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SUMMARY 
 

Motility is a highly regulated process required in many aspects of growth, survival 

and pathogenesis. In the case of swimming motility, flagellar biogenesis usually 

begins during the log phase to stationary phase transition where there is a reduction in 

nutritional levels and cessation of cell division. Previously, our lab described MorA, a 

well-conserved membrane-localized negative regulator of motility that controls the 

timing of flagellar development. It was found to affect motility, chemotaxis and 

biofilm formation in Pseudomonas putida PNL-MK25. As morA loss leads to 

hypermotility, random mutagenesis was carried out on the morA mutant strain to 

identify members of its signaling pathway by screening for transposon double mutants 

that exhibited reversion in motility. Of the genes identified, cyaA, morC and the 

substrate-binding region of ABC type transporter system for glycine betaine (opuAC) 

were selected for further study.  

 

cyaA expression in the absence of morA leads to increased motility while cyaA 

expression in the presence of morA leads to reduction in motility. Hence, MorA exerts 

a dominant effect over CyaA. Also, cyaA acts in an antagonistic manner with morA to 

control motility while biofilm formation is unaffected. In contrast, the disruption of 

opuAC in ∆morA was not able to revert the hypermotility phenotype. ∆opuAC 

exhibited a 3-fold increase in motility and a reduction in biofilm formation as 

compared to the wild type, suggesting that it acts as a negative regulator of motility 

independently of MorA. Interestingly, ∆opuAC was found to increase pyoverdine 

production in M9 medium by 45%.  
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Homology analysis indicates that ASNEF and EAL motif is conserved in MorC. 

Phenotypic characterization of ∆morC and ∆morA∆morC reveals that MorC is a 

positive regulator of motility that functions downstream of MorA in a non-dosage 

dependent manner while not affecting biofilm formation or chemotaxis. GFP-tagged 

MorC was found to be expressed throughout the cell in the early- and late-log phase 

but not in the mid-log phase. Hence, MorC function is regulated in a growth-phase 

dependent manner without being sequestered to a specific cellular location.  

 

A truncated MorC construct, in which the PDE domain was removed, was not able to 

complement for the loss of morC. This suggests that the PDE domain is critical for its 

function. Site-directed mutagenesis of the E and L residues of the EAL motifs in PDE 

domain located at the active site led to loss of complementation while mutations away 

from the active site resulted in hyperactivity that increased motility. This 

hyperactivity was lost in the absence of MorA, suggesting that long-range 

conformational changes may be involved in the regulation of MorC. While MorC 

PDE domain is critical for its function, it may not be dependent on its enzymatic 

activity. 

 

While MorC is a positive regulator of fliC expression, flagellated cell numbers 

suggest that MorC does not control motililty by increasing flagellar number or 

affecting flagellar structure. Rather, MorC controls cell speed in the early and late-log 

phase in an EAL motif-specific manner. This is the first report to suggest specific 

function to the E and L residues in the EAL motif.  

  



! ix!

Here, we showed that the cyaA and morC controls motility without perturbation of 

biofilm formation while opuAC controls motility and biofilm. A different strategy was 

demonstrated by each of the gene studied: CyaA acts in an antagonistic manner with 

MorA; OpuAC functions independently of MorA while MorC functions downstream 

of MorA.  
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Chapter 1. Introduction 

 
1. INTRODUCTION 
 

Bacterial cells can exist either as free-swimming planktonic s or in surface-attached 

communities known as biofilms. Both movement and ability to form biofilm are key 

processes for the survival of bacteria in diverse environments. The classical growth 

and developmental changes in planktonic cells are represented by the lag phase, 

logarithmic (log) phase, log-to-stationary transition phase and the stationary phase. 

The log-to-stationary transition phase is marked by the cessation of cell division as 

nutrients get depleted and with the onset of flagellar development (Amsler et al., 

1993; Givskov et al., 1995). The complex biogenesis of the flagellar apparatus 

requires a well-coordinated regulation of the flagellar pathway. When bacteria come 

in contact with surfaces, their attachment followed by biofilm formation takes place. 

During this phase, flagella are shed and bacteria become sessile. Therefore, 

emergence of flagella is generally considered as a developmental hallmark in many 

types of bacteria. 

 

While flagellar appearance marks a developmental change in free-living planktonic 

cells, formation of biofilms leads to yet another developmental pathway in surface-

attached bacterial communities. Biofilms are essential elements in virulence, 

colonization, and survival. Planktonic cells undergo multiple developmental changes 

during their transition from free-swimming organisms to cells that makeup 

the biofilms (Stoodley et al., 2002). Flagella-mediated motility is required in many 

instances, such as initial cell-to-substrate interactions and/or subsequent biofilm 

development (O’Toole and Kolter, 1998). Appropriate levels of flagellin subunits 
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seem to be a key factor since over expression of flagellin in E. coli results in reduced 

adhesion to hydrophilic substrates (Landini and Zehnder, 2002). In fully developed 

biofilms, bacteria such as P. putida may even lack flagella (Sauer and Camper, 2001). 

  

To interact with the environment and then react rapidly, bacterial signaling network is 

highly complex. Signaling systems utilized by bacteria includes cell-cell signaling 

such as quorum sensing, two-component phosphorelays and second messenger 

signaling. Genomic and signaling studies on new models led to the finding that 

signaling proteins are typically modular in nature with each conserved domain 

performing a distinct biochemical function. Thus it became possible to predict protein 

function through bioinformatics studies that in recent years, with the availability of 

complete bacterial genome sequences, has helped reveal a new class of proteins 

containing GGDEF and EAL domains, although they are absent in archea and 

eukaryotes (Jenal, 2004; Mills et al., 2011). Gram-negative bacteria tend to have 

more of such proteins than Gram-positive bacteria (Galperin et al., 2001; Pei 

and Grishin, 2001). These domains are known to play a part in regulation of several 

processes such as cell development, virulence, motility and 

cellulose biosynthesis (Aldridge et al., 2003; Ausmees et al., 1999; Huang et al., 

2003; Merkel et al., 1998). Proteins containing GGDEF and EAL motifs have been 

described in many prokaryotic proteins, often in combination with other putative 

sensory-regulatory domains such as the PAS and PAC domains whose proposed 

functions are as sensors for light, redox potential or oxygen concentration (Tamayo et 

al., 2007; Yan and Chen, 2010). Adaptations involving changes in exopolysaccharides 

and proteinaceous appendages are regulated in diverse bacteria via proteins with 

GGDEF and EAL domains. These proteins are predicted to regulate cell adhesion 
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to surfaces by controlling the level of a secondary messenger, c-di-GMP (D'Argenio 

and Miller, 2004; Jenal, 2004). The abundance of genes encoding GGDEF and EAL 

containing proteins argues for the existence of a dedicated regulatory network that 

converts a variety of different signals into c-di-GMP to function as a secondary 

messenger in signal transduction (Christen et al., 2006). 

 

Interestingly, bidomain proteins with both GGDEF and EAL domains constitute 

nearly a third of proteins with GGDEF and EAL domains. Most bidomain proteins are 

found to have a single functional domain. As such, it has been proposed that the 

noncatalytic domain functions in a regulatory capacity (Wolfe and Visick, 2008). In 

cases where both domains are active, one or the other enzymatic activities is activated 

by sensory cues or interaction with other proteins.  For instance, MorA affects 

flagellar motor function by reducing rotation speeds and increasing pauses through its 

diguanylate cyclase (DGC) activity. While DGC is the dominant activity, it also 

exhibits weak phosphodiesterase (PDE) activity. The PDE domain affects DGC 

activity via two novel inter-domain interactions. The PDE domain constitutively 

imparts a 6-fold increase in DGC activity through the glutamate residue of its EAL 

motif as well as reduces DGC activity through product inhibition in a dose-dependent 

manner via the leucine of its EAL motif (Wong, 2011). 

 

MorA is a negative motility regulator identified in our laboratory. It affects the 

number and timing of flagella expression and biofilm formation in Pseudomonas 

species. MorA is conserved among diverse proteobacteria groups and cyanobacteria. 

All Pseudomonas genomes sequenced thus far possess morA homologs including P. 
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aeruginosa PAO1 (PA4601), P. fluorescens Pf0-1 (Pfl01_4876) and P. putida 

KT2440 (PP0672). 

 

Video microscopy showed that the morA mutant cells were highly motile throughout 

different growth phases. Most of the wild type (WT) cells were, however, non-motile 

in all the three growth phases. Hence, morA mutants had a developmental restriction 

removed on the timing of flagellar formation, resulting in the presence of flagella 

throughout the growth stages without affecting cell division or cell size. 

 

The loss of morA has been shown to affect the fliC expression in P. putida. This 

suggests that the disruption of morA resulted in derepression of flagellin and 

expression and, consequently, flagella were constitutively produced. MorA is, 

therefore, a key component of an alternative regulatory system that normally restricts 

the timing of expression of the flagellar biosynthesis pathway to late phases of growth 

in P. putida by derepressing flagellin expression in the log-to-stationary phase. A 

consequence of this appears to be the impairment of biofilm formation. However, 

when tested for function in Pseudomonas species, its role in flagellar development 

and biofilm formation appears to vary between species. In P. putida, expression 

analyses revealed that transcript levels of the flagellar master regulators fleQ and fliA 

remained unchanged between WT and morA mutant strains (Choy, 2005).  The 

mechanism by which morA regulates flagellin expression in the P. putida remains, 

hitherto, unknown. 

As morA loss leads to hypermotility, we screened for hypermotility reversion to wild 

type levels in a library of mutants with morA mutation genetic background in order to 

identify downstream signaling pathway members in the motility pathway in P. putida. 
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A total of 3500 transposon insertion mutants were generated and screened via plate 

motility assay followed by video microscopy. It was reasoned that any disruption in 

the flagellar pathway would cause serious defects in swimming motility via the 

malformation or malfunction of the flagella, resulting in non-motile cells. 76 motility 

reversion mutants had reversion of the hypermotility phenotype of morA mutants to 

those of wild type while not resulting in non-motility. Thus far, a total of 22 genes 

have been identified via single primer PCR, of which five genes are of particular 

interest (Ng, 2006). 

Previously, the MorA signaling pathway members were tentatively identified and 

characterized. In this Thesis, we created targeted knockout mutants in various 

combinations to investigate the interactions of MorA with MorC, CyaA and the 

substrate-binding region of ABC-type glycine betaine transport system (OpuAC). I 

studied their roles in regulating motility, biofilm formation and other related 

phenotypes. Hence, I set the following objectives for my study:  

 

1. To ascertain the phenotypes observed previously with morA mutant and to 

explore morA function in P. fluorescens (Pf0-1) (Chapter 4). 

I created markerless knockout strains of morA in P. putida PNL-MK 25 and 

Pf0-1 to study if the phenotype observed is conserved across species. 

Markerless knockout strains of various genes of interest namely: morC, cyaA 

and opuAC were also created for further studies.  

 

2. To understand the role of CyaA and OpuAC in MorA signaling pathway 

controlling motility (Chapter 5).  
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I carried out phenotypic assays with markerless knockout (single and double) 

mutants to verify if CyaA and OpuAC was involved in MorA regulation of 

motility. Furthermore, their putative relationship in biofilm formation was also 

examined.  

  

3. To understand the contribution of MorC and its PDE domain towards the 

function of MorC in MorA signaling pathway (Chapter 6). 

I carried out phenotypic assays to corroborate with data collected with the 

motility reversion mutant, O13. I then further established that its function 

ZDȝȝȝs dependent on the PDE domain via genetic studies. As MorC contains 

ASNEF and EAL motifs, I explored the possibility that the function of MorC 

is dependent on the PDE domain. Site-directed mutants were generated and 

the biological outcomes were studied. I also carried out cellular localization 

and gene expression studies as part of the characterization. 

 

4. To investigate the mechanism of MorC function on the motility pathway  

(Chapter 6). 

In order to understand the specific effects that MorC exerts on the motility 

pathway, I carried out assays pertaining to flagellin expression and motor 

function.  

 

This Thesis is organized into Chapters on Introduction, Literature review, Materials 

and methods, and three Results and Discussion Chapters.  

  



 7 

Chapter 2. Literature Review 

 
2.1. Pseudomonads 

 

Pseudomonads are aerobic Gram-negative non-sporing rod-shaped bacteria that are 

about 3 ȝm x 0.5ȝm in size. They are oxidase positive, motile with polar flagella, and 

do not produce gas. The Pseudomonas genus covers a diverse group of bacteria that is 

ecologically significant. They occur frequently in soil and water and members of the 

genus can be found in a range of environmental niches. While these are mainly plant 

pathogens, some species are recognized human and animal pathogens.  

 

The almost universal distribution of the Pseudomonas species suggests a great deal of 

genomic diversity and genetic adaptability. As such, the taxonomy of Pseudomonas is 

difficult to study with classical procedures. These protocols were first developed for 

the description and identification of organisms implicated in sanitary bacteriology 

(Palleroni, 2008). The difficulty in identification resulted in many bacterial species 

being grouped into this genus. After the use of ribosomal RNA composition and 

sequences as the central criteria in taxonomy studies, it was found that they could be 

separated into five homology groups. Since then, the number of species in the genera 

has contracted by ten-fold.    

 

Now, only members of the ribosomal RNA group I are included in the genus, while 

the four other ribosomal RNA groups have been reclassified in the genera 

Burkholderia (group II), Delftia (group III, previously known as Camamonas), 

Brevundimonas (group IV) and Stenotrophomonas (group V). In addition, phylogentic 
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analysis of the Pseudomonas genus using gyrB and rpoD nucleotide sequences 

identified two intra-generic subclusters. Cluster I is further categorized into two 

complexes while cluster II into three complexes (Yamamoto et al., 2000). 

 

Pseudomonads can be further divided into four groups: oxidisers, alkali producers, 

pathogens and fluorescent species. The fluorescent species are known to produce a 

fluorescent pigment (Collins et al., 2004). For example, P. aeruginosa produces both 

pyocyanin (blue) and pyoverdine (yellow) that together impart the well-known green 

pigmentation while P. fluorescens and P. putida produces only fluorescein.  

 

2.1.1. Pseudomonas putida 

 

P. putida is commonly found in soil and water habitats and grows optimally at 25-

30ºC.  It has multiple polar flagella that are usually 2 to 3 wavelengths in length that 

allows it to react quickly after sensing environmental changes such as the presence of 

chemoattractants (Harwood et al., 1989).  

 

The first annotated genome sequence of P. putida was first completed in 1995 at The 

Institute for Genomic Research in Germany. The circular genome was found to 

contain 6.2 million DNA base pairs of which approximately 60% is made up of 

guanine and cytosine. The genome comprises of at least eighty genes encoding for 

oxidative reductases and majority of the genes were involved in the detection of 

environmental cues to allow it to respond rapidly (Nelson et al., 2002).  
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The TOL and OCT plasmids found in P. putida are able to degrade pollutants such as 

alkylbenzoate (Muller, 1992; Vandenburgh and Wright, 1983). Pseudomonas putida 

has been designated by the US National Institutes of Health as a “safety strain”. It is 

also an ideal model organism for research on bioremediation as it contains the most 

number of genes involved in degradation of aromatic or aliphatic hydrocarbons 

(Nelson et al., 2002).  

 

P. putida possesses a very complex metabolism that allows it to withstand many 

environmental stresses and degrade a variety of pollutants. For example, P. putida 

CA-3 is able to degrade styrene by either vinyl side chain oxidation or the attack on 

the aromatic nucleus of the molecule (O’Connor et al, 1996) while the fluorescent 

pigment, siderophores, acts as an iron chelating compound that allows the bacteria to 

enhance levels of iron and promote the active transport chain (Boopathi and Rao, 

1999).  The ferric pyoverdine complexes are also used in metabolic processes where 

oxygen is the electron acceptor (Lopez and Henkels, 1999).  

 

To respond to chemical and physical stresses, P. putida can alter its degree of fatty 

acid saturation, the cyclopropane fatty acids formation, and the cis-trans 

isomerization. During the transition from growth to stationary phase, higher fatty acid 

saturation leads a cell membrane that is more fluid. This in turn leads to improved 

substrate uptake that allows for better survivability (Härtig et al., 2005). 
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2.1.2.  Pseudomonas putida PNL-MK25 

 

Pseudomonas putida PNL-MK25 is an antibiotic-resistant derivative of the plant 

growth-promoting rhizobacterial (PGPR) strain ATCC 39169 (Adaikkalam and 

Swarup, 2002). P. putida ATCC 39169 has been described as being effective in 

promoting the growth of root crops and inhibiting diseases such as root rot (Suslow, 

1986). This makes it highly suited for use in environmental biotechnology. 

 

P. putida PNL-MK25 has been previously well-characterized in our laboratory. In a 

previous study, the expression of gus-tagged genes was examined in 12 Tn5-

gus mutants of P. putida PNL-MK25 under various conditions chosen to mimic the 

soil environment (Syn et al., 2004). Two genes, nql and cyoD, were consistently 

amongst the most highly expressed under the variety of low-nutrient conditions tested. 

The promoters of nql and cyoD are, thus, potentially useful in driving the expression 

of foreign genes in nutrient-scarce conditions in soil.  

 

This strain also has moderate levels of copper tolerance due to the presence of 

the cueAR operon, which encodes a putative P1-type ATPase (Adaikkalam and 

Swarup, 2002). Moreover, P. putida PNL-MK25 is also desirable as a target strain for 

further studies due to its ability to tolerate high levels of the solvent, xylene (Syn, 

2001). In another P. putida strain, this high level of tolerance has been shown to be 

due to a combination of three efflux pumps, TtgABC, TtgDEF, and TtgGHI, with 

TtgGHI playing the key role (Rojas et al., 2001; Rojas et al., 2003).  
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Phylogenetic analysis shows that most of the gene sequences of this strain are more 

closely related to P. fluorescens Pf0-1 strain rather than any other P. putida strains 

(Adaikkalam and Swarup, 2002; Syn et al., 2004).  

 

2.2. Signaling network in bacteria 

 

In bacterial systems, the operon hypothesis pointed to a simple regulatory mechanism, 

namely the activation of a transcription factor through the direct sensing of a 

diffusible environmental cue. Through joint effort in bacterial behavior and 

physiological studies, Adler, Koshland and many other researchers had uncovered 

new and distinctive signaling systems (Aravind et al., 2010).  

 

The mainstream view in the early 1990s was that eukaryotic and prokaryotic signaling 

systems are different from each other. In areas where there are similarities such as the 

usage of cyclic nucleotides as signaling molecules, there was no evidence to suggest 

that the machinery involved was conserved between the bacteria and the eukaryotes. 

The viewpoint changed largely due to genomic studies as well as signaling studies on 

new models. This advancement in knowledge led to the finding that signaling proteins 

are typically modular in nature and each conserved domain performed a distinct 

biochemical function. Thus, it is possible to predict the protein function based on the 

domains found in it via bioinformatics studies. 

 

As bacteria are constantly interacting with their environment by exchanging 

information with other cells, sensing and responding to environmental cues, the 

signaling network is a complex and essential part of life. Signaling systems includes 
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cell-cell signaling such as quorum sensing, two-component phosphorelays and second 

messenger signaling. 

 

The signaling cascade involves signal generation, perception, transmission and 

response. Signals can be generated by small chemicals or through protein-receptor 

interactions. For most of the signaling systems studied thus far, the complete signaling 

process is not elucidated fully in that some steps or components are not known.  

 

Sequence analysis of the signaling proteins led to the discovery of several new 

domains belonging to different functional categories. These included: (i) The sensor 

domains which recognizes and respond to diverse signals; (ii) novel signaling 

receptors; (iii) intramolecular signal transmitter domains; (iv) novel enzymatic 

domains and (v) bacterial peptide tagging systems.  

 

2.2.1. Cyclic-di-GMP signaling 

 

The most prevalent cyclic nucleotides are 3’-5’-cyclic adenosine monophosphate 

(cAMP), 3’-5’-cyclic guanosine monophosphate (cGMP), bis-(3’-5’)-cyclic dimeric 

guanosine monophosphate (c-di-GMP) and guanosine tetraphosphate (ppGpp). Of all 

the second messengers, c-di-GMP is more ubiquitous in bacterial system. It was first 

discovered in Gluconacetobacter xylinus as an allosteric cellulose synthase (Ross et 

al, 1987). Thus far, c-di-GMP has been shown to regulate many key bacterial 

functions such as motility, biofilm formation, and pathogenesis (Romling and 

Amikam, 2006). 
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C-di-GMP turnover is controlled by the opposing action of DGCs and PDEs (Fig. 2-

1). DGCs contains GGDEF domain and can synthesize c-di-GMP from two molecules 

of GTP. All cyclase domains seem to be derived from different families of nucleic 

acid polymerases.  
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Fig. 2-1. Schematic of c-di-GMP synthesis and degradation. The GGDEF motif 

containing DGCs catalyzes c-di-GMP synthesis from 2 molecules of GTP. The 

synthesis of c-di-GMP can be subjected to negative allosteric feedback regulation 

(indicated by dashed line). Degradation of c-di-GMP into the linear form 5’-pGpG is 

catalyzed by the EAL domain and positively regulated by GTP (indicated with dashed 

line and arrow). c-di-GMP is hydrolyzed by PDEAs that contains the EAL motif into  

linear pGpG before being hydrolyzed by other PDEs into two moelcules of GMP. 

HD-GYP domain PDEs hydrolyze c-di-GMP completely into two GMPs. ( Modified 

from Tamayo et al., 2007) 
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Current research suggests that cNMP cyclase and GGDEF domains are related to the 

classical palm-domain polymerases whereas the E.coli CyaA-like cyclases are related 

to the polymerase E superfamily (Tao et al., 2010). PDEs catalyze the hydrolysis of c-

di-GMP into pGpG or GMP.  (Tal et al, 1998).  The phosphodiesterases belong to at 

least four major families:  

1) The HD superfamily: HD-GYP c-di-GMP phosphodiesterase and cNMP 

phosphodiesterase  

2) The calcineurin-like superfamily 

3) The metallo-E-lactamase superfamily and 

4) The EAL superfamily (Aravind and Koonin, 1998; Galperin et al., 1999) 

 

Proteins with DGC or PDE domains can be found widely in most bacterial phyla 

but are absent from archea and eukarya (Jenal, 2004). Such proteins display 

typical multimodular arrangement where the catalytic domains are fused to 

various signal receiver and/or localization domains. Thus it is likely that c-di-

GMP is used to link environmental cues to lead to appropriate alterations in 

bacterial physiology and behavior.  

