Ce[B(y) = 0∧B(e+1) = 1∧B(z+e+2) = A(z)∧A is isolated]}.

It shall be shown that F is behaviourally correctly learnable but not confidently

partially learnable. A behaviourally correct learner M may perform as follows: on

the input σ, M first identifies the number e such that 0e ◦ 1 � σ; if no such e exists,

M outputs 0. Otherwise, let σ = 0e ◦ 1 ◦ τ ; M then outputs the index i for which

ϕi(x) =


σ(x) if x ≤ |σ| − 1;

η(x) if τ � η ∧ ∀θ ∈ {0, 1}∗[θ � η∧

σx = (1− θ(0)) ◦ (1− θ(1)) ◦ . . . ◦ (1− θ(|θ| − 1))⇒ x ∈We].

Suppose that M is fed with a text for B, which is of the form 0e ◦ 1 ◦ A, where A
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is an isolated member of Ce. There is a binary string σx such that A is the unique

member of Ce which extends σx. This means that for all σx◦η � A, if σy = σx◦η◦o,

where o ∈ {0, 1}, then y ∈ We ⇔ A(|σx| + |η|) = 1 − o. Thus when a sufficiently

long segment of the text is revealed to M , of which σx is a prefix, M will converge

semantically to a correct index for the characteristic function of B.

Assume now by way of contradiction that N were a confident partial learner of

F . For each e ∈ N, an r.e. set Wf(e) shall be built so that there are only finitely

many infinite branches A with A in Cf(e), and N outputs some index d infinitely

often on at least two of these branches subjoined to the string 0f(e) ◦ 1. Wf(e) is

constructed in stages, according to the following algorithm.

• At stage 0, set Wf(e),0 = ∅.

• At stage s+ 1, put

Ss+1
∗ = {0, 1}s+1 − {σ ∈ {0, 1}∗ : ∃τ � σ[τ ∈Wf(e),s]}, where

τ ∈Wf(e),s denotes that if σx = τ , then x ∈Wf(e),s. Let

Ss+1
∗ = {η0, η1, . . . , ηn}, where

N(0e ◦ 1 ◦ η0) ≤ N(0e ◦ 1 ◦ η1) ≤ . . . ≤ N(0e ◦ 1 ◦ ηn).

• For m = 0, 1, . . . , n, determine whether there exists a shortest prefix τ of ηm

such that the number of prefixes θ of τ for which θ ◦ 0 and θ ◦ 1 are each

extended by some element of Ss+1
∗ is equal to N(0e ◦ 1 ◦ ηm) + 2. If such a

τ exists, remove all ηk with k > m such that τ � ηk from Ss+1
∗ ; denote the

new set of strings by Ss+1, and proceed to the next value of m. Otherwise,

proceed to the next value of m.

• Put all strings removed from Ss+1
∗ during the preceding steps into Wf(e),s.
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By Kleene’s Recursion Theorem, there is an e for which We = Wf(e). Fix any

such number e. Consider the set of binary strings S =
⋃
s∈N S

s+1: by the above

construction, σ /∈ S ⇒ ∃σx[σ � σx ∧ x ∈ Wf(e)], so that by the first step of the

algorithm, στ /∈ S for all σ, τ ∈ {0, 1}∗. This means that S is a recursive tree whose

infinite branches are the set elements of Cf(e). Furthermore, as Wf(e),0 = ∅, both

η0 ◦ 0 and η0 ◦ 1 are contained in S2
∗ , where η0 is as defined in the second step of the

algorithm at stage 1. It thus follows inductively that the set Ss+1
∗ is nonempty for

all s ∈ N, so that S must be an infinite tree. Consequently, by König’s Lemma, S

contains at least one infinite branch, say A.

Suppose that N is fed with a text for the recursive function represented by

0e ◦1◦A. By the confidence of N , there is an index d and infinitely many prefixes σ

of A such that N(0e ◦1◦σ) = d. As each number e < d is output only finitely often,

N(0e◦1◦σ) ≥ d for almost all prefixes σ of A. Moreover, one may argue by induction

that there are at least d+ 1 different infinite branches A′ that branch off from A, as

follows. Let τ be a prefix of A such that N(0e ◦1◦τ ◦A(|τ |) . . . A(|τ |+k)) ≥ d for all

k ≥ 0. Assume first that there are at least d+ 1 prefixes θ0, θ1, . . . , θd, . . . of τ such

that for all i, θi◦0 and θi◦1 are each extended by an element of S
|τ |
∗ . From the second

step of the algorithm at stage |τ |, it follows that d + 1 strings in S
|τ |
∗ that contain

θ0, θ1, . . . , θd as prefixes are preserved in S|τ |, and if σk is such a string, then σk ◦ 0

and σk ◦ 1 are both contained in S
|τ |+1
∗ . Therefore at stages |τ |, |τ | + 1, |τ | + 2, . . .,

there are at least d+ 1 strings in S|τ |, S|τ |+1, S|τ |+2, . . . respectively, such that each

of these strings is a segment of a unique infinite branch. Hence there are at least

d+ 1 different infinite paths branching off from A. If, on the other hand, there are

less than d+ 1 prefixes θ of τ for which θ ◦ 0 and θ ◦ 1 are each extended by a string
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in S
|τ |
∗ , then the second step of the algorithm for τ will be skipped, and τ ◦ 0, τ ◦ 1

proceed accordingly to the next stage |τ |+ 1. This process will continue until there

is a stage k > |τ | with at least d + 1 strings of length k branching off from A; one

can now follow the argument of the preceding case to conclude that there must be

at least d+ 1 different infinite branches that share a common prefix with A.

Now let α be a prefix of A such that |α| is the first stage at which S
|α|
∗ contains

at least d+2 prefixes τ0, τ1, . . . , τd+1 branching off from A and N(0e ◦1◦α) = d. By

the second step of the algorithm, the string in S
|α|
∗ extending τd+1 will be removed

at the end of stage |α|, so that S|α| is left with exactly d + 1 strings that branch

off from A. This implies that every infinite branch of S is isolated; that is, for each

infinite branch A of S, there is a prefix σA of A such that A is the unique branch of S

extending σA. There can only be finitely many isolated infinite branches of S; denote

these branches by A0, A1, . . . , Al. Let p be the maximum number that N outputs

infinitely often on each of the canonical texts for 0e ◦1◦A0, 0
e ◦1◦A1, . . . , 0

e ◦1◦Al,

and the corresponding infinite branch be Ai. By the argument in the preceding

paragraph, there are at least p+1 different infinite paths that branch off from Ai; as

a consequence, there is a number q ≤ p such that N outputs q infinitely often on the

canonical texts for at least two of the sets amongst 0e◦1◦A0, 0
e◦1◦A1, . . . , 0

e◦1◦Al.

Thus N fails to learn the class F , a contradiction. �

The second proof provides yet another example of a behaviourally correctly

learnable class of recursive functions which is not confidently partially learnable

from canonical text; moreover, the proof suggests a necessary condition on the com-

putational power of confident learners that can partially learn all recursive functions.

An indispensable ingredient in the proof is the existence of a low, PA-complete set,
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which was first proved by Jockush and Soare [14] as a corollary of a more general

result on
∏0

1 classes. The relevant properties of such a set utilised in the proof,

together with other related concepts, are briefly reviewed below.

Definition. A class of sets is a
∏0

1 class if it is the set of infinite branches of some

infinite recursive binary tree. If P is a recursive predicate, then the class of sets A

such that (∀x)P (cA(x)) is a
∏0

1 class.

Shoenfield [26] showed that, for any consistent axiomatizable theory T1, the set

A of complete extensions of T1 which have the same symbols as T1 is non-empty,

and that every α ∈ A can be written in the form (∀x)R(gn(α(x))) with R recursive;

here gn(α(x)) denotes the Gödel number of α(x). In other words, by the above

definition, the set of complete extensions of a given consistent theory is a nonempty∏0
1 class. Conversely, Jockusch and Soare [14], as well as Hanf [11], showed that the

class of degrees of members of a given
∏0

1 class coincides with the class of degrees

of complete extensions of some finitely axiomatizable first-order theory; a set which

falls within the latter class is known as PA-complete. An equivalent definition of a

set A being PA-complete, which is explicitly applied in the next proof of Theorem

32, is that given any partial-recursive and {0, 1}-valued function ψ, one can compute

relative to A a total extension Ψ of ψ.

Definition. A set A is low if A′ ≡T K.

The specific result of Jockusch and Soare required for the proof of the subsequent

theorem is the following.

Theorem 33 [14] Any consistent axiomatizable theory (in particular, Peano Arith-

metic (P.A.)) has a complete extension of degree whose jump is K′.
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To put Theorem 33 in another way: there exists a low, PA-complete set.

Proof 2. The class of recursive functions

C = {f : f is recursive and {0, 1}-valued ∧ ∃e[|W e| <∞∧ f(e+ 1) = 1

∧ ∀x ≤ e[f(x) = 0] ∧ f =∗ ϕe]}

is behaviourally correctly learnable but not confidently partially learnable.

A behaviourally correct learner M outputs a default index 0 until it witnesses

the first number e such that f(x) = 0 for all x ≤ e and f(e+ 1) = 1; subsequently,

on the input σ = 0e ◦ 1 ◦ f(e+ 2) ◦ . . . ◦ f(e+ k), it conjectures the index i with

ϕi(x) =

 σ(x) if x < |σ|;

ϕe(x) if x ≥ |σ|.

Suppose that M is fed with the canonical text for a recursive function f from the

class to be learnt. Let e be the index such that f(e + 1) = 1 and f(x) = 0 for all

x ≤ e, and n be the least number with ϕe(x) ↓= f(x) for all x > n. The preceding

algorithm ensures that if M witnesses a segment of the text with length at least

max(e + 1, n), then it will output a correct index for f . Hence M is indeed a BC

learner of C.

Assume by way of contradiction that one may define a recursive confident partial

learner N of the class C. It shall be shown that this implies the existence of a K′-

recursive procedure for deciding whether d ∈ {e : We is cofinite} for any given d,

contradicting the known fact that the latter set is Σ0
3-complete. First, let g be a

recursive function for which ϕg(d) is defined in stages as follows:
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• Set ϕg(d),0(x) ↑ for all x. Initialise the markers a0, a1, a2, . . . by setting

ai,0 = 〈i, 0〉+ d+ 1 for i ∈ N.

• At stage t+ 1, consider the markers a0,t, a1,t, a2,t, . . . , at,t with

ai,t = 〈i, r〉+d+1, and perform the following: if neither ϕg(d),t nor ϕi,t is defined

on the input 〈i, j〉+d+1 for j ∈ {0, 1, . . . , t+1}−{r}, set ϕg(d)(〈i, j〉+d+1) = 0;

if ϕi,t(〈i, r〉+ d+ 1) is defined but ϕg(d)(〈i, r〉+ d+ 1) is not defined, then set

ϕg(d)(〈i, r〉+ d+ 1) = 1− ϕi,t(〈i, r〉+ d+ 1).

Furthermore, update ai,t+1 = 〈i, t + 1〉 + d + 1 if and only if r ≤ t and

|{0, 1, . . . , r} −Wd,t| < i.

Let ϕg(d),t+1(x) = ϕg(d),t(x) for all x with ϕg(d),t(x) ↓.

It shall be shown that the partial-recursive function ϕg(d) as defined above possesses

the following properties:

1. If Wd is cofinite, then there is an i0 for which the markers ai,t move infinitely

often if and only if i ≥ i0, so that Wg(d) is also cofinite.

2. If Wd is coinfinite, then the markers ai,t move only finitely often, and there is

no total recursive function extending ϕg(d).

1. follows because if Wd is cofinite, and |W d| = k, then for all i > k and each

r, there is a t large enough so that |{0, 1, . . . , r} −Wd,t| < i. This means that for

all i > k, the markers ai,t move infinitely often. Moreover, this implies that Wg(d)

is cofinite, for each stage ensures that ϕg(d) is defined on all inputs 〈i, j〉+ d+ 1 for

which j < r, and since ai,t is shifted to 〈i, r〉+ d+ 1 for arbitrarily large values of r

for all i > k, ϕg(d) eventually becomes defined on all inputs 〈i, j〉+d+1 for i > k and
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j ∈ N. For i ≤ k, suppose that the markers a0, a1, . . . , ak settle down permanently

on the values 〈0, r0〉 + d + 1, 〈1, r1〉 + d + 1, . . . , 〈k, rk〉 + d + 1 respectively; by the

algorithm, while ϕg(d) remains undefined on all of these inputs, ϕg(d) is, however,

defined for all 〈i, j〉+ d+ 1 with i ≤ k and j > ri. Thus Wg(d) is indeed cofinite.

On the other hand, if Wd were coinfinite, then for each fixed i there are r, t

sufficiently large so that |{0, 1, . . . , r} − Wd,t| ≥ i. At stage t + 1, each marker

ai = 〈i, r〉 + d + 1 is updated to a new value 〈i, t + 1〉 + d + 1 with t + 1 > r

if |{0, 1, . . . , r} − Wd,t| < i; for this reason, there will eventually be a stage s at

which |〈0, 1, . . . , u} −Wd,s| ≥ i, when ai,s = 〈i, u〉+ d+ 1, and the inequality would

continue to hold at all subsequent stages, in turn implying that the value of ai will

be permanently fixed as this value. Furthermore, if ϕi were a total function, then

there will be a stage s′ at which ϕi,s′(〈i, u〉 + d + 1) is defined, and the algorithm

would secure that ϕg(d)(〈i, u〉+ d+ 1) differs from the value of ϕi,s′(〈i, u〉+ d+ 1).

Therefore there cannot be a total recursive function extending ϕg(d).

Now let A be a PA-complete set which is low, that is, every partial-recursive

{0, 1} function may be extended to an A-recursive function, and, in addition, A′′ ≡T

K′. Furthermore, let ϕAf(d) be a uniformly A-recursive extension of the partial-

recursive function ϕg(d) such that ϕAf(d) is {0, 1}-valued. There is a further recursive

function h for which

WA
h(d,e) = {n : N outputs e at least n times on the text 0g(d) ◦ 1 ◦ ϕAf(d)(g(d) + 2)

◦ϕAf(d)(g(d) + 3) ◦ . . .}. Owing to the confidence of N , one can determine by means

of the oracle A′′ the unique e such that WA
h(d,e) is infinite.