 

An array of extrinsic and cellular signals can be collected and incorporated to 

regulate different cellular phenotypes through the use of c-di-GMP signaling 

modules (Fig. 2-2).  One of the most common sensor domains is the PAS domain. 

The PAS motif is an acronym of the Drosophila period clock protein (PER), 

vertebrate aryl hydrocarbon receptor nuclear translocator (ARNT) and 

Drosophila single-minded protein (SIM). It has been found in many proteins that 

can sense redox potential, cellular energy levels and light. In the case of E. coli 
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AER, the PAS motif contains a binding pocket for flavin adenine dinucleotide 

(FAD). It has been postulated that the FAD functions as a redox-sensing moiety. 

In RbdA, low-oxygen concentration is sensed by PAS domain that in turn 

controls its PDE activity in regulation of biofilm dispersal (An et al., 2010).   

 

Signals from other systems can also be incorporated to regulate c-di-GMP levels. 

For example, quorum-sensing signals activate phosphatase action on TpbB, 

which is in turn deactivated and lead to reduction in biofilm formation (Ueda and 

Wood, 2009). Other examples include the assimilation of diffusible signal factor, 

environmental cues and histone-like nucleoid structuring protein to control for 

biofilm dispersal and virulence, twitching motility and curli formation 

respectively. 

 

Signals sent by c-di-GMP are transferred to different output functions through the 

binding of c-di-GMP to effector components.  There are currently four types of c-

di-GMP effector classes known are: the PilZ family proteins, FleQ transcription 

factor, PelD, and I-site effectors (Hengge, 2009). Riboswitches that carry the 

conserved RNA GEMM  (genes for the environment, membranes and motility) 

domain also binds to c-di-GMP as a ligand (Sudarsan et al., 2008).  Recently, 

XcCLP, a member of the CRP/FNR superfamily was identified to be a c-di-GMP 

receptor in the diffusible signal factor-mediated pathways (Chin et al., 2010). 
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Fig. 2-2. Components of a c-di-GMP signaling module. Sensory domains found on 

the proteins detect different environmental cues. The activities of DGCs or PDEs on 

the same protein are then turned on to modulate the c-di-GMP levels. Effector 

proteins bind to c-di-GMP and subsequently control functions such as motility and 

biofilm formation. (Adapted from Karatan and Watnick, 2009) 
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2.2.2. Occurrence of c-di-GMP signaling enzymes  

 

Current databases reported 11,248 proteins that contain GGDEF and EAL domains. 

Of these, 9943 proteins possess the GGDEF domain and 5574 contains the EAL 

domain (Seshasayee et al., 2010). 3769 proteins in this list are hybrid GGDEF–EAL 

bidomain proteins (Fig. 2-3). These proteins are found across 867 prokaryotic 

genomes and the number of c-di-GMP signaling proteins within each species varies. 

For example, species within the Clostridium genus have between 0 and 43 potential 

proteins while in Mycobacterium genus, the number ranges from 0-22 (Bordeleau et 

al., 2011; Gupta et al., 2010).  

 

Though suggested to be ubiquitous, there are also bacteria that can successfully form 

biofilms without c-di-GMP signaling (Holland et al., 2008). Majority of bacterial 

species with genome sizes below 2Mbp and 15% of bacterial species with genome 

sizes over 2Mbp do not show bioinformatics indications of c-di-GMP production 

(Seshasayee et al., 2010). Hence, the complexity of the signaling systems is not 

linearly correlated with genome size, pointing to a highly flexible make-up.  
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Fig. 2-3. Occurrence of GGDEF and EAL domains across 867 bacterial genomes. 

GGDEF-EAL, GGDEF-only and EAL-only domain containing proteins are reflected 

in green, red and blue respectively. Different combinations of intact  (AGGDEF+ and 

AEAL+) and degenerate (AGGDEF- and AEAL-) sites in hybrid proteins are denoted with 

green boxes. (Source: Seshasayee et al., 2010) 
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2.2.3. Redundancy of c-di-GMP signaling enzymes  

 

The large number of c-di-GMP signaling proteins found in a single species suggests 

that there is redundancy. This is, however, only observed in cases where the 

intracellular c-di-GMP level is modulated by several proteins, which then regulate 

phenotypes via specific regulators (Boehm et al., 2010). In majority of the cases, 

specific enzymes can alter phenotypes through its function (Huang et al., 2003᧷ 

Kuchma et al., 2007).  Thus, it is of interest to find out how the activities of these 

proteins are separated in the cell.  

 

The sequestration of c-di-GMP signaling enzymes were suggested to explain how 

signaling specificity exists among these large sets of signaling enzymes (Hengge, 

2009). Proteolysis of specific signaling proteins was reported to occur to achieve 

temporal sequestration (Perry et al., 2004). Furthermore, it was shown that the 

expression levels of c-di-GMP genes vary in different conditions, resulting in 

different enzymes being active (Jonas et al., 2008; Weber et al., 2006). Distinct 

cellular localization of the enzymes was also described to affect the protein function 

(Paul et al., 2004; Ryan et al., 2006). Functional sequestration is also described as a 

way to control cross talk. This occurs when the signaling process happens through 

particular effectors that are activated by specific protein-protein interactions (Ryan et 

al., 2006).  

Partner domains found on the proteins mediate the sequestration of the proteins via 

these varied ways. These partner domains may sense specific environmental cues or 
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contains localization signals (Table 2-1). This may well be the reason why these 

proteins have such diverse domain architectures.   
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Table 2-1. Spatial localization signals and partner domain occurrence for 
GGDEF and EAL proteins. 

 

(Source: Seshasayee et al., 2010) 
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2.2.4. GGDEF-EAL bidomain proteins 

 

The existence of GGDEF-EAL bidomain proteins with potentially opposing 

enzymatic activities is a cipher, as it makes no apparent sense for these proteins to be 

widely encoded by microbial genomes. Thus far, research shows that functioning of 

these proteins fall roughly into three types. In many cases, only one of the domains is 

active while the other domain is inactive as it is encoded with degenerate sequences 

that possibly may have been functional previously. Some examples of such bidomain 

proteins include GcpC and GcpF involved in the cellulose synthesis and YciR, which 

regulates the transcription of CgsD, a curli and cellulose regulator. In the first two 

instances, in vivo assays showed that they are functionally DGCs and not PDEs 

(García et al., 2004) while YciR is functionally PDE (Weber et al., 2006).  

 

BphG1 and SrcC are bidomain proteins that consist of functional DGCs and PDEs. 

Specific triggers such as light or presence of other proteins is required to activate one 

of the enzymatic activities at any given time. In the case of BphG1, the protein is 

cleaved into two species when expressed in E. coli, the larger species exhibited DGC 

activity while the smaller species have PDE activity that is activated by light (Tarutina 

et al., 2006). ScrC, on the other hand, acts as a PDE when expressed with ScrA and 

ScrB. If expressed alone, c-di-GMP levels were found to increase showing that it 

could also act as a DGC (Ferreira et al., 2008).   

 

Lastly, inter-domain interaction can also play a role. One common example involves 

nucleotide (GTP) binding to the DGC domain, which would then activate the PDE. 

RbdA, CC3396 and FimX are some such examples (An et al., 2010㸹Christen et al., 
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2005; Kazmierczak et al., 2006).  Inter-domain interaction can also play a role. An 

example is MtbDGC, a cysteine mutation in the PDE domain leads to a loss of 

activity in both DGC and PDE (Gupta et al., 2010). 

 

2.3. Bacterial motility 

 

Motility is an important biological feature and requires a large amount of cellular 

energy. Its roles are exhaustive and include increased nutrient acquisition, evasion of 

toxins, dispersal in environment and translocation to preferred hosts. Movement can 

occur by swimming in aqueous environment or on surfaces by swarming or twitching. 

These are mediated by the flagella or Type IV pili. Swarming motility can be 

differentiated from swimming motility, as swarming is required for the bacterial cells 

to move across a hydrated, viscous semisolid surface while swimming allows 

movement through a low-viscosity environment.  

 

2.3.1. Flagellar-mediated motility 

 

Most bacterial movement is dependent on the flagellum (pl. flagella). While the 

location of flagella on the cell varies with different bacteria, there are four basic types 

of arrangements: (i) peritrichous, where the flagella cover the entire cell surface; (ii) 

monotrichous, where there is a single polar flagellum; (iii) lophotrichous, where there 

are several flagella at one pole; and (iv) amphitrichous, where there are tufts of 

flagella at both poles of the cell. Pseudomonas species possess a variety of such 

arrangements. For example, P. aeruginosa has a single polar flagellum while P. 

putida and P. fluorescens has several polar flagella. 
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Bacterial cells swim actively by rotating flagellar bundle. Motility can occur in two 

ways: clockwise and counter-clockwise rotation. The counter clock-wise movement 

of the flagellar motors and bundling of the flagellar filament results in a smooth 

swimming “run” that moves the cell forward. In order to change direction, the cell 

would then “tumble” as the motor moves in a clock-wise direction accompanied with 

the dissociation of the flagellar bundles (Jarrell and McBride, 2008; Paul et al., 2011).  

 

The motor switches its direction every few seconds to change the swimming direction 

of the cells for bacteria to seek better environments. Reversal of the motor rotation 

causes a structural change of the flagellar filament from the left-handed to the right-

handed helical form. This makes the flagellar bundle fall apart, as the propelling force 

is imbalanced that in turn, leads to changes of the swimming direction.  

 

The switch that triggers this change in the helical form of the filament has been found 

in the atomic structure of flagellin obtained by X-ray crystallographic analysis. When 

the twisting force produced by quick reversal of the motor rotation is transmitted to 

the protofilaments, part of flagellin undergoes a slight change in its conformation, 

thereby making a few of the 11 protofilament strands transform from the L-type into 

the R-type. As a result, normally left-handed flagellar filament turns into right-handed 

helical forms (Samatey et al., 2001). 

 

 

 

 



 26 

2.3.2. Flagellar structure 

 

Flagellum is a rotary motor of 30nm diameter. While bacterial cells such as E. coli is 

about 1-2ȝm in length, the FliC filament can be as long as 15 ȝm. It is one of the most 

complex of all prokaryotic organelles, consisting of over 20 proteins with 

approximately another 30 proteins required for its regulation and assembly. The 

flagellum comprises of three major substructures: the filament, the hook and the basal 

body (Bardy et al., 2003). Additional structures include the motor and the type III 

flagellar protein export apparatus (Macnab, 2004). 

 

Firstly, FliF that makes up the rotor ring assemble in the cytoplasmic membrane. This 

is followed by the attachment of other proteins to the ring in sequence from the base 

to the tip to form the motor structure. The motor consists of a rotor/switch (C ring) 

complex containing three proteins involved in generation of torque and the switching 

of direction as well as the stator (Fig. 2-4). The reversible motor is powered by the 

transmembrane proton motive force, which in turn powers flagellar rotation (Manson 

et al., 1998). It is this rotation of the flagellar filaments that drives bacterial 

movement. 

 

After the motor is formed, the flagellar filament is assembled by the polymerization of 

20,000 to 30,000 copies of flagellin into a helical tube structure. These molecules are 

transported through a long narrow central channel of the flagellum from the 

cytoplasm to the distal end of the flagellum where they self-assemble with aid of a cap 

complex. The cap complex is critical for the efficient self-assembly of flagelin as it 

prepare just one binding site for the flagellin and guides the binding process. The 
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filament is made up of 11 strands of protofilament with two different conformations 

known as L and R types. The mixture of protofilaments with different length produces 

the helical tube structure.  (Samatey et al., 2001) 

 

The proximal end of the filament is connected to the flagellar basal body via a hollow 

flexible hook that is connected to the rod.  The basal body comprises of two MS rings, 

P ring and L ring. The type III flagellar protein export apparatus consists in part of 

integral membrane components located in the center of the MS ring, with soluble or 

peripheral components such as the ATPase that drive the export process. (reviewed by 

Macnab, 1992). 
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Fig. 2-4. The bacterial flagellum. Basal body hook and filament are shown various 

colors. Motor components consist of the rotor/switch complex or C ring (violets) and 

the stator or Mot complexes (reds). The export apparatus consists of membrane 

components at the center of the basal body MS ring and soluble or peripheral 

components including the ATPase that drives export. Flagella assembly requires 

coordinate expression of over 50 genes in a hierarchical manner. (Adapted from 

www.genome.jp/kegg/ pathway/map/map02040.html.)  

www.genome.jp/kegg/ pathway/map/map02040.html  
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2.3.3. Regulation of flagellar formation 
 

Assembly of the flagella apparatus and the regulation of the flagella pathway are 

highly complex processes. Timing and expression of the flagellar pathway has been 

well studied in many bacteria (Amsler et al., 1993; Givskov et al., 1995; Prouty et al., 

2001). In E. coli and S. typhimurium, coordinated expression of some 50 genes, 

organized in a hierarchical manner is required for the assembly and the operation of a 

flagellum (Aldridge and Hughes, 2002; Dasgupta et al., 2003; reviewed by Macnab, 

2003).  Genes that are involved in the assembly, function and regulation of flagella 

can be classified into three classes: (i) flhDC master regulator, (ii) those encoding the 

EDVDO� VWUXFWXUHV� DQG� WKH� DOWHUQDWLYH� ı� IDFWRU� )OL$� �ı28), and (iii) those encoding the 

filament and chemotaxis machinery.  

 

At the top of the flagellar hierarchy (class I), is the master regulator of the flagellar 

regulon, flhDC. The flhD gene encodes a transcription factor, which functions as a 

positive regulator of the flagellar regulon. In E. coli, the flhD gene encodes a protein 

that functions as a global regulator that when overexpressed, can inhibit cell division 

and therefore indirectly affects the level of gene expression (Prüß and Matsumura, 

1997; Prüß et al., 1997). The majority of class II genes encode components of the 

flagellar export system and the basal body. A class II gene, fliA, encodes a ı�IDFWRU, 

ı28 that is specific for flagella genes (Mytelka and Chamberlin, 1996). The class III 

gene products include flagellin (FliC) which forms the filament, the hook-associated, 

motor (Mot) and chemotaxis (Che) proteins. The stator forms a channel through 

which the protons that power the rotation of the flagellum flow (Bardy et al., 2003). 

The regulatory control for flagellar biogenesis in P. aeruginosa was described in 

detail previously (Dasgupta et al., 2003). The authors based the proposed hierarchy on 
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the evidence of microarrays of selected mutant strains. Key predictions were validated 

by promoter activity studies using ȕ-galactosidase reporter assay. In comparison to 

the three-tiered regulation in multiflagellated E. coli, a four-tiered hierarchy (Classes I 

– IV) is present in monoflagellated P. aeruginosa.  

 

At the top of the hierarchy are the transcriptional regulators, FleQ and the alternative 

ı factor FliA (ı28). FleQ, which is the functional equivalent of E. coli FlhDC, and 

FliA serve to regulate at least 11 operons that set into motion the expression of the 

rest of the flagella genes. Class II genes encode for the basal structures such as the M, 

S, and P rings, motor, switch, and the FleSR two-component regulatory system. These 

genes require FleQ and RpoN (ı54) for their transcriptional activation. The fleSR 

system is believed to control both flagellar synthesis and adhesion to mucin. The fleR 

mutant lacked flagella and was nonmotile and adheres poorly to mucin.  

 

Class III genes encode for the L ring, rod and hook structures, and are positively 

regulated by the activated response regulator FleR in concert with RpoN. Class IV 

genes in P. aeruginosa are the functional equivalents of Class III genes in E. coli, in 

that they encode for the filament, and the chemotaxis system. The transcription of 

Class IV genes is dependent on the availability of free FliA following the export of 

the FliA specific anti-ı factor FlgM through the basal body rod-hook structure 

(assembled from Class II and III gene products). FlgM has been shown to modulate 

the activity of FliA and expression of the FliA-dependent flagellin gene fliC (Frisk et 

al., 2002). 
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The importance of transcriptional regulation to the process of flagellar assembly has 

been known for many years. Also, translational regulation has been recognized to play 

a significant role (Aldridge and Hughes, 2002). For example, in Salmonella, 

translational regulation influences the secretion of FlgM. Post-translational regulatory 

mechanisms also control the length of the hook and the ability of the type III secretion 

system to discriminate between middle and late secretion substrates. 

 

2.3.4. Chemotaxis 

 

Most motile bacteria are able to move towards higher concentration of attractants, 

usually consisting of signaling molecules or nutrients. Similarly, they are also able to 

avoid harmful chemicals or repellents. As bacteria are small in size, it is inefficient to 

make direct spatial detection of chemical gradients. As a result, a chemotactic strategy 

to make temporal comparisons of effector concentration while moving in a gradient is 

used instead. This in turn, mean that bacterial cells would swim first and then decide 

if the chosen direction is in its favor or not. Although swimming direction after each 

tumble is selected in a random fashion, the presence of a chemical gradient causes 

cells to bias their random walk by suppress tumbling that result in longer swims 

towards a favorable direction.  

 

Chemotaxis pathway is well conserved and best studied in the E. coli (Fig. 2-5). The 

response is mediated by a signaling system that depends on protein phosphorylation 

and is a member of the bacterial two component sensors.  The central signaling 

proteins are the histidine kinase CheA and the response regulator CheY.  CheA 

together with CheW, associates with chemosensory receptors. The ternary complex 
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formation results in CheA autophosphorylation that in turn, allows the receptors to 

modulate CheA activity upon chemoeffector binding. CheY is subsequently 

phosphorylated and then diffuses into the cytoplasm to transmit the signal to the 

flagellar motors. Binding of CheY enhances the clock-wise rotation of the flagella 

causing the cells to tumble. As the cell changes direction and swims up a chemo-

gradient, the concentration increase results in the inactivation of CheY that in turn, 

suppress cell tumbling to allow swimming. Adaption to continuous stimulation is 

mediated by the methyltransferase CheR and methylesterase CheB. These proteins 

form the core of chemotaxis pathway while other bacteria have more complex 

systems with multiple sets of chemotaxis genes, receptors and varying mechanism of 

CheY dephosphorylation.  
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Fig. 2-5.  Two-state model of receptor signaling and the chemotaxis phosphorelay 

pathway. With the exception of the highly schematic rotary flagellar motors, the 

chemoreceptors (MCPs) and cytosolic signaling proteins (CheA, CheB, CheR, CheW, 

CheY, CheZ) are depicted in their native subunit organizations. The receptors dimers 

are arranged further into trimers, which may include the active unit for receptor 

signaling. Colored modules are representative of active states while the grey modules 

represent inactive forms. Green modules and reaction arrows represent signaling 

states that enhance clockwise (CW) flagellar rotation; red modules and reaction 

arrows represent signaling states that augment counter-clockwise (CCW) flagellar 

rotation, which is also the default condition in cells. Binding of an attractant ligand or 

removal of methyl groups shifts chemoreceptor signaling complexes from the kinase-

on (green) to the kinase-off (red) signaling state. Attractant release and methyl group 

addition shift receptor signaling complexes from the inactive CheA (gray) to the 

active CheA (blue) state. (Adapted from Parkinson et al., 2005) 

 

  



 34 

2.4.  Biofilm formation in Pseudomonas spp. 

 

Planktonic cells undergo multiple developmental changes during their transition from 

free-swimming organisms to cells that make up the surface-attached bacterial 

communities known as biofilms (reviewed by Stoodley et al., 2002). Biofilms are 

formed on both abiotic and biotic surfaces. They are usually persistent, and can resist 

antibiotic treatment, biocide treatment, and other host immune responses. In general, 

biofilm development occurs in five stages, namely, attachment, irreversible 

attachment, early biofilm development, biofilm maturation, and dispersal (Karatan 

and Watnick, 2009). The level of flagellin expression appears to be a key factor in the 

initial attachment as overexpression of flagellin in E. coli resulted in reduced adhesion 

(Landini and Zehnder, 2002). In fully developed biofilms, bacteria such as P. putida 

may even lack flagella (Sauer and Camper, 2001).  

 

The first stage of attachment allows monolayer of cells to be formed and initiates 

subsequent development of the biofilm. The next stage of biofilm formation involves 

extracellular polymeric substances (EPS) to form “irreversible attachment” of cells 

and to provide structural support for further development (Branda et al., 2005). The 

cells in the biofilm then aggregate and form a hydrated polymer network (the biofilm 

matrix) with EPS, where many different processes occur. Quorum sensing is a key 

process that coordinates EPS production and cell differentiation in the biofilm during 

the maturation process that leads to the formation of a mushroom-like macroscopic 

structure in mature biofilm (Jayaraman and Wood, 2008). Following biofilm 

maturation, dispersal takes place when the conditions for the biofilms no longer 

remain ideal. 
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2.5. MorA as a membrane bound negative motility regulator  

 

MorA is a negative motility regulator that affects the timing of flagella expression and 

biofilm formation in Pseudomonas species. It is conserved among diverse 

proteobacteria groups and cyanobacteria. All Pseudomonas genomes sequenced thus 

far possess morA homologs including P. aeruginosa PAO1 (PA4601), P. fluorescens 

PfO-1 (Pflu02005114) and P. putida KT2440 (PP0672). 

 

The primary structure of predicted MorA proteins from various Pseudomonas species 

is well conserved with sequence similarity values ranging from 57% to 93%. 

Members of the Pseudomonas MorA family: (i) are present as single copy in the 

genome, (ii) most possess transmembrane domains, (iii) possess a central sensory 

domain of PAS-PAC motifs, and (iv) contains C-terminal GGDEF and EAL domains 

(Fig. 2-6). The N-terminal transmembrane region is more variable (30% to 80% 

similarity) compared to over 80% similarity in the PAS-PAC and the GGDEF and 

EAL domains.  
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Fig. 2-6. Domain architecture of MorA family members in Pseudomonas species. 

The three conserved regions of the predicted MorA proteins are (i) transmembrane 

domain(s) (vertical bar) in majority of the proteins, (ii) sensory PAS and PAC 

domains, and (iii) catalytic GGDEF and EAL domains  
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Video microscopy showed that the morA mutant cells were highly motile throughout 

the different growth phases. Most of the wild type (WT) cells were, however, non-

motile in all the three log growth phases. Hence, morA mutants have a developmental 

restriction removed on the timing of flagellar formation, resulting in the presence of 

flagella throughout the growth stages without affecting cell division or cell size (Fig. 

2-7).  

 

DNA microarray analyses of gene expression in P. aeruginosa PAOI and its morA 

mutant using Affymetrix™ chips revealed that the mutation of morA altered the 

expression of 561 genes 2-fold or more, 234 of which were up-regulated and 327 

down-regulated (Choy et al, 2004). Out of the 234 genes that were up regulated in the 

morA mutant, 111 were genes of known function. Out of the 327 genes that were 

down regulated in the morA mutant, 190 were genes of known function. MorA also 

affects transcript levels of several (ECF-type) ı factors and their downstream genes, 

which was validated by quantitative real-time PCR analyses.  Additionally, MorA 

regulates the biosynthetic pathway of the key phosphate donor, acetyl phosphate 

(AcP) by affecting the transcription of the metabolic gene pta.  AcP has been further 

implicated as a regulator of many important pathways, including the flagella pathway 

(Choy, 2005). 

 

Genes implicated in antibiotic resistance and susceptibility, energy metabolism and 

secreted factors (toxins, enzymes, alginate) were highly expressed in the morA 

mutant. On the other hand, genes encoding type II secretion system proteins were 

found to be downregulated in the morA mutant. Several classes like transport of small 

molecules, putative enzymes and transcriptional regulators had similar number of 
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genes that were either upregulated or downregulated. The expression of genes 

involved in motility and attachment remained mostly unchanged including genes 

involved in flagellar or type IV pili biogenesis. 

 

The loss of MorA has been shown to affect the expression fliC in P. putida. This 

suggests that the disruption of morA resulted in derepression of flagellin expression 

and, consequently, flagella were constitutively produced. MorA is therefore a key 

component of an alternative regulatory system that normally restricts the timing of 

expression of the flagellar biosynthesis pathway to late phases of growth in P. putida 

by derepressing flagellin expression in the log-to-stationary phase. A consequence of 

this appears to be the impairment of biofilm formation (Fig. 2-8).  

 

In P. putida, expression analyses revealed that transcript levels of the flagellar master 

regulators fleQ and fliA remained unchanged between WT and morA mutant strains 

(Choy, 2005). Also, global gene expression profiling in P. aeruginosa has also 

demonstrated that over 80 genes were affected by the loss of morA although genes 

involved in motility were not significantly altered in their expression levels. The 

mechanism by which morA regulates flagellin expression in the P. putida remains, 

hitherto, unknown.  
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Fig. 2-7. Flagella phenotype of morA knockout and WT strains in (A) P. putida 

and  (B) P. aeruginosa. (A) TEM shows that hyperflagellation phenotype is observed 

in P. putida morA knockout mutant throughout all growth phases. (B) In P. 

aeruginosa, however, hyperflagellation is absent. (Adapted from Choy et al., 2004) 
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Fig. 2-8. Biofilm formation of morA knockout and WT strains in (A) P. putida 

and  (B) P. aeruginosa. (A) Biofilm formation of morA mutant is reduced in both 

early and late time point when compared to WT.  (B) In P. aeruginosa, biofilm 

formation of morA mutant is reduced less when compared to WT. However, the 

difference is not as evident in the late time point (Adapted from Choy et al., 2004). 
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2.6. Reversion mutants of morA phenotype  
 

As morA loss leads to hypermotility, we screened for hypermotility reversion to wild 

type levels in a library of mutants with morA mutation genetic background in order to 

identify downstream signaling pathway members in the motility pathway in P. putida. 

It was reasoned that any disruption in the flagellar pathway would cause serious 

defects in the motility of the cell via the malformation or malfunction of the flagella 

causing non-motile cells. Thus non-motile mutants had been excluded from the study 

during the primary and secondary selection process involving motility plate assay and 

video microscope analysis respectively. This was by no means an exhaustive search as 

there may be critical genes in the intermediate pathway that can cause the mutant to 

be non-motile as well. 

 

Seventy-six motility reversion mutants were able reverse the hypermotility phenotype 

of morA mutants to those of wild type while not resulting in non-motility. Thus far, a 

total of 22 genes were identified via single primer PCR, of which five genes was of 

particular interest (Table 2-2) (Ng, 2006). 

 

Motility assay showed that motility of the various mutants varies, though, all the 

mutants exhibited less motility than morA mutant, MorDCK03 (Fig. 2-9). Several 

mutants namely K14, K15, D11 and D31 showed motility to be even less than that of 

the WT. As biofilm formation assay was not part of the selection process, it was also 

performed on the mutants (Fig. 2-10).  Results showed that the biofilm formation is 

varied in the mutants but that most of the mutants presented increased biofilm 

formation.  Lastly, the growth curve (Fig. 2-11) plotted with the various mutant 

strains showed that the mutations did not affect cell growth. 
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Table 2-2. Transposon motility reversion mutants in morA knockout background 

identified via single primer PCR. This table shows the mutant name, length of 

sequence obtained from DNA sequencing and subsequently used for database 

searching with BLAST tool, similarity as well as the cellular location of the gene 

product. 22 genes were identified in total of which 5 were conserved hypothetical 

proteins. Five of the genes were of interest and was highlighted in bold in the table 

(Ng, 2006). Similarity denotes the amount of High-Scoring Segment Pairs between 

the query sequence and database sequence. Mutant names are assigned names of the 

motility revertant mutants. Gene names and cellular localization are based on data 

derived from NCBI database.  

Mutant 
Names 

Similarity 
(%) Gene Name Cellular localization 

O13 91 

Putative diguanylate cyclase/phosphodiesterase 
(GGDEF &  EAL domains) with PAS/PAC 
and GAF sensor(s)  morC cytosolic 

D4 91 Adenylate cyclase CyaA cytosolic 

D14 91 Ankyrin cytosolic 

K15 97 Rod shape-determining protein RodA  transmembrane 

Q12 96 
Substrate-binding region of ABC-type glycine 
betaine transport system 

integral membrane 
protein/ lipid anchor 

H6 92 
Substrate-binding region of ABC-type glycine 
betaine transport system 

integral membrane 
protein/ lipid anchor 

D11 92 DNA Pol III alpha subunit cytosolic 

L16 97 Isochorismatase hydrolase cytosolic 

J21 92 NAD-dependent epimerase/dehydratase cytosolic 

K14 98 Penicillin-binding protein, transpeptidase  transmembrane 

K5 100 extracellular solute-binding protein, family 3 cytosolic 

F5 93 Abortive Infection Protein transmembrane 

F2 95 Abortive Infection Protein transmembrane 

Q3 88 Abortive Infection Protein transmembrane 

G18 100 Ribulose-phosphate 3-epimerase cytosolic 

E6 96 Ribulose-phosphate 3-epimerase cytosolic 

E10 93 HIO933-like Protein cytosolic 

M6 91 Catalase-like cytosolic 

H6 100 
Binding-protein-dependent transport systems 
inner membrane component 

integral membrane 
protein/ lipid anchor 

D30 85 
ribosomal 5S rRNA E-loop binding protein 
Ctc/L25/TL5 [Pseudomonas fluorescens Pf-5] cytosolic 

D28 98 Exonuclease VII, large subunit  cytosolic 
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Fig. 2-9. Motility reversion mutants exhibit reduced motility when compared to 

morA mutant. Relative motility is derived by the colony diameter of the mutant over 

the colony diameter of WT thus the relative motility of WT is equivalent to the value 

of 1. Mor DCK03 acting as a control showed about 2.8-fold increase in swimming 

motility through 0.4% (w/v) soft agar compared to WT. This was consistent with the 

results obtained previously (Choy and Swarup, 2004). Values were based on the 

average of three independent experiments with five replicates each. Standard errors 

were represented as vertical bars. Mutant descriptions are listed in Table 2-2 (Ng, 

2006).  
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Fig. 2-10. Motility reversion mutants exhibit varying amount of biofilm 

formation. Most of the motility reversion mutants exhibited biofilm phenotype 

intermediate to that of the WT and Mor DCK03 strains. Values were based on the 

average of three independent experiments with six replicates each. Standard errors 

were represented as vertical bars (Ng, 2006). 
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Fig. 2-11. Growth curves of P. putida WT and various mutants in LB medium 

showed no differences in the growth. Absorbance at 600nm (OD600) of bacterial 

cultures growth in LB medium at 30ºC was measured at intervals of one to two hours. 

Values are based on the average of two independent experiments with three replicates 

each (Ng, 2006).  
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Chapter 3. Materials and methods 

 
3.1. Bacterial strains, plasmids and growth conditions 

Bacterial strains and plasmids used in this study are listed in Table 3-1 and 3-2 

respectively. P. putida and P. fluorescens strains were routinely grown at 30ºC while 

E.coli strains were grown at 37ºC in Luria-Bertani (LB) with suitable antibiotics 

(Table 3-1). The following antibiotics were added at the final concentration noted 

EHORZ� WR� WKH� JURZWK� PHGLD� ZKHUH� QHFHVVDU\�� &P�� FKORUDPSKHQLFRO� ��� ȝJ�mL; Rf, 

ULIDPSLFLQ����ȝJ�mL; *P��JHQWDP\FLQ����ȝJ�mL (E. coli��RU����ȝJ�mL (PNL-MK25); 

$PS��DPSLFLOOLQ�����ȝJ�mL��7HW��WHWUDF\FOLQH����ȝJ�mL (E. coli��RU����ȝJ�mL (PNL-

MK25). For solid media, 1.5% final concentration of agar was added. Bacterial 

growth was measured spectrophotometrically at OD600.  
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Table 3-1. Bacterial strains used in this study. Flippase recombination target (FRT) 
sites are utilized to remove the Gm marker from the cell in the generation of markerless 
knockout mutant strains.  

 

  

Strains Relevant characteristics Source/reference 

P. putida   

PNL-MK25 Antibiotic-resistant derivative of the plant growth-

promoting rhizobacterial (PGPR)  P. putida strain 

ATCC 39169; Designated as WT. Cmr Rfr 

Adaikkalam and 

Swarup, 2002 

C3H PNL-MK25 mutant (morA::mTn5-gfp);Cmr Rfr  Kmr 

Gmr 

Choy, 2005 

MorDCK03 PNL-MK25 mutant (morA::accCI);Cmr Rfr Gmr Choy, 2005 

¨morA PNL-MK25 mutant (morA::FRT insertion);Cmr Rfr This study 

¨morC PNL-MK25 mutant (morC::FRT insertion); Cmr Rfr This study 

¨morA¨PRU& PNL-MK25 mutant (morA::FRT insertion) 

(morC::FRT insertion);Cmr Rfr 

This study 

¨cyaA PNL-MK25 mutant (cyaA::FRT insertion);Cmr Rfr This study 

¨morA¨F\D$ PNL-MK25 mutant (morA::FRT insertion)(cyaA::FRT 

insertion);Cmr Rfr 

This study 

¨opuAC PNL-MK25 mutant (opuAC::FRT insertion);Cmr Rfr This study 

¨morA¨�

opuAC 

PNL-MK25 mutant (morA::FRT insertion)( 

opuAC::FRT insertion);Cmr Rfr 

This study 

P. fluorescens 

WTPf 

 

Wild-type; Ampr 

 

Silby et al., 2009 

¨morAPf Pf0-1 mutant (morAPf::FRT insertion); Ampr This study 

E. coli   

DH5� (lacZYA-argF)U169 hsdR17(r - m +) recA1 endA1 
relA1 deoR 
  

Lab collection 

JM109 thi-1 hsdR17(rK- mK+) supE44 relA (lac-proAB) 
[F'traD36 proAB lacIqZ M15] 
 

Lab collection 

BL21 Protein expression strain Novagen 
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Table 3-2. Plasmids used in this study. 

Plasmid Relevant characteristics Source 
pEX18ApGW Suicide vector for markerless 

knockout mutant generation; 

AmprGmr 

Choi and Schweizer, 2005  

pEX18ApGW-morA Double crossover knockout 

construct for morA gene 
This study 

pEX18ApGW-morApf Double crossover knockout 

construct for morApf gene 
This study 

pEX18ApGW-morC Double crossover knockout 

construct for morC gene 
This study 

pEX18ApGW- opuAC Double crossover knockout 

construct for opuAC gene 
This study 

pEX18ApGW-cyaA Double crossover knockout 

construct for cyaA gene 
This study 

pGB1 Broad host range vector; 

AmprTetr 
Bloemberg et al.,1997 

pGB3 pGB1 vector carrying GFP; 

AmprTetr 
Bloemberg et al.,1997 

pGB1morA Full-length morA gene with its 

native promoter cloned into 

pGB1 

Choy and Swarup, 2005 

pGB1 morApf Full-length morAPf gene with its 

native promoter cloned into 

pGB1 

This study 

pGB1cyaA Full-length cyaA gene with its 

native promoter cloned into 

pGB1 

This study 

pGB3morA Full-length morA gene with its 

native promoter cloned into 

pGB3 

Fu SJ, unpublished data 

pGB3morC Full-length morC gene with its 

native promoter cloned into 

pGB3 

This study 

pJET PCR cloning vector; Ampr Fermentas 
pCRTOPO4 PCR cloning vector; Ampr Invitrogen 
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Plasmid Relevant characteristics Source 
pTNS2 Helper plasmid; Ampr Choi and Schweizer, 2005 
pFLP3 Plasmid encoding FLPase Choi and Schweizer, 2005 
pUC18-miniTn7T-GM Broad host range mini-Tn7 for 

integration of single-copy genes 

into chromosome; Ampr Gmr 

Choi and Schweizer, 2006 

mTn7T-morC Full-length morC gene with its 

native promoter cloned into 

pUC18-miniTn7T-GM; Ampr 

Gmr 

This study 

mTn7T-morC ¨($/ Mutant morC, truncated EAL 

domain with its native promoter 

cloned into pUC18-miniTn7T-

GM; Ampr Gmr 

This study 

mTn7T-morC-E673K Mutant morC, 673EAL675 

Î673KAL675 with its native 

promoter cloned into pUC18-

miniTn7T-GM; Ampr Gmr 

This study 

mTn7T-morC-L675G Mutant morC, 673EAL675 

Î673EAG675 with its native 

promoter cloned into pUC18-

miniTn7T-GM; Ampr Gmr 

This study 

mTn7T-morC-E754K Mutant morC, 754EAL756 

Î754KAL756 with its native 

promoter cloned into pUC18-

miniTn7T-GM; Ampr Gmr 

This study 

mTn7T-morC-L756G Mutant morC, 754EAL756 

Î754EAG756 with its native 

promoter cloned into pUC18-

miniTn7T-GM; Ampr Gmr 

This study 
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3.2. Generation of markerless knockout Pseudomonas spp. mutants 
 

The markerless knockout strains were generated using the workflow described in Fig. 

3-1. Firstly, 5’gene fragment, 3’ gene fragment and an frt-flanked aaCC1 gene 

cassette were generated using PCR. Fusion PCR was then performed to fuse these 

fragments together. Conventional molecular biology techniques were then used to 

introduce the fusion cassette into pEX18ApGW.  

 

The plasmid containing the fusion cassette was then introduced into P. putida cells. 

The resultant clones were then subjected to sucrose selection to identify double-

crossover mutants. The clones that were both gentamycin and sucrose resistant were 

designated putative mutants. To further obtain gentamycin-sensitive clones, pFLP3 

were then introduced into these putative clones to facilitate FRT recombination. Since 

pFLP3 encodes sacB (Choi and Schweizer, 2005), Gentamycin sensitive clones were 

finally subjected to sucrose selection to cure the cells. 

 

 

Fig. 3-1. Workflow used for the generation of markerless knockout strains. 
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3.2.1 Electroporation of Pseudomonas culture 

 

Electroporation was carried out as previously described (Choi et al., 2005). Briefly; 6 

mL of an overnight culture grown in LB medium was harvested by centrifugation at 

16,000g for 2min at room temperature. The cell pellet was then washed twice with 

4mL of room temperature 300mM sucrose. The resultant pellet was then resuspended 

in 200 µL of 300mM sucrose. 500ng of plasmid DNA was mixed with 200 µL 

electrocompetent cells and transferred to a 2mm gap width electroporation cuvette. 

After applying a pulse (settings: 25  µF; 200 Ohm; 2.5 kV on a Bio-Rad 

GenePulserXcell™), 1 mL of LB medium was added immediately and the cells were 

transferred to a 15mL tube and incubated at 250rpm for 4h at 30ºC. The cells were 

then plated on plates containing half strength LB with the appropriate antibiotics and 

incubated at 30ºC for two days or until colonies appeared. 

 

3.2.2 PCR-amplification of the gentamycin resistance gene cassette 

 

A 50µL PCR reaction containing 5ng pPS856 template DNA, 1x BD Clontech 

Advantage PCR2 buffer, 1x Advantage 2 polymerase mix, 0.2µM of Gm-F and Gm-R 

primers and 200µM dNTPs. Cycle conditions were 95ºC for 3 min, followed by 30 

cycles of 95ºC for 30s, 55ºC for 30s, and 72ºC for 1min 30s and a final extension at 

72ºC for 7min. The resulting 1,053bp PCR product was purified by PCR purification 

clean-up kit and its concentration determined spectrophotometrically via Nanodrop 

TM. 
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3.2.3 PCR-amplification of 5' and 3' gene fragments 

 

Two 50µL PCR reactions were prepared. The reaction mixtures contained 20ng 

genomic DNA, 1x BD Clontech Advantage PCR2 buffer, 1x Advantage 2 polymerase 

mix, 0.8µM of primers, 5% DMSO and 200µM dNTPs. One mixture contained 

primers for amplification of the 5’ gene fragment while the second mixture contained 

primers for amplifying the 3’ gene fragment. Primers used in generation of gene 

fragments are described in Table 3-3. Cycle conditions were 95ºC for 3min, followed 

by 30 cycles of 95ºC for 30s, 60ºC for 30s, and 72ºC for 1min and a final extension at 

72ºC for 7min. The resulting PCR product was purified by PCR purification kit and 

its concentration determined spectrophotometrically via Nanodrop TM. 

 

3.2.4 Fusion PCR of 5’ gene fragment, 3’ gene fragment and gentamycin 

cassette 

 

A 50 µL PCR reaction contained 50ng each of the 5’ and 3’ purified template DNAs, 

and 50ng of FRT-Gm-FRT template DNA, 1x BD Clontech Advantage PCR2 buffer, 

1x Advantage 2 polymerase mix, 5% DMSO and 200µM dNTPs. After an initial 

denaturation at 95ºC for 3min, 10 cycles of 95ºC for 30s, 50ºC for 30s, and 72ºC for 1 

min were run without added primers. The tenth cycle was paused at 30s of the 72ºC 

extension, primers were added to 0.2µM each, and the cycle was then finished by 

another 30s extension at 72ºC. The PCR was completed by 20 cycles of 95ºC for 30s, 

56ºC for 30s, and 72ºC for 5min, and a final extension at 72ºC for 10min. The 

resulting PCR product of expected size was purified by gel extraction and its 

concentration was determined via NanoDrop TM.  
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3.2.5. Cloning of fusion PCR product into pEX18ApGW 

 

Classical restriction and ligation was carried out for the cloning of markerless 

knockout cassette via ApaI and SpeI sites that are situated at the attR1 and attR2 sites 

shown in Fig. 3-1.  

 

 
Fig. 3-2. Map of pEX18ApGW suicide vector. Abbreviations: attR1 and attR2, 
bacteriophage recombination sites; bla, E-lactamase-encoding gene; cat, 
chloramphenicol acetyl transferase-encoding gene; ccdB, gene encoding gyrase-
modifying enzyme (CcdB poisons host DNA gyrase by forming a covalent complex 
with the DNA gyrase A subunit and thus serves as a counter-selectable marker in 
gyrA+ cloning hosts); ori, ColE1-derived replication ori- gin; oriT, origin of conjugal 
transfer; sacB, Bacillus subtilis levan-sucrase-encoding gene; SpeI and ApaI, 
restriction enzyme digestion sites. The sequence of this plasmid was deposited in 
GenBank and assign accession number AY928469 (Modified from Choi and 
Schweizer, 2005) 
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Table 3-3. Primers used in markerless knockout generation. 
 
Gene Primer Sequence     

accC1 GMF-BamHI  5’- TGGAT CCGGACGATCGAATTGG -3’    

GMR-HindIII  5’- TTAAGCT TCATGCATGATCGAATTAGC -3’    

morA Pp-MorA 5’-SpeI  5’- TAACTAGT TGATTTTCAGCAGCGTGGA -3’    

Pp-MorA5’-BamHI  5’- TGGATCC TGGCGGAGTGACATTGG -3’    

Pp-MorA3’-HindIII  5’- TTAAGCTT GACTGAACATCTGCGGCG -3’    

Pp-MorA 3’-ApaI 5’- TAGGGC CCGTAGTAACGCTTGCC -3’    

morC SpeI-PNL-MorC 5'- TAACTAGT TGTCTTCGGTGGCTTCCAG -3'    

BamHI-PNL-MorC 5'- TGGATCC GACGTGTTCTACCAGCCC -3'    

HindIII-PNL-MorC 5'- TTAAGCTT TCGCATCGTGCAGTTGATAG -3'    

ApaI-PNL-MorC 5'- TAGGGCCC CGAGAAATGTTCACTGCAG -3'    

morAPf PfMorA-UpF-GWL 5’-TACAAAAAAGCAGGCTAATGATTGGGACACAGGC-3’    

PfMorA-UpR-GM 5’-TAGAGCGCTTTTGAAGCTAATTCGTTCAGGCTGACCTGTGC -3’    

PfMorA-DnF-GM 5’-ACTTCAAGATCCCCAATTCGTCGGCACCGGTTACTCATCG -3’    

PfMorA-DnR-

GWR 

5’-TACAAGAAAGCTGGGTGGTCAGTCGAACATGAACAGCG -3’ 

   

opuAC SpeI-PNL-opuAC5' 5’- TAACTAGTATGGGCTCTCGTGGTCGAC-3’    

opuAC5'-UpR-GM 5’-GAGCGCTTTTGAAGCTAATTCGTTTGCCGGCCTGGTCTACAC-3’    

opuAC3'-DnF-GM 5’- GGAACTTCAAGATCCCCAATTCGCGCAGCACTTCGTTGAGC-3’    

ApaI-PNL-opuAC3' 5’- TAGGGCCCATACACCGGCGTGTCGCT-3’    



 55 

3.2.6. Selection of markerless knockout clones 
 

 Thirty colonies were patched on LB+Gm30 plates and then streaked on LB+Gm30 

with 10% sucrose for single colonies. Colonies that had grown on the selection plate 

were then considered putative deletion mutants.  