If Wd were cofinite, then, as was shown above, ϕg(d) is also cofinite, and so ϕAf(d)

is a total recursive extension of ϕg(d), that is, ϕg(d) =∗ ϕ
A
f(d). Therefore N learns
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the recursive function generating the text

0g(d) ◦ 1 ◦ ϕAf(d)(g(d) + 2) ◦ ϕAf(d)(g(d) + 3) ◦ . . ., and consequently ϕe(x) = ϕAf(d)(x)

for all x ≥ g(d) + 2.

However, if Wd were coinfinite, it follows from the construction of ϕg(d) that

there is no total recursive function extending ϕg(d), giving that ϕe 6= ϕAf(d), or more

specifically, there is an x ≥ g(d) + 2 such that either ϕe(x) ↑ or ϕe(x) ↓6= ϕAf(d)(x) ↓.

Hence Wd is cofinite if and only if for all x ≥ g(d) + 2, ϕe(x) ↓= ϕAf(d)(x) ↓.

As this condition may be checked using the oracle A′′, and A′′ is Turing equivalent

to K′, it may be concluded that {d : Wd is cofinite} ≡T K′, which is the desired

contradiction. Therefore the class C cannot be confidently partially learnt. �

A review of the second proof of Theorem 32 produces the following corollary.

This may be a first step towards characterising the Turing degrees of oracles relative

to which all recursive functions can be confidently partially learnt.

Theorem 34 There is a behaviourally correctly learnable class C ⊆ REC0,1 such

that C is confidently partially learnable relative to B only if B′′ ≥T K′′.

Proof. Consider the class

C = {f : f is recursive and {0, 1}-valued ∧ ∃e[|W e| <∞∧ f(e+ 1) = 1

∧ ∀x ≤ e[f(x) = 0] ∧ f =∗ ϕe]}

which was demonstrated to be behaviourally correctly learnable but not confidently

partially learnable in the second proof of Theorem 32. In the proof that C is not

confidently partially learnable, it was seen in the last paragraph that there is a low,
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PA-complete set A such that for all d, Wd is cofinite if and only if there is an A-

recursive total extension ϕAf(d) of the partial-recursive function ϕg(d), and a confident

partial learner N that outputs e infinitely often on the text 0g(d) ◦ 1 ◦ ϕAf(d)(g(d) +

2)◦ϕAf(d)(g(d)+3)◦ . . ., such that for all x ≥ g(d)+2, ϕe(x) ↓= ϕAf(d)(x) ↓. Suppose

that the confident partial learner N is endowed with an oracle B. This implies that

the index e that N outputs infinitely often on the text 0g(d) ◦ 1 ◦ ϕAf(d)(g(d) + 2) ◦

ϕAf(d)(g(d)+3)◦ . . . may be determined relative to the oracle B′′, since the condition

∀s∃s′ > s[N(0g(d) ◦ 1 ◦ ϕAf(d)(g(d) + 2) ◦ . . . ◦ ϕAf(d)(g(d) + s′)) = e] is B′′-recursive.

Moreover, as A′′ ≡T K′, it can be checked relative to K′ whether or not ϕe(x) ↓=

ϕAf(d)(x) holds for all x ≥ g(d) + 2. Therefore {d : Wd is cofinite} ≤T K′ ⊕ B′′,

and as K′ ≤T B′′, one has {d : Wd is cofinite} ≤ B′′. Finally, from the fact that

{d : Wd is cofinite} ≡T K′′, it may be concluded that K′′ ≤T B′′, as was to be

shown. �

To complement Theorem 32, we now show that, similar to the case of language

learning, behaviourally correct learning of recursive functions is not a more severe

criterion than confident partial learning. Thus, both of these learnability criteria

have incomparable learning strengths.

Theorem 35 There is a class of recursive functions which is confidently partially

learnable but not behaviourally correctly learnable with respect to a canonical text.

Proof 1. Consider the class of recursive functions

C = {f : ∀x[f(0) ↓ ∧ϕf(0)(x) ↓= f(x)]} ∪ {f : ∀x[f(x) ↓ ∧∃y∀z > y[f(z) = 0]]};
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the class C is the union of all self-describing recursive functions together with all

recursive functions that are almost everywhere equal to 0. A confident partial learner

M of C may be defined as follows: on the input f(0)◦f(1)◦. . .◦f(n), M distinguishes

two cases:

• There exists a minimum number k such that for all x with k ≤ x ≤ n, f(x) = 0.

M then conjectures an index i for which

ϕi(y) =

 f(y) if y < k;

0 if y ≥ k.

• For all x with 0 ≤ x ≤ n, there is a k > x and k ≤ n for which f(k) 6= 0. M

then conjectures the index f(0).

To verify that M is a confident partial learner of C, suppose first that M is fed with

the canonical text f(0) ◦ f(1) ◦ f(2) ◦ f(3) ◦ . . . for a total function f such that there

is a minimum number k with f(x) = 0 whenever x > k. In accordance with the

learning algorithm, M then converges syntactically to an index i for the recursive

function ϕi that is equal to f(x) for all x ≤ k, and equal to 0 for all x > k. Secondly,

suppose that f(x) = ϕf(0)(x) for all x, and, in addition, there are infinitely many

x with f(x) 6= 0. This implies that the second case in the learning algorithm holds

infinitely often, so that the learner M will output f(0) infinitely often, and every

other index only finitely often. Furthermore, M is confident on every text, as it will

output the index f(0) infinitely often if f(x) 6= 0 for almost all x; otherwise, if there

exists a minimum number k for which f(x) = 0 whenever x > k, then M converges

syntactically to an index i such that ϕi(x) = f(x) for all x ≤ k, and ϕi(x) = 0 for
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all x > k. Hence M is a confident partial learner of C.

Next, assume by way of contradiction that N were a BC-learner of C. For each

number e, one may construct a recursive function ϕg(e) in stages as follows.

• Set ϕg(e)(0) = e.

• At stage s+1, assume inductively that ϕg(e)(x) has been defined for all x ≤ k.

Let σs = ϕg(e)(0) ◦ϕg(e)(1) ◦ . . . ◦ϕg(e)(k). Run a search for a pair of numbers

ps+1, qs+1, such that

ϕN(σs◦0ps+1◦1◦0qs+1 )(|σs|+ps+1) 6= ϕN(σs◦0ps+1 )(|σs|+ps+1). Then define ϕg(e)(x) =

0 if |σs| ≤ x ≤ |σs|+ ps+1 − 1 or

|σs|+ ps+1 + 1 ≤ x ≤ |σs|+ ps+1 + qs+1 − 1, and ϕg(e)(|σs|+ ps+1) = 1. This

condition imposes the requirement that ϕg(e) be defined so that N makes a

semantic mind change between the stages where it has seen the text segments

σs ◦ 0ps+1 and σs ◦ 0ps+1 ◦ 1 ◦ 0qs+1 .

Since N BC-learns every recursive function which is almost everywhere equal

to 0, the inductive step in the construction of Wg(e) always terminates success-

fully. For, given any text segment σs at stage s + 1, there is a number ps+1 such

that ϕN(σs◦0ps+1 )(x) = 0 for all x ≥ |σs|; fixing any such number ps+1, it follows

along an analogous line of reasoning that there is another number qs+1 for which

ϕN(σs◦0ps+1◦1◦0qs+1 )(x) = 1 when x = |σs| + ps+1. Thus N makes a semantic mind

change between the text segments σs ◦ 0ps+1 and σs ◦ 0ps+1 ◦ 1 ◦ 0qs+1 , as required.

Owing to Kleene’s Recursion Theorem, there are infinitely many indices e such

that ϕg(e) = ϕe. Fix any such number e. As a consequence of the inductive step in

the construction of ϕg(e), there are infinitely many y for which ϕN(ϕg(e)(0)◦ϕg(e)(1)◦...◦ϕg(e)(y))(x) 6=
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ϕg(e)(x) for some number x. This in turn implies that N cannot BC-learn the self-

describing recursive function ϕe, a contradiction. �

Proof 2. Blum and Blum’s Non-Union Theorem [3] provides classes C1 and C2

which are explanatory learnable while their union is not behaviourally correctly

learnable. By Theorem 18 the two classes are confidently partially learnable and by

Theorem 19 their union C1 ∪ C2 is confidently partially learnable as well. �

Theorem 32 demonstrates that the class of all total recursive functions is not

confidently partially learnable. Nonetheless, there is a less restrictive notion of

confident partial learning, somewhat analogous to a blend of behaviourally correct

learning and partial learning, that permits the class of all recursive functions to be

learnt. This notion of learning is spelt out in the following theorem.

Theorem 36 There is a recursive learner M such that on every function f there

is exactly one partial-recursive function Ψ for which M outputs an index infinitely

often, and f = Ψ whenever f is recursive.

Proof. Let the input function f be presented as a canonical text

T = f(0) ◦ f(1) ◦ f(2) ◦ f(3) . . .; on this text, the recursive learner M performs the

following instructions.

1. M outputs e at least n times if and only if there is a stage s > n such that

ϕe,s(x) ↓= f(x) for all x ≤ max(e, n).

2. For each number e, suppose n ≥ e is found at some stage s so that ϕe,s(x) =

f(x) whenever x ≤ n. M then outputs an index g(e, n) for the partial-recursive
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function ϕg(e,n) defined by

ϕg(e,n)(x) =


↑ if ∀d ≤ e∃y ≤ n+ 1[ϕd(y) ↑ ∨ϕd(y) ↓6= f(y)];

ϕd(x) if d is the least number satisfying d ≤ e and

∀y ≤ n+ 1[ϕd(y) ↓= f(y)].

It shall be shown that M satisfies the learning criteria specified in the theorem.

First, suppose that f is a recursive function. If ϕe 6= f and We 6= ∅, then there is a

least x0 such that ϕe(x0) ↑ or ϕe(x0) ↓6= f(x0). By the requirements of 1. and 2.,

this means that every index d with ϕe = ϕd is output only finitely often. Moreover,

whenever p > x0 is an index for ϕe, the condition in 1. that ϕp(x) ↓= f(x) for all

x ≤ p guarantees that M does not output p. Hence the partial-recursive function ϕe

is conjectured only finitely often. If We = ∅, then, since there is a least index p such

that ϕp(x) ↓= f(x) for all x, the definition of g(e, n) in 2. and the requirement of

1. together ensure that the partial-recursive function ϕe is conjectured for at most

a finite number of times. Furthermore, by the requirement of 1., every index e with

f = ϕe is output infinitely often. Next, suppose that f is not equal to any total

recursive function. The output criteria of M specified in 1. alone then gives that for

every partial-recursive function ϕe, M outputs an index for ϕe only finitely often.

In addition, according to the output criteria of 2., every partial-recursive function

which is defined on at least one input is conjectured by M only finitely often. On

the other hand, as there are infinitely many numbers d such that ϕd(0) ↓= f(0),

and - owing to the nonrecursiveness of f - for every such d there is a maximum

input x such that for some e ≤ d and all y ≤ x, ϕe(y) ↓= f(y), it follows from

2. that M outputs an index for the partial-recursive function which is everywhere
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undefined infinitely often. This establishes that M fulfils the learning specifications

of the theorem, as required. �

The next lemma, in whose proof the padding property of the default hypothesis

space {ϕ0, ϕ1, ϕ2, . . .} is pivotal, will be applied in the subsequent theorem.

Lemma 37 For every A′′-recursive function FA
′′
, there is an A-recursive function

fA such that for all numbers d, if FA
′′
(d) = e, then there is a unique number e′ for

which there are infinitely many t with fA(d, t) = e′ and ϕe = ϕe′.

Proof. Given that FA
′′ ≤T A′′, there exists a sequence of A-recursive approxima-

tions {fi,j}i,j∈N such that for all numbers e, ∃i∀i′ ≥ i∃j∀j′ ≥ j[fi,j(e) = FA
′′
(e)]

holds. One may define an A-recursive function G which satisfies G(e, t) = pad(e, i),

for all t, where i is the minimal number for which ∀i′ ≥ i∃j∀j′ ≥ j[fi′,j′(e) = FA
′′
(e)].

The A-recursive function G may be constructed in stages as follows. First, let

ae,0, ae,1, ae,2, . . . be an A-recursive sequence in which pad(d, i) occurs at least n

times if and only if for all i′ ∈ {i, i + 1, . . . , i + n}, there are n numbers j′ such

that fi′,j′(e) = d. This condition ensures that pad(d, i) occurs in ae,0, ae,1, ae,2, . . .

infinitely often if and only if d = FA
′′
(e), although there still exist i′ > i such that

pad(d, i′) is output infinitely often in the constructed sequence. Next, build a new

A-recursive sequence a′e,0, a
′
e,1, a

′
e,2, . . . in which pad(d, i, s) occurs n times if and only

if there is a stage t ≥ s such that s is the least stage where some number pad(d, i′)

with i′ < i occurs in the sequence ae,0, ae,1, ae,2, . . . up to stage t and pad(d, i) occurs

there at least n times before stage t. This procedure selects the minimal value of

i such that pad(d, i) occurs infinitely often in the sequence ae,0, ae,1, ae,2, . . . con-

structed above. Subsequently, one may produce a two-valued A-recursive function
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G by setting G(e, t) = a′e,t for all such sequences a′e,0, a
′
e,1, a

′
e,2, . . . constructed for

each e. By the above construction, the A-recursive function G satisfies the condi-

tion that for all e, there is exactly one index e′ with G(e, t) = e′ for infinitely many

t, and, in addition, there is a fixed number i such that e′ = pad(FA
′′
(e), i). This

establishes the claim. �

Having established a necessary condition on the computational power of confi-

dent learners that can learn REC, one may hope for an analogous sufficient con-

dition. By means of the above lemma, the theorem below proposes several oracle

conditions that, when taken together, enable REC to be confidently partially learnt.

Theorem 38 If B is low, PA-complete and A ≥T B, A′′ ≥T K′′, then there is an

A-recursive confident partial learner for REC.

Proof. The class of all recursive {0, 1}-valued functions, REC0,1, is explanatorily

learnable by a learner M which outputs B-recursive indices. First, one may con-

struct a numbering {ϕBh(0), ϕ
B
h(1), . . .} of {0, 1}-valued B-recursive functions such that

REC0,1 ⊂ {ϕBh(0), ϕ
B
h(1), . . .}, and for all e and each input x,

ϕBh(e)(x) =

 0 if ϕe(x) ↓= 0;

1 if ϕe(x) ↓> 0;

as B is PA-complete, there is a B-recursive function g such that each partial B-

recursive function ϕBh(e) may be extended to a total {0, 1}-valued function ϕBg(e).

Without loss of generality, assume that g(dk) ≥ dk. The explanatory learner M may

be defined by setting M to conjecture, on the input f(0) ◦ f(1) ◦ . . . ◦ f(n), the least
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index g(e) for which ϕBg(e)(x) = f(x) for all x ≤ n. Next, let g(d0), g(d1), g(d2), . . . be

the hypotheses issued by M when it is learning some f ∈ REC0,1; according to the

learning algorithm of M described above, dk = min{d : ∀x ≤ k[ϕBg(d)(x) = f(x)]}.

Define the B′′′-recursive function FB
′′′

by

FB
′′′

(g(dk)) =

 e if e is the minimal index with ϕe = ϕBg(dk);

0 if there is no index e with ϕe = ϕBg(dk).

The B′′′-recursive function FB
′′′

produces a new confident partial learner that out-

puts partial-recursive indices. If there is indeed a recursive {0, 1}-valued function

ϕe upon which the text is based, then FB
′′′

outputs the minimal index of ϕe in-

finitely often; if, on the other hand, no such ϕe exists, then FB
′′′

outputs 0 infinitely

often. In either case, all the remaining indices are output only finitely often, and

therefore FB
′′′

may be used to construct a confident partial learner. Furthermore,

since B′′′ ≤T A′′ by assumption, it follows that FB
′′′

= FA
′′
. One can now define

a confident partial A-recursive learner N : by means of the claim proved earlier,

there is an A-recursive function fA(d, t) such fA(d, t) outputs a unique index e′

with ϕe′ = ϕFA′′ (d) for infinitely many t. N may be set to output fA(g(dk), t) if and

only if M outputs g(dk) for the t-th time.

If there is a number e such that FA
′′
(g(dk)) = e holds for infinitely many k, then

e is a partial-recursive index for the recursive {0, 1}-valued function f generating

the text revealed to N . In addition, every other index in the range of FA
′′
(g(dk)) is

output for only finitely many k. Correspondingly, N outputs a single r.e. index e′

for f infinitely often; for each of the other numbers a in the range of FA
′′
, as there

are only finitely many stages t at which M hypothesises g(dk) if a = FA
′′
(g(dk)),
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fA(g(dk), t) is output for finitely many t. This establishes that N is an A-recursive

confident partial learner of REC0,1.

One can further generalise the preceding result to construct a learner P that

confidently partially learns REC relative to A. There is a uniformly B-recursive

numbering B0, B1, B2, . . . such that for all x ∈ N, if ϕe(x) ↓, then 〈x, ϕe(x)〉 ∈ Be.

Furthermore, on the text f(0) ◦ f(1) ◦ f(2) ◦ . . ., one can find in the limit the least

index e such that 〈x, f(x)〉 ∈ Be for all x if such an e does exist. Consider the B′′′-

recursive function FB
′′′

defined by the condition that FB
′′′

(e) = e′ if e′ is the least

index of a recursive function ϕe′ such that 〈x, ϕe′(x)〉 ∈ Be for all x, and FB
′′′

(e) = 0

whenever such a recursive function ϕe′ does not exist. The function FB
′′′

produces

a new confident partial learner Q of REC that outputs r.e. indices. By applying

the above claim again, and following an argument exactly analogous to the case

of learning REC0,1, Q may be simulated to construct an A-recursive learner P of

REC, as required. �

The condition that the double jump of the oracle be Turing above K′′ is not,

however, sufficient for confidently partially learning REC, as the following theorem

demonstrates.

Theorem 39 There is a set A with A′′ ≥T K′′ such that A is 2-generic and REC0,1

is not confidently partially learnable relative to A.

Proof. The proof of this result is based on the existence of a 2-generic set A such

that K′′ ≤T K′ ⊕ A, so that A is high2, that is, A′′ ≥T K′′. It shall be shown that

REC0,1 is not confidently partially learnable relative to any such set A. Fix such
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a set A, as well as a {0, 1}-valued total function f which is 2-generic relative to A;

one then has that A⊕ {〈x, y〉 : y = f(x)} is also 2-generic.

Assume towards a contradiction that MA were a confident partial learner of

REC0,1. By the confidence of MA, it must output some index, say e, infinitely often

on the canonical text for f , where f was chosen as above. Then there are prefixes α

of A(0)◦A(1)◦A(2)◦. . . and σ of f(0)◦f(1)◦f(2) . . . for which ∀β∀τ∃γ∃η[Mα◦β◦γ(σ◦

τ ◦ η) = e] holds. This property of MA follows from the 2-genericity of A⊕{〈x, y〉 :

y = f(x)}; for, assuming that the prefixes α, σ do not exist, consider the Π0
1 set of

binary strings

W = {β ⊕ θ : ∀γ ∈ {0, 1}∗∀τ ∈ N∗∀x, y, z[θ ∈ {0, 1}∗ ∧ |θ| = |β|

∧ (θ(〈x, y〉) = θ(〈x, z〉) = 1⇔ y = z) ∧ ((max({p : ∃q[〈p, q〉 < |β|]})

< |τ | ∧ (τ(x) = y ⇔ θ(〈x, y〉) = 1))⇒ (Mβ◦γ(τ) 6= e))]},

where the join of two strings β⊕θ is defined to be the string ξ of length 2 max(|β|, |θ|)

such that ξ(2x) = β(x), ξ(2x+1) = θ(x) whenever β(x), θ(x) are defined; otherwise,

ξ(2x) = ξ(2x+1) = 0. By assumption, for all m,n there exist extensions A[n]◦β and

f [m] ◦ τ of A[n] and f [m] respectively such that for any strings γ ∈ {0, 1}∗, η ∈ N∗,

MA[n]◦β◦γ(f [m] ◦ τ ◦ η) 6= e. The constant m and string τ may be chosen so that

max({p : ∃q[〈p, q〉 < |A[n] ◦ β|]}) < |f [m] ◦ τ |, implying that (A[n] ◦ β) ⊕ θ ∈ W ,

where θ is a binary string of length |A[n] ◦ β| with θ(〈x, y〉) = 1 if and only if

y = (f [m] ◦ τ)(x) and θ(〈x, y〉) = θ(〈x, z〉) = 1 if and only if y = z. Moreover, there

cannot exist an n such that, if θ is a binary string of length n+ 1 representing the

characteristic function of the set {〈x, y〉 ≤ n : y = f(x)}, then A[n]⊕θ ∈W . For, by

the hypothesis that MA outputs e infinitely often on the canonical text for f , there

must exist β ∈ {0, 1}∗ and τ ∈ N∗ satisfying max({p : ∃q[〈p, q〉 < |A[n]|]}) < |τ |,
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τ(x) = y if and only if θ(〈x, y〉) = 1, and MA[n]◦β(τ) = e; this would thus contradict

the condition for A[n]⊕θ to be in W . The preceding two conclusions contradict the

2-genericity of A⊕ {〈x, y〉 : y = f(x)}, which means that the prefixes α and σ with

the required properties must exist. Now fix the two prefixes α and σ.

The proof proceeds next by constructing two different {0, 1}-valued recursive

functions, f0 and f1, such that MA outputs e infinitely often on the canonical texts

for f0 and f1. Let f0 and f1 be defined as follows.

• At the initial stage, put f0(x) = σ(x) for all x < |σ|, and f0(|σ|) = 0; f1(x) =

σ(x) for all x < |σ|, and f1(|σ|) = 1. Let σ0,0 = σ ◦ 0 and σ1,0 = σ ◦ 1.

• At stage s + 1, consider all 2s+1 binary strings of length s + 1; call them

β0, β1, . . . , β2s . Search for a sequence of binary strings τ0,s,0, τ0,s,1, . . . , τ0,s,2s+1

with τ0,s,0 = σ0,s, and for k = 0, 1, . . . , 2s, τ0,s,k+1 is a proper extension of

τ0,s,k such that Mα◦βk◦γk(τ0,s,k+1) ↓= e for some γk ∈ {0, 1}∗. Similarly, find

a sequence of binary strings τ1,s,0, τ1,s,1, . . . , τ1,s,2s+1 with τ1,s,0 = σ1,s, and

for k = 0, 1, . . . , 2s, there is a δk ∈ {0, 1}∗ such that τ1,s,k ≺ τ1,s,k+1 and

Mα◦βk◦δk(τ1,s,k+1) ↓= e. Let σ0,s+1 = τ0,s,2s+1 and σ1,s+1 = τ1,s,2s+1 . By the

properties of α and σ, the chains of string extensions {τ0,s,1, τ0,s,2, . . . , τ0,s,2s+1},

{τ1,s,1, τ1,s,2, . . . , τ1,s,2s+1}, as well as the strings γk, δk must exist, since it

may be assumed inductively that σ is a prefix of both τ0,s,k and τ1,s,k for

k = 0, 1, . . . , 2s.

Set f0(x) = σ0,s+1(x) for all x ∈ dom(σ0,s+1) if f0(x) is not already defined.

Likewise, set f1(x) = σ1,s+1(x) for all x ∈ dom(σ1,s+1) if f1(x) has not been

defined.
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It shall be shown that for infinitely many s and binary strings γk found in

the algorithm at stage s + 1, if α ◦ βk is a prefix of A(0) ◦ A(1) ◦ A(2) ◦ . . ., then

A(0)◦A(1)◦A(2)◦ . . . also extends α◦βk ◦γk. Assume for the sake of a contradiction

that there is an s0 such that for all stages s+ 1 > s0, whenever α ◦ βk is a prefix of

A(0) ◦A(1) ◦A(2) ◦ . . ., then the string γk found with Mα◦βk◦γk(τ0,s,k+1) ↓= e fails

to satisfy the condition that A(0)◦A(1)◦A(2)◦ . . . extends α◦βk ◦γk. Consider the

Σ0
1 set U consisting of all binary strings α ◦ βk ◦ γk such that γk is the first string

found at stage s + 1 for which Mα◦βk◦γk(τ0,s,k+1) ↓= e. For all n, there is a stage

s + 1 > s0 at which α ◦ βk = A(0) ◦ A(1) ◦ A(2) ◦ . . . ◦ A(n) for some βk, and by

assumption the string α ◦ βk ◦ γk in U is not a prefix of A(0) ◦A(1) ◦A(2) ◦ . . .; this

contradicts the 2-genericity of A. Hence there are infinitely many stages s at which

MA(0)◦A(1)◦...◦A(k)(τ0,s,n) = e for some numbers k, n, and so M outputs e infinitely

often on the canonical text for f0 when it has access to the oracle A. An argument

exactly analogous to the preceding one, with δk in place of γk and τ1,s,k+1 in place

of τ0,s,k+1, establishes that M , with access to the oracle A, also outputs e infinitely

often on the canonical text for f1. These two conclusions contradict the fact that M

must confidently partially learn both the recursive functions f0 and f1, since f0 and

f1 differ on the argument |σ|, and yet M outputs the same index infinitely often on

their respective canonical texts. In conclusion, REC0,1 is not confidently partially

learnable relative to A. �

A possible further question to consider is whether confidence and behaviourally

correct learnability, when imposed all at once on a class of recursive functions, can

secure explanatory learnability; a negative answer to this is provided in the next

result.
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Theorem 40 The class C = {f : f is recursive ∧ ∀x[f(x) ↓= ϕf(0)(x) ↓]}

∪ {f : f is recursive ∧ f(0) ↓ ∧ ∃p∀x[ϕf(0)(x) ↑↔ x = p ∧ ∀y 6= p[f(y) ↓=

ϕf(0)(y) ↓]]} is behaviourally correctly learnable and confidently partially learnable,

but not explanatorily learnable.

Proof. A behaviourally correct learner M may be programmed as follows: on input

σ, M conjectures an index for the partial-recursive function

ϕi(x) =

 σ(x) if x < |σ|;

ϕσ(0)(x) if x ≥ |σ|.

That M behaviourally correctly learns C is justified by the observation that for

every recursive function f in C, f is almost everywhere equal to ϕf(0). Hence, on

the canonical text for any f ∈ C, M will converge semantically to a correct index.

Furthermore, C is confidently partially learnable via the following algorithm: on

input σ, the learner P identifies the least number x0 < |σ| such that ϕσ(0),|σ|(x0) ↑;

if x0 > y for some y such that ϕσ(0),|σ|−1(y) ↑, P first conjectures ϕσ(0) one time,

and then outputs an index for the partial-recursive function ϕi which was defined

above for the behaviourally correct learner M . If no such y exists, P outputs j,

where

ϕj(x) =

 σ(x0) if x = x0;

ϕσ(0)(x) if x 6= x0.

For the remaining case that ϕσ(0),|σ|(x) ↓ whenever x < |σ|, P conjectures a fixed

index for ϕσ(0).

If P is fed with a text for some f ∈ C such that ϕf(0)(p) ↑, then there is a stage s
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from which point onwards p will always remain as the least input on which ϕσ(0) is

undefined, and P will converge syntactically to a correct index for f ; namely, that

for the partial-recursive function ϕi with ϕi(x) = f(p) if x = p, and ϕi(x) = ϕf(0)(x)

for all other values of x. If P is presented with a text for some f ∈ C with ϕf(0)

total, then it will conjecture ϕf(0) infinitely often, and output every other index for

at most a finite number of times. Thus P confidently partially learns C.

Assume towards a contradiction that N were an explanatory learner of the class

C. Applying Kleene’s Recursion Theorem, there is an index e such that ϕe(0) = e,

and for x > 0, ϕe(x) is defined inductively as follows. Let k be the least value on

which ϕe has not been defined; then ϕe(x) = 0 for all x > k if, given any number s,

N(ϕe(0)◦ϕe(1)◦. . .◦ϕe(k−1)◦t◦0s) ≤ k whenever t ≤ s. Otherwise, let s be the first

number found such that for some least n ≤ s, N(ϕe(0)◦ϕe(1)◦. . .◦ϕe(k−1)◦n◦0s) >

k holds; then set ϕe(k) = n and ϕe(k + i) = 0 for all i with 1 ≤ i ≤ s.