 

The insertion of gentamycin cassette was verified via colony PCR in the steps 

described as follows: Cells were scrapped from the cell patch and transferred to 30ȝL 

of sterile water in a microcentrifuge tube. The cell suspension was then boiled for 

5min. Cell debris was removed by centrifugation at 16,000g for 2min. 2ȝL of 

supernatant was used as template DNA in a 10ȝL PCR reaction containing 1x BD 

Clontech Advantage PCR2 buffer, 1x Advantage 2 polymerase mix, 0.2µM of primers 

and 200µM dNTPs. Cycle conditions were 95ºC for 3min, followed by 30 cycles of 

95ºC for 30s, 60ºC for 30s, and 72ºC for 2min, and a final extension at 72ºC for 7min. 

PCR products were analyzed by agarose gel electrophoresis.  

 

Electrocompetent cells of the newly constructed mutant strain were prepared as 

described in the preceding paragraph and transformed with 20ng of pFLP3 plasmid 

DNA as described above. After phenotypic expression at 30ºC for 4h, the cell 

suspension was plated on LB +Tet30 plates. Transformants were purified for single 

colonies on LB+Tet30 plates. Ten single colonies were tested for antibiotic-

susceptibility on LB +Gm30 plates. Gentamycin sensitive isolates were struck for 

single colonies on a 10%sucrose+LB plates and incubated at 30ºC till single colonies 

appeared. Ten sucrose-resistant colonies were retested on a 10% sucrose+LB, Gm30 

and Tet30. Deletion of the gentamycin cassette was assessed by colony PCR utilizing 

the conditions and primers described previously. 
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3.3. Genomic DNA isolation 

 

Genomic DNA was isolated using a protocol previously described in our laboratory 

(Syn and Swarup, 2000). Three mL of overnight culture was pelleted at 14,000rpm 

and washed with 1% NaCl.  The pellet was then resuspended in 750ȝL of TES (10 

mM Tris-HCl, 10 mM EDTA, pH 8.0, 2% SDS) and incubated at 75ºC for 5min.  The 

cell lystate was then mixed with 750ȝL of 3:1 Tris-buffered phenol:chloroform. 

Centrifugation at 14,000rpm for 5min was carried out to separate the phases. This was 

followed by chloroform extraction. DNA was then precipitated using 0.1 vol of 3M 

sodium acetate (pH 5.2) and 2.5 vol of absolute ethanol. The resulting pellet was 

washed with 1mL of 70% ethanol and then dried with a speedvac for 5min. The DNA 

pellet was dissolved in 150 ȝL of TE (10 mM Tris-HCl, 2 mM EDTA, pH 8.0) 

containing 50 ȝg/mL of RNase. 

 

3.4. Gene expression studies 

 

3.4.1.  Complementation and overexpression strains generation 

 

Standard molecular biology techniques were used for creating all constructs. 

Restriction and modifying enzymes were purchased from New England Biolabs 

(Beverly, MA) and Fermentas (Gen Burnie, MD). DNA oligonucleotides used were 

obtained from Sigma Proligonucleotides.  

Transposon insertion mutants of P. putida PNL-MK25 were generated using pUC18-

miniTn7T-GM. Electroporation were used to introduction the construct into various 

P. putida strains using helper plasmid pTNS2. For complementation studies, ¨morC 
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mutants were complemented with morC in a single copy with mTn7T introduced into 

the chromosome at the attTn7 site.  

 

3.4.2.  RNA isolation and cDNA preparation 

 

Total RNA was extracted using TRIzol® Reagent (Invitrogen Corp., Carlsbad, CA, 

USA). Cell pellets from 3 growth phases were collected and resuspended in 1mL of 

TRIzol. They were then heated at 50ºC for 10min prior to RNA extraction to lyse the 

cells. After cooling at room temperature for 5min, 200ȝL of chloroform was added 

followed by 15s of vortexing. The mixture was then centrifuged at 12,000x g for 

15min at 4ºC to separate the three phases. The top phase was then extracted and 

mixed with 500ȝL of isopropanol. After which, it was incubated for 10min at room 

temp and then centrifuged at 12,000 xg for 10min at 4ºC. The RNA pellet was then 

washed with 1mL of 70% ethanol and then dissolved in DEPC water by incubating 

for 10min at 60ºC. Genomic DNA is removed by the addition of DNaseI. 

Subsequently, cDNA was prepared with Maxima® First Strand cDNA Synthesis Kit 

(Fermentas, Gen Burnie, MD). 

 

3.4.3.   Quantitative Real-Time PCR 

 

morC primers for quantitative Real-time PCR were designed with Primer Express 

software (Applied Biosystems) using DNA sequence obtained during gene walking 

while the other primers were previously reported (Choy, 2004). The assay was 

performed using Maxima® SYBR Green qPCR Master Mix (Fermentas, Gen Burnie, 

MD) as per manufacturer’s instructions. The reaction mix (50ȝL) contained 25ȝL of 
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Maxima® SYBR Green qPCR Master Mix, 0.3ȝM of forward and reverse primers, 

2.5ȝL of cDNA (20ng/ȝL) and water. The genes and their corresponding primers used 

for the expression studies are listed in Table 3-4. 

 

3.5. Site-directed mutagenesis and deletion of EAL domain in MorC 

 

Site-directed mutations of MorC were generated using conventional fusion PCR 

protocol. The plasmid construct, mTn7T-morC was used as the template for the 

mutagenesis. Firstly, two partial gene fragments were generated to introduce the 

respective mutations. The two fragments were then fused together using PCR 

amplification with MorC primers. Amplicons carrying the mutations were cloned into 

mTn7T-morC using restriction enzyme digestion and ligation.  
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Table 3-4. Primers used in qRT-PCR. 
Gene Primer 

 

Primer Sequence 

16S 16S_SG_F 5’- TGTAGCGGTGAAATGCGTAGA -3’ 

16S_SG_R  5’- CGCACCTCAGTGTCAGTATCAGT-3’ 

23S 

 

23SRNA-FW 5'- CCGAGATTCCCTTAGTAGTG -3' 

23SRNA-RE 5'- TAAGAGACTT TCGCGTACAG -3' 

fliC fliC_SG_F 5'- TGCGTGAACTGGCTGTTAAAG -3' 

fliC_SG_R 5'- GAGCGAATTCAGCGTTGGT -3' 

morA 

 

morA_SG_F 5’- GCAGTTGCTCGCGGAAAT -3’ 

morA_SG_R 5’- AGGAGTGCACATCGAGCAGTT -3’ 

morC morC_MID FW 5’- CGACAGCTGGCCCCAGTACGG -3’ 

morC_MID RE 5’- AGAGCAACAGCTGGCAGGGCG -3’ 
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Table 3-5. Primers used for various site-directed and deletion constructs of 
morC. 

 

 

 

 

  

Primer Sequence 
XbaI-morC 

WS 
5’-AATCTAGACTATCAAAACTGTGGGAGCGAG-3’ 

HindIII-morC 

WOS1 
5’-TTAAGCTTGAGGCAGAGCGGGCCGCG-3’ 

KpnI-MorC  5’-TTGGTACCTCGAGGCTGATCAGATATTGG-3’ 
BMG-

morCFW 
5'- AAGACGTGTTCTACCAGCCC-3' 

AVR-morCRE 5'- TTGCCTAGGC CGGCAGCGG-3' 
KAL673FW 5'- CTGCTGGGCATGAAAGCGCTGTTGCGCTGG-3' 
KAL673RE 5'- CCAGCGCAACAGCGCTTTCATGCCCAGCAG-3' 
EAG675FW 5’-CTGCTGGGCATGGAAGCGGGCTTGCGCTGGAA-3' 
EAG675RE 5’-CCAGCGCAAGCCCGCTTCCATGCCCAGCAG-3' 
KasI-morC 

FW 
5’-GCGACAAACTGTTGATCAGCC-3’ 

BamHI-MorC 

EAL del RE 
5’-ATGGATCCTCAACTGGCTTCAGCGTTCAGCG-3’ 

KAL754 FW 5’-CATCCTCAGGGAAAAAGCGCTGCCGGCCAGTCTGCTCG-3’ 
KAL754 RE 5’-CGAGCAGACTGGCCGGCAGCGCTTTTTCCCTGAGGATG-3’ 
EAG 756 FW 5’-CATCCTCAGGGAAGAAGCGGGCCCGGCCAGTCTGCTCG-3’ 
EAG 756 RE 5’-CGAGCAGACTGGCCGGGCCCGCTTCTTCCCTGAGGATG-3’ 



 61 

3.6.  Swimming motility studies   

 

3.6.1. Swimming motility plate assay 

 

Semisolid LB agar plates were made with 0.4% w/v BD Bacto™ Agar. The plates 

were left to dry for 4h DQG�WKHQ� LQRFXODWHG�ZLWK����ȝ/ of overnight bacterial culture 

diluted to OD600=0.25. The plates were then incubated for 30h at 30ºC. Movement of 

the bacteria away from the inoculation point was determined relative to that of WT, as 

previously described (Robleto et al., 2003).  

 

3.6.2.   Single cell swimming speed analysis 

 

 Overnight cultures were diluted 1:50 in fresh LB before being incubated and grown 

to tKH�UHVSHFWLYHO\�JURZWK�SKDVH��7ZR�YLHZLQJ�FKDPEHUV�RI����FP�[����FP�[����ȝP�

were created by sticking a layer of double-sided tape between the microscope slide 

and coverslip. At each growth phase, cell culture was diluted to optimal density to 

facilitate trDFNLQJ�DQG���ȝ/ of cell suspension was loaded into the chamber for image 

recording. The samples were viewed at 600× magnification on a Nikon ECLIPSE E-

600 phase contrast light microscope (Nikon, Japan) and the movement of the cells 

was recorded using a QICAM 12-bit CCD camera (QImaging, Canada). Cell 

movements were captured as movies in AVI format for 20s at 10frames per second. 

 

3.6.3. Cell speed image analysis 

 

Bacterial speeds were tracked using Image-Pro Plus 6.3 (Media Cybernetics, USA). 

Cells are considered motile only LI�WKH\�PRYHG�IDVWHU�WKDQ�����ȝm/s and had travelled 
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IRU�D�OHQJWK�RI����ȝP�RU�PRUH��6SHHGV�RI�����PRWLOH�FHOOV�IURP�WKUHH�VHSDUDWH�YLGHRV�

were taken per strain and average speeds were analyzed. 

 

3.7. Biofilm formation tube assay 

 

The biofilm formation assay was adapted from that of O'Toole and Kolter (1998). It 

was performed in polystyrene round-bottom tubes using LB medium. Two mL of 

culture diluted to OD600=0.25 was inoculated into each tube. After inoculation, 

cultures were incubated for various time intervals at 30ºC with shaking at 250 rpm. At 

various time intervals, non-adherent cells were removed by rinsing with 5mL of 

distilled water. Biofilms were stained with 0.1% (w/v) crystal violet solution for 1h 

followed by rinsing with distilled water. Bound crystal violet was solubilized in 2 mL 

1% SDS and quantitated by obtaining OD595 value spectrophotometrically. 

 

3.8. Chemotaxis assay 

 

The assay used was adapted from Shi et al. (1998). Overnight cultures were pelleted 

at 3000 xg for 5min, washed and then resuspended in half-strength M9 medium to 

OD600=1.0. One mL of culture was then mixed with 24mL of 0.4% (w/v) soft agar 

prepared in half-strength M9 medium. This mixture was then poured into a petri dish 

holding a 1% agarose plug in the center that contains 100mM aspartic acid to act as a 

chemoattractant.  
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3.9. Intracellular localization study 

 

Bacterial cells were diluted 1:25,000 in fresh LB before being incubated and grown to 

respective growth phases.  At each growth phase, ��ȝL bacterial culture was collected 

and viewed by confocal laser scanning microscopy (CLSM) and image acquisitions 

were performed with a Zeiss LSM510 CLSM (Carl Zeiss, Jena, Germany) meta 

microscope. Images were obtained using a 63/1.4 objective. 

 

3.10. Transmission electron microscopy (TEM) 

 

Bacterial cells were harvested at various growth intervals and then pelleted at 2000 xg 

for 20min. The cell pellet was then washed 0.9% saline solution and then fixed in 2% 

formaldehyde. A drop of cell suspension and a drop of 3% (w/v) uranyl acetate (pH 

4.5) were added onto a Formvar-coated copper grid (150 mesh). The mixture was left 

for 2min before the grid was dried under a heating lamp. The grids were viewed at 

1100x magnification in a FEI T12 transmission electron microscope operating at 120 

kV (Oregon, USA). 

 

3.11. In silico three-dimensional modeling of MorC PDE domain 

The structural model for the MorC PDE domain was constructed using the Swiss- 

Model Server (Arnold, 2006; Kiefer et al., 2009) with the coordinates of the tdEAL 

structure (PDB ID: 3n3t). The coordinates of c-di-GMP and Mg2+ for MorC PDE 

domain were taken from its corresponding PDB IDs. Domain boundaries for 

modelling were determined by the Simple Modular Architecture Research Tool 

(Schultz et al., 1998; Letunic et al., 2009). Using BLAST, sequence similarity 
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between EAL MorC and tdEAL was found to be 41% (Appendix I). 

 

3.12. Protein expression studies  

 

3.12.1. Creating constructs for MorC recombinant protein expression 

 

Full and partial morC gene fragments, were amplified from mTn7T-MorC for cloning 

into the C-terminus His6-tagged protein expression vectors (Fig. 3-2). The list of 

primers is presented in Table 3-5. PCR amplification was performed using pfu 

polymerase (Fermentas, USA), and products were cloned into the C-terminus His6-

tagged pET22b expression vector (Novagen, Germany). The resultant constructs were 

then verified by using sequencing vector primers T7-terminator and SP6, with the 

BigDye® Terminator v3.1 Cycle Sequencing Kit (Life Technologies, USA) according 

to the manufacturer’s instructions. Constructs were then introduced into E. coli BL21 

cells for protein expression. 
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Table 3-6. Primer used for the creation of recombinant MorC protein expression 
constructs. 

Primers Sequence 
NdeI-MorCFW 5'- AACATATGAAGAGCCAGCCCGATGC -3' 
HindIII-morCFL RE 5'- TTAAGCTTCCATGGCCAGGGTCAGG-3' 
NdeI-DGC/PDE FW 5'- AACATATGACTAAACTCGCGCAGCAAC-3' 
HindIII-DGC/PDE RE 5'- TTAAGCTTCTCATCACCCGGAATCGG-3' 
HindIII-DGC RE 5'- TTAAGCTTGTAACTGGCTTCAGCGTTC-3' 
NdeI-EAL FW  5'- AACATATGTTCACTGAAGCGCTGAACG-3' 
NdeI-PAS/GAF FW 5'- AACATATGGAGGTAGTGACGCAGTTG-3' 
HindIII- PAS/GAF RE 5'- TTAAGCTTCGAAGACATCACCCAGACT-3' 
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3.12.2. Testing of catalytic protein expression clones for yield and solubility 

E. coli BL21 cells transformed with the protein expression plasmids were grown using 

overnight cultures at 37ºC with shaking at 200rpm, until OD600 reached 0.8. Induction 

was then carried out by the addition of 0.1mM IPTG into the culture followed by 

incubation overnight at 20ºC with shaking at 200rpm. Bacterial cells were then 

harvested and recombinant protein expression was verified through SDS-PAGE 

analyses using a 10% SDS-PAGE gel and Coomassie blue stain (Sambrook et al., 

1989). Bacterial cells containing expressed proteins were then lysed by sonication in 

lysis buffer containing 300mM NaCl, 50mM NaH2PO4, 20mM Imidazole and 1% 

Triton-X, pH8.0. The soluble and insoluble protein fractions were separated by 

centrifugation at 12,000 rpm for 30min. These fractions were then examined for 

solubility by SDS-PAGE analyses.  

To obtain recombinant MorC proteins for enzymatic assays and c-di-GMP binding 

assays, several constructs were designed and cloned into pET22b vector for 

expression (Fig. 3-2). After sequence verification, these constructs were introduced 

into BL21 for expression. SDS-PAGE of ASNEF+ EAL and EAL protein fractions 

(Fig. 3-2) showed that the soluble fractions contained little or no recombinant 

proteins. As such, these constructs were sent as requests to the Protein Expression 

Facility in Department of Biological Sciences, National University of Singapore for 

recombinant protein construct creation with GST tag as well as for trials to fuse the 

6His-tag to the N-terminal. Thus far, these constructs have not yielded positive 

results. 
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Fig. 3-3. Recombinant MorC is mainly present in the insoluble fraction of 

cellular proteins. (A) Several constructs expressing full-length protein and one or 

several domains were designed, created and cloned into BL21 for expression. (B) 

SDS-PAGE gel of ASNEF+EAL and EAL solubility check. Lane 1-3 shows ASNEF+ 

EAL protein fractions. Lane 1: whole cell; lane 2: insoluble fraction; lane 3: soluble 

fraction; L is the protein ladder. Lane 4-6 shoes EAL protein fractions. Lane 4: whole 

cell; lane 5: insoluble fraction; lane 6: soluble fraction. 
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3.13. Flagellin quantitation by Western analysis  

3.13.1 Flagellin preparation 

P. putida cell cultures were grown at 30ºC and collected at various OD600 that 

correspond with the early, mid and late log phase. Cells were harvested by 

centrifugation at 2000rpm for 90min, washed with 0.9% NaCl, and solubilized in 

20mL water. After which, the flagella was sheared-off by vigorous vortexing for 

5mins. Cells were then centrifuged at 10000 g for 1h followed by the collection of 

supernatants containing the flagellin.  

3.13.2 Immunoblotting 

After SDS-PAGE, proteins from the gels were transferred into ECL nitrocellulose 

membrane (Pall Corporation) at 100V for 90min in a buffer (20% methanol, Tris and 

glycine) at 4ºC. Subsequently, the membranes were washed twice with water and then 

blocked with 5% BSA with 0.05% Tween-20. All incubations were performed at 

room temperature for 2h or overnight at 4ºC. Mouse monoclonal antibody against the 

Į subunit of E.coli RNA polymerase was purchased from Neoclone Biotechnology, 

WI, USA while the flagellin antibodies was raised in rabbits by 1st BASE Antibodies 

(1st BASE, Singapore).   

All secondary antibodies were anti-rabbit/mouse IgG that had been conjugated with 

alkaline phosphatase (Sigma). Detection was performed with Immobilon TM Western 

chemiluminescent AP substrate (Millipore).  

Though preliminary trials resulted in poor blots, it is sufficiently clear that the RNA 

polymerase antibody was able to bind with relative specificity and gave good signals 

on the Western blots that were more intense with increased volumes of samples (Fig. 
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3-3). The flagellin antibody was non-specific however, resulting in multiple bands 

being detected in each lane. As such, the antibody is not suitable for flagellin 

quantification.  
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Fig. 3-4. Preliminary trials of Western blot analysis of flagellin levels. (A) 

Increasing volumes of cell extract was utilized for RNA polymerase probing to 

determine the specificity and sensitivity of the antibody. (B) Flagellin level was tested 

in different volumes of flagellin extract to verify the specificity and sensitivity of the 

antibody. Arrows depict the expected molecular weight of the protein being probed.   

  

L    10        20       30 L   10       20       30     40 

A B 

Volume of extract loaded (µL)  Volume of extract loaded (µL)  



 71 

Chapter 4. Comparisons of MorA function between P. 

putida and P. fluorescens   

 

 

 
High degree of genome plasiticity in Pseudomonas species can lead to presence or 

absence of proteins or differences in their isoforms that in turn leads to 

significant differences in cellular functions in the different species and their 

strains. In order to understand how MorA mediates c-di-GMP signaling in P. 

putida and P. fluorescens, I studied the motility and biofilm formation behavior 

of morA knockout strains in these 2 species. In order to understand how MorA 

mediates c-di-GMP signaling in P. putida and P. fluorescens, I studied the 

motility and biofilm formation behavior of morA knockout strains in these 2 

species. In this Chapter, I present data to show that gentamycin cassette 

insertion lead to confounding effects in morA mutants in P. putida such that a 2-

fold increase in motility was observed instead of the 2.8-fold previously reported 

with both the transposon mutant and directed insertional mutant. While 

hypermotility was reported in both P. putida and P.aeruginosa, no difference in 

swimming motility or biofilm formation was observed when morA is knocked out 

in P. fluorescens Pf0-1. 
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4.1. BACKGROUND 

 

Previously in our laboratory, a genetic approach was used to identify negative 

regulators of swimming motility (Choi, 2005). It was thought that the knockout of 

such a gene would lead to enhanced motility. Therefore, mTn5-gfp was introduced 

into PNL-MK25 wild type and 3200 transposon insertion mutants were screened 

using 0.4% w/v soft agar. As a result, three enhanced motility mutants were identified. 

Two of the mutants exhibited 2.8-fold increase in motility and subsequent DNA 

sequencing results show that the transposon inserted into the same gene, which was 

named morA. The third mutant exhibited over 2-fold increase and was designated as 

morB.  

 

While characterization of morA was previously carried out in our lab, the experiments 

were done with either the transposon mutants or the insertional mutant whereby a 

gentamycin cassette was inserted into morA (Fu, 2006, Li, 2006 and Lye, 2006). 