First, suppose that ϕe as defined above is total. This means, in particular, that

ϕe ∈ C; however, since N outputs arbitrarily large indices on the canonical text

for ϕe, it cannot be an explanatory learner of C. Secondly, suppose that ϕe(x) is

undefined if and only if x = k, and for all x > k, ϕe(x) ↓= 0. By the construction of

ϕe, this implies that for all numbers s and t ≤ s, N(ϕe(0) ◦ ϕe(1) ◦ . . . ◦ ϕe(k − 1) ◦

t ◦ 0s) ≤ k. Now one may choose a number a sufficiently large so that for all l ≤ k,

either ϕl(k) ↑ or a > ϕl(k) ↓ holds. Consequently, there is a recursive function f ∈ C

defined by

f(x) =

 a if x = k;

ϕe(x) if x 6= k.

As N outputs at least one index l ≤ k infinitely often on the canonical text for f ,
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but f(k) is chosen so that either ϕl(k) ↑ or ϕl(k) ↓< f(k), N fails to explanatorily

correctly learn C, a contradiction. This case distinction establishes that C is not

explanatorily learnable. �

It may be asked whether the preceding result can be sharpened by identify-

ing non-explanatorily learnable classes that are not only behaviourally correctly

learnable but even vacillatorily learnable. This, however, is not possible, as every

vacillatorily learnable class of recursive functions is already explanatorily learnable.

Theorem 41 If a class C of recursive functions is vacillatorily learnable, then it is

explanatorily learnable.

Proof. Let C be a class of recursive functions such that M is a vacillatory recursive

learner of C. An algorithm for an explanatory learner N is as follows: on input

σ = f(0) ◦ f(1) ◦ . . . ◦ f(n), let e0, e1, . . . , en be all the hypotheses issued by M on

the initial segments of σ. Choose the subset S = {ei0 , . . . , eik} of {e0, e1, . . . , en}

such that for all eij ∈ S, ϕeij ,n is consistent with all the data seen so far; that is,

for all x ≤ n, either ϕeij ,n(x) ↑ or ϕeij ,n(x) ↓= f(x). N then conjectures the index

d satisfying

ϕd(x) =

 ϕeij (x) if eij is the first number found in S such that ϕeij (x) ↓;

↑ if ϕeij (x) ↑ for all eij ∈ S.

Suppose N is fed with the canonical text for some f ∈ C. Since M vacillatorily

learns C, it conjectures only finitely many different hypotheses on any text for f .

Consequently, at a sufficiently large stage, the set S identified at every step of the

above algorithm contains only all the hypotheses ofM consistent with f . In addition,
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S must contain a correct index for f in the limit. Therefore N explanatorily learns

every f ∈ C. �

We now address a different sort of question in partial learning: can one always

uniformly extend the recursive functions confidently partially learnt by some recur-

sive learner to a class of partial-recursive functions so that every recursive function

in this class is also confidently partially learnable? The following theorem gives an

affirmative answer.

Theorem 42 If a class C of recursive functions is confidently partially learnable,

then there is a one-one numbering f0, f1, f2, . . . of partial-recursive functions such

that

• C ⊆ {f0, f1, f2, . . .};

• each fi has either a finite or a cofinite domain;

• the subclass of all recursive functions in {f0, f1, f2, . . .} is confidently partially

learnable with respect to the hypothesis space {f0, f1, f2, . . .}.

Proof. Let C be a class of recursive functions that is confidently partially learnt by

the recursive learner M . Now define a numbering f0, f1, f2, . . . of partial-recursive

functions according to the following steps.

1. For each sequence σ ∈ N∗, determine whether or not M(σ) 6= M(τ) for all

τ ≺ σ. If so, then define fσ according to Step 2.; otherwise, fσ is defined

according to Step 3.
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2. Let fσ(x) = σ(x) for all x < |σ|, and for all y ≥ |σ|,

fσ(y) =


ϕM(σ)(y) if ∃η ∈ N∗[M(σ ◦ η) = M(σ) ∧ y < |σ ◦ η|

∧∀z < |σ ◦ η|[ϕM(σ)(z) ↓= (σ ◦ η)(z)]];

↑ otherwise.

3. Put

fσ(x) =


σ(x) if x < |σ|;

↑ if x = |σ|;

0 if x > |σ|.

First, it is shown that C ⊆ {f0, f1, f2, . . .}. Let g be any recursive function in C. As

M confidently partially learns g, there is a shortest sequence σ with g(x) = σ(x)

for all x ∈ dom(σ) and g = ϕM(σ), such that M outputs on the canonical text

g(0) ◦ g(1) ◦ g(2) ◦ . . . the index M(σ) infinitely often. Thus the Σ0
1 condition

defining fσ in Step 2. is satisfied for all numbers y, giving that fσ = g. Moreover, if

M(σ) 6= M(τ) for all τ ≺ σ, then by Step 2. fσ is either total or has finite domain;

otherwise, the construction of fσ in Step 3. ensures that the domain of fσ is cofinite.

In addition, the numbering is one-one: for any σ, τ ∈ {0, 1}∗, if σ 6� τ and

τ 6� σ, then, since σ � fσ(0) ◦ fσ(1) ◦ . . . and τ � fτ (0) ◦ fτ (1) ◦ . . ., fσ and fτ

must differ on at least one input. Suppose, on the other hand, that σ ≺ τ holds.

Consider the following case distinction. (1) If Step 2. applies to both σ and τ ,

then M(σ) 6= M(τ), so that by the confidence of M , σ and τ cannot both be

extended to a common infinite sequence on which M outputs two different numbers

infinitely often. Hence fσ 6= fτ . (2) If Step 3. applies to σ, then it also applies to τ .

Consequently, fσ(|σ|) ↑ but fτ (|σ|) = τ(|σ|), and so fσ 6= fτ again holds. (3) If Steps
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2. and 3. apply to σ and τ respectively, then fσ is either total or has finite domain,

while fτ remains undefined on one input and has infinite domain. Therefore fσ 6= fτ

still holds. This completes the case distinction, and shows that {f0, f1, f2, . . .} is a

one-one numbering. To produce a new confident partial learner N of all recursive

functions in C using C itself as a hypothesis space, suppose that N is fed with the

text segment σ; it then chooses the shortest τ � σ with M(τ) = M(σ) and outputs

τ . On any input text a0 ◦a1 ◦a1 ◦ . . ., M outputs exactly one index e infinitely often,

and if η is the shortest prefix of the given text with M(η) = e, then N outputs

η infinitely often, and all other indices only finitely often. If g is any recursive

function in {f0, f1, f2, . . .}, then there is a unique segment σ ≺ g(0)◦ g(1)◦ g(2)◦ . . .

such that Step 2. applies to σ, and the Σ0
1 criteria defining fσ is fulfilled for all

inputs y. Therefore g = ϕM(σ), and since ϕM(τ)(x) = τ(x) for all prefixes τ of

ϕM(σ)(0) ◦ ϕM(σ)(1) ◦ ϕM(σ)(2) ◦ . . ., N outputs σ infinitely often. This establishes

all the properties of the numbering {f0, f1, f2, . . .} in the claim. �

The example given below shows that one cannot in general obtain a uniformly

recursive class of functions covering all the recursive functions confidently partially

learnt by a recursive learner.

Example 43 Consider the class C = {f : ∀x[f(x) ↓= ϕf(0)(x) ↓]} of self-describing

functions. C is confidently partially learnable, but there is no numbering of recursive

functions f0, f1, f2, . . . such that C ⊆ {f0, f1, f2, . . .}.

Proof. Suppose for the sake of a contradiction that there exists a numbering f0, f1, f2, . . .

of recursive functions such that C ⊆ {f0, f1, f2, . . .}. Now define a family of recursive
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functions as follows. For any given number e, let

g(e, x) =

 e if x = 0;

fx−1(x) + 1 if x > 0.

Since f0, f1, f2, . . . is a numbering of recursive functions, each function g(e, x) for

a fixed e is recursive. By the s-m-n theorem, there is a recursive function h with

ϕh(e)(x) ↓= g(e, x) ↓ for all x. Further, it follows from Kleene’s Recursion Theorem

that ϕh(e) = ϕe for some e. Then ϕh(e) ∈ C for this e and ϕe(x+1) = fx(x+1)+1 >

fx(x+ 1) for all x. Hence the assumption that C ⊆ {f0, f1, f2, . . .} is wrong. �

4.2 Consistent Partial Learning

The present section considers a weakened notion of consistency in partial learning,

namely, essential class consistency. Under this learning paradigm, the learner is per-

mitted to be inconsistent on finitely many data inputs. First, we review the original

notion of class consistent partial learning introduced in [13] with some examples.

Example 44 The class of self-describing functions C = {f : ∀x[f(x) ↓= ϕf(0)(x) ↓

]} is class consistently explanatorily learnable but not consistently explanatorily

learnable.

Theorem 45 There is a class of recursive functions which is confidently explana-

torily learnable but not class consistently partially learnable.

Proof 1. The class C = {f : f is recursive ∧ (m = min(range(f)) → ∀x[f(x) ↓=

ϕm(x) ↓])} is confidently explanatorily learnable but not class consistently partially
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learnable.

An explanatory learner M of C may be programmed as follows: on input σ

with e = min(range(σ)), M outputs e. If M is presented with the canonical text

f(0) ◦ f(1) ◦ f(2) ◦ . . . for some f ∈ C such that e = min(range(f)), then M will

always correctly conjecture the recursive function f = ϕe once e appears in the text.

Hence M is a confident explanatory learner of C.

Now assume by way of contradiction that N were a class consistent partial

learner of C. The following claim is first established.

Claim 46 For any number e, there are sequences σ1, σ2 which satisfy the following

conditions.

• range(σ1) ∪ range(σ2) ⊆ {e, e+ 1, e+ 2, . . .};

• ∃x[σ1(x) ↓6= σ2(x) ↓];

• N(σ1) = N(σ2).

Suppose to the contrary that there exists a number e0 such that for all σ1, σ2 with

σ1(x) ↓6= σ2(x) ↓ for some x and range(σ1) ∪ range(σ2) ⊆ {e0, e0 + 1,

e0 + 2, . . .}, the condition N(σ1) 6= N(σ2) holds. Consequently, there is a recursive

function f such that for all e < e0, ϕf(e) = ϕf(e0), and for all e ≥ e0, ϕf(e) is defined

inductively by

ϕf(e)(x) =

 e if x = 0;

min({y : N(ϕf(e)(0) ◦ ϕf(e)(1) ◦ . . . ◦ ϕf(e)(x− 1) ◦ y) > e+ x}) if x > 0.
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Owing to the initial assumption that for all σ1, σ2 with range(σ1) ∪ range(σ2) ⊆

{e0, e0 + 1, e0 + 2, . . .}, |σ1| = |σ2|, and σ1 6= σ2, it holds that N(σ1) 6= N(σ2), every

partial-recursive function ϕf(e) is total. By Kleene’s Recursion Theorem, there exists

an i ≥ e0 for which ϕf(i) = ϕi. Then ϕi ∈ C for this i, but since N outputs on

the canonical text for ϕi each index only finitely often, it cannot partially learn ϕi.

This establishes the claim.

Applying the claim, one may find two-place recursive functions g, h which per-

form the following instructions. On input (x, y), g and h search for the first two

finite sequences σx,y,1, σx,y,2 which fulfil the criteria laid out in the subclaim with

e = max({x, y}). Then g and h are programmes such that

ϕg(x,y)(z) =

 σx,y,1(z) if z < |σx,y,1|;

x if z ≥ |σx,y,1|,

ϕh(x,y)(z) =

 σx,y,2(z) if z < |σx,y,2|;

y if z ≥ |σx,y,2|.

By the choice of σx,y,1 and σx,y,2, the learner N must be inconsistent on at least

one of these two sequences, that is, there is a j ∈ {1, 2} for which either ϕM(σx,y,j)

is undefined on some input z < |σx,y,i|, or ϕM(σx,y,j)(z) ↓6= σx,y,j(z) ↓. Furthermore,

by the Double Recursion Theorem, there exist numbers a, b for which ϕg(a,b) = ϕa

and ϕh(a,b) = ϕb. For this pair of values (a, b), ϕa ∈ C and ϕb ∈ C; on the other

hand, since N is inconsistent on at least one of the canonical texts for ϕa and ϕb,

N cannot be a class consistent partial learner of C. In conclusion, C is confidently

explanatorily learnable but not class consistently partially learnable. �



4 Partial Learning of Classes of Recursive Functions 78

Proof 2. The class L = {f : f is recursive ∧ f = ϕf(0) ∧ ∀x[f(x) > 0]} ∪ {f :

f is recursive ∧ ∃x∀y[f(y) = 0↔ y ≥ x]} is confidently explanatorily learnable but

not class consistently partially learnable.

Consider a recursive learner N that, on input σ, outputs a fixed index for ϕσ(0) if

min(range(σ)) > 0; otherwise, if m = min({y : σ(y) = 0}), it outputs a programme

for the recursive function f given by f(x) = σ(x) if x < m, and f(x) = 0 if

x ≥ m. N is then a confident explanatory learner of L. Assume that M were a class

consistent partial learner of L. Let F (x) = max({s ≥ 1 : σ ∈ {1, 2, . . . , x}{1,2,...,x} ∧

∀y ∈ dom(σ)[ϕM(σ),s(y) ↓ ∧ϕM(σ),s−1(y) ↑]}). F is recursive: firstly, every finite

sequence may be extended to a recursive function f that is almost everywhere equal

to zero, so that f ∈ L. Therefore the class consistency of M implies that for every

σ ∈ {1, 2, . . . , x}{1,2,...,x}, ϕM(σ)(y) is defined for all y ∈ range(σ). Now let g be a

self-describing recursive function such that for all x > 0,

g(x) ∈ {1, 2, . . . , x}−{ϕ0,F (x)(x), ϕ1,F (x)(x), . . . , ϕx−2,F (x)(x)}. If M were presented

with the canonical text Tg = g(0) ◦ g(1) ◦ g(2) ◦ . . ., then for every prefix

σ = g(0) ◦ g(1) ◦ g(2) ◦ . . . ◦ g(x) of Tg, M(σ) /∈ {0, 1, . . . , x − 2} holds; otherwise,

by the construction of g, ϕM(σ),F (x)(x) ↓= ϕM(σ)(x) 6= g(x), contradicting the class

consistency of M . Hence M outputs each index only finitely often on Tg, and

consequently does not class consistently learn L. �

Whilst class consistency is a fairly natural learning constraint in inductive in-

ference of recursive functions, the next theorem shows that it cannot in general

guarantee that a class is also confidently partially learnable. However, it is presently

unknown whether this theorem remains true when the condition of class consistency

is replaced with general consistency.
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Theorem 47 There is a class of recursive functions which is class consistently

partially learnable but not confidently partially learnable.