Though these mutants are suitable for fast screening and characterization of the gene 

function, it is an impediment for the study of the signaling members. This is because 

there are just a handful of selection markers that are commonly used in Pseudomonas 

species for molecular studies. These same few selection markers are also utilized  in 

many plasmids and transposons for complementation and overexpression studies and 

other assays (Bloemberg et al, 1997; Choi and Schweizer, 2006). This being the case, 

it becomes difficult to study the relationship of different genes using the  genetic 

approach.  
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Furthermore, the effect of inserting a large fragment into the genome is well 

documented to result in polar and anti polar effects. These effects are especially 

pronouced in operons or genes that shares the same transcription unit. While mTn5-

gfp is well-designed, it is possible that data previously collected are influenced in a 

manner that is hard to predict. So, to ensure that the data obtained from the transposon 

mutants were not confounded by other factors but is reflective of gene function and 

also to allow for multiple gene knockout and complementation studies, markerless 

knockout mutant generation was carried out.  

 

After obtaining ¨morA mutant strain, various phenotypic assays were conducted and 

then results were compared with the transposon mutants for verification.  

  

4.2. RESULTS AND DISCUSSION 

 

4.2.1. Generation of markerless knockout mutant strains 

 

To generate markerless knockout mutant strains, an established protocol was adapted 

for our use (Choi and Schweizer, 2005). Firstly, PCR was used to generate 3 

fragments namely: 5’ gene fragment, 3’ gene fragment and frt flanked gentamycin 

fragment with overlaps to facilitate fusion PCR (Fig. 4-1). A second PCR was then 

used to create the markerless recombination fragment flanked with restriction sites. 

While Choi and Schweizer mentioned that the prescribed PCR conditions to be 

critical for the generation of clean fragments,  we were unable to obtain the 

recombination-proficient DNA fragment using those conditions. Extensive 
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optimization with the cycle conditions and polymerase mixture was performed in 

order to obtain our fragments of interest.  

 

Fig. 4-1. Schematic illustration of mutant fragment generation by overlap 

extension PCR. During the first round of PCR (PCR1), the 5’ and 3’ gene fragment 

as well as the gentamycin (Gm) resistance cassette were amplified using four specific 

primers ( G-UpF-SpeI, G-UpR-Gm, G-DnF-Gm and G-DnR-ApaI) as well as the Gm-

specific primers (GmF and Gm-R). A total of three fragments with partial overlaps are 

generated and depicted in the figures as blue boxes. The RE sites are indicated by 

green and red boxes. These PCR fragments are then purified and assembled via 

overlap extension during PCR (PCR2) using the G-UpF-SpeI and G-DnR-ApaI 

primers, resulting in a recombination proficient mutant PCR fragment that can be 

directly introduced into the pEX18ApGW vector. (Modified from Choi and 

Schweizer, 2005) 
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This mutant gene fragment was then directly introduced into pEX18ApGW sucicide 

vector through conventional RE and ligation molecular biology technique instead of 

using the Gateway system. While the use of Gateway system was advantageous in 

that it avoided the problem of not being able to locate suitable RE sites in the gene of 

interest, conventional molecular biology method is faster as only one cloning step was 

required instead of first transferring the fragment into the pDnor221 vector and then 

into the pEX18ApGW vector. In our case, all our gene of interest was able to use the 

RE sites ApaI and SpeI which are also located on pEX18ApGW.  As such, it was as 

efficient as using the Gateway system. Furthermore, by using existing reagents in the 

lab, we were able to save costs as there is no need to purchase additional reagents.  

 

 The putative mutant clone was generated by transferring the suicide plasmid 

pEX18ApGW-Gene::Gm into P. putida. During this time, single and double cross-

over events can both occur. To resolve this, sucrose selection in the presence of 

gentamycin was performed. After the generation of double cross-over clones,  the Gm 

primers was utilized on the genomic DNA to confirm that the gene have indeed been 

replaced by mutant gene fragment. 

 

The gentamycin cassette is subsequently removed by the introduction of pFLP3 that 

allowed for the production of flippase recombination enzyme (FLP). FLP recognized 

specific FRT sequences for recombination to occur. This then resulted in the excision 

of the Gm resistance gene cassette, leaving behind a 123bp long FRT scar. Finally, a 

markerless but not scarless knockout strain is generated. Sequencing performed on the 

strain shows that the FRT scar is in-frame and do not contain any stop codon (Fig. 4-
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3). This method is therefore very suitable to study operons or gene organized in 

polycistronic units (Choi and Schweizer, 2005).  

 

 PCR was carried out using gene specific primers (Table 3-2) and genomic DNA 

(gDNA) from these putative markerless clones to verify that the FRT recombination 

had taken place. A smaller PCR product size indicated the successful removal of a 

large portion of the various target genes. Fig. 4-2 show that the PCR product of the 

genes that did not undergo homologous recombination was on average, 2kb larger 

when compared to the genes that were disrupted.  
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   L      1      2       3       4       5       6     7       8       9    10     11     12     13     14      15 

 

Fig. 4-2. Confirmation of  markerless knockout mutant genotypes by PCR. PCR 

based confirmation of deletion of various genes using genomic DNA as template; M, 

1 kb ladder (Fermentas); 1,2,3,  morA, morC and cyaA genotype respectively tested 

using ¨morA gDNA as template; 4,5,6, morA, morC and cyaA genotype respectively 

tested using ¨morC gDNA as template; 7,8,9, morA, morC and cyaA genotype 

respectively tested using ¨morA¨PRU& gDNA as template; 10,11,12, morA, morC 

and cyaA genotype respectively tested using ¨cyaA gDNA as template; 13,14,15, 

morA, morC and cyaA genotype respectively tested using ¨morA¨F\D$ gDNA as 

template. 
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In addition, all clones were verified via DNA sequencing for the removal of gene 

sequences as well as for the detection of the FRT scar that was left after the pFLP3 

excision of the gentamycin resistant cassette. The electropherogram of ¨morA clone 

in Fig. 4-3 shows the 123bp FRT scar after FLP removed the gentamycin resistance 

gene. The electropherogram also shows that 3822bp of the 3849bp long morA had 

been successfully displaced from the chromosome. 

 
   
It was noted that the suicide vector pEX18ApGW was designed for use with P. 

aeruginosa. The  bla gene located on the suicide vector was intended to function as a 

negative selection with the use of carbenicillin in the medium to eliminate single 

cross-over recombinants as  P. aeruginosa is carbenicillin sensitive. This is however, 

not applicable to P. putida, as it is carbenicillin resistant.  As such, it presented more 

challenges to screen for the desired transformants. This being the case, it would be 

beneficient to replace the bla gene with another selection marker such as tet gene for 

the selection of tetracycline resistance instead. 
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4.2.2. Verification of the markerless knockout  ¨morA strain  

 
 4.2.2.1. Disruption of morA

 
does not affect growth of the ǻPorA cells  

 

As the ¨morA strain is critical to the downstream studies, phenotypic assays were first 

carried out to characterize the strain before proceeding with other strain generation 

and studies. The growth rates of WT, aloC3H transposon mutant (morA::mTn5-gfp). 

ǻPRU$ mutant and ǻPRU$�S*%�-morAFL complementation strains were examined in 

LB medium for a period of 12h and were found to be comparable in all the four 

strains (Fig. 4-4). The transition from lag phase to the log phase was at 0.6 OD
600 

and 

was marked as early-log phase. The mid-log phase was at 1.6 OD
600

. The transition 

from log phase to stationary phase was at 2.3 OD
600 

and was marked as log-to-

stationary transition phase. All three strains also reached a similar maximum OD
600 

of 

~ 2.3. Hence, disruption of morA
 
did not affect the growth rate of the

 
mutant strain.   
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Fig. 4-4. Growth curve of various P. putida strains. Growth curves of P. putida WT 

and various mutants in LB medium showed no differences in the growth. Absorbance 

at 600nm (OD600) of bacterial cultures growth in LB medium at 30ºC were measured 

at intervals of half to one hour.  
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 4.2.2.2.  Complementation confirms the effect of morA mutation
  

 

While the transposon mutant C3H and the targeted insertional mutant MorDCK03 

exhibited 2.8-fold increase in motility, the ǻPorA strain showed about 2-fold increase 

in swimming motility through 0.4% (w/v) soft agar compared to WT
 
(Fig. 4-5). This 

suggests that the gentamycin resistant cassette insertion have indeed caused some 

effects that have led to a more pronounced hypermotility phenotype to be observed in 

the motility assay. Studies were then carried out to ascertain whether the cloned morA
 

gene was able to restore the phenotype in ¨morA and if additional copies of morA 

affects motility. Complementation of the ǻPRU$
 
strain with the cloned morA

 
gene 

expressed from its native promoter was provided in trans on a stable low copy 

number plasmid (pGB1:morA FL). The vector pGB1 has been reported to be present 

in low copy number in Pseudomonas cells (Bloemberg et al., 1997).  

 

Restoration of the wild-type motility phenotype in the ǻPorA strain was observed 

with the complementation and at the same time, motility was reduced to lower than 

that of the WT (Fig. 4-5). The presence of the pGB1:morA FL plasmid in WT led to 

almost 40% decrease in motility phenotype when compared to WT. These results 

suggest a strict control of morA
 
dosage within the cells; a slight perturbation in gene 

copy number resulted in measurable differences in motility.  
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Fig. 4-5. Complementation of morA was able to store swimming motility 

phenotype. Swimming motility of WT, WTpGB1morA, ǻPorA mutant, 

ǻPorApGB1morA and C3H in LB semisolid agar (0.4% w/v) was examined. WT: P. 

putida parental strain PNL-MK25, WTpGB1morA: morA overexpression strain , 

ǻPorA mutant: markerless knockout mutant, ǻ0RU$S*%�PRU$: morA 

complementation strain, C3H: transposon mutant. Results are based on three 

independent experiments with five replicates each.  
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Previous studies have indicated that biofilm formation requires appropriate flagellar 

biogenesis (Pratt and Kolter, 1998; Sauer et al., 2002). Therefore, investigations were 

carried out to ascertain whether constitutive production of flagella in ¨morA
 
had an 

effect on biofilm formation. Biofilm formation by WT
 
and ¨morA

 
mutant strain was 

examined on polystyrene surfaces by incubating bacterial cultures in polystyrene 

tubes for various time intervals. Biofilms were visualized by crystal violet staining. 

The amount of biofilm formed was then quantitated by solubilizing it in 1% SDS.  

 

 At 3 hours, biofilms formed by the mutants were significantly less than those 

produced by WT (Fig. 4-6). At 10 hours, the biofilms formed by ̈ morA were visible, 

but were still less than those formed by WT (Fig. 4-6). The ¨morA mutant 

complemented with cloned morA completely restored the biofilm formation 

phenotype (Fig. 4-6). These results suggested that the precocious production of 

flagella in ̈ morA mutants was correlated with a reduction in biofilm formation.  
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Fig. 4-6. morA affects biofilm formation in P. putida PNL-MK25. The plasmid 

pGB1morA were introduced into ǻPRU$ strain for complementation, leading to an 

increase in biofilm formation to levels higher than WT. Biofilms formed at 3 h and 10 

h after inoculation in polystyrene tubes were stained with 0.1% crystal violet.  
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4.2.3.  Characterization of MorA function in Pf0-1  

 

4.2.3.1. ¨morAPf shows no difference in motility when perturbed 

 

 PNL-MK 25 was selected as the study organism due to the many reason discussed in 

the Literature Review Section 2.1.2. Thus far, the PNL-MK 25 genome have not been 

annotated and so it is challenging to identify the genes disrupted in large-scale 

transposon mutagenesis. In order to verify our data from the random transposon 

mutant screen, gene walking has to be performed each time a gene sequence is 

required.  The gene sequence required can be several Kb in length and may also be 

resistant to PCR-based gene walking techniques due to the high GC content found in 

many of the Pseduomonas genomes. Hence considerable time is required to obtain 

and verify these sequences. In the long term planning of experiments, this is a rate-

limiting step should multiple genes are to be studied at the same time. 

 

While P. aeruginosa PAO1 strain is annotated and was already utilized in our 

laboratory for various MorA related studies, it is not an ideal strain for large-scale 

experimentation as it is a biosafety level 2 organism that required more safety 

equipment as well as specially engineered and designed workspace. More 

importantly, it was previously shown that ¨morAPa requires lower than 0.4% w/v agar 

motility plate to detect a difference of 11%, which makes the handling of the agar 

plate difficult (Wong, 2011). Thus motility plate assay as a screening method do not 

work well with PAO1.  This difference in motility is more discernable when the cells 

were observed with video microscopy to compute cell speed. ¨morAPa was found to 

be 25%, 21% and 12% faster than WT at the early-, mid- and late-log phases 
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respectively (Wong, 2011). This method however is manpower intensive and thus not 

suitable for large-scale studies.  

 

 As an alternative, we considered the use of P. fluorescens Pf0-1. The advantages of 

using Pf0-1 are many. Its genome had been annotated and it is well studied. 

Furthermore, it is a biosafety level 1 organism and thus do not require special set-up. 

Most importantly, the gene sequences obtained from gene walking from PNL-MK 25 

aligned well with Pseudomonas fluorescens Pf0-1 and like PNL-MK 25; it is a soil 

organism that presents multitrichous polar flagella (Silby et al., 2009). Together, these 

properties suggest that it is more likely that ¨MorAPf would present the hypermotility 

phenotype on motility plate assay, making it optimal for large-scale screening. Hence, 

¨morA in Pf0-1 was created and characterized to evaluate the possibilities of using it 

to replace PNL-MK25 as a model for further studies.  

 

Intriguingly, Fig. 4-7 shows that the knockout of morA and overexpression of morA in 

Pf0-1 strain showed relative motility of 0.9 and 1 respectively. This shows that in Pf0-

1, the perturbation of MorA did not lead to significant changes in the swimming 

motility.  This is very different from the hypermotility phenotype that had been 

previously observed in both P. putida PNL-MK25 and P.aeruginosa PAO1. Pf0-1 is, 

therefore, an interesting subject to study in order to determine why its phenotype is so 

different when its genome is found to be very similar to that of PNL-MK25.  
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Fig. 4-7. ¨morAPf does not affect swimming motility phenotype on plate motility 

assay. Swimming motility of Pf0-1 WT, ǻ0RU$Pf mutant, WTPfpGB1MorAPf and 

WTPfpGB1 in LB semisolid agar (0.4% w/v) was examined. Results are based on 

three independent experiments with five replicates each.  
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4.2.3.2. ¨morAPf does not affect biofilm formation  
 
 
As soil microbes are often nutrient limited, it was thought that bacterial adhesion to 

the soil is a strategy for the enhancement of ability to access nutrients that are in short 

supply or available only intermittently. Furthermore, it is also advantageous in 

preventing vertical displacement and maintaining aerobes in the top soil (DeFlaun et 

al., 1990).  

 

This being the case, we next examined biofilm formation. Fig. 4-8 also show a similar 

trend in that ¨morAPf and WTPf pGB1morAPf exhibited similar amount of biofilm 

formation when compared to WTPf at both early and late time point. It was also 

observed that the amount of biofilm formed by P. fluorescens strains are much less 

when compared to P. putida.  

 

As there were no substantial differences that can be seen with both motility plate 

assay and biofilm formation tube assay, the Pf0-1 model was deemed to be unsuitable 

for our purposes of high-throughput screening of mutants. However, the use of the 

biofilm formation tube assay and plate motility assay might not be sufficiently 

sensitive to observe the differences presented by ¨morAPf. Thus this is not an 

exhaustive characterization of ¨morAPf and more sensitive assays such as video 

microscopy or confocal microscopy of biofilm might be able to elucidate morA gene 

function in Pf0-1.  
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Fig. 4-8. ¨morAPf  does not affect biofilm formation. Biofilms formed at 3 h and 10 

h after inoculation in polystyrene tubes were stained with 0.1% crystal violet. Results 

are based on three independent experiments with five replicates each.  
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4.2.4. SOLiD sequencing of P. putida  
 

Since Pf0-1 mutant was not able to provide a good model for our purpose, it was 

thought that the annotation of PNL-MK25 would be ideal for solving the problems we 

currently face and also for easing future work. As such, SOLiD™ sequencing 

(Applied Biosystems) was performed to obtain a workable genome draft.  

 

Preliminary data is presented in Table 4-1 while more details are provided in 

Appendix II. SOLiD™ sequencing is a massively parallel; ligation mediated 

sequencing method that generates tens of millions of 25-50nt reads in a single run. In 

this system, each base is read twice due to 2 base encoding, thus the error rate is lower 

than other sequencing methods. However, as the read length is very short, it is more 

difficult to obtain large contigs without repeats of the sequencing process. On top of 

that, de novo assemblies have a significantly higher raw device error rate than the 

99.94% reported for SNP calling. As such, more work is required to obtain a fully 

annotated genome.  

Table 4-1. SOLiD sequencing preliminary data. 

No. of contigs 17041 

Total length 7879539 

Average length 462.0 

Max length 2998 

Min length 301 

N50 length 438 

N90 length 317 
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4.3. CONCLUSION AND FUTURE WORK 
 

 

While pEX18ApGW had been used to satisfactory outcome in this project, positive 

selection could not be carried out as numerous strains of Pseudomonas such as Pf0-1 

and PNL-MK25 used in this study, is resistant to the marker. To improve upon the 

matter requires that the vector be redesigned for use in P. putida. This can be 

achieved by the simple replacement of bla with tet gene for positive selection. 

Phenotypic characterization of ¨morA showed that ¨morA presented lower motility 

when compared to C3H and MorDCK03 morA knockout strains showing that 

insertion of gene fragment had lead to confounder effects 

 

Though Pf0-1 is closely related to PNL-MK25, many differences are demostrated in 

their physiology. In particular, no differences were observed in swimming motility or 

biofilm formation in ¨morAPf . Therefore, morA is a negative motility regulator in P. 

putida PNL-MK25 but not in P. fluorescens Pf0-1.Since ¨morAPf  did not lead to 

changes in motility, a global gene expression studies should be performed in 

conjunction with the annotation of PNL-MK25. These data can be used to 

complement our current random mutant data set to elucidate important members of 

the MorA signaling pathway.  

 

While SoLiD sequencing had not yielded a complete annotated PNL-MK25 genome 

data, it is already evident that the genome is more similar to Pf0-1 than P. putida 

KT2440. This being the case, it would be worthwhile to revisit the classification of 

the strain. Currently, more bioinformatics analysis as well as P454 sequencing is 

planned to complete the genome annotation.  
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Chapter 5. Two independent mechanisms that affect 

hypermotility.  

 

 

 

 
Genetic revertants can be used to uncover members of pathways controlled by 

specific groups of genes. Two such revertants namely, cyaA and opuAC that 

reduced the hypermotility of morA mutants are partially characterized in the 

study report in this Chapter. I present data to show that cyaA function in an 

antagonistic manner with morA while opuAC acts independently of morA to 

control motility. Incidentally, the disruption of opuAC leads to 45% increase of 

pyoverdine secretion to the medium.  
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5.1. BACKGROUND  

 

The loss of MorA has been previously shown to increase fliC expression in P. putida 

that, in turn, increases flagellin level. As such, MorA was proposed to be a key 

component of an alternative regulatory system that normally limits the expression of 

flagellar biosynthesis pathway to the late phases of growth (Choy, 2005).  

 

In order to investigate the members of the MorA signaling pathway, random 

mutagenesis was carried out on MorDCK03 strain using mTn5-gfp (Suarez et al., 

1997). As morA loss leads to hypermotility, we screened for hypermotility reversion 

to wild type levels to uncover intermediates in MorA signaling pathway. We 

hypothesized that any disruption in the flagellar pathway would cause serious defects 

in the motility of the cell via the malformation or malfunction of the flagella causing 

non-motile cells. Thus non-motile mutants were excluded from the study during the 

primary and secondary selection process.  

 

An estimated 3500 transconjugants were screened via plate motility assay for 

decrease of colony diameter that would indicate a reversion in the motility phenotype. 

Through the primary screening, 408 transconjugants were selected for video 

microscopy assay for motility of individual cells. Of which, a total of 76 mutants were 

found to show reversion of hypermotility phenotype while retaining the ability to 

swim. Several genes were identified in these transconjugants via single primer PCR 

(Ng, 2006). Among these motility reversion mutants, cyaA, ABC-type glycine betaine 

transport system (opuAC) and a putative diguanylate cyclase/phosphodiesterase 
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(GGDEF & EAL domains) with PAS/PAC and GAF sensor(s) that we designated 

morC were selected for further studies.  

 

As MorA contains both DGC and PDE domain, MorC, being a putative GGDEF-EAL 

bidomain protein, offers an intriguing view in the complexity of c-di-GMP regulation 

by offering clues as to how c-di-GMP is being regulated at multiple levels to regulate 

the various pathways in the cell. MorC will be discussed in greater details in Chapter 

6. 

 

cyaA encodes an adenylate cyclase, that in turn, suggests linkages between two 

different second messenger pathways in the swimming motility regulation. It was 

previously reported in V. cholerae that cAMP-cAMP receptor protein (CRP) 

regulatory complex could work independent of VpsR to regulate biofilm matrix 

proteins (Fong and Yildiz, 2008). VpsR is a member of the NtrC subclass of response 

regulators of the two-component signal transduction systems that possesses an N-

terminal domain that can be phosphorylated by a cognate sensor histidine kinase. This 

is achieved by cAMP-CRP regulating the expression of a set of genes encoding DGCs 

and PDEs. Mutational and phenotypic analysis further identified a DGC, CdgA to be 

responsible for biofilm formation increase in ¨crp mutant. ABC-type glycine betaine 

transport system was disrupted in two motility reversion mutants, suggesting that it is 

important in the MorA regulation of motility pathway. 

 

To verify that the random transposon screening was successful, phenotypic assays 

were previously carried out to characterize the identified mutants. However, in order 

verify the motility reversion mutants and to also facilitate genetic studies; markerless 
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knockout of these mutants were generated in this study and their phenotypes were 

then characterized. 

 

 

5.2. RESULTS AND DISCUSSION 

 

5.2.1 CyaA acts in an antagonistic manner to MorA to control motility 

 

In order to validate the data obtained from the random mutagenesis screening, cyaA 

single and ¨morA¨F\D$� double markerless knockout mutants were generated. 

Subsequently, plate motility assay and biofilm formation assay was conducted. The 

data obtained was then compared to the parameters used for the screening of motility 

reversion mutants for any reduction in motility when compared to ¨morA strain.  