Proof. The following example essentially modifies the construction of the pro-

gramme g(d) in Theorem 4.1 so that a subclass of C may be class consistently

partially learnable. For each number d, let g(d) be a programme for a partial-

recursive function ϕg(d) which is defined as follows.

• Set ϕg(d),s(0) = d for all s.

• Initialize the markers a0, a1, a2, . . . by setting ai,0 = 〈i, 0〉+ 1 for i ∈ N.

• At stage s + 1, consider each marker ai,s = 〈i, r〉 + 1 such that ai,s ≤ s + 1,

and execute the following instructions in succession. Set

ϕg(d),s+1(x) = 0 for all x = 〈i, j〉 + 1 ≤ s + 1 such that j 6= r if ϕg(d),s is

not already defined on x. Next, check whether ϕi,s+1(ai,s) ↓∈ {0, 1} holds;

if so, let ϕg(d),s+1(ai,s) = 1 − ϕi,s+1(ai,s) if ϕg(d) is not already defined on

the input ai,s. Now, for each i such that 〈i,m〉 + 1 ≤ s + 1 for some m,

let u = max({m : 〈i,m〉 + 1 ≤ s + 1}). Associate the marker ai,s+1 with

〈i, u+ 1〉+ 1 if at least one of the following two conditions applies; otherwise,

let ai,s+1 = ai,s.

1. There is a j < i with 〈j,m〉+1 ≤ s+1 for some m such that aj,s+1 6= aj,s.

2. If ai,s = 〈i, r〉+ 1, then the inequality |{0, 1, . . . , r} −Wd,s+1| < i holds.

Let C = {f : Wd is cofinite ∧ f is a total recursive extension of ϕg(d)}. One may

prove the following properties of the partial-recursive function ϕg(d).
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• IfWd is cofinite, then all the markers ai with i ≤ |W d| settle down permanently,

while all the markers aj with j > |W d| move infinitely often, so that Wg(d) is

cofinite.

• If Wd is coinfinite, then each of the markers ai is eventually fixed permanently,

so that Wg(d) is coinfinite; moreover, there is no total recursive function ex-

tending ϕg(d).

First, suppose that Wd is cofinite. Then for all i ≤ |W d|, there is a sufficiently

large stage s + 1 for which |{0, 1, . . . , r} −Wd,s′ | ≥ i holds if ai,s′ = 〈i, r〉 + 1 and

whenever s′ ≥ s + 1. Hence condition 2. for the marker ai to move almost always

fails. Furthermore, condition 1. is fulfilled only finitely often. This can be seen

by induction on the indices of all markers aj : for j = 0, the marker a0 can only

be moved if condition 2. is satisfied, and, as argued above, this can only happen

finitely often. For j > 0, the marker aj can only be moved due to condition 1. if

some marker ak with k < j is moved; by the inductive assumption, all markers ak

such that k < j are moved only finitely often, so that in the limit, the movement of

aj is contingent only on condition 2. Therefore ai is permanently associated to some

fixed value after a large enough stage. On the other hand, if i > |W d|, then ai,s

satisfies condition 2. at infinitely many stages s, implying that the marker ai moves

infinitely often. One may note further that whenever a marker ai is moved at some

stage s+ 1 from 〈i, r〉+ 1 to 〈i, u+ 1〉+ 1, where u = max({m : 〈i,m〉+ 1 ≤ s+ 1}),

then ϕg(d)(〈i, r〉+1) is assigned the value 0 at a subsequent stage. In particular, this

implies that ϕg(d) is defined on all inputs 〈i, j〉+ 1 with i > |W d|, and thus Wg(d) is

cofinite.
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Secondly, suppose that Wd is coinfinite. As was argued in the preceding para-

graph, only condition 2. may effect a shift in the marker a0, and since Wd is

coinfinite, this condition can only be satisfied finitely often; it then follows by in-

duction on the indices of the markers that for each marker, a movement due to

condition 1. happens for at most a finite number of times. Owing to the fact that

Wd is coinfinite, a marker meets condition 2. finitely often, and therefore it must

settle down permanently on a fixed value after a sufficiently large stage. For each i,

let ai = lims→∞ ai,s. By the construction of ϕg(d), ϕg(d)(ai) is defined if and only if

ϕi(ai) ↓∈ {0, 1}, in which case it is equal to 1 − ϕi(ai). Hence any total extension

of ϕg(d) cannot be a recursive function.

Now it is shown that C is class consistently partially learnable. First, define a

recursive learner N as follows. On input σ = d ◦ f(1) ◦ . . . ◦ f(n), N first identifies

the maximum i, if it exists, such that aj,n = aj,n+1 for all j ≤ i. If no such i exists,

N outputs an index for a partial-recursive function φ such that φ(x) = f(x) for all

x ≤ n, and φ(x) ↑ for all x > n. Otherwise, it conjectures the programme e for

which

ϕe(x) =

 f(m) if ∃t[m = 〈k, t〉+ 1 ≤ n ∧ ϕg(d),n(m) ↑ and k ≤ i];

ϕg(d)(x) otherwise.

Suppose that N processes a text for some recursive function f ∈ C, so that Wf(0) is

cofinite. Consider an input sequence σ = d ◦ f(1) ◦ . . . ◦ f(n). If there is a least i

such that ai,n 6= ai,n+1 and 〈i,m〉+ 1 ≤ n for some m, then by condition 1. above,

all markers aj,n with j ≥ i and 〈j, l〉 + 1 ≤ n for some l will be moved to a new

position 〈j, u〉 + 1 for which u = max{m : 〈i,m〉 + 1 ≤ n + 1}. Hence ϕg(d) will be
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defined on all inputs 〈j,m〉+ 1 ≤ n such that j ≥ i. This in turn implies that N is

class consistent.

Next, one shows that N has the following learning characteristic: it outputs in-

correct indices only finitely often, and it outputs at least one correct index infinitely

often. Let σ = d ◦ f(1) ◦ . . . ◦ f(n) with i = max{j : ∀k ≤ j[aj,n = aj,n+1]} be a

given input sequence. For a case distinction, suppose first that i > |W d|. Then,

since Wg(d) is cofinite and ϕg(d) is undefined only for values of the form 〈j,m〉 + 1

with j ≤ |W d| < i, there is a sufficiently large stage after which N patches all the

undefined places of ϕg(d) with the correct values of the input function. Secondly,

suppose that i ≤ |W d|. As was demonstrated above, each of the markers aj with

j ≤ |W d| is fixed after a large enough number of computation steps; whence, from

this stage onwards, i ≥ |W d|. Since the marker aj with j = |W d|+1 moves infinitely

often, one concludes that i must be equal to |W d| at infinitely many stages. This

establishes the learning property of N claimed at the beginning.

Finally, a class consistent learner M may be built from N as follows: whenever

N outputs the sequence of conjectures e0, e1, e2, . . . , en, . . ., M , for each en, outputs

the index pad(en, kn), where pad is a padding function with ϕpad(e,d) = ϕe for all

e, d, and kn = |{m ≤ n : em < en}|. Then M outputs exactly one correct index for

the input function infinitely often, and it is also class consistent. In conclusion, C is

class consistently partially learnable. The proof that C is not confidently partially

learnable is exactly similar to that in Theorem 4.1: assuming the contrary, one can

obtain a K′ procedure for the deciding the set {d : Wd is cofinite}, a contradiction.

�
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Definition. A recursive learner M is essentially class consistent if and only if for

each canonical text Tf corresponding to some f ∈ C, where C is a class of recursive

functions to be learnt, ϕM(Tf (0)◦Tf (1)◦...◦Tf (n))(m) ↓= Tf (m) holds whenever m ≤ n

for almost all n.

Theorem 48 Every behaviourally correctly learnable class of recursive functions is

essentially class consistently partially learnable.

Proof. Let C be a class of recursive functions which is behaviourally correctly learnt

by a learner M . Next, define a recursive learner N as follows. On an input text

f(0)◦f(1)◦f(2)◦. . ., simulate the learner M and observe the conjectures e0, e1, e2, . . .

output by M . N then outputs a conjecture ei of M at least s times if and only if

∀x ≤ s[ϕei,s(x) ↓= f(x)] holds. If N is presented with the canonical text for some

f ∈ C, then M , being a behaviourally correct learner of C, will output only finitely

many incorrect indices. Therefore N will output each correct index infinitely often,

and every incorrect index finitely often. Now one can build a further learner P :

whenever N , on the input text, conjectures the sequence d0, d1, d2, . . . , P , for each

dn, outputs pad(dn, kn), where pad is a padding function with ϕpad(d,k) = ϕd for all

d, k, and kn = |{m ≤ n : dm < dn}|. This learner P is then the required essentially

class consistent partial learner of C. �

Theorem 49 The class C = {f : f is recursive ∧(∃x∀y[f(y+1) ↓= ϕf(0)(y) ↓↔ y 6=

x] ∨ ∀y[f(y + 1) ↓= ϕf(0)(y) ↓])} is essentially class consistently partially learnable

but not class consistently partially learnable.

Proof. Construct a recursive learner M as follows: on input σ = f(0) ◦ f(1) ◦ . . . ◦

f(n), M identifies the least y ≤ n such that ϕf(0),n(y) ↑; if no such y exists, M



4 Partial Learning of Classes of Recursive Functions 84

outputs e, where e is the programme defined by

ϕe(x) =

 f(0) if x = 0;

ϕf(0)(x− 1) if x > 0.

Otherwise, suppose that y is different from the least z ≤ n−1 such that ϕf(0),n−1(z) ↑

if such a z exists; it then outputs e, with e defined exactly as above, and, on the

subsequent input f(0) ◦ f(1) ◦ . . . ◦ f(n) ◦ f(n+ 1), outputs d, where

ϕd(x) =


f(0) if x = 0;

f(y) if x = y;

ϕf(0)(x− 1) if x /∈ {0, y}.

If the last conjecture of M was d, or n = 0, then it outputs d on the current input

f(0) ◦ f(1) ◦ . . . ◦ f(n). It will then follow that M essentially class consistently

partially learns every f ∈ C.

In Theorem 40, C was shown to be behaviourally correctly and confidently par-

tially learnable, but not explanatorily learnable. Now assume by way of contradic-

tion that N were a class consistent recursive learner of C. By Kleene’s Recursion

Theorem, there is a partial-recursive function ϕe defined in stages as follows: at

the initial stage, the programme e searches for the first number x0 such that either

N(e ◦ x0) > N(e) holds, or there is a number y0 > x0 with N(e ◦ x0) = N(e ◦ y0).

If the latter holds, then ϕe(0) is left undefined, while ϕe(x) ↓= 0 for all x > 0.

On the other hand, if x0 is found such that N(e ◦ x0) > N(e), then ϕe(0) is as-

signed the value x0, and the programme e proceeds with the next stage of the

algorithm. At stage s + 1, assume that ϕe(x) has been defined if and only if
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x ≤ s; the programme e then searches for the first number xs+1 for which either

N(e◦ϕe(0)◦. . .◦ϕe(s)◦xs+1) > N(τ) holds for all τ ≺ e◦ϕe(0)◦. . .◦ϕe(s)◦xs+1, or for

some ys+1 > xs+1, N(e◦ϕe(0)◦. . .◦ϕe(s)◦xs+1) = N(e◦ϕe(0)◦. . .◦ϕe(s)◦ys+1). If the

first case holds, then ϕe(s+1) is defined to be xs+1, and the algorithm proceeds to the

next stage; if the second case holds, then ϕe(s+1) remains undefined, and ϕe(x) ↓= 0

for all x > s+1. Suppose that the stages run through infinitely often; consequently,

N outputs on the canonical text e◦ϕe(0)◦ϕe(1)◦ . . . for some f ∈ C each index only

finitely often, and thus cannot be a class consistent learner of f . Suppose instead

that a stage s is reached at which ϕe(s) ↑, ϕe(x) ↓= 0 for all x > s, and there are

distinct numbers xs, ys such that N(e◦ϕe(0)◦ . . .◦xs) = N(e◦ϕe(0)◦ . . .◦ys) = p for

some p. Hence either ϕp(s) ↑ holds, or ϕp(s) ↓ and ϕp(s) differs from at least one of

the numbers xs, ys. Let f be a recursive function such that f(0) = e, f(x+1) = ϕe(x)

for all x 6= s, and ϕp(s) 6= f(s + 1) ∈ {xs, ys} if ϕp(s) ↓; if ϕp(s) ↑, then f(s + 1)

can be arbitrarily selected. For this choice of f , f ∈ C, but since N is inconsistent

on the text segment e ◦ϕe(0) ◦ . . . ◦ϕe(s− 1) ◦ f(s+ 1), it cannot class consistently

learn f . In conclusion, C is not class consistently partially learnable. �

Theorem 50 The class C = {f : f is recursive ∧f(0) ↓ ∧|W f(0)| <∞∧∀x[ϕf(0)(x) ↓⇒

f(x) ↓= ϕf(0)(x) ↓]} is neither class consistently partially learnable nor confidently

partially learnable.

Proof. That C is not class consistently partially learnable follows directly from

Theorem 49; that C is not confidently partially learnable may be shown by an

argument exactly analogous to that in the second proof of Theorem 32. �

Theorem 51 The class REC0,1 of all {0, 1}-valued recursive functions is not es-
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sentially class consistently partially learnable.

Proof. Suppose for the sake of a contradiction that M were a recursive essentially

class consistent learner of REC0,1. By the reductio hypothesis, one can prove the

following claim.

Claim 52 Let M be as above. Then for any binary string σ, there are string ex-

tensions τ0, τ1 ∈ {0, 1}∗ such that τ0(x) 6= τ1(x) for some x ∈ dom(τ0 ∩ τ1), and

M(σ ◦ τ0) = M(σ ◦ τ1).

Assume that a counterexample to the claim is witnessed by the binary string σ.

One may build a recursive {0, 1}-valued function f in stages as follows. At the

initial stage s = 0, let f(x) = σ(x) for all x ∈ dom(σ), and f(|σ|) = 0. At stage

s + 1, suppose that f(x) has been defined for all x ≤ |σ| + s. Now consider the

outputs M(f(0) ◦ . . . ◦ f(|σ| + s) ◦ 0) and M(f(0) ◦ . . . ◦ f(|σ| + s) ◦ 1); by the

assumed property of σ, M(f(0) ◦ . . . ◦ f(|σ|+ s) ◦ 0) 6= M(f(0) ◦ . . . ◦ f(|σ|+ s) ◦ 1).

Choose f(|σ|+ s+ 1) ∈ {0, 1} such that M(f(0) ◦ . . . ◦ f(|σ|+ s) ◦ f(|σ|+ s+ 1)) 6=

M(f(0) ◦ . . . ◦ f(|σ|+ k)) holds for all k ≤ s if this is possible; otherwise, if M has

already conjectured both M(f(0)◦ . . .◦f(|σ|+s)◦0) and M(f(0)◦ . . .◦f(|σ|+s)◦1)

on some prefix of f(0) ◦ . . . ◦ f(|σ|+ s), assign a {0, 1} value to f(|σ|+ s+ 1) so that

M(f(0)◦. . .◦f(|σ|+s)◦f(|σ|+s+1)) > M(f(0)◦. . .◦f(|σ|+s)◦(1−f(|σ|+s+1))).

One notes that by the construction of f , M outputs on the canonical text for

f each index only finitely often. For, according to the algorithm, if M(f(0) ◦ . . . ◦

f(k)) = M(f(0) ◦ . . . ◦ f(l)) for some l < k, then there is a number b < k distinct

from l with M(f(0) ◦ . . . ◦ f(b)) = M(f(0) ◦ . . . ◦ f(k− 1) ◦ (1− f(k))) and M(f(0) ◦

. . . ◦ f(b)) < M(f(0) ◦ . . . ◦ f(k)). Consequently, by the property of σ, M cannot



4 Partial Learning of Classes of Recursive Functions 87

output M(f(0) ◦ . . . ◦ f(b)) after processing extensions of the text segment f(0) ◦

. . . ◦ f(k). In particular, this means that M outputs M(f(0) ◦ . . . ◦ f(k)) for at most

M(f(0) ◦ . . . ◦ f(k)) times. Thus M does not essentially class consistently partially

learn f , and this establishes the claim.

Next, one constructs a {0, 1}-valued partial- recursive function θ as follows. First,

set θ(0) = 0. At stage s + 1, suppose that θ has been defined on all values up to

s′, and run a search for two incomparable binary strings, τ0 and τ1, such that

M(θ(0) ◦ . . . ◦ θ(s′) ◦ τ0) = M(θ(0) ◦ . . . ◦ θ(s′) ◦ τ1) = cs+1 for some number cs+1,

and ϕcs+1(x) ↓∈ {0, 1}, where x is the least number such that x ∈ dom(τ0 ∩ τ1) and

τ0(x) 6= τ1(x). Choose the binary string τi, i ∈ {0, 1}, so that τi(x) = 1− ϕcs+1(x),

and define θ(s′ + y + 1) = τi(y) for all y ∈ dom(τi). From this construction of θ,

there are two possible cases to consider.

Case (A): Every stage terminates successfully, so that θ is total.

It follows directly from the construction of θ that for infinitely many numbers k,

there is a b < k with θ(b) 6= ϕM(θ(0)◦...◦θ(k))(b). Consequently, M cannot be an

essentially class consistent partial learner of θ.

Case (B): There is a stage s + 1 at which no pair of incomparable binary strings

τ0, τ1 can be found such that, if θ has been defined on all values up to s′, then

M(θ(0) ◦ . . . ◦ θ(s′) ◦ τ0) = M(θ(0) ◦ . . . ◦ θ(s′) ◦ τ1) = cs+1 for some number cs+1,

and ϕcs+1(x) ↓∈ {0, 1}, where x is the least number such that x ∈ dom(τ0 ∩ τ1) and

τ0(x) 6= τ1(x).

One may extend θ to a {0, 1}-valued total recursive function ξ as follows. First,

set ξ(y) = θ(y) for all y ≤ s. By virtue of the subclaim established above, one can
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successfully find at stage t+ 1 two binary strings τ0,t+1, τ1,t+1, such that M(ξ(0) ◦

. . . ◦ ξ(t′) ◦ τ0,t+1) = M(ξ(0) ◦ . . . ◦ ξ(t′) ◦ τ1,t+1) and τ0,t+1(x) 6= τ1,t+1(x) for some

x ∈ dom(τ0,t+1 ∩ τ1,t+1); it is assumed that at this stage ξ has been defined up to

t′. Choose the binary string τi,t+1, i ∈ {0, 1}, which is at least as long as the other,

and define ξ(t′ + y + 1) = τi,t+1(y) for all y ∈ dom(τi,t+1). On the hypothesis of

Case (B), it follows that if the binary string τi,t+1 is selected at stage t + 1, then

ϕM(ξ(0)◦...◦ξ(t′)◦τi,t+1)(x) ↑ for some x ∈ dom(τi,t+1). This implies that there are

infinitely many numbers k such that ϕM(ξ(0)◦...◦ξ(k))(x) ↑ for some x ≤ k. Hence M

is not an essentially class consistent partial learner of ξ.

In conclusion, M cannot be an essentially class consistent partial learner of REC0,1,

and so REC0,1 is not essentially class consistently partially learnable, as required.

�

The example furnished in the subsequent result shows that behaviourally correct

learning is in fact a strictly weaker learning notion than essentially class consistent

partial learning.

Theorem 53 There is a class of recursive functions which is essentially class con-

sistently partially learnable but not behaviourally correct learnable.

Proof. Consider the class of recursive functions C = {f : f is recursive∧∀x[f(x) ↓=

ϕf(0)(x) ↓]} ∪ {f : f is recursive ∧ ∀∞x[f(x) ↓= 0]}, the union of the self-describing

recursive functions with the recursive functions which are almost everywhere equal

to 0. C is essentially class consistently partially learnable via the following algorithm:

on input f(0) ◦ f(1) ◦ . . . ◦ f(n), the learner M identifies the least k ≤ n such that
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f(i) = 0 for all k ≤ i ≤ n, if such a k exists; it then outputs the programme e with

ϕe(x) =

 f(x) if x < k;

0 if x ≥ k.

Otherwise, if no such k exists, M outputs f(0). It will then follow that M is an

essentially class consistent partial learner of C. The proof that C is not behaviourally

correctly learnable was carried out in Theorem 35. �

Although the specifications of an essentially class consistent partial learner may

seem quite liberal, the next result demonstrates that its learning strength does not

exceed that of confident partial learning.

Theorem 54 There is a class of recursive functions which is confidently partially

learnable but not essentially class consistently partially learnable.

Proof 1. Let M0,M1,M2, . . . be an enumeration of all partial-recursive learners.

The following construction of a class of recursive functions which diagonalises against

all essentially class consistent learners mirrors the procedure used to build the re-

cursive functions in the preceding claim. First, for each number e, let g(e) be a

programme for the partial-recursive function ϕg(e) which is defined as follows. One

determines in the limit a sequence of strings σe,0, σe,1, σe,2, . . . which satisfy the

following conditions for all i.

• σe,0 = e;

• σe,i � σe,i+1;
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• If σe,i ≺ σe,i+1, that is, σe,i+1 is a proper string extension of σe,i, then σi+1

is the first string found such that for all x ≥ |σi|, either ϕMe(σe,i+1)(x) ↓6=

σe,i+1(x) ↓ holds, or Me(σe,i+1[x]) > Me(τ) whenever τ ≺ σe,i+1[x]; here

σe,i+1[x] denotes the prefix of σe,i+1 with length x+ 1.

The partial-recursive function ϕg(e) is defined by setting, for all x,

ϕg(e)(x) = σe,j(x) whenever j is an index such that x ∈ dom(σe,j); if no such σe,j

exists, then ϕg(e) remains undefined on the input x.

Let C1 = {ϕg(e) : e ∈ N ∧ ϕg(e) is total}.

Secondly, for each number e and string η ∈ N∗, one constructs inductively a

sequence τe,0, τe,1, τe,2, . . . of strings such that the following conditions hold for all i.

• τe,0 = e ◦ η;

• τe,i � τe,i+1;

• If z is the first number found such that Me(τe,i ◦ z) > Me(θ) for all θ � τe,i,

then τe,i+1 = τe,i ◦ z; otherwise, if (x, y) is the first pair of numbers found with

x < y and Me(τe,i ◦ x) = Me(τe,i ◦ y), then τe,i+1 = τe,i ◦ x.

Let h(〈e, σ〉) be the programme for the partial-recursive function ϕh(〈e,σ〉) such that

for all x, ϕh(〈e,σ〉)(x) ↓= τe,j(x) ↓, where j is any index with

x ∈ dom(τe,j); if no such τe,j exists, then ϕh(〈e,σ〉) remains undefined on x.

Define C2 = {ϕh(〈e,η〉) : e ∈ N ∧ η ∈ N∗ ∧Me is total}.

To finish the construction, let C = C1 ∪ C2. It shall be shown that C is confidently

partially learnable but not essentially class consistently partially learnable.
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Define a recursive learner M as follows. On the input ξ = e◦ τ , M simulates the

programme g(e) and determines the sequence σe,0, σe,1, . . . , σe,|ξ| constructed in the

algorithm. M then carries out the first of the following instructions which applies.

1. If σe,|ξ|(x) ↓= ξ(x) ↓ for all x ∈ dom(σe,|ξ|)∩dom(ξ), and σe,|ξ|−1 6= σe,|ξ|, then

M outputs the index g(e).

2. If σe,|ξ|(x) ↓= ξ(x) ↓ for all x ∈ dom(σe,|ξ|)∩ dom(ξ), but σe,|ξ|−1 = σe,|ξ|, then

M outputs the index h(〈e, α〉), where α = σe,|ξ| if ξ � σe,|ξ|, and if σe,|ξ| ≺ ξ,

α is the shortest string such that σe,|ξ| � α � ξ and ϕh(〈e,α〉),|ξ| ⊆ ξ. If such an

α does not exist, M outputs g(e). Furthermore, if case 2. applied at the last

stage and M had output h(〈e, α′〉) for some α′ 6= α, then M conjectures g(e)

once before outputting h(〈e, α〉) at the subsequent stage.

3. If σe,|ξ|(x) ↓6= ξ(x) ↓ for some x ∈ dom(σe,|ξ|) ∩ dom(ξ), then M outputs the

index h(〈e, θ〉), where θ is the shortest prefix of ξ such that ϕh(〈e,θ〉),|ξ| ⊆ ξ.

If such a prefix does not exist, or if case 3. applied at the last stage with a

different θ′ ≺ ξ satisfying ϕh(〈e,θ′〉),|ξ|−1 ⊆ ξ[|ξ| − 2], then M outputs g(e) once

before outputting h(〈e, θ〉) at the subsequent stage.

Suppose that M is presented with the canonical text for ϕg(e), where ϕg(e) is

assumed to be total. Then there are infinitely many i such that σe,i 6= σe,i+1;

furthermore, for all x, there is a j for which ϕg(e)(x) ↓= σe,j(x) ↓. Hence case 1.

applies infinitely often, and so M outputs g(e) infinitely often. On the other hand,

for each i, since there are only finitely many σe,j with σe,i = σe,j , M conjectures

each index of the form h(〈e, α〉) only finitely often.

Suppose next that one feeds M with the canonical text for ϕh(〈e,η〉), where Me
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is total. If ϕg(e) is total and ϕg(e) = ϕh(〈e,η〉), then M outputs g(e) infinitely often,

and each index of the form h(〈e, α〉) only finitely often. If ϕg(e) is not total but

agrees with ϕh(〈e,η〉) on its whole domain, then there is a k such that σe,k = σe,l

whenever k ≤ l, and so case 2. will always apply after some stage, that is, M

will converge syntactically to a correct index h(〈e, α〉) for a fixed α. Finally, if

ϕg(e)(x) ↓6= ϕh(〈e,η〉)(x) ↓ for some x ∈ dom(ϕg(e)) ∩ dom(ϕh(〈e,η〉)), then there is a

stage after which case 3. will always hold, so that M converges syntactically to a

fixed correct index h(〈e, θ〉). This completes the verification that M is a confident

partial learner of C.

Now assume by way of contradiction that Md were an essentially class con-

sistent partial learner of C. If ϕg(d) is total, then it follows from the construc-

tion of the sequence σd,0, σd,1, σd,2, . . . that either Md(ϕg(d)[n]) > Md(τ) for all

τ ≺ ϕg(d)[n] holds for cofinitely many n, or for infinitely many x, there is a σd,k

with ϕMd(σd,k)(x) ↓6= σd,k(x) ↓. Hence Md is not an essentially class consistent

learner of ϕg(d). If ϕg(d) is not total, and σd,k = σd,l for all l ≥ k, then ϕh(〈e,σd,k〉) is a

total function such that there are arbitrarily large x satisfying ϕMd(ϕh(〈e,σd,k〉)[x])
(x) ↑,

so Md does not essentially class consistently learn ϕh(〈d,σd,k〉). This establishes that

the class C is confidently partially learnable but not essentially class consistently

partially learnable. �

Proof 2. Let M0,M1,M2, . . . be a recursive enumeration of all partial-recursive

learners.