 

 The results presented in Fig. 5-1 shows that there is indeed a clear reduction of 

motility from 2-fold to 0.5-fold in ¨morA¨F\D$ showing that CyaA is required for 

the hypermotility phenotype observed in ̈ morA. This requirement is independent of 

cyaA copy number as the hypermotility phenotype is observed in both 

¨morApGB1cyaA and ¨morA when cyaA is present in multiple copies and as a single 

copy, respectively. The products of both genes act negatively in the control of motility 

as can be seen in the hypomotility phenotype presented in both overexpression strains 

(Fig. 4-5; Fig. 5-1B).  

 

Table 5-1 summarizes the findings and shows that there is a clear trend in the 

relationship between MorA and CyaA. MorA exerts dominant effect over CyaA in the 



 97 

control of motility. This is derived from the observation that the absence of MorA 

leads to hypermotility while the presence of MorA in both absence and presence of 

CyaA leads to an intermediate motility.  In addition, ¨ cyaA did not show any 

observable changes in motility. 

 

Overexpression of either morA or cyaA when both genes are present, leads to 

hypomotility (Table 5-1). This is the same phenotype observed when both genes are 

knocked out thus it is likely that morA and cyaA interact in an antagonistic manner 

and that at least one gene is required for swimming motility. It is also observed that 

morA determines the direction in which cyaA controls motility as the presence of both 

morA and cyaA leads to reduction in motility while the absence of morA with cyaA 

leads to increase in motility.  
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Fig. 5-1. CyaA acts in an antagonistic manner to MorA to control motility.  (A) 

The swimming motility of various strains in semisolid LB agar (0.4%[wt/vol] 

agar) was examined after incubation at 30ºC for 24h. (B) The bar chart shows the 

relative motility of the mutants as compared to the WT. Relative motility is 

derived by dividing the colony diameter of the mutants by the colony diameter of 

WT. ¨morA acting as a control showed about 2-fold increase in swimming 

motility through 0.4% (w/v) soft agar compared to WT. The results were based 

on three independent experiments, each with five replicates; error bars indicate 

standard deviations and are represented as vertical bars. 
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Table 5-1. Effects of combinations of morA and cyaA genes on motility. 

Strains 
 

cyaA morA Relative motility to  
WT 

WT pGB1cyaA ++ + 0.5 
WT pGB1morA + ++ 0.5 
¨morA¨F\D$ - - 0.5 
WT + + 1 
¨cyaA - + 1 
¨morA pGB1cyaA ++ - 2 
¨morA + - 2 

 
(-) denotes the absence of gene expression; (+) denotes wildtype expression of gene; 

(++) denotes overexpression of gene. Swimming motility is calculated relative to WT. 

Relative motility is derived by dividing the colony diameter of the mutants by the 

colony diameter of WT. 
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5.2.2. CyaA does not affect biofilm formation  

 

Fig. 5-2 shows that in all strains, the effects on biofilm formation were seen at the 

early time point of 3 hours and persisted to the later time point of 10 hours. Similar to 

the motility reversion mutant, cyaA knockout in ¨morA background increased biofilm 

formation when compared to ¨morA. The complementation of ¨morA¨cyaA with 

pGB1cyaA was able to complement for loss of cyaA such that the biofilm formation 

was reduced back to the level of ¨morA. 

 

The assay results show that cyaA alone does not affect biofilm formation. This was 

determined from the lack of significant difference when comparing ̈ cyaA and WT 

pGB1cyaA with WT. The changes in biofilm formation observed in ¨morA¨cyaA and 

¨morA pGB1cyaA can also be attributed to the absence of morA rather than due to 

cyaA. This can be seen in the reduced biofilm formation when comparing between 

¨cyaA and ¨morA¨cyaA as well as in WT pGB1cyaA and ¨morA pGB1cyaA 

respectively.  
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Fig. 5-2. CyaA does not affect biofilm formation in P. putida. The plasmid 

pGB1cyaA was introduced into various mutant strains for complementation and 

overexpression. Biofilms formed at 3h and 10h after inoculation in polystyrene tubes 

were stained with 0.1% crystal violet. The results are based on three independent 

experiments, each with five replicates; error bars indicate standard deviations and are 

represented as vertical bars. 
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5.2.3. OpuAC functions independent of MorA in control of motility 

 

ABC-type glycine betaine transport system was identified in two random transposon 

mutants, Q12 and H6. In both mutants, the transposon was inserted into the substrate-

binding region of the transport system (OpuAC). Unlike most genes, opuAC, 

containing 2 captial letters was the designated gene name given in NCBI. opuAC is 

the third gene in an operon encoding 4 genes for the ABC-type glycine betaine 

transport system. This being the case, it is possible that unforeseen effect can affected 

our characterization when the motility reversion mutant was used for characterization. 

¨opuAC was thus generated using the markerless knockout protocol discussed 

previously (Choi and Schweizer, 2005). As the protocol was designed to not affect the 

neighbouring genes, the results obtained reflect the effect due to the loss of the 

substrate-binding region only. 

 

Unexpectedly, the disruption of opuAC in ¨morA background did not lead to lower 

motility than that observed in ¨morA (Fig. 5-3). Instead, ¨morA¨opuAC double 

knockout strain showed the same motility phenotype as ¨ morA, that is, a 2-fold 

increase in motility. It should be noted that motility is lowered when compared to 

¨opuAC single knockout mutant, suggesting that the hypermotility phenotype is 

modulated by the loss of morA. Since ¨opuAC specifically disrupted the third gene in 

the operon, it is likely that the motility reversion mutants reflected phenotypic 

changes due to either the disruption of the the fourth gene in the operon that encodes 

for the inner membrane protein or the disruption of both genes. ¨opuAC showed an 

even more pronounced hypermotility phenotype of 3-fold increase when compared to 

WT. Hence opuAC is a negative regulator of motility. Overexpression of morA in 
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¨opuAC and ¨morA¨RSX$C caused the motility of ̈ opuAC to decrease by 40% and 

¨morA¨RSX$C to be reduced by 20%. This data demonstrates that MorA is able to 

perturb motility without OpuAC. When comparing ¨opuAC pGB1morA and WT 

pGB1morA as well as ¨opuAC pGB1morA and ¨morA ¨opuAC pGB1morA, it is 

evident that disruption of opuAC in the presence of morA still leads to hypermotility. 

Together, these results suggest that opuAC functions independent of MorA in 

controlling motility.  

  



 104 

 

  

 

 
 
Fig. 5-3. opuAC acts independently of morA in P. putida. (A) The swimming 
motility of various strains in semisolid LB agar (0.4%[wt/vol] agar) was examined 
after incubation at 30ºC for 30h. (B) The bar chart shows the relative motility of the 
mutants as compared to the WT. Relative motility is derived by dividing the colony 
diameter of the mutants by the colony diameter of WT. ¨morA acting as a control 
showed about 2-fold increase in swimming motility through 0.4% (w/v) soft agar 
compared to WT. The results are based on three independent experiments, each with 
five replicates; error bars indicate standard deviations and are represented as vertical 
bars. Asterisk * indicate that the values compared are significantly different. 
Significance was calculated using Tukey’s pairwise comparison of means, p=0.05.  
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5.2.4. ¨opuAC strains have reduced biofilm formation  

 

Biofilm formation assay was carried out to further characterize the strain and clarify 

the relationship between morA and opuAC. ¨morA¨opuAC had 7-fold increase in 

biofilm formation after 10hours incubation when compared to ¨morA. ¨opuAC 

mutant, on the other hand, presented low level of biofilm formation such that the 

amount is similar to that observed in ¨morA (Fig. 5-4). This suggests that loss of 

opuAC leads to reduced biofilm formation.   

 

Overexpression of morA in ¨ opuAC led to increase in biofilm formation to similar 

level as WT, showing that morA is able to perturb biofilm formation without OpuAC. 

Likewise, ̈ opuAC pGB1morA and ¨morA¨opuAC pGB1morA had increased biofilm 

formation when compared to their background strain. Hence, it is likely that MorA 

does not affect biofilm formation via OpuAC. The motility plate assay data combined 

with biofilm formation data allow us to conclude that OpuAC functions independent 

of MorA.  
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Fig. 5-4. ¨opuAC strain has reduced biofilm formation.  Biofilms formed at 3h and 

10h after inoculation in polystyrene tubes were stained with 0.1% crystal violet. The 

results are based on three independent experiments, each with five replicates; error 

bars indicate standard deviations and are represented as vertical bars. 
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5.2.5. ¨opuAC leads to increased production of pyoverdine  

 

Interestingly, the M9 medium in which the ̈ opuAC strain was grown was particularly 

fluorescent when compared to WT (Fig. 5-5A). As no difference was observed when 

growth curve was previously performed with LB medium, a growth curve using M9 

medium was performed and shown in Fig. 5-5. The curve show that OD600 readings 

were comparable till the mid-log phase after which the two strains begin to differ in 

which ¨opuAC showed higher OD600 readings. After 24 hours of incubation, the 

difference was substantial: ¨opuAC showed OD600 reading of 2.29 while WT showed 

a reading of 1.56, respectively. As such, the use of OD600 readings as a comparison of 

growth between WT and ¨opuAC is not accurate. To accurately compare growth, 

other methods such as direct microscopic counts or viable cell counts (colony counts) 

would have to be utilized in future work.  

 

It is known that fluorescent pseudomonads produce a line of siderophores with high 

complexing constants, of which, one of the most important representatives are the 

pyoverdines (Neilands, 1995). The pyoverdines are comprised of a 

dihydroxyquinoline moiety that imparts fluorescence (chromophore), a peptide chain 

comprising 6–12 partially modified amino acids bound to the carboxyl group, and a 

small dicarboxylic acid connected amidically to the NH2-group of the chromophore. 

Frequently several pyoverdines co-occur differing only in the nature of the 

dicarboxylic acid side chain. The pyoverdines may also be accompanied by related 

compounds, which are considered as their biosynthetic precursors or later 

modifications (Budzikiewicz, 2007).  
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Fig. 5-5. ¨opuAC and WT shows differences in the stationary phase of growth 

curve. (A) M9 culture medium innoculated with ¨opuAC strain can be observed to be 

of lighter shade (more fluorescent) when compared to WT cells under UV lamp. (B) 

Growth curve of WT and ¨opuAC strain in M9 medium demonstrated effect of 

increased pyoverdine production on absorbance readings from mid-log phase 

onwards.  Absorbance at 600nm (OD600) of bacterial cultures growth in M9 medium 

at 30ºC were measured at intervals of half to one hour.  
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These compounds possess the same peptide chain as the pyoverdine but differ in the 

nature of the chromophore (Budzikiewicz, 2004).  

 

One of the most important functions that pyoverdine serves, due to its high-affinity 

towards iron (III), is the chelation and transport of iron (reviewed by Matzanke, 

2011).  Though iron is widely found nature, the majority of this iron is present in the 

form of insoluble material that severely limits its bioavailability. To measure 

differences in pyoverdine levels between WT and ¨opuAC, a scan was performed to 

obtain the relative fluorescence reading from 300nm to 600nm. Fig. 5-6 shows that 

the M9 medium displayed basal level of fluorescence after 430nm while in both WT 

and ¨opuAC, there were similar readings recorded between 300nm to 574nm. After 

which, the two strains showed differences in the amount of fluorescence readings. 

The largest difference was captured at between 584 to 598nm, with 588nm showing 

an increase of 45%.  

 

This preliminary data suggests that the loss of opuAC had led to increased pyoverdine 

synthesis and export, while it is not clear at the moment why this has occurred; it is an 

important finding due to the many important roles pyoverdine plays in iron transport, 

virulence and plant-microbe interaction (Neilands, 1995).  
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Fig. 5-6. Pyoverdine production was increased by 45% in ¨opuAC. Fluorescence 

scan of culture media shows that pyoverdine production was elevated in ¨opuAC.  

24h old bacterial culture was centrifuged to remove bacterial cells and then culture 

medium was subjected to fluorescence scanning (300nm-600nm) to obtain relative 

fluorescence unit readings. Relative fluorescence unit reading at 588nm presented the 

largest difference between WT and ¨opuAC; values at 588nm are shown as data 

labels on the chart.    
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5.3. CONCLUSION AND FUTURE WORK 
 
 

In this Chapter, CyaA and OpuAC was found to utilize different strategies to control 

motility. The data derived from motility plate assay suggests that CyaA interact with 

MorA in an antagonistic manner to control motility but do not affect biofilm 

formation. In this antagonistic relationship, it is also apparent that MorA exerted 

dominant effect on motility over CyaA. 

 

OpuAC, on the other hand, is a negative motility regulator that functions 

independently of MorA to regulate motility and biofilm formation. In addition, 

¨opuAC presented 45% more pyoverdine production when compared to WT, 

suggesting that there may be a linkage between osmoregulation with iron transport. 

Also, P. fluorescens and P. putida has very diversified pyoverdines (Meyer et al., 

1997). Thus, the identification and characterization of pyoverdine(s) in P. putida 

PNL-MK25 need to be first carried out before other experiments. Since Fig. 5-6 

showed that differential readings were registered from 560nm to 600nm, TLC or 

HPLC analysis with a standard control should be used to determine the specific 

pyoverdine contributing to the fluorescence reading. Since M9 do not contain an iron 

source, the cells are grown in iron-starved condition that would have promoted 

increased pyoverdine production. Thus, the same experiment should be repeated in 

M9 medium with the addition of varying concentration of iron to see if ¨opuAC 

presents more pyoverdine than WT under such condition to understand the conditions 

that led to increased pyoverdine production.  
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Fig. 5-7 summarizes the interactions of MorA, CyaA and OpuAC to control various 

phenotypes that include motility, biofilm formation, chemotaxis and pyoverinde 

production. This report hints at the interaction between cAMP and c-di-GMP second 

messenger signaling system in P. putida. As ¨cyaA presented WT level of motility, 

complementation was not performed though overexpression of cyaA was studied. On 

the other hand, overexpression and complementation of opuAC was not performed. 

Thus, to complete the genetic studies, these strains need to be generated for 

phenotypic analysis. 
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Fig. 5-7. Different strategies employed by CyaA and OpuAC to control motility. 

Though CyaA interacts in an antagonistic manner with MorA, MorA exerts dominant 

effects over motility and can determine cyaA control over the direction of motility. 

OpuAC, on the other hand, acts independently of MorA to control both motility and 

biofilm formation. (+) and (-) denotes positive and negative regulation, respectively, 

while (?) denotes unknown intermediates. 

  

  

 

  



 114 

Chapter 6. MorC is a positive regulator of motility 

that affects cell speed 

 
 

Genetic approaches can be used to combine mutations in a single strain in order 

to place these genes in single or different pathways. In this Chapter, results are 

presented that show that MorC is a positive regulator of motility that functions 

downstream of MorA. While MorA affects motility, biofilm formation and 

chemotaxis, MorC is revealed to have no effects on biofilm formation or 

chemotaxis. Gene expression and cellular localization studies demonstrate that 

MorC is selectively expressed in the early and late log phase. Motility assay with 

truncated MorC construct and site directed mutants indicated that the activities 

of MorC are dependent on its PDE domain as well as MorA interacting with 

MorC through long-range conformational changes. Video microscopy in 

conjunction with TEM structural studies provided additional evidence to suggest 

that MorC affects motility via changes in cell speed where the residues in its 

EAL motif were observed to serve specific function at early and late-log growth 

phase.  

  



 115 

6.1. BACKGROUND 

 

As discussed in Section 5.1, 76 motility reversion mutants were able to reverse the 

hypermotility phenotype of morA mutant while not resulting in non-motility. In order 

to identify the genes disrupted by the transposon, single primer PCR was used to 

obtain the sequences flanking the transposon insertion sites (Ng, 2006). From the 

BLAST analysis, a motility reversion mutant, O13, exhibiting two-fold decrease in 

motility and increased biofilm formation, was identified as a putative diguanylate 

cyclase/phosphodiesterase (GGDEF & EAL domains) with PAS/PAC and GAF 

sensor(s). As the loss of gene function leads to reduced motility, we named this gene 

the motility regulator, morC. In this Chapter, we set out to characterize MorC effects 

on motility and described alongside its relationship with MorA.   
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6.2. RESULTS AND DISCUSSION 
 

6.2.1. MorC is highly conserved in Pseudomonas species  

 

DNA sequencing results show that the miniTn5-gfp transposon was inserted between 

nucleotide position 2252 and 2253 (Fig. 6-1A). Subsequently, gene walking was 

performed to obtain full length DNA sequence (Appendix III). The results reveal that 

the morC gene is 2697bp long and predicted to encode for a polypeptide of 898 amino 

acids with a predicted molecular weight of 100KDa. morC is flanked by genes 

encoding for an alkaline phosphatase D-like phosphodiesterase and a methionine 

sulfoxide reductase that helps to repair oxidative damage by reducing methionine 

sulfoxide to methionine (Fig. 6-1A). In order to create the markerless knockout 

construct, morC gene sequence 5’ fragment and 3’ fragment was amplified from nt 

position 369 to 735 and 2454 to 2697, respectively. As such, nt position 736 to 2453 

was removed in ¨morC and replaced with the FRT scar.  

 

 Searches of DNA sequence databank using BLAST showed that morC homologs are 

present in many Pseudomonas species and they shared high degree of sequence 

similarity values ranging from 40% to 96%. Members of the MorC family: (i) are 

present as single copy in Pseudomonas genomes, (ii) are likely localized in the 

cytoplasm, (iii) possess a central sensory domain of PAS-PAC motifs, (iv) contain the 

GAF cyclic nucleotide-binding domain and (v) have C-terminal ASNEF and EAL 

domains. Homologs of MorC are also found in other bacterial families though these 

typically contain the GGDEF motif rather than ASNEF motif. This suggests that the 

ASNEF motif serves a specific function in the Pseudomonas genus. A phylogram was 

drawn to examine the phylogenetic relationships between MorC and its homologues 
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(Appendix IV). The phylogram revealed that morC is most closely related to 

Pfl01_0460 of P. fluorescens Pf0-1. This observation was also consistent with other 

sequences previously obtained in our laboratory from this strain that matched closely 

with those from P. fluorescens Pf0-1 genome and not P. putida KT2440. 

 

Homology studies show that PA5017 is the MorC homolog in P. aeruginosa. 

Previous studies conducted to characterize its function found that the absence of 

PA5017 in both PA68 and PAK strain negatively affected swimming motility and 

chemotaxis while increasing biofilm formation (Kulasakara et al., 2006; Li et al., 

2007). Reverse-phase HPLC was performed on ¨PA5017 nucleotide extract and 

protein extract in which the assay did not show any DGC or PDE enzymatic activity. 

However, the results were not conclusive as it was thought that assay has limited 

sensitivity at 12pmol/mg cell wet weight. Since it is an in vitro assay, it was also 

possible that activating signals were lacking in the mixture. 
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Fig. 6-1. Conservation of morC gene in Pseudomonas species. (A) Organization of 

P. putida PNL-MK25 morC locus. The solid arrows show the direction of the genes. 

Transposon mutant strain carries the mTn5-gfp insertion at nucleotide position 2252 

of morC. morC is flanked by genes encoding for methionine sulfoxide reductase A 

(mrsA) and a conserved hypothetical protein predicted to be a phophodiesterase/ 

alkaline phosphatase D-like.  ¨morC is a markerless knockout mutant generated with 

homologous recombination.  (B) Phylogram tree of MorC and its homologues was 

generated by Clustalw (http://www.ebi.ac.uk/clustalw). (C) MorC domain architecture 

is highly conserved. Grey cylinders are segments of low compositional complexity. 

The domains were predicted using the Simple Modular Architecture Research Tool 

(http://smart.embl-heidelberg.de).   

 

A 

B 
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6.2.2. MorC is a positive regulator of motility that functions downstream from 
MorA 
 

Disrupting morC in the ¨morA background led to the reduction of motility from 2-

fold to 0.5-fold, suggesting that MorC is essential for the transduction of signals in 

MorA signaling pathway (Fig. 6-2). To investigate the effects of morC on motility, 

morC markerless single knockout strain was generated. This strain presented a 

reduction of motility to 0.5-fold, indicating that MorC is a positive regulator of 

motility. It should also be pointed out that both ¨morC and ¨morA¨PRU&� showed 

0.5-fold motility. While overexpression of morA leads to decrease in motility, the 

introduction of pGB1morA into ¨morA¨PRU&�did not lead to significant reduction in 

motility. These two results jointly suggest that MorC functions downstream from 

MorA. Though the introduction of mTN7T-morC in ¨morA¨PRU& did not led to full 

complementation, it led to an increase in motility to WT level.  

 

Complementation of the ¨morC strain with the morC gene driven by native promoter 

(mTn7T-morC) resulted in restoration of motility to WT level while the 

overexpression of morC in WT via transposon insertion lead to 50% increase in 

motility. Our laboratory has previously shown that there was a strict dosage control 

over morA such that slight perturbation of gene copy number by using a low copy 

number vector (pGB1) for complementation still led to measurable differences in 

phenotypes. MorC, however, showed 50% increase in motility regardless of whether 

overexpression was achieved with a low copy number vector, pGB3 or transposon 

integration into the chromosome. This indicates that phenotypic changes have 

remained at a constant level regardless of gene copy number. It was also noted that 
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the overexpression and knockout of morC leads to 0.5-fold change in motility. 

Therefore, an alternate possibility could be that the regulatory proteins present in the 

cell is limited and in turn, restricts the phenotypic changes.  
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Fig. 6-2. ¨morC mutant exhibits reduced swimming motility. The swimming 

motility of various strains in semisolid agar (0.4%[wt/vol] agar) was examined. The 

results are based on three independent experiments, each with five replicates. Asterisk 

* indicate that the values compared were significantly different while ns indicate no 

significant differences. Significance was calculated using Tukey’s pairwise 

comparison of means, p=0.05. 
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6.2.3. Mutation in morC does not affect biofilm formation in P. putida 

 

Previous studies shows that biofilm formation requires appropriate flagellar 

biogenesis (Pratt and Kolter, 1998; Sauer et al, 2002). Also, Choy et al (2004) 

demonstrated that ¨morA mutant led to a significant reduction in biofilm formation 

while increasing motility. As MorC is implicated in MorA signaling pathway, we then 

investigated if MorC also affect biofilm formation. It should be noted that biofilm 

formation assay was not used as a parameter during the transposon mutant screening. 

As such, similar results to those observed in ¨morA were not expected.  

 

Biofilm formation was examined on polystyrene surfaces by incubating bacterial 

cultures on polystyrene tubes for 3 and 10 hours. The biofilms were then visualized 

by crystal violet staining; solubilized in 1% SDS and then quantitated by OD595 

readings. Biofilm formed by ¨morC and WT showed no significant differences while 

the knockout of morC in ¨morA background leads to increased biofilm formation 

when compared to ¨morA. ¨morA¨PRU& pGB1morA on the other hand showed an 

increase in biofilm when compared to ¨morA¨PRU& to level comparable to ¨morC. 

Together, the data suggests that MorC alone do not cause biofilm formation changes. 

Indeed, biofilm formation was affected in the presence or absence of MorA. Hence, 

we propose that MorA regulates biofilm formation by a pathway not involving MorC.  
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Fig. 6-3. MorC does not affect biofilm formation. (A) Various strains were grown 

in LB broth in polystyrene tubes at 300C with 250rpm shaking for 3 and 10hours. The 

biofilms were stained with 0.1% crystal violet and then solubilized in 1% SDS for 

quantitation. (B) The results are from three independent experiments with three 

technical replicates. The error bars indicate standard deviation.  
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6.2.4. Mutation in morC does not affect chemotaxis 

 

Chemotaxis is the process by which bacteria moves towards attractants or away from 

repellants. This process is tightly coupled to bacterial motility. Since, PA5017 was 

reported to affect chemotaxis (Li et al., 2007), we examined the chemotactic response 

of the various MorC mutants using an adapted chemotaxis assay (Shi et al., 1998). A 

universal chemoattractant, aspartate, was used in the experiments. In all cases, the 

mutants formed a concentric ring around the agar plug containing aspartate after a 6h 

incubation period, indicating movement of these cells towards the plug. Thus showing 

that chemotaxis was able to occur. Fig. 6-4 clearly shows that the concentric rings are 

similar in size in all the plates. Hence, MorC do not affect chemotactic response 

toward aspartate when compared to WT.   
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Fig. 6-4. Chemotactic response of various morC mutants towards 100mM 

aspartate. Overnight cultures were washed and resuspended in half-strength M9 

medium and adjusted to OD600=1.0. The cultures were mixed with 0.4% (w/v) agar 

(1:24 ratio) and poured onto a petri plate with an agarose core containing 100mM of 

aspartate followed by incubation at 30ºC.  
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6.2.5. Sequence analysis of MorC suggests that it is a functional PDE  

 

Sequence analysis of MorC was carried out to ascertain the likely function of the 

protein (Fig. 6-5). It was found that the ASNEF motif was conserved in place of the 

GGDEF motif (Fig. 6-5A). Similar cases had previously been reported in inactive 

DGCs such as CC3396 and FimX that contains altered GEDEF and GDSIF motif 

sequences respectively (Christen et al., 2005; Kazmierczak et al., 2006). The 

allosteric c-di-GMP binding RXXD I-site that is known to be located five residues 

upstream of the GGDEF motif is not present in MorC as well (Christen et al., 2006; 

De et al., 2008). As such, it is thought that the DGC function is likely to be absent in 

MorC. 

 Likewise, the EAL domain is considered intact if it contains the canonical EAL motif 

and the conserved DDFGTGYS motif (Schmidt et al., 2005). This motif was later 

designated to be part of the ȕ�-loop required for substrate binding and catalysis (Rao 

et al., 2009). Key residues implicated for Mg2+ and c-di-GMP interactions have also 

been previously identified in a biochemical study (Rao et al., 2008). It can be seen in 

Fig. 6-5B that MorC contains the EAL motif, ȕ�-loop as well as the key residues 

required for Mg2+ and c-di-GMP interactions. Hence, it is likely that MorC contains a 

functional PDE domain. Interestingly, other than the canonical EAL motif located at 

residues 673 to 675, another EAL motif was found in MorC to be located at residues 

754 to 756. When MorC PDE domain modeling was conducted, it was observed that 

754EAL756 is located away from the active site (Fig. 6-5C).   
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Fig. 6-5. The sequence of MorC suggests that it may encode for an inactive DGC 

domain with a functional PDE domain. (A) MorC does not contain either the 

GG[D/E]EF motif or the RXXD (I) site. (B) MorC encodes the catalytic EAL motif at 

residue 673 to 675 (box1) as well DV�WKH�FRQVHUYHG�ȕ�-loop and key residues required 

for Mg2+ (.) and c-di-GMP (*) interaction. Interestingly, an additional EAL motif was 

located at residues 754 to 756 (box 2). Annotation adapted from Seshasayaee et al and 

Rao et al. (C) Model of MorC EAL domain (pale teal) superimposed on tdEAL 

(green, PDB ID: 3n3t). The oranges sticks represent the side-chains of 673EAL675 

interacting with Mg2+. The model indicates that the E673 site interacts with Mg+ that 

in turns interact with the phosphate groups of c-di-GMP. The pink sticks represent the 

side chains of 754EAL756 while the blue sticks represents the ȕ�-loop. 
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6.2.6. MorC function is dependent on its PDE domain 

 

To investigate if the PDE domain is essential to the function of MorC, we generated a 

truncated MorC construct (̈ ($/�� LQ�ZKLFK� WKH�3'(�GRPDLQ�ZDV� UHPRYHG�� ,QGHHG��

the complementation of ¨morC with ¨($/�ZDV�QRW�DEOH� WR� UHVWRUH�PRWLOLW\� EDFN� WR�

WT level but remained at 0.5-fold (Fig. 6-6). To further examine if the function is 

associated with the EAL motif, site-directed mutations in the conserved residues were 

created; namely E673K and L675G. Mutations in these residues have been shown to 

affect protein activity (Kirillina et al., 2004). The role of the negative charge exerted 

by the glutamic acid residue was studied by mutating it to lysine that is positively 

charged while keeping the mass of both residues comparable. To study the role played 

by the leucine residue that is hydrophobic in nature, it was mutated to glycine that is 

also hydrophobic in nature while being smaller in mass. Indeed, the introduction of 

both E673K and L675G variants into the ¨morC strain showed relative motility of 

0.4-fold verifying that they were unable to complement for the loss of MorC. This 

was also observed when E673K and L675G were introduced into ¨ morA¨PRU&�

background. Therefore, the EAL motif is critical for its function.  

 

When the 754EAL756 motif was mutated and introduced into ¨morC, the E754K site 

mutant presented motility of 0.68-fold while L756G site mutant led to increased 

motility at 1.32-fold. Thus the L756G mutation led to a hyperactive protein, leading 

to a phenotype similar to morC overexpression. Since 754EAL756 is located away from 

the active site, it is likely that there are long-range effects involved in the regulation 

of MorC protein function. It was also previously reported in FimX that the binding of 
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c-di-GMP onto the non-catalytic EAL domain can trigger long range conformational 

changes in the N-terminal REC domain and the adjacent linker that in turn lead to 

changes in protein localization and type IV pilus biogenesis (Qi et al., 2011).   

 

Interestingly, the introduction of E754K and L756G into ¨ morA¨PRU&�background 

does not lead to the same hypermotility phenotype observed when the constructs were 

introduced into ¨morC. Thus the loss of morA has led to the loss of the hypermotility 

phenotype. Since 754EAL756 is located outside the active site, this data suggests that 

MorA and MorC may interact directly or indirectly via long-range conformation 

changes. In all, it suggests that while MorC function is dependent on the PDE domain, 

it is not certain at this point if its function is solely due to enzymatic activities. To 

determine MorC enzymatic activities, several recombinant MorC constructs fused 

with C-terminal 6His tag in pET vector were made. However, recombinant protein 

expression trial showed that these proteins were not soluble (Fig. 3-2).  As such, the 

MorC PDE enzymatic activity could not be determined at this point.  
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Fig. 6-6. MorC function is dependent on its PDE domain. The loss of EAL domain 

alone is sufficient to abrogate morC complementation. Site directed mutations at both 

E and L residues of the canonical motif led to loss of complementation while 

mutations in 754EAL756 led to hypermotility. Interestingly, this was lost when MorA is 

absent. The swimming motility of various strains in semisolid agar (0.4%[wt/vol] 

agar) was examined. The results are based on three independent experiments, each 

with five replicates.   
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6.2.7. morC is expressed in a growth-stage dependent manner 

 

In order to better understand how MorC is regulated, RT-PCR was performed on WT 

cells to study morC expression. Cell pellets were collected from the WT culture at OD 

readings corresponding to early-, mid- and late-log phases. The RNA extracted was 

then normalized before cDNA synthesis.  

 

 Fig. 6-7A shows that morC was expressed in the early and late-log phase but not in 

the mid-log phase while morA and cyaA were constitutively expressed. The abundant 

morA expression at all growth phases suggests that its expression is unregulated. 

While cyaA expression profile show that it was also constitutively expressed, its 

expression level was gradually increased as the growth phase progressed. Therefore, it 

is likely that its expression is being regulated. It was also evident from the expression 

profile that morC was expressed at a low level when compared to morA and cyaA.  

 

We next studied the expression profile of morC in WT cells using qRT-PCR. The 

fluorescence detection cycle threshold values for the control 16S ribosomal RNA 

were similar in all three growth phases, indicating that similar amount of cDNA was 

used for the experiments.  

 

Fig. 6-7B shows that morC had similar expression profile observed in RT-PCR, its 

mRNA expression was more pronounced in the early and late log phases with lowered 

expression in the mid-log phase. morC shows expression of 11, 5 and 15-fold more 

expression in the three growth phases when compared to 16S rRNA, corroborating 
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that the expression of MorC is more pronounced in a growth-phase dependent 

manner. 
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Fig. 6-7. morC expression is growth stage dependent. The various cells were 

harvested at early-log phase (E), mid-log phase (M) and log-to-stationary phase (L). 

Fold change of gene expression in WT was normalized with 16s RNA expression. 

The results shown are from three independent experiments. The error bars indicate 

standard deviations from three technical replicates 
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6.2.8. MorC is expressed in a growth-stage dependent manner 

 

As MorA is a membrane bound regulator, gfp tag was used investigate its cellular 

localization. Fig. 6-8A shows that MorA is constitutively expressed in all three 

growth phases. Furthermore, MorA is localized to the two cell poles in all three 

phases (personal communications, Fu SJ). MorC, on the other hand, has shown no 

transmembrane domain in protein domain prediction. Thus, it is likely that MorC is a 

cytosolic protein. The gene expression results suggest that MorC functions at early 

and late log phase while not affecting mid-log phase. In order to find out if MorC has 

a specific cellular location or colocalizes with MorA, MorC was tagged with GFP and 

observed at various growth phases. 

 

 Confocal microscopy showed that MorC was expressed throughout the entire cell 

cytoplasm with no specific cellular location unlike MorA (Fig. 6-8B). It was also 

observed that GFP expression was only seen in the early and late log phases, 

suggesting that morC gene expression is reflective of MorC protein expression in that 

GFP was not observed in the mid-log phase. Thus morC is not regulated by its protein 

localization but instead it is regulated through the timing of its gene expression. 

Moreover, the loss of fluorescence in the mid-log phase suggests that there was no 

accumulation of MorC and that it was actively removed. Also, MorC shows the same 

distribution in the cell in the presence or absence of MorA implying that 

colocalization is neither necessary for their interaction nor for MorC to function. 

Therefore, it is likely that MorA and MorC interact indirectly.  
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Fig. 6-8. MorC-GFP is observed throughout the cells in growth-stage dependent 

manner. (A) MorA is constitutively expressed and localized to the cell poles. MorA 

tagged with GFP was observed under confocal microscopy at various growth phases.  

(B) Construct expressing gfp tagged morC was introduced into WT, ¨morA and 

¨morC. It can be seen that MorC was expressed only in the early and late-log phase 

but not in the mid-log phase. (Scale bar: 5µm) 
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6.2.9. MorC is a new regulator of fliC expression 

 

MorA was previously reported to affect fliC expression without affecting flagellar 

master regulators, fleQ and fliA. As such, hyperflagallation, increased cell speed and 

increased flagellated cell number seen in morA mutant was attributed to the 

precocious expression of fliC. ¨morA in Fig. 6-9 shows that fliC expression was 

increased significantly in the early-growth phase and throughout the three growth 

phases.  This is similar to the data previously obtained with MorDCK03 (Choy, 

2005). Since MorC is implicated in MorA control of swimming motility, we next 

studied fliC expression in ¨morC, WT::morC and ¨morA¨PRU& in order to determine 

if MorC controls motility via changes in flagellin levels. Fig. 6-9 shows fliC 

expression was downregulated in ¨morC at early, mid and late-log phase at 0.25, 0.29 

and 0.15 fold, respectively, while the overexpression of morC leads to 12.93-fold and 

5.81-fold increase in fliC expression at early and late-log phase respectively.  
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Fig. 6-9. MorC is a new regulator of fliC expression. The samples were harvested 

at early-log phase (E), mid-log phase (M) and log-to-stationary phase (L) to study fliC 

expression changes. Ct value of 23S RNA was used to normalize the Ct value of fliC 

gene expression. Fold change of fliC expression in P. putida mutant over that of wild 

type was then plotted. The results shown are from three independent experiments. The 

error bars indicate standard deviations from three technical replicates. 
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6.2.10. MorC do not affect motility via flagellar number  

 

While the fliC expression results implied that flagellin level is responsible for motility 

changes, it is also known that there are multiple levels of control on flagellation. For 

example, HP0518 in H. pylori is involved in the post transcription modification, 

namely the deglycosylation of flagellin. The mutant strain derived flagellin contains 

3-fold more pseudaminic acid and led to a hypermotile phenotype (Asakura et al., 

2010).   As such, we attempted to find out if fliC expression have indeed led to a 

change in the amount of flagellin present via Western blot performed with antibodies 

raised with samples collect in our laboratory (Wong, 2011).  However, Western blot 

data presented in Fig. 3-3B showed that the antibodies were not functional and could 

not provide clear signals. 

 

Since ¨morA mutant was reported to show 98% flagellated cells at all three growth 

phases (Choy et al, 2004), we next examine if MorC affect motility pathway via the 

flagellation of bacterial cells. As changes in bacterial movement can be due to 

changes in flagellar number, structure or the rotation frequency of the flagellar 

apparatus, TEM ultrastructural studies were performed on various strains. The TEM 

studies show that the length of flagella, polar localization of flagella and the cell size 

were similar between the mutant and WT cells.   Together with similar growth rates 

of the various strains, it is likely that the cell division rate is the same as well.  

 

Although ¨morC cells were less motile than WT cells and showed no difference in 

fliC expression, it has 4-fold more flagellated cells than WT cells in the early-log 

phase and 2-fold more flagellated cells in the mid-log phase. While ¨morA and 



 139 

¨morC showed increased flagellated cells, ¨morA¨PRU&�showed reduced flagellated 

cells in all three growth phases. Despite WT::morC, MorC::morC and the site directed 

mutants E673K and L675G showing diverse motility phenotypes, they showed an 

overall comparable flagellar number. Therefore, MorC control over motility is 

unrelated to the flagellation but rather, rests on the control of motor- related function.  
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Fig. 6-10. MorC does not enhance swimming motility via flagellation related 

processes. The various cells were harvested at early-log phase (E), mid-log phase (M) 

and log-to-stationary phase (L). Proportion of flagellated cells expressed as a 

percentage of the total number of cells counted using TEM. Counts were based on an 

average of 100 cells. 
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6.2.11. MorC controls motility via cell speed  

 

As the flagellated cell numbers were not consistent with the trend observed in motility 

plate assay, it was likely that MorC does not control motility via flagellation-related 

processes. Thus, we next examine if MorC controls motility by affecting motor 

function. This was accomplished by observing swimming cells by video microscopy 

to obtain single cell speeds at the early, mid and late-log phases. Since P. putida cells 

were previously found to move in short distances with overlapping trajectories, it is 

difficult to determine the turn angles (Wong, 2011).  

 

As such, video microscopy was used to investigate if MorC affects motility by 

controlling cell speed. Fig. 6-11 shows that ¨morC and WT have comparable cell 

speed of 2.8 and 2.5µm/s at early-log and 3.6 and 3.4 µm/s respectively for mid-log 

phase, differing significantly in the late-log phase. ¨morC showed a cell speed of 

2.5µm/s at late log phase translating to a 60% decrease in speed when compared to 

WT. MorC overexpression, on the other hand, led to a 128% increase in cell speed at 

early-log phase to 6.4µm/s while remaining comparable to WT at late-log phase.  

 

Interestingly, E673K and L675G, while showing comparable motility fold change in 

the plate assay (Fig. 6-6B), did not show the same speed profile at the various growth 

phases. L675G showed increased cell speed as compared to ¨morC to 4µm/s in the 

early-log phase and reduced cell speed in mid and late-log. E673K, on the other hand, 

showed a slight decrease in cell speed in the early and mid-log phase and increased 

cell speed to 5µm/s in the late-log phase.  This suggests that that E residue in the EAL 
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motif regulates the cell speed in the early-log phase while the L residue in the EAL 

motif serves the same function in the late-log phase. 

  



 143 

 

 
Fig. 6-11. Cell speed analysis shows that MorC affects the cell speed in a growth-

stage dependent manner. Video microscopy showed that ¨morC cells were 60% 

less motile in the late-log phase when compared to WT while morC overexpression 

led to a 128% increase in motility in the early-log phase. Values are means of 300 

bacterial cell speeds tracked from 2 videos each from 3 clones for each strain. 
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6.3. CONCLUSION AND FUTURE WORK 

 

MorC is a well-conserved protein that contains PAS/PAC, GAF, ASNEF and EAL 

domains. Interestingly, the ASNEF motif is conserved only in the Pseudomonas spp 

while being present as the GGDEF motif in other bacterial genus in both Gram-

positive and Gram-negative bacteria. As such, mutating the motif to GGDEF may 

shed light on the function served by the ASNEF motif in MorC. 

 

MorC is a positive regulator of motility that functions downstream of MorA. Unlike 

MorA, single copy and multi-copies overexpression of morC leads to 0.5 fold 

increase in swimming motility when compared to WT. Thus, MorC is not affected by 

gene dosage. MorC is highly specific in its activity; it controls motility while not 

affecting biofilm formation or chemotaxis. 

 

RT-PCR showed that both morA and cyaA is expressed throughout the growth phases 

while morC is not. There was steady and abundant morA expression throughout the 

growth phases while cyaA expression increased as the culture moves toward 

stationary phase. As such, it can be concluded that morA expression is likely to be 

unregulated while cyaA expression is regulated. Another point of note is that the 

amount of morC transcript is low when compared to morA, suggesting that MorC is 

not required in large amount to cause phenotypic differences. Subsequently, qRT-

PCR showed that morC gene expression was elevated in the early and late-log phases 

but not in mid-log phase.  
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GFP fused MorC used in cellular localization also showed that MorC is expressed 

throughout the cell in a growth-phase dependent manner in the early and late log 

phases but not the mid-log phase. Together with gene expression studies, it can be 

concluded that MorC is likely to be active in the early and late-log phases.  

 

fliC gene expression studies shows that fliC transcript level was increased in the early 

and late-log phases when morC is overexpressed. Similarly, disruption of morC leads 

to decreased fliC gene expression. Thus MorC is a newly identified fliC regulator. 

Flagellated cell numbers, however, did not correlate with gene expression.   

 

Based on protein sequence analysis, MorC is likely a functional PDE that contains 2 

EAL motifs. Motility plate assay show that truncated MorC missing the PDE domain 

was unable to complement ̈ morC.. Furthermore, mutations in the canonical EAL 

motif lead to loss of complementation while mutations in the non-canonical EAL 

motif lead to hypermotility. This hypermotile phenotype is lost when morA is 

disrupted. Structural modeling shows that the non-canonical EAL motif is located 

away from the active site suggesting that its effect on function maybe due to changes 

in the protein structure. Since MorC function is likely related to its structure, 

resolving its structure will be helpful in furthering our understanding of its activities. 

 

 Single cell swimming speed analysis showed that cell speed was increased in the 

early-log phase when MorC was overexpressed while ̈ morC exhibited decreased cell 

speed in the late-log phase. Site-directed mutants at the canonical site showed that 

there is a residue-specific effect at the early and late-log phases.  
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Lastly, due to the difficulties in obtaining recombinant proteins for enzymatic studies, 

many questions remained unanswered. Therefore, more diverse types of tags and 

expression systems may be attempted to obtain full-length proteins and site-directed 

mutant proteins.   

 

Fig.6-11 summarizes the strategies deployed to control motility as well as the 

relationship of between MorA, CyaA, OpuAC and MorC. Thus far, it is unclear if 

these players interact directly or indirectly. To elucidate the relationship between 

CyaA and MorC, overexpression of cyaA and morC should be carried out in ¨morC 

and ¨cyaA strains respectively.  
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Fig. 6-12. Different strategies deployed to control motility via MorA signaling 

pathway. Though CyaA interacts in an antagonistic manner with MorA, MorA exerts 

dominant effects over motility and can determine CyaA control over the direction of 

motility. OpuAC, on the other hand, acts independently of MorA to control both 

motility and biofilm formation. In addition, MorC is found to act downstream of 

MorA as a positive regulator that controls motility through cell speed while not 

affecting biofilm formation or chemotaxis. (+) and (-) denotes positive and negative 

regulation respectively while (?) denotes unknown factors or players. (*) denotes that 

the direction of control is dependent on MorA. 
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Appendix I 

 

Alignment of PNL-MK25 MorC EAL domain to tdEAL (PDB ID: 3n3t)  (41% 
similarity) 
 
Sequence similarity of MorC to tdEAL, used for in silico modeling of domain 
structure 
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Appendix II 

 

SoLiD sequencing data analysis summary 

SoLiD sequencing of PNL-MK25 genome was carried out at the University of 
Oklahoma health sciences center.  Data obtained from 50bp tags at 300x coverage 
was then analyzed with CLC Bio software. 

 

CLC Bio analysis summary 
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Appendix III 

MorC gene and protein sequences. The morC gene is 2697 bp in length and predicted 
to encode a polypeptide of 898 amino acid. The PAS domains are highlighted in grey, 
PAC domain in black, GAF domain in green, ASNEF domain in blue, EAL domain in 
yellow and the notable motifs in teal. The domains are predicted using Simple 
Modular Architecture Research Tool (http://smart.embl-heidelberg.de).  
 