For each Me define a function ϕg(e) by starting with σe,0 = e and taking σe,k+1

to be the first extension of σe,k found such that Me(σe,k+1) outputs an index d with
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ϕd(x) ↓6= σe,k+1(x) for some x < |σe,k+1|. ϕg(e)(x) takes as value σe,k(x) for the first

k found where this is defined.

Furthermore, for each e, k where σe,k is defined, let ϕh(e,k) be the partial recursive

function ψ extending σe,k such that for all x ≥ |σe,k|, ψ(x) is the least a such that

either Me(ψ(0)◦ψ(1)◦ . . .◦ψ(x−1)◦a) > x or Me(ψ(0)◦ψ(1)◦ . . .◦ψ(x−1)◦a) =

Me(ψ(0) ◦ ψ(1) ◦ . . . ◦ ψ(x− 1) ◦ b) for some b < a.

Let C1 contain all those ϕg(e) which are total and C2 contain all ϕh(e,k) where

Me is total and ϕg(e) = σe,k, that is, the construction got stuck at stage k. The

class C1 is obviously explanatorily learnable; for the class C2, an explanatory learner

identifies first the e and then simulates the construction of ϕg(e) and updates the

hypothesis always to h(e, k) for the largest k such that σe,k has already been found.

Hence both classes are explanatorily learnable, hence their union C is confidently

partially learnable.

However C is not essentially class consistently partially learnable, as it is now

shown. So consider a total learner Me. If ϕg(e) is total then Me is inconsistent

on this function infinitely often and so Me does not essentially class consistently

partially learn C. So consider the k with ϕg(e) = σe,k. Note that the inductive

definition of ϕh(e,k) results in a total function. If Me outputs on ϕh(e,k) each index

only finitely often, then Me does not partially learn ϕh(e,k). If Me outputs an index

d infinitely often, then for all sufficiently long τ ◦ a � ϕh(e,k) with Me(τ ◦ a) = d it

holds that there is a b < a with M(τ ◦ b) = d as well. By assumption, σe,k+1 does

not exist and can be neither τ ◦a nor τ ◦ b. Hence τ ◦a is not extended by ϕd and so

Me outputs an inconsistent index for almost all times where it conjectures d; again

Me does not essentially class consistently partially learn C. �
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Theorem 55 Essentially class consistent learning is not closed under finite unions;

that is, there are essentially class consistently partially learnable classes C1, C2, such

that C1 ∪ C2 is not essentially class consistently partially learnable.

Proof. Take C = C1 ∪ C2, where C1 and C2 are defined according to Proof 1. in

the preceding theorem. C1 is finitely learnable, while C2 is behaviourally correctly

learnable: on every input ξ = e ◦ τ , a finite learner of C1 may output g(e), and a

behaviourally correct learner of C2 may output h(〈e, τ〉). Consequently, by Theorem

48, both C1 and C2 are essentially class consistently partially learnable. However, as

was shown in Proof 1. of Theorem 54, the union C = C1 ∪ C2 is not essentially class

consistently partially learnable. �

In [13], it is shown that REC is consistently partially learnable relative to an

oracle A if and only if A is hyperimmune. The theorem below asserts that a recur-

sive learner with access to a PA-complete oracle may essentially class consistently

partially learn REC. Since the class of hyperimmune-free, PA-complete degrees is

nonempty, as demonstrated in [14], one may conclude that for partial learning, es-

sential class consistency is indeed a weaker criterion than general consistency, even

when learning with oracles.

Theorem 56 If A is a PA-complete set, then REC0,1 is essentially class consis-

tently partially learnable using A as an oracle.

Proof. Let ψ0, ψ1, ψ2, . . . be a one-one numbering of the recursive functions plus the

functions with finite domain. For example, Kummer [16] provides such a numbering.

Let g be a recursive function such that ψe = ϕg(e) for all e. There is a recursive
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sequence (e0, x0, y0), (e1, x1, y1), . . . of pairwise distinct triples such that ψe(x) ↓= y

iff the triple (e, x, y) appears in this sequence.

On input σ = f(0) ◦ f(1) ◦ . . . ◦ f(n), the learner M searches for the first s ≥ n

such that for all t ≤ s either et 6= es or xt > n or yt = f(xt); that is, s is the first

stage where ψes — to the extent it can be judged from the triples enumerated until

stage s — is consistent with σ. Then M determines using the PA-complete oracle

an d ≤ es such that either ψd extends σ or there is no c ≤ es such that ψc extends

σ; note that in that second case the oracle can provide “any false d” below e. The

learner conjectures then g(d) for the index d determined this way.

If now e is the unique ψ-index of the function f to be learnt, then for all suffi-

ciently long inputs σ, the above es satisfies es ≥ e as for each d < e either there are

only finitely many triples having d in the first component with all of them appearing

before n or there is a t ≤ n with et = d ∧ xt ≤ n ∧ yt 6= f(xt). Hence, the s selected

satisfies es ≥ e and therefore the d provided satisfies that ψd extends σ. Further-

more, there are infinitely many n with en = e and for those the choice is s = n and,

if n is sufficiently large, d = e. Hence the learner outputs infinitely often g(e) and

almost always an index g(d) with ϕg(d) being consistent with the input seen so far.

�

Theorem 57 Every class consistently partially learnable class of recursive functions

can be extended to a one-one numbering of partial-recursive functions {f0, f1, f2, . . .}

such that the subclass of all recursive functions in {f0, f1, f2, . . .} is class consistently

partially learnable. The same statement holds with essentially class consistent partial

learning in place of class consistent partial learning.
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Proof. Let M be a recursive class consistent learner of the class C. For each num-

ber e, build a partial-recursive function ϕg(e) with the following property: for all x,

ϕg(e)(x) ↓= ϕe(x) ↓ if and only if there is a z ≥ x such that ϕe(w) ↓= ϕM(ϕe[y])(w) ↓

for all w ≤ y and y ≤ z, and M(ϕe[z]) = e. If there is an x which does not

fulfil the preceding condition, then ϕg(e) remains undefined for all y ≥ x. Now

let g(j(0)), g(j(1)), g(j(2)), . . . be a one-one enumeration of all the indices in I =

{g(e) : ϕg(e)(0) ↓}. Corresponding to each index g(j(e)) ∈ I, consider the sequence

pad(M(ϕg(j(e))(0)), k0), pad(M(ϕg(j(e))[1]), k1), pad(M(ϕg(j(e))[2]), k2), . . ., where ki

is the number of times that M has already output an index less than M(ϕg(j(e))[i])

up to the ith term of the sequence. Next, construct a class of partial-recursive

functions {ϕh(e,a)} with indices e and a in a similar manner to that of the func-

tions ϕg(e): for all x, ϕh(e,a)(x) ↓= ϕa(x) ↓ holds if and only if there is a z ≥ x

such that a = pad(M(ϕg(j(e))[z]), kz), and for all y ≤ z, ϕg(j(e))(w) ↓= ϕa(w) ↓=

ϕpad(M(ϕg(j(e))[y]),ky)(w) ↓ whenever w ≤ y; otherwise, ϕh(e,a) remains undefined for

all l ≥ x. Finally, let h(e0, a0), h(e1, a1), h(e2, a2), . . . be a one-one enumeration of

all the indices in I ′ = {h(e, a) : ϕh(e,a)(0) ↓}.

We claim that ϕh(e0,a0), ϕh(e1,a1), ϕh(e2,a2), . . . is a one-one numbering such that

the subclass of all recursive functions in this numbering is class consistently partially

learnable. Consider any two distinct pairs of indices (e, a) and (d, b). Assume first

that a 6= b. One of the following cases must hold.

Case (A): ϕh(e,a) and ϕh(d,b) both have finite domains, up to some numbers n0 and

n1 respectively.

It follows from the above construction that a = pad(M(ϕg(j(e))[n0]), kn0) and b =

pad((M(ϕg(j(d))[n1]), kn1)), but since a 6= b, ϕh(e,a) 6= ϕh(d,b).
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Case (B): One of the partial-recursive functions, ϕh(e,a) or ϕh(d,b), has finite domain

while the other has infinite domain, so that they cannot be equal.

Case (C): Both ϕh(e,a) and ϕh(d,b) have infinite domains.

If ϕg(j(e)) = ϕg(j(d)), then ϕh(e,a) has infinite domain if and only if a is the mini-

mum index that M outputs infinitely often on the canonical text for ϕg(j(e)); since

a 6= b, the conclusion that ϕh(e,a) 6= ϕh(e,b) again follows. Furthermore, by the con-

sistency condition of M on the text for ϕg(j(e)), if ϕh(e,a) has infinite domain, then

ϕg(j(e))(x) ↓= ϕa(x) ↓ for all x. If ϕg(j(e)) 6= ϕg(j(d)), then, since ϕh(e,a) and ϕh(d,b)

both have infinite domains, one has ϕh(e,a) = ϕg(j(e)) and ϕh(d,b) = ϕg(j(d)), and

therefore ϕh(e,a) 6= ϕh(d,b).

This completes the verification that ϕh(e0,a0), ϕh(e1,a1), ϕh(e2,a2), . . . is a one-one num-

bering. A class consistent partial learning strategy for all the recursive functions in

this numbering is to output, given the data f [n], the index pad(M(f [n]), kn), where

kn again denotes the number of l’s such that l ≤ n and M(f [l]) < M(f [n]). An

analogous proof shows that this result also holds when M is an essentially class con-

sistent partial learner; in this case, the recursive functions in the one-one numbering

will be essentially class consistently learnable. �

It is unknown at present whether or not the converse of Theorem 56 holds:

that is, whether every oracle relative to which REC is essentially class consistently

partially learnable must necesssarily be PA-complete. The following definition of

weak PA-completeness proposes a streamlined alternative to PA-completeness, but

no explicit construction of a set possessing the specified properties has been found

so far.
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Definition. A set A is weakly PA-complete if and only if there is an A-recursive

function gA such that for all n, indices e1, e2, . . . , en, infinite recursive sets R, and

all f ∈ REC, the following conditions hold.

• f ∈ {ϕe1 , ϕe2 , . . . , ϕen} ⇒ ∃x ∈ R[gA(f(0) ◦ f(1) ◦ . . . ◦ f(x), e1, e2, . . . , en)

= ei] for some ei ∈ {e1, e2, . . . , en} with f = ϕei .

• For all x, gA(f(0) ◦ f(1) ◦ . . . ◦ f(x), e1, e2, . . . , en) ∈ {?, e1, e2, . . . , en}, where

? is some default index.

• For all x and σ ∈ N∗, if ϕei extends σ for some i with 1 ≤ i ≤ n, and

gA(σ, e1, e2, . . . , en) = ek, then ϕek extends σ.

Proposition 58 If A is hyperimmune, then A is weakly PA-complete.

Proof. As A is hyperimmune, there is an A-recursive function hA which is not

dominated by any recursive function. Given any infinite recursive setR and recursive

function f = ϕei , there is a programme g(ei) for the recursive function ϕg(ei) defined

by ϕg(ei)(n) = max({Φei(y) : y ≤ xn}), where Φ denotes a fixed Blum complexity

measure for the programming system ϕ, and x1, x2, x3, . . . is a strictly increasing

enumeration of R. Now consider the A-recursive function FA defined by

FA(σ(0)◦σ(1)◦. . .◦σ(x), e1, e2, . . . , en) =


ek if k is the least number ≤ n

such that ∀y ≤ x[ϕek,hA(x)(y) ↓= σ(y)];

? if no such k exists.

By the hyperimmune property of hA, there are infinitely many numbers n such

that gA(n) > ϕg(ei). In other words, if f is a recursive function with f = ϕei
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for some ei ∈ {e1, e2, . . . , en}, then there are infinitely many numbers xn ∈ R for

which ϕei,gA(n)(y) ↓= f(y) ↓ whenever y ≤ xn, so that for infinitely many x ∈ R,

FA(f(0) ◦ f(1) ◦ . . . ◦ f(x), e1, e2, . . . , en) is equal to some index for f contained

in {e1, e2, . . . , en}. Hence FA satisfies the required properties for A to be weakly

PA-complete. �

Theorem 59 One has the m-reducibility {e : ϕe is total} ≤m {e : ϕe(0) ↓ ∧∀x[ϕe(x) ↓=

ϕϕe(0)(x) ↓]}.

Proof. Let g be a two-place recursive function such that for any numbers d, e,

ϕg(d,e)(0) ↓= d, and for all x > 0, ϕg(d,e)(x) ↓= 0 iff for all y ≤ x, ϕe(y) ↓. The

domain of ϕg(e) is thus an initial segment of N if ϕe is not total; otherwise the domain

of ϕg(e) is N. By the generalized Recursion Theorem, there is a recursive function n

such that for any e, ϕg(n(e),e) = ϕn(e). Hence the required m-reducibility holds via

the relation e ∈ {e : ϕe is total} ⇔ n(e) ∈ {e : ϕe(0) ↓ ∧∀x[ϕe(x) ↓= ϕϕe(0)(x) ↓]},

and this establishes the claim. �.

The next question posed is whether, given any recursive learner M , there must

always exist a uniform effective procedure to construct a recursive function f that

M does not learn according to some stipulated criterion. An affirmative answer

may offer a uniform method of constructing class separation examples for different

learning criteria. The present work takes up this question in the context of confident

as well as consistent partial learning of recursive functions.

Theorem 60 There are recursive functions f and g such that for each n, if Mn is a

recursive confident partial learner, and Cn is the class of all recursive functions that
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Mn confidently partially learns, then there is a σn ∈ N∗ with either ϕf(σn) recursive

and ϕf(σn) /∈ Cn, or ϕg(σn) recursive and ϕg(σn) /∈ Cn.

Proof. Let τ0, τ1, τ2, . . . be an enumeration of all sequences in N∗. For each partial-

recursive learner Mn, define ϕτk,n as follows.

• Stage 0. Set ϕf(τk,n)(x) = τk(x) and ϕg(τk,n)(x) = τk(x) for all x < |τk|,

ϕf(τk,n)(|τk|) = 0, and ϕg(τk,n)(|τk|) = 1.