   
  1  AUGAAGAGCCAGCCCGAUGCCGCCAGCCGUAUGGCGGCCGAGGUAGUGACGCAGUUGCCU  
  1   M  K  S  Q  P  D  A  A  S  R  M  A  A  E  V  V  T  Q  L  P  
    
 61  GUGCCCUCGCGGCUCGGCAUGCUGCGUUUCGAGCGCUUGAAUGAAGCCAGUUGGGCAAUG  
 21   V  P  S  R  L  G  M  L  R  F  E  R  L  N  E  A  S  W  A  M  
 
121  CUGUUCCUCGAUCCCAACUGCGAACGCCAGUUCGGCCAGCCGGCCGUCGAGCUCUGCGCG  
 41   L  F  L  D  P  N  C  E  R  Q  F  G  Q  P  A  V  E  L  C  A  
   

PAS motif 1 
181  CUGGUCGGCUCGCCUUACGCCAGCCUGAUGGAGCCCGAGGCGCGCUAUCAACUGCACGAU  
 61   L  V  G  S  P  Y  A  S  L  M  E  P  E  A  R  Y  Q  L  H  D  
   
241  GCGAUCCAGCAGCAACUGAGCAAAAGCGCACAUUACGUGGUGCGCUACACCCUGCACACC  
 81   A  I  Q  Q  Q  L  S  K  S  A  H  Y  V  V  R  Y  T  L  H  T  
   
301  GCCGCCGGCGCGUUGAACAUCCUCGAGCUGGGCGAAGCCUACAAACAGCACAACCGGCAC  
101   A  A  G  A  L  N  I  L  E  L  G  E  A  Y  K  Q  H  N  R  H 
   
361  UUGCUGCGCGGCUACCUGCUGGCAGUCGACGAGGUGUUCGACGAAACCCAGGCGCUGCCU  
121   L  L  R  G  Y  L  L  A  V  D  E  V  F  D  E  T  Q  A  L  P  
   
421  UCGGUCGACCUGGAAACCCAGAACUCGCGCCUGCAAAUCGCCCUUGAGCUGAACCAGCGU  
141   S  V  D  L  E  T  Q  N  S  R  L  Q  I  A  L  E  L  N  Q  R  
 
481  GCCCAGCAGGAACAACUGCAGCAUCUGGAGCGCGUGCGUGCCCAGCAGGAUCUGAUUCUG  
161   A  Q  Q  E  Q  L  Q  H  L  E  R  V  R  A  Q  Q  D  L  I  L  
 
541  CUGCUCGCACGCCAGCGCUACAGCACGCACAACUCGCUGCAGGAAGCCGCCGAACUGAUC  
181   L  L  A  R  Q  R  Y  S  T  H  N  S  L  Q  E  A  A  E  L  I  
 
601  ACCCGCUGCGCCUGCGAUAUCUACGAGAUCGACUGCGCUAGCCUGUGGAACCUCGAAGGC  
201   T  R  C  A  C  D  I  Y  E  I  D  C  A  S  L  W  N  L  E  G  
 
661  CAGCGCUUGCUGCCGAUCUCCGCUUACCAUCGCGCGACCCAGGAAUACAUCCUGCCGGAG  
221   Q  R  L  L  P  I  S  A  Y  H  R  A  T  Q  E  Y  I  L  P  E  
 
721  CCGAUCGAUAUCAGCGGCUUCCCUGACUACAUGGAAGCCCUGCACAGCAGCCGCGCCAUC 
241   P  I  D  I  S  G  F  P  D  Y  M  E  A  L  H  S  S  R  A  I  
 

GAF domain 
781  GAUGCCCACAACGCCAUGCACGAUCCGCGUACCCGCGAGAUGGCCGAGGCGAUGCGUCCG  
261   D  A  H  N  A  M  H  D  P  R  T  R  E  M  A  E  A  M  R  P  
 
841  CGUGAUGUCAACGCCAUGCUCGAUGCCAGCAUUCGCGUCGACGGCCAGGUUGUCGGCGUG 
281   R  D  V  N  A  M  L  D  A  S  I  R  V  D  G  Q  V  V  G  V  
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901  UUGUGCCUGGAACAGACCGGCGUCACCCGCGCCUGGCAGUCCGACGAAAUCGCCUUUGCC 
301   L  C  L  E  Q  T  G  V  T  R  A  W  Q  S  D  E  I  A  F  A  
 
961  GGCGAACUGGCCGACCAGUUUGCGCAAGUGAUCAACAAUCACAACCGGCGUACCGCCACU 
321   G  E  L  A  D  Q  F  A  Q  V  I  N  N  H  N  R  R  T  A  T  
 
1021 AGCGCCCUGCACCUGUUUCAGCGCGCGGUCGAGCAAAGCGCCAACGCCUUCUUGCUGGUC     
0341  S  A  L  H  L  F  Q  R  A  V  E  Q  S  A  N  A  F  L  L  V 
  
1081 AACUGCGACGGCGUGGUCGAGUACGUCAACCCGAGCUUCACUGCGAUCACCCAGUACACC  
0361  N  C  D  G  V  V  E  Y  V  N  P  S  F  T  A  I  T  Q  Y  T  
 

PAS motif 2 
1141 ACCGAGGAAGUCCACGGCCAGCGCCUGUCGGAAUUGCCGGCGCUGGAAAACCUCAGCGAA 
0381  T  E  E  V  H  G  Q  R  L  S  E  L  P  A  L  E  N  L  S  E  
  
1201 CUGCUGUUCGACGCGCCUUCGGCGCUGGCCCAGAGCAACAGCUGGCAGGGCGAAUUCAAA 
0401  L  L  F  D  A  P  S  A  L  A  Q  S  N  S  W  Q  G  E  F  K  
         
1261 AGCCGCCGGAAAAACCUCGAACCGUACUGGGGCCAGCUGUCGAUCUCCAAGGUCUACGGC 
0421  S  R  R  K  N  L  E  P  Y  W  G  Q  L  S  I  S  K  V  Y  G  
         

PAC motif 
1321 GAUAACCGUGAGCUCACGCAUUACAUCGGCAUCUACGAAGACAUCACCCAGACUAAACUC 
0441  D  N  R  E  L  T  H  Y  I  G  I  Y  E  D  I  T  Q  T  K  L  
 
1381 GCGCAGCAACGUAUCGAGCGCCUGGCCUAUACCGACAACCUGACCAACCUUGGAAACCGU 
0461  A  Q  Q  R  I  E  R  L  A  Y  T  D  N  L  T  N  L  G  N  R  
         
1441 CCGGCAUUCAUCCGCAAUCUCGAUGAGCGCUUCGCCCGCGACAGCGACACGCCGAUCAGC 
0481  P  A  F  I  R  N  L  D  E  R  F  A  R  D  S  D  T  P  I  S  
         
1501 CUGUUGCUGGUGGACAUCGACAACUUCAAGCGGAUCAACGACAGCCUCGGUCACCAGACC 
0501  L  L  L  V  D  I  D  N  F  K  R  I  N  D  S  L  G  H  Q  T  
         
1561 GGCGACAAACUGUUGAUCAGCCUCGCCCGGCGCCUGCGCAACAGCCUCAGCCCGAGUGGC 
0521  G  D  K  L  L  I  S  L  A  R  R  L  R  N  S  L  S  P  S  G  
         

ASNEF domain 
1621 AGCCUGGCGCGUUUUGCCAGUAACGAGUUCGCCGUGUUGCUCGACGACACCGACCUUGAG 
0541  S  L  A  R  F  A  S  N  E  F  A  V  L  L  D  D  T  D  L  E  
         
1681 GCCGGGCAGCAGAUCGCCAGUCAGUUGCUGAUGACCCUCGACAAGCCGAUGUUCGUCGAC 
0561  A  G  Q  Q  I  A  S  Q  L  L  M  T  L  D  K  P  M  F  V  D  
         
1741 AAUCAGUUGAUCAGCGUCACCGGCUCCGUCGGCCUGGCCUGCGCGCCGCUGCACGGCCGC 
0581  N  Q  L  I  S  V  T  G  S  V  G  L  A  C  A  P  L  H  G  R  
         
1801 GACCCGCAGACCCUGAUGCGCAACGCCGGCCUGGCGCUGCACAAGGCCAAGGCCAACGGC 
0601  D  P  Q  T  L  M  R  N  A  G  L  A  L  H  K  A  K  A  N  G  
 
1861 AAACACCAGUUGCAGGUGUUCACUGAAGCGCUGAACGCUGAAGCCAGUUACAAACUGUUC 
0621  K  H  Q  L  Q  V  F  T  E  A  L  N  A  E  A  S  Y  K  L  F  
         

EAL domain 
1881 GUCGAGAACAACCUGCGCCGCGCCCUCACGCAGAACGAGCUGGACGUGUUCUACCAGCCC 
0641  V  E  N  N  L  R  R  A  L  T  Q  N  E  L  D  V  F  Y  Q  P  
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      Canonical EAL motif 
1981 AAGCUGUGCCUGCGCAGCGGUCGCCUGCUGGGCAUGGAAGCGCUGUUGCGCUGGAACCAC 
0661  K  L  C  L  R  S  G  R  L  L  G  M  E  A  L  L  R  W  N  H  
         
2041 CCGGAGCGCGGCAUGAUCCGCCCGGACCAGUUCAUCAGCGUCGCCGAGGAAACCGGCCUG 
0681  P  E  R  G  M  I  R  P  D  Q  F  I  S  V  A  E  E  T  G  L  
         
2101 AUCAUUCCGAUCGGCAAGUGGAUUGCUCGUCAGGCCUGCCGCAUGAGCAAAUCCCUGACC 
0701  I  I  P  I  G  K  W  I  A  R  Q  A  C  R  M  S  K  S  L  T  
         
2161 GCUGCCGGCCUAGGCAAUCUGCAGGUGGCAAUCAAUCUGUCACCGAAACAGUUCUCCGAU 
0721  A  A  G  L  G  N  L  Q  V  A  I  N  L  S  P  K  Q  F  S  D  
         
     Non-canonical EAL motif 
2221 CCGGAUCUGGUCGCCUCGAUCGCCAACAUCCUCAGGGAAGAAGCGCUGCCGGCCAGUCUG 
0741  P  D  L  V  A  S  I  A  N  I  L  R  E  E  A  L  P  A  S  L  
         
2281 CUCGAACUGGAGCUGACCGAAGGCUUGUUGCUGGAAGCCACCGAAGACACGCAUUUGCAG 
0761  L  E  L  E  L  T  E  G  L  L  L  E  A  T  E  D  T  H  L  Q  
  
              E6-loop 
2341 CUCGACCAGCUCAAACGCUUGGGCCUGACCCUGGCCAUGGAUGACUUCGGCACCGGGUAC 
0781  L  D  Q  L  K  R  L  G  L  T  L  A  M  D  D  F  G  T  G  Y  
        
2401 UCGUCGCUGAGCUAUCUGAAGAAAUUUCCGAUCGACAUCAUCAAGAUUGAUCGCAGCUUC 
0801  S  S  L  S  Y  L  K  K  F  P  I  D  I  I  K  I  D  R  S  F  
         
2461 AUCCAUGAAAUCCCGGACAACCAGGACGACAUGGAAAUCACCUCCGCGGUGAUCGCCAUG 
0821  I  H  E  I  P  D  N  Q  D  D  M  E  I  T  S  A  V  I  A  M  
         
2521 GCCCACAACCUGAAACUCAAGGUCGUCGCCGAAGGCAUCGAAACCGCCGAGCAACUGGCG 
0841  A  H  N  L  K  L  K  V  V  A  E  G  I  E  T  A  E  Q  L  A  
         
2581 UUCCUGCGCCGGCAUCGUUGCGACGUCGGCCAGGGUUACCUGUUCGACCGACCGAUUCCG 
0861  F  L  R  R  H  R  C  D  V  G  Q  G  Y  L  F  D  R  P  I  P  
         
2641 GGUGAUGAGCUGAUCAAUGCGCUCAAGCGCUAUCCGCGCGGCCCGCUCUGCCUCUAA 
0881  G  D  E  L  I  N  A  L  K  R  Y  P  R  G  P  L  C  L  * 
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acterial 
species containing A
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otif are highlighted w
ith a red circle and w

ere found to cluster together at the top of the 
tree. 
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Appendix V 

Taxonomy report of MorC conservation. 

 

24/10/11 11:10 AMNCBI Blast:(3) - Protein Sequence (169 letters)

Page 8 of 9http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&RID=A9NH8ED…TS=100&FORMAT_BLOCK_ON_RESPAGE=Top&MASK_COLOR=1&MASK_CHAR=2

Taxonomy Report

Bacteria ...........................................................   242 hits  141 orgs [root; cellular organisms]
. Proteobacteria ...................................................   100 hits   65 orgs 
. . Gammaproteobacteria ............................................    99 hits   64 orgs 
. . . Pseudomonas ..................................................    92 hits   61 orgs [Pseudomonadales; Pseudomonadaceae]
. . . . Pseudomonas brassicacearum subsp. brassicacearum NFM421 ....     2 hits    1 orgs [Pseudomonas brassicacearum; Pseudomonas brassicacearum subsp. brassicacearum]
. . . . Pseudomonas fluorescens ....................................     8 hits    4 orgs [Pseudomonas fluorescens group]
. . . . . Pseudomonas fluorescens Pf-5 .............................     2 hits    1 orgs 
. . . . . Pseudomonas fluorescens Pf0-1 ............................     2 hits    1 orgs 
. . . . . Pseudomonas fluorescens WH6 ..............................     2 hits    1 orgs 
. . . . . Pseudomonas fluorescens SBW25 ............................     2 hits    1 orgs 
. . . . Pseudomonas syringae group .................................    34 hits   27 orgs 
. . . . . Pseudomonas syringae .....................................     9 hits    8 orgs [Pseudomonas syringae group genomosp. 1]
. . . . . . Pseudomonas syringae pv. syringae ......................     4 hits    3 orgs 
. . . . . . . Pseudomonas syringae pv. syringae FF5 ................     1 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. syringae 642 ................     1 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. syringae B728a ..............     2 hits    1 orgs 
. . . . . . Pseudomonas syringae pv. pisi str. 1704B ...............     1 hits    1 orgs [Pseudomonas syringae pv. pisi]
. . . . . . Pseudomonas syringae pv. aptata str. DSM 50252 .........     1 hits    1 orgs [Pseudomonas syringae pv. aptata]
. . . . . . Pseudomonas syringae Cit 7 .............................     1 hits    1 orgs 
. . . . . . Pseudomonas syringae pv. aceris str. M302273PT .........     1 hits    1 orgs [Pseudomonas syringae pv. aceris]
. . . . . . Pseudomonas syringae pv. actinidiae str. M302091 .......     1 hits    1 orgs [Pseudomonas syringae group pathovars incertae sedis; Pseudomonas syringae pv. actinidiae]
. . . . . Pseudomonas syringae pv. oryzae str. 1_6 .................     2 hits    1 orgs [Pseudomonas coronafaciens; Pseudomonas syringae pv. oryzae]
. . . . . Pseudomonas syringae group genomosp. 2 ...................    15 hits   12 orgs 
. . . . . . Pseudomonas amygdali ...................................     9 hits    8 orgs 
. . . . . . . Pseudomonas syringae pv. lachrymans ..................     2 hits    2 orgs 
. . . . . . . . Pseudomonas syringae pv. lachrymans str. M302278PT .     1 hits    1 orgs 
. . . . . . . . Pseudomonas syringae pv. lachrymans str. M301315 ...     1 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. morsprunorum str. M302280PT .     1 hits    1 orgs [Pseudomonas syringae pv. morsprunorum]
. . . . . . . Pseudomonas syringae pv. aesculi .....................     3 hits    3 orgs 
. . . . . . . . Pseudomonas syringae pv. aesculi str. 2250 .........     1 hits    1 orgs 
. . . . . . . . Pseudomonas syringae pv. aesculi str. NCPPB3681 ....     1 hits    1 orgs 
. . . . . . . . Pseudomonas syringae pv. aesculi str. 0893_23 ......     1 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. tabaci ATCC 11528 ...........     2 hits    1 orgs [Pseudomonas syringae pv. tabaci]
. . . . . . . Pseudomonas syringae pv. mori str. 301020 ............     1 hits    1 orgs [Pseudomonas syringae pv. mori]
. . . . . . Pseudomonas savastanoi .................................     6 hits    4 orgs 
. . . . . . . Pseudomonas savastanoi pv. savastanoi NCPPB 3335 .....     2 hits    1 orgs [Pseudomonas savastanoi pv. savastanoi]
. . . . . . . Pseudomonas syringae pv. phaseolicola 1448A ..........     2 hits    1 orgs [Pseudomonas syringae pv. phaseolicola]
. . . . . . . Pseudomonas syringae pv. glycinea ....................     2 hits    2 orgs 
. . . . . . . . Pseudomonas syringae pv. glycinea str. B076 ........     1 hits    1 orgs 
. . . . . . . . Pseudomonas syringae pv. glycinea str. race 4 ......     1 hits    1 orgs 
. . . . . Pseudomonas syringae group genomosp. 3 ...................     8 hits    6 orgs 
. . . . . . Pseudomonas syringae pv. tomato ........................     7 hits    5 orgs 
. . . . . . . Pseudomonas syringae pv. tomato str. DC3000 ..........     2 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. tomato T1 ...................     2 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. tomato Max13 ................     1 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. tomato K40 ..................     1 hits    1 orgs 
. . . . . . . Pseudomonas syringae pv. tomato NCPPB 1108 ...........     1 hits    1 orgs 
. . . . . . Pseudomonas syringae pv. maculicola str. ES4326 ........     1 hits    1 orgs [Pseudomonas syringae pv. maculicola]
. . . . Pseudomonas entomophila L48 ................................     2 hits    1 orgs [Pseudomonas entomophila]
. . . . Pseudomonas putida group ...................................    13 hits    7 orgs 
. . . . . Pseudomonas putida .......................................    11 hits    6 orgs 
. . . . . . Pseudomonas putida W619 ................................     2 hits    1 orgs 
. . . . . . Pseudomonas putida BIRD-1 ..............................     1 hits    1 orgs 
. . . . . . Pseudomonas putida KT2440 ..............................     2 hits    1 orgs 
. . . . . . Pseudomonas putida S16 .................................     2 hits    1 orgs 
. . . . . . Pseudomonas putida GB-1 ................................     2 hits    1 orgs 
. . . . . . Pseudomonas putida F1 ..................................     2 hits    1 orgs 
. . . . . Pseudomonas fulva 12-X ...................................     2 hits    1 orgs [Pseudomonas fulva]
. . . . Pseudomonas sp. TJI-51 .....................................     2 hits    1 orgs 
. . . . Pseudomonas aeruginosa group ...............................    26 hits   17 orgs 
. . . . . Pseudomonas mendocina ....................................     4 hits    2 orgs 
. . . . . . Pseudomonas mendocina ymp ..............................     2 hits    1 orgs 
. . . . . . Pseudomonas mendocina NK-01 ............................     2 hits    1 orgs 
. . . . . Pseudomonas aeruginosa ...................................    22 hits   15 orgs 
. . . . . . Pseudomonas aeruginosa UCBPP-PA14 ......................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa PAb1 ............................     1 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa 152504 ..........................     1 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa PACS2 ...........................     1 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa LESB58 ..........................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa 138244 ..........................     1 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa M18 .............................     1 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa PAO1 ............................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa C3719 ...........................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa 2192 ............................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa 39016 ...........................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa NCGM2.S1 ........................     1 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa PA7 .............................     2 hits    1 orgs 
. . . . . . Pseudomonas aeruginosa NCMG1179 ........................     1 hits    1 orgs 
. . . . Pseudomonas stutzeri .......................................     5 hits    3 orgs [Pseudomonas stutzeri group; Pseudomonas stutzeri subgroup]
. . . . . Pseudomonas stutzeri DSM 4166 ............................     1 hits    1 orgs 
. . . . . Pseudomonas stutzeri A1501 ...............................     2 hits    1 orgs 
. . . . . Pseudomonas stutzeri ATCC 17588 = LMG 11199 ..............     2 hits    1 orgs 
. . . Vibrio .......................................................     5 hits    2 orgs [Vibrionales; Vibrionaceae]
. . . . Vibrio orientalis CIP 102891 = ATCC 33934 ..................     3 hits    1 orgs [Vibrio orientalis]
. . . . Vibrio caribbenthicus ATCC BAA-2122 ........................     2 hits    1 orgs [Vibrio caribbenthicus]
. . . Bermanella marisrubri ........................................     2 hits    1 orgs [Oceanospirillales; Oceanospirillaceae; Bermanella]
. . Dechlorosoma suillum PS ........................................     1 hits    1 orgs [Betaproteobacteria; Rhodocyclales; Rhodocyclaceae; Azospira; Azospira oryzae]
. Bacillales .......................................................   142 hits   76 orgs [Firmicutes; Bacilli]
. . Bacillus cereus group ..........................................   140 hits   75 orgs [Bacillaceae; Bacillus]
. . . Bacillus cereus ..............................................    78 hits   40 orgs 
. . . . Bacillus cereus Rock4-18 ...................................     2 hits    1 orgs 
. . . . Bacillus cereus Rock3-29 ...................................     2 hits    1 orgs 
. . . . Bacillus cereus Rock3-28 ...................................     2 hits    1 orgs 
. . . . Bacillus cereus ATCC 10987 .................................     2 hits    1 orgs 
. . . . Bacillus cereus Rock1-3 ....................................     2 hits    1 orgs 
. . . . Bacillus cereus AH603 ......................................     2 hits    1 orgs 
. . . . Bacillus cereus BDRD-ST196 .................................     2 hits    1 orgs 
. . . . Bacillus cereus G9241 ......................................     2 hits    1 orgs 
. . . . Bacillus cereus MM3 ........................................     2 hits    1 orgs 
. . . . Bacillus cereus AH1273 .....................................     2 hits    1 orgs 
. . . . Bacillus cereus AH1272 .....................................     2 hits    1 orgs 