• Stage s. Suppose that ϕf(τk,n) and ϕg(τk,n) have been defined up to as. Search,

noneffectively, for string extensions θs, ηs ∈ N∗ for which Mn(ϕf(τk,n)[as] ◦

θs) ↓= Mn(ϕg(τk,n)[as]◦ηs) = Mn(τk). Suppose that |θs| ≥ |ηs|. Set ϕf(τk,n)(x) =

θs(x) for all x with as < x ≤ as + |θs|, ϕg(τk,n)(x) = ηs(x) for all x with

as < x ≤ as + |ηs|, and ϕg(τk,n)(x) = 1 for all x with as + |ηs| < x ≤ as + |θs|.

If |θs| < |ηs|, then the roles of θs and ηs in the above constructions of ϕf(τk,n)

and ϕg(τk,n) are interchanged.

Suppose that Mn is a recursive confident partial learner; this means that there

is a string τk such that for all η ∈ N∗, there is some θ ∈ N∗ for which Mn(τk ◦

η ◦ θ) = Mn(τk). Consequently, both the partial-recursive functions ϕf(τk,n) and

ϕg(τk,n) constructed according to the above algorithm must be total. Furthermore,

as ϕf(τk,n)(|τk|) 6= ϕg(τk,n)(|τk|), but Mn outputs the same index Mn(τk) infinitely

often on either of the canonical texts for these recursive functions, it must follow

that at least one of ϕf(τk,n) and ϕg(τk,n) is not confidently partially learnt by Mn,

and this establishes the required result. �

Theorem 61 There are recursive functions f and g such that for each n, if Mn is
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a recursive consistent partial learner, and Cn is the class of all recursive functions

that Mn consistently partially learns, then there is a σn ∈ N∗ with either ϕf(σn)

recursive and ϕf(σn) /∈ Cn, or ϕg(σn) recursive and ϕg(σn) /∈ Cn.

Proof. LetMn be any given partial-recursive learner. One defines a partial-recursive

function ϕf(n) in stages as follows.

• Stage 0. Search for a number x0 such that Mn(x0) ↓ and set

ϕf(n)(0) = ϕg(n)(0) = x0.

• Stage s+1. Search for either a number xs+1 such that Mn(ϕf(n)[s]◦xs+1) ↓> s,

or a pair of numbers ys+1, zs+1 with ys+1 6= zs+1 such that Mn(ϕf(n)[s] ◦

ys+1) ↓= Mn(ϕf(n)[s] ◦ zs+1) ↓. If the first case applies, define ϕf(n)(s +

1) = ϕg(n)(s + 1) = xs+1, and proceed to the next stage of the algorithm.

If the second case applies, define ϕf(n)(s + 1) = ys+1, ϕg(n)(s + 1) = zs+1,

ϕf(n)(w) = ϕg(n)(w) = 0 for all w > s+ 1, and terminate the algorithm.

It follows from the above construction that if Mn were a recursive consistent partial

learner, then either ϕf(n), ϕg(n) are recursive functions on whose canonical texts Mn

outputs each index only finitely often, or Mn is inconsistent on at least one of the

canonical texts for ϕf(n) and ϕg(n). This establishes the required result. �

Theorem 62 For every recursive function f such that ϕf(k) is recursive for all k,

there is an e for which Me is a partial learner that consistently partially learns ϕf(e).

Proof. For each k, one can construct a partial learnerMg(k) as follows. On the input

σ = g(0) ◦ g(1) ◦ . . . ◦ g(n), Mg(k) first determines whether or not ϕf(k)(x) ↓= g(x)
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for all x ≤ n. If this condition holds, then Mg(k) outputs f(k). If there is a y ≤ n

for which ϕf(k)(y) ↓6= g(y), Mg(k) outputs an index for the partial-recursive function

equal to g(x) for all x ≤ n, and equal to 0 on all inputs greater than n. By Kleene’s

Recursion Theorem, there must exist a partial learner Me such that Mf(e) = M(e);

by the construction of Mf(e), Mf(e) consistently partially learns ϕf(e), and so Me

also consistently partially learns ϕf(e), as was required to be established. �

To wind up the discussion on consistent partial learning, we shall consider a

learning situation in which the learner does not have access to the complete graph for

some recursive function, and is instead tasked to output exactly one index infinitely

often for some recursive extension of the partial-function generating the text.

Definition. An incomplete text for a recursive function f is an infinite sequence T

in which 〈x, f(x)〉 occurs in T for cofinitely many x.

A recursive learner M consistently partially learns f from incomplete texts if and

only if for all incomplete texts Tf for f and all m, ϕM(T [m])(x) ↓= y holds whenever

〈x, y〉 ∈ range(T [m]), and M outputs on Tf exactly one index e infinitely often such

that ϕe is a recursive extension of range(Tf ).

Theorem 63 If the class {f : ∀x[f(x) ↓= ϕf(0)(x) ↓]} of all self-describing recur-

sive functions is class consistently partially learnable relative to the oracle A from

incomplete texts, then REC is consistently partially learnable on canonical text rel-

ative to A.

Proof. Let MA be a recursive learner that consistently partially learns all self-

describing recursive functions from incomplete texts relative to A. Define a new A-

recursive learner NA as follows: on input σ = f(0)◦f(1)◦ . . .◦f(n), NA conjectures
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an index c for which

ϕc(x) =

 f(0) if x = 0;

ϕMA(f(1)◦f(2)◦...◦f(n))(x) if x 6= 0.

It shall first be shown that NA must be consistent on all texts. Suppose that there

is a number n such that ϕMA(f(1)◦...f(n))(k) ↑ or ϕMA(f(1)◦...f(n))(k) ↓6= f(k) for some

k with 1 ≤ k ≤ n. By Kleene’s Recursion Theorem, there is an index e for which

ϕe(x) =


e if x = 0;

f(x) if 1 ≤ x ≤ n;

0 if x > n.

Then ϕe is a self-describing function, but MA is inconsistent on an incomplete text

for ϕe, a contradiction. Consequently, NA is consistent on all texts, as claimed.

Furthermore, as MA outputs exactly one index infinitely often, NA also outputs

a single correct index on the given text for the recursive function infinitely often,

giving that it is indeed a consistent partial learner of REC. �

Example 64 The class C = {f : f is recursive ∧ ∀∞x[f(x) = 0]} is consistently

partially learnable from incomplete texts.

4.3 Iterative Partial Learning

The present section introduces a variant paradigm of partial learning under which

a learner must base its conjecture only upon the current input data and its last

hypothesis. Such a learner may also be termed “memory-limited” [22], the condition
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reflecting a constraint that is quite likely faced when dealing with the practical

realities of language acquisition. Although a memory-limited learner may attempt

to encode all the input data revealed so far into its last conjecture, the success

of this strategy is contingent on the learner’s own consistency, as the subsequent

results demonstrate. A view suggested by the learning relations obtained below is

that iterative learning may be less flexible compared to the other learning criteria

defined so far.

Definition. An iterative learner is a partial-recursive function M : (N∪{∅})×N→

N.

Let M be an iterative learner, and f be a given recursive function. Abbreviate the

pair 〈n, f(n)〉 as f(n). Define Mf : N∗ × N→ N recursively as follows:

• Mf (∅, f(0)) = M(∅, f(0));

• Mf (f [0], f(1)) = M(Mf (∅, f(0)), f(1));

• Mf (f [n+ 1], f(n+ 2)) = M(Mf (f [n], f(n+ 1)), f(n+ 2)).

M is said to partially learn f if there is exactly one index e such that ϕe = f and

Mf (f [k], f(k + 1)) = e for infinitely many k.

Theorem 65 Every consistently partially learnable class of recursive functions is

consistently partially learnable by an iterative learner.

Proof. Let C be a class of recursive functions which is consistently partially learnt

by M . Define an iterative learner N as follows. First, let N(∅, f(0)) = M(f(0)),

N(∅, f(n)) = 0, and N(p, f(0)) = 0 for all p ∈ N and n > 0. Secondly, given k ∈ N,
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N , on the input (k, f(n+1)), waits until the computations of ϕk(0), ϕk(1), . . . , ϕk(n)

converge. N then outputs M(ϕk(0) ◦ ϕk(1) ◦ . . . ◦ ϕk(n) ◦ f(n + 1)). Since M is a

consistent partial learner of C, it follows that for all f ∈ C, ϕNf (f [n],f(n+1))(x) ↓=

f(x) ↓ for all x ≤ n + 1; thus N codes the inputs f(0), f(1), . . . , f(n + 1) into

its current conjecture. Therefore N will output the same sequence of conjectures

that M outputs on the canonical text f(0) ◦ f(1) ◦ f(2) ◦ . . ., implying that it also

consistently partially learns C. �

Theorem 66 There is a class of recursive functions which is partially learnable by

a total iterative learner but not behaviourally correctly learnable.

Proof. Consider the class of recursive functions C = {f : f is recursive ∧

∃a∃∞k[f = ϕa ∧ f(k) = a ∧ (∀b 6= a)|{y : f(y) = b}| < ∞]}. An iterative learning

strategy is to output e on both of the inputs (∅, e), (k, e) for all e, k ∈ N. As

any f ∈ C outputs exactly one index for itself infinitely often, it follows that this

algorithm guarantees that C is partially learnt. Now assume for a contradiction that

some recursive learner N behaviourally correctly learns C. By Kleene’s Recursion

Theorem, one can construct a recursive function ϕe as follows: at stage s, suppose

that ϕe(x) ↓ for all x < as; run a search for a sequence σ ∈ N∗ so that range(σ) ⊆

{m+ 1,m+ 2,m+ 3, . . .}, where m = max({ϕe(x) : x < as}), and

ϕN(ϕe(0)◦...◦ϕe(as−1)◦σ)(as + |σ|) ↓. Then let ϕe(as + x) = σ(x) for all x < |σ|,

ϕe(as+|σ|) = ϕN(ϕe(0)◦...◦ϕe(as−1)◦σ)(as+|σ|)+1, and ϕe(as+|σ|+1) = e. Every stage

of this algorithm must terminate: for, assuming that the contrary holds at stage s,

one can build another recursive function ϕb ∈ C such that if p = max({ϕb(x) : x <

as}), then b > p and ϕb(x) = b for all x ≥ as; in addition, Nϕb[z](z + 1) ↑ for all

z ≥ as, implying that N fails to behaviourally correctly learn ϕb. Thus ϕe ∈ C, but



4 Partial Learning of Classes of Recursive Functions 106

by direct construction, N does not converge to a correct hypothesis on the canonical

text ϕe(0) ◦ ϕe(1) ◦ ϕe(2) ◦ . . .; this is the desired contradiction. �

Theorem 67 There is a class of recursive functions which is explanatorily learnable

by a total iterative learner but not class consistently partially learnable.

Proof. Let C be the class of recursive functions {f : f is recursive ∧

(m = min(range(f))⇒ ∀x[f(x) ↓= ϕm(x) ↓])}, which was considered in the second

proof of Theorem 45. It was shown (loc cit) that C is not class consistently partially

learnable. C, however, is explanatorily learnable by a total iterative learner: for any

e, d ∈ N, an iterative learner N , on the input (∅, e), may output e; on the input

(d, e), N outputs min({d, e}). Consequently, on the canonical text for any f ∈ C, N

will converge in the limit to the minimum number in the range of f , which by the

definition of C is an index for f . �

Theorem 68 There is a class of recursive functions which is explanatorily learnable

but not partially learnable by an iterative learner.

Proof. Consider the class C = {f : f is recursive ∧ ∃k > 0∀x[ϕf(0)(k) ↑

∧ (x 6= k ⇒ ϕf(0)(x) ↓= f(x) ↓)]. An explanatory learning strategy is as follows: on

the input f [n], the learner N searches for the least xs > 0 such that ϕf(0),n(xs) ↑;

it then hypothesizes the index e with ϕe(xs) = f(xs) and ϕe(y) = ϕf(0)(y) for all

y 6= xs. Assume towards a contradiction that M were an iterative partial learner of

C. By Kleene’s Recursion Theorem, there is a programme e for the partial-recursive

function ϕe defined as follows.

• At the initial stage, set ϕe(0) = e.
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• At stage s+ 1, suppose first that ϕe,s has been defined on all x ≤ s. Now one

runs a search until either a number as is found such that Mϕe,s(ϕe,s[s], as) >

Mϕe,s(ϕe,s[k], ϕe,s(k + 1)) for all k < s, or there are distinct numbers bs, cs

satisfying Mϕe,s(ϕe,s[s], bs) = Mϕe,s(ϕe,s[s], cs). In the former case, ϕe(s + 1)

is left undefined but one stores the value as for future use; the algorithm then

proceeds to the next stage s+2. In the latter case, ϕe(s+1) is also undefined,

and ϕe(y) ↓= 0 for all y > s+ 1; the algorithm is then terminated.

• Secondly, suppose that ϕe,s has been defined on {x : x ≤ s} − {k}. There

is a value ak associated to the undefined position k; one then temporarily

assigns the value ak to ϕe(k), and searches for either a number as or a pair

of distinct numbers bs, cs satisfying exactly the same properties formulated in

the preceding case. If the number as is found, ϕe(k) is still left undefined,

and ϕe(s+ 1) ↓= as; one then proceeds to the next stage s+ 2. If the pair of

numbers bs, cs is found, then ϕe(k) is assigned the value ak, ϕe(s + 1) ↑, and

ϕe(y) ↓= 0 for all y > s+ 1; after which, the algorithm terminates.

In the first place, suppose that the algorithm terminates at some stage s+1. This oc-

curs if and only if there is a pair of distinct numbers bs, cs so that Mϕe,s(ϕe,s[s], bs) =

Mϕe,s(ϕe,s[s], cs). Let f0 and f1 be recursive functions such that fi(x) ↓= ϕe(x) ↓

for all x 6= s+1 and i ∈ {0, 1}; furthermore, f0(s+1) = bs and f1(s+1) = cs. Then

f0, f1 ∈ C, but since M outputs the same index infinitely often on the canonical

texts for both of these functions, it cannot iteratively partially learn at least one

of f0, f1. In the second place, suppose that the algorithm never terminates. Then

ϕe is undefined on exactly one place k, and there is a value ak associated to this

position. Let f be the recursive function in C equal to ϕe on all inputs except k,
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and f(k) = ak. Since M outputs a strictly increasing sequence of conjectures on the

canonical text for f , it does not fulfil the requirements of a partial learner. Therefore

C is not iteratively partially learnable. �
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